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Abstract. In this paper, we introduce the notion of commutator of two elements in a specific NeutroGroup.

Then we define the notion of a NeutroNilpotentGroup and we study some of their properties. Moreover, we

show that the intersection of two NeutroNilpotentGroups is a NeutroNilpotentGroup. Also, we show that the

quotient of a NeutroNilpotentGroup is a NeutroNilpotentGroup. Specially, using NeutroHomomorphism we

prove the NeutroNilpotentcy is closed with respect to homomorphic image.
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—————————————————————————————————————————-

1. Introduction

One of the most important concepts in the study of groups is the notion of nilpotency [6].

Nilpotent groups arose in Galois theory, as well as in the classification of groups. By Galois

theory, certain problems in field theory reduced to group theory. In [10,11], Smarandache in-

troduced the notions of NeutroDefined, AntiDefined laws, NeutroAxiom and AntiAxiom. Then

in [9], he studied NeutroAlgebras and AntiAlgebras. Rezaei et al. in [5], proved that there are

(2n−1) NeutroAlgebras and (3n−2n) AntiAlgebras in a classical algebra S with n operations

and axioms all together, where n ≥ 1. Agboola et al. in [1], studied NeutroGroups (NG, ∗)
where the law of composition and axioms defined on NG may either be only partially defined

(partially true), or partially undefined (partially false), or totally undefined (totally false) with

respect to ∗. Moreover, they considered three NeutroAxioms (NeutroAssociativity, existence

of NeutroNeutral element and existence of NeutroInverse element) to show the difference be-

tween groups and NeutroGroups. Also, in [3], Agboola studied NeutroRings by considering

three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and
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NeutroDistributivity (multiplication over addition)). Scholars applied the notion of NeutroAx-

ioms and NeutroLaw on Rings, Subgrings, Ideals, QuotientRings and Ring Homomorphism

to present some new notions and several results are obtained (see [3], [7]). In this paper, we

consider a class of NeutroGroups was introduced in [1], and define the notion of NeutroN-

ilpotentGroups. Moreover, we investigate elementary properties of NeutroNilpotentGroups.

Specially, we show that the intersection of two NeutroNilpotentGroups is a NeutroNilpotent-

Group. Also, we prove the NeutroNilpotency is closed with respect to homomorphic image.

2. Preliminaries

We recall some basic definitions and results which are proposed by the pioneers of this

subject.

Definition 2.1 ( [8]). (i) A classical operation is well defined for all the set′s elements.

(ii) A NeutroOperation is an operation partially well defined, partially indeterminate, and

partially outer defined on the given set.

(iii) A classical law/axiom defined on a nonempty set is totally true (i.e. true for all set′s

elements).

(iv) A NeutroLaw/NeutroAxiom (or NeutrosophicLaw/NeutrosophicAxiom) defined on a

nonempty set is a law/axiom that is true for some set′s elements (degree of truth

(T)), indeterminate for other set′s elements (degree of indeterminacy (I)), or false

for the other set′s elements (degree of falsehood (F)), where T, I, F ∈ [0, 1], with

(T, I, F ) 6= (1, 0, 0) that represents the classical axiom.

(v) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one Neu-

troAxiom (axiom that is true for some elements, indeterminate for other elements and

false for other elements).

Definition 2.2 ( [4]). For a nonempty set G and a binary operation ∗ on G the couple (G, ∗)
is called a classical group if the following conditions hold:

(G1) x ∗ y ∈ G for all x, y ∈ G.

(G2) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ G.

(G3) There exists e ∈ G such that x ∗ e = e ∗ x = x for all x ∈ G.

(G4) There exists y ∈ G such that x ∗ y = y ∗ x = e for all x ∈ G, where e is the neutral

element of G.

If for all x, y ∈ G, (G5) x ∗ y = y ∗ x, then (G, ∗) is called an abelian group.

Note that x ∗ y will be written as xy for all x, y ∈ G.
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Definition 2.3 ( [6]). A group (G, ∗) is called nilpotent if it has a central series, that is, a

normal series e = G0 ≤ G1 ≤ · · · ≤ Gn = G such that Gi+1/Gi is contained in the center of

G/Gi for all i. The length of a shortest centeral series of G is the nilpotent class of n.

Definition 2.4 ( [6]). Let (G, ∗) be a group and x1, . . . , xn be elements of G. Commutator of

x1 and x2 is [x1, x2] = x−11 x−12 x1x2. A commutator of weight n ≥ 2 is defined by [x1, . . . , xn] =

[x1, . . . , xn−1], xn], where by convention [x1] = x1.

