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Preface

During the five years since publishing [2], we have obtained many
new results related to the Smarandache problems. We are happy to
have the opportunity to present them in this book for the enjoyment
of a wider audience of readers.

The problems in Chapter two have also been solved and pub-
lished separately by the authors, but it makes sense to collate them
here so that they can be better seen in perspective as a whole, par-
ticularly in relation to the problems elucidated in Chapter one.

Many of the problems, and more especially the techniques em-
ployed in their solution, have wider applicability than just the Smaran-
dache problems, and so they should be of more general interest to
other mathematicians, particularly both professional and amateur
number theorists.

Miladen V. Vassilev-Missana
Krassimir T. Atanassov
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Chapter 1

On Some Smarandache’s
problems

In the text below the following notations are used.
N - the set of all natural numbers (i.e., the set of all positive inte-
gers);
[#] — “floor function” (or also so called “bracket function”) — the
greatest integer which is not greater than the real non-negative num-
ber x;
¢ — Riemann’s Zeta-function;
T" — Euler’s Gamma-function;
© — Euler’s (totient) function;
1) — Dedekind’s function;
o — the sum of all divisors of the positive integer argument.
In particular: ¢(1) = ¢(1) =o(l) =1 and if n > 1 and

k
(73
n =17
i=1
is a prime number factorization of n, then

k 1
@(n) :"'E(I_E);

i=1

-3
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k
1
Y(n) =n. H(l +—);
i=1 Pi
ka1
‘ 1
o(n) =[P
o1 Pl

7 — the prime counting function, i.e., m(n) denotes the number of
primes p such that p < n;

ma(k) — the twin primes counting function, i.e., m2(n) denotes the
number of primes p such that p < n and p+ 2 is also a prime;
p2(n) — n-th term of the twin primes sequence, i.e.,

p2(1) = 3,p2(2) = 5,p2(3) = 7, p2(4) = 11, p2(5) = 13, p2(6) = 17,

p2(7) = 19,p2(8) = 29,p2(9) = 31, ...




1. ON THE 2-ND SMARANDACHE’S PROBLEM!

The second problem from [13] (see also 16-th problem from [24])
is the following:

Smarandache circular sequence:

1,12,21,123,231,312, 1234, 2341, 3412, 4123,
\1/ —_——
2 3 4

12345, 23451, 34512, 45123, 51234,

5

123456, 234561, 345612, 456123, 561234, 612345, ...
6

Let |z[ be the largest natural number strongly smaller than the
real (positive) number z. For instance, |7.1[= 7, but |7[= 6.

Let f(n) be the n-th member of the above sequence. We shall
prove the following
Theorem. For each natural number n:

f(n)=s(s+1)..k12...(s — 1), (1)
where
k= k(n) :]7V8n';1_1[ (2)
and
k(k+1)

s=s(n)=n— 5 (3)
Proof. If n =1, then from (1) and (2) it follows that k =0, s =1
and from (3) — that f(1) = 1. Let us assume that the assertion
is valid for some natural number n. Then for n + 1 we have the

!The results in this section are taken from [9]
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following two cases:
1. k(n+1) = k(n), i.e., k is the same as above. Then

k(n+1)(k(n+1)+1)

s(n+1)=n+1- 5

=n+1-

k(n)(k(n) +1)
2
=s(n) +1,

fn+1)=(s+1)..k12...5.
2. k(n+1) =k(n) + 1. Then

s(n+1)=n+1- k<”+1)(7fg1/+1)+1). @

On the other hand, it is easy to see, that in (2) the number

Ven+1-1 m(m+ 1)

3 is an integer if and only if n = 3

Also, for any natural numbers n and m > 1 such that

-1 1
(m=Um _, o mm+l) (5)
2 2
it will be valid that
VB F1-1 \/7’"(@“)“71[

=m.

REIREE R | S
Therefore, if k(n + 1) = k(n) + 1, then

"ZW“

and from (4) we obtain:

s(n+1)=1,
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fn+1)=12..(n+1).

Therefore, the assertion is valid.

Let n

Then, we shall use again formulae ( ) and (3). Therefore,
P
Zf + Z £
i= i=p+1

where
_ m(m+1)
T2

It can be seen directly, that

P m m

1
STfiy=> 120 +23 a1 +il2..(i - 1) Z
2

i=1 i=1 i=1

On the other hand, if s = n — p, then

S 00

i=p+1

=12..(m+1)+23..(m+ 1)1+ s(s+ 1)..m(m + 1)12...(s — 1)

7T§l( s+2(3+z+1) _ii+1)

2

).10m_i.
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2. ON THE 8-TH, THE 9-TH, THE 10-TH,
THE 11-TH AND THE 103-TH
SMARANDACHE’S PROBLEMS?

The eight problem from [13] (see also 16-th problem from [24])
is the following:

Smarandache mobile periodicals (I):
0 0 0 1

[eleloloololoBolololololoolo oo o ReloRa ol ol o N
ONOOOOOOOOOOoOOOOOOCOOOOCOOO
M NNOOOODOOOMODODODODOOoODOoOOoOOoODOoOOoOOoODOoO O
N OMNMNMNOOOOOMMNMNMNOOOOON~NOODOOOO
OO O N NOOONMMONMNMNOOONMNNMNMNOOO~NOO
OO OO N NONMNMOOONMNMNONNONNONRKNKN
CO OO O N MNMOOOOO M MMNOOONMNMNNON
OO OO N NOMNMNMOOONMNMNOMNMNMNOMNNONNNDO
OO O N MNOOONMMNONMNMNOOONNNODOO~NOO
N OMNMNNOOOOOMMNMNNOOOOO~NOOOoOoOOoOoOO
MNNOOOOOOONOOOOOoOOoOOoOOoOOoOOoOoOoOoOoO
ONOODOD OO0 OO0 OO OO OOO
S OO OO OOoOOOCOoOOCOoOOoOOoCOoOOoCcooCcocoocoocoo

2The results in this section are taken from [38]
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This sequence has the form

1,111,11011,111,1,1,111,11011, 1100011, 11011, 111, 1,

5 7

1,111,11011,1100011, 110000011, ,1100011, 11011, 111, 1, ...
9

All digits from the above table generate an infinite matrix A.
We shall describe the elements of A.

Let us take a Cartesian coordinate system C' with origin in the
point containing element “1” in the topmost (i.e., the first) row of
A. We assume that this row belongs to the ordinate axis of C' (see
Fig. 1) and that the points to the right of the origin have positive
ordinates.

(0,0) ordinate
abscissa
Fig. 1.

The above digits generate an infinite sequence of squares, located
in the half-plane (determined by C) where the abscisses of the points
are nonnegative. Their diameters have the form

“110...0117.

Exactly one of the diameters of each of considered squares lies
on the abscissa of C'. It can be seen (and proved, e.g., by induction)
that the s-th square, denoted by G5 (s =0,1,2,...) has a diameter
with lenght 2s + 4 and the same square has a highest vertex with

14 On Some Smarandache’s problems

coordinates (s? 4+ 3s,0) in C' and a lowest vertex with coordinates
(82455 +4,0) in C.
Let us denote by ay; an element of A with coordinates (k,4) in
C.
First, we determine the minimal nonnegative s for which the
inequality
s +5s+4>k

holds. We denote it by s(k). Directly it is seen the following
Lemma. The number s(k) admits the explicit representation:

0, if0<k<4
[Va4k$9 =5 if k> 5 and 4k + 9 is
s(k) = a square of an integer (1)

VARE9 =5 11 itk >5and 4k +9 is

not a square of an integer

and the inequalities

(s(k))? +3s(k) < k < (s(k))* + 5s(k) +4 (2)
hold.
Second, we introduce the integeres 6(k) and e(k) by
8(k) =k — (s(k))? — 3s(k), ®3)
e(k) = (s(k))* +5s(k) +4 — k. (4)

From (2) we have §(k) > 0 and (k) > 0. Let Py be the infinite
strip orthogonal to the abscissa of C' and lying between the straight
lines passing through those vertices of the square Gy lying on
the abscissa of C. Then ¢(k) and e(k) characterize the location of
point with coordinates (k,i) in C'in strip P. Namely, the following
assertion is true.
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Proposition 1. The elements ay; of the infinite matrix A are
described as follows:
if k < (s(k))? + 4s(k) + 2, then
0, if 6(k) <|i| or 6(k) > |i| + 2,
ki = 5
1, if|i <6(k) <i|+1
if k> (s(k))? + 4s(k) + 2, then
0, ife(k) <li]ore(k) > [i|+2,
i = ,

1, iffif <e(k) <Jij+1

(6)

where here and below s(k) is given by (1), 6(k) and e(k) are given
by (3) and (4), respectively.

Omitting the obvious proof (it can be done, e.g., by induction),
we note that (5) gives a description of a; for the case when (k,1)
belongs to the strip that is orthogonal to the abscissa of C' and
lying between the straight lines through the points in C' with co-
ordinates ((s(k))? + 3s(k),0) and ((s(k))? + 4s(k) + 2,0) (involving
these straight lines), while (6) gives a description of aj,; for the case
when (k, i) belongs to the strip that is also orthogonal to the abscissa
of C, but lying between the straight lines through the points in C'
with coordinates ((s(k))? +4s(k) +2,0) and ((s(k))? + 5s(k) +4,0)
(without involving the straight line passing through the point in C'
with coordinates ((s(k))? + 4s(k) +2,0)).

Below, we propose another description of elements of A, which
can be proved (e.g., by induction) using the same considerations.

16 On Some Smarandache’s problems

5s(k) +4,0)}

1<,<s()+2}
j (7

Ak =

0, otherwise

Similar representations are possible for all of the next problems.
Let us denote by uiug...u; an s-digit number.

For Smarandache’s sequence from Problem 8

1,111,11011,111,1,111,11011, 1100011, 11011, 111, 1, ...,

that is given above, if we denote it by {b;}72. then we obtain the
representation

Ak, 6(k) Uk, 5(k)—1-+-Qk,0Qk,1---Ok §(k)—10k,6(k)»

if b < (s(k))? +4s(k) +2

A e (k) Ok e (k)—1--- Wk ,00k,1--- Ok (k) —1Ck (k)
if k> (s(k))? +4s(k) +2

where aj; are given in an explicit form by (5).
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The 10-th Smarandache problem is dual to the above one:
Smarandache infinite numbers (1):

O s e R e e e e e e e e e e
R el e e e e e e e e e e
NN el I e N e e e e e S =
N e R e R e I R e L~ N e
FRFF OO HFHF OO OO RFRF OO Q -
e S B R S O LS SN S S O O
e e S R S e e e e e I R e e e e I S T
e e S S O i B T S S e O S S o
PP P OO RN OO OO RO
SF OO R HHEFHFRFOQOQORHREREREQHRFF &= e
SO R R R R R R EREQR e e
QR e e e e e e e e b e e e
el el e e e e e e e e e e

Further, we will keep the notations: A (for the matrix) and ay;
(for its elements) from the 8-th Smarandache’s problem, for each
one of the next problems in this section.
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Proposition 2. The elements ay; of the infinite matrix A are
described as follows
if k < (s(k))? + 4s(k) + 2, then
0, if[i] <o(k) < il +1
aki = 3
1, if 6(k) < |i| or 6(k) > |i| + 2
if k> (s(k))? + 4s(k) + 2, then
0, iflil <e(k) <[i+1
apq = .
1, ife(k) <|i| or e(k) > |i| +2

The 9-th Smarandache problem is a modification and extension
of the 8-th problem:




Smarandache mobile periodicals (I1):

SO0 OO OOoOOCOCOoOOOoCOoOOoCOoOOoooocoocoocoo
= Neloololooholololol-Nolo oo o Re o e No ol o Nl
MNNOOOOOOONOOOoOOOoOOoOOoOOoOOoOOoOoOoOoOO
NN NOOOO O R NMNMNMOODOOO~NOOoOOoOOoODOoOOoO O
WO NN OOON NN NMNOOO N NMNOOO~NOO
LW WXV NN ONRLWENNONNONNON~N~NOD
LoD O DSttt O it DS O DO it © i DO O b ©

This sequence has the form

1,111,11211,111,1,1,111,11211, 1123211, 11211, 111, 1,

VWV NRN N OO O R NN NMNOOONMNMNMNMNOOO~NOO

NN NOOOOOKRNNODODOOO~NODODOODOOO

M NNOOODODOOONDODODODODOoOOoODOoOOoOOoODOoOOoOoODOoOOoO O

ONOOOOOOOOOOCOOoOOOCOoOOCOoCOoOOoCcoOoOoCOoO

[sleloloololoBoolololol-Nolo o oo ReBoRa ool o Nl

5

1,111,11211, 1123211, 112343211, , 1123211, 11211, 111, 1, . ..

