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Foreword 

This book is the sixth volume in the series of Collected Papers on Advancing Uncertain 
Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, 
Soft, Rough, and Beyond. Building upon the foundational contributions of previous volumes, this edition 
focuses on the exploration and development of Various New Uncertain Concepts, further enriching the 
study of uncertainty and complexity through innovative theoretical advancements and practical 
applications. 

The series is dedicated to the evolution of uncertain combinatorics, leveraging methodologies such 
as graphization, hyperization, and uncertainization. These approaches extend classical combinatorics and 
set theory by integrating and expanding upon fuzzy, neutrosophic, soft, and rough set theories. Through this 
synthesis, the series provides comprehensive frameworks to model and analyze the multifaceted nature of 
real-world uncertainties, addressing challenges across diverse fields of study. 

Combinatorics and set theory form the mathematical backbone of this series. Traditionally, 
combinatorics has been instrumental in solving problems involving counting, arrangements, and 
relationships under defined rules, particularly in uncertain scenarios. Simultaneously, advancements in set 
theory have transformed its scope through constructs like fuzzy sets, which account for degrees of truth, 
and neutrosophic sets, which incorporate dimensions of indeterminacy and falsity alongside truth. By 
marrying these disciplines with modern extensions, this series pushes the boundaries of uncertainty 
modeling and analysis. 

In this sixth volume, the focus shifts to deepening and broadening our understanding of Various 
New Uncertain Concepts. The book not only revisits methodologies such as hyperization and neutrosophic 
extensions, introduced in earlier volumes, but also advances groundbreaking theories and practical 
frameworks. It explores innovative structures like hypergraphs and superhypergraphs, as well as their 
applications in decision-making, natural language processing, neural networks, and other complex domains. 
These advancements mark a significant step forward in uncertain combinatorics, offering tools and insights 
to address hierarchical relationships, multi-level data, and intricate systems. 

The volume is meticulously organized into 15 chapters, each presenting unique perspectives and 
contributions to the field. From theoretical explorations to real-world applications, these chapters provide 
a cohesive and comprehensive overview of the state of the art in uncertain combinatorics, emphasizing the 
versatility and power of the newly introduced concepts and methodologies.  

The first chapter (SuperHypertree-depth – Structural Analysis in SuperHyperGraphs) 
explores the concept of SuperHypertree-depth, an extension of the classical graph parameter Tree-depth 
and its hypergraph counterpart Hypertree-depth. By introducing hierarchical nesting within 
SuperHyperGraphs, where both vertices and edges can represent recursive subsets, this study investigates 
the mathematical properties and structural implications of these extended parameters. The findings 
highlight the relationships between SuperHypertree-depth and its traditional graph-theoretic equivalents, 
providing a deeper understanding of their applicability to hierarchical and complex systems. 
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The second chapter (Obstructions for Hypertree-width and SuperHypertree-width) examines 
the role of ultrafilters as obstructions in determining Hypertree-width and extends the concept to 
SuperHypertree-width. Building on hypergraph theory, which abstracts traditional graph frameworks into 
more complex domains, the study investigates how recursive structures within SuperHyperGraphs redefine 
the computational and structural properties of these parameters. Ultrafilters, with their broad mathematical 
significance, serve as critical tools for understanding the limitations and potentials of these advanced graph 
metrics. 

The third chapter (SuperHypertree-Length and SuperHypertree-Breadth in 
SuperHyperGraphs) investigates the extension of the graph-theoretic parameters Tree-length and Tree-
breadth to the realms of hypergraphs and SuperHyperGraphs. By leveraging the hierarchical nesting of 
SuperHyperGraphs, the study explores how these parameters adapt to increasingly complex and multi-level 
structures. Comparative analyses between these extended parameters and their classical counterparts reveal 
new insights into their relevance and utility in advanced graph and hypergraph theory. 

Plithogenic Sets, which generalize Fuzzy and Neutrosophic Sets, are extended in the fourth chapter 
(Extended HyperPlithogenic Sets and Generalized Plithogenic Graphs) to Extended Plithogenic Sets, 
HyperPlithogenic Sets, and SuperHyperPlithogenic Sets. This study further investigates their application to 
graph theory through the concepts of Extended Plithogenic Graphs and Generalized Extended Plithogenic 
Graphs. The chapter provides a concise exploration of these frameworks, offering insights into their 
potential for addressing uncertainty and complexity in graph structures.   

Soft Sets provide an effective framework for decision-making by mapping parameters to subsets 
of a universal set, addressing uncertainty and vagueness. The fifth chapter (Double-Framed 
Superhypersoft Set and Double-Framed Treesoft Set) introduces the Double-Framed SuperHypersoft 
Set and the Double-Framed Treesoft Set as extensions of traditional and advanced soft set frameworks, such 
as Hypersoft and SuperHypersoft Sets. The chapter explores their relationships with existing concepts, 
offering new tools to handle complex decision-making scenarios with enhanced structural flexibility. 

The sixth paper (HyperPlithogenic Cubic Set and SuperHyperPlithogenic Cubic Set) 
introduces the concepts of the HyperPlithogenic Cubic Set and SuperHyperPlithogenic Cubic Set, which 
extend the Plithogenic Cubic Set by integrating both interval-valued and single-valued fuzzy memberships. 
These sets leverage multi-attribute aggregation techniques inherent to plithogenic structures, allowing for 
nuanced representations of uncertainty. Additionally, related constructs such as the HyperPlithogenic Fuzzy 
Cubic Set, HyperPlithogenic Intuitionistic Fuzzy Cubic Set, and HyperPlithogenic Neutrosophic Cubic Set 
are explored, further enriching the theoretical and practical applications of this framework. 

The seventh chapter (L-Neutrosophic Sets and Nonstationary Neutrosophic Sets) extends the 
foundational concepts of fuzzy sets by integrating Neutrosophic and Plithogenic frameworks. By 
introducing L-Neutrosophic Sets and Nonstationary Neutrosophic Sets, the study enhances the 
representation of uncertainty through independent membership components: truth, indeterminacy, and 
falsity. These advanced constructs also incorporate multi-dimensional and contradictory attributes, 
providing a robust means of modeling complex decision-making and uncertain data. 

Plithogenic and Rough Sets, known for generalizing uncertainty modeling and classification, are 
extended in the eight chapter (Forest HyperPlithogenic and Forest HyperRough Sets) to Forest 
HyperPlithogenic Sets, Forest SuperHyperPlithogenic Sets, Forest HyperRough Sets, and Forest 
SuperHyperRough Sets. These frameworks incorporate hierarchical and recursive structures to advance 
existing set-theoretic paradigms. The chapter explores their applications in multi-level data analysis and 
uncertainty classification, demonstrating their adaptability to complex systems. 
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Building on Fuzzy, Neutrosophic, and Plithogenic Sets, the tenth chapter (Symbolic 
HyperPlithogenic Sets) introduces Symbolic HyperPlithogenic Sets and Symbolic n-
SuperHyperPlithogenic Sets. These sets incorporate symbolic components and algebraic coefficients, 
enabling flexible operations within a defined prevalence order. By extending symbolic representation into 
hyperplithogenic and superhyperplithogenic domains, the chapter opens new pathways for addressing 
uncertainty and hierarchical complexity in mathematical modeling.   

Soft Sets, designed to manage uncertainty and imprecision, have evolved through various 
extensions like Hypersoft Sets and SuperHypersoft Sets. The eleventh chapter (N-SuperHypersoft and 
Bijective SuperHypersoft Sets) introduces N-SuperHypersoft Sets, N-Treesoft Sets, Bijective 
SuperHypersoft Sets, and Bijective Treesoft Sets. These new constructs enhance decision-making 
frameworks by incorporating advanced hierarchical and bijective relationships, building on existing 
theories and expanding their applications. 

Plithogenic Sets, known for integrating multi-valued attributes and contradictions, and Rough Sets, 
which partition data into definable approximations, are combined in the twelfth chapter (Plithogenic 
Rough Sets) to form Plithogenic Rough Sets. This fusion provides a powerful framework for addressing 
uncertainty in dynamic and complex decision-making scenarios, offering a novel approach to uncertainty 
modeling. 

Expanding on Neutrosophic Sets, which represent truth, indeterminacy, and falsehood, this chapter 
introduces Plithogenic Duplets and Plithogenic Triplets. These constructs leverage the Plithogenic 
framework to incorporate attributes, values, and contradiction measures. The thirteenth chapter 
(Plithogenic Duplets and Triplets) examines their relationships with Neutrosophic Duplets and Triplets, 
offering new tools for multi-dimensional data representation and decision-making. 

Building on foundational concepts like Rough Sets and Vague Sets, the fourteenth chapter 
(SuperRough and SuperVague Sets) introduces SuperRough Sets and SuperVague Sets. These 
generalized frameworks extend uncertainty modeling by incorporating hierarchical structures. The study 
also demonstrates that SuperRough Sets can evolve into SuperHyperRough Sets, providing further 
generalizations for advanced data classification and analysis. 

The fifteenth chapter (Neutrosophic TreeSoft Expert and ForestSoft Sets) revisits the 
Neutrosophic TreeSoft Set, which combines the hierarchical structure of TreeSoft Sets with the 
Neutrosophic framework for uncertainty representation. Additionally, it introduces the Neutrosophic 
TreeSoft Expert Set, incorporating expert knowledge into the model. The chapter also explores the 
ForestSoft Set and its extension, the Neutrosophic ForestSoft Set, to provide multi-level, tree-structured 
approaches for complex data representation and analysis. 

Therefore, this collection explores advanced concepts in uncertain combinatorics, focusing on 
innovative frameworks such as SuperHyperGraphs, Plithogenic and Rough Sets, and Neutrosophic 
extensions. The chapters introduce hierarchical and multi-dimensional constructs, such as SuperHypertree-
depth, HyperPlithogenic Cubic Sets, and Forest HyperRough Sets, to address complexity and uncertainty 
in decision-making, classification, and data analysis. These contributions offer new methodologies and 
applications across fields, advancing the boundaries of mathematical modeling. 
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In conclusion, this volume significantly advances the field of uncertain combinatorics by 
introducing a range of novel concepts and frameworks. Through the exploration of SuperHyperGraphs, 
extended Plithogenic and Rough Sets, and Neutrosophic constructs, the chapters provide powerful tools for 
modeling and analyzing uncertainty in complex systems. These innovations not only deepen our 
understanding of hierarchical structures and multi-dimensional data but also expand the applicability of set-
theoretic paradigms to real-world problems. As uncertainty continues to be a core challenge across various 
disciplines, the insights presented here pave the way for more refined, adaptable approaches to decision-
making, classification, and computational modeling. 

Takaaki Fujita, Florentin Smarandache 
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Chapter 1
SuperHypertree-depth: A Structural Analysis within SuperHyperGraphs

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Hypergraphs extend the concept of graphs by allowing edges, called hyperedges, to connect multiple vertices
simultaneously [4]. SuperHyperGraphs further generalize this structure by introducing hierarchical nesting,
where both vertices and edges can represent subsets within recursive levels of abstraction [37, 38].

This paper investigates the feasibility of extending the graph parameter Tree-depth [30] (and its hypergraph
counterpart, Hypertree-depth [1]) to SuperHyperGraphs. Furthermore, it analyzes the relationships between
these extended parameters and their classical graph-theoretic counterparts, providing insights into their math-
ematical properties and structural implications.

Keywords: Tree-depth, Superhypergraph, Hypergraph, Hypertree-depth

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Basic Definition of Graph Theory

This section presents the fundamental definitions of graph theory. In this paper, we focus exclusively on
undirected, finite, and simple graphs. For additional background and comprehensive explanations, readers are
encouraged to refer to lecture notes and surveys such as [7–9].

Definition 1.1 (Graph). [9] A graph 𝐺 is a mathematical structure composed of a set of vertices 𝑉 (𝐺) and
a set of edges 𝐸 (𝐺) that connect pairs of vertices, representing relationships or connections between them.
Formally, a graph is defined as 𝐺 = (𝑉, 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set.

Definition 1.2 (Subgraph). [9] Let 𝐺 = (𝑉, 𝐸) be a graph. A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) of 𝐺 is a graph such
that:

• 𝑉𝐻 ⊆ 𝑉 , i.e., the vertex set of 𝐻 is a subset of the vertex set of 𝐺.

• 𝐸𝐻 ⊆ 𝐸 , i.e., the edge set of 𝐻 is a subset of the edge set of 𝐺.

• Each edge in 𝐸𝐻 connects vertices in 𝑉𝐻 .

Definition 1.3 (Path). [9] A path is a graph 𝑃 = (𝑉, 𝐸) where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑘} and 𝐸 = {{𝑣𝑖 , 𝑣𝑖+1} | 1 ≤
𝑖 < 𝑘}. Each vertex is distinct, and edges form a simple sequence connecting 𝑣1 to 𝑣𝑘 .

Definition 1.4 (Tree). [9] A tree is a connected, acyclic graph 𝑇 = (𝑉, 𝐸). A tree with 𝑛 vertices has 𝑛 − 1
edges.

Definition 1.5 (Forest). [9] A forest is a disjoint union of trees. Formally, a graph 𝐹 = (𝑉, 𝐸) is a forest if
every connected component of 𝐹 is a tree.
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1.2 Hypergraph

A hypergraph is a generalized graph concept that extends traditional graph theory by introducing hyperedges,
which can connect multiple vertices instead of just pairs. This allows for modeling more complex relationships
among elements [3, 4, 22–24]. Hypergraphs have found applications in various fields, including database
systems [27]. The fundamental definitions of hypergraphs are provided below.

Definition 1.6 (Hypergraph). [4] A hypergraph is a pair 𝐻 = (𝑉, 𝐸), where:

• 𝑉 is a set of vertices,

• 𝐸 is a set of hyperedges, each hyperedge 𝑒 ∈ 𝐸 being a subset of 𝑉 .

Equivalently, 𝐸 ⊆ P(𝑉), where P(𝑉) denotes the power set of 𝑉 .

Example 1.7 (A Simple Hypergraph). Consider a hypergraph 𝐻 = (𝑉, 𝐸) with:

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐸 =
{
{𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}

}
.

In this setup, we have four vertices 𝑎, 𝑏, 𝑐, 𝑑. The set of hyperedges is:

• {𝑎, 𝑏}, which is an edge connecting exactly two vertices (𝑎 and 𝑏).

• {𝑏, 𝑐, 𝑑}, which is a hyperedge connecting three vertices (𝑏, 𝑐, 𝑑).

Notice that in a hypergraph, an edge can contain any number of vertices from 𝑉 . Therefore, {𝑏, 𝑐, 𝑑} is a valid
edge even though it links three vertices. In contrast, a standard (undirected) graph edge can only connect two
vertices. This demonstrates the fundamental difference: hyperedges can connect more than two vertices at
once, providing a more general framework.

1.3 SuperHyperGraph

A SuperHyperGraph is an extension of the concept of a hypergraph, recently defined and actively studied
in the literature [2, 5, 12, 14, 16–19, 25, 26, 28, 33, 35, 37–39]. It can be understood as a graph concept that
incorporates recursive structures into hypergraphs. A SuperHyperGraph possesses a repeated structure called
the n-th powerset, which is generated iteratively through the power set operation. The formal definition is
provided below.

Definition 1.8 (𝑛-th Powerset). (cf. [13, 15, 36, 40])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is constructed iteratively. Beginning with the standard powerset,
the process is defined as:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

In a similar manner, the 𝑛-th non-empty powerset, represented as 𝑃∗
𝑛 (𝐻), is recursively defined as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) refers to the powerset of 𝐻 excluding the empty set.

Definition 1.9 (n-SuperHyperGraph). [37, 38] Let 𝑉0 be a finite base set of vertices. For each 𝑘 ≥ 0, define
the iterative powerset P𝑘 (𝑉0) by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(·) denotes the power set. An n-SuperHyperGraph is a pair

SHT(𝑛) = (𝑉, 𝐸),

with
𝑉 ⊆ P𝑛 (𝑉0) and 𝐸 ⊆ P𝑛 (𝑉0).

Each element of 𝑉 is an n-supervertex, and each element of 𝐸 is an n-superedge.
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Remark 1.10. When 𝑛 = 1, the notion of an n-SuperHyperGraph coincides with the classical notion of a
hypergraph: each vertex set element is simply a subset of 𝑉0, and each hyperedge is likewise a subset of 𝑉0.
For 𝑛 ≥ 2, the concept permits nested structures such as sets of subsets (or deeper nestings), yielding a richer
framework.

Example 1.11 (A 2-SuperHyperGraph Over a Small Base Set). Base Set: Let 𝑉0 = {𝑎, 𝑏}. Then

P1 (𝑉0) = P(𝑉0) = { ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}.

Hence
P2 (𝑉0) = P

(
P1 (𝑉0)

)
= P

(
{∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}

)
.

There are 24 = 16 elements in P2 (𝑉0), each one being a subset of {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}. For example,
{{𝑎}}, {∅, {𝑏}}, {{𝑎}, {𝑏}}, and {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}} are all valid elements in P2 (𝑉0).

Constructing a 2-SuperHyperGraph:
We now choose a subset of these 16 elements to form our set of 2-supervertices,𝑉 , and our set of 2-superedges,
𝐸 . For instance, define:

𝑉 =

{
{∅}, {{𝑎}}, {{𝑏}}, {{𝑎, 𝑏}}, {{𝑎}, {𝑏}}

}
⊆ P2 (𝑉0).

This means we have 5 distinct 2-supervertices in the set 𝑉 . Observe that each such “vertex” in this 2-
SuperHyperGraph is itself a set of subsets of {𝑎, 𝑏}. For example:

{{𝑎}, {𝑏}} ∈ 𝑉 means we have a 2-supervertex whose elements are the singletons {𝑎} and {𝑏}.

Similarly, let
𝐸 =

{
{{𝑎}}, {∅, {𝑏}}, {{𝑎, 𝑏}}

}
⊆ P2 (𝑉0).

Thus, we have three 2-superedges:

• {{𝑎}}, containing only the singleton {𝑎}.

• {∅, {𝑏}}, containing the empty set and {𝑏}.

• {{𝑎, 𝑏}}, containing one element: the set {𝑎, 𝑏}.

Putting these together, we have constructed the pair

SHT(2) = (𝑉, 𝐸)

as a valid 2-SuperHyperGraph.

Comparison to a Standard Hypergraph:

• In a standard hypergraph 𝐻 = (𝑉 ′, 𝐸 ′) over the same atomic base {𝑎, 𝑏}, vertices are simply {𝑎} and/or
{𝑏} as atomic elements. Meanwhile, each edge is a subset of {𝑎, 𝑏}; for instance, {𝑎, 𝑏} or {𝑏}.

• In our 2-SuperHyperGraph, each vertex (2-supervertex) and edge (2-superedge) is a subset of the set
{∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}. This structure allows nested sets such as {{𝑎}, {𝑏}}, which cannot appear in a
standard hypergraph. In a normal hypergraph, an edge might be {𝑎} or {𝑏}, but not a set containing {𝑎}
or {𝑏} as its elements.

• Therefore, a 2-SuperHyperGraph is capable of encoding more “layers” of containment. For example,
the 2-superedge {∅, {𝑏}} suggests we have a structure that simultaneously references the empty set and
the singleton {𝑏} as if they were atomic units. This level of nesting (P2) goes strictly beyond the simple
adjacency relationships of standard hypergraphs (which are stuck at P1).

The above example illustrates how an n-SuperHyperGraph (𝑛 = 2 here) vastly enlarges the representational ca-
pabilities, allowing edges and vertices to be sets of subsets, thus capturing richer or more complex relationships
than a plain hypergraph structure.

13



1.4 Tree-depth and Hypertree-depth

Tree-depth is defined as the minimum height of a rooted forest whose closure contains the given graph as a
subgraph [6,10,11,20,29,30,32,34,41]. Hypertree-depth generalizes the concept of Tree-depth to hypergraphs,
providing a corresponding measure that captures the hierarchical structure of hypergraphs [1, 21]. Below, we
present the formal definitions of these concepts, along with related notions.

Definition 1.12 (Rooted Forest). (cf. [42]) A rooted forest 𝐹 is an undirected acyclic graph 𝐺 = (𝑉, 𝐸) that
satisfies the following properties:

• 𝐹 consists of one or more connected components, each of which is a rooted tree.

• Each connected component has a distinguished vertex called the root.

• The rooted tree property implies that each vertex 𝑣 ∈ 𝑉 (𝐹) (except the roots) has a unique parent,
determined by a parent-child relationship induced by the root.

• The ancestor-descendant relationship forms a partial order ≤𝐹 on𝑉 (𝐹), where 𝑢 ≤𝐹 𝑣 if 𝑢 is an ancestor
of 𝑣 in the rooted structure, or 𝑢 = 𝑣.

The edge set 𝐸 (𝐹) of the rooted forest corresponds to these parent-child relationships.

Example 1.13 (A Simple Rooted Forest). Consider a graph 𝐹 = (𝑉, 𝐸) with:

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}, 𝐸 = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑑, 𝑒}, {𝑑, 𝑓 }, { 𝑓 , 𝑔}}.

This graph forms a rooted forest with two connected components:

• The first component is a rooted tree with root 𝑎, and its vertices are {𝑎, 𝑏, 𝑐}.

• The second component is a rooted tree with root 𝑑, and its vertices are {𝑑, 𝑒, 𝑓 , 𝑔}.

The ancestor-descendant partial order ≤𝐹 for 𝐹 is:

• For the first tree: 𝑎 ≤𝐹 𝑏, 𝑎 ≤𝐹 𝑐, and 𝑎 = 𝑎.

• For the second tree: 𝑑 ≤𝐹 𝑒, 𝑑 ≤𝐹 𝑓 , 𝑑 ≤𝐹 𝑔, 𝑓 ≤𝐹 𝑔, and 𝑑 = 𝑑.

Definition 1.14 (Closure of a Rooted Forest). (cf. [31]) Let 𝐹 be a rooted forest. The closure of 𝐹, denoted
clos(𝐹), is the graph defined as follows:

• The vertex set of clos(𝐹) is 𝑉 (clos(𝐹)) = 𝑉 (𝐹).

• The edge set of clos(𝐹) is

𝐸 (clos(𝐹)) = {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 (𝐹), 𝑢 ≤𝐹 𝑣, 𝑢 ≠ 𝑣},

where ≤𝐹 is the partial order on 𝑉 (𝐹) given by the ancestor-descendant relationship in 𝐹.

In other words, 𝑢 ≤𝐹 𝑣 means that 𝑢 is an ancestor of 𝑣 in 𝐹, or 𝑢 = 𝑣. Hence, clos(𝐹) is the comparability
graph of the ancestor-descendant relation (excluding self-loops).

Example 1.15 (Closure of a Small Rooted Forest). Consider a rooted forest 𝐹 consisting of two rooted trees:

𝐹 = 𝑇1 ∪ 𝑇2,

where

14



• 𝑇1 has three vertices {𝑟, 𝑎, 𝑏}. Vertex 𝑟 is the root, and 𝑎, 𝑏 are its children (i.e., edges {𝑟, 𝑎} and {𝑟, 𝑏}
in 𝑇1).

• 𝑇2 has two vertices {𝑠, 𝑐}. Vertex 𝑠 is the root, and 𝑐 is its child (i.e., edge {𝑠, 𝑐} in 𝑇2).

The partial order ≤𝐹 includes:

𝑟 ≤𝐹 𝑟, 𝑟 ≤𝐹 𝑎, 𝑟 ≤𝐹 𝑏, 𝑠 ≤𝐹 𝑠, 𝑠 ≤𝐹 𝑐,

and 𝑎 ≤𝐹 𝑎, 𝑏 ≤𝐹 𝑏, 𝑐 ≤𝐹 𝑐 (each vertex is trivially an ancestor of itself). There are no ancestral relationships
between vertices in different trees.

The closure clos(𝐹) therefore has the same vertex set {𝑟, 𝑎, 𝑏, 𝑠, 𝑐} and an edge set consisting of:

{𝑟, 𝑎}, {𝑟, 𝑏}, {𝑠, 𝑐},

since those pairs reflect ancestor-descendant relations. No additional edges connect {𝑟, 𝑎, 𝑏} with {𝑠, 𝑐} because
there are no cross-tree ancestor-descendant relationships.

Definition 1.16 (Tree-depth). [30] The tree-depth of a graph 𝐺, denoted td(𝐺), is the minimum height of a
rooted forest 𝐹 such that 𝐺 is a subgraph of clos(𝐹). Equivalently,

td(𝐺) = min
{

height(𝐹)
��� 𝐺 ⊆ clos(𝐹)

}
,

where clos(𝐹) is constructed using the ancestor-descendant relation of 𝐹 as above.

Example 1.17 (Tree-depth of a Small Graph). Let 𝐺 be the path on four vertices 𝑣1 − 𝑣2 − 𝑣3 − 𝑣4. We claim
td(𝐺) = 2.

To see why, construct a rooted forest 𝐹 of height 2 whose closure contains 𝐺. For instance, let 𝐹 be a single
rooted tree:

𝑇 : 𝑟 (root) ↓ {𝑣1, 𝑣2, 𝑣3, 𝑣4}

that is, 𝑟 is the root, and all of 𝑣1, 𝑣2, 𝑣3, 𝑣4 are its children at the second level. The height of this tree is 2.

In clos(𝐹), there is an edge between every pair (𝑟, 𝑣𝑖) by the ancestor-descendant relationship. Although this
creates more edges than in 𝐺, the important fact is that 𝐺 (the path) is contained as a subgraph in clos(𝐹).
Hence, td(𝐺) ≤ 2. One can also show it cannot be embedded in the closure of any forest of height 1, implying
td(𝐺) = 2.

Definition 1.18 (Hypertree-depth). [1] Let 𝐻 be a hypergraph with vertex set 𝑉 (𝐻) and hyperedge set 𝐸 (𝐻).
A decomposition forest of 𝐻 is a pair (𝐹,𝐶) where

• 𝐹 is a rooted forest,

• 𝐶 : 𝑉 (𝐹) → 𝐸 (𝐻) is a mapping such that:

1. For every vertex 𝑣 ∈ 𝑉 (𝐻), there exists a node 𝑡 ∈ 𝑉 (𝐹) with 𝑣 ∈ 𝐶 (𝑡).
2. For every edge 𝑒 ∈ 𝐸 (𝐻), there are ≤𝐹-comparable nodes 𝑠, 𝑡 ∈ 𝑉 (𝐹) such that 𝑒 ⊆ 𝐶 (𝑠) ∪ 𝐶 (𝑡).
3. For all 𝑠, 𝑡 ∈ 𝑉 (𝐹), if 𝐶 (𝑠) ∩ 𝐶 (𝑡) ≠ ∅, then 𝑠 ∧ 𝑡 (the least common ancestor) exists and

𝐶 (𝑠) ∩ 𝐶 (𝑡) ⊆
⋃

𝑟∈↓(𝑠∧𝑡 )
𝐶 (𝑟),

where ↓ (𝑠 ∧ 𝑡) denotes the set of descendants of 𝑠 ∧ 𝑡.

The hypertree-depth of 𝐻, denoted hd(𝐻), is the minimum height of a rooted forest 𝐹 over all such decompo-
sition forests (𝐹,𝐶) of 𝐻.
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Example 1.19 (Hypertree-depth of a Small Hypergraph). Consider the hypergraph 𝐻 with

𝑉 (𝐻) = {𝑣1, 𝑣2, 𝑣3}, 𝐸 (𝐻) =
{
{𝑣1, 𝑣2}, {𝑣2, 𝑣3}

}
.

We claim hd(𝐻) = 2. Define a decomposition forest (𝐹,𝐶) as follows:

• 𝐹 is a rooted tree of height 2 with two nodes: a root 𝑟 and its child 𝑢.

• The mapping 𝐶 is given by
𝐶 (𝑟) = {𝑣1, 𝑣2}, 𝐶 (𝑢) = {𝑣2, 𝑣3}.

Check each condition:

1. Every vertex 𝑣1, 𝑣2, 𝑣3 appears in 𝐶 (𝑟) or 𝐶 (𝑢).

2. Each hyperedge {𝑣1, 𝑣2} or {𝑣2, 𝑣3} is contained in𝐶 (𝑟)∪𝐶 (𝑟) or𝐶 (𝑢)∪𝐶 (𝑢) respectively; in particular,
𝑟 ≤𝐹 𝑢, so they are ≤𝐹-comparable.

3. The intersection 𝐶 (𝑟) ∩𝐶 (𝑢) = {𝑣2}. The least common ancestor of 𝑟 and 𝑢 in 𝐹 is 𝑟 . The descendants
of 𝑟 (including 𝑟 itself) are {𝑟, 𝑢}. Then⋃

𝑡∈↓(𝑟 )
𝐶 (𝑡) = 𝐶 (𝑟) ∪ 𝐶 (𝑢) = {𝑣1, 𝑣2} ∪ {𝑣2, 𝑣3} = {𝑣1, 𝑣2, 𝑣3},

which covers the intersection {𝑣2}.

Since 𝐹 has height 2, we get hd(𝐻) ≤ 2. One can verify no decomposition forest of height 1 suffices, so
hd(𝐻) = 2.

2 Result in This Paper

As a result of this paper, we define Hypertree-length and Hypertree-breadth, Superhypertree-length, and
Superhypertree-breadth, and describe the relationships between these parameters.

2.1 n-Superhypertree-depth

The definition of hypertree-depth for classical hypergraphs involves a so-called “decomposition forest.” We
now formulate its analogue in the n-SuperHyperGraph setting.

Definition 2.1 (Decomposition Forest for an n-SuperHyperGraph). Let SHT(𝑛) = (𝑉, 𝐸) be an n-SuperHyperGraph,
where 𝑉, 𝐸 ⊆ P𝑛 (𝑉0). A decomposition forest for SHT(𝑛) is a pair (𝐹,𝐶) consisting of:

• A rooted forest 𝐹. A rooted forest is a disjoint union of rooted trees, each node having zero or more
children, and each tree having a unique root with no parent. We denote the set of all nodes by 𝑉 (𝐹),
and write ≤𝐹 for the partial order given by the ancestor-descendant relation in 𝐹. For 𝑠, 𝑡 ∈ 𝑉 (𝐹), if
their least common ancestor (LCA) exists, we denote it 𝑠 ∧ 𝑡. By convention, a node is an ancestor and
descendant of itself, so 𝑠 ≤𝐹 𝑠.

• A labeling map 𝐶 : 𝑉 (𝐹) → 𝐸 , which assigns to each node in the forest an n-superedge from SHT(𝑛) .
This labeling must satisfy the following conditions:

1. Coverage of n-supervertices: For every 𝑥 ∈ 𝑉 , there is at least one node 𝑢 ∈ 𝑉 (𝐹) such that
𝑥 ∈ 𝐶 (𝑢). In other words, each n-supervertex is contained in at least one labeled n-superedge in
the forest.
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2. Comparable containment of n-superedges: For each n-superedge 𝑒 ∈ 𝐸 , there exist two nodes
𝑠, 𝑡 ∈ 𝑉 (𝐹) with 𝑠 ≤𝐹 𝑡 (they are ≤𝐹-comparable) such that

𝑒 ⊆ 𝐶 (𝑠) ∪ 𝐶 (𝑡).

Hence, every n-superedge of SHT(𝑛) is the union of the labels at some pair of nodes in an ancestor-
descendant relationship.

3. Intersection descent property: For all 𝑠, 𝑡 ∈ 𝑉 (𝐹) with 𝐶 (𝑠) ∩ 𝐶 (𝑡) ≠ ∅, the LCA 𝑠 ∧ 𝑡 exists in
𝐹, and we have

𝐶 (𝑠) ∩ 𝐶 (𝑡) ⊆
⋃

𝑟 ∈ ↓(𝑠∧𝑡 )
𝐶 (𝑟),

where ↓ (𝑢) denotes the set of descendants of 𝑢 (including 𝑢 itself) in the forest 𝐹. This condition
ensures that the common portion of any two labels appears “within” the subtree rooted at their
LCA.

Definition 2.2 (n-SuperHypertree-depth). Let SHT(𝑛) = (𝑉, 𝐸) be an n-SuperHyperGraph. The n-SuperHypertree-
depth of SHT(𝑛) , denoted shd(𝑛) (SHT(𝑛) ) (or simply shd(𝑛) when context is clear), is the minimum height of
a rooted forest 𝐹 among all decomposition forests (𝐹,𝐶) for SHT(𝑛) . Symbolically:

shd(𝑛) (SHT(𝑛) ) = min
{
height(𝐹)

��� (𝐹,𝐶) is a decomposition forest for SHT(𝑛)
}
.

Here, the height of 𝐹 is the maximum level (distance from the root) of any node in 𝐹. Equivalently, if 𝐹 has
multiple connected components (trees), the height is the maximum of the heights of its constituent trees.

Example 2.3 (A 2-SuperHyperGraph and Its Decomposition Forest). Let 𝑉0 = {𝑎, 𝑏}. Then:

P(𝑉0) = { ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}, P2 (𝑉0) = P
(
{∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}

)
.

We construct the following 2-SuperHyperGraph:

SHT(2) = (𝑉, 𝐸 ),

where
𝑉 =

{
{{𝑎}}, {{𝑏}}

}
⊆ P2 (𝑉0), 𝐸 =

{
{∅, {𝑎}}, {{𝑏}}

}
⊆ P2 (𝑉0).

So there are two n-supervertices:
𝑥1 = {{𝑎}}, 𝑥2 = {{𝑏}},

and two 2-superedges:
𝑒1 = {∅, {𝑎}}, 𝑒2 = {{𝑏}}.

Constructing a decomposition forest (𝐹,𝐶). Define 𝐹 to be a single rooted tree with a root 𝑟 of level 1 and a
single child 𝑢 of level 2. Assign

𝐶 (𝑟) = 𝑒1, 𝐶 (𝑢) = 𝑒2.

Check the conditions in Definition 2.1:

1. Coverage of n-supervertices: 𝑥1 = {{𝑎}} ∈ 𝑒1 = 𝐶 (𝑟), and 𝑥2 = {{𝑏}} ∈ 𝑒2 = 𝐶 (𝑢). Thus each
n-supervertex appears in at least one label.

2. Comparable containment of n-superedges: For 𝑒1, it is trivially covered by 𝐶 (𝑟) ∪ 𝐶 (𝑟). For 𝑒2, it is
likewise covered by 𝐶 (𝑢) ∪ 𝐶 (𝑢). Moreover, 𝑟 ≤𝐹 𝑢, so 𝑟 and 𝑢 are ≤𝐹-comparable.

3. Intersection descent property:

𝐶 (𝑟) ∩ 𝐶 (𝑢) = 𝑒1 ∩ 𝑒2 = {∅, {𝑎}} ∩ {{𝑏}} = ∅,

which trivially satisfies ∅ ⊆ ⋃
𝑤∈↓(𝑟∧𝑢) 𝐶 (𝑤).

The height of 𝐹 is 2. One verifies that no decomposition forest of height 1 suffices (since that would require
labeling one node with both 𝑒1 and 𝑒2 in a way that covers distinct n-supervertices separately, which fails the
intersection descent property or coverage requirements). Hence shd(2) (SHT(2) ) = 2.
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2.2 Basic Properties of SuperHypertree-depth

We present and prove several theorems related to the properties of SuperHypertree-depth.

Theorem 2.4 (Well-definedness). Let SHT(𝑛) = (𝑉, 𝐸) be any n-SuperHyperGraph. Then shd(𝑛) (SHT(𝑛) ) is
a finite positive integer. That is, there is at least one decomposition forest (𝐹,𝐶) of finite height, and among
all such possible forests a minimum height always exists. Consequently, shd(𝑛) (SHT(𝑛) ) ∈ N.

Proof. Step 1: Existence of a (finite) decomposition forest.

Since 𝑉0 is finite, P𝑛 (𝑉0) is also finite. Thus 𝑉 ⊆ P𝑛 (𝑉0) and 𝐸 ⊆ P𝑛 (𝑉0) are finite sets. Let

𝐸 = { 𝑒1, 𝑒2, . . . , 𝑒𝑚} (𝑚 ≥ 1).

We construct a decomposition forest 𝐹 of finite height in a straightforward manner:

1. Start with a single root node 𝑟 . Let the forest consist of exactly one tree (so it is indeed a forest of one
component).

2. For each n-superedge 𝑒𝑖 ∈ 𝐸 , create a child node 𝑐𝑖 of 𝑟. Hence the forest has 𝑚 children under the root,
giving a total of 1 + 𝑚 nodes.

3. Define the labeling map 𝐶 by

𝐶 (𝑟) = ∅ (the empty set in P𝑛 (𝑉0)), 𝐶 (𝑐𝑖) = 𝑒𝑖 for each 𝑖 = 1, 2, . . . , 𝑚.

(If one prefers not to use the empty label, one may select any dummy n-superedge from 𝐸 or from P𝑛 (𝑉0)
for the root. The specific choice for the root label will not undermine the general argument.)

This construction yields a forest 𝐹 of height exactly 2: the root 𝑟 is at level 1, each 𝑐𝑖 is at level 2. We must
verify the three decomposition conditions from Definition 2.1:

• Coverage: Every n-supervertex 𝑥 ∈ 𝑉 must appear in at least one label. Observe that each 𝑥 lies in some
n-superedge 𝑒𝑖 (worst case, each 𝑥 itself might be one of the edges in 𝐸). If it does not, we can add an
extra child labeled by a union that contains 𝑥. Concretely, if the n-supervertices do not appear in exactly
these edges, one can augment the construction by assigning additional children or by merging edges so
that all vertices are covered. (A simpler approach: suppose

⋃
𝐸 denotes the union of all edges in the

sense of set-theoretic union. Then each 𝑥 ∈ 𝑉 ⊆ ⋃
𝐸 ; hence each 𝑥 ∈ 𝑒𝑖 for some 𝑖. So 𝑥 ∈ 𝐶 (𝑐𝑖) and

coverage holds.)

• Comparable containment: For any 𝑒 𝑗 ∈ 𝐸 , it appears exactly as the label of a child 𝑐 𝑗 . Thus 𝑒 𝑗 ⊆ 𝐶 (𝑐 𝑗 )∪
𝐶 (𝑐 𝑗 ). Since 𝑟 ≤𝐹 𝑐 𝑗 , we indeed have two ≤𝐹-comparable nodes, so the condition 𝑒 𝑗 ⊆ 𝐶 (𝑟) ∪ 𝐶 (𝑐 𝑗 )
or 𝑒 𝑗 ⊆ 𝐶 (𝑐 𝑗 ) ∪ 𝐶 (𝑐 𝑗 ) is trivially satisfied.

• Intersection descent: If 𝐶 (𝑠) ∩ 𝐶 (𝑡) ≠ ∅ for two nodes 𝑠, 𝑡, we note that 𝑠 ∧ 𝑡 = 𝑟 if 𝑠 ≠ 𝑡, or 𝑠 ∧ 𝑡 = 𝑠

if 𝑠 = 𝑡. In either case, ↓ (𝑠 ∧ 𝑡) ⊆ {𝑟, 𝑐1, . . . , 𝑐𝑚}. Because each label is either ∅ or one of the edges
𝑒𝑖 , any nonempty intersection must be an n-superedge or subset of n-superedges. This intersection is
contained trivially in the union of the labels of the entire forest. In particular,

⋃
𝑢∈↓(𝑟 ) 𝐶 (𝑢) includes all

edges 𝑒𝑖 . Thus, the intersection condition is satisfied.

Therefore, (𝐹,𝐶) is a valid decomposition forest of height 2.

Step 2: Finiteness of the minimum height.

We have explicitly exhibited a decomposition forest of finite height (here, height 2). Consequently, the set

H =
{

height(𝐹)
�� (𝐹,𝐶) is a decomposition forest for SHT(𝑛)}

is a non-empty set of positive integers. Any non-empty finite subset of the natural numbers has a minimum, so
minH exists and is finite. By Definition 2.2, we then have

shd(𝑛) (SHT(𝑛) ) = minH ∈ N.

Hence, shd(𝑛) (SHT(𝑛) ) is a well-defined, finite integer.
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Theorem 2.5 (Consistency with Standard Hypertree-depth). Let SHT(1) = (𝑉, 𝐸) be viewed as a standard
hypergraph 𝐻 = (𝑉, 𝐸). Then

shd(1) (SHT(1) ) = hd(𝐻),

where hd(𝐻) is the classical hypertree-depth of 𝐻.

Proof. In the case 𝑛 = 1, each “1-supervertex” is just an element of P1 (𝑉0) = P(𝑉0). In a standard hypergraph
setting, the set 𝑉 of “vertices” is also a subset of 𝑉0, but here we interpret 𝑉 ⊆ P(𝑉0). Meanwhile, each
1-superedge in 𝐸 is also a subset of 𝑉0. We must check that the definitions of decomposition forest given in
Definition 2.1 coincide exactly with the standard definition used to characterize hypertree-depth (cf. [22, 23]):

1. Coverage condition (classical vs. super): In the classical definition for hypertree-depth, each vertex
𝑣 ∈ 𝑉 (𝐻) ⊆ 𝑉0 must appear in the label of at least one node of the decomposition. In the n-super
setting with 𝑛 = 1, each 1-supervertex is effectively an element of P(𝑉0). However, by design or by
adjusting notation slightly, we can align the classical condition that each 𝑣 ∈ 𝑉0 must appear in some
set-labeled node with the super-condition that each element of 𝑉 ⊆ P(𝑉0) must appear in some label.
Specifically, in classical hypertree theory, one demands coverage of each atomic vertex 𝑣 ∈ 𝑉0. In the
n-super approach for 𝑛 = 1, the coverage demands coverage of each set in 𝑉 ⊆ P(𝑉0). But typically, one
chooses 𝑉 = 𝑉0 itself for classical hypergraphs (treating each single atomic vertex as an element). So
the coverage conditions match.

2. Comparable containment of edges: In classical hypertree-depth, each hyperedge 𝜀 ∈ 𝐸 must be contained
in the union of the labels of two nodes that are in ancestor-descendant relation. This is the same as the
super-edge condition in Definition 2.1 for 𝑛 = 1.

3. Intersection descent property: The classical hypertree-depth definition requires that if two nodes share
a common atomic vertex in their labels, that vertex must appear in the label of every node on the path
between them in the tree. By rewriting “the path between them” in terms of the least common ancestor
plus the subtree from that ancestor, we see that this is essentially the same property: any vertex in the
intersection arises in all nodes along that path, i.e. the intersection is contained in the union of the labels
in the subtree from the LCA.

Consequently, any decomposition forest (𝐹,𝐶) in the sense of Definition 2.1 for 𝑛 = 1 is exactly a hypertree-
depth decomposition in the classical sense, and vice versa. Hence, the minimal heights of these trees are the
same, i.e.

shd(1) (SHT(1) ) = hd(𝐻),

as claimed. □

Theorem 2.6 (Monotonicity in 𝑛). Consider an n-SuperHyperGraph SHT(𝑛) with shd(𝑛) (SHT(𝑛) ) as defined.
Suppose we view SHT(𝑛) as an (𝑛 + 1)-SuperHyperGraph by the natural inclusion

P𝑛 (𝑉0) ⊆ P 𝑛+1 (𝑉0).

Then
shd(𝑛+1) (SHT(𝑛) ) ≤ shd(𝑛) (SHT(𝑛) ).

That is, allowing an n-SuperHyperGraph to be embedded in a higher dimension (𝑛 + 1) can only decrease (or
leave equal) the n-SuperHypertree-depth.

Proof. Let SHT(𝑛) = (𝑉, 𝐸). When we say we “view SHT(𝑛) as an (𝑛 + 1)-SuperHyperGraph,” we interpret

𝑉, 𝐸 ⊆ P𝑛 (𝑉0) ⊆ P 𝑛+1 (𝑉0).

Hence, the same sets 𝑉 and 𝐸 can be treated as subsets of P 𝑛+1 (𝑉0). Let shd(𝑛) (SHT(𝑛) ) = 𝑑. By definition,
there exists a decomposition forest (𝐹,𝐶) for SHT(𝑛) ) with height(𝐹) = 𝑑.

We claim that (𝐹,𝐶) also serves as a valid decomposition forest in the (𝑛+1)-dimensional sense, thus showing
shd(𝑛+1) (SHT(𝑛) ) ≤ 𝑑. Indeed, all conditions in Definition 2.1 are dimension agnostic regarding ≤𝐹 and the
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forest structure. The only possible difference is that (𝐹,𝐶) must map each node to an element of 𝐸 ⊆ P𝑛 (𝑉0).
But since 𝐸 ⊆ P𝑛+1 (𝑉0) under the inclusion, exactly the same labeling function 𝐶 : 𝑉 (𝐹) → 𝐸 ⊆ P𝑛 (𝑉0) is
legitimate in the (𝑛 + 1)-super framework. There is no conflict in the coverage or intersection rules, because
the structure of the forest and the sets themselves remain unchanged—they are simply being recognized as
elements of a bigger universe P𝑛+1 (𝑉0).

Hence, a decomposition forest of height 𝑑 for the n-SuperHyperGraph remains a decomposition forest of the
same height for the (𝑛 + 1)-dimensional perspective. By taking the minimum among all such forests in the
(𝑛 + 1)-dimensional view, we conclude:

shd(𝑛+1) (SHT(𝑛) ) ≤ 𝑑 = shd(𝑛) (SHT(𝑛) ).

Thus the statement is proved. □

Corollary 2.7. If 𝑛′ ≥ 𝑛 and we embed SHT(𝑛) into SHT(𝑛′ ) in the analogous way (P𝑛 (𝑉0) ⊆ P𝑛′ (𝑉0)), then

shd(𝑛′ ) (SHT(𝑛) ) ≤ shd(𝑛) (SHT(𝑛) ).

Proof. Apply Theorem 2.6 iteratively from 𝑛 to 𝑛 + 1, then from 𝑛 + 1 to 𝑛 + 2, and so forth, until reaching
𝑛′. □

2.3 Additional Property: Flattening an n-SuperHyperGraph to a Classical Hypergraph

A central operation that connects multi-level (super) structures back to standard hypergraphs is the flattening
map. Intuitively, we reduce nested subsets in P𝑛 (𝑉0) to ordinary subsets of 𝑉0.

Definition 2.8 (Flattening of an Element). Let 𝑛 ≥ 1. A set 𝑥 ∈ P𝑛 (𝑉0) can be viewed as a nested subset of
depth 𝑛. Define its flattening to a subset of 𝑉0 as follows:

Flat(𝑥) =


𝑥, if 𝑛 = 1 (so 𝑥 ⊆ 𝑉0 directly),⋃
𝑦 ∈ 𝑥

Flat(𝑦), if 𝑛 > 1.

In other words, for 𝑛 > 1, each element 𝑦 of 𝑥 is itself an object in P𝑛−1 (𝑉0); we recursively flatten all subsets
until eventually reaching elements of 𝑉0.

Definition 2.9 (Flattening an n-SuperHyperGraph). Let SHT(𝑛) = (𝑉, 𝐸) ⊆ P𝑛 (𝑉0) × P𝑛 (𝑉0). We define its
underlying classical hypergraph (or flattened hypergraph) as

Flat
(
SHT(𝑛) ) =

(
𝑉0, 𝐸

∗
)
,

where
𝐸∗ =

{
Flat(𝑒)

��� 𝑒 ∈ 𝐸

}
⊆ P(𝑉0).

Thus each n-superedge 𝑒 ⊆ P𝑛 (𝑉0) is mapped to an ordinary hyperedge Flat(𝑒) ⊆ 𝑉0 by the recursive union.
Note that if 𝑒 is empty, then Flat(𝑒) = ∅ ∈ P(𝑉0).

Remark 2.10. We do not need to define a separate vertex set in the flattened hypergraph, as classical hypergraph
vertices are atomic elements from 𝑉0. If we want to track which atomic vertices actually occur in the flattened
edges, we could restrict to

⋃
𝐸∗ ⊆ 𝑉0. For clarity, we take 𝑉0 as the ambient vertex set.

Theorem 2.11 (Flattening Bound). Let SHT(𝑛) = (𝑉, 𝐸) ⊆ P𝑛 (𝑉0) × P𝑛 (𝑉0) be an n-SuperHyperGraph, and
let

𝐻flat = Flat
(
SHT(𝑛) ) =

(
𝑉0, 𝐸

∗
)

be its underlying flattened hypergraph. Then

hd
(
𝐻flat

)
≤ shd(𝑛)(SHT(𝑛) ) .

Proof. Let SHT(𝑛) have n-SuperHypertree-depth 𝑑. By definition, there is a decomposition forest (𝐹,𝐶) of
height 𝑑. That is:
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• 𝐹 is a rooted forest whose maximum node depth (level) is 𝑑.

• 𝐶 : 𝑉 (𝐹) → 𝐸 is a labeling map that satisfies the three conditions from the n-SuperHyperTree-depth
decomposition definition (coverage, comparable containment, intersection descent).

We will build a classical hypertree-decomposition for 𝐻flat = (𝑉0, 𝐸
∗) using the same forest 𝐹, but with a

modified labeling map 𝐶 : 𝑉 (𝐹) → P(𝑉0). Specifically, for each node 𝑢 ∈ 𝑉 (𝐹),

𝐶 (𝑢) = Flat
(
𝐶 (𝑢)

)
⊆ 𝑉0.

(Recall that 𝐶 (𝑢) ∈ 𝐸 ⊆ P𝑛 (𝑉0), so its flattening is a subset of 𝑉0.) We verify the conditions for a classical
hypertree-depth decomposition:

1. Coverage of vertices in 𝑉0: In the original n-super decomposition, each n-supervertex 𝑥 ∈ 𝑉 ⊆ P𝑛 (𝑉0)
lies in the label of some node (by the coverage condition). However, classical coverage requires: for
every atomic vertex 𝑣 ∈ 𝑉0, there is a node 𝑢 ∈ 𝑉 (𝐹) with 𝑣 ∈ 𝐶 (𝑢). We claim this follows from the
coverage condition of edges in the original superhypergraph:

• By definition, each hyperedge in the flattened hypergraph 𝐻flat is of the form Flat(𝑒) for some
𝑒 ∈ 𝐸 .

• In the n-super decomposition, we require that each n-superedge 𝑒 be contained in the union of two
≤𝐹-comparable labels 𝐶 (𝑠) ∪ 𝐶 (𝑡).

• Hence, if 𝑣 ∈ Flat(𝑒), then 𝑣 ∈
(
Flat(𝐶 (𝑠))

)
∪

(
Flat(𝐶 (𝑡))

)
= 𝐶 (𝑠) ∪ 𝐶 (𝑡). Thus each atomic

vertex that lies in some Flat(𝑒) also appears in 𝐶 (𝑠) ∪ 𝐶 (𝑡) for some nodes 𝑠 ≤𝐹 𝑡. Consequently,
every atomic vertex in any flattened hyperedge is covered by the labeling in 𝐶.

If one also wants each 𝑣 ∈ 𝑉0 that does not appear in any Flat(𝑒) to be covered, that can be done trivially,
e.g., by adding a dummy child with label ∅. In short, all relevant atomic vertices (i.e., those that matter
for edges) are covered.

2. Comparable containment for edges Flat(𝑒): In the n-SuperHyperGraph decomposition, each n-superedge
𝑒 ∈ 𝐸 appears in 𝐶 (𝑠) ∪ 𝐶 (𝑡) for some ≤𝐹-comparable nodes 𝑠, 𝑡. Then

Flat(𝑒) ⊆ Flat
(
𝐶 (𝑠) ∪ 𝐶 (𝑡)

)
= Flat(𝐶 (𝑠)) ∪ Flat(𝐶 (𝑡)) = 𝐶 (𝑠) ∪ 𝐶 (𝑡).

In the flattened hypergraph 𝐻flat, the edge Flat(𝑒) is thus contained in the union of two ≤𝐹-comparable
node labels 𝐶 (𝑠) and 𝐶 (𝑡). This is exactly the “comparable containment” condition for classical
hypertree-depth.

3. Intersection descent (classical version): For two nodes 𝑢1, 𝑢2 ∈ 𝑉 (𝐹), if 𝐶 (𝑢1) ∩ 𝐶 (𝑢2) ≠ ∅, then there
is at least one atomic vertex 𝑣 ∈ 𝑉0 such that 𝑣 ∈ Flat(𝐶 (𝑢1)) ∩ Flat(𝐶 (𝑢2)). By definition of Flat, this
means that 𝑣 appears in some sub-subset of both 𝐶 (𝑢1) and 𝐶 (𝑢2) in the n-superstructure. The n-super
intersection descent property ensures that 𝐶 (𝑢1) ∩ 𝐶 (𝑢2) ⊆

⋃
𝑧∈↓(𝑢1∧𝑢2 ) 𝐶 (𝑧). Flattening both sides of

that inclusion yields

Flat
(
𝐶 (𝑢1) ∩ 𝐶 (𝑢2)

)
⊆ Flat

( ⋃
𝑧∈↓(𝑢1∧𝑢2 )

𝐶 (𝑧)
)
=

⋃
𝑧∈↓(𝑢1∧𝑢2 )

Flat
(
𝐶 (𝑧)

)
.

Hence any atomic vertex in 𝐶 (𝑢1) ∩𝐶 (𝑢2) must appear in 𝐶 (𝑧) for some descendant 𝑧 of (𝑢1 ∧𝑢2). This
is precisely the classical condition that the shared vertices of two nodes’ labels be explained within the
subtree rooted at the LCA.

Thus 𝐶 is a valid labeling for a classical hypertree-decomposition of 𝐻flat. Since the rooted forest 𝐹 has height
𝑑, the resulting decomposition is of height 𝑑. Therefore hd(𝐻flat) ≤ 𝑑 = shd(𝑛) (SHT(𝑛) ).

This completes the proof. □
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Theorem 2.12 (Chain of Bounds for Hypertree-depth vs. n-SuperHypertree-depth). Let SHT(𝑛) = (𝑉, 𝐸) ⊆
P𝑛 (𝑉0) × P𝑛 (𝑉0), and let 𝐻flat = Flat

(
SHT(𝑛) ) be its underlying classical hypergraph with vertex set 𝑉0 and

edge set 𝐸∗ = {Flat(𝑒) | 𝑒 ∈ 𝐸}. Then:

hd
(
𝐻flat

)
≤ shd(𝑛)(SHT(𝑛) ) ≤ shd(𝑛+1)(SHT(𝑛) ) .

Proof. The left inequality is exactly Theorem 2.11, showing that once we flatten the n-SuperHyperGraph to a
classical hypergraph, its hypertree-depth cannot exceed the original n-SuperHypertree-depth.

The right inequality follows from the monotonicity in dimension (𝑛 ↦→ 𝑛 + 1) established in many prior
treatments (cf. Theorem 2.6 or a variant thereof): allowing the same set system to live in a higher-dimensional
super-universe cannot increase the minimal forest height. In symbols: shd(𝑛+1) (SHT(𝑛) ) ≤ shd(𝑛) (SHT(𝑛) ).
Indeed, the same labeling works with no changes since 𝑉, 𝐸 ⊆ P𝑛 (𝑉0) ⊆ P𝑛+1 (𝑉0).

Putting the inequalities together yields:

hd
(
𝐻flat

)
≤ shd(𝑛)(SHT(𝑛) ) ≤ shd(𝑛+1)(SHT(𝑛) ) ,

which proves the claimed chain of bounds. □

Corollary 2.13 (Classical Case 𝑛 = 1). If SHT(1) = (𝑉, 𝐸) is just an ordinary hypergraph (𝑉, 𝐸) ⊆ P(𝑉0),
then Flat

(
SHT(1) ) is isomorphic to 𝐻 = (𝑉0, 𝐸). The chain of Theorem 2.12 becomes

hd(𝐻) = hd
(
Flat(SHT(1) )

)
≤ shd(1)(SHT(1) ) ≤ shd(2)(SHT(1) ) .

But we already know shd(1) (SHT(1) ) = hd(𝐻), so the left inequality is in fact an equality. That is, hd(𝐻) =
shd(1) (𝐻), consistent with Theorem 2.5.

Proof. By definition, if 𝑛 = 1, an n-SuperHyperGraph SHT(1) = (𝑉, 𝐸) simply satisfies 𝑉, 𝐸 ⊆ P1 (𝑉0) =

P(𝑉0). In other words, SHT(1) is just a hypergraph whose vertices and edges are subsets of the same base set
𝑉0. Consequently, the flattening operation Flat(SHT(1) ) does nothing more than interpret each 1-superedge
𝑒 ⊆ 𝑉0 as itself. Formally,

Flat(𝑒) =
⋃
𝑥∈𝑒

Flat(𝑥) =
⋃
𝑥∈𝑒

𝑥 = 𝑒 (since each 𝑥 is an atomic element of 𝑉0).

Hence Flat
(
SHT(1) ) = (𝑉0, 𝐸), which is the same as the hypergraph 𝐻 = (𝑉0, 𝐸). Thus

hd
(
Flat(SHT(1) )

)
= hd(𝐻).

On the other hand, it is a direct consequence of the definitions (see, e.g., hypertree-depth in classical sense vs.
1-SuperHypertree-depth) that shd(1) (SHT(1) ) = hd(𝐻). Consequently,

hd(𝐻) = hd
(
Flat(SHT(1) )

)
≤ shd(1)(SHT(1) ) = hd(𝐻).

Since the middle term is squeezed between two equal quantities (hd(𝐻) on both sides), all three are equal. Hence
the left inequality is indeed an equality, confirming hd(𝐻) = shd(1) (SHT(1) ). This is exactly Theorem 2.5
restated in the flattening framework. □

Corollary 2.14 (Translating n-SuperDecompositions to Classical Decompositions). Any decomposition forest
for an n-SuperHyperGraph SHT(𝑛) of height 𝑑 induces a classical hypertree-decomposition of the flattened
hypergraph 𝐻flat = Flat

(
SHT(𝑛) ) of height at most 𝑑. Hence one may regard an n-SuperHypertree-depth

decomposition as a refinement of a standard hypertree-depth decomposition on the flattened structure.

Proof. Let SHT(𝑛) = (𝑉, 𝐸) ⊆ P𝑛 (𝑉0) be any n-SuperHyperGraph, and let (𝐹,𝐶) be a decomposition forest
of height 𝑑 as per the n-SuperHypertree-depth definition. That is, 𝐹 is a rooted forest with height(𝐹) = 𝑑, and
𝐶 : 𝑉 (𝐹) → 𝐸 satisfies:
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1. Coverage of n-supervertices in 𝑉 .

2. Comparable containment for n-superedges in 𝐸 .

3. Intersection descent property involving least common ancestors.

Recall that we have defined Flat
(
SHT(𝑛) ) = (

𝑉0, 𝐸
∗) where 𝐸∗ = {Flat(𝑒) | 𝑒 ∈ 𝐸}. We construct a classical

hypertree-decomposition
(
𝐹,𝐶

)
for the hypergraph

(
𝑉0, 𝐸

∗) by setting, for each node 𝑢 ∈ 𝑉 (𝐹),

𝐶 (𝑢) = Flat
(
𝐶 (𝑢)

)
⊆ 𝑉0.

We then verify the three classical hypertree-depth conditions:

1. Coverage of atomic vertices in 𝑉0. If some 𝑣 ∈ 𝑉0 appears in a flattened edge Flat(𝑒) ⊆ 𝑉0, then by
the n-superedge containment property, 𝑒 ⊆ 𝐶 (𝑠) ∪ 𝐶 (𝑡) for some ≤𝐹-comparable 𝑠, 𝑡 ∈ 𝑉 (𝐹). Hence
𝑣 ∈ Flat(𝐶 (𝑠)) ∪ Flat(𝐶 (𝑡)) because flattening a union is the union of the flattenings. Thus every 𝑣 in
the hypergraph’s edge set is included in at least one 𝐶 (𝑢). Therefore all “relevant” vertices of

(
𝑉0, 𝐸

∗)
are covered.

2. Comparable containment for flattened edges: Flat(𝑒) ⊆ 𝐶 (𝑠) ∪ 𝐶 (𝑡) for some ≤𝐹-comparable 𝑠, 𝑡.
Indeed, if 𝑒 ⊆ 𝐶 (𝑠) ∪ 𝐶 (𝑡) in the original decomposition, then flattening yields

Flat(𝑒) ⊆ Flat
(
𝐶 (𝑠) ∪ 𝐶 (𝑡)

)
= Flat(𝐶 (𝑠)) ∪ Flat(𝐶 (𝑡)) = 𝐶 (𝑠) ∪ 𝐶 (𝑡).

3. Intersection descent: If 𝐶 (𝑢1) ∩𝐶 (𝑢2) ≠ ∅, then some atomic vertex 𝑣 ∈ 𝑉0 belongs to both Flat(𝐶 (𝑢1))
and Flat(𝐶 (𝑢2)). By the intersection descent property in the n-Super setting, 𝐶 (𝑢1) ∩ 𝐶 (𝑢2) ⊆⋃

𝑧∈↓(𝑢1∧𝑢2 ) 𝐶 (𝑧). Flattening preserves unions and intersections in an inclusion sense:

Flat
(
𝐶 (𝑢1) ∩ 𝐶 (𝑢2)

)
⊆ Flat

( ⋃
𝑧∈↓(𝑢1∧𝑢2 )

𝐶 (𝑧)
)
=

⋃
𝑧∈↓(𝑢1∧𝑢2 )

Flat(𝐶 (𝑧)).

Hence any 𝑣 ∈ 𝐶 (𝑢1) ∩ 𝐶 (𝑢2) also appears in some 𝐶 (𝑧) with 𝑧 ∈↓ (𝑢1 ∧ 𝑢2). This is precisely the
classical LCA path condition for hypertree-depth.

( )
Therefore 𝐶  is a valid labeling for a classical hypertree-decomposition of the hypergraph Flat SHT(𝑛) . 
The forest 𝐹 has height 𝑑, so the resulting decomposition has height at most 𝑑. We conclude that each 
n-SuperHypertree-depth decomposition naturally “translates” into a classical decomposition of the flattened 
hypergraph. In this sense, the n-SuperHypertree-depth decomposition can be considered a refinement or a 
more structured version of the classical one. □
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[3] M Amin Bahmanian and Mateja Šajna. Hypergraphs: connection and separation. arXiv preprint arXiv:1504.04274, 2015.

[4] Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.

[5] Y. V. M. Cepeda, M. A. R. Guevara, E. J. J. Mogro, and R. P. Tizano. Impact of irrigation water technification on seven directories
of the san juan-patoa river using plithogenic 𝑛-superhypergraphs based on environmental indicators in the canton of pujili, 2021.
Neutrosophic Sets and Systems, 74:46–56, 2024.

[6] Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-depth of graphs. European Journal of Combina-
torics, 90:103186, 2020.

[7] Reinhard Diestel. Graduate texts in mathematics: Graph theory.

[8] Reinhard Diestel. Graph theory 3rd ed. Graduate texts in mathematics, 173(33):12, 2005.

[9] Reinhard Diestel. Graph theory. Springer (print edition); Reinhard Diestel (eBooks), 2024.
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Chapter 2
Obstruction for Hypertree width and Superhypertree width

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Graph characteristics are frequently studied using various parameters, with ongoing research aimed at uncov-
ering deeper insights into these aspects. A hypergraph, which generalizes the concept of a conventional graph,
provides an abstract framework to extend graph theory into more complex domains [42]. In this paper, we
investigate the role of ultrafilters as obstructions for determining the value of hypertree-width. Ultrafilters, a
fundamental concept in mathematics, have wide-ranging applications across diverse mathematical fields. Fur-
thermore, we examine the concept of superhypertree-width, which extends the notion of tree-width using the
recursive framework of superhypergraphs. This exploration contributes to understanding the structural and
computational properties of superhypergraphs.

Keywords: Hypertree width; Superhypertree width; Tree-width; Bramble

1 Introduction

1.1 Graph Width Parameters

A graph is a mathematical structure of vertices connected by edges, representing relationships or connections
[17]. Graph characteristics are extensively studied using various parameters, with a significant focus on width-
related measures due to their theoretical and practical importance. Among these, graph width parameters
such as tree-width [61–63], cut-width [46, 52], clique-width [14], modular-width [1], tree-cut-width [30, 54],
boolean-width [2,70], branch-width [22,33,59], rank-width [50,57,58], and path-width [51,69] play a crucial
role in understanding graph structure. These parameters not only provide insights into the ”tree-likeness” or
complexity of a graph but also have significant implications for algorithmic efficiency and practical problem-
solving. As a result, the study of graph width parameters remains an active area of research, with ongoing
efforts to uncover their influence on computational strategies and real-world applications.

When analyzingwidth parameters, it is common to study obstructions that influence their values, such as tangles
[21,60,63], ultrafilters [22], and brambles [7,49]. These obstructions are also fundamental in advancing graph
algorithms and their applications in game theory [34, 59, 63].

1.2 Hypergraph and SuperHyperGraph

A hypergraph is a generalization of the conventional graph, providing an abstract framework that extends the
concepts of graph theory [4,10,42]. Hypergraphs have found numerous applications in various fields, including
machine learning and network analysis [11, 31, 48, 55]. In practical applications, evaluating how closely a
graph approximates a tree structure is often crucial. This need has driven extensive research into parameters
such as Hypertree-width [3, 38, 39, 56, 71] and Hyperpath-width, both of which quantify the tree-likeness of
hypergraphs.

More recently, the concept of a SuperHyperGraph has been introduced as a further generalization of hy-
pergraphs, incorporating recursive structures and offering a richer framework for theoretical and applied re-
search. This concept has sparked significant academic interest, similar to the enthusiasm surrounding hyper-
graphs [24, 25, 28, 29, 43, 44, 65, 66, 68]. Additionally, related ideas such as SuperHyperAlgebra have been
proposed to further explore this extended framework [67].
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1.3 Our Contribution

In this paper, we investigate the role of ultrafilters as obstructions to determining the value of hypertree-width.
Ultrafilters, a fundamental concept in mathematical theory, have profound applications across various mathe-
matical disciplines [9, 13, 22, 37].

Furthermore, we introduce the concept of SuperHypertree-width, an extension aimed at enhancing the under-
standing of SuperHyperGraph structures. This concept is closely related to similar ideas explored in studies
such as [24] on SuperHypertree-width. In addition, we examine potential obstructions to SuperHypertree-
width, including concepts like SuperHypertangles and SuperHyperBrambles. This new framework is expected
to offer deeper insights into the structural properties of SuperHyperGraphs. Ultimately, our goal is to bridge
theoretical developments in hypergraph theory with practical applications, facilitating their implementation in
real-world scenarios.

2 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

2.1 Basic Definition of Graph Theory

This section presents the fundamental definitions of graph theory. In this paper, we focus exclusively on undi-
rected, finite, and simple graphs. For additional background and comprehensive explanations, readers are
encouraged to refer to lecture notes and surveys such as [15–17].

Definition 2.1 (Graph). [17] A graph � is a mathematical structure composed of a set of vertices + (�) and
a set of edges � (�) that connect pairs of vertices, representing relationships or connections between them.
Formally, a graph is defined as � = (+, �), where + is the vertex set and � is the edge set.

Definition 2.2 (Subgraph). [17] Let � = (+, �) be a graph. A subgraph � = (+� , �� ) of � is a graph such
that:

• +� ⊆ + , i.e., the vertex set of � is a subset of the vertex set of �.

• �� ⊆ � , i.e., the edge set of � is a subset of the edge set of �.

• Each edge in �� connects vertices in +� .

Definition 2.3 (Path). [17] A path is a graph % = (+, �) where + = {E1, E2, . . . , E:} and � = {{E8 , E8+1} |
1 ≤ 8 < :}. Each vertex is distinct, and edges form a simple sequence connecting E1 to E: .

Definition 2.4 (Tree). [17] A tree is a connected, acyclic graph ) = (+, �). A tree with = vertices has = − 1
edges.

2.2 Hypergraph

In this subsection, we elucidate the fundamental concepts of hypergraphs. For an in-depth exploration of hy-
pergraphs, including their applications and an overview, please refer to [4, 10, 20, 32].

Definition 2.5 (Hypergraph [10]). A hypergraph is a pair � = (+ (�), � (�)), where:

• + (�) is a nonempty set of vertices.

