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Preface 

The previous volume in this series, An Introduction to the Smarandache Function, 
also by Erhus Cniversity Press, dealt almost exclusively with some "basic" consequences 
of the Smarandache function. In this one, the universe of discourse has been expanded to 
include a great many other things 

A Smarandache notion is an element of an ill-defined set, sometimes being almost an 
accident oflabeling. However, that takes nothing away from the interest and excitement 
that can be generated by exploring the consequences of such a problem It is a well-known 
cliche among writers that the best novels are those where the author does not know what 
is going to happen until that point in the story is actually reached. That statement also 
holds for some of these problems. In mathematics, one often does not know what the 
consequences of a statement are. Cnlike a novel however, there are no complete plot 
resolutions in mathematics as there are no villains to rub out. As the French emphatically 
say in another context, "Vive la difference'" 

Hopefully, as you move through this book, some of the same spirit of exploration felt by 
the author will be part of your experience. For the reading ofa book is a form of mind­
joining, where the author tries to create the opportunity for a shared experience And the 
creation of this book was very much an adventure for this author. If anything here gives 
you the urge to comment, feel free to do so at the address given below or to the people at 
Erhus Cniversity Press. Any comments regarding future directions or unsolved problems 
are especially solicited. 

Again, I would like to thank R \fuller and all those who toil so diligently at Erhus 
Cniversity Press. Dr. \fuller for his encouragement, support and frequent letters 
containing new material for study and everyone else for everything else. It may be a cliche 
to say that many work very hard behind the scenes to create the product you see, but in 
this case it is very true As is ':lways the case, it is the responsibility of the author to catch 
and remove any action of the ubiquitous error demons. 

Rather than attempt to cite them in the text, I will now extend my gratitude to all those 
who combed the Smarandache archives for much of the material explored here. 

Charles T Le 
L Seagull 
Jorge Castillo 
Ylario Hernandez 
Sylvester Smith 
Jerry Brown 
C Dinca 
Stefan Smarandoiu 
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Ylarian Popescu 
Florentin Popescu 
Peter Castini 
A. Srinivas 
YI.R. Popov 
Hans Kaufmann 
George Raymond 

Thanks must again be extended to Brian Dalziel and Toufic Yloubarek, my supervisors 
who agreed to let me use Decisionmark resources in the pursuit of my professional 
objectives Sometimes, there is simply no substitute for significant computer power. 

Others in my queue of those to thank include all who have helped me in the past Special 
thanks go to Leo Lim, professor extraordinaire who truly believed in me and my abilities. 
It takes real effort to fail when people of his quality are teaching you. 

Finally, I would like to dedicate this book to my mother Paula Ashbacher and my 
beautiful daughter Katrina. \1y mother, for her sense in teaching me things when I did not 
yet have the good sense to understand. If you are unable to hit a curveball or dunk a 
basketball, the next best skill is a love of reading, although I still fantasize about the first 
two. Katrina for just being Katrina. Much more than the apple of my eye, she is a 
complete orchard. 

:\ovembeL 1995 
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Chapter 1 

Smarandache Sequences 

In the time since it was first published[ 1], the Smarandache function 

SCm) = n, where n is the smallest number such that m divides n'. 

and associated consequences has spawned many new branches of mathematics. A previous 
volume in this series[2] introduced the function and explored some of the problems 
derived from the definition. 

In this book, we will explore several avenues of what are called Smarandache notions. 
The obvious question at this point is, "What is a Smarandache notion?" The answer is both 
simple and complex. A Smarandache notion is a problem in one of the following 
sets: 

a) A problem posed by Florentin Smarandache. 

b) A problem posed by someone else that is an extension ofan element of set (a). 

See Some Notions and Questions in Number Theory, edited by C Dumitrescu 
and V Seleacu, Erhus University Press, Glendale, 1994. 

