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1. Introduction 

Florentin Smarandache introduced Neutrosophic sets in 1998 [16], which is the 

generalization of the intuitionistic fuzzy sets. In some real time situations, decision makers faced 

some difficulties with uncertainty and inconsistency values. Neutrosophic sets helped the decision 

makers to deal with uncertainty values. Abdel-Basset et.al. used neutrosophic concept in real life 

decision-making problems [1-7]. The concept of single valued neutrosophic set was introduced by 

Wang. et. al [17].  

As a generalization of classical algebraic structure, Algebraic hyper structure was introduced 

by F. Marty [11]. Corsini and Leoreanu-Fotea developed the applications of hyper structure [9]. 

Algebraic hyperstructures has many applications in fuzzy sets, lattices, artificial intelligence, 

automation, combinatorics. Corsini introduced hypergroup theory [8]. After while the 

hyperstructure theory has seen broader applications in many fields. Some of the recent works on 

hyperstructures related to vague soft groups, vague soft rings and vague soft ideals can be found in 

[12, 13]. 

 In this paper we develop the theory of single valued neutrosophic hypergroup and also 

established some results on single valued neutrosophic hypergroup. 

2. Preliminaries 

Definition 2.1 [17] Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA, an indeterminancy-

membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real 

standard or non-standard subsets of ]0−, 1+[.  

 𝑇𝐴: 𝑋 →]0−, 1+[ 

 𝐼𝐴: 𝑋 →]0−, 1+[ 

 𝐹𝐴: 𝑋 →]0−, 1+[ 
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There is no restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0− ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) +

𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3+.  

Definition 2.2 [17] Let X be a space of points (objects),with a generic element of X denoted by x. A 

single valued neutrosophic set (SVNS) A in X is characterized by TA, IA and FA. For each point x in X, 

TA, IA, FA ∈ [0,1].  

Definition 2.3 [17] The complement of a SVNS A is denoted by c(A) and is defined by 

 Tc(A)(x) = FA(x) 

 Ic(A)(x) = 1 − IA(x) 

 Fc(A)(x) = TA(x), for all x in X.   

Definition 2.4  [17] A SVNS A is contained in the other SVNS  B, A ⊆ B, if and only if, 

 TA(x) ≤ TB(x) 

 IA(x) ≥ IB(x) 

 FA(x) ≥ FB(x), for all x in X.   

Definition 2.5 [17] The union of two SVNS s A and B is a SVNS   C, written as C = A ∪ B, whose truth, 

indeterminancy and falsity-membership functions are defined by, 

 TC(x) = max(TA(x), TB(x)) 

 IC(x) = min(IA(x), IB(x)) 

 FC(x) = min(FA(x), FB(x)), for all x in X.   

Definition 2.6 [17] The intersection of two SVNS s A and B is a SVNS C, written as C = A ∩ B, whose 

truth, indeterminancy and falsity-membership functions are defined by, 

 TC(x) = min(TA(x), TB(x)) 

 IC(x) = max(IA(x), IB(x)) 

 FC(x) = max(FA(x), FB(x)), for all x in X.  

Definition 2.7 [17] The falsity-favorite of a SVNS B, written as B∇ A, whose truth and falsity-

membership functions are defined by  

 TB(x) = TA(x) 

 IB(x) = 0 

 FB(x) = min{FA(x) + IA(x),1}, for all x in X.  

Definition 2.8 [13] A hypergroup 〈H,∘〉 is a set H equipped with an associative hyperoperation (∘

): H × H → P(H) which satisfies x ∘ H = H ∘ x = H for all x ∈ H  (Reproduction axiom)   

Definition 2.9 [13] A hyperstructure 〈H,∘〉 is called an Hv-group if the following axioms hold: 

 (i) x ∘ (y ∘ z) ∩ (x ∘ y) ∘ z ≠ ∅ for all x, y, z ∈ H, 

 (ii) x ∘ H = H ∘ x = H for all x ∈ H. 

If 〈H,∘〉 only satisfies (i), then 〈H,∘〉  is called a Hv- semigroup.   

Definition 2.10 [13] A subset K of H is called a subhypergroup if 〈K,∘〉 is a hypergroup of 〈H,∘〉.  