• � (�) is a set of subsets of + (�), called the hyperedges of �.

In this paper, we consider only finite hypergraphs.
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Definition 2.6 (Induced Subhypergraph [10]). For a hypergraph � = (+ (�), � (�)) and a subset - ⊆ + (�),
the subhypergraph induced by - is defined as:

� [-] =
(
-, {4 ∩ - | 4 ∈ � (�)}

)
.

The hypergraph obtained by removing - from � is denoted as:

� \ - := � [+ (�) \ -] .

Definition 2.7 (Separation in a Hypergraph). Let � = (+ (�), � (�)) be a hypergraph. A separation of � is a
pair (�, �) of subhypergraphs such that:

• � = � [+�] and � = � [+�], where +�, +� ⊆ + (�) are subsets of the vertex set + (�).

• +� ∪+� = + (�), meaning that the vertex sets of � and � together cover all vertices of �.

• +� ∩ +�, called the separator, satisfies � (�) ∩ � (�) = ∅, ensuring that no hyperedge in � is shared
between � and �.

The order of the separation (�, �) is defined as the size of the separator:

|+� ∩+� |.

2.3 Hyperbramble and Hypertangle

Next, we will explain Hypertree-width. Hypertree-width is the hypergraph counterpart of Graph Tree-width,
which was defined in the 2000s [3,38,39,56,71]. Although there are several variations of Hypertree-width, they
will not be covered in this discussion. The range of Hypertree-width values can be determined using concepts
like Hyperbrambles and Hypertangles [3].

Definition 2.8 (Hypertree-width). [3] Let � = (+ (�), � (�)) be a hypergraph, where + (�) is the set of
vertices and � (�) is the set of hyperedges. A tree decomposition of � is a tuple (), (�C )C∈+ () ) ), where:

• ) = (+ ()), � ())) is a tree.

• (�C )C∈+ () ) is a family of subsets of + (�), called bags, such that:

1. For every hyperedge 4 ∈ � (�), there exists a node C ∈ + ()) such that 4 ⊆ �C .
2. For every vertex E ∈ + (�), the set {C ∈ + ()) | E ∈ �C } induces a connected subtree of ) .

The width of a tree decomposition (), (�C )C∈+ () ) ) is defined as:

width(), (�C )C∈+ () ) ) = max
C∈+ () )

( |�C | − 1) .

The hypertree-width of �, denoted by tw(�), is the minimum width over all possible tree decompositions of
�.

Definition 2.9 (Hyperbramble on a Hypergraph). [3] Let � = (+ (�), � (�)) be a hypergraph. A Hyperbram-
ble of hyperorder : + 1 is a set B of connected subsets of + (�) satisfying the following conditions:

(HB0) Any two subsets -1, -2 ∈ B touch, meaning -1 ∩ -2 ≠ ∅ or there exists a hyperedge 4 ∈ � (�) such that
4 ∩ -1 ≠ ∅ and 4 ∩ -2 ≠ ∅.

(HB1) The hyperorder ofB is defined as the smallest integer : such that there exists a set ( ⊆ � (�) with |( | = :

and ( ∩ - ≠ ∅ for all - ∈ B.

Definition 2.10 (Hypertangle in a Hypergraph, adapted from [3]). Let � = (+ (�), � (�)) be a hypergraph. A
Hypertangle of hyperorder : + 1 is a hyperbramble T in � satisfying the following additional condition:
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(HT0) For any three subsets -1, -2, -3 ∈ T , either

-1 ∩ -2 ∩ -3 ≠ ∅

or there exists a hyperedge 4 ∈ � (�) such that

4 ∩ -8 ≠ ∅ for all 8 ∈ {1, 2, 3}.

(HT1) The hyperorder of T is the smallest integer : for which there exists a set ( ⊆ � (�) with |( | = : and

( ∩ - ≠ ∅ for all - ∈ T .

Here, we perform some transformations on the hypertangle. This is done to make it more closely resemble the
Tangle of general graphs as defined in [63].

Lemma 2.11. Let � = (+ (�), � (�)) be a hypergraph, and let T be a hypertangle of order : + 1. Suppose
that

(HT0’) For any three sets -1, -2, -3 ∈ T , either -1 ∪ -2 ∪ -3 ≠ + (�)

or there is a hyperedge 4 ∈ � (�) with 4 ∩ -8 ≠ ∅ for each 8 = 1, 2, 3.

Then T avoids the situation -1 ∪ -2 ∪ -3 = + (�) without an appropriate hyperedge intersecting all three sets.

Proof. Assume, for contradiction, that -1, -2, -3 ∈ T and -1 ∪ -2 ∪ -3 = + (�), yet there is no hyperedge
4 ∈ � (�) that intersects -1, -2, and -3 simultaneously.

By the definition of a hypertangle (in particular the usual ‘‘triple-intersection or hyperedge’’ property), one
would expect that either -1∩-2∩-3 ≠ ∅ or a single hyperedgemeets all three sets. Here, however, -1∪-2∪-3 =

+ (�) implies -1 ∩ -2 ∩ -3 = ∅. Thus, the only way for T to satisfy the hypertangle condition is to have some
4 ∈ � (�) intersecting all three sets, which contradicts our assumption. Hence no such triple (-1, -2, -3) can
exist if T is truly a hypertangle of order : + 1. �

Lemma 2.12. Let � = (+ (�), � (�)) be a hypergraph, and let T be a hypertangle of order : + 1. Then for
every separation (�, �) ∈ T , the order |� ∩ �| is strictly less than : .

Proof. This follows immediately from the hypertangle’s definition of order : + 1. If |� ∩ �| ≥ : , then the
separation (�, �) would not be valid for a hypertangle of order : + 1. Hence all separations in T have order
(i.e. |� ∩ �|) less than : . �

Lemma 2.13. Let � = (+ (�), � (�)) be a hypergraph, and let T be a hypertangle of order : + 1. Then:

(HT3) For every separation (�, �) of � with order < :, exactly one of (�, �) or (�, �) lies in T .

Proof. Consider a separation (�, �) of � such that |� ∩ �| < : . Suppose neither (�, �) nor (�, �) is in T .
That would mean � ∉ T and � ∉ T . Take

-1 = �, -2 = �, -3 = � ∪ �.

Since � and � typically separate the entire vertex set (except their intersection), we get -1 ∪ -2 ∪ -3 = � ∪
� = + (�) in a connected sense. By condition (HT0’) (Lemma 2.11), there must be a hyperedge 4 ∈ � (�)
intersecting all three -8 , which is impossible because � and � partition the vertex set except for �∩ �. Indeed,
a single hyperedge cannot simultaneously meet � and � if �∩ � ≠ ∅ but �∩ � is small, unless it is accounted
for by (�, �) ∈ T or (�, �) ∈ T .

Thus, our assumption leads to a contradiction. Hence for each separation of order < : , exactly one orientation
belongs to T . �

Lemma 2.14. Let � = (+ (�), � (�)) be a hypergraph, and let T be a hypertangle of order : + 1. Then:

(HT4) If (�2, �2) ∈ T and �1 ⊆ �2, with (�1, �1) a separation of order < :, then (�1, �1) ∈ T .
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Proof. Suppose (�2, �2) ∈ T and �1 ⊆ �2, where (�1, �1) is a separation of order < : . Suppose for
contradiction that (�1, �1) ∉ T . By Lemma 2.13 (HT3 condition), if (�1, �1) ∉ T , then (�1, �1) ∈ T .

Consider the sets
-1 = �1, -2 = �2, -3 = �1 ∪ �2.

If -1 ∪ -2 ∪ -3 = + (�), condition (HT0’) (Lemma 2.11) would require a hyperedge 4 intersecting �1, �2,
and �1 ∪ �2, which is again not feasible given �1 ⊆ �2 and �2 ⊆ �1. This leads to a contradiction that forces
(�1, �1) ∈ T . Therefore, whenever �1 ⊆ �2 and |�1 ∩ �1 | < : , the pair (�1, �1) must belong to T . �

Theorem 2.15 (Hypertangle of Hyperorder : + 1). Let � = (+ (�), � (�)) be a hypergraph. A Hypertangle
of hyperorder : + 1 is a hyperbramble T in � that satisfies:

(HT0’) Triple-set Condition: For any -1, -2, -3 ∈ T , either

-1 ∪ -2 ∪ -3 ≠ + (�) or there is a hyperedge 4 ∈ � (�) with 4 ∩ -8 ≠ ∅ for all 8 = 1, 2, 3.

(HT1) Definition of Hyperorder: The hyperorder of T is the smallest integer : for which there is a set ( ⊆ � (�)
of size : such that

( ∩ - ≠ ∅ for every - ∈ T .

(HT2) Order of Separations in T : For each separation (�, �) ∈ T , we have |� ∩ �| < : .

(HT3) Orientation Completeness: For every separation (�, �) of � with |�∩ �| < : , exactly one of (�, �) or
(�, �) is contained in T .

(HT4) Containment Monotonicity in T : If (�2, �2) ∈ T and �1 ⊆ �2 for some separation (�1, �1) of order
< : , then (�1, �1) ∈ T .

Such a family T is said to form a Hypertangle of hyperorder : + 1. In essence, it extends the idea of tangles
in graphs to hypergraphs, capturing high-level connectivity constraints and serving as an obstruction to small
hypertree-width.

Proof. The lemmas above establish each of these conditions:

• (HT0’) is proved in Lemma 2.11, which shows that no three sets can cover+ (�) entirely without a single
hyperedge intersecting them all.

• (HT2) is shown in Lemma 2.12, ensuring separations in T have order below : .

• (HT3) is established by Lemma 2.13, guaranteeing exactly one orientation of each low-order separation
is chosen.

• (HT4) appears in Lemma 2.14, demonstrating that containment of one side of a separation in another
implies the smaller separation also belongs to T .

(HT1) is part of the fundamental definition of the hyperorder of T ; it designates : as the minimal number
of edges needed to block all sets in T . Together, these properties define a Hypertangle of hyperorder : + 1,
completing the proof. �

3 Result of This Paper

This section presents the main results of this paper.
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3.1 HyperUltrafilter and Hypertangle

We consider about HyperUltrafilter analogeous to Ultrafilter of set theory. H-Ultrafilter on a Hypergraph is
following.

Definition 3.1 (H-Ultrafilter on a Hypergraph). Let � = (+ (�), � (�)) be a hypergraph. An H-Ultrafilter of
order : is a family F of separations of � satisfying the following:

(H0) Bounded Order: Every separation (�, �) ∈ F has order |�∩�| < : . (The order of a separation (�, �)
is the cardinality |� ∩ �|.)

(H1) Completeness: For any separation (�, �) of � with |�∩�| < : , exactly one of (�, �) or (�, �) belongs
to F . This property ensures the ultrafilter decides a unique orientation for every low-order separation.

(H2) Containment Monotonicity: If (�1, �1) ∈ F and (�2, �2) is a separation with |�2 ∩ �2 | < : such that
�1 ⊆ �2, then (�2, �2) must also lie in F . This prevents ‘‘losing’’ a separation by expanding one side.

(H3) Intersection Stability: If (�1, �1) ∈ F and (�2, �2) ∈ F , and | (�1 ∩ �2) ∩ (�1 ∪ �2) | < : , then

(�1 ∩ �2, �1 ∪ �2) ∈ F .

This condition ensures consistency when combining or intersecting separations chosen by F .

(H4) Nontriviality: If + (�) = + (�), then (�, �) ∈ F . In other words, the entire vertex set cannot be
separated off trivially, preserving a nonempty side in any chosen separation.

Example 3.2 (Simple H-Ultrafilter). Consider a hypergraph � with vertex set+ (�) = {1, 2, 3} and hyperedges
� (�) = {{1, 2}, {2, 3}}. Let : = 2.

A separation (�, �) of � can be viewed as two subhypergraphs � = � [+�] and � = � [+�] such that |+� ∩
+� | < : . For instance,

(�, �) = (� [{1, 2}], � [{2, 3}])
has separator {2}. Since |{2}| = 1 < 2, the order is 1.

Define
F =

{
(� [{1, 2}], � [{2, 3}]), (� [{1}], � [{1, 2, 3}])

}
.

One can check that F satisfies (H0)–(H4):

• (H0) Both separations have order 1.

• (H1) For any separation with order < 2, exactly one orientation is in F .

• (H2) Expanding a set on one side retains membership in F if containment is preserved.

• (H3) Intersections of chosen separations remain in F .

• (H4) No side is the entire vertex set in a trivial manner, ensuring nontriviality.

Hence, F forms an H-Ultrafilter of order 2 in this simple hypergraph.

The complementary equivalence between Hypertangles and HyperUltrafilters is demonstrated in the following
theorem. This equivalence shows that, like Hypertangles, HyperUltrafilters can serve as obstructions to deter-
mining Hypertree-width. It is fascinating to see howUltrafilters, a concept from set theory that seems unrelated
at first glance, can be extended to hypergraphs and become a crucial obstruction.

Theorem 3.3 (Equivalence of Hypertangles and H-Ultrafilters). Let � = (+ (�), � (�)) be a hypergraph. A
set T is a hypertangle of hyperorder : + 1 in � if and only if

F =
{
(-,. )

�� (., -) ∈ T
}

is an H-ultrafilter of order : + 1 in �.
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Proof. We prove the two directions separately, showing how each family induces the other while satisfying all
the respective conditions.

Forward Direction: Assume T is a hypertangle of hyperorder : + 1. We claim F = { (-,. ) | (., -) ∈ T } is
an H-ultrafilter of order : + 1. We verify conditions (H0)–(H4) from Definition 3.1:

(H0) Bounded Order: If (-,. ) ∈ F , then (., -) ∈ T . Because T is a hypertangle of hyperorder : + 1, the
separation (., -) has order < : + 1. Hence (-,. ) also has order < : + 1. Thus, (H0) holds with : + 1 replaced
by : in the separation order.

(H1) Completeness: Let (-,. ) be a separation of order < :+1. By the hypertangle property, for any separation
with order below : + 1, exactly one orientation belongs to T . Hence either (-,. ) ∈ T or (., -) ∈ T , but not
both. Thus, exactly one of (-,. ) or (., -) lies in T . Translating to F , we see exactly one of (-,. ) or (., -)
lies in F . This fulfills (H1).

(H2) Containment Monotonicity: Suppose (-1, .1) ∈ F , so (.1, -1) ∈ T . Let (-2, .2) be another separation
with order < : + 1 and -1 ⊆ -2. In the hypertangle T , expanding -1 to -2 shrinks .1 to .2. By the analogous
containment property in hypertangles, (.2, -2) ∈ T . Hence (-2, .2) ∈ F . Condition (H2) is satisfied.

(H3) Intersection Stability: If (-1, .1), (-2, .2) ∈ F , then (.1, -1), (.2, -2) ∈ T . For the intersection or
union separation (-1 ∩ -2, .1 ∪ .2), the hypertangle property ensures that either that separation or its flip
(.1 ∪ .2, -1 ∩ -2) appears in T . If (.1 ∪ .2, -1 ∩ -2) ∉ T , then (-1 ∩ -2, .1 ∪ .2) ∈ T . Translating to F ,
we get (-1 ∩ -2, .1 ∪ .2) ∈ F . Thus, F meets (H3).

(H4) Nontriviality: Hypertangles by definition exclude trivial separations that cover the entire vertex set with
one side. This ensures that in F , we cannot have a separation (�, �) with � = + (�) or � = + (�) unless
it is forced by the hypertangle’s configuration. Condition (H4) is therefore inherited from the hypertangle
nontriviality constraints.

Hence F is a valid H-ultrafilter of order : + 1.

Backward Direction: Suppose F is an H-ultrafilter of order : + 1. Define T = {(., -) | (-,. ) ∈ F }. We
must show T is a hypertangle of hyperorder : + 1. We confirm the hypertangle properties (HT0)–(HT1) and
any additional requirements:

(HT0) Triple Intersection: Consider any three subsets -1, -2, -3 ∈ T . By the definition ofT , (-1, -2, -3) arise
from flips of separations in F . The condition that either -1 ∩ -2 ∩ -3 ≠ ∅ or there is a hyperedge intersecting
all three is precisely the guarantee that F cannot separate them in a trivial way. If no hyperedge intersects all
three, we would form a contradictory separation in F that fails nontriviality. Thus (HT0) is satisfied.

(HT1) Hyperorder: Since F is an H-ultrafilter of order : + 1, it picks one orientation for every separation of
order < : + 1. This implies that T , being the reversed family, also has hyperorder : + 1, ensuring that : is the
smallest integer where a set ( ⊆ � (�) of size : meets every set in T . Hence (HT1) holds.

By paralleling the arguments for (HT2)–(HT4) in the forward direction (adjusted for reversing each separation),
one verifies that all hypertangle conditions are met. Consequently, T is indeed a hypertangle of hyperorder
: + 1. �

4 Additional Result: SuperHyperTree-width and SuperHyperPath-width

This section aims to contribute to advancing research in hypergraph theory and superhypergraph theory. Specif-
ically, we explore SuperHyperTree-width and SuperHyperPath-width, along with obstructions—concepts that
assist in determining their values.
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4.1 SuperHyperTree-width

We intend to explore the concept of a SuperHyperGraph in the future. This SuperHyperGraph is a generalization
of the traditional hypergraph and has been recently proposed [23, 26, 29, 43, 44, 65, 66, 68]. Like hypergraphs,
it has attracted significant research interest. A brief definition is provided below.

Definition 4.1 (Base Set). A base set ( is the foundational set fromwhich complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

( = {G | G is an element within a specified domain}.

All elements in constructs like P(() or P= (() originate from the elements of (.

Definition 4.2 (=-th Powerset). (cf. [25, 27, 64, 68])

The =-th powerset of a set �, denoted %= (�), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

%1 (�) = %(�), %=+1 (�) = %(%= (�)), for = ≥ 1.

Similarly, the =-th non-empty powerset, denoted %∗
= (�), is defined recursively as:

%∗
1 (�) = %∗ (�), %∗

=+1 (�) = %∗ (%∗
= (�)).

Here, %∗ (�) represents the powerset of � with the empty set removed.

Definition 4.3 (n-SuperHyperGraph [65, 66]). Let +0 be a finite base set of vertices. For each integer : ≥ 0,
define

P0 (+0) = +0, P:+1 (+0) = P
(
P: (+0)

)
,

where P(·) denotes the power set. An n-SuperHyperGraph is a pair

SHT(=) = (+, �),

such that
+ ⊆ P= (+0) and � ⊆ P= (+0).

Each element of + is called an n-supervertex, and each element of � is called an n-superedge.

Remark 4.4. When = = 1, an n-SuperHyperGraph coincides with a classical hypergraph: each vertex and edge
is simply a subset of +0. For = ≥ 2, the concept allows nested structures (e.g., sets of subsets), providing a
broader and more flexible modeling framework than standard hypergraphs.

Definition 4.5 (n-SuperHyperPath). (cf. [65, 66]) Let SHT(=) = (+, �) be an n-SuperHyperGraph. An n-
SuperHyperPath is a special arrangement of its n-superedges �1, �2, . . . , �< ∈ � such that:

1. For every 1 ≤ 8 < <, �8 ∩ �8+1 ≠ ∅. That is, consecutive n-superedges share at least one n-supervertex.

2. For any 1 ≤ 8 < 9 ≤ <, if G ∈ �8 ∩ � 9 , then G ∈ �: for all 8 ≤ : ≤ 9 . In other words, if an n-supervertex
appears in two edges �8 and � 9 , it must also appear in every intermediate edge.

These conditions ensure that the sequence �1, �2, . . . , �< forms a ‘‘path-like’’ structure in the n-SuperHyperGraph,
analogous to a standard path in a graph or hypergraph.

Definition 4.6 (n-SuperHyperTree). (cf. [35,65,66]) An n-SuperHyperTree is an n-SuperHyperGraphSHT(=) =
(+, �) with the following properties:

1. Host Tree Existence: There exists a (classical) tree ) = (+, �) ) on the same set of vertices + . We call )
the host tree.

2. Connected Subtree Condition: Each n-superedge 4 ∈ � corresponds to a connected subtree in ) . Con-
cretely, if 4 is viewed as a subset (or set of subsets) of+ , then all vertices in 4 lie in a connected component
of ) . This applies even when 4 is a ‘‘super-edge’’ connecting more than two vertices in nested ways.
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3. Acyclicity: Because) is a tree (i.e., acyclic), the n-SuperHyperTree SHT(=) inherits this acyclic character,
disallowing any cycle-like superedge configurations.

Key Properties of an n-SuperHyperTree:

• It is connected, in that any two vertices can be linked via a sequence of n-superedges forming an unbroken
chain in the host tree.

• It has no ‘‘super-cycles,’’ preserving acyclicity in a higher-dimensional sense.

• It generalizes the notion of a tree to accommodate n-supervertices and n-superedges, yet retains a funda-
mentally tree-like structure.

We now extend the concept of treewidth from classical graphs to n-SuperHyperGraphs. The idea is to create a
tree decomposition capable of handling n-superedges via carefully defined bags and guards.

Definition 4.7 (n-SuperHyperTreeDecomposition andWidth). [24,28] Let SHT(=) = (+, �) be an n-SuperHyperGraph.
An n-SuperHyperTree decomposition of SHT(=) is a triple (),B, C) where:

• ) = (+) , �) ) is a (classical) tree.

• B = {�C | C ∈ +) } is a family of subsets of + , called bags, associated with each node C ∈ +) . These bags
must satisfy:

1. Coverage of n-SuperEdges: For every n-superedge 4 ∈ � , there exists at least one node C ∈ +) such
that 4 ⊆ �C .

2. Vertex Connectivity: For each vertex E ∈ + , the set of all nodes { C ∈ +) | E ∈ �C } forms a connected
subtree of ) .

• C = {�C | C ∈ +) } is a family of subsets of � , called guards, such that:

1. Guard Condition: For each C ∈ +) , we have �C ⊆ ⋃
�C , where

⋃
�C := { E ∈ + | ∃4 ∈ �C , E ∈ 4}.

2. Local Subtree Condition: For each C ∈ +) , define )C as the subtree of ) rooted at C. Then(⋃
�C

)
∩

( ⋃
D∈+ ()C )

�D

)
⊆ �C .

In other words, any vertex that belongs both to the union of the guards at C and to the union of bags
in the subtree under C must already lie in �C .

The width of an n-SuperHyperTree decomposition (),B, C) is

width(),B, C) = max
C∈+)

|�C |.

The n-SuperHyperTree-width ofSHT(=) , denoted shw(=) (SHT(=) ), is theminimumwidth among all n-SuperHyperTree
decompositions of SHT(=) :

shw(=) (SHT(=) ) = min
(),B,C)

width(),B, C).

Remarks:

• If SHT(=) is essentially a tree-like structure (an n-SuperHyperTree), then its n-SuperHyperTree-width is
typically 1.

• In the classical (graph) case, = = 1, and the n-SuperHyperTree-width matches the standard treewidth of
a graph.
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• The concept of n-SuperHyperTree-width captures ‘‘tree-likeness’’ in higher-dimensional structures, ex-
tending well-known graph parameters to more intricate nested frameworks.

Remark 4.8 (n-SuperHyperPath decomposition). A similar concept, called an n-SuperHyperPath decomposi-
tion, can be defined by requiring ) to be a simple path rather than a general tree. In that context, the resulting
shw(=) can be viewed as an analogue of pathwidth for n-SuperHyperGraphs.

Theorem 4.9. Let SHT(=) = (+, �) be any =-SuperHyperGraph. Then its =-SuperHyperTree-width, denoted
by nSHT-width

(
SHT(=) ) , is at most its =-SuperHyperPath-width, denoted by nSHP-width

(
SHT(=) ) . Formally,

nSHT-width
(
SHT(=) ) ≤ nSHP-width

(
SHT(=) ) . (1)

Proof. We must show that for any n-SuperHyperGraph SHT(=) = (+, �), the minimum width of a valid n-
SuperHyperTree decomposition cannot exceed the minimum width of a valid n-SuperHyperPath decomposi-
tion.

Key observation: A path is a special type of tree in which each node has at most two neighbors. Therefore, any
legitimate n-SuperHyperPath decomposition

(
%, j% , _%

)
—where % is a path—can be regarded as a special

case of an n-SuperHyperTree decomposition, simply by viewing % itself as the underlying tree.

Construction: Let
(
%, j% , _%

)
be an optimal n-SuperHyperPath decomposition of SHT(=) . That is,

nSHP-width
(
SHT(=) ) = width

(
%, j% , _%

)
.

Because % is a path and hence a (linear) tree, the same bags and guards j% and_% form a valid n-SuperHyperTree
decomposition (with % serving as the tree). Therefore, the width of this tree-based decomposition is at most
the width of the path decomposition:

nSHT-width
(
SHT(=) ) ≤ width

(
%, j% , _%

)
= nSHP-width

(
SHT(=) ) .

Thus, the n-SuperHyperTree-width cannot exceed the n-SuperHyperPath-width, which completes the proof.
�

4.2 Obstruction for SuperHyperTree-width

We outline potential research directions on obstructions that influence large =-SuperHyperTree-width or =-
SuperHyperPath-width. In future work, we aim to generalize classical concepts such as linkedness, brambles,
and tangles to the =-SuperHyperGraph setting. These concepts are inspired by their counterparts in traditional
graph theory, namely linkedness [5, 6, 45], brambles [8, 12, 40, 49], and tangles [18, 19, 36, 41, 47, 53, 60], and
are adapted to the broader framework of =-SuperHyperGraphs.

Definition 4.10 (n-SuperHyperlinkedness). Let SHT(=) = (�, �) be an n-SuperHyperGraph, where � ⊆
P= (+0) is the set of n-supervertices, and � ⊆ P= (+0) is the set of n-superedges. A subset " ⊆ � is n-
superhyperlinked of order : + 1 if, for any subset ( ⊆ � with |( | < : + 1, the partial n-SuperHyperGraph
SHT(=) \ ( contains a connected component � ⊆ � that is "-big, meaning��{ 4 ∈ " | 4 ∩ � ≠ ∅}

�� >
|" |
2

.

The n-superhyperlinkedness of SHT(=) is the largest integer : for which SHT(=) admits an n-superhyperlinked
set of order : + 1. This concept generalizes classical hyperlinkedness from ordinary hypergraphs to the =-
dimensional superhyper framework.

Question 4.11. Does n-superhyperlinkedness control or bound the n-SuperHyperTree-width? Can very large
n-superhyperlinkedness imply a higher n-SuperHyperTree-width?

Definition 4.12 (n-SuperHyperBramble). LetSHT(=) = (�, �) be an n-SuperHyperGraph. An n-SuperHyperBramble
of order : + 1 is a collection B of connected sub-sets of � (n-supervertices) satisfying:
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(nSHB0) Any two distinct sets -1, -2 ∈ B touch, meaning -1 ∩ -2 ≠ ∅, or there exists an n-superedge 4 ∈ � such
that both 4 ∩ -1 ≠ ∅ and 4 ∩ -2 ≠ ∅.

(nSHB1) The n-superhyperorder of B is the smallest integer : for which there is a set ( ⊆ � with |( | = :

intersecting every - ∈ B. Formally, for each - ∈ B, ( ∩ - ≠ ∅.

Question 4.13. Does the existence of a high-order n-SuperHyperBramble inSHT(=) force large n-SuperHyperTree-
width or n-SuperHyperPath-width? In classical graph theory, brambles are well-known obstructions to small
treewidth. We conjecture an analogous phenomenon for n-SuperHyperGraphs.

Definition 4.14 (n-SuperHypertangle). LetSHT(=) = (�, �) be an n-SuperHyperGraph. An n-SuperHypertangle
of order : + 1 is an n-SuperHyperBramble T ⊆ 2� that further satisfies:

(nSHT0) For any three distinct sets -1, -2, -3 ∈ T , either -1 ∩ -2 ∩ -3 ≠ ∅ or there is some n-superedge 4 ∈ �

intersecting all three, i.e. 4 ∩ -8 ≠ ∅ for 8 = 1, 2, 3.

(nSHT1) The n-superhyperorder of T is again the smallest integer : such that there is a set ( ⊆ � with |( | = :

intersecting every set in T .

Question 4.15. Does a large n-SuperHypertangle necessarily indicate large n-SuperHyperTree-width? In clas-
sical theory, tangles are strong obstructions to treewidth. We suspect a similar role in the multi-level n-super
setting.
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Chapter 3
Superhypertree-Length and Superhypertree-Breadth in SuperHyperGraphs

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

A Hypergraph is a generalization of a graph where edges, known as hyperedges, can connect multiple vertices
simultaneously [8]. A SuperHyperGraph is a recursive extension of hypergraphs in which vertices and edges
can represent hierarchically nested subsets [62, 63]. This paper explores whether the graph parameters Tree-
length and Tree-breadth, well-known in graph theory, can be extended to Hypergraphs and SuperHyperGraphs.
Additionally, the relationships between these parameters and their graph counterparts are analyzed.

Keywords: Tree-length, Tree-Breadth, Superhypergraph, Hypergraph, Hypertree

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Hypergraph and SuperHyperGraph

A hypergraph is a generalized graph concept that extends traditional graph theory by introducing hyperedges,
which can connect multiple vertices instead of just pairs. This allows for modeling more complex relationships
among elements [5, 6, 8, 36–38]. Hypergraphs have found applications in various fields, including database
systems [44]. The fundamental definitions of graphs and hypergraphs are provided below. In this paper, we
consider undirected, finite, and simple graphs.

Definition 1.1 (Graph). [11] A graph 𝐺 is a mathematical structure consisting of a set of vertices 𝑉 (𝐺) and
a set of edges 𝐸 (𝐺) that connect pairs of vertices, representing relationships or connections between them.
Formally, a graph is defined as 𝐺 = (𝑉, 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set.

Definition 1.2 (Subgraph). [11] Let 𝐺 = (𝑉, 𝐸) be a graph. A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) of 𝐺 is a graph such
that:

• 𝑉𝐻 ⊆ 𝑉 , i.e., the vertex set of 𝐻 is a subset of the vertex set of 𝐺.

• 𝐸𝐻 ⊆ 𝐸 , i.e., the edge set of 𝐻 is a subset of the edge set of 𝐺.

• Each edge in 𝐸𝐻 connects vertices in 𝑉𝐻 .

Definition 1.3 (Hypergraph). [8] A hypergraph is a pair 𝐻 = (𝑉, 𝐸), where:

• 𝑉 is a set of vertices,

• 𝐸 is a set of hyperedges, each hyperedge 𝑒 ∈ 𝐸 being a subset of 𝑉 .

Equivalently, 𝐸 ⊆ P(𝑉), where P(𝑉) denotes the power set of 𝑉 .

Example 1.4 (Concrete Hypergraph). Let

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

be a set of four vertices. Suppose we define the hyperedges as:

𝐸 =
{
{𝑣1, 𝑣2, 𝑣3}, {𝑣2, 𝑣4}

}
.

Then 𝐻 = (𝑉, 𝐸) is a hypergraph with two hyperedges:
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• 𝑒1 = {𝑣1, 𝑣2, 𝑣3} connects three vertices simultaneously,

• 𝑒2 = {𝑣2, 𝑣4} connects a different subset of vertices.

Note that both {𝑣1, 𝑣2, 𝑣3} and {𝑣2, 𝑣4} are indeed subsets of𝑉 . This illustrates how hyperedges can incorporate
more than two vertices, unlike standard graphs.

A SuperHyperGraph is an extension of the concept of a hypergraph, recently defined and actively studied in the
literature [3, 9, 23, 25, 26, 40, 41, 48, 50, 51, 62–64]. It can be understood as a graph concept that incorporates
recursive structures into hypergraphs. A SuperHyperGraph possesses a repeated structure called the n-th
powerset, which is generated iteratively through the power set operation. The formal definition is provided
below.

Definition 1.5 (𝑛-th Powerset). (cf. [19, 20, 61, 65])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is constructed iteratively. Beginning with the standard powerset,
the process is defined as:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

In a similar manner, the 𝑛-th non-empty powerset, represented as 𝑃∗
𝑛 (𝐻), is recursively defined as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) refers to the powerset of 𝐻 excluding the empty set.

Example 1.6 (Constructing the 𝑛-th Powerset). Let 𝐻 = {𝑎, 𝑏} be a small base set.

Step 1: Compute the standard powerset 𝑃(𝐻):

𝑃(𝐻) = { ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}.

Hence 𝑃1 (𝐻) = 𝑃(𝐻) is
𝑃1 (𝐻) = {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}.

Step 2: Compute 𝑃2 (𝐻) = 𝑃(𝑃1 (𝐻)) by taking the powerset of the set above:

𝑃2 (𝐻) = P
(
{∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}

)
.

Each element of 𝑃2 (𝐻) is a subset of {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}. For instance, {∅, {𝑏}} is one such subset, and
{{𝑎}, {𝑎, 𝑏}} is another. In total, there are 24 = 16 subsets, so�� 𝑃2 (𝐻)

�� = 16.

Optional Higher Iterations: For 𝑛 ≥ 3, we continue iteratively:

𝑃𝑛+1 (𝐻) = 𝑃
(
𝑃𝑛 (𝐻)

)
.

Thus, one can construct 𝑃3 (𝐻), 𝑃4 (𝐻), etc. by repeatedly taking powersets of the previous stage.

Definition 1.7 (n-SuperHyperGraph). [62,63] Let𝑉0 be a finite base set of vertices, and for each 𝑘 ≥ 0, define
P𝑘 (𝑉0) as follows:

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
,

where P(·) denotes the power set. An n-SuperHyperGraph is a pair

SHT(𝑛) = (𝑉, 𝐸),

where
𝑉 ⊆ P𝑛 (𝑉0), 𝐸 ⊆ P𝑛 (𝑉0).

Each element of 𝑉 is called an n-supervertex, and each element of 𝐸 is called an n-superedge.
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Example 1.8 (Constructing an 𝑛-SuperHyperGraph). Let 𝑉0 = {𝑥, 𝑦} be a base set of vertices, and consider
𝑛 = 2 for concreteness. We have:

P0 (𝑉0) = 𝑉0 = {𝑥, 𝑦},
P1 (𝑉0) = P({𝑥, 𝑦}) = {∅, {𝑥}, {𝑦}, {𝑥, 𝑦}},

P2 (𝑉0) = P
(
P1 (𝑉0)

)
= P

(
{∅, {𝑥}, {𝑦}, {𝑥, 𝑦}}

)
,

which has 24 = 16 elements.

Forming a 2-SuperHyperGraph. Choose a subset of P2 (𝑉0) to be the 2-supervertices 𝑉 , and another subset to
be the 2-superedges 𝐸 . For instance, we might define:

𝑉 =
{
{ 𝑥 }, { 𝑦 }, { 𝑥, 𝑦 }

}
(each an element of P1 (𝑉0) ⊂ P2 (𝑉0)),

𝐸 =

{
{{𝑥}, {𝑦}}, {{𝑥}, {𝑥, 𝑦}}

}
⊆ P2 (𝑉0).

Then
SHT(2) = (𝑉, 𝐸)

is a valid 2-SuperHyperGraph:

• Each 2-supervertex belongs to P2 (𝑉0).

• Each 2-superedge is a subset of P2 (𝑉0) containing multiple 2-supervertices.

This construction can be extended to larger 𝑛 by choosing appropriate subsets of P𝑛 (𝑉0) to serve as 𝑉 (the
𝑛-supervertices) and 𝐸 (the 𝑛-superedges).

1.2 Tree-length and Tree-breadth

The tree-length of a graph is defined as the maximum shortest path distance between any two vertices within a
bag of a tree-decomposition [7, 10, 12, 13, 15]. The tree-breadth of a graph is defined as the minimum radius
required to cover each bag of a tree-decomposition from a central vertex [14, 16, 17, 46, 47]. The detailed
definitions of each parameter are provided below.

Definition 1.9 (Tree-width). [52–60] Let 𝐺 = (𝑉, 𝐸) be a graph. A tree-decomposition of 𝐺 is a pair
(𝑇, {𝑋𝑡 | 𝑡 ∈ 𝑉 (𝑇)}), where:

• 𝑇 = (𝑉 (𝑇), 𝐸 (𝑇)) is a tree,

• 𝑋𝑡 ⊆ 𝑉 for each 𝑡 ∈ 𝑉 (𝑇) (called bags),

such that:

1.
⋃

𝑡∈𝑉 (𝑇 ) 𝑋𝑡 = 𝑉 , i.e., every vertex of 𝐺 appears in at least one bag.

2. For every edge {𝑢, 𝑣} ∈ 𝐸 , there exists 𝑡 ∈ 𝑉 (𝑇) such that 𝑢, 𝑣 ∈ 𝑋𝑡 , ensuring edge coverage.

3. For all 𝑡1, 𝑡2, 𝑡3 ∈ 𝑉 (𝑇), if 𝑡2 lies on the path between 𝑡1 and 𝑡3 in 𝑇 , then 𝑋𝑡1 ∩ 𝑋𝑡3 ⊆ 𝑋𝑡2 , ensuring
connectivity.

The width of a tree-decomposition is defined as:

width(𝑇, {𝑋𝑡 }) = max
𝑡∈𝑉 (𝑇 )

(
|𝑋𝑡 | − 1

)
,

where |𝑋𝑡 | is the number of vertices in the bag 𝑋𝑡 . The tree-width of 𝐺, denoted tw(𝐺), is the minimum width
over all possible tree-decompositions of 𝐺:

tw(𝐺) = min
(𝑇,{𝑋𝑡 })

width(𝑇, {𝑋𝑡 }).
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Definition 1.10 (Tree-length). [12,15,59] A tree-decomposition of a graph 𝐺 = (𝑉, 𝐸) is a pair𝑇 (𝐺) = ({𝑋𝑖 |
𝑖 ∈ 𝐼}, 𝑇), where {𝑋𝑖 | 𝑖 ∈ 𝐼} is a collection of subsets of 𝑉 (called bags), and 𝑇 = (𝐼, 𝐹) is a tree such that:

•
⋃

𝑖∈𝐼 𝑋𝑖 = 𝑉 ,

• For each edge 𝑢𝑣 ∈ 𝐸 , there exists 𝑖 ∈ 𝐼 such that {𝑢, 𝑣} ⊆ 𝑋𝑖 ,

• For all 𝑖, 𝑗 , 𝑘 ∈ 𝐼, if 𝑗 lies on the path between 𝑖 and 𝑘 in 𝑇 , then 𝑋𝑖 ∩ 𝑋𝑘 ⊆ 𝑋 𝑗 .

The length of a tree-decomposition 𝑇 (𝐺) is defined as:

𝜆 := max
𝑖∈𝐼

max
𝑢,𝑣∈𝑋𝑖

𝑑𝐺 (𝑢, 𝑣),

where 𝑑𝐺 (𝑢, 𝑣) is the shortest path distance between 𝑢 and 𝑣 in 𝐺. The tree-length of 𝐺, denoted by tl(𝐺), is
the minimum 𝜆 over all possible tree-decompositions of 𝐺.

Example 1.11 (Tree-length). Consider the path graph 𝑃4 with vertex set 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and edge set
𝐸 = {{𝑣1, 𝑣2}, {𝑣2, 𝑣3}, {𝑣3, 𝑣4}}. A possible tree-decomposition 𝑇 (𝑃4) is given by:

𝑋1 = {𝑣1, 𝑣2}, 𝑋2 = {𝑣2, 𝑣3}, 𝑋3 = {𝑣3, 𝑣4},

with a host tree 𝑇 on nodes 𝐼 = {1, 2, 3} and edges {(1, 2), (2, 3)}.

To determine the length of 𝑇 (𝑃4), we examine each bag:

• For 𝑋1 = {𝑣1, 𝑣2}, the maximum distance between any two vertices in 𝑋1 is 𝑑𝑃4 (𝑣1, 𝑣2) = 1.

• For 𝑋2 = {𝑣2, 𝑣3}, the maximum distance between any two vertices in 𝑋2 is 𝑑𝑃4 (𝑣2, 𝑣3) = 1.

• For 𝑋3 = {𝑣3, 𝑣4}, the maximum distance between any two vertices in 𝑋3 is 𝑑𝑃4 (𝑣3, 𝑣4) = 1.

Hence, 𝜆 = 1. Because this decomposition is already optimal for 𝑃4, the tree-length tl(𝑃4) is 1.

Definition 1.12 (Tree-breadth). [14, 16, 46] The breadth of a tree-decomposition 𝑇 (𝐺) = ({𝑋𝑖 | 𝑖 ∈ 𝐼}, 𝑇) is
the smallest integer 𝑟 such that for each bag 𝑋𝑖 (𝑖 ∈ 𝐼), there exists a vertex 𝑣𝑖 ∈ 𝑉 such that:

𝑋𝑖 ⊆ 𝐷𝑟 (𝑣𝑖 , 𝐺),

where 𝐷𝑟 (𝑣𝑖 , 𝐺) = {𝑢 ∈ 𝑉 | 𝑑𝐺 (𝑢, 𝑣𝑖) ≤ 𝑟} is the disk of radius 𝑟 centered at 𝑣𝑖 . The tree-breadth of 𝐺,
denoted by tb(𝐺), is the minimum 𝑟 over all possible tree-decompositions of 𝐺.

Example 1.13 (Tree-breadth). Using the same path graph 𝑃4 and the same tree-decomposition 𝑇 (𝑃4) from
above:

𝑋1 = {𝑣1, 𝑣2}, 𝑋2 = {𝑣2, 𝑣3}, 𝑋3 = {𝑣3, 𝑣4}.
To determine the breadth, we look for the smallest integer 𝑟 such that each bag 𝑋𝑖 is contained in a closed ball
𝐷𝑟 (𝑤𝑖) around some center 𝑤𝑖 ∈ 𝑉 :

• For 𝑋1 = {𝑣1, 𝑣2}, we can choose 𝑤1 = 𝑣1 (or 𝑣2), and then 𝑋1 ⊆ 𝐷1 (𝑣1), because 𝑣2 is at distance 1
from 𝑣1.

• For 𝑋2 = {𝑣2, 𝑣3}, we can choose 𝑤2 = 𝑣2 (or 𝑣3), ensuring 𝑋2 ⊆ 𝐷1 (𝑣2).

• For 𝑋3 = {𝑣3, 𝑣4}, we can choose 𝑤3 = 𝑣4 (or 𝑣3), hence 𝑋3 ⊆ 𝐷1 (𝑣4).

In all cases, 𝑟 = 1 suffices. Therefore, the breadth of 𝑇 (𝑃4) is 1, and the tree-breadth tb(𝑃4) is also 1 for this
particular graph and decomposition.

Remark 1.14. [14] For any graph 𝐺, the following relationship holds:

1 ≤ tb(𝐺) ≤ tl(𝐺) ≤ 2 · tb(𝐺).
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1.3 SuperHyperTree Decomposition

A Hypertree Decomposition is a tree-decomposition of a hypergraph that includes additional guards ensuring
the coverage of hyperedges and maintaining structural connectivity [1, 2, 33, 35, 37]. A SuperHyperTree
Decomposition is a tree-decomposition of a SuperHyperGraph, designed to cover hierarchical superedges and
preserve the connectivity of subsets of vertices [18, 24, 26, 32].

Definition 1.15 (Generalized Hypertree Decomposition). [2] A generalized hypertree decomposition of a
hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) is a triple (𝑇, 𝐵, 𝐶), where:

• (𝑇, 𝐵) is a tree-decomposition of 𝐻, and

• 𝐶 = {𝐶𝑡 | 𝑡 ∈ 𝑉 (𝑇)} is a family of subsets of 𝐸 (𝐻) called the guards.

For every 𝑡 ∈ 𝑉 (𝑇), the bag 𝐵𝑡 satisfies:
𝐵𝑡 ⊆

⋃
𝐶𝑡 ,

where
⋃

𝐶𝑡 is the union of all hyperedges in 𝐶𝑡 , i.e.,⋃
𝐶𝑡 = {𝑣 ∈ 𝑉 (𝐻) | ∃𝑒 ∈ 𝐶𝑡 : 𝑣 ∈ 𝑒}.

The width of the decomposition (𝑇, 𝐵, 𝐶) is defined as:

width(𝑇, 𝐵, 𝐶) = max
𝑡∈𝑉 (𝑇 )

|𝐶𝑡 |,

where |𝐶𝑡 | denotes the cardinality of the guard 𝐶𝑡 .

The generalized hypertree width of 𝐻, denoted ghw(𝐻), is the minimum width over all possible generalized
hypertree decompositions of 𝐻:

ghw(𝐻) = min
(𝑇,𝐵,𝐶 )

width(𝑇, 𝐵, 𝐶).

Definition 1.16 (Hypertree Decomposition). [2] A hypertree decomposition of a hypergraph𝐻 = (𝑉 (𝐻), 𝐸 (𝐻))
is a generalized hypertree decomposition (𝑇, 𝐵, 𝐶) that satisfies the following additional condition:(⋃

𝐶𝑡

)
∩
( ⋃
𝑢∈𝑉 (𝑇𝑡 )

𝐵𝑢

)
⊆ 𝐵𝑡 ,

for all 𝑡 ∈ 𝑉 (𝑇). Here, 𝑇𝑡 denotes the subtree of 𝑇 rooted at 𝑡.

The hypertree width of 𝐻, denoted hw(𝐻), is the minimum width over all possible hypertree decompositions
of 𝐻:

hw(𝐻) = min
(𝑇,𝐵,𝐶 )

width(𝑇, 𝐵, 𝐶).

Definition 1.17 (n-SuperHyperTree Decomposition). [18,24,26,32] Let SHT(𝑛) = (𝑉, 𝐸) be an n-SuperHyperGraph.
An n-SuperHyperTree Decomposition of SHT(𝑛) is a triple (𝑇,B, C) where:

• 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) is a tree.

• B = { 𝐵𝑡 | 𝑡 ∈ 𝑉𝑇 } is a family of subsets of 𝑉 (called bags), such that:

1. Coverage Condition for n-SuperEdges: For every n-superedge 𝑒 ∈ 𝐸 , there exists a node 𝑡 ∈ 𝑉𝑇
with 𝑒 ⊆ 𝐵𝑡 .

2. Vertex Connectivity Condition: For each n-supervertex 𝑣 ∈ 𝑉 , the set { 𝑡 ∈ 𝑉𝑇 | 𝑣 ∈ 𝐵𝑡 } forms a
connected subtree of 𝑇 .

• C = {𝐶𝑡 | 𝑡 ∈ 𝑉𝑇 } is a family of subsets of 𝐸 (called guards), such that:
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1. Guard Condition for n-SuperEdges: For each 𝑡 ∈ 𝑉𝑇 , we have

𝐵𝑡 ⊆
⋃

𝐶𝑡 ,

where ⋃
𝐶𝑡 = { 𝑣 ∈ 𝑉 | ∃ 𝑒 ∈ 𝐶𝑡 : 𝑣 ∈ 𝑒}.

2. n-SuperHyperTree Condition: For each 𝑡 ∈ 𝑉𝑇 , let 𝑇𝑡 denote the subtree of 𝑇 rooted at 𝑡. Then(⋃
𝐶𝑡

)
∩

( ⋃
𝑢∈𝑉 (𝑇𝑡 )

𝐵𝑢

)
⊆ 𝐵𝑡 .

Width of an n-SuperHyperTree Decomposition: The width of (𝑇,B, C) is

width(𝑇,B, C) = max
𝑡∈𝑉𝑇

��𝐶𝑡

��.
n-SuperHyperTree-width: The n-SuperHyperTree-width of SHT(𝑛) is

SHT-width
(
SHT(𝑛) ) = min

(𝑇,B,C)
width(𝑇,B, C).

A smaller width indicates that SHT(𝑛) is “closer” in structure to a tree.

2 Result in This Paper

As a result of this paper, we define Hypertree-length and Hypertree-breadth, Superhypertree-length, and
Superhypertree-breadth, and describe the relationships between these parameters.

2.1 Hypertree-length and Hypertree-breadth

Hypertree-length refers to the maximum distance between any two vertices within a bag in a hypertree
decomposition. Hypertree-breadth represents the minimum radius needed to cover each bag of a hypertree
decomposition from a central vertex.

Definition 2.1 (Primal graph of a hypergraph). Let 𝐻 = (𝑉, 𝐸) be a hypergraph. The primal graph 𝐺 (𝐻)
has the same vertex set 𝑉 as 𝐻. Two distinct vertices 𝑢, 𝑣 are adjacent in 𝐺 (𝐻) if and only if there is some
hyperedge 𝑒 ∈ 𝐸 of 𝐻 with 𝑢, 𝑣 ∈ 𝑒. We denote the distance in 𝐺 (𝐻) by 𝑑𝐻 (𝑢, 𝑣) := 𝑑𝐺 (𝐻 ) (𝑢, 𝑣).

Definition 2.2 (Hypertree-length). Let 𝐻 = (𝑉, 𝐸) be a hypergraph. A (generalized) hypertree decomposition
of 𝐻 is a triple (

𝑇, {𝐵𝑡 }𝑡∈𝑉 (𝑇 ) , {𝐶𝑡 }𝑡∈𝑉 (𝑇 )
)
,

where 𝑇 = (𝑉 (𝑇), 𝐸 (𝑇)) is a tree, 𝐵𝑡 ⊆ 𝑉 , and 𝐶𝑡 ⊆ 𝐸 satisfy the usual coverage and connectivity conditions.
Define the length 𝜆 of this hypertree decomposition by

𝜆 := max
𝑡∈𝑉 (𝑇 )

max
𝑢,𝑣 ∈ 𝐵𝑡

𝑑𝐻 (𝑢, 𝑣),

where 𝑑𝐻 (𝑢, 𝑣) is distance in the primal graph 𝐺 (𝐻).

The Hypertree-length HTl(𝐻) is the minimum possible 𝜆 over all hypertree decompositions of 𝐻:

HTl(𝐻) = min
(𝑇,{𝐵𝑡 },{𝐶𝑡 })

max
𝑡∈𝑉 (𝑇 )

max
𝑢,𝑣 ∈ 𝐵𝑡

𝑑𝐻 (𝑢, 𝑣).

Example 2.3 (Hypertree-length). Hypergraph Definition. Let 𝐻 = (𝑉, 𝐸) be a hypergraph with

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸 =
{
{𝑣1, 𝑣2, 𝑣3}, {𝑣2, 𝑣4}

}
.

The primal graph 𝐺 (𝐻) is constructed by linking every pair of vertices that appear in a common hyperedge.
Therefore:

𝐸𝐺 (𝐻 ) = { (𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣2, 𝑣4)}.

Hypertree Decomposition. Consider the following hypertree decomposition (𝑇, {𝐵𝑡 }, {𝐶𝑡 }):
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• Let 𝑇 be a tree with two nodes, 𝑡1 and 𝑡2, and one edge (𝑡1, 𝑡2).

• Assign the bags as:
𝐵𝑡1 = {𝑣1, 𝑣2, 𝑣3}, 𝐵𝑡2 = {𝑣2, 𝑣4}.

• For guards {𝐶𝑡 }, one possible assignment could be:

𝐶𝑡1 = {{𝑣1, 𝑣2, 𝑣3}}, 𝐶𝑡2 = {{𝑣2, 𝑣4}}.

• Each hyperedge is fully contained in some bag (coverage), and each vertex appears in a connected subtree
of 𝑇 (connectivity).

Computing Hypertree-length. We look at each bag and measure the maximum distance in 𝐺 (𝐻) between any
two vertices in that bag:

• In 𝐵𝑡1 = {𝑣1, 𝑣2, 𝑣3}, the edges (𝑣1, 𝑣2), (𝑣1, 𝑣3), and (𝑣2, 𝑣3) exist in 𝐺 (𝐻), so any pair is at distance 1.

• In 𝐵𝑡2 = {𝑣2, 𝑣4}, the edge (𝑣2, 𝑣4) is in 𝐺 (𝐻), hence 𝑑𝐻 (𝑣2, 𝑣4) = 1.

Therefore, the length for this decomposition is

𝜆 = max
{

max
𝑢,𝑣∈𝐵𝑡1

𝑑𝐻 (𝑢, 𝑣), max
𝑢,𝑣∈𝐵𝑡2

𝑑𝐻 (𝑢, 𝑣)
}
= 1.

If we attempt other decompositions, we find we cannot do better than 𝜆 = 1. Thus, the Hypertree-length of 𝐻,
HTl(𝐻), is 1.

Definition 2.4 (Hypertree-breadth). Let 𝐻 = (𝑉, 𝐸) be a hypergraph, and let (𝑇, {𝐵𝑡 }𝑡∈𝑉 (𝑇 ) , {𝐶𝑡 }𝑡∈𝑉 (𝑇 ) ) be
a hypertree decomposition. For each 𝑡 ∈ 𝑉 (𝑇), let 𝑟𝑡 be the minimum integer such that 𝐵𝑡 ⊆ 𝐷𝑟𝑡 (𝑤𝑡 ) for some
𝑤𝑡 ∈ 𝑉 , where

𝐷𝑟𝑡 (𝑤𝑡 ) = { 𝑥 ∈ 𝑉 | 𝑑𝐻 (𝑥, 𝑤𝑡 ) ≤ 𝑟𝑡 }.
Then the breadth of this decomposition is

𝑟 = max
𝑡∈𝑉 (𝑇 )

𝑟𝑡 .

The Hypertree-breadth HTb(𝐻) is the minimum 𝑟 over all hypertree decompositions of 𝐻:

HTb(𝐻) = min
(𝑇,{𝐵𝑡 },{𝐶𝑡 })

max
𝑡∈𝑉 (𝑇 )

min
𝑤𝑡 ∈𝑉

max
𝑥∈𝐵𝑡

𝑑𝐻 (𝑥, 𝑤𝑡 ).

Example 2.5 (Hypertree-length). Hypergraph Definition. Let 𝐻 = (𝑉, 𝐸) be a hypergraph with

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸 =
{
{𝑣1, 𝑣2, 𝑣3}, {𝑣2, 𝑣4}

}
.

The primal graph 𝐺 (𝐻) is constructed by linking every pair of vertices that appear in a common hyperedge.
Therefore:

𝐸𝐺 (𝐻 ) = { (𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣2, 𝑣4)}.

Hypertree Decomposition. Consider the following hypertree decomposition (𝑇, {𝐵𝑡 }, {𝐶𝑡 }):

• Let 𝑇 be a tree with two nodes, 𝑡1 and 𝑡2, and one edge (𝑡1, 𝑡2).

• Assign the bags as:
𝐵𝑡1 = {𝑣1, 𝑣2, 𝑣3}, 𝐵𝑡2 = {𝑣2, 𝑣4}.

• For guards {𝐶𝑡 }, one possible assignment could be:

𝐶𝑡1 = {{𝑣1, 𝑣2, 𝑣3}}, 𝐶𝑡2 = {{𝑣2, 𝑣4}}.

• Each hyperedge is fully contained in some bag (coverage), and each vertex appears in a connected subtree
of 𝑇 (connectivity).
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Computing Hypertree-length. We look at each bag and measure the maximum distance in 𝐺 (𝐻) between any
two vertices in that bag:

• In 𝐵𝑡1 = {𝑣1, 𝑣2, 𝑣3}, the edges (𝑣1, 𝑣2), (𝑣1, 𝑣3), and (𝑣2, 𝑣3) exist in 𝐺 (𝐻), so any pair is at distance 1.

• In 𝐵𝑡2 = {𝑣2, 𝑣4}, the edge (𝑣2, 𝑣4) is in 𝐺 (𝐻), hence 𝑑𝐻 (𝑣2, 𝑣4) = 1.

Therefore, the length for this decomposition is

𝜆 = max
{

max
𝑢,𝑣∈𝐵𝑡1

𝑑𝐻 (𝑢, 𝑣), max
𝑢,𝑣∈𝐵𝑡2

𝑑𝐻 (𝑢, 𝑣)
}
= 1.

If we attempt other decompositions, we find we cannot do better than 𝜆 = 1. Thus, the Hypertree-length of 𝐻,
HTl(𝐻), is 1.

Theorem 2.6. For any hypergraph 𝐻 = (𝑉, 𝐸),

1 ≤ HTb(𝐻) ≤ HTl(𝐻) ≤ 2 HTb(𝐻).

Proof. Step 1: HTb(𝐻) ≥ 1.

A hypergraph containing at least one edge with two or more distinct vertices cannot have a hypertree decom-
position with breadth 0, because a radius of 0 would force all vertices in each bag to coincide with the center.
Thus, for any nontrivial hypergraph 𝐻, we must have HTb(𝐻) ≥ 1.

Step 2: HTb(𝐻) ≤ HTl(𝐻).

By definition, HTl(𝐻) is the minimal maximum distance between two vertices in the same bag, over all
hypertree decompositions. Meanwhile, HTb(𝐻) is the minimal maximum radius needed to cover each bag
from a single center. If a bag has diameter ℓ, then a single center within that bag can cover it with radius at most
ℓ. Hence any decomposition achieving length ℓ has breadth at most ℓ. Minimizing over all decompositions
shows HTb(𝐻) ≤ HTl(𝐻).

Step 3: HTl(𝐻) ≤ 2 HTb(𝐻).

Let 𝛿 := HTb(𝐻). By definition, there exists a hypertree decomposition with breadth at most 𝛿. This means
that for each bag 𝐵𝑡 , we can choose a center vertex 𝑤𝑡 ∈ 𝑉 such that

𝐵𝑡 ⊆ 𝐷 𝛿 (𝑤𝑡 ),

where 𝐷 𝛿 (𝑤𝑡 ) is the ball of radius 𝛿 around 𝑤𝑡 in the primal graph 𝐺 (𝐻). Now inflate each bag 𝐵𝑡 to be
exactly 𝐷 𝛿 (𝑤𝑡 ). This does not increase the decomposition’s guard size (and thus remains a valid generalized
hypertree decomposition), but ensures that any two vertices 𝑢, 𝑣 in the same inflated bag satisfy

𝑑𝐻 (𝑢, 𝑣) ≤ 2𝛿.

Hence the length of this new decomposition is at most 2𝛿. Because 𝛿 was the minimal breadth, it follows that

HTl(𝐻) ≤ 2 HTb(𝐻).

Combining all three inequalities completes the proof:

1 ≤ HTb(𝐻) ≤ HTl(𝐻) ≤ 2 HTb(𝐻).

□

Theorem 2.7. Let 𝐺 = (𝑉, 𝐸) be a simple graph, and let 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) be the associated hypergraph
described above. Then

tl(𝐺) = HTl(𝐻).
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Proof. Step 1: Show HTl(𝐻) ≤ tl(𝐺).

Consider any tree-decomposition
(
𝑇 (𝐺), {𝑋𝑖}

)
of 𝐺 with length 𝜆. Since 𝐻 has the same vertex set as 𝐺 and

edges of size 2, we can interpret {𝑋𝑖} as a (generalized) hypertree decomposition of 𝐻 by letting 𝐵𝑖 = 𝑋𝑖 and
assigning guards

𝐶𝑖 =

{
{𝑢, 𝑣} ∈ 𝐸 (𝐻)

��� {𝑢, 𝑣} ⊆ 𝐵𝑖

}
.

Coverage and connectivity hold because they hold for the underlying tree-decomposition of 𝐺. In the primal
graph𝐺 (𝐻) � 𝐺, the maximum distance within each bag is at most 𝜆. Minimizing over all tree-decompositions
of 𝐺 yields HTl(𝐻) ≤ tl(𝐺).

Step 2: Show tl(𝐺) ≤ HTl(𝐻).

Conversely, any hypertree decomposition
(
𝑇, {𝐵𝑡 }, {𝐶𝑡 }

)
of 𝐻 is also a valid tree-decomposition of 𝐺, since

each hyperedge {𝑢, 𝑣} with |{𝑢, 𝑣}| = 2 must lie completely in some bag. Moreover, in the primal graph 𝐺 (𝐻),
the distance 𝑑𝐺 (𝐻 ) (𝑢, 𝑣) equals 𝑑𝐺 (𝑢, 𝑣). Hence the length of any hypertree decomposition of 𝐻 is at least the
minimal length required among all tree-decompositions of 𝐺. Formally, if 𝜇 is the hypertree-length of 𝐻, then
𝜇 is also the maximum distance within some valid tree-decomposition for𝐺. Therefore, tl(𝐺) ≤ 𝜇 = HTl(𝐻).

Combining both parts yields tl(𝐺) = HTl(𝐻). □

Theorem 2.8. Under the same construction, let tb(𝐺) be the tree-breadth of 𝐺 and HTb(𝐻) the hypertree-
breadth of 𝐻. Then

tb(𝐺) = HTb(𝐻).

Proof. Step 1: HTb(𝐻) ≤ tb(𝐺).

Given a tree-decomposition for 𝐺 that realizes tb(𝐺), form a (generalized) hypertree decomposition of 𝐻 by
the same assignment of bags and a guard set

𝐶𝑖 = {{𝑢, 𝑣} ∈ 𝐸 (𝐻) | 𝑢, 𝑣 ∈ 𝐵𝑖}.

In each bag, the minimum radius required (in the primal graph 𝐺 (𝐻)) to cover that bag is at most the breadth
used in the original tree-decomposition. Because tb(𝐺) is minimal among all such decompositions, HTb(𝐻),
which is the minimal breadth of a hypertree decomposition of 𝐻, can be no larger.

Step 2: tb(𝐺) ≤ HTb(𝐻).

Conversely, any hypertree decomposition of 𝐻 is also a tree-decomposition of 𝐺. The radius needed to cover
each bag in 𝐺 (𝐻) is the same as the radius needed to cover each bag in 𝐺, since 𝐺 (𝐻) � 𝐺. Hence if a certain
decomposition of 𝐻 has a certain breadth, that breadth also applies to a tree-decomposition of 𝐺. Minimizing
over all hypertree decompositions of 𝐻 shows that

tb(𝐺) ≤ HTb(𝐻).

Putting these two inequalities together completes the proof:

tb(𝐺) = HTb(𝐻).

□
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2.2 Superhypertree-length and Superhypertree-breadth

The n-Superhypertree-length refers to the maximum distance between any two vertices within a bag in an
𝑛-SuperHyperTree decomposition. The n-Superhypertree-breadth represents the minimum radius required to
cover each bag of an 𝑛-SuperHyperTree decomposition from a central vertex.

Definition 2.9 (n-Superprimal Graph and Distance). Let SHT(𝑛) = (𝑉, 𝐸) be an n-SuperHyperGraph. Define
its n-superprimal graph, 𝐺

(
SHT(𝑛) ) , as follows:

𝐺
(
SHT(𝑛) ) =

(
𝑉, 𝐸𝐺 (SHT(𝑛) )

)
,

where {𝑢, 𝑣} ∈ 𝐸𝐺 (SHT(𝑛) ) if and only if there is an n-superedge 𝑒 ∈ 𝐸 with 𝑢, 𝑣 ∈ 𝑒 and 𝑢 ≠ 𝑣.

We denote
𝑑SHT(𝑛) (𝑢, 𝑣) := 𝑑𝐺 (SHT(𝑛) ) (𝑢, 𝑣),

i.e. the usual shortest-path distance of 𝑢, 𝑣 in the n-superprimal graph 𝐺 (SHT(𝑛) ).

Definition 2.10 (n-Superhypertree-length). Let SHT(𝑛) = (𝑉, 𝐸) be an n-SuperHyperGraph, and let (𝑇, {B𝑡 }, {C𝑡 })
be an n-SuperHyperTree Decomposition. The length of this decomposition, denoted 𝜆, is

𝜆 := max
𝑡∈𝑉𝑇

max
𝑢,𝑣∈B𝑡

𝑑SHT(𝑛) (𝑢, 𝑣).

The n-Superhypertree-length of SHT(𝑛) , denoted SHTl(𝑛)
(
SHT(𝑛) ) , is the minimum such 𝜆 over all n-

SuperHyperTree Decompositions of SHT(𝑛) :

SHTl(𝑛)
(
SHT(𝑛) ) := min

(𝑇,{B𝑡 },{C𝑡 })
max
𝑡∈𝑉𝑇

max
𝑢,𝑣∈B𝑡

𝑑SHT(𝑛) (𝑢, 𝑣).

Definition 2.11 (n-Superhypertree-breadth). Let SHT(𝑛) = (𝑉, 𝐸) be an n-SuperHyperGraph, and let (𝑇, {B𝑡 }, {C𝑡 })
be an n-SuperHyperTree Decomposition. For each node 𝑡 ∈ 𝑉𝑇 , let 𝑟𝑡 be the smallest integer such that there
exists a center 𝑤𝑡 ∈ 𝑉 with

B𝑡 ⊆
{
𝑥 ∈ 𝑉 | 𝑑SHT(𝑛) (𝑥, 𝑤𝑡 ) ≤ 𝑟𝑡

}
.

Define the breadth of this decomposition by

𝑟 := max
𝑡∈𝑉𝑇

𝑟𝑡 .

The n-Superhypertree-breadth, denoted SHTb(𝑛) (SHT(𝑛) ) , is the minimum value of 𝑟 over all n-SuperHyperTree
Decompositions:

SHTb(𝑛) (SHT(𝑛) ) := min
(𝑇,{B𝑡 },{C𝑡 })

max
𝑡∈𝑉𝑇

min
𝑤𝑡 ∈𝑉

max
𝑥∈B𝑡

𝑑SHT(𝑛) (𝑥, 𝑤𝑡 ).

Example 2.12. Step 1: Constructing a 2-SuperHyperGraph.

Let 𝑉0 = {𝑥, 𝑦} be the base vertex set. Then

P(𝑉0) = { ∅, {𝑥}, {𝑦}, {𝑥, 𝑦}},

and
P2 (𝑉0) = P

(
P(𝑉0)

)
is the collection of all subsets of {∅, {𝑥}, {𝑦}, {𝑥, 𝑦}}, which has 24 = 16 elements.

However, we only select a small subset of these 16 possible 2-supervertices and 2-superedges to form a
2-SuperHyperGraph:

SHT(2) = (𝑉, 𝐸),

where
𝑉 =

{
{𝑥}, {𝑦}, {𝑥, 𝑦}

}
, 𝐸 =

{
{{𝑥}, {𝑦}}, {{𝑥}, {𝑥, 𝑦}}

}
.

In words:
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• We treat {𝑥}, {𝑦}, {𝑥, 𝑦} as 2-supervertices.

• We have two 2-superedges:
𝑒1 = {{𝑥}, {𝑦}}, 𝑒2 = {{𝑥}, {𝑥, 𝑦}}.

Step 2: Constructing the 2-Superprimal Graph and Distances.

By definition, the 2-superprimal graph 𝐺 (SHT(2) ) has the same vertex set

𝑉 = {{𝑥}, {𝑦}, {𝑥, 𝑦}}.

Two 2-supervertices are adjacent in 𝐺 (SHT(2) ) if they occur together in some 2-superedge of 𝐸 . Hence:{
{𝑥}, {𝑦}

}
is an edge (from 𝑒1),

{
{𝑥}, {𝑥, 𝑦}

}
is an edge (from 𝑒2),

and {𝑦} is not adjacent to {𝑥, 𝑦} because no 2-superedge contains them together. Thus:

𝐸𝐺 (SHT(2) ) =
{(
{𝑥}, {𝑦}

)
,
(
{𝑥}, {𝑥, 𝑦}

)}
.

We get the distances:

𝑑SHT(2)
(
{𝑥}, {𝑦}

)
= 1, 𝑑SHT(2)

(
{𝑥}, {𝑥, 𝑦}

)
= 1, 𝑑SHT(2)

(
{𝑦}, {𝑥, 𝑦}

)
= 2 (via {𝑥}).

Step 3: A 2-SuperHyperTree Decomposition.

Construct a tree 𝑇 with two nodes: 𝑡1 and 𝑡2, and one edge (𝑡1, 𝑡2). Define the bags {B𝑡 } and guards {C𝑡 } as:

B𝑡1 = {{𝑥}, {𝑦}}, B𝑡2 = {{𝑥}, {𝑥, 𝑦}},

C𝑡1 =
{
{{𝑥}, {𝑦}}

}
= {𝑒1}, C𝑡2 =

{
{{𝑥}, {𝑥, 𝑦}}

}
= {𝑒2}.