7

9

19
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Proposition 3. The elements ay; of infinite matrix A are de-
scribed as follow:
if k < (s(k))? + 4s(k) + 2, then

0, if 6(k) < |l
wiTY if 5(k) = |i| ®)
6(k) —lil, if 6(k) > [l
if k> (s(k))? + 4s(k) + 2, then
0, if e(k) < |il
Wi = if £(k) ©)

=|
e(k) — i, ife(k)>|i

For the above sequence
1,111,11211,111,1,111,11211,1123211, 11211, 111, 1, ...

if we denote it by {ci}72, then we obtain the representation

Ak 65(k) Ok,6 (k) —1-+-Ok,00k,1--- Ok 6(k)—10k,6 (k)

if k < (s(k))?+4s(k) +2

Qe (k) Al (k)—1++-Qk,00k,1--- Ok £ (k)— 10k, (k) >
if k> (s(k))? +4s(k) +2

where ay,; are given in an explicit form by (8).
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The 11-th Smarandache problem is a modification of the 9-th Proposition 4. The elements ay; of the infinite matrix A are
problem: described as follows:

Smarandache infinite numbers (I1I): itk < (s(k)) + 45(k) + 2, th
ifk<(s s , then

1111112111111 1, if 5(k) < il
11111 2 2 211111

1111228221111 api=1 2, if i) < 8(k) < Ji| +1 ;
1 1111 2 2 211111

1111112111111 5(k) — il +1, if 6(k) > |i| +2

1 1111 2 2 211111

1111 2 2 38 2 2 1 1 1 1

11122384 3822111 if k> (s(k))? + 4s(k) + 2, then

1111 2238221111 . ‘
1111122211111 1, if e(k) < il

1 11111 2111111

1111122211111 agi=1q 2 if |i| <e(k) =li|+1,
1 111 2 2 8 2 21111

1112238 43822111 e(k) =il +1, if e(k) > |i] +2

1 1 f Z ,Z é j f, 2 i f 1 1 Now, we introduce modifications of the above problems, giving
11112 2 % 2 921111 formulae for their (k,7)-th members ay ;.

11111 2 2 211111

111111 2111111

11111 2 2 211111

1111 2 2 38 2 21 1 11

111 2 2 38 4 3 2 2 1 11

11 22 3 4 5 4 38 2 211

1 2 2 3 4 5 6 5 4 3 2 21

11 22 3 4 5 4 38 2 211
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Proposition 9. The elements ay; of the infinite matrix A are

described as follows:

if k < (s(k))? + 4s(k) + 2, then

(18)

if 6(k) < 1]
if 6(k) > i

Ak =
(,1)50&')7\1‘\,

if k> (s(k))? + 4s(k) + 2, then
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Fifth, we will fill the interior of the squares with values 1 and -1

as in the next table:
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The following infinite matrix A is a generalization of all previous

schemes:
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where F'is an arbitrary arithmetic function such that the number

F(0) is defined.
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The elements of the following matrix A has alphabetical form:

(=)
(=]
(=]

COOCOCOOCOoOOCOoOOCOoCOoOOoCoOoooocoocoooo
O OO0 OO OO oo ocoococoo
QTR OO OCOoOOCO OO0 OoO0OCOCOCOCcoOoOoCcoococoCo
TN TR OO OO TR OO O OO OCO
QRO T OO0 T TR OO0 T OO0 OO
QLA TR O A0 TR T e O
QAHO A0 TS O AU T TR0 DY O D
DA T O TO /AN TO TN O e
O R0 T OO0 O T OO0 e OO0 OO
SO0 TR OO0 OO T OO0 O oo OoCocoCo
SIS N ~E el e llen el e Jlen e i < P e oo e Jen N Bl oo Je N o B o N o No Nl
CQ OCOCOoOCOoOOCOoOCOoOOoCOoOOoCooocoocoocoococoo
COOCOCO OO o oCcoocoococoo

Y

and they are described using (20) and (21), because we may put:
FO)=1LF(1)=bF2)=c,F(3)=d,F(4)=e¢

etc.

Of course, by analogy, we can construct different schemes, e.g.,
the schemes of Problems 12, 13 and 14 from [13], but the benefit of
these schemes is not clear.
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Essentially more interesting is Problem 103 from [13]:
Smarandache numerical carpet:
has the general form

1
1 a 1
1 a b a 1
1 a b ¢ b a 1
1 a b ¢ d ¢ b a 1
1 a b ¢c d e d ¢ b a 1
1 a b ¢ d e f e d c¢c b a 1
1 a b ¢c d e f g f e d c b a 1
1 a b ¢ d e f e d c¢c b a 1
1 a b ¢c d e d c¢c b a 1
1 a b ¢ d ¢ b a 1
1 a b ¢ b a 1
1 a b a 1
1 a 1
1

On the border of level 0, the elements are equal to “17;
they form a rhomb.

Nezxt, on the border of level 1, the elements are equal to “a”;
where “a” is the sum of all elements of the previous border;
the “a”s form a rhomb too inside the previous one.

Next again, on the border of level 2, the elements are equal to “b”;
where “b” is the sum of all elements of the previous border;
the “b”s form a rhomb too inside the previous one.

And so on ...
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The above square, that Smarandache named “rhomb”, corre-
sponds to the square from our construction for the case of s = 6, if
we begin to count from s = 1, instead of s = 0. In [13] a particular
solution of the Problem 103 is given, but there a complete solution
is not introduced. We will give a solution below firstly for the case
of Problem 103 and then for a more general case.

It can be easily seen that the number of the elements of the s-th
square side is s + 2 and therefore the number of the elements from
the countour of this square is just equal to 4s + 4.

The s-th square can be represented as a set of sub-squares, each
one included in the next. Let us number them inwards, so that
the outmost (boundary) square is the first one. As it is written in
Problem 103, all of its elements are equal to 1. Hence, the values of
the elements of the subsequent (second) square will be (using also
the notation from Problem 103):

a=a=(s+2)+(s+1)+(s+1)+s=4(s+1);
the values of the elements of the third square will be
ay=b=a(d(s—1)+4+1)=4(s+1)(4s +1);
the values of the elements of the fourth square will be
a3 =c=0b(4(s—2)+4+1)=4(s+1)(4s+ 1)(4s — 3);
the values of the elements of the fifth square will be
as=d=c(4(s—3)+4+1)=4(s+1)(4s+1)(4s — 3)(45 = 7);

etc., where the square, corresponding to the initial square (rhomb),
from Problem 103 has the form
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1
1 ai ay 1
1 a1 a2 . . . a a
1 a1 az ag a3 az a; 1
1 a a . . . a a 1
1 al ay 1
1

It can be proved by induction that the elements of this square
that stay on ¢-th place are given by the formula

t—2
ar=4(s+ 1) [](4s + 1 — 4).
i=0
If we would like to generalize the above problem, we can con-
struct, e.g., the following extension:

T
x ay ay x
x ay a . . . a al x
r ap as as . . . as a ay x
T ay ag . . . az ay x
T ay ay x
T

where z is a given number. Then we obtain
a; =4(s+1)x;

ag =4(s+1)(4s + 1)x;
a3 =4(s + 1)(4s + 1)(4s — 3)x;




ag =4(s+1)(4s + 1)(4s — 3)(4s — 7)z;
etc. and for ¢ > 1

t—2
ay=4(s + (][ (4s + 1 — i)z,
i=0

where it is assumed that
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3. ON THE 15-TH SMARANDACHE’S PROBLEM?®

The 15-th Smarandache’s problem from [13] is the following:
“Smarandache’s simple numbers:

2,3,4,5,6,7,8,9,10,11,13,14,15,17,19, 21, 22, 23,25, 26, 27,

29,31,33, ...

A number n is called “Smarandache’s simple number” if the product
of its proper divisors is less than or equal to n. Generally speaking,
n has the formn = p, orn = p?, orn = p*, or n = pq, where p and
q are distinct primes”.

Let us denote: by S - the sequence of all Smarandache’s simple
numbers and by s, - the n-th term of S; by P - the sequence of all
primes and by p, - the n-th term of P; by P? - the sequence {p2 }°2 ;;
by P? - the sequence {p3}32; by PQ - the sequence {p.q}pqep,
where p < q.

For an abitrary increasing sequence of natural numbers C' =
{¢n}22, we denote by m¢(n) the number of terms of C', which are
not greater that n. When n < ¢; we put m¢(n) = 0.

In the present section we find 7g(n) in an explicit form and using
this, we find the n-th term of S in explicit form, too.

First, we note that instead of mp(n) we use the well-known no-
tation 7(n).
Hence

mp2(n) = 7(v/n), mps(n) =m(Vn).

Thus, using the definition of S, we get
ms(n) = m(n) + 7(vn) + 7(V/n) + mpa(n). (1)

Our first aim is to express mg(n) in an explicit form. For m(n)
some explicit formulae are proposed in A2. Other explicit formulae

3The results in this section are taken from [34]
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for m(n) are given in [18]. One of them is known as Mind¢’s formula.
It is given below

W('L):i (kf}g)!wtl 7[(k;1)l]]. @)

k=2

Therefore, the problem for finding of explicit formulae for functions
m(n), m(y/n), 7(/n) is solved successfully. It remains only to express
mpo(n) in an explicit form.

Let k € {1,2,...,7(v/n)} be fixed. We consider all numbers of
the kind py.q, with ¢ € P, ¢ > py, for which py.q < n. The quantity
of these numbers is m(;) — (p), or which is the same

n

w(—) — k. 3

( pk) 3)

When k = 1,2,...,7(y/n), the numbers py.q, as defined above,

describe all numbers of the kind p.¢, with p,q € P,p < ¢,p.q < n.
But the quantity of the last numbers is equal to mpg(n). Hence

w(vn) n
mpo(n) = Y (n(—-) — k). (4)
=1 Pk
because of (3). The equality (4), after a simple computation yields
the formula

w(v/n)
n 7(vn).(m(y/n) +1
mpo(n) = Z W(i) — % (5)
=1 Pk
In A5 the identity
x(b) w(5)-m(%)
n n n
m(—) =m(5).m(b) + ™ (6)
k=1 Pk b k=1 Pr(3)+k

is proved, under the condition b > 2 (b is a real number). When
7(%) = m(%}), the right hand-side of (6) is reduced to ﬂ(%).‘n‘(b). In
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the case b = y/n and n > 4 equality (6) yields
n(v/m) ) w(5)—m(v/n)
o P Pt Pr(viy+k

If we compare (5) with (7) we obtain for n > 4

BT (V0 NG 0 Bt VB =
po(n) = 2 + k; G ®

Thus, we have two different explicit representations for mpg(n).
These are formulae (5) and (8). We note that the right hand-side
of (8) reduces to w when 7(§) = (y/n).

Finally, we observe that (1) gives an explicit representation for
mg(n), since we may use formula (2) for m(n) (or other explicit
formulae for 7(n)) and (5), or (8) for mpg(n).

The following assertion solves the problem for finding of the ex-
plicit representation of s,.
Theorem. The n-th term s, of S admits the following three differ-
ent explicit representations:

6(n)

1

Sp = TN b 9
i )

o(n)
=2 (-2 Wy, (10)

k=0
B 11
gfl - Z TrS(k) K ( )

where
l, n=1,2,.. (12)
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Remark. We note that (9)—(11) are representations using, re-
spectively, “floor function”, “Riemann’s Zeta-function and Euler’s
Gamma-function. Also, we note that in (9)—(11) ms(k) is given by
(1), m(k) is given by (2) (or by others formulae like (2)) and mpg(n)
is given by (5), or by (8). Therefore, formulae (9)—(11) are explicit.
Proof of the Theorem. In A2 the following three universal for-
mulae are proposed, using ¢ (k) (k = 0,1,...), each one of them
could apply to represent ¢,. They are the following

> 1
Cn = 2[7]7 (13)
k=0 14 [7‘—0751‘)]
o)
mo(k)
oy = —2 ) : 14
=23 (A" (1)
(=3 — (15)
Sora - (et
In [16] is shown that the inequality
pn<0(n), n=1,2,..., (16)
holds. Hence
sp <0(n),n=1,2,.., (17)
since we have obviously
Sn <pp, n=1,2,.... (18)

Then, to prove the Theorem it remains only to apply (13)—(15) in
the case C' = S, ie., for ¢, = sy, putting there mg(k) instead of
mc(k) and 6(n) instead of oo.
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4. ON THE 17-TH SMARANDACHE’S PROBLEM*

The 17-th problem from [13] (see also the 22-nd problem from
[24]) is the following:

Smarandache’s digital products:

0,2,4,6,8,19,12,14,16,18,0,3,6,9, 12, 15,18, 21, 24, 27,

0,4,8,12,16, 20, 24, 28, 32, 36, 0,5, 10, 15, 20, 25...

