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Preface

During the ¯ve years since publishing [2], we have obtained many
new results related to the Smarandache problems. We are happy to
have the opportunity to present them in this book for the enjoyment
of a wider audience of readers.

The problems in Chapter two have also been solved and pub-
lished separately by the authors, but it makes sense to collate them
here so that they can be better seen in perspective as a whole, par-
ticularly in relation to the problems elucidated in Chapter one.

Many of the problems, and more especially the techniques em-
ployed in their solution, have wider applicability than just the Smaran-
dache problems, and so they should be of more general interest to
other mathematicians, particularly both professional and amateur
number theorists.

Mladen V. Vassilev-Missana
Krassimir T. Atanassov
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Chapter 1

On Some Smarandache's
problems

In the text below the following notations are used.
N - the set of all natural numbers (i.e., the set of all positive inte-
gers);
[x] { \°oor function" (or also so called \bracket function") { the
greatest integer which is not greater than the real non-negative num-
ber x;
³ { Riemann's Zeta-function;
¡ { Euler's Gamma-function;
' { Euler's (totient) function;
Ã { Dedekind's function;
¾ { the sum of all divisors of the positive integer argument.

In particular: '(1) = Ã(1) = ¾(1) = 1 and if n > 1 and

n =
kY
i=1

p®ii

is a prime number factorization of n, then

'(n) = n:
kY
i=1

(1¡ 1

pi
);

7
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Ã(n) = n:
kY
i=1

(1 +
1

pi
);

¾(n) =
kY
i=1

p®i+1i ¡ 1
pi ¡ 1 ;

¼ { the prime counting function, i.e., ¼(n) denotes the number of
primes p such that p · n;
¼2(k) { the twin primes counting function, i.e., ¼2(n) denotes the
number of primes p such that p · n and p+ 2 is also a prime;
p2(n) { n-th term of the twin primes sequence, i.e.,

p2(1) = 3; p2(2) = 5; p2(3) = 7; p2(4) = 11; p2(5) = 13; p2(6) = 17;

p2(7) = 19; p2(8) = 29; p2(9) = 31; :::
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1. ON THE 2-ND SMARANDACHE'S PROBLEM1

The second problem from [13] (see also 16-th problem from [24])
is the following:

Smarandache circular sequence:

1|{z}
1

; 12; 21| {z }
2

; 123; 231; 312| {z }
3

; 1234; 2341; 3412; 4123| {z }
4

;

12345; 23451; 34512; 45123; 51234| {z }
5

;

123456; 234561; 345612; 456123; 561234; 612345| {z }
6

; :::

Let ]x[ be the largest natural number strongly smaller than the
real (positive) number x. For instance, ]7:1[= 7, but ]7[= 6.

Let f(n) be the n-th member of the above sequence. We shall
prove the following
Theorem. For each natural number n:

f(n) = s(s+ 1):::k12:::(s¡ 1); (1)

where

k ´ k(n) =]
p
8n+ 1¡ 1

2
[ (2)

and

s ´ s(n) = n¡ k(k + 1)
2

: (3)

Proof. If n = 1, then from (1) and (2) it follows that k = 0, s = 1
and from (3) { that f(1) = 1. Let us assume that the assertion
is valid for some natural number n. Then for n + 1 we have the

1The results in this section are taken from [9]
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following two cases:
1. k(n+ 1) = k(n), i.e., k is the same as above. Then

s(n+1) = n+1¡ k(n+ 1)(k(n+ 1) + 1)
2

= n+1¡ k(n)(k(n) + 1)
2

= s(n) + 1;

i.e.,
f(n+ 1) = (s+ 1):::k12:::s:

2. k(n+ 1) = k(n) + 1. Then

s(n+ 1) = n+ 1¡ k(n+ 1)(k(n+ 1) + 1)
2

: (4)

On the other hand, it is easy to see, that in (2) the number

p
8n+ 1¡ 1

2
is an integer if and only if n =

m(m+ 1)

2
:

Also, for any natural numbers n and m ¸ 1 such that
(m¡ 1)m

2
< n <

m(m+ 1)

2
(5)

it will be valid that

]

p
8n+ 1¡ 1

2
[ = ]

q
m(m+1)

2 + 1¡ 1
2

[ = m:

Therefore, if k(n+ 1) = k(n) + 1, then

n =
m(m+ 1)

2
+ 1

and from (4) we obtain:

s(n+ 1) = 1;
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i.e.,
f(n+ 1) = 12:::(n+ 1):

Therefore, the assertion is valid.
Let

S(n) =
nX
i=1

f(i):

Then, we shall use again formulae (2) and (3). Therefore,

S(n) =
pX
i=1

f(i) +
nX

i=p+1

f(i);

where

p =
m(m+ 1)

2
:

It can be seen directly, that

pX
i=1

f(i) =
mX
i=1

12:::i+ 23:::i1 + i12:::(i¡ 1) =
mX
i=1

i(i+ 1)

2
: 11:::1| {z }

i

On the other hand, if s = n¡ p, then
nX

i=p+1

f(i)

= 12:::(m+ 1) + 23:::(m+ 1)1 + s(s+ 1):::m(m+ 1)12:::(s¡ 1)

=
m+1X
i=0

(
(s+ i)(s+ i+ 1)

2
¡ i(i+ 1)

2
):10m¡i:
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2. ON THE 8-TH, THE 9-TH, THE 10-TH,
THE 11-TH AND THE 103-TH
SMARANDACHE'S PROBLEMS2

The eight problem from [13] (see also 16-th problem from [24])
is the following:

Smarandache mobile periodicals (I):

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 0 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 0 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 0 0 0 1 1 0 0 0 : : :
: : : 0 0 0 0 1 1 0 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 0 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 0 0 0 1 1 0 0 0 : : :
: : : 0 0 1 1 0 0 0 0 0 1 1 0 0 : : :
: : : 0 0 0 1 1 0 0 0 1 1 0 0 0 : : :
: : : 0 0 0 0 1 1 0 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 0 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 0 0 0 1 1 0 0 0 : : :
: : : 0 0 1 1 0 0 0 0 0 1 1 0 0 : : :
: : : 0 1 1 0 0 0 0 0 0 0 1 1 0 : : :
: : : 0 0 1 1 0 0 0 0 0 1 1 0 0 : : :

. . .

. . .

2The results in this section are taken from [38]
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This sequence has the form

1; 111; 11011; 111; 1| {z }
5

; 1; 111; 11011; 1100011; 11011; 111; 1| {z }
7

;

1; 111; 11011; 1100011; 110000011; ; 1100011; 11011; 111; 1| {z }
9

; : : :

All digits from the above table generate an in¯nite matrix A.
We shall describe the elements of A.

Let us take a Cartesian coordinate system C with origin in the
point containing element \1" in the topmost (i.e., the ¯rst) row of
A. We assume that this row belongs to the ordinate axis of C (see
Fig. 1) and that the points to the right of the origin have positive
ordinates.

-¾

?

²
ordinate

abscissa

h0; 0i

Fig. 1.

The above digits generate an in¯nite sequence of squares, located
in the half-plane (determined by C) where the abscisses of the points
are nonnegative. Their diameters have the form

\110:::011":

Exactly one of the diameters of each of considered squares lies
on the abscissa of C. It can be seen (and proved, e.g., by induction)
that the s-th square, denoted by Gs (s = 0; 1; 2; :::) has a diameter
with lenght 2s + 4 and the same square has a highest vertex with
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coordinates hs2 + 3s; 0i in C and a lowest vertex with coordinates
hs2 + 5s+ 4; 0i in C.

Let us denote by ak;i an element of A with coordinates hk; ii in
C.

First, we determine the minimal nonnegative s for which the
inequality

s2 + 5s+ 4 ¸ k
holds. We denote it by s(k). Directly it is seen the following
Lemma. The number s(k) admits the explicit representation:

s(k) =

8>>>>>>>>>>><>>>>>>>>>>>:

0; if 0 · k · 4

[

p
4k + 9¡ 5

2 ]; if k ¸ 5 and 4k + 9 is
a square of an integer

[

p
4k + 9¡ 5

2 ] + 1; if k ¸ 5 and 4k + 9 is
not a square of an integer

(1)

and the inequalities

(s(k))2 + 3s(k) · k · (s(k))2 + 5s(k) + 4 (2)

hold.
Second, we introduce the integeres ±(k) and "(k) by

±(k) ´ k ¡ (s(k))2 ¡ 3s(k); (3)

"(k) ´ (s(k))2 + 5s(k) + 4¡ k: (4)

From (2) we have ±(k) ¸ 0 and "(k) ¸ 0. Let Pk be the in¯nite
strip orthogonal to the abscissa of C and lying between the straight
lines passing through those vertices of the square Gs(k) lying on
the abscissa of C. Then ±(k) and "(k) characterize the location of
point with coordinates hk; ii in C in strip Pk. Namely, the following
assertion is true.
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Proposition 1. The elements ak;i of the in¯nite matrix A are
described as follows:
if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij or ±(k) ¸ jij+ 2;

1; if jij · ±(k) · jij+ 1
; (5)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij or "(k) ¸ jij+ 2;

1; if jij · "(k) · jij+ 1
; (6)

where here and below s(k) is given by (1), ±(k) and "(k) are given
by (3) and (4), respectively.

Omitting the obvious proof (it can be done, e.g., by induction),
we note that (5) gives a description of ak;i for the case when hk; ii
belongs to the strip that is orthogonal to the abscissa of C and
lying between the straight lines through the points in C with co-
ordinates h(s(k))2 + 3s(k); 0i and h(s(k))2 + 4s(k) + 2; 0i (involving
these straight lines), while (6) gives a description of ak;i for the case
when hk; ii belongs to the strip that is also orthogonal to the abscissa
of C, but lying between the straight lines through the points in C
with coordinates h(s(k))2+4s(k)+ 2; 0i and h(s(k))2+5s(k)+ 4; 0i
(without involving the straight line passing through the point in C
with coordinates h(s(k))2 + 4s(k) + 2; 0i).

Below, we propose another description of elements of A, which
can be proved (e.g., by induction) using the same considerations.

16 On Some Smarandache's problems

ak;i =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

1; if hk; ii 2
fh(s(k))2 + 3s(k); 0i; h(s(k))2 + 5s(k) + 4; 0ig
[fh(s(k))2 + 3s(k) + j;¡ji;
h(s(k))2 + 3s(k) + j;¡j + 1i;
h(s(k))2 + 3s(k) + j; j ¡ 1i;
h(s(k))2 + 3s(k) + j; ji : 1 · j · s(k) + 2g
h(s(k))2 + 5s(k) + 4¡ j;¡ji;
h(s(k))2 + 5s(k) + 4¡ j;¡j + 1i;
h(s(k))2 + 5s(k) + 4¡ j; j ¡ 1i;
h(s(k))2 + 5s(k) + 4¡ j; ji :
1 · j · s(k) + 1g

0; otherwise

(7)

Similar representations are possible for all of the next problems.
Let us denote by u1u2:::us an s-digit number.
For Smarandache's sequence from Problem 8

1; 111; 11011; 111; 1; 111; 11011; 1100011; 11011; 111; 1; :::;

that is given above, if we denote it by fbkg1k=0, then we obtain the
representation

bk =

8>>>>>>>>>>><>>>>>>>>>>>:

ak;±(k)ak;±(k)¡1:::ak;0ak;1:::ak;±(k)¡1ak;±(k);

if k · (s(k))2 + 4s(k) + 2

ak;"(k)ak;"(k)¡1:::ak;0ak;1:::ak;"(k)¡1ak;"(k);

if k > (s(k))2 + 4s(k) + 2

where ak;i are given in an explicit form by (5).
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The 10-th Smarandache problem is dual to the above one:

Smarandache in¯nite numbers (I):

: : : 1 1 1 1 1 1 0 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 0 0 1 0 0 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 1 1 0 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 0 0 1 0 0 1 1 1 1 : : :
: : : 1 1 1 0 0 1 1 1 0 0 1 1 1 : : :
: : : 1 1 1 1 0 0 1 0 0 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 1 1 0 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 0 0 1 0 0 1 1 1 1 : : :
: : : 1 1 1 0 0 1 1 1 0 0 1 1 1 : : :
: : : 1 1 0 0 1 1 1 1 1 0 0 1 1 : : :
: : : 1 1 1 0 0 1 1 1 0 0 1 1 1 : : :
: : : 1 1 1 1 0 0 1 0 0 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 1 1 0 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 0 0 0 1 1 1 1 1 : : :
: : : 1 1 1 1 0 0 1 0 0 1 1 1 1 : : :
: : : 1 1 1 0 0 1 1 1 0 0 1 1 1 : : :
: : : 1 1 0 0 1 1 1 1 1 0 0 1 1 : : :
: : : 1 0 0 1 1 1 1 1 1 1 0 0 1 : : :
: : : 1 1 0 0 1 1 1 1 1 0 0 1 1 : : :

. . .

. . .

Further, we will keep the notations: A (for the matrix) and ak;i
(for its elements) from the 8-th Smarandache's problem, for each
one of the next problems in this section.

18 On Some Smarandache's problems

Proposition 2. The elements ak;i of the in¯nite matrix A are
described as follows
if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if jij · ±(k) · jij+ 1

1; if ±(k) < jij or ±(k) ¸ jij+ 2
;

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if jij · "(k) · jij+ 1

1; if "(k) < jij or "(k) ¸ jij+ 2
:

The 9-th Smarandache problem is a modi¯cation and extension
of the 8-th problem:
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Smarandache mobile periodicals (II):

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 1 1 2 3 4 3 2 1 1 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 1 1 2 3 4 3 2 1 1 0 0 : : :
: : : 0 1 1 2 3 4 5 4 3 2 1 1 0 : : :
: : : 0 0 1 1 2 3 4 3 2 1 1 0 0 : : :

. . .

. . .

This sequence has the form

1; 111; 11211; 111; 1| {z }
5

; 1; 111; 11211; 1123211; 11211; 111; 1| {z }
7

;

1; 111; 11211; 1123211; 112343211; ; 1123211; 11211; 111; 1| {z }
9

; : : :
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Proposition 3. The elements ak;i of in¯nite matrix A are de-
scribed as follow:
if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8>><>>:
0; if ±(k) < jij

1; if ±(k) = jij
±(k)¡ jij; if ±(k) > jij

; (8)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8>><>>:
0; if "(k) < jij

1; if "(k) = jij
"(k)¡ jij; if "(k) > jij

; (9)

For the above sequence

1; 111; 11211; 111; 1; 111; 11211; 1123211; 11211; 111; 1; :::

if we denote it by fckg1k=0, then we obtain the representation

ck =

8>>>>>>>>>>><>>>>>>>>>>>:

ak;±(k)ak;±(k)¡1:::ak;0ak;1:::ak;±(k)¡1ak;±(k);

if k · (s(k))2 + 4s(k) + 2

ak;"(k)ak;"(k)¡1:::ak;0ak;1:::ak;"(k)¡1ak;"(k);

if k > (s(k))2 + 4s(k) + 2

where ak;i are given in an explicit form by (8).
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The 11-th Smarandache problem is a modi¯cation of the 9-th
problem:

Smarandache in¯nite numbers (II):

: : : 1 1 1 1 1 1 2 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 2 2 3 2 2 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 1 1 2 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 2 2 3 2 2 1 1 1 1 : : :
: : : 1 1 1 2 2 3 4 3 2 2 1 1 1 : : :
: : : 1 1 1 1 2 2 3 2 2 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 1 1 2 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 2 2 3 2 2 1 1 1 1 : : :
: : : 1 1 1 2 2 3 4 3 2 2 1 1 1 : : :
: : : 1 1 2 2 3 4 5 4 3 2 2 1 1 : : :
: : : 1 1 1 2 2 3 4 3 2 2 1 1 1 : : :
: : : 1 1 1 1 2 2 3 2 2 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 1 1 2 1 1 1 1 1 1 : : :
: : : 1 1 1 1 1 2 2 2 1 1 1 1 1 : : :
: : : 1 1 1 1 2 2 3 2 2 1 1 1 1 : : :
: : : 1 1 1 2 2 3 4 3 2 2 1 1 1 : : :
: : : 1 1 2 2 3 4 5 4 3 2 2 1 1 : : :
: : : 1 2 2 3 4 5 6 5 4 3 2 2 1 : : :
: : : 1 1 2 2 3 4 5 4 3 2 2 1 1 : : :

. . .

