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Abstract: Slope instability is a common and typical problem of geological hazards, often 

accompanied by significant losses. So, it is necessary to provide some simple and effective methods 

to avoid the potential geological hazards of slope instability. It is obvious that the clustering and 

assessment of slope stability are very crucial. However, the existing clustering and assessment 

methods in the scenario of single-valued neutrosophic sets (SVNSs) imply some difficulties in 

engineering applications, such as a lot of collective sampling work, the complex training process, 

and the selection issue of different types of membership functions. Regarding these problems, this 

paper proposes an inverse hyperbolic sine similarity measure (IHSSM) of SVNSs and its netting 

clustering and assessment models for slope stability clustering analysis and evaluation based on the 

fuzzification process of the true, false, and uncertain Gaussian membership functions for slope 

sample data. Finally, the proposed clustering and assessment models are applied to the clustering 

analysis and assessment of 20 slope samples as the case study, and then comparing the results of 

clustering analysis and stability evaluation of the proposed models with those of the existing 

relative methods by the 20 slope samples, we verify the validity, consistency, and rationality of the 

proposed netting clustering and evaluation models. 

Keywords: single-valued neutrosophic set; netting clustering method; Gaussian membership 

function; similarity measure; slope stability clustering analysis; slope stability evaluation 

 

 

1. Introduction 

Slope instability is a common phenomenon in geological hazards. Then, the occurrence of such 

hazards is often accompanied by significant losses. Therefore, it is crucial to establish effective 

methods to eliminate the potential risk of slope instability. Slope stability evaluation methods can be 

divided into two main categories: deterministic and uncertain methods. The traditional limit 

equilibrium method or analytical calculations using numerical methods are still commonly used in 

modern engineering [1]. The Sweden slice method [2] is the theoretical basis of the limit equilibrium 

method. After the refinement and improvement of the method by Janbu [3], Bishop [4], and 

Morgenstern & Price [5], the calculation results of the limit equilibrium method are more reasonable 

and accurate. The limit equilibrium method usually assumes that the mechanical properties of the 

slope rock mass are rigid bodies and the potential slip surface is flat or curved. However, due to the 
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complex geological conditions of most slopes, the use of this method to assess slopes requires 

technicians or researchers with extensive experience in slope engineering. The finite element method 

[6], the strength discounting method [7], the discrete element method [8] and so on are all relatively 

common methods in numerical analysis. 

Since the affecting factors of slope stability contain both the internal features of slopes and the 

external conditions of slopes, there is the uncertain, inconsistent, and incomplete information of the 

affecting factors. However, they cannot be well described by traditional analogical approaches. 

Therefore, to avoid this deficiency of the traditional methods, some researchers proposed uncertainty 

methods for the analysis and assessment of slope stability. For example, a FAHP (fuzzy analytic 

hierarchy process) efficiency coefficient approach was used for the stability classification of rock slope 

[9], the artificial neural network (ANN) and fuzzy clustering methods were applied to the estimation 

of rainfall-induced landslides [10]. Then, clustering methods using the adaptive neuro-fuzzy 

inference system (ANFIS) and k-means and fuzzy c-means were applied to the clustering analysis of 

slope stability [11, 12]. Recently, the similarity measures of interval-valued fuzzy credibility sets were 

presented and applied to the slope stability assessment [13]. Since a neutrosophic number (NN) y = v 

+ qI for I  [inf I, sup I] [14, 15, 16], which is composed of the certain part ν and the uncertain part qI 

with uncertainty I, can better describe the uncertainty of a real thing, Li et al. [17] introduced a 

probabilistic method based on NNs for the assessment of rock slope stability. Subsequently, Zhou et 

al. [18] and Li et al. [19] proposed some similarity measures of NNs to assess the slope stability of 

open-pit mines. However, these clustering analysis/assessment methods only contain 

fuzzy/uncertain information, but do not take into account the true, false, and uncertain information 

about the factors that affect slope stability. 

In view of an extension of the fuzzy set (FS) [20] and (interval-valued) intuitionistic FS [21, 22], 

a neutrosophic set (NS) concept was proposed by Smarandache [14] and described by the true, false, 

and uncertain membership functions. To better apply NSs in practical engineering, Wang et al. [23, 

24] proposed single-valued NSs (SVNSs) and interval NSs (IVNSs) as the subclasses of NSs. Recently, 

Qin et al. [25] first applied SVNS and ANFIS to open-pit mine slope stability evaluation and proposed 

a SVNS-ANFIS evaluation approach for assessing slope stability. Moreover, Qin et al. [26] introduced 

a SVNS-GPR (gaussian process regression) approach for the aassessment of open-pit mine slope 

stability in terms of the potential relationships between the affecting factors and the slope stability. 

Ding and Ye [27] presented the clustering analysis and evaluation models of slope stability based on 

the hyperbolic sine similarity measure (HSSM) of SVNSs and its netting clustering and assessment 

approaches, then applied them to the stability clustering analysis and assessment of slope sample 

data. 

Based on the previous studies, the SVNN-ANFIS and SVNS-GPR methods [25, 26] need a lot of 

slope sample data to train them, and their modeling algorithms imply complexity, which presents 

the difficult problems of extensive sampling work and a complex training process in engineering 

applications. Then in existing slope stability clustering analysis and evaluation models [27], it is 

difficult to select many different types of true, false, and uncertain membership functions in the 

fuzzified process of ample slope data, which will greatly increase difficulty in practical engineering 

applications. To solve these problems, the objective of this paper is to propose an inverse hyperbolic 

sine similarity measure (IHSSM) of SVNSs and its clustering analysis and evaluation models of slope 

stability by a unique type of Gaussian membership functions for fuzzifying slope sample data into 

SVNSs, including the true, false, and uncertain membership values. 

In our study, we first propose the IHSSM of SVNSs and its netting clustering and evaluation 

models of slope stability based on the true, false, and uncertain Gaussian membership functions for 

fuzzifying slope sample data into SVNSs. Through 20 slope samples collected in the Zhejiang 

Province, China, the proposed models are used for the clustering analysis and evaluation of their 

stability. By comparing with existing relevant approaches, we verify the accuracy and rationality of 

the proposed models in the clustering and evaluation applications of the 20 slope samples. 
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The rest of this paper consists of the following sections. In Section 2, some preliminaries of 

SVNSs are introduced. Section 3 proposes the IHSSM of SVNSs and its netting clustering model for 

slope stability clustering analysis. In Section 4, an assessment model based on the IHSSM of SVNSs 

and the clustered results is proposed for the stability assessment of slopes. Section 5 applies the 

proposed clustering and assessment models to the stability clustering analysis and assessment of the 

20 slope samples as the case study to verify the consistency and accuracy of the clustered and 

evaluated results by comparing the 20 slope samples with the existing approaches. Section 6 

concludes the paper and provides further research directions in the future. 