(dy(n) is the product of digits.)

Let the fixed natural number n have the form n = ajas...ag,
where ay,ag, ...,a € {0,1,...,9} and a; > 1. Therefore,

k
n= Z a; 10771
i=1

Hence, k = [log;yn] + 1 and

ai(n) =a; = [I(V”L_l]

_ n—a;10F1
az(n) = az = [~ 51
.- a110F~1 — qp10F2
az(n) = a3z =| 1073 1,
- 7L7a110""’1 — o —ap_o10?
Aflog,, n](n) =0ak-1 = [ 10 ]«,

“The results in this section are taken from [7]
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— k—1
Alog,ynj+1(N) = ap =n —a110" " — ... — aj_110.
Obviously, k, a1, aq, ..., a;, are functions only of n. Therefore,

[logyo n]+1

dy(n) = H a;(n).

i=1
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5. ON THE 20-TH AND THE 21-ST
SMARANDACHE’S PROBLEMS®

The 20-th problem from [13] is the following (see also Problem
25 from [24]):
Smarandache divisor products:

1,2,3,8,5,36,7,64,27,100,11,1728,13, 196, 225, 1024, 17, 5832, 19,
8000, 441,484, 23, 331776, 125,676, 729, 21952, 29, 810000, 31, 32768,
1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, ...

(Py(n) is the product of all positive divisors of n.)

The 21-st problem from [13] is the following (see also Problem
26 from [24]:
Smarandache proper divisor products:

1,1,1,2,1,6,1,8,3,10, 1,144, 1, 14,15, 64, 1, 324, 1,400, 21,22, 1,
13824, 5,26, 27,784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39,

64000, 1, ...

(pa(n) is the product of all positive divisors of n but n.)
Let us denote by 7(n) the number of all divisors of n. It is
well-known (see, e.g., [17]) that

Py(n) = Vnr®) 1)

and of course, we have

Pd(n) . (2>

But (1) is not a good formula for Py(n), because it depends on
function 7 and to express 7(n) we need the prime number factoriza-
tion of n.

pd(”) =

5The results in this section are taken from [5, 40]. In [5] there are some
misprints.
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Below, we give other representations of Py(n) and pg(n), which Proposition 3. For n > 1 representation
do not use the prime number factorization of n.

Proposition 1. For n > 1 representation " [%]‘
Paw) = [T 21 (©)
" ny_jn=1 k=1 [ k ]
Pd(n) = H k[ I (3)
k=1 holds, where here and further we assume that 0! = 1.
Proof. Obviously, we have
holds.
Proof. We have n on—1 al %o ifkis a divisor of n
O(n, k) =[] =[] L
k k [n — l]] .
- 1,  otherwise
1, if k is a divisor of n
= (4) Hence
0, otherwise n [%]; n
I % =11 =11k = Paln),
Therefore, ., k=1 [n 13 1]1 k/n k k/n
[R-[24 = -
kl:[l ket = ]!_[ k= Pa(n) since, if k describes all divisors of n, then % describes them, too.
" Now (2) and (6) yield.
and Proposition 1 is proved. Proposition 4. For n > 2 representation
Here and further the symbols
el
J[eand > e pa(n) = ] 1) (7)
k/n k/n k=2 ko
holds.

mean the product and the sum, respectively, of all divisors of n. ) i ) i )
The following assertion is obtained as a corollary of (2) and (3). Another type of representation of pg(n) is the following
Proposition 2. For n > 1 representation Proposition 5. For n > 3 representation

n—1 n—2
pa(n) = H LRI (5) paln) = H (R1)0(nb)=00nk1) (8)
k=1 k=1
holds. where 6(n, k) is given by (4).
For n =1 we have Proof. Let

pa(l) = 1. r(n,k) =60(n,k) —0(n,k+1).
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The assertion holds from the fact, that
1, if k is a divisor of n and
k+ 1 is not a divisor of n
r(n,k) =4 —1, if kis not a divisor of n and
k+ 1 is a divisor of n
0, otherwise
Further, we need the following
Theorem.% For n > 2 the identity
= TT e B
I = Nl —leT
T10G =TT ©)
k=2 k=1

holds.
Proof. By induction. For n = 2 (9) is true. Let us assume, that
(9) holds for some n > 2. Then we must prove that

n+1 n
H[”zl]g - H(M)[%’]*[J{] (10)
k=2 k=1

holds, too.
Dividing (10) by (9) we obtain

[

k=2 E

[TL+ 1] n—1
H k}' r(n+1k (11)
k=1

Sinse, for k=n+1

[n+1
k

=1

and for k = n
n+1 n+1
- =

SThe Theorem is published in [35]
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Then (10) is true, if and only if (11) is true. Therefore, we must
prove (11) for proving of the Theorem.

From (7), the left hand-side of (11) is equal to pg(n + 1). From
(8), the right side of (11) is equal to p4(n+ 1), too. Thetrefore, (11)
is true.

Now, we shall deduce some formulae for

[1 Pa(k) and ] pa(k)
k=1 k=1

Proposition 6. Let f be an arbitrary arithmetic function. Then
the identity

n

TT(Pa(k)/® = T ket (12)

k=1 k=1

holds, where
[%]

=" f(ks).
s=1

Proof. We use a well-known Dirichlet’s identity

Do fR)-D gty =D g(k). > f(ks),

k<n t/k k<n s<p

where g is also arbitrary arithmetic function. Putting there g(z) =
Inz for every real positive number x, we obtain (12), since

=1t
t/k

When f(z) =1, as a corollary from (12) we obtain
Proposition 7. For n > 1 the identity

f[ Py(k H kL&) (13)
k=1

holds.
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Now, we need the following holds.
Lemma. For n > 1 the identity As a corollary from (17) we obtain, because of (2)
" n Proposition 11. For n > 1 the identity
7 : n
H Z =11 Ak (14)
k=1 k=1

l‘n[ Py(k) = ﬁ(k!)[ﬂ*[kil] (18)

holds.

Proof. In the identity holds.
Now, we return to (12) and suppose that

D f(R). D gs) Zﬂ»)z/‘ -
F0 >0 (k=1,2,..),
Then after some simple computations we obtain

that is valid for arbitrary two arithmetic functions f and g, we put: Proposition 12. For n > 1 representation

glz) =1, n
4 =[] kotmP (19)
f(z) =z k=1

for any positive real number x and (14) is proved. holds, where

From (13) and (14) we obtain
Proposition 8. For n > 1 the identity 2]

1 R = 112 (15) - -
(k) = -! o(n, k) =
k=1 il . 8) f()
holds. For n > 2 representation
As a corollary from (2) and (15), we also obtain 1l
Proposition 9. For n > 2 the identity pa(n) = H .o (k) (20)
k=1

n n
n )
H pa(k) = H [z]' (16) holds.
k=1 k=2 Note that although f is an arbitrary arithmetic function, the
holds. situation with (19) and (20) is like the case f(x) =1, because
Fom (9) and (16), we obtain
Proposition 10. For n > 2 the identity

n—1

k
ks)— X% ks
n—1 1 J(ks) s=1 f(ks) { 1, if k is a divisor of n

HmngwﬁH&J (17) o =

Il 471

s

0, otherwise




Finally, we use (12) to obtain some new inequalities, involving
Py(k) and pgy(k) for k=1,2,...,n.

Putting
n
=Y fk)
k=1
we rewrite (12) as
[T (Puk)) H KEE /), (21)

k=1 k=1

Then we use the well-known Jensen’s inequality

n
Z apTE >
k=1

7Ok
Ty

—=

k

1
that is valid for arbitrary positive numbers g, o (k= 1,2,...,n)
such that
n

> k=

k=1
for the case:

= Py(k),
f(k)

ak—%.

Thus we obtain from (21) inequality

F(R).Pa(k) > (ﬁj F(k)). H KB (D 76 (99)

1 k=1 k=1

M=

=~
I

If f(x) =1 then (22) yields the inequality

7213,, >H” V)lE, (23)
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If we put in (22)

N 9k)
f) ===

for k =1,2,...,n, then we obtain

" gk L. 1] g(ks) n g(s)
Za palh) > (3 29 TLREE SEL D, (20

because of (2).
Let g(z) = 1. Then (24) yields the very interesting inequality

?-

Zpd (k)Hn > H f) !

’Il k? 1
where H,, denotes the m-th partial sum of the harmonic series, i.e.,

1 1 1
H,=-+-+..4+—.
m=7 + D) +...+ o

All of the above inequalities become equalities if and only if
n=1.




6. ON THE 25-TH AND THE 26-TH
SMARANDACHE’S PROBLEMS’

The 25-th and the 26-th problems from [13] (see also the 30-th
and the 31-st problems from [24]) are the following:

Smarandache’s cube free sieve:
2,3,4,5,6,7,9,10,11,12,13,14, 15,17, 18, 19, 20, 21, 22, 23, 25, 26,

28,29,30,31, 33, 34, 35, 36, 37, 38, 39,41, 42,43, 44,45, 46, 47,49, 50,
51,52,53,55,57, 58,59, 60,61, 62,63, 65, 66,67,68,69,70,71,73, ...

Definition: from the set of natural numbers (except 0 and 1):
~ take off all multiples of 2 (i.e. 8,16,24,52,40,...)
~ take off all multiples of 33
~ take off all multiples of 5°

. and so on (take off all multiples of all cubic primes).
(One obtains all cube free numbers.)

Smarandache’s m-power free sieve:

Definition: from the set of natural numbers (except 0 and 1) take
off all multiples of 2™, afterwards all multiples of 3™ ... and so on
(take off all multiples of all m-power primes, m > 2).

(One obtains all m-power free numbers.)

Here we introduce the solutions for both of these problems.
For every natural number m we denote the increasing sequence

(m) (m) i ai(;m)

ay ’,ay , ... of all m-power free numbers by 7. Then we have

p=1c2.c(m-1)cmcC(m+1)C..

"The results in this section are taken from [41]
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Also, for m > 2 we have

where B B
@)F ={x| 3z, ..,z € 2)(x = 21.29. ... 11)}
for each natural number k > 1.

B Let us consider 7 as an infinite sequence for m = 2,3, .... Then
2 is a subsequence of . Therefore, the inequality

i < P

holds for n =1,2,3,....

Let pr = 2,p2 = 3,p3 = 5,p4 = 7,... be the sequence of all
primes. It is obvious that this sequence is a subsequence of 2. Hence,
the inequality

af?) <py,
holds for n = 1,2, 3, .... But it is well-known that

7L2 n
pu < 0n) = [0 1)

(see [16]). Therefore, for any m > 2 and n = 1,2, 3,... we have
a™ < al) < 6(n).
Hence, there exists A(n) such that A(n) < 6(n) and inequality:
o™ < o < A(n) 2)

holds. In particular, it is possible to use 6(n) instead of A(n).
Further, we will find an explicit formula for a(nm) when m > 2 is
fixed.
Let for any real x

1, >0
9@ =10, z<0-
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We define Lk
, kem
em(k) = { 0, k¢m
Hence,
Tm(n) = Z em(k), (3)
k=2

where 75(n) is the number of terms of set 7, which are not greater
than n. Using the relation

m—1
) =soC T1 (o)
plk
p is prime

we rewrite (3) in the explicit form

mn) =Y o 1 (). @)
= plk "
p is prime

Then, using formulae (1’)-(3’) from A4 (that are the universal
formulae for the n-th term of an arbitrary increasing sequence of
natural numbers) and (2), with A(n) from (2), we obtain

A(n) 1
ag,m) = Z Ti) ; (5)
k=0 1+[ m ]
(a representation using “floor function”),

A(n)

m) ) Z C

(a representation using Riemann’s Zeta-function),

27 ©

m _ 1
anm = _ 7
Igl ra- [mL(k)]) (7)

n
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(a representation using Euler’s Gamma-function).

Note that (5)—(7) are explicit formulae, because of (4) and these
formulae are valid, too, if we put 6(n) instead of A(n).

Thus, the 26-th Smarandache’s problem is solved and for m = 3
the 25-th Smarandache’s problem is solved, too.