3. Single Valued Neutrosophic Hypergroup. 

Throughout this section 𝐻 denotes the hypergroup < 𝐻,∘>  

Definition 3.1 Let 𝒜 be a single valued neutrosophic set over H. Then 𝒜 is called a single valued 

neutrosophic hypergroup over H, if the following conditions are satisfied (𝑖)  ∀  𝑝, 𝑞 ∈ 𝐻,

𝑚𝑖𝑛{𝑇𝒜(𝑝), 𝑇𝒜(𝑞)} ≤ 𝑖𝑛𝑓{𝑇𝒜(𝑟):  𝑟 ∈ 𝑝 ∘ 𝑞}, 

 𝑚𝑎𝑥{𝐼𝒜(𝑝), 𝐼𝒜(𝑞)} ≥ 𝑠𝑢𝑝{𝐼𝒜(𝑟):  𝑟 ∈ 𝑝 ∘ 𝑞}  𝑎𝑛𝑑 
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 𝑚𝑎𝑥{𝐹𝒜(𝑝), 𝐹𝒜(𝑞)} ≥ 𝑠𝑢𝑝{𝐹𝒜(𝑟):  𝑟 ∈ 𝑝 ∘ 𝑞} 

(𝑖𝑖)  ∀  𝑙, 𝑝 ∈ 𝐻, 𝑡ℎ𝑒𝑟𝑒  𝑒𝑥𝑖𝑠𝑡𝑠  𝑞 ∈ 𝐻  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑝 ∈ 𝑙 ∘ 𝑞  𝑎𝑛𝑑 

 𝑚𝑖𝑛{𝑇𝒜(𝑙), 𝑇𝒜(𝑝)} ≤ 𝑇𝒜(𝑞), 

 𝑚𝑎𝑥{𝐼𝒜(𝑙), 𝐼𝒜(𝑝)} ≥ 𝐼𝒜(𝑞)  𝑎𝑛𝑑 

 𝑚𝑎𝑥{𝐹𝒜(𝑙), 𝐹𝒜(𝑝)} ≥ 𝐹𝒜(𝑞) 

(𝑖𝑖𝑖)  ∀  𝑙, 𝑝 ∈ 𝐻, 𝑡ℎ𝑒𝑟𝑒  𝑒𝑥𝑖𝑠𝑡𝑠  𝑟 ∈ 𝐻  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑝 ∈ 𝑟 ∘ 𝑙  𝑎𝑛𝑑 

 𝑚𝑖𝑛{𝑇𝒜(𝑙), 𝑇𝒜(𝑝)} ≤ 𝑇𝒜(𝑟), 

 𝑚𝑎𝑥{𝐼𝒜(𝑙), 𝐼𝒜(𝑝)} ≥ 𝐼𝒜(𝑟)  𝑎𝑛𝑑 

 𝑚𝑎𝑥{𝐹𝒜(𝑙), 𝐹𝒜(𝑝)} ≥ 𝐹𝒜(𝑟) 

 If 𝒜 satisfies condition (i) then  𝒜 is a single valued neutrosophic semihypergroup over H. Condition 

(ii) and (iii) represent the left and right reproduction axioms respectively. Then 𝒜 is a single valued 

neutrosophic subhypergroup of H.  

Example 3.2 If the family of t-level sets of SVNS  𝒜 over H  

 𝒜t = {p ∈ H  |  T𝒜(p) ≥ t, I𝒜(p) ≤ t  and  F𝒜(p) ≤ t}  is a subhypergroup of H then, 

𝒜 is a single valued neutrosophic hypergroup over H.   

 

Theorem 3.3 Let 𝒜 be a SVNS  over H. Then 𝒜 is a single valued neutrosophic hypergroup over H iff 

𝒜 is a single valued neutrosophic semihypergroup over H and also 𝒜 satisfies the left and right 

reproduction axioms.   

Proof. The proof is obvious from Definition: 3.1   

 

Theorem 3.4 Let 𝒜 be a SVNS  over H. If 𝒜 is a single valued neutrosophic hypergroup over H ,then 

∀ t ∈ [0,1] 𝒜t ≠ ∅ is a subhypergroup of H.  

Proof. Let 𝒜 be a single valued neutrosophic hypergroup over H and let p, q ∈ 𝒜t, then  

T𝒜(p), T𝒜(q) ≥ t, I𝒜(p), I𝒜(q) ≤ t and F𝒜(p), F𝒜(q) ≤ t. 

Then we have, 

                inf{T𝒜(r): r ∈ p ∘ q} ≥ min{T𝒜(p), T𝒜(q)} ≥ min{t, t} = t 

sup{I𝒜(r): r ∈ p ∘ q} ≤ t and 

 sup{F𝒜(r): r ∈ p ∘ q} ≤ t 

This implies r ∈ 𝒜t. Then ∀  r ∈ p ∘ q  , p ∘ q ⊆ 𝒜t. 

