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Abstract: In 2019, Riaz et al. introduced the notion of linear Diophantine fuzzy set(LDFS) where there is an 

addition of reference parameters that help to address the issues that cannot be managed by the existing theories 

such as fuzzy sets(FSs), intuitionistic fuzzy sets(IFSs), Pythagorean fuzzy sets(PFSs), and q-rung orthopair 

fuzzy sets(q-ROFSs). But all these theories are not capable to describe indeterminacy that exists in numerous 

real-world problems. For this purpose, neutrosophic sets(NSs), single-valued neutrosophic 

sets(SVNSs), Pythagorean neutrosophic sets(PNSs) are introduced. In PNS, each object x  in the universe is 

characterized by a dependent truth   T x and falsity   F x membership values and 

indeterminacy   I x membership value with the 

restriction         
2 2 2

0 2T F Ix x x      . If we consider a neutrosophic triplet 

as 0.9,0.9,0.9  then 
2 2 20.9 0.9 0.9  will give 2.43, which is 2 . Such a problem cannot be handled 

by the decision-makers under the Pythagorean neutrosophic environment. To take care of such an issue there 

is an urgency to develop another mathematical model. This lead to an introduction of linear Diophantine 

neutrosophic set(LDNS) as an extension of PNS. Thus, the main purpose of this paper is to introduce the 

LDNS model with an aid of reference parameters to ensure that through this new model the decision-makers 

can freely choose the neutrosophic membership values with an extended domain. Therefore, in a broad sense, 

the LDNSs are a new idea that removes the restrictions present in the existing concepts such as FSs, IFSs, 

PFSs, q-ROFSs, PNSs, LDFSs, etc. From example 3.1.1, it is quite visible that this new structure helps to 

classify the problem by changing the physical nature of reference parameters. Moreover, some basic 

properties and operations on LDNSs are investigated. We also define the score and accuracy function based 

on linear Diophantine neutrosophic number(LDNN). With the help of a novel linear Diophantine 

single-valued neutrosophic weighted arithmetic-geometric aggregation (LDSVNWAGA) operator, an 

algorithm has been developed for decision-making. Finally, the proposed algorithm has been successfully 

executed with the help of a numerical application.  
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1. Introduction  

Presently, in the real-world we are facing complicated problems that cannot be solved by the traditional 

mathematical tools. It is due to the involvement of uncertainty or vagueness in real-life situations. The crisp 

concept is no more valid to define ambiguity. A crisp set A can be characterized by a characteristic function 

A  and the values of  A  corresponding to all the objects in A  are either 0 or 1. Boolean algebra also 

useful to address the same situation. In mathematics, we find some linguistic terms such as “excellent”, 

“beautiful”, “intelligent” etc, which are subjective. To eradicate such a problem to some extent, Zadeh 

introduced the fuzzy set [1] in 1965 and fuzzy logic [2] in 1996. A fuzzy set is a significant mathematical tool 

to model vagueness or uncertainty in the data or information, that has been attracted the attention of many 

researchers across the globe in the last decades. A fuzzy set X be characterized by its membership 

function : [0,1]X  , which assigns a real value in the unit closed interval [0,1] to each object of the 

universe. Thus, a fuzzy set is an extension of a crisp set whose boundary is blurred. The researchers have been 

studied fuzzy sets as problem-solving techniques in various fields including, engineering, computer science, 

medical science, social science, economics, environments, robotics, etc., having various uncertainties. Some 

significant works associated with fuzzy sets are studied in [3-7]. Later on, in 2010, Bustince [8] introduced 

an interval-valued fuzzy set (IVFS), where the membership function defined as  : int [0,1]X  , 

 int [0,1] denotes the collection of all subsets of[0,1] . To define the incomplete information, Atanassov [9] 

introduced intuitionistic fuzzy set(IFS) as a direct extension of the fuzzy set by using the notion of 

membership degree    and the non-membership degree   , where both the membership values belong to 

the interval [0,1]  with a restriction that their sum cannot exceed the unity and the hesitancy degree is 

calculated as 1     . Bustince[10] defined vague sets are intuitionistic fuzzy sets, in [11], Garg et al. 