For m = 2 we have the representation

ea(k) = (k)]

(here g is the Mobius function);

. 2w(k)
(k)| = [%]»
where w(k) denotes the number of all different prime divisors of k
and
=>1
d|k
Hence,
Zw(k)
/1 = .

The following problems are interesting.
Problem 1. Does there exist a constant C' > 1, such that A\(n) <
C.n?
Problem 2. Is C <27

Below we give the main explicit representation of function 7w (n),
that takes part in formulae (5)—(7). In this way we find the main

explicit representation for a(m) that is based on formulae (5)—(7),
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too.
Theorem. Function 77;(n) allows representation

Tm(n) =n—1+ 3 (—1)°0) [, (8)
s€2N{2,3,...,[ V/n]}
Proof. First, we shall note that the variable s from the sum in
the right hand-side of (8) is element of the set of only these natu-
ral numbers, smaller than [’"ﬁ] such that s € 2, i.e., the natural
numbers s such that u(s) #

Let {b(m) oo_1 be the sequence defined by
b<m) =1, b™ = a ) for n > 2. 9)

We denote this sequence by m*.
Let 7,+(n) denote the number of terms of m*, that are not
greater than n. Then we have the relation

Tm(n) = mmx(n) — 1, (10)
because of (9).
Let g(™ (k) be the function given by

g ={ g K gme (1)

Then ¢(™ (k) is a multiplicative function with respect to k, i.e.,
g™ (1) = 1 and for every two natural numbers a and b, such that
(a,b) = 1, the relation

9" (a.b) = g (a).g"™ (b)

holds.
Let function f™ (k) be introduced by

f(/n Z /t g(m) (12)

d/k
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Using (12) for k = p®, where p is an arbitrary prime and « is an
arbitrary natural number, we obtain

JO ) = g™ (p*) — g™ ().

Hence,
0, a<m
Fm ) = { -1, a=m,
0, a>m

because of (11).
Therefore, f(™ (1) = 1 and for k > 2 we have

(_1)W(5)7 ifk=s"and s €2

(M) () —
Frk) = { 0, otherwise ’ (13)

since f (m)(k) is a multiplicative function with respect to k, because
of (12).

Using the Mobius inversion formula, equality (12) yields

=" 1. (14)

d/k

Now, we use (14) and the representation

Tm=(n) Zg(’” (15)
in order to obtain
T (0 Z ST ™). (16)
k=1d/k

Then both (16) and the identity

n

f: Z f('m Z m) (17)

k=1d/k k=1
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both yield
T () = 3 £ (k). (18)
k=1

From (13) and (18) we obtain (8), because of (10) and the fact
that f(™(1) = 1. The Theorem is proved.

Finally, we note that some of authors call function (—1)“(*) uni-
tary analogue of the Mobius function s (s) and denote this function
by 1*(s) (see [11, 19]). So, if we agree to use the last notation, we
may rewrite formula (8) in the form

. n
Tm(n) =n — 1+ > W (5)[7”]
S€2N{2,3,....[ W]} -
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7. ON THE 28-TH SMARANDACHE’S PROBLEM?®

The 28-th problem from [13] (see also the 94-th problem from
[24]) is the following:

Smarandache odd sieve:
7,13,19,23,25,31, 33,37, 43,47,49, 53, 55,61, 63,67, 73,75, 83,

85,91, 93,97, ...

(All odd numbers that are not equal to the difference of two primes).
A sieve is used to get this sequence:

- substract 2 from all prime numbers and obtain a temporary se-
quence;

- choose all odd numbers that do not belong to the temporary one.

We find an explicit form of the n-th term of the above sequence,
that will be denoted by C = {C,}52; below. Let mc(n) be the
number of ‘he terms of C' which are not greater than n. In particular,
mc(0) = 0.

Firstly, we shall note that the above definition of C' can be inter-
preted to the following equivalent form as follows, having in mind
that every odd number is a difference of two prime numbers if and
only if it is a difference of a prime number and 2:

Smarandache’s odd sieve contains exaclty these odd numbers
that cannot be represented as a difference of a prime number and 2.

We can rewrite the last definition to the following equivalent
form, too:

Smarandache’s odd sieve contains exaclty these odd numbers
that are represented as a difference of a composite odd number and
2.

We shall find an explicit form of the n-th term of the above se-
quence, using the third definition of it. Initially, we shall prove the

8The results in this section are taken from [37]
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following two Lemmas.
Lemma 1. For every natural number n > 1, C,,4; is exactly one of
the numbers: u=Cp, +2, v=C, +4 or w=C), + 6.
Proof. Let us assume that none of the numbers u, v, w coincides
with Cj4+1. Having in mind the third form of the above definition,
number v is composite and by assumption u is not a member of
sequence C. Therefore v, according to the third form of the defi-
nition is a prime number and by assumption it is not a member of
sequence C. Finally, w, according to the third form of the definition
is a prime number and by assumption it is not a member of sequence
C'. Therefore, according to the third form of the definition number
w + 2 is prime.

Hence, from our assumptions we obtained that all of the numbers
v, w and w+2 are prime, which is impossible, because these numbers
are consecutive odd numbers and having in mind that v = C),, + 4
and C] = 7, the smallest of them satisfies the inequality v > 11.
Corollary. For every natural number n > 1:

Cn,+1 <Cp,+6. (l)
Lemma 2. For every natural number n > 1:
C, <6n+1. (2)

Proof. We use induction. For n = 1 obviously we have the equality.
Let us assume that (2) holds for some n. We shall prove that

Cpy1 <6(n+1)+1. (3)
By (1) and the induction assumption it follows that
Chy1 <Cp+6<(6n+1)+6=6(n+1)+1,
which proves (3).
Now, we return to the Smarandache’s problem.

Let m¢(N) be the number of the members of the sequence
{C},}°2, that are not greater than N. In particular, 7 (0) = 0.
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In A2 the following three universal explicit formulae are intro-
duced, using numbers wc (k) (k = 0,1,2,...), that can be used to
represent numbers Cy,:

ad 1
Cp = 4
g[u [“’75’”1} (4)
Com—2.3¢(-2 [”‘;Ek)h, ()
k=0
1

For the present case, having in mind (2), we substitute symbol

oo
oo with 6n + 1 in sum X for C),, and we obtain the following
k=0
sums:
6n+1 1

Cn = —F, 7
> ey @

6n+1 770(]‘5)

Cn=-2.> ((-2]
k=0

D, (8)

n
6n+1
Co=)Y — . 9)

= v - (1)

—_

We must show why 7¢(n) (n = 1,2,3,...) is represented in an
explicit form. It can be directly seen that the number of the odd
numbers, that are not bigger than n, is exactly equal to

a(n) =n—[3], (10)

because the number of the even numbers that are not greater that
n is exactly equal to [%].
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Let us denote by 3(n) the number of all odd numbers not bigger
that n, that can be represented as a difference of two primes. Ac-
cording the second form of the above given definition, 5(n) coincides
with the number of all odd numbers m such that m < n and m has
the form m = p — 2, where p is an odd prime number. Therefore,
we must study all odd prime numbers, because of the inequality
m < n. The number of these prime numbers is exactly ﬂ'(n + 2) —1.
Therefore,

B(n) =n(n+2)—1. (11)

Omitting from the number of all odd numbers that are not
greater than n the quantity of those numbers that are a difference of
two primes, we find exactly the quantity of these odd numbers that
are not greater than n and that are not a difference of two prime
numbers, i.e., mc(n). Therefore, the equality

mo(n) = a(n) = B(n)
holds and from (10) and (11) we obtain:
me(n) = (n =[5

S = @m+2) —1)=n+1- [%]) —r(n+2),

where 7(m) is the number of primes p such that p < m. But 7(n+2)
can be represented in an explicit form, e.g., by Mind¢’s formula (see
A2):

n+2
E—1)+1 kE—1)!
wnt2)= Y EEDEL DYy
k=2
and therefore, we obtain that the explicit form of 7o (V) is
N, T (k-DI+1 (k1)
ro() = N1 [ DL (2Dl )

k=2

where N > 1 is a fixed natural number.
It is possible to put [#] instead of N 4+ 1 — [%] into (12).
Now, using each of the formulae (7) — (9), we obtain C), in an
explicit form, using (12).
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It can be checked directly that
Ci1=7 Co=13, C3=19, C4y =23, C5 =25, C5 =31,
Cr =33, ...
and
mc(0) = (1) = mc(2) = ¢ (3) = mc(4) = mc(5) = mc(6) = 0.

Therefore from (7)—(9) we have the following explicit formulae
for C,,

6n+1 1
Cn =7+ 1\
= EE0N
Cp=T7-2. 6§1C(—2.[WCT<I€)])~,
k=T
6n+1 1

CVL:7 - N
> r(1 - [Ttk

where ¢ (k) is given by (12).
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8. ON THE 46-TH SMARANDACHE’S PROBLEM*

The 46-th Smarandache’s problem from [13] is the following:

Smarandache’s prime additive complements:
1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,5,4, 3,2, 1,

0,1,0,5,4,3,2,1,0,3,2,1,0,5,4,3,2,1,0, ...
(For each n to find the smallest k such that n + k is prime.)

Remark: Smarandache asked if it is possible to get as large as we
want but finite decreasing k, k—1, k—2,...,2,1,0 (odd k) sequence
included in the previous sequence — i.e., for any even integer are
there two primes those difference is equal to it? He conjectured the
answer is negative.

Obviously, the members of the above sequence are differences
between first prime number that is greater or equal to the current
natural number n and the same n. It is well-known that the number
of primes smaller than or equal to n is w(n). Therefore, the prime
number smaller than or equal to nis py(,). Hence, the prime number
that is greater than or equal to n is the next prime number, i.e.,
Pr(n)+1- Finally, the n-th member of the above sequence will be
equal to

{ Pr(n)+1 — 7T, if nis not a prime number

, otherwise

We shall note that in [4] the following new formula p,, for every
natural number n is given:

0(n)

Pa = sg(n—m()),

i=0

9The results in this section are taken from [8, 39
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2
where 6(n) = [%m] (for (n) see A2) and
sg(x) =

0, ifz<0
1, ifxz>0"

Let us denote by a, the n-th term of the above sequence. Next,
we propose a way for obtaining an explicit formula for a, (n =
1,2,3,...). Extending the below results, we give an answer to the
Smarandache’s question from his own Remark in [13]. At the end,
we propose a generalization of Problem 46 and present a proof of
an assertion related to Smarandache’s conjecture for Problem 46.
Proposition 1. a, admits the representation

an = Pr(n—1)+1 — 1% (1)

where n = 1,2,3, ..., m is the prime counting function and py, is the
k-th term of prime number sequence.
The proof is a matter of direct check.
It is clear that (1) gives an explicit representation for a, since
several explicit formulae for 7(k) and pj are known (see, e.g. [18]).
Let us define
n(m) = m! +2.

Then all numbers
n(m),n(m) +1,n(m) +2,...,n(m) +m — 2
are composite. Hence
An(m) >m—1L

This proves Smarandache’s conjecture, since m may grow up to
infinity. Therefore {a,}22; is unbounded sequence.
Now, we shall generalize Problem 46.
Let
C=c1,02,03...

be a strictly increasing sequence of positive integers.
Definition. Sequence

b= b],bz, b3,
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is called c-additive complement of c if and only if b, is the smallest
non-negative integer, such that n + b, is a term of c.

The following assertion generalizes Proposition 1.
Proposition 2. b, admits the representation

by, = Cre(n—-1)+1 — T (2)

where n = 1,2,3, ..., m.(n) is the counting function of c, i.e., 7.(n)
equals to the quantity of ¢,,, m = 1,2,3, ..., such that ¢, <n.
We omit the proof since it is again a matter of direct check.
Let
dp =cpr1— e (n=1,2,3,...).

The following assertion is related to Smarandache’s conjecture
from Problem 46.
Proposition 3. If {d,}>2; is unbounded sequence, then {b,}>2;
is unbounded sequence, too.
Proof. Let {d,}>2; be unbounded sequence. Then there exists a
strictly increasing sequence of natural numbers {n;}72,, such that
sequence {dy, }32, is strictly increasing, too.. Hence {d,}52, is
unbounded sequence, since it contains a strictly increasing sequence
of positive integers.
Open Problem. Formulate necessary conditions for the sequence
{bn}22; to be unbounded.
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9. ON THE 78-TH SMARANDACHE’S PROBLEM!

Solving of the Diophantine equation

222 - 32 =5 (1)

222 -3 —5=0

was put as an open Problem 78 by F. Smarandache in [24]. Be-
low this problem is solved completely. Also, we consider here the
Diophantive equation

12— 6m? = -5, (2)

2—6m?*+5=0

and the Pellian equation

u? —60° =1, (3)

u? =602 —1=0.