2. Some preliminaries of SVNSs  

Wang et al. [24] introduced SVNS as a subclass of NS.  

Definition 1 [24]. Let Ψ be a universal set. The SVNS Φ in Ψ can be represented as Φ = {<ψ, XΦ(ψ), 

YΦ(ψ), ZΦ(ψ)>｜ψ  Ψ}, where XΦ(ψ), YΦ(ψ), ZΦ(ψ)  [0, 1] for ψ  Ψ are the true, uncertain, and false 

membership functions. Then, each element φ = <ψ, XΦ(ψ), YΦ(ψ), ZΦ(ψ)> in the SVNS Φ is represented 

as the single-valued neutrosophic number (SVNN) φ = <X, Y, Z>. 

Definition 2 [24]. If there are two SVNSs φ1 = <X1, Y1, Z1> and φ2 = <X2, Y2, Z2>, then they include the 

following relations:  

(1) Mutual inclusion: 
1 2

φ φ  if and only if   
1 2 1 2 1 2

, ,X X Y Y Z Z ; 

(2) Mutual equality: 
1 2
= φ φ  if and only if 

1 2
φ φ  and 

2 1
φ φ ; 

(3) The complement of φ1:  
1 1 1 1

,1 ,cφ Z Y X ; 

(4) Union:    
1 2 1 2 1 2 1 2

, ,φ φ X X Y Y Z Z ; 

(5) Intersection:    
1 2 1 2 1 2 1 2

, ,φ φ X X Y Y Z Z ; 

Definition 3 [28]. Assume that Φ1 = {φ11, φ12, …, φ1n} and Φ2 = {φ21, φ22, …, φ2n} are two SVNSs, where 

φ1i = <X1i, Y1i, Z1i> and φ2i = <X2i, Y2i, Z2i> (i = 1, 2, …, n) are two SVNNs. Then, ρi  [0, 1] with 


 1

1
n

i i
ρ  is the weight of φ1i and φ2i. The weighted generalized distance between Φ1 and Φ2 is 

defined as follows: 



            


1/

1 2 1 2 1 2 1 21

1
( , )  for 1

3

δ
δ δ δn

δ i i i i i i ii
V Φ Φ ρ X X Y Y Z Z δ .     (1) 

The distance of Eq. (1) satisfies the following features: 

(1)  
1 2

0 ( , ) 1
δ

V Φ Φ ; 

(2) 
1 2

( , ) 0
δ

V Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

V Φ Φ V Φ Φ ; 

(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 3 1 2

( , ) ( , )
δ δ

V Φ Φ V Φ Φ  and 


1 3 2 3

( , ) ( , )
δ δ

V Φ Φ V Φ Φ . 

Since the similarity measure and the distance are complementary, the similarity measure using 

the weighted generalized distance of SVNSs is presented as follows [28]: 



              


1/

1 2 1 2 1 2 1 2 1 21

1
( , ) 1 ( , ) 1

3

δ
δ δ δn

δ δ i i i i i i ii
W Φ Φ V Φ Φ ρ X X Y Y Z Z .      (2) 

Thus, Eq. (2) also satisfies the following features [28]: 

(1)  
1 2

0 ( , ) 1
δ

W Φ Φ ; 

(2) 
1 2

( , ) 1
δ

W Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

W Φ Φ W Φ Φ ; 
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(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 2 1 3

( , ) ( , )
δ δ

W Φ Φ W Φ Φ  and 


2 3 1 3

( , ) ( , )
δ δ

W Φ Φ W Φ Φ . 

Recently, Ding and Ye [27] further presented the HSSM between the SVNSs Φ1 and Φ2: 

 



 

                  


1 2 1 2

1/

1 2 1 2 1 21

( , ) 1 sinh (ln(1+ 2) ( , )

1
 1 sinh ln(1 2)

3

δ δ

δ
δ δ δn

i i i i i i ii

N Φ Φ V Φ Φ

ρ X X Y Y Z Z
.     (3) 

Similarly, Eq. (3) also has the following features: 

(1)  
1 2

0 ( , ) 1
δ

N Φ Φ ; 

(2) 
1 2

( , ) 1
δ

N Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

N Φ Φ N Φ Φ ; 

(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 2 1 3

( , ) ( , )
δ δ

N Φ Φ N Φ Φ  and 


2 3 1 3

( , ) ( , )
δ δ

N Φ Φ N Φ Φ . 

3. IHSSM between SVNSs and Its Netting Clustering Model of Slope Stability  

Based on the weighted generalized distances of SVNSs, this section proposes the IHSSM of 

SVNSs and its netting clustering model of slope stability.  

First, IHSSM for SVNSs is defined below.  

Definition 4. Suppose that Φ1 = {φ11, φ12, …, φ1n} and Φ2 = {φ21, φ22, …, φ2n} are two SVNSs, where φ1i 

= <X1i, Y1i, Z1i> and φ2i = <X2i, Y2i, Z2i> (i = 1, 2, …, n) are two SVNNs. Then, ρi  [0, 1] with 


 1
1

n

i i
ρ  

is the weight of φ1i and φ2i. Thus, the weighted IHSSM between Φ1 and Φ2 is defined as follows: 

 





 


             


1

1 2 1 2

1/

1

1 2 1 2 1 21

1
( , ) 1 sinh ( , )

ln(1 2)

1 1
 1 sinh

3ln(1 2)

δ δ

δ
δ δ δn

i i i i i i ii

M Φ Φ V Φ Φ

ρ X X Y Y Z Z

.     (4) 

Then, the features of Eq. (4) are indicated as follows: 

(1)  
1 2

0 ( , ) 1
δ

M Φ Φ ; 

(2) 
1 2

( , ) 1
δ

M Φ Φ  if and only if Φ1 = Φ2; 

(3) 
1 2 2 1

( , ) ( , )
δ δ

M Φ Φ M Φ Φ ; 

(4)  
1 2 3

If Φ Φ Φ  for any SVNS Φ3, then 
1 2 1 3

( , ) ( , )
δ δ

M Φ Φ M Φ Φ  and 


2 3 1 3

( , ) ( , )
δ δ

M Φ Φ M Φ Φ . 