. . .
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Proposition 4. The elements ak;i of the in¯nite matrix A are
described as follows:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8>>>><>>>>:
1; if ±(k) < jij

2; if jij · ±(k) · jij+ 1

±(k)¡ jij+ 1; if ±(k) ¸ jij+ 2

;

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8>>>><>>>>:
1; if "(k) < jij

2; if jij · "(k) = jij+ 1

"(k)¡ jij+ 1; if "(k) ¸ jij+ 2

;

Now, we introduce modi¯cations of the above problems, giving
formulae for their (k; i)-th members ak;i.
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We modify the ¯rst of the above problems, now { with a simple
countours of the squares in the matrix:

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 0 0 0 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 0 0 0 1 0 0 0 0 : : :
: : : 0 0 0 1 0 0 0 0 0 1 0 0 0 : : :
: : : 0 0 0 0 1 0 0 0 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 0 0 0 1 0 0 0 0 : : :
: : : 0 0 0 1 0 0 0 0 0 1 0 0 0 : : :
: : : 0 0 1 0 0 0 0 0 0 0 1 0 0 : : :
: : : 0 0 0 1 0 0 0 0 0 1 0 0 0 : : :
: : : 0 0 0 0 1 0 0 0 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 0 0 0 1 0 0 0 0 : : :
: : : 0 0 0 1 0 0 0 0 0 1 0 0 0 : : :
: : : 0 0 1 0 0 0 0 0 0 0 1 0 0 : : :
: : : 0 1 0 0 0 0 0 0 0 0 0 1 0 : : :
: : : 0 0 1 0 0 0 0 0 0 0 1 0 0 : : :

. . .

. . .

24 On Some Smarandache's problems

Proposition 5. The elements ak;i of the in¯nite matrix A are
described as follows:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij or ±(k) > jij

1; if ±(k) = jij
; (10)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij or "(k) > jij

1; if "(k) = jij
; (11)
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Next, we will modify the third of the above problems, again with
a simple countour of the squares:

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 3 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 3 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 3 4 3 2 1 0 0 0 : : :
: : : 0 0 0 0 1 2 3 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 3 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 3 4 3 2 1 0 0 0 : : :
: : : 0 0 1 2 3 4 5 4 3 2 1 0 0 : : :
: : : 0 0 0 1 2 3 4 3 2 1 0 0 0 : : :
: : : 0 0 0 0 1 2 3 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 3 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 3 4 3 2 1 0 0 0 : : :
: : : 0 0 1 2 3 4 5 4 3 2 1 0 0 : : :
: : : 0 1 2 3 4 5 6 5 4 3 2 1 0 : : :
: : : 0 0 1 2 3 4 5 4 3 2 1 0 0 : : :

. . .

. . .
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Proposition 6. The elements ak;i of the in¯nite matrix A are
described as follow:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij

±(k)¡ jij+ 1; if ±(k) ¸ jij
; (12)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij

"(k)¡ jij+ 1; if "(k) ¸ jij
; (13)
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Third, we will ¯ll the interior of the squares with Fibonacci num-
bers

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 1 1 2 3 5 3 2 1 1 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 1 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 1 2 1 1 0 0 0 0 : : :
: : : 0 0 0 1 1 2 3 2 1 1 0 0 0 : : :
: : : 0 0 1 1 2 3 5 3 2 1 1 0 0 : : :
: : : 0 1 1 2 3 5 8 5 3 2 1 1 0 : : :
: : : 0 0 1 1 2 3 5 3 2 1 1 0 0 : : :

. . .

. . .
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Proposition 7. The elements ak;i of the in¯nite matrix A are
described as follows:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij

F±(k)¡jij; if ±(k) ¸ jij
; (14)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij

F"(k)¡jij; if "(k) ¸ jij
; (15)

where Fm (m = 0; 1; 2; :::) is the m-th Fibonacci number.
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Fourth, we will ¯ll the interior of the squares with powers of 2:

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 1 2 4 8 16 8 4 2 1 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 1 2 4 8 16 8 4 2 1 0 0 : : :
: : : 0 1 2 4 8 16 32 16 8 4 2 1 0 : : :
: : : 0 0 1 2 4 8 16 8 4 2 1 0 0 : : :

. . .

. . .
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Proposition 8. The elements ak;i of the in¯nite matrix A are
described as follows:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij

2±(k)¡jij; if ±(k) ¸ jij
; (16)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij

2"(k)¡jij; if "(k) ¸ jij
; (17)
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Fifth, we will ¯ll the interior of the squares with values 1 and -1
as in the next table:

: : : 0 0 0 0 0 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 1 -1 1 -1 1 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 1 -1 1 -1 1 0 0 0 : : :
: : : 0 0 0 1 -1 1 -1 1 -1 1 0 0 : : :
: : : 0 0 0 0 1 -1 1 -1 1 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 1 -1 1 -1 1 0 0 0 : : :
: : : 0 0 0 1 -1 1 -1 1 -1 1 0 0 : : :
: : : 0 0 1 -1 1 -1 1 -1 1 -1 1 0 : : :
: : : 0 0 0 1 -1 1 -1 1 -1 1 0 0 : : :
: : : 0 0 0 0 1 -1 1 -1 1 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 -1 1 0 0 0 0 : : :
: : : 0 0 0 0 1 -1 1 -1 1 0 0 0 : : :
: : : 0 0 0 1 -1 1 -1 1 -1 1 0 0 : : :
: : : 0 0 1 -1 1 -1 1 -1 1 -1 1 0 : : :
: : : 0 1 -1 1 -1 1 -1 1 -1 1 -1 1 : : :
: : : 0 0 1 -1 1 -1 1 -1 1 -1 1 0 : : :
: : : 0 0 0 1 -1 1 -1 1 -1 1 0 0 : : :

. . .

. . .
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Proposition 9. The elements ak;i of the in¯nite matrix A are
described as follows:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij

(¡1)±(k)¡jij; if ±(k) ¸ jij
; (18)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij

(¡1)"(k)¡jij; if "(k) ¸ jij
; (19)
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The following in¯nite matrix A is a generalization of all previous
schemes:

: : : 0 0 0 0 F (0) 0 0 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 F (0) F (1) F (2) F (1) F (0) 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 0 0 F (0) 0 0 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 F (0) F (1) F (2) F (1) F (0) 0 0 : : :
: : : 0 F (0) F (1) F (2) F (3) F (2) F (1) F (0) 0 : : :
: : : 0 0 F (0) F (1) F (2) F (1) F (0) 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 0 0 F (0) 0 0 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 F (0) F (1) F (2) F (1) F (0) 0 0 : : :
: : : 0 F (0) F (1) F (2) F (3) F (2) F (1) F (0) 0 : : :
: : : F (0) F (1) F (2) F (3) F (4) F (3) F (2) F (1) F (0) : : :
: : : 0 F (0) F (1) F (2) F (3) F (2) F (1) F (0) 0 : : :
: : : 0 0 F (0) F (1) F (2) F (1) F (0) 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 0 0 F (0) 0 0 0 0 : : :
: : : 0 0 0 F (0) F (1) F (0) 0 0 0 : : :
: : : 0 0 F (0) F (1) F (2) F (1) F (0) 0 0 : : :
: : : 0 F (0) F (1) F (2) F (3) F (2) F (1) F (0) 0 : : :
: : : F (0) F (1) F (2) F (3) F (4) F (3) F (2) F (1) F (0) : : :
: : : F (1) F (2) F (3) F (4) F (5) F (4) F (3) F (2) F (1) : : :
: : : F (0) F (1) F (2) F (3) F (4) F (3) F (2) F (1) F (0) : : :
: : : 0 F (0) F (1) F (2) F (3) F (2) F (1) F (0) 0 : : :

. . .

. . .

where F is an arbitrary arithmetic function such that the number
F (0) is de¯ned.
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Proposition 10. The elements ak;i of the in¯nite matrix A are
described as follows:

if k · (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if ±(k) < jij

F (±(k)¡ jij); if ±(k) ¸ jij
; (20)

if k > (s(k))2 + 4s(k) + 2, then

ak;i =

8<:
0; if "(k) < jij

F ("(k)¡ jij); if "(k) ¸ jij
; (21)

Let we put

F (n) = G(H(n)); n = 0; 1; 2; ::: (22)

where H : N [ f0g ! E and G : E ! N [ f0g, are arbitrary
functions and E is a ¯xed set, for example, E = N [ f0g. Then
many applications are possible. For example, if

G(n) = Ã(n);

where function Ã is described in A6 and H(n) = 2n, we obtain the
in¯nite matrix as given below



35

: : : 0 0 0 0 Ã(1) 0 0 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 Ã(1) Ã(2) Ã(4) Ã(2) Ã(1) 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 0 0 Ã(1) 0 0 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 Ã(1) Ã(2) Ã(4) Ã(2) Ã(1) 0 0 : : :
: : : 0 Ã(1) Ã(2) Ã(4) Ã(8) Ã(4) Ã(2) Ã(1) 0 : : :
: : : 0 0 Ã(1) Ã(2) Ã(4) Ã(2) Ã(1) 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 0 0 Ã(1) 0 0 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 Ã(1) Ã(2) Ã(4) Ã(2) Ã(1) 0 0 : : :
: : : 0 Ã(1) Ã(2) Ã(4) Ã(8) Ã(4) Ã(2) Ã(1) 0 : : :
: : : Ã(1) Ã(2) Ã(4) Ã(8) Ã(16) Ã(8) Ã(4) Ã(2) Ã(1) : : :
: : : 0 Ã(1) Ã(2) Ã(4) Ã(8) Ã(4) Ã(2) Ã(1) 0 : : :
: : : 0 0 Ã(1) Ã(2) Ã(4) Ã(2) Ã(1) 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 0 0 Ã(1) 0 0 0 0 : : :
: : : 0 0 0 Ã(1) Ã(2) Ã(1) 0 0 0 : : :
: : : 0 0 Ã(1) Ã(2) Ã(4) Ã(2) Ã(1) 0 0 : : :
: : : 0 Ã(1) Ã(2) Ã(4) Ã(8) Ã(4) Ã(2) Ã(1) 0 : : :
: : : Ã(1) Ã(2) Ã(4) Ã(8) Ã(16) Ã(8) Ã(4) Ã(2) Ã(1) : : :
: : : Ã(2) Ã(4) Ã(8) Ã(16) Ã(32) Ã(16) Ã(8) Ã(4) Ã(2) : : :
: : : Ã(1) Ã(2) Ã(4) Ã(8) Ã(16) Ã(8) Ã(4) Ã(2) Ã(1) : : :
: : : 0 Ã(1) Ã(2) Ã(4) Ã(8) Ã(4) Ã(2) Ã(1) 0 : : :

. . .

. . .
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or in calculation form:

: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 1 2 4 8 7 8 4 2 1 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 1 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 1 2 1 0 0 0 0 0 : : :
: : : 0 0 0 0 1 2 4 2 1 0 0 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :
: : : 0 0 1 2 4 8 7 8 4 2 1 0 0 : : :
: : : 0 1 2 4 8 7 5 7 8 4 2 1 0 : : :
: : : 0 0 1 2 4 8 7 8 4 2 1 0 0 : : :
: : : 0 0 0 1 2 4 8 4 2 1 0 0 0 : : :

. . .

. . .

The elements of this matrix are described by (20) and (21), if
we take

F (n) = Ã(2n); n = 0; 1; 2; :::
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The elements of the following matrix A has alphabetical form:

: : : 0 0 0 0 0 0 a 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 a b c b a 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 a 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 a b c b a 0 0 0 0 : : :
: : : 0 0 0 a b c d c b a 0 0 0 : : :
: : : 0 0 0 0 a b c b a 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 a 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 a b c b a 0 0 0 0 : : :
: : : 0 0 0 a b c d c b a 0 0 0 : : :
: : : 0 0 a b c d e d c b a 0 0 : : :
: : : 0 0 0 a b c d c b a 0 0 0 : : :
: : : 0 0 0 0 a b c b a 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 0 0 a 0 0 0 0 0 0 : : :
: : : 0 0 0 0 0 a b a 0 0 0 0 0 : : :
: : : 0 0 0 0 a b c b a 0 0 0 0 : : :
: : : 0 0 0 a b c d c b a 0 0 0 : : :
: : : 0 0 a b c d e d c b a 0 0 : : :
: : : 0 a b c d e f e d c b a 0 : : :
: : : 0 0 a b c d e d c b a 0 0 : : :

. . .

. . .

and they are described using (20) and (21), because we may put:

F (0) = 1; F (1) = b; F (2) = c; F (3) = d; F (4) = e

etc.
Of course, by analogy, we can construct di®erent schemes, e.g.,

the schemes of Problems 12, 13 and 14 from [13], but the bene¯t of
these schemes is not clear.
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Essentially more interesting is Problem 103 from [13]:
Smarandache numerical carpet:
has the general form

.

.

.
1

1 a 1
1 a b a 1

1 a b c b a 1
1 a b c d c b a 1

1 a b c d e d c b a 1
1 a b c d e f e d c b a 1

1 a b c d e f g f e d c b a 1
1 a b c d e f e d c b a 1

1 a b c d e d c b a 1
1 a b c d c b a 1

1 a b c b a 1
1 a b a 1

1 a 1
1
.
.
.

On the border of level 0, the elements are equal to \1";
they form a rhomb.

Next, on the border of level 1, the elements are equal to \a";
where \a" is the sum of all elements of the previous border;
the \a"s form a rhomb too inside the previous one.

Next again, on the border of level 2, the elements are equal to \b";
where \b" is the sum of all elements of the previous border;
the \b"s form a rhomb too inside the previous one.

And so on ...
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The above square, that Smarandache named \rhomb", corre-
sponds to the square from our construction for the case of s = 6, if
we begin to count from s = 1, instead of s = 0. In [13] a particular
solution of the Problem 103 is given, but there a complete solution
is not introduced. We will give a solution below ¯rstly for the case
of Problem 103 and then for a more general case.

It can be easily seen that the number of the elements of the s-th
square side is s+ 2 and therefore the number of the elements from
the countour of this square is just equal to 4s+ 4.

The s-th square can be represented as a set of sub-squares, each
one included in the next. Let us number them inwards, so that
the outmost (boundary) square is the ¯rst one. As it is written in
Problem 103, all of its elements are equal to 1. Hence, the values of
the elements of the subsequent (second) square will be (using also
the notation from Problem 103):

a1 = a = (s+ 2) + (s+ 1) + (s+ 1) + s = 4(s+ 1);

the values of the elements of the third square will be

a2 = b = a(4(s¡ 1) + 4 + 1) = 4(s+ 1)(4s+ 1);
the values of the elements of the fourth square will be

a3 = c = b(4(s¡ 2) + 4 + 1) = 4(s+ 1)(4s+ 1)(4s¡ 3);
the values of the elements of the ¯fth square will be

a4 = d = c(4(s¡ 3) + 4 + 1) = 4(s+ 1)(4s+ 1)(4s¡ 3)(4s¡ 7);
etc., where the square, corresponding to the initial square (rhomb),
from Problem 103 has the form
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1
: : :

1 a1 : : : a1 1
1 a1 a2 : : : a2 a1 1

1 a1 a2 a3 : : : a3 a2 a1 1
1 a1 a2 : : : a2 a1 1

1 a1 : : : a1 1
: : :
1

It can be proved by induction that the elements of this square
that stay on t-th place are given by the formula

at = 4(s+ 1)
t¡2Y
i=0

(4s+ 1¡ 4i):

If we would like to generalize the above problem, we can con-
struct, e.g., the following extension:

x
. : .

x a1 . : . a1 x
x a1 a2 . : . a2 a1 x

x a1 a2 a3 . : . a3 a2 a1 x
x a1 a2 . : . a2 a1 x

x a1 . : . a1 x
. : .
x

where x is a given number. Then we obtain

a1 = 4(s+ 1)x;

a2 = 4(s+ 1)(4s+ 1)x;

a3 = 4(s+ 1)(4s+ 1)(4s¡ 3)x;
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a4 = 4(s+ 1)(4s+ 1)(4s¡ 3)(4s¡ 7)x;
etc. and for t ¸ 1

at = 4(s+ 1)(
t¡2Y
i=0

(4s+ 1¡ 4i))x;

where it is assumed that

¡1Y
i=0

² = 1:
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3. ON THE 15-TH SMARANDACHE'S PROBLEM3

The 15-th Smarandache's problem from [13] is the following:
\Smarandache's simple numbers:

2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14; 15; 17; 19; 21; 22; 23; 25; 26; 27;

29; 31; 33; :::

A number n is called \Smarandache's simple number" if the product
of its proper divisors is less than or equal to n. Generally speaking,
n has the form n = p, or n = p2, or n = p3, or n = pq, where p and
q are distinct primes".