This ensures coverage (each 2-superedge is fully in some bag) and the connectivity condition on each 2-
supervertex ({𝑥} appears in both bags but in a connected subtree, etc.).

Step 4: Computing the n-Superhypertree-length.

We need
𝜆 = max

𝑡∈{𝑡1 ,𝑡2 }
max
𝑢,𝑣∈B𝑡

𝑑SHT(2) (𝑢, 𝑣).

• In B𝑡1 = {{𝑥}, {𝑦}}, the distance between {𝑥} and {𝑦} is 1 in 𝐺 (SHT(2) ).

• In B𝑡2 = {{𝑥}, {𝑥, 𝑦}}, the distance between {𝑥} and {𝑥, 𝑦} is 1.

Hence 𝜆 = 1. Because no other decomposition can reduce the distance inside a bag below 1 (there are adjacent
vertices in every bag containing at least two distinct 2-supervertices), we conclude:

SHTl(2) (SHT(2) ) = 1.

Step 5: Computing the n-Superhypertree-breadth.

We look for the smallest radius 𝑟 so that each bag B𝑡 is contained in some ball of radius 𝑟 around a center 𝑤𝑡 :

B𝑡 ⊆ { 𝑢 ∈ 𝑉 : 𝑑SHT(2) (𝑢, 𝑤𝑡 ) ≤ 𝑟}.

• For B𝑡1 = {{𝑥}, {𝑦}}, we can pick 𝑤𝑡1 = {𝑥}. Then 𝑑SHT(2) ({𝑥}, {𝑥}) = 0 and 𝑑SHT(2) ({𝑦}, {𝑥}) = 1, so
𝑟𝑡1 = 1 suffices.
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• ForB𝑡2 = {{𝑥}, {𝑥, 𝑦}}, again choose𝑤𝑡2 = {𝑥}. Distances are 𝑑SHT(2) ({𝑥}, {𝑥}) = 0 and 𝑑SHT(2) ({𝑥, 𝑦}, {𝑥}) =
1, so 𝑟𝑡2 = 1.

Thus the maximum of {𝑟𝑡1 , 𝑟𝑡2 } is 1. Minimizing over all possible decompositions would not give anything
less than 1. So

SHTb(2) (SHT(2) ) = 1.

In this example, both the 2-Superhypertree-length and the 2-Superhypertree-breadth of our small 2-SuperHyperGraph
are 1. No decomposition can achieve 0, and having at least one bag with two different 2-supervertices forces
a minimum distance of 1. This illustrates how the distance concepts from the 2-superprimal graph directly
determine the SHTl(𝑛) and SHTb(𝑛) parameters.

Theorem 2.13 (Relationship between n-Superhypertree-length and n-Superhypertree-breadth). Let SHT(𝑛) =
(𝑉, 𝐸) be any n-SuperHyperGraph. Then:

1 ≤ SHTb(𝑛) (SHT(𝑛) ) ≤ SHTl(𝑛)
(
SHT(𝑛) ) ≤ 2 SHTb(𝑛) (SHT(𝑛) ) .

Proof. The proof is analogous to the classic graph case and the superhypergraph case:

• The lower bound SHTb(𝑛) (SHT(𝑛) ) ≥ 1 is trivial unless SHT(𝑛) has very few vertices (e.g. a single-vertex
situation).

• To prove SHTl(𝑛) (SHT(𝑛) ) ≤ 2 SHTb(𝑛) (SHT(𝑛) ), suppose we have an n-SuperHyperTree Decomposi-
tion with breadth 𝛿. By definition, for each bag B𝑡 , there is a center 𝑤𝑡 such that B𝑡 ⊆ 𝐷 𝛿 (𝑤𝑡 ), where
𝐷 𝛿 (𝑤𝑡 ) is the closed ball of radius 𝛿 around 𝑤𝑡 in 𝐺 (SHT(𝑛) ).
Now inflate each bag B𝑡 to be exactly 𝐷 𝛿 (𝑤𝑡 ). This enlargement does not increase the “guard width”
|𝐶𝑡 | (since the guard sets C𝑡 can remain the same), yet any two vertices 𝑢, 𝑣 in the same inflated bag lie
within distance 𝑑SHT(𝑛) (𝑢, 𝑣) ≤ 2𝛿. Hence the resulting decomposition has length at most 2𝛿, proving
the desired inequality.

□

Theorem 2.14 (Equivalence of Length Parameters). Let 𝐻 = (𝑉, 𝐸) be a hypergraph that is also an 𝑛-
SuperHyperGraph for some 𝑛 ≥ 1. Then

HTl(𝐻) = SHTl(𝑛) (𝐻).

Proof. Step 1: Show SHTl(𝑛) (𝐻) ≤ HTl(𝐻).

Since 𝐻 is a hypergraph, it admits a hypertree decomposition (𝑇, {𝐵𝑡 }, {𝐶𝑡 }) achieving HTl(𝐻). Because 𝐻

is also an 𝑛-SuperHyperGraph, the same bags 𝐵𝑡 ⊆ 𝑉 and guards 𝐶𝑡 ⊆ 𝐸 can serve as an 𝑛-SuperHyperTree
Decomposition:

• Every hyperedge 𝑒 ∈ 𝐸 is contained in at least one bag (coverage), and each vertex is in a connected
subtree of 𝑇 (connectivity).

• Since 𝑉, 𝐸 ⊆ P𝑛 (𝑉0), there is no violation of the 𝑛-SuperHyperTree structure conditions.

Hence the same decomposition has length

max
𝑡∈𝑉 (𝑇 )

max
𝑢,𝑣∈𝐵𝑡

𝑑𝐻 (𝑢, 𝑣).

Minimizing over all hypertree decompositions of 𝐻 yields precisely HTl(𝐻). Thus we see that there is an
𝑛-SuperHyperTree decomposition of length at most HTl(𝐻), implying

SHTl(𝑛) (𝐻) ≤ HTl(𝐻).

Step 2: Show HTl(𝐻) ≤ SHTl(𝑛) (𝐻).

Conversely, any 𝑛-SuperHyperTree Decomposition (𝑇, {B𝑡 }, {C𝑡 }) is also a generalized hypertree decomposi-
tion of 𝐻, because 𝐻 is a hypergraph in the usual sense:
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• Each 𝑛-superedge 𝑒 ∈ 𝐸 is also a valid hyperedge of 𝐻.

• The coverage and connectivity conditions for 𝑛-SuperHyperTree decomposition ensure that (𝑇, {B𝑡 }, {C𝑡 })
meets the requirements of a (generalized) hypertree decomposition.

Therefore, its length
max

𝑡∈𝑉 (𝑇 )
max
𝑢,𝑣∈B𝑡

𝑑𝐻 (𝑢, 𝑣)

is at least the optimal hypertree-length. In other words, for any 𝑛-SuperHyperTree decomposition with length
𝜆, we must have HTl(𝐻) ≤ 𝜆. Minimizing over all such decompositions yields:

HTl(𝐻) ≤ SHTl(𝑛) (𝐻).

Combining both inequalities completes the proof:

SHTl(𝑛) (𝐻) ≤ HTl(𝐻) and HTl(𝐻) ≤ SHTl(𝑛) (𝐻) =⇒ SHTl(𝑛) (𝐻) = HTl(𝐻).

□

Theorem 2.15 (Equivalence of Breadth Parameters). Let 𝐻 = (𝑉, 𝐸) be a hypergraph that is also an 𝑛-
SuperHyperGraph for some 𝑛 ≥ 1. Then

HTb(𝐻) = SHTb(𝑛) (𝐻).

Proof. The argument is analogous to that of Theorem 2.14.

Step 1: SHTb(𝑛) (𝐻) ≤ HTb(𝐻).

Any hypertree decomposition of𝐻 (achieving breadth HTb(𝐻)) automatically qualifies as an 𝑛-SuperHyperTree
decomposition, because 𝐻 is also an 𝑛-SuperHyperGraph. The radius needed to cover each bag from a center
vertex in the primal graph 𝐺 (𝐻) is the same, so the 𝑛-Superhypertree-breadth can be no larger than the
hypertree-breadth.

Step 2: HTb(𝐻) ≤ SHTb(𝑛) (𝐻).

Similarly, any 𝑛-SuperHyperTree decomposition of 𝐻 is also a generalized hypertree decomposition of 𝐻.
Thus, its breadth is at least HTb(𝐻), since the latter is the minimum possible breadth among all hypertree
decompositions.

Hence,
HTb(𝐻) ≤ SHTb(𝑛) (𝐻) and SHTb(𝑛) (𝐻) ≤ HTb(𝐻),

implying equality:
SHTb(𝑛) (𝐻) = HTb(𝐻).

□

3 Future Tasks: Uncertain Graph

In the future, this research aims to explore the extension of the parameters studied in this paper, such as
Tree-length and Tree-breadth, to various types of uncertain graph concepts. These include Fuzzy Graphs
[4,39,45,49], Soft Graphs [43,66], Vague Graphs [34,42], Rough Graphs [30], Neutrosophic Graphs [27,28,31],
and Plithogenic Graphs [21, 22, 29]. Investigating whether these parameters can be effectively generalized to
such frameworks represents a meaningful direction for future work.
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Chapter 4
Short Note of Extended HyperPlithogenic Sets and General Extended

Plithogenic Graphs
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Abstract

The Plithogenic Set is known for generalizing concepts such as Fuzzy Sets and Neutrosophic Sets. It is
also recognized that the Plithogenic Set can be extended to concepts such as the Extended Plithogenic Set,
HyperPlithogenic Set, and SuperHyperPlithogenic Set. Based on these foundations, this short communication
explores the Extended HyperPlithogenic Sets and Extended SuperHyperPlithogenic Sets. Additionally, we
consider Extended Plithogenic Graphs and General Extended Plithogenic Graphs.

Keywords: Fuzzy set, Hyperplithogenic set, Plithogenic Graph, Plithogenic Set, Extended Plithogenic Set
MSC 2010 classifications: 03E72: Fuzzy set theory, 03B52: Fuzzy logic; logic of vagueness

1 Short Introduction of this paper

1.1 Plithogenic Sets

Set theory, a fundamental branch of mathematics, provides a robust framework for analyzing collections of
elements known as ”sets” [16, 50, 98]. In these set theories, various concepts have been studied to handle
uncertainty, such as Fuzzy Sets [99–105], Hyperfuzzy Sets [46,53,94], Intuitionistic fuzzy sets [5–9], Neutro-
sophic Sets [38,39,77–79,91], Vague Sets [15,44], Soft Sets [52,54,56], Hypersoft Sets [1,25,42,68,80,85],
superhypersoft set [32, 55, 86], and Rough Sets [59–62].

The core focus of this paper is on Plithogenic Sets, a highly versatile concept that generalizes Fuzzy Sets and
Neutrosophic Sets, among others [22, 43, 81, 82, 92]. Plithogenic Sets offer significant flexibility in modeling
complex relationships. Additionally, the Extended Plithogenic Set [95], HyperPlithogenic Set [31, 33], and
n-SuperHyperPlithogenic Set [31,33], which extend the concept of Plithogenic Sets, have been recently defined.

1.2 Our Contribution in This Paper

In this paper, we propose the Extended HyperPlithogenic Set and the Extended n-SuperHyperPlithogenic Set,
and examine their relationships with existing concepts. Additionally, we consider Extended Plithogenic Graphs
and General Extended Plithogenic Graphs.

2 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

2.1 Power Set

The definition of the Power Set and the nth-Power Set, along with related concepts, are provided below.

Definition 2.1 (Set). [50] A set is a well-defined collection of distinct objects, called elements. If 𝑥 is an
element of a set 𝐴, it is written as 𝑥 ∈ 𝐴. Sets are typically represented using curly braces.

Definition 2.2 (Base Set). (cf. [30]) A base set is the foundational set 𝑆 from which powersets and hyperstruc-
tures are constructed. Formally:

𝑆 = {𝑥 | 𝑥 is an element within the specified domain}.

All subsets and operations within P(𝑆) or P𝑛 (𝑆) are derived from the elements of 𝑆.
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Definition 2.3 (Powerset). (cf. [30, 65]) The powerset of a set 𝑆, denoted as P(𝑆), is the collection of all
subsets of 𝑆, including the empty set and 𝑆 itself:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 2.4 (𝑛-th Powerset). (cf. [30, 76, 89])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined recursively. Starting with the standard powerset, the
construction proceeds as:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

The 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), excludes the empty set:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) is the powerset of 𝐻 excluding the empty set.

2.2 Plithogenic Set

A Plithogenic Set is a mathematical framework that incorporates multi-valued degrees of appurtenance and
contradictions, making it suitable for complex decision-making processes. Various studies have been conducted
on Plithogenic Sets [2, 3, 27, 33, 63, 69–71, 90, 97]. Related concepts, such as the Plithogenic Graph, are also
well-known [18–21, 28, 30, 36, 41, 72–75]. The definition is presented below.

Definition 2.5. [81, 82] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) 1

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)
1It is important to note that the definition of the Degree of Appurtenance Function varies across different papers. Some studies define

this concept using the power set, while others simplify it by avoiding the use of the power set [95]. The author has consistently defined the
Classical Plithogenic Set without employing the power set.
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2.3 HyperPlithogenic Set and SuperHyperPlithogenic Set

Next, the definitions of the HyperPlithogenic Set and the SuperHyperPlithogenic Set are presented below.
The HyperPlithogenic Set is a concept defined using hyperstructures, while the SuperHyperPlithogenic Set is
defined using superhyperstructures [22, 35, 87, 88, 88, 89, 89].

Definition 2.6 (HyperPlithogenic Set). [23, 31, 33] Let 𝑋 be a non-empty set, and let 𝐴 be a set of attributes.
For each attribute 𝑣 ∈ 𝐴, let 𝑃𝑣 be the set of possible values of 𝑣. A HyperPlithogenic Set 𝐻𝑃𝑆 over 𝑋 is
defined as:

𝐻𝑃𝑆 = (𝑃, {𝑣𝑖}𝑛𝑖=1, {𝑃𝑣𝑖}
𝑛
𝑖=1, { ˜𝑝𝑑𝑓 𝑖}𝑛𝑖=1, 𝑝𝐶𝐹)

where:

• 𝑃 ⊆ 𝑋 is a subset of the universe.

• For each attribute 𝑣𝑖 , 𝑃𝑣𝑖 is the set of possible values.

• For each attribute 𝑣𝑖 , ˜𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 → �̃�( [0, 1]𝑠) is the Hyper Degree of Appurtenance Function
(HDAF), assigning to each element 𝑥 ∈ 𝑃 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a set of membership degrees.

• 𝑝𝐶𝐹 :
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
→ [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

Definition 2.7 (𝑛-SuperHyperPlithogenic Set). [23,31,33] Let 𝑋 be a non-empty set, and let𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
be a set of attributes, each associated with a set of possible values 𝑃𝑣𝑖 . An 𝑛-SuperHyperPlithogenic Set
(𝑆𝐻𝑃𝑆𝑛) is defined recursively as:

𝑆𝐻𝑃𝑆𝑛 = (𝑃𝑛, 𝑉, {𝑃𝑣𝑖 }𝑛𝑖=1, { ˜𝑝𝑑𝑓 (𝑛)𝑖 }𝑛𝑖=1, 𝑝𝐶𝐹 (𝑛) ),

where:

• 𝑃1 ⊆ 𝑋 , and for 𝑘 ≥ 2,
𝑃𝑘 = P̃ (𝑃𝑘−1),

represents the 𝑘-th nested family of non-empty subsets of 𝑃1.

• For each attribute 𝑣𝑖 ∈ 𝑉 , 𝑃𝑣𝑖 is the set of possible values of the attribute 𝑣𝑖 .

• For each 𝑘-th level subset 𝑃𝑘 , ˜𝑝𝑑𝑓 (𝑛)𝑖 : 𝑃𝑛 × 𝑃𝑣𝑖 → P̃([0, 1]𝑠) is the Hyper Degree of Appurtenance
Function (HDAF), assigning to each element 𝑥 ∈ 𝑃𝑛 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a subset of [0, 1]𝑠 .

• 𝑝𝐶𝐹 (𝑛) :
⋃𝑛

𝑖=1 𝑃𝑣𝑖 ×
⋃𝑛

𝑖=1 𝑃𝑣𝑖 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF), satisfying:

1. Reflexivity: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑎) = 0 for all 𝑎 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 ,

2. Symmetry: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑛) (𝑏, 𝑎) for all 𝑎, 𝑏 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 .

• 𝑠 and 𝑡 are positive integers representing the dimensions of the membership degrees and contradiction
degrees, respectively.

2.4 Extended Plithogenic Set

The Extended Plithogenic Set is an extended concept of the Plithogenic Set, which was recently defined [95].
The definition is provided below.

Definition 2.8 (Extended Plithogenic Set). [95] Let 𝑃 be a non-empty set, and let 𝑎 be an attribute with a
range of possible values 𝑉 . An Extended Plithogenic Set (ExPlS) is defined as a 7-tuple:

ExPlS = (𝑃, 𝑎, 𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅),

where:
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• 𝑑𝐷 : 𝑃 ×𝑉 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) with respect to dominant attribute
value(s), where 𝑠 indicates the dimensionality (e.g., 𝑠 = 1 for fuzzy, 𝑠 = 3 for neutrosophic). 2

• 𝑐𝐷 : 𝑉 ×𝑉 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) associated with dominant attribute
value(s), where 𝑡 is the dimensionality of contradiction. It satisfies:

𝑐𝐷 (𝑣, 𝑣) = 0, 𝑐𝐷 (𝑣1, 𝑣2) = 𝑐𝐷 (𝑣2, 𝑣1) ∀ 𝑣, 𝑣1, 𝑣2 ∈ 𝑉.

• 𝑑𝑅 : 𝑃 ×𝑉 → [0, 1]𝑠 is the DAF with respect to recessive attribute value(s), defined similarly to 𝑑𝐷 .

• 𝑐𝑅 : 𝑉 ×𝑉 → [0, 1]𝑡 is the DCF associated with recessive attribute value(s), satisfying:

𝑐𝑅 (𝑣, 𝑣) = 0, 𝑐𝑅 (𝑣1, 𝑣2) = 𝑐𝑅 (𝑣2, 𝑣1) ∀ 𝑣, 𝑣1, 𝑣2 ∈ 𝑉.

Interpretation.

• 𝑑𝐷 and 𝑐𝐷 handle membership and contradiction relative to dominant attribute values, while 𝑑𝑅 and 𝑐𝑅
handle the same for recessive attribute values.

• This framework allows simultaneous evaluation of positive (dominant) and negative (recessive) aspects
of attribute values, providing a comprehensive decision-making structure.

Theorem 2.9 (Reduction to Classical Plithogenic Set). An Extended Plithogenic Set

ExPlS = (𝑃, 𝑎, 𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅)

reduces to a classical Plithogenic Set
𝑃𝑆 = (𝑃, 𝑎, 𝑉, 𝑑, 𝑐)

if and only if 𝑑𝑅 (𝑥, 𝑣) = 0 and 𝑐𝑅 (𝑣1, 𝑣2) = 0 for all 𝑥 ∈ 𝑃 and 𝑣, 𝑣1, 𝑣2 ∈ 𝑉 . In such a case:

𝑑 = 𝑑𝐷 , 𝑐 = 𝑐𝐷 .

Proof. If 𝑑𝑅 and 𝑐𝑅 are null functions (or omitted), the 7-tuple (𝑃, 𝑎, 𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅) reduces to the
5-tuple (𝑃, 𝑎, 𝑉, 𝑑, 𝑐), where 𝑑 = 𝑑𝐷 and 𝑐 = 𝑐𝐷 . Conversely, any classical Plithogenic Set can be embedded
into this framework by defining 𝑑𝑅 ≡ 0 and 𝑐𝑅 ≡ 0. □

Example 2.10. Consider 𝑃 = {P1, P2, P3} as a set of products, with the attribute 𝑎 = price and possible values
𝑉 = {cheap,moderate, expensive}. Let:

𝑑𝐷 : 𝑃 ×𝑉 → [0, 1], 𝑐𝐷 : 𝑉 ×𝑉 → [0, 1],

represent membership and contradiction relative to cheap (dominant), and:

𝑑𝑅 : 𝑃 ×𝑉 → [0, 1], 𝑐𝑅 : 𝑉 ×𝑉 → [0, 1],

represent membership and contradiction relative to expensive (recessive).

For example:
𝑑𝐷 (P1, cheap) = 0.8, 𝑐𝐷 (cheap, expensive) = 0.9,

𝑑𝑅 (P1, expensive) = 0.3, 𝑐𝑅 (moderate, expensive) = 0.5.

This allows simultaneous evaluation of dominant and recessive perspectives for decision-making.
2It is important to note that the definition of the Degree of Appurtenance Function varies across different papers. Some studies define

this concept using the power set, while others simplify it by avoiding the use of the power set [95]. The author has consistently defined the
Classical Plithogenic Set without employing the power set.
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3 Results in This Paper

3.1 Extended HyperPlithogenic Sets

In this subsection, we define the Extended HyperPlithogenic Set and the Extended SuperHyperPlithogenic Set
as follows and examine their relationships.

Definition 3.1 (Extended HyperPlithogenic Set). Let 𝑃 be a non-empty set, and let 𝑎 be an attribute with range
𝑉 . An Extended HyperPlithogenic Set (ExHPS) is an 8-tuple

ExHPS = (𝑃, 𝑎,𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅,Δ),

where:

• 𝑑𝐷 : 𝑃 × 𝑉 → P([0, 1]𝑠) and 𝑑𝑅 : 𝑃 × 𝑉 → P([0, 1]𝑠) assign subsets of [0, 1]𝑠 capturing multiple
(hyper) membership degrees for each dominant or recessive attribute value, respectively.

• 𝑐𝐷 : 𝑉 × 𝑉 → P([0, 1]𝑡 ) and 𝑐𝑅 : 𝑉 × 𝑉 → P([0, 1]𝑡 ) return subsets of [0, 1]𝑡 capturing multiple
(hyper) contradictions among attribute values.

• Δ is an optional “aggregation context” or “dominance relation” that manages how these subsets are
aggregated or chosen in various decision-making or modeling scenarios.

Theorem 3.2 (Reduction to Extended Plithogenic Set). An Extended HyperPlithogenic Set

ExHPS = (𝑃, 𝑎, 𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅, Δ)

reduces to an Extended Plithogenic Set ExPlS if all hyper-memberships and hyper-contradictions are singletons:

𝑑𝐷 (𝑥, 𝑣) = {m}, 𝑑𝑅 (𝑥, 𝑣) = {m′}, 𝑐𝐷 (𝑣1, 𝑣2) = {c}, 𝑐𝑅 (𝑣1, 𝑣2) = {c′}.

Proof. An Extended HyperPlithogenic Set is defined by the hyper-membership functions 𝑑𝐷 , 𝑑𝑅, and hyper-
contradiction functions 𝑐𝐷 , 𝑐𝑅, which map to subsets of [0, 1]𝑠 (membership values) and [0, 1]𝑡 (contradiction
values).

When each of these subsets is reduced to a singleton, for instance:

𝑑𝐷 (𝑥, 𝑣) = {m}, 𝑑𝑅 (𝑥, 𝑣) = {m′}, 𝑐𝐷 (𝑣1, 𝑣2) = {c}, 𝑐𝑅 (𝑣1, 𝑣2) = {c′},

the hyper-membership and hyper-contradiction values effectively collapse to classical membership and contra-
diction values. This reduction transforms the structure of ExHPS into the simpler form:

ExPlS = (𝑃, 𝑎, 𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅, Δ),

where 𝑑𝐷 (𝑥, 𝑣) = m, 𝑑𝑅 (𝑥, 𝑣) = m′, 𝑐𝐷 (𝑣1, 𝑣2) = c, and 𝑐𝑅 (𝑣1, 𝑣2) = c′.

This structure satisfies the definition of an Extended Plithogenic Set ExPlS, as all elements and mappings
now align with the standard Plithogenic framework without the need for hyper-structures. The transition from
hyper-sets to classical sets is therefore straightforward and consistent with the reduction criteria. □

3.2 Extended 𝑛-SuperHyperPlithogenic Sets

Finally, in applications where we need nested or iterated hyperstructures over multiple levels (e.g., multi-layer
sociograms, hierarchical decision-making with multiple dominant and recessive values), we define:

Definition 3.3 (Extended 𝑛-SuperHyperPlithogenic Set). Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a set of 𝑛 attributes,
each with a set of possible values 𝑃𝑣𝑖 . An Extended 𝑛-SuperHyperPlithogenic Set is a recursive, hierarchical
structure:

ExSHPS𝑛 =

(
𝑃𝑛, 𝑉,

{
𝑃𝑣𝑖

}𝑛
𝑖=1,

{
𝑑
(𝑛)
𝐷,𝑖

, 𝑑
(𝑛)
𝑅,𝑖

}𝑛
𝑖=1,

{
𝑐
(𝑛)
𝐷,𝑖

, 𝑐
(𝑛)
𝑅,𝑖

}𝑛
𝑖=1, Δ

(𝑛)
)
,

where
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• 𝑃1 ⊆ Universe, and 𝑃𝑘 = P(𝑃𝑘−1) for 𝑘 = 2, 3, . . . , 𝑛, forming a nested family of subsets (a hyperstruc-
ture).

• For each 𝑖 ∈ {1, . . . , 𝑛}, the pair of functions 𝑑 (𝑛)
𝐷,𝑖

and 𝑑
(𝑛)
𝑅,𝑖

map elements
(
𝑥 ∈ 𝑃𝑛, 𝑎𝑖 ∈ 𝑃𝑣𝑖

)
to subsets

of [0, 1]𝑠 , capturing multi-dimensional membership for both dominant and recessive aspects of the 𝑖-th
attribute.

• The pair of functions 𝑐 (𝑛)
𝐷,𝑖

and 𝑐
(𝑛)
𝑅,𝑖

assign multi-dimensional contradiction subsets in [0, 1]𝑡 for each pair
of attribute values in 𝑃𝑣𝑖 , again separating the dominant contradiction from the recessive contradiction.

• Δ(𝑛) is an aggregation scheme that orchestrates how these multi-level memberships and contradictions
are merged or compared across the entire hierarchy.

Theorem 3.4 (Reduction Theorem of Extended 𝑛-SuperHyperPlithogenic Set). An Extended 𝑛-SuperHyperPlithogenic
Set reduces to an Extended HyperPlithogenic Set if 𝑛 = 1 and the hyperstructural nesting

(
𝑃2, 𝑃3, . . . , 𝑃𝑛

)
is

omitted. Formally,
ExSHPS1 = ExHPS.

Proof. The Extended 𝑛-SuperHyperPlithogenic Set is defined recursively using the iterative construction:

𝑃𝑘 = P(𝑃𝑘−1), for 𝑘 ≥ 2,

where 𝑃𝑘 represents the 𝑘-th nested power set of the base set 𝑃1. For 𝑛 = 1, this iterative process terminates,
leaving only the base set 𝑃1 without any higher-order nesting. Consequently, the hyperstructural components
(𝑃2, 𝑃3, . . . , 𝑃𝑛) are absent.

The remaining structure consists solely of 𝑃1, along with the corresponding functions:

𝑑𝐷 : 𝑃1 ×𝑉 → P([0, 1]𝑠), 𝑑𝑅 : 𝑃1 ×𝑉 → P([0, 1]𝑠),

𝑐𝐷 : 𝑉 ×𝑉 → P([0, 1]𝑡 ), 𝑐𝑅 : 𝑉 ×𝑉 → P([0, 1]𝑡 ),
which match the definitions of the Extended HyperPlithogenic Set (ExHPS) as described in Definition 3.1.

Since no additional hyperstructural nesting or higher-order sets are involved when 𝑛 = 1, the structure reduces
directly to an Extended HyperPlithogenic Set:

ExSHPS1 = (𝑃1, 𝑎, 𝑉, 𝑑𝐷 , 𝑐𝐷 , 𝑑𝑅, 𝑐𝑅, Δ).

Thus, the theorem is proven. □

4 Additional Result: Extended Plithogenic Graphs

4.1 Extended Plithogenic Graphs

Plithogenic graphs are the graph-theoretical counterpart of Plithogenic sets. We consider extending this concept
to Extended Plithogenic Graphs. The definition of Extended Plithogenic Graphs is provided below.

Definition 4.1. [81, 93, 96] Let 𝐺 = (𝑉, 𝐸) be a crisp graph where 𝑉 is the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is
the set of edges. A Plithogenic Graph 𝑃𝐺 is defined as:

𝑃𝐺 = (𝑃𝑀, 𝑃𝑁)

where:

1. Plithogenic Vertex Set 𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓 , 𝑎𝐶 𝑓 ):

• 𝑀 ⊆ 𝑉 is the set of vertices.
• 𝑙 is an attribute associated with the vertices.
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• 𝑀𝑙 is the range of possible attribute values.
• 𝑎𝑑𝑓 : 𝑀 × 𝑀𝑙 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for vertices.
• 𝑎𝐶 𝑓 : 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) for vertices.

2. Plithogenic Edge Set 𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓 , 𝑏𝐶 𝑓 ):

• 𝑁 ⊆ 𝐸 is the set of edges.
• 𝑚 is an attribute associated with the edges.
• 𝑁𝑚 is the range of possible attribute values.
• 𝑏𝑑𝑓 : 𝑁 × 𝑁𝑚 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for edges.
• 𝑏𝐶 𝑓 : 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) for edges.

The Plithogenic Graph 𝑃𝐺 must satisfy the following conditions:

1. Edge Appurtenance Constraint: For all (𝑥, 𝑎), (𝑦, 𝑏) ∈ 𝑀 × 𝑀𝑙:

𝑏𝑑𝑓 ((𝑥𝑦), (𝑎, 𝑏)) ≤ min{𝑎𝑑𝑓 (𝑥, 𝑎), 𝑎𝑑𝑓 (𝑦, 𝑏)}

where 𝑥𝑦 ∈ 𝑁 is an edge between vertices 𝑥 and 𝑦, and (𝑎, 𝑏) ∈ 𝑁𝑚×𝑁𝑚 are the corresponding attribute
values.

2. Contradiction Function Constraint: For all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑁𝑚 × 𝑁𝑚:

𝑏𝐶 𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) ≤ min{𝑎𝐶 𝑓 (𝑎, 𝑐), 𝑎𝐶 𝑓 (𝑏, 𝑑)}

3. Reflexivity and Symmetry of Contradiction Functions:

𝑎𝐶 𝑓 (𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙

𝑎𝐶 𝑓 (𝑎, 𝑏) = 𝑎𝐶 𝑓 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙

𝑏𝐶 𝑓 (𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚

𝑏𝐶 𝑓 (𝑎, 𝑏) = 𝑏𝐶 𝑓 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

Definition 4.2 (Extended Plithogenic Graph). Let 𝐺 = (𝑉, 𝐸) be a crisp (classical) graph, where 𝑉 is a finite
set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. An Extended Plithogenic Graph (abbreviated as ExPlG) is
defined as a pair of Extended Plithogenic Sets, one for the vertices and one for the edges, together with suitable
constraints:

ExPlG =
(
ExPlS𝑉 , ExPlS𝐸

)
,

where:

• ExPlS𝑉 =
(
𝑉, 𝑙, 𝑀𝑙, 𝑑𝐷,𝑉 , 𝑐𝐷,𝑉 , 𝑑𝑅,𝑉 , 𝑐𝑅,𝑉

)
is an Extended Plithogenic Set corresponding to the vertex attribute 𝑙. Here:

𝑑𝐷,𝑉 : 𝑉×𝑀𝑙 → [0, 1]𝑠 , 𝑐𝐷,𝑉 : 𝑀𝑙×𝑀𝑙 → [0, 1]𝑡 , 𝑑𝑅,𝑉 : 𝑉×𝑀𝑙 → [0, 1]𝑠 , 𝑐𝑅,𝑉 : 𝑀𝑙×𝑀𝑙 → [0, 1]𝑡 .

The sets 𝑀𝑙 represent the range of possible values of the vertex attribute 𝑙.

• ExPlS𝐸 =
(
𝐸, 𝑚, 𝑁𝑚, 𝑑𝐷,𝐸 , 𝑐𝐷,𝐸 , 𝑑𝑅,𝐸 , 𝑐𝑅,𝐸

)
is an Extended Plithogenic Set corresponding to the edge attribute 𝑚. Here:

𝑑𝐷,𝐸 : 𝐸×𝑁𝑚 → [0, 1]𝑠 , 𝑐𝐷,𝐸 : 𝑁𝑚×𝑁𝑚 → [0, 1]𝑡 , 𝑑𝑅,𝐸 : 𝐸×𝑁𝑚 → [0, 1]𝑠 , 𝑐𝑅,𝐸 : 𝑁𝑚×𝑁𝑚 → [0, 1]𝑡 .

The sets 𝑁𝑚 represent the range of possible values of the edge attribute 𝑚.
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Additionally, the following conditions must be satisfied:

1. Vertex Contradiction Functions (Dominant & Recessive) – Reflexivity and Symmetry:
For all 𝑢, 𝑣 ∈ 𝑀𝑙,

𝑐𝐷,𝑉 (𝑢, 𝑢) = 0, 𝑐𝐷,𝑉 (𝑢, 𝑣) = 𝑐𝐷,𝑉 (𝑣, 𝑢), 𝑐𝑅,𝑉 (𝑢, 𝑢) = 0, 𝑐𝑅,𝑉 (𝑢, 𝑣) = 𝑐𝑅,𝑉 (𝑣, 𝑢).

2. Edge Contradiction Functions (Dominant & Recessive) – Reflexivity and Symmetry:
For all 𝑥, 𝑦 ∈ 𝑁𝑚,

𝑐𝐷,𝐸 (𝑥, 𝑥) = 0, 𝑐𝐷,𝐸 (𝑥, 𝑦) = 𝑐𝐷,𝐸 (𝑦, 𝑥), 𝑐𝑅,𝐸 (𝑥, 𝑥) = 0, 𝑐𝑅,𝐸 (𝑥, 𝑦) = 𝑐𝑅,𝐸 (𝑦, 𝑥).

3. Edge Appurtenance Constraints:
Let (𝑢, 𝑣) ∈ 𝐸 be an edge in the crisp sense, and let 𝛼, 𝛽 ∈ 𝑁𝑚 be possible edge-attribute values. We
require

𝑑𝐷,𝐸

(
(𝑢, 𝑣), (𝛼)

)
≤ min

{
max
ℓ∈𝑀𝑙

𝑑𝐷,𝑉 (𝑢, ℓ), max
𝑟∈𝑀𝑙

𝑑𝐷,𝑉 (𝑣, 𝑟)
}
,

and similarly for the recessive membership,

𝑑𝑅,𝐸
(
(𝑢, 𝑣), (𝛼)

)
≤ min

{
max
ℓ∈𝑀𝑙

𝑑𝑅,𝑉 (𝑢, ℓ), max
𝑟∈𝑀𝑙

𝑑𝑅,𝑉 (𝑣, 𝑟)
}
.

In words, an edge’s dominant (or recessive) membership cannot exceed the minimal combination of the
vertices’ dominant (or recessive) memberships.

4. Optional Edge-Vertex Contradiction Constraints:
Depending on the application, one can also enforce that the edge contradiction measures (𝑐𝐷,𝐸 , 𝑐𝑅,𝐸)
be bounded above by suitably combining the vertex contradiction measures (𝑐𝐷,𝑉 , 𝑐𝑅,𝑉 ). For instance,
one can impose:

𝑐𝐷,𝐸 (𝛼, 𝛽) ≤ min{ 𝑐𝐷,𝑉 (𝑎, 𝑎′), 𝑐𝐷,𝑉 (𝑏, 𝑏′)},
for relevant choices of 𝛼 = (𝑎, 𝑎′), 𝛽 = (𝑏, 𝑏′) in some product domain. Such constraints generalize the
classical plithogenic approach.

Remark 4.3. In contrast to a Classical Plithogenic Graph, the Extended Plithogenic Graph incorporates two
types of membership (dominant and recessive) and two types of contradiction functions for both vertices and
edges. This dual structure allows for finer control over the positive (dominant) and negative (recessive) aspects
of each attribute value.

We next state and prove a few theorems that illustrate some fundamental mathematical properties of Extended
Plithogenic Graphs.

Theorem 4.4 (Non-Negativity and Boundedness of Membership Functions). Let ExPlG =
(
ExPlS𝑉 ,ExPlS𝐸

)
be an Extended Plithogenic Graph as in Definition 4.2. Then for any vertex 𝑣 ∈ 𝑉 , any edge 𝑒 ∈ 𝐸 , and any
respective attribute values 𝛼 ∈ 𝑀𝑙 or 𝛽 ∈ 𝑁𝑚:

0 ≤ 𝑑𝐷,𝑉 (𝑣, 𝛼), 𝑑𝑅,𝑉 (𝑣, 𝛼), 𝑑𝐷,𝐸 (𝑒, 𝛽), 𝑑𝑅,𝐸 (𝑒, 𝛽) ≤ 1.

Proof. By Definition 2.8, each DAF (Degree of Appurtenance Function) for the dominant or recessive com-
ponents maps into [0, 1]𝑠 . In particular, each scalar component of the membership lies within [0, 1]. Since
𝑑𝐷,𝑉 , 𝑑𝑅,𝑉 are DAFs for vertices (dominant and recessive, respectively) and 𝑑𝐷,𝐸 , 𝑑𝑅,𝐸 are DAFs for edges,
their values, being partial or full memberships, must lie in [0, 1]. Hence the statement follows directly from
the codomain of these functions. □

Theorem 4.5 (Reflexivity and Symmetry of Contradiction Functions). In any Extended Plithogenic Graph
ExPlG, the contradiction functions 𝑐𝐷,𝑉 , 𝑐𝑅,𝑉 , 𝑐𝐷,𝐸 , 𝑐𝑅,𝐸 satisfy:

𝑐𝐷,𝑉 (𝑣, 𝑣) = 0, 𝑐𝐷,𝑉 (𝑢, 𝑣) = 𝑐𝐷,𝑉 (𝑣, 𝑢),

𝑐𝑅,𝑉 (𝑣, 𝑣) = 0, 𝑐𝑅,𝑉 (𝑢, 𝑣) = 𝑐𝑅,𝑉 (𝑣, 𝑢),
𝑐𝐷,𝐸 (𝑥, 𝑥) = 0, 𝑐𝐷,𝐸 (𝑥, 𝑦) = 𝑐𝐷,𝐸 (𝑦, 𝑥),
𝑐𝑅,𝐸 (𝑥, 𝑥) = 0, 𝑐𝑅,𝐸 (𝑥, 𝑦) = 𝑐𝑅,𝐸 (𝑦, 𝑥),

for all 𝑢, 𝑣 ∈ 𝑀𝑙 and 𝑥, 𝑦 ∈ 𝑁𝑚.
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Proof. These equalities and symmetries are explicitly required in Definition 4.2 (and also in the general
definition of an Extended Plithogenic Set, cf. Definition 2.8). By construction, each contradiction function
𝑐𝐷,𝑉 , 𝑐𝑅,𝑉 , 𝑐𝐷,𝐸 , 𝑐𝑅,𝐸 must be reflexive (i.e. zero on the diagonal) and symmetric. Hence the statement holds
by definition. □

Theorem 4.6 (Extension to Classical Plithogenic Graph). Consider an Extended Plithogenic Graph ExPlG =(
ExPlS𝑉 ,ExPlS𝐸

)
. If

𝑑𝑅,𝑉 (𝑣, 𝛼) = 0 and 𝑐𝑅,𝑉 (𝑢, 𝑣) = 0,

for all 𝑣 ∈ 𝑉, 𝛼 ∈ 𝑀𝑙, 𝑢 ∈ 𝑀𝑙, and similarly

𝑑𝑅,𝐸 (𝑒, 𝛽) = 0 and 𝑐𝑅,𝐸 (𝑥, 𝑦) = 0,

for all 𝑒 ∈ 𝐸, 𝛽 ∈ 𝑁𝑚, 𝑥, 𝑦 ∈ 𝑁𝑚, then the Extended Plithogenic Graph collapses to a classical Plithogenic
Graph in the sense of [81, 93, 96].

Proof. Under the stated conditions, all recessive memberships and contradictions become identically zero.
Hence there remains only the dominant membership and contradiction functions 𝑑𝐷,𝑉 , 𝑐𝐷,𝑉 , 𝑑𝐷,𝐸 , 𝑐𝐷,𝐸 .
This exactly reproduces the usual plithogenic framework with a single membership function and a single
contradiction function for vertices and edges. Thus, the structure reduces to that of a classical Plithogenic
Graph. □

4.2 General Extended Plithogenic Graph

The General Plithogenic Graph is a relax definition of the Plithogenic Graph (cf. [17, 24, 26, 34, 41, 58]).

Definition 4.7 (General Plithogenic Graph). [41] Let 𝐺 = (𝑉, 𝐸) be a classical graph, where 𝑉 is a finite set
of vertices, and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges.

A General Plithogenic Graph 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁) consists of:

1. General Plithogenic Vertex Set 𝑃𝑀:

𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓 , 𝑎𝐶 𝑓 )

where:

• 𝑀 ⊆ 𝑉 : Set of vertices.
• 𝑙: Attribute associated with the vertices.
• 𝑀𝑙: Range of possible attribute values.
• 𝑎𝑑𝑓 : 𝑀 × 𝑀𝑙 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for vertices.
• 𝑎𝐶 𝑓 : 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡 : Degree of Contradiction Function (DCF) for vertices.

2. General Plithogenic Edge Set 𝑃𝑁:

𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓 , 𝑏𝐶 𝑓 )

where:

• 𝑁 ⊆ 𝐸 : Set of edges.
• 𝑚: Attribute associated with the edges.
• 𝑁𝑚: Range of possible attribute values.
• 𝑏𝑑𝑓 : 𝑁 × 𝑁𝑚 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for edges.
• 𝑏𝐶 𝑓 : 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡 : Degree of Contradiction Function (DCF) for edges.

The General Plithogenic Graph 𝐺𝐺𝑃 only needs to satisfy the following Reflexivity and Symmetry properties
of the Contradiction Functions:
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• Reflexivity and Symmetry of Contradiction Functions:

𝑎𝐶 𝑓 (𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙

𝑎𝐶 𝑓 (𝑎, 𝑏) = 𝑎𝐶 𝑓 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙

𝑏𝐶 𝑓 (𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚

𝑏𝐶 𝑓 (𝑎, 𝑏) = 𝑏𝐶 𝑓 (𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

Next, we present the General Extended Plithogenic Graphs, which provide a relaxed definition of the Extended
Plithogenic Graphs.

Definition 4.8 (General Extended Plithogenic Graph). Let 𝐺 = (𝑉, 𝐸) be a crisp graph. A General Extended
Plithogenic Graph is given by:

𝐺GenExPl =
(
ExPlS𝑉 , ExPlS𝐸

)
,

where:

• ExPlS𝑉 = (𝑉, 𝑙, 𝑀𝑙, 𝑑𝐷,𝑉 , 𝑐𝐷,𝑉 , 𝑑𝑅,𝑉 , 𝑐𝑅,𝑉 ),

• ExPlS𝐸 = (𝐸, 𝑚, 𝑁𝑚, 𝑑𝐷,𝐸 , 𝑐𝐷,𝐸 , 𝑑𝑅,𝐸 , 𝑐𝑅,𝐸),

but the only mandatory requirements are:

• Reflexivity and Symmetry of the contradiction functions:

𝑐𝐷,𝑉 (𝑣, 𝑣) = 0, 𝑐𝐷,𝑉 (𝑢, 𝑣) = 𝑐𝐷,𝑉 (𝑣, 𝑢), 𝑐𝑅,𝑉 (𝑣, 𝑣) = 0, 𝑐𝑅,𝑉 (𝑢, 𝑣) = 𝑐𝑅,𝑉 (𝑣, 𝑢),

for all 𝑢, 𝑣 ∈ 𝑀𝑙, and

𝑐𝐷,𝐸 (𝑥, 𝑥) = 0, 𝑐𝐷,𝐸 (𝑥, 𝑦) = 𝑐𝐷,𝐸 (𝑦, 𝑥), 𝑐𝑅,𝐸 (𝑥, 𝑥) = 0, 𝑐𝑅,𝐸 (𝑥, 𝑦) = 𝑐𝑅,𝐸 (𝑦, 𝑥),

for all 𝑥, 𝑦 ∈ 𝑁𝑚.

• Memberships within [0, 1]: 𝑑𝐷,𝑉 , 𝑑𝑅,𝑉 , 𝑑𝐷,𝐸 , 𝑑𝑅,𝐸 ∈ [0, 1]𝑠 componentwise.

No further constraints (such as edge-vertex membership constraints) are strictly enforced in a General Extended
Plithogenic Graph.

Remark 4.9. Definition 4.8 generalizes Definition 4.2 by omitting the additional plithogenic constraints such
as:

𝑑𝐷,𝐸 ((𝑢, 𝑣), 𝛽) ≤ min{· · · },

and so on. One only imposes the usual reflexivity/symmetry for the contradiction measures. Hence the structure
is broader and can accommodate more relaxed modeling requirements.

Theorem 4.10 (Existence of General Extended Plithogenic Graph). Any pair of Extended Plithogenic Sets on
𝑉 and 𝐸 with reflexive and symmetric contradiction functions and membership functions in [0, 1]𝑠 induces a
General Extended Plithogenic Graph structure.

Proof. Take any crisp graph 𝐺 = (𝑉, 𝐸). Suppose we define for vertices:

ExPlS𝑉 = (𝑉, 𝑙, 𝑀𝑙, 𝑑𝐷,𝑉 , 𝑐𝐷,𝑉 , 𝑑𝑅,𝑉 , 𝑐𝑅,𝑉 ),

and for edges:
ExPlS𝐸 = (𝐸, 𝑚, 𝑁𝑚, 𝑑𝐷,𝐸 , 𝑐𝐷,𝐸 , 𝑑𝑅,𝐸 , 𝑐𝑅,𝐸),

where each contradiction function is reflexive and symmetric, and each membership function takes values in 
[0, 1]𝑠 . By Definition 4.8, these data automatically form a General Extended Plithogenic Graph. No further
conditions (beyond those enumerated) are required, so such a structure trivially exists. □
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Theorem 4.11 (Reduction to Extended Plithogenic Graph). Any General Extended Plithogenic Graph satisfying
the additional constraints enumerated in Definition 4.2 (such as the Edge Appurtenance Constraints) becomes
a full Extended Plithogenic Graph.

Proof. The only difference between a General Extended Plithogenic Graph (Definition 4.8) and the Extended
Plithogenic Graph (Definition 4.2) is the presence or absence of constraints such as:

𝑑𝐷,𝐸 ((𝑢, 𝑣), 𝛽) ≤ min
{

max
ℓ∈𝑀𝑙

𝑑𝐷,𝑉 (𝑢, ℓ), max
𝑟∈𝑀𝑙

𝑑𝐷,𝑉 (𝑣, 𝑟)
}
,

and likewise for recessive membership and any optional edge-vertex contradiction constraints. If a given
General Extended Plithogenic Graph additionally enforces these constraints, it precisely satisfies the conditions
of an Extended Plithogenic Graph and is therefore in that class. □

Question 4.12. Can the aforementioned graph be extended to Directed Graphs [4,45], Bidirected Graphs [11–
13,47,51,64], Mixed Graphs [57,66,67], Hypergraphs [10,14], and SuperHypergraphs [29,37,40,48,49,83,84]?
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Chapter 5
Double-Framed Superhypersoft Set and Double-Framed Treesoft Set

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Soft sets are mathematical tools designed for decision-making, offering a framework that maps parameters to
subsets of a universal set, thereby effectively addressing uncertainty and vagueness [29,32]. Extensions of soft
sets, such as Hypersoft Sets, SuperHypersoft Sets, Treesoft Sets, Double-Framed Soft Sets, and Double-Framed
Hypersoft Sets, have been developed to handle more complex decision-making scenarios.

In this short paper, we define the Double-Framed SuperHypersoft Set and Double-Framed Treesoft Set, and
provide a concise exploration of their relationships with existing concepts.

Keywords: Superhypersoft set, Soft Set, Treesoft set, Hypersoft set

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 SuperHypersoft Set and Treesoft Set

This subsection explores the foundational concepts of Soft Sets, Hypersoft Sets, Treesoft Sets, and Super-
Hypersoft Sets, which form the basis for advanced decision-making methodologies. A Soft Set provides a
flexible framework for parameter-based decision analysis by associating attributes (parameters) with subsets of
a universal set, effectively managing uncertainty in decision processes [3, 7, 10, 22, 29, 30, 32, 47, 54, 58, 60].

Building upon this concept, a Hypersoft Set refines multi-attribute decision analysis by linking combinations
of multiple attributes to subsets of a universal set, enabling a more comprehensive evaluation [1, 2, 14, 18, 20,
23, 33–41, 45, 48].

Treesoft Sets introduce a hierarchical structure for analyzing complex data. They utilize attribute trees where
both nodes and leaves correspond to subsets of a universal set, providing a detailed representation of hierarchical
relationships [4, 4, 11, 12, 15, 42, 43, 43, 44, 49, 51–53].

SuperHypersoft Sets extend Hypersoft Set theory further by mapping power set combinations of multiple
attributes to subsets of a universal set. This approach facilitates high-dimensional decision-making and models
intricate relationships among attributes, offering enhanced flexibility for advanced applications [8, 13, 15–17,
19, 21, 25, 28, 31, 50, 54–57, 59].

The definitions are concisely provided below. For more detailed properties, operations, and applications, please
refer to the respective references.

Definition 1.1 (Soft Set). [29, 32] Let 𝑈 be a universal set and 𝐴 be a set of attributes. A soft set over 𝑈 is a
pair (F , 𝑆), where 𝑆 ⊆ 𝐴 and F : 𝑆 → P(𝑈). Here, P(𝑈) denotes the power set of 𝑈. Mathematically, a soft
set is represented as:

(F , 𝑆) = {(𝛼, F (𝛼)) | 𝛼 ∈ 𝑆, F (𝛼) ∈ P(𝑈)}.
Each 𝛼 ∈ 𝑆 is called a parameter, and F (𝛼) is the set of elements in 𝑈 associated with 𝛼.

Definition 1.2 (Hypersoft Set). [48] Let 𝑈 be a universal set, and let A1,A2, . . . ,A𝑚 be attribute domains.
Define C = A1 × A2 × · · · × A𝑚, the Cartesian product of these domains. A hypersoft set over 𝑈 is a pair
(𝐺, C), where 𝐺 : C → P(𝑈). The hypersoft set is expressed as:

(𝐺, C) = {(𝛾, 𝐺 (𝛾)) | 𝛾 ∈ C, 𝐺 (𝛾) ∈ P(𝑈)}.

For an 𝑚-tuple 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑚) ∈ C, where 𝛾𝑖 ∈ A𝑖 for 𝑖 = 1, 2, . . . , 𝑚, 𝐺 (𝛾) represents the subset of 𝑈
corresponding to the combination of attribute values 𝛾1, 𝛾2, . . . , 𝛾𝑚.

71



Definition 1.3 (SuperHyperSoft Set). [50] Let 𝑈 be a universal set, and let P(𝑈) denote the power set of 𝑈.
Consider 𝑛 distinct attributes 𝑎1, 𝑎2, . . . , 𝑎𝑛, where 𝑛 ≥ 1. Each attribute 𝑎𝑖 is associated with a set of attribute
values 𝐴𝑖 , satisfying the property 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for all 𝑖 ≠ 𝑗 .

Define P(𝐴𝑖) as the power set of 𝐴𝑖 for each 𝑖 = 1, 2, . . . , 𝑛. Then, the Cartesian product of the power sets of
attribute values is given by:

C = P(𝐴1) × P(𝐴2) × · · · × P(𝐴𝑛).

A SuperHyperSoft Set over 𝑈 is a pair (𝐹, C), where:

𝐹 : C → P(𝑈),

and 𝐹 maps each element (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ C (with 𝛼𝑖 ∈ P(𝐴𝑖)) to a subset 𝐹 (𝛼1, 𝛼2, . . . , 𝛼𝑛) ⊆ 𝑈.
Mathematically, the SuperHyperSoft Set is represented as:

(𝐹, C) = {(𝛾, 𝐹 (𝛾)) | 𝛾 ∈ C, 𝐹 (𝛾) ∈ P(𝑈)}.

Here, 𝛾 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ C, where 𝛼𝑖 ∈ P(𝐴𝑖) for 𝑖 = 1, 2, . . . , 𝑛, and 𝐹 (𝛾) corresponds to the subset of
𝑈 defined by the combined attribute values 𝛼1, 𝛼2, . . . , 𝛼𝑛.

Definition 1.4 (Treesoft Set). [51] Let 𝑈 be a universe of discourse, and let 𝐻 be a non-empty subset of 𝑈,
with 𝑃(𝐻) denoting the power set of 𝐻. Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be a set of attributes (parameters, factors,
etc.), for some integer 𝑛 ≥ 1, where each attribute 𝐴𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) is considered a first-level attribute.

Each first-level attribute 𝐴𝑖 consists of sub-attributes, defined as:

𝐴𝑖 = {𝐴𝑖,1, 𝐴𝑖,2, . . . },

where the elements 𝐴𝑖, 𝑗 (for 𝑗 = 1, 2, . . .) are second-level sub-attributes of 𝐴𝑖 . Each second-level sub-attribute
𝐴𝑖, 𝑗 may further contain sub-sub-attributes, defined as:

𝐴𝑖, 𝑗 = {𝐴𝑖, 𝑗 ,1, 𝐴𝑖, 𝑗 ,2, . . . },

and so on, allowing for as many levels of refinement as needed. Thus, we can define sub-attributes of an 𝑚-th
level with indices 𝐴𝑖1 ,𝑖2 ,...,𝑖𝑚 , where each 𝑖𝑘 (for 𝑘 = 1, . . . , 𝑚) denotes the position at each level.

This hierarchical structure forms a tree-like graph, which we denote as Tree(𝐴), with root 𝐴 (level 0) and
successive levels from 1 up to 𝑚, where 𝑚 is the depth of the tree. The terminal nodes (nodes without
descendants) are called leaves of the graph-tree.

A TreeSoft Set 𝐹 is defined as a function:

𝐹 : 𝑃(Tree(𝐴)) → 𝑃(𝐻),

where Tree(𝐴) represents the set of all nodes and leaves (from level 1 to level 𝑚) of the graph-tree, and
𝑃(Tree(𝐴)) denotes its power set.

1.2 Double-Framed Hypersoft Set

The Double-Framed Soft Set [5,6,24,26,27,46] and Double-Framed Hypersoft Set [9,46] are extended concepts
of the Soft Set and Hypersoft Set, incorporating two frames for enhanced representation. Their definitions are
provided below.

Definition 1.5 (Double Framed Soft Set). [5, 6, 24, 26, 27, 46] Let 𝑈 be the universal set, and let 𝐴 be a set of
parameters. A Double-Framed Soft Set is a triple ⟨(𝛼, 𝛽); 𝐴⟩, where:

1. 𝛼 : 𝐴 → 𝑃(𝑈) and 𝛽 : 𝐴 → 𝑃(𝑈) are mappings from the parameter set 𝐴 to the power set of 𝑈.

2. 𝛼(𝑥) represents the positive frame and 𝛽(𝑥) represents the negative frame for each parameter 𝑥 ∈ 𝐴.
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A Double-Framed Soft Set satisfies the condition:

∀𝑥, 𝑦 ∈ 𝐴, 𝛼(𝑥 ∗ 𝑦) ⊇ 𝛼(𝑥) ∩ 𝛼(𝑦), 𝛽(𝑥 ∗ 𝑦) ⊆ 𝛽(𝑥) ∪ 𝛽(𝑦),

where ∗ is a binary operation defined on 𝐴.

Definition 1.6 (Double-Framed Hypersoft Set (DFHSS)). [9, 46] Let 𝑈 be the universal set and 𝑃(𝑈) denote
the power set of 𝑈. Let {𝑎1, 𝑎2, . . . , 𝑎𝑛} represent 𝑛 distinct attributes, where each attribute 𝑎𝑖 is associated
with a set of attribute values 𝜑𝑖 , satisfying the conditions:

𝜑𝑖 ∩ 𝜑 𝑗 = ∅ for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}.

A Double-Framed Hypersoft Set (DFHSS) is defined as a tuple:

(𝜋1, 𝜋2; 𝜑1 × 𝜑2 × · · · × 𝜑𝑛),

where:

• 𝜑1 × 𝜑2 × · · · × 𝜑𝑛 is the Cartesian product of the attribute value sets.

• 𝜋1, 𝜋2 : 𝜑1 × 𝜑2 × · · · × 𝜑𝑛 → 𝑃(𝑈) are mappings that associate each tuple of attribute values with
subsets of the universal set 𝑈.

2 Result of this Short Paper

This section concisely presents the results of this paper.

2.1 Double-Framed Superhypersoft set

Recall that a SuperHypersoft Set [50] extends a Hypersoft Set by allowing each attribute to take on multiple
values from the power set of its domain, instead of just single values. We incorporate the idea of two frames
(often referred to as positive and negative frames, or lower and upper frames) to arrive at a Double-Framed
version.

Definition 2.1 (Double-Framed SuperHypersoft Set). Let 𝑈 be a universal set. Suppose there are 𝑛 distinct
attributes 𝑎1, 𝑎2, . . . , 𝑎𝑛, each associated with a set of possible values 𝐴𝑖 such that 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for all 𝑖 ≠ 𝑗 .
For each 𝑖 ∈ {1, 2, . . . , 𝑛}, let

P(𝐴𝑖)

denote the power set of 𝐴𝑖 . Define

C = P(𝐴1) × P(𝐴2) × · · · × P(𝐴𝑛),

which is the Cartesian product of these power sets.

A Double-Framed SuperHypersoft Set (DFSHSS) over 𝑈 is then a triple(
Θ1,Θ2; C

)
,

where
Θ1 : C → P(𝑈), Θ2 : C → P(𝑈).

That is, both Θ1 and Θ2 map each element of C (i.e., each 𝑛-tuple 𝛾 = (𝛼1, . . . , 𝛼𝑛) with 𝛼𝑖 ∈ P(𝐴𝑖)) to a
subset of 𝑈.

Informally, Θ1 (𝛾) and Θ2 (𝛾) can be viewed as two distinct but related “frames” (e.g., a positive vs. negative,
or lower vs. upper approximation) for the combined attribute values in 𝛾.

Remark 2.2. If Θ1 = Θ2, then we recover the standard SuperHypersoft Set (Θ1, C). If P(𝐴𝑖) is replaced by a
single-valued domain 𝐴𝑖 , we would get a structure akin to a Double-Framed Hypersoft Set [9, 46].
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Theorem 2.3. (1) Every Double-Framed Hypersoft Set is a special case of a Double-Framed SuperHypersoft
Set. (2) Every SuperHypersoft Set is a special case of a Double-Framed SuperHypersoft Set.

Proof. (1) Double-Framed Hypersoft Set [9,46] is typically defined by having 𝑛 distinct attributes {𝑎1, . . . , 𝑎𝑛},
each with a single-valued domain 𝜑𝑖 (i.e., each 𝜑𝑖 is a set of attribute values, but we do not take their power
set). We consider

𝜑1 × 𝜑2 × · · · × 𝜑𝑛

as the Cartesian product of these domains. A Double-Framed Hypersoft Set is a pair of mappings

𝜋1, 𝜋2 : 𝜑1 × · · · × 𝜑𝑛 → P(𝑈).

To see that this is a special case of Definition 2.1, observe:

• In the Double-Framed SuperHypersoft Set, each domain for 𝑎𝑖 is P(𝐴𝑖).

• If each domain P(𝐴𝑖) is restricted to only take singletons (or equivalently, if 𝐴𝑖 is configured so that only
one subset from P(𝐴𝑖) is effectively chosen, such as the entire set or a specific single element), then:

– The Cartesian product P(𝐴1) × · · · × P(𝐴𝑛) simplifies to 𝜑1 × · · · × 𝜑𝑛, corresponding to single-
valued domains.

• Define Θ1 = 𝜋1 and Θ2 = 𝜋2, aligning the frames in the Double-Framed SuperHypersoft Set with the
mappings of a Double-Framed Hypersoft Set.

Under this restriction, Θ1 and Θ2 yield precisely the Double-Framed Hypersoft Set mappings. Hence, Double-
Framed SuperHypersoft Sets reduce to Double-Framed Hypersoft Sets under single-valued domains.

(2) SuperHypersoft Set [50] is a pair (𝐹, C), where C = P(𝐴1) × · · · × P(𝐴𝑛) and

𝐹 : C → P(𝑈).

Comparing with Definition 2.1, if we set

Θ1 (𝛾) = Θ2 (𝛾) = 𝐹 (𝛾) for all 𝛾 ∈ C,

we recover exactly the original SuperHypersoft Set. That is, a Double-Framed SuperHypersoft Set with
identical frames Θ1 = Θ2 becomes the usual SuperHypersoft Set.

Hence, Double-Framed SuperHypersoft Sets generalize both Double-Framed Hypersoft Sets and SuperHyper-
soft Sets. □

2.2 Double-Framed Treesoft Set

We now define the Double-Framed Treesoft Set, extending the idea of a Treesoft Set (which maps subsets of a
hierarchical attribute tree to subsets of the universe) by introducing two frames.

Definition 2.4 (Double-Framed Treesoft Set). Let:

• 𝑈 be a universal set.

• Tree(𝐴) be a hierarchical attribute tree constructed from an attribute set 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} (with
possibly multiple levels of sub-attributes, sub-sub-attributes, etc.).

• 𝑃(Tree(𝐴)) be the power set of all nodes (including leaves) in the tree Tree(𝐴).
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A Double-Framed Treesoft Set (DFTS) is a triple(
Φ1,Φ2; Tree(𝐴)

)
,

where
Φ1 : 𝑃

(
Tree(𝐴)

)
→ P(𝑈), Φ2 : 𝑃

(
Tree(𝐴)

)
→ P(𝑈).

For each subset of nodes 𝑋 ⊆ Tree(𝐴), Φ1 (𝑋) and Φ2 (𝑋) represent two distinct frames (e.g., positive vs.
negative or lower vs. upper) for the elements of 𝑈 relevant to the portion of the tree in 𝑋 .

Remark 2.5. If Φ1 = Φ2, then (Φ1,Tree(𝐴)) recovers the standard Treesoft Set in the sense of [51] (mapping
from 𝑃(Tree(𝐴)) to P(𝑈)). If we consider a trivial one-level tree (i.e., the attribute tree is just the parameter
set 𝐴 without deeper sub-attributes), then (Φ1,Φ2; Tree(𝐴)) reduces to a Double-Framed Soft Set [27, 46].

Theorem 2.6. (1) Every Double-Framed Soft Set is a particular case of a Double-Framed Treesoft Set. (2)
Every Treesoft Set is a particular case of a Double-Framed Treesoft Set.

Proof. (1) Double-Framed Soft Set [5, 6, 24, 26, 27, 46] is given as a triple

⟨(𝛼, 𝛽); 𝐴⟩,

where 𝐴 is the parameter set, and

𝛼 : 𝐴 → P(𝑈), 𝛽 : 𝐴 → P(𝑈).

To embed this into the Double-Framed Treesoft Set framework, consider a single-level tree:

Tree(𝐴) = {𝐴1, 𝐴2, . . . , 𝐴𝑛} (with no deeper sub-attributes),

where each 𝐴𝑖 simply represents one parameter in 𝐴. Then

𝑃
(
Tree(𝐴)

)
= 𝑃(𝐴) (the power set of the parameters).

Define
Φ1 (𝑋) =

⋃
𝑥∈𝑋

𝛼(𝑥), Φ2 (𝑋) =
⋃
𝑥∈𝑋

𝛽(𝑥),

for 𝑋 ⊆ 𝐴. In words, if 𝑋 is a collection of parameters (now viewed as nodes in the tree), Φ1 (𝑋) aggregates
the corresponding sets 𝛼(𝑥), and Φ2 (𝑋) aggregates the corresponding sets 𝛽(𝑥). Clearly,

Φ1,Φ2 : 𝑃(𝐴) → P(𝑈).

Thus,
(
Φ1,Φ2; Tree(𝐴)

)
is a Double-Framed Treesoft Set. If you only ever evaluate Φ1 and Φ2 on singletons

{𝑥} ⊆ 𝐴, you recover 𝛼(𝑥) and 𝛽(𝑥), precisely mirroring the Double-Framed Soft Set structure. Consequently,
every Double-Framed Soft Set is realized as a special (single-level) case of the Double-Framed Treesoft Set.

(2) Treesoft Set [51] is a function
𝐹 : 𝑃

(
Tree(𝐴)

)
→ P(𝑈).

We embed this in a Double-Framed Treesoft Set by letting

Φ1 (𝑋) = 𝐹 (𝑋), Φ2 (𝑋) = 𝐹 (𝑋) for all 𝑋 ⊆ Tree(𝐴).

Hence, Φ1 = Φ2 = 𝐹. This yields a Double-Framed Treesoft Set
(
Φ1,Φ2; Tree(𝐴)

)
that is indistinguishable

from the original (single-frame) Treesoft Set when frames coincide. Therefore, the standard Treesoft Set is a
particular case of the Double-Framed Treesoft Set.

Summarizing, Double-Framed Treesoft Sets subsume both Double-Framed Soft Sets (by restricting the tree to
one level) and standard Treesoft Sets (by letting the two frames coincide). □
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Abstract

Concepts such as Fuzzy Sets [23, 47], Neutrosophic Sets [32, 33], and Plithogenic Sets [35] have been exten-
sively studied for addressing uncertainty, with diverse applications across numerous fields. Building on the
Plithogenic Set, the HyperPlithogenic Set and SuperHyperPlithogenic Set have also gained recognition [15].
A Plithogenic Cubic Set integrates interval-valued and single-valued fuzzy memberships, augmented by multi-
attribute aggregation using plithogenic structures. This paper defines the HyperPlithogenic Cubic Set and
SuperHyperPlithogenic Cubic Set and explores related concepts such as the HyperPlithogenic Fuzzy Cubic
Set, HyperPlithogenic Intuitionistic Fuzzy Cubic Set, and HyperPlithogenic Neutrosophic Cubic Set.

Keywords: Plithogenic Set, HyperPlithogenic Set, n-SuperhyperPlithogenic Set, Plithogenic Cubic Set

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Plithogenic Set

The Plithogenic Set is a mathematical framework designed to integrate multi-valued degrees of appurtenance
and contradiction, making it particularly effective for addressing complex decision-making scenarios. Numer-
ous studies have explored the properties and applications of Plithogenic Sets, as highlighted in works such
as [1, 13, 28–30, 39, 43].

Additionally, related concepts like the Plithogenic Graph have received considerable attention and analysis in
various studies [11, 18]. The Plithogenic Set’s versatility lies in its ability to generalize several established
mathematical frameworks, including Fuzzy Sets [47, 48], Intuitionistic Fuzzy Sets [5, 6], Vague Sets [7, 19],
Neutrosophic Sets [33, 34], Picture Fuzzy Sets [9, 27, 42], Bipolar Neutrosophic Sets [10, 46], Hyperfuzzy
Sets [20, 21], and Hesitant Fuzzy Sets [44, 45].

The formal definition is presented below.

Definition 1.1 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 1.2 (Powerset). [14, 26] The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible
subsets of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 1.3 (𝑛-th Powerset). (cf. [14, 16, 31, 38])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined recursively as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.
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Definition 1.4 (Plithogenic Set). [36,37] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined
as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) 1

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)

Definition 1.5 (HyperPlithogenic Set). [12, 15, 17] Let 𝑋 be a non-empty set, and let 𝐴 be a set of attributes.
For each attribute 𝑣 ∈ 𝐴, let 𝑃𝑣 be the set of possible values of 𝑣. A HyperPlithogenic Set 𝐻𝑃𝑆 over 𝑋 is
defined as:

𝐻𝑃𝑆 = (𝑃, {𝑣𝑖}𝑛𝑖=1, {𝑃𝑣𝑖}
𝑛
𝑖=1, { ˜𝑝𝑑𝑓 𝑖}𝑛𝑖=1, 𝑝𝐶𝐹)

where:

• 𝑃 ⊆ 𝑋 is a subset of the universe.