Thus ∀r ∈ 𝒜t, we obtain r ∘ 𝒜t ⊆ 𝒜t 

Now, Let l, p ∈ 𝒜t, then there exist q ∈ H such that p ∈ l ∘ q and 

                        {T𝒜(q)} ≥ min{T𝒜(l), T𝒜(p)} ≥ min{t, t} = t 

{I𝒜(q)} ≤ t and 

{F𝒜(q)} ≤ t.  This implies q ∈ 𝒜t 

This proves that 𝒜t ⊆ r ∘ 𝒜t. As such 𝒜t = r ∘ 𝒜t 

Which proves that 𝒜t is a subhypergroup of H.  

 

Theorem 3.5 Let 𝒜 be a SVNS  over H. Then the following are equivalent, 

(i) 𝒜 is a single valued neutrosophic hypergroup over H  

(ii) ∀ t ∈ [0,1] 𝒜t ≠ ∅ is a subhypergroup of H.  

Proof. (i) ⇒ (ii) The proof is obvious from Theorem : 3.4. 
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(ii) ⇒ (i) Now assume that 𝒜t is a subhypergroup of H. 

Let p, q ∈ 𝒜t0
 and let min{T𝒜(p), T𝒜(q)} = max{I𝒜(p), I𝒜(q)} = max{F𝒜(p), F𝒜(q)} = t0  

Since p ∘ q ⊆ 𝒜t0
, then for every r ∈ p ∘ q, T𝒜(r) ≥ t0, I𝒜(r) ≤ t0, F𝒜(r) ≤ t0 

                min{T𝒜(p), T𝒜(q)} ≤ inf{T𝒜(r):  r ∈ p ∘ q}, 

max{I𝒜(p), I𝒜(q)} ≥ sup{I𝒜(r):  r ∈ p ∘ q} and 

max{F𝒜(p), F𝒜(q)} ≥ sup{F𝒜(r):  r ∈ p ∘ q}  

Condition (i) is verified. 

Next, let l, p ∈ 𝒜t1
, for every t1 ∈ [0,1] and  

let min{T𝒜(l), T𝒜(q)} = max{I𝒜(l), I𝒜(p)} = max{F𝒜(l), F𝒜(q)} = t1  

Then there exist q ∈ 𝒜t1
 such that p ∈ l ∘ q ⊆ 𝒜t1

. Since q ∈ 𝒜t1
, 

T𝒜(q) ≥ t1 = min{T𝒜(l), T𝒜(q)} 

I𝒜(q) ≤ t1 = max{I𝒜(l), I𝒜(q)} 

F𝒜(q) ≤ t1 = max{F𝒜(l), F𝒜(q)} 

Condition (ii) is verified. Similarly, (iii) . 

  

Theorem 3.6 Let 𝒜 be a SVNS  over H. Then 𝒜 be a single valued neutrosophic hypergroup over H 

iff  ∀ α, β, γ ∈ [0,1], 𝒜(α,β,γ) is a subhypergroup of H.   

Proof. The proof is straight forward.   

 

Theorem 3.7 Let 𝒜 be a single valued neutrosophic hypergroup over H and  ∀ t1, t2 ∈ [0,1] 𝒜t1
 and 

𝒜t2
 be the t-level sets of 𝒜 with t1 ≥ t2, then  𝒜t1

 is a subhypergroup of 𝒜t2
.   

Proof. ∀t1, t2 ∈ [0,1], 𝒜t1
 and 𝒜t2

 be the t-level sets of 𝒜 with t1 ≥ t2 

This implies that 𝒜t1
⊆ 𝒜t2

 

By Theorem 3.4. 𝒜t1
 is a subhypergroup of 𝒜t2

.  

 

Theorem 3.8 Let 𝒜 and ℬ be single valued neutrosophic hypergroups over H. Then 𝒜 ∩ ℬ is a single 

valued neutrosophic hypergroup over H if it is non-null.   

Proof. Suppose 𝒜 and ℬ be single valued neutrosophic hypergroups over H. 

By Definition: 2.6. 𝒜 ∩ ℬ = {< p, T𝒜∩ℬ(p), I𝒜∩ℬ(p), F𝒜∩ℬ(p) > :  p ∈ H} 

where T𝒜∩ℬ(p) = T𝒜(p) ∧ Tℬ(p), I𝒜∩ℬ(p) = I𝒜(p) ∨ Iℬ(p) and F𝒜∩ℬ(p) = F𝒜(p) ∨ Fℬ(p) 