presented an improved possibility degree  method to find the rank of intuitionistic fuzzy numbers(IFNs), Gou 

et al.[12] defined exponential operations for IFNs, Heilpern[13] proposed an application of fuzzy 

numbers(FNs), Nayagam et al.[14] defined ranking of IFNs, Szmidt et al.[15] gives an application of IFS, 

Wang et al.[16] proposed IFS and L-FS, Zeng et al.[17] presented multiattribute decision-making based on 

novel score function of intuitionistic fuzzy values and modified VIKOR method. If a decision-maker assigns 

an ordered pair  0.65.0.55 to an alternative, then it is not an IFN, as 0.65+0.55 1 . To tackle such a case, 

Yager [18] introduced a Pythagorean fuzzy set(PFS) where the sum of the squares of Pythagorean fuzzy 

membership grades should not exceed unity. So, we have an enlarged space for PFSs as compared to IFSs. In 
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[19], Wan et al. introduced Pythagorean fuzzy number(PFN). PFSs have been further extended by introducing 

q-ROFSs[20-24]. Some novel works associated with PFSs and PFNs are proposed in [25-36]. In 2019, Jansi et 

al.[37] introduced correlation measure for Pythagorean neutrosophic sets where truthfulness and falseness are 

dependent components. Ajay et al.[38] introduced the Pythagorean neutrosophic fuzzy graphs. 

 In some real-life problems, the sum of the membership grade and non-membership grade to which an 

alternative satisfying an attribute provided by the decision-maker (DM) may be larger than 1 (e.g 0.8+0.7>1) 

and their sum of the squares is also larger than 1 (e.g 0.8
2
+0.7

2
>1). Thus, IFS and PFS fail to hold in such 

situations. To overcome these deficiencies, the restrictions on membership and non-membership grades are 

altered to 0 1q q    in the case of q-rung orthopair fuzzy set(q-ROFS). Even for very large values of 

“q”, we can deal with membership and non-membership grades independently to some extent. In some 

practical problems, when 1   , we obtain1 1 1q q  , which contradicts the constraint of q-ROFS. It 

makes the MADM limited and affects the optimum decision. Linear Diophantine fuzzy set (LDFS) [39] can 

deal with such situations to some extent. LDFS provides a large number of applications to the MADM for such 

real-world problems. So, through the model of LDFS, we can deal with the intuitionistic, Pythagorean, and 

q-rung orthopair nature of attributes under the effect of reference parameters  ,  . For example, let 

(0.7+0.6>1), we can introduce reference parameters  ,  such that      0.7 0.6 1   , where 

 ,  denotes the reference parameters concerning for to membership and non-membership grade 

respectively. Some recent works related to LDFS are given in [40-42]. 

    The term neutrosophy denotes the study of neutralities and it is proposed by Smarandache[43]. 

Neutrosophy can be treated as a branch of philosophy. If we consider A  be an idea or proposition or an 

axiom or theorem then its opposite notion is denoted by antiA and for completeness property we consider 

another concept known as nor A . But, some concepts are there which lie in between A and antiA , 

they are denoted by neut A . 

So, realizing the importance of the study of neutrality, Smarandache[44] introduced a neutrosophic set(NS), as 

an extension of IFS. For technical use, Wang et al. [45] introduced a single-valued neutrosophic set(SVNS). 

Some recent research works associated with NSs are in the following: data development analysis for 

simplified NS is studied in [46]. Another data envelopment analysis under a triangular neutrosophic number 

environment has been done in [47]. In [48], Edalatpanah introduced the neutrosophic structured element. 

A triangular neutrosophic linear programming model is presented in [49]. Martin et al. [50] introduced the 

COVID-19 diagnostic model by using a new pilthogenic cognitive maps approach. Debnath[51] presented the 

 Neutrosophic Sets and Systems, Vol. 53, 2023                                                                              624



 

Somen Debnath, Linear Diophantine Neutrosophic Sets and Their Properties 

neutrosophic statistical data to assess the knowledge, attitude, and symptoms of reproductive  

tract infection(RTI) among women in selected villages in India. 

By using IFS, PFS, and q-ROFS we only define the incomplete information present in the data. 

But, in real life some information is there which is partially true and partially false i.e., they are 

indeterminate or inconsistent. To overcome such problems, the concept of the neutrosophic 

theory is very helpful. For the sake of computation, throughout the paper, we use SVNS instead 

of NS. 