Let us denote: by S - the sequence of all Smarandache's simple
numbers and by sn - the n-th term of S; by P - the sequence of all
primes and by pn - the n-th term of P; by P2 - the sequence fp2ng1n=1;
by P3 - the sequence fp3ng1n=1; by PQ - the sequence fp:qgp;q2P ,
where p < q.

For an abitrary increasing sequence of natural numbers C ´
fcng1n=1 we denote by ¼C(n) the number of terms of C, which are
not greater that n. When n < c1 we put ¼C(n) = 0.

In the present section we ¯nd ¼S(n) in an explicit form and using
this, we ¯nd the n-th term of S in explicit form, too.

First, we note that instead of ¼P (n) we use the well-known no-
tation ¼(n).

Hence
¼P2(n) = ¼(

p
n); ¼P3(n) = ¼( 3

p
n):

Thus, using the de¯nition of S, we get

¼S(n) = ¼(n) + ¼(
p
n) + ¼( 3

p
n) + ¼PQ(n): (1)

Our ¯rst aim is to express ¼S(n) in an explicit form. For ¼(n)
some explicit formulae are proposed in A2. Other explicit formulae

3The results in this section are taken from [34]
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for ¼(n) are given in [18]. One of them is known as Min¶aÄc's formula.
It is given below

¼(n) =
nX
k=2

[
(k ¡ 1)! + 1

k
¡ [ (k ¡ 1)!

k
]]: (2)

Therefore, the problem for ¯nding of explicit formulae for functions
¼(n); ¼(

p
n); ¼( 3

p
n) is solved successfully. It remains only to express

¼PQ(n) in an explicit form.
Let k 2 f1; 2; :::; ¼(pn)g be ¯xed. We consider all numbers of

the kind pk:q, with q 2 P; q > pk for which pk:q · n. The quantity
of these numbers is ¼( npk )¡ ¼(pk), or which is the same

¼(
n

pk
)¡ k: (3)

When k = 1; 2; :::; ¼(
p
n), the numbers pk:q, as de¯ned above,

describe all numbers of the kind p:q, with p; q 2 P; p < q; p:q · n:
But the quantity of the last numbers is equal to ¼PQ(n): Hence

¼PQ(n) =
¼(
p
n)X

k=1

(¼(
n

pk
)¡ k); (4)

because of (3). The equality (4), after a simple computation yields
the formula

¼PQ(n) =
¼(
p
n)X

k=1

¼(
n

pk
)¡ ¼(

p
n):(¼(

p
n) + 1)

2
: (5)

In A5 the identity

¼(b)X
k=1

¼(
n

pk
) = ¼(

n

b
):¼(b) +

¼(n
2
)¡¼(n

b
)X

k=1

¼(
n

p¼(n
b
)+k
) (6)

is proved, under the condition b ¸ 2 (b is a real number). When
¼(n2 ) = ¼(

n
b ), the right hand-side of (6) is reduced to ¼(

n
b ):¼(b). In
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the case b =
p
n and n ¸ 4 equality (6) yields

¼(
p
n)X

k=1

¼(
n

pk
) = (¼(

p
n))2 +

¼(n
2
)¡¼(pn)X
k=1

¼(
n

p¼(
p
n)+k

): (7)

If we compare (5) with (7) we obtain for n ¸ 4

¼PQ(n) =
¼(
p
n):(¼(

p
n)¡ 1)

2
+

¼(n
2
)¡¼(pn)X
k=1

¼(
n

p¼(
p
n)+k

): (8)

Thus, we have two di®erent explicit representations for ¼PQ(n).
These are formulae (5) and (8). We note that the right hand-side

of (8) reduces to ¼(
p
n):(¼(

p
n)¡1)

2 , when ¼(n2 ) = ¼(
p
n).

Finally, we observe that (1) gives an explicit representation for
¼S(n), since we may use formula (2) for ¼(n) (or other explicit
formulae for ¼(n)) and (5), or (8) for ¼PQ(n).

The following assertion solves the problem for ¯nding of the ex-
plicit representation of sn.
Theorem. The n-th term sn of S admits the following three di®er-
ent explicit representations:

sn =

µ(n)X
k=0

[
1

1 + [
¼S(k)
n ]

]; (9)

sn = ¡2
µ(n)X
k=0

³(¡2[¼S(k)
n

]); (10)

sn =

µ(n)X
k=0

1

¡(1¡ [¼S(k)n ])
; (11)

where

µ(n) ´ [n
2 + 3n+ 4

4
]; n = 1; 2; ::: (12)
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Remark. We note that (9){(11) are representations using, re-
spectively, \°oor function", \Riemann's Zeta-function and Euler's
Gamma-function. Also, we note that in (9){(11) ¼S(k) is given by
(1), ¼(k) is given by (2) (or by others formulae like (2)) and ¼PQ(n)
is given by (5), or by (8). Therefore, formulae (9){(11) are explicit.
Proof of the Theorem. In A2 the following three universal for-
mulae are proposed, using ¼C(k) (k = 0; 1; :::); each one of them
could apply to represent cn. They are the following

cn =
1X
k=0

[
1

1 + [
¼C(k)
n ]

]; (13)

cn = ¡2
1X
k=0

³(¡2[¼C(k)
n

]); (14)

cn =
1X
k=0

1

¡(1¡ [¼C(k)n ])
: (15)

In [16] is shown that the inequality

pn · µ(n); n = 1; 2; :::; (16)

holds. Hence
sn · µ(n); n = 1; 2; :::; (17)

since we have obviously

sn · pn; n = 1; 2; :::: (18)

Then, to prove the Theorem it remains only to apply (13){(15) in
the case C = S, i.e., for cn = sn, putting there ¼S(k) instead of
¼C(k) and µ(n) instead of 1.
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4. ON THE 17-TH SMARANDACHE'S PROBLEM4

The 17-th problem from [13] (see also the 22-nd problem from
[24]) is the following:

Smarandache's digital products:

0; 1; 2; 3; 4; 5; 6; 7; 8; 9| {z }; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9| {z };
0; 2; 4; 6; 8; 19; 12; 14; 16; 18| {z }; 0; 3; 6; 9; 12; 15; 18; 21; 24; 27| {z };

0; 4; 8; 12; 16; 20; 24; 28; 32; 36| {z }; 0; 5; 10; 15; 20; 25:::| {z }
(dp(n) is the product of digits.)

Let the ¯xed natural number n have the form n = a1a2:::ak,
where a1; a2; :::; ak 2 f0; 1; :::; 9g and a1 ¸ 1. Therefore,

n =
kX
i=1

ai10
i¡1:

Hence, k = [log10 n] + 1 and

a1(n) ´ a1 = [ n

10k¡1
];

a2(n) ´ a2 = [n¡ a110
k¡1

10k¡2
];

a3(n) ´ a3 = [n¡ a110
k¡1 ¡ a210k¡2
10k¡3

];

: : :

a[log10 n](n) ´ ak¡1 = [
n¡ a110k¡1 ¡ :::¡ ak¡2102

10
];

4The results in this section are taken from [7]
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a[log10 n]+1(n) ´ ak = n¡ a110k¡1 ¡ :::¡ ak¡110:
Obviously, k; a1; a2; :::; ak are functions only of n. Therefore,

dp(n) =

[log10 n]+1Y
i=1

ai(n):
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5. ON THE 20-TH AND THE 21-ST
SMARANDACHE'S PROBLEMS5

The 20-th problem from [13] is the following (see also Problem
25 from [24]):
Smarandache divisor products:

1; 2; 3; 8; 5; 36; 7; 64; 27; 100; 11; 1728; 13; 196; 225; 1024; 17; 5832; 19;

8000; 441; 484; 23; 331776; 125; 676; 729; 21952; 29; 810000; 31; 32768;

1089; 1156; 1225; 10077696; 37; 1444; 1521; 2560000; 41; :::

(Pd(n) is the product of all positive divisors of n.)
The 21-st problem from [13] is the following (see also Problem

26 from [24]:
Smarandache proper divisor products:

1; 1; 1; 2; 1; 6; 1; 8; 3; 10; 1; 144; 1; 14; 15; 64; 1; 324; 1; 400; 21; 22; 1;

13824; 5; 26; 27; 784; 1; 27000; 1; 1024; 33; 34; 35; 279936; 1; 38; 39;

64000; 1; :::

(pd(n) is the product of all positive divisors of n but n.)
Let us denote by ¿(n) the number of all divisors of n. It is

well-known (see, e.g., [17]) that

Pd(n) =
p
n¿(n) (1)

and of course, we have

pd(n) =
Pd(n)

n
: (2)

But (1) is not a good formula for Pd(n), because it depends on
function ¿ and to express ¿(n) we need the prime number factoriza-
tion of n.

5The results in this section are taken from [5, 40]. In [5] there are some
misprints.
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Below, we give other representations of Pd(n) and pd(n), which
do not use the prime number factorization of n.
Proposition 1. For n ¸ 1 representation

Pd(n) =
nY
k=1

k[
n
k
]¡[n¡1

k
] (3)

holds.
Proof. We have

µ(n; k) ´ [n
k
]¡ [n¡ 1

k
]

=

8<:
1; if k is a divisor of n

0; otherwise
(4)

Therefore,
nY
k=1

k[
n
k
]¡[n¡1

k
] =

Y
k=n

k ´ Pd(n)

and Proposition 1 is proved.
Here and further the symbolsY

k=n

² and
X
k=n

²

mean the product and the sum, respectively, of all divisors of n.
The following assertion is obtained as a corollary of (2) and (3).

Proposition 2. For n ¸ 1 representation

pd(n) =
n¡1Y
k=1

k[
n
k
]¡[n¡1

k
] (5)

holds.
For n = 1 we have

pd(1) = 1:
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Proposition 3. For n ¸ 1 representation

Pd(n) =
nY
k=1

[nk ]!

[n¡ 1k ]!
(6)

holds, where here and further we assume that 0! = 1.
Proof. Obviously, we have

[nk ]!

[n¡ 1k ]!
=

8<:
n
k ; if k is a divisor of n

1; otherwise
:

Hence
nY
k=1

[nk ]!

[n¡ 1k ]!
=
Y
k=n

n

k
=
Y
k=n

k ´ Pd(n);

since, if k describes all divisors of n, then nk describes them, too.

Now (2) and (6) yield.
Proposition 4. For n ¸ 2 representation

pd(n) =
nY
k=2

[nk ]!

[n¡ 1k ]!
(7)

holds.
Another type of representation of pd(n) is the following

Proposition 5. For n ¸ 3 representation

pd(n) =
n¡2Y
k=1

(k!)µ(n;k)¡µ(n;k+1); (8)

where µ(n; k) is given by (4).
Proof. Let

r(n; k) = µ(n; k)¡ µ(n; k + 1):
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The assertion holds from the fact, that

r(n; k) =

8>>>>>>>><>>>>>>>>:

1; if k is a divisor of n and
k + 1 is not a divisor of n

¡1; if k is not a divisor of n and
k + 1 is a divisor of n

0; otherwise

Further, we need the following
Theorem.6 For n ¸ 2 the identity

nY
k=2

[
n

k
]! =

n¡1Y
k=1

(k!)[
n
k
]¡[ n

k+1
] (9)

holds.
Proof. By induction. For n = 2 (9) is true. Let us assume, that
(9) holds for some n ¸ 2. Then we must prove that

n+1Y
k=2

[
n+ 1

k
]! =

nY
k=1

(k!)[
n+1
k
]¡[n+1

k+1
] (10)

holds, too.
Dividing (10) by (9) we obtain

nY
k=2

[n+ 1k ]!

[nk ]!
=
n¡1Y
k=1

(k!)r(n+1;k): (11)

Sinse, for k = n+ 1

[
n+ 1

k
]! = 1

and for k = n

[
n+ 1

k
]¡ [n+ 1

k + 1
] = 0:

6The Theorem is published in [35]
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Then (10) is true, if and only if (11) is true. Therefore, we must
prove (11) for proving of the Theorem.

From (7), the left hand-side of (11) is equal to pd(n+ 1): From
(8), the right side of (11) is equal to pd(n+1), too. Thetrefore, (11)
is true.

Now, we shall deduce some formulae for

nY
k=1

Pd(k) and
nY
k=1

pd(k):

Proposition 6. Let f be an arbitrary arithmetic function. Then
the identity

nY
k=1

(Pd(k))
f(k) =

nY
k=1

k½(n;k) (12)

holds, where

½(n; k) =

[n
k
]X

s=1

f(ks):

Proof. We use a well-known Dirichlet's identityX
k·n

f(k):
X
t=k

g(t) =
X
k·n

g(k):
X
s·n

k

f(ks);

where g is also arbitrary arithmetic function. Putting there g(x) =
lnx for every real positive number x, we obtain (12), since

Pd(k) =
Y
t=k

t:

When f(x) ´ 1, as a corollary from (12) we obtain
Proposition 7. For n ¸ 1 the identity

nY
k=1

Pd(k) =
nY
k=1

k[
n
k
] (13)

holds.
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Now, we need the following
Lemma. For n ¸ 1 the identity

nY
k=1

[
n

k
]! =

nY
k=1

k[
n
k
] (14)

holds.
Proof. In the identityX

k·n
f(k):

X
s·n

k

g(s) =
X
k·n

g(k):
X
s·n

k

f(s);

that is valid for arbitrary two arithmetic functions f and g, we put:

g(x) ´ 1;
f(x) = lnx

for any positive real number x and (14) is proved.
From (13) and (14) we obtain

Proposition 8. For n ¸ 1 the identity
nY
k=1

Pd(k) =
nY
k=1

[
n

k
]! (15)

holds.
As a corollary from (2) and (15), we also obtain

Proposition 9. For n ¸ 2 the identity
nY
k=1

pd(k) =
nY
k=2

[
n

k
]! (16)

holds.
Fom (9) and (16), we obtain

Proposition 10. For n ¸ 2 the identity
nY
k=1

pd(k) =
n¡1Y
k=1

(k!)[
n
k
]¡[ n

k+1
] (17)
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holds.
As a corollary from (17) we obtain, because of (2)

Proposition 11. For n ¸ 1 the identity
nY
k=1

Pd(k) =
nY
k=1

(k!)[
n
k
]¡[ n

k+1
] (18)

holds.
Now, we return to (12) and suppose that

f(k) > 0 (k = 1; 2; :::):

Then after some simple computations we obtain
Proposition 12. For n ¸ 1 representation

Pd(n) =
nY
k=1

k¾(n;k) (19)

holds, where

¾(n; k) =

[n
k
]

§
s=1

f(ks)¡
[n¡1
k
]

§
s=1

f(ks)

f(n)
:

For n ¸ 2 representation

pd(n) =
n¡1Y
k=1

k¾(n;k) (20)

holds.
Note that although f is an arbitrary arithmetic function, the

situation with (19) and (20) is like the case f(x) ´ 1, because

[n
k
]

§
s=1

f(ks)¡
[n¡1
k
]

§
s=1

f(ks)

f(n)
=

8<:
1; if k is a divisor of n

0; otherwise
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Finally, we use (12) to obtain some new inequalities, involving
Pd(k) and pd(k) for k = 1; 2; :::; n.