Proof: Since the features (1)(3) are clearly valid, we only verify the feature (4). 

According to the features of the distance Vδ(Φ1, Φ2), if  
1 2 3

Φ Φ Φ , then Vδ(Φ1, Φ3) ≥ Vδ(Φ1, 

Φ2) and Vδ(Φ2, Φ3) ≥ Vδ(Φ1, Φ3) exist. Since sinh1(α) for α  [0, 1] is monotonically increasing, the 

inequalities Mδ(Φ1, Φ2) ≥ Mδ(Φ1, Φ3) and Mδ(Φ2, Φ3) ≥ Mδ(Φ1, Φ3) exist based on the complementary 

relationship between the distance and the similarity measure [28]. Hence, we verify that the feature 

(4) is correct. 

In terms of the proposed weighted IHSSM of SVNSs, a netting clustering model is presented 

below to cluster slope sample data. 

In the clustering analysis of slope sample data, Ω = {Ω1, Ω2, …, Ωm} is a sample set of m slopes 

and λ = {λ1, λ2, …, λn} is a set of n indices/factors that impact slope stability. Then, each affecting factor 

λi needs to consider its weight ρi subject to ρi  [0, 1] and 


 1
1

n

i i
ρ . 
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In order to better express the uncertain and inconsistent information of the slop sample data, we 

use Gaussian membership functions (e.g. Figure 1) to fuzzify the true, uncertain, and false 

information of the sample data. In view of the true, false, and uncertain Gaussian membership 

functions, the affecting factors of slope stability are fuzzified into the SVNSs Φj = {φj1, φj2, …, φjn}, 

where φji = <Xji, Yji, Zji> are SVNNs for Xji, Yji, Zji  [0, 1] (j = 1, 2, …, m; i = 1, 2, …, n). 

Then, the netting clustering model based on the IHSSM of SVNSs is used for the clustering 

analysis of the slope sample data and presented by the following clustering procedures. 

Step 1: Obtain the IHSSM matrix Β = (βjs)m×m (j, s = 1, 2, …, m) by Eq. (4) (usually taking δ = 1), 

where βjs = Mδ(Φj, Φs) with βjs = βsj and βjj = 1. 

Step 2: Replace all the diagonal elements in the IHSSM matrix Β by the slope samples Ωj. 

Step 3: In terms of different confidence levels of ζ, the corresponding ζ-cutting matrices 

Βζ=(βjsζ)m×m are gained by the equation: 

 
 

 


0,
( , 1,2,..., ).

1,

jsζ

js

js

β ζ
β j s m

β ζ
 (5) 

In the adjusted process for ζ, all '0' are funded in the ζ-cutting matrixes and deleted, then all '1' 

are replaced by '*' except for the diagonal elements. Then, '*' is connected to the corresponding 

diagonal elements by horizontal and vertical lines. The slope samples connected by '*' are formed as 

a classification according to the corresponding confidence level ζ. Next, the confidence level of ζ is 

adjusted from large to small until the expected clustering result for the slope sample data is achieved. 

4. Slope Stability Assessment Using the IHSSM of SVNSs 

Because the above clustered results cannot indicate their corresponding stability risk levels of 

slope samples, it is necessary to evaluate the stability risk levels of the slope samples so that we can 

decide which risk levels the slope samples belong to. In this section, we give an assessment model of 

slope stability based on the IHSSM of SVNSs. 

In terms of the existing knowledge and the above clustered results of slope stability, we can 

classify the risk states of slope stability into the corresponding risk levels (risk patterns), which can 

be represented as the SVNSs Θk = {θk1, θk2, …, θkn} including the SVNNs θki = <Xki, Yki, Zki> for Xki, Yki, 

Zki  [0, 1] (k = 1, 2, …, r; i = 1, 2, …, n). 

Assume that Ω = {Ω1, Ω2, …, Ωm} is a sample set of m slopes and a set of n affecting factors λ = 

{λ1, λ2, …, λn} affects slope stability. Based on the true, false and uncertain Gaussian membership 

functions, the slope sample data can be fuzzified into the SVNSs Φj = {φj1, φj2, …, φjn} (j = 1, 2, …, m), 

which contains the SVNNs φji = <Xji, Yji, Zji> for Xji, Yji, Zji  [0, 1] (i = 1, 2, …, n). 

Considering the weight of each affecting factor in the slope stability assessment, we assign the 

weight of each affecting factor by ρi  [0,1] with 


 1
1

n

i i
ρ . Thus, the weighted IHSSM between 

each SVNS Φj (j = 1, 2, …, n) for each slope sample Ωj and each slope stability risk level Θk (k = 1, 2, 

…, r) is presented by the following equation: 

 





 


             


1

1/

1

1

1
( , ) 1 sinh ( , )

ln(1 2)

1 1
                   1 sinh

3ln(1 2)

δ j k δ j k

δ
δ δ δn

i ji ki ji ki ji kii

M Φ Θ V Φ Θ

ρ X X Y Y Z Z

.     (6) 

Applying Eq. (6), we can obtain the IHSSM results, and then use  
 


* 1

( , ) max ( , )
δ j k δ j kk r

M Φ Θ M Φ Θ  

to judge that Ωj should belong to Θk*. 

5. Netting Clustering and Assessment applications of Practical Cases  

5.1. Netting Clustering Analysis of Practical Cases 
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The mountainous terrain of Zhejiang Province in China, with its subtropical monsoon climate, 

accounts for 74.6%, making slope instability a very common geological hazard. Therefore, the 

clustering analysis and assessment of slope stability show their importance and necessity. In terms of 

rock and topographic features in Zhejiang Province, we take into account the lithological association 

(λ1), slope structure (λ2), weathering degree of rock (λ3), slope height (λ4), slope angle (λ5), and 

vegetation coverage (λ6) as the main factors affecting slope stability. According to the important 

degrees of these affecting factors, their weight vector is assigned as ρ = (0.25, 0.21, 0.19, 0.13, 0.11, 0.11) 

by experts/decision makers. Then, we collected 20 slope samples as actual cases in Zhejiang Province. 

