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Abstract: As an extension of neutrosophic soft sets, Q-neutrosophic soft sets were established to deal with two-
dimensional indeterminate data. Different hybrid models of fuzzy sets were utilized to different algebraic structures,
for example groups, rings, fields and lie-algebras. A field is an essential algebraic structure, which is widely used
in algebra and several domains of mathematics. The motivation of the current work is to extend the thought of
Q-neutrosophic soft sets to fields. In this paper, we define the notion of Q-neutrosophic soft fields. Structural charac-
teristics of it are investigated. Moreover, the concepts of homomorphic image and pre-image of Q-neutrosophic soft
fields are discussed. Finally, the Cartesian product of Q-neutrosophic soft fields is defined and some related properties
are discussed.
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1 Introduction
Fuzzy sets were established by Zadeh [1] as a tool to deal with uncertain data. Since then, fuzzy logic has
been utilized in several real-world problems in uncertain environments. Consequently, numerous analysts
discussed many results using distinct directions of fuzzy-set theory, for instance, interval valued fuzzy set [2]
and intuitionistic fuzzy set [3]. These extensions can deal with uncertain real-world problems but it does not
cope with indeterminate data. Thus, Smarandache [4] initiated the neutrosophic idea to overcome this problem.
A neutrosophic set (NS) [5] is a mathematical notion serving issues containing inconsistent, indeterminate,
and imprecise data. Molodtsov [6] introduced the concept of soft sets as another way to handle uncertainty.
Since its initiation, a plenty of hybrid models of soft set have been produced, for example, fuzzy soft sets [7],
neutrosophic soft sets (NSSs) [8]. Accordingly, NSSs became an important notion for more deep discussions
[9–17]. NSSs were extended to Q-neutrosophic soft sets (Q-NSSs) [18] a new model that deals with two-
dimensional uncertain data. Q-NSSs were further investigated and their basic operations and relations were
discussed in [18, 19].

Different hybrid models of fuzzy sets and soft sets were utilized in different branches of mathematics,
including algebra. This was started by Rosenfeld in 1971 [20] when he established the idea of fuzzy subgroup.
Since then, the theories and approaches of fuzzy soft sets on different algebraic structures developed rapidly.
Mukherjee and Bhattacharya [21] studied fuzzy groups, Sharma [22] discussed intuitionistic fuzzy groups.
Recently, many researchers have applied different hybrid models of fuzzy sets and soft sets to several algebraic
structures such as groups, semigroups, rings, fields and BCK/BCI-algebras [23–32]. NSs and NSSs have
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received more attention in studying the algebraic structure of set theories dealing with uncertainty. Cetkin
and Aygun [33] established the concept of neutrosophic subgroup. Bera and Mahapatra introduced the notion
of neutrosophic soft group [34], neutrosophic soft fields [35]. Moreover, two-dimensional hybrid models
of fuzzy sets and soft sets were also applied to different algebraic structures. Solairaju and Nagarajan [36]
introduced the notion of Q-fuzzy groups. Thiruveni and Solairaju defined the concept of neutrosophic Q-fuzzy
subgroup [37], while Rasuli [38] established the notion of Q-fuzzy subring and anti Q-fuzzy subring. The
concept of Q-NSSs was also implemented in the theories of groups and rings [39, 40].

Inspired by the above works and to utilize Q-NSSs to different algebraic structures, in the current paper,
we continue the work presented in [41] about Q-neutrosophic soft fields (Q-NSFs) and investigate some of
its structural characteristics; we give some theorems that simplifies the main definition, also we discuss the
intersection and union of two Q-NSFs . The concepts of homomorphic image and pre-image of Q-NSFs are
investigated. Also, we discuss the Cartesian product of Q-NSFs and discuss some related properties.

2 Preliminaries

In this section, we recall the basic definitions related to this work.

Definition 2.1 ( [18]). Let X be a universal set, Q be a nonempty set and A ⊆ E be a set of parameters. Let
µlQNS(X) be the set of all multi Q-NSs on X with dimension l = 1. A pair (ΓQ, A) is called a Q-NSS over
X , where ΓQ : A→ µlQNS(X) is a mapping, such that ΓQ(e) = φ if e /∈ A.

Definition 2.2 ( [19]). The union of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ, C) written as
(ΓQ, A) ∪ (ΨQ, B) = (ΛQ, C), where C = A ∪ B and for all c ∈ C, (x, q) ∈ X × Q, the truth-membership,
indeterminacy-membership and falsity-membership of (ΛQ, C) are as follows:

TΛQ(c)(x, q) =


TΓQ(c)(x, q) if c ∈ A−B,
TΨQ(c)(x, q) if c ∈ B − A,
max{TΓQ(c)(x, q), TΨQ(c)(x, q)} if c ∈ A ∩B,

IΛQ(c)(x, q) =


IΓQ(c)(x, q) if c ∈ A−B,
IΨQ(c)(x, q) if c ∈ B − A,
min{IΓQ(c)(x, q), IΨQ(c)(x, q)} if c ∈ A ∩B,

FΛQ(c)(x, q) =


FΓQ(c)(x, q) if c ∈ A−B,
FΨQ(c)(x, q) if c ∈ B − A,
min{FΓQ(c)(x, q), FΨQ(c)(x, q)} if c ∈ A ∩B.