Putting

F (n) =
nX
k=1

f(k)

we rewrite (12) as

nY
k=1

(Pd(k))
f(k)
F (n) =

nY
k=1

k(
P[n

k
]

s=1 f(ks))=(F (n)): (21)

Then we use the well-known Jensen's inequality

nX
k=1

®kxk ¸
nY
k=1

x®kk ;

that is valid for arbitrary positive numbers xk, ®k (k = 1; 2; :::; n)
such that

nX
k=1

®k = 1;

for the case:
xk = Pd(k);

®k =
f(k)

F (n)
:

Thus we obtain from (21) inequality

nX
k=1

f(k):Pd(k) ¸ (
nX
k=1

f(k)):
nY
k=1

k(
P[n

k
]

s=1 f(ks))=(
Pn

s=1
f(s)): (22)

If f(x) ´ 1 then (22) yields the inequality

1

n

nX
k=1

Pd(k) ¸
nY
k=1

(
n
p
k)[

n
k
]: (23)
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If we put in (22)

f(k) =
g(k)

k

for k = 1; 2; :::; n, then we obtain

nX
k=1

g(k):pd(k) ¸ (
nX
k=1

g(k)

k
):

nY
k=1

(
k
p
k)(
P[n

k
]

s=1
g(ks)
s
)=(
Pn

s=1

g(s)
s
); (24)

because of (2).
Let g(x) ´ 1: Then (24) yields the very interesting inequality

(
1

Hn

nX
k=1

pd(k))
Hn ¸

nY
k=1

(
k
p
k)
H[n

k
] ;

where Hm denotes the m-th partial sum of the harmonic series, i.e.,

Hm =
1

1
+
1

2
+ :::+

1

m
:

All of the above inequalities become equalities if and only if
n = 1.
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6. ON THE 25-TH AND THE 26-TH
SMARANDACHE'S PROBLEMS7

The 25-th and the 26-th problems from [13] (see also the 30-th
and the 31-st problems from [24]) are the following:

Smarandache's cube free sieve:

2; 3; 4; 5; 6; 7; 9; 10; 11; 12; 13; 14; 15; 17; 18; 19; 20; 21; 22; 23; 25; 26;

28; 29; 30; 31; 33; 34; 35; 36; 37; 38; 39; 41; 42; 43; 44; 45; 46; 47; 49; 50;

51; 52; 53; 55; 57; 58; 59; 60; 61; 62; 63; 65; 66; 67; 68; 69; 70; 71; 73; :::

De¯nition: from the set of natural numbers (except 0 and 1):
{ take o® all multiples of 23 (i.e. 8,16,24,32,40,...)
{ take o® all multiples of 33

{ take o® all multiples of 53

... and so on (take o® all multiples of all cubic primes).
(One obtains all cube free numbers.)

Smarandache's m-power free sieve:
De¯nition: from the set of natural numbers (except 0 and 1) take
o® all multiples of 2m, afterwards all multiples of 3m ... and so on
(take o® all multiples of all m-power primes, m ¸ 2).
(One obtains all m-power free numbers.)

Here we introduce the solutions for both of these problems.
For every natural number m we denote the increasing sequence

a
(m)
1 ; a

(m)
2 ; a

(m)
3 ; ::: of all m-power free numbers by m. Then we have

; ´ 1 ½ 2::: ½ (m¡ 1) ½ m ½ (m+ 1) ½ :::
7The results in this section are taken from [41]
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Also, for m ¸ 2 we have

m =
m¡1
[
k=1

(2)k

where
(2)k = fx j (9x1; :::; xk 2 2)(x = x1:x2: : : : xk)g

for each natural number k ¸ 1.
Let us consider m as an in¯nite sequence for m = 2; 3; :::. Then

2 is a subsequence of m. Therefore, the inequality

a(m)n · a(2)n
holds for n = 1; 2; 3; :::.

Let p1 = 2; p2 = 3; p3 = 5; p4 = 7; ::: be the sequence of all
primes. It is obvious that this sequence is a subsequence of 2. Hence,
the inequality

a(2)n · pn
holds for n = 1; 2; 3; :::. But it is well-known that

pn · µ(n) ´ [n
2 + 3n+ 4

4
] (1)

(see [16]). Therefore, for any m ¸ 2 and n = 1; 2; 3; ::: we have
a(m)n · a(2)n · µ(n):

Hence, there exists ¸(n) such that ¸(n) · µ(n) and inequality:
a(m)n · a(2)n · ¸(n) (2)

holds. In particular, it is possible to use µ(n) instead of ¸(n).

Further, we will ¯nd an explicit formula for a
(m)
n when m ¸ 2 is

¯xed.
Let for any real x

sg(x) =

½
1; x > 0
0; x · 0 :
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We de¯ne

"m(k) =

½
1; k 2 m
0; k62 m :

Hence,

¼m(n) =
nX
k=2

"m(k); (3)

where ¼m(n) is the number of terms of set m, which are not greater
than n. Using the relation

"m(k) = sg(
Y
pjk

p is prime

[
m¡ 1
ordpk

])

we rewrite (3) in the explicit form

¼m(n) =
nX
k=2

sg(
Y
pjk

p is prime

[
m¡ 1
ordpk

]): (4)

Then, using formulae (1'){(3') from A4 (that are the universal
formulae for the n-th term of an arbitrary increasing sequence of
natural numbers) and (2), with ¸(n) from (2), we obtain

a(m)n =

¸(n)X
k=0

[
1

1 + [
¼m(k)
n ]

]; (5)

(a representation using \°oor function"),

a(m)n = ¡2
¸(n)X
k=0

³(¡2[¼m(k)
n

]); (6)

(a representation using Riemann's Zeta-function),

a(m)n =

¸(n)X
k=0

1

¡(1¡ [¼m(k)n ])
; (7)
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(a representation using Euler's Gamma-function).
Note that (5){(7) are explicit formulae, because of (4) and these

formulae are valid, too, if we put µ(n) instead of ¸(n).
Thus, the 26-th Smarandache's problem is solved and for m = 3

the 25-th Smarandache's problem is solved, too.
For m = 2 we have the representation

"2(k) = j¹(k)j

(here ¹ is the MÄobius function);

j¹(k)j = [2
!(k)

¿(k)
];

where !(k) denotes the number of all di®erent prime divisors of k
and

¿(k) =
X
djk
1:

Hence,

¼2(n) =
nX
k=2

j¹(k)j =
nX
k=2

[
2!(k)

¿(k)
]:

The following problems are interesting.
Problem 1. Does there exist a constant C > 1, such that ¸(n) ·
C:n?
Problem 2. Is C · 2?

*
* *

Below we give the main explicit representation of function ¼m(n),
that takes part in formulae (5){(7). In this way we ¯nd the main

explicit representation for a
(m)
n , that is based on formulae (5){(7),
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too.
Theorem. Function ¼m(n) allows representation

¼m(n) = n¡ 1 +
X

s22\f2;3;:::;[ mpn]g
(¡1)!(s):[ n

sm
]: (8)

Proof. First, we shall note that the variable s from the sum in
the right hand-side of (8) is element of the set of only these natu-
ral numbers, smaller than [ m

p
n], such that s 2 2, i.e., the natural

numbers s such that ¹(s)6= 0:
Let fb(m)n g1m=1 be the sequence de¯ned by

b
(m)
1 = 1; b(m)n = a

(m)
n¡1 for n ¸ 2: (9)

We denote this sequence by m¤.
Let ¼m¤(n) denote the number of terms of m¤, that are not

greater than n. Then we have the relation

¼m(n) = ¼m¤(n)¡ 1; (10)

because of (9).
Let g(m)(k) be the function given by

g(m)(k) =

½
1; k 2 m¤
0; k62 m¤ : (11)

Then g(m)(k) is a multiplicative function with respect to k, i.e.,
g(m)(1) = 1 and for every two natural numbers a and b, such that
(a; b) = 1, the relation

g(m)(a:b) = g(m)(a):g(m)(b)

holds.
Let function f (m)(k) be introduced by

f (m)(k) =
X
d=k

¹(
k

d
)g(m)(d): (12)
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Using (12) for k = p®, where p is an arbitrary prime and ® is an
arbitrary natural number, we obtain

f (m)(p®) = g(m)(p®)¡ g(m)(p®¡1):
Hence,

f (m)(p®) =

8<:
0; ® < m

¡1; ® = m
0; ® > m

;

because of (11).
Therefore, f (m)(1) = 1 and for k ¸ 2 we have

f (m)(k) =

½
(¡1)!(s); if k = sm and s 2 2

0; otherwise
; (13)

since f (m)(k) is a multiplicative function with respect to k, because
of (12).

Using the MÄobius inversion formula, equality (12) yields

g(m)(k) =
X
d=k

f (m)(d): (14)

Now, we use (14) and the representation

¼m¤(n) =
nX
k=1

g(m)(k) (15)

in order to obtain

¼m¤(n) =
nX
k=1

X
d=k

f (m)(d): (16)

Then both (16) and the identity

nX
k=1

X
d=k

f (m)(d) =
nX
k=1

f (m)(k):[
n

k
] (17)
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both yield

¼m¤(n) =
nX
k=1

f (m)(k):[
n

k
]: (18)

From (13) and (18) we obtain (8), because of (10) and the fact
that f (m)(1) = 1. The Theorem is proved.

Finally, we note that some of authors call function (¡1)!(s) uni-
tary analogue of the MÄobius function ¹(s) and denote this function
by ¹¤(s) (see [11, 19]). So, if we agree to use the last notation, we
may rewrite formula (8) in the form

¼m(n) = n¡ 1 +
X

s22\f2;3;:::;[ mpn]g
¹¤(s):[

n

sm
]:
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7. ON THE 28-TH SMARANDACHE'S PROBLEM8

The 28-th problem from [13] (see also the 94-th problem from
[24]) is the following:

Smarandache odd sieve:

7; 13; 19; 23; 25; 31; 33; 37; 43; 47; 49; 53; 55; 61; 63; 67; 73; 75; 83;

85; 91; 93; 97; :::

(All odd numbers that are not equal to the di®erence of two primes).
A sieve is used to get this sequence:
- substract 2 from all prime numbers and obtain a temporary se-
quence;
- choose all odd numbers that do not belong to the temporary one.

We ¯nd an explicit form of the n-th term of the above sequence,
that will be denoted by C = fCng1n=1 below. Let ¼C(n) be the
number of `he terms of C which are not greater than n. In particular,
¼C(0) = 0:

Firstly, we shall note that the above de¯nition of C can be inter-
preted to the following equivalent form as follows, having in mind
that every odd number is a di®erence of two prime numbers if and
only if it is a di®erence of a prime number and 2:

Smarandache's odd sieve contains exaclty these odd numbers
that cannot be represented as a di®erence of a prime number and 2.

We can rewrite the last de¯nition to the following equivalent
form, too:

Smarandache's odd sieve contains exaclty these odd numbers
that are represented as a di®erence of a composite odd number and
2.

We shall ¯nd an explicit form of the n-th term of the above se-
quence, using the third de¯nition of it. Initially, we shall prove the

8The results in this section are taken from [37]



65

following two Lemmas.
Lemma 1. For every natural number n ¸ 1, Cn+1 is exactly one of
the numbers: u ´ Cn + 2; v ´ Cn + 4 or w ´ Cn + 6.
Proof. Let us assume that none of the numbers u; v; w coincides
with Cn+1. Having in mind the third form of the above de¯nition,
number u is composite and by assumption u is not a member of
sequence C. Therefore v, according to the third form of the de¯-
nition is a prime number and by assumption it is not a member of
sequence C. Finally, w, according to the third form of the de¯nition
is a prime number and by assumption it is not a member of sequence
C. Therefore, according to the third form of the de¯nition number
w + 2 is prime.

Hence, from our assumptions we obtained that all of the numbers
v;w and w+2 are prime, which is impossible, because these numbers
are consecutive odd numbers and having in mind that v = Cn + 4
and C1 = 7, the smallest of them satis¯es the inequality v ¸ 11.
Corollary. For every natural number n ¸ 1:

Cn+1 · Cn + 6: (1)

Lemma 2. For every natural number n ¸ 1:

Cn · 6n+ 1: (2)

Proof. We use induction. For n = 1 obviously we have the equality.
Let us assume that (2) holds for some n. We shall prove that

Cn+1 · 6(n+ 1) + 1: (3)

By (1) and the induction assumption it follows that

Cn+1 · Cn + 6 · (6n+ 1) + 6 = 6(n+ 1) + 1;

which proves (3).
Now, we return to the Smarandache's problem.
Let ¼C(N) be the number of the members of the sequence

fCng1n=1 that are not greater than N . In particular, ¼C(0) = 0:
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In A2 the following three universal explicit formulae are intro-
duced, using numbers ¼C(k) (k = 0; 1; 2; :::), that can be used to
represent numbers Cn:

Cn =
1X
k=0

[
1

1 + [
¼C(k)
n ]

]; (4)

Cn = ¡2:
1X
k=0

³(¡2:[¼C(k)
n

]); (5)

Cn =
1X
k=0

1

¡(1¡ [¼C(k)n ])
: (6)

For the present case, having in mind (2), we substitute symbol

1 with 6n + 1 in sum
1
§
k=0

for Cn and we obtain the following

sums:

Cn =
6n+1X
k=0

[
1

1 + [
¼C(k)
n ]

]; (7)

Cn = ¡2:
6n+1X
k=0

³(¡2:[¼C(k)
n

]); (8)

Cn =
6n+1X
k=0

1

¡(1¡ [¼C(k)n ])
: (9)

We must show why ¼C(n) (n = 1; 2; 3; :::) is represented in an
explicit form. It can be directly seen that the number of the odd
numbers, that are not bigger than n, is exactly equal to

®(n) = n¡ [n
2
]; (10)

because the number of the even numbers that are not greater that
n is exactly equal to [n2 ].
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Let us denote by ¯(n) the number of all odd numbers not bigger
that n, that can be represented as a di®erence of two primes. Ac-
cording the second form of the above given de¯nition, ¯(n) coincides
with the number of all odd numbers m such that m · n and m has
the form m = p ¡ 2, where p is an odd prime number. Therefore,
we must study all odd prime numbers, because of the inequality
m · n. The number of these prime numbers is exactly ¼(n+2)¡1.
Therefore,

¯(n) = ¼(n+ 2)¡ 1: (11)

Omitting from the number of all odd numbers that are not
greater than n the quantity of those numbers that are a di®erence of
two primes, we ¯nd exactly the quantity of these odd numbers that
are not greater than n and that are not a di®erence of two prime
numbers, i.e., ¼C(n). Therefore, the equality

¼C(n) = ®(n)¡ ¯(n)
holds and from (10) and (11) we obtain:

¼C(n) = (n¡ [n
2
])¡ (¼(n+ 2)¡ 1) = n+ 1¡ [n

2
])¡ ¼(n+ 2);

where ¼(m) is the number of primes p such that p · m. But ¼(n+2)
can be represented in an explicit form, e.g., by Min¶a·c's formula (see
A2):

¼(n+ 2) =
n+2X
k=2

[
(k ¡ 1)! + 1

k
¡ [ (k ¡ 1)!

k
]];

and therefore, we obtain that the explicit form of ¼C(N) is

¼C(N) = N + 1¡ [N
2
]¡

N+2X
k=2

[
(k ¡ 1)! + 1

k
¡ [ (k ¡ 1)!

k
]]; (12)

where N ¸ 1 is a ¯xed natural number.
It is possible to put [N+32 ] instead of N + 1¡ [N2 ] into (12).
Now, using each of the formulae (7) { (9), we obtain Cn in an

explicit form, using (12).
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It can be checked directly that

C1 = 7; C2 = 13; C3 = 19; C4 = 23; C5 = 25; C6 = 31;

C7 = 33; :::

and

¼C(0) = ¼C(1) = ¼C(2) = ¼C(3) = ¼C(4) = ¼C(5) = ¼C(6) = 0:

Therefore from (7){(9) we have the following explicit formulae
for Cn

Cn = 7 +
6n+1X
k=7

[
1

1 + [
¼C(k)
n ]

];

Cn = 7¡ 2:
6n+1X
k=7

³(¡2:[¼C(k)
n

]);

Cn = 7 +
6n+1X
k=7

1

¡(1¡ [¼C(k)n ])
;

where ¼C(k) is given by (12).
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8. ON THE 46-TH SMARANDACHE'S PROBLEM9

The 46-th Smarandache's problem from [13] is the following:

Smarandache's prime additive complements:

1; 0; 0; 1; 0; 1; 0; 3; 2; 1; 0; 1; 0; 3; 2; 1; 0; 1; 0; 3; 2; 1; 0; 1; 0; 5; 4; 3; 2; 1;

0; 1; 0; 5; 4; 3; 2; 1; 0; 3; 2; 1; 0; 5; 4; 3; 2; 1; 0; :::

(For each n to ¯nd the smallest k such that n+ k is prime.)

Remark: Smarandache asked if it is possible to get as large as we
want but ¯nite decreasing k; k¡1; k¡2; :::; 2; 1; 0 (odd k) sequence
included in the previous sequence { i.e., for any even integer are
there two primes those di®erence is equal to it? He conjectured the
answer is negative.

