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Abstract. The main goal of this project is to analyze the structure of anti-biminimal spaces through the

lens of the notions of interior and closure. Anti-biminimal spaces can be considered as generalizations of anti-

bitopological spaces that have been introduced and studied earlier. On the other hand, they can be viewed as

counterparts of biminimal spaces. Finally, they are spaces equipped with two anti-minimal structures. Thus,

we show some basic results on the latter. In particular, we refer to the concepts of density, nowhere density

and rarity in anti-minimal spaces.

In general, anti-topology is a structure κ in which at least one classical axiom is totally false. In this paper,

we consider the first axiom. Hence, ∅ and X do not belong to κ.
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1. Introduction

We know that topology on some non-empty universe X is defined as a family τ ⊆ P (X)

that is closed under finite intersections and arbitrary unions. The elements of this family of

subsets are called open sets. Moreover, we always assume that ∅ and X are open too. This

definition can be considered as a generalization of the idea of open intervals on real line or

open balls on real plane. Using this concept mathematicians defined many notions that are

used in other branches of mathematics. In particular, continuity is very important in analysis.

Many modern topologists try to reconstruct typical topological notions (like continuity, den-

sity, nowhere density, compactness, connectedness, separation etc.) in weaker or just different

frameworks than the one mentioned above. For example, we can assume that closure of our

family under finite intersections is not necessary and thus we obtain supra topological spaces

(see [13]). Instead of this, we can eliminate necessity of closure under unions (to get infra
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topological spaces, see [3] and [14]). One can reject both these conditions: this leads to min-

imal structures, like in [15]. We can even assume that X may not be open. These are weak

structures (see [6]), where the only requirement is that ∅ is open. If weak structure is closed

under arbitrary unions then it can be considered as a generalized topological space in the

sense of Császár (see [5]). Finally, we can assume that τ is arbitrary (we can use the notion

of generalized weak structure here), see [1] and [7].

We have different approaches too. The whole direction of our present research is based on

Smarandache’s suggestion that we should investigate anti-algebras. They are based on the idea

that some classical requirements (like closure under finite intersections in case of topologies)

are forbidden. Initial papers on this concept are e.g. [17], [18], [19] and [20].

In general, Smarandache invented six new types of topologies recently (that is, in the years

2019 - 2022). These are: refined neutrosophic topology, refined neutrosophic crisp topology,

neutro-topology, anti-topology, super-hyper topology and neutrosophic super-hyper-topology.

The last two are based on the idea of the n-th power set of a given non-empty set (be it classical

or neutrosophic). As for the neutro-topological structures, they are based on the assumption

that at least one of the classical topological axioms is partially true, partially indeterminate,

and partially false. They have been studied e.g. by Şahin et al. in [16]. There was also another

paper by Khaklary and Chandra Ray, see [10].

Refined structures are characterized by the fact that truth, falsity and indeterminacy can

be split into arbitrarily many subcomponents (depending on applications and needs). This

leads to the idea of refined fuzzy, refined intuitionistic fuzzy and then refined neutrosophic set.

Finally, we have the idea of anti-topology. Anti-topology means a topology where at least

one of its classical axioms is totally false. In particular, it is possible that any non-trivial

intersection or union of the elements of τ is beyond τ . Moreover, we may assume ∅ and X

are never open. Such anti-topologies are anti-chains of sets. These spaces have been already

studied e.g. in [21], [22]. Moreover, anti-bitopological spaces equipped with two anti-topologies

have been investigated in [9].

As for the present paper, it is devoted to the initial study of anti-minimal and anti-weak

structures. Anti-biminimal structures are presented too.

2. Basic notions

Let us introduce several basic notions that will be used extensively throughout the paper.

The first two are somewhat classical, the next two refer to the general program of anti-algebra.

By ”non-trivial” we mean intersection or union that engages at least two different sets.

Then we say that such a family is ”anti-closed” under these operations.
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Definition 2.1. (compare [15]). Assume that X is a non-empty universe and m ⊆ P (X). If

∅, X ∈ m then we say that m is a minimal structure on X. We say that an ordered pair (X,m)

is a minimal structure space.

Clearly, every topology onX is a minimal structure too. In particular, anti-discrete topology

is the simplest example of minimal structure.