• For each attribute 𝑣𝑖 , 𝑃𝑣𝑖 is the set of possible values.

• For each attribute 𝑣𝑖 , ˜𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 → �̃�( [0, 1]𝑠) is the Hyper Degree of Appurtenance Function
(HDAF), assigning to each element 𝑥 ∈ 𝑃 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a set of membership degrees.

• 𝑝𝐶𝐹 :
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
→ [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

Definition 1.6 (𝑛-SuperHyperPlithogenic Set). [12,15,17] Let 𝑋 be a non-empty set, and let𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
be a set of attributes, each associated with a set of possible values 𝑃𝑣𝑖 . An 𝑛-SuperHyperPlithogenic Set
(𝑆𝐻𝑃𝑆𝑛) is defined recursively as:

𝑆𝐻𝑃𝑆𝑛 = (𝑃𝑛, 𝑉, {𝑃𝑣𝑖 }𝑛𝑖=1, { ˜𝑝𝑑𝑓 (𝑛)𝑖 }𝑛𝑖=1, 𝑝𝐶𝐹 (𝑛) ),

where:

• 𝑃1 ⊆ 𝑋 , and for 𝑘 ≥ 2,
𝑃𝑘 = P̃ (𝑃𝑘−1),

represents the 𝑘-th nested family of non-empty subsets of 𝑃1.

• For each attribute 𝑣𝑖 ∈ 𝑉 , 𝑃𝑣𝑖 is the set of possible values of the attribute 𝑣𝑖 .
1It is important to note that the definition of the Degree of Appurtenance Function varies across different papers. Some studies define

this concept using the power set, while others simplify it by avoiding the use of the power set [41]. The author has consistently defined the
Classical Plithogenic Set without employing the power set.
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• For each 𝑘-th level subset 𝑃𝑘 , ˜𝑝𝑑𝑓 (𝑛)𝑖 : 𝑃𝑛 × 𝑃𝑣𝑖 → P̃([0, 1]𝑠) is the Hyper Degree of Appurtenance
Function (HDAF), assigning to each element 𝑥 ∈ 𝑃𝑛 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a subset of [0, 1]𝑠 .

• 𝑝𝐶𝐹 (𝑛) :
⋃𝑛

𝑖=1 𝑃𝑣𝑖 ×
⋃𝑛

𝑖=1 𝑃𝑣𝑖 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF), satisfying:

1. Reflexivity: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑎) = 0 for all 𝑎 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 ,

2. Symmetry: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑛) (𝑏, 𝑎) for all 𝑎, 𝑏 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 .

• 𝑠 and 𝑡 are positive integers representing the dimensions of the membership degrees and contradiction
degrees, respectively.

1.2 Plithogenic Cubic Set

A Plithogenic Cubic Set integrates interval-valued and single-valued fuzzy memberships, augmented by multi-
attribute aggregation using plithogenic structures [3, 4, 25, 40]. Related concepts, such as Neutrosophic Cubic
Sets [2, 8, 22, 49], are also well-established. The definitions and details are provided below.

Definition 1.7 (Plithogenic Cubic Set). [25, 40] Let 𝑋 be a non-empty set. A Plithogenic Cubic Set (PCS) in
𝑋 is a pair

Π =

(
𝐶, Pplitho

)
,

where:

1. 𝐶 = {(𝑥, 𝐴(𝑥), 𝛼(𝑥)) | 𝑥 ∈ 𝑋} is a cubic set on 𝑋 (Definition ??), consisting of

• An interval-valued fuzzy mapping

𝐴 : 𝑋 →
{
[𝑎−𝑥 , 𝑎+𝑥] ⊆ [0, 1]

}
,

• A single-valued fuzzy mapping
𝛼 : 𝑋 → [0, 1] .

2. Pplitho is a plithogenic structure (Definition ??) that governs how the attributes and membership intervals
in 𝐶 are aggregated or combined. In particular, Pplitho =

(
𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹

)
includes:

• A domain 𝑃 ⊆ 𝑋 (or, more generally, a set of interest).
• An attribute 𝑣 with possible values 𝑃𝑣.
• A degree of appurtenance function 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 , used to define how elements in 𝑃

attach membership vectors under each attribute value.
• A contradiction function 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 , specifying how attribute values 𝑎, 𝑏 ∈ 𝑃𝑣

might conflict or support each other, often employed in multi-attribute decision contexts.

Intuition:

• The “cubic set” part (𝐴(𝑥), 𝛼(𝑥)) captures interval-valued and single-valued fuzzy membership for each
𝑥.

• The “plithogenic” part enforces additional structure on how multiple attributes or parameter values in
𝑃𝑣 can be integrated (often using a plithogenic aggregation guided by 𝑝𝐶𝐹).

• The resulting Plithogenic Cubic Set merges these two viewpoints, enabling multi-attribute decision-
making or data analysis with both interval-based and single-valued fuzzy membership, managed under
a plithogenic aggregator.
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Example 1.8 (Plithogenic Cubic Set Illustrative). Suppose 𝑋 = { 𝑥1, 𝑥2, 𝑥3} is a universe of three elements.
Define a cubic set 𝐶 on 𝑋 by:

𝐶 =

{(
𝑥1, [0.2, 0.4], 0.3

)
,
(
𝑥2, [0.7, 0.9], 0.6

)
,
(
𝑥3, [0.4, 0.5], 0.5

)}
.

Here:
𝐴(𝑥1) = [0.2, 0.4], 𝐴(𝑥2) = [0.7, 0.9], 𝐴(𝑥3) = [0.4, 0.5],

𝛼(𝑥1) = 0.3, 𝛼(𝑥2) = 0.6, 𝛼(𝑥3) = 0.5.

Additionally, let 𝑃 ⊆ 𝑋 be {𝑥1, 𝑥2, 𝑥3}, define an attribute 𝑣 with possible values 𝑃𝑣 = {𝑢1, 𝑢2}. Suppose we
have:

𝑝𝑑𝑓 : 𝑃 × {𝑢1, 𝑢2} −→ [0, 1]2,

𝑝𝑑𝑓 (𝑥1, 𝑢1) = (0.2, 0.5), 𝑝𝑑𝑓 (𝑥1, 𝑢2) = (0.3, 0.6), . . .

and so forth, plus a contradiction function

𝑝𝐶𝐹 (𝑢1, 𝑢1) = 0, 𝑝𝐶𝐹 (𝑢1, 𝑢2) = (0.4), 𝑝𝐶𝐹 (𝑢2, 𝑢1) = (0.4), 𝑝𝐶𝐹 (𝑢2, 𝑢2) = 0.

Then
Pplitho =

(
𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹

)
,

and
Π = (𝐶, Pplitho)

is a Plithogenic Cubic Set on 𝑋 . The presence of 𝐴(𝑥𝑖), 𝛼(𝑥𝑖), and the multi-attribute aggregator 𝑝𝑑𝑓 /𝑝𝐶𝐹

clarifies how membership intervals, single membership values, and attribute-based contradictions coexist in a
single structure.

Definition 1.9 (Plithogenic Fuzzy Cubic Set). [25, 40] Let 𝑋 be a non-empty universe, and let

Pplitho = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

be a plithogenic structure (consisting of a domain 𝑃 ⊆ 𝑋 , an attribute 𝑣 with possible values 𝑃𝑣, a degree of
appurtenance function 𝑝𝑑𝑓 , and a contradiction function 𝑝𝐶𝐹). A Plithogenic Fuzzy Cubic Set (PFCS) in 𝑋

is a pair
ΠF =

(
𝐶F, Pplitho

)
,

where:

1. 𝐶F =
{
(𝑥, 𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)) | 𝑥 ∈ 𝑋

}
is a fuzzy cubic set on 𝑋 , meaning:

• 𝐴𝐹 : 𝑋 → [0, 1] is a single-valued fuzzy membership (instead of an interval-valued one). That is,
for each 𝑥 ∈ 𝑋 , 𝐴𝐹 (𝑥) ∈ [0, 1].

• 𝛼𝐹 : 𝑋 → [0, 1] is a second single-valued fuzzy mapping. In typical “cubic set” terminology,
we can interpret (𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)) as the pair of membership values capturing two layered fuzzy
memberships for each element 𝑥 (one possibly playing the role of amplitude, the other of secondary
membership).

2. Pplitho is the plithogenic aggregator, as above.

Hence, for each 𝑥 ∈ 𝑋:
(𝑥, 𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)) with 𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥) ∈ [0, 1] .

And the plithogenic structure Pplitho provides multi-attribute valuation or contradiction measures used to
combine or compare these fuzzy membership values across different parameter values 𝑃𝑣. This synergy yields
a multi-attribute, two-layer fuzzy membership system governed by a plithogenic aggregator.
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Example 1.10 (Plithogenic Fuzzy Cubic Set). Let 𝑋 = { 𝑥1, 𝑥2, 𝑥3} be a universe. Define the fuzzy cubic set

𝐶F =

{(
𝑥1, 0.2, 0.4

)
,
(
𝑥2, 0.5, 0.7

)
,
(
𝑥3, 0.8, 0.6

)}
,

where 𝐴𝐹 (𝑥1) = 0.2, 𝛼𝐹 (𝑥1) = 0.4, 𝐴𝐹 (𝑥2) = 0.5, 𝛼𝐹 (𝑥2) = 0.7, etc.

Next, let us assume a plithogenic structure Pplitho with:

𝑃 = {𝑥1, 𝑥2, 𝑥3}, 𝑣 an attribute with possible values 𝑃𝑣 = { 𝑢1, 𝑢2},

and define a degree of appurtenance function

𝑝𝑑𝑓 : 𝑃 × {𝑢1, 𝑢2} −→ [0, 1]2,

plus a contradiction function
𝑝𝐶𝐹 : {𝑢1, 𝑢2} × {𝑢1, 𝑢2} −→ [0, 1]𝑡 .

We might specify, for instance:

𝑝𝑑𝑓 (𝑥1, 𝑢1) = (0.4, 0.6), 𝑝𝑑𝑓 (𝑥1, 𝑢2) = (0.2, 0.1), · · ·

and
𝑝𝐶𝐹 (𝑢1, 𝑢1) = 0, 𝑝𝐶𝐹 (𝑢1, 𝑢2) = 0.3, 𝑝𝐶𝐹 (𝑢2, 𝑢2) = 0, 𝑝𝐶𝐹 (𝑢2, 𝑢1) = 0.3.

Combining these, the Plithogenic Fuzzy Cubic Set is

ΠF =
(
𝐶F, Pplitho

)
.

In effect, we have a two-valued fuzzy membership (𝐴𝐹 , 𝛼𝐹) for each 𝑥, and a plithogenic aggregator controlling
multi-attribute contradictions or synergy among 𝑢1, 𝑢2 in 𝑃𝑣.

Definition 1.11 (Plithogenic Intuitionistic Fuzzy Cubic Set). [25, 40] Let 𝑋 be a non-empty universe, and
let Pplitho = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) be a plithogenic structure. An Plithogenic Intuitionistic Fuzzy Cubic Set
(PIFCS) in 𝑋 is a pair

ΠIF =

(
𝐶IF, Pplitho

)
,

where:

1. 𝐶IF =
{
(𝑥, 𝐴𝐼𝐹 (𝑥), 𝛼𝐼𝐹 (𝑥)) | 𝑥 ∈ 𝑋

}
is an intuitionistic fuzzy cubic set, namely:

• 𝐴𝐼𝐹 (𝑥) = (𝜇(𝑥), 𝜈(𝑥)) is an interval (or pair) representing membership 𝜇(𝑥) ∈ [0, 1] and non-
membership 𝜈(𝑥) ∈ [0, 1], with 𝜇(𝑥) + 𝜈(𝑥) ≤ 1 for each 𝑥. Equivalently, we may store an interval
[ 𝜇− , 𝜇+ ] for membership and [ 𝜈− , 𝜈+ ] for non-membership.

• 𝛼𝐼𝐹 (𝑥) is a single intuitionistic fuzzy index, e.g. a secondary membership or hesitation part for
𝑥. There are various ways to formalize the cubic notion here, but in general 𝛼𝐼𝐹 (𝑥) is an extra
single-valued function capturing additional partial membership or hesitation.

2. The plithogenic structure Pplitho merges these membership pairs (𝜇, 𝜈) with contradictory or supportive
attribute values from 𝑃𝑣.

Note: Sometimes the cubic set for an intuitionistic fuzzy environment is defined as (𝐴, 𝛼) where 𝐴 is an interval-
valued intuitionistic fuzzy set (storing membership and non-membership intervals) and 𝛼 is a single-valued
intuitionistic fuzzy function. The essential idea is that we have one interval/pair capturing membership-
nonmembership for each 𝑥, plus an extra single-valued function for 𝑥. Then we combine that with the
plithogenic aggregator.

Example 1.12 (Plithogenic Intuitionistic Fuzzy Cubic Set). Let 𝑋 = {𝑥1, 𝑥2}. Suppose we define for each
𝑥 ∈ 𝑋:

𝐴𝐼𝐹 (𝑥) =
(
𝜇(𝑥), 𝜈(𝑥)

)
, with 𝜇(𝑥) ∈ [0, 1], 𝜈(𝑥) ∈ [0, 1], 𝜇(𝑥) + 𝜈(𝑥) ≤ 1,
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and 𝛼𝐼𝐹 (𝑥) ∈ [0, 1] is a single-value capturing a hesitation degree or a secondary membership. For instance:

𝐴𝐼𝐹 (𝑥1) = (0.6, 0.3), 𝛼𝐼𝐹 (𝑥1) = 0.2,
𝐴𝐼𝐹 (𝑥2) = (0.4, 0.4), 𝛼𝐼𝐹 (𝑥2) = 0.1.

Hence the intuitionistic fuzzy cubic set is

𝐶IF =
{
(𝑥1, (0.6, 0.3), 0.2), (𝑥2, (0.4, 0.4), 0.1)

}
.

Now let Pplitho = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) be a plithogenic structure with:

𝑃 = {𝑥1, 𝑥2}, 𝑣 attribute with 𝑃𝑣 = {𝑢1, 𝑢2},

𝑝𝑑𝑓 (·, ·) : 𝑃 × 𝑃𝑣 → [0, 1]2, 𝑝𝐶𝐹 (·, ·) : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 .

Define a few sample values:

𝑝𝑑𝑓 (𝑥1, 𝑢1) = (0.8, 0.1), 𝑝𝑑𝑓 (𝑥1, 𝑢2) = (0.3, 0.5), 𝑝𝑑𝑓 (𝑥2, 𝑢1) = (0.4, 0.6), 𝑝𝑑𝑓 (𝑥2, 𝑢2) = (0.7, 0.2),

𝑝𝐶𝐹 (𝑢1, 𝑢1) = 0, 𝑝𝐶𝐹 (𝑢1, 𝑢2) = 0.5, 𝑝𝐶𝐹 (𝑢2, 𝑢1) = 0.5, 𝑝𝐶𝐹 (𝑢2, 𝑢2) = 0.

Then the Plithogenic Intuitionistic Fuzzy Cubic Set is

ΠIF =
(
𝐶IF, Pplitho

)
.

This structure allows us to model partial membership, partial non-membership, a second single-valued dimen-
sion for each 𝑥, and also to incorporate multi-attribute influences or contradictions across 𝑢1, 𝑢2 in a plithogenic
aggregator.

Definition 1.13 (Plithogenic Neutrosophic Cubic Set). Let 𝑋 be a non-empty universe, and let Pplitho =

(𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) be a plithogenic structure. A Plithogenic Neutrosophic Cubic Set (PNCS) in 𝑋 is defined
by

ΠN =
(
𝐶N, Pplitho

)
,

where:

1. 𝐶N =
{
(𝑥, 𝐴𝑁 (𝑥), 𝛼𝑁 (𝑥)) | 𝑥 ∈ 𝑋

}
is a neutrosophic cubic set, in which:

• 𝐴𝑁 (𝑥) is an interval-valued neutrosophic membership for each 𝑥. Typically, a neutrosophic
membership is a triple (𝑇, 𝐼, 𝐹) in [0, 1]3 with 𝑇 + 𝐼 + 𝐹 ≤ 3. For an interval version, we might
store [𝑇− , 𝑇+], [𝐼− , 𝐼+], [𝐹− , 𝐹+] for each 𝑥.

• 𝛼𝑁 (𝑥) is a single-valued neutrosophic membership triple or a single measure capturing partial
truth, falsity, and indeterminacy for 𝑥. More simply, it can be (𝑡𝑥 , 𝑖𝑥 , 𝑓𝑥) with 𝑡𝑥 + 𝑖𝑥 + 𝑓𝑥 ≤ 3.

2. Pplitho = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) is the plithogenic aggregator that unifies these neutrosophic membership
values across multi-attribute domains in 𝑃𝑣.

Hence, each 𝑥 in 𝑋 is described by two layers of neutrosophic membership (one interval-valued, one single-
valued), while the plithogenic aggregator fosters multi-attribute or contradictory synergy among attribute values
in 𝑃𝑣.

Example 1.14 (Plithogenic Neutrosophic Cubic Set). [24, 25, 40] Let 𝑋 = {𝑥1, 𝑥2}. For each 𝑥 ∈ 𝑋 , define
the neutrosophic cubic set membership:

𝐶N =

{ (
𝑥1, 𝐴𝑁 (𝑥1), 𝛼𝑁 (𝑥1)

)
,
(
𝑥2, 𝐴𝑁 (𝑥2), 𝛼𝑁 (𝑥2)

)}
,

where for 𝑥1,
𝐴𝑁 (𝑥1) =

(
[ 0.4, 0.6 ], [ 0.1, 0.3 ], [ 0.2, 0.4 ]

)
(interval T,I,F),

𝛼𝑁 (𝑥1) = (0.5, 0.2, 0.3) (single T,I,F) with 0.5 + 0.2 + 0.3 = 1.0 ≤ 3.

For 𝑥2,
𝐴𝑁 (𝑥2) =

(
[ 0.7, 0.8 ], [ 0.0, 0.1 ], [ 0.1, 0.2 ]

)
, 𝛼𝑁 (𝑥2) = (0.6, 0.3, 0.1).
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Now let Pplitho = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) be:

𝑃 = {𝑥1, 𝑥2}, 𝑣 is an attribute with 𝑃𝑣 = {𝑢1, 𝑢2, 𝑢3},

𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 , 𝑝𝐶𝐹 (·, ·) : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 .

For instance,

𝑝𝑑𝑓 (𝑥1, 𝑢1) = (0.4, 0.2), 𝑝𝑑𝑓 (𝑥1, 𝑢2) = (0.1, 0.3), 𝑝𝑑𝑓 (𝑥1, 𝑢3) = (0.7, 0.2), 𝑝𝑑𝑓 (𝑥2, 𝑢1) = (0.6, 0.4), . . .

and
𝑝𝐶𝐹 (𝑢1, 𝑢1) = 0, 𝑝𝐶𝐹 (𝑢1, 𝑢2) = 0.5, 𝑝𝐶𝐹 (𝑢2, 𝑢3) = 0.2, . . .

Thus the Plithogenic Neutrosophic Cubic Set is

ΠN =
(
𝐶N, Pplitho

)
.

We have, for each 𝑥𝑖 , an interval-based neutrosophic membership (𝑇− (𝑥𝑖), 𝑇+ (𝑥𝑖)), (𝐼− (𝑥𝑖), 𝐼+ (𝑥𝑖)), (𝐹− (𝑥𝑖), 𝐹+ (𝑥𝑖)),
plus a single triple (𝑡𝑥 , 𝑖𝑥 , 𝑓𝑥). Then multi-attribute interactions among 𝑢1, 𝑢2, 𝑢3 are managed by (𝑝𝑑𝑓 , 𝑝𝐶𝐹).

2 Results of This Paper

In this paper, we propose new definitions for various types of sets and briefly examine their relationships with
existing concepts.

This document presents the concept of 𝑛-SuperHyperPlithogenic Cubic Sets, built upon fuzzy, intuitionistic
fuzzy, and neutrosophic frameworks. These notions extend existing “HyperPlithogenic Cubic Sets” to higher
orders by nesting membership structures in a recursive manner. For brevity, we refer to them as:

• 𝑛-SuperHyperPlithogenic Fuzzy Cubic Set (n-SHPC-FCS),

• 𝑛-SuperHyperPlithogenic Intuitionistic Fuzzy Cubic Set (n-SHPC-IFCS),

• 𝑛-SuperHyperPlithogenic Neutrosophic Cubic Set (n-SHPC-NCS).

We assume familiarity with:

• Fuzzy/Intuitionistic Fuzzy/Neutrosophic Cubic Sets: Cubic sets that combine interval-valued membership
and single-valued membership (plus, for intuitionistic or neutrosophic, the relevant membership forms).

• HyperPlithogenic Structures: Which assign hyper-set-valued memberships for multi-attribute parameters
and utilize a contradiction function among attribute values.

• 𝑛-Super frameworks: In which membership sets or attribute sets are nested up to the 𝑛-th power set or
hyper-power set level, as in P̃𝑛 (·).

2.1 HyperPlithogenic Cubic Set (HPCS)

A HyperPlithogenic Cubic Set (HPCS) integrates interval-valued, single-valued fuzzy membership and multi-
attribute aggregation, addressing complex multi-dimensional uncertainty.

Definition 2.1 (HyperPlithogenic Cubic Set (HPCS)). Let 𝑋 be a non-empty universe. Recall the following:

• A Plithogenic Cubic Set (PCS) on 𝑋 is a pair Π = (𝐶, Pplitho), where 𝐶 is a cubic set on 𝑋 (capturing
interval-valued and single-valued fuzzy membership), and Pplitho is a plithogenic structure guiding
multi-attribute aggregation or contradiction.2

2See the user’s snippet for the formal definition of a Plithogenic Cubic Set.
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• A HyperPlithogenic Set (HPS) is a structure (𝑃, {𝑣𝑖}, {𝑃𝑣𝑖}, { ˜𝑝𝑑𝑓 𝑖}, 𝑝𝐶𝐹) that allows hyper-degree of
appurtenance (set-valued membership degrees) for each attribute’s domain and a contradiction function.3

We define a HyperPlithogenic Cubic Set (HPCS) over 𝑋 as follows:

HPCS =

(
𝐶Cubic, Hplitho

)
,

where:

1. 𝐶Cubic = {(𝑥, 𝐴(𝑥), 𝛼(𝑥)) | 𝑥 ∈ 𝑋} is a cubic set on 𝑋 . Concretely, for each 𝑥 ∈ 𝑋:

• 𝐴(𝑥) ⊆ [0, 1] is an interval-valued fuzzy membership or possibly an entire sub-interval [ 𝑎−𝑥 , 𝑎+𝑥 ].
In many references, we store 𝐴(𝑥) = [ 𝑎−𝑥 , 𝑎+𝑥 ] ⊆ [0, 1].

• 𝛼(𝑥) ∈ [0, 1] is an additional single-valued fuzzy membership for 𝑥. That is, each 𝑥 ∈ 𝑋 has a pair(
𝐴(𝑥), 𝛼(𝑥)

)
.

2. Hplitho =
(
𝑃, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, 𝑝𝐶𝐹

)
is a HyperPlithogenic Set structure. In particular:

• 𝑃 ⊆ 𝑋 is a domain of interest (often the same as or a subset of 𝑋).
• Each attribute 𝑣𝑖 has possible values 𝑃𝑣𝑖 .
• 𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 → P̃

(
[0, 1]𝑠

)
is a hyper degree of appurtenance function, i.e. it assigns set-valued

membership degrees in [0, 1]𝑠 for each pair (𝑥, 𝑎𝑖).
• 𝑝𝐶𝐹 :

(⋃𝑛
𝑖=1 𝑃𝑣𝑖

)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖

)
→ [0, 1]𝑡 is the contradiction function, satisfying reflexivity and

symmetry conditions.

The resulting pair
HPCS =

(
𝐶Cubic, Hplitho

)
is called a HyperPlithogenic Cubic Set.

Example 2.2 (HyperPlithogenic Cubic Set). Let 𝑋 = {𝑥1, 𝑥2, 𝑥3}. Suppose we have a cubic set:

𝐶Cubic =

{(
𝑥1, [0.2, 0.4], 0.6

)
,
(
𝑥2, [0.7, 0.8], 0.4

)
,
(
𝑥3, [0.4, 0.9], 0.2

)}
.

Hence for each 𝑥𝑖 , we store an interval 𝐴(𝑥𝑖) ⊆ [0, 1] plus a single real 𝛼(𝑥𝑖) ∈ [0, 1].

Next, define the HyperPlithogenic structure:

Hplitho =
(
𝑃, {𝑣1, 𝑣2}, {𝑃𝑣1, 𝑃𝑣2}, {𝑝𝑑𝑓 1, 𝑝𝑑𝑓 2}, 𝑝𝐶𝐹

)
,

where
𝑃 = {𝑥1, 𝑥2, 𝑥3}, 𝑣1 with 𝑃𝑣1 = {𝑢1, 𝑢2}, 𝑣2 with 𝑃𝑣2 = {𝑤1, 𝑤2}.

The hyper-DAFs might be

𝑝𝑑𝑓 1 : 𝑃 × {𝑢1, 𝑢2} → P̃
(
[0, 1]𝑠

)
, 𝑝𝑑𝑓 2 : 𝑃 × {𝑤1, 𝑤2} → P̃

(
[0, 1]𝑠

)
.

For instance,
𝑝𝑑𝑓 1 (𝑥1, 𝑢1) = {(0.2, 0.6), (0.3, 0.7)} ⊆ [0, 1]2, 𝑝𝑑𝑓 1 (𝑥1, 𝑢2) = · · ·

Then define
𝑝𝐶𝐹 (·, ·) : ( {𝑢1, 𝑢2, 𝑤1, 𝑤2} × {𝑢1, 𝑢2, 𝑤1, 𝑤2} ) → [0, 1]𝑡 ,

satisfying reflexivity and symmetry. For example,

𝑝𝐶𝐹 (𝑢1, 𝑢1) = 0, 𝑝𝐶𝐹 (𝑢1, 𝑢2) = 0.3, 𝑝𝐶𝐹 (𝑤1, 𝑢2) = 0.5, . . .

Putting these together,
HPCS =

(
𝐶Cubic, Hplitho

)
becomes a HyperPlithogenic Cubic Set. It merges an interval-plus-singleton membership for each 𝑥𝑖 (the
cubic set) with a hyperplithogenic aggregator that yields set-valued membership degrees and a multi-attribute
contradiction measure among {𝑢1, 𝑢2} and {𝑤1, 𝑤2}.

3See the user’s snippet for the definition of HyperPlithogenic Set.
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Theorem 2.3. (HyperPlithogenic Cubic Set generalizes Plithogenic Cubic Set and HyperPlithogenic Set.)

1. If each hypermembership 𝑝𝑑𝑓 𝑖 (𝑥, 𝑎𝑖) in Hplitho is constrained to be a singleton in [0, 1]𝑠 , and the interval
𝐴(𝑥) in 𝐶Cubic is restricted to a single real number in [0, 1], then an HPCS reduces to a Plithogenic
Cubic Set (Definition 1.7).

2. If the cubic part (𝐴(𝑥), 𝛼(𝑥)) is replaced by a simpler membership approach (e.g. ignoring intervals, or
ignoring single-valued parts), an HPCS reduces to a HyperPlithogenic Set.

Proof. (1) HPCS =⇒ Plithogenic Cubic Set.
In a HyperPlithogenic Cubic Set

(
𝐶Cubic, Hplitho

)
:

• 𝐶Cubic has an interval 𝐴(𝑥) ⊆ [0, 1] plus a real 𝛼(𝑥) ∈ [0, 1].

• Hplitho = (𝑃, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, 𝑝𝐶𝐹) has set-valued membership degrees 𝑝𝑑𝑓 𝑖 (𝑥, 𝑎𝑖) ⊆ [0, 1]𝑠 .

First, constrain each 𝑝𝑑𝑓 𝑖 (𝑥, 𝑎𝑖) to be a singleton {m} ⊆ [0, 1]𝑠 . This collapses the hyper aspect to an ordinary
𝑝𝑑𝑓𝑖 : 𝑃×𝑃𝑣𝑖 → [0, 1]𝑠 . Next, for each 𝑥, constrain the “interval” 𝐴(𝑥) ⊆ [0, 1] to be a single real 𝑎𝑥 ∈ [0, 1].
Then 𝐴 : 𝑥 ↦→ 𝑎𝑥 ∈ [0, 1] becomes an ordinary fuzzy membership. By these restrictions, we precisely match
the structure of a Plithogenic Cubic Set (in which the interval is replaced by a single amplitude). Consequently,
HPCS reduces to a standard PCS.

(2) HPCS =⇒ HyperPlithogenic Set.
If we remove the cubic set part (𝐴(𝑥), 𝛼(𝑥)), or equivalently if we fix 𝐴(𝑥) = { 1} and 𝛼(𝑥) = 1 for all 𝑥
(making them trivial or constant), we no longer store interval or single-valued fuzzy membership for each 𝑥.
The entire membership representation then depends solely on the hyperplithogenic aggregator {𝑝𝑑𝑓 𝑖}, which
is exactly a HyperPlithogenic Set structure. Therefore, ignoring or trivializing the cubic membership reduces
an HPCS to a standard HPS (HyperPlithogenic Set).

Hence, HPCS strictly generalizes both PCS and HPS. □

Definition 2.4 (HyperPlithogenic Fuzzy Cubic Set). Let 𝑋 be a non-empty set. A HyperPlithogenic Fuzzy
Cubic Set (HPFCS) in 𝑋 is a structure (

Ffuzzy-cubic, Hplitho
)
,

where:

1. Ffuzzy-cubic is a fuzzy cubic set on 𝑋 . Concretely, for each 𝑥 ∈ 𝑋 , we have:

Ffuzzy-cubic(𝑥) =
(
𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)

)
,

where
𝐴𝐹 (𝑥) = [ 𝑎−𝑥 , 𝑎+𝑥 ] ⊆ [0, 1], 𝛼𝐹 (𝑥) ∈ [0, 1] .

2. Hplitho = (𝑃, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, 𝑝𝐶𝐹) is a HyperPlithogenic structure that assigns set-valued member-
ship degrees to attribute-value pairs:

𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 → P̃([0, 1]𝑠),

plus a contradiction function 𝑝𝐶𝐹 among attribute values.

Hence, each element 𝑥 ∈ 𝑋 simultaneously has:

• A fuzzy membership interval 𝐴𝐹 (𝑥) ⊆ [0, 1],

• A single fuzzy membership real 𝛼𝐹 (𝑥) ∈ [0, 1],
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• A multi-attribute hyperplithogenic aggregator that can combine or compare these memberships or partial
memberships with other elements or with attributes in 𝑝𝐶𝐹.

Example 2.5 (HyperPlithogenic Fuzzy Cubic Set). Let 𝑋 = {𝑥1, 𝑥2}. Define a fuzzy cubic set:

Ffuzzy-cubic(𝑥1) = ( [0.2, 0.4], 0.3), Ffuzzy-cubic(𝑥2) = ( [0.6, 0.8], 0.5).

Hence 𝐴𝐹 (𝑥1) = [0.2, 0.4], 𝛼𝐹 (𝑥1) = 0.3, 𝐴𝐹 (𝑥2) = [0.6, 0.8], and 𝛼𝐹 (𝑥2) = 0.5.

Next, define a HyperPlithogenic structure Hplitho = (𝑃, {𝑣}, {𝑃𝑣}, {𝑝𝑑𝑓 }, 𝑝𝐶𝐹) with:

𝑃 = {𝑥1, 𝑥2}, 𝑣 is a single attribute, 𝑃𝑣 = {𝑢1, 𝑢2}.

A hyper-DAF might be:

𝑝𝑑𝑓 (𝑥1, 𝑢1) = {(0.2, 0.5), (0.3, 0.7)} ⊆ [0, 1]2, 𝑝𝑑𝑓 (𝑥2, 𝑢1) = {(0.6, 0.4)}, . . .

And a contradiction function 𝑝𝐶𝐹 (𝑢1, 𝑢2) ∈ [0, 1]𝑡 for 𝑡 = 1; say 𝑝𝐶𝐹 (𝑢1, 𝑢2) = 0.4, 𝑝𝐶𝐹 (𝑢2, 𝑢1) = 0.4.

Then
HPFCS =

(
Ffuzzy-cubic, Hplitho

)
is a HyperPlithogenic Fuzzy Cubic Set.

Definition 2.6 (HyperPlithogenic Intuitionistic Fuzzy Cubic Set (HIFCS)). Let 𝑋 be a non-empty set. A
HyperPlithogenic Intuitionistic Fuzzy Cubic Set on 𝑋 is a structure(

FIF−cubic, Hplitho

)
,

where:

1. FIF−cubic is an intuitionistic fuzzy cubic set, assigning for each 𝑥 ∈ 𝑋:

FIF−cubic (𝑥) =

(
𝐴𝑀 (𝑥), 𝛼𝑀 (𝑥), 𝐴𝑁 (𝑥), 𝛼𝑁 (𝑥)

)
,

in which:

• 𝐴𝑀 (𝑥) ⊆ [0, 1] is an interval for membership, 𝛼𝑀 (𝑥) ∈ [0, 1] is a single membership value,
• 𝐴𝑁 (𝑥) ⊆ [0, 1] is an interval for non-membership, 𝛼𝑁 (𝑥) ∈ [0, 1] a single non-membership value,
• We require 0 ≤ 𝛼𝑀 (𝑥) + 𝛼𝑁 (𝑥) ≤ 1 and 𝐴𝑀 (𝑥), 𝐴𝑁 (𝑥) suitably restricted so that any real
𝑚 ∈ 𝐴𝑀 (𝑥) and 𝑛 ∈ 𝐴𝑁 (𝑥) satisfy 0 ≤ 𝑚 + 𝑛 ≤ 1.

2. Hplitho = (𝑃, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, 𝑝𝐶𝐹) is a HyperPlithogenic structure, exactly as in Definition 2.4,
assigning set-valued membership degrees for multi-attribute decisions, plus a contradiction function
among attribute values.

Example 2.7 (HyperPlithogenic Intuitionistic Fuzzy Cubic Set). Let 𝑋 = {𝑦1, 𝑦2}. For each 𝑦 ∈ 𝑋 , define:

• 𝐴𝑀 (𝑦1) = [0.2, 0.4], 𝛼𝑀 (𝑦1) = 0.3,

• 𝐴𝑁 (𝑦1) = [0.1, 0.2], 𝛼𝑁 (𝑦1) = 0.2,

such that (0.3) + (0.2) = 0.5 ≤ 1 and for any 𝑚 ∈ [0.2, 0.4], 𝑛 ∈ [0.1, 0.2], we have 𝑚 + 𝑛 ≤ 0.6 ≤ 1.

• 𝐴𝑀 (𝑦2) = [0.6, 0.7], 𝛼𝑀 (𝑦2) = 0.25,

• 𝐴𝑁 (𝑦2) = [0.0, 0.2], 𝛼𝑁 (𝑦2) = 0.2,
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ensuring 0.25 + 0.2 = 0.45 ≤ 1.

Hence FIF−cubic is an intuitionistic fuzzy cubic set.

Next, let Hplitho be a hyperplithogenic aggregator with attribute(s) 𝑣 having domain 𝑃𝑣, a hyper-DAF
𝑝𝑑𝑓 (𝑦, 𝑎) ⊆ [0, 1]𝑠 , and 𝑝𝐶𝐹 (𝑎, 𝑏) ∈ [0, 1]𝑡 . The combined pair(

FIF−cubic, Hplitho

)
forms a HyperPlithogenic Intuitionistic Fuzzy Cubic Set.

Definition 2.8 (HyperPlithogenic Neutrosophic Cubic Set (HNNCS)). Let 𝑋 be a non-empty set. A Hyper-
Plithogenic Neutrosophic Cubic Set (HNNCS) in 𝑋 is a structure:(

Ncubic, Hplitho

)
,

where:

1. Ncubic is a neutrosophic cubic set, assigning for each 𝑥 ∈ 𝑋 three pairs (or intervals) plus single reals for
(𝑇, 𝐼, 𝐹), for instance:

Ncubic (𝑥) =

(
𝐴𝑇 (𝑥), 𝛼𝑇 (𝑥), 𝐴𝐼 (𝑥), 𝛼𝐼 (𝑥), 𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)

)
,

with 𝐴𝑇 (𝑥) ⊆ [0, 1], 𝛼𝑇 (𝑥) ∈ [0, 1], similarly for 𝐼, 𝐹, and 0 ≤ 𝛼𝑇 (𝑥) + 𝛼𝐼 (𝑥) + 𝛼𝐹 (𝑥) ≤ 3, plus
constraints for each triple (𝑡, 𝑖, 𝑓 ) in 𝐴𝑇 (𝑥) × 𝐴𝐼 (𝑥) × 𝐴𝐹 (𝑥) so that 𝑡 + 𝑖 + 𝑓 ≤ 3.

2. Hplitho = (𝑃, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, 𝑝𝐶𝐹) is a HyperPlithogenic aggregator, exactly as in Definitions 2.4
or 2.6, used to handle multi-attribute set-valued membership degrees across [0, 1]𝑠 and a contradiction
function 𝑝𝐶𝐹.

Example 2.9 (HyperPlithogenic Neutrosophic Cubic Set). Let 𝑋 = {𝑧1, 𝑧2}. Suppose a neutrosophic cubic set
Ncubic such that:

Ncubic (𝑧1) =
(
[0.2, 0.3], 0.25, [0.0, 0.1], 0.05, [0.3, 0.5], 0.4

)
,

meaning 𝐴𝑇 (𝑧1) = [0.2, 0.3], 𝛼𝑇 (𝑧1) = 0.25, 𝐴𝐼 (𝑧1) = [0.0, 0.1], 𝛼𝐼 (𝑧1) = 0.05, 𝐴𝐹 (𝑧1) = [0.3, 0.5],
𝛼𝐹 (𝑧1) = 0.4. We require 0.25 + 0.05 + 0.4 = 0.7 ≤ 3, and any triple (𝑡, 𝑖, 𝑓 ) from [0.2, 0.3] × [0.0, 0.1] ×
[0.3, 0.5] must satisfy 𝑡 + 𝑖 + 𝑓 ≤ 3, which is obviously true.

Similarly for 𝑧2:
Ncubic (𝑧2) =

(
[0.6, 0.7], 0.65, [0.1, 0.2], 0.15, [0.0, 0.2], 0.1

)
.

Next, define a HyperPlithogenic structure Hplitho = (𝑃, . . . ) with attribute sets and a hyper-DAF:

𝑝𝑑𝑓 𝑖 (𝑥, 𝑎𝑖) ⊆ [0, 1]𝑠 , 𝑝𝐶𝐹 (𝑎, 𝑏) ∈ [0, 1]𝑡 ,

for 𝑖 = 1, . . . , 𝑚. The combination: (
Ncubic, Hplitho

)
becomes a HyperPlithogenic Neutrosophic Cubic Set on 𝑋 .
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2.2 𝑛-SuperHyperPlithogenic Cubic Set

An 𝑛-SuperHyperPlithogenic Cubic Set is a generalized concept of the Plithogenic Cubic Set using the structure
of an 𝑛-SuperHyperPlithogenic Set. The definition is presented below.

Definition 2.10 (𝑛-SuperHyperPlithogenic Cubic Set). Let 𝑋 be a non-empty universe, and let(
𝐶Cubic, Hplitho

)
be a HyperPlithogenic Cubic Set as in Definition 2.1. We define an 𝑛-SuperHyperPlithogenic Cubic Set
(SHPC𝑛) recursively as follows:

1. For 𝑛 = 1,
SHPC1 =

(
𝐶Cubic, Hplitho

)
,

i.e. a standard HyperPlithogenic Cubic Set.

2. For 𝑛 ≥ 2, let
SHPC𝑛 =

(
𝐶

(𝑛)
Cubic, H

(𝑛)
plitho

)
.

Here:

• 𝐶
(𝑛)
Cubic is an 𝑛-th level cubic expansion, e.g. an iterative layering of interval- or single-valued

membership expansions. Symbolically,

𝐶
(𝑛)
Cubic =

{
(𝑥, 𝐴(𝑛) (𝑥), 𝛼 (𝑛) (𝑥)) | 𝑥 ∈ 𝑋

}
,

where 𝐴(𝑛) (𝑥) might be an 𝑛-th power set expansion or 𝑛-th interval layering, depending on the
chosen model.

• H (𝑛)
plitho is the 𝑛-th SuperHyperPlithogenic structure, i.e. we define

˜𝑝𝑑𝑓 (𝑛)𝑖 : 𝑃𝑛 × 𝑃𝑣𝑖 −→ P̃𝑛 ( [0, 1]𝑠),

or a similar 𝑛-level hyper aggregator, plus a contradiction function 𝑝𝐶𝐹 (𝑛) that captures 𝑛-th order
expansions of attribute domains.

Hence, we obtain
SHPC𝑛 =

(
𝐶

(𝑛)
Cubic, H

(𝑛)
plitho

)
,

called an 𝑛-SuperHyperPlithogenic Cubic Set on 𝑋 .

Theorem 2.11. (𝑛-SuperHyperPlithogenic Cubic Set generalizes HyperPlithogenic Cubic Set and 𝑛-SuperHyperPlithogenic
Set.)

Let SHPC𝑛 be an 𝑛-SuperHyperPlithogenic Cubic Set on 𝑋 . Then:

1. SHPC𝑛 reduces to a HyperPlithogenic Cubic Set when 𝑛 = 1 (the base level).

2. SHPC𝑛 reduces to an 𝑛-SuperHyperPlithogenic Set if we ignore or trivialize the cubic membership
structure (𝐴(𝑛) (𝑥), 𝛼 (𝑛) (𝑥)).

Proof. (1) Reduces to HPCS at 𝑛 = 1.
By definition (cf. Definition 2.10 in the user’s snippet for superhyper expansions), setting 𝑛 = 1 yields
SHPC1 = (𝐶 (1)

Cubic, H
(1)

plitho) which is exactly a HyperPlithogenic Cubic Set as in Definition 2.1. No further
expansions or iterative layering occur.

(2) Reduces to 𝑛-SuperHyperPlithogenic Set if we ignore the cubic portion.
Given SHPC𝑛 =

(
𝐶

(𝑛)
Cubic, H

(𝑛)
plitho

)
, we can trivialize the cubic membership for each 𝑥 by forcing 𝐴(𝑛) (𝑥) to 
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be a constant set { 1} or [0, 1], and 𝛼 (𝑛) (𝑥) to be 1 (or 0). This effectively removes the cubic layering from
each element 𝑥 and leaves us with the 𝑛-SuperHyperPlithogenic aggregator H (𝑛)

plitho alone. That aggregator
is precisely an 𝑛-SuperHyperPlithogenic Set (Definition ?? in the user’s snippet), because it has 𝑛-th order
expansions of hyper-degree-of-appurtenance plus the contradiction function.

Hence, SHPC𝑛 indeed generalizes both a single-level HPCS and an 𝑛-SuperHyperPlithogenic structure. □

Definition 2.12 (𝑛-SuperHyperPlithogenic Fuzzy Cubic Set). Let 𝑋 be a non-empty set, and let Ffuzzy−cubic be
a fuzzy cubic set on 𝑋 , i.e. for each 𝑥 ∈ 𝑋:

Ffuzzy−cubic (𝑥) =
(
𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)

)
,

where 𝐴𝐹 (𝑥) ⊆ [0, 1] is interval-valued membership, 𝛼𝐹 (𝑥) ∈ [0, 1] is single-valued membership. Then
define a hyperplithogenic aggregator H𝑛

plitho at the 𝑛-Super level as(
𝑃𝑛, {𝑣𝑖}𝑚𝑖=1, {𝑃𝑣𝑖}

𝑚
𝑖=1, {𝑝𝑑𝑓

(𝑛)
𝑖 }, 𝑝𝐶𝐹 (𝑛)

)
,

where:

• 𝑃1 ⊆ 𝑋 , and for 𝑘 ≥ 2, 𝑃𝑘 = P̃ (𝑃𝑘−1), leading to 𝑃𝑛 as an 𝑛-th nested hyper-power set of 𝑃1.

• For each attribute 𝑣𝑖 , 𝑃𝑣𝑖 is its set of possible values.

• Each 𝑝𝑑𝑓
(𝑛)
𝑖 : 𝑃𝑛 × 𝑃𝑣𝑖 → P̃𝑛 ( [0, 1]𝑠) assigns an n-level set of membership vectors in [0, 1]𝑠 .

• 𝑝𝐶𝐹 (𝑛) is an 𝑛-level contradiction function among attribute values in
⋃

𝑖 𝑃𝑣𝑖 .

We call
n-SHPC-FCS =

(
Ffuzzy−cubic, H𝑛

plitho

)
an 𝒏-SuperHyperPlithogenic Fuzzy Cubic Set on 𝑋 .

Example 2.13 (Illustration of n-SHPC-FCS). Let 𝑋 = {𝑥1, 𝑥2}. Suppose the fuzzy cubic set

Ffuzzy−cubic (𝑥1) = ( [0.2, 0.4], 0.3), Ffuzzy−cubic (𝑥2) = ( [0.5, 0.6], 0.4).

Hence, 𝐴𝐹 (𝑥1) = [0.2, 0.4], 𝛼𝐹 (𝑥1) = 0.3; 𝐴𝐹 (𝑥2) = [0.5, 0.6], 𝛼𝐹 (𝑥2) = 0.4.

Next, define an 𝑛-SuperHyperPlithogenic structure. Let 𝑃1 = {𝑥1, 𝑥2}, for 𝑘 ≥ 2 do 𝑃𝑘 = P̃ (𝑃𝑘−1). Suppose
we have one attribute 𝑣 with domain 𝑃𝑣 = {𝑢1, 𝑢2}. Then

𝑝𝑑𝑓
(𝑛) (𝐴, 𝑢1) ⊆ P̃𝑛

(
[0, 1]2) , 𝑝𝐶𝐹 (𝑛) (𝑢1, 𝑢2) ∈

(
[0, 1]𝑡

)𝑛
,

ensuring multi-level set membership. The combined structure

n-SHPC-FCS =

(
Ffuzzy−cubic,

(
𝑃𝑛, . . . , 𝑝𝑑𝑓

(𝑛)
, 𝑝𝐶𝐹 (𝑛) ) )

is an 𝑛-SuperHyperPlithogenic Fuzzy Cubic Set.

Definition 2.14 (𝑛-SuperHyperPlithogenic Intuitionistic Fuzzy Cubic Set). Let 𝑋 be a non-empty set. An
intuitionistic fuzzy cubic set FIF−cubic on 𝑋 assigns each 𝑥 ∈ 𝑋 the tuple:(

𝐴𝑀 (𝑥), 𝛼𝑀 (𝑥), 𝐴𝑁 (𝑥), 𝛼𝑁 (𝑥)
)
,

where

• 𝐴𝑀 (𝑥) ⊆ [0, 1] (interval membership), 𝛼𝑀 (𝑥) ∈ [0, 1] (single membership),

• 𝐴𝑁 (𝑥) ⊆ [0, 1] (interval non-membership), 𝛼𝑁 (𝑥) ∈ [0, 1] (single non-membership),
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• For any 𝑚 ∈ 𝐴𝑀 (𝑥) and 𝑛 ∈ 𝐴𝑁 (𝑥) and the single values 𝛼𝑀 (𝑥), 𝛼𝑁 (𝑥), we satisfy 𝑚 + 𝑛 ≤ 1 and
𝛼𝑀 (𝑥) + 𝛼𝑁 (𝑥) ≤ 1.

We then embed this cubic set into an 𝒏-SuperHyperPlithogenic aggregator(
𝑃𝑛, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓

(𝑛)
𝑖 }, 𝑝𝐶𝐹 (𝑛) )

with 𝑃𝑘 built via P̃ (·) up to level 𝑛. Combining them yields the 𝑛-SuperHyperPlithogenic Intuitionistic Fuzzy
Cubic Set:

n-SHPC-IFCS =

(
FIF−cubic, H𝑛

plitho

)
.

Example 2.15 (n-SHPC-IFCS Illustrative). Let 𝑋 = {𝑦1, 𝑦2}. Suppose for an intuitionistic fuzzy cubic set:

FIF−cubic (𝑦1) =
(
[0.2, 0.3], 0.25, [0.0, 0.2], 0.1

)
,

FIF−cubic (𝑦2) =
(
[0.4, 0.6], 0.5, [0.1, 0.3], 0.2

)
.

Hence each 𝑦𝑖 has an interval membership 𝐴𝑀 (𝑦𝑖) plus single membership 𝛼𝑀 (𝑦𝑖), and an interval non-
membership 𝐴𝑁 (𝑦𝑖) plus single non-membership 𝛼𝑁 (𝑦𝑖). Check 𝑚 ∈ 𝐴𝑀 (𝑦𝑖), 𝑛 ∈ 𝐴𝑁 (𝑦𝑖) implies 𝑚+𝑛 ≤ 1,
similarly 𝛼𝑀 (𝑦𝑖) + 𝛼𝑁 (𝑦𝑖) ≤ 1.

Next, let H𝑛
plitho be an 𝑛-SuperHyperPlithogenic aggregator with domain sets 𝑃1 ⊆ 𝑋 , 𝑃𝑘 = P̃ (𝑃𝑘−1), attribute

sets {𝑣𝑖}, a hyper-DAF 𝑝𝑑𝑓
(𝑛)
𝑖 , and contradiction function 𝑝𝐶𝐹 (𝑛) . Then

n-SHPC-IFCS =

(
FIF−cubic, H𝑛

plitho

)
forms an 𝑛-SuperHyperPlithogenic Intuitionistic Fuzzy Cubic Set.
Definition 2.16 (𝑛-SuperHyperPlithogenic Neutrosophic Cubic Set). Let 𝑋 be a non-empty set. A Neutrosophic
Cubic Set on 𝑋 , call it Ncubic, assigns each 𝑥 ∈ 𝑋:

Ncubic (𝑥) =

(
𝐴𝑇 (𝑥), 𝛼𝑇 (𝑥), 𝐴𝐼 (𝑥), 𝛼𝐼 (𝑥), 𝐴𝐹 (𝑥), 𝛼𝐹 (𝑥)

)
,

where for each 𝑥, 𝐴𝑇 (𝑥), 𝐴𝐼 (𝑥), 𝐴𝐹 (𝑥) ⊆ [0, 1] are interval (or set) memberships for truth, indeterminacy, and
falsity, while 𝛼𝑇 (𝑥), 𝛼𝐼 (𝑥), 𝛼𝐹 (𝑥) ∈ [0, 1] are single-valued memberships for (𝑇, 𝐼, 𝐹), with 𝑡 + 𝑖 + 𝑓 ≤ 3 for
𝑡 ∈ 𝐴𝑇 (𝑥), 𝑖 ∈ 𝐴𝐼 (𝑥), 𝑓 ∈ 𝐴𝐹 (𝑥) and 𝛼𝑇 (𝑥) + 𝛼𝐼 (𝑥) + 𝛼𝐹 (𝑥) ≤ 3.

An 𝑛-SuperHyperPlithogenic Neutrosophic Cubic Set (n-SHPC-NCS) is formed by combining Ncubic with an
𝑛-SuperHyperPlithogenic aggregator

H𝑛
plitho = (𝑃𝑛, {𝑣𝑖}, {𝑃𝑣𝑖}, {𝑝𝑑𝑓

(𝑛)
𝑖 }, 𝑝𝐶𝐹 (𝑛) ),

where each 𝑝𝑑𝑓
(𝑛)
𝑖 is a hyper-set mapping to P̃𝑛 ( [0, 1]𝑠) and 𝑝𝐶𝐹 (𝑛) is an 𝑛-level contradiction measure.

Formally,
n-SHPC-NCS =

(
Ncubic, H𝑛

plitho

)
.

Example 2.17 (n-SHPC-NCS Illustrative). Let 𝑋 = {𝑧1, 𝑧2}. Suppose for each 𝑧 ∈ 𝑋:

Ncubic (𝑧1) =
(
[0.2, 0.3], 0.25, [0.0, 0.1], 0.05, [0.4, 0.5], 0.3

)
,

meaning 𝐴𝑇 (𝑧1) = [0.2, 0.3], 𝛼𝑇 (𝑧1) = 0.25, 𝐴𝐼 (𝑧1) = [0.0, 0.1], 𝛼𝐼 (𝑧1) = 0.05, 𝐴𝐹 (𝑧1) = [0.4, 0.5],
𝛼𝐹 (𝑧1) = 0.3. We require that 𝑡 + 𝑖 + 𝑓 ≤ 3 for (𝑡, 𝑖, 𝑓 ) ∈ 𝐴𝑇 (𝑧1) × 𝐴𝐼 (𝑧1) × 𝐴𝐹 (𝑧1) and (𝛼𝑇 + 𝛼𝐼 + 𝛼𝐹) ≤ 3.

Similarly,
Ncubic (𝑧2) =

(
[0.6, 0.7], 0.66, [0.0, 0.2], 0.15, [0.0, 0.1], 0.10

)
.

Then define an 𝑛-SuperHyperPlithogenic aggregator H𝑛
plitho = (𝑃𝑛, . . . ), with 𝑃1 = {𝑧1, 𝑧2}, 𝑃𝑘 = P̃ (𝑃𝑘−1)

for 𝑘 = 2, . . . , 𝑛. We have attributes {𝑣𝑖}, possible values {𝑃𝑣𝑖}, hyper-DAFs {𝑝𝑑𝑓 (𝑛)𝑖 }, and a contradiction
function 𝑝𝐶𝐹 (𝑛) . The combination

n-SHPC-NCS =

(
Ncubic, H𝑛

plitho

)
is an 𝑛-SuperHyperPlithogenic Neutrosophic Cubic Set.
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Chapter 7
L-Neutrosophic set and Nonstationary Neutrosophic set

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Fuzzy sets extend classical set theory by assigning each element a membership degree in the interval [0, 1],
effectively modeling partial or uncertain membership. The Neutrosophic Set framework enhances fuzzy sets by
introducing three independent membership components: truth, indeterminacy, and falsity, each ranging within
[0, 1], providing a robust means of representing uncertainty and contradictions. The Plithogenic Set builds
upon classical and fuzzy sets by integrating attributes, their possible values, and a measure of contradiction,
enabling the modeling of multi-dimensional and contradictory data for complex decision-making scenarios. In
this paper, we extend L-fuzzy sets and nonstationary fuzzy sets using Neutrosophic and Plithogenic sets, and
briefly analyze their properties.

Keywords: Plithogenic set, Fuzzy Set, Neutrsophic set, L-fuzzy set, Nonstationary fuzzy set

1 Preliminaries and Definitions

This section provides a concise explanation of the key preliminaries and definitions.

1.1 Uncertain Set

To address uncertainty, vagueness, and imprecision in decision-making, various set-theoretic frameworks have
been developed. Among these, Fuzzy Sets, first introduced by Zadeh, represent a groundbreaking advancement
in capturing partial or uncertain membership [46–54].

Neutrosophic Sets, introduced by Smarandache, provide a flexible and robust framework for handling inde-
terminacy and uncertainty. They extend the concept of Fuzzy Sets by incorporating additional dimensions of
membership: truth, indeterminacy, and falsity [10, 11, 13, 17, 20–23, 27, 28, 37, 38, 42]. Neutrosophic Sets are
known for their ability to generalize Fuzzy Sets.

More recently, Plithogenic Sets, introduced and developed by Smarandache, have emerged as a powerful tool for
modeling multi-dimensional uncertainty and contradictions in complex scenarios. By incorporating attributes,
their possible values, and a contradiction measure, Plithogenic Sets extend both Fuzzy Sets and Neutrosophic
Sets, offering a highly versatile framework for decision-making [9,12,14–16,18,19,24–26,39–41]. Plithogenic
Sets are widely recognized for their capacity to generalize both Fuzzy Sets and Neutrosophic Sets.

The definitions of Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets are provided below.

Definition 1.1. [46,51] A fuzzy set 𝜏 in a non-empty universe 𝑌 is a mapping 𝜏 : 𝑌 → [0, 1]. A fuzzy relation
on 𝑌 is a fuzzy subset 𝛿 in 𝑌 × 𝑌 . If 𝜏 is a fuzzy set in 𝑌 and 𝛿 is a fuzzy relation on 𝑌 , then 𝛿 is referred to as
a fuzzy relation on 𝜏 if:

𝛿(𝑦, 𝑧) ≤ min{𝜏(𝑦), 𝜏(𝑧)} for all 𝑦, 𝑧 ∈ 𝑌 .

Definition 1.2 (Neutrosophic Set). [37, 38] Let 𝑋 be a non-empty set. A Neutrosophic Set (NS) 𝐴 on 𝑋 is
defined by three membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and falsity,
respectively. These functions satisfy the following constraint:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.
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Definition 1.3. [40, 41] Let 𝑆 be a universal set and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣: an attribute.

• 𝑃𝑣: the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠: the Degree of Appurtenance Function (DAF).

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 : the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)

2 Results of This Paper

This section presents the main findings discussed in this paper.

2.1 L-neutrosophic set and L-plithogenic set

An L-fuzzy set maps elements of a universal set 𝑋 to a complete lattice 𝐿, generalizing membership degrees
[1, 4–8, 30, 31, 35, 36, 43]. This concept is extended using Neutrosophic sets and Plithogenic sets.

Definition 2.1 (L-fuzzy set). [31] Let 𝑋 be a universal set and 𝐿 be a complete lattice with a partial order ≤,
supremum ∨, and infimum ∧. An L-fuzzy set 𝐴 on 𝑋 is defined as a mapping:

𝐴 : 𝑋 → 𝐿,

where 𝐴(𝑥) ∈ 𝐿 represents the membership degree of 𝑥 ∈ 𝑋 in the fuzzy set 𝐴, and satisfies the lattice
operations induced by 𝐿:

• 𝐴(𝑥) = ⊤𝐿 indicates full membership.

• 𝐴(𝑥) = ⊥𝐿 indicates no membership.

Definition 2.2 (L-Neutrosophic Set). Let 𝑋 be a universal set, and let 𝐿 be a complete lattice with top element
⊤𝐿 and bottom element⊥𝐿 . An L-Neutrosophic Set A on 𝑋 is characterized by three lattice-valued membership
functions:

𝑇A , 𝐼A , 𝐹A : 𝑋 −→ 𝐿,

where, for each 𝑥 ∈ 𝑋 , the values 𝑇A (𝑥), 𝐼A (𝑥), and 𝐹A (𝑥) are elements of 𝐿 (i.e., they belong to the lattice).
We interpret:

• 𝑇A (𝑥) as the truth degree of 𝑥,

• 𝐼A (𝑥) as the indeterminacy degree of 𝑥,

• 𝐹A (𝑥) as the falsity degree of 𝑥.
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We require a lattice-theoretic analogue of the classical neutrosophic constraint 0 ≤ 𝑇 + 𝐼 +𝐹 ≤ 3. One possible
approach is to impose:

𝑇A (𝑥) ∨ 𝐼A (𝑥) ∨ 𝐹A (𝑥) ≤ ⊤𝐿 ,

ensuring that no combination of truth, indeterminacy, and falsity exceeds the top element in the lattice sense,
or equivalently:

𝑇A (𝑥) ∧ 𝐼A (𝑥) ∧ 𝐹A (𝑥) ≥ ⊥𝐿 ,

depending on how one formalizes the neutrosophic sum constraint in lattice terms. In many treatments, we
simply leave it as: (

𝑇A (𝑥), 𝐼A (𝑥), 𝐹A (𝑥)
)
∈ 𝐿3,

with the understanding that each membership triple remains bounded by ⊤𝐿 in some partial order sense.

Hence, an L-Neutrosophic Set is given by:

A =
{
⟨𝑥, 𝑇A (𝑥), 𝐼A (𝑥), 𝐹A (𝑥)⟩ | 𝑥 ∈ 𝑋

}
.

Remark 2.3 (Membership Constraints). Depending on the desired interpretation, one could impose additional
conditions such as:

𝑇A (𝑥) ∨ 𝐼A (𝑥) ∨ 𝐹A (𝑥) ≤ ⊤𝐿 and 𝑇A (𝑥) ∧ 𝐼A (𝑥) ∧ 𝐹A (𝑥) ≥ ⊥𝐿 ,

or analogues of𝑇 + 𝐼 +𝐹 ≤ 3 in the lattice setting. The exact constraint depends on how we embed neutrosophic
addition and order into 𝐿. The general idea is that each point has three membership degrees in 𝐿.

Theorem 2.4. An L-Neutrosophic Set A on 𝑋 generalizes both L-Fuzzy Sets and Neutrosophic Sets. Specifi-
cally:

1. If 𝐼A (𝑥) = ⊥𝐿 and 𝐹A (𝑥) is taken as the lattice complement of 𝑇A (𝑥) (or ⊥𝐿) for all 𝑥 ∈ 𝑋 , then A
reduces to an L-Fuzzy Set.

2. If the lattice 𝐿 is taken as [0, 1] with usual order, ∨ = max, ∧ = min, ⊤𝐿 = 1, ⊥𝐿 = 0, then A becomes
a classical neutrosophic set {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))} with 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1].

Proof. (1) Assume that 𝐼A (𝑥) ≡ ⊥𝐿 (the bottom element of 𝐿) and let 𝐹A (𝑥) be either the lattice complement
of 𝑇A (𝑥) in 𝐿 or simply ⊥𝐿 . Then for each 𝑥 ∈ 𝑋 , the triple

(
𝑇A (𝑥),⊥𝐿 , 𝐹A (𝑥)

)
effectively encodes a single

membership degree 𝑇A (𝑥). Thus, the entire structure reduces to a mapping 𝑥 ↦→ 𝑇A (𝑥) ∈ 𝐿, which is precisely
an L-Fuzzy Set.

(2) If 𝐿 ≡ [0, 1] with standard order, top = 1, bottom = 0, and ∨ = max, ∧ = min, then each triple(
𝑇A (𝑥), 𝐼A (𝑥), 𝐹A (𝑥)

)
lies in [0, 1]3. By imposing 𝑇A (𝑥) + 𝐼A (𝑥) + 𝐹A (𝑥) ≤ 3, we exactly match the

definition of a neutrosophic set in the standard sense. Hence, A generalizes the classical neutrosophic
framework. □

Definition 2.5 (L-Plithogenic Set). Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. Let 𝑣 be an attribute taking values in
𝑃𝑣. Suppose 𝐿 is a complete lattice, and let 𝑠 ≥ 1, 𝑡 ≥ 1 be fixed. An L-Plithogenic Set of dimension (𝑠, 𝑡),
denoted by

𝐿-𝑃𝑆 (𝑠,𝑡 ) ,

is defined as:
𝐿-𝑃𝑆 =

(
𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓𝐿 , 𝑝𝐶𝐹𝐿

)
,

where
𝑝𝑑𝑓𝐿 : 𝑃 × 𝑃𝑣 −→ 𝐿𝑠 , 𝑝𝐶𝐹𝐿 : 𝑃𝑣 × 𝑃𝑣 −→ 𝐿𝑡 ,

are lattice-valued generalizations of the Degree of Appurtenance Function (DAF) and the Degree of Contra-
diction Function (DCF), respectively. Specifically, for each (𝑥, 𝑎) ∈ 𝑃 × 𝑃𝑣, 𝑝𝑑𝑓𝐿 (𝑥, 𝑎) is an 𝑠-dimensional
tuple in 𝐿𝑠 , e.g.

(
ℓ1, . . . , ℓ𝑠

)
∈ 𝐿𝑠 . Similarly, for each (𝑎, 𝑏) ∈ 𝑃𝑣 × 𝑃𝑣, 𝑝𝐶𝐹𝐿 (𝑎, 𝑏) ∈ 𝐿𝑡 .

We interpret:
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• 𝑝𝑑𝑓𝐿 (𝑥, 𝑎) as the lattice-valued membership of 𝑥 in the plithogenic set for the attribute value 𝑎,

• 𝑝𝐶𝐹𝐿 (𝑎, 𝑏) as the lattice-valued contradiction between two attribute values 𝑎 and 𝑏.

The usual plithogenic axioms (reflexivity, symmetry, etc.) may be stated in the lattice setting, e.g.

𝑝𝐶𝐹𝐿 (𝑎, 𝑎) = ⊥𝐿 (or a designated contradiction bottom), 𝑝𝐶𝐹𝐿 (𝑎, 𝑏) = 𝑝𝐶𝐹𝐿 (𝑏, 𝑎) (symmetry),

and so on, depending on how contradiction is embedded into the lattice 𝐿𝑡 .

Theorem 2.6. An L-Plithogenic Set 𝐿-𝑃𝑆 of dimension (𝑠, 𝑡) (Definition 2.5) generalizes:

1. The Plithogenic Set if 𝐿 ≡ [0, 1] with standard operations,

2. The L-Neutrosophic Set (when we restrict to a single attribute or unify the attribute perspective),
especially for 𝑠 = 3,

3. The L-Fuzzy Set (when 𝑠 = 1 and we treat each membership as a single lattice value).

Proof. (1) If we take 𝐿 ≡ [0, 1] (with ∨ = max, ∧ = min), then 𝑝𝑑𝑓𝐿 (𝑥, 𝑎) ∈ [0, 1]𝑠 and 𝑝𝐶𝐹𝐿 (𝑎, 𝑏) ∈ [0, 1]𝑡 .
By letting 𝑠 and 𝑡 match the dimension of membership and contradiction in a classical plithogenic set, we recover
the usual Plithogenic Set in [0, 1].

(2) If we interpret each membership vector
(
ℓ1, ℓ2, ℓ3

)
∈ 𝐿3 as (𝑇, 𝐼, 𝐹) (the L-Neutrosophic viewpoint),

and reduce or fix the attribute range 𝑃𝑣 suitably, then we effectively replicate an L-Neutrosophic Set. The
difference is that L-Plithogenic also includes a contradiction function 𝑝𝐶𝐹𝐿 (𝑎, 𝑏). If we disregard or simplify
that function, we see that each 𝑥 has a triple membership in 𝐿.

(3) When 𝑠 = 1, each membership is just one element in 𝐿. Then L-Plithogenic merges the lattice-based fuzzy
membership with the plithogenic approach. If we further reduce it to a single attribute or no contradiction
dimension, we get an L-Fuzzy Set.

Thus, by varying the dimension 𝑠 (and the lattice 𝐿), we capture all special cases: classical plithogenic
(𝐿 = [0, 1]), L-neutrosophic (𝑠 = 3), or L-fuzzy (𝑠 = 1) sets. □

2.2 Nonstationary Neutrosophic Set and Nonstationary Plithogenic Set

A nonstationary fuzzy set is a fuzzy set with a time-dependent membership function 𝜇 ¤𝐴(𝑡, 𝑥), reflecting
dynamic parameter variations [2,2,3,29,32–34,44,45]. This concept is extended using Neutrosophic sets and
Plithogenic sets.

Definition 2.7 (nonstationary fuzzy set). (cf. [2,29,33]) nonstationary fuzzy set ¤𝐴 of the universe of discourse
𝑋 is characterized by a nonstationary membership function:

𝜇 ¤𝐴 : 𝑇 × 𝑋 → [0, 1]

that associates with each element (𝑡, 𝑥) ∈ 𝑇 × 𝑋 a time-specific variation of the membership function 𝜇𝐴(𝑥) of
a standard fuzzy set 𝐴. The nonstationary fuzzy set ¤𝐴 is expressed as:

¤𝐴 =

∫
𝑡∈𝑇

∫
𝑥∈𝑋

𝜇 ¤𝐴(𝑡, 𝑥)/𝑥/𝑡.

¤𝐴

¤𝐴

The membership function 𝜇 (𝑡, 𝑥) is defined in terms of a perturbation of 𝜇𝐴(𝑥), where 𝜇 𝐴(𝑥) depends on a 
set of parameters 𝑝1, 𝑝2, . . . , 𝑝𝑚:

𝜇𝐴(𝑥) = 𝜇𝐴(𝑥; 𝑝1, . . . , 𝑝𝑚).