Definition 2.3 ( [19]). The intersection of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ, C) written as
(ΓQ, A)∩ (ΨQ, B) = (ΛQ, C), where C = A∩B and for all c ∈ C and (x, q) ∈ X×Q the truth-membership,
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indeterminacy-membership and falsity-membership of (ΛQ, C) are as follows:

TΛQ(c)(x, q) = min{TΓQ(c)(x, q), TΨQ(c)(x, q)},
IΛQ(c)(x, q) = max{IΓQ(c)(x, q), IΨQ(c)(x, q)},
FΛQ(c)(x, q) = max{FΓQ(c)(x, q), FΨQ(c)(x, q)}.

3 Q-Neutrosophic Soft Fields
In this section, we define the notion of Q-NSF and discuss several related properties.

Definition 3.1. Let (ΓQ, A) be a Q-NSS over a field (F,+, .). Then, (ΓQ, A) is said to be a Q-NSF over
(F,+, .) if for all e ∈ A, ΓQ(e) is a Q-neutrosophic subfield of (F,+, .), where ΓQ(e) is a mapping given by
ΓQ(e) : F ×Q→ [0, 1]3.

Definition 3.2. Let (F,+, .) be a field and (ΓQ, A) be a Q-NSS over (F,+, .). Then, (ΓQ, A) is called a Q-NSF
over (F,+, .) if for all x, y ∈ F, q ∈ Q and e ∈ A it satisfies:

1. TΓQ(e)(x + y, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x + y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and FΓQ(e)(x+ y, q) ≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(−x, q) ≥ TΓQ(e)(x, q), IΓQ(e)(−x, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(−x, q) ≤ FΓQ(e)(x, q).

3. TΓQ(e)(x.y, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x.y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(x.y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

4. TΓQ(e)(x
−1, q) ≥ TΓQ(e)(x, q), IΓQ(e)(x

−1, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(x
−1, q) ≤ FΓQ(e)(x, q).

Example 3.3. Let F = (R,+, .) be the field of real numbers and A = N the set of natural numbers be the
parametric set. Define a Q-NSS (ΓQ, A) as follows for q ∈ Q, x ∈ R and m ∈ N

TΓQ(m)(x, q) =

{
0 if x is rational

1
9m

if x is irrational
,

IΓQ(m)(x, q) =

{
1− 1

3m
if x is rational

0 if x is irrational
,

FΓQ(m)(x, q) =

{
1 + 3

m
if x is rational

0 if x is irrational
.

It is clear that (ΓQ,N) is a Q-NSF over F .

Proposition 3.4. Let (ΓQ, A) be a Q-NSF over (F,+, .). Then, for the additive identity 0F and the multiplica-
tive identity 1F , for all x ∈ F, q ∈ Q and e ∈ A the following hold

1. TΓQ(e)(0F , q) ≥ TΓQ(e)(x, q), IΓQ(e)(0F , q) ≤ IΓQ(e)(x, q) and FΓQ(e)(0F , q) ≤ FΓQ(e)(x, q).
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2. TΓQ(e)(1F , q) ≥ TΓQ(e)(x, q), IΓQ(e)(1F , q) ≤ IΓQ(e)(x, q) and FΓQ(e)(1F , q) ≤ FΓQ(e)(x, q), for x 6= 0F .

3. TΓQ(e)(0F , q) ≥ TΓQ(e)(1F , q), IΓQ(e)(0F , q) ≤ IΓQ(e)(1F , q) and FΓQ(e)(0F , q) ≤ FΓQ(e)(1F , q).

Proof. ∀x ∈ F, q ∈ Q and e ∈ A
1. TΓQ(e)(0F , q) = TΓQ(e)(x− x, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(0F , q) = IΓQ(e)(x− x, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(0F , q) = FΓQ(e)(x− x, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q).

2. TΓQ(e)(1F , q) = TΓQ(e)(x.x
−1, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(1F , q) = IΓQ(e)(x.x
−1, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(1F , q) = FΓQ(e)(x.x
−1, q) ≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q).