According to the results of engineering investigation and measurement, we also provide the actual 

data of 20 slope samples Ωj (j = 1, 2, …, 20) for the clustering analysis. We can score from 0 to 10 

depending on the current situation of slope stability. Thus, λ1, λ2, λ3, and λ6 are assigned by the score 

values, and then λ4, and λ5 are given by the actual measured values, which are shown in Table 1. 

 

Table 1. Actual data of 20 slope samples 

Ωj λ1 λ2 λ3 λ4 (m) λ5 () λ6 

Ω1 2.0 5.0 4.0 15.0 84.0 3.0 

Ω2 4.0 3.0 4.0 8.0 84.0 3.0 

Ω3 8.0 7.0 6.0 15.0 55.0 4.0 

Ω4 3.0 4.0 5.0 9.0 76.0 4.0 

Ω5 2.0 4.0 4.0 8.0 84.0 5.0 

Ω6 10.0 8.0 10.0 36.0 63.0 5.0 

Ω7 7.0 7.0 6.0 23.0 76.0 5.0 

Ω8 8.0 8.0 7.2 32.0 63.0 3.0 

Ω9 5.0 9.0 4.0 15.0 63.0 5.0 

Ω10 3.0 3.0 6.0 11.0 76.0 4.0 

Ω11 3.0 6.0 5.0 21.0 71.0 5.0 

Ω12 7.0 10.0 7.0 26.8 76.0 5.0 

Ω13 9.0 10.0 10.0 28.0 76.0 5.0 

Ω14 5.0 10.0 3.0 19.0 73.0 3.0 

Ω15 4.0 2.0 3.0 18.0 74.0 3.0 

Ω16 2.0 6.0 3.0 24.0 45.0 4.0 

Ω17 7.0 9.0 6.0 60.0 70.0 4.0 

Ω18 7.0 8.0 8.0 32.0 72.0 4.0 

Ω19 4.0 4.0 4.0 19.0 39.0 4.0 

Ω20 3.0 4.0 3.0 17.0 83.0 5.0 

 

Table 2. Gaussian membership functions of the 6 affecting factors 

Affecting factor 
Gaussian membership function 

X Y Z 

(λ1) gaussmf[3 1] gaussmf[2 5] gaussmf[5 10] 

(λ2) gaussmf[4 1] gaussmf[3 6] gaussmf[4 10] 

(λ3) gaussmf[4 0] gaussmf[3 5] gaussmf[1 8] 

(λ4) gaussmf[30 5] gaussmf[15 40] gaussmf[30 65] 

(λ5) gaussmf[15 30] gaussmf[25 50] gaussmf[30 45] 

(λ6) gaussmf[4 0] gaussmf[3 5.5] gaussmf[2 10] 

 

In terms of the data of the 6 affecting factors, we use Gaussian membership functions in Table 2 

to fuzzify them into the form of SVNNs. In Table 2, the true, uncertain, and false Gaussian 

membership functions of the six affecting factors are provided to fuzzify the slope sample data, and 
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then the Gaussian membership degree curves of truth (X), uncertainty (Y), and falsity (Z) are shown 

in Figure 1. Thus, the 6 affecting factors of the 20 slope samples Ωj (j = 1, 2, …, 20) are fuzzified into 

the corresponding SVNSs Φj, which are shown in Table 3. 

 

Table 3. SVNSs of 20 slope samples 

Φj λ1 λ2 λ3 λ4 λ5 λ6 

Φ1 (0.946, 0.325, 0.278) (0.607, 0.946, 0.458) (0.607, 0.946, 0.000) (0.946, 0.249, 0.249) (0.002, 0.397, 0.430) (0.755, 0.707, 0.002) 

Φ2 (0.607, 0.882, 0.487) (0.882, 0.607, 0.216) (0.607, 0.946, 0.000) (0.995, 0.103, 0.164) (0.002, 0.397, 0.430) (0.755, 0.707, 0.002) 

Φ3 (0.066, 0.325, 0.923) (0.325, 0.946, 0.755) (0.325, 0.946, 0.135) (0.946, 0.249, 0.249) (0.249, 0.980, 0.946) (0.607, 0.882, 0.011) 

Φ4 (0.801, 0.607, 0.375) (0.755, 0.801, 0.325) (0.458, 1.000, 0.011) (0.991, 0.118, 0.175) (0.009, 0.582, 0.586) (0.607, 0.882, 0.011) 

Φ5 (0.946, 0.325, 0.278) (0.755, 0.801, 0.325) (0.607, 0.946, 0.000) (0.995, 0.103, 0.164) (0.002, 0.397, 0.430) (0.458, 0.986, 0.044) 

Φ6 (0.011, 0.044, 1.000) (0.216, 0.801, 0.882) (0.044, 0.249, 0.135) (0.586, 0.965, 0.627) (0.089, 0.874, 0.835) (0.458, 0.986, 0.044) 

Φ7 (0.135, 0.607, 0.835) (0.325, 0.946, 0.755) (0.325, 0.946, 0.135) (0.835, 0.526, 0.375) (0.009, 0.582, 0.586) (0.458, 0.986, 0.044) 

Φ8 (0.066, 0.325, 0.923) (0.216, 0.801, 0.882) (0.216, 0.801, 0.607) (0.667, 0.867, 0.546) (0.089, 0.874, 0.835) (0.755, 0.707, 0.002) 

Φ9 (0.411, 1.000, 0.607) (0.135, 0.607, 0.969) (0.607, 0.946, 0.000) (0.946, 0.249, 0.249) (0.089, 0.874, 0.835) (0.458, 0.986, 0.044) 

Φ10 (0.801, 0.607, 0.375) (0.882, 0.607, 0.216) (0.325, 0.946, 0.135) (0.980, 0.154, 0.198) (0.009, 0.582, 0.586) (0.607, 0.882, 0.011) 

Φ11 (0.801, 0.607, 0.375) (0.458, 1.000, 0.607) (0.458, 1.000, 0.011) (0.867, 0.448, 0.341) (0.024, 0.703, 0.687) (0.458, 0.986, 0.044) 

Φ12 (0.135, 0.607, 0.835) (0.080, 0.411, 1.000) (0.216, 0.801, 0.607) (0.768, 0.679, 0.445) (0.009, 0.582, 0.586) (0.458, 0.986, 0.044) 