The main motivation behind presenting this paper is to extend the notion of LDFS to LDNS. 

Some MADM problems exist in real life which involves indeterminate attributes. To handle 

such problems we need a powerful tool to tackle. This leads to the introduction of LDNSs. 

Also, we have investigated some operations and properties based on LDNSs. Further, we have 

introduced an algorithm that can be applied successfully in solving real MADM problems with 

the help of a suitable example. 

1.1 Novelty 

There exists some real-world-based complex phenomenon that cannot be solved by using the existing fuzzy 

theories and their extensions. Such phenomenon can be tackled with addition of reference parameters that 

build a bridge between the existing theories and the physical world. For this purpose, we have introduced a 

novel concept known as linear Diophantine neutrosophic set(LDNS) to apply it in different MADM problems 

by categorizing the data using reference parameters. Therefore, the LDNS model surely provides a powerful 

mathematical tool for the further development of the neutrosophic theory. The objectives of the proposed 

study are discussed in the following manner: 

 The PNS [37, 38] is developed to generalize the PFS[18] and the SVNS with dependent neutrosophic 

components. But, in some real-life situation, the sum of squares of a membership grade, non-membership 

grade, and indeterminacy grade to an attribute provided by a decision-maker may be 2 . Such problems 

cannot be described by FS, IFS, PFS, SVNS, PNS,q-ROFS, LDFS. To remove such inadequacy, the LDNS is 

introduced to deal with a large number of MADM problems by enlarging the domain with an aid of reference 

parameters. 

For better understanding, suppose the neutrosophic triplet of an attribute provided by the decision-maker 

is 0.8,0.9,0.9 . The sum of their squares gives 2.26 2 . Corresponding to the neutrosophic triplet if we 

assign the grades of the reference parameters triplet as 0.5,0.6,0.7 . Then, 

0.8 0.5 0.9 0.6 0.9 0.7     =1.57 2 . It looks similar to the linear Diophantine equation 

ax by cz d   which is a popular topic in number theory. So, the name of the proposed model is logical in 

this sense. Thus, by introducing LDNS, we fill the research gap. 

 FS, IFS, NS, SVNS, PFS, q-ROFS, PNS cannot deal with parameters. So, by introducing reference parameters 

in LDNS, there is a huge scope for a decision-maker to address various types of MADM problems by changing 
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the physical nature of the reference parameters. 

 Define the linear Diophantine neutrosophic numbers (LDNNs) and study their properties. 

 Define a new aggregate operator called LDSVNWAGA operator that helps to obtain the rank of the alternatives. 

 Construction of a new algorithm for solving MADM problems by using the new aggregate operator. 

 Justify the algorithm with the help of a numerical application based on real life.  

 

 

1.2 Structure of the paper 

      The manuscript is organized in the following manner: Section 2 includes the basic definitions of FS, 

IFS, PFS, q-ROFS, PNS, LDFS which are useful to build the proposed study. Section 3 contains the definition 

of LDNNs and their properties. Section 4 contains the definitions of score function, accuracy function, and 

aggregate operator based on LDNNs. In Section 5, an algorithm is constructed for MADM problems. In 

Section 6, a numerical example is presented to justify the proposed algorithm. Section 7 contains a 

comparative study between the proposed and the existing theories. Conclusion and the future scope have been 

studied in Section 8. 

2. Preliminaries  

In this section, we review some basic definitions with examples that are very useful for the 

subsequent sections of this paper. 

Definition 2.1 [1, 2, 6] Let X be an initial universe and  : 0,1A X  be the membership function. 

Then a fuzzy set A is defined by  

   
 

 
,

when X is discrete

= when X is continuous

, :

,

A

A

xA
x

A x x x X

x
x









 

   

Here  A x denotes the degree of membership of x to the fuzzy set A . The value of the 

membership function  A x can be chosen by different experts may be different depending upon 

their experiences, perceptions, perspectives, etc. The collection of all fuzzy sets in X is denoted 

by I
X

. 

Example 2.1.1 Let  1 2 3 4 5, , , ,X x x x x x be a collection of beautiful students, and then the fuzzy set 

A associated with X is defined by a decision-maker (DM) as 

          1 2 3 4 5,0.5 , ,0.6 , ,1.0 , ,0.0 , ,0.3A x x x x x  

If all the membership values in A are either 0 or 1, then A reduces to a crisp set. So, a crisp set is a 

particular class of a fuzzy set. 