3. Follows directly by applying 1.

Theorem 3.5. A Q-NSS (ΓQ, A) over the field (F,+, .) is a Q-NSF if and only if for all x, y ∈ F, q ∈ Q and
e ∈ A

1. TΓQ(e)(x− y, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x− y, q) ≤ max

{
IΓQ(e)(x, q),

IΓQ(e)(y, q)
}
, FΓQ(e)(x− y, q) ≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x.y
−1, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x.y

−1, q) ≤ max
{
IΓQ(e)(x, q),

IΓQ(e)(y, q)
}
, FΓQ(e)(x.y

−1, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Proof. Suppose that (ΓQ, A) is a Q-NSF over (F,+, .). Then,

TΓQ(e)(x− y, q) ≥min
{
TΓQ(e)(x, q), TΓQ(e)(−y, q)

}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x− y, q) ≤max
{
IΓQ(e)(x, q), IΓQ(e)(−y, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x− y, q) ≤max
{
FΓQ(e)(x, q), FΓQ(e)(−y, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Also,

TΓQ(e)(x.y
−1, q) ≥min

{
TΓQ(e)(x, q), TΓQ(e)(y

−1, q)
}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x.y
−1, q) ≤max

{
IΓQ(e)(x, q), IΓQ(e)(y

−1, q)
}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x.y
−1, q) ≤max

{
FΓQ(e)(x, q), FΓQ(e)(y

−1, q)
}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Conversely, Suppose that conditions 1 and 2 are satisfied. We show that for each e ∈ A, (ΓQ, A) is a
Q-neutrosophic subfield

TΓQ(e)(−x, q) = TΓQ(e)(0F − x, q) ≥ min
{
TΓQ(e)(0F , q), TΓQ(e)(x, q)

}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(−x, q) = IΓQ(e)(0F − x, q) ≤ max
{
IΓQ(e)(0F , q), IΓQ(e)(x, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(−x, q) = FΓQ(e)(0F − x, q) ≤ max
{
FΓQ(e)(0F , q), FΓQ(e)(x, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q)

}
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also,

TΓQ(e)(x+ y, q) = TΓQ(e)(x− (−y), q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x+ y, q) = IΓQ(e)(x− (−y), q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x+ y, q) = FΓQ(e)(x− (−y), q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Next,

TΓQ(e)(x
−1, q) = TΓQ(e)(1F .x

−1, q) ≥ min
{
TΓQ(e)(1F , q), TΓQ(e)(x, q)

}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(x
−1, q) = IΓQ(e)(1F .x

−1, q) ≤ max
{
IΓQ(e)(1F , q), IΓQ(e)(x, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(x
−1, q) = FΓQ(e)(1F .x

−1, q) ≤ max
{
FΓQ(e)(1F , q), FΓQ(e)(x, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q)

}
and

TΓQ(e)(x.y, q) = TΓQ(e)(x(y−1)−1, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x.y, q) = IΓQ(e)(x(y−1)−1, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x.y, q) = FΓQ(e)(x(y−1)−1, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

This completes the proof.

Theorem 3.6. Let (ΓQ, A) and (ΨQ, B) be two Q-NSFs over (F,+, .). Then, (ΓQ, A)∩(ΨQ, B) is also Q-NSF
over (F,+, .).

Proof. Let (ΓQ, A) ∩ (ΨQ, B) = (ΛQ, A ∩B). Now, ∀x, y ∈ F, q ∈ Q and e ∈ A ∩B,

TΛQ(e)(x− y, q) = min
{
TΓQ(e)(x− y, q), TΨQ(e)(x− y, q)

}
≥ min

{
min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,min

{
TΨQ(e)(x, q), TΨQ(e)(y, q)

}}
= min

{
min

{
TΓQ(e)(x, q), TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q), TΨQ(e)(y, q)

}}
= min

{
TΛQ(e)(x, q), TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x− y, q) = max
{
IΓQ(e)(x− y, q), IΨQ(e)(x− y, q)

}
≤ max

{
max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,max

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= max

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= max

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
,
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similarly, FΛQ(e)(x− y, q) ≤ max
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
. Next,

TΛQ(e)(x.y
−1, q) = min

{
TΓQ(e)(x.y

−1, q), TΨQ(e)(x.y
−1, q)

}
≥ min

{
min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,min

{
TΨQ(e)(x, q), TΨQ(e)(y, q)

}}
= min

{
min

{
TΓQ(e)(x, q), TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q), TΨQ(e)(y, q)

}}
= min

{
TΛQ(e)(x, q), TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x.y
−1, q) = max

{
IΓQ(e)(x.y

−1, q), IΨQ(e)(x.y
−1, q)

}
≤ max

{
max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,max

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= max

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= max

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
similarly, we can show FΛQ(e)(x.y

−1, q) ≤ max
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
. This completes the proof.