Obviously, the members of the above sequence are di®erences
between ¯rst prime number that is greater or equal to the current
natural number n and the same n. It is well-known that the number
of primes smaller than or equal to n is ¼(n). Therefore, the prime
number smaller than or equal to n is p¼(n). Hence, the prime number
that is greater than or equal to n is the next prime number, i.e.,
p¼(n)+1: Finally, the n-th member of the above sequence will be
equal to ½

p¼(n)+1 ¡ n; if n is not a prime number
0; otherwise

We shall note that in [4] the following new formula pn for every
natural number n is given:

pn =

µ(n)X
i=0

sg(n¡ ¼(i));

9The results in this section are taken from [8, 39]
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where µ(n) = [n
2 + 3n+ 4

4 ] (for µ(n) see A2) and

sg(x) =

½
0; if x · 0
1; if x > 0

;

Let us denote by an the n-th term of the above sequence. Next,
we propose a way for obtaining an explicit formula for an (n =
1; 2; 3; :::). Extending the below results, we give an answer to the
Smarandache's question from his own Remark in [13]. At the end,
we propose a generalization of Problem 46 and present a proof of
an assertion related to Smarandache's conjecture for Problem 46.
Proposition 1. an admits the representation

an = p¼(n¡1)+1 ¡ n; (1)

where n = 1; 2; 3; :::, ¼ is the prime counting function and pk is the
k-th term of prime number sequence.

The proof is a matter of direct check.
It is clear that (1) gives an explicit representation for an since

several explicit formulae for ¼(k) and pk are known (see, e.g. [18]).
Let us de¯ne

n(m) = m! + 2:

Then all numbers

n(m); n(m) + 1; n(m) + 2; :::; n(m) +m¡ 2
are composite. Hence

an(m) ¸ m¡ 1:
This proves Smarandache's conjecture, since m may grow up to

in¯nity. Therefore fang1n=1 is unbounded sequence.
Now, we shall generalize Problem 46.
Let

c ´ c1; c2; c3; :::
be a strictly increasing sequence of positive integers.
De¯nition. Sequence

b ´ b1; b2; b3; :::
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is called c-additive complement of c if and only if bn is the smallest
non-negative integer, such that n+ bn is a term of c.

The following assertion generalizes Proposition 1.
Proposition 2. bn admits the representation

bn = c¼c(n¡1)+1 ¡ n; (2)

where n = 1; 2; 3; :::, ¼c(n) is the counting function of c, i.e., ¼c(n)
equals to the quantity of cm;m = 1; 2; 3; :::, such that cm · n:

We omit the proof since it is again a matter of direct check.
Let

dn ´ cn+1 ¡ cn (n = 1; 2; 3; :::):
The following assertion is related to Smarandache's conjecture

from Problem 46.
Proposition 3. If fdng1n=1 is unbounded sequence, then fbng1n=1
is unbounded sequence, too.
Proof. Let fdng1n=1 be unbounded sequence. Then there exists a
strictly increasing sequence of natural numbers fnkg1k=1, such that
sequence fdnkg1k=1 is strictly increasing, too.. Hence fdng1n=1 is
unbounded sequence, since it contains a strictly increasing sequence
of positive integers.
Open Problem. Formulate necessary conditions for the sequence
fbng1n=1 to be unbounded.
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9. ON THE 78-TH SMARANDACHE'S PROBLEM10

Solving of the Diophantine equation

2x2 ¡ 3y2 = 5 (1)

i.e.,
2x2 ¡ 3y2 ¡ 5 = 0

was put as an open Problem 78 by F. Smarandache in [24]. Be-
low this problem is solved completely. Also, we consider here the
Diophantive equation

l2 ¡ 6m2 = ¡5; (2)

i.e.,
l2 ¡ 6m2 + 5 = 0

and the Pellian equation

u2 ¡ 6v2 = 1; (3)

i.e.,
u2 ¡ 6v2 ¡ 1 = 0:

Here we use variables x and y only for equation (1) and l, m for
equation (2).

If
F (t; w) = 0

is an Diophantive equation, then:
(a1) we use the notation < t;w > if and only if t and w are
integers which satisfy this equation.
(a2) we use the denotation < t;w >2 N 2 if and only if t and w are
positive integers;

K(t; w) denotes the set of all < t;w >;

10The results in this section are taken from [36]
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Ko(t; w) denotes the set of all < t;w >2 N 2;
K 0(t; w) = Ko(t; w)¡ f< 2; 1 >g.

Lemma 1. If < t;w >2 N 2 and < x; y >6=< 2; 1 >, then there
exists < l;m >, such that < l;m >2 N 2 and the equalities

x = l + 3m and y = l + 2m (4)

hold.
Lemma 2. Let < l;m >2 N 2. If x and y are given by (1), then x
and y satisfy (4) and < x; y >2 N 2.

Note that Lemmas 1 and 2 show that the map ' : K0(l;m) !
K 0(x; y) given by (4) is a bijection.
Proof of Lemma 1. Let < x; y >2 N 2 be chosen arbitrarily, but
< x; y >6=< 2; 1 >. Then y ¸ 2 and x > y. Therefore,

x = y +m (5)

and m is a positive integer. Substituting (5) into (1), we obtain

y2 ¡ 4my + 5¡ 2m2 = 0: (6)

Hence
y = y1;2 = 2m§

p
6m2 ¡ 5: (7)

For m = 1 (7) yields only

y = y1 = 3:

indeed
1 = y = y2 < 2

contradicts to y ¸ 2.
Let m > 1. Then

2m¡
p
6m2 ¡ 5 < 0:

Therefore y = y2 is impossible again. Thus we always have

y = y1 = 2m+
p
6m2 ¡ 5: (8)
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Hence
y ¡ 2m =

p
6m2 ¡ 5: (9)

The left hand-side of (9) is a positive integer. Therefore, there
exists a positive integer l such that

6m2 ¡ 5 = l2:
Hence l and m satisfy (2) and < l;m >2 N 2:
The equalities (4) hold because of (5) and (8).

Proof of Lemma 2. Let < l;m >2 N 2. Then we check the
equality

2(l + 3m)2 ¡ 3(l + 2m)2 = 5;
under the assumption of validity of (2) and the Lemma is proved.

Theorem 108 a, Theorem 109 and Theorem 110 from [17] imply
the following
Theorem 1. There exist sets Ki(l;m) such that

Ki(l;m) ½ K(l;m) (i = 1; 2);
K1(l;m) \K2(l;m) = ;;

and K(l;m) admits the representation

K(l;m) = K1(l;m) [K2(l;m):
The fundamental solution of K1(l;m) is < ¡1; 1 > and the fun-

damental solution of K2(l;m) is < 1; 1 >.
Moreover, if < u; v > runs K(u; v), then:

(b1) < l;m > runs K1(l;m) if and only if the equality

l +m
p
6 = (¡1 +

p
6)(u+ v

p
6) (10)

holds;
(b2) < l;m > runs K2(l;m) if and only if the equality

l +m
p
6 = (1 +

p
6)(u+ v

p
6) (11)

holds.
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Note that the fundamental solution of (3) is < 5; 2 >. Let un
and vn be given by

un + vn
p
6 = (5 + 2

p
6)n (n 2 N : (12)

Then un and vn satisfy (11) and < un; vn >2 N 2. Moreover, if n
runs N , then < un; vn > runs Ko(u; v).

Let the sets Ko
i (l;m) (i = 1; 2) be introduced by

Ko
i (l;m) = Ki(l;m) \N 2: (13)

From the above remark and Theorem 1 we obtain
Theorem 2. The set Ko(l;m) may be represented as

Ko(l;m) = Ko
1(l;m) [Ko

2(l;m); (14)

where
Ko
1(l;m) \Ko

2(l;m) = ;: (15)

Moreover:
(c1) If n runs N and the integers ln and mn are de¯ned by

ln +mn

p
6 = (¡1 +

p
6)(5 + 2

p
6)n; (16)

then ln and mn satisfy (2) and < ln;mn > runs K
o
1(l;m);

(c2) If n runs N [ f0g and the integers ln and mn are de¯ned by

ln +mn

p
6 = (1 +

p
6)(5 + 2

p
6)n; (17)

then ln and mn satisfy (2) and < ln;mn > runs K
o
2(l;m).

Let ' be the above mentioned bijection. The sets K 0o
i (x; y) (i =

1; 2) are introduced by

K 0o
i (x; y) = '(K

o
i (l;m)): (18)

From Theorem 2, and especially from (14), (15), and (18) we
obtain the next result.
Theorem 3. The set K 0o(x; y) admits the representation

K 0o(x; y) = Ko
1(x; y) [Ko

2(x; y); (19)
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where
Ko
1(x; y) \Ko

2(x; y) = ;: (20)

Moreover:
(d1) If n runs N and the integers xn and yn are de¯ned by

xn = ln + 3mn and yn = ln + 2mn; (21)

where ln and mn are introduced by (16), then xn and yn satisfy
(1) and < xn; yn > runs K

o
1(x; y);

(d2) If n runs N [f0g and the integers xn and yn are de¯ned again
by (21), but ln and mn now are introduced by (17), then xn
and yn satisfy (1) and < xn; yn > runs K

o
2(x; y).

Theorem 3 completely solves F. Smarandache's Problem 78 from
[24], because ln and mn could be expressed in explicit form using
(16) or (17) as well.

*

* *

Below we introduce a generalization of Smarandache's problem
78 from [24].

If we consider the Diophantine equation

2x2 ¡ 3y2 = p; (22)

where p 6= 2 is a prime number, then using [17], Chapter VII, ex-
ercize 2 and the same method as in the case of (1), we obtain the
following result.
Theorem 4. (1) The necessary and su±cient condition for solv-
ability of (22) is:

p ´ 5 (mod 24) or p ´ 23 (mod 24) (23);

(2) If (23) is valid, then there exists exactly one
solution < x; y >2 N 2 of (22) such that the inequalities

x <

r
3

2
:p
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and

y <

r
2

3
:p

hold. Every other solution < x; y >2 N 2 of (22) has the form:

x = l + 3m

y = l + 2m;

where < l;m >2 N 2 is a solution of the Diophantine equation

l2 ¡ 6m2 = ¡p:
The problem how to solve the Diophantine equation, a special

case of which is the above one, is considered in Theorem 110 from
[17].
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10. ON FOUR SMARANDACHE'S PROBLEMS11

In [21, 25] F. Smarandache formulates the following four prob-
lems:

Problem 1. Let p be an integer ¸ 3: Then:
p is prime if and only if

(p¡ 3)! is congruent to p¡ 1
2
(mod p): (1)

Problem 2. Let p be an integer ¸ 4: Then:
p is prime if and only if

(p¡ 4)! is congruent to (¡1)dp3 e+1dp+ 1
6
e(mod p): (2)

Problem 3. Let p be an integer ¸ 5: Then:
p is prime if and only if

(p¡ 5)! is congruent to rh+ r
2 ¡ 1
24

(mod p); (3)

with h = d p24e and r = p¡ 24h:

Problem 4. Let p = (k¡ 1)!h+1 be a positive integer k > 5; h
natural number. Then:

p is prime if and only if

(p¡ k)! is congruent to (¡1)th(mod p); (4)

with t = h+ dphe+ 1:

Everywhere above dxe means the inferior integer part of x, i.e.,
the smallest integer greater than or equal to x.

11The results in this section are taken from [10]
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Here we shall discuss these four problems.

Problem 1. admits the following representation:
Let p ¸ 3 be an odd number. Then:

p is prime if and only if (p¡ 3)! ´ p¡ 1
2
(mod p): (10)

First, we assume that p is a composite number. Therefore, p ¸ 9.
For p there are two possibilities:

(a) p =
sQ
i=1

paii ; where pi are di®erent prime numbers and ai ¸ 1

are natural numbers (1 · i · s);
(b) p = qk, where q is a prime number and k ¸ 2 is a natural
number.

Let (a) hold. Then there exist odd numbers a and b such that

2 < a < b <
p

2
; (a; b) = 1; a:b = p:

The case when a = 2 and b = p
2 is impossible, because p is an

odd number. Hence a and b are two di®erent multipliers of (p¡ 3)!
because p2 < p¡ 3: Therefore, the number a:b = p divides (p¡ 3)!,
i.e.,

(p¡ 3)! ´ 0(mod p):
Hence in case (a) the congruence in the right hand-side of (1') is
impossible.

Let (b) hold. Then q ¸ 3 and we have to consider only two
di®erent cases:
(b1) k ¸ 3;
(b2) k = 2.

Let (b1) hold. Then

3 · q < qk¡1 < qk ¡ 3 = p¡ 3:
Hence q and qk¡1 are two di®erent multipliers of (p¡3)!. Therefore,
the number q:qk¡1 = qk = p divides (p¡ 3)!, i.e.,

(p¡ 3)! ´ 0(mod p):
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Hence in case (b1) the congruence in the right hand-side of (1') is
impossible.

Let (b2) hold. Then

p¡ 3 = q2 ¡ 3 ¸ 2q:
Hence q and 2q are two di®erent multipliers of (p¡ 3)!. Therefore,
the number q2 = p divides (p¡ 3)!, i.e.,

(p¡ 3)! ´ 0(mod p):
Hence in case (b2) the congruence in the right hand-side of (1') is
also impossible.

Thus we conclude that if p > 1 is an odd composite number,
then the congruence

(p¡ 3)! ´ p¡ 1
2
(mod p)

is impossible.
Let p ¸ 3 be prime. In this case we shall prove the above

congruence using the well-known Wilson's Theorem (see, e.g. [17]):

p is prime if and only if (p¡ 1)! ´ ¡1(mod p): (5)

If we rewrite the congruence from (5) in the form

(p¡ 1)(p¡ 2)(p¡ 3)! ´ p¡ 1(mod p)
and using that

(p¡ 2) ´ ¡2(mod p)
and

(p¡ 1) ´ ¡1(mod p)
we obtain

2(p¡ 3)! ´ p¡ 1(mod p):
Hence the congruence

(p¡ 3)! ´ p¡ 1
2
(mod p)
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is proved, i.e., Problem 1 is solved.

Problem 2. is false, because, for example, if p = 7, then (2)
obtains the form

6 ´ (¡1)42(mod 7);
where

6 = (7¡ 4)!
and

(¡1)42 = (¡1)d 73 e+1d8
6
e;

i.e.,
6 ´ 2(mod 7);

which is impossible.

Problem 3. can be modi¯ed, having in mind that from r =
p¡ 24h it follows:

rh+
r2 ¡ 1
24

= (p¡ 24h):h+ p
2 ¡ 48ph+ 242h2 ¡ 1

24

= ph¡ 24h2 + p
2 ¡ 1
24

¡ 2ph+ 24h2 = p2 ¡ 1
24

¡ ph;
i.e., (3) has the form

p is prime if and only if

(p¡ 5)! is congruent to p
2 ¡ 1
24

(mod p); (30)

Let p ¸ 5 be prime. It is easy to see that p
2 ¡ 1
24 is an integer

(because every prime number p has one of the two forms 6k + 1 or
6k + 5 for some natural number k).

From Wilson's Theorem (see, e.g. [2]) and from

p2 ´ 0(mod p)
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we may write

(p¡ 5)!:(p¡ 4):(p¡ 3):(p¡ 2):(p¡ 1) ´ p2 ¡ 1(mod p):
Since

(p¡ i) ´ ¡i(mod p);
for i = 1; 2; 3; 4; we ¯nally obtain

24(p¡ 5)! ´ p2 ¡ 1(mod p):
Hence, the congruence

(p¡ 5)! ´ p2 ¡ 1
24

(mod p)

is proved.

When p is a composite number and the number p
2 ¡ 1
24 is not

integer, the congruence

(p¡ 5)! ´ p2 ¡ 1
24

(mod p)

is impossible. That is why we consider below only the composite

odd numbers p ¸ 5 for which p2 ¡ 124 is an integer.
Like in the proof of Problem 1, for p we have only the two pos-

sibilities (a) and (b).
Let (a) hold. Then p ¸ 15 and there exist odd numbers a and b

such that
2 < a < b <

p

2
; (a; b) = 1; a:b = p:

Hence a and b are two di®erent multipliers of (p¡5)! since p2 < p¡5:
Therefore, the number a:b = p divides (p¡ 5)!, i.e.,

(p¡ 5)! ´ 0(mod p):
If we suppose that the congruence from (3') holds too, then we

obtain that
p2 ¡ 1
24

´ 0(mod p);
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i.e.,
p2 ¡ 1 ´ 0(mod p);

i.e.,
¡1 ´ 0(mod p);

which is impossible. Therefore, the congruence in the right hand-
side of (3') is impossible.