Definition 2.2. (compare [4]). Assume that X is a non-empty universe and m1, m2 are

two minimal structures on X. Then we say that an ordered pair (X,m1,m2) is a biminimal

structure space.

Remark 2.3. If the structures mentioned in the last definition are weak structures (and not

necessarily minimal), then the whole space is called biweak structure. Such spaces have been

investigated e.g. in [11].

As it was announced earlier, the next two definitions can be considered as negations of the

former two.

Definition 2.4. Assume that X is a non-empty universe and κ ⊆ P (X). If ∅, X /∈ κ, then

we say that κ is an anti-minimal structure on X. We say that an ordered pair (X,κ) is an

anti-minimal structure space. The elements of κ are called κ-open sets and their complements

are κ-closed. The set of all κ-closed sets is denoted with κCl.

In the light of our earlier considerations, anti-minimal structure is an example of anti-

topology (since the first axiom of topology is totally false).

Definition 2.5. Assume that X is a non-empty universe and κ1, κ2 are two anti-minimal

structures on X. Then we say that an ordered pair (X,κ1, κ2) is an anti-biminimal structure

space.

One can easily give many examples of anti-minimal and anti-biminimal structures. Some of

them will be presented throughout the paper. Clearly, anti-minimal structures can be closed

under some operations (like non-empty intersections or unions that do not lead to X). They

can be anti-closed under these operations too.

We can define closure and interior in terms of anti-minimal structures. Both the definitions

below are standard.

Definition 2.6. Assume that (X,κ) is an anti-minimal structure space and A ⊆ X. We say

that κ-interior of A is the following set: κInt(A) =
⋃
{B ∈ κ;B ⊆ A}.

Definition 2.7. Assume that (X,κ) is an anti-minimal structure space and A ⊆ X. We say

that κ-closure of A is the following set: κCl(A) =
⋂
{B ∈ κCl;A ⊆ B}.
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Remark 2.8. Note that anti-minimal structures have one interesting property. Due to the

fact that ∅ and X are never κ-open (nor κ-closed) we can define four non-trivial sets:

(1) κY nt(A) =
⋂
{B ∈ κ;B ⊆ A} (subinterior of A).

(2) κKl(A) =
⋃
{B ∈ κCl;A ⊆ B} (superclosure of A).

(3) κEnt(A) =
⋃
{B ∈ κ;B ⊆ A} (superinterior of A).

(4) κGl(A) =
⋂
{B ∈ κCl;A ⊆ B} (subclosure of A).

This will be analyzed in our further research. Clearly, similar operators can be defined

even for topological spaces but with some more or less additional assumptions (like e.g. ”the

intersection of all non-empty open sets contained in A”), while in anti-minimal structures

they are more natural. Note (for example) that if our space is not closed under unions, then

κEnt(A) may be different than
⋃
κ (because the union of all open sets need not to be open).

The following properties of κ-interior and κ-closure are true just because they are true for

any generalized weak structure (and anti-minimal structure is a generalized weak one, without

any doubt). The reader can compare this e.g. with [1].

Lemma 2.9. Assume that (X,κ) is an anti-minimal structure space and A,B ⊆ X. Then:

(1) κInt(A) ⊆ A.

(2) If A ∈ κ, then κInt(A) = A.

(3) If A ⊆ B, then κInt(A) ⊆ κInt(B).

(4) κInt(κInt(A)) = κInt(A).

(5) A ⊆ κCl(A).

(6) If A ∈ κCl, then κCl(A) = A.

(7) If A ⊆ B, then κCl(A) ⊆ κCl(B).

(8) κCl(κCl(A)) = κCl(A).

(9) −κInt(A) = κCl(−A).

(10) κInt(−A) = −κCl(A).

(11) x ∈ κInt(A) if and only if there is U ∈ κ such that x ∈ U ⊆ A.

(12) x ∈ κCl(A) if and only if U ∩A ̸= ∅ for any U ∈ κ such that x ∈ U .

(13) κInt(A ∩B) ⊆ κInt(A) ∩ κInt(B).

Remark 2.10. Note that the converses of Lemma 2.9 (2), (6) need not to be true. For example,

let X = {a, b, c, d} and κ = {{a, b}, {b, c}, {c, d}}. Now let A = {a, b, c}. Then κInt(A) =

{a, b} ∪ {b, c} = A /∈ κ. Besides, this particular κ is an example of anti-topological space.