 Neutrosophic Sets and Systems, Vol. 53, 2023                                                                              626



 

Somen Debnath, Linear Diophantine Neutrosophic Sets and Their Properties 

Definition 2.2 [9] An intuitionistic fuzzy set(IFS) A  over the universe X is defined as 

     , , :A AA x x x x X   such that    0 1A Ax x    , x X  where 

 : 0,1A X  and  : 0,1A X  denote the membership function and the non-membership 

function, respectively. However, the hesitancy degree is given 

by      1 ,A A Ax x x x X       . 

Definition 2.3 [18, 26, 36] A Pythagorean fuzzy set(PFS) P over the universe X is defined by 

     , , :P PP x x x x X   where  , : 0,1P P X   with the restriction 

     
2 2

0 1P Px x    .  

Hence PFSs have a wide range of space of application as compared to IFSs. 

The degree of hesitancy may be computed as        
2 2

1P P PI x x x     

Definition 2.4 [20, 21] Let  1 2, ,...., n    be a finite universal set, then a q-ROFS, Q in  can be 

defined as follows: 

    , , :Q QQ         where  , : 0,1Q Q   with the condition 

     0 1
q q

Q Q      , 1q  ,    . 

The value        1
q q

Q Q Q        is called the degree of indeterminacy of Q in . 

Also,  0 1,Q       .  

Definition 2.5 [39] Let Q be the non-empty reference set. An LDFS £D on Q is an object of the form: 

£D=      , , , , :D D Q         where,      , , , 0,1D D       are membership, 

non-membership and reference parameters with the following conditions: 

   0 1,D D Q         and 0 1    . These reference parameters can help in 

defining or classifying a particular system. The hesitation part can be evaluated as: 

   1D D D       where  is the reference parameters related to the degree of 

hesitancy. 

Definition 2.6 [37, 38] Let X be a non-empty universal set. A Pythagorean neutrosophic set 

with T and F are dependent neutrosophic components A over X is an object of the form 

      , , , :A A Ax T x I x F x x X , where        , , 0,1A A AT x I x F x  , 

     2 2 20 2A A AT x I x F x    , for all x X . Here, 
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     , andA A AT x I x F x respectively denote the degree of truth membership, degree of 

indeterminacy membership, and the degree of falsity membership. 

 

 3. Linear Diophantine Neutrosophic Set(LDNS) 

Definition 3.1   

Let Q be the non-empty reference set. A LDNS £ND on Q is an object of the form: 

£ND=        , , , , , , :
ND ND ND

Q            where,      , ,
ND ND ND

      ,

, ,   [0,1] are truth-membership, indeterminacy-membership, falsity-membership, and their reference 

parameters respectively with the following conditions: 

     0 2
ND ND ND

         , Q   and 0 2      . These reference 

parameters can help in defining or classifying a particular system. The hesitation part can be evaluated as: 

      2
ND ND NDND          where  is the reference parameter related to the degree 

of indeterminacy. Simply  , , , , ,ND ND ND       is called linear Diophantine neutrosophic 

number(LDNN) with 0 2
ND ND ND

      and 0 2      . 

Since the proposed model looks similar to the well-known linear Diophantine equation ax by cz d   in 

the number theory, so LDNS is the most suitable name for the proposed model. The proposed model enhances 

the existing methodologies and the decision-maker (DM) can choose the grades with more liberty as compared 

to the other existing theories. This structure also categorizes the problem by changing the physical sense of 

reference alternatives in MADM. 

Example 3.1.1 Chemical bonding can be described as a force that binds two or more atoms together to form 

molecules or ionic compounds. Chemical bonds form because the overall energy of the bonded atoms is less 

than the atoms have separately. Atoms form bonds to attain a noble gas configuration. There are two main 

types of bonds such as ionic bonds and covalent bonds. Covalent bonds are dived into polar and non-polar 

covalent bonds. Some atoms have high electro negativity (e.g. fluorine), some have low electro negativity (e.g. 

cesium) and some are neutral (e.g. carbon) in nature.  