For a nonstationary fuzzy set, these parameters are functions of time 𝑡, leading to:

𝜇 (𝑡, 𝑥) = 𝜇𝐴(𝑥; 𝑝1 (𝑡), . . . , 𝑝𝑚 (𝑡)),

where each parameter varies over time according to a perturbation function:

𝑝𝑖 (𝑡) = 𝑝𝑖 + 𝑘𝑖 𝑓𝑖 (𝑡), 𝑖 = 1, . . . , 𝑚.
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Definition 2.8 (Nonstationary Neutrosophic Set). Let 𝑋 be a non-empty set, and let 𝑇 be a time domain (which
may be continuous or discrete). A nonstationary neutrosophic set ¤𝐴 on 𝑋 is defined by three time-dependent
membership functions:

𝑇 ¤𝐴 : 𝑇 × 𝑋 → [0, 1], 𝐼 ¤𝐴 : 𝑇 × 𝑋 → [0, 1], 𝐹 ¤𝐴 : 𝑇 × 𝑋 → [0, 1],

where for each (𝑡, 𝑥) ∈ 𝑇 × 𝑋 , the values 𝑇 ¤𝐴(𝑡, 𝑥), 𝐼 ¤𝐴(𝑡, 𝑥), and 𝐹 ¤𝐴(𝑡, 𝑥) represent the truth, indeterminacy, and
falsity degrees of 𝑥 in ¤𝐴 at time 𝑡. These satisfy

0 ≤ 𝑇 ¤𝐴(𝑡, 𝑥) + 𝐼 ¤𝐴(𝑡, 𝑥) + 𝐹 ¤𝐴(𝑡, 𝑥) ≤ 3,

for all (𝑡, 𝑥) ∈ 𝑇 × 𝑋 .

Analogous to the nonstationary fuzzy set, each component can be viewed as a time-varying perturbation of
the corresponding membership function in a stationary neutrosophic set. Specifically, if 𝑇𝐴, 𝐼𝐴, and 𝐹𝐴 define
a classical neutrosophic set 𝐴 on 𝑋 (with no time dependence), then we introduce a set of time-dependent
parameters

{𝑝𝑇,𝑖 (𝑡), 𝑝𝐼, 𝑗 (𝑡), 𝑝𝐹,𝑘 (𝑡)} for 𝑖, 𝑗 , 𝑘 ∈ I,

and define
𝑇 ¤𝐴(𝑡, 𝑥) = 𝑇𝐴

(
𝑥; 𝑝𝑇,1 (𝑡), . . . , 𝑝𝑇,𝑚(𝑡)

)
,

𝐼 ¤𝐴(𝑡, 𝑥) = 𝐼𝐴
(
𝑥; 𝑝𝐼,1 (𝑡), . . . , 𝑝𝐼,𝑛 (𝑡)

)
,

𝐹 ¤𝐴(𝑡, 𝑥) = 𝐹𝐴

(
𝑥; 𝑝𝐹,1 (𝑡), . . . , 𝑝𝐹,𝑝 (𝑡)

)
,

where each parameter function 𝑝 ·, · (𝑡) may evolve over time via a perturbation rule, e.g.

𝑝𝑇,𝑖 (𝑡) = 𝑝𝑇,𝑖 + 𝑘𝑇,𝑖 · 𝑓𝑇,𝑖 (𝑡),

and similarly for the indeterminacy and falsity parameters. In integral notation, the nonstationary neutrosophic
set ¤𝐴 can be expressed as

¤𝐴 =

∫
𝑡∈𝑇

∫
𝑥∈𝑋

(
𝑇 ¤𝐴(𝑡, 𝑥), 𝐼 ¤𝐴(𝑡, 𝑥), 𝐹 ¤𝐴(𝑡, 𝑥)

)
/ 𝑥 / 𝑡.

Theorem 2.9. A nonstationary neutrosophic set ¤𝐴 as in Definition 2.8 generalizes both (1) a nonstationary
fuzzy set and (2) a classical neutrosophic set. Specifically:

1. If 𝐼 ¤𝐴(𝑡, 𝑥) = 0 and 𝐹 ¤𝐴(𝑡, 𝑥) = 1 − 𝑇 ¤𝐴(𝑡, 𝑥) for all (𝑡, 𝑥) ∈ 𝑇 × 𝑋 , then ¤𝐴 is effectively a nonstationary
fuzzy set.

2. If |𝑇 | = 1 (no time variation), then ¤𝐴 reduces to a classical (stationary) neutrosophic set.

Proof. (1) For the first statement, setting 𝐼 ¤𝐴(𝑡, 𝑥) ≡ 0 eliminates indeterminacy, and letting 𝐹 ¤𝐴(𝑡, 𝑥) = 1 −
𝑇 ¤𝐴(𝑡, 𝑥) reduces the triple (𝑇 ¤𝐴(𝑡, 𝑥), 0, 1−𝑇 ¤𝐴(𝑡, 𝑥)) to a single membership value 𝑇 ¤𝐴(𝑡, 𝑥) in [0, 1]. Hence, we
obtain precisely the definition of a nonstationary fuzzy set ¤𝐴.

(2) For the second statement, if the time domain𝑇 is a singleton {𝑡0}, then𝑇 ¤𝐴(𝑡0, 𝑥) ≡ 𝑇𝐴(𝑥), 𝐼 ¤𝐴(𝑡0, 𝑥) ≡ 𝐼𝐴(𝑥),
𝐹 ¤𝐴(𝑡0, 𝑥) ≡ 𝐹𝐴(𝑥) define a classical neutrosophic set {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) | 𝑥 ∈ 𝑋}. Therefore, no time
dependence remains, and we recover the stationary (classical) neutrosophic framework. □

Definition 2.10 (Nonstationary Plithogenic Set). Let 𝑆 be a universal set, and let 𝑃 ⊆ 𝑆. Let 𝑣 be an attribute
taking values in 𝑃𝑣. Let 𝑇 be a time domain. Suppose we have integers 𝑠 ≥ 1 (the dimension of membership)
and 𝑡 ≥ 1 (the dimension of contradiction). A nonstationary plithogenic set ¤𝑃𝑆 of dimension (𝑠, 𝑡) is defined
as:

¤𝑃𝑆 =
(
𝑃, 𝑣, 𝑃𝑣, ¤𝑝𝑑𝑓 , ¤𝑝𝐶𝐹

)
,

where
¤𝑝𝑑𝑓 : 𝑇 × 𝑃 × 𝑃𝑣 −→ [0, 1]𝑠 , ¤𝑝𝐶𝐹 : 𝑇 × 𝑃𝑣 × 𝑃𝑣 −→ [0, 1]𝑡 ,

are time-dependent generalizations of the Degree of Appurtenance Function (DAF) and the Degree of Contra-
diction Function (DCF), respectively.
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For each fixed 𝑡 ∈ 𝑇 , the pair

𝑝𝑑𝑓𝑡 (𝑥, 𝑎) = ¤𝑝𝑑𝑓 (𝑡, 𝑥, 𝑎) and 𝑝𝐶𝐹𝑡 (𝑎, 𝑏) = ¤𝑝𝐶𝐹 (𝑡, 𝑎, 𝑏)

defines a classical plithogenic set of dimension (𝑠, 𝑡) (assuming reflexivity and symmetry axioms hold at each
time). In integral notation, we may write:

¤𝑃𝑆 =

∫
𝑡∈𝑇

(
𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓𝑡 , 𝑝𝐶𝐹𝑡

)
/ 𝑡,

indicating that the plithogenic membership and contradiction measures vary with time.

Nonstationary Parameters. Similarly to the nonstationary neutrosophic set, one can parameterize:

¤𝑝𝑑𝑓 (𝑡, 𝑥, 𝑎) = 𝑝𝑑𝑓
(
𝑥, 𝑎; 𝑝1 (𝑡), . . . , 𝑝𝑚 (𝑡)

)
,

¤𝑝𝐶𝐹 (𝑡, 𝑎, 𝑏) = 𝑝𝐶𝐹
(
𝑎, 𝑏; 𝑞1 (𝑡), . . . , 𝑞𝑛 (𝑡)

)
,

where each parameter function 𝑝𝑖 (𝑡) or 𝑞 𝑗 (𝑡) evolves in time via perturbation rules, enabling dynamic changes
in membership and contradiction values.

Theorem 2.11. A nonstationary plithogenic set ¤𝑃𝑆 of dimension (𝑠, 𝑡) (Definition 2.10) generalizes:

1. The classical plithogenic set (when |𝑇 | = 1, no time dependence).

2. A nonstationary neutrosophic set (when 𝑠 = 3 and we interpret the membership dimension as (𝑇, 𝐼, 𝐹)).

3. A nonstationary fuzzy set (when 𝑠 = 1, effectively yielding a single membership dimension).

Proof. (1) If 𝑇 is a single point (no time variation), then ¤𝑝𝑑𝑓 (𝑡, 𝑥, 𝑎) ≡ 𝑝𝑑𝑓 (𝑥, 𝑎) and ¤𝑝𝐶𝐹 (𝑡, 𝑎, 𝑏) ≡
𝑝𝐶𝐹 (𝑎, 𝑏). This matches a classical plithogenic set of dimension (𝑠, 𝑡), as in [40, 41].

(2) If 𝑠 = 3, interpreting each membership value in [0, 1]3 as (𝑇, 𝐼, 𝐹) degrees yields a time-dependent
neutrosophic-like membership structure. Hence, ¤𝑃𝑆 includes the notion of nonstationary neutrosophic sets,
with an additional plithogenic contradiction function if so desired.

(3) If 𝑠 = 1, each membership entry is a single scalar in [0, 1], so ¤𝑃𝑆 captures a nonstationary fuzzy-like
membership dimension, extended by a time-varying contradiction function.

Thus, adjusting the cardinality of 𝑇 and the dimension 𝑠 (and possibly 𝑡 for contradiction) recovers each special
case, proving the stated unification properties. □
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Forecasting in non-stationary environments with fuzzy time series. arXiv preprint arXiv:2004.12554, 2020.
[35] Nicolás Madrid and Manuel Ojeda-Aciego. Functional degrees of inclusion and similarity between l-fuzzy sets. Fuzzy Sets Syst.,

390:1–22, 2020.
[36] Maliha Rashid, Marwan Amin Kutbi, and Akbar Azam. Coincidence theorems via alpha cuts of l-fuzzy sets with applications. Fixed

Point Theory and Applications, 2014:1–16, 2014.
[37] Florentin Smarandache. Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. 1998.
[38] Florentin Smarandache. A unifying field in logics: Neutrosophic logic. In Philosophy, pages 1–141. American Research Press,

1999.
[39] Florentin Smarandache. Plithogeny, plithogenic set, logic, probability, and statistics. Infinite Study, 2017.
[40] Florentin Smarandache. Plithogenic set, an extension of crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets-revisited. Infinite

study, 2018.
[41] Florentin Smarandache. Plithogeny, plithogenic set, logic, probability, and statistics. arXiv preprint arXiv:1808.03948, 2018.
[42] Florentin Smarandache and NM Gallup. Generalization of the intuitionistic fuzzy set to the neutrosophic set. In International

Conference on Granular Computing, pages 8–42. Citeseer, 2006.
[43] Alexander P. Sostak, Ingrda Ujane, and Aleksandrs Elkins. On the measure of many-level fuzzy rough approximation for l-fuzzy

sets. Computational Intelligence and Mathematics for Tackling Complex Problems, 2019.
[44] Hasan Yetis and Mehmet Karakose. Nonstationary fuzzy systems for modelling and control in cyber physical systems under

uncertainty. International Journal of Intelligent Systems and Applications in Engineering, 7(1):26–30, 2017.
[45] Hasan Yetis and Mehmet Karakose. Modelling type-2 fuzzy systems by optimized nonstationary fuzzy sets with genetic algorithm.

2020 24th International Conference on Information Technology (IT), pages 1–4, 2020.
[46] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.
[47] Lotfi A Zadeh. Biological application of the theory of fuzzy sets and systems. In The Proceedings of an International Symposium

on Biocybernetics of the Central Nervous System, pages 199–206. Little, Brown and Comp. London, 1969.
[48] Lotfi A Zadeh. A fuzzy-set-theoretic interpretation of linguistic hedges. 1972.
[49] Lotfi A Zadeh. Fuzzy sets and their application to pattern classification and clustering analysis. In Classification and clustering,

pages 251–299. Elsevier, 1977.
[50] Lotfi A Zadeh. Fuzzy sets versus probability. Proceedings of the IEEE, 68(3):421–421, 1980.
[51] Lotfi A Zadeh. Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by

Lotfi A Zadeh, pages 775–782. World Scientific, 1996.
[52] Lotfi A Zadeh. Fuzzy sets and information granularity. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A

Zadeh, pages 433–448. World Scientific, 1996.
[53] Lotfi A Zadeh. A note on prototype theory and fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A

Zadeh, pages 587–593. World Scientific, 1996.
[54] Lotfi Asker Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1):3–28, 1978.

102



Chapter 8
Forest HyperPlithogenic Set and Forest HyperRough Set
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Abstract

The Plithogenic Set is widely recognized for generalizing concepts such as Fuzzy Sets and Neutrosophic Sets.
Rough Sets offer a framework for approximating subsets through lower and upper bounds defined by equivalence
relations, effectively capturing uncertainty in classification and data analysis. These foundational ideas have
been extended to concepts like Hyperplithogenic Sets, Superhyperplithogenic Sets, Hyperrough Sets, and
Superhyperrough Sets. In this paper, we further extend these notions by introducing the Forest Hyperplithogenic
Set, the Forest SuperHyperplithogenic Set, the Forest HyperRough Set, and the Forest SuperHyperRough Set.
These frameworks represent generalized extensions of existing set-theoretic paradigms.

Keywords: Rough set, Plithogenic Set, Hyperstructure, Superhyperstructure
MSC 2010 classifications: 03E72: Fuzzy set theory, 03B52: Fuzzy logic; logic of vagueness

1 Short Introduction of this Paper

1.1 Plithogenic Sets and Rough Sets

Numerous frameworks have been developed to handle uncertainty, reflecting its pervasive role across various
disciplines. These include foundational concepts such as Fuzzy Sets [74–80], Intuitionistic Fuzzy Sets [5–9],
and Neutrosophic Sets [25, 26, 56, 57, 67]. Advanced extensions such as Soft Sets [12, 13, 31, 35, 36, 39, 51],
Hypersoft Sets [1,16,27,49,58,61], and SuperHypersoft Sets [20,38,62] have further enriched the theoretical
landscape. In addition, Rough Sets [40,41,44,47] have provided robust tools for addressing uncertainty in data
classification.

This paper focuses on two prominent frameworks: Plithogenic Sets and Rough Sets. Plithogenic Sets extend
traditional set theory by introducing appurtenance degrees and contradiction measures, offering a powerful
approach to decision-making in contexts characterized by intricate and conflicting criteria [14,19,28,59,60,68].
In contrast, Rough Sets provide a method for approximating subsets through lower and upper bounds defined
by equivalence relations, effectively modeling uncertainty in classification and data analysis [40–47].

Within both the Plithogenic and Rough Set frameworks, advanced constructs such as Hyperplithogenic Sets
[15, 19], Superhyperplithogenic Sets [15, 19], Hyperrough [15, 19], and Superhyperrough Sets [19, 22] have
been developed, highlighting the growing sophistication in managing uncertainty across diverse applications.

1.2 Our Contribution in This Paper

This section outlines the contributions made in this paper. We introduce and explore the following concepts:
the Forest Hyperplithogenic Set, the Forest SuperHyperplithogenic Set, the Forest HyperRough Set, and the
Forest SuperHyperRough Set. These represent generalized extensions of existing set-theoretic frameworks.
The development of these concepts is heavily inspired by the principles underlying the Forest Hypersoft Set,
which serves as a foundational reference throughout this work [49].

2 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.
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2.1 Plithogenic Set

A Plithogenic Set is a mathematical framework that incorporates multi-valued degrees of appurtenance and
contradictions, making it suitable for complex decision-making processes. Various studies have been conducted
on Plithogenic Sets [2, 3, 17, 21, 48, 52–54, 66, 71]. The definition is presented below.

Definition 2.1. [59, 60] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) 1

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)

2.2 HyperPlithogenic Set and SuperHyperPlithogenic Set

In this subsection, we present the definitions of the HyperPlithogenic Set and the SuperHyperPlithogenic
Set [15, 19, 21, 23]. The HyperPlithogenic Set is defined within the framework of hyperstructures, while the
SuperHyperPlithogenic Set extends this notion using superhyperstructures [14, 24, 63–65].

First, the definitions of the n-th Powerset, hyperstructures, and superhyperstructures are provided below. These
concepts have been applied to various frameworks.

Definition 2.2 (𝑛-th Powerset). (cf. [18,55,65]) Let 𝐻 be a non-empty set. The 𝑛-th powerset, denoted 𝑃𝑛 (𝐻),
is defined recursively as follows:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

The 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined by excluding the empty set:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)),

where 𝑃∗ (𝐻) is the powerset of 𝐻 with the empty set removed.

Definition 2.3 (Hyperstructure). (cf. [18, 55, 65]) A Hyperstructure generalizes the classical structure by
extending operations to the powerset of a base set. It is defined as:

H = (P(𝑆), ◦),

where:
1It is important to note that the definition of the Degree of Appurtenance Function varies across different papers. Some studies define

this concept using the power set, while others simplify it by avoiding the use of the power set [70]. The author has consistently defined the
Classical Plithogenic Set without employing the power set.
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• 𝑆 is the base set,

• P(𝑆) is the powerset of 𝑆,

• ◦ is a hyperoperation defined on subsets of P(𝑆).

Definition 2.4 (𝑛-Superhyperstructure). (cf. [55, 65]) An 𝑛-Superhyperstructure builds on the concept of
Hyperstructure by operating on the 𝑛-th powerset of a base set. Formally, it is defined as:

SH𝑛 = (P𝑛 (𝑆), ◦),

where:

• 𝑆 is the base set,

• P𝑛 (𝑆) is the 𝑛-th powerset of 𝑆,

• ◦ is a hyperoperation defined on elements of P𝑛 (𝑆).

These definitions establish the foundational framework necessary for exploring the HyperPlithogenic Set and
the SuperHyperPlithogenic Set. The definitions of the HyperPlithogenic Set and the SuperHyperPlithogenic
Set are presented below [15, 19, 21].

Definition 2.5 (HyperPlithogenic Set). [15, 19, 21] Let 𝑋 be a non-empty set, and let 𝐴 be a set of attributes.
For each attribute 𝑣 ∈ 𝐴, let 𝑃𝑣 be the set of possible values of 𝑣. A HyperPlithogenic Set 𝐻𝑃𝑆 over 𝑋 is
defined as:

𝐻𝑃𝑆 = (𝑃, {𝑣𝑖}𝑛𝑖=1, {𝑃𝑣𝑖}
𝑛
𝑖=1, { ˜𝑝𝑑𝑓 𝑖}𝑛𝑖=1, 𝑝𝐶𝐹)

where:

• 𝑃 ⊆ 𝑋 is a subset of the universe.

• For each attribute 𝑣𝑖 , 𝑃𝑣𝑖 is the set of possible values.

• For each attribute 𝑣𝑖 , ˜𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 → �̃�( [0, 1]𝑠) is the Hyper Degree of Appurtenance Function
(HDAF), assigning to each element 𝑥 ∈ 𝑃 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a set of membership degrees.

• 𝑝𝐶𝐹 :
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
→ [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

Definition 2.6 (𝑛-SuperHyperPlithogenic Set). [15,19,21] Let 𝑋 be a non-empty set, and let𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
be a set of attributes, each associated with a set of possible values 𝑃𝑣𝑖 . An 𝑛-SuperHyperPlithogenic Set
(𝑆𝐻𝑃𝑆𝑛) is defined recursively as:

𝑆𝐻𝑃𝑆𝑛 = (𝑃𝑛, 𝑉, {𝑃𝑣𝑖 }𝑛𝑖=1, { ˜𝑝𝑑𝑓 (𝑛)𝑖 }𝑛𝑖=1, 𝑝𝐶𝐹 (𝑛) ),

where:

• 𝑃1 ⊆ 𝑋 , and for 𝑘 ≥ 2,
𝑃𝑘 = P̃ (𝑃𝑘−1),

represents the 𝑘-th nested family of non-empty subsets of 𝑃1.

• For each attribute 𝑣𝑖 ∈ 𝑉 , 𝑃𝑣𝑖 is the set of possible values of the attribute 𝑣𝑖 .

• For each 𝑘-th level subset 𝑃𝑘 , ˜𝑝𝑑𝑓 (𝑛)𝑖 : 𝑃𝑛 × 𝑃𝑣𝑖 → P̃([0, 1]𝑠) is the Hyper Degree of Appurtenance
Function (HDAF), assigning to each element 𝑥 ∈ 𝑃𝑛 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a subset of [0, 1]𝑠 .

• 𝑝𝐶𝐹 (𝑛) :
⋃𝑛

𝑖=1 𝑃𝑣𝑖 ×
⋃𝑛

𝑖=1 𝑃𝑣𝑖 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF), satisfying:

1. Reflexivity: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑎) = 0 for all 𝑎 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 ,

2. Symmetry: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑛) (𝑏, 𝑎) for all 𝑎, 𝑏 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 .

• 𝑠 and 𝑡 are positive integers representing the dimensions of the membership degrees and contradiction
degrees, respectively.
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2.3 Rough Set, HyperRough Set, and Superhyperrough set

A Rough Set approximates a subset using lower and upper bounds based on equivalence classes, capturing
certainty and uncertainty in membership [40, 41, 41–47]. The definitions are provided below.

Definition 2.7 (Rough Set Approximation). [41] Let 𝑋 be a non-empty universe of discourse, and let 𝑅 ⊆ 𝑋×𝑋
be an equivalence relation (or indiscernibility relation) on 𝑋 . The equivalence relation 𝑅 partitions 𝑋 into
disjoint equivalence classes, denoted by [𝑥]𝑅 for 𝑥 ∈ 𝑋 , where:

[𝑥]𝑅 = {𝑦 ∈ 𝑋 | (𝑥, 𝑦) ∈ 𝑅}.

For any subset 𝑈 ⊆ 𝑋 , the lower approximation 𝑈 and the upper approximation 𝑈 of 𝑈 are defined as follows:

1. Lower Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝑈}.

The lower approximation 𝑈 includes all elements of 𝑋 whose equivalence classes are entirely contained
within 𝑈. These are the elements that definitely belong to 𝑈.

2. Upper Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩𝑈 ≠ ∅}.

The upper approximation 𝑈 contains all elements of 𝑋 whose equivalence classes have a non-empty
intersection with 𝑈. These are the elements that possibly belong to 𝑈.

The pair (𝑈,𝑈) forms the rough set representation of 𝑈, satisfying the relationship:

𝑈 ⊆ 𝑈 ⊆ 𝑈.

The HyperRough Set is a concept that adapts the framework of the HyperSoft Set [58] to Rough Set theory. Its
formal definition is provided below.

Definition 2.8 (HyperRough Set). [19, 22] Let 𝑋 be a non-empty finite universe, and let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be 𝑛

distinct attributes with respective domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. Define the Cartesian product of these domains as:

𝐽 = 𝐽1 × 𝐽2 × · · · × 𝐽𝑛.

Let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence relation on 𝑋 , where [𝑥]𝑅 denotes the equivalence class of 𝑥 under 𝑅.

A HyperRough Set over 𝑋 is a pair (𝐹, 𝐽), where:

• 𝐹 : 𝐽 → P(𝑋) is a mapping that assigns a subset 𝐹 (𝑎) ⊆ 𝑋 to each attribute value combination
𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐽.

• For each 𝑎 ∈ 𝐽, the rough set (𝐹 (𝑎), 𝐹 (𝑎)) is defined as:

𝐹 (𝑎) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝑎)}, 𝐹 (𝑎) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝑎) ≠ ∅}.

The lower approximation 𝐹 (𝑎) represents the set of elements in 𝑋 whose equivalence classes are entirely
contained within 𝐹 (𝑎), while the upper approximation 𝐹 (𝑎) includes elements whose equivalence classes have
a non-empty intersection with 𝐹 (𝑎).

Additionally, the following properties hold:

• 𝐹 (𝑎) ⊆ 𝐹 (𝑎) for all 𝑎 ∈ 𝐽.

• If 𝐹 (𝑎) = ∅, then 𝐹 (𝑎) = 𝐹 (𝑎) = ∅.
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• If 𝐹 (𝑎) = 𝑋 , then 𝐹 (𝑎) = 𝐹 (𝑎) = 𝑋 .

Definition 2.9 (𝑛-SuperHyperRough Set). [19,22] Let 𝑋 be a non-empty finite universe, and let 𝑇1, 𝑇2, . . . , 𝑇𝑛
be 𝑛 distinct attributes with respective domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. For each attribute 𝑇𝑖 , let P(𝐽𝑖) denote the power
set of 𝐽𝑖 . Define the set of all possible attribute value combinations as the Cartesian product of these power
sets:

𝐽 = P(𝐽1) × P(𝐽2) × · · · × P(𝐽𝑛).

Let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence relation on 𝑋 , where [𝑥]𝑅 denotes the equivalence class of 𝑥 under 𝑅.

An 𝑛-SuperHyperRough Set over 𝑋 is a pair (𝐹, 𝐽), where:

• 𝐹 : 𝐽 → P(𝑋) is a mapping that assigns a subset 𝐹 (𝐴) ⊆ 𝑋 to each attribute value combination
𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) ∈ 𝐽, where 𝐴𝑖 ⊆ 𝐽𝑖 for all 𝑖.

• For each 𝐴 ∈ 𝐽, the rough set (𝐹 (𝐴), 𝐹 (𝐴)) is defined as:

𝐹 (𝐴) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝐴)}, 𝐹 (𝐴) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝐴) ≠ ∅}.

The lower approximation 𝐹 (𝐴) represents the set of elements in 𝑋 whose equivalence classes are entirely
contained within 𝐹 (𝐴), while the upper approximation 𝐹 (𝐴) includes elements whose equivalence classes
have a non-empty intersection with 𝐹 (𝐴).

Properties:

• 𝐹 (𝐴) ⊆ 𝐹 (𝐴) for all 𝐴 ∈ 𝐽.

• If 𝐹 (𝐴) = ∅, then 𝐹 (𝐴) = 𝐹 (𝐴) = ∅.

• If 𝐹 (𝐴) = 𝑋 , then 𝐹 (𝐴) = 𝐹 (𝐴) = 𝑋 .

• For any 𝐴, 𝐵 ∈ 𝐽:
𝐹 (𝐴 ∩ 𝐵) ⊆ 𝐹 (𝐴) ∩ 𝐹 (𝐵), 𝐹 (𝐴 ∪ 𝐵) ⊇ 𝐹 (𝐴) ∪ 𝐹 (𝐵).

3 Results of This Paper

This section presents the results obtained in this paper.

3.1 Forest 𝑛-Superhyperstructure

The Forest 𝑛-Superhyperstructure is an extension of the 𝑛-Superhyperstructure. The definitions of the Forest
Hyperstructure and the Forest 𝑛-Superhyperstructure are provided below.

Definition 3.1 (Forest Hyperstructure). Let 𝑆 be a non-empty base set, and let P(𝑆) represent its power set
(all possible subsets of 𝑆). A forest-based family F (𝑆) ⊆ P(𝑆) is constructed through the following steps:

1. Hierarchy Specification:

• Partition or organize the elements of 𝑆 into one or more root subsets, each of which may branch
into further subsets (children) at multiple levels.

• For an element 𝑥 ∈ 𝑆, determine whether 𝑥 acts as a root of a subset 𝐴 ⊆ 𝑆, or as a child node
within a deeper subset.

• At each level, subsets may split or refine into smaller, more specific subsets, or combine into larger
ones, depending on the application context.

2. Node Representation:
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• Each node in the forest corresponds to a subset of 𝑆.
• An internal node represents a subset that may have child nodes (subsets refining or expanding

specific elements).
• A leaf node represents a final-level subset that does not subdivide further.

3. Forest-Based Family F (𝑆):

• Collect all subsets (nodes) appearing anywhere in the forest structure into a single family:

F (𝑆) = {subsets 𝐴 ⊆ 𝑆 | 𝐴 appears as a node or leaf in the forest structure}.

• F (𝑆) is not necessarily equal to P(𝑆); it may exclude subsets not represented in the forest or
include only those recognized by the hierarchy. In specific cases, F (𝑆) could be P(𝑆) if the forest
incorporates all possible subsets.

4. Hyperoperation Definition:

• Define a hyperoperation:
◦ : F (𝑆) × F (𝑆) −→ P

(
F (𝑆)

)
,

such that for 𝐴, 𝐵 ∈ F (𝑆), the result 𝐴 ◦ 𝐵 is a set of nodes in F (𝑆).
• For example, if 𝐴 and 𝐵 share certain elements in their hierarchical decomposition, the hyperoper-

ation may merge or intersect their subtrees or unify them into a larger subset.
• The exact definition of ◦ depends on the problem context but is constrained to output subsets

recognized by the forest structure (F (𝑆)).

A Forest Hyperstructure is then defined as the pair:

FH =
(
F (𝑆), ◦

)
.

Example 3.2. Suppose 𝑆 = {1, 2, 3, 4}. A simple forest-based family F (𝑆) could be defined as:

F (𝑆) = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3, 4}}.

• Imagine two root subsets: {1, 2} and {2, 3, 4}.

• The subset {1, 2} might branch into {1} and {2} as children.

• Similarly, {2, 3, 4} might branch into {2} and {3, 4}, which could further subdivide.

Any subset not included in this partial structure, such as {1, 3}, is excluded from F (𝑆).

A plausible hyperoperation ◦ could be defined as:

{1} ◦ {2, 3, 4} = {{1, 2}, {1, 2, 3, 4}} ⊆ F (𝑆).

This operation reflects the possibility of merging the “child” {1} into the “parent” {2, 3, 4}, provided the
hierarchy permits such a combination.

Theorem 3.3 (Forest Hyperstructure Generalizes Hyperstructure). Let H =
(
P(𝑆), ◦

)
be any classical

Hyperstructure on the full power set of 𝑆. Then there exists a Forest Hyperstructure FH =
(
F (𝑆), ◦

)
(with

the same hyperoperation symbolically) such that FH reduces to H by choosing F (𝑆) = P(𝑆) and ignoring
hierarchical distinctions.

Proof. A classical Hyperstructure H includes P(𝑆) in its entirety. To obtain F (𝑆) exactly equal to P(𝑆), we
may define a trivial “forest” in which every subset of 𝑆 is included as an isolated node (no real branching). In
effect, each subset forms its own root and has no children, thus flattening the concept of a forest into a single
level.

The hyperoperation ◦ remains unchanged because it is now acting on all of P(𝑆). Hence, FH is precisely H
in this trivial scenario. Consequently, every classical Hyperstructure can be seen as a special “flat forest” case
of the Forest Hyperstructure. □
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Definition 3.4 (Forest 𝑛-Superhyperstructure). Let 𝑆 be a non-empty base set, and let P𝑛 (𝑆) be its 𝑛-th powerset
as described. A forest-based 𝑛-th powerset, denoted F𝑛 (𝑆) ⊆ P𝑛 (𝑆), is constructed by imposing a forest-like
hierarchical structure at each level of subset formation. Concretely:

1. Level 1 Hierarchy: At the first level, we build a forest F1 (𝑆) ⊆ P(𝑆) following Definition 3.1. This
captures how elements/subsets of 𝑆 might branch into sub-subsets within the same level.

2. Iterative Expansion: For the second level, each node in F1 (𝑆) (which is itself a subset of 𝑆) can be
refined by an additional forest-based expansion, resulting in F2 (𝑆) ⊆ P

(
F1 (𝑆)

)
. In principle, F2 (𝑆) is a

set of subsets of F1 (𝑆), each subset now representing a possible combination or branching of first-level
subsets.

3. Continuing up to Level 𝑛: We repeat this hierarchical construction up to the 𝑛-th level. Ultimately,
F𝑛 (𝑆) ⊆ P𝑛 (𝑆) is a structured family that respects the forest expansions at each layer. An element in
F𝑛 (𝑆) can be viewed as a node (or path of nodes) that emerges from chaining multiple forest expansions
from level 1 to level 𝑛.

4. Hyperoperation ◦: We define a hyperoperation

◦ : F𝑛 (𝑆) × F𝑛 (𝑆) −→ P
(
F𝑛 (𝑆)

)
,

ensuring that the result 𝛼 ◦ 𝛽 ⊆ F𝑛 (𝑆) respects all 𝑛 layers of the forest-based expansions. For example,
if 𝛼 and 𝛽 represent certain nested subset paths, their hyperoperation might merge these paths or produce
new nodes consistent with the forest structure at each level.

A Forest 𝑛-Superhyperstructure is the pair

FSH𝑛 =
(
F𝑛 (𝑆), ◦

)
.

Example 3.5. To provide an example for 𝑛 = 2:

• Level 1: Suppose F1 (𝑆) is a forest of subsets of 𝑆. For instance, if 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}, we might have

F1 (𝑆) = {{𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑎, 𝑏}, {𝑏, 𝑐, 𝑑}}.

• Level 2: Now each element of F1 (𝑆) can itself appear in a second-level forest expansion. For instance,
{𝑎, 𝑏} might branch into {{𝑎}, {𝑏}} at the next level, or unify with {𝑏, 𝑐, 𝑑} in some “super-subset” if
the forest hierarchy allows. The result is F2 (𝑆) ⊆ P(F1 (𝑆)). Each subset in F2 (𝑆) is now a collection
of nodes from F1 (𝑆) that is recognized by the second-level forest structure.

• The pair
(
F2 (𝑆), ◦

)
is thus a Forest 2-Superhyperstructure. Extending to higher 𝑛 follows a similar

pattern.

Theorem 3.6 (Forest 𝑛-Superhyperstructure Generalizes Forest Hyperstructure and 𝑛-Superhyperstructure). A
Forest 𝑛-Superhyperstructure

(
F𝑛 (𝑆), ◦

)
generalizes both:

• the Forest Hyperstructure
(
F (𝑆), ◦

)
(Definition 3.1), and

• the 𝑛-Superhyperstructure
(
P𝑛 (𝑆), ◦

)
.

Proof. When 𝑛 = 1, we do not iterate the powerset formation. We only have:

F1 (𝑆) ⊆ P(𝑆),

and the hyperoperation is
◦ : F1 (𝑆) × F1 (𝑆) −→ P

(
F1 (𝑆)

)
.

This matches exactly the definition of a Forest Hyperstructure, because we are only building a single-level
forest-based family of subsets of 𝑆. There is no second-level or higher nesting. Thus,

FSH1 =
(
F1 (𝑆), ◦

)
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is precisely
(
F (𝑆), ◦

)
. That is, the Forest 1-Superhyperstructure and the Forest Hyperstructure coincide.

If we remove all forest-based restrictions at each stage, we let F𝑘 (𝑆) = P𝑘 (𝑆) for 𝑘 = 1, . . . , 𝑛. Hence,

F𝑛 (𝑆) = P𝑛 (𝑆).

The hyperoperation
◦ : P𝑛 (𝑆) × P𝑛 (𝑆) −→ P

(
P𝑛 (𝑆)

)
defines precisely an 𝑛-Superhyperstructure. Therefore, by lifting the forest constraints, we recover the full 𝑛-th
powerset, matching SH𝑛 =

(
P𝑛 (𝑆), ◦

)
.

Combining these two arguments shows that a Forest 𝑛-Superhyperstructure becomes:

•
(
F (𝑆), ◦

)
if 𝑛 = 1,

•
(
P𝑛 (𝑆), ◦

)
if we remove the hierarchical/forest restrictions at every level.

Hence,
(
F𝑛 (𝑆), ◦

)
is strictly more general, encompassing both the single-level forest hyperstructure and the

classic 𝑛-Superhyperstructure as special cases. □

3.2 Forest 𝑛-SuperhyperPlithogenic Set

The Forest 𝑛-SuperhyperPlithogenic Set is a generalized concept that extends the 𝑛-SuperhyperPlithogenic Set.
Its definition is provided below.

Definition 3.7 (Forest HyperPlithogenic Set). Let 𝑋 be a non-empty set (the universe of discourse), and let

𝐴 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}

be a collection of 𝑛 attributes, each attribute 𝑣𝑖 having a forest-like hierarchy of possible values. Concretely, for
each 𝑣𝑖 , there is a (potentially multi-level) family of subsets 𝑃𝑣𝑖 ⊆ P(𝑆𝑖), where 𝑆𝑖 is the base set of raw values
for 𝑣𝑖 . These subsets in 𝑃𝑣𝑖 may represent nodes or paths in a forest structure: a root node might correspond
to the entire set of values 𝑆𝑖 , and internal or leaf nodes correspond to partial subdivisions or refinements of 𝑆𝑖 .

A Forest HyperPlithogenic Set FHPS over 𝑋 is a 5-tuple:

FHPS =

(
𝑃, {𝑣𝑖}𝑛𝑖=1, {𝑃𝑣𝑖}

𝑛
𝑖=1, { ˜𝑝𝑑𝑓 𝑖}𝑛𝑖=1, 𝑝𝐶𝐹forest

)
,

with the following components:

1. 𝑃 ⊆ 𝑋:

• A (possibly proper) subset of the universe 𝑋 , serving as the set of elements on which the attributes
(and their values) will be evaluated.

2. 𝑃𝑣𝑖 ⊆ P(𝑆𝑖) for each attribute 𝑣𝑖:

• A forest-based family of possible values.
• Rather than simply listing all subsets of 𝑆𝑖 , these subsets are organized as a forest:

– Each node (subset) can have children (more refined or specialized subsets).
– The forest culminates in leaf nodes (final-level subsets of 𝑆𝑖).

• For instance, some node in the forest might represent a partial subset of 𝑆𝑖 , while another node
might represent a further subdivision of it.

3. ˜𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 −→ P̃([0, 1]𝑠):

• The Hyper Degree of Appurtenance Function (HDAF).
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• This function assigns, for each element 𝑥 ∈ 𝑃 and each forest-based value 𝛼 ∈ 𝑃𝑣𝑖 , a set of
membership degrees in [0, 1]𝑠 .

• The parameter 𝑠 might encode fuzziness, intuitionistic or neutrosophic membership, or other multi-
valued measures.

• The prefix “Hyper” indicates that ˜𝑝𝑑𝑓 𝑖 (𝑥, 𝛼) can be set-valued rather than a single numeric value,
allowing for further generality (e.g., intervals or multi-dimensional membership vectors).

4. 𝑝𝐶𝐹forest :
(⋃𝑛

𝑖=1 𝑃𝑣𝑖

)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖

)
−→ [0, 1]𝑡 :

• The Degree of Contradiction Function (DCF) for the entire collection of forest-based attribute
values.

• For any two (possibly multi-level) values 𝛼, 𝛽 chosen from any of the 𝑃𝑣𝑖 families, 𝑝𝐶𝐹forest (𝛼, 𝛽)
measures how contradictory or incompatible these two values are, in a multi-valued sense (dimen-
sion 𝑡).

• Typically, we require:

𝑝𝐶𝐹forest (𝛼, 𝛼) = 0, 𝑝𝐶𝐹forest (𝛼, 𝛽) = 𝑝𝐶𝐹forest (𝛽, 𝛼),

ensuring reflexivity (no contradiction with itself) and symmetry.

Whereas a standard HyperPlithogenic Set simply collects an attribute 𝑣𝑖 with a set of values 𝑃𝑣𝑖 , the Forest
HyperPlithogenic Set organizes those values in a multi-level (forest) manner, allowing sub-values to branch out
from root values or parent nodes. The ˜𝑝𝑑𝑓 𝑖 and 𝑝𝐶𝐹forest are then forest-aware, meaning their definitions may
depend on hierarchical relations among the subsets in 𝑃𝑣𝑖 .

Theorem 3.8 (Forest HyperPlithogenic Set Generalizes HyperPlithogenic Set). Let FHPS be a Forest Hyper-
Plithogenic Set as in Definition 3.7, and let 𝐻𝑃𝑆 be the standard (flat) HyperPlithogenic Set. Then FHPS
strictly generalizes 𝐻𝑃𝑆, in the sense that every 𝐻𝑃𝑆 is recoverable by collapsing the forest expansions.

Proof. In a classical HyperPlithogenic Set 𝐻𝑃𝑆, each attribute 𝑣𝑖 has a set of values 𝑃𝑣𝑖 , which we interpret
as a flat family: no node has children, so effectively each 𝑃𝑣𝑖 is just { 𝛼1, 𝛼2, . . . } without any multi-level
structure. In the forest-based version, each 𝑃𝑣𝑖 might be a multi-level tree or forest of subsets.

To revert to the standard 𝐻𝑃𝑆 scenario, we:

1. Flatten each forest-based family 𝑃𝑣𝑖 . That is, remove all parent-child linkages and treat every leaf or
node as just a single-level value.

2. Consequently, ˜𝑝𝑑𝑓 𝑖 becomes a classical membership function (or set of membership degrees) for each
𝛼 ∈ 𝑃𝑣𝑖 .

3. The contradiction function 𝑝𝐶𝐹forest reduces to 𝑝𝐶𝐹 on the flat set of values, since there is no hierarchical
relationship to consider.

This yields precisely the HyperPlithogenic Set definition. Thus, FHPS generalizes 𝐻𝑃𝑆. □

Definition 3.9 (Forest 𝑛-SuperhyperPlithogenic Set). Let 𝑋 be a non-empty universe, and let

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}

be a set of 𝑛 attributes, each associated with a forest-based set of possible values 𝑃𝑣𝑖 ⊆ P(𝑆𝑖). Assume we
iteratively construct nested subsets {𝑃1, 𝑃2, . . . , 𝑃𝑚}, where:

𝑃1 ⊆ 𝑋, 𝑃𝑘+1 = P̃ (𝑃𝑘), 𝑘 = 1, 2, . . . , 𝑚 − 1,

with P̃ (·) representing a forest-based powerset or a similar operation. Let

𝑃𝑚
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denote the final-stage family of subsets obtained after 𝑚 expansions.

A Forest 𝑛-SuperhyperPlithogenic Set FSHPS𝑛 over (𝑋,𝑉) is a tuple:

FSHPS𝑛 =

(
𝑃𝑚, 𝑉, {𝑃𝑣𝑖}𝑛𝑖=1, { ˜𝑝𝑑𝑓 (𝑚)

𝑖 }𝑛𝑖=1, 𝑝𝐶𝐹
(𝑚)
forest

)
,

with the following components:

1. 𝑃𝑚:

• The final stage of nested subsets of 𝑋 , where each stage respects a forest-based structure or an
iterative hyper-subset construction.

2. 𝑃𝑣𝑖:

• The forest-based collection of possible values for each attribute 𝑣𝑖 .
• Each 𝑃𝑣𝑖 consists of multi-level subsets derived from 𝑆𝑖 .

3. ˜𝑝𝑑𝑓 (𝑚)
𝑖 : 𝑃𝑚 × 𝑃𝑣𝑖 → P̃([0, 1]𝑠):

• The m-level hyper degree of appurtenance function (HDAF).

• For each 𝑢 ∈ 𝑃𝑚 (a subset at the 𝑚-th level) and each forest-based value 𝛼 ∈ 𝑃𝑣𝑖 , ˜𝑝𝑑𝑓 (𝑚)
𝑖 (𝑢, 𝛼)

assigns a possibly set-valued degree of membership in [0, 1]𝑠 .
• This degree reflects how strongly 𝑢 belongs to or aligns with 𝛼, accommodating multi-valued or

interval-based membership.

4. 𝑝𝐶𝐹
(𝑚)
forest :

(⋃𝑛
𝑖=1 𝑃𝑣𝑖

)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
→ [0, 1]𝑡 :

• The forest-based degree of contradiction function (DCF).
• It measures contradictions among multi-level values 𝛼, 𝛽 ∈ ⋃𝑛

𝑖=1 𝑃𝑣𝑖 .
• The DCF satisfies:

𝑝𝐶𝐹
(𝑚)
forest (𝛼, 𝛼) = 0, 𝑝𝐶𝐹

(𝑚)
forest (𝛼, 𝛽) = 𝑝𝐶𝐹

(𝑚)
forest (𝛽, 𝛼),

ensuring reflexivity (no contradiction with itself) and symmetry.

Theorem 3.10 (Forest 𝑛-SuperhyperPlithogenic Set Generalizes Both 𝑛-SuperHyperPlithogenic Set and Forest
HyperPlithogenic Set). A Forest 𝑛-SuperhyperPlithogenic Set FSHPS𝑛 strictly generalizes:

• the 𝑛-SuperHyperPlithogenic Set, and

• the Forest HyperPlithogenic Set (the single-stage case).

Proof. (1) Reduction to 𝑛-SuperHyperPlithogenic Set by Removing Forest Structure.

Consider FSHPS𝑛 as in Definition 3.9. If we collapse each forest-based 𝑃𝑣𝑖 to a flat set of values (i.e., remove
any multi-level branching among the possible values), then:

𝑃𝑣𝑖 −→ (flat set of atomic values).

Likewise, if each P̃ (𝑃𝑘) is replaced by an ordinary powerset (or nested family) without hierarchical constraints,
we recover the standard 𝑛-SuperHyperPlithogenic approach. In that scenario:

• ˜𝑝𝑑𝑓 (𝑚)
𝑖 becomes an m-level membership function on a flat set of values,

• 𝑝𝐶𝐹
(𝑚)
forest becomes the usual contradiction function 𝑝𝐶𝐹 (𝑚) on pairs of attribute values.
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Hence, FSHPS𝑛 simplifies exactly to the 𝑛-SuperHyperPlithogenic Set, denoted 𝑆𝐻𝑃𝑆𝑛.

(2) Reduction to Forest HyperPlithogenic Set for 𝑛 = 1.

If we set 𝑛 = 1, we are dealing with only one attribute family 𝑃𝑣1. Also, we do not iterate multiple expansions
for different attributes. Then:

FSHPS1 =
(
𝑃𝑚, {𝑣1}, {𝑃𝑣1}, { ˜𝑝𝑑𝑓 (𝑚)

1 }, 𝑝𝐶𝐹
(𝑚)
forest

)
.

But this structure is precisely a Forest HyperPlithogenic Set at the 𝑚-th expansion stage. Indeed, there is
only one attribute’s forest-based domain, so the entire multi-attribute dimension collapses. Therefore, FSHPS1
coincides with the single-attribute (forest-based) scenario, i.e. FHPS from Definition 3.7.

Because setting 𝑛 = 1 yields the Forest HyperPlithogenic Set and removing the forest expansions yields the flat
𝑛-SuperHyperPlithogenic Set, FSHPS𝑛 unifies and generalizes both frameworks. □

Example 3.11. Consider a decision-making scenario involving the following components:

• 𝑋 represents a set of potential products or items under consideration.

• 𝑉 = {𝑣1, 𝑣2} denotes two attributes, such as Quality and Price.

• Each attribute 𝑣𝑖 is associated with a forest-based family of possible values 𝑃𝑣𝑖:

– For Quality, the root nodes might include values such as {High}, {Medium}, and {Low}. Each
root can branch into more specific sub-values; for example, {High} may branch into {VeryHigh}
or {ModeratelyHigh}.

– For Price, the root nodes could include {Cheap}, which might branch further into {Clearance} or
{SlightlyDiscounted}, among others.

• The nested families 𝑃1 ⊆ 𝑋 , 𝑃2 = P̃ (𝑃1), and so on up to 𝑃𝑚 are constructed iteratively, representing
subsets of 𝑋 at progressively higher levels.

• For each final-level subset 𝑢 ∈ 𝑃𝑚 and each forest-based value 𝛼 ∈ 𝑃𝑣𝑖 , the hyper degree of appurtenance
function ˜𝑝𝑑𝑓 (𝑚)

𝑖 (𝑢, 𝛼) ⊆ [0, 1]𝑠 assigns membership degrees. These degrees reflect how strongly 𝑢

corresponds to 𝛼.

• The forest-based contradiction function 𝑝𝐶𝐹
(𝑚)
forest (𝛼, 𝛽) ∈ [0, 1]𝑡 measures the level of contradiction or

incompatibility between any two values 𝛼 and 𝛽.

– For instance, {VeryHighQuality} may heavily contradict {Clearance} pricing, indicating that these
two attribute values are unlikely to coexist.

This example illustrates the concept of a Forest 𝑛-SuperhyperPlithogenic Set, which combines the hierarchical
(forest-based) organization of attribute values with multi-stage subset expansions. This advanced framework
supports sophisticated multi-criteria decision-making by capturing complex interrelationships and contradic-
tions among attributes and their values.

3.3 Forest 𝑛-SuperHyperRough Set

The Forest HyperRough Set is a generalization of the HyperRough Set, inspired by the concept of the Forest
Hypersoft Set. Its definition is provided below.

Definition 3.12 (Forest HyperRough Set). Let 𝑋 be a non-empty finite universe, and let 𝑅 ⊆ 𝑋 × 𝑋 be an
equivalence relation on 𝑋 . Denote by [𝑥]𝑅 the equivalence class of 𝑥 under 𝑅. Suppose we have a forest-like
family of attributes

A = {𝑇1, 𝑇2, . . . , 𝑇𝑚},
where each attribute 𝑇𝑖 is associated with a multi-level (tree-structured) domain

Forest(𝐽𝑖) ⊆ P(𝐽𝑖),
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and each 𝐽𝑖 is a base set of possible values for 𝑇𝑖 . Let

Γ
(
Forest(𝐽𝑖)

)
represent the set of final-level attribute values (leaves) in the forest of 𝑇𝑖 . Then define

Γforest = Γ
(
Forest(𝐽1)

)
∪ Γ

(
Forest(𝐽2)

)
∪ · · · ∪ Γ

(
Forest(𝐽𝑚)

)
.

A Forest HyperRough Set over 𝑋 is a pair (
𝐹, Γforest

)
,

where:

1. 𝐹 : Γforest −→ P(𝑋) is a mapping that assigns each leaf-level attribute value 𝛼 ∈ Γforest a subset
𝐹 (𝛼) ⊆ 𝑋 .

2. For each 𝛼 ∈ Γforest, the pair
(
𝐹 (𝛼), 𝐹 (𝛼)

)
is a rough set approximation of 𝐹 (𝛼) under 𝑅, defined by:

𝐹 (𝛼) = { 𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝛼)}, 𝐹 (𝛼) = { 𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝛼) ≠ ∅}.

In contrast to a standard HyperRough Set, where attributes and their domains are typically flat (single-level),
the Forest HyperRough Set employs multi-level attribute domains arranged in a forest structure. Each leaf-level
value 𝛼 is still mapped to a subset of 𝑋 , but this value might represent a path or nested sub-attribute in the
tree-based domain Forest(𝐽𝑖). Rough set approximations 𝐹 (𝛼), 𝐹 (𝛼) capture the certainty and possibility of
membership with respect to 𝐹 (𝛼).

Theorem 3.13 (Forest HyperRough Set Generalizes HyperRough Set). Any HyperRough Set can be viewed as
a special case of a Forest HyperRough Set by collapsing the forest structure of each attribute domain into a
single level.

Proof. A HyperRough Set
(
𝐹, 𝐽

)
(as defined in the classical sense) operates on a Cartesian product of flat

domains 𝐽1, 𝐽2, . . . , 𝐽𝑚. In the case of a Forest HyperRough Set (see Definition 3.12), each domain 𝐽𝑖 is
assumed to have a hierarchical, forest-like structure, denoted Forest(𝐽𝑖). To demonstrate the generalization,
consider the following steps:

• Assume each forest structure Forest(𝐽𝑖) is reduced to its base set 𝐽𝑖 , effectively eliminating all branching
or multi-level expansions. In this case, Forest(𝐽𝑖) = 𝐽𝑖 for all 𝑖.

• The set of leaf-level values Γforest in the forest framework now corresponds directly to the union of the
flat domains 𝐽1, 𝐽2, . . . , 𝐽𝑚:

Γforest = 𝐽1 ∪ 𝐽2 ∪ · · · ∪ 𝐽𝑚.

• The mapping 𝐹 : Γforest → P(𝑋), which associates subsets of 𝑋 to combinations of forest-based attribute
values, reduces to the standard mapping in the HyperRough Set framework:

𝐹 : 𝐽 → P(𝑋),

where 𝐽 = 𝐽1 × 𝐽2 × · · · × 𝐽𝑚.

• The lower and upper approximations of any subset 𝐹 (𝛼), denoted 𝐹 (𝛼) and 𝐹 (𝛼), remain identical
because the equivalence relation 𝑅 ⊆ 𝑋 × 𝑋 used to define rough approximations does not depend on
the structure of the attribute domains:

𝐹 (𝛼) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝛼)},

𝐹 (𝛼) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝛼) ≠ ∅}.

• Therefore, when the hierarchical (forest-like) structure is removed, the Forest HyperRough Set simplifies
to a standard HyperRough Set, preserving all rough set properties and definitions.
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This proves that Forest HyperRough Sets are a strict generalization of HyperRough Sets, encompassing them
as a special case. □

The Forest 𝑛-SuperhyperRough Set is an extended definition of the 𝑛-SuperhyperRough Set. The related
theorems are provided below.

Definition 3.14 (Forest 𝑛-SuperhyperRough Set). Let 𝑋 be a non-empty finite universe, and let 𝑅 ⊆ 𝑋 × 𝑋

be an equivalence relation on 𝑋 . Suppose we have 𝑚 attributes {𝑇1, . . . , 𝑇𝑚}, each with a forest-based domain
Forest(𝐽𝑖) ⊆ P(𝐽𝑖). For each attribute 𝑇𝑖 , let

P̃ (𝐽𝑖) ⊆ P
(
𝐽𝑖
)

represent the power set (or a selected family) of possible sub-values, still respecting a forest structure if needed.
Then define the 𝑛-super Cartesian product:

𝐽𝑛 = P̃ (𝐽1) × P̃ (𝐽2) × · · · × P̃ (𝐽𝑚),

where each element 𝐴 ∈ 𝐽𝑛 is of the form 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑚) with 𝐴𝑖 ⊆ 𝐽𝑖 .

A Forest 𝑛-SuperhyperRough Set over 𝑋 is a pair (
𝐹, 𝐽𝑛

)
,

where:

1. 𝐹 : 𝐽𝑛 → P(𝑋) assigns to each 𝐴 = (𝐴1, . . . , 𝐴𝑚) ∈ 𝐽𝑛 a subset 𝐹 (𝐴) ⊆ 𝑋 .

2. For each 𝐴 ∈ 𝐽𝑛, the pair
(
𝐹 (𝐴), 𝐹 (𝐴)

)
is defined via rough set approximations under 𝑅:

𝐹 (𝐴) = { 𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝐴)}, 𝐹 (𝐴) = { 𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝐴) ≠ ∅}.

Properties. Similar to the 𝑛-SuperHyperRough Set, we have:

• 𝐹 (𝐴) ⊆ 𝐹 (𝐴).

• If 𝐹 (𝐴) = ∅, then 𝐹 (𝐴) = 𝐹 (𝐴) = ∅.

• If 𝐹 (𝐴) = 𝑋 , then 𝐹 (𝐴) = 𝐹 (𝐴) = 𝑋 .

• Monotonicity: For any 𝐴, 𝐵 ∈ 𝐽𝑛,

𝐹 (𝐴 ∩ 𝐵) ⊆ 𝐹 (𝐴) ∩ 𝐹 (𝐵), 𝐹 (𝐴 ∪ 𝐵) ⊇ 𝐹 (𝐴) ∪ 𝐹 (𝐵).

In contrast to the standard 𝑛-SuperHyperRough Set, the forest aspect allows each 𝐽𝑖 to be subdivided into
multi-level branches or subsets, captured by P̃ (𝐽𝑖). Hence, each 𝐴𝑖 ⊆ 𝐽𝑖 may itself be a (potentially nested)
collection of leaf-level attribute values.

Theorem 3.15 (Forest 𝑛-SuperhyperRough Set Generalizes Forest HyperRough Set and 𝑛-SuperHyperRough
Set). A Forest 𝑛-SuperhyperRough Set generalizes both:

• The Forest HyperRough Set (the case 𝑛 = 1),

• The 𝑛-SuperHyperRough Set (the case without a forest-based subdivision of each domain).
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Proof. 1. Specializing to Forest HyperRough Set. Setting 𝑛 = 1, we obtain 𝐽1 = P̃ (𝐽1) for a single attribute
domain. An element 𝐴 ∈ 𝐽1 is just a subset 𝐴1 ⊆ 𝐽1. The mapping 𝐹 becomes

𝐹 : 𝐽1 −→ P(𝑋),

and the rough approximations 𝐹 (𝐴), 𝐹 (𝐴) match the definition of a Forest HyperRough Set when
Γforest = 𝐽1. Thus, the Forest 𝑛-SuperhyperRough Set collapses to the Forest HyperRough Set in the
single-attribute (or single-dimension) scenario.

2. Specializing to 𝑛-SuperHyperRough Set. If we remove the forest structure in each domain 𝐽𝑖 , so that
P̃ (𝐽𝑖) = P(𝐽𝑖) is just the full power set (with no hierarchical constraints), we recover the standard
Cartesian product

𝐽𝑛 = P(𝐽1) × · · · × P(𝐽𝑚),
and the mapping 𝐹 to P(𝑋) defines precisely an 𝑛-SuperHyperRough Set as per its original definition.
Hence, by lifting those constraints, the forest-based model reverts to the flat model.

Therefore, the Forest 𝑛-SuperhyperRough Set unifies the multi-level domain expansions for each attribute
(forest) with the higher-level superhyperrough construction (𝑛-power-set expansions). □

4 Future Research: Various Rough Sets

This section outlines the prospects for future research based on this study.

Several related concepts to Rough Sets have been developed, including:

• Multi-granulation Rough Sets [10, 32, 34, 72, 73],

• Variable Precision Rough Sets [11, 37, 69, 81, 82],

• Dominance-Based Rough Sets [4, 29, 30, 33, 50].

One of the future challenges will be exploring whether the concepts defined in this paper can be extended using
these advanced Rough Set frameworks. Such investigations will help refine the applicability and theoretical
foundations of the proposed ideas.
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[50] Piotr Sawicki and Jacek Żak. The application of dominance-based rough sets theory for the evaluation of transportation systems.
Procedia-Social and Behavioral Sciences, 111:1238–1248, 2014.

[51] Ganeshsree Selvachandran and Abdul Razak Salleh. Hypergroup theory applied to fuzzy soft sets. Global Journal of Pure and
Applied Sciences, 11:825–834, 2015.

[52] S.Gomathy, Deivanayagampillai Nagarajan, Said Broumi, and M.Lathamaheswari. Plithogenic sets and their application in decision
making plithogenic sets and their application in decision making. 2020.

[53] Prem Kumar Singh. Plithogenic set for multi-variable data analysis. International Journal of Neutrosophic Science, 2020.

[54] Prem Kumar Singh. Complex plithogenic set. International Journal of Neutrosophic Science, 2022.

[55] F. Smarandache. Introduction to superhyperalgebra and neutrosophic superhyperalgebra. Journal of Algebraic Hyperstructures and
Logical Algebras, 2022.

[56] Florentin Smarandache. Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. 1998.

[57] Florentin Smarandache. A unifying field in logics: Neutrosophic logic. In Philosophy, pages 1–141. American Research Press,
1999.

[58] Florentin Smarandache. Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic sets and systems,
22(1):168–170, 2018.

[59] Florentin Smarandache. Plithogenic set, an extension of crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets-revisited. Infinite
study, 2018.

[60] Florentin Smarandache. Plithogeny, plithogenic set, logic, probability, and statistics. arXiv preprint arXiv:1808.03948, 2018.

[61] Florentin Smarandache. Practical applications of IndetermSoft Set and IndetermHyperSoft Set and introduction to TreeSoft Set as
an extension of the MultiSoft Set. Infinite Study, 2022.

118



[62] Florentin Smarandache. Foundation of the superhypersoft set and the fuzzy extension superhypersoft set: A new vision. Neutrosophic
Systems with Applications, 11:48–51, 2023.

[63] Florentin Smarandache. SuperHyperFunction, SuperHyperStructure, Neutrosophic SuperHyperFunction and Neutrosophic Super-
HyperStructure: Current understanding and future directions. Infinite Study, 2023.

[64] Florentin Smarandache. The cardinal of the m-powerset of a set of n elements used in the superhyperstructures and neutrosophic
superhyperstructures. Systems Assessment and Engineering Management, 2:19–22, 2024.

[65] Florentin Smarandache. Foundation of superhyperstructure & neutrosophic superhyperstructure. Neutrosophic Sets and Systems,
63(1):21, 2024.

[66] Florentin Smarandache and Said Broumi. Neutrosophic graph theory and algorithms. IGI Global, 2019.

[67] Florentin Smarandache and NM Gallup. Generalization of the intuitionistic fuzzy set to the neutrosophic set. In International
Conference on Granular Computing, pages 8–42. Citeseer, 2006.

[68] Florentin Smarandache and Nivetha Martin. Plithogenic n-super hypergraph in novel multi-attribute decision making. International
Journal of Neutrosophic Science, 2020.

[69] Chao-Ton Su and Jyh-Hwa Hsu. Precision parameter in the variable precision rough sets model: an application. Omega, 34(2):149–
157, 2006.

[70] S Sudha, Nivetha Martin, and Florentin Smarandache. Applications of Extended Plithogenic Sets in Plithogenic Sociogram. Infinite
Study, 2023.

[71] Devendra Kumar Tayal, Sumit Kumar Yadav, and Divya Arora. Personalized ranking of products using aspect-based sentiment
analysis and plithogenic sets. Multimedia Tools and Applications, 82:1261–1287, 2022.

[72] Weihua Xu, Qiaorong Wang, and Xiantao Zhang. Multi-granulation rough sets based on tolerance relations. Soft Computing,
17:1241–1252, 2013.

[73] Lei Yang, Xiaoyan Zhang, Weihua Xu, and Binbin Sang. Multi-granulation rough sets and uncertainty measurement for multi-source
fuzzy information system. International Journal of Fuzzy Systems, 21:1919–1937, 2019.

[74] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[75] Lotfi A Zadeh. Biological application of the theory of fuzzy sets and systems. In The Proceedings of an International Symposium
on Biocybernetics of the Central Nervous System, pages 199–206. Little, Brown and Comp. London, 1969.

[76] Lotfi A Zadeh. A fuzzy-set-theoretic interpretation of linguistic hedges. 1972.

[77] Lotfi A Zadeh. Fuzzy sets and their application to pattern classification and clustering analysis. In Classification and clustering,
pages 251–299. Elsevier, 1977.

[78] Lotfi A Zadeh. Fuzzy sets versus probability. Proceedings of the IEEE, 68(3):421–421, 1980.

[79] Lotfi A Zadeh. Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by
Lotfi A Zadeh, pages 775–782. World Scientific, 1996.

[80] Lotfi Asker Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1):3–28, 1978.

[81] Suyun Zhao, Eric CC Tsang, and Degang Chen. The model of fuzzy variable precision rough sets. IEEE transactions on Fuzzy
Systems, 17(2):451–467, 2009.

[82] Wojciech Ziarko. Variable precision rough set model. Journal of computer and system sciences, 46(1):39–59, 1993.

119



Chapter 9
ForestFuzzy, ForestNeutrosophic, ForestPlithogenic, and ForestRough Set

Takaaki Fujita 1 ∗ Florentin Smarandache2,
1∗ Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan. t171d603@gunma-u.ac.jp

2 University of New Mexico, Gallup Campus, NM 87301, USA. smarand@unm.edu

Abstract

Concepts such as Fuzzy Sets [30, 72], Neutrosophic Sets [53, 55], Rough Sets [37], and Plithogenic Sets [59]
have been extensively studied to address uncertainty, with diverse applications across various fields. Recently,
TreeFuzzy, TreeNeutrosophic, TreePlithogenic, and TreeRough Sets have been defined [15]. This work
examines their extensions: ForestFuzzy, ForestNeutrosophic, ForestPlithogenic, and ForestRough Sets.

Keywords: TreeFuzzy Sets, TreeNeutrosophic Sets, TreePlithogenic Sets, TreeRough Sets, ForestFuzzy Sets,
ForestNeutrosophic Sets, ForestPlithogenic Sets

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Fuzzy Set

The concept of the Fuzzy Set is a foundational tool for addressing uncertainty in set theory. Its definition is
provided below [72–78].

Numerous related concepts have also been developed, including Hyperfuzzy Sets [17, 24, 27], Intuitionistic
Fuzzy Sets [4–8], Hesitant Fuzzy Sets [67, 68], Bipolar Fuzzy Sets [2, 9, 25], Picture Fuzzy Sets [10, 52, 69],
Tripolar Fuzzy Sets [47–49], and Complex Fuzzy Sets [44–46]. These variations extend the classical Fuzzy
Set framework to model diverse types of uncertainty and complexity.

Definition 1.1. [72,77] A fuzzy set 𝜏 in a non-empty universe 𝑌 is a mapping 𝜏 : 𝑌 → [0, 1]. A fuzzy relation
on 𝑌 is a fuzzy subset 𝛿 in 𝑌 × 𝑌 . If 𝜏 is a fuzzy set in 𝑌 and 𝛿 is a fuzzy relation on 𝑌 , then 𝛿 is called a fuzzy
relation on 𝜏 if

𝛿(𝑦, 𝑧) ≤ min{𝜏(𝑦), 𝜏(𝑧)} for all 𝑦, 𝑧 ∈ 𝑌 .

A TreeFuzzy Set is a generalization of the Fuzzy Set concept using a Tree structure.

Definition 1.2. [15] A TreeFuzzy Set 𝐹 is a mapping:

𝐹 : 𝑃(Tree(𝐴)) → [0, 1]𝑈 ,

where 𝑃(Tree(𝐴)) denotes the power set of the set of all nodes and leaves in Tree(𝐴), and [0, 1]𝑈 denotes the
set of all fuzzy subsets of 𝑈.

For each attribute combination 𝑆 ∈ 𝑃(Tree(𝐴)), 𝐹 (𝑆) is a membership function 𝜇𝑆 : 𝑈 → [0, 1], assigning to
each element 𝑥 ∈ 𝑈 a degree of membership with respect to the attribute combination 𝑆.

1.2 Neutrosophic Set

Neutrosophic Sets extend Fuzzy Sets by incorporating the concept of indeterminacy, addressing situations
that are neither entirely true nor entirely false. This framework provides a more flexible representation of
uncertainty and ambiguity [18–20, 22, 29, 54, 56–58, 65, 66].

Several related extensions have been developed, including the Single-valued Neutrosophic Set [28,31], Double-
valued Neutrosophic Set [80, 81], Interval-valued Neutrosophic Set [70, 71, 79], and Bipolar Neutrosophic
Set [1, 11, 33]. These variants expand the Neutrosophic framework to accommodate more complex forms of
uncertainty and multiple perspectives.
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Definition 1.3 (Neutrosophic Set). [55, 56] Let 𝑋 be a non-empty set. A Neutrosophic Set (NS) 𝐴 on 𝑋 is
characterized by three membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

A TreeNeutrosophic Set is a generalization of the Neutrosophic Set concept using a Tree structure.

Definition 1.4. [15] A TreeNeutrosophic Set 𝐹 is a mapping:

𝐹 : 𝑃(Tree(𝐴)) → ([0, 1] × [0, 1] × [0, 1])𝑈 ,

where for each attribute combination 𝑆 ∈ 𝑃(Tree(𝐴)), 𝐹 (𝑆) assigns to each element 𝑥 ∈ 𝑈 a neutrosophic
membership triple:

𝐹 (𝑆) (𝑥) = (𝑇𝑆 (𝑥), 𝐼𝑆 (𝑥), 𝐹𝑆 (𝑥)),

where 𝑇𝑆 (𝑥), 𝐼𝑆 (𝑥), 𝐹𝑆 (𝑥) ∈ [0, 1] represent the degrees of truth-membership, indeterminacy-membership,
and falsity-membership of 𝑥 with respect to the attribute combination 𝑆.