Here we use variables = and y only for equation (1) and [, m for
equation (2).

If
F(t,w)=0
is an Diophantive equation, then:
(a1) we use the notation < ¢,w > if and only if ¢ and w are

integers which satisfy this equation.
(a2) we use the denotation < ¢,w >€ N? if and only if ¢ and w are
positive integers;

K (t,w) denotes the set of all < t,w >;

*The results in this section are taken from [36]
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K°(t,w) denotes the set of all < t,w >€ N?;

K'(t,w) = K°(t,w) — {< 2,1 >}.
Lemma 1. If < t,w >€ N? and < z,y >#< 2,1 >, then there
exists < [,m >, such that < [,m >€ N? and the equalities

r=I0+3mand y=1+2m (4)

hold.
Lemma 2. Let < I,m >€ N2 If  and y are given by (1), then =
and y satisfy (4) and < z,y >€ N2,

Note that Lemmas 1 and 2 show that the map ¢ : K°(I,m) —
K'(z,y) given by (4) is a bijection.
Proof of Lemma 1. Let < x,y >€ A be chosen arbitrarily, but
<,y >#<2,1>. Then y > 2 and = > y. Therefore,

r=y+m (5)
and m is a positive integer. Substituting (5) into (1), we obtain
y? —dmy + 5 —2m?* = 0. (6)

Hence

y=yi2=2m=V6m?—5. (7)

For m =1 (7) yields only
y=uy =3

indeed
l=y=y2<2

contradicts to y > 2.
Let m > 1. Then

2m — V6m?2 — 5 < 0.
Therefore y = ys is impossible again. Thus we always have

y =y =2m+ V6m? -5 (8)
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Hence

y—2m = V6m?—5. 9)

The left hand-side of (9) is a positive integer. Therefore, there
exists a positive integer / such that

6m? —5 =12

Hence [ and m satisfy (2) and < [,m >€ N2.
The equalities (4) hold because of (5) and (8).
Proof of Lemma 2. Let < [,m > N?. Then we check the
equality
2(1+3m)? — 3(1 +2m)* = 5,

under the assumption of validity of (2) and the Lemma is proved.
Theorem 108 a, Theorem 109 and Theorem 110 from [17] imply

the following

Theorem 1. There exist sets K;(I,m) such that

Ki(l,m) C K(l,m) (i=1,2),
Ki(l,m)N Ks(l,m) =0,
and K (I,m) admits the representation
K(l,m) = Ki(l,m) U Ks(l,m).
The fundamental solution of K (I,m) is < —1,1 > and the fun-
damental solution of K(l,m) is < 1,1 >.
Moreover, if < u,v > runs K (u,v), then:
(b1) <l,m > runs K;(I,m) if and only if the equality
1+mvV6 = (—1+ V6)(u-+vV6) (10)

holds;
(b2) < 1,m > runs Ks(l,m) if and only if the equality

I+mV6 = (14 V6)(u+vV6) (11)
holds.
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Note that the fundamental solution of (3) is < 5,2 >. Let u,
and vy, be given by

Uy + V6 = (54+2V6)" (neN. (12)

Then u,, and v, satisfy (11) and < wuy,,v, >€ N?. Moreover, if n
runs N, then < uy,, v, > runs K°(u,v).
Let the sets K2(I,m) (i = 1,2) be introduced by

K2(I,m) = Ki(l,m) N N2, (13)

From the above remark and Theorem 1 we obtain
Theorem 2. The set K°(l,m) may be represented as

K°(l,m) = K{(I,m) U K3(I,m), (14)

where
KP(l,m) N KS(l,m) = 0. (15)

Moreover:
(c1) If n runs NV and the integers /,, and m,, are defined by

I +mpV6 = (=1 4+ V6)(5 + 2V6)", (16)

then [, and m,, satisfy (2) and < l,,, m,, > runs K{(l,m);
(c2) If n runs N'U {0} and the integers I, and m,, are defined by

ln + mn\/é =1+ \/6)(5 + 2\/6)717 (17)

then [, and m,, satisfy (2) and < l,,, m,, > runs K3(I,m).
Let ¢ be the above mentioned bijection. The sets K/°(z,y) (i =
1,2) are introduced by

KP(2.y) = p(KS (L m)). (18)

From Theorem 2, and especially from (14), (15), and (18) we
obtain the next result.
Theorem 3. The set K'°(x,y) admits the representation

K"(x,y) = K{(z,y) U K3(2,y), (19)
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where
K{(z,y) N K3(z,y) = 0. (20)

Moreover:
(d1) If n runs A and the integers z;, and y,, are defined by

T =l + 3my, and y, = I, + 2my, (21)

where l,, and m,, are introduced by (16), then z,, and y,, satisfy
(1) and < xp,yn > runs K{(x,y);

(d2) If n runs N'U{0} and the integers z,, and ¥, are defined again
by (21), but I, and m, now are introduced by (17), then z,
and y, satisfy (1) and < zy,, y,, > runs K3(z,y).

Theorem 3 completely solves F. Smarandache’s Problem 78 from

[24], because I, and m,, could be expressed in explicit form using

(16) or (17) as well.

* *

Below we introduce a generalization of Smarandache’s problem
78 from [24].
If we consider the Diophantine equation

22% = 3y* = p, (22)

where p # 2 is a prime number, then using [17], Chapter VII, ex-
ercize 2 and the same method as in the case of (1), we obtain the
following result.
Theorem 4. (1) The necessary and sufficient condition for solv-
ability of (22) is:

p=>5(mod24) or p=23(mod24) (23);

(2) If (23) is valid, then there exists exactly one
solution < x,y >€ N? of (22) such that the inequalities

r < §
VaP




T

<\l3

1 .

Yy 3 P

hold. Every other solution < xr,y >€ N2 of (22) has the form:

z=10+3m
y=1+2m,
where < [, >€ N? is a solution of the Diophantine equation
?2—6m?= —p.

The problem how to solve the Diophantine equation, a special
case of which is the above one, is considered in Theorem 110 from

[17].
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10. ON FOUR SMARANDACHE’S PROBLEMS!!

In [21, 25] F. Smarandache formulates the following four prob-
lems:
Problem 1. Let p be an integer > 3. Then:
p is prime if and only if
—1
(mod p). (1)

Problem 2. Let p be an integer > 4. Then:

(p — 3)! is congruent to P

p is prime if and only if
, 1
(p —4)! is congruent to (—1)I51+1 [‘I%W (mod p). (2)
Problem 3. Let p be an integer > 5. Then:
p is prime if and only if

r2—1

(p —5)! is congruent to rh + (mod p), (3)

with h = (2%] and r = p — 24h.

Problem 4. Let p = (k—1)!h+1 be a positive integer k > 5, h
natural number. Then:
p is prime if and only if
(p — k)! is congruent to (—1)*h(mod p), (4)
with t = h+ [§]+1.

Everywhere above [z] means the inferior integer part of z, i.e.,
the smallest integer greater than or equal to x.

" The results in this section are taken from [10]
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Here we shall discuss these four problems.
Problem 1. admits the following representation:
Let p > 3 be an odd number. Then:
-1
p is prime if and only if (p — 3)! = pT(mod D). (1)

First, we assume that p is a composite number. Therefore, p > 9.
For p there are two possibilities:

(a)p= pjt, where p; are different prime numbers and a; > 1

=p

i

are natural numbers (1 <i < s);
(b) p = ¢*, where ¢ is a prime number and k > 2 is a natural
number.

Let (a) hold. Then there exist odd numbers a and b such that

2<a<b<§; (a,b) =1; ab=np.

The case when ¢ = 2 and b = g is impossible, because p is an
odd number. Hence a and b are two different multipliers of (p — 3)!
because g < p — 3. Therefore, the number a.b = p divides (p — 3)!,
ie.,
(p—3)! = 0(mod p).

Hence in case (a) the congruence in the right hand-side of (1’) is
impossible.

Let (b) hold. Then ¢ > 3 and we have to consider only two
different cases:
(b1) k> 3;
(be) k=2.

Let (b1) hold. Then

3<qg<ql<q¢*-3=p-3.

Hence g and ¢*~! are two different multipliers of (p—3)!. Therefore,
the number ¢.¢*~! = ¢* = p divides (p — 3)!, i.e.,

(p—3)! = 0(mod p).
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Hence in case (by) the congruence in the right hand-side of (1’) is
impossible.
Let (bz) hold. Then
p73:q27322q.
Hence ¢ and 2q are two different multipliers of (p — 3)!. Therefore,
the number ¢? = p divides (p — 3)!, i.e.,

(p —3)! = 0(mod p).

Hence in case (b2) the congruence in the right hand-side of (1’) is
also impossible.

Thus we conclude that if p > 1 is an odd composite number,
then the congruence

(p—3)= p%l(mod p)

is impossible.
Let p > 3 be prime. In this case we shall prove the above
congruence using the well-known Wilson’s Theorem (see, e.g. [17]):

p is prime if and only if (p — 1)! = —1(mod p). (5)
If we rewrite the congruence from (5) in the form
(p—1)(p—2)(p—3)! =p— 1(mod p)

and using that

(p—2) = —2(mod p)
and

(p—1) = —1(mod p)

we obtain
2(p —3)! = p — 1(mod p).

Hence the congruence

(v 3) =25 (mod p)
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is proved, i.e., Problem 1 is solved.

Problem 2. is false, because, for example, if p = 7, then (2)
obtains the form
6 = (—1)%2(mod 7),

where
6=(7—4)
and 8
(-1'2 = (DT,
ie.

6 = 2(mod 7),

which is impossible.

Problem 3. can be modified, having in mind that from r =
p — 24h it follows:

r2—1 p? — 48ph + 242K — 1

rh+ 2 —(p—24h).h+#
pr—1 . 21

—ph—24p?+ 2 . —oph 2=

i.e., (3) has the form

p is prime if and only if
2

24

(p — 5)! is congruent to P (mod p), (3"
. . p2 -1, .

Let p > 5 be prime. It is easy to see that “=7— is an integer
(because every prime number p has one of the two forms 6k + 1 or
6k + 5 for some natural number k).

From Wilson’s Theorem (see, e.g. [2]) and from

p? = 0(mod p)
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we may write
(p=5)L(p—4).(p = 3)-(p —2).(p — 1) = p* — 1(mod p).
Since
(p— 1) = —i(mod p),
for i = 1,2, 3,4, we finally obtain
24(p — 5)! = p? — 1(mod p).
Hence, the congruence

2

(p75)!zp2 (mod p)

is proved.

2 _
When p is a composite number and the number ILﬂ—l is not
integer, the congruence
-1
2

is impossible. That is why we consider below only the composite

(p—5)!= (mod p)

odd numbers p > 5 for which pz —1 is an integer.
Like in the proof of Problem I, for p we have only the two pos-
sibilities (a) and (b).
Let (a) hold. Then p > 15 and there exist odd numbers a and b
such that )
2<u<b<g; (a,b) =1; ab=p.

Hence a and b are two different multipliers of (p—5)! since g <p-5.
Therefore, the number a.b = p divides (p — 5)!, i.e.,

(p —5)! = 0(mod p).

If we suppose that the congruence from (3’) holds too, then we

obtain that
-1

o = 0(mod p),




83

p? — 1 = 0(mod p),

ie.
—1 = 0(mod p),

which is impossible. Therefore, the congruence in the right hand-
side of (3’) is impossible.

Let (b) hold. As in the proof of Problem 1, here we have to
consider two different cases (b1) and (ba).

Let (by) hold. Then

3<q<d"'<q"—5=p—5

Hence g and ¢*—!
the number q.¢

are two different multipliers of (p—5)!. Therefore,
k=1 = ¢k = p divides (p — 5)}, i.e.,

(p—5)! = 0(mod p).
Therefore, just as in the case (a) we conclude that the congruence
in the right hand-side of (3’) is impossible.
Let (bz) hold. If ¢ > 7, then we have
p-5=¢>—5>2.

Hence ¢ and 2q are two different multipliers of (p — 5)!. Hence, the
number ¢% = p divides (p — 5)!, i.e.,

(p—5)! = 0(mod p).
Just as in case (a) we conclude that the congruence in the right
hand-side of (3’) is impossible.
It remains only to consider the cases:
p=3"=9 p=5>=25
and to finish with (bs).
2

If p = 9, then £ 1 is not an integer and as we noted before,
the congruence in the right hand of (3’) fails.
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When p = 25 the above congruence yields

20! = 26(mod 25),

20! = 1(mod 25).
On the other hand, 25 divides 20! and therefore,

20! = 0(mod 25).