Let Q=  1 2 3 4 5 6, , , , ,      be a collection of atoms having different electro negativity and by 

combining two or more of them, molecule is formed. If we consider the reference or control parameters as: 

 =polar covalent bond,  =ionic bond and  =non-polar covalent bond 

Then its LDNS is given in Table 1 
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Alternatives                              LDNSs 

1   0.871,0.563,0.643 , 0.321,0.564,0.456  

2   0.862,0.573,0.776 , 0.354,0.567,0.786  

3   0.578,0.654,0.456 , 0.567,0.865,0.546  

4   0.525,0.943,0.654 , 0.324,0.456,0.567  

5   0.675,0.765,0.845 , 0.865,0.467,0.656  

6   0.456,0.678,0.897 , 0.564,0.867,0.567  

 

                                Table 1. LDNS for Molecule 

 

Definition 3.2   

A LDNS on Q of the form 
1
£ND =   , 1,0,0 , 1,0,0 : Q   is called absolute LDNS and  

0
£ND=   , 0,1,1 , 0,1,1 : Q   is called empty or void LDNS. 

Now, we define some operations on LDNNs associated with LDNSs 

Definition 3.3   

Let  , , , , ,Q Q Q Q Q Q

Q ND ND ND       , where Q  be an assembling of LDNNs , then 

(i)  , , , , ,c Q Q Q Q Q Q

Q ND ND ND        

(ii) 1 2 1 2 1 2 1 2 1 2 1 2

1 2 , , , , ,ND ND ND ND ND ND                      

(iii) 1 2 1 2 1 2 1 2 1 2 1 2

1 2 , , , , ,ND ND ND ND ND ND                     

(iv) sup ,inf ,inf , sup ,inf ,inf
Q Q Q Q Q Q

Q ND ND ND ND ND ND
Q Q Q QQ QQ

    

     
    

 
  
  
 

  

(V) inf ,sup ,sup , inf ,sup ,sup
Q Q Q Q Q Q

Q ND ND ND ND ND ND
Q QQ Q Q QQ

    

     
    

 
  
  
 

  
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(vi) 

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 , , , , ,ND ND ND ND ND ND ND ND                       

(vii) 

1 2 1 2 1 2 1 2 1 2

1 2
1 2 1 2 1 2 1 2 1 2

, , ,

, ,

ND ND ND ND ND ND ND ND ND ND         

         

    
   
    
 

 

(viii)    1 1 1 1 1 1

1 1 1 , , , 1 1 , , , 0ND ND ND ND ND ND

 
                  

   

 

(ix) 

       1 1 1 1 1 1

1 ,1 1 ,1 1 , ,1 1 ,1 1 , 0ND ND ND ND ND ND

   
                    

 
 

It is to be noted that LDNNs don’t obey De Morgan’s laws. It is one of the drawbacks of using LDNNs.  

Example 3.3.1   Let 

   1 20.55,0.65,0.84 , 0.56,0.64,0.46 and 0.65,0.45,0.54 , 0.66,0.34,0.36   
 

be two LDNNs. Then, we obtain the following results: 

       1 20.84,0.65,0.55 , 0.46,0.64,0.56 and 0.54,0.45,0.65 , 0.36,0.34,0.66
c c

   

 

Here, 1 2   (By definition 3.3) 

Now,  

1 2  =  0.65,0.45,0.54 , 0.66,0.34,0.36 = 2  and 1 2  = 1  

1 2  =  0.8425,0.2925,0.4536 , 0.8504,0.2176,0.1656  

1 2  =  0.3575,0.8075,0.9264 , 0.3696,0.7624,0.6544
 

For  =0.4,  1 0.273,0.841,0.932 , 0.279,0.836,0.732   

For  =0.2,  1 0.887,0.189,0.315 , 0.89,0.184,0.115   

 

Proposition 3.4     Let 1 2,   and
 3 be three LDNNs then we have the following results: 

(i) If 1 2   and 2 3 1 3    (Transitivity) 

(ii) 1 2 2 1      and 1 2 2 1       (commutativity) 
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(iii)    1 2 3 1 2 3           and    1 2 3 1 2 3          (Associativity) 

(iv)      1 2 3 1 2 1 3             and      1 2 3 1 2 1 3           
 

                                                                                                                 (Distributivity) 

Proof. All proofs are straightforward. 