Φ13 (0.029, 0.135, 0.980) (0.080, 0.411, 1.000) (0.044, 0.249, 0.135) (0.745, 0.726, 0.467) (0.009, 0.582, 0.586) (0.458, 0.986, 0.044) 

Φ14 (0.411, 1.000, 0.607) (0.080, 0.411, 1.000) (0.755, 0.801, 0.000) (0.897, 0.375, 0.309) (0.016, 0.655, 0.647) (0.755, 0.707, 0.002) 

Φ15 (0.607, 0.882, 0.487) (0.969, 0.411, 0.135) (0.755, 0.801, 0.000) (0.910, 0.341, 0.293) (0.014, 0.631, 0.627) (0.755, 0.707, 0.002) 

Φ16 (0.946, 0.325, 0.278) (0.458, 1.000, 0.607) (0.755, 0.801, 0.000) (0.818, 0.566, 0.393) (0.607, 0.980, 1.000) (0.607, 0.882, 0.011) 

Φ17 (0.135, 0.607, 0.835) (0.135, 0.607, 0.969) (0.325, 0.946, 0.135) (0.186, 0.411, 0.986) (0.029, 0.726, 0.707) (0.607, 0.882, 0.011) 

Φ18 (0.135, 0.607, 0.835) (0.216, 0.801, 0.882) (0.135, 0.607, 1.000) (0.667, 0.867, 0.546) (0.020, 0.679, 0.667) (0.607, 0.882, 0.011) 

Φ19 (0.607, 0.882, 0.487) (0.755, 0.801, 0.325) (0.607, 0.946, 0.000) (0.897, 0.375, 0.309) (0.835, 0.908, 0.980) (0.607, 0.882, 0.011) 

Φ20 (0.801, 0.607, 0.375) (0.755, 0.801, 0.325) (0.755, 0.801, 0.000) (0.923, 0.309, 0.278) (0.002, 0.418, 0.448) (0.458, 0.986, 0.044) 
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Figure 1. The Gaussian membership degree curves of the 6 affecting factors 

 

Thus, we can calculate the IHSSM values between SVNSs of the slope samples by Eq. (4) for δ = 

1, and then establish the IHSSM matrix Β: 

 



1.0000  0.8144  0.7130  0.8608  0.9266  0.5175  0.7059  0.6064  0.6874  0.8159  0.8395  0.5655  0.5306  0.6784  0.7525  0.8356  0.5959  0.5543  0.7591  0.8629

0.8144  1.0000  0.6336  0.8659  0.8361  

Β

0.4634  0.6775  0.5506  0.7618  0.8819  0.7536  0.5884  0.5042  0.7527  0.9095  0.6540  0.6190  0.5484  0.8483  0.8435

0.7130  0.6336  1.0000  0.6995  0.6689  0.7632  0.8801  0.8300  0.7588  0.6914  0.7435  0.7345  0.7268  0.6841  0.6088  0.7345  0.7894  0.7380  0.7079  0.6548

0.8608  0.8659  0.6995  1.0000  0.9073  0.5259  0.7441  0.5889  0.7256  0.9400  0.8862  0.6242  0.5390  0.6898  0.8080  0.7542  0.6551  0.6127  0.8420  0.9211

0.9266  0.8361  0.6689  0.9073  1.0000  0.5186  0.6847  0.5593  0.6885  0.8554  0.8177  0.5666  0.5316  0.6303  0.7470  0.7905  0.5747  0.5334  0.7808  0.9085

0.5175  0.4634  0.7632  0.5259  0.5186  1.0000  0.7491  0.8373  0.6403  0.5182  0.6025  0.7274  0.8837  0.5867  0.4738  0.5818  0.7326  0.7839  0.5318  0.5342

0.7059  0.6775  0.8801  0.7441  0.6847  0.7491  1.0000  0.7923  0.7765  0.7360  0.8283  0.8527  0.7630  0.7396  0.6611  0.6958  0.8501  0.8172  0.7002  0.7325

0.6064  0.5506  0.8300  0.5889  0.5593  0.8373  0.7923  1.0000  0.6825  0.5811  0.6443  0.8371  0.7716  0.6774  0.5613  0.6459  0.7834  0.8788  0.5949  0.5751

0.6874  0.7618  0.7588  0.7256  0.6885  0.6403  0.7765  0.6825  1.0000  0.7116  0.7705  0.7475  0.6595  0.8994  0.7363  0.6784  0.7791  0.6723  0.7827  0.7257

0.8159  0.8819  0.6914  0.9400  0.8554  0.5182  0.7360  0.5811  0.7116  1.0000  0.8335  0.6455  0.5598  0.6758  0.8307  0.7101  0.6766  0.6049  0.7973  0.8759

0.8395  0.7536  0.7435  0.8862  0.8177  0.6025  0.8283  0.6443  0.7705  0.8335  1.0000  0.6840  0.5974  0.7259  0.7445  0.8430  0.7079  0.6647  0.7960  0.8667

0.5655  0.5884  0.7345  0.6242  0.5666  0.7274  0.8527  0.8371  0.7475  0.6455  0.6840  1.0000  0.8417  0.7748  0.6212  0.5821  0.8340  0.8622  0.5816  0.6327

0.5306  0.5042  0.7268  0.5390  0.5316  0.8837  0.7630  0.7716  0.6595  0.5598  0.5974  0.8417  1.0000  0.6863  0.5361  0.5470  0.7489  0.7537  0.4976  0.5473

0.6784  0.7527  0.6841  0.6898  0.6303  0.5867  0.7396  0.6774  0.8994  0.6758  0.7259  0.7748  0.6863  1.0000  0.8155  0.6672  0.7538  0.6751  0.7300  0.7183

0.7525  0.9095  0.6088  0.8080  0.7470  0.4738  0.6611  0.5613  0.7363  0.8307  0.7445  0.6212  0.5361  0.8155  1.0000  0.6856  0.6102  0.5591  0.8390  0.8371

0.8356  0.6540  0.7345  0.7542  0.7905  0.5818  0.6958  0.6459  0.6784  0.7101  0.8430  0.5821  0.5470  0.6672  0.6856  1.0000  0.6009  0.5855  0.7831  0.7831