As should be clear from the statements above, a Smarandache notion may not directly or 
even indirectly involve the Smarandache function. In fact, most of those dealt with here do 
not. All of the problems presented in this book were either published in [3],[4] or [5] or 
appeared in a personal correspondence. The author has attempted to group them as much 
as possible, but there is no distinct order. 

In this first chapter, we will concentrate on notions that involve sequences, moving on to 
other, more specific points in the second. 

The first problem we will deal with is number (6) in [5]. 

Smarandache permutation sequence: 

12,1342.135642, 13578642, 1357910864~ 135791112108642,. 

Or as a formula 
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SPS(n) = 135 (2n-3)(2n-l )(2n)(2n-2)(2n-4) 642 

where SPS is an acronym for Smarandache Permutation Sequence. 

Note on notation: As a general principle, acronyms will be created for all sequences. 
Consult appendix I for a complete list of all acronyms, the full names of the sequences and 
the page number where the sequence first appears. For purposes of notation the acronym 
will be used to denote the entire set and the acronym with a subscript will refer to a 
specific element of that set. For example, 

SPS = { 12, 1342, 135642, 13578642, 13579108642, 135791112108642, 

where 

SPS(3) = 135642. 0 

Question Is there any perfect power among these numbers? I. e. are there integers m, k 
and n such that 

mk = SPS(n) 

With the hint 
The last digit must be 2 for exponents of the form 4k + I or 8 for exponents of the form 

4k + 3. 

And the final statement: "Smarandache conjectures: not" 0 

The origin of the hint provides direction in the search for a proof, so it is repeated here. 

Let m be an arbitrary integer. The terminal or rightmost digit dO of this number must be in 
the set { 0,1,2,3,4,5,6,7,8,9} Ifm is taken to any integral power, the digit in the terminal 
position of the result is determined only by the remainder upon division by 10 of the 
terminal digit raised to that power. Taking each in turn and determining what values the 
powers take 

o to any power is zero 
to any power is one 

21 modulo 10 = 2 
22 modulo 10 = 4 
23 modulo 10 = 8 
24 modulo 10 = 6 
25 modulo 10 = 2 
26 modulo 10 = 4 
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etc. 
31 modulo 10 = 3 
32 modulo 10 = 9 
33 modulo 10 = 7 
34 modulo 10 = I 
35 modulo 10 = 3 
36 modulo 10 = 9 

etc. 
4 1 modulo 10 = 4 
42 modulo 10 = 6 
43 modulo 10 = 4 
44 modulo 10 = 6 

etc. 
51 modulo 10 = 5 
52 modulo 10 = 5 

etc. 
61 modulo 10 = 6 
62 modulo 10 = 6 

etc. 
71 modulo 10 = 7 
72 modulo 10 = 9 
73 modulo 10 = 3 
74 modulo 10 = I 
75 modulo 10 = 7 

etc. 
81 modulo 10 = 8 
82 modulo 10 = 4 
83 modulo 10 = 2 
84 modulo 10 = 6 
8s modulo 10 = 8 

etc. 
91 modulo 10 = 9 
92 modulo 10 = I 
93 modulo 10 = 9 

etc. 

This cyclic behavior is typical and provides a powerful proof mechanism when the 
terminal numbers are known to be fixed. From this, the following lemma is obvious. 

Lemma 1. The only candidates for a solution to the equation 

mk = SPS(n) 
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are when m terminates in 2 and k is of the form 4k + I or m terminates in 8 and k is of the 
form 4k -'- 3. 

The search can be continued by examining the possibilities for all possible two digit 
combinations d I dO for the last two digits of m to any integral power. However, the 
number of possibilities grows rapidly, so the search is best left to a computer. A simple 
program was written that allows for the examination of all possible values of 

(10 * d + 2)k modulo 100 

and 

(10 * d + 8)k modulo 100 

for d a decimal digit All products cycle, for example 

121 modulo 100 = 12 
122 modulo 100 = 44 
123 modulo 100 = 88 
124 modulo 100 = 56 
125 modulo 100 = 72 
126 modulo 100 = 64 
127 modulo 100 = 68 
128 modulo 100 = 16 
129 modulo 100 = 92 
12 10 modulo 100 = 4 
1211 modulo 100 = 48 
1212 modulo 100 = 76 
1213 modulo 100 = 12 

has a 12 member cycle 

In all cases examined, there was no combination where the value modulo 100 was 42. 
Since this search was exhaustive, we have proven our first theorem. 