4. Linear Diophantine single-valued neutrosophic weighted arithmetic and geometric 

aggregation(LDSVNWAGA) operator 

In this section, we describe the score and accuracy function for the comparative analysis in MADM of 

LDNNs. The notion of score and accuracy function of neutrosophic numbers proposed by Smarandache in 

[52]. However, hybrid arithmetic and geometric aggregation operators of single-valued neutrosophic numbers 

are proposed in [53]. 

Definition 4.1 

 Let  , , , , ,Q Q Q Q Q Q

Q ND ND ND       be a LDNN, then the score function(SF) on Q can 

be defined by the mapping : ( ) [0,1]LDNN Q  and given by 

 
QQ   =    

1
2 2

3

Q Q Q Q Q Q

ND ND ND            
 

 

where ( )LDNN Q is an assembling of LDNNs on Q. 

Definition 4.2 

Let  , , , , ,Q Q Q Q Q Q

Q ND ND ND       be a LDNN, then the accuracy function(AF) on Q  

can be defined by the mapping : ( ) [ 1,1]LDNN Q    and given by 

 

 
QQ   =    

1

3

Q Q Q Q

ND ND      
 

 

Definition 4.3 

Let 
1Q and 

2Q be two LDNNs, then on the context of SF and AF we can compare the two LDNNs as 

follows: 

(i) If 
1 2Q Q

   , then 
1Q 

2Q  

(ii) If 
1 2Q Q

   , then 
1Q 

2Q  

(iii) If 
1 2Q Q

   then, 

(a) If 
1 2Q Q

   then 
1Q 

2Q  

(b) If 
1 2Q Q

   then 
1Q 

2Q  
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(c) If 
1 2Q Q

   then 
1Q 

2Q  

Definition 4.4 

Let   , , , , , : 1,2,...,
ND ND ND ND n



              be an assembling of LDNNs on the 

reference set ¥ and  1 2, ,....,
T

n    be the weight vector with

1

1
n







 , then the linear Diophantine 

single-valued neutrosophic weighted Arithmetic geometric aggregation  LDSVNWAGA  operator 

defined as  

 
1 2, ,......, nND ND NDLDSVNWAGA      

    
 

     
 

     
 1 1 1

1 1 , 1 1 1 , 1 1 1
1 1 1 1 11

jj j j j j
nn n n n nj j j j jj j j j j j j

ND ND ND ND ND ND
j j j j jj

        
     

  

             
    

   
            



5. An algorithmic approach 

For mathematical modeling, we construct an algorithm that is based on LDNNs. The steps of 

the algorithm are given in the following: 

Algorithm: 

Step1: Input the opinion of the expert’s  1,2,...,l l n  in the form of LDNNs for each attribute. 

Step2: Input the weight vector of the experts. 

Step3: Calculate the aggregate value of each attribute by using LDSVNWAGA operator 

proposed in definition 4.4 

Step4: Find the total weight of the aggregate value of each alternative. 

Step5: Rank the weight in ascending order and choose the attribute having the highest weight. 

If more than one attributes having the same weight then we repeat all the previous steps by 

reassessing the expert’s opinion. 

 

6. Numerical Example 

In this section, we cite an example of the real world that helps to realize the importance of 

LDNNs in real decision-making problems. We consider the following example: 

Suppose that Mr. Advik, together want to invest their money in any one of investment plans 

belong to the set given by 

 1 2 3 4 5, , , ,       

Where 

1 =Monthly Income Plan(MIP) 
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2 =Mutual Fund(MF) 

3 =Public Provident Fund(PPF) 

4 =Life Insurance Plan(LIP) 

5 =Unit Linked Insurance Plan(ULIP) 

According to the performance of the above investment plans, there associated three risk factors, they are 

denoted by the set of three reference parameters given by 

 , ,    , where  =low-risk investment,  =medium-risk investment, and  =high-risk 

investment. 

To choose the best investment scheme influenced by three risk factors, Mr. Advik takes the advice of three 

experts(decision-makers) denoted by the set  

 1 2 3, ,    . 