0.5959  0.6190  0.7894  0.6551  0.5747  0.7326  0.8501  0.7834  0.7791  0.6766  0.7079  0.8340  0.7489  0.7538  0.6102  0.6009  1.0000  0.8005  0.6345  0.6212

0.5543  0.5484  0.7380  0.6127  0.5334  0.7839  0.8172  0.8788  0.6723  0.6049  0.6647  0.8622  0.7537  0.6751  0.5591  0.5855  0.8005  1.0000  0.5849  0.5988

0.7591  0.8483  0.7079  0.8420  0.7808  0.5318  0.7002  0.5949  0.7827  0.7973  0.7960  0.5816  0.4976  0.7300  0.8390  0.7831  0.6345  0.5849  1.0000  0.
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Figure 2. Clustering results based on the proposed clustering model 
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Using Eq. (5), we can perform the netting clustering analysis and indicate the clustering results 

in Figure 2, where when the confidence level takes 0.8430  ζ  1, the 20 slope samples are divided 

into four risk levels. In Figure 2, it is seen that {Ω1, Ω2, Ω4, Ω5, Ω10, Ω11, Ω15, Ω16, Ω19, Ω20}, {Ω3, Ω7, 

Ω8, Ω12, Ω17, Ω18}, {Ω6, Ω13}, and {Ω9, Ω14} belong to four different risk classifications, respectively. 

5.2. Slope Stability Assessment of Practical Cases 

According to the Chinese standard for the engineering classification of rock mass (GB/T 50218 – 

2014) and the historical experience of slope stability, we provide six affecting factors and four risk 

levels of slope stability. Furthermore, according to the actual situation of slope engineering, we can 

assess the four affecting factors λ1, λ2, λ3, and λ6 in the four risk levels from 0 to 10 slope stability 

scores: the stable score is 03; the basic stable score is 36; the relatively unstable score is 68; the 

unstable score is 810. Then, the two affecting factors λ4 and λ5 are the actual measured values. 

Subsequently, all the obtained results are shown in Table 4. 

 
Table 4. Affecting factors and risk levels of slope stability 

Affecting factor Stable state Basic stable state 
Relatively 

unstable state 
Unstable state 

Lithological 

association 

Hard rock 

(03) 

Sub-hard rock 

(36) 

Sub-soft rock 

(68) 

Soft rock 

(810) 

Slope structure 

Homogeneous 

structure 

(03) 

Blocky structure 

(36) 

Stratified 

structure 

(68) 

Loose 

structure 

(810) 

Weathering 

degree of rock 

Weak weathering 

(03) 

Moderate 

weathering 

(36) 

Intense 

weathering 

(68) 

Complete 

weathering 

(810) 

Slope height (m) 020 2040 4060 6080 

Slope angle (°) 010 1030 3060 6090 

Vegetation 

coverage 

Very high 

(03) 

High 

(36) 

Low 

(68) 

Very low 

(810) 

 

From the above classified results of slope stability, we can classify the risk states of slope stability 

into four categories/levels: the unstable state (Θ1), the relatively stable state (Θ2), the basically stable 

state (Θ3), and the stable state (Θ4), where the unstable state implies that the slope is damaged or prone 

to damage, the basically stable and relatively unstable states reflect that the slope is between safety 

and damaged, then the stable state means that the slope is safe. 

Based on the knowledge and experience of slope stability, the 6 affecting factors of the 4 risk levels 

are fuzzified into SVNNs in Table 5, then their SVNSs are represented as follows: 

Θ1 = {s11, s12, s13, s14, s15, s16} = {<0.02, 0.90, 0.99>, <0.15, 0.61, 0.94>, <0.04, 0.25, 0.14>, <0.67, 0.85, 0.55>, 

<0.05, 0.73, 0.71>, <0.46, 0.99, 0.04>}; 

Θ2 = {s21, s22, s23, s24, s25, s26} = {<0.11, 0.51, 0.86>, <0.22, 0.73, 0.86>, <0.26, 0.84, 0.44>, <0.68, 0.60, 0.52>, 

<0.07, 0.74, 0.72>, <0.58, 0.89, 0.02>}; 

Θ3 = {s31, s32, s33, s34, s35, s36} = {<0.41, 1.00, 0.61>, <0.11, 0.51, 0.98>, <0.39, 0.97, 0.07>, <0.92, 0.31, 0.28>, 

<0.05, 0.76, 0.74>, <0.68, 0.79, 0.01>}; 

Θ4 = {s41, s42, s43, s44, s45, s46} = {<0.79, 0.61, 0.38>, <0.73, 0.78, 0.35>, <0.59, 0.91, 0.02>, <0.93, 0.28, 0.26>, 

<0.15, 0.60, 0.62>, <0.61, 0.86, 0.02>}. 
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Table 1. SVNNs of the 4 risk levels for slope stability 

θki 
Θ1 Θ2 Θ3 Θ4 

Xk1 Yk1 Zk1 Xk2 Yk2 Zk2 Xk3 Yk3 Zk3 Xk4 Yk4 Zk4 

θk1 0.02 0.90 0.99 0.11 0.51 0.86 0.41 1.00 0.61 0.79 0.61 0.38 

θk2 0.15 0.61 0.94 0.22 0.73 0.86 0.11 0.51 0.98 0.73 0.78 0.35 

θk3 0.04 0.25 0.14 0.26 0.84 0.44 0.39 0.97 0.07 0.59 0.91 0.02 

θk4 0.67 0.85 0.55 0.68 0.60 0.52 0.92 0.31 0.28 0.93 0.28 0.26 

θk5 0.05 0.73 0.71 0.07 0.74 0.72 0.05 0.76 0.74 0.15 0.60 0.62 

θk6 0.46 0.99 0.04 0.58 0.89 0.02 0.68 0.79 0.01 0.61 0.86 0.02 

 