Let (b) hold. As in the proof of Problem 1, here we have to
consider two di®erent cases (b1) and (b2).

Let (b1) hold. Then

3 · q < qk¡1 < qk ¡ 5 = p¡ 5:
Hence q and qk¡1 are two di®erent multipliers of (p¡5)!. Therefore,
the number q:qk¡1 = qk = p divides (p¡ 5)!, i.e.,

(p¡ 5)! ´ 0(mod p):
Therefore, just as in the case (a) we conclude that the congruence

in the right hand-side of (3') is impossible.
Let (b2) hold. If q ¸ 7, then we have

p¡ 5 = q2 ¡ 5 ¸ 2q:
Hence q and 2q are two di®erent multipliers of (p¡ 5)!. Hence, the
number q2 = p divides (p¡ 5)!, i.e.,

(p¡ 5)! ´ 0(mod p):
Just as in case (a) we conclude that the congruence in the right
hand-side of (3') is impossible.

It remains only to consider the cases:

p = 32 = 9; p = 52 = 25

and to ¯nish with (b2).

If p = 9, then p
2 ¡ 1
24 is not an integer and as we noted before,

the congruence in the right hand of (3') fails.
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When p = 25 the above congruence yields

20! ´ 26(mod 25);
i.e.,

20! ´ 1(mod 25):
On the other hand, 25 divides 20! and therefore,

20! ´ 0(mod 25):
Hence, the congruence in the right hand of (3') is impossible in

the case p = 25, too.
Thus the same congruence is impossible for the case (b).
Finally we proved
If p > 1 is an odd composite number, then the congruence

(p¡ 5)! ´ p2 ¡ 1
24

(mod p)

is impossible and Problem 3 is completely solved.
Problem 4. also can be simpli¯ed, because

t = h+ dp
h
e+ 1

= h+ d(k ¡ 1)!h+ 1
h

e+ 1
= h+ (k ¡ 1)! + 1 + 1 = h+ (k ¡ 1)! + 2;

i.e.,
(¡1)t = (¡1)h;

because for k > 2 : (k ¡ 1)! + 2 is an even number. Therefore, (4)
obtains the form

p is prime if and only if

(p¡ k)! is congruent to (¡1)hh(mod p): (40)

Let us assume that (4') is valid. We use again the congruences
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(p¡ 1) ´ ¡1(mod p)
(p¡ 2) ´ ¡2(mod p)

: : :

(p¡ (k ¡ 1)) ´ ¡(k ¡ 1)(mod p)
and obtain the next form of (4')

p is prime if and only if

(p¡ 1)! ´ (¡1)h:(¡1)k¡1:(k ¡ 1)!:h(mod p)
or

p is prime if and only if

(p¡ 1)! ´ (¡1)h+k¡1:(p¡ 1)(mod p):
But the last congruence is not valid, because, e.g., for k = 5; h =

3; p = 73 = (5¡ 1)!3! + 1 holds
72! ´ (¡1)9:72(mod 73);

i.e.,
72! ´ 1(mod 73);

while from Wilson's Theorem it follows that

72! ´ ¡1(mod 73):
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11. ON FOUR PRIME AND COPRIME
FUNCTIONS12

In [25] F. Smarandache discussed the following particular cases
of the well-known characteristic functions (see, e.g., [14, 42]).

1) Prime function: P : N ! f0; 1g; with

P (n) =

½
0; if n is prime
1; otherwise

More generally: Pk : N
k ! f0; 1g; where k ¸ 2 is an integer,

and

Pk(n1; n2; :::; nk) =

½
0; if n1; n2; :::; nk are all prime numbers
1; otherwise

2) Coprime function is de¯ned similarly: Ck : N
k ! f0; 1g;

where k ¸ 2 is an integer, and

Ck(n1; n2; :::; nk) =

½
0; if n1; n2; :::; nk are coprime numbers
1; otherwise

Here we shall formulate and prove four assertions related to these
functions.
Proposition 1. For each k; n1; n2; :::; nk natural numbers:

Pk(n1; :::; nk) = 1¡
kY
i=1

(1¡ P (ni)):

Proof. Let the given natural numbers n1; n2; :::; nk be prime. Then,
by de¯nition

Pk(n1; :::; nk) = 0:

In this case, for each i (1 · i · k):
P (ni) = 0;

12The results in this section are taken from [6]
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i.e.,
1¡ P (ni) = 1:

Therefore
kY
i=1

(1¡ P (ni)) = 1;

i.e.,

1¡
kY
i=1

(1¡ P (ni)) = 0 = Pk(n1; :::; nk): (1)

If at least one of the natural numbers n1; n2; :::; nk is not prime,
then, by de¯nition

Pk(n1; :::; nk) = 1:

In this case, there exists at least one i (1 · i · k) for which:
P (ni) = 1;

i.e.,
1¡ P (ni) = 0:

Therefore
kY
i=1

(1¡ P (ni)) = 0;

i.e.,

1¡
kY
i=1

(1¡ P (ni)) = 1 = Pk(n1; :::; nk): (2)

The validity of the assertion follows from (1) and (2).
Similarly it can be proved

Proposition 2. For each k; n1; n2; :::; nk natural numbers:

Ck(n1; :::; nk) = 1¡
kY
i=1

kY
j=i+1

(1¡ C2(ni; nj)):

Let p1; p2; p3; ::: be the sequence of the prime numbers (p1 =
2; p2 = 3; :p3 = 5; :::).
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Let ¼(n) be the number of the primes that are less than or equal
to n.
Proposition 3. For each natural number n:

C¼(n)+P (n)(p1; p2; :::; p¼(n)+P (n)¡1; n) = P (n):

Proof. Let n be a prime number. Then

P (n) = 0

and
p¼(n) = n:

Therefore

C¼(n)+P (n)(p1; p2; :::; p¼(n)+P (n)¡1; n)

= C¼(n)(p1; p2; :::; p¼(n)¡1; p¼(n)) = 0;

because the primes p1; p2; :::; p¼(n)¡1; p¼(n) are also coprimes.
Let n be a composite number. Then

P (n) = 1

and
p¼(n) < n:

Therefore

C¼(n)+P (n)(p1; p2; :::; p¼(n)+P (n)¡1; n)

= C¼(n)+1(p1; p2; :::; p¼(n)¡1; n) = 1;

because, if n is a composite number, then it is divided by at least
one of the prime numbers p1; p2; :::; p¼(n)¡1.

With this the proposition is proved.
The following statement can be proved by analogy

Proposition 4. For each natural number n:

P (n) = 1¡
¼(n)+P (n)¡1Y

i=1

(1¡ C2(pi; n)):
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Corollary. For each natural numbers k; n1; n2; :::; nk:

Pk(n1; :::; nk) = 1¡
kY
i=1

¼(ni)+P (ni)¡1Y
j=1

(1¡C2(pj ; ni)):

These propositions show the connections between the prime and
coprime functions.
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Chapter 2

Some other results of the
authors

In this chapter we present some of the authors' results, that have
been already published in various journals on number theory. These
results are used in ¯rst Chapter and they have independent sense,
but admit applications in the solutions of the Smarandache's prob-
lems discussed above.
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A1. SOME NEW FORMULAE FOR
THE TWIN PRIMES COUNTING
FUNCTION ¼2(n)1

Some di®erent explicit formulae for the twin primes counting
function ¼2 are given below.

1. A bracket function formula for ¼2(n) using factorial

¼2(n) = 1+

[n+1
6
]X

k=1

[
2(6k ¡ 2)! + (6k)! + 2

36k2 ¡ 1 ¡ [2(6k ¡ 2)! + (6k)!
36k2 ¡ 1 ]]: (1)

Here, and furthermore, n ¸ 5 and
¼2(0) = ¼2(1) = ¼2(2) = 0;¼2(3) = 1:

2. Formulae for ¼2(n) using Riemann's zeta function

¼2(n) = 1¡ 2:
[n+1
6
]X

k=1

³('(6k ¡ 1) + '(6k + 1)¡ 12k + 2); (2)

¼2(n) = 1¡ 2:
[n+1
6
]X

k=1

³(12k + 2¡ Ã(6k ¡ 1)¡ Ã(6k + 1)); (3)

¼2(n) = 1¡ 2:
[n+1
6
]X

k=1

³(24k + 4¡ 2¾(6k ¡ 1)¡ 2¾(6k + 1)): (4)

1The results in this section are taken from [29]
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3. Bracket function formulae for ¼2(n) using Euler's
function '

¼2(n) = 1 +

[n+1
6
]X

k=1

[
'(36k2 ¡ 1)
36k2 ¡ 12k ]; (5)

¼2(n) = 1 +

[n+1
6
]X

k=1

[
1

2
:

s
'(36k2 ¡ 1)
3k(3k ¡ 1) ]; (6)

¼2(n) = 1 +

[n+1
6
]X

k=1

[
'(6k ¡ 1) + '(6k + 1)

12k ¡ 2 ]; (7)

¼2(n) = 1 +

[n+1
6
]X

k=1

[
'(6k ¡ 1)
12k ¡ 4 +

'(6k + 1)

12k
]; (8)

¼2(n) = 1 +

[n+1
6
]X

k=1

[
1

6k ¡ '(6k ¡ 1) + '(6k + 1)2

]: (9)

4. Bracket function formula for ¼2(n) using Dedekind's
function Ã

¼2(n) = 1 +

[n+1
6
]X

k=1

[
36k2 + 12k

Ã(36k2 ¡ 1)]; (10)

¼2(n) = 1 +

[n+1
6
]X

k=1

[2:

s
3k(3k + 1)

Ã(36k2 ¡ 1)]; (11)

¼2(n) = 1 +

[n+1
6
]X

k=1

[
12k + 2

Ã(6k ¡ 1) + Ã(6k + 1)]; (12)
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¼2(n) = 1 +

[n+1
6
]X

k=1

[
3k

Ã(6k ¡ 1) +
3k + 1

Ã(6k + 1)
]; (13)

¼2(n) = 1 +

[n+1
6
]X

k=1

[
1

Ã(6k ¡ 1) + Ã(6k + 1)
2 ¡ 6k

]: (14)

Remark. The formulae from section 4 are still true if we put
¾(n) instead of Ã(n).

5. Proofs of the formulae

In order to prove all above formulae we need the arithmetic
function

±(n) =

½
1; if k and k + 2 are twin primes
0; otherwise

(15)

Since p = 6k ¡ 1 if p and p + 2 are twin primes, we obtain for
n ¸ 5:

¼2(n) = 1 +

[n+1
6
]X

k=1

±(6k ¡ 1): (16)

First, let us prove (1). It is enough to prove that for k ¸ 5 the
equality

±(k) = [
2(k ¡ 1)! + (k + 1)! + 2

k(k + 2)
¡ [2(k ¡ 1)! + (k + 1)!

k(k + 2)
]] (17)

holds.
We rewrite (17) in the form

±(k) = [
(k ¡ 1)! + 1

k
+
k!¡ 1
k + 2

¡ [ (k ¡ 1)!
k

+
k!

k + 2
]]: (18)
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Further, we use a variant of Wilson's Theorem given by Coblyn
in 1913 (see [18]): \The integer m ¸ 2 is a prime if and only if
m divides each of the numbers (r ¡ 1)!(m ¡ r)! + (¡1)r¡1 for r =
1; 2; :::;m¡ 1:" The cases r = 1 and r = 2 are called Wilson's and
Leibnitz Theorem respectively [20]. We denote by g(k) the right
hand-side of (18).

(a1) Let k and k + 2 be twin primes. Therefore, (k ¡ 1)! + 1 =
k:x (x 2 N ) from the Wilson's Theorem and k! ¡ 1 = ((k + 2) ¡
2)!¡ 1 = (k + 2):y (y 2 N ) from the Leibnitz's Theorem. Hence:

g(k) = [
kx

k
+
(k + 2)y

k + 2
¡ [kx¡ 1

k
+
(k + 2)y + 1

k + 2
]]

= [x+ y ¡ [x+ y ¡ (1
k
¡ 1

k + 2
)]]

= [x+ y ¡ (x+ y ¡ 1)] = 1:
(a2) Let k be prime and k + 2 be composite. Therefore, k > 6.

Now, it is easy to see that k! = (k + 2):y (y 2 N ). The Wilson's
Theorem yields (k ¡ 1)! + 1 = k:x (x 2 N ). Hence:

g(k) = [
kx

k
+
(k + 2)y ¡ 1

k + 2
¡ [kx¡ 1

k
+
(k + 2)y

k + 2
]]

= [x+ y ¡ 1

k + 2
¡ [x+ y ¡ 1

k
]]

= [x+ y ¡ 1

k + 2
¡ (x+ y ¡ 1)]

= [1¡ 1

k + 2
] = 0:

(a3) Let k be composite and k + 2 be prime. Therefore, k > 6.
Now, it is easy to see that (k ¡ 1)! = k:x (x 2 N ). The Leibnitz's
Theorem yields k!¡ 1 = (k + 2):y (y 2 N ). Hence:

g(k) = [
kx+ 1

k
+
(k + 2)y

k + 2
¡ [kx

k
+
(k + 2)y + 1

k + 2
]]
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= [x+
1

k
+ y ¡ [x+ y + 1

k + 2
]]

= [x+ y +
1

k
¡ (x+ y)]

= [
1

k
] = 0:

(a4) Let k and k+2 be composite. Therefore, k ¸ 6. Now, it is
easy to see that (k¡ 1)! = k:x (x 2 N ) and k! = (k+2):y (y 2 N ).
Hence:

g(k) = [
kx+ 1

k
+
(k + 2)y ¡ 1

k + 2
¡ [kx

k
+
(k + 2)y

k + 2
]]

= [x+ y +
1

k
¡ 1

k + 2
¡ (x+ y)]

= [
1

k
¡ 1

k + 2
] = 0:

From (a1) { (a4) it follows that g(k) = ±(k) for k ¸ 5 and the
proof of (1) is ¯nished.

Second, let us prove the formulae from section 2. We need the
well-known fact that ³(0) = ¡1

2 and ³(¡2m) = 0 for m 2 N (see
[12]). Since numbers '(6k¡1); '(6k+1); Ã(6k¡1); Ã(6k+1); 2¾(6k¡
1); 2¾(6k + 1) are even, and the following inequalities

'(6k ¡ 1) + '(6k + 1) · 12k ¡ 2
Ã(6k ¡ 1) + Ã(6k + 1) ¸ 12k + 2
¾(6k ¡ 1) + ¾(6k + 1) ¸ 12k + 2

are valid, and the fact that the last inequalities become equalities
simultaneously if and only if 6k¡ 1 and 6k + 1 are twin primes, we
conclude that the argument of the function ³ in (2) { (4) is every-
where nonpositive even number. Moreover, this argument equals to
zero if and only if 6k¡ 1 and 6k+1 are twin primes. Therefore, we
have

±(6k ¡ 1) = ¡2³('(6k ¡ 1) + '(6k + 1)¡ 12k + 2)
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= ¡2³(12k + 2¡ Ã(6k ¡ 1)¡ Ã(6k + 1))
= ¡2³(24k + 4¡ 2¾(6k ¡ 1)¡ 2¾(6k + 1)):

Hence, (2) { (4) are proved because of (16).
It remains only to prove the formulae from sections 3 and 4.
First, we use that

'(36k2 ¡ 1) = '(6k ¡ 1):'(6k + 1)
and

Ã(36k2 ¡ 1) = Ã(6k ¡ 1):Ã(6k + 1);
since, the functions ' and Ã are multiplicative.

Second, we use that inequalities '(6k¡ 1) · 6k¡ 2 and '(6k+
1) · 6k (just like inequalities Ã(6k¡1) ¸ 6k and Ã(6k+1) ¸ 6k+2)
become equalities simultaneously if and only if the numbers 6k ¡ 1
and 6k + 1 are twin primes.