Theorem 1: There are no integers m,k and n such that 

SPS(n) = mk . 

Unsolved problems (27) and (28) in [4] are similar to each other. 
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27. Smarandache Square Complements 

Definition 1: For each integer n, the Smarandache Square Complement SSC(n) is the 
smallest number k such that nk is a perfect square. 

The first few numbers in the sequence are 

1,2,3,1,5,6,7,2,10,11,3,14,15,1,17, 0 

28. Smarandache Cube Complements 

Definition 2: For each integer n, the Smarandache Cube Complement SCC(n) is the 
smallest integer k such that nk is a perfect cube. 

The first few numbers in this sequence are 

1,4,9,2,25,36,49,1,3,100,121,. 0 

The computation of the elements ofSSC and SCC are both straightforward. We start first 
with sse 

Algorithm 1: 

Input A positive integer n. 
Output SSC(n), the smallest integer k such that kn is a perfect square. 

Step 1. Ifn = 1 return k = 1 

Else 

Step 2: Factor n into the product of its' prime factors n = pflP2'2 p~r 

Step 3 Set k = 1 

Step 4 For i=1 to r. 

Step 4.1· If oi is odd then set k = k * Pi 

Step 4.2 End of for loop. 

Step 5: Return k 

The correctness of this algorithm should be obvious from the definition Clearly, ifn is a 
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perfect square, SSC(n) = I 

Fixed points of SSC(n) are easily determined. 

Theorem 2: The fixed points of SSC(n) are I and all numbers where every prime factor is 
to the first power 

Proof: Easily SSC(I) = I lfn has a prime factorization where every prime is to the first 
power, then it is clear that SSC(n) must contain exactly one instance of every prime in n 
and SSC(n) = n. 

Now, consider a number that has at least one prime factor that appears more than once. 
Call that prime p. 

Case 1: P appears an even number of times in n. 
Therefore, it is not necessary to add an instance ofp to SSC(n) and since there is 
at least one prime factor they do not share, n =1= SSC(n). 

Case 2: P appears an odd number of times in n, where this number is at least three. 
Therefore, the construction of SSC(n) will require one instance of p. However, 
since the number of instances ofp is different in nand SSC(n), the values must 
differ. D 

Another interesting property of this function concerns the range of incremental 
differences. 

Theorem 3: Let D = { did = ! SSC(n+ I) - SSC(n) i } D is an infinite set or equivalently, 
there is no number M such that M > d V d E D. 

Proof: Contrary to the conclusion of the theorem, assume that such an M exists Choose 
Pk > M + 1. Form the square number created by the product of all primes less than or 
equal to Pk 

where it is known that SSC(r) = I 

Now consider the number r -'- 1. Since perfect squares are not sequential, r + I cannot 
also be a perfect square Therefore, there must be at least one prime factor q of r -'- 1 that 
is to an odd power. Furthermore, q > Pk. Using the algorithm, we can build the 
inequality 

SSC(r-'-l) > q > Pk > ~ + I 
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and it follows that 

SSC(r-"-l) - SSC(r) > M 

contradicting the choice ofM 0 

Corollary 1: There are no positive integers M and k such that 

~ SSC(x) - SSC(y). ::; Mx - yik 

In other words, SSC(x) does not satisfY the Lipschitz condition for any exponent k 

Proof: 'x - y I = I in the previous theorem. 0 

Examining a few of the values of SSC(n) we find several instances where there are three 
fixed points in succession. For example, 

SSC(5) = 5, SSC(6) = 6 = 2*3, SSC(7) = 7 

SSC(2l) = 21 = 3*7, SSC(22) = 22 = 2*11, SSC(23) = 23 

SSC(57) = 57 = 3*19, SSC(58) = 58 = 2*29, SSC(59) = 59 

SSC(69) = 69 = 3*23, SSC(70) = 2*5*7 , SSC(71) = 71 

This is the maximum possible number of consecutive fixed points and that fact is the topic 
of the next theorem. 