These values satisfy the condition:

0 ≤ 𝑇𝑆 (𝑥) + 𝐼𝑆 (𝑥) + 𝐹𝑆 (𝑥) ≤ 3,

for all 𝑥 ∈ 𝑈 and 𝑆 ∈ 𝑃(Tree(𝐴)).

1.3 Plithogenic Set

The Plithogenic Set is known as a type of set that can generalize Neutrosophic Sets, Fuzzy Sets, and other
similar sets [13, 14, 21, 60, 61]. The definition of the Plithogenic Set is provided below.

Definition 1.5. [60, 61] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF).

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)
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A TreePlithogenic Set is a generalization of the Plithogenic Set concept using a Tree structure.

Definition 1.6. [15] Let 𝑆 be a universal set, and let 𝑃 ⊆ 𝑆. Consider a hierarchical attribute tree Tree(𝐴),
where attributes and sub-attributes are organized in levels from 1 up to 𝑚. Each node in the tree represents an
attribute 𝑎𝑖 , and for each attribute 𝑎𝑖 , there is an associated set of possible values 𝑃𝑣𝑖 .

A TreePlithogenic Set 𝑇𝑃𝑆 is defined as:

𝑇𝑃𝑆 = (𝑃,Tree(𝐴), {𝑃𝑣𝑖}, {𝑝𝑑𝑓𝑖}, 𝑝𝐶𝐹),

where:

• 𝑃 is a subset of the universal set 𝑆.

• Tree(𝐴) is a hierarchical tree of attributes.

• For each attribute 𝑎𝑖 ∈ Tree(𝐴), 𝑃𝑣𝑖 is the set of possible values of 𝑎𝑖 .

• For each attribute 𝑎𝑖 , 𝑝𝑑𝑓𝑖 : 𝑃 × 𝑃𝑣𝑖 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for 𝑎𝑖 .

• 𝑝𝐶𝐹 : (⋃𝑖 𝑃𝑣𝑖) × (⋃𝑖 𝑃𝑣𝑖) → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

1.4 Treerough Set

A Rough Set is a mathematical framework for approximating vague or imprecise data using lower and upper set
approximations [37–43]. A Treerough Set is a generalization of the Rough Set concept using a Tree structure.

Definition 1.7 (Rough Set). [37–43] Let 𝑋 be the universe of discourse, and let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence
relation (or an indiscernibility relation) on 𝑋 , partitioning 𝑋 into equivalence classes. For any subset 𝑈 ⊆ 𝑋 ,
the lower approximation 𝑈 and the upper approximation 𝑈 are defined as follows:

1. Lower Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 | 𝑅(𝑥) ⊆ 𝑈}

This is the set of all elements in 𝑋 that certainly belong to 𝑈 based on the equivalence classes defined by 𝑅.

2. Upper Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 | 𝑅(𝑥) ∩𝑈 ≠ ∅}

This set contains all elements in 𝑋 that possibly belong to 𝑈.

The pair (𝑈,𝑈) constitutes a rough set representation of 𝑈, where 𝑈 ⊆ 𝑈 ⊆ 𝑈.

A TreeRough Set is a generalization of the Rough Set concept using a Tree structure.

Definition 1.8 (Treerough set). [15] Let 𝑈 be a universe of discourse, and let Tree(𝐴) be a hierarchical tree of
attributes, where each node represents an attribute 𝑎𝑖 . The tree has levels from 1 up to 𝑚, where 𝑚 ≥ 1. Each
attribute 𝑎𝑖 in the tree is associated with an equivalence relation 𝑅𝑎𝑖 on 𝑈.

For any subset 𝑋 ⊆ 𝑈, we define the Treerough Set TR(𝑋) as the collection of lower and upper approximations
of 𝑋 with respect to the equivalence relations 𝑅𝑎𝑖 associated with all attributes 𝑎𝑖 in Tree(𝐴).

For each attribute 𝑎𝑖 in Tree(𝐴), the lower and upper approximations of 𝑋 are defined as:

• The Lower Approximation of 𝑋 with respect to 𝑅𝑎𝑖 :

𝑋𝑎𝑖
= {𝑥 ∈ 𝑈 | [𝑥]𝑅𝑎𝑖

⊆ 𝑋},

where [𝑥]𝑅𝑎𝑖
denotes the equivalence class of 𝑥 under 𝑅𝑎𝑖 .

• The Upper Approximation of 𝑋 with respect to 𝑅𝑎𝑖 :

𝑋𝑎𝑖 = {𝑥 ∈ 𝑈 | [𝑥]𝑅𝑎𝑖
∩ 𝑋 ≠ ∅}.

The Treerough Set of 𝑋 is then the collection:

TR(𝑋) =
{(
𝑋𝑎𝑖

, 𝑋𝑎𝑖

)
| 𝑎𝑖 ∈ Tree(𝐴)

}
.
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1.5 Soft Set and TreeSoft Set

A Soft Set (𝐹, 𝐸) associates each parameter in a set 𝐸 with a subset of a universal set 𝑈. This provides a
flexible framework for approximating objects within 𝑈 [26, 32, 34]. A TreeSoft Set is a mapping from subsets
of a hierarchical, tree-like parameter structure Tree(𝐴) to subsets of a universal set 𝑈 [3, 16,23, 35,36, 50,64].
The definitions of Soft Set and TreeSoft Set are provided below.

Definition 1.9. [32] Let 𝑈 be a universal set and 𝐸 a set of parameters. A soft set over 𝑈 is defined as an
ordered pair (𝐹, 𝐸), where 𝐹 is a mapping from 𝐸 to the power set P(𝑈):

𝐹 : 𝐸 → P(𝑈).

For each parameter 𝑒 ∈ 𝐸 , 𝐹 (𝑒) ⊆ 𝑈 represents the set of 𝑒-approximate elements in 𝑈, with (𝐹, 𝐸) forming
a parameterized family of subsets of 𝑈.

Definition 1.10. [62] Let 𝑈 be a universe of discourse, and let 𝐻 be a non-empty subset of 𝑈, with 𝑃(𝐻)
denoting the power set of 𝐻. Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be a set of attributes (parameters, factors, etc.), for
some integer 𝑛 ≥ 1, where each attribute 𝐴𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) is considered a first-level attribute.

Each first-level attribute 𝐴𝑖 consists of sub-attributes, defined as:

𝐴𝑖 = {𝐴𝑖,1, 𝐴𝑖,2, . . . },

where the elements 𝐴𝑖, 𝑗 (for 𝑗 = 1, 2, . . .) are second-level sub-attributes of 𝐴𝑖 . Each second-level sub-attribute
𝐴𝑖, 𝑗 may further contain sub-sub-attributes, defined as:

𝐴𝑖, 𝑗 = {𝐴𝑖, 𝑗 ,1, 𝐴𝑖, 𝑗 ,2, . . . },

and so on, allowing for as many levels of refinement as needed. Thus, we can define sub-attributes of an 𝑚-th
level with indices 𝐴𝑖1 ,𝑖2 ,...,𝑖𝑚 , where each 𝑖𝑘 (for 𝑘 = 1, . . . , 𝑚) denotes the position at each level.

This hierarchical structure forms a tree-like graph, which we denote as Tree(𝐴), with root 𝐴 (level 0) and
successive levels from 1 up to 𝑚, where 𝑚 is the depth of the tree. The terminal nodes (nodes without
descendants) are called leaves of the graph-tree.

A TreeSoft Set 𝐹 is defined as a function:

𝐹 : 𝑃(Tree(𝐴)) → 𝑃(𝐻),

where Tree(𝐴) represents the set of all nodes and leaves (from level 1 to level 𝑚) of the graph-tree, and
𝑃(Tree(𝐴)) denotes its power set.

A ForestSoft Set is formed by taking a collection of TreeSoft Sets and “gluing” (uniting) them together so as
to obtain a single function whose domain is the union of all tree-nodes’ power sets and whose values in 𝑃(𝐻)
combine the images given by the individual TreeSoft Sets [12, 51, 63].

Definition 1.11 (ForestSoft Set). [63] Let 𝑈 be a universe of discourse, 𝐻 ⊆ 𝑈 be a non-empty subset, and
𝑃(𝐻) be the power set of 𝐻. Suppose we have a finite (or countable) collection of TreeSoft Sets{

𝐹𝑡 : 𝑃(Tree(𝐴(𝑡 ) )) → 𝑃(𝐻)
}
𝑡∈𝑇 ,

where each 𝐹𝑡 is a TreeSoft Set corresponding to a tree Tree(𝐴(𝑡 ) ) of attributes 𝐴(𝑡 ) .

We construct a forest by taking the (disjoint) union of all these trees:

Forest
(
{𝐴(𝑡 ) }𝑡∈𝑇

)
=

⊔
𝑡∈𝑇

Tree
(
𝐴(𝑡 ) ) .

A ForestSoft Set, denoted by
F : 𝑃

(
Forest({𝐴(𝑡 ) })

)
−→ 𝑃(𝐻),

is defined as the union of all TreeSoft Set mappings 𝐹𝑡 . Concretely, for any element 𝑋 ∈ 𝑃
(
Forest({𝐴(𝑡 ) })

)
,

we set
F(𝑋) =

⋃
𝑡∈𝑇

𝑋∩Tree(𝐴(𝑡 ) ) ≠∅

𝐹𝑡
(
𝑋 ∩ Tree(𝐴(𝑡 ) )

)
,

where we only apply 𝐹𝑡 to that portion of 𝑋 belonging to the tree Tree(𝐴(𝑡 ) ).
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2 Results in This Paper

The results derived in this paper are presented below.

2.1 ForestFuzzy Set

The ForestFuzzy Set is a concept that applies the idea of the ForestSoft Set to the framework of Fuzzy Sets.
The definition is provided below.

Definition 2.1 (ForestFuzzy Set). Let { 𝐹𝑡 }𝑡∈𝑇 be a collection of TreeFuzzy Sets, where each

𝐹𝑡 : 𝑃
(
Tree(𝐴(𝑡 ) )

)
→ [0, 1]𝑈 .

Form the forest
Forest

(
{𝐴(𝑡 ) }

)
=

⊔
𝑡∈𝑇

Tree
(
𝐴(𝑡 ) ) .

A ForestFuzzy Set is a mapping
F : 𝑃

(
Forest({𝐴(𝑡 ) })

)
−→ [0, 1]𝑈

defined by: for each 𝑋 ⊆ Forest({𝐴(𝑡 ) }) and each 𝑥 ∈ 𝑈,

F(𝑋) (𝑥) = max
𝑡∈𝑇

𝑋 ∩Tree(𝐴(𝑡 ) )≠∅

𝐹𝑡
(
𝑋 ∩ Tree(𝐴(𝑡 ) )

)
(𝑥).

Theorem 2.2 (ForestFuzzy generalizes TreeFuzzy). Every TreeFuzzy Set is a special case of a ForestFuzzy Set
(one-tree forest).

Proof. If 𝐹 : 𝑃(Tree(𝐴)) → [0, 1]𝑈 is a TreeFuzzy Set on a single tree, then let 𝑇 = {1} and Tree(𝐴(1) ) =
Tree(𝐴). The ForestFuzzy Set definition reduces to 𝐹 itself, since the maximum is over a single index 𝑡 = 1.
Hence TreeFuzzy ⊆ ForestFuzzy. □

2.2 ForestNeutrosophic Set

The ForestNeutrosophic Set is a concept that applies the idea of the ForestSoft Set to the framework of
Neutrosophic Sets. The definition is provided below.

Definition 2.3 (ForestNeutrosophic Set). Let {𝐹𝑡 }𝑡∈𝑇 be TreeNeutrosophic Sets. The ForestNeutrosophic Set

F : 𝑃
(
Forest({𝐴(𝑡 ) })

)
→

(
[0, 1]3)𝑈

is given, for each 𝑋 in the domain, by

F(𝑋) (𝑥) =
(

max
𝑡:𝑋∩Tree(𝐴(𝑡 ) )≠∅

𝑇𝑡 (𝑋) (𝑥), max
𝑡:𝑋∩Tree(𝐴(𝑡 ) )≠∅

𝐼𝑡 (𝑋) (𝑥), max
𝑡:𝑋∩Tree(𝐴(𝑡 ) )≠∅

𝐹𝑡 (𝑋) (𝑥)
)
.

Theorem 2.4 (ForestNeutrosophic generalizes TreeNeutrosophic). Every TreeNeutrosophic Set is a one-tree
instance of a ForestNeutrosophic Set.

Proof. Same argument as before: a single tree in the forest yields the original TreeNeutrosophic Set. □

Theorem 2.5. Any ForestFuzzy Set

F : 𝑃
(
Forest({𝐴(𝑡 ) })

)
−→ [0, 1]𝑈

can be embedded into a ForestNeutrosophic Set

N : 𝑃
(
Forest({𝐴(𝑡 ) })

)
−→ ([0, 1] × [0, 1] × [0, 1])𝑈 .
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Proof. Given a ForestFuzzy Set
F(𝑋) ∈ [0, 1]𝑈 ,

we must define a corresponding ForestNeutrosophic Set N(𝑋) ∈ ([0, 1]3)𝑈 in such a way that the fuzzy
membership values of F are recovered as a neutrosophic triple.

For each 𝑋 ⊆ Forest({𝐴(𝑡 ) }) and each 𝑥 ∈ 𝑈, let 𝜇𝑋 (𝑥) = F(𝑋) (𝑥). We define N(𝑋) (𝑥) by setting:

𝑇𝑋 (𝑥) = 𝜇𝑋 (𝑥), 𝐼𝑋 (𝑥) = 0, 𝐹𝑋 (𝑥) = 0.

That is, we interpret the fuzzy membership 𝜇𝑋 (𝑥) as the **truth** component 𝑇𝑋 (𝑥), while the indeterminacy
and falsity components are both set to 0.

Clearly, for each 𝑥,
𝑇𝑋 (𝑥) + 𝐼𝑋 (𝑥) + 𝐹𝑋 (𝑥) = 𝜇𝑋 (𝑥) + 0 + 0 ≤ 1 ≤ 3,

so this triple is a valid Neutrosophic membership in [0, 1]3.

Hence, by this embedding, every ForestFuzzy Set is a special case of a ForestNeutrosophic Set, where
indeterminacy and falsity values are all zero. □

2.3 ForestPlithogenic Set

The ForestPlithogenic Set is a concept that applies the idea of the ForestSoft Set to the framework of Plithogenic
Sets. The definition is provided below.

Definition 2.6 (ForestPlithogenic Set). Given a family of TreePlithogenic Sets {𝑇𝑃𝑆𝑡 }𝑡∈𝑇 , form the forest

Forest({𝐴(𝑡 ) }) =
⊔
𝑡∈𝑇

Tree(𝐴(𝑡 ) ).

A ForestPlithogenic Set TPS unifies all 𝑇𝑃𝑆𝑡 into

TPS =

(
𝑃, Forest({𝐴(𝑡 ) }), {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, �𝑝𝐶𝐹

)
,

where each attribute node in the forest inherits or extends the plithogenic components from its corresponding
tree.

Theorem 2.7 (ForestPlithogenic generalizes TreePlithogenic). Every TreePlithogenic Set is obtained by taking
a forest with one tree.

Proof. If 𝑇 = {1}, the forest is just one tree, so the ForestPlithogenic structure is exactly the same as the
original single-tree 𝑇𝑃𝑆1. □

Theorem 2.8. Any ForestNeutrosophic Set

N : 𝑃
(
Forest({𝐴(𝑡 ) })

)
−→ ([0, 1]3)𝑈

can be seen as a particular instance of a ForestPlithogenic Set.

Proof. A ForestPlithogenic Set (broadly) involves:

TPS =

(
𝑃, Forest({𝐴(𝑡 ) }), {𝑃𝑣𝑖}, {𝑝𝑑𝑓 𝑖}, �𝑝𝐶𝐹

)
,

where each node 𝑎𝑖 in the forest is assigned a set of possible values 𝑃𝑣𝑖 , a Degree of Appurtenance Function
𝑝𝑑𝑓𝑖 , and a Degree of Contradiction Function 𝑝𝐶𝐹.

To embed a ForestNeutrosophic Set N into this framework, one can proceed as follows:

Assign each node 𝑎𝑖 (in the Forest of attributes) a trivial set of possible values 𝑃𝑣𝑖 = {True, Indeterminate, False}
or any suitable set.
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For each node 𝑎𝑖 and each 𝑥 ∈ 𝑈, interpret the triple N(𝑋) (𝑥) = (𝑇𝑋 (𝑥), 𝐼𝑋 (𝑥), 𝐹𝑋 (𝑥)) as degrees of belonging
to those three “value labels.” We can define:

𝑝𝑑𝑓𝑖 (𝑥,True) = 𝑇𝑋 (𝑥), 𝑝𝑑𝑓𝑖 (𝑥, Indeterminate) = 𝐼𝑋 (𝑥), 𝑝𝑑𝑓𝑖 (𝑥, False) = 𝐹𝑋 (𝑥).

(One may refine or unify these definitions across subsets 𝑋 ⊆ Forest, but conceptually it suffices that each
triple can be viewed as a plithogenic membership distribution on {True, Indeterminate, False}.)

We can define �𝑝𝐶𝐹 (·, ·) to be zero or any neutral measure, so that no contradiction arises among these three
labels, i.e. �𝑝𝐶𝐹 (True, Indeterminate) = 0, �𝑝𝐶𝐹 (True, False) = 0, . . .

or use any other consistent scheme.

Thus, the triple (𝑇𝑋 (𝑥), 𝐼𝑋 (𝑥), 𝐹𝑋 (𝑥)) from the ForestNeutrosophic membership is naturally embedded as a
plithogenic distribution over a small “value set.” This construction shows that a ForestNeutrosophic Set is
simply a special form of a ForestPlithogenic Set (with three “basic” possible values per node and a trivial
contradiction function). □

Theorem 2.9. Any ForestFuzzy Set

F : 𝑃
(
Forest({𝐴(𝑡 ) })

)
−→ [0, 1]𝑈

arises as a particular instance of a ForestPlithogenic Set.

Proof. This is a direct combination of the ideas above, plus the well-known fact that Fuzzy membership
functions can be embedded into Plithogenic frameworks.

1. Interpret fuzzy membership as a single label’s degree. Let each node 𝑎𝑖 in the forest have a single set
of possible values 𝑃𝑣𝑖 = {𝑣𝑖} (just one label), or a small set of possible values with exactly one relevant
label.

2. Degree of Appurtenance Functions. For each subset 𝑋 ⊆ Forest({𝐴(𝑡 ) }) and each 𝑥 ∈ 𝑈, the fuzzy
membership F(𝑋) (𝑥) can be assigned to that single label:

𝑝𝑑𝑓𝑖 (𝑥, 𝑣𝑖) = F(𝑋) (𝑥).

All other “values” (if any) get degree 0.

3. Contradiction Function. We can again set �𝑝𝐶𝐹 ≡ 0 to make the system consistent with a purely fuzzy
approach (no internal contradiction among multiple values, since effectively there is only one label of
interest).

In this way, each fuzzy membership F(𝑋) (𝑥) ∈ [0, 1] is a special case of a plithogenic membership distribution:
it is the degree of appurtenance to one label. Hence, any ForestFuzzy Set is subsumed by the broader notion
of a ForestPlithogenic Set. □

2.4 ForestRough Set

The ForestRough Set is a concept that applies the idea of the ForestSoft Set to the framework of Rough Sets.
The definition is provided below.

Definition 2.10 (ForestRough Set). Let {TR𝑡 }𝑡∈𝑇 be TreeRough frameworks. The ForestRough Set FR on

Forest
(
{𝐴(𝑡 ) }

)
=
⊔
𝑡∈𝑇

Tree(𝐴(𝑡 ) )

collects the rough approximations from all nodes 𝑎𝑖 in every tree. That is, for each 𝑋 ⊆ 𝑈,

FR(𝑋) =
{
(𝑋𝑎𝑖

, 𝑋𝑎𝑖 )
�� 𝑎𝑖 ∈ Forest({𝐴(𝑡 ) })

}
.

Theorem 2.11 (ForestRough generalizes TreeRough). Every TreeRough Set is a special one-tree version of a
ForestRough Set.

Proof. Again, a single-tree forest reproduces the usual TreeRough Set structure exactly. □
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Abstract

Concepts such as Fuzzy Sets, Neutrosophic Sets, and Plithogenic Sets have been widely investigated for tackling
uncertainty, with numerous applications explored across various domains. As extensions of the Plithogenic
Set, the HyperPlithogenic Set and the SuperHyperPlithogenic Set are also recognized. A Symbolic Plithogenic
Set (SPS) is a structured set defined by symbolic components 𝑃𝑖 and coefficients 𝑎𝑖 , enabling flexible algebraic
operations under a specified prevalence order. In this paper, we examine concepts including the Symbolic
HyperPlithogenic Set and the Symbolic 𝑛-SuperhyperPlithogenic Set.

Keywords: Plithogenic Set, HyperPlithogenic Set, Symbolic Plithogenic Set

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Plithogenic Set

A Plithogenic Set is a mathematical framework designed to incorporate multi-valued degrees of appurtenance
and contradiction, making it highly suitable for addressing complex decision-making processes. Extensive
studies have been conducted on Plithogenic Sets, as evidenced by various works [1, 10, 22–24, 33, 36]. Ad-
ditionally, related concepts such as the Plithogenic Graph have been widely recognized and explored [8, 15].
Furthermore, the Plithogenic Set is known for its ability to generalize several other mathematical frameworks,
including Fuzzy Sets [40, 41], Intuitionistic Fuzzy Sets [4, 5], Vague Sets [7, 16], Neutrosophic Sets [26, 27],
and Hesitant Fuzzy Sets [37, 38]. The formal definition is provided below.

Definition 1.1 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 1.2 (Powerset). [11, 21] The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible
subsets of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 1.3 (𝑛-th Powerset). (cf. [11, 13, 25, 32])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined recursively as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.
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Definition 1.4 (Plithogenic Set). [28,29] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined
as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) 1

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)

Definition 1.5 (HyperPlithogenic Set). [9, 12, 14] Let 𝑋 be a non-empty set, and let 𝐴 be a set of attributes.
For each attribute 𝑣 ∈ 𝐴, let 𝑃𝑣 be the set of possible values of 𝑣. A HyperPlithogenic Set 𝐻𝑃𝑆 over 𝑋 is
defined as:

𝐻𝑃𝑆 = (𝑃, {𝑣𝑖}𝑛𝑖=1, {𝑃𝑣𝑖}
𝑛
𝑖=1, { ˜𝑝𝑑𝑓 𝑖}𝑛𝑖=1, 𝑝𝐶𝐹)

where:

• 𝑃 ⊆ 𝑋 is a subset of the universe.

• For each attribute 𝑣𝑖 , 𝑃𝑣𝑖 is the set of possible values.

• For each attribute 𝑣𝑖 , ˜𝑝𝑑𝑓 𝑖 : 𝑃 × 𝑃𝑣𝑖 → �̃�( [0, 1]𝑠) is the Hyper Degree of Appurtenance Function
(HDAF), assigning to each element 𝑥 ∈ 𝑃 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a set of membership degrees.

• 𝑝𝐶𝐹 :
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
×
(⋃𝑛

𝑖=1 𝑃𝑣𝑖
)
→ [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

Definition 1.6 (𝑛-SuperHyperPlithogenic Set). [9,12,14] Let 𝑋 be a non-empty set, and let𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
be a set of attributes, each associated with a set of possible values 𝑃𝑣𝑖 . An 𝑛-SuperHyperPlithogenic Set
(𝑆𝐻𝑃𝑆𝑛) is defined recursively as:

𝑆𝐻𝑃𝑆𝑛 = (𝑃𝑛, 𝑉, {𝑃𝑣𝑖 }𝑛𝑖=1, { ˜𝑝𝑑𝑓 (𝑛)𝑖 }𝑛𝑖=1, 𝑝𝐶𝐹 (𝑛) ),

where:

• 𝑃1 ⊆ 𝑋 , and for 𝑘 ≥ 2,
𝑃𝑘 = P̃ (𝑃𝑘−1),

represents the 𝑘-th nested family of non-empty subsets of 𝑃1.

• For each attribute 𝑣𝑖 ∈ 𝑉 , 𝑃𝑣𝑖 is the set of possible values of the attribute 𝑣𝑖 .
1It is important to note that the definition of the Degree of Appurtenance Function varies across different papers. Some studies define

this concept using the power set, while others simplify it by avoiding the use of the power set [34]. The author has consistently defined the
Classical Plithogenic Set without employing the power set.
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• For each 𝑘-th level subset 𝑃𝑘 , ˜𝑝𝑑𝑓 (𝑛)𝑖 : 𝑃𝑛 × 𝑃𝑣𝑖 → P̃([0, 1]𝑠) is the Hyper Degree of Appurtenance
Function (HDAF), assigning to each element 𝑥 ∈ 𝑃𝑛 and attribute value 𝑎𝑖 ∈ 𝑃𝑣𝑖 a subset of [0, 1]𝑠 .

• 𝑝𝐶𝐹 (𝑛) :
⋃𝑛

𝑖=1 𝑃𝑣𝑖 ×
⋃𝑛

𝑖=1 𝑃𝑣𝑖 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF), satisfying:

1. Reflexivity: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑎) = 0 for all 𝑎 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 ,

2. Symmetry: 𝑝𝐶𝐹 (𝑛) (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑛) (𝑏, 𝑎) for all 𝑎, 𝑏 ∈ ⋃𝑛
𝑖=1 𝑃𝑣𝑖 .

• 𝑠 and 𝑡 are positive integers representing the dimensions of the membership degrees and contradiction
degrees, respectively.

1.2 Symbolic Plithogenic Set

A Symbolic Plithogenic Set (SPS) is a structured set defined by symbolic components 𝑃𝑖 and coefficients 𝑎𝑖 ,
enabling flexible algebraic operations under a prevalence order [2, 30, 31].

Definition 1.7 (Symbolic Plithogenic Set). [2,30,31] Let 𝑈 be a universe of discourse, and let 𝑃1, 𝑃2, . . . , 𝑃𝑛

be symbolic variables called Symbolic Plithogenic Components. A Symbolic Plithogenic Set (SPS) is defined
as:

SPS =

{
𝑥 ∈ 𝑈

����� 𝑥 =

𝑛∑︁
𝑖=0

𝑎𝑖𝑃𝑖 , 𝑎𝑖 ∈ 𝑆

}
,

where:

• 𝑆 is a given set, typically R (real numbers), C (complex numbers), or a subset thereof.

• 𝑎𝑖 are called coefficients, and 𝑃0 = 1 represents the identity component.

• 𝑃1, 𝑃2, . . . , 𝑃𝑛 are abstract symbols or variables that may represent attributes, parameters, or properties,
forming the base of the set SPS.

Definition 1.8 (Operations on Symbolic Plithogenic Set). [2,30,31] The set SPS is equipped with the following
operations:

1. Addition: For 𝑥, 𝑦 ∈ SPS where 𝑥 =
∑𝑛

𝑖=0 𝑎𝑖𝑃𝑖 and 𝑦 =
∑𝑛

𝑖=0 𝑏𝑖𝑃𝑖 ,

𝑥 + 𝑦 =

𝑛∑︁
𝑖=0

(𝑎𝑖 + 𝑏𝑖)𝑃𝑖 .

2. Scalar Multiplication: For 𝑐 ∈ 𝑆 and 𝑥 ∈ SPS, where 𝑥 =
∑𝑛

𝑖=0 𝑎𝑖𝑃𝑖 ,

𝑐 · 𝑥 =

𝑛∑︁
𝑖=0

(𝑐 · 𝑎𝑖)𝑃𝑖 .

3. Multiplication: Using the Absorbance Law and Prevalence Order, for 𝑥, 𝑦 ∈ SPS,

𝑥 · 𝑦 =

𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

(𝑎𝑖 · 𝑏 𝑗 ) · max(𝑃𝑖 , 𝑃 𝑗 ),

where max(𝑃𝑖 , 𝑃 𝑗 ) denotes the dominant component based on the predefined prevalence order 𝑃1 < 𝑃2 <

· · · < 𝑃𝑛.

4. Power: For 𝑥 ∈ SPS and 𝑚 ∈ N,
𝑥𝑚 = 𝑥 · 𝑥 · · · · · 𝑥︸        ︷︷        ︸

𝑚 times

, 𝑥0 = 1.

Definition 1.9 (Symbolic Plithogenic Algebraic Structures). [2,30,31] An algebraic structure defined on SPS
with the operations + and · is called a Symbolic Plithogenic Algebraic Structure. Specifically:
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• (SPS, +) forms a commutative group, where 0 =
∑𝑛

𝑖=0 0 · 𝑃𝑖 is the identity element.

• (SPS, +, ·) forms a commutative ring with unity 1 = 𝑃0.

• Multiplication respects the Absorbance Law: the stronger component absorbs the weaker, based on the
prevalence order.

Example 1.10 (Symbolic Plithogenic Numbers). A Symbolic Plithogenic Number (SPN) is a specific element
of SPS and is written as:

𝑥 = 𝑎0 + 𝑎1𝑃1 + 𝑎2𝑃2 + · · · + 𝑎𝑛𝑃𝑛,

where 𝑃1 < 𝑃2 < · · · < 𝑃𝑛 under the prevalence order. For example:

𝑥 = 3 + 5𝑃1 − 2𝑃2 + 7𝑃3,

where the multiplication follows the absorbance law:

𝑃1 · 𝑃2 = 𝑃2, 𝑃2 · 𝑃3 = 𝑃3.

Definition 1.11 (Generalization). The symbolic components 𝑃𝑖 can be extended to infinite dimensions, denoted
as 𝑃1, 𝑃2, . . . , 𝑃∞, leading to infinite-dimensional Symbolic Plithogenic Algebraic Structures.

It is worth noting that related concepts, such as the Symbolic 𝑘-Plithogenic Ring (where 𝑘 is a natural number),
are also well-known [6, 19, 35, 39]. For instance, Symbolic 2-Plithogenic Ring [20], Symbolic 3-Plithogenic
Ring [3, 18], Symbolic 4-Plithogenic Ring [17, 18], and Symbolic 5-Plithogenic Ring [17] have been explored
in various studies.

2 Results of This Paper

In this paper, we propose new definitions for various types of sets and briefly examine their relationships with
existing concepts.

2.1 Symbolic HyperPlithogenic Set

The Symbolic Plithogenic Set is extended using the HyperPlithogenic Set and 𝑛-SuperhyperPlithogenic Set.
Definitions and related theorems are presented below.

Definition 2.1 (Symbolic HyperPlithogenic Set). Let

SPS =

{
𝑥 =

𝑛∑︁
𝑖=0

𝑎𝑖𝑃𝑖 : 𝑎𝑖 ∈ 𝑆, 𝑃𝑖 symbolic components
}

be a Symbolic Plithogenic Set as in Definition. Let A = {𝑣1, 𝑣2, . . . , 𝑣𝑚} be a finite set of attributes, and for
each 𝑣 𝑗 ∈ A, let 𝑃𝑣 𝑗 be the set of possible values of 𝑣 𝑗 .

A Symbolic HyperPlithogenic Set (SHPS) is a structure

SHPS =

(
SPS, A, { 𝑃𝑣 𝑗 }𝑚𝑗=1, {𝑝𝑑𝑓 𝑗 }

𝑚
𝑗=1, 𝑝𝐶𝐹

)
,

where:

• SPS is the Symbolic Plithogenic Set described above.

• Each attribute 𝑣 𝑗 has a set of possible values 𝑃𝑣 𝑗 .

• For each 𝑣 𝑗 , 𝑝𝑑𝑓 𝑗 : SPS × 𝑃𝑣 𝑗 −→ P̃
(
[0, 1]𝑠

)
is a Hyper Degree of Appurtenance Function (HDAF),

assigning a set of membership degrees in [0, 1]𝑠 for each pair
(
𝑥, 𝑎 𝑗

)
, where 𝑥 ∈ SPS and 𝑎 𝑗 ∈ 𝑃𝑣 𝑗 .
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• 𝑝𝐶𝐹 :
(⋃𝑚

𝑗=1 𝑃𝑣 𝑗

)
×
(⋃𝑚

𝑗=1 𝑃𝑣 𝑗

)
→ [0, 1]𝑡 is the Degree of Contradiction Function (DCF), satisfying:

𝑝𝐶𝐹 (𝑎, 𝑎) = 0, 𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎), for all 𝑎, 𝑏 ∈
𝑚⋃
𝑗=1

𝑃𝑣 𝑗 .

• 𝑠 and 𝑡 are positive integers representing the dimensions of membership degrees and contradiction
degrees, respectively.

Theorem 2.2. A Symbolic HyperPlithogenic Set (SHPS) reduces to a Symbolic Plithogenic Set (SPS) if the
hyperoperation 𝑝𝑑𝑓 𝑗 assigns singleton sets of membership degrees for each

(
𝑥, 𝑎 𝑗

)
.

Proof. In a Symbolic HyperPlithogenic Set, each 𝑝𝑑𝑓 𝑗 (𝑥, 𝑎 𝑗 ) is a non-empty subset of [0, 1]𝑠 . If we impose
the restriction that each subset is a singleton {d} ⊆ [0, 1]𝑠 , then 𝑝𝑑𝑓 𝑗 effectively becomes a single-valued
function pdf 𝑗 : SPS×𝑃𝑣 𝑗 → [0, 1]𝑠 , thus collapsing the hyperplithogenic structure to the classical plithogenic
one (no set-valued membership). Hence, the SHPS merges into an SPS. Conversely, given an SPS, one can
trivially interpret each membership degree as a singleton set {d}. Therefore, SHPS strictly generalizes SPS. □

Definition 2.3 (Symbolic 𝑛-SuperHyperPlithogenic Set). Let SHPS be a Symbolic HyperPlithogenic Set as in
Definition 2.1. For an integer 𝑛 ≥ 1, a Symbolic 𝒏-SuperHyperPlithogenic Set (SHPS𝑛) is a structure

SHPS𝑛 =
(
SPS𝑛, A𝑛, {𝑝𝑑𝑓

(𝑛)
𝑗 }𝑚𝑗=1, 𝑝𝐶𝐹 (𝑛) ) ,

where:

• SPS𝑛 is the 𝑛-th symbolic plithogenic extension of SPS, i.e. applying the symbolic expansion to an 𝑛-th
level power-construction.

• A𝑛 = {𝑣1, 𝑣2, . . . , 𝑣𝑚} remains the set of attributes, each with possible values 𝑃𝑣 𝑗 .

• 𝑝𝑑𝑓
(𝑛)
𝑗 : SPS𝑛 × 𝑃𝑣 𝑗 −→ P∗

𝑛

(
[0, 1]𝑠

)
is an (𝑛-level) Hyper Degree of Appurtenance Function, mapping

each
(
𝑥, 𝑎 𝑗

)
to an 𝑛-th nested subset of [0, 1]𝑠 , possibly excluding the empty set.

• 𝑝𝐶𝐹 (𝑛) is the Degree of Contradiction Function for the SPS𝑛 environment, similar to the classical or
single-level case but respecting 𝑛-th power expansions.

Theorem 2.4. By setting 𝑛 = 1, a Symbolic 𝑛-SuperHyperPlithogenic Set collapses to a Symbolic Hyper-
Plithogenic Set.

Proof. When 𝑛 = 1, the mapping

𝑝𝑑𝑓
(1)
𝑗 : SPS1 × 𝑃𝑣 𝑗 → P∗

1
(
[0, 1]𝑠

)
is effectively a single-level hyper-mapping. That is, no further nesting occurs beyond P∗ ([0, 1]𝑠 ) . Hence,
the structure coincides with Definition 2.1, namely a Symbolic HyperPlithogenic Set. Thus, restricting 𝑛 = 1
recovers the single-level hyperplithogenic scenario, proving that the 𝑛-super notion strictly generalizes the
single-level notion. □

2.2 Symbolic HyperPlithogenic Algebraic Structure

We now incorporate classical algebraic operations (+, ·) on the Symbolic HyperPlithogenic Set, respecting the
hyperplithogenic membership.

Definition 2.5 (Symbolic HyperPlithogenic Algebraic Structure (SHPAS)). A Symbolic HyperPlithogenic
Algebraic Structure (SHPAS) is a tuple(

SHPS, +, ·, A, {𝑝𝑑𝑓 𝑗 }, 𝑝𝐶𝐹

)
,

where:
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1. SHPS is a Symbolic HyperPlithogenic Set [14]:

SPS (symbolic expansions), A = {𝑣1, . . . , 𝑣𝑚}, 𝑝𝑑𝑓 𝑗 : SPS × 𝑃𝑣 𝑗 → P̃([0, 1]𝑠).

2. The operations + and · are defined over the base set SPS, typically:

𝑥 =
∑︁
𝑖

𝑎𝑖𝑃𝑖 , 𝑦 =
∑︁
𝑖

𝑏𝑖𝑃𝑖 =⇒

𝑥 + 𝑦 =

∑
𝑖 (𝑎𝑖 + 𝑏𝑖)𝑃𝑖 ,

𝑥 · 𝑦 =
∑

𝑖, 𝑗 (𝑎𝑖𝑏 𝑗 ) · max(𝑃𝑖 , 𝑃 𝑗 ) (absorbance law).

3. The membership 𝑝𝑑𝑓 𝑗 is used to define hyper-membership degrees for each
(
𝑥, 𝑎 𝑗

)
, and 𝑝𝐶𝐹 encodes

contradictions among attribute values.

4. Algebraic axioms (e.g. associativity, commutativity, distribution) can be postulated, depending on the
intended structure (e.g. ring, module, semiring).

Theorem 2.6. (Symbolic HyperPlithogenic Algebraic Structure generalizes Symbolic Plithogenic Algebraic
Structure)
If each hyper-membership 𝑝𝑑𝑓 𝑗 is restricted to singleton subsets in [0, 1]𝑠 , the Symbolic HyperPlithogenic
Algebraic Structure reduces to a Symbolic Plithogenic Algebraic Structure.

Proof. When each 𝑝𝑑𝑓 𝑗 (𝑥, 𝑎 𝑗 ) ⊆ [0, 1]𝑠 is exactly {d}, a single membership vector, we retrieve an ordinary
pdf 𝑗 . Hence the hyper-based membership collapses to standard membership, and the resulting algebraic
structure is precisely that of a Symbolic Plithogenic Algebraic Structure as in Definition. □

Definition 2.7 (Symbolic 𝑛-SuperHyperPlithogenic Algebraic Structure). Let 𝑛 ≥ 1. A Symbolic 𝑛-SuperHyperPlithogenic
Algebraic Structure is a tuple (

SHPS𝑛, +, ·, {𝑝𝑑𝑓
(𝑛)
𝑗 }, 𝑝𝐶𝐹 (𝑛)

)
,

satisfying:

1. SHPS𝑛 is a Symbolic 𝑛-SuperHyperPlithogenic Set, i.e. an 𝑛-th-level hyper-membership extension of the
SPS with symbolic expansions and hyperplithogenic membership. Symbolically,

SPS𝑛 = P𝑛

(
SPS

)
or an analogous iterative symbolic extension.

2. The operations + and · are defined over the extended domain SPS𝑛 with a suitable generalization of the
symbolic addition, multiplication, and absorbance among symbolic components at the 𝑛-th level.

3. Each 𝑝𝑑𝑓
(𝑛)
𝑗 : SPS𝑛 × 𝑃𝑣 𝑗 → P∗

𝑛

(
[0, 1]𝑠

)
is an 𝑛-layer Hyper Degree of Appurtenance Function,

providing an 𝑛-times nested set of membership degrees in [0, 1]𝑠 .

4. 𝑝𝐶𝐹 (𝑛) is the Degree of Contradiction Function for the attribute values, extended (if needed) to handle
the 𝑛-th super-level logic of plithogenic contradiction.

Theorem 2.8. When 𝑛 = 1, a Symbolic 𝑛-SuperHyperPlithogenic Algebraic Structure reduces to a Symbolic
HyperPlithogenic Algebraic Structure (Definition 2.5).

Proof. By setting 𝑛 = 1, the P1-type expansions are replaced by single-level expansions, and

𝑝𝑑𝑓
(1)
𝑗 : SPS1 × 𝑃𝑣 𝑗 → P∗

1
(
[0, 1]𝑠

)
becomes exactly a single-level hyperplithogenic membership. The domain SPS1 coincides with the Symbolic
HyperPlithogenic Set domain, and the algebraic operations remain in single-level symbolic form. Hence, all
multi-layer nesting disappears, and we recover the Symbolic HyperPlithogenic Algebraic Structure. □
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Chapter 11
N-Superhypersoft Set and Bijective Superhypersoft Set

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Soft sets provide a mathematical framework for decision-making by associating parameters with subsets of a
universal set, effectively managing uncertainty and imprecision [53, 56]. Over time, various extensions of soft
sets, including Hypersoft Sets, SuperHypersoft Sets, Treesoft Sets, Double-Framed Soft Sets, and Double-
Framed Hypersoft Sets, have been introduced to address increasingly complex decision-making processes.

This paper introduces the definitions of N-SuperHypersoft Sets, N-Treesoft Sets, Bijective SuperHypersoft
Sets, and Bijective Treesoft Sets, while also exploring their connections to previously established set theories.

Keywords: Superhypersoft set, Soft Set, Treesoft set, Hypersoft set

1 Preliminaries and Definitions

This section presents the foundational concepts and definitions necessary for the discussions in this paper. For
additional details on fundamental set theory, readers may refer to [19, 42, 46, 48] as needed.

1.1 SuperHypersoft Set and Treesoft Set

To address uncertainty and imprecision in decision-making, several set theories have been proposed, including
Fuzzy Sets [93–97], Neutrosophic Sets [23, 31–34, 37, 74, 75, 84], plithogenic sets [21, 24, 25, 35, 76, 78, 88],
and Soft Sets [53, 56].

This subsection explores the foundational concepts of Soft Sets, Hypersoft Sets, Treesoft Sets, and SuperHy-
persoft Sets, which form the basis for advanced decision-making frameworks. A Soft Set provides a versatile
approach to parameter-driven decision analysis by mapping attributes (parameters) to subsets of a univer-
sal set. This structure offers a powerful mechanism for addressing uncertainty and imprecision in complex
decision-making processes [9, 11, 14, 39, 53, 54, 56, 73, 85, 92, 100].

Expanding on this foundation, a Hypersoft Set enhances multi-attribute decision analysis by associating
combinations of multiple attributes with subsets of a universal set, enabling a more nuanced and comprehensive
evaluation [1, 6, 22, 29, 36, 43, 57–65, 72, 77].

Treesoft Sets introduce a hierarchical approach for analyzing intricate datasets. By employing attribute trees
where both nodes and leaves correspond to subsets of a universal set, Treesoft Sets provide a structured and
detailed representation of hierarchical relationships [10, 15, 16, 26, 67, 68, 71, 79, 81–83].

SuperHypersoft Sets extend the concept of Hypersoft Sets by mapping power set combinations of multiple
attributes to subsets of a universal set. This extension supports high-dimensional decision-making and captures
intricate interdependencies among attributes, offering significant flexibility for addressing advanced decision-
making challenges [12, 20, 26–28, 30, 38, 45, 49, 55, 80, 85–87, 89, 99].

The definitions are concisely provided below. For more detailed properties, operations, and applications, please
refer to the respective references.

Definition 1.1 (Soft Set). [53, 56] Let 𝑈 be a universal set and 𝐴 be a set of attributes. A soft set over 𝑈 is a
pair (F , 𝑆), where 𝑆 ⊆ 𝐴 and F : 𝑆 → P(𝑈). Here, P(𝑈) denotes the power set of 𝑈. Mathematically, a soft
set is represented as:

(F , 𝑆) = {(𝛼, F (𝛼)) | 𝛼 ∈ 𝑆, F (𝛼) ∈ P(𝑈)}.

Each 𝛼 ∈ 𝑆 is called a parameter, and F (𝛼) is the set of elements in 𝑈 associated with 𝛼.
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Definition 1.2 (Hypersoft Set). [77] Let 𝑈 be a universal set, and let A1,A2, . . . ,A𝑚 be attribute domains.
Define C = A1 × A2 × · · · × A𝑚, the Cartesian product of these domains. A hypersoft set over 𝑈 is a pair
(𝐺, C), where 𝐺 : C → P(𝑈). The hypersoft set is expressed as:

(𝐺, C) = {(𝛾, 𝐺 (𝛾)) | 𝛾 ∈ C, 𝐺 (𝛾) ∈ P(𝑈)}.

For an 𝑚-tuple 𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑚) ∈ C, where 𝛾𝑖 ∈ A𝑖 for 𝑖 = 1, 2, . . . , 𝑚, 𝐺 (𝛾) represents the subset of 𝑈
corresponding to the combination of attribute values 𝛾1, 𝛾2, . . . , 𝛾𝑚.

Definition 1.3 (SuperHyperSoft Set). [80] Let 𝑈 be a universal set, and let P(𝑈) denote the power set of 𝑈.
Consider 𝑛 distinct attributes 𝑎1, 𝑎2, . . . , 𝑎𝑛, where 𝑛 ≥ 1. Each attribute 𝑎𝑖 is associated with a set of attribute
values 𝐴𝑖 , satisfying the property 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for all 𝑖 ≠ 𝑗 .

Define P(𝐴𝑖) as the power set of 𝐴𝑖 for each 𝑖 = 1, 2, . . . , 𝑛. Then, the Cartesian product of the power sets of
attribute values is given by:

C = P(𝐴1) × P(𝐴2) × · · · × P(𝐴𝑛).

A SuperHyperSoft Set over 𝑈 is a pair (𝐹, C), where:

𝐹 : C → P(𝑈),

and 𝐹 maps each element (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ C (with 𝛼𝑖 ∈ P(𝐴𝑖)) to a subset 𝐹 (𝛼1, 𝛼2, . . . , 𝛼𝑛) ⊆ 𝑈.
Mathematically, the SuperHyperSoft Set is represented as:

(𝐹, C) = {(𝛾, 𝐹 (𝛾)) | 𝛾 ∈ C, 𝐹 (𝛾) ∈ P(𝑈)}.

Here, 𝛾 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ C, where 𝛼𝑖 ∈ P(𝐴𝑖) for 𝑖 = 1, 2, . . . , 𝑛, and 𝐹 (𝛾) corresponds to the subset of
𝑈 defined by the combined attribute values 𝛼1, 𝛼2, . . . , 𝛼𝑛.

Definition 1.4 (Treesoft Set). [81] Let 𝑈 be a universe of discourse, and let 𝐻 be a non-empty subset of 𝑈,
with 𝑃(𝐻) denoting the power set of 𝐻. Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be a set of attributes (parameters, factors,
etc.), for some integer 𝑛 ≥ 1, where each attribute 𝐴𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) is considered a first-level attribute.

Each first-level attribute 𝐴𝑖 consists of sub-attributes, defined as:

𝐴𝑖 = {𝐴𝑖,1, 𝐴𝑖,2, . . . },

where the elements 𝐴𝑖, 𝑗 (for 𝑗 = 1, 2, . . .) are second-level sub-attributes of 𝐴𝑖 . Each second-level sub-attribute
𝐴𝑖, 𝑗 may further contain sub-sub-attributes, defined as:

𝐴𝑖, 𝑗 = {𝐴𝑖, 𝑗 ,1, 𝐴𝑖, 𝑗 ,2, . . . },

and so on, allowing for as many levels of refinement as needed. Thus, we can define sub-attributes of an 𝑚-th
level with indices 𝐴𝑖1 ,𝑖2 ,...,𝑖𝑚 , where each 𝑖𝑘 (for 𝑘 = 1, . . . , 𝑚) denotes the position at each level.

This hierarchical structure forms a tree-like graph, which we denote as Tree(𝐴), with root 𝐴 (level 0) and
successive levels from 1 up to 𝑚, where 𝑚 is the depth of the tree. The terminal nodes (nodes without
descendants) are called leaves of the graph-tree.

A TreeSoft Set 𝐹 is defined as a function:

𝐹 : 𝑃(Tree(𝐴)) → 𝑃(𝐻),

where Tree(𝐴) represents the set of all nodes and leaves (from level 1 to level 𝑚) of the graph-tree, and
𝑃(Tree(𝐴)) denotes its power set.

139



1.2 N-soft set and N-hypersoft set

An N-soft set associates attributes with subsets of objects, each paired with satisfaction grades, providing
a structured framework for decision-making [2–5, 8, 17, 50–52, 66, 70, 98]. Building upon this concept, the
N-hypersoft set offers an extended approach to accommodate more complex scenarios [64]. The relevant
definitions and details are presented below.

Definition 1.5 (N-soft Set). [7, 18] Let 𝑂 be a set of objects (alternatives) and 𝑇 be a set of attributes
(characteristics). An N-soft set over 𝑂 and 𝑇 is a triple (𝐹,𝑇, 𝑁), where:

• 𝐹 : 𝑇 → 2𝑂×𝐺 is a mapping from the set of attributes 𝑇 to the power set of 𝑂 × 𝐺,

• 𝐺 = {0, 1, . . . , 𝑁 − 1} is the set of possible grades, representing levels of satisfaction,

• 𝑁 ≥ 2 is a natural number, specifying the number of levels of satisfaction.

The mapping 𝐹 satisfies the following condition:

For each 𝑡 ∈ 𝑇 and 𝑜 ∈ 𝑂, there exists a unique (𝑜, 𝑔𝑡 ) ∈ 𝐹 (𝑡), where 𝑔𝑡 ∈ 𝐺.

Definition 1.6 (Tabular Representation of N-soft Set). When 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑝} and 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑞}
are finite, an N-soft set (𝐹,𝑇, 𝑁) can be represented as a table. For each 𝑡 𝑗 ∈ 𝑇 and 𝑜𝑖 ∈ 𝑂, the value
𝐹 (𝑡 𝑗 ) (𝑜𝑖) = 𝑟𝑖 𝑗 ∈ 𝐺 satisfies:

(𝑜𝑖 , 𝑟𝑖 𝑗 ) ∈ 𝐹 (𝑡 𝑗 ).

The tabular representation is given as:

(𝐹,𝑇, 𝑁) 𝑡1 𝑡2 . . . 𝑡𝑞
𝑜1 𝑟11 𝑟12 . . . 𝑟1𝑞
𝑜2 𝑟21 𝑟22 . . . 𝑟2𝑞
...

...
...

. . .
...

𝑜𝑝 𝑟𝑝1 𝑟𝑝2 . . . 𝑟𝑝𝑞

Here, 𝑟𝑖 𝑗 ∈ 𝐺 represents the grade assigned to object 𝑜𝑖 under attribute 𝑡 𝑗 .

Definition 1.7 (Soft Set as a Special Case of N-soft Set). When 𝑁 = 2, the N-soft set reduces to a standard
soft set. Define a mapping 𝐹0 : 𝑇 → 𝑃(𝑂) such that:

𝐹0 (𝑡) = {𝑜 ∈ 𝑂 | 𝐹 (𝑡) (𝑜) = 1}.

In this case, 𝐹 (𝑡) (𝑜) = 1 implies 𝑜 ∈ 𝐹0 (𝑡), and the tabular representation contains only 0 and 1.

Definition 1.8 (N-Hypersoft Set). [64] Let Ω be a universal set of objects, 𝐸 be a set of parameters, and
𝜉1 ⊆ 𝐸 . Consider 𝑅 = {0, 1, . . . , 𝑁 − 1}, where 𝑁 ≥ 2, as the set of ordered grades. An N-Hypersoft Set
(N-HS set) is a triple (∇, 𝜉1, 𝑁), where:

• ∇ : 𝜉1 → 𝑃(Ω × 𝑅) maps each parameter 𝑞 ∈ 𝜉1 to a subset of Ω × 𝑅,

• ∇ satisfies the condition: for every 𝑞 ∈ 𝜉1 and 𝜔 ∈ Ω, there exists a unique pair (𝜔, 𝑟𝑞) ∈ ∇(𝑞), where
𝑟𝑞 ∈ 𝑅.

The evaluation of each object 𝜔 ∈ Ω under parameter 𝑞 ∈ 𝜉1 is denoted as:

∇(𝑞) (𝜔) = 𝑟𝑞 .

Definition 1.9 (Tabular Representation). When Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑚} and 𝜉1 = {𝑞1, 𝑞2, . . . , 𝑞𝑛}, an N-HS
set (∇, 𝜉1, 𝑁) can be represented in tabular form:

(∇, 𝜉1, 𝑁) 𝑞1 𝑞2 . . . 𝑞𝑛
𝜔1 𝑟11 𝑟12 . . . 𝑟1𝑛
𝜔2 𝑟21 𝑟22 . . . 𝑟2𝑛
...

...
...

. . .
...

𝜔𝑚 𝑟𝑚1 𝑟𝑚2 . . . 𝑟𝑚𝑛

where 𝑟𝑖 𝑗 ∈ 𝑅 represents the grade assigned to object 𝜔𝑖 under parameter 𝑞 𝑗 .
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1.3 Bijective Soft Set and Bijective Hypersoft Set

A Bijective Soft Set is a type of soft set where each parameter uniquely maps to a disjoint subset of the universal
set, ensuring the entire set is covered [40, 41, 47, 90, 91]. A Bijective Hypersoft Set extends this concept by
mapping unique combinations of attributes to disjoint subsets of the universal set, also guaranteeing complete
coverage [69].

Definition 1.10 (Bijective Soft Set). [40, 41, 47, 90, 91] Let 𝑈 be a universe of discourse, and let 𝐵 be a
non-empty parameter set. A soft set (𝐹, 𝐵) over 𝑈 is defined as a pair where:

𝐹 : 𝐵 → P(𝑈),

and 𝐹 maps each parameter 𝑒 ∈ 𝐵 to a subset 𝐹 (𝑒) ⊆ 𝑈.

The soft set (𝐹, 𝐵) is called a Bijective Soft Set if the following conditions hold:

1. Exhaustiveness: The union of all subsets 𝐹 (𝑒) equals the universe:⋃
𝑒∈𝐵

𝐹 (𝑒) = 𝑈.

2. Disjointness: The subsets 𝐹 (𝑒) are pairwise disjoint:

𝐹 (𝑒𝑖) ∩ 𝐹 (𝑒 𝑗 ) = ∅, ∀𝑒𝑖 , 𝑒 𝑗 ∈ 𝐵, 𝑒𝑖 ≠ 𝑒 𝑗 .

Alternatively, the mapping 𝐹 : 𝐵 → P(𝑈) can be transformed into a bijective function 𝐹 : 𝐵 → 𝑌 , where
𝑌 ⊆ P(𝑈) and 𝑌 contains pairwise disjoint subsets of 𝑈.

Definition 1.11 (Bijective Hypersoft Set). [44, 69] Let 𝑈 be a universe of discourse, and let 𝐺 = 𝐺1 × 𝐺2 ×
· · · × 𝐺𝑛, where:

• 𝐺𝑖 is the set of possible values for attribute 𝑔𝑖 ,

• 𝐺𝑖 ∩ 𝐺 𝑗 = ∅ for 𝑖 ≠ 𝑗 , ensuring 𝐺1, 𝐺2, . . . , 𝐺𝑛 are disjoint.

A hypersoft set is a pair (𝐹, 𝐺), where:
𝐹 : 𝐺 → P(𝑈),

is a mapping that assigns each 𝛿 ∈ 𝐺 (a tuple of attribute values) to a subset 𝐹 (𝛿) ⊆ 𝑈.

The hypersoft set (𝐹, 𝐺) is called a Bijective Hypersoft Set if the following conditions hold:

1.
⋃

𝛿∈𝐺 𝐹 (𝛿) = 𝑈.

2. For any 𝛿𝑖 , 𝛿 𝑗 ∈ 𝐺 with 𝛿𝑖 ≠ 𝛿 𝑗 , 𝐹 (𝛿𝑖) ∩ 𝐹 (𝛿 𝑗 ) = ∅.

Alternatively, the mapping 𝐹 : 𝐺 → P(𝑈) can be rewritten as a bijection 𝐹 : 𝐺 → P1 (𝑈), where P1 (𝑈) ⊆
P(𝑈) contains pairwise disjoint subsets 𝐹 (𝛿).

2 Result of this Paper

This section presents the results of this paper.
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2.1 N-SuperHypersoft Set

The N-SuperHypersoft Set is a generalized concept derived from the N-Hypersoft Set. Its definitions and
related details are provided below.

Definition 2.1 (N-SuperHypersoft Set). Let 𝑈 be a universal set, and let 𝑛 ≥ 1. Suppose we have 𝑛 distinct
attributes

𝑎1, 𝑎2, . . . , 𝑎𝑛,

where each attribute 𝑎𝑖 is associated with a set of attribute values 𝐴𝑖 , subject to the condition

𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for all 𝑖 ≠ 𝑗 .

For each 𝐴𝑖 , define its power set P(𝐴𝑖). Let

C = P(𝐴1) × P(𝐴2) × · · · × P(𝐴𝑛),

which represents all possible combinations of attribute-value subsets.

Additionally, let
𝑅 = { 0, 1, 2, . . . , 𝑁 − 1}

be a set of grades (or levels), where 𝑁 ≥ 2 is a fixed integer.

An N-SuperHypersoft Set over 𝑈 is a triple (
𝐻, C, 𝑁

)
,

where
𝐻 : C → P

(
𝑈 × 𝑅

)
,

satisfies the following uniqueness condition:

For each combination 𝛾 ∈ C and for each 𝑢 ∈ 𝑈,

there is exactly one ordered pair (𝑢, 𝑟𝛾) ∈ 𝐻 (𝛾), where 𝑟𝛾 ∈ 𝑅.

In other words, for every 𝛾 ∈ C, the set 𝐻 (𝛾) ⊆ 𝑈 × 𝑅 assigns a unique grade 𝑟𝛾 to each element 𝑢 ∈ 𝑈

whenever one interprets the combined attribute values in 𝛾.

We now show rigorously that the N-SuperHypersoft Set generalizes both the N-Hypersoft Set and the Super-
Hypersoft Set.

Theorem 2.2 (N-SuperHypersoft Set Generalizes N-Hypersoft Set). Every N-Hypersoft Set is a particular
case of an N-SuperHypersoft Set.

Proof. An N-Hypersoft Set (∇, 𝜉1, 𝑁) typically has:

𝜉1 = { 𝑞1, 𝑞2, . . . , 𝑞𝑚} (parameters),

and each parameter 𝑞 𝑗 is associated with a mapping

∇(𝑞 𝑗 ) ⊆ Ω × 𝑅,

where Ω is the universe of objects and 𝑅 = {0, . . . , 𝑁 − 1}. By definition, each object 𝜔 ∈ Ω is assigned a
unique grade under each parameter 𝑞 𝑗 .

To obtain an N-SuperHypersoft Set from this, consider:

𝑛 = 𝑚, 𝐴 𝑗 = {𝛼 𝑗1, 𝛼 𝑗2, . . . }

but we force each P(𝐴 𝑗 ) to behave like a single-valued domain 𝜑 𝑗 . Concretely:

C = 𝜑1 × · · · × 𝜑𝑚, where each 𝜑 𝑗 effectively has elements in 1-to-1 correspondence with 𝑞 𝑗 .
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Then define:
𝐻 (𝛾) = ∇(𝑞),

where 𝑞 is the appropriate parameter from 𝜉1 that matches the chosen combination 𝛾. Since each parameter 𝑞 𝑗

yields a unique pairing (𝜔, 𝑟) ∈ Ω × 𝑅, the uniqueness condition is satisfied in the sense of Definition 2.1.

Thus, by restricting each P(𝐴 𝑗 ) to act as a single-valued domain and linking it to exactly one parameter 𝑞 𝑗 ,
we replicate an N-Hypersoft Set within the framework of an N-SuperHypersoft Set. □

Theorem 2.3 (N-SuperHypersoft Set Generalizes SuperHypersoft Set). Every SuperHypersoft Set is embedded
in the N-SuperHypersoft Set structure by letting 𝑁 = 2 and collapsing the grade assignment to a binary
distinction.

Proof. A SuperHypersoft Set (𝐹, C) has C = P(𝐴1) × · · · × P(𝐴𝑛). For each 𝛾 ∈ C,

𝐹 (𝛾) ⊆ 𝑈.

This is equivalent to having
𝐹 (𝛾) ⊆ 𝑈 × {1}

if we regard membership in 𝐹 (𝛾) as getting the grade 1 and non-membership as grade 0. So set

𝑅 = {0, 1} (hence 𝑁 = 2),

and define
𝐻 (𝛾) = {(𝑢, 1) | 𝑢 ∈ 𝐹 (𝛾)} ∪ {(𝑢, 0) | 𝑢 ∉ 𝐹 (𝛾)}.

Evidently, each 𝑢 ∈ 𝑈 appears exactly once, paired with either grade 0 or 1. Hence, 𝐻 (𝛾) ⊆ 𝑈 × 𝑅 satisfies
the uniqueness condition for all 𝛾. Thus, (𝐻, C, 2) is an N-SuperHypersoft Set that mimics (𝐹, C). In other
words, the SuperHypersoft Set is a special (binary-grade) instance of the N-SuperHypersoft Set. □

2.2 N-Treesoft Set

We now introduce the concept of an N-Treesoft Set, which extends the Treesoft Set by allowing each node-leaf
subset to be graded via a set 𝑅 = {0, . . . , 𝑁 − 1}.

Definition 2.4 (N-Treesoft Set). Let
𝑈 be a universal set, and

Tree(𝐴) be a hierarchical tree of attributes,

with root 𝐴 and multiple levels of sub-attributes as in the standard Treesoft framework [81]. Let

𝑃(Tree(𝐴))

denote the power set of all nodes and leaves in Tree(𝐴). Suppose 𝑁 ≥ 2 is an integer and

𝑅 = {0, 1, . . . , 𝑁 − 1}.

An N-Treesoft Set is a triple (
Λ,Tree(𝐴), 𝑁

)
,

where
Λ : 𝑃

(
Tree(𝐴)

)
→ P

(
𝑈 × 𝑅

)
obeys the uniqueness condition:

For each 𝑋 ⊆ Tree(𝐴) and for each 𝑢 ∈ 𝑈,

there is exactly one pair (𝑢, 𝑟𝑋) ∈ Λ(𝑋), where 𝑟𝑋 ∈ 𝑅.

Remark 2.5. If 𝑁 = 2, we can interpret the pair (𝑢, 1) as “𝑢 belongs to Λ(𝑋)” and (𝑢, 0) as “𝑢 does not belong
to Λ(𝑋)”, retrieving something akin to a traditional Treesoft Set (albeit each node set is now forcibly assigned
to either 0 or 1 for every 𝑢).
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We show below that an N-Treesoft Set generalizes both an N-soft Set (when the tree is restricted to a single
level and we use grading) and a standard Treesoft Set (when 𝑁 = 2).

Theorem 2.6 (N-Treesoft Set Generalizes N-soft Set). Let
(
𝐹,𝑇, 𝑁

)
be an N-soft set over objects 𝑂 and

attributes𝑇 . Then there is a corresponding N-Treesoft Set
(
Λ, Tree(𝑇), 𝑁

)
that reproduces the same assignment

of grades to objects, assuming a single-level tree structure.

Proof. An N-soft set (𝐹,𝑇, 𝑁) has
𝐹 : 𝑇 → 2𝑂×𝐺 ,

with 𝐺 = {0, . . . , 𝑁 −1}, and each pair (𝑜, 𝑔𝑡 ) corresponds to how object 𝑜 ∈ 𝑂 is graded under attribute 𝑡 ∈ 𝑇 .

Construct a one-level tree: Tree(𝑇) has the root 𝑇 (level 0) and the set 𝑇 = {𝑡1, . . . , 𝑡𝑞} as level-1 nodes (no
deeper sub-attributes). Therefore,

𝑃
(
Tree(𝑇)

)
= 𝑃(𝑇),

the power set of the attribute set. Define

Λ(𝑋) =

{
(𝑜, 𝑟𝑋) : 𝑜 ∈ 𝑂, 𝑟𝑋 ∈ 𝐺

}
so that for each 𝑋 ⊆ 𝑇 and 𝑜 ∈ 𝑂, there is a unique pair (𝑜, 𝑟𝑋) ∈ Λ(𝑋). We must choose 𝑟𝑋 so that it
consistently reflects the N-soft evaluation from 𝐹. One way is to let

𝑟𝑋 = some aggregation({ 𝐹 (𝑡 𝑗 ) (𝑜) : 𝑡 𝑗 ∈ 𝑋}),

where some aggregation is chosen so that each (𝑜, 𝑟𝑋) is unique. For a simpler direct matching, we may only
evaluate Λ on singletons {𝑡 𝑗 }. Then

Λ({𝑡 𝑗 }) ≈ 𝐹 (𝑡 𝑗 ).

By extending Λ consistently to larger subsets 𝑋 ⊆ 𝑇 (through any well-defined rule that chooses a unique grade
for each 𝑜), we preserve uniqueness.

Hence,
(
Λ,Tree(𝑇), 𝑁

)
functions as an N-Treesoft Set that, on single-attribute subsets, recovers the same graded

pairs
(
𝑜, 𝐹 (𝑡 𝑗 ) (𝑜)

)
. Therefore, the single-level tree model precisely embeds an N-soft set as an N-Treesoft

Set. □

Theorem 2.7 (N-Treesoft Set Generalizes Treesoft Set). Every standard Treesoft Set
(
𝐹, Tree(𝐴)

)
is a special

case of an N-Treesoft Set for 𝑁 = 2.

Proof. A standard (single-grade) Treesoft Set has

𝐹 : 𝑃
(
Tree(𝐴)

)
→ 𝑃(𝐻),

for some subset 𝐻 ⊆ 𝑈. We can embed 𝐹 into an N-Treesoft Set by letting 𝑁 = 2 (so 𝑅 = {0, 1}) and defining

Λ(𝑋) = { (𝑢, 1) | 𝑢 ∈ 𝐹 (𝑋)} ∪ { (𝑢, 0) | 𝑢 ∉ 𝐹 (𝑋)}.

Hence, for each 𝑢 ∈ 𝑈, Λ(𝑋) contains exactly one pair (𝑢, 𝑟), where 𝑟 = 1 if 𝑢 ∈ 𝐹 (𝑋) and 𝑟 = 0 otherwise.
This satisfies the uniqueness condition of Definition 2.4. Consequently,

(
Λ,Tree(𝐴), 2

)
is an N-Treesoft Set

that coincides with the original Treesoft Set when ignoring the binary grade. □

2.3 Bijective SuperHypersoft Set

The Bijective SuperHypersoft Set is a generalized concept derived from the Bijective Hypersoft Set. Definitions,
related theorems, and other details are provided below.
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Definition 2.8 (Bijective SuperHypersoft Set). Let 𝑈 be a universal set. Suppose we have 𝑛 distinct attributes
𝑎1, 𝑎2, . . . , 𝑎𝑛, where each attribute 𝑎𝑖 has a domain 𝐴𝑖 ⊆ (some larger set), satisfying 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ for 𝑖 ≠ 𝑗 .
For each 𝑖, define the power set P(𝐴𝑖). Then:

C = P(𝐴1) × P(𝐴2) × · · · × P(𝐴𝑛),

represents all possible combinations of subsets of the respective domains.

A SuperHypersoft Set is a pair
(
𝐹, C

)
, with

𝐹 : C → P(𝑈).

We say
(
𝐹, C

)
is a Bijective SuperHypersoft Set if:

1.
⋃
𝛾∈C

𝐹 (𝛾) = 𝑈. (Exhaustiveness)

2. For any 𝛾1 ≠ 𝛾2 ∈ C,
𝐹 (𝛾1) ∩ 𝐹 (𝛾2) = ∅.

(Pairwise Disjointness)

Equivalently, 𝐹 : C → P(𝑈) can be viewed as a bijection onto a family of disjoint subsets covering 𝑈. That
is, we can write

𝐹 (𝛾) ∈ P1 (𝑈),

where P1 (𝑈) ⊆ P(𝑈) is a collection of pairwise disjoint subsets whose union is 𝑈.