Table 2. Assessed results of the risk levels for 20 slope samples 

Ωj Mδ(j, Θ1) Mδ(j, Θ2) Mδ(j, Θ3) Mδ(j, Θ4) Risk level 

Ω1 0.494570  0.623006  0.677886  0.873638  Θ4 

Ω2 0.564537  0.610318  0.752149  0.853195  Θ4 

Ω3 0.713772  0.832699  0.756454  0.711081  Θ2 

Ω4 0.551858  0.665090  0.728133  0.951406  Θ4 

Ω5 0.495114  0.605004  0.642938  0.886262  Θ4 

Ω6 0.865189  0.797835  0.626400  0.542880  Θ1 

Ω7 0.776073  0.875305  0.782408  0.746375  Θ2 

Ω8 0.785857  0.904950  0.704720  0.607567  Θ2 

Ω9 0.743878  0.749130  0.931893  0.754172  Θ3 

Ω10 0.572259  0.667849  0.728380  0.910704  Θ4 

Ω11 0.628578  0.725045  0.761082  0.882138  Θ4 

Ω12 0.803960  0.884157  0.773955  0.634420  Θ2 

Ω13 0.872155  0.782644  0.685452  0.548984  Θ1 

Ω14 0.714061  0.729656  0.922054  0.724081  Θ3 

Ω15 0.575320  0.615914  0.752868  0.834918  Θ4 

Ω16 0.534628  0.662498  0.646964  0.791051  Θ4 

Ω17 0.793529  0.865970  0.808385  0.665402  Θ2 

Ω18 0.810222  0.888952  0.700942  0.624027  Θ2 

Ω19 0.582546  0.649881  0.750508  0.869809  Θ4 

Ω20 0.559702  0.648989  0.690287  0.935418  Θ4 

 

Calculating the IHSSM values between Θk (k=1, 2, 3, 4) and Φj (j=1, 2, …, 20) by Eq. (6) for δ = 1, 

we can gain all the IHSSM values, as shown in Table 6. Therefore, we can use the maximum measure 

value between j and Θk to decide the risk levels of these slope samples. The assessed results in Table 

6 show that the 20 slope samples are clustered into the following four types of risk levels: 

(1) {Ω1, Ω2, Ω4, Ω5, Ω10, Ω11, Ω15, Ω16, Ω19, Ω20} belongs to the risk level Θ4; 

(2) {Ω3, Ω7, Ω8, Ω12, Ω17, Ω18} belongs to the risk level Θ2; 

(3) {Ω6, Ω13} belongs to the risk level Θ1; 

(4) {Ω9, Ω14} belongs to the risk level Θ3. 

Clearly, the assessed results and the netting clustering results of the 20 slope samples are 

identical. Therefore, the slope stability evaluation model based on the netting clustering analysis 

verifies its rationality and accuracy. 

5.3. Relative Comparison 

In our comparative analysis, we apply the weighted similarity measures of Eqs. (2) and (3) [27, 

28] to the risk level assessment of the 20 slope samples to verify the validity and accuracy of our new 

slope stability evaluation model. 
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Regarding the 20 slope samples, we calculate the weighted generalized distance-based similarity 

measure values between Θk (k = 1, 2, 3, 4) and j (j = 1, 2, …, 20) by Eq. (2) for δ = 1 [28], and then the 

assessed results are shown in Table 7. It can be clearly seen that there is consistency between the 

assessed results of Eq. (2) and the assessed results of the proposed IHSSM of SVNSs for the 20 slope 

samples Ωj. 

Table 7. Assessed results using Eq. (2) 

Ωj Wδ(j, Θ1) Wδ(j, Θ2) Wδ(j, Θ3) Wδ(j, Θ4) Risk level 

Ω1 0.539646  0.661580  0.712268  0.888397  Θ4 

Ω2 0.606702  0.649753  0.779809  0.870249  Θ4 

Ω3 0.745041  0.852010  0.783693  0.742593  Θ2 

Ω4 0.594669  0.700514  0.758084  0.957157  Θ4 

Ω5 0.540175  0.644786  0.680074  0.899586  Θ4 

Ω6 0.880902  0.820873  0.664736  0.586118  Θ1 

Ω7 0.801353  0.889876  0.807043  0.774595  Θ2 

Ω8 0.810137  0.916128  0.736800  0.647182  Θ2 

Ω9 0.772339  0.777083  0.939936  0.781635  Θ3 

Ω10 0.614006  0.703051  0.758308  0.921215  Θ4 

Ω11 0.666760  0.755283  0.787864  0.895933  Θ4 

Ω12 0.826355  0.897722  0.799449  0.672183  Θ2 

Ω13 0.887082  0.807254  0.719201  0.591934  Θ1 

Ω14 0.745305  0.759465  0.931247  0.754408  Θ3 

Ω15 0.616897  0.654974  0.780458  0.853987  Θ4 

Ω16 0.578235  0.698128  0.683798  0.814795  Θ4 

Ω17 0.817016  0.881594  0.830311  0.700801  Θ2 

Ω18 0.831953  0.901969  0.733355  0.662529  Θ2 

Ω19 0.623709  0.686493  0.778328  0.885001  Θ4 

Ω20 0.602119  0.685669  0.723624  0.943048  Θ4 

 

Table 8. Assessed results using Eq. (3) 

Ωj Nδ(j, Θ1) Nδ(j, Θ2) Nδ(j, Θ3) Nδ(j, Θ4) Risk level 

Ω1 0.581600  0.697253  0.742503  0.901390  Θ4 

Ω2 0.646720  0.688072  0.805233  0.886962  Θ4 

Ω3 0.774547  0.871636  0.807972  0.769010  Θ2 

Ω4 0.635925  0.735100  0.786431  0.962682  Θ4 

Ω5 0.583890  0.683484  0.714810  0.912949  Θ4 

Ω6 0.896410  0.838217  0.701436  0.627532  Θ1 

Ω7 0.822104  0.902188  0.830551  0.800261  Θ2 

Ω8 0.824908  0.926346  0.767125  0.684412  Θ2 

Ω9 0.796648  0.802231  0.945901  0.806259  Θ3 

Ω10 0.655512  0.738880  0.786225  0.929453  Θ4 

Ω11 0.699053  0.781021  0.812508  0.908627  Θ4 

Ω12 0.841484  0.909690  0.821160  0.705050  Θ2 

Ω13 0.901922  0.824129  0.747833  0.629507  Θ1 

Ω14 0.770840  0.784476  0.936499  0.781144  Θ3 

Ω15 0.653407  0.689608  0.801997  0.869884  Θ4 

Ω16 0.614510  0.726679  0.716873  0.837449  Θ4 

Ω17 0.840246  0.899429  0.858115  0.740423  Θ2 

Ω18 0.843693  0.909883  0.759968  0.694463  Θ2 

Ω19 0.659384  0.718694  0.802222  0.899089  Θ4 

Ω20 0.639969  0.718193  0.750376  0.948368  Θ4 
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Regarding the 20 slope samples, we also calculate the weighted HSSM values between Θk (k = 1, 

2, 3, 4) and j (j = 1, 2, …, 20) by Eq. (3) for δ = 1 [27], and then all the assessed results are shown in 

Table 8. It is obvious that the assessed risk results using Eq. (3) in Table 8 are the same risk results as 

using the proposed IHSSM, which proves the validity, rationality, and accuracy of our new 

assessment model in the scenario of SVNSs. 