Theorem 4: There is no quadruple (m,m-+- l,m-+-2,m+3) such that all four are fixed points 
ofSSC(n) 

Proof: At least two of the numbers must be even. Without loss of generality, assume m 
and m-+-2 are both even. To be a fixed point of SSC(n), m must have every prime factor to 
the first power, including 2. Therefore, m = 21<, for k some odd integer. It then follows 
that m -+- 2 = 2k -+- 2 = 2(k -;- I) where k -'- I is also even. M -'- 2 then must have more than 
one instance of 2 as a factor and cannot be a fixed point of SSC(n). 0 

The previous examples of triples of fixed points hint at a possible solution to the first of 
our list of unsolved problems 

l:nsolved Problem 1: There are an infinite number of triples (m,m -'- I,m -'- 2) such that 
each is a fixed point of SSC(n) 
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The algorithm to compute the values of SCqn), the cubic complements of the integers. is 
similar to that of SSqn) 

Algorithm 2: 

Input A positive integer n 
Output SCqn), the smallest integer k such that kn is a perfect cube 

Step 1. If n = I return k = 1 

Else 

Step 2 Factor n into the product of its' prime factors n = pfJ P22 p~r 

Step 3 Set k = 1 

Step 4 For i=1 to r 

Step 4.1. If oi is of the form 3j.,-1 then set k = k * PI * Pi 
Else: 

Step 4.2 If oi is of the form 3j+2 then set k = k * Pi 

Step 5 Return k. 

Clearly, if n is a perfect cube, SCqn) = 1 

The set of fixed points of SCqn) is decidedly different from that of SSqn) 

Theorem 5: The only fixed point of SCqn) is n = I. 

Proof: Clearly, scql) = 1 Ifn > I, it can be factored into the product of its' prime 
factors If we choose an arbitrary prime q in that factorization, there are three possible 
cases when building SCqn) 

Case 1: The exponent on q is evenly divisible by 3. Then no instance of q will be placed in 
SCqn), so SCqn) -# n. 

Case 2: The exponent on q is of the form 3 j+ I Then two instances of q will be placed in 
SCqn). Since 2 is of the form 3j.,-2, SCC(n) -# n. 

Case 3: The exponent on q is of the form 3j+2 Then one instance of q will be placed in 
SCC(n). Since 1 is of the form 3j.,-l, SCC(n) -# n. 0 
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Theorem 6: Let D = { d : d = : SCC(n+ I) - SCC(n) i }. D is an infinite set or equivalently, 
there is no number M such that M > d, V d E D. 

Proof: Apply the reasoning of theorem 3, replacing all squares by cubes. D 

Corollary 2: There are no positive integers M and k such that 

• SCC(x) - SCC(y) , :s; Mx _ yk 

In other words, SCC(x) does not satisfy the Lipschitz condition for any exponent k. 

Proof: Same reasoning as that for corollary I. D 

The functions SSC(n) and SCC(n) share one property. 

Theorem 7: There is no pair of integers (n,n+ I) such that 

SSC(n) = SSC(n+l) or SCC(n) = SCC(n+l). 