Remark 3.7. For two Q-NSFs (ΓQ, A) and (ΨQ, B) over (F,+, .), (ΓQ, A) ∪ (ΨQ, B) is not generally a Q-
NSF.
For example, let F = (Q,+, .), E = 2Z. Consider two Q-NSFs (ΓQ, E) and (ΨQ, E) over F as follows: for
x ∈ Q, q ∈ Q and m ∈ Z

TΓQ(4m)(x, q) =

{
0.50 if x = 4tm,∃t ∈ Z,
0 otherwise,

IΓQ(4m)(x, q) =

{
0 if x = 4tm,∃t ∈ Z,
0.25 otherwise,

FΓQ(4m)(x, q) =

{
0.40 if x = 4tm,∃t ∈ Z,
0.10 otherwise,

and

TΨQ(4m)(x, q) =

{
0.70 if x = 6tm,∃t ∈ Z,
0 otherwise,

IΨQ(4m)(x, q) =

{
0 if x = 6tm,∃t ∈ Z,
0.50 otherwise,

FΨQ(4m)(x, q) =

{
0.20 if x = 6tm,∃t ∈ Z,
0.40 otherwise.
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Let (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, E). For m = 2, x = 8, y = 12 we have

TΛQ(8)(8− 12, q) = TΛQ(8)(−4, q) = max
{
TΓQ(8)(−4, q), TΨQ(8)(−4, q)

}
= max{0, 0} = 0

and

min
{
TΛQ(8)(8, q),TΛQ(8)(12, q)

}
= min

{
max

{
TΓQ(8)(8, q), TΨQ(8)(8, q)

}
,max

{
TΓQ(8)(12, q), TΨQ(8)(12, q)

}}
= min

{
max

{
0.50, 0

}
,max

{
0, 0.7

}}
= min

{
0.50, 0.70

}
= 0.50.

Hence, TΛQ(8)(8− 12, q) < min
{
TΛQ(8)(8, q), TΛQ(8)(12, q)

}
. Thus, the union is not a Q-NSF.

4 Q-Neutrosophic Soft Homomorphism
In this section, we define the Q-neutrosophic soft function, then define the image and pre-image of a Q-
NSS under a Q-neutrosophic soft function. In continuation, we introduce the notion of Q-neutrosophic soft
homomorphism along with some of it’s properties.

Definition 4.1. Let g : X ×Q→ Y ×Q and h : A→ B be two functions where A and B are parameter sets.
Then, the pair (g, h) is called a Q-neutrosophic soft function from X ×Q to Y ×Q.

Definition 4.2. Let (ΓQ, A) and (ΨQ, B) be two Q-NSSs defined over X × Q and Y × Q, respectively, and
(g, h) be a Q-neutrosophic soft function from X ×Q to Y ×Q. Then,

1. The image of (ΓQ, A) under (g, h), denoted by (g, h)(ΓQ, A), is a Q-NSS over Y ×Q and is defined by:

(g, h)(ΓQ, A) =
(
g(ΓQ), h(A)

)
=
{〈

b, g(ΓQ)(b) : b ∈ h(A)
〉}

,

where for all b ∈ h(A), y ∈ Y and q ∈ Q,

Tg(ΓQ)(b)(y, q) =

{
maxg(x,q)=(y,q) maxh(a)=b[TΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),

0 otherwise,

Ig(ΓQ)(b)(y, q) =

{
ming(x,q)=(y,q) minh(a)=b[IΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),

1 otherwise,

Fg(ΓQ)(b)(y, q) =

{
ming(x,q)=(y,q) minh(a)=b[FΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),

1 otherwise,

2. The preimage of (ΨQ, B) under (g, h), denoted by (g, h)−1(ΨQ, B), is a Q-NSS over X and is defined

Majdoleen Abu Qamar, Abd Ghafur Ahmad and Nasruddin Hassan, On Q-Neutrosophic Soft Fields.



87 Neutrosophic Sets and Systems, Vol. 32 2020

by:
(g, h)−1(ΨQ, B) =

(
g−1(ΨQ), h−1(B)

)
=
{〈

a, g−1(ΨQ)(a) : a ∈ h−1(B)
〉}

,

where for all a ∈ h−1(B), x ∈ X and q ∈ Q,

Tg−1(ΨQ)(a)(x, q) = TΨQ[h(a)](g(x, q)),

Ig−1(ΨQ)(a)(x, q) = IΨQ[h(a)](g(x, q)),

Fg−1(ΨQ)(a)(x, q) = FΨQ[h(a)](g(x, q)).

If g and h are injective (surjective), then (g, h) is injective (surjective).

Definition 4.3. Let (g, h) be a Q-neutrosophic soft function from X × Q to Y × Q. If g is a homomorphism
from X ×Q to Y ×Q, then (g, h) is said to be a Q-neutrosophic soft homomorphism. If g is an isomorphism
from X ×Q to Y ×Q and h is a one-to-one mapping from A to B, then (g, h) is said to be a Q-neutrosophic
soft isomorphism.

Example 4.4. Let A = N (the set of natural numbers) be the parametric set and F = (Z5,+, .) be a field.
Define a Q-NSS (ΓQ, A) as follows, for any a ∈ A, q ∈ Q and x ∈ Z5,

TΓQ(a)(x, q) =

{
0 if x ∈ {1̄, 3̄}
1
3a

if x ∈ {0̄, 2̄, 4̄}
,

IΓQ(a)(x, q) =

{
1− 1

a
if x ∈ {1̄, 3̄}

0 if x ∈ {0̄, 2̄, 4̄}
,

FΓQ(a)(x, q) =

{
3

a+1
if x ∈ {1̄, 3̄}

0 if x ∈ {0̄, 2̄, 4̄}
.