A NeutroGroup is an alternative of a group that has either one NeutroOperation (partially

well-defined, partially indeterminate and partially outer-defined), or at least one NeutroAxiom

(NeutroAssociativity, NeutroNeutralElement or NeutroInverseElement) with no AntiOpera-

tion (is an operation outer-defined for all the set′s elements (totally falsehood)) or AntiAxion

(is an axiom that is false for all set′s elements). It is possible to define NeutroGroup in another

way by considering only one NeutroAxiom or by considering two NeutroAxioms or etc.

Definition 2.5. Let NG be a nonempty set and ∗ be a binary operation on NG. The couple

(NG, ∗) is called a NeutroGroup if the following conditions are satisfied:

(NG1) There exists some triplet (x, y, z) ∈ NG such that x∗(y∗z) = (x∗y)∗z and u∗(v∗w) 6=
(u ∗ v) ∗ w for some (u, v, w) ∈ NG or there exists some (r, s, t) ∈ NG such that

r ∗ (s ∗ t) =indeterminate or (r ∗ s) ∗ t =indeterminate (NeutroAssociativity).

(NG2) There exists at least an element a ∈ NG that has a single neutral element i.e., we have

e ∈ NG such that a ∗ e = e ∗ a = a and for b ∈ NG there does not exist e ∈ NG

such that b ∗ e = e ∗ b 6= b or there exists e1, e2 ∈ NG such that b ∗ e1 = e1 ∗ b = b or

b ∗ e2 = e2 ∗ b = b with e1 6= e2 or there exists at least an element c ∈ NG that there

is d ∈ NG such that c ∗ d = d ∗ c =indeterminate (NeutroNeutralElement).

(NG3) There exists an element a ∈ NG that has an inverse b ∈ NG w.r.t. a unit element

e ∈ NG i.e., a ∗ b = b ∗ a = e, or there exists at least one element b ∈ NG that has

two or more inverses c, d ∈ NG w.r.t. some unit element u ∈ NG i.e., b ∗ c = c ∗ b = u,

b ∗ d = d ∗ b = u or there exists at least one element r ∈ NG that has one element

s ∈ NG such that r ∗ s = s ∗ r=indeterminate (NeutroInverseElement).

(NG4) There exists some duplet (a, b) ∈ NG such that a ∗ b = b ∗ a and there exists some

duplet (c, d) ∈ NG such that c ∗ d 6= d ∗ c, or there exists some (r, s) ∈ NG, r ∗
s =indeterminate or s∗r =indeterminate, then (NG, ∗) is called a NeutroAbelianGroup

(NeutroAbelianGroup).

Example 2.6. Let U = {a, b, c, d, e, f} be a universe of discourse and NG = {a, b, c, d} be a

subset of U . Define the operation ∗1 on NG in table 1. Then ∗1 is a NeutroLow since c ∗1 d =

indeterminate. Also,

a ∗1 (b ∗1 c) = (a ∗1 b) ∗1 c and c ∗1 (a ∗1 c) = c ∗1 d = indeterminate
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Table 1. The table of NeutoGroup (NG, ∗1)

∗1 a b c d

a b c d a

b c d a c

c d a b ?

d a b ? a

Thus, (NG, ∗1) is a NeutroGroup.

Note that x ∗ y will be written as xy for all x, y ∈ NG.

Theorem 2.7 ( [1]). Let (NH, ∗) be a NeutroSubgroup of the NeutroGroup (NG, ∗). The sets

(NG/NH)l = {xNH : x ∈ NG} and (NG/NH)r = {NHx : x ∈ NG} are two NeutroGroups

with operations ◦l, ◦r where for any xNH, yNH ∈ (NG/NH)l, NHx, NHy ∈ (NG/NH)r,

x, y ∈ NG we have

xNH ◦l yNH = xyNH, NHx ◦r NHy = NHxy.

Definition 2.8 ( [1]). Let (NG, ∗) and (NK, ◦) be two NeutroGroups. The mapping

ϕ : NG → NK is called a NeutroGroup Homomorphism if for every duplet (x, y) ∈ G,

we have ϕ(x ∗ y) = ϕ(x) ◦ ϕ(y).

In addition, if ϕ is a NeutroBijection, then ϕ is called a NeutroGroup Isomorphism. Neu-

troGroup Epimorphism, NeutroGroup Monomorphism, NeutroGroup Endomorphism are de-

fined similarly.

Theorem 2.9 ( [1]). Let (NG, ∗) and (NK, ◦) be NeutroGroups and let eNG and eNH be

NeutroNeutralElements in NG and NK respectively. Suppose that ϕ : NG → NK is a

NeutroGroup Homomorphism. Then ϕ(eNG) = eNK .