Then it is easy to verify that each one of the expressions behind

the sum
[n+1
6
]

§
k=1

in (5) { (14) equals to ±(6k ¡ 1). Hence, the proof

of the formulae from sections 3 and 4 falls from (15).
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A2. THREE FORMULAE FOR n-th PRIME
AND SIX FORMULAE FOR n-th TERM
OF TWIN PRIMES2

Let C = fCngn¸1 be an arbitrary increasing sequence of natural
numbers. By ¼C(n) we denote the number of the terms of C being
not greater than n (we agree that ¼C(0) = 0): In the ¯rst part of the
section we propose six di®erent formulae for Cn (n = 1; 2; :::); which
depend on the numbers ¼C(k) (k = 0; 1; 2; :::): Using these formulae,
in the second part of the section we obtain three di®erent explicit
formulae for the n-th prime pn. In the third part of the section, using
the formulae from the ¯rst part, we propose six explicit formulae for
the n-th term of the sequence of twin primes: 3,5,7,11,13,17,19,...
The last three of these formulae, related to function ¼2, are the main
ones for the twin primes.

Part 1: Universal formulae for the n-th term of
an arbitrary increasing sequence of
natural numbers

1. A bracket function formula for Cn:

Cn =
1X
k=0

[
1

1 + [
¼C(k)
n ]

]: (1)

2. A formula using Riemann's function ³:

Cn = ¡2:
1X
k=0

³(¡2:[¼C(k)
n

]): (2)

2The results in this section are taken from [30]
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3. A formula using Euler's function ¡:

Cn =
1X
k=0

1

¡(1¡ [¼C(k)n ])
: (3)

Proof of the formulae (1){(3). First, we represent (2) in the
form

Cn =
1X
k=0

(¡2):³(¡2:[¼C(k)
n

]): (20)

After that for each one of (1), (20), (3) we use that

1X
k=0

² =
Cn¡1X
k=0

²+
1X

k=Cn

²:

Let k = 0; 1; :::; Cn ¡ 1: Then we have

¼C(k) · ¼C(Cn ¡ 1) < ¼C(Cn) = n:

Hence

[
¼C(k)

n
] = 0

for k = 0; 1; :::; Cn ¡ 1: Therefore, for (1) we have
Cn¡1X
k=0

[
1

1 + [
¼C(k)
n ]

] =
Cn¡1X
k=0

1 = Cn:

In the same manner, for (20) we have

Cn¡1X
k=0

(¡2)³(¡2:[¼C(k)
n

]) =
Cn¡1X
k=0

(¡2)³(0) =
Cn¡1X
k=0

1 = Cn;

since it is known that ³(0) = ¡12 (see [12]).
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For (3) we have

Cn¡1X
k=0

1

¡(1¡ [¼C(k)n ])
=
Cn¡1X
k=0

1

¡(1)
=
Cn¡1X
k=0

1 = Cn:

Let k = Cn; Cn+1; Cn+2; :::. Then we have n = ¼C(Cn) · ¼(k):
Therefore, [

¼C(k)
n ] ¸ 1 for k = Cn; Cn + 1; Cn + 2; :::. Hence:

[
1

1 + [
¼C(k)
n ]

] = 0

for k = Cn; Cn + 1; Cn + 2; :::. Therefore, for (1)
1
§

k=Cn
vanishes.

This proves (1).

To prove (20) (i.e., (2)) it remains to show that
1
§

k=Cn
vanishes

as in the previous case. But this is obvious from the fact that for
k = Cn; Cn + 1; Cn + 2; :::

nk ´ [¼C(k)
n

]

is a natural number and therefore

³(¡2nk) = 0;
since, the negative even numbers are trivial zeros of Riemann's Zeta{
function (see [12]).

We also have
1

¡(1¡ nk) = 0
for k = Cn; Cn+1; Cn+2; :::, since, it is known that the nonpositive
integers are poles of Euler's function gamma. Therefore, for (3) the

sum
1
§

k=Cn
vanishes too, which proves (3).
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4. Three other formulae for Cn:

Cn =
1X
k=0

[
1

1 + [
¼C(k) + n

2n ]
]: (1¤)

Cn = ¡2:
1X
k=0

³(¡2:[¼C(k) + n
2n

]): (2¤)

Cn =
1X
k=0

1

¡(1¡ [¼C(k) + n2n ])
: (3¤)

The validity of these formulae is checked in the same manner.

Part 2: Formulae for n-th prime pn

Here, as a Corollary from Part 1, we propose three ¯nite formulae
for pn.

Let

µ(n) = [
n2 + 3n+ 4

4
]:

It is known (see [16]) that

pn · µ(n)
for n = 1; 2; :::. Hence

pn < n
2

for n > 1: Then, if we put

Cn = pn

for n = 1; 2; ::: and using that

¼C(n) = ¼(n);

we obtain the following formulae from (1), (2) and (3):

pn =

µ(n)X
k=0

[
1

1 + [
¼(k)
n ]

]; (4)
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pn = ¡2:
µ(n)X
k=0

³(¡2:[¼(k)
n
]); (5)

pn =

µ(n)X
k=0

1

¡(1¡ [¼(k)n ])
: (6)

The above formulae stay valid if we change µ(n) with n2. These
formulae are explicit ones, because ¼(k) has explicit representations
(see [18, 4]).

One may compare (4) with the formula of Willans (see [18]):

pn = 1 +
2nX
k=1

[[
n

1 + ¼(k)
]
1
n ]:

Part 3: Formulae for p2(n)

Let Cn = p2(n). In this case we have

¼C(0) = ¼C(1) = ¼C(2) = 0; ¼C(3) = ¼C(4) = 1: (¤)
When k ¸ 5 it is easy to see that

¼C(k) =

8>><>>:
2¼2(k)¡ 2; if k ¡ 1 and k + 1, or k

and k + 2 are twin primes

2¼2(k)¡ 1; otherwise

; (60)

or in an explicit form

¼C(k) = 2¼2(k)¡ 1¡ ±(k ¡ 1)¡ ±(k); (600)

where

±(k) =

8<:
1; if k and k + 2 are twin primes

0; otherwise
:
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It is easy to give an explicit representation of ±(k) :

±(k) = [
2(k ¡ 1)! + (k + 1)! + 2

k(k + 2)
¡ [2(k ¡ 1)! + (k + 1)!

k(k + 2)
]]: (6000)

Other criteria for simultaneous primality and coprimality of two
numbers are discussed in [22, 23, 25, 26, 27].

Instead of (600), it is possibe to use the representation:

¼C(k) = ¼2(k) + ¼2(k ¡ 2)¡ 1;
since

¼2(k) =
kX
j=3

±(j):

Therefore, from (1) { (3) we obtain the corresponding formulae
for p2(n):

p2(n) =
1X
k=0

[
1

1 + [
¼C(k)
n ]

]; (7)

p2(n) = ¡2:
1X
k=0

³(¡2:[¼C(k)
n

]); (8)

p2(n) =
1X
k=0

1

¡(1¡ [¼C(k)n ])
; (9)

where ¼C(k) is given by (*) for k = 0; 1; 2; 3; 4; and by (6
00) for k ¸ 5

with ±(k) is given by (6000).
Three new explicit formulae for p2(n) for even n > 2 are given

below, while p2(2) = 5. They correspond to (1
¤) { (3¤) and use (60):

p2(n) = 5 +
1X
k=5

[
1

1 + [
¼2(k)¡ 1 + n

2
n ]

]; (7¤)

p2(n) = 5¡ 2:
1X
k=5

³(¡2:[¼2(k)¡ 1 +
n
2

n
]); (8¤)
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p2(n) = 5 +
1X
k=5

1

¡(1¡ [¼2(k)¡ 1 +
n
2

n ])

; (9¤)

They follow from the identity

[
¼C(k) + n

2n
] = [

¼2(k)¡ 1 + n
2

n
];

since for k ¸ 5 ¼C(k) is given by (60) and for even n > 2 we have

[
n¡ 1
2

] =
n

2
¡ 1:

Obviously, p2(1) = 3, p2(3) = 7 and for odd n ¸ 5 we have
p2(n) = p2(n¡ 1) + 2

and we may apply the formulae (7¤) { (9¤) for p2(n¡ 1) since n¡ 1
is an even number.

The last three formulae are main ones for the twin primes.
All formulae for p2(n) are explicit, because in A1 some explicit

formulae for ¼2(n) are proposed. One of them is valid for n ¸ 5:

¼2(n) = 1 +

[n+1
6
]X

k=1

[
2(6k ¡ 2)! + (6k)! + 2

36k2 ¡ 1 ¡ [2(6k ¡ 2)! + (6k)!
36k2 ¡ 1 ]]:

For ¼(n) one may use Min¶a·c's formula (see [18]):

¼(n) =
nX
k=2

[
(k ¡ 1)! + 1

k
¡ [ (k ¡ 1)!

k
]];

or any of the following formulae, proposed here:

¼(n) = ¡2:
nX
k=2

³(¡2:(k ¡ 1¡ '(k)); (10)

¼(n) = ¡2:
nX
k=2

³(¡2:(¾(k)¡ k ¡ 1); (11)
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¼(n) =
nX
k=2

[
'(k)

k ¡ 1]; (12)

¼(n) =
nX
k=2

[
k + 1

¾(k)
]; (13)

¼(n) =
nX
k=2

[
1

k ¡ '(k) ]; (14)

¼(n) =
nX
k=2

[
1

¾(k)¡ k ]: (15)

Remark. In (11), (13), (15) one may prefer to put Ã(k) instead
of ¾(k) and then the formulae will remain valid.

In [4] are published following results:

¼(n) =
nX
k=2

sg(k ¡ 1¡ '(k));

¼(n) =
nX
k=2

sg(¾(k)¡ k ¡ 1);

¼(n) =
nX
k=2

fr(
k

(k ¡ 1)!);

pn =
2nX
i=0

sg(n¡ ¼(i));

where:

sg(x) =

8<:
0; if x · 0

1; if x > 0
;

sg(x) =

8<:
0; if x6= 0

1; if x = 0
;
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where x is a real number and

fr(
p

q
) =

8<:
0; if p = 1

1; if p6= 1
;

where p and q are natural numbers, such that (p; q) = 1.
Finally, we shall mention that F. Smarandache introduced an-

other formula for ¼(x)(see [28]): if x is an integer ¸ 4, then

¼(x) = ¡1 +
xX
k=2

dS(k)
k
e;

where S(k) is the Smarandache function (the smallest integer m
such that m! is divisible by k) and for symbol d²e see page 78.
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A3. EXPLICIT FORMULAE FOR THE n-TH
TERM OF THE TWIN PRIME SEQUENCE3

Three di®erent explicit formulae for the n-th term of the twin
prime sequence are proposed and proved, when n is even. They
depend on function ¼2. The investigation continues A2.

We need the following result from A2 that here formulate for
readers' convenience as
Theorem 1. Let n ¸ 4 be even. Then p2(n) has each one of the
following three representations:

p2(n) = 5 +
1X
k=5

[
1

1 +H(k;n)
]; (1)

p2(n) = 5¡ 2:
1X
k=5

³(¡2:H(k;n)); (2)

p2(n) = 5 +
1X
k=5

1

¡(1¡H(k;n)) ; (3)

where

H(k;n) = [
¼2(k)¡ 1 + n

2

n
]: (4)

Below, we shall prove the following
Theorem 2. Let n ¸ 4 be integer. Then p2(n) has each one of the
following three representations:

p2(n) = 6 + (¡1)n¡1 +
1X
k=5

[
1

1 + r(k;n)
]; (1¤)

p2(n) = 6 + (¡1)n¡1 ¡ 2:
1X
k=5

³(¡2:r(k;n)); (2¤)

p2(n) = 6 + (¡1)n¡1 +
1X
k=5

1

¡(1¡ r(k;n)) ; (3¤)

3The results in this section are taken from [32]
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where

r(k;n) = [
¼2(k)¡ 1 + [n2 ]

2:[n2 ]
]: (4¤)

Proof. Let n ¸ 4 be even. Then r(k;n) = H(k;n) and also 6 +
(¡1)n¡1 = 5: Therefore (1¤) coincides with (1), (2¤) coincides with
(2), and (3¤) coincides with (3), which proves Theorem 2 in this
case.

Let n > 4 be odd. Then

r(k;n) = H(k;n¡ 1); (5)

since [n2 ] =
n¡1
2 and 2:[n2 ] = n¡ 1:

We have also the relation

p2(n) = 2 + p2(n¡ 1); (6)

since p2(n ¡ 1) and p2(n) are twin primes. But n ¡ 1 is even and
n ¡ 1 ¸ 4. Then we apply Theorem 1 with n ¡ 1 instead of n and
from (5) and (6) the proof of Theorem 2 falls, because of the equality
6 + (¡1)n¡1 = 2 + 5:

Finally, we observe that formulae (1¤){(3¤) are explicit, because
in A1 we propose some di®erent explicit formulae for ¼2(n) when
n ¸ 5: One of these formulae is given below:

¼2(n) = 1 +

[n+1
6
]X

k=1

[
2(6k ¡ 2)! + (6k)! + 2

36k2 ¡ 1 ¡ [2(6k ¡ 2)! + (6k)!
36k2 ¡ 1 ]]:

Of course, all formulae for p2(n) in A3 (just like in A2) are
¯nite, because it is possible to put

p2(n)X
k=5

²

instead of 1X
k=5

²:
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But to receive \good" ¯nite formulae for p2(n) we need some-
thing more, namely, the inequality

p2(n) · ¸(n); (7)

where ¸(n) is a function that has an explicit expression. Then, we
may put

¸(n)X
k=5

²

instead of 1X
k=5

²:

However, (7) is not found, yet.
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A4. SOME EXPLICIT FORMULAE FOR
THE COMPOSITE NUMBERS4

Explicit formulae for n-th term of the sequence of all composite
numbers and for the sequence of all odd composite numbers are
proposed.

In A2 three di®erent formulae are proposed for n-th term Cn
of an arbitrary increasing sequence C = fcig1i=1 of natural num-
bers. They are based on the numbers ¼C(k) (k = 0; 1; 2; :::), where
¼C(0) = 0, and for k ¸ 1 ¼C(k) denotes the number of terms of C,
which are not greater than k. These formulae are given again below:

Cn =
1X
k=0

[
1

1 + [
¼C(k)
n ]

]: (1)

Cn = ¡2:
1X
k=0

³(¡2:[¼C(k)
n

]): (2)

Cn =
1X
k=0

1

¡(1¡ [¼C(k)n ])
: (3)

If the inequality
Cn · ¸(n)

holds for every n ¸ 1, where the numbers ¸(n) (n = 1; 2; 3; :::) are a
priori known, then formulae (1) { (3) take the forms, respectively:

Cn =

¸(n)X
k=0

[
1

1 + [
¼C(k)
n ]

]: (10)

Cn = ¡2:
¸(n)X
k=0

³(¡2:[¼C(k)
n

]): (20)

4The results in this section are taken from [31]
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Cn =

¸(n)X
k=0

1

¡(1¡ [¼C(k)n ])
: (30)

Three di®erent explicit representations for n-th prime number
pn with ¸(n) = n

2, or with

¸(n) = [
n2 + 3n+ 4

4
]

(by choice) are given in A2, using a modi¯cation of (1) { (3), with
the help of function ¼2.

In A2, A3 three di®erent explicit representations for p2(n),
where p2(n) means n-th term of the sequence of twin primes are
given, using (10) { (30). For example:

p2(1) = 3; p2(2) = 5; p2(3) = 7; p2(4) = 11; p2(5) = 13;

p2(6) = 17; p2(7) = 19; :::

Let C be the sequence of all composite numbers including 1
(because 1 is not included in the sequence of the prime numbers),
i.e.:

c1 = 1; c2 = 4; c3 = 6; c4 = 8; c5 = 9; c6 = 10; c7 = 12; c8 = 14;

c9 = 15; c10 = 16; :::

It is trivial to see that for k ¸ 0 :

¼C(k) = k ¡ ¼(k);

where ¼(k) as usually means the number of the prime numbers that
are not greater than k. Also, for n ¸ 1 we have obviously:

Cn · ¸(n)

with ¸(n) = 2n.
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Therefore, applying formulae (10) { (30), we obtain:

Cn =
2nX
k=0

[
1

1 + [
¼C(k)
n ]

]: (5)

Cn = ¡2:
2nX
k=0

³(¡2:[¼C(k)
n

]): (6)

Cn =
2nX
k=0

1

¡(1¡ [¼C(k)n ])
: (7)

Let C be the sequence of all odd composite numbers including
1, i.e.:

c1 = 1; c2 = 9; c3 = 15; c4 = 21; c5 = 25; :::

It is clear that
¼C(0) = 0; ¼C(1) = 1 (8)

and for k ¸ 2:
¼C(k) = k + 1¡ [k

2
]¡ ¼(k): (9)

Also, for n ¸ 1 the inequality
Cn · ¸(n)

holds for
¸(n) = 3(2n¡ 1) = 6n¡ 3: (10)

Therefore, applying formulae (10) { (30) and using (8) { (10), we
obtain for n ¸ 2:

Cn = 2 +
6n¡3X
k=2

[
1

1 + [
k + 1¡ [k2 ]¡ ¼(k)

n ]

];

Cn = 2¡ 2:
6n¡3X
k=2

³(¡2:[k + 1¡ [
k
2 ]¡ ¼(k)
n

]);
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Cn = 2 +
6n¡3X
k=2

1

¡(1¡ [k + 1¡ [
k
2 ]¡ ¼(k)
n ])

:

It is possible to put [k+32 ] instead of k + 1 ¡ [k2 ] in the above
formulae.
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A5. ON ONE REMARKABLE IDENTITY
RELATED TO FUNCTION ¼(x)5

By R+ we denote the set of all positive real numbers and N =
f1; 2; :::g.