Hence, the congruence in the right hand of (3’) is impossible in
the case p = 25, too.

Thus the same congruence is impossible for the case (b).

Finally we proved

If p> 1 is an odd composite number, then the congruence

(p—>5)= pT(modp)

is impossible and Problem 3 is completely solved.
Problem 4. also can be simplified, because

p
t=h = 1
t Iz+[h]+
—1)! 1
B

=h+k-1)"+1+1=h+(k—-1)!+2,

(-1 = (=",

because for k > 2 : (k — 1)! + 2 is an even number. Therefore, (4)
obtains the form
p is prime if and only if

(p — k)! is congruent to (—1)"h(mod p). (4"

Let us assume that (4°) is valid. We use again the congruences
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(p—1) = —1(mod p)
(p—2) = —2(mod p)

(p—(k=1)) = =(k - 1)(mod p)
and obtain the next form of (4°)
p is prime if and only if
(p—1)! = (=1)".(=1)%1.(k — 1)!.h(mod p)

or
p is prime if and only if

(p—1)!'= (=1)"* . (p — 1)(mod p).

But the last congruence is not valid, because, e.g., for k = 5, h =
3,p=73=(5—1)!13"+1 holds

72! = (—1)°.72(mod 73),

ie.
72! = 1(mod 73),

while from Wilson’s Theorem it follows that

72! = —1(mod 73).
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11. ON FOUR PRIME AND COPRIME
FUNCTIONS!?

In [25] F. Smarandache discussed the following particular cases
of the well-known characteristic functions (see, e.g., [14, 42]).
1) Prime function: P: N — {0,1}, with

[0, if n is prime
P(n) = { 1, otherwise

More generally: : N¥ — {0,1}, where k > 2 is an integer,
and

0, if ny,n9, ..., ng are all prime numbers

Pe(ni,na, .., ne) = { 1, otherwise

2) Coprime function is defined similarly: Cj, : N* — {0,1},
where k£ > 2 is an integer, and

0, if ny,ng, ..., ny are coprime numbers
1, otherwise

Cr(n1,ng,...,ng) = {

Here we shall formulate and prove four assertions related to these
functions.
Proposition 1. For each k,n,na, ..., n; natural numbers:

"
Pi(ny,...,np) =1— H(l — P(n;)).

i=1

Proof. Let the given natural numbers ny, na, ..., nj be prime. Then,
by definition
Pk ny, - )

In this case, for each i (1 <14 < k):

P(n;) =0,

"2The results in this section are taken from [6]
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e 1— P(n) = 1.
Therefore .
H(l — P(n;)) =1,
i=1
ie., i
1= = P(m)) = 0= Pi(nr, .., my). 1)
i=1

If at least one of the natural numbers ny,ns, ..., nj is not prime,
then, by definition
Pi(n1,....,ng) = 1.

In this case, there exists at least one ¢ (1 <4 < k) for which:

ie.,
1-P(n;)=0
Therefore
k
H(l — P(n;)) =0
ie.,
k
17H(17P(n1)) = 1:Pk<’rl1.,’rlk) (2)
i=1

The validity of the assertion follows from (1) and (2).
Similarly it can be proved
Proposition 2. For each k,ny,no, ..., ng natural numbers:

k k
Cr(ng,..,ngp) =1— H H (1 = Ca(ni,ny)).
i=1 j=it1

Let p1.p2.ps, ... be the sequence of the prime numbers (p; =
2,[)2 = 3, p3 = 5, )
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Let m(n) be the number of the primes that are less than or equal
to n.
Proposition 3. For each natural number n:
Cﬁ(n)+P(71,) (p17p2~, -~-ap7r(n)+P(n)—1-,n) = P(n)'
Proof. Let n be a prime number. Then
P(n)=0
and
Pr(n) = N
Therefore

Cra(n)+P(n) (D1, D25 s Pr(n) +P(r)=15 1)
= Cr(n)(P1, 2, -+, Pr(n)—15Pr(n)) = 0,

because the primes pi,pa, ..., Pr(n)—1; Pr(n) are also coprimes.
Let n be a composite number. Then

and

Therefore
Cor(n)+P(n) (D1, D25 s Pr(n) £ P(n)—1,T0)

= Cr(n)+1(D15 P2, s Pa(m)—1, 1) = 1,
because, if n is a composite number, then it is divided by at least
one of the prime numbers p1, pa, ..., Pr(n)-1-
With this the proposition is proved.
The following statement can be proved by analogy
Proposition 4. For each natural number n:

m(n)+P(n)—1
P(n)=1- II @@= Calpin).

i=1
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Corollary. For each natural numbers k,ny,ng, ..., ng:

m(ny)+P(n;)—1

k
Py(ng,.omp) =1-1] II  @=Calpjini)).
=1 =

These propositions show the connections between the prime and
coprime functions.
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Chapter 2

Some other results of the
authors

In this chapter we present some of the authors’ results, that have
been already published in various journals on number theory. These
results are used in first Chapter and they have independent sense,
but admit applications in the solutions of the Smarandache’s prob-
lems discussed above.
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Al. SOME NEW FORMULAE FOR
THE TWIN PRIMES COUNTING
FUNCTION r5(n)!

Some different explicit formulae for the twin primes counting
function 7o are given below.
1. A bracket function formula for m2(n) using factorial

(%)
ma(n) =1+ Z [
k=1

2(6k —2)! + (6k)! +2
36k2 — 1

2(6k — 2)! + (6k)!

[

Here, and furthermore, n > 5 and

m2(0) = m2(1) = ma(2) = 0; m2(3) = 1.

2. Formulae for m(n) using Riemann’s zeta function

[n,+1]

ma(n) =1—2. i Clp(6k — 1) + p(6k +1) — 12k +2);  (2)
k=1

(5]
ma(n) =1—-2. > ((12k +2— ¥(6k — 1) — (6k + 1));  (3)
k=1

m(n) =1-2.>" ((24k +4 - 20(6k — 1) — 20(6k +1)).  (4)
k=1

"The results in this section are taken from [29)]
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3. Bracket function formulae for m(n) using Euler’s
function ¢

("% 2 _
malm) =1+ 3 (L) 5)
1
(=)
501 (36K — 1) ‘
ma(n) =1+ S\ 5 b 6
2(n) ,;[2 3k¢(3k71)] ©
= 3
ma(n) =1+ 2[61»1—72(61@—5—1)]7 (7)
() - A
)
1
A DL

4. Bracket function formula for m(n) using Dedekind’s
function

L
6k2+12k
1
X:: 36k271) (10)
. (n)_lj"g“]p Sk D) W
T ek - 1)
(]
12k +2

7”Z[ CEET O ESL (12)
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3k 3k+1
6k —1) " 6k + 1)

J; (13)

nt1
5] 1

”*”Z[ $(6k —1) + 96k + 1) M}'
RN ETI GRSV

Remark. The formulae from section 4 are still true if we put
o(n) instead of ¥(n).

5. Proofs of the formulae
In order to prove all above formulae we need the arithmetic
function
1, if k and k + 2 are twin primes

b(n) = { 0: otherwise ‘ (15)

Since p = 6k — 1 if p and p + 2 are twin primes, we obtain for
n>5:
[n+1]

m(n) =1+ Y 8(6k—1). (16)

First, let us prove (1). It is enough to prove that for k > 5 the
equality

2k — D+ (k+1)1+2 20k — 1)+ (k +1)!

bk =1 k(k+2) B w
holds.
We rewrite (17) in the form
ORIV S W (et S 18)

k k+2 'k k42
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Further, we use a variant of Wilson’s Theorem given by Coblyn
in 1913 (see [18]): “The integer m > 2 is a prime if and only if
m divides each of the numbers (r — 1)!(m — )l + (=1)""! for r =
1,2,....,m — 1.7 The cases r = 1 and r = 2 are called Wilson’s and
Leibnitz Theorem respectively [20]. We denote by g(k) the right
hand-side of (18).

(a1) Let k and k + 2 be twin primes. Therefore, (k —1)! +1 =
k. (x € N) from the Wilson’s Theorem and k! — 1 = ((k +2) —
2! —1=(k+2).y (y € N) from the Leibnitz’s Theorem. Hence:

ok (B+2)y k-1 (B+2)y+1
=0 e T T e

ety frty— (b
STy T e

=z+y-—(+y-1)]=1

Il

]

(a2) Let k be prime and k + 2 be composite. Therefore, k > 6.
Now, it is easy to see that k! = (k +2).y (y € N). The Wilson’s
Theorem yields (k —1)! +1 = k.z (¢ € ). Hence:

kx (k+2)y—1_kx—1+(k+2)y

9tk) = B+ 3 == el
—fty— g ety )
:[I+yfﬁf(w+y71)]
:[1,L]:0
k+2

(ag) Let k be composite and k + 2 be prime. Therefore, k > 6.
Now, it is easy to see that (k — 1)! = k.z (z € N). The Leibnitz’s
Theorem yields k! — 1 = (k +2).y (y € N). Hence:

N kx4l (E4+2)y  kr  (E+2)y+1
gtk) == E+2 5 kE+2

I
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:[Jr+l+y7[x+y+i]]

k k42
—ltyty—(o+y)
=[;]1=0

(aq) Let k and k + 2 be composite. Therefore, k > 6. Now, it is
easy to see that (k—1)! = k.x (x € N) and k! = (k+2).y (y e N).
Hence:

Syt - @)
1 1
el =

From (a1) — (a4) it follows that g(k) = 6(k) for k > 5 and the
proof of (1) is finished.

Second, let us prove the formulae from section 2. We need the
well-known fact that {(0) = —% and ¢(—2m) = 0 for m € N (see
[12]). Since numbers ¢(6k—1), ©(6k+1), ¢ (6k—1), ¥ (6k+1), 20 (6k—
1),20(6k + 1) are even, and the following inequalities

p(6k — 1) + p(6k +1) < 12k — 2
Y(6k — 1) +(6k + 1) > 12k + 2
o(6k — 1) + o (6k + 1) > 12k + 2

are valid, and the fact that the last inequalities become equalities
simultaneously if and only if 6k — 1 and 6k + 1 are twin primes, we
conclude that the argument of the function ¢ in (2) — (4) is every-
where nonpositive even number. Moreover, this argument equals to
zero if and only if 6k — 1 and 6k + 1 are twin primes. Therefore, we
have

5(6k — 1) = —2¢(p(6k — 1) + (6K + 1) — 12k + 2)
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= —2C(12k + 2 — p(6k — 1) — 3h(6k + 1))
= —2((24k + 4 — 20(6k — 1) — 25(6k + 1)).

Hence, (2) — (4) are proved because of (16).
It remains only to prove the formulae from sections 3 and 4.
First, we use that

©(36k2 — 1) = @(6k — 1).0(6k + 1)

and
»(36k% — 1) = (6k — 1).4(6k + 1),

since, the functions ¢ and 1 are multiplicative.
Second, we use that inequalities p(6k — 1) < 6k — 2 and ¢(6k +
1) < 6k (just like inequalities ¢(6k—1) > 6k and ¢(6k+1) > 6k+2)
become equalities simultaneously if and only if the numbers 6k — 1
and 6k + 1 are twin primes.
Then it is easy to verify that each one of the expressions behind
n+l
the sum [ 5 : in (5) — (14) equals to 6(6k — 1). Hence, the proof
k=1

of the formulae from sections 3 and 4 falls from (15).
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A2. THREE FORMULAE FOR n-th PRIME
AND SIX FORMULAE FOR n-th TERM
OF TWIN PRIMES?

Let C = {Cy}n>1 be an arbitrary increasing sequence of natural
numbers. By ¢ (n) we denote the number of the terms of C being
not greater than n (we agree that 7 (0) = 0). In the first part of the
section we propose six different formulae for C,, (n = 1,2,...), which
depend on the numbers 7o (k) (k= 0,1,2,...). Using these formulae,
in the second part of the section we obtain three different explicit
formulae for the n-th prime p,,. In the third part of the section, using
the formulae from the first part, we propose six explicit formulae for
the n-th term of the sequence of twin primes: 3,5,7,11,13,17,19,...
The last three of these formulae, related to function 7o, are the main
ones for the twin primes.