Now, let g : Z5 × Q → Z5 × Q and h : N → N be given by g(x, q) = 3x + 1 and h(a) = a2. Then for
b ∈ N2, y ∈ 3Z5 + 1 , the image of (ΓQ, A) under (g, h) as follows :

Tg(ΓQ)(b)(y, q) =

{
0 if y ∈ {0̄, 2̄, 4̄}

1
3
√
b

if y ∈ {1̄, 3̄}
,

Ig(ΓQ)(b)(y, q) =

{
1− 1√

b
if y ∈ {0̄, 2̄, 4̄}

0 if y ∈ {1̄, 3̄}
,

Fg(ΓQ)(b)(y, q) =

{
1

1+
√
b

if y ∈ {0̄, 2̄, 4̄}
0 if y ∈ {1̄, 3̄}

.

Theorem 4.5. Let (ΓQ, A) be a Q-NSF over F1 and (g, h) : F1 × Q → F2 × Q be a Q-neutrosophic soft
homomorphism. Then, (g, h)(ΓQ, A) is a Q-NSF over F2.

Proof. Let b ∈ h(A) and y1, y2 ∈ F2. For g−1(y1, q) = φ or g−1(y2, q) = φ, the proof is straight forward.
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So, assume there exists x1, x2 ∈ F1 such that g(x1, q) = (y1, q) and g(x2, q) = (y2, q). Then,

Tg(ΓQ)(b)(y1 − y2, q) = max
g(x,q)=(y1−y2,q)

max
h(a)=b

[
TΓQ(a)(x, q)

]
≥ max

h(a)=b

[
TΓQ(a)(x1 − x2, q)

]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(−x2, q)

}]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(x2, q)

}]
= min

{
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
h(a)=b

[
TΓQ(a)(x2, q)

]}

Tg(ΓQ)(b)(y1.y
−1
2 , q) = max

g(x,q)=(y1.y
−1
2 ,q)

max
h(a)=b

[
TΓQ(a)(x, q)

]
≥ max

h(a)=b

[
TΓQ(a)(x1.x

−1
2 , q)

]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(x

−1
2 , q)

}]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(x2, q)

}]
= min

{
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
h(a)=b

[
TΓQ(a)(x2, q)

]}
Since, the inequality is satisfied for each x1, x2 ∈ F1, satisfying g(x1, q) = (y1, q) and g(x2, q) = (y2, q).
Then,

Tg(ΓQ)(b)(y1 − y2, q) ≥ min
{

max
g(x1,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
g(x2,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x2, q)

]}
= min

{
Tg(ΓQ)(b)(y1, q), Tg(ΓQ)(b)(y2, q)

}
.

Tg(ΓQ)(b)(y1.y
−1
2 , q) ≥ min

{
max

g(x1,q)=(y1,q)
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
g(x2,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x2, q)

]}
= min

{
Tg(ΓQ)(b)(y1, q), Tg(ΓQ)(b)(y2, q)

}
.

Similarly, we show that
Ig(ΓQ)(b)(y1 − y2, q) ≤ max

{
Ig(ΓQ)(b)(y1, q), Ig(ΓQ)(b)(y2, q)

}
,

Ig(ΓQ)(b)(y1.y
−1
2 , q) ≤ max

{
Ig(ΓQ)(b)(y1, q), Ig(ΓQ)(b)(y2, q)

}
,

Fg(ΓQ)(b)(y1 − y2, q) ≤ max
{
Fg(ΓQ)(b)(y1, q), Fg(ΓQ)(b)(y2, q)

}
,

Fg(ΓQ)(b)(y1.y
−1
2 , q) ≤ max

{
Fg(ΓQ)(b)(y1, q), Fg(ΓQ)(b)(y2, q)

}
.
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Theorem 4.6. Let (ΨQ, B) be a Q-NSF over F2 and (g, h) be a Q-neutrosophic soft homomorphism from
F1 ×Q to F2 ×Q. Then, (g, h)−1(ΨQ, B) is a Q-NSF over over F1.

Proof. For a ∈ h−1(B) and x1, x2 ∈ F1, we have

Tg−1(ΨQ)(a)(x1 − x2, q) = TΨQ[h(a)](g(x1 − x2, q))

= TΨQ[h(a)](g(x1, q)− g(x2, q))

≥ min
{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](−g(x2, q))

}
≥ min

{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](g(x2, q))

}
= min

{
Tg−1(ΨQ)(a)(x1, q), Tg−1(ΨQ)(a)(x2, q)

}
and

Tg−1(ΨQ)(a)(x1.x
−1
2 , q) = TΨQ[h(a)](g(x1.x

−1
2 , q))

= TΨQ[h(a)](g(x1, q).g(x−1
2 , q))

≥ min
{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](g(x2, q)

−1)
}

≥ min
{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](g(x2, q))