From now on, NG is a NeutroGroup with tree NeutroAxioms (NeutroAssociativity, Neu-

troNeutralElement and NeutroInverseElement). Also, for all x ∈ NG, Nx and Ix represent

the NeutroNeutralElement and the NeutroInverseElement respectively.

3. Some Results On NeutroNilpotentGroups

In this section, we introduce the notion of commutator of two elements in a NeutroGroup

and study a new concept as NeutroNilpotentGroups and their properties are given.

Let x, y be elements of a NeutroGroup NG. The commutator of x, y, denoted by [x, y], is

the element IxIyxy, i.e., [x, y] = IxIyxy. If Ix or Iy does not exist, then put Ix = x and Iy = y.

Also, for any x, y1, . . . , yn ∈ NG, define the commutator [x, y1, . . . , yn] by [x, y1, . . . , yn] =

[[x, y1, . . . , yn−1], yn].
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Table 2. The table of NeutoNilpotentGroup (NG, ∗2)

∗2 a b c d

a b c d a

b c d a c

c d a b d

d a b c a

Table 3. The table of NeutoAbelianGroup (NG, ∗3)

∗3 a b c e

a b a b a

b c f c b

c d c e c

e a b c e

Definition 3.1. A NeutroGroup (NG, ∗) is called NeutroNilpotentGroup if Zn(NG) = NG

for some n ∈ N, where

Zn(NG) = {x ∈ NG : [x, g1, g2, . . . , gn] = Nz for at least one g1, . . . , gn, z ∈ NG}.

The smallest such n is called the NeutroNilpotency of NG.

Note that, if NG is a NeutroNilpotentGroup, then for any x ∈ NG there exists at least one

g1, . . . , gn, z ∈ NG such that [x, g1, g2, . . . , gn] = Nz.

Example 3.2. Let U = {a, b, c, d, e, f} be a universe of discourse and NG = {a, b, c, d} be a

subset of U . Define the operation ∗2 on NG in table 2. Since [a, b] = d, [d, b] = d, [c, c] = d

and [b, b] = a, we have [c, d, b] = [b, b, b] = [a, b] = d = Na, [d, b, b] = [d, b] = Na and

[a, b, b] = [d, b] = Na. Therefore, NG is a NeutroNilpotentGroup of class 2.

Example 3.3. Let U = {a, b, c, d, e, f} be a universe of discourse and let NG = {e, a, b, c} be

a subset of U . Define the operation ∗3 on NG in table 3. Since [a, b, a] = e = Nc, [b, a, e] =

[e, e] = e, [c, e, c] = [c, c] = e, [e, a, a] = [b, a] = e, we have NG is NeutroAbelianGroup and a

NeutroNilpotentGroup of class 2.

In what follows we have a non Abelian NeutroNilpotentGroup.

Example 3.4. Let U = {a, b, c, d} be a universe and NG = {a, b, c} be a NeutroGroup by the

Cayley table 4. Then H = {a, b}, by the operation ∗4, is a NeutroSubgroup of NG (see [1]).

SinceNa = a, Ia = a, Nb, Ib does not exist, we have [a, a] = aaaa = a = Na and [b, b] = a = Na.

Therefore, H is a NeutroNilpotentSubgroup that is not an AbelianNeutroGroup.
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Table 4. The table of non Abelian NeutoAbelianGroup (NG, ∗4)

∗4 a b c

a a c b

b c a c

c a c d

Table 5. The table of NeutoSubgroup (H, ∗4)

∗4 a b

a a c

b c a

Table 6. The table of NeutoSubgroup (NH, ∗5) of (NG, ∗5)

∗5 a c d

a b d a

c d b d

d a c a

Theorem 3.5. Let NG and NK be two NeutroGroups. Then Zn(NG × NK) = Zn(NG) ×
Zn(NK). Moreover, NG×NK is a NeutroNilpotentGroup of class n if and only if NG and

NK are NeutroNilpotentGroups of class n.

Proof. Assume (x, y) ∈ Zn(NG×NK), z ∈ NG and t ∈ NK. Then for some

(x1, y1), . . . , (xn, yn) ∈ NG×NK, we have

(Nz, Nt) = [(x, y), (x1, y1), . . . , (xn, yn)] = ([x, x1, . . . , xn], [y, y1, . . . , yn])

⇔ [x, x1, . . . , xn] = Nz, [y, y1, . . . , yn] = Nt

⇔ x ∈ Zn(NG), y ∈ Zn(NK)

⇔ (x, y) ∈ Zn(NG)× Zn(NK).

Therefore, Zn(NG×NK) = Zn(NG)× Zn(NK).