This is because it is anti-closed under unions and intersections (any union and intersection

of two different sets from κ leads beyond κ). Moreover, in the definition of anti-topological

space (see [21]) we always assume that ∅, X /∈ κ. Hence, each anti-topological space is an

anti-minimal structure too.
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Remark 2.11. The converse of Lemma 2.9 (13) may not be true. Consider X = {1, 2, 3, 4, 5}
with κ = {{1, 3}, {2}, {3, 4}}, where A = {1, 2, 3} and B = {2, 3, 4}. One can easily check that

κInt(A) ∩ κInt(B) = A ∩B = {2, 3} ⊈ {2} = κInt({2, 3}) = κInt(A ∩B).

3. On density and related notions

We can briefly discuss the concepts of density, nowhere density and rarity (leaving more

detailed theorems for the further research).

Definition 3.1. Let (X,κ) be an anti-minimal structure and A ⊆ X. Then we say that A is:

(1) κ-dense if and only if κCl(A) = X.

(2) κ-nowhere dense if and only if κInt(κCl(A)) = ∅.
(3) Strongly κ-nowhere dense if and only if for any κ-open set B there is some κ-open

U ⊆ B such that A ∩ U = ∅.
(4) κ-rare if and only if κInt(A) = ∅.

Remark 3.2. Note that if A is κ-dense in an anti-minimal space, then it is equivalent with

saying that the set Z = {C ∈ κCl;A ⊆ C} is empty. Note thatX is never κ-open. Analogously,

A is κ-rare in anti-minimal space if and only if the set J = {C ∈ κ;C ⊆ A} is empty.

We can prove equivalent characterization of κ-dense sets.

Theorem 3.3. Let (X,κ) be an anti-minimal structure. Let A ⊆ X. Then A is κ-dense if

and only if A ∩B ̸= ∅ for any B ∈ κ.

Proof. (⇒). We have κCl(A) = X and B ∈ κ. Assume that A∩B = ∅. Now let x ∈ B (there

must be some x ∈ B because B is non-empty as a member of κ). Hence x ∈ X = κCl(A). By

Lemma 2.9 (13) we obtain A ∩B ̸= ∅.
(⇐). Let A ∩ B ̸= ∅ for any B ∈ κ. Suppose that A is not κ-dense. Then κCl(A) ̸= X.

Hence, for some D ∈ κCl, A ⊆ D. But D ̸= X. Then −D = X \D ∈ κ and A ∩ (−D) = ∅.
This is contradiction.

The theorem above can be proved for generalized weak structures too. However, we should

assume that B is non-empty (while in anti-minimal structures it is clear by the very definition

of κ).

Remark 3.4. Consider X = {1, 2, 3, 4} and κ = {{1, 2}, {2, 3}, {2, 3, 4}, {1, 3, 4}}. Then

κCl = {{3, 4}, {1, 4}, {1}, {2}}. Hence, A = {1, 2} and B = {2, 3} are both κ-open and κ-

dense. However, their intersection, that is A ∩B = {2} is not κ-dense. This is because {2} is

κ-closed, so its κ-closure is just {2} itself.
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Note that the remark above shows us that the situation is different than e.g. in topological

spaces. Recall that in topological spaces we can prove that if A,B are dense and at least B

is open, then their intersection is dense too. However, we can prove the following lemma and

theorem.

Lemma 3.5. Let (X,κ) be an anti-minimal structure that is closed under non-empty finite

intersections. If A is κ-dense, then κCl(U) = κCl(A ∩ U) for any U ∈ κ.

Proof. Clearly, U ∩ A ⊆ U . Now we use Lemma 2.9 (8) to say that κCl(U ∩ A) ⊆ κCl(U).

Let x ∈ κCl(U). Now it must be that W ∩ U ̸= ∅ for any W ∈ κ such that x ∈ W (that is,

for any κ-open neighborhood of x). Because of the closure of our κ under non-empty finite

intersections, W ∩U ∈ κ. Hence, by Lemma 2.9 (13), (W ∩U)∩A ̸= ∅. Thus, x ∈ κCl(U ∩A).