}
= min

{
Tg−1(ΨQ)(a)(x1, q), Tg−1(ΨQ)(a)(x2, q)

}
Similarly, we can obtain

Ig−1(ΨQ)(a)(x1 − x2, q) ≤ max
{
Ig−1(ΨQ)(a)(x1, q), Ig−1(ΨQ)(a)(x2, q)

}
,

Ig−1(ΨQ)(a)(x1.x
−1
2 , q) ≤ max

{
Ig−1(ΨQ)(a)(x1, q), Ig−1(ΨQ)(a)(x2, q)

}
,

Fg−1(ΨQ)(a)(x1 − x2, q) ≤ max
{
Fg−1(ΨQ)(a)(x1, q), Fg−1(ΨQ)(a)(x2, q)

}
,

Fg−1(ΨQ)(a)(x1.x
−1
2 , q) ≤ max

{
Fg−1(ΨQ)(a)(x1, q), Fg−1(ΨQ)(a)(x2, q)

}
.

Thus, the theorem is proved.

5 Cartesian Product of Q-Neutrosophic Soft Fields
In this section, we define the Cartesian product of Q-NSFs and prove that it is also a Q-NSF.

Definition 5.1. Let (ΓQ, A) and (ΨQ, B) be two Q-NSFs over (F1,+, .) and (F2,+, .), respectively. Then, their
Cartesian product (ΛQ, A× B) = (ΓQ, A)× (ΨQ, B), where ΛQ(a, b) = ΓQ(a)×ΨQ(b) for (a, b) ∈ A× B.
Analytically, for x ∈ F1, y ∈ F2 and q ∈ Q

ΛQ(a, b) =
{〈(

(x, y), q
)
, TΛQ(a,b)

(
(x, y), q

)
, IΛQ(a,b)

(
(x, y), q

)
, FΛQ(a,b)

(
(x, y), q

)〉}
, where
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TΛQ(a,b)

(
(x, y), q

)
= min

{
TΓQ(a)

(
x, q
)
, TΨQ(b)

(
y, q
)}
,

IΛQ(a,b)

(
(x, y), q

)
= max

{
IΓQ(a)

(
x, q
)
, IΨQ(b)

(
y, q
)}
,

FΛQ(a,b)

(
(x, y), q

)
= max

{
FΓQ(a)

(
x, q
)
, FΨQ(b)

(
y, q
)}
.

Theorem 5.2. Let (ΓQ, A) and (ΨQ, B) be two Q-NSFs over (F1,+, .) and (F2,+, .), respectively. Then, their
Cartesian product (ΓQ, A)× (ΨQ, B) is a Q-NSF over (F1 × F2).

Proof. Let (ΛQ, A× B) = (ΓQ, A)× (ΨQ, B), where ΛQ(a, b) = ΓQ(a)× ΨQ(b) for (a, b) ∈ A× B. Then,
for
(
(x1, y1), q

)
,
(
(x2, y2), q

)
∈ (F1 × F2)×Q we have,

TΛQ(a,b)

((
(x1, y1)− (x2, y2), q

))
= TΛQ(a,b)

(
(x1 − x2, y1 − y2), q

)
= min

{
TΓQ(a)

(
(x1 − x2), q

)
, TΨQ(b)

(
(y1 − y2), q

)}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
− x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
− y2, q

)}}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
min

{
TΓQ(a)

(
x1, q

)
, TΨQ(b)

(
y1, q

)}
,min

{
TΓQ(a)

(
x2, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
TΛQ(a,b)

(
(x1, y1), q

)
, TΛQ(a,b)

(
(x2, y2), q

)}
also,

IΛQ(a,b)

((
(x1, y1)− (x2, y2), q

))
= IΛQ(a,b)

(
(x1 − x2, y1 − y2), q

)
= max

{
IΓQ(a)

(
(x1 − x2), q

)
, IΨQ(b)

(
(y1 − y2), q

)}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
− x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
− y2, q

)}}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
max

{
IΓQ(a)

(
x1, q

)
, IΨQ(b)

(
y1, q

)}
,max

{
IΓQ(a)

(
x2, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
IΛQ(a,b)

(
(x1, y1), q

)
, IΛQ(a,b)

(
(x2, y2), q

)}
,

similarly, FΛQ(a,b)

((
(x1, y1)− (x2, y2), q

))
≤ max

{
FΛQ(a,b)

(
(x1, y1), q

)
, FΛQ(a,b)

(
(x2, y2), q

)}
. Next,

TΛQ(a,b)

((
(x1, y1).(x2, y2)−1, q

))
= TΛQ(a,b)

(
(x1.x

−1
2 , y1.y

−1
2 ), q

)
= min

{
TΓQ(a)

(
(x1.x

−1
2 ), q

)
, TΨQ(b)

(
(y1.y

−1
2 ), q

)}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
x−1

2 , q
)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
y−1

2 , q
)}}
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≥ min
{

min
{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
min

{
TΓQ(a)