6. Conclusions  

This article first presented the IHSSM of SVNSs, and then proposed its netting clustering and 

slope stability evaluation models to realize the risk level clustering analysis and assessment of slope 

stability in the scenario of SVNSs. Next, the proposed netting clustering and slope stability evaluation 

models are applied in the case study of the 20 slope samples. The assessment and comparison results 

verified the validity, rationality, and accuracy of the proposed new models in the scenario of SVNSs. 

However, the proposed new models can avoid the defects of the existing ANN, ANFIS, and SVNN-

ANFIS evaluation methods [10, 11, 25] because they need a lot of training samples and the complex 

modeling process. Therefore, the new models proposed in this paper are not only simpler and more 

convenient in the evaluation process, but also more suitable for practical applications, which is the 

main advantage. 

In future research, we will further investigate the slope stability clustering and evaluation 

problems with big sample data and verify the reasonableness and validity of the netting clustering 

results and the evaluation results. In addition, we shall also research on clustering and assessment 

methods with multi-layer affecting factors in neutrosophic scenarios and verify their accuracy and 

validity under the environment of big sample data. 

 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare that they have no conflicts of interest. 

References 

1. Yang, Q.F.; Zhang, J.L. Summary of classification methods for slope rock mass stability. China Water 

Transport 2014, 14(1), 335–338 

2. Fellenius, W. Calculation of the Stability of Earth Dams. Proceedings of the Second Congress on large dams, 

Washington, 1936. 

3. Janbu, N. Application of composite slip surfaces for stability analysis. Proceedings of European Conference on 

Stability of Earth Slopes. Sweden, 1954. 

4. Bishop, A.W. The use of s1ip circle for the stability analysis of slopes. Geotechnique 1955, 5(1), 717. 

5. Murgenstexn, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15(1), 

7993.  

6. Wang, Q.; Shao, M. Basic principles and numerical methods of finite element method. Tsinghua University Press, 

Beijing, 2002, pp. 38258. 

7. Lian, Z.; Han, G.; Kong, X. Stability analysis of excavation by strength reduction FEM. Chinese Journal of 

Geotechnical Engineering 2001, (04), 407－411. 

8. Ghaboussi, J.R.; Barboosa, R. Three-dimensional and discrete element methods for granular material. 

International Journal for Numerical and Analytical Methods in Geomechanics 1990, 14, 451472.  

9. Qin S.; Cao, S.; Li, G.; Ma, Z.; Lv, J. Stability classification of rock slope based on FAHP efficiency coefficient 

method. Journal of Catastrophology 2016, 31(04), 27–32. 

10. Alimohammadlou, Y.; Najafi, A.; Gokceoglu, C. Estimation of rainfall-induced landslides using ANN and 

fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran. Catena 2014, 120, 149–162. 

11. Fattahi, H. Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering 

methods. Journal of Mining and Environment 2017, 8(2), 163–177. 

12. Jalali, Z. Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms. 



Neutrosophic Sets and Systems, Vol. 56, 2023  212  

 

 

Kaiqian Du, Shigui Du, Jun Ye, Open-Pit Mine Slope Stability Clustering Analysis and Assessment Models Based on an 

Inverse Hyperbolic Sine Similarity Measure of SVNSs 
 

International Journal of Mining Science and Technology, 2016, 26(6), 959–966. 

13. Du, C.; Ye, J. Decision-making strategy for slope stability using similarity measures between interval-valued 

fuzzy credibility sets. Soft Computing 2022, 26(11), 5105–5114. 

14. Smarandache, F. Neutrosophy: Neutrosophic probability, set, and logic. American Research Press, Rehoboth, 

1998. 

15. Smarandache, F. Introduction to neutrosophic statistics. Sitech & Education Publishing, Craiova, 2014. 

16. Smarandache, F. Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. Sitech 

& Education Publisher, Craiova—Columbus, 2013. 

17. Li, B.; Zhou, K., Ye, J.; Sha, P. Application of a probabilistic method based on neutrosophic number in rock 

slope stability assessment. Applied Sciences 2019, 9(11), 2309. 

18. Zhou, K.; Ye, J.; Li, B. Similarity Measure Methods of Neutrosophic Numbers and Their Comparative Study 

on the Evaluation of Slope Stability. Journal of Shaoxing University (Natural Science) 2019, 39(01), 11–18. 

19. Li, C.; Ye, J.; Cui, W.; Du, S. Slope stability assessment method using the arctangent and tangent similarity 

measure of neutrosophic numbers. Neutrosophic Sets and Systems 2019, 27, 98–103. 

20. Zadeh, L.A. Fuzzy sets. Information and Control 1965, 8, 338–353. 

21. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87–96 

22. Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 1989, 31, 343–349. 

23. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory and 

applications in computing. Hexis, Phoenix, AZ, 2005. 

24. Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace and 

Multistructure 2010, 4, 410–413. 

25. Qin, J.; Du, S.; Ye, J.; Yong, R. SVNN-ANFIS approach for stability evaluation of open-pit mine slopes. Expert 

Systems with Applications 2022, 198, 116816. 

26. Qin, J.; Ye, J.; Sun, X.; Yong, R.; Du, S. A single-valued neutrosophic Gaussian process regression approach 

for stability prediction of open-pit mine slopes. Applied Intelligence 2022, 53, 13206–13223. 

27. Ding, Y.; Ye, J. Hyperbolic Sine Similarity Measure of SVNSs for Open-Pit Mine Slope Stability Classification 

and Assessment. Neutrosophic Sets and Systems 2023, 55, 1–12. 

28. Ye, J. A netting method for clustering simplified neutrosophic information. Soft Computing 2017, 21(24), 

7571–7577. 

Received: April 5, 2023.  Accepted: July 18, 2023