Theorem 3.6. Let (X,κ) be an anti-minimal space that is closed under non-empty finite

intersections. Suppose that A,B ⊆ X are both κ-dense and B is κ-open. Then A ∩ B is

κ-dense.

Proof. We already know that if A is κ-dense, then A ∩ U ̸= ∅ for any U ∈ κ. Now let V ∈ κ.

There is some x ∈ V . But x ∈ X = κCl(B). Hence, B∩V ̸= ∅. Moreover, B∩V ∈ κ (because

of the closure under non-empty finite intersections). Hence, A ∩ (B ∩ V ) ̸= ∅. But this means

that A ∩B is κ-dense. Note that we can write (A ∩B) ∩ V ̸= ∅ to emphasize this fact.

The fact that we distinguish between nowhere density and strong nowhere density is impor-

tant. In topological spaces these two notions are equivalent but not here.

On the one hand we can prove the following theorem.

Theorem 3.7. Every κ-strongly nowhere dense set in anti-minimal structure is κ-nowhere

dense too.

Proof. Suppose that A is κ-strongly nowhere dense but κInt(κCl(A)) ̸= ∅. Then there is some

x ∈ κInt(κCl(A)). In particular, it means that x ∈ κCl(A). Then for any V ∈ κ such that

x ∈ V , V ∩A ̸= ∅. However, from the property of κ-strongly nowhere density of A we infer that

for any B ∈ κ we can find U ∈ κ, U ⊆ B such that A ∩ U = ∅. Thus we obtain contradiction.

However, the converse is not necessarily true.
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Example 3.8. Let X = {a, b, c, d}, κ = {{a, b}, {b, c}, {c, d}}. Then κCl =

{{c, d}, {a, d}, {a, b}}. Take A = {a, d}. Its κ-closure is just {a, d} = A but then we see

that κInt(A) = ∅ (there are no κ-open sets contained in A). However, A it not strongly

nowhere dense. Take B = {a, b}. We see that A ∩B = {a} ≠ ∅.

4. More on anti-biminimal structures

Now let us concentrate on anti-biminimal structures. We would like to determine some

specific class of subsets that will be the object of our investigation. Let us assume that i and j

will be always interpreted as elements of {1, 2}. However, first let us express some basic facts.

Remark 4.1. Note that if A and B are anti-minimal structures on some universe X, then

A ∩B and A ∪B are anti-minimal structures too.

If A is anti-minimal structure and B is minimal structure, then A∪B is a minimal structure,

while A ∩B is an anti-minimal structure.

Definition 4.2. Let (X,κ1, κ2) be an anti-biminimal structure space. Assume that A ⊆ X.

We say that A is κiκj-closed set if and only if A = κiCl(κjCl(A)). The complement of

κiκj-closed set is called κiκj-open.

Lemma 4.3. Let (X,κ1, κ2) be an anti-biminimal structure space. Then A is an κiκj-open

subset of X if and only if A = κiInt(κjInt(A)).

Proof. Assume that A is κiκj-open. It means that −A is κiκj-closed. Hence,

κiCl(κjCl(−A)) = −A. However, by virtue of the general properties of κ-interior,

κiCl(κjCl(−A)) = −κiInt(−κjCl(−A)) = −κiInt(κjInt(−(−A))) = −κiInt(κjInt(A)) =

−A. But then A = κiInt(κjInt(A)). Now we can repeat the whole reasoning in the oppo-

site direction to obtain the expected result: namely, that −A is κiκj-closed and thus A is

κiκj-open.

As we could see, the lemma above is based on the general properties of interior and closure in

arbitrary generalized weak structures rather, than on the specific properties of anti-biminimal

structure. The same can be said about the next lemma:

Lemma 4.4. Let (X,κ1, κ2) be an anti-biminimal structure space. Assume that A,B ⊆ X are

κ1κ2-closed subsets of X. Then A ∩B is κ1κ2-closed too.