Theorem 2.9 (Bijective SuperHypersoft Set Generalizes Bijective Hypersoft Set). Any Bijective Hypersoft Set
is a particular case of a Bijective SuperHypersoft Set.

Proof. A Bijective Hypersoft Set (𝐹, 𝐺) [13] typically arises when each attribute 𝑎𝑖 has a single-valued domain
𝐺𝑖 (rather than P(𝐴𝑖)), so

𝐺 = 𝐺1 × 𝐺2 × · · · × 𝐺𝑛,

where each 𝐺𝑖 is pairwise disjoint from the others. The mapping 𝐹 : 𝐺 → P(𝑈) must satisfy the bijectivity
conditions: ⋃

𝛿∈𝐺
𝐹 (𝛿) = 𝑈 and 𝐹 (𝛿𝑖) ∩ 𝐹 (𝛿 𝑗 ) = ∅ for all 𝛿𝑖 ≠ 𝛿 𝑗 .

To see that this is a special case of Definition 2.8, note:

• In a Bijective SuperHypersoft Set, each attribute domain is P(𝐴𝑖).

• If we restrict each P(𝐴𝑖) to only singletons (or effectively treat it as the original set 𝐺𝑖 with exactly one
chosen value), then the Cartesian product P(𝐴1) × · · · × P(𝐴𝑛) reduces to 𝐺1 × · · · × 𝐺𝑛.

• Define 𝐹 on this restricted domain precisely as it was on the Bijective Hypersoft Set. The exhaustiveness
and disjointness constraints remain identical.

Hence, every Bijective Hypersoft Set arises by limiting the domain of a Bijective SuperHypersoft Set to
single-valued subsets, showing that Bijective SuperHypersoft Sets generalize Bijective Hypersoft Sets. □

Theorem 2.10 (Bijective SuperHypersoft Set Generalizes SuperHypersoft Set). Any (non-bijective) SuperHy-
persoft Set is embedded in the Bijective SuperHypersoft Set structure by relaxing the disjointness condition or,
equivalently, setting merges of images.
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Proof. A SuperHypersoft Set
(
𝐺, C

)
has C = P(𝐴1) × · · · × P(𝐴𝑛) and

𝐺 : C → P(𝑈).

The standard definition requires no disjointness condition on 𝐺 (𝛾).

To embed it into a Bijective SuperHypersoft Set, observe:

• The only difference is that a Bijective SuperHypersoft Set requires all 𝐹 (𝛾) to be pairwise disjoint and
to cover 𝑈.

• If we permit repeated or overlapping images in the sense that we remove the pairwise disjointness
constraint, we return to an ordinary SuperHypersoft Set.

Thus, from a conceptual standpoint, any SuperHypersoft Set (𝐺, C) is a looser version of a Bijective SuperHy-
persoft Set (𝐹, C) where the pairwise-disjoint condition need not hold. Therefore, the Bijective model strictly
contains the usual SuperHypersoft model as a special case (when the disjointness is removed or the union need
not be an exact partition). □

2.4 Bijective Treesoft Set

We now extend the Treesoft Set (a hierarchical attribute structure) by requiring that each subset of the tree map
to a pairwise-disjoint family covering the entire domain. This yields the Bijective Treesoft Set.

Definition 2.11 (Bijective Treesoft Set). Let:

• 𝑈 be a universal set (or a universal “universe of discourse”),

• Tree(𝐴) be a hierarchical attribute tree derived from an attribute set 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} (with possibly
multiple levels of sub-attributes),

• 𝑃
(
Tree(𝐴)

)
denote the power set of all nodes (and leaves) within Tree(𝐴).

A Treesoft Set [81] is a function
𝐹 : 𝑃

(
Tree(𝐴)

)
→ P(𝐻),

for some non-empty subset 𝐻 ⊆ 𝑈.

A Bijective Treesoft Set is defined analogously, except it must satisfy:

1.
⋃

𝑋⊆Tree(𝐴)
𝐹 (𝑋) = 𝐻. (All images together cover 𝐻)

2. If 𝑋𝑖 ≠ 𝑋 𝑗 , then 𝐹 (𝑋𝑖) ∩ 𝐹 (𝑋 𝑗 ) = ∅. (Pairwise disjointness of images)

Hence, for each distinct subset 𝑋 ⊆ Tree(𝐴), the image 𝐹 (𝑋) is a subset of 𝐻, and all these subsets partition
𝐻. Equivalently,

𝐹 : 𝑃(Tree(𝐴)) → P1 (𝐻),

where P1 (𝐻) is a family of pairwise disjoint subsets whose union is 𝐻.

Theorem 2.12 (Bijective Treesoft Set Generalizes Bijective Soft Set). Every Bijective Soft Set is a special case
of a Bijective Treesoft Set.
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Proof. A Bijective Soft Set
(
𝐹, 𝐵

)
over a universe 𝑈 has:

𝐹 : 𝐵 → P(𝑈),
⋃
𝑏∈𝐵

𝐹 (𝑏) = 𝑈, 𝐹 (𝑏𝑖) ∩ 𝐹 (𝑏 𝑗 ) = ∅ for 𝑏𝑖 ≠ 𝑏 𝑗 .

This can be seen as a single-level tree:

Tree(𝐴) = {𝐴1, 𝐴2, . . . , 𝐴 |𝐵 | },

where each 𝐴𝑖 corresponds to one parameter 𝑏 ∈ 𝐵. In this case,

𝑃
(
Tree(𝐴)

)
= 𝑃(𝐵).

Define
𝐹 (𝑋) =

⋃
𝑏∈𝑋

𝐹 (𝑏), for all 𝑋 ⊆ 𝐵.

Then 𝐹 : 𝑃(𝐵) → P(𝑈) is a candidate for a Treesoft-like mapping. To enforce bijectivity, note that if
we evaluate 𝐹 only on singletons {𝑏} ⊆ 𝐵, we recover exactly 𝐹 (𝑏). By requiring that the entire family
{𝐹 (𝑋) | 𝑋 ⊆ 𝐵} remains disjoint except at 𝑋 differences, we can keep the same disjoint partition.

Alternatively, we can keep a simpler definition:

𝐹 (𝑋) =

{
𝐹 (𝑏), if 𝑋 = {𝑏} ⊆ 𝐵,

∅, otherwise.

Thus, ⋃
𝑋⊆𝐵

𝐹 (𝑋) =
⋃
𝑏∈𝐵

𝐹 (𝑏) = 𝑈,

and if 𝑋𝑖 ≠ 𝑋 𝑗 , 𝐹 (𝑋𝑖) ∩ 𝐹 (𝑋 𝑗 ) = ∅. So 𝐹 is a Bijective Treesoft Set over the single-level tree. Hence, any
Bijective Soft Set is realized as a single-level special case of the Bijective Treesoft Set. □

Theorem 2.13 (Bijective Treesoft Set Generalizes Treesoft Set). Every ordinary (possibly non-bijective)
Treesoft Set is a particular case of a Bijective Treesoft Set by relaxing the disjointness or exhaustive conditions.

Proof. A Treesoft Set
(
𝐹,Tree(𝐴)

)
simply requires

𝐹 : 𝑃
(
Tree(𝐴)

)
→ P(𝐻),

with no demand that
⋃

𝐹 (𝑋) = 𝐻 or that images be disjoint. In a Bijective Treesoft Set, we add:⋃
𝑋⊆Tree(𝐴)

𝐹 (𝑋) = 𝐻, 𝐹 (𝑋𝑖) ∩ 𝐹 (𝑋 𝑗 ) = ∅ if 𝑋𝑖 ≠ 𝑋 𝑗 .

Hence, if we relax or remove these additional constraints, we precisely recover the broader notion of a Treesoft
Set. Thus, Treesoft Sets can be viewed as a less-restrictive sub-family within the space of all Bijective Treesoft
Sets. □
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Chapter 12
Plithogenic Rough Sets

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Plithogenic Sets are mathematical structures designed to incorporate multi-valued degrees of appurtenance and
contradictions, providing a robust framework for modeling complex and dynamic decision-making processes.
Rough Sets address uncertainty by dividing a set into lower and upper approximations, which represent definable
and potentially related elements, respectively.

In this paper, we explore Plithogenic Rough Sets, a concept that combines the principles of Rough Sets and
Plithogenic Sets.

Keywords: Fuzzy set, Rough Set, Plithogenic Set

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Fuzzy Set and Neutrosophic Set

The concept of a Fuzzy Set is widely used in set theory to address uncertainty. Its formal definition is provided
below [62–70].

Definition 1.1. [62,67] A fuzzy set 𝜏 in a non-empty universe 𝑌 is a mapping 𝜏 : 𝑌 → [0, 1]. A fuzzy relation
on 𝑌 is a fuzzy subset 𝛿 in 𝑌 × 𝑌 . If 𝜏 is a fuzzy set in 𝑌 and 𝛿 is a fuzzy relation on 𝑌 , then 𝛿 is called a fuzzy
relation on 𝜏 if

𝛿(𝑦, 𝑧) ≤ min{𝜏(𝑦), 𝜏(𝑧)} for all 𝑦, 𝑧 ∈ 𝑌 .

Similarly, Neutrosophic Sets, which generalize Fuzzy Sets, are another significant concept frequently referenced
in this paper [50–55]. Neutrosophic Sets have been extended to various concepts, including graphs, and have
been the subject of extensive research [4, 11, 21–26, 28].

Their formal definition is presented below.

Definition 1.2. [52] Let 𝑋 be a given set. A Neutrosophic Set 𝐴 on 𝑋 is characterized by three membership
functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

1.2 Plithogenic Set

A Plithogenic Set is a mathematical framework designed to incorporate multi-valued degrees of appurtenance
and contradictions, making it highly suitable for addressing complex decision-making processes. Numerous
studies have been conducted on Plithogenic Sets [1, 2, 12, 18, 41, 43–45, 58, 60]. Additionally, related concepts
such as the Plithogenic Graph and Plithogenic Language have been extensively explored [5–7,9,13–15,17,20,
27, 46–49]. The formal definition is presented below.
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Definition 1.3. [56, 57] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) 1

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)

1.3 Fuzzy Rough set and Neutrosophic Rough set

A rough set represents imprecise or uncertain knowledge by approximating a set using a pair of lower and
upper bounds [32–37]. A fuzzy rough set combines fuzzy logic and rough set theory, modeling uncertainty
with fuzzy membership and boundary approximations [29,31,42]. A neutrosophic rough set generalizes rough
sets by incorporating truth, indeterminacy, and falsity degrees to handle imprecision [3, 61, 61, 72].

Definition 1.4 (Fuzzy Rough Set). [29,31,42] Let𝑈 be a finite and nonempty universe, and 𝑅 a fuzzy relation
on 𝑈. Let 𝐴 be a fuzzy set defined on 𝑈, with membership function 𝜇𝐴 : 𝑈 → [0, 1].

The fuzzy rough lower approximation of 𝐴 with respect to 𝑅, denoted apr𝑅 (𝐴), is defined as:

apr𝑅 (𝐴) (𝑥) = inf
𝑦∈𝑈

max (1 − 𝑅(𝑥, 𝑦), 𝜇𝐴(𝑦)) , ∀𝑥 ∈ 𝑈.

The fuzzy rough upper approximation of 𝐴 with respect to 𝑅, denoted apr𝑅 (𝐴), is defined as:

apr𝑅 (𝐴) (𝑥) = sup
𝑦∈𝑈

min (𝑅(𝑥, 𝑦), 𝜇𝐴(𝑦)) , ∀𝑥 ∈ 𝑈.

The boundary region of 𝐴 is given by:

bnd𝑅 (𝐴) = apr𝑅 (𝐴) − apr𝑅 (𝐴).

If bnd𝑅 (𝐴) ≠ ∅, 𝐴 is called a fuzzy rough set.
1It is important to note that the definition of the Degree of Appurtenance Function varies across different papers. Some studies define

this concept using the power set, while others simplify it by avoiding the use of the power set [59]. The author has consistently defined the
Classical Plithogenic Set without employing the power set.
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Definition 1.5 (Neutrosophic Rough Set). [3,61,61,72] Let 𝑈 be a nonempty universe and 𝑅 a single-valued
neutrosophic relation on 𝑈. For a set 𝐴 ⊆ 𝑈, denote 𝑅𝑇 (𝑥, 𝑦), 𝑅𝐼 (𝑥, 𝑦), 𝑅𝐹 (𝑥, 𝑦) as the truth, indeterminacy,
and falsity components of 𝑅, respectively.

The neutrosophic lower approximation of 𝐴 with respect to 𝑅, denoted 𝑅(𝐴), is defined as:

𝑅𝑇 (𝐴) (𝑥) = inf
𝑦∈𝐴

𝑅𝑇 (𝑥, 𝑦),

𝑅𝐼 (𝐴) (𝑥) = sup
𝑦∈𝐴

𝑅𝐼 (𝑥, 𝑦),

𝑅𝐹 (𝐴) (𝑥) = sup
𝑦∈𝐴

𝑅𝐹 (𝑥, 𝑦),

∀𝑥 ∈ 𝑈.

The neutrosophic upper approximation of 𝐴 with respect to 𝑅, denoted 𝑅(𝐴), is defined as:

𝑅𝑇 (𝐴) (𝑥) = sup
𝑦∈𝑈

min
(
𝑅𝑇 (𝑥, 𝑦), ⊮𝑦∈𝐴

)
,

𝑅𝐼 (𝐴) (𝑥) = inf
𝑦∈𝑈

max
(
𝑅𝐼 (𝑥, 𝑦), ⊮𝑦∉𝐴

)
,

𝑅𝐹 (𝐴) (𝑥) = inf
𝑦∈𝑈

max
(
𝑅𝐹 (𝑥, 𝑦), ⊮𝑦∉𝐴

)
,

∀𝑥 ∈ 𝑈.

The pair
(
𝑅(𝐴), 𝑅(𝐴)

)
is referred to as the neutrosophic rough set of 𝐴.

2 Result: Plithogenic Rough Set

In this paper, we define the concept of a Plithogenic Rough Set.

2.1 Plithogenic Rough Set

Let 𝑈 be a nonempty universe and 𝑅 a Plithogenic relation defined on 𝑈. A Plithogenic relation 𝑅 on 𝑈 is
characterized by the following attributes:

• A Plithogenic membership function 𝑝𝑑𝑓 : 𝑈 ×𝑈 → [0, 1]𝑠 that defines the degree of appurtenance.

• A contradiction function 𝑝𝐶𝐹 : 𝑈 ×𝑈 → [0, 1]𝑡 that defines the degree of contradiction.

Given a Plithogenic set 𝐴 ⊆ 𝑈, the Plithogenic Rough Set is defined by its lower and upper approximations as
follows:

Definition 2.1 (Plithogenic Lower Approximation). The Plithogenic lower approximation of 𝐴 with respect to
𝑅, denoted PL𝑅 (𝐴), is given by:

PL𝑅 (𝐴) (𝑥) = inf
𝑦∈𝐴

max (1 − 𝑝𝑑𝑓 (𝑥, 𝑦), 1 − 𝑝𝐶𝐹 (𝑥, 𝑦)) , ∀𝑥 ∈ 𝑈.

Definition 2.2 (Plithogenic Upper Approximation). The Plithogenic upper approximation of 𝐴 with respect to
𝑅, denoted PL𝑅 (𝐴), is given by:

PL𝑅 (𝐴) (𝑥) = sup
𝑦∈𝑈

min (𝑝𝑑𝑓 (𝑥, 𝑦), 1 − 𝑝𝐶𝐹 (𝑥, 𝑦)) , ∀𝑥 ∈ 𝑈.

Definition 2.3 (Plithogenic Rough Set). The Plithogenic Rough Set of 𝐴 is the pair:(
PL𝑅 (𝐴), PL𝑅 (𝐴)

)
,

where PL𝑅 (𝐴) and PL𝑅 (𝐴) are the lower and upper approximations, respectively.
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Theorem 2.4 (Generalization Property of Plithogenic Rough Set). The Plithogenic Rough Set generalizes both
the Fuzzy Rough Set and the Neutrosophic Rough Set.

Proof. (i) Generalizing the Fuzzy Rough Set.

In the case where the Plithogenic membership function 𝑝𝑑𝑓 (𝑥, 𝑦) reduces to the fuzzy membership function
𝜇𝑅 (𝑥, 𝑦), and the contradiction function 𝑝𝐶𝐹 (𝑥, 𝑦) is identically zero (i.e., 𝑝𝐶𝐹 (𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑈),
the Plithogenic Rough Set simplifies to the Fuzzy Rough Set.

• The Plithogenic lower approximation becomes:

PL𝑅 (𝐴) (𝑥) = inf
𝑦∈𝐴

max (1 − 𝜇𝑅 (𝑥, 𝑦), 𝜇𝐴(𝑦)) ,

which matches the fuzzy rough lower approximation apr𝑅 (𝐴) (𝑥).

• The Plithogenic upper approximation becomes:

PL𝑅 (𝐴) (𝑥) = sup
𝑦∈𝑈

min (𝜇𝑅 (𝑥, 𝑦), 𝜇𝐴(𝑦)) ,

which matches the fuzzy rough upper approximation apr𝑅 (𝐴) (𝑥).

Thus, the Plithogenic Rough Set reduces to the Fuzzy Rough Set.

(ii) Generalizing the Neutrosophic Rough Set.

In the case where the Plithogenic membership function 𝑝𝑑𝑓 (𝑥, 𝑦) is decomposed into three components
(𝑇, 𝐼, 𝐹), representing truth, indeterminacy, and falsity degrees, and the contradiction function 𝑝𝐶𝐹 (𝑥, 𝑦) is
identically zero, the Plithogenic Rough Set simplifies to the Neutrosophic Rough Set.

• The Plithogenic lower approximation becomes:

PL𝑅 (𝐴) (𝑥) = inf
𝑦∈𝐴

max (1 − 𝑇𝑅 (𝑥, 𝑦), 𝐼𝑅 (𝑥, 𝑦), 𝐹𝑅 (𝑥, 𝑦)) ,

which matches the neutrosophic lower approximation 𝑅(𝐴).

• The Plithogenic upper approximation becomes:

PL𝑅 (𝐴) (𝑥) = sup
𝑦∈𝑈

min (𝑇𝑅 (𝑥, 𝑦), 1 − 𝐼𝑅 (𝑥, 𝑦), 1 − 𝐹𝑅 (𝑥, 𝑦)) ,

which matches the neutrosophic upper approximation 𝑅(𝐴).

Thus, the Plithogenic Rough Set reduces to the Neutrosophic Rough Set. □

Question 2.5. As related concepts to plithogenic sets [57] and rough sets [32, 37], notions such as hyper-
plithogenic sets [8, 10, 16, 18], hyperrough sets [16, 19], and multigranulation rough sets [30, 38–40, 71] are
known. Can plithogenic rough sets be extended by using these concepts?
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Abstract

A Neutrosophic Set is a mathematical framework that represents degrees of truth, indeterminacy, and falsehood
to address uncertainty in membership values [41, 42]. In contrast, a Plithogenic Set extends this concept by
incorporating attributes, their possible values, and the corresponding degrees of appurtenance and contradic-
tion [50]. Among the related concepts of Neutrosophic Sets, Neutrosophic Duplets and Neutrosophic Triplets
are well-known. This paper defines Plithogenic Duplets and Plithogenic Triplets as extensions of these concepts
using the Plithogenic Set framework and briefly examines their relationship with existing concepts.

Keywords: Set Theory, Neutrosophic Set, Plithogenic Set, Neutrosophic Triplets

1 Preliminaries and Definitions

Some foundational concepts from set theory are applied in parts of this work.

1.1 Neutrosophic Set and Plithogenic Set

The Neutrosophic Set and Plithogenic Set are conceptual frameworks designed to handle uncertainty effectively.
These frameworks are closely related to several other mathematical constructs, including Fuzzy Sets [67–71],
Intuitionistic Fuzzy Sets [8–11], Neutrosophic Offsets [16,18,45,46,53,59], Hyperneutrosophic Sets [17,25–
27], and Bipolar Neutrosophic Sets [2, 4, 5, 33]. Their definitions are provided below.

Definition 1.1 ((Single-valued) Neutrosophic Set). [41–44, 56, 57] Let 𝑋 be a given set. A (single-valued)
Neutrosophic Set 𝐴 on 𝑋 is characterized by three membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degree of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

Example 1.2 (Examples of Neutrosophic Sets). Examples of several Neutrosophic Sets are provided below.

1. Weather Prediction (cf. [12,38,61]): Let 𝑋 = {Sunny,Rainy,Cloudy}, representing weather conditions.
A Neutrosophic Set 𝐴 may be defined as:

𝑇𝐴(Sunny) = 0.9, 𝐼𝐴(Sunny) = 0.05, 𝐹𝐴(Sunny) = 0.05,

𝑇𝐴(Rainy) = 0.6, 𝐼𝐴(Rainy) = 0.3, 𝐹𝐴(Rainy) = 0.1,

𝑇𝐴(Cloudy) = 0.4, 𝐼𝐴(Cloudy) = 0.4, 𝐹𝐴(Cloudy) = 0.2.

• Sunny: High certainty (90
• Rainy: Moderate likelihood of rain, with significant uncertainty.
• Cloudy: Partial truth, indeterminacy, and falsity, reflecting ambiguity.
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2. Medical Diagnosis (cf. [7, 13, 14, 29, 64]): Let 𝑋 = {Disease 1,Disease 2,Disease 3}, representing
possible diagnoses. Define a Neutrosophic Set 𝐴 as:

𝑇𝐴(Disease 1) = 0.8, 𝐼𝐴(Disease 1) = 0.1, 𝐹𝐴(Disease 1) = 0.1,

𝑇𝐴(Disease 2) = 0.5, 𝐼𝐴(Disease 2) = 0.3, 𝐹𝐴(Disease 2) = 0.2,

𝑇𝐴(Disease 3) = 0.2, 𝐼𝐴(Disease 3) = 0.4, 𝐹𝐴(Disease 3) = 0.4.

• Disease 1: Highly likely, with minimal indeterminacy and falsity.
• Disease 2: Moderate likelihood, higher indeterminacy.
• Disease 3: Low likelihood, dominated by indeterminacy and falsity.

3. Product Quality Assessment (cf. [30,36,66,73]): Let 𝑋 = {High Quality,Medium Quality,Low Quality}.
A Neutrosophic Set 𝐴 is defined as:

𝑇𝐴(High Quality) = 0.7, 𝐼𝐴(High Quality) = 0.2, 𝐹𝐴(High Quality) = 0.1,

𝑇𝐴(Medium Quality) = 0.5, 𝐼𝐴(Medium Quality) = 0.3, 𝐹𝐴(Medium Quality) = 0.2,

𝑇𝐴(Low Quality) = 0.3, 𝐼𝐴(Low Quality) = 0.4, 𝐹𝐴(Low Quality) = 0.3.

• High Quality: Considered mostly true with some uncertainty and minimal falsity.
• Medium Quality: Equally distributed among truth, indeterminacy, and falsity.
• Low Quality: More dominated by indeterminacy and falsity than truth.

The Plithogenic Set is known as a type of set that can generalize Neutrosophic Sets, Fuzzy Sets, and other
similar sets [?,1,3,15,19–24,28,37,49,50,58,62,63]. The definition of the Plithogenic Set is provided below.

Definition 1.3. [49, 50] Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆. A Plithogenic Set 𝑃𝑆 is defined as:

𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹)

where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the range of possible values for the attribute 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF).

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

These functions satisfy the following axioms for all 𝑎, 𝑏 ∈ 𝑃𝑣:

1. Reflexivity of Contradiction Function:
𝑝𝐶𝐹 (𝑎, 𝑎) = 0

2. Symmetry of Contradiction Function:

𝑝𝐶𝐹 (𝑎, 𝑏) = 𝑝𝐶𝐹 (𝑏, 𝑎)
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1.2 Neutrosophic Duplet

A Neutrosophic Duplet is defined as a pair ⟨𝑎, neut(𝑎)⟩ within a set, where 𝑎 represents an element of the set
and neut(𝑎) denotes the neutrosophic neutral element associated with 𝑎. The pair satisfies specific conditions
related to neutrality and non-inversibility, as described in the literature [31, 32, 47, 60, 65, 72]. The formal
definition is provided below.

Definition 1.4 (Neutrosophic Duplet). [48] Let U be a universe of discourse, and 𝐴 ⊆ U be a non-empty set
endowed with a binary operation ∗. A pair ⟨𝑎, neut(𝑎)⟩, where 𝑎, neut(𝑎) ∈ 𝐴, is called a Neutrosophic Duplet
if the following conditions hold:

1. neut(𝑎) is distinct from the unit element of 𝐴 with respect to ∗ (if a unit element exists).

2. The operation satisfies:
𝑎 ∗ neut(𝑎) = neut(𝑎) ∗ 𝑎 = 𝑎.

3. There does not exist anti(𝑎) ∈ 𝐴 such that:

𝑎 ∗ anti(𝑎) = anti(𝑎) ∗ 𝑎 = neut(𝑎).

Example 1.5 (Example of Neutrosophic Duplets in Z8). Consider Z8 = {0, 1, 2, . . . , 7} with the binary
operation ∗ defined as regular multiplication modulo 8. The unit element with respect to ∗ is 1. The following
are Neutrosophic Duplets in Z8:

⟨2, 5⟩, ⟨4, 3⟩, ⟨4, 5⟩, ⟨4, 7⟩, ⟨6, 5⟩.

For example:

• 2 ∗ 5 = 5 ∗ 2 = 10 mod 8 = 2, so neut(2) = 5 ≠ 1.

• There is no anti(2) ∈ Z8 because 2 ∗ 𝑥 = 5 mod 8 is unsolvable as it implies 2𝑥 = 5 + 8𝑘 , which
contradicts even number = odd number.

1.3 Neutrosophic Triplet

A NeutroStructure generalizes classical structures by incorporating degrees of truth (𝑇), indeterminacy (𝐼), and
falsehood (𝐹). It is defined as follows [6, 32, 34, 35, 39, 40, 51, 52, 54, 55].

Definition 1.6 (Neutrosophic Triplet). [52] A Neutrosophic Triplet represents a conceptual generalization of
classical structures, incorporating degrees of truth (𝑇), indeterminacy (𝐼), and falsehood (𝐹). Formally, for a
given statement or mathematical object 𝐴 in a space 𝑆:

⟨𝐴,Neutro𝐴,Anti𝐴⟩ =
〈
𝐴(1, 0, 0), 𝐴(𝑇, 𝐼, 𝐹), 𝐴(0, 0, 1)

〉
,

where:

• 𝐴(1, 0, 0) (Classical Component): 𝐴 is 100% true (𝑇 = 1), 0% indeterminate (𝐼 = 0), and 0% false
(𝐹 = 0).

• 𝐴(𝑇, 𝐼, 𝐹) (Neutro Component): 𝐴 is 𝑇% true, 𝐼% indeterminate, and 𝐹% false, such that (𝑇, 𝐼, 𝐹) ∉
{(1, 0, 0), (0, 0, 1)}.

• 𝐴(0, 0, 1) (Anti Component): 𝐴 is 100% false (𝐹 = 1), 0% true (𝑇 = 0), and 0% indeterminate (𝐼 = 0).

Examples:

1. Theorem Triplet: ⟨Theorem,NeutroTheorem,AntiTheorem⟩:
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• A classical theorem holds universally true (𝑇 = 1, 𝐼 = 0, 𝐹 = 0).
• A NeutroTheorem is partially true, indeterminate, or false (𝑇, 𝐼, 𝐹 ≠ 1, 0, 0).
• An AntiTheorem is universally false (𝑇 = 0, 𝐼 = 0, 𝐹 = 1).

2. Definition Triplet: ⟨Definition,NeutroDefinition,AntiDefinition⟩:

• A classical definition is universally true.
• A NeutroDefinition applies with partial uncertainty.
• An AntiDefinition is universally invalid or false.

Example 1.7 (Examples of Neutrosophic Triplets). Several specific examples of Neutrosophic Triplets are
provided below.

1. Weather Prediction: Let 𝐴 be the statement ”It will rain tomorrow.”

• Classical Component: 𝐴(1, 0, 0) means the prediction is absolutely certain to be true (e.g., 𝑇 = 1, 𝐼 =

0, 𝐹 = 0).

• Neutro Component: 𝐴(𝑇, 𝐼, 𝐹) = (0.6, 0.3, 0.1) means there is 60% certainty it will rain, 30% uncer-
tainty, and 10% certainty it will not rain.

• Anti Component: 𝐴(0, 0, 1) means the prediction is absolutely false (e.g., 𝐹 = 1, 𝑇 = 0, 𝐼 = 0).

2. Quality Control: Consider 𝐴 as ”This product meets quality standards.”

• Classical Component: 𝐴(1, 0, 0) means the product unquestionably meets quality standards.

• Neutro Component: 𝐴(𝑇, 𝐼, 𝐹) = (0.8, 0.1, 0.1) means there is 80% certainty the product meets the
standards, with 10% uncertainty and 10% certainty it does not meet them.

• Anti Component: 𝐴(0, 0, 1) means the product categorically does not meet quality standards.

3. Medical Diagnosis: Let 𝐴 be ”The patient has a specific disease.”

• Classical Component: 𝐴(1, 0, 0) means the diagnosis is definitively correct.

• Neutro Component: 𝐴(𝑇, 𝐼, 𝐹) = (0.7, 0.2, 0.1) indicates a 70% likelihood of the disease, 20% uncer-
tainty, and 10% likelihood of not having the disease.

• Anti Component: 𝐴(0, 0, 1) means the diagnosis is definitively wrong.

2 Results of This Paper

This section highlights the main contributions of this paper.

2.1 Plithogenic Duplet

The Plithogenic Duplet extends the Neutrosophic Duplet by utilizing the Plithogenic Set framework. The
definitions and related concepts are detailed below.

Definition 2.1 (Plithogenic Duplet). Let U be a universe of discourse, and 𝐴 ⊆ U be a non-empty set endowed
with a binary operation ∗. A pair ⟨𝑎, plitho(𝑎)⟩, where 𝑎, plitho(𝑎) ∈ 𝐴, is called a Plithogenic Duplet if the
following conditions hold:
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1. Plithogenic Degree of Appurtenance Function (DAF): plitho(𝑎) represents a value determined by the
DAF:

𝑝𝑑𝑓 (𝑎, 𝑣𝑎) = (𝑇𝑎, 𝐼𝑎, 𝐹𝑎),

where 𝑣𝑎 ∈ 𝑃𝑣 (attribute value) and 𝑇𝑎, 𝐼𝑎, 𝐹𝑎 ∈ [0, 1] represent the degrees of truth, indeterminacy,
and falsehood, respectively.

2. Neutrality Condition: The operation ∗ satisfies:

𝑎 ∗ plitho(𝑎) = plitho(𝑎) ∗ 𝑎 = 𝑎,

ensuring plitho(𝑎) acts as a plithogenic neutral element with respect to 𝑎.

3. Non-Inversibility Condition: There does not exist anti(𝑎) ∈ 𝐴 such that:

𝑎 ∗ anti(𝑎) = anti(𝑎) ∗ 𝑎 = plitho(𝑎).

4. Degree of Contradiction Function (DCF): A DCF 𝑝𝐶𝐹 applies to attribute values 𝑣𝑎, 𝑣𝑏 ∈ 𝑃𝑣, satisfying:

𝑝𝐶𝐹 (𝑣𝑎, 𝑣𝑎) = 0, 𝑝𝐶𝐹 (𝑣𝑎, 𝑣𝑏) = 𝑝𝐶𝐹 (𝑣𝑏, 𝑣𝑎).

Example 2.2 (Example of a Plithogenic Duplet). Let U = {𝑥, 𝑦, 𝑧} and 𝐴 = {𝑥, 𝑦} with the operation ∗ defined
as follows:

𝑥 ∗ 𝑦 = 𝑥, 𝑦 ∗ 𝑥 = 𝑦, 𝑥 ∗ 𝑥 = 𝑥, 𝑦 ∗ 𝑦 = 𝑦.

Define a Plithogenic Set:
𝑃𝑆 = (𝐴, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹),

where:

• 𝑣 is the attribute ”weight” with possible values 𝑃𝑣 = {𝑣1, 𝑣2},

• 𝑝𝑑𝑓 (𝑥, 𝑣1) = (0.8, 0.1, 0.1), 𝑝𝑑𝑓 (𝑦, 𝑣2) = (0.7, 0.2, 0.1),

• 𝑝𝐶𝐹 (𝑣1, 𝑣1) = 0, 𝑝𝐶𝐹 (𝑣1, 𝑣2) = 0.3.

Here, the Plithogenic Duplets are:

⟨𝑥, plitho(𝑥)⟩ = ⟨𝑥, 𝑣1⟩, ⟨𝑦, plitho(𝑦)⟩ = ⟨𝑦, 𝑣2⟩,

with the following properties:

1. Neutrality: 𝑥 ∗ plitho(𝑥) = 𝑥, 𝑦 ∗ plitho(𝑦) = 𝑦.

2. Non-inversibility: There is no anti(𝑥) or anti(𝑦) in 𝐴.

Theorem 2.3. The Plithogenic Duplet generalizes the Neutrosophic Duplet by incorporating the Plithogenic
Set framework, allowing for attribute-based degrees of truth, indeterminacy, and falsehood through a Degree
of Appurtenance Function (DAF) and a Degree of Contradiction Function (DCF).

Proof. Let U be a universe of discourse, 𝐴 ⊆ U a non-empty set, and ∗ a binary operation defined on 𝐴.
Consider the definitions of Neutrosophic Duplet and Plithogenic Duplet:

From Definition 1.4, a Neutrosophic Duplet ⟨𝑎, neut(𝑎)⟩ satisfies:

1. neut(𝑎) is distinct from the unit element (if it exists).

2. The operation satisfies:
𝑎 ∗ neut(𝑎) = neut(𝑎) ∗ 𝑎 = 𝑎.
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3. No anti(𝑎) exists such that:
𝑎 ∗ anti(𝑎) = anti(𝑎) ∗ 𝑎 = neut(𝑎).

From Definition 2.1, a Plithogenic Duplet ⟨𝑎, plitho(𝑎)⟩ satisfies the following conditions:

1. The value plitho(𝑎) is determined by the Plithogenic Degree of Appurtenance Function (DAF):

𝑝𝑑𝑓 (𝑎, 𝑣𝑎) = (𝑇𝑎, 𝐼𝑎, 𝐹𝑎),

where 𝑣𝑎 ∈ 𝑃𝑣 and 𝑇𝑎, 𝐼𝑎, 𝐹𝑎 ∈ [0, 1].

2. The neutrality condition:
𝑎 ∗ plitho(𝑎) = plitho(𝑎) ∗ 𝑎 = 𝑎.

3. The non-inversibility condition:

�anti(𝑎) ∈ 𝐴 such that 𝑎 ∗ anti(𝑎) = anti(𝑎) ∗ 𝑎 = plitho(𝑎).

4. The Degree of Contradiction Function (DCF):

𝑝𝐶𝐹 (𝑣𝑎, 𝑣𝑎) = 0, 𝑝𝐶𝐹 (𝑣𝑎, 𝑣𝑏) = 𝑝𝐶𝐹 (𝑣𝑏, 𝑣𝑎).

The Neutrosophic Duplet is a specific case of the Plithogenic Duplet where:

1. The attribute value 𝑣𝑎 and 𝑝𝑑𝑓 (𝑎, 𝑣𝑎) = (𝑇𝑎, 𝐼𝑎, 𝐹𝑎) reduce to the fixed values:

(𝑇𝑎, 𝐼𝑎, 𝐹𝑎) = (1, 0, 0) (Classical Component).

2. No additional attributes or contradiction functions (𝑝𝐶𝐹) are defined.

3. The operation ∗ remains identical in both cases, preserving neutrality and non-inversibility conditions.

By introducing the Plithogenic Set framework, the Plithogenic Duplet allows for attribute-based customization
and a richer representation of truth, indeterminacy, and falsehood via 𝑝𝑑𝑓 and 𝑝𝐶𝐹. This subsumes the fixed
membership structure of the Neutrosophic Duplet as a special case. Therefore, the Plithogenic Duplet is a
generalization of the Neutrosophic Duplet. □

2.2 Plithogenic Triplet

The Plithogenic Triplet extends the Neutrosophic Triplet by incorporating the concepts of attributes, their
values, and the Degree of Appurtenance and Contradiction Functions, fundamental to Plithogenic Sets. The
formal definition is as follows:

Definition 2.4 (Plithogenic Triplet). Let 𝑆 be a universal set, and 𝑃 ⊆ 𝑆 a Plithogenic Set defined by
𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹), where:

• 𝑣 is an attribute.

• 𝑃𝑣 is the set of possible values of 𝑣.

• 𝑝𝑑𝑓 : 𝑃 × 𝑃𝑣 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF).

• 𝑝𝐶𝐹 : 𝑃𝑣 × 𝑃𝑣 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF).

A Plithogenic Triplet for an element 𝑥 ∈ 𝑃 with respect to an attribute 𝑣 is defined as:

⟨𝑥, Plitho𝑥,Anti𝑥⟩ =
〈
𝑥(1, 0, 0), 𝑥(𝑝𝑑𝑓 , 𝑝𝐶𝐹), 𝑥(0, 0, 1)

〉
,

where:
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• 𝑥(1, 0, 0): Represents the classical membership of 𝑥, being fully true (𝑝𝑑𝑓 = 1, 𝑝𝐶𝐹 = 0).

• 𝑥(𝑝𝑑𝑓 , 𝑝𝐶𝐹): Represents the Plithogenic membership of 𝑥, where the Degree of Appurtenance Function
and Degree of Contradiction Function vary between 0 and 1.

• 𝑥(0, 0, 1): Represents the anti-membership of 𝑥, being fully false (𝑝𝑑𝑓 = 0, 𝑝𝐶𝐹 = 1).

Example 2.5 (Plithogenic Triplet Example). Consider a universal set 𝑆 = {𝐴, 𝐵, 𝐶} representing three different
projects. Define an attribute 𝑣 = Difficulty Level with possible values 𝑃𝑣 = {Low,Medium,High}. Let the
Degree of Appurtenance Function 𝑝𝑑𝑓 and the Degree of Contradiction Function 𝑝𝐶𝐹 for each project 𝑥 ∈ 𝑆

be given as follows:

𝑝𝑑𝑓 (𝐴,Low) = 0.8, 𝑝𝑑𝑓 (𝐴,Medium) = 0.15, 𝑝𝑑𝑓 (𝐴,High) = 0.05,

𝑝𝐶𝐹 (Low,High) = 0.7, 𝑝𝐶𝐹 (Low,Medium) = 0.3.

Then, the Plithogenic Triplet for project 𝐴 is:

⟨𝐴, Plitho𝐴,Anti𝐴⟩ =
〈
𝐴(1, 0, 0), 𝐴(𝑝𝑑𝑓 , 𝑝𝐶𝐹), 𝐴(0, 0, 1)

〉
,

where 𝐴(𝑝𝑑𝑓 , 𝑝𝐶𝐹) reflects the varying degrees of appurtenance and contradiction for 𝐴 with respect to the
attribute Difficulty Level.

Theorem 2.6. The Plithogenic Triplet generalizes the Neutrosophic Triplet by utilizing the Plithogenic Set
framework, allowing for attribute-based customization through the Degree of Appurtenance Function (DAF)
and Degree of Contradiction Function (DCF).

Proof. Let 𝑆 be a universal set, 𝑃 ⊆ 𝑆 a Plithogenic Set, and 𝑃𝑆 = (𝑃, 𝑣, 𝑃𝑣, 𝑝𝑑𝑓 , 𝑝𝐶𝐹) as defined in
Definition 2.4. Consider the definitions of Neutrosophic Triplet and Plithogenic Triplet:

From Definition 1.6, a Neutrosophic Triplet ⟨𝐴,Neutro𝐴,Anti𝐴⟩ satisfies:

1. 𝐴(1, 0, 0): Represents the classical component, being fully true (𝑇 = 1, 𝐼 = 0, 𝐹 = 0).

2. 𝐴(𝑇, 𝐼, 𝐹): Represents the neutrosophic component, where 𝑇, 𝐼, 𝐹 can take values in [0, 1] such that
𝑇 + 𝐼 + 𝐹 ≤ 3.

3. 𝐴(0, 0, 1): Represents the anti-component, being fully false (𝑇 = 0, 𝐼 = 0, 𝐹 = 1).

From Definition 2.4, a Plithogenic Triplet ⟨𝑥, Plitho𝑥,Anti𝑥⟩ satisfies:

1. 𝑥(1, 0, 0): Represents the classical membership of 𝑥, being fully true (𝑝𝑑𝑓 = 1, 𝑝𝐶𝐹 = 0).

2. 𝑥(𝑝𝑑𝑓 , 𝑝𝐶𝐹): Represents the plithogenic membership of 𝑥, where:

𝑝𝑑𝑓 (𝑥, 𝑣𝑥) = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥), 𝑝𝐶𝐹 (𝑣𝑥 , 𝑣𝑦),

and 𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥 ∈ [0, 1], 𝑝𝐶𝐹 (𝑣𝑥 , 𝑣𝑥) = 0, 𝑝𝐶𝐹 (𝑣𝑥 , 𝑣𝑦) = 𝑝𝐶𝐹 (𝑣𝑦 , 𝑣𝑥).

3. 𝑥(0, 0, 1): Represents the anti-membership of 𝑥, being fully false (𝑝𝑑𝑓 = 0, 𝑝𝐶𝐹 = 1).

The Neutrosophic Triplet is a specific case of the Plithogenic Triplet where:

1. The attribute 𝑣 and its possible values 𝑃𝑣 are fixed and not explicitly considered.

2. The Degree of Appurtenance Function (DAF) simplifies to:

𝑝𝑑𝑓 (𝑥, 𝑣𝑥) = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥),

where 𝑣𝑥 is implicit, and the values 𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥 satisfy the same conditions as in the Neutrosophic Triplet.

3. The Degree of Contradiction Function (DCF) is not used, effectively setting 𝑝𝐶𝐹 (𝑣𝑥 , 𝑣𝑦) = 0 for all
𝑣𝑥 , 𝑣𝑦 .

The Plithogenic Triplet incorporates attributes, their possible values, and the Degree of Contradiction Function
(DCF), thereby extending the flexibility and expressiveness of the Neutrosophic Triplet. Consequently, the
Neutrosophic Triplet is a special case of the Plithogenic Triplet. □

165



Funding

This study did not receive any financial or external support from organizations or individuals.

Acknowledgments

We extend our sincere gratitude to everyone who provided insights, inspiration, and assistance throughout this
research. We particularly thank our readers for their interest and acknowledge the authors of the cited works
for laying the foundation that made our study possible. We also appreciate the support from individuals and
institutions that provided the resources and infrastructure needed to produce and share this paper. Finally, we
are grateful to all those who supported us in various ways during this project.

Data Availability

This research is purely theoretical, involving no data collection or analysis. We encourage future researchers
to pursue empirical investigations to further develop and validate the concepts introduced here.

Ethical Approval

As this research is entirely theoretical in nature and does not involve human participants or animal subjects, no
ethical approval is required.

Conflicts of Interest

The authors confirm that there are no conflicts of interest related to the research or its publication.

Disclaimer

This work presents theoretical concepts that have not yet undergone practical testing or validation. Future
researchers are encouraged to apply and assess these ideas in empirical contexts. While every effort has been
made to ensure accuracy and appropriate referencing, unintentional errors or omissions may still exist. Readers
are advised to verify referenced materials on their own. The views and conclusions expressed here are the
authors’ own and do not necessarily reflect those of their affiliated organizations.

References

[1] Mohamed Abdel-Basset, Mohamed El-Hoseny, Abduallah Gamal, and Florentin Smarandache. A novel model for evaluation hospital
medical care systems based on plithogenic sets. Artificial intelligence in medicine, 100:101710, 2019.

[2] Mohamed Abdel-Basset, Mai Mohamed, Mohamed Elhoseny, Le Hoang Son, Francisco Chiclana, and Abdel Nasser H. Zaied.
Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artificial intelligence in medicine,
101:101735, 2019.

[3] Walid Abdelfattah. Variables selection procedure for the dea overall efficiency assessment based plithogenic sets and mathematical
programming. International Journal of Scientific Research and Management, 2022.

[4] Muhammad Akram and Anam Luqman. Bipolar neutrosophic hypergraphs with applications. J. Intell. Fuzzy Syst., 33:1699–1713,
2017.

[5] Muhammad Akram, Shumaiza, and Florentin Smarandache. Decision-making with bipolar neutrosophic topsis and bipolar neutro-
sophic electre-i. Axioms, 7:33, 2018.

[6] Mumtaz Ali, Florentin Smarandache, and Mohsin Khan. Study on the development of neutrosophic triplet ring and neutrosophic
triplet field. Mathematics, 6(4):46, 2018.

[7] Shawkat Alkhazaleh and Ayman A Hazaymeh. N-valued refined neutrosophic soft sets and their applications in decision making
problems and medical diagnosis. Journal of Artificial Intelligence and Soft Computing Research, 8(1):79–86, 2018.

[8] Krassimir Atanassov. Intuitionistic fuzzy sets. International journal bioautomation, 20:1, 2016.

[9] Krassimir T Atanassov. On intuitionistic fuzzy sets theory, volume 283. Springer, 2012.

[10] Krassimir T Atanassov and Krassimir T Atanassov. Intuitionistic fuzzy sets. Springer, 1999.

[11] Krassimir T Atanassov and G Gargov. Intuitionistic fuzzy logics. Springer, 2017.

166



[12] Malik Shahzad Kaleem Awan and Mian Muhammad Awais. Predicting weather events using fuzzy rule based system. Applied Soft
Computing, 11(1):56–63, 2011.

[13] Quang-Thinh Bui, My-Phuong Ngo, Vaclav Snasel, Witold Pedrycz, and Bay Vo. The sequence of neutrosophic soft sets and a
decision-making problem in medical diagnosis. International Journal of Fuzzy Systems, 24:2036 – 2053, 2022.

[14] Wen-Hua Cui and Jun Ye. Logarithmic similarity measure of dynamic neutrosophic cubic sets and its application in medical
diagnosis. Computers in Industry, 111:198–206, 2019.

[15] Takaaki Fujita. Plithogenic superhypersoft set and plithogenic forest superhypersoft set.

[16] Takaaki Fujita. Review of plithogenic directed, mixed, bidirected, and pangene offgraph. Advancing Uncertain Combinatorics
through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, page 120.

[17] Takaaki Fujita. Some types of hyperneutrosophic set (4): Cubic, trapezoidal, q-rung orthopair, overset, underset, and offset.

[18] Takaaki Fujita. A review of fuzzy and neutrosophic offsets: Connections to some set concepts and normalization function. Advancing
Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond,
page 74, 2024.

[19] Takaaki Fujita. Superhypergraph neural networks and plithogenic graph neural networks: Theoretical foundations. arXiv preprint
arXiv:2412.01176, 2024.

[20] Takaaki Fujita. Survey of intersection graphs, fuzzy graphs and neutrosophic graphs. Advancing Uncertain Combinatorics through
Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, page 114, 2024.

[21] Takaaki Fujita. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutro-
sophic, Soft, Rough, and Beyond. Biblio Publishing, 2025.

[22] Takaaki Fujita. Exploring concepts of hyperfuzzy, hyperneutrosophic, and hyperplithogenic sets ii. ResearchGate, 2025.

[23] Takaaki Fujita. Short note of extended hyperplithogenic sets, 2025. Preprint.

[24] Takaaki Fujita. Short survey on the hierarchical uncertainty of fuzzy, neutrosophic, and plithogenic sets, 2025. Preprint.

[25] Takaaki Fujita. Some type of hyperneutrosophic set: Bipolar, pythagorean, double-valued, interval-valued set, 2025. Preprint.

[26] Takaaki Fujita. Some types of hyperneutrosophic set (2): Complex, single-valued triangular, fermatean, and linguistic sets. Preprint,
2025.

[27] Takaaki Fujita. Some types of hyperneutrosophic set (3): Dynamic, quadripartitioned, pentapartitioned, heptapartitioned, m-polar.
2025.

[28] Takaaki Fujita and Florentin Smarandache. A review of the hierarchy of plithogenic, neutrosophic, and fuzzy graphs: Survey
and applications. In Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy,
Neutrosophic, Soft, Rough, and Beyond (Second Volume). Biblio Publishing, 2024.

[29] Masooma Raza Hashmi, Muhammad Riaz, and Florentin Smarandache. m-polar neutrosophic topology with applications to multi-
criteria decision-making in medical diagnosis and clustering analysis. International Journal of Fuzzy Systems, 22:273–292, 2020.

[30] Maissam Jdid, Florentin Smarandache, and Said Broumi. Inspection assignment form for product quality control using neutrosophic
logic. Infinite Study, 2023.

[31] Ilanthenral Kandasamy and Florentin Smarandache. Algebraic structure of neutrosophic duplets in neutrosophic rings. 2018.

[32] Hamiyet Merkepci and Katy D. Ahmad. On the conditions of imperfect neutrosophic duplets and imperfect neutrosophic triplets.
Galoitica: Journal of Mathematical Structures and Applications, 2022.

[33] Mai Mohamed and Asmaa Elsayed. A novel multi-criteria decision making approach based on bipolar neutrosophic set for evaluating
financial markets in egypt. Multicriteria Algorithms with Applications, 2024.

[34] Amirhossein Nafei, S Pourmohammad Azizi, Seyed Ahmad Edalatpanah, and Chien-Yi Huang. Smart topsis: a neural network-
driven topsis with neutrosophic triplets for green supplier selection in sustainable manufacturing. Expert systems with applications,
255:124744, 2024.

[35] V Nayagam et al. A total ordering on n-valued refined neutrosophic sets using dictionary ranking based on total ordering on n-valued
neutrosophic tuplets. Neutrosophic Sets and Systems, 58(1):23, 2023.

[36] Nathalie Perrot, Irina Ioannou, Irène Allais, Corinne Curt, Joseph Hossenlopp, and Gilles Trystram. Fuzzy concepts applied to food
product quality control: A review. Fuzzy sets and systems, 157(9):1145–1154, 2006.

[37] Shio Gai Quek, Ganeshsree Selvachandran, Florentin Smarandache, J. Felicita Vimala, Sn Hoang Le, Quang-Thinh Bui, and
Vassilis C. Gerogiannis. Entropy measures for plithogenic sets and applications in multi-attribute decision making. Mathematics,
2020.

[38] Denis Riordan and Bjarne K Hansen. A fuzzy case-based system for weather prediction. Engineering Intelligent Systems for
Electrical Engineering and Communications, 10(3):139–146, 2002.
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Chapter 14
SuperRough Set and SuperVague Set

Takaaki Fujita 1 ∗
1 Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

Abstract

Concepts such as Fuzzy Sets [10, 25], Neutrosophic Sets [19–22], Vague Sets [1, 9, 11], Rough Sets [12, 18],
and Plithogenic Sets [24] have been extensively studied to address uncertainty, with diverse applications across
numerous fields.

In this paper, we introduce and investigate the concepts of SuperVague Set and SuperRough Set. These are
generalized forms of Vague Sets and Rough Sets, respectively. Furthermore, we prove that the SuperRough Set
can be further generalized to the SuperHyperRough Set. This work serves as a reconsideration and extension
of studies such as those in [7, 23].

Keywords: SuperVague Set, SuperRough Set, Rough Set, Vague Set, Fuzzy Set

1 Preliminaries and Definitions

This section introduces the fundamental concepts and definitions necessary for the discussions and analyses
presented in this paper.

1.1 SuperFuzzy Set

A Fuzzy Set assigns a membership degree in [0, 1] to each element of a non-empty universe, representing
uncertainty [25,28,29]. A SuperFuzzy Set assigns a membership degree in [0, 1] to each subset of a non-empty
universe, extending Fuzzy Sets [23].

Definition 1.1 (Fuzzy set). [25–33] A fuzzy set 𝜏 in a non-empty universe 𝑌 is a mapping 𝜏 : 𝑌 → [0, 1]. A
fuzzy relation on 𝑌 is a fuzzy subset 𝛿 in 𝑌 ×𝑌 . If 𝜏 is a fuzzy set in 𝑌 and 𝛿 is a fuzzy relation on 𝑌 , then 𝛿 is
called a fuzzy relation on 𝜏 if

𝛿(𝑦, 𝑧) ≤ min{𝜏(𝑦), 𝜏(𝑧)} for all 𝑦, 𝑧 ∈ 𝑌 .

Example 1.2. Consider a fuzzy set representing ”Tall People” in a population 𝑌 = {𝑦1, 𝑦2, 𝑦3}, where
𝑦1, 𝑦2, 𝑦3 represent individuals. The membership function 𝜏 : 𝑌 → [0, 1] assigns a degree of membership to
each individual based on their height:

𝜏(𝑦1) = 0.9, 𝜏(𝑦2) = 0.5, 𝜏(𝑦3) = 0.2.

This means 𝑦1 is highly likely to be considered tall, 𝑦2 moderately so, and 𝑦3 unlikely.

Definition 1.3. [23] A Superfuzzy Set is defined as a function:

𝜏 : 𝑃(𝐴) → [0, 1],

where 𝑃(𝐴) is the powerset of a non-empty set 𝐴, and 𝜏(𝑆) for 𝑆 ∈ 𝑃(𝐴) represents the degree of membership
(truth) of the subset 𝑆 in 𝐴.

Example 1.4. Consider a SuperFuzzy Set representing ”Preferred Groups of Foods” in a universe 𝐴 =

{Fruits, Vegetables, Snacks}. Each subset 𝑆 ∈ 𝑃(𝐴) is assigned a membership degree 𝜏(𝑆) based on dietary
preferences:

𝜏({Fruits}) = 0.8, 𝜏({Vegetables}) = 0.6, 𝜏({Fruits, Vegetables}) = 0.9, 𝜏({Snacks}) = 0.3.

Here, the subset {Fruits, Vegetables} has the highest preference (0.9), while {Snacks} has the lowest (0.3).
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2 Result of this Paper

This section presents the results of this paper.

2.1 SuperVague Set

The SuperVague Set is a concept that generalizes the Vague Set. Its definition is provided below.

Definition 2.1 (Vague Set). [2,9] Let 𝑈 be a universe of discourse, defined as 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}. A vague
set 𝐴 in 𝑈 is characterized by two functions:

𝑡𝐴 : 𝑈 → [0, 1] and 𝑓𝐴 : 𝑈 → [0, 1],

where:

• 𝑡𝐴(𝑢𝑖) is the truth-membership function, providing a lower bound on the membership degree of 𝑢𝑖 based
on supporting evidence for 𝑢𝑖 ∈ 𝐴.

• 𝑓𝐴(𝑢𝑖) is the false-membership function, offering a lower bound on the negation of 𝑢𝑖 based on evidence
against 𝑢𝑖 ∈ 𝐴.

These functions satisfy the constraint:

𝑡𝐴(𝑢𝑖) + 𝑓𝐴(𝑢𝑖) ≤ 1, for all 𝑢𝑖 ∈ 𝑈.

The degree of membership of 𝑢𝑖 in the vague set 𝐴 is thus constrained within a subinterval of [0, 1] defined by:

𝑡𝐴(𝑢𝑖) ≤ 𝜇𝐴(𝑢𝑖) ≤ 1 − 𝑓𝐴(𝑢𝑖),

where 𝜇𝐴(𝑢𝑖) represents the true membership grade of 𝑢𝑖 in 𝐴. The interval [𝑡𝐴(𝑢𝑖), 1− 𝑓𝐴(𝑢𝑖)] indicates that,
although the exact membership degree may be uncertain, it is bound within this range.

If 𝑈 is continuous, a vague set 𝐴 can be represented as:

𝐴 =

∫
𝑈

[𝑡𝐴(𝑢), 1 − 𝑓𝐴(𝑢)]/𝑢.

In the case of a discrete universe 𝑈, 𝐴 is expressed as:

𝐴 =

𝑛∑︁
𝑖=1

[𝑡𝐴(𝑢𝑖), 1 − 𝑓𝐴(𝑢𝑖)]/𝑢𝑖 .

Example 2.2 (Vague Set in Project Management). Project Management involves planning, organizing, and
controlling resources, tasks, and timelines to achieve specific objectives efficiently and effectively (cf. [4–6]).
Consider a project management scenario where 𝑈 represents a set of tasks to be completed:

𝑈 = {Task 1, Task 2, Task 3, Task 4}.

Let 𝐴 be a vague set representing tasks that are likely to be completed on time. For each task 𝑢𝑖 ∈ 𝑈, we
define the truth-membership function 𝑡𝐴(𝑢𝑖) and the false-membership function 𝑓𝐴(𝑢𝑖) based on evidence from
project progress reports, team efficiency, and resource availability.

For instance:
𝑡𝐴(Task 1) = 0.8, 𝑓𝐴(Task 1) = 0.1,

indicating that there is 80% evidence supporting the timely completion of Task 1 and 10% evidence against it.
Thus, the true membership grade 𝜇𝐴(Task 1) lies in the interval:

[0.8, 0.9] .
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Similarly, for the other tasks:

𝑡𝐴(Task 2) = 0.5, 𝑓𝐴(Task 2) = 0.3 =⇒ 𝜇𝐴(Task 2) ∈ [0.5, 0.7],

𝑡𝐴(Task 3) = 0.7, 𝑓𝐴(Task 3) = 0.2 =⇒ 𝜇𝐴(Task 3) ∈ [0.7, 0.8],
𝑡𝐴(Task 4) = 0.4, 𝑓𝐴(Task 4) = 0.5 =⇒ 𝜇𝐴(Task 4) ∈ [0.4, 0.5] .

The vague set 𝐴 summarizing tasks likely to be completed on time is represented as:

𝐴 = [0.8, 0.9]/Task 1 + [0.5, 0.7]/Task 2 + [0.7, 0.8]/Task 3 + [0.4, 0.5]/Task 4.

This representation allows project managers to model uncertainty in task completion and make informed
decisions about resource allocation and risk mitigation.

Definition 2.3 (SuperVague Set). Let 𝑋 be a non-empty set, and let 𝑃(𝑋) be its power set. A SuperVague Set
on 𝑋 is a mapping

𝐴∗ : 𝑃(𝑋) −→ [0, 1] × [0, 1]
such that for every subset 𝑆 ∈ 𝑃(𝑋), we have

𝐴∗ (𝑆) =
(
𝑇𝐴(𝑆), 𝐹𝐴(𝑆)

)
,

where 𝑇𝐴(𝑆) and 𝐹𝐴(𝑆) are in [0, 1] and satisfy

𝑇𝐴(𝑆) + 𝐹𝐴(𝑆) ≤ 1.

Here,

• 𝑇𝐴(𝑆) is interpreted as the truth-membership degree (or lower bound of membership) of the subset 𝑆.

• 𝐹𝐴(𝑆) is the false-membership degree (or lower bound of non-membership) of the subset 𝑆.

Thus the “actual” membership value 𝜇𝐴(𝑆) of each subset 𝑆 must lie in the interval
[
𝑇𝐴(𝑆), 1 − 𝐹𝐴(𝑆)

]
.

Example 2.4. Let
𝑋 = { 𝑎, 𝑏, 𝑐}.

A SuperVague Set (Definition 2.3 in the paper) assigns an interval to each subset 𝑆 ⊆ 𝑋 . Concretely, define a
SuperVague Set 𝐴∗ by specifying

𝐴∗ (𝑆) =
(
𝑇𝐴(𝑆), 𝐹𝐴(𝑆)

)
,

with 𝑇𝐴(𝑆) + 𝐹𝐴(𝑆) ≤ 1. Let us illustrate this with a simplified table. We only show the assignment for a few
chosen subsets to keep it concise:

𝑆 𝑇𝐴(𝑆) 𝐹𝐴(𝑆)
∅ 0 0
{𝑎} 0.4 0.2
{𝑏} 0.3 0.1
{𝑎, 𝑏} 0.5 0.4
{𝑎, 𝑏, 𝑐} 1.0 0.0

(One can define all other subsets similarly.)

In words:

• For ∅, we assign (𝑇𝐴(∅), 𝐹𝐴(∅)) = (0, 0). This suggests the empty set is certainly not in 𝐴, with no
contradiction.

• For the singleton {𝑎}, we put (0.4, 0.2). This implies that {𝑎} has at least a 0.4 truth-degree and at least
a 0.2 false-degree, so the actual membership value of {𝑎} in 𝐴 must lie in the interval [0.4, 0.8].
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• Similarly, {𝑏} has at least 0.3 truth-degree, 0.1 false-degree, so membership is in [0.3, 0.9].

• For {𝑎, 𝑏}, we might say (𝑇𝐴({𝑎, 𝑏}), 𝐹𝐴({𝑎, 𝑏})) = (0.5, 0.4). Thus membership is in [0.5, 0.6].

• For the entire set {𝑎, 𝑏, 𝑐}, we assign (1.0, 0.0), meaning we are fully certain that the entire set is included
in 𝐴.

Unlike a classical vague set that only assigns intervals to elements of 𝑋 (i.e. singletons), here the SuperVague
Set provides membership intervals for all subsets of 𝑋 . Restricting ourselves to singletons {𝑎}, {𝑏}, {𝑐}
recovers the usual notion of a vague set (lower and upper membership bounds for each element). Hence
this example shows how the SuperVague framework can handle uncertainty or partial knowledge across every
subset, rather than just individual points.

Theorem 2.5 (SuperVague Set generalizes Vague Set). The classical notion of a vague set (Definition ??) is a
special case of a SuperVague Set. In particular, if we consider only singletons {𝑢} ⊆ 𝑋 , then

𝑇𝐴({𝑢}) = 𝑡𝐴(𝑢), 𝐹𝐴({𝑢}) = 𝑓𝐴(𝑢),

and
𝑇𝐴({𝑢}) + 𝐹𝐴({𝑢}) ≤ 1

recovers the classical vague set condition 𝑡𝐴(𝑢) + 𝑓𝐴(𝑢) ≤ 1.

Proof. For each subset 𝑆 ⊆ 𝑋 , 𝐴∗ (𝑆) = (𝑇𝐴(𝑆), 𝐹𝐴(𝑆)) must satisfy 𝑇𝐴(𝑆) + 𝐹𝐴(𝑆) ≤ 1. In the classical
vague set, membership bounds are only assigned to single elements 𝑢𝑖 ∈ 𝑈. If we focus on singletons {𝑢},
then simply identify

𝑇𝐴({𝑢}) = 𝑡𝐴(𝑢), 𝐹𝐴({𝑢}) = 𝑓𝐴(𝑢),
with 𝑡𝐴(𝑢) + 𝑓𝐴(𝑢) ≤ 1. This precisely matches the original condition for a vague set. Hence restricting a
SuperVague Set to singleton subsets reproduces the standard vague set. □

2.2 SuperRough Set

A Rough Set approximates a subset of a universe using lower and upper bounds based on equivalence relations,
handling uncertainty [12–18].

Definition 2.6 (Rough Set). [12–18] Let 𝑋 be the universe of discourse, and let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence
relation (or an indiscernibility relation) on 𝑋 , partitioning 𝑋 into equivalence classes. For any subset 𝑈 ⊆ 𝑋 ,
the lower approximation 𝑈 and the upper approximation 𝑈 are defined as follows:

1. Lower Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 | 𝑅(𝑥) ⊆ 𝑈}

This is the set of all elements in 𝑋 that certainly belong to 𝑈 based on the equivalence classes defined by 𝑅.

2. Upper Approximation 𝑈:
𝑈 = {𝑥 ∈ 𝑋 | 𝑅(𝑥) ∩𝑈 ≠ ∅}

This set contains all elements in 𝑋 that possibly belong to 𝑈.

The pair (𝑈,𝑈) constitutes a rough set representation of 𝑈, where 𝑈 ⊆ 𝑈 ⊆ 𝑈.

Example 2.7. Let the universe of discourse be

𝑋 = { 𝑎, 𝑏, 𝑐, 𝑑}.

Define an equivalence relation 𝑅 ⊆ 𝑋 × 𝑋 by the following partition of 𝑋 into equivalence classes:

{𝑎, 𝑏}, {𝑐, 𝑑}.

Hence,
𝑅 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑐, 𝑑), (𝑑, 𝑐), (𝑑, 𝑑)}.

Suppose we have a subset
𝑈 = {𝑎, 𝑐} ⊆ 𝑋.

We wish to compute the rough set approximations 𝑈 and 𝑈 (see the Rough Set definition in the statement).
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1) Lower Approximation 𝑈.
𝑈 =

{
𝑥 ∈ 𝑋

�� 𝑅(𝑥) ⊆ 𝑈
}
.

• For 𝑥 = 𝑎, 𝑅(𝑎) = {𝑎, 𝑏}. Since {𝑎, 𝑏} ⊈ 𝑈 (because 𝑏 ∉ 𝑈), we have 𝑎 ∉ 𝑈.

• For 𝑥 = 𝑏, 𝑅(𝑏) = {𝑎, 𝑏}. Same reasoning: {𝑎, 𝑏} ⊈ 𝑈. Hence 𝑏 ∉ 𝑈.

• For 𝑥 = 𝑐, 𝑅(𝑐) = {𝑐, 𝑑}. Since {𝑐, 𝑑} ⊈ 𝑈 (because 𝑑 ∉ 𝑈), 𝑐 ∉ 𝑈.

• For 𝑥 = 𝑑, 𝑅(𝑑) = {𝑐, 𝑑}. Similarly, {𝑐, 𝑑} ⊈ 𝑈. Thus 𝑑 ∉ 𝑈.

Hence,
𝑈 = ∅.

2) Upper Approximation 𝑈.
𝑈 =

{
𝑥 ∈ 𝑋

�� 𝑅(𝑥) ∩𝑈 ≠ ∅
}
.

• For 𝑥 = 𝑎, 𝑅(𝑎) = {𝑎, 𝑏}. Since {𝑎, 𝑏} ∩ {𝑎, 𝑐} = {𝑎} ≠ ∅, 𝑎 ∈ 𝑈.

• For 𝑥 = 𝑏, 𝑅(𝑏) = {𝑎, 𝑏}. Its intersection with {𝑎, 𝑐} is {𝑎} ≠ ∅. So 𝑏 ∈ 𝑈.

• For 𝑥 = 𝑐, 𝑅(𝑐) = {𝑐, 𝑑}. Intersection with {𝑎, 𝑐} is {𝑐} ≠ ∅. Therefore 𝑐 ∈ 𝑈.

• For 𝑥 = 𝑑, 𝑅(𝑑) = {𝑐, 𝑑}. Intersection with {𝑎, 𝑐} is {𝑐} ≠ ∅. Thus 𝑑 ∈ 𝑈.

Hence,
𝑈 = { 𝑎, 𝑏, 𝑐, 𝑑}.

3) Rough Set Representation. We conclude:

(𝑈,𝑈) =
(
∅, {𝑎, 𝑏, 𝑐, 𝑑}

)
.

That is, according to the equivalence classes in 𝑅, no element is certainly in 𝑈 (hence the lower approximation
is empty), yet every element is possibly in 𝑈 (hence the upper approximation is the entire universe).

A related concept, the HyperRough Set, has been studied in recent years. Its definition and related details are
provided below [3, 7, 8].

Definition 2.8 (HyperRough Set). [7] Let 𝑋 be a non-empty finite universe, and let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be 𝑛 distinct
attributes with domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. Define 𝐽 = 𝐽1 × 𝐽2 × 𝐽𝑛. Let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence relation on
𝑋 .

A HyperRough Set over 𝑋 is a pair (𝐹, 𝐽), where 𝐹 is a mapping:

𝐹 : 𝐽 → P(𝑋),

such that for each attribute value combination 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐽, 𝐹 (𝑎) is associated with a rough set
(𝐹 (𝑎), 𝐹 (𝑎)) defined by:

𝐹 (𝑎) = {𝑥 ∈ 𝑋 | 𝑅(𝑥) ⊆ 𝐹 (𝑎)},

𝐹 (𝑎) = {𝑥 ∈ 𝑋 | 𝑅(𝑥) ∩ 𝐹 (𝑎) ≠ ∅}.