For all p, q ∈ H  

(i) min{T𝒜∩ℬ(p), T𝒜∩ℬ(q)} = min{T𝒜(p) ∧ Tℬ(p), T𝒜(q) ∧ Tℬ(q)} 

 ≤ min{T𝒜(p), T𝒜(q)} ∧ min{Tℬ(p), Tℬ(q)} 

 ≤ inf{T𝒜(r):  r ∈ p ∘ q} ∧ inf{Tℬ(r):  r ∈ p ∘ q} 

 ≤ inf{T𝒜(r) ∧ Tℬ(r):  r ∈ p ∘ q} 

 = inf{T𝒜∩ℬ(r):  r ∈ p ∘ q} 

 Similarly, we can prove that max{I𝒜∩ℬ(p), I𝒜∩ℬ(q)} ≥ sup{I𝒜∩ℬ(r):  r ∈ p ∘ q} 

           max{F𝒜∩ℬ(p), FA∩B(q)} ≥ sup{F𝒜∩ℬ(r):  r ∈ p ∘ q} 

(ii) ∀ l, p ∈ H, there exists q ∈ H such that p ∈ l ∘ q,  

min{T𝒜∩ℬ(l), T𝒜∩ℬ(p)} = min{T𝒜(l) ∧ Tℬ(l)}, {T𝒜(p) ∧ Tℬ(p)} 

            = min{T𝒜(l), T𝒜(p)} ∧ min{Tℬ(l), TB(p)} 

            ≤ T𝒜(q) ∧ Tℬ(q) = T𝒜∩ℬ(q) 
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 Therefore, 𝒜 ∩ ℬ is a single valued neutrosophic hypergroup over H.  

 

Theorem 3.9 Let 𝒜 and ℬ be single valued neutrosophic hypergroups over H. Then 𝒜 ∪ ℬ is a single 

valued neutrosophic hypergroup over H.  

Proof. By Definition: 2.5. 

                                   𝒜 ∪ ℬ = {< p, T𝒜∪ℬ(p), I𝒜∪ℬ(p), F𝒜∪ℬ(p) > :  p ∈ H} 

where T𝒜∪ℬ(p) = T𝒜(p) ∨ Tℬ(p), I𝒜∪ℬ(p) = I𝒜(p) ∧ Iℬ(p) and F𝒜∪ℬ(p) = F𝒜(p) ∧ Fℬ(p) 

For all p, q ∈ H,  

min{T𝒜∪ℬ(p), T𝒜∪ℬ(q)} = min{T𝒜(p) ∨ Tℬ(p), T𝒜(q) ∨ Tℬ(q)} 

 ≤ min{T𝒜(p), T𝒜(q)} ∨ min{Tℬ(p), Tℬ(q)} 

 ≤ inf{T𝒜(r):  r ∈ p ∘ q} ∨ inf{Tℬ(r):  r ∈ p ∘ q} 

 ≤ inf{T𝒜(r) ∨ Tℬ(r):  r ∈ p ∘ q} 

 = inf{T𝒜∪ℬ(r):  r ∈ p ∘ q} 

 Similarly, the other holds.  

  

Theorem 3.10 Let 𝒜 be a single valued neutrosophic hypergroup over H. Then the falsity- favorite 

of 𝒜 (ie. , ∇𝒜) is also a single valued neutrosophic hypergroup over H.  

 

Proof. By Definition: 2.7. ℬ = ∇𝒜, where the membership values are Tℬ(x) = T𝒜(x), Iℬ(x) = 0 and 

Fℬ(x) = min{F𝒜(x) + I𝒜(x),1} 

Then we have to prove for Fℬ, ∀p, q ∈ H  

max{Fℬ(p), Fℬ(q)} = max{F𝒜(p) + I𝒜(p) ∧ 1, F𝒜(q) + I𝒜(q) ∧ 1} 

 = max{F𝒜(p) + I𝒜(p), F𝒜(q) + I𝒜(q)} ∧ 1 

 ≥ (max{F𝒜(p), F𝒜(q)} + max{I𝒜(p), I𝒜(q)}) ∧ 1 

 ≥ (sup{F𝒜(r)  ∶   r ∈ p ∘ q} + sup{I𝒜(r)  ∶   r ∈ p ∘ q}) ∧ 1 

 = sup{F𝒜(r) + I𝒜(r) ∧ 1 ∶   r ∈ p ∘ q} 

 = sup{Fℬ(r)  ∶   r ∈ p ∘ q}) 

 In similar manner the other conditions holds. 

4. Conclusions  

In this paper, we have developed the theory of hypergroup for the single-valued 

neutrosophic set by introducing several hyperalgebraic structures and some results were verified. 

The future research related to this work involve the development of other hyperalgebraic theory for 

the single-valued neutrosophic sets and interval-valued neutrosophic sets. 
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