Proof: SSC(l) = I and SSC(2) = 2, SCC(l) = I and SCC(2) = 4. Therefore, we can take 
n > I which is composed of prime factors. Clearly, nand n+ I cannot both be perfect 
squares or perfect cubes so it is not the case that SSC(n) = I = SSC(w-l) or 
SCC(n) = I = SCC(n-1) If either n or n+ I is a perfect square(cube) the other is not and 
therefore not equal to I Therefore, the only remaining possibility is when both nand n-I 
are not perfect squares( cubes) 

Clearly, nand n, I have distinct prime factors And so, when SSC(n) or SCC(n) is being 
computed, a prime factor q ofn is encountered that is included in SSC(n) or SCC(n) 
Since q is not a factor ofn-I, q will not appear in SSC(n-l) or SCC(n+ I), forcing 
SSC(n) f= SSC(n-l) and SCC(n) f= SCC(n+l). D 

The generic form of this problem appears as (24) in [5]. 

24 Smarandache m-Power Complements 

Definition 3 For each integer n, find the smallest integer k such that nk is a perfect 
m-power. 

Additional problems derived from this definition will not be dealt with here. 

Problem (71) in [5] deals with those numbers whose digits can be permuted to form a 
square. 
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71 Smarandache Pseudo-Squares of the Third Kind 

Definition 4: A number is a Smarandache Pseudo-Square of the third kind(SPS3) if 
some nontrivial permutation of the digits is a square. 

Question How many Smarandache Pseudo-Squares of the Third Kind are square 
numbers,) 

Conjecture There are an infinite number. 0 

Theorem 8: There are an infinite number of perfect squares n such that a nontrivial 
permutation of the digits is a square. 

Proof: The infinite family of numbers 

(101)2 = 10201 
(1000 1)2 = 10002000 I 
(IOOOOOlf = 1000002000001 

etc. 

are all palindromic and by definition a nontrivial permutation that is a reflection about the 
central digit 2 yields a square. Other such infinite palindromic families of squares exist 0 

Problem (74) in [5] is similar. 

74) Smarandache Pseudo-Cubes of the Third Kind 

Definition 5: A number is a Smarandache Pseudo-Cube of the Third Kind(SPC3) if 
some nontrivial permutation of the digits is a cube. 

Question How many Smarandache Pseudo-Cubes of the Third Kind are cubes') 

Conjecture. There are an infinite number. 0 

Theorem 9: There are an infinite number of integers n such that a nontrivial permutation 
of the digits ofn is a cube. 

Proof: Each element of the infinite family of palindromic numbers 

(101)3 = 1030301 
(1000 1)3 = 100030003000 I 
(1000001)3 = 1000003000003000001 

etc. 
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can be nontrivially permuted to form a cube. Other such infinite families may exist 0 

The general form of this problem is also given as (77)[5]. 

77. Smarandache Pseudo-m-Powers of the Third Kind 

Definition 6: A number is a Smarandache Pseudo-m-Power of the Third Kind if some 
nontrivial permutation of the digits is an m-power, m :;0. 2 

Question How many Smarandache pseudo-m-powers of the third kind are m-powers') 

Conjecture There are an infinite number. 0 

Gsing the same family as that for squares and cubes. 

(101)4 = 104060401 
(1000 1)4 = 1000400060004000 I 
(100000 1)4 = 100000400000600000400000 I 

etc. 

we have a solution for the case m = 4 

However, this family fails for powers greater than 4. 

(101)5 = 10510100501 
(101)6 = 106152015060 I 

In fact, no such family of palindromic powers is known for any power greater than 4 

Although, if we take the definitions literally, this problem has a trivial solution for all 
values ofm. 

10m is an m power that can be nontrivially permuted into the number 1m
, provided we 

delete the leading zeros. 

:'v1ore generally, any number of the form lokm can be nontrivially permuted into the 
number 10m 

:'v1odifications of this problem could include the restriction that there be no leading zeros 
in the result of the permutation. 

An additional notion similar to that of the previous problems concerns odd numbers and 
all three appear in[5]. 
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84) Smarandache Pseudo-Odd Numbers of the First Kind 

Definition 7: A number is said to be a Smarandache Pseudo-Odd Number of the First 
Kind(SPO I) if some permutation of the digits is an odd number. The identity 
permutation is allowed. 

Clearly, a number need contain only one odd digit to be a member of this set. It is just as 
obvious that more numbers are pseudo-odd than not and the actual differences are the 
subject of the next theorem. 