(
x1, q

)
, TΨQ(b)

(
y1, q

)}
,min

{
TΓQ(a)

(
x2, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
TΛQ(a,b)

(
(x1, y1), q

)
, TΛQ(a,b)

(
(x2, y2), q

)}
,

IΛQ(a,b)

((
(x1, y1).(x2, y2)−1, q

))
= IΛQ(a,b)

(
(x1.x

−1
2 , y1.y

−1
2 ), q

)
= max

{
IΓQ(a)

(
(x1.x

−1
2 ), q

)
, IΨQ(b)

(
(y1.y

−1
2 ), q

)}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x−1

2 , q
)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y−1

2 , q
)}}

≤ max
{

max
{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
max

{
IΓQ(a)

(
x1, q

)
, IΨQ(b)

(
y1, q

)}
,max

{
IΓQ(a)

(
x2, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
IΛQ(a,b)

(
(x1, y1), q

)
, IΛQ(a,b)

(
(x2, y2), q

)}
,

similarly, FΛQ(a,b)

((
(x1, y1), q

)
.
(
(x2, y2)−1, q

))
≤ max

{
FΛQ(a,b)

(
(x1, y1), q

)
, FΛQ(a,b)

(
(x2, y2), q

)}
. This

completes the proof.

6 Conclusions
In this study, we have introduced the concept of Q-neutrosophic soft fields. We have investigated some of
its structural characteristics. Also, we have discussed the concepts of homomorphic image and pre-image of
Q-neutrosophic soft fields. Moreover, we have defined the Cartesian product of Q-neutrosophic soft fields and
discussed some related properties. The proposed notion enriches knowledge on neutrosophic sets in the branch
of algebra. Also, it illuminates the way for more further deep discussion in algebra under neutrosophic and
Q-neutrosophic soft environment for example, by establishing the notions of n-valued neutrosophic soft fields
Q-neutrosophic soft modules and more.

Acknowledgments: We are indebted to Universiti Kebangsaan Malaysia for providing support and facili-
ties for this research. Also, we are indebted to Zerqa University, since this paper is an extended paper of a
short paper published in the 6th International Arab Conference on Mathematics and Computations (IACMC
2019), Special Session of Neutrosophic Set and Logic, Organized by F. Smarandache and S. Alkhazaleh Zerqa
University, Jordan.

References
[1] L. A. Zadeh. Fuzzy sets, Inf. Control, 8(1965), 338–353.

[2] I. B. Turksen. Interval valued fuzzy sets based on normal forms, Fuzzy Sets Syst., 20(1986), 191-210.

[3] K. T. Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20(1986), 87–96.

Majdoleen Abu Qamar, Abd Ghafur Ahmad and Nasruddin Hassan, On Q-Neutrosophic Soft Fields.



Neutrosophic Sets and Systems, Vol. 32 2020 92

[4] F. Smarandache. Neutrosophy. Neutrosophic Probability, Set and Logic, American Research Press: Rehoboth, IL, USA, 1998.

[5] F. Smarandache. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math., 24(2005), 287–297.

[6] D. Molodtsov. Soft set theory-first results, Comput. Math. App., 37(1999), 19–31.

[7] P. K. Maji, R. Biswas, and A. R. Roy. Fuzzy soft sets, J. Fuzzy Math., 9(2001), 589–602.

[8] P. K. Maji. Neutrosophic soft set, Ann. Fuzzy Math. Inform., 5(2013), 157–168.

[9] M. Abdel-Basset, M. Ali, and A. Atef. Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set, Computers
& Industrial Engineering, 141 (2020), 106286.

[10] F. Karaaslan, and I. Deli. Soft neutrosophic classical sets and their applications in decision-making, Palestine Journal of
Mathematics, 9(2020), 312-326.

[11] M. Margaret A, P. Trinita, and S. Alkhazaleh. Neutrosophic vague topological spaces, Neutrosophic Sets Syst., 28(2019),
179-190.

[12] F. Karaaslan. Correlation coefficients of single-valued neutrosophic refined soft sets and their applications in clustering anal-
ysis, Neural Computing and Applications, 28(2017), 2781-2793.

[13] F. Karaaslan. Possiility neutrosophic soft sets and PNS-decision making method, Applied Soft Computing, 54(2017), 403-414.

[14] M. Abdel-Basset, M. Ali, and A. Atef. Resource levelling problem in construction projects under neutrosophic environment,
The Journal of Supercomputing (2019): 1-25.

[15] M. Abdel-Basset, M. Mohamed, M. Elhoseny, F. Chiclana, and A. E. N. H. Zaied. Cosine similarity measures of bipolar
neutrosophic set for diagnosis of bipolar disorder diseases, Artificial Intelligence in Medicine, 101(2019), 101735.

[16] F. Karaaslan. Neutrosophic soft sets with applications in decision making, International Journal of Information Science and
Intelligent System, 4(2015), 1-20.