The set of LDNNs of the set of attributes of the three experts are shown below in the form of the 

following tables: 

 

Alternatives LDNSs 

1   0.8,0.9,0.7 , 0.7,0.8,0.6  

2   0.5,0.6,0.8 , 0.9,0.7,0.8  

3   0.7,0.6,0.9 , 0.5,0.8,0.6  

4   0.7,0.6,0.4 , 0.3,0.9,0.6  

5   0.9,0.8,0.6 , 0.8,0.6,0.7  

Table2. LDNS for 1 

 

Alternatives LDNSs 

1   0.6,0.8,0.8 , 0.9,0.5,0.8  

2   0.4,0.3,0.7 , 0.8,0.9,0.6  
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3   0.9,0.7,0.8 , 0.7,0.9,0.7  

4   0.7,0.8,0.7 , 0.8,0.6,0.8  

5   0.9,0.7,0.4 , 0.5,0.8,0.6  

Table3. LDNS for 2 

 

Alternatives LDNSs 

1   0.7,0.6,0.7 , 0.7,0.5,0.8  

2   0.8,0.7,0.6 , 0.7,0.6,0.5  

3   0.8,0.7,0.9 , 0.6,0.7,0.8  

4   0.8,0.7,0.6 , 0.6,0.8,0.7  

5   0.8,0.6,0.6 , 0.7,0.5,0.8  

Table4. LDNS for 3 

According to the experience of the experts, we consider the weight vector as 

  0.3, 0.4, 0.3

Now, the aggregate value of each alternative, by using LDSVNWAGA operator is given by: 

 1( ) 2.0938, 0.9499,1.3212LDSVNWAGA    

 2( ) 1.7335, 0.9318,1.031LDSVNWAGA    

 3( ) 2.4582,1.3853,1.2407LDSVNWAGA    

 4( ) 2.0399,1.3804,1.0146LDSVNWAGA    

 5( ) 2.6224,1.031,0.9207LDSVNWAGA    

Next, we calculate the total weight of the aggregate values of all the alternatives given by, 

 1  =4.3649 

  2  =3.6963 

  3  =5.0842 
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  4  =4.4349 

  5  =4.5741 

The rank of the total weight in ascending order is given by 

  2     1      4      5    3 



From the ascending order of the rank, we observe that 3 has the highest value. Thus, we conclude that Mr. 

Advik will select Public Provident Fund to invest his money and earn the maximum return in the future. 

Thus, by using the reference parameters in LDNS, we can handle another particular class of neutrosophic data. 

7. Comparison Analysis of LDNS model with the existing models in the literature 

 

Types of set Uncertainty Falsity Indeterminacy Hesitancy Parametrization 

FS[1]   × × × × 

IFS[9]     ×   × 

PFS[18]     ×   × 

q-ROFS[20]     ×   × 

SVNS[45]       × × 

PNS[37,38]         × 

LDFS[39]     ×      

LDNS(Proposed)           

              Table5. Comparison analysis of LDNS model with the existing models in the literature 

8. Conclusion and Future Scope 

In this work, we have introduced the notion of LDNS which can be viewed as an extension of FS, IFS, PFS, 

q-ROFS, PNS, etc. LDNS is a new structure that deals with uncertainty and indeterminacy with the support of 

reference parameters. The LDNS model can transform the problem related to the physical world into 

numerical form due to its parametric nature. Therefore, it provides more flexibility to handle uncertainty as 

compared to the existing theories. We have discussed some properties of LDNSs. For comparison of 

LDNNs, we have defined score and accuracy functions. Moreover, we have introduced LDSVNWAGA 

operator for solving MADM problems with the help of an algorithm. We have presented an illustrative 

example to give a practical application of the proposed method. Finally, we have presented the comparative 

analysis of the proposed model and the existing models which gives a clear picture to the researchers of the 

importance of this study and it will surely motivate them to enrich the present study by introducing many other 

important theories and results associated to LDNNs and apply them in various practical applications.  

In the future, we hope that there is a huge scope for the researchers and the policymakers(decision-makers) to 
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explore several practical real-world applications related to topics based on linear Diophantine interval 

neutrosophic set(LDINS), linear Diophantine neutrosophic rough set(LDNRS), linear Diophantine 

neutrosophic graph(LDNG), linguistic linear Diophantine neutrosophic set(LLDNS), linear Diophantine 

hesitant neutrosophic set(LDHNS). The proposed study may be further extended by introducing TOPSIS, 

VIKOR, AHP, aggregate operators, several distance-based similarity measures.  

Conflict of Interest The author has no conflict of interest regarding the publication of the article with anyone.  
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