Let
g = fgng1n=1

be sequence such that:
gn 2 R+; (a1)

(8n 2 N )(gn < gn+1); (a2)

g is unbounded: (a3)

For any x 2 R+ we denote by ¼(x) the number of all terms of
g, that are not greater than x.

When x satis¯es the inequality

0 · x < g1
we put

¼(x) = 0:

Remark 1. The condition (a3) shows that the number ¼(x) is
always ¯nite for a ¯xed x.

The main result here is the following
Theorem. Let a; b 2 R+ and b ¸ g1. Then the identity

¼(b)X
i=1

¼(
a

gi
) = ¼(

a

b
):¼(b) +

¼( a
g1
)¡¼(a

b
)X

j=1

¼(
a

g¼(a
b
)+j
) (1)

holds.
Remark 2. When

¼(
a

g1
) = ¼(

a

b
)

5The results in this section are taken from [33]
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we put in (1)
¼( a

g1
)¡¼(a

b
)

§
j=1

² to be zero, i.e., the right hand-side of

(1) reduces to ¼(ab ):¼(b). Thus, under the conditions of the above

Theorem, the identity
¼(b)X
i=1

¼(
a

gi
)

=

8>>>>><>>>>>:

¼(ab ):¼(b); if ¼( ag1 ) = ¼(
a
b )

¼(ab ):¼(b) +
¼( a

g1
)¡¼(a

b
)

§
j=1

¼( a
g¼(a

b
)+j
); if ¼( ag1 ) > ¼(

a
b )

(2)

holds.
Proof of the Theorem. First, we note that if a = 0, then (1), i.e.,
(2) holds, since

¼(
a

g1
) = ¼(

a

b
) = ¼(0) = 0

and therefore, we may use Remark 2.
For that reason, further we assume that a > 0:
First, let us prove (1), i.e., (2) for case b = g1.
Now, we have

¼(b) = ¼(g1) = 1

and
¼(
a

g1
) = ¼(

a

b
):

Hence
¼(
a

b
):¼(b) = ¼(

a

g1
):¼(g1) = ¼(

a

g1
)

and (1), resp. (2), is proved, since the left hand-side of (2) coincides
with ¼( ag1 ). Then it remains only to consider the case

g1 < b (3)

and the proof of the Theorem will be completed.
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Let (3) hold. We must consider the alternatives

b · a

b
(e1)

and
b >

a

b
: (e2)

Let (e1) hold. We shall prove (1) in this case. Inequality (3)
implies that interval

® ´ [g1; b] (4)

is well-de¯ned. Also, (3) and (e1) yield

a

b
<
a

g1
: (5)

Then (5) implies that the interval

¯ ´ (a
b
;
a

g1
] (6)

is well-de¯ned, too. Obviously, ® \ ¯ = ; and moreoevr, ¯ lies to
the right side of ® on the real axis.

Let gi; gj 2 g (i6= j) be arbitrary. We introduce ¿i;j putting
¿i;j = gi:gj : (7)

We denote by P the set of these ¿i;j de¯ned by (7), for which
gi 2 g \ ®; gj 2 g \ ¯

and inequality
¿i;j · a (8)

holds. Then we consider the alternatives:

P = ; (u1)

and
P 6= ;: (u2)
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Let (u1) holds. Then g \ ¯ = ;.
Indeed, if we assume that there exists gj 2 g\¯, then we obtain

¿1;j = g1:gj · g1: a
g1
= a;

i.e., ¿1;j satis¯es (8). Therefore, ¿i;j 2 P, since g1 2 g \ ®. Hence
P 6= ;:

But the last contradicts to (u1).
Now, g \ ¯ = ; implies

¼(
a

g1
) = ¼(

a

b
): (9)

Moreover, the equality

¼(x) = ¼(
a

b
) (10)

holds for each x 2 ¯.
Let xi =

a
gi for i = 1; 2; :::; ¼(b). Then

g1 · gi · b
and therefore for i = 1; 2; :::; ¼(b):

xi 2 [a
b
;
a

g1
]: (11)

Now, (10) and (11) yield

¼(
a

gi
) = ¼(

a

b
): (12)

for each i = 1; 2; :::; ¼(b).
But (12) implies

¼(b)X
i=1

¼(
a

gi
) = ¼(

a

b
):¼(b); (13)
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which proves (1), because of Remark 2.
The case (u1) is ¯nished.
let (u2) hold. Then the inequality

¼(
a

g1
) > ¼(

a

b
) (14)

holds.
Indeed, the assumption that (9) holds, implies

g \ ¯ = ;:

Hence P = ;: But the last equality contradicts to (u2).
Now, (14) implies that

g \ ¯6= ;

and that
g¼(a

b
)+k 2 g \ ¯

at least for k = 1. Therefore, the sum
¼( a

g1
)¡¼(a

b
)

§
j=1

² from the right

hand-side of (1) is well-de¯ned.
We use the following approach to prove (1) in the case (u2).

First, we denote by µ(®; ¯) the number of all elements of the set
P. Second, we calculate µ(®; ¯) using two di®erent ways. Third,
we compare the results of these two di®erent calculations and as a
result we establish (1).

First way of calculation

Let
E ´ f1; 2; :::; ¼(b)g:

If i describes E, then gi describes g \ ®.
Let E1 ½ E be the set of those i 2 E for which there exists at

least one j, such that gj 2 g \ ¯ and ¿i;j 2 P: For each i 2 E1 we
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denote by ±i the number of those gj 2 g \ ¯, for which ¿i;j 2 P:
Then, equality

µ(®; ¯) =
X
i2E1

±i (15)

holds.
On the other hand, from the de¯nition of these gj it follows that

they belong to interval (ab ;
a
gj ]. Hence, for i 2 E1

±i = ¼(
a

gi
)¡ ¼(a

b
): (16)

Remark 3. From the de¯nitions of ±i and E1 it follows that ±i > 0.
Let i 2 E2, where

E2 ´ E ¡E1:
Then

g \ (a
b
;
a

gi
] = ;;

because in the opposite case we will obtain that i 2 E1, that is
impossible, since E1 \E2 = ;:

Hence for i 2 E2
¼(
a

gi
) = ¼(

a

b
);

i.e., for i 2 E2
¼(
a

gi
)¡ ¼(a

b
) = 0: (17)

Now, (15), (16), and (17) imply

µ(®; ¯) =
X
i2E
(¼(

a

gi
)¡ ¼(a

b
));

i.e.,

µ(®; ¯) =

¼(b)X
i=1

¼(
a

gi
)¡ ¼(a

b
):¼(b): (18)
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Second way of calculation

Let

W ´ f¼(a
b
) + k j k = 1; 2; :::; ¼( a

g1
)¡ ¼(a

b
)g:

Of course, we have W 6= ;; since (u2), i.e., (14), is true.
When j describes W , gj describes g \ ¯. For every such j it is

ful¯lled
g1 · a

gj
< b: (19)

Therefore, there exist exactly ¼( agj ) in number gi 2 g \ ¯, for
which ¿i;j 2 P: Hence

µ(®; ¯) =
X
j2W

¼(
a

gj
):

Thus, using the de¯nition of W , we ¯nally get

µ(®; ¯) =

¼( a
g1
)¡¼(a

b
)X

j=1

¼(
a

g¼(a
b
)+j
): (20)

If we compare (18) and (20), we prove (1) in case (u2).
Up to now, we have established that (1) (and (2)) holds, when

g1 · b · a

b
(21)

and case (u2) is ¯nished too.
Now, let (e2) hold. To prove (2) (and (1)) in this case we consider

the alternatives
a

b
< g1 (e21)

and
a

b
¸ g1: (e22)
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Let (e21) hold. Then ¼(
a
b ) = 0 and (1) takes the form

¼(b)X
i=1

¼(
a

gi
) =

¼( a
g1
)X

j=1

¼(
a

gj
): (22)

Let us note, that (21) implies b > a
g1 : Then (22) will be proved, if

we prove that for all k 2 N

¼(
a

g¼( a
g1
)+k
) = 0: (23)

But g¼( a
g1
)+k 62 W . Then we have that g¼( a

g1
)+k >

a
g1 . Hence,

for all k 2 N
a

g¼( a
g1
)+k

< g1:

The last inequalities prove (23), since ¼(g1) = 1 and for 0 · x <
g1 it is ful¯lled ¼(x) = 0:

Therefore, (22) is proved, too, and the case (e21) is ¯nished.
Let (e22) hold. Then

g1 · a

b
< b (24)

is valid.
We introduce the number b1 putting

b1 =
a

b
: (25)

Then, we ¯nd

b =
a

b1
: (26)

From (24), (25), and (26) it follows immediatelly

g1 · b1 < a

b1
: (27)
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Obviously, (27) looks like (21) (only b from (21) is changed with
b1 in (27)). But we proved that (21) implies (1). Therefore, (27)
implies (1), but with b1 instead of b. Hence, the identity

¼(b1)X
j=1

¼(
a

gj
) = ¼(

a

b1
):¼(b1) +

¼( a
g1
)¡¼( a

b1
)X

j=1

¼(
a

g¼( a
b1
)+j
) (28)

holds and Remark 2 remains also valid substituting b by b1.
Using (25) we rewrite (28) in the form

¼(a
b
)X

i=1

¼(
a

gi
) = ¼(

a

b
):¼(b) +

¼( a
g1
)¡¼(b)X
j=1

¼(
a

g¼(b)+j
): (29)

First, let ¼(b) = ¼(ab ): In this case (29) coincides with (1) and

(1) is proved, since (29) is true.
Second, let ¼(ab ) < ¼(b): Then we add to the two hand-sides of

(29) the sum
¼(b)¡¼(a

b
)X

j=1

¼(
a

g¼(a
b
)+j
)

and obtain again (1). This completes the proof of (1) in this case,
too, because (29) is true.

Since, we have no other possibilities (the inequality ¼(b) < ¼(ab )

is impossible, because of (e2) ), we ¯nish with the case (e22). Hence,
the case (e2) is ¯nished too.

The Theorem is proved.
Further, we use some well-known functions (see, e.g., [15]):

chx ´ ex + e¡x

2
; shx ´ ex ¡ e¡x

2
; thx ´ shx

chx
; cthx ´ chx

shx
:

Corollary 1. Let a = chx; b = shx; where x 2 R+ and shx ¸ g1:
Then, the identity
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¼(shx)X
i=1

¼(
chx

gi
)

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

¼(shx):¼(cthx); if ¼(chxg1 ) = ¼(cthx)

¼(shx):¼(cthx)+

¼( chx
g1
)¡¼(cthx)
§
j=1

¼( chx
g¼( cthx)+j

); if ¼(chxg1 ) > ¼(cthx)

(30)

holds.
The same way, putting: a = shx; b = chx; where x 2 R+

and chx ¸ g1, as a corollary of the Theorem, we obtain another
identity, that we do not write here since one may get it putting in
(30) chx; shx; thx instead of shx; chx; cthx, respectively.

Now, let g be the sequence of all primes, i.e.,

g = 2; 3; 5; 7; 11; 13; :::

Then the function ¼(x) coincides with the famous function ¼ of the
prime number distribution. Thus, from our Theorem we obtain
Corollary 2. Let a; b 2 R+; b ¸ 2 and fpng1n=1 be the sequence of
all primes. Then the identity

¼(
a

p1
) + ¼(

a

p2
) + :::+ ¼(

a

p¼(b)
)

= ¼(
a

b
):¼(b) + ¼(

a

p¼(a
b
)+1
) + ¼(

a

p¼(a
b
)+2
) + :::¼(

a

p¼(a
2
)
) (31)

holds.
In (31) ¼(x) denotes (as usually) the number of primes, that

are not greater than x. Also, the right hand-side of (31) reduces to
¼(ab ):¼(b) if and only if ¼(

a
b ) = ¼(

a
2 ).

Identities (1) and (2) were discovered in 2001 in the Bulgarian
village on Black Sea Sinemoretz.
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A6. AN ARITHMETIC FUNCTION6

For

n =
mP
i=1

ai:10
m¡i ´ a1a2:::am;

where ai is a natural number and 0 · ai · 9 (1 · i · m) let:

'(n) =

8>>>><>>>>:
0 ; if n = 0

mP
i=1

ai ; otherwise

and for the sequence of functions '0; '1; '2; :::; where (l is a natural
number)

'0(n) = n;

'l+1 = '('l(n));

let the function Ã be de¯ned by

Ã(n) = 'l(n);

in which
'l+1(n) = 'l(n):

This function has the following (and other) properties:

Ã(m+ n) = Ã(Ã(m) + Ã(n));

Ã(m:n) = Ã(Ã(m):Ã(n)) = Ã(m:Ã(n)) = Ã(Ã(m):n);

Ã(mn) = Ã(Ã(m)n);

Ã(n+ 9) = Ã(n);

Ã(9n) = 9:

6The results in this section are taken from [1, 2]
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Let the sequence a1; a2; ::: with members { natural numbers, be
given and let

ci = Ã(ai) (i = 1; 2; :::):

Hence, we deduce the sequence c1; c2; ::: from the former sequence.
If k and l ¸ 0 exist such that

ci+l = ck+i+l = c2k+i+l = :::

for 1 · i · k, then we say that
[cl+1; cl+2; :::; cl+k]

is a base of the sequence c1; c2; ::: with a length k and with respect
to function Ã.

For example, the Fibonacci sequence fFig1i=0, for which
F0 = 0; F1 = 1; Fn+2 = Fn+1 + Fn (n ¸ 0)

has a base with a length of 24 with respect to the function Ã and it
is the following:

[1; 1; 2; 3; 5; 8; 4; 3; 7; 1; 8; 9; 8; 8; 7; 6; 4; 1; 5; 6; 2; 8; 1; 9];

the Lucas sequence fLig1i=0, for which
L2 = 2; L1 = 1; Ln+2 = Ln+1 + Ln (n ¸ 0)

also has a base with a length of 24 with respect to the function Ã
and it is the following:

[2; 1; 3; 4; 7; 2; 9; 2; 2; 4; 6; 1; 7; 8; 6; 5; 2; 7; 9; 7; 7; 5; 3; 8];

even the Lucas-Lehmer sequence flig1i=0, for which

l1 = 4; ln+1 = l
2
n ¡ 2 (n ¸ 0)

has a base with a length of 1 with respect to the function Ã and it
is [5].
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The k ¡ th triangular number tk is de¯ned by the formula

tk =
k(k + 1)

2

and it has a base with a length of 9 with the form

[1; 3; 6; 1; 5; 3; 1; 9; 9]:

It is directly checked that the bases of the sequences fnkg1k=1 for
n = 1; 2; :::; 9 are those introduced in the following table.

n a base of a sequence fnkg1i=1 a length of the base
1 1 1
2 2,4,8,7,5,1 6
3 9 1
4 4,7,1 3
5 5,7,8,4,2,1 6
6 9 1
7 7,4,1 3
8 8,1 2
9 9 1

On the other hand, the sequence fnng1n=1 has a base (with a
length of 9) with the form

[1; 4; 9; 1; 2; 9; 7; 1; 9];

and the sequence fkn!g1n=1 has a base with a length of 9 with the
form 8<:

[1] ; if k6= 3m some some natural number m

[9] ; if k = 3m some some natural number m
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