Proof. By the assumption, κ1Cl(κ2Cl(A)) = A and κ1Cl(κ2Cl(B)) = B. Clearly, A ∩B ⊆ A

and A ∩ B ⊆ B. Thus κ1Cl(κ2Cl(A ∩ B)) ⊆ κ1Cl(κ2Cl(A)) and κ1Cl(κ2Cl(A ∩ B)) ⊆
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κ1Cl(κ2Cl(B)). Then κ1Cl(κ2Cl(A ∩B)) ⊆ κ1Cl(κ2Cl(A)) ∩ κ1Cl(κ2Cl(B)) = A ∩B. How-

ever, on the other hand, A∩B ⊆ κ1Cl(κ2Cl(A∩B)) (by the very definition of closure). Thus,

A ∩B ⊆ κ1Cl(κ2Cl(A ∩B)) = A ∩B and due to this reason A ∩B is κ1κ2-closed.

Remark 4.5. Assume that (X,κ1, κ2) is an anti-biminimal structure on X and A,B ⊆ X

are two κ1κ2-closed sets. Then A ∪ B does not need to be κ1κ2-closed. For example, take

X = {a, b, c, d, e}, κ1 = {{c, d, e}, {a, b, e}, {a, b, c, d}} and κ2 = {{c, d, e}, {a, b, e}, {a, b, d, e}}.
Then κ1Cl = {{a, b}, {c, d}, {e}} and κ2Cl = {{a, b}, {c, d}, {c}}. Now take A = {a, b} and

B = {c, d}. They are both κ1κ2-closed. Let us check their union, that is {a, b, c, d}. We see

that κ1Cl(κ2Cl({a, b, c, d})) = κ1Cl(
⋂
{A ∈ κ2Cl; {a, b, c, d} ⊆ A}) = κ1Cl(

⋂
∅) = κ1Cl(X) =⋂

{A ∈ κ1Cl;X ⊆ A} =
⋂
∅ = X ̸= {a, b, c, d}.

Besides, let us calculate directly κ1Cl(κ2Cl(A ∩ B)) = κ1Cl(κ2Cl(∅)) = κ1Cl(
⋂
{A ∈

κ2Cl; ∅ ⊆ A}) = κ1Cl({a, b} ∩ {c, d} ∩ {c}) = κ1Cl(∅) =
⋂
{A ∈ κ1Cl; ∅ ⊆ A} = {a, b} ∩

{c, d} ∩ {e} = ∅.
Now, both from the general lemma and from this direct calculation, we know that ∅ is κ1κ2-

closed in this particular anti-biminimal structure. However, it is clear (by the very definition

of anti-biminimal and anti-minimal structure as such) that ∅ /∈ κ1Cl ∩ κ2Cl. Hence, we see that

κ1 ∩ κ2 is not identical with the set of all κ1κ2-closed sets. This leads us to the next lemma.

Lemma 4.6. Let (X,κ1, κ2) be an anti-biminimal space. Let A ∈ κ1Cl ∩ κ2Cl. Then A is

κ1κ2-closed.

Proof. A ∈ κ2Cl, hence κ2Cl(A) = A. But A ∈ κ1Cl too, hence κ1Cl(κ2Cl(A)) = κ1Cl(A) = A.

The converse need not to be true, as we could already seen. However, we should not think

that empty set is the only possible counter-example.

Example 4.7. Let (X,κ1, κ2) be an anti-biminimal space where X = {a, b, c, d, e},
κ1 = {{a, d}, {e}} and κ2 = {{a, e}, {d}}. Now κ1Cl = {{b, c, e}, {a, b, c, d}} and κ2Cl =

{{b, c, d}, {a, b, c, e}}. Now take A = {b, c}. We see that κ2Cl(A) = {b, c, d} ∩ {a, b, c, e} =

{b, c}. Then κ1Cl(κ2Cl(A)) = κ1Cl(A) = {b, c, e} ∩ {a, b, c, d} = {b, c} = A. Hence, A is

κ1κ2-closed but A /∈ κ1Cl ∩ κ2Cl. In fact, A is not even in κ1Cl ∪ κ2Cl.

Remark 4.8. Let us think about the example above again. Take A = {a, b, d}. On the one

hand, κ1Int(A) = {a, d} and then κ2Int({a, d}) = {d}. On the other hand, κ2Int(A) = {d}
and κ1Int({d}) = ∅. This shows us that in general κ1Int(κ2Int(A)) may not be identical with

κ2Int(κ1Int(A)).
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However, the fact mentioned in the remark above should not be confused with the following

theorem:

Theorem 4.9. Assume that (X,κ1, κ2) is an anti-biminimal space. Then A ⊆ X is κ1κ2-open

if and only if it is κ2κ1-open.