Theorem 10: If a positive integer n is chosen at random, the odds are overwhelming that 
n is a pseudo-odd number of the first kind. In fact, the limiting probability is I 

Proof: Consider all numbers that are made ofk digits, where the leading digit is nonzero. 
It is a simple matter to show that there are 9 x IOk-l such numbers. For our purposes here, 
we will determine how many of these numbers are not pseudo-odd. To do this, we need 
the following principle of counting. 

Counting Principle 1: Given two independent tasks, the number of ways in which both 
can be done is the product of the number of ways each can be done separately. 
Specifically, if task a can be done m ways and b n ways, then the number of ways both a 
and b can be done is given by 

m*n. 0 

We will now use counting principle I to determine how many k-digit numbers there are 
that contain no odd digit. Since zero cannot be the leading digit, there are four choices for 
the first one. Every even digit can be used in all other positions, so there are five choices 
for each additional position. C sing the counting principle, we then have a total of 

4 * 5'-[ 

k-digit numbers containing no odd number. The probability of a random k-digit number 
containing all even numbers is then 

4*5"-: _ .f 
-- -~-

9* 10;;': 9*21::-: 

which goes to zero in the limit as k - x. 0 

85) Smarandache Pseudo-Odd :\umbers of the Second Kind 

Definition 8: An integer n is said to be a Smarandache Pseudo-Odd :\umber of the 
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Second Kind(SP02) ifit is even and some permutation of the digits is odd. 

Theorem 11: If a positive even integer n is chosen at random, the odds are overwhelming 
that n is a pseudo-odd number of the second kind. In fact, the limiting probability is 1 

Proof: Ifwe start with all k-digit numbers again, it is easy to show that 

9 * IOk-2 * 5 

of them are even. The number ofk-digit numbers containing all even digits is still 

so the fraction defining the probability is 

which also goes to zero in the limit as k -> 00. 0 

The last of these three problems defines Smarandache Pseudo-Odd Numbers of the Third 
Kind. 

86) Definition 9: A positive integer n is said to be a Smarandache pseudo-odd number of 
the third kind if some nontrivial permutation of the digits is an odd number. 

It should be clear that the probability that a randomly chosen positive integer is pseudo­
odd of the third kind is also one. 

Problems (88), (89) and (90) of[5] all deal with similar definitions of pseudo-even 
numbers of the first, second and third kinds. Only the first definition will be given 

88) Smarandache Pseudo-Even numbers of the First Kind 

Definition 10: A number n is a Smarandache Pseudo-Even Number of the First 
Kind(SPE I) if some permutation of the digits of n is even. 

The only problem that we will deal with involving this definition is the following. 

Theorem 12: If a positive integer n is chosen at random, the probability that n is both a 
pseudo-odd number of the first kind and a pseudo-even number of the first kind is 1 

Proof: For n to be simultaneously a pseudo-odd and a pseudo-even number, it must 
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contain both an odd and even digit. C sing the basic principles of counting, the number of 
k-digit numbers containing only odd digits is given by 

The total number of k-digit number, that are made up of all odd or all even digits is then 

so the probability that a random k-digit integer contains all even or all odd digits is 

which also goes to zero in the limit as k ---+ 00. 0 

Similar conclusions can be reached for pseudo-odd and pseudo-even numbers of the 
second and third kind. 

Problem (91) of[5] is similar and provides the lead in for an entire series of problems. 

91) Smarandache Pseudo-Multiples of the First Kind (of 5) 

Definition 11: A number n is a Smarandache Pseudo-\1ultiple of the First Kind of 
5(SPMI5) if some permutation of the digits ofn is a multiple of5 

A number is a multiple of 5 if and only if it terminates with 0 or 5, so a number is a 
pseudo-multiple of 5 of the first kind if it contains either a 0 or as. It is sufficient to prove 
that nearly all numbers contain a 5 to verifY that nearly all are divisible by 5. 