Moreover, NG×NK is NeutroNilpotentGroup if and only if Zn(NG×NK) = NG×NK =

Zn(NG)× Zn(NK) if and only if NG and NK are NeutroNilpotentGroups.

In what follows we have a NeutroSubgroup that is not NeutroNilpotentGroup.

Example 3.6. Consider the NeutroGroup NG from Example 3.2. Define the operation ∗5 on

NG in table 6. Then NH = {a, c, d} is a NeutroSubgroup of NG (see [1]). Since [a, d] = a,

[a, a] and [a, c] does not exist, we get [a, g1, . . . , gn] does not exist for any g1, . . . , gn ∈ NH,

and so a 6∈ Zn(NH) i.e., NH is not NeutroNilpotentGroup.
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Theorem 3.7. Let NH be a NeutroSubgroup of the NeutroNilpotentGroup NG. Then Neu-

troQuotientGroups (NG/NH)l and (NG/NH)r are NeutroNilpotentGroups.

Proof. Assume NH be a NeutroSubgroup of NG and gH ∈ (NG/NH)l. Since NG is a

NeutroNilpotentGroup, we have [g, g1, . . . , gn] = Nz for some g1, . . . , gn, z ∈ NG, and

so [gNH, g1NH, . . . , gnNH] = [g, g1, . . . , gn]NH = NzNH. Since (zNH) ◦l (NzNH) =

(z ∗ Nz)NH = zNH = (Nz)NH ◦l zNH, we get (Nz)NH is a NeutroNaturalElement of

(NG/NH)l. Therefore, (NG/NH)l is a NeutroNilpotentGroup. Similarly, (NG/NH)r is a

NeutroNilpotentGroup.

We recall that the intersection of two NeutroGroups is a NeutroGroup (see [1]). Now we

have the following:

Theorem 3.8. Let NG and NK be two NeutroNilpotentGroups. Then NG ∩NK is a Neu-

troNilpotentGroup.

Proof. Straightforward.

Theorem 3.9. Let NH be a NeutroNilpotentSubgroup of a NeutroGroup NG and for all

x, t ∈ NG we have

xNH = NH ⇒ x ∈ NH, (Nt)NH = NH.

If (NG/NH)l is a NeutroNilpotentQuotientGroup, then NG is a NeutroNilpotentGroup.

Proof. Assume (NG/NH)l is NeutroNilpotentGroup of class n and NH is NeutroNilpo-

tentGroup of class m. Then for any xNH ∈ (NG/NH)l, there exist g1NH, . . . , gnNH ∈
(NG/NH)l such that [xNH, g1NH, . . . , gnNH] = (Nz)NH, where z ∈ NG. Then

[x, g1, . . . , gn]NH = (Nz)NH = NH, and so [x, g1, . . . , gn] ∈ NH. Since NH is NeutroN-

ilpotentGroup, we get there exist k1, . . . , km ∈ NH such that [[x, g1, . . . , gn], k1, . . . , km] = Nt,

for some t ∈ NG. Consequently, NG is NeutroNilpotentGroup of class n+m.

Theorem 3.10. Let NH be a NeutroNilpotentSubgroup of a NeutroGroup NG and for all

x, t ∈ NG we have

NHx = NH ⇒ x ∈ NH, NH(Nt) = NH.

If (NG/NH)r is a NeutroNilpotentQuotientGroup, then NG is a NeutroNilpotentGroup.

Proof. Similar to the proof of Theorem 3.9.

Theorem 3.11. Every homomorphic image of a NeytroNilpotentGroup is NeutroNilpotent-

Group.
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Proof. Assume NH be a NeutroSubgroup of a NeutroNilpotentGroup NG and e1, e2 be

NeutroNeutralElements in NG and NH, respectively. Suppose that ψ : NG → NH

is a NeutroGroup Epimorphism. Then for any h ∈ NH, there exists x ∈ NG such

that h = ψ(x). Since NG is NeutroNilpotentGroup, for x ∈ NG, there exist g1, . . . ,

gn ∈ NG such that [x, g1, . . . , gn] = e1. Take k1 = ψ(g1), . . . , kn = ψ(gn). Therefore,

[h, k1, . . . , kn] = ψ([x, g1, . . . , gn]) = ψ(e1) = e2, and so NH is a NeutroNilpotenGroup.

4. Conclusion

In this paper, we defined a class of NeutroGroups, named NeutroNilpotentGroups, and

their elementary properties were presented. The intersection of two NeutroSubgroups is not

necessarily a NeutroSubgroup while their union is a NeutroSubgroup. We hope to study

NeutroSolvabelGroups, NeutroEngelGroups in our future works.
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