Proof. Let A be κ1κ2-open. Then κ1Int(κ2Int(A)) = A. However, it must be that

κ2Int(A)) = A. Assume the contrary. Clearly, it means that κ2Int(A) ⊆ A and κ2Int(A) ̸= A.

Thus there is some x ∈ A such that x /∈ κ2Int(A). Suppose that x ∈ κ1Int(κ2Int(A)). But

κ1Int(κ2Int(A)) ⊆ κ2Int(A), so we obtain contradiction. Thus x /∈ κ1Int(κ2Int(A)) = A.

Hence x /∈ A. Contradiction.

Now, if we already know that κ2Int(A) = A, then κ2Int(κ1Int(κ2Int(A))) = κ2Int(A) = A.

But on the left side we have (by the assumption) κ2Int(κ1Int(A)). Finally, κ2Int(κ1Int(A)) =

A. Hence A is κ1κ2-open.

Clearly, the other direction of the proof is similar.

Note that this proof would be true for any generalized weak structure: we did not use the

fact that ∅ and X are not open in κ1 and κ2.

Analogously, we have:

Theorem 4.10. Assume that (X,κ1, κ2) is an anti-biminimal space. Then A ⊆ X is κ1κ2-

closed if and only if it is κ2κ1-closed.

Proof. Assume that κ1Cl(κ2Cl(A)) = A. Then κ2Cl(A)) = A. Suppose the contrary. It

means that A ⊆ κ2Cl(A) but κ2Cl(A) ̸= A. Hence there is some x ∈ κ2Cl(A) such that

x /∈ A. Suppose that x ∈ κ1Cl(κ2Cl(A)). But κ2Cl(A) ⊆ κ1Cl(κ2Cl(A)) = A which gives us

that x ∈ A and this is contradiction.

Now we see that κ2Cl(κ1Cl(κ2Cl(A))) = κ2Cl(A) = A. But on the left side we have

κ2Cl(κ1(A)), so finally we get κ2Cl(κ1(A)) = A which means that A is κ2κ1-closed.

As for the empty set, we may prove the following theorem.

Theorem 4.11. Let (X,κ1, κ2) be an anti-biminimal space. Then ∅ is κ1κ2-closed if and only

if
⋂

κ1Cl = ∅ and
⋂
κ2Cl = ∅.

Proof. (⇒). Assume that
⋂
κ2Cl = L ̸= ∅. Now let us calculate: κ1Cl(κ2Cl(∅)) = κ1Cl(

⋂
{A ∈

κ2Cl; ∅ ⊆ A}) = κ1Cl(
⋂
{A ∈ κ2Cl}) = κ1Cl(

⋂
κ2Cl) = κ1Cl(L). However, if L is non-empty, as

we assumed, then its κ1-closure must be non-empty too. Finally, κ1Cl(κ2Cl(∅)) ̸= ∅, so ∅ is

not κ1κ2-closed.
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Analogously, assume that
⋂
κ1Cl = K ̸= ∅. If κ2Cl(∅) ̸= ∅, then κ1Cl(κ2Cl(∅)) is non-empty

(as a κ1-closure of non-empty set). However, even if κ2Cl(∅) = ∅, then κ1Cl(∅) =
⋂
{A ∈

κ1; ∅ ⊆ A} =
⋂
{A ∈ κ1Cl} =

⋂
κ1Cl = K ̸= ∅. Again, in both cases ∅ is not κ1κ2-closed.

(⇐).

Assume that
⋂
κ1Cl = ∅ and

⋂
κ2Cl = ∅. Let us calculate κ1Cl(κ2Cl(∅)) = κ1Cl(

⋂
{A ∈

κ2Cl; ∅ ⊆ A}) = κ1Cl(
⋂
{A ∈ κ2Cl}) = κ1Cl(

⋂
κ2Cl) = κ1Cl(∅) =

⋂
{A ∈ κ1Cl; ∅ ⊆ A} =

⋂
{A ∈

κ1Cl} =
⋂

κ1Cl = ∅.

Remark 4.12. Clearly the left side of this theorem can be reformulated as: ”X is κ1κ2-open”.

The theorem above can be illustrated.