Theorem 13: If a positive integer is chosen at random, the probability that it is a pseudo­
multiple of 5 of the first kind is I. 

Proof: Let m be a k-digit positive integer and we will determine how many k-digit 
numbers do not contain as. There are 8 choices for the leading digit and 9 choices for the 
remaining k-I digits. Using the principle of counting, the total number of ways one can 
construct a k-digit number without using the digit 5 is 

The number of ways that a k-digit number can be constructed is given by 

9* 10k- I 
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So the number of ways one can construct a number using at least one instance of the digit 
5 is given by 

9*IOk-1 _ 8*9k-1 

And the probability that a k-digit integer chosen at random contains at least one 5 is given 
by the ratio 

9*10,,0. _ 8*9"': 

9*10"-· 

Which can be rewritten as 

8*gk.: 
- 9*10k": 

and which goes to one in the limit as k -> 00. 0 

Corollary 3: Let d be a decimal digit in the set { 0,1,2,3,4,5,6,7,8,9} Ifm is a positive 
integer chosen at random, then the probability that m contains d is 1 

Proof: If dE { 1,2,3,4,5,6,7,8,9 } then the counting process of theorem 13 is unaffected if 
5 is replaced by d, so the same conclusion follows. If d = 0, the counting is slightly 
modified as zero cannot be the leading digit. The number of ways in which a k-digit 
number can be created without using the zero is given by 

which has no affect on the final result. 0 

Coupling this with the results for the even numbers, we have the first instances of the 
following general problem, which is (94) of[5] 

94) Smarandache Pseudo-Mulliples of the First Kind ofp, where p > 1 is an integer. 

Definition 12: A number m is a Smarandache Pseudo-Multiple of the First Kind of 
p(SPMIP) if some permutation of the digits ofm is a multiple ofp. 

From previous work, we already know that nearly all numbers are pseudo-multiples of the 
first kind of 2 and 5. However, that does not hold in general, as can be seen from the 
following theorem. 

Theorem 14: Ifm is a randomly chosen integer, the probability that m is a pseudo­
multiple of the first kind of 3 is * 
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Proof: The following number theoretic result is well-known 

A positive integer is evenly divisible by 3 if and only if the sum of the digits is evenly 
divisible by 3 

If an integer m is chosen at random, the probability that m is evenly divisible by 3 is 
known to be ~ Since a permutation of the digits has no affect on the sum of the digits, the 
probability is unaffected by any permutation operation. 0 

Which is a lead in to the second unsolved problem. 

l:nsolved problem 2: 
Given an arbitrary integer p, determine the probability that an integer chosen at random is 

a Smarandache Pseudo-Multiple of the First Kind ofp. 

Another sequence that appears in [5] deals with numbers and their divisors 

15) Smarandache Simple Numbers 

Definition 13: An integer n is said to be a Smarandache Simple Number if the product 
of its proper divisors is less than or equal to n. 

Generally speaking, n has one of the forms n = p, n = p2, n = p3 or n = pq, where 
p and q are distinct primes. 0 

It is easy to prove the statement concerning the forms of the simple numbers. 

Theorem 15: All Smarandache Simple Numbers are either a prime, square of a prime, 
cube of a prime or the product of two distinct primes. 

Proof: Let n > 1 be an integer The proof will be split into two subcases. 

Case 1: n = pk where p is a prime. If k = 1, then 1 is the only proper divisor When k = 2, 
the proper divisors are 1 and p, with product p. Ifk = 3, the proper divisors are 1, p and 
p2, with product p3 In general, ifk is the exponent, the product of the proper divisors is p 
to the power 

Where the sum is ((k-l) * k)/2, known to be greater than k for k > 3. 

Case 2: N is the product of at least two distinct primes. If n = pq, then the proper divisors 
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are 1, P and q, with product pq. However, ifn = pqr where all are primes and r is not 
necessarily distinct from p and q, the proper divisors are 1, p, q, r, pq, pr, and qr