Part 1: Universal formulae for the n-th term of
an arbitrary increasing sequence of
natural numbers

1. A bracket function formula for Cy:

2. A formula using Riemann’s function (:

mc (k)

n

Co—-2.3 ¢(-2W), @
k=0

2The results in this section are taken from [30]
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3. A formula using Euler’s function I':

i 1
C, = _— 3
Z r(1 - [mekly) )

Proof of the formulae (1)—(3). First, we represent (2) in the
form

D @)
k=0 n
After that for each one of (1), (2'), (3) we use that
oo Cp—1 oo
Z = o+ Z °
k=0 k=0 k=Cn

Let £ =0,1,...,C,, — 1. Then we have
mo(k) < me(Cp — 1) < 7 (Cy) = n.

Hence

for k=0,1,...,Cy,, — 1. Therefore, for (1) we have

Cp—1 1 Cp—1
— | = 1=0Ch.
5

In the same manner, for (2') we have

Ca—1 (k) Cue1 cot
> (=2 [ = Y0 (-2¢0)= Y 1=y,
k=0

k=0 k=0

since it is known that ¢(0) = 7% (see [12]).
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For (3) we have

Cp—1 1 Cp—1 1 Cp—1
B Y N S N
i r(1 - [melkl) 50 A

Let k = Cy, Cp+1,Cp+2, ... Then we have n = ¢ (Cy,) < w(k).
Therefore, [ﬂ'(VT(k)] >1for k=C,,C,+1,C,+2,.... Hence:
] =
-(k),
1+ (158

oo

for k = Cp,Cp +1,C,, + 2, .... Therefore, for (1) X vanishes.

—Cp

This proves (1).

o)
To prove (2') (i.e., (2)) it remains to show that X  vanishes
=C,
as in the previous case. But this is obvious from the fact that for
k= Cn7 Crz +1, Cn + 2~,

mc (k)

ng = | .

J

is a natural number and therefore
¢(=2n;) =0,

since, the negative even numbers are trivial zeros of Riemann’s Zeta—
function (see [12]).
We also have 1
(1 —nyg) -
for k =C,,C,+1,C,+2, ..., since, it is known that the nonpositive
integers are poles of Euler’s function gamma. Therefore, for (3) the
o0
sum X vanishes too, which proves (3).
k=Cp




101
4. Three other formulae for C,:

C, = i[%] (1)

k=0 1+ [~/ ——]

e me(k)+n
=2, —o [T TRy 2*
N (2)
> 1

Cn . (39

=10 [relk) £n))

The validity of these formulae is checked in the same manner.
Part 2: Formulae for n-th prime p,

Here, as a Corollary from Part 1, we propose three finite formulae

for py,.
Let )
n+3n+4
O(n) = [f]
Tt is known (see [16]) that
pn < 0(n)
for n =1,2,.... Hence
Pn < n?
for n > 1. Then, if we put
Cn = pn

for n =1,2,... and using that
mc(n) = w(n),

we obtain the following formulae from (1), (2) and (3):
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(k)

n

6(n)
pn=—2. ((=2.[—=)); (5)
k=0

0(n) 1

pn:Z p

L (©)
i=ra - (M)

The above formulae stay valid if we change 6(n) with n?. These
formulae are explicit ones, because (k) has explicit representations
(see [18, 4]).

One may compare (4) with the formula of Willans (see [18]):

on
n:1 L%‘ .
pa=14 Ll

Part 3: Formulae for pz(n)

Let C,, = p2(n). In this case we have
7c(0) = (1) = e (2) = 0; 7c(3) = me(4) = 1. ()
When k > 5 it is easy to see that
2mo(k) —2, ifk—landk+1,0rk
ro(k) = and k + 2 are twin primes , )
2ma(k) — 1, otherwise
or in an explicit form
mo(k) = 2ma(k) — 1 —6(k — 1) — 6(k), (6”)
where
1, if k and k + 2 are twin primes
(k) = {

0, otherwise
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It is easy to give an explicit representation of §(k) :
2B+ B+ +2 2(k =1+ (B+1)! ,,,
6k) =1 k(k +2) [ k(k +2) - (6)

Other criteria for simultaneous primality and coprimality of two
numbers are discussed in [22, 23, 25, 26, 27].
Instead of (6”), it is possibe to use the representation:

me (k) = my(k) + ma(k —2) — 1,
since

b
ma(k) = 6(j).
i=3

Therefore, from (1) — (3) we obtain the corresponding formulae
for pa(n):

>, 1
n) = —_—; 7
pZ( ) ];][1+[WC7£k)]] ( )
pa(m) = 2.3 c(-2" W), ®
k=0
> 1
pa2(n) = Z S—— 9)

k:0F<1_[ n ])

where m¢ (k) is given by (¥) for k =0, 1,2, 3,4, and by (6”) for k > 5
with §(k) is given by (6").

Three new explicit formulae for pa(n) for even n > 2 are given
below, while ps(2) = 5. They correspond to (1*) — (3*) and use (6):

> 1
=5+ [—— ) 7*
p2(n) k:5[1+[ﬁ2(k);1+§]] ( )
& mo(k) =142

2]); (8%

n
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o0
1
pa(n) =5+ 7 (9)
‘ mo(k)—1+ %
I
They follow from the identity

[ﬂ'c(k)) + n] -

2n n
since for k > 5 mo(k) is given by (6') and for even n > 2 we have

7T2(k) -1+ %]

n—1 n
=——1
[2 ] 2

Obviously, p2(1) = 3, p2(3) = 7 and for odd n > 5 we have
p2(n) =p2(n—1) +2

and we may apply the formulae (7*) — (9%) for pa(n — 1) since n — 1
is an even number.

The last three formulae are main ones for the twin primes.

All formulae for pa(n) are explicit, because in A1 some explicit
formulae for m(n) are proposed. One of them is valid for n > 5:

(2F
ma(n) =1+ Z [
k=1

2(6k —2)! + (6k)! +2
36k — 1

2(6k — 2)! + (6k)!
36k2 — 1

[ Il

For m(n) one may use Mind¢’s formula (see [18]):

G k-DI+1 (k-1
Y
or any of the following formulae, proposed here:
T(n) = 2.3 C(~2.(k — 1 - p(k)); (10)
k=2
() = —2.3 C(=2.(o(k) — k —1); (11)
k=2
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m(n) = Y M 12

=G (12)
okt

m(n) = ; 13

=Xl (13
n 1

m(n) = g[m]ﬁ (14)
" 1

m(n) = —. 15

=3 =7 (15)

Remark. In (11), (13), (15) one may prefer to put ¢ (k) instead
of o(k) and then the formulae will remain valid.
In [4] are published following results:

m(n) = sg(k — 1~ o(k));

k=2
) = S 5g(o (k) — k— 1)
k=2
n k
) =3 ity
.
Pa = s9(n — (i),
=0
where:
0, ifz<0
sg(x) = { ;
1, ifx>0

0, ifz#0
o) = 1, ife=0
, ifx=
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where z is a real number and

» 0, ifp=1
fr(=) = :
q 1, ifp#1

where p and ¢ are natural numbers, such that (p,q) = 1.
Finally, we shall mention that F. Smarandache introduced an-
other formula for 7(z)(see [28]): if x is an integer > 4, then

w(e) = -1+ Y 20y,
k=2

where S(k) is the Smarandache function (the smallest integer m
such that m! is divisible by k) and for symbol [e] see page 78.
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A3. EXPLICIT FORMULAE FOR THE »n-TH
TERM OF THE TWIN PRIME SEQUENCE?

Three different explicit formulae for the n-th term of the twin
prime sequence are proposed and proved, when n is even. They
depend on function me. The investigation continues A2.

We need the following result from A2 that here formulate for
readers’ convenience as
Theorem 1. Let n > 4 be even. Then ps(n) has each one of the
following three representations:

o 1
sn) =5+ [—— 1] 1
pa(n) ];)[1+H(k;n)] (1)
—5-9 i( —2.H(k;n (2)

k=5
5+ 3
I;)F k n))’ 3)
where (h)—1+2

H(ksm) = 22— 2), (4)

Below, we shall prove the followmg
Theorem 2. Let n > 4 be integer. Then ps(n) has each one of the
following three representations:

pa) = 6+ (1" + 3 ()
) =64 (1" -2 (o) (2)
k=5

1

pam) =6+ (D" 4 X m

k=

3The results in this section are taken from [32]
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where
(o) = ma(k) — 1+ (5] .
(i) = [0 ) (1)

Proof. Let n > 4 be even. Then r(k;n) = H(k;n) and also 6 +
(=1)""! = 5. Therefore (1*) coincides with (1), (2*) coincides with
(2), and (3*) coincides with (3), which proves Theorem 2 in this
case.

Let n > 4 be odd. Then

r(k;n) = H(k;n — 1), (5)
since [§] = "T’l and 2.[5] =n — 1.
‘We have also the relation

pa(n) =2+ pa(n — 1), (6)

since po(n — 1) and p2(n) are twin primes. But n — 1 is even and
n —1 > 4. Then we apply Theorem 1 with n — 1 instead of n and
from (5) and (6) the proof of Theorem 2 falls, because of the equality
6+ (-1 t=2+5.

Finally, we observe that formulae (1*)—(3*) are explicit, because
in A1 we propose some different explicit formulae for mo(n) when
n > 5. One of these formulae is given below:

8 e o1 | IS
() =11+ Z 2(6k 326)k2+ (60 +2 (6k361622);+1(6k) I

Of course, all formulae for pa(n) in A3 (just like in A2) are
finite, because it is possible to put

instead of
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But to receive “good” finite formulae for pa(n) we need some-
thing more, namely, the inequality

p2(n) < A(n), (7

where A(n) is a function that has an explicit expression. Then, we
may put

>

(n)

=

=5

instead of

10
I

However, (7) is not found, yet.
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A4. SOME EXPLICIT FORMULAE FOR
THE COMPOSITE NUMBERS*

Explicit formulae for n-th term of the sequence of all composite
numbers and for the sequence of all odd composite numbers are
proposed.

In A2 three different formulae are proposed for n-th term C,
of an arbitrary increasing sequence C' = {¢;}$2; of natural num-
bers. They are based on the numbers 7¢ (k) (k = 0,1,2,...), where
mc(0) = 0, and for k > 1 mo (k) denotes the number of terms of C,
which are not greater than k. These formulae are given again below:

Cn= i[T(/C)] (1)

Il
|
N
Eol
Ii M8
o
Y
=
—
r

k:OF(l—[ C,E ]).

If the inequality
Cy < A(n)

holds for every n > 1, where the numbers A(n) (n =1,2,3,...) are a
priori known, then formulae (1) — (3) take the forms, respectively:

1[
l§[1+[ﬂc<k)] Y

- A(n) () )
QZC D- (2)

“The results in this section are taken from [31]
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(3

Three different explicit representations for n-th prime number

pn with A\(n) = n?, or with

n?+3n+4

Am) = [

J

(by choice) are given in A2, using a modification of (1) — (3), with
the help of function y.

In A2, A3 three different explicit representations for pa(n),
where po(n) means n-th term of the sequence of twin primes are
given, using (1’) — (3'). For example:

p2(1) =3, p2(2) =5, p2(3) =7, p2(4) = 11, pa(5) = 13,

p2(6) = 17, pa(7) =19, ...

Let C' be the sequence of all composite numbers including 1
(because 1 is not included in the sequence of the prime numbers),
ie.
c1=1c0=4,¢c3=6,c4=8, c5=9, ¢c¢ =10, c7 =12, cg = 14,

Cg = 157 Cc10 = 16,

It is trivial to see that for & > 0:

mo(k) =k —n(k),

where 7(k) as usually means the number of the prime numbers that
are not greater than k. Also, for n > 1 we have obviously:

Cp, < A(n)

with A(n) = 2n.
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Therefore, applying formulae (1') - (3'), we obtain:

2n 1
Cn = —F 5
POUSNEAOR %)

mo(k)

2n
Cu=—2.3 c(2 ")) (6)
k=0

2n 1

Co=>"

Zora - retly

(M)

Let C be the sequence of all odd composite numbers including
1, ie.
cg=1 =9, cg=15, ¢4 =21, ¢5 =25, ...

It is clear that

7e(0) =0, me(1) = 1 (®)
and for k > 2: \
mo(k) = k+ 1= [5] - (k). ©)
Also, for n > 1 the inequality
Cp < A(n)
holds for
An)=3(2n—-1)=6n—3. (10)

Therefore, applying formulae (1') - (3') and using (8) - (10), we
obtain for n > 2:

6n—3 1

Co=2+ )

k=2

I
1k
L [3] (k)

]

6n—3 w

Cn:272- Z C(iQ[ ])/
k=2

n
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GnX—:S 1
Cp=2+
k
= k+1- (5 —nk)
(- [————))
k+3

It is possible to put [
formulae.