Example 4.13. Let (X,κ1, κ2) be an anti-biminimal space where X = {a, b, c, d, e},
κ1 = {{c, d, e}, {a, b, e}}, κ2 = {{a, d, e}, {a, b, e}. Hence κ1Cl = {{a, b}, {c, d}} and κ2Cl =

{{b, c}, {c, d}}. Clearly,
⋂
κ2Cl = {c} ≠ ∅. Now κ1Cl(κ2Cl(∅)) = κ1Cl(

⋂
κ2Cl) = κ1Cl({c}) =⋂

{A ∈ κ1Cl; {c} ⊆ A} = {c, d} ≠ ∅.
This was an example of the situation where ∅ was not κ1κ2-closed. Now take the same

universe and κ1 = {{a}, {b, c, d, e}} and κ2 = {{a, d, e}, {a, b, c}}. Now κ1Cl = κ1 and κ2Cl =

{{b, c}, {d, e}}. In both these minimal structures the intersection of all closed sets is empty.

Now one can check that κ1Cl(κ2Cl(∅)) = ∅ just repeating the reasoning presented in (⇐) part

of the last theorem.

Let us go back to the notion of interior. We prove the following lemma.

Lemma 4.14. Let (X,κ1, κ2) be an anti-biminimal structure space. Assume that A,B ⊆ X

are κ1κ2-open subsets of X. Then A ∪B is κ1κ2-open too.

Proof. Assume that both A and B are κ1κ2-open. Hence, κ1Int(κ2Int(A)) = A and

analogously κ1Int(κ2Int(B)) = B. Clearly, A ⊆ A ∪ B and B ⊆ A ∪ B. Hence,

κ1Int(κ2Int(A)) ⊆ κ1Int(κ2Int(A∪B)) and κ1Int(κ2Int(B)) ⊆ κ1Int(κ2Int(A∪B)). Thus,

A ∪ B = κ1Int(κ2Int(A)) ∪ κ1Int(κ2Int(B)) ⊆ κ1Int(κ2(A ∪ B)). However, on the other

hand, κ1Int(κ2Int(A ∪B)) ⊆ A ∪B. Finally, κ1Int(κ2Int(A ∪B)) = A ∪B. Thus, A ∪B is

κ1κ2-open.

As for the whole universe, we have a theorem analogous to Theorem 4.11.

Theorem 4.15. Let (X,κ1, κ2) be an anti-biminimal space. Then X is κ1κ2-open if and only

if
⋃

κ1 = X and
⋃
κ2 = X.
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Proof. (⇒). Assume that
⋃
κ2 = M ̸= X. Now let us calculate: κ1Int(κ2Int(X)) =

κ1Int(
⋃
{A ∈ κ2;A ⊆ X}) = κ1Int(

⋃
κ2) = κ1Int(M). However, it M is properly contained

in X, then its κ1-interior must be properly contained in X too. Finally, κ1Int(κ2Int(X)) ̸= X,

so X is not κ1κ2-open.

Assume now that
⋃
κ1 = N ̸= X. If κ2Int(X) = M ̸= X, then κ1Int(κ2Int(X)) =

κ1Int(M) ̸= X (being contained in M). However, even if κ2Int(X) = X, then κ1Int(X) =⋃
{A ∈ κ1;A ⊆ X} =

⋃
κ1 = N ̸= X. In both cases X is not κ1κ2-open.

(⇐). Suppose that
⋃
κ1 = X and

⋃
κ2 = X. Let us calculate κ1Int(κ2Int(X)) =

κ1Int(
⋃
{A ∈ κ2;A ⊆ X}) = κ1Int(

⋃
κ2) = κ1Int(X) =

⋃
{A ∈ κ1;A ⊆ X} =

⋃
{A ∈

κ1} =
⋃

κ1 = X.

This was direct proof but it was enough to use Theorem 4.11, Remark 4.12 and the fact

that
⋃

κ = −
⋂

κCl.

5. Conclusion

In this paper we presented anti-minimal and anti-biminimal spaces. We proved some initial

claims about these structures. Now our idea is to analyze the notion of nowhere density and

to introduce the idea of continuous functions (in both frameworks). Moreover, we think that

it would be valuable to analyze those somewhat untypical operators that have been mentioned

in Remark 2.8.
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