173



Example 2.9. Let the same finite universe

𝑋 = { 𝑎, 𝑏, 𝑐, 𝑑}

and the same equivalence relation

𝑅 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑐, 𝑑), (𝑑, 𝑐), (𝑑, 𝑑)}

as before. Suppose we have two attributes: 𝑇1 = Color and 𝑇2 = Shape, with domains:

𝐽1 = {Red, Green}, 𝐽2 = {Circle, Square}.

Define
𝐽 = 𝐽1 × 𝐽2 = {(Red, Circle), (Red, Square), (Green, Circle), (Green, Square)}.

A HyperRough Set is specified by a mapping

𝐹 : 𝐽 −→ P(𝑋),

and for each 𝑎 ∈ 𝐽, we interpret 𝐹 (𝑎) in terms of a rough set
(
𝐹 (𝑎), 𝐹 (𝑎)

)
.

1) Defining the Mapping 𝐹. Let us define 𝐹 for each attribute combination in 𝐽. For instance:

• 𝐹 (Red, Circle) = {𝑎, 𝑏}.

• 𝐹 (Red, Square) = {𝑏}.

• 𝐹 (Green, Circle) = {𝑏, 𝑐}.

• 𝐹 (Green, Square) = {𝑐, 𝑑}.

(We choose these subsets arbitrarily just to illustrate the concept.)

2) Computing Rough Sets 𝐹 (𝑎) and 𝐹 (𝑎). For each 𝑎 = (𝑎1, 𝑎2) ∈ 𝐽:

𝐹 (𝑎) = { 𝑥 ∈ 𝑋 | 𝑅(𝑥) ⊆ 𝐹 (𝑎)}, 𝐹 (𝑎) = { 𝑥 ∈ 𝑋 | 𝑅(𝑥) ∩ 𝐹 (𝑎) ≠ ∅}.

We illustrate two cases:

• 𝒂 = (Red, Circle). Then 𝐹 (𝑎) = {𝑎, 𝑏}.

– 𝑅(𝑥) ⊆ {𝑎, 𝑏} only if 𝑥 ∈ {𝑎, 𝑏}. Checking equivalence classes:
∗ 𝑅(𝑎) = {𝑎, 𝑏} ⊆ 𝐹 (𝑎)
∗ 𝑅(𝑏) = {𝑎, 𝑏} ⊆ 𝐹 (𝑎)
∗ 𝑅(𝑐) = {𝑐, 𝑑} ⊈ {𝑎, 𝑏}
∗ 𝑅(𝑑) = {𝑐, 𝑑} ⊈ {𝑎, 𝑏}

Hence 𝐹 (𝑎) = {𝑎, 𝑏}.
– 𝑅(𝑥) ∩ {𝑎, 𝑏} ≠ ∅ for 𝑥 ∈ {𝑎, 𝑏}, but also note:

∗ 𝑅(𝑐) = {𝑐, 𝑑} intersects {𝑎, 𝑏} in ∅, so 𝑐 ∉ 𝐹 (𝑎).
∗ 𝑅(𝑑) = {𝑐, 𝑑} intersects {𝑎, 𝑏} in ∅, so 𝑑 ∉ 𝐹 (𝑎).

Thus 𝐹 (𝑎) = {𝑎, 𝑏}.

Therefore, the rough set for (Red, Circle) is(
𝐹 (𝑎), 𝐹 (𝑎)

)
=
(
{𝑎, 𝑏}, {𝑎, 𝑏}

)
.
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• 𝒂 = (Green, Square). Then 𝐹 (𝑎) = {𝑐, 𝑑}.

– 𝑅(𝑥) ⊆ {𝑐, 𝑑} only if 𝑥 ∈ {𝑐, 𝑑}. Checking equivalence classes:
∗ 𝑅(𝑐) = {𝑐, 𝑑} ⊆ {𝑐, 𝑑}
∗ 𝑅(𝑑) = {𝑐, 𝑑} ⊆ {𝑐, 𝑑}
∗ 𝑅(𝑎) = {𝑎, 𝑏} ⊈ {𝑐, 𝑑}
∗ 𝑅(𝑏) = {𝑎, 𝑏} ⊈ {𝑐, 𝑑}

Hence 𝐹 (𝑎) = {𝑐, 𝑑}.
– 𝑅(𝑥) ∩ {𝑐, 𝑑} ≠ ∅ for 𝑥 ∈ {𝑐, 𝑑}. Also:

∗ 𝑅(𝑎) = {𝑎, 𝑏} does not intersect {𝑐, 𝑑}, so 𝑎 ∉ 𝐹 (𝑎).
∗ 𝑅(𝑏) = {𝑎, 𝑏} likewise does not intersect {𝑐, 𝑑}, so 𝑏 ∉ 𝐹 (𝑎).

Thus 𝐹 (𝑎) = {𝑐, 𝑑}.

So for (Green, Square), the rough set is(
𝐹 (𝑎), 𝐹 (𝑎)

)
=
(
{𝑐, 𝑑}, {𝑐, 𝑑}

)
.

3) HyperRough Set Interpretation. Altogether, the HyperRough Set is given by(
𝐹, 𝐽

)
,

where 𝐹 is the mapping

(Red,Circle) ↦→ {𝑎, 𝑏}, (Red, Square) ↦→ {𝑏}, (Green,Circle) ↦→ {𝑏, 𝑐}, (Green, Square) ↦→ {𝑐, 𝑑},

and each 𝐹 (𝑎) (for 𝑎 ∈ 𝐽) is itself described by the rough set
(
𝐹 (𝑎), 𝐹 (𝑎)

)
. Thus each attribute-value

combination in 𝐽 is associated with a (possibly distinct) rough set in 𝑋 . This illustrates how HyperRough Sets
accommodate multiple attributes and map each attribute combination to a rough set representation.

The SuperRough Set is a concept that generalizes in a different way compared to the HyperRough Set. Its
definition is provided below.

Definition 2.10 (SuperRough Set). Let 𝑋 be a non-empty universe of discourse, and let

Γ = { 𝑅𝛼 | 𝛼 ∈ 𝐼}

be an indexed family of equivalence relations on 𝑋 . For any 𝑈 ⊆ 𝑋 , denote by 𝑈
𝑅𝛼

and 𝑈𝑅𝛼
the classical

lower and upper approximations of 𝑈 with respect to 𝑅𝛼, i.e.,

𝑈
𝑅𝛼

= { 𝑥 ∈ 𝑋 | 𝑅𝛼 (𝑥) ⊆ 𝑈}, 𝑈𝑅𝛼
= { 𝑥 ∈ 𝑋 | 𝑅𝛼 (𝑥) ∩𝑈 ≠ ∅}.

Define the SuperRough lower approximation 𝑈Γ and the SuperRough upper approximation 𝑈
Γ of 𝑈 with

respect to the family Γ by
𝑈Γ =

⋂
𝛼∈𝐼

𝑈
𝑅𝛼

, 𝑈
Γ

=
⋃
𝛼∈𝐼

𝑈𝑅𝛼
.

We call the pair (
𝑈Γ, 𝑈

Γ)
the SuperRough approximation of 𝑈 w.r.t. Γ.

A SuperRough Set on 𝑋 is then the mapping

RΓ : 𝑃(𝑋) −→ 𝑃(𝑋) × 𝑃(𝑋), 𝑈 ↦→
(
𝑈Γ, 𝑈

Γ
)
.
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Example 2.11. Let us consider a universe of discourse

𝑋 = { 𝑎, 𝑏, 𝑐, 𝑑}.

We introduce two equivalence relations 𝑅1 and 𝑅2 on 𝑋 . Recall that an equivalence relation partitions 𝑋 into
disjoint equivalence classes.

• Define 𝑅1 by the partition
{𝑎, 𝑏}, {𝑐, 𝑑}.

In other words,

𝑅1 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑐, 𝑑), (𝑑, 𝑐), (𝑑, 𝑑)}.

• Define 𝑅2 by the partition
{𝑎, 𝑐}, {𝑏, 𝑑}.

Hence,
𝑅2 = {(𝑎, 𝑎), (𝑎, 𝑐), (𝑐, 𝑎), (𝑐, 𝑐), (𝑏, 𝑏), (𝑏, 𝑑), (𝑑, 𝑏), (𝑑, 𝑑)}.

Suppose we consider a subset
𝑈 = {𝑎, 𝑏} ⊆ 𝑋.

We want to find the SuperRough approximations 𝑈Γ and 𝑈
Γ, where Γ = {𝑅1, 𝑅2}.

Classical Rough Approximations w.r.t. 𝑅1

𝑈
𝑅1

= { 𝑥 ∈ 𝑋 | 𝑅1 (𝑥) ⊆ 𝑈}, 𝑈𝑅1 = { 𝑥 ∈ 𝑋 | 𝑅1 (𝑥) ∩𝑈 ≠ ∅}.

• For 𝑥 = 𝑎, 𝑅1 (𝑎) = {𝑎, 𝑏}. Since {𝑎, 𝑏} ⊆ 𝑈, 𝑎 ∈ 𝑈
𝑅1

. Also, {𝑎, 𝑏} ∩𝑈 ≠ ∅, so 𝑎 ∈ 𝑈𝑅1 .

• For 𝑥 = 𝑏, 𝑅1 (𝑏) = {𝑎, 𝑏}. Similar reasoning: 𝑏 ∈ 𝑈
𝑅1

and 𝑏 ∈ 𝑈𝑅1 .

• For 𝑥 = 𝑐, 𝑅1 (𝑐) = {𝑐, 𝑑}. Since {𝑐, 𝑑} ⊈ 𝑈, 𝑐 ∉ 𝑈
𝑅1

. Also, {𝑐, 𝑑} ∩𝑈 = ∅, hence 𝑐 ∉ 𝑈𝑅1 .

• For 𝑥 = 𝑑, 𝑅1 (𝑑) = {𝑐, 𝑑}. Same reasoning: 𝑑 ∉ 𝑈
𝑅1

and 𝑑 ∉ 𝑈𝑅1 .

Thus,
𝑈

𝑅1
= {𝑎, 𝑏}, 𝑈𝑅1 = {𝑎, 𝑏}.

Classical Rough Approximations w.r.t. 𝑅2

𝑈
𝑅2

= { 𝑥 ∈ 𝑋 | 𝑅2 (𝑥) ⊆ 𝑈}, 𝑈𝑅2 = { 𝑥 ∈ 𝑋 | 𝑅2 (𝑥) ∩𝑈 ≠ ∅}.

• For 𝑥 = 𝑎, 𝑅2 (𝑎) = {𝑎, 𝑐}. Since {𝑎, 𝑐} ⊈ 𝑈 (because 𝑐 ∉ 𝑈), 𝑎 ∉ 𝑈
𝑅2

. However, {𝑎, 𝑐} ∩𝑈 = {𝑎} ≠ ∅,
so 𝑎 ∈ 𝑈𝑅2 .

• For 𝑥 = 𝑏, 𝑅2 (𝑏) = {𝑏, 𝑑}. Since {𝑏, 𝑑} ⊈ 𝑈, 𝑏 ∉ 𝑈
𝑅2

. But {𝑏, 𝑑} ∩𝑈 = {𝑏} ≠ ∅, so 𝑏 ∈ 𝑈𝑅2 .

• For 𝑥 = 𝑐, 𝑅2 (𝑐) = {𝑎, 𝑐}. Similar to 𝑎, 𝑐 ∉ 𝑈
𝑅2

but 𝑐 ∈ 𝑈𝑅2 since {𝑎, 𝑐} ∩𝑈 = {𝑎} ≠ ∅.

• For 𝑥 = 𝑑, 𝑅2 (𝑑) = {𝑏, 𝑑}. Analogously, 𝑑 ∉ 𝑈
𝑅2

but 𝑑 ∈ 𝑈𝑅2 .

Hence,
𝑈

𝑅2
= ∅, 𝑈𝑅2 = {𝑎, 𝑏, 𝑐, 𝑑}.
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SuperRough Approximations By definition (see Definition 2.10 in the paper),

𝑈Γ = 𝑈
𝑅1

∩ 𝑈
𝑅2

= {𝑎, 𝑏} ∩ ∅ = ∅,

𝑈
Γ
= 𝑈𝑅1 ∪ 𝑈𝑅2 = {𝑎, 𝑏} ∪ {𝑎, 𝑏, 𝑐, 𝑑} = {𝑎, 𝑏, 𝑐, 𝑑}.

Thus, for Γ = {𝑅1, 𝑅2}, the SuperRough approximation of 𝑈 = {𝑎, 𝑏} is(
𝑈Γ, 𝑈

Γ)
=
(
∅, {𝑎, 𝑏, 𝑐, 𝑑}

)
.

In this example, the set {𝑎, 𝑏} is so “narrow” w.r.t. each relation’s partitioning that the intersection of lower
approximations is empty, and the union of upper approximations is the entire universe.

Theorem 2.12 (SuperRough Set generalizes Rough Set). Let Γ = {𝑅𝛼 | 𝛼 ∈ 𝐼} be a family of equivalence
relations on 𝑋 . Then the classical rough set model is a special case of the SuperRough set model. Specifically,
if Γ consists of a single equivalence relation 𝑅, then

𝑈Γ = 𝑈
𝑅
, 𝑈

Γ
= 𝑈𝑅,

and hence
(
𝑈Γ,𝑈

Γ) coincides with the standard rough approximation
(
𝑈

𝑅
,𝑈𝑅

)
.

Proof. By Definition 2.10,
𝑈Γ =

⋂
𝛼∈𝐼

𝑈
𝑅𝛼

, 𝑈
Γ
=
⋃
𝛼∈𝐼

𝑈𝑅𝛼
.

If Γ contains exactly one relation 𝑅, i.e. 𝐼 has a single index, then

𝑈Γ = 𝑈
𝑅
, 𝑈

Γ
= 𝑈𝑅 .

These are precisely Pawlak’s original (lower, upper) rough approximations for 𝑈 with respect to 𝑅. Hence the
SuperRough set reduces to the classical rough set model when there is only a single equivalence relation. □

2.3 SuperHyperRough Set

The SuperHyperRough Set is known as a concept that generalizes both the HyperRough Set and the SuperRough
Set.

Definition 2.13 (𝒏-SuperHyperRough Set). [7] Let 𝑋 be a non-empty finite universe. Suppose we have:

• A family of 𝑛 distinct attributes 𝑇1, 𝑇2, . . . , 𝑇𝑛 with respective domains 𝐽1, 𝐽2, . . . , 𝐽𝑛.

• For each 𝐽𝑖 , let P(𝐽𝑖) be its power set. Define

𝐽 = P(𝐽1) × P(𝐽2) × · · · × P(𝐽𝑛).

Thus each element 𝐴 ∈ 𝐽 is an 𝑛-tuple
(
𝐴1, 𝐴2, . . . , 𝐴𝑛

)
where 𝐴𝑖 ⊆ 𝐽𝑖 .

• A family of equivalence relations Γ = { 𝑅𝛼 | 𝛼 ∈ 𝐼} on 𝑋 .

An 𝒏-SuperHyperRough Set over 𝑋 is then a pair
(
𝐹, 𝐽

)
, where

𝐹 : 𝐽 −→ P(𝑋),

is a mapping from each attribute-value combination 𝐴 ∈ 𝐽 to a subset 𝐹 (𝐴) ⊆ 𝑋 . For each 𝐴 ∈ 𝐽, define the
lower and upper approximations of 𝐹 (𝐴) with respect to Γ by

𝐹 (𝐴)Γ =
⋂
𝛼∈𝐼

{
𝑥 ∈ 𝑋

��� 𝑅𝛼 (𝑥) ⊆ 𝐹 (𝐴)
}
,
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𝐹 (𝐴)Γ =
⋃
𝛼∈𝐼

{
𝑥 ∈ 𝑋

��� 𝑅𝛼 (𝑥) ∩ 𝐹 (𝐴) ≠ ∅
}
.

Hence, for each 𝐴 ∈ 𝐽, we get a “rough set” (
𝐹 (𝐴)Γ, 𝐹 (𝐴)Γ

)
.

The pair
(
𝐹, 𝐽

)
with this family of approximations{(

𝐹 (𝐴)Γ, 𝐹 (𝐴)Γ
) ��� 𝐴 ∈ 𝐽

}
is called an 𝒏-SuperHyperRough Set.

Remark 2.14. SuperRough Sets (sometimes termed “multigranulation rough sets”) focus on a single subset
𝑈 ⊆ 𝑋 but allow multiple equivalence relations. HyperRough Sets focus on a single equivalence relation 𝑅

but assign different subsets of 𝑋 to each attribute-value combination. In contrast, an 𝒏-SuperHyperRough
Set allows both multiple equivalence relations and a family of subsets indexed by multiple attributes and their
subsets, thereby encompassing both extensions in one framework.

Theorem 2.15 (Generalization of HyperRough Set). If the family Γ of equivalence relations in Definition 2.13
consists of exactly one equivalence relation 𝑅 (i.e., Γ = {𝑅}), then an 𝑛-SuperHyperRough Set reduces to a
HyperRough Set.

Proof. Consider Definition 2.13 but with Γ = {𝑅}. Then for each 𝐴 ∈ 𝐽,

𝐹 (𝐴)Γ =
⋂
𝛼∈𝐼

𝐹 (𝐴)
𝑅𝛼

= 𝐹 (𝐴)
𝑅
, 𝐹 (𝐴)Γ =

⋃
𝛼∈𝐼

𝐹 (𝐴)𝑅𝛼
= 𝐹 (𝐴)𝑅,

since 𝐼 has only one element. These are precisely the classical rough approximations

𝐹 (𝐴) = { 𝑥 ∈ 𝑋 | 𝑅(𝑥) ⊆ 𝐹 (𝐴)}, 𝐹 (𝐴) = { 𝑥 ∈ 𝑋 | 𝑅(𝑥) ∩ 𝐹 (𝐴) ≠ ∅}.

Hence each 𝐴 ∈ 𝐽 is associated with a single rough set
(
𝐹 (𝐴), 𝐹 (𝐴)

)
, which matches the HyperRough Set

definition (often referred to as (𝐹, 𝐽) where 𝐹 maps attribute-value combinations to subsets in 𝑋 , each endowed
with a single rough approximation by 𝑅). Therefore, an 𝑛-SuperHyperRough Set is indeed a generalization of
the HyperRough Set when Γ is a singleton. □

Theorem 2.16 (Generalization of SuperRough Set). If 𝑛 = 1 and 𝐽1 is a trivial one-element set, then an
𝑛-SuperHyperRough Set (Definition 2.13) reduces to a SuperRough Set, i.e., multiple equivalence relations
approximating a single subset of 𝑋 .

Proof. Let 𝑛 = 1. Then
𝐽 = P(𝐽1).

Assume 𝐽1 = { 𝑗∗} is a single-element set. Then P(𝐽1) has exactly two elements: ∅ and { 𝑗∗}. Thus
𝐽 = { ∅, { 𝑗∗}}.

Define 𝐹 (∅) and 𝐹 ({ 𝑗∗}) arbitrarily, but in particular we focus on 𝐹 ({ 𝑗∗}), which is some subset 𝑈 ⊆ 𝑋 . The
definitions of lower and upper approximations with respect to Γ yield

𝐹 ({ 𝑗∗})Γ =
⋂
𝛼∈𝐼

𝐹 ({ 𝑗∗})
𝑅𝛼

, 𝐹 ({ 𝑗∗})Γ =
⋃
𝛼∈𝐼

𝐹 ({ 𝑗∗})𝑅𝛼
.

But 𝐹 ({ 𝑗∗}) is just a single subset 𝑈 ⊆ 𝑋 . This recovers the usual SuperRough notion where a set 𝑈 ⊆ 𝑋 is
approximated by multiple equivalence relations 𝑅𝛼. In other words,

(𝑈Γ, 𝑈
Γ), where 𝑈Γ =

⋂
𝛼∈𝐼

𝑈
𝑅𝛼

, 𝑈
Γ
=
⋃
𝛼∈𝐼

𝑈𝑅𝛼
.

Hence if the attribute space is trivial (so that we effectively have only one subset in play), we precisely obtain
the SuperRough Set model. □
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Remark 2.17 (Conclusion). An 𝒏-SuperHyperRough Set merges the idea of:

• HyperRough: mapping every combination of (single) attribute-values to a rough set, but using only one
equivalence relation.

• SuperRough: approximating a single subset with multiple equivalence relations.

By allowing:

• multiple attributes (with P(𝐽𝑖) for each attribute domain 𝐽𝑖),

• multiple equivalence relations Γ,

the 𝑛-SuperHyperRough Set definition covers both cases as special instances, proving itself a unifying gener-
alization of these two important rough-set extensions.
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Abstract

Concepts such as Fuzzy Sets [28,57], Neutrosophic Sets [42,44], and Plithogenic Sets [48] have been extensively
studied to address uncertainty, finding diverse applications across various fields. The Soft Set provides a
framework that associates each parameter with subsets of a universal set, enabling flexible approximations [31].
The TreeSoft Set extends the Soft Set by introducing hierarchical, tree-structured parameters, allowing for
multi-level data representation [53].

In this paper, we revisit the concept of the Neutrosophic TreeSoft Set, which has been discussed in other
studies [8, 34]. Additionally, we propose and examine the Neutrosophic TreeSoft Expert Set by incorporating
the framework of the Neutrosophic Soft Expert Set. Furthermore, we revisit the ForestSoft Set, an extension
of the TreeSoft Set, and explore related concepts, including the Neutrosophic ForestSoft Set.

Keywords: Neutrosophic Set, Soft Set, Treesoft Set, Neutrosophic Treesoft Set, ForestSoft Set

1 Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required for the discussions
in this paper.

1.1 Neutrosophic Set

Neutrosophic Sets extend Fuzzy Sets by introducing the concept of indeterminacy, which accounts for situations
that are neither entirely true nor entirely false [17–19, 21, 27, 43, 45–47, 54, 55].

Definition 1.1 (Neutrosophic Set). [44, 45] Let 𝑋 be a non-empty set. A Neutrosophic Set (NS) 𝐴 on 𝑋 is
characterized by three membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

1.2 Soft Set and TreeSoft Set

A Soft Set (𝐹, 𝐸) associates each parameter in a set 𝐸 with a subset of a universal set 𝑈. This provides a
flexible framework for approximating objects within 𝑈 [24, 30, 31]. A TreeSoft Set is a mapping from subsets
of a hierarchical, tree-like parameter structure Tree(𝐴) to subsets of a universal set 𝑈. This structure supports
multi-level attributes for more refined and detailed analyses [8,14,22,32,34,36,53]. Related concepts include
the Hypersoft Set [20,49] and the SuperHypersoft Set [15,16,50]. The definitions of Soft Set and TreeSoft Set
are provided below.

Definition 1.2. [30] Let 𝑈 be a universal set and 𝐸 a set of parameters. A soft set over 𝑈 is defined as an
ordered pair (𝐹, 𝐸), where 𝐹 is a mapping from 𝐸 to the power set P(𝑈):

𝐹 : 𝐸 → P(𝑈).

For each parameter 𝑒 ∈ 𝐸 , 𝐹 (𝑒) ⊆ 𝑈 represents the set of 𝑒-approximate elements in 𝑈, with (𝐹, 𝐸) forming
a parameterized family of subsets of 𝑈.
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Definition 1.3. [51] Let 𝑈 be a universe of discourse, and let 𝐻 be a non-empty subset of 𝑈, with 𝑃(𝐻)
denoting the power set of 𝐻. Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be a set of attributes (parameters, factors, etc.), for
some integer 𝑛 ≥ 1, where each attribute 𝐴𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) is considered a first-level attribute.

Each first-level attribute 𝐴𝑖 consists of sub-attributes, defined as:

𝐴𝑖 = {𝐴𝑖,1, 𝐴𝑖,2, . . . },

where the elements 𝐴𝑖, 𝑗 (for 𝑗 = 1, 2, . . .) are second-level sub-attributes of 𝐴𝑖 . Each second-level sub-attribute
𝐴𝑖, 𝑗 may further contain sub-sub-attributes, defined as:

𝐴𝑖, 𝑗 = {𝐴𝑖, 𝑗 ,1, 𝐴𝑖, 𝑗 ,2, . . . },

and so on, allowing for as many levels of refinement as needed. Thus, we can define sub-attributes of an 𝑚-th
level with indices 𝐴𝑖1 ,𝑖2 ,...,𝑖𝑚 , where each 𝑖𝑘 (for 𝑘 = 1, . . . , 𝑚) denotes the position at each level.

This hierarchical structure forms a tree-like graph, which we denote as Tree(𝐴), with root 𝐴 (level 0) and
successive levels from 1 up to 𝑚, where 𝑚 is the depth of the tree. The terminal nodes (nodes without
descendants) are called leaves of the graph-tree.

A TreeSoft Set 𝐹 is defined as a function:

𝐹 : 𝑃(Tree(𝐴)) → 𝑃(𝐻),

where Tree(𝐴) represents the set of all nodes and leaves (from level 1 to level 𝑚) of the graph-tree, and
𝑃(Tree(𝐴)) denotes its power set.

1.3 Neutrosophic Soft Set

The Neutrosophic Soft Set is a concept that combines the principles of Neutrosophic Sets and Soft Sets
[2, 5, 6, 9–11, 25, 33]. The definition is provided below.

Definition 1.4 (Neutrosophic Soft Set [26,29]). Let𝑈 be a universe and 𝐸 a set of parameters. A Neutrosophic
Soft Set (NSS) over 𝑈 is defined as a pair

(
𝐹, 𝐴

)
, where 𝐴 ⊆ 𝐸 and

𝐹 : 𝐴 −→ 𝑃(𝑈),

with 𝑃(𝑈) being the collection of Neutrosophic Sets on 𝑈. Hence for each parameter 𝑒 ∈ 𝐴,

𝐹 (𝑒) =
(
𝑇𝐹 (𝑒) , 𝐼𝐹 (𝑒) , 𝐹𝐹 (𝑒)

)
is a Neutrosophic Set on 𝑈, satisfying

0 ≤ 𝑇𝐹 (𝑒) (𝑥) + 𝐼𝐹 (𝑒) (𝑥) + 𝐹𝐹 (𝑒) (𝑥) ≤ 3, ∀ 𝑥 ∈ 𝑈.

1.4 Neutrosophic Soft Expert Set

The Neutrosophic Soft Expert Set [3, 37–39, 56] is an extension of the Neutrosophic Soft Set, incorporating
the framework of the Soft Expert Set (cf. [1, 4, 7, 23, 35, 41]). The formal definition is provided below.

Definition 1.5 (Neutrosophic Soft Expert Set (NSES)). (cf. [3, 38, 39, 56]) Let 𝑈 be a universe, 𝐸 a set of
parameters, 𝑋 a set of experts (agents), and 𝑂 = {1, 0} a set of opinions, where 1 indicates agreement and 0
indicates disagreement. Define 𝑍 = 𝐸 × 𝑋 ×𝑂, and let 𝐴 ⊆ 𝑍 .

A Neutrosophic Soft Expert Set (NSES) over 𝑈 is a pair (𝐹, 𝐴), where 𝐴 ⊆ 𝑍 and:

𝐹 : 𝐴 → 𝑃(𝑈),

where 𝑃(𝑈) denotes the power set of Neutrosophic Sets on 𝑈. That is, for each parameter 𝑒 = (𝑝, 𝑥, 𝑜) ∈ 𝐴,
𝐹 (𝑒) is a Neutrosophic Set

(
𝑇𝐹 (𝑒) , 𝐼𝐹 (𝑒) , 𝐹𝐹 (𝑒)

)
defined on 𝑈. The values of 𝑇𝐹 (𝑒) (𝑢), 𝐼𝐹 (𝑒) (𝑢), and 𝐹𝐹 (𝑒) (𝑢)

satisfy:
0 ≤ 𝑇𝐹 (𝑒) (𝑢) + 𝐼𝐹 (𝑒) (𝑢) + 𝐹𝐹 (𝑒) (𝑢) ≤ 3, ∀𝑢 ∈ 𝑈.
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2 Results in This Paper

The results derived in this paper are presented below.

2.1 Neutrosophic Treesoft Set (Revisit)

A Neutrosophic Treesoft Set maps hierarchical attribute subsets to neutrosophic sets, representing truth,
indeterminacy, and falsity on a universe.

Definition 2.1 (Neutrosophic Treesoft Set). Let 𝐻 ⊆ 𝑈 be a non-empty subset of a universe 𝑈, and Tree(𝐴)
be a hierarchical structure of attributes as defined previously. A Neutrosophic Treesoft Set is a mapping

F : 𝑃
(
Tree(𝐴)

)
−→ 𝑁 (𝐻),

where each value F (Γ) is a Neutrosophic Set on 𝐻. Namely, for each Γ ⊆ Tree(𝐴),

F (Γ) =
(
𝑇F(Γ) , 𝐼F(Γ) , 𝐹F(Γ)

)
,

with 𝑇F(Γ) , 𝐼F(Γ) , 𝐹F(Γ) : 𝐻 → [0, 1] satisfying

0 ≤ 𝑇F(Γ) (ℎ) + 𝐼F(Γ) (ℎ) + 𝐹F(Γ) (ℎ) ≤ 3 ∀ ℎ ∈ 𝐻.

Theorem 2.2 (Neutrosophic Soft Set as a Special Case of Neutrosophic Treesoft Set). Every Neutrosophic
Soft Set can be naturally embedded into a Neutrosophic Treesoft Set.

More precisely, let
(
𝐹, 𝐴

)
be a Neutrosophic Soft Set on universe 𝑈, where 𝐹 : 𝐴 → 𝑃(𝑈) and each 𝐹 (𝑒) is

a Neutrosophic Set in 𝑈. Define a single-level tree of attributes Tree(𝐴) whose nodes are exactly the distinct
parameters in 𝐴 (no further sub-attributes). Set 𝐻 := 𝑈. Then we can construct a Neutrosophic Treesoft Set

F : 𝑃
(
Tree(𝐴)

)
−→ 𝑁 (𝐻)

such that F ({𝑒}) = 𝐹 (𝑒) for each 𝑒 ∈ 𝐴. Thus
(
𝐹, 𝐴

)
appears as the restriction of F to singletons in Tree(𝐴).

Proof. Since 𝐴 is the set of parameters used in
(
𝐹, 𝐴

)
, we treat it as a single-level tree:

Tree(𝐴) = { 𝐴1, 𝐴2, . . . , 𝐴𝑛},

where each 𝐴𝑖 ∈ 𝐴. There are no additional sub-attributes, i.e., no deeper levels. Hence any Γ ⊆ Tree(𝐴) is
simply a subset Γ ⊆ 𝐴.

We wish to define F : 𝑃(Tree(𝐴)) → 𝑁 (𝐻) so that:

F ({𝐴𝑖}) = 𝐹 (𝐴𝑖),

where 𝐹 (𝐴𝑖) is already a Neutrosophic Set on 𝑈. Since 𝐻 = 𝑈, we have 𝐹 (𝐴𝑖) ∈ 𝑁 (𝐻).

A simple way is to let F (Γ) be the pointwise union (in the neutrosophic sense) of the Neutrosophic Sets
{𝐹 (𝑒) | 𝑒 ∈ Γ}. Concretely, for each ℎ ∈ 𝑈:

𝑇F(Γ) (ℎ) = max
𝑒∈Γ

{
𝑇𝐹 (𝑒) (ℎ)

}
, 𝐼F(Γ) (ℎ) = min

𝑒∈Γ

{
𝐼𝐹 (𝑒) (ℎ)

}
, 𝐹F(Γ) (ℎ) = max

𝑒∈Γ

{
𝐹𝐹 (𝑒) (ℎ)

}
.

(Or any other appropriate aggregator, e.g. t-norm/t-conorm pairs, depending on the application.)

Verification of Neutrosophic Condition. Because each 𝐹 (𝑒) is a Neutrosophic Set, we have

0 ≤ 𝑇𝐹 (𝑒) (ℎ) + 𝐼𝐹 (𝑒) (ℎ) + 𝐹𝐹 (𝑒) (ℎ) ≤ 3,

for all 𝑒 ∈ 𝐴 and all ℎ ∈ 𝑈. Taking pointwise maxima or minima of these values across 𝑒 ∈ Γ keeps us within
the bounds [0, 3]. Thus

0 ≤ 𝑇F(Γ) (ℎ) + 𝐼F(Γ) (ℎ) + 𝐹F(Γ) (ℎ) ≤ 3.
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Hence F (Γ) is indeed a Neutrosophic Set on 𝐻 = 𝑈.

If Γ = {𝑒} ⊆ 𝐴, then by definition,
F ({𝑒}) = 𝐹 (𝑒).

Thus on singletons, F and 𝐹 agree exactly. In other words,
(
𝐹, 𝐴

)
is embedded into the Neutrosophic Treesoft

structure F .

Therefore,
(
𝐹, 𝐴

)
emerges as a special (single-level) restriction of F . This completes the proof. □

Theorem 2.3 (Restriction to TreeSoft Set). Let F be a Neutrosophic Treesoft Set as in Definition. For each
Γ ⊆ Tree(𝐴), define

𝐺 (Γ) =
{
ℎ ∈ 𝐻

�� 𝑇F(Γ) (ℎ) ≥ 𝛼 and 𝐼F(Γ) (ℎ) ≤ 𝛽
}
,

for some fixed thresholds 0 ≤ 𝛼, 𝛽 ≤ 1. Then 𝐺 is a (classical) TreeSoft Set in the sense of Definition.

Proof. Since F (Γ) is a Neutrosophic Set on 𝐻, we have numeric values 𝑇F(Γ) (ℎ) and 𝐼F(Γ) (ℎ). If we pick
thresholds 𝛼 and 𝛽, the set of all ℎ ∈ 𝐻 satisfying 𝑇F(Γ) (ℎ) ≥ 𝛼 and 𝐼F(Γ) (ℎ) ≤ 𝛽 is indeed a subset of 𝐻.
This procedure, repeated for each Γ ⊆ Tree(𝐴), defines a mapping

Γ ↦−→ 𝐺 (Γ) ⊆ 𝐻.

But by Definition, a TreeSoft Set is any function from 𝑃(Tree(𝐴)) to 𝑃(𝐻). Hence 𝐺 is precisely a classical
TreeSoft Set, restricted by the chosen thresholds on the neutrosophic membership functions of F (Γ). □

Theorem 2.4 (Union and Intersection in a Neutrosophic Treesoft Set). Let F1 and F2 be two Neutrosophic
Treesoft Sets, both mapping

F1, F2 : 𝑃(Tree(𝐴)) −→ 𝑁 (𝐻).

Define new mappings F ∪ and F ∩ by

F ∪ (Γ) =

(
𝑇F1 (Γ) ∨ 𝑇F2 (Γ) , 𝐼F1 (Γ) ∧ 𝐼F2 (Γ) , 𝐹F1 (Γ) ∨ 𝐹F2 (Γ)

)
,

F ∩ (Γ) =

(
𝑇F1 (Γ) ∧ 𝑇F2 (Γ) , 𝐼F1 (Γ) ∨ 𝐼F2 (Γ) , 𝐹F1 (Γ) ∧ 𝐹F2 (Γ)

)
,

where ∨ and ∧ are pointwise max and min operators, respectively (or any suitable t-conorm/t-norm pair in
[0, 1]). Then F ∪ and F ∩ are also Neutrosophic Treesoft Sets on 𝐻.

Proof. For every Γ ⊆ Tree(𝐴) and each ℎ ∈ 𝐻, we define

𝑇F∪ (Γ) (ℎ) := max
{
𝑇F1 (Γ) (ℎ), 𝑇F2 (Γ) (ℎ)

}
.

Similarly for 𝐼F∪ (Γ) (ℎ) using min or max, depending on the intended aggregator, and for 𝐹F∪ (Γ) (ℎ). Since
each of 𝑇F𝑖 (Γ) , 𝐼F𝑖 (Γ) , 𝐹F𝑖 (Γ) lies in [0, 1], their max and min also lie in [0, 1]. Thus

(
𝑇F∪ (Γ) , 𝐼F∪ (Γ) , 𝐹F∪ (Γ)

)
is a well-defined triple of functions 𝐻 → [0, 1].

We must show
0 ≤ 𝑇F∪ (Γ) (ℎ) + 𝐼F∪ (Γ) (ℎ) + 𝐹F∪ (Γ) (ℎ) ≤ 3,

and similarly for F ∩. Since
𝑇F𝑖 (Γ) (ℎ) + 𝐼F𝑖 (Γ) (ℎ) + 𝐹F𝑖 (Γ) (ℎ) ≤ 3

(for 𝑖 = 1, 2), the pointwise max or min among the corresponding membership values also cannot exceed 3 in
sum. Indeed, for any real numbers 𝑎1 + 𝑏1 + 𝑐1 ≤ 3 and 𝑎2 + 𝑏2 + 𝑐2 ≤ 3, taking max(𝑎1, 𝑎2) + max(𝑏1, 𝑏2) +
max(𝑐1, 𝑐2) or min(𝑎1, 𝑎2) + min(𝑏1, 𝑏2) + min(𝑐1, 𝑐2) is at most 3. Clearly, the sum is also non-negative.

Hence for each Γ, F ∪ (Γ) and F ∩ (Γ) satisfy the neutrosophic condition on [0, 1]3. This shows that F ∪ and F ∩

are indeed functions from 𝑃(Tree(𝐴)) into 𝑁 (𝐻). Therefore, they qualify as Neutrosophic Treesoft Sets. □
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2.2 Neutrosophic TreeSoft Expert Set

The Neutrosophic TreeSoft Expert Set is an extension of the TreeSoft Set, incorporating the framework of the
Neutrosophic Soft Expert Set. A related concept, the TreeSoft Expert Set, is also well-known [13].

Definition 2.5 (Neutrosophic TreeSoft Expert Set (NTSES)). Let:

• 𝐻 ⊆ 𝑈 be a non-empty subset of a universe 𝑈.

• Tree(𝐴) be a hierarchical attribute structure with root 𝐴 and possibly multiple levels of sub-attributes.

• 𝑋 be a set of experts.

• 𝑂 = {1, 0} a set of opinions, where 1 indicates agreement and 0 indicates disagreement.

Define
𝑍 = 𝑃

(
Tree(𝐴)

)
× 𝑋 × 𝑂.

Let 𝑆 ⊆ 𝑍 . A Neutrosophic TreeSoft Expert Set (NTSES) on 𝐻 is the pair
(
F , 𝑆

)
where F is a mapping

F : 𝑆 −→ PNS(𝐻),

with PNS(𝐻) denoting the collection of Neutrosophic Sets on 𝐻. Concretely, for each triple (Γ, 𝑥, 𝑜) ∈ 𝑆,
where Γ ⊆ Tree(𝐴), 𝑥 ∈ 𝑋 , and 𝑜 ∈ 𝑂,

F (Γ, 𝑥, 𝑜) =

(
𝑇Γ,𝑥,𝑜, 𝐼Γ,𝑥,𝑜, 𝐹Γ,𝑥,𝑜

)
,

where
𝑇Γ,𝑥,𝑜, 𝐼Γ,𝑥,𝑜, 𝐹Γ,𝑥,𝑜 : 𝐻 −→ [0, 1]

satisfy
0 ≤ 𝑇Γ,𝑥,𝑜 (ℎ) + 𝐼Γ,𝑥,𝑜 (ℎ) + 𝐹Γ,𝑥,𝑜 (ℎ) ≤ 3, ∀ ℎ ∈ 𝐻.

Remark 2.6. In words, for each subset of the attribute tree Γ, each expert 𝑥, and each opinion 𝑜 ∈ {1, 0}, the
NTSES assigns a Neutrosophic evaluation

(
𝑇, 𝐼, 𝐹

)
on the domain 𝐻. This merges three main components:

1. The hierarchical attribute structure (TreeSoft notion),

2. The expert-based positive/negative opinion (Soft Expert notion),

3. The Neutrosophic membership functions for each element in 𝐻.

Theorem 2.7 (Reduction to Neutrosophic Soft Expert Set). Let
(
F , 𝑆

)
be a Neutrosophic TreeSoft Expert Set

as in Definition 2.5. Suppose:

• The tree Tree(𝐴) is single-level (i.e., it is isomorphic to a simple parameter set 𝐸 with no deeper
sub-attributes).

• We identify each node in Γ ⊆ Tree(𝐴) with a parameter 𝑝 ∈ 𝐸 .

Then, by restricting Γ to singletons and letting 𝑆 ⊆ 𝐸 × 𝑋 × 𝑂, the NTSES
(
F , 𝑆

)
becomes a standard

Neutrosophic Soft Expert Set
(
𝐹, 𝐴

)
.

Proof. If Tree(𝐴) has only one level (no sub-attributes), then each Γ ⊆ Tree(𝐴) is simply a subset of a finite
set 𝐸 . In the Soft Expert scenario, we typically select Γ = {𝑝} ⊆ 𝐸 .

Consider the restriction
𝑆′ =

{
({𝑝}, 𝑥, 𝑜) | ({𝑝}, 𝑥, 𝑜) ∈ 𝑆

}
.
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In other words, only the singletons {𝑝} ⊆ 𝐸 . On such triples, define

𝐹 (𝑝, 𝑥, 𝑜) = F
(
{𝑝}, 𝑥, 𝑜

)
.

Since F ({𝑝}, 𝑥, 𝑜) is a Neutrosophic Set on 𝐻 ⊆ 𝑈, we get exactly the form required by a Neutrosophic Soft
Expert Set.

Hence the mapping 𝐹 : 𝐴 → PNS (𝑈) recovers the definition of an NSES, with 𝐴 = 𝑆′ ⊆ 𝐸 × 𝑋 × 𝑂. This
completes the reduction proof. □

Theorem 2.8 (Reduction to TreeSoft Set). Let
(
F , 𝑆

)
be a Neutrosophic TreeSoft Expert Set on 𝐻. Suppose

we drop both the expert dimension 𝑋 and the opinion set 𝑂 by fixing a trivial single-expert set {𝑥0} and a
single-opinion set {1}. Then

(
F , 𝑆

)
reduces to a classical TreeSoft Set

𝐹 : 𝑃(Tree(𝐴)) −→ 𝑃(𝐻),
by selecting, for each Γ ⊆ Tree(𝐴), a crisp subset 𝐹 (Γ) ⊆ 𝐻 from the corresponding neutrosophic membership.

Proof. Let 𝑋 = {𝑥0} and 𝑂 = {1}. Then

𝑍 = 𝑃
(
Tree(𝐴)

)
× 𝑋 ×𝑂 = 𝑃

(
Tree(𝐴)

)
× {𝑥0} × {1}.

Any subset 𝑆 ⊆ 𝑍 effectively identifies a collection of Γ𝑖 ⊆ Tree(𝐴).

Since F (Γ, 𝑥0, 1) is a Neutrosophic Set
(
𝑇Γ, 𝐼Γ, 𝐹Γ

)
on 𝐻, one can define

𝐹 (Γ) =
{
ℎ ∈ 𝐻 | 𝑇Γ (ℎ) ≥ 𝛼

}
,

or any other threshold-based selection from {𝑇Γ, 𝐼Γ, 𝐹Γ} (e.g. “include ℎ if the truth-degree is sufficiently large
and the false-degree is sufficiently small”). This yields a crisp subset 𝐹 (Γ) ⊆ 𝐻.

This mapping Γ ↦→ 𝐹 (Γ) is precisely a function from 𝑃(Tree(𝐴)) into 𝑃(𝐻). By Definition, it constitutes a
TreeSoft Set. Thus the NTSES collapses to a classic TreeSoft Set once the expert and opinion dimensions are
trivialized and the neutrosophic membership is interpreted in a crisp manner. □

3 Additional Results of This Paper

As additional results of this paper, we explore the concept of the ForestSoft Set and its extended variants
[12, 40, 52].

3.1 ForestSoft Set (Revisit)

A ForestSoft Set is formed by taking a collection of TreeSoft Sets and “gluing” (uniting) them together so as
to obtain a single function whose domain is the union of all tree-nodes’ power sets and whose values in 𝑃(𝐻)
combine the images given by the individual TreeSoft Sets.
Definition 3.1 (ForestSoft Set). [52] Let 𝑈 be a universe of discourse, 𝐻 ⊆ 𝑈 be a non-empty subset, and
𝑃(𝐻) be the power set of 𝐻. Suppose we have a finite (or countable) collection of TreeSoft Sets{

𝐹𝑡 : 𝑃(Tree(𝐴(𝑡 ) )) → 𝑃(𝐻)
}
𝑡∈𝑇 ,

where each 𝐹𝑡 is a TreeSoft Set corresponding to a tree Tree(𝐴(𝑡 ) ) of attributes 𝐴(𝑡 ) .

We construct a forest by taking the (disjoint) union of all these trees:

Forest
(
{𝐴(𝑡 ) }𝑡∈𝑇

)
=

⊔
𝑡∈𝑇

Tree
(
𝐴(𝑡 ) ) .

A ForestSoft Set, denoted by
F : 𝑃

(
Forest({𝐴(𝑡 ) })

)
−→ 𝑃(𝐻),

is defined as the union of all TreeSoft Set mappings 𝐹𝑡 . Concretely, for any element 𝑋 ∈ 𝑃
(
Forest({𝐴(𝑡 ) })

)
,

we set
F(𝑋) =

⋃
𝑡∈𝑇

𝑋∩Tree(𝐴(𝑡 ) ) ≠∅

𝐹𝑡
(
𝑋 ∩ Tree(𝐴(𝑡 ) )

)
,

where we only apply 𝐹𝑡 to that portion of 𝑋 belonging to the tree Tree(𝐴(𝑡 ) ).
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3.2 Neutrosophic ForestSoft Set

A Neutrosophic ForestSoft Set maps hierarchical multi-tree structures to neutrosophic sets, enabling multi-level
uncertainty representation across multiple attribute domains.

Definition 3.2 (Neutrosophic Forestsoft Set (NFS)). Let 𝐻 ⊆ 𝑈 be a non-empty subset of a universe 𝑈. For
each 𝑡 ∈ 𝑇 , suppose we have a Neutrosophic Treesoft Set:

F𝑡 : 𝑃
(
Tree(𝐴(𝑡 ) )

)
−→ 𝑁 (𝐻).

The forest of attribute trees is
Forest

(
{𝐴(𝑡 ) }𝑡∈𝑇

)
=

⊔
𝑡∈𝑇

Tree
(
𝐴(𝑡 ) ) .

Then a Neutrosophic Forestsoft Set F is a function

F : 𝑃
(
Forest

(
{𝐴(𝑡 ) }

) )
−→ 𝑁 (𝐻),

defined by “combining” the outputs of F𝑡 . Concretely, for each

𝑋 ∈ 𝑃

(
Forest({𝐴(𝑡 ) }𝑡∈𝑇 )

)
,

we decompose 𝑋 into its parts
𝑋𝑡 := 𝑋 ∩ Tree(𝐴(𝑡 ) ),

and define for each ℎ ∈ 𝐻,

𝑇F(𝑋) (ℎ) = max
𝑡∈𝑇 : 𝑋𝑡≠∅

{
𝑇F𝑡

(
𝑋𝑡

) (ℎ)},
𝐼F(𝑋) (ℎ) = min

𝑡∈𝑇 : 𝑋𝑡≠∅

{
𝐼F𝑡

(
𝑋𝑡

) (ℎ)},
𝐹F(𝑋) (ℎ) = max

𝑡∈𝑇 : 𝑋𝑡≠∅

{
𝐹F𝑡

(
𝑋𝑡

) (ℎ)}.
(One may also choose alternative aggregators, e.g. t-norm / t-conorm, as desired.) Thus,

F(𝑋) =

(
𝑇F(𝑋) , 𝐼F(𝑋) , 𝐹F(𝑋)

)
is a Neutrosophic Set on 𝐻.

Remark 3.3. If 𝑋 ∩ Tree(𝐴(𝑡 ) ) = ∅ for some 𝑡, that tree does not contribute to the aggregator. One could also
define a “universal aggregator” over all 𝑡 ∈ 𝑇 , ignoring whether 𝑋𝑡 is empty; practical usage may vary. The
definitions above ensure that each portion 𝑋𝑡 ⊆ Tree(𝐴(𝑡 ) ) is mapped by F𝑡 , and then the results are combined
in a neutrosophic manner.

Theorem 3.4 (Well-definedness of Neutrosophic Forestsoft Set). With notation as in Definition 3.2, let F be
constructed from {F𝑡 }𝑡∈𝑇 . Then for every 𝑋 ⊆ Forest({𝐴(𝑡 ) }), the triple F(𝑋) = (𝑇F(𝑋) , 𝐼F(𝑋) , 𝐹F(𝑋) ) is a
valid Neutrosophic Set on 𝐻.

Proof. Fix 𝑋 ⊆ Forest. For each 𝑡, write F𝑡 (𝑋𝑡 ) = (𝑇𝑡 ,𝑋𝑡
, 𝐼𝑡 ,𝑋𝑡

, 𝐹𝑡 ,𝑋𝑡
), where

0 ≤ 𝑇𝑡 ,𝑋𝑡
(ℎ) + 𝐼𝑡 ,𝑋𝑡

(ℎ) + 𝐹𝑡 ,𝑋𝑡
(ℎ) ≤ 3 for all ℎ ∈ 𝐻.

Then
𝑇F(𝑋) (ℎ) = max

{
𝑇𝑡 ,𝑋𝑡

(ℎ)
}
𝑡∈𝑇∗ ,

where 𝑇∗ = {𝑡 ∈ 𝑇 | 𝑋𝑡 ≠ ∅}. Clearly, max{. . . } ∈ [0, 1]. Analogous statements hold for 𝐼F(𝑋) (ℎ) (using
min) and 𝐹F(𝑋) (ℎ) (using max).

Sum check: For each ℎ, let

𝑎𝑡 = 𝑇𝑡 ,𝑋𝑡
(ℎ), 𝑏𝑡 = 𝐼𝑡 ,𝑋𝑡

(ℎ), 𝑐𝑡 = 𝐹𝑡 ,𝑋𝑡
(ℎ).
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Since 𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡 ≤ 3 for every 𝑡, we must show

𝑇F(𝑋) (ℎ) + 𝐼F(𝑋) (ℎ) + 𝐹F(𝑋) (ℎ) ≤ 3.

But
𝑇F(𝑋) (ℎ) = max

𝑡∈𝑇∗
𝑎𝑡 , 𝐼F(𝑋) (ℎ) = min

𝑡∈𝑇∗
𝑏𝑡 , 𝐹F(𝑋) (ℎ) = max

𝑡∈𝑇∗
𝑐𝑡 .

In general, for real numbers {𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 } ⊆ [0, 1] with each 𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡 ≤ 3, the combination max(𝑎𝑡 ) +
min(𝑏𝑡 ) + max(𝑐𝑡 ) ≤ 3. Indeed:

max(𝑎𝑡 ) + max(𝑐𝑡 ) ≤ max(𝑎𝑡 + 𝑐𝑡 ) ≤ max(𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡 ) ≤ 3,

and adding min(𝑏𝑡 ) ≤ max(𝑏𝑡 ) maintains a sum ≤ 3. Hence

0 ≤ 𝑇F(𝑋) (ℎ) + 𝐼F(𝑋) (ℎ) + 𝐹F(𝑋) (ℎ) ≤ 3.

Thus F(𝑋) is indeed a Neutrosophic Set on 𝐻. □

Theorem 3.5 (Generalization of Neutrosophic Treesoft Set). A Neutrosophic Forestsoft Set generalizes the
Neutrosophic Treesoft Set. Concretely, if

��{𝐴(𝑡 ) }𝑡∈𝑇
�� = 1, i.e. there is only one tree in the forest, then the

Neutrosophic Forestsoft Set reduces to a Neutrosophic Treesoft Set.

Proof. Take 𝑇 = {𝑡0}. Then we have only one Neutrosophic Treesoft Set F𝑡0 : 𝑃(Tree(𝐴(𝑡0 ) )) → 𝑁 (𝐻). The
forest is

Forest
(
{𝐴(𝑡0 ) }

)
= Tree

(
𝐴(𝑡0 ) ) .

For 𝑋 ⊆ Tree(𝐴(𝑡0 ) ), define
𝑋𝑡0 = 𝑋 ∩ Tree(𝐴(𝑡0 ) ),

but 𝑋𝑡0 = 𝑋 since there is only one tree. The aggregator in Definition 3.2 simply picks

𝑇F(𝑋) (ℎ) = 𝑇F𝑡0 (𝑋𝑡0 ) (ℎ), 𝐼F(𝑋) (ℎ) = 𝐼F𝑡0 (𝑋𝑡0 ) (ℎ), 𝐹F(𝑋) (ℎ) = 𝐹F𝑡0 (𝑋𝑡0 ) (ℎ).

Hence F(𝑋) = F𝑡0 (𝑋). So F is exactly the same mapping as F𝑡0 . Consequently, the Neutrosophic Forestsoft
Set and the Neutrosophic Treesoft Set coincide when the “forest” has only one tree. □

Theorem 3.6 (Union and Intersection in a Neutrosophic Forestsoft Set). Let F1 and F2 be two Neutrosophic
Forestsoft Sets, both mapping

F1, F2 : 𝑃
(
Forest({𝐴(𝑡 ) }𝑡∈𝑇 )

)
−→ 𝑁 (𝐻).

Define new mappings F∪ and F∩ by

F∪ (𝑋) =

(
𝑇F1 (𝑋) ∨ 𝑇F2 (𝑋) , 𝐼F1 (𝑋) ∧ 𝐼F2 (𝑋) , 𝐹F1 (𝑋) ∨ 𝐹F2 (𝑋)

)
,

F∩ (𝑋) =

(
𝑇F1 (𝑋) ∧ 𝑇F2 (𝑋) , 𝐼F1 (𝑋) ∨ 𝐼F2 (𝑋) , 𝐹F1 (𝑋) ∧ 𝐹F2 (𝑋)

)
,

where∨ and∧ are pointwise max and min operators in [0, 1]. Then F∪ and F∩ are also Neutrosophic Forestsoft
Sets on 𝐻.

Proof. For each 𝑋 ⊆ Forest({𝐴(𝑡 ) }), we have F1 (𝑋),F2 (𝑋) ∈ 𝑁 (𝐻). So

𝑇F1 (𝑋) , 𝐼F1 (𝑋) , 𝐹F1 (𝑋) and 𝑇F2 (𝑋) , 𝐼F2 (𝑋) , 𝐹F2 (𝑋)

all lie in [0, 1]. Their pointwise max or min values remain in [0, 1]. Checking the sum condition

𝑇 + 𝐼 + 𝐹 ≤ 3

follows the same argument used in Theorem 3.4, showing that F∪ (𝑋) and F∩ (𝑋) are valid Neutrosophic Sets.
One can interpret F∪ and F∩ as “logical union” and “logical intersection” of the two Neutrosophic Forestsoft
Sets. □
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3.3 Neutrosophic ForestSoft Expert Set

The Neutrosophic ForestSoft Expert Set is a concept that combines the principles of the ForestSoft Set,
Neutrosophic Set, and Soft Expert Set. Its definition is provided below.

Definition 3.7 (Neutrosophic ForestSoft Expert Set (NFS-ES)). Let:

• 𝐻 ⊆ 𝑈 be a non-empty subset of a universe 𝑈.

• {Tree(𝐴(𝑡 ) )}𝑡∈𝑇 be an indexed family of trees (each a hierarchical attribute structure). Their disjoint
union is

Forest
(
{𝐴(𝑡 ) }𝑡∈𝑇

)
=

⊔
𝑡∈𝑇

Tree(𝐴(𝑡 ) ).

• 𝑋 be a set of experts.

• 𝑂 = {1, 0} a set of opinions, where 1 indicates agreement and 0 indicates disagreement.

Define
𝑍 = 𝑃

(
Forest({𝐴(𝑡 ) }𝑡∈𝑇 )

)
× 𝑋 × 𝑂.

A Neutrosophic ForestSoft Expert Set (NFS-ES) over 𝐻 is a pair
(
F, 𝑆

)
where 𝑆 ⊆ 𝑍 and

F : 𝑆 −→ 𝑁 (𝐻),

assigns to each
(
𝑌, 𝑥, 𝑜

)
∈ 𝑆 a Neutrosophic Set F(𝑌, 𝑥, 𝑜) on 𝐻. Concretely, for

F(𝑌, 𝑥, 𝑜) =
(
𝑇𝑌,𝑥,𝑜, 𝐼𝑌,𝑥,𝑜, 𝐹𝑌,𝑥,𝑜

)
,

we require
0 ≤ 𝑇𝑌,𝑥,𝑜 (ℎ) + 𝐼𝑌,𝑥,𝑜 (ℎ) + 𝐹𝑌,𝑥,𝑜 (ℎ) ≤ 3, ∀ ℎ ∈ 𝐻.

Remark 3.8. In words, for each:

• Subset 𝑌 ⊆ Forest({𝐴(𝑡 ) }) (possibly spanning multiple trees),

• Expert 𝑥 ∈ 𝑋 ,

• Opinion 𝑜 ∈ {1, 0},

the NFSES structure F(𝑌, 𝑥, 𝑜) returns a triple
(
𝑇, 𝐼, 𝐹

)
, describing the truth, indeterminacy, and falsity degrees

of every element ℎ ∈ 𝐻. This merges the multi-tree, multi-expert, and neutrosophic membership perspectives
into a single formalism.

Theorem 3.9 (Generalization of Neutrosophic TreeSoft Expert Set). A Neutrosophic ForestSoft Expert Set
(NFS-ES) generalizes the Neutrosophic TreeSoft Expert Set (NTSES). Specifically, if the forest consists of
|𝑇 | = 1 tree, then the NFS-ES is precisely an NTSES.

Proof. Suppose there is only a single tree Tree(𝐴(𝑡0 ) ). Then

Forest
(
{𝐴(𝑡0 ) }

)
= Tree(𝐴(𝑡0 ) ) ,

and
𝑍 = 𝑃

(
Forest({𝐴(𝑡0 ) })

)
× 𝑋 ×𝑂 = 𝑃

(
Tree(𝐴(𝑡0 ) )

)
× 𝑋 ×𝑂.

Hence a Neutrosophic ForestSoft Expert Set
(
F, 𝑆

)
is merely the assignment

F : 𝑆 −→ 𝑁 (𝐻),

where 𝑆 ⊆ 𝑃(Tree(𝐴(𝑡0 ) )) × 𝑋 ×𝑂. But this is exactly the definition of a Neutrosophic TreeSoft Expert Set in
NTSES. Therefore, NFS-ES reduces to NTSES when there is only one tree in the forest. □
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Theorem 3.10 (Generalization of ForestSoft Set). A Neutrosophic ForestSoft Expert Set generalizes the (clas-
sical) ForestSoft Set. If we trivialize the neutrosophic membership into crisp subsets (e.g., choose a threshold
𝛼 for truth and interpret “membership” above that threshold as 1, else 0), and collapse the expert-opinion
dimension, the structure becomes a standard ForestSoft Set.

Proof. Consider a Neutrosophic ForestSoft Expert Set
(
F, 𝑆

)
on Forest({𝐴(𝑡 ) }). If we fix a single expert

𝑥0 ∈ 𝑋 and a single opinion 𝑜0 ∈ 𝑂 = {1, 0}, then we only look at

𝑆′ = {(𝑌, 𝑥0, 𝑜0) | 𝑌 ⊆ Forest({𝐴(𝑡 ) })} ⊆ 𝑆.

For each𝑌 ⊆ Forest({𝐴(𝑡 ) }), F(𝑌, 𝑥0, 𝑜0) is a Neutrosophic Set
(
𝑇𝑌 , 𝐼𝑌 , 𝐹𝑌

)
. By imposing a crisping procedure

(e.g., “include ℎ if 𝑇𝑌 (ℎ) ≥ 𝛼 and 𝐹𝑌 (ℎ) ≤ 𝛾, etc.”), we get a subset of 𝐻. Concretely, define

F̃(𝑌 ) =
{
ℎ ∈ 𝐻 | 𝑇𝑌 (ℎ) ≥ 𝛼, 𝐼𝑌 (ℎ) ≤ 𝛽, 𝐹𝑌 (ℎ) ≤ 𝛾

}
,

for fixed thresholds 𝛼, 𝛽, 𝛾. Then F̃ : 𝑃(Forest({𝐴(𝑡 ) })) → 𝑃(𝐻) is precisely a ForestSoft Set, since each 𝑌

is mapped to a crisp subset of 𝐻. Thus, by ignoring additional experts/opinions and converting neutrosophic
degrees into classical membership, we recover a standard ForestSoft Set structure. □
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This book is the sixth volume in the series of Collected Papers on Advancing Uncertain 
Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, 
Soft, Rough, and Beyond. Building upon the foundational contributions of previous volumes, this 
edition focuses on the exploration and development of Various New Uncertain Concepts, further 
enriching the study of uncertainty and complexity through innovative theoretical advancements 
and practical applications. 

The series is dedicated to the evolution of uncertain combinatorics, leveraging methodologies 
such as graphization, hyperization, and uncertainization. These approaches extend classical 
combinatorics and set theory by integrating and expanding upon fuzzy, neutrosophic, soft, and 
rough set theories. Through this synthesis, the series provides comprehensive frameworks to 
model and analyze the multifaceted nature of real-world uncertainties, addressing challenges 
across diverse fields of study. 

This collection explores advanced concepts in uncertain combinatorics, focusing on innovative 
frameworks such as SuperHyperGraphs, Plithogenic and Rough Sets, and Neutrosophic 
extensions. The fifteen chapters introduce hierarchical and multi-dimensional constructs, such 
as SuperHypertree-depth, HyperPlithogenic Cubic Sets, and Forest HyperRough Sets, to 
address complexity and uncertainty in decision-making, classification, and data analysis. These 
contributions offer new methodologies and applications across fields, advancing the 
boundaries of mathematical modeling. 


	Chap1_Hypertree-depth
	1 Preliminaries and Definitions
	1.1 Basic Definition of Graph Theory
	1.2 Hypergraph
	1.3 SuperHyperGraph
	1.4 Tree-depth and Hypertree-depth

	2 Result in This Paper
	2.1 n-Superhypertree-depth
	2.2 Basic Properties of SuperHypertree-depth
	2.3 Additional Property: Flattening an n-SuperHyperGraph to a Classical Hypergraph


	Chap2_Obstruction_Superhypertree
	1 Introduction
	1.1 Graph Width Parameters
	1.2 Hypergraph and SuperHyperGraph
	1.3 Our Contribution

	2 Preliminaries and Definitions
	2.1 Basic Definition of Graph Theory
	2.2 Hypergraph
	2.3 Hyperbramble and Hypertangle

	3 Result of This Paper
	3.1 HyperUltrafilter and Hypertangle

	4 Additional Result: SuperHyperTree-width and SuperHyperPath-width
	4.1 SuperHyperTree-width
	4.2 Obstruction for SuperHyperTree-width


	Chap3_Hypertree-length_Breadth
	1 Preliminaries and Definitions
	1.1 Hypergraph and SuperHyperGraph
	1.2 Tree-length and Tree-breadth
	1.3 SuperHyperTree Decomposition

	2 Result in This Paper
	2.1 Hypertree-length and Hypertree-breadth
	2.2 Superhypertree-length and Superhypertree-breadth

	3 Future Tasks: Uncertain Graph

	Chap4_Extend_plithogenic
	1 Short Introduction of this paper
	1.1 Plithogenic Sets
	1.2 Our Contribution in This Paper

	2 Preliminaries and Definitions
	2.1 Power Set
	2.2 Plithogenic Set
	2.3 HyperPlithogenic Set and SuperHyperPlithogenic Set
	2.4 Extended Plithogenic Set

	3 Results in This Paper
	3.1 Extended HyperPlithogenic Sets
	3.2 Extended n-SuperHyperPlithogenic Sets

	4 Additional Result: Extended Plithogenic Graphs
	4.1 Extended Plithogenic Graphs
	4.2 General Extended Plithogenic Graph


	Chap5_Double_superhypersoft_set
	1 Preliminaries and Definitions
	1.1 SuperHypersoft Set and Treesoft Set
	1.2 Double-Framed Hypersoft Set

	2 Result of this Short Paper
	2.1 Double-Framed Superhypersoft set
	2.2 Double-Framed Treesoft Set


	Chap6_Plithogeniccubicsets
	1 Preliminaries and Definitions
	1.1 Plithogenic Set
	1.2 Plithogenic Cubic Set

	2 Results of This Paper
	2.1 HyperPlithogenic Cubic Set (HPCS)
	2.2 n-SuperHyperPlithogenic Cubic Set


	Chap7_L-FuzzySet
	1 Preliminaries and Definitions
	1.1 Uncertain Set

	2 Results of This Paper
	2.1 L-neutrosophic set and L-plithogenic set
	2.2 Nonstationary Neutrosophic Set and Nonstationary Plithogenic Set


	Chap8_Forest_superhyperRough_set
	1 Short Introduction of this Paper
	1.1 Plithogenic Sets and Rough Sets
	1.2 Our Contribution in This Paper

	2 Preliminaries and Definitions
	2.1 Plithogenic Set
	2.2 HyperPlithogenic Set and SuperHyperPlithogenic Set
	2.3 Rough Set, HyperRough Set, and Superhyperrough set

	3 Results of This Paper
	3.1 Forest n-Superhyperstructure
	3.2 Forest n-SuperhyperPlithogenic Set
	3.3 Forest n-SuperHyperRough Set

	4 Future Research: Various Rough Sets

	Chap9_ForestPlithogenicSet
	1 Preliminaries and Definitions
	1.1 Fuzzy Set
	1.2 Neutrosophic Set
	1.3 Plithogenic Set
	1.4 Treerough Set
	1.5 Soft Set and TreeSoft Set

	2 Results in This Paper
	2.1 ForestFuzzy Set
	2.2 ForestNeutrosophic Set
	2.3 ForestPlithogenic Set
	2.4 ForestRough Set


	Chap10_Symbolicneutrosophic
	1 Preliminaries and Definitions
	1.1 Plithogenic Set
	1.2 Symbolic Plithogenic Set

	2 Results of This Paper
	2.1 Symbolic HyperPlithogenic Set
	2.2 Symbolic HyperPlithogenic Algebraic Structure


	Chap11_N_superhypersoft_set
	1 Preliminaries and Definitions
	1.1 SuperHypersoft Set and Treesoft Set
	1.2 N-soft set and N-hypersoft set
	1.3 Bijective Soft Set and Bijective Hypersoft Set

	2 Result of this Paper
	2.1 N-SuperHypersoft Set
	2.2 N-Treesoft Set
	2.3 Bijective SuperHypersoft Set
	2.4 Bijective Treesoft Set


	Chap12_plithogenic_soft_rough
	1 Preliminaries and Definitions
	1.1 Fuzzy Set and Neutrosophic Set
	1.2 Plithogenic Set
	1.3 Fuzzy Rough set and Neutrosophic Rough set

	2 Result: Plithogenic Rough Set
	2.1 Plithogenic Rough Set


	Chap13_Plithogenic_Triplet
	1 Preliminaries and Definitions
	1.1 Neutrosophic Set and Plithogenic Set
	1.2 Neutrosophic Duplet
	1.3 Neutrosophic Triplet

	2 Results of This Paper
	2.1 Plithogenic Duplet
	2.2 Plithogenic Triplet


	Chap14_SuperRough
	1 Preliminaries and Definitions
	1.1 SuperFuzzy Set

	2 Result of this Paper
	2.1 SuperVague Set
	2.2 SuperRough Set
	2.3 SuperHyperRough Set


	Chap15_PlithogenicTreesoftSet
	1 Preliminaries and Definitions
	1.1 Neutrosophic Set
	1.2 Soft Set and TreeSoft Set
	1.3 Neutrosophic Soft Set
	1.4 Neutrosophic Soft Expert Set

	2 Results in This Paper
	2.1 Neutrosophic Treesoft Set (Revisit)
	2.2 Neutrosophic TreeSoft Expert Set

	3 Additional Results of This Paper
	3.1 ForestSoft Set (Revisit)
	3.2 Neutrosophic ForestSoft Set
	3.3 Neutrosophic ForestSoft Expert Set


	Pages from AdvancingUncertainCombinatorics.pdf
	Blank Page
	Blank Page