2

| instead of kK + 1 — [%] in the above
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A5. ON ONE REMARKABLE IDENTITY
RELATED TO FUNCTION n=(x)*

By R+ we denote the set of all positive real numbers and N =

{1,2,...}.
Let

9={gn}nz1

be sequence such that:

gn € Ry, (al)
(Vn € N)(gn < gn+1), (a2)
g is unbounded. (a3)

For any = € R+ we denote by 7(z) the number of all terms of
g, that are not greater than x.
When x satisfies the inequality

0<z<agr

we put
m(z) = 0.

Remark 1. The condition (a3) shows that the number n(z) is
always finite for a fixed z.

The main result here is the following
Theorem. Let a,b € Ry and b > g;. Then the identity

7(b) m(g)-m($)
Y ) =@ty + Y (2 1)
-1 Y b j=1 In(§)+i
holds.
Remark 2. When a a
m(—)=n(+
(&) =n(3)

5The results in this section are taken from [33]
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(7o) -m(%)
we put in (1) > e to be zero, i.e., the right hand-side of
j=1
(1) reduces to ﬂ(%).ﬂ'(l)). Thus, under the conditions of the above

Theorem, the identity
7(b)
a
m(—)
- Y

m(f)-m(0), if () =m(})

= () () )

APa+ "8 G, () > w()

holds.
Proof of the Theorem. First, we note that if a = 0, then (1), i.e.,

(2) holds, since

a a

Sy xS =20 =0
) = 7(5) = (0

and therefore, we may use Remark 2.
For that reason, further we assume that a > 0.
First, let us prove (1), i.e., (2) for case b = g;.
Now, we have

7(

m(b) = m(g1) =1

and o o
7T(g*] =7r(5)
Hence o a a
W(Z)W(b) = W(g*])ﬂf(gl) = W(gf])

and (1), resp. (2), is proved, since the left hand-side of (2) coincides
with 71'(!%). Then it remains only to consider the case

g1 <b (3)

and the proof of the Theorem will be completed.
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Let (3) hold. We must consider the alternatives

b (e1)
and o
b> b (e2)

Let (e1) hold. We shall prove (1) in this case. Inequality (3)
implies that interval
a=[g,0] 4)

is well-defined. Also, (3) and (ep) yield

a a
- < —. 5
b g ®)
Then (5) implies that the interval
a a
=(;.— 6
=52 0

is well-defined, too. Obviously, @ N3 = § and moreoevr, 3 lies to
the right side of a on the real axis.
Let gi, gj € g (i # j) be arbitrary. We introduce 7; ; putting

Tij = 9i-5- (7)
We denote by P the set of these 7;; defined by (7), for which
gi€gna, giegnp

and inequality
Tij S a t)

holds. Then we consider the alternatives:
P = @ (ul)

and

P £ (u2)
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Let (u7) holds. Then g N 3 = 0.
Indeed, if we assume that there exists g; € gN 3, then we obtain

a
Tij =615 S g1.— =a,
g1
i.e., 71, satisfies (8). Therefore, 7;; € P, since g1 € g N . Hence

P 0.

But the last contradicts to (uq).
Now, g N 3 = 0 implies

Moreover, the equality
(@) =7(3) (10)

holds for each x € 3.
Let x; = % for i =1,2,...,m(b). Then

g1 <9 <b

and therefore for i = 1,2, ..., 7(b):

zelp ol (11)
Now, (10) and (11) yield
n( ) =(3)- (12)
for each i = 1,2, ..., w(b).
But (12) implies
7(b) a o
n(2) = w(5)7(0) (13)

i=1
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which proves (1), because of Remark 2.
The case (uq) is finished.
let (ug2) hold. Then the inequality

a a
m(—) >7(— 14
(2> n(d) (11
holds.
Indeed, the assumption that (9) holds, implies
gnB=40.

Hence P = (). But the last equality contradicts to (us).
Now, (14) implies that

gnpB#0
and that
Ir(2)+k €9NL
m( ) -m(%)
at least for k = 1. Therefore, the sum Y, e from the right

j=1
hand-side of (1) is well-defined.

We use the following approach to prove (1) in the case (u2).
First, we denote by 6(a, 3) the number of all clements of the set
P. Second, we calculate 6(«, 3) using two different ways. Third,
we compare the results of these two different calculations and as a
result we establish (1).

First way of calculation

Let
E={1,2,..,7(b)}.

If ¢ describes E, then g; describes g N a.
Let F1 C E be the set of those i € F for which there exists at
least one j, such that g; € gN B and 7;; € P. For each i € £ we
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denote by é; the number of those g; € g N B, for which 7;; € P.

Then, equality
0(c,B) =D 6 (15)
i€l
holds.
On the other hand, from the definition of these g; it follows that
they belong to interval (%, q%] Hence, for i € Ey

8 =m(2) —n(%). (16)

Gi

Remark 3. From the definitions of §; and F; it follows that é; > 0.
Let i € Ey, where

Ey=F — Ey.

Then ¢ a
N(=,—]=0
g (b'g,;]

because in the opposite case we will obtain that i € E;, that is
impossible, since E1 N Fy = ().
Hence for i € Ey

ie., fori € Fy u "
Y22y =0. 1
") - a() =0 ()

Now, (15), (16), and (17) imply

B(a,B) = 3 () = m(3)),

ien  Ji

ie.,
7(b)

0(a,B) = Z m(

a a
= Y

) = m(3)m(b). (18)
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Second way of calculation

Let

W= {7r<%) +k|k=1,2 ...,W(i) - 71'(%)}.

Of course, we have W # (), since (u2), i.e., (14), is true.
When j describes W, g; describes g N 3. For every such j it is
fulfilled a
g1 < —<b. (19)
9j
Therefore, there exist exactly 71'((%_) in number g; € g N G, for
which 7; ; € P. Hence
a

O(a, B) = Z 71'(—»)

jew 9
Thus, using the definition of W, we finally get
m(50)—m(5)

0(a, B) = Z w(

= Gr(8)+i

S]

(20)

If we compare (18) and (20), we prove (1) in case (u2).
Up to now, we have established that (1) (and (2)) holds, when

g <b< (21)

(SRS

and case (u2) is finished too.
Now, let (e2) hold. To prove (2) (and (1)) in this case we consider
the alternatives

% <G (e21)

and
> g1 (e22)

(S
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Let (e21) hold. Then 71'(%) =0 and (1) takes the form
7(b) w(57)
a a
(=)= > m(=) (22)
-1 Y =1 9

Let us note, that (21) implies b > g%' Then (22) will be proved, if
we prove that for all k € N

a

x )= 0. (23)
g?r(ﬁ)+k

But gr(ayr, € W. Then we have that gr(a)yp > £ Hence,
g1 91

9
for all k € N a

< g1
gﬂ(i)+k
The last inequalities prove (23), since m(g1) = 1 and for 0 < z <
g1 it is fulfilled m(z) = 0.
Therefore, (22) is proved, too, and the case (e21) is finished.
Let (e22) hold. Then

<b (24)

is valid.
We introduce the number b putting

b = 7 (25)
Then, we find
a
= (26)

From (24), (25), and (26) it follows immediatelly

a
g1 <b < by (27)
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Obviously, (27) looks like (21) (only b from (21) is changed with
by in (27)). But we proved that (21) implies (1). Therefore, (27)
implies (1), but with b; instead of b. Hence, the identity

7(b1) " a m(gp)=m(5r) u
Yo =AY ) (28)
=1 9j 1 j=1 g”(ﬁ)JrJ

holds and Remark 2 remains also valid substituting b by b;.
Using (25) we rewrite (28) in the form

(%) m(ge)—m(b)
b ll 91 a
(&) =m D)+ Y w—)(29)

i=1 j=1 Ir(b)+j

First, let 7(b) = % In this case (29) coincides with (1) and

(%)-
(1) is proved, since (29) is true.
Second, let ( b) < m(b). Then we add to the two hand-sides of

(29) the sum

Tr 7|'
Z g
=1 Ir(§)+i
and obtain again (1). This completes the proof of (1) in this case,
too, because (29) is true.

Since, we have no other possibilities (the inequality 7(b) < ﬂ(%)
is impossible, because of (e2) ), we finish with the case (e22). Hence,
the case (e2) is finished too.

The Theorem is proved.

Further, we use some well-known functions (see, e.g., [15]):

e’ +e” et —e " sha chz
hey = , shz = , thr = —, cthx = —.
o 2 » ShT 2 » chx e shx

Corollary 1. Let a = chz,b = shx, where € R4 and shz > g;.
Then, the identity
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7(sha).7m(cthz), if 7(DL) = 7(ctha)

7(shz).mw(cthr)+

w(Gr)—m(cthe)
b
i=1

T ; chx
W(m) if ﬂ(g—]) > m(ctha)

holds.

The same way, putting: ¢ = shx, b = chx, where x € Ry
and chx > g1, as a corollary of the Theorem, we obtain another
identity, that we do not write here since one may get it putting in
(30) chz, shz, thz instead of shz, chz, cthx, respectively.

Now, let g be the sequence of all primes, i.e.,

g=2,3,57,11,13,...

Then the function 7(x) coincides with the famous function 7 of the
prime number distribution. Thus, from our Theorem we obtain
Corollary 2. Let a,b € Ry, b> 2 and {p,}52, be the sequence of
all primes. Then the identity

R G T
P1 D2 Da(b)

a
=7(-)7m(b)+7 +m + .7
(b) ® (Pn(5)+1) (pﬂ(ﬂ)+2> (1’«(%)

b b

7(

) (D)

holds.

In (31) 7(x) denotes (as usually) the number of primes, that
are not greater than x. Also, the right hand-side of (31) reduces to
ﬂ(%).ﬂ(b) if and only if 7($) = 7(3).

Identities (1) and (2) were discovered in 2001 in the Bulgarian
village on Black Sea Sinemoretz.
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A6. AN ARITHMETIC FUNCTIONS®

For

m
n= > 10" =aazam,
i=1

where @; is a natural number and 0 < a; <9 (1 <i < m) let:
0 ,ifn=0

QD(") = m
> a; , otherwise
i=1

and for the sequence of functions g, ¥1, ¢2, ..., where (I is a natural
number)

wo(n) =n,
@1 = p(ei(n)),
let the function 1 be defined by
P(n) = @i(n),

in which
wir1(n) = @i(n).

This function has the following (and other) properties:
P(m +n) = p((m) + ¢ (n)),
P(m.n) = Y (m).p(n)) = Y(m.ap(n)) = Y((m).n),
P(m™) = d((m)"),
P(n+9) =v(n),
¥(9In) = 9.

SThe results in this section are taken from [1, 2]
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Let the sequence ay, ag, ... with members — natural numbers, be
given and let

Cp = IL(U,Z) (i = 1,2, )

Hence, we deduce the sequence c1, ¢, ... from the former sequence.
If k£ and [ > 0 exist such that

Citl = Ck+itl = C2hktitl = -+
for 1 < i <k, then we say that
[Cr41, a2, -+ Clr)
is a base of the sequence ¢y, ca, ... with a length k and with respect
to function 1.
For example, the Fibonacci sequence {F;}2,, for which
Fo=0,F=1,Fy2=Fo1+F, (n>0)

has a base with a length of 24 with respect to the function ) and it
is the following:

[1,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4,1,5,6,2,8,1,9];
the Lucas sequence {L;}2, for which
Ly = 27 Ly = 17Ln+2 = Ln+] + Ln (n > 0)

also has a base with a length of 24 with respect to the function v
and it is the following:

(2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7.7,5,3,8];
even the Lucas-Lehmer sequence {/;}2, for which
=401 =12-2(n>0)

has a base with a length of 1 with respect to the function ¢ and it
is [5].
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The k — th triangular number ¢, is defined by the formula

k(k+1)

ty = B

and it has a base with a length of 9 with the form
[1,3,6,1,5,3,1,9,9].

It is directly checked that the bases of the sequences {n*} ; for
n =1,2,...,9 are those introduced in the following table.

a base of a sequence {n*}2; | a length of the base
1
2,4,8,7,5,1
9

47,1
5,7,8,4,2,1
9

74,1
8,1
9

O 00Uk W =3
HNWHEODWHO -

On the other hand, the sequence {n"}32; has a base (with a
length of 9) with the form

[1.4,9.1,2,9,7,1,9],

and the sequence {A™}52, has a base with a length of 9 with the
form

{ [1] , if k # 3m some some natural number m

9] , if k = 3m some some natural number m
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