[17] R. M. Hashim, M. Gulistan, I. Rehman, N. Hassan, and A. M. Nasruddin. Neutrosophic bipolar fuzzy fet and its application
in medicines preparations, Neutrosophic Sets Syst., 31(2020), 86-100.

[18] M. Abu Qamar, and N. Hassan. Q-neutrosophic soft relation and its application in decision making, Entropy, 20(2018), 172.

[19] M. Abu Qamar, and N. Hassan. An approach toward a Q-neutrosophic soft set and its application in decision making, Sym-
metry, 11(2019), 139.

[20] A. Rosenfeld. Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.

[21] N. P. Mukherjee, and P. Bhattacharya. Fuzzy groups: some grouptheoretic analogs, Inf. Sci., 39(1986), 247-268.

[22] P. K. Sharma. Intuitionistic fuzzy groups, IFRSA Int. J. Data Warehous Min., 1(2011), 86-94.

[23] C. Jana, M. Pal, F. Karaaslan, and A. Sezgin. (α, β)-Soft intersectional rings and ideals with their applications, New Mathe-
matics and Natural Computation, 15(2019) 333-350.

[24] A. Ullah , F. Karaaslan, and I. Ahmad. Soft uni-Abel-Grassmann’s groups, European Journal of Pure and Applied Mathemat-
ics, 11(2018), 517-536.

[25] A. Ullah, I. Ahmad, F. Hayat, F. Karaaslan, and M. Rashad. Soft intersection Abel-Grassmanns Groups, Journal of Hyper-
structures, 7(2018), 149-173.

[26] A. Al-Masarwah, and A. G. Ahmad. m-polar fuzzy ideals of BCK/BCI-algebras, J. King Saud Univ.-Sci., 31(2019), 1220-
1226.

Majdoleen Abu Qamar, Abd Ghafur Ahmad and Nasruddin Hassan, On Q-Neutrosophic Soft Fields.



93 Neutrosophic Sets and Systems, Vol. 32 2020

[27] A. Al-Masarwah, and A. G. Ahmad. On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras, Eur. J. Pure
Appl. Math., 11(2018), 652-670.

[28] A. Al-Masarwah, and A. G. Ahmad. Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras, Int. J. Innov.
Comput. Inf. Control, 14(2018), 2025-2041.

[29] A. Al-Masarwah, and A. G. Ahmad. Subalgebras of type (α, β) based on m-polar fuzzy points in BCK/BCI-algebras, AIMS
Mathematics, 5(2020), 1035-1049.

[30] S. Nanda. Fuzzy algebras over fuzzy fields, Fuzzy Sets and Syst., 37(1990), 99-103.

[31] G. Wenxiang, and L. Tu. Fuzzy algebras over fuzzy fields redefined, Fuzzy Sets and Syst., 53(1993), 105-107.

[32] F. Feng, B. J. Young, and X. Zhao. Soft semirings, Computers and Mathematics with Applications, 56(2008), 2621-2628.

[33] V. Cetkin, and H. Aygun. An approach to neutrosophic subgroup and its fundamental properties, J. Intell. Fuzzy Syst.,
29(2015), 1941-1947.

[34] T. Bera, and N. K. Mahapatra. Introduction to neutrosophic soft groups, Neutrosophic Sets Syst., 13(2016), 118-127.

[35] T. Bera, and N. K. Mahapatra. On neutrosophic soft field, International Journal of Mathematics Trends and Technology,
56(2018),472-494.

[36] A. Solairaju, and R. Nagarajan. A new structure and construction of Q-fuzzy groups, Advances in Fuzzy Mathematics,
4(2009), 23-29.

[37] S. Thiruveni, and A. Solairaju. Neutrosophic Q-fuzzy subgroups, Int. J. Math. And Appl., 6(2018), 859-866.

[38] R. Rasuli. Characterization of Q-fuzzy subrings (Anti Q-fuzzy subrings) with respect to a T-norm (T-conorm), J. Inf. Optim.
Sci., 39(2018), 827-837.

[39] M. Abu Qamar, and N. Hassan. Characterizations of group theory under Q-neutrosophic soft environment, Neutrosophic Sets
Syst., 27(2019), 114-130.

[40] M. Abu Qamar, A. G. Ahmad and N. Hassan. An approach to Q-neutrosophic soft rings, AIMS Mathematics, 4(2019), 1291-
1306.

[41] M. Abu Qamar, N. Hassan and A. G. Ahmad. Introduction to Q-neutrosophic soft fields, accepted, Conference proceeding.

Received: Oct 30, 2019. Accepted: Mar 19, 2020

Majdoleen Abu Qamar, Abd Ghafur Ahmad and Nasruddin Hassan, On Q-Neutrosophic Soft Fields.


	Introduction
	Preliminaries
	Q-Neutrosophic Soft Fields
	Q-Neutrosophic Soft Homomorphism
	Cartesian Product of Q-Neutrosophic Soft Fields
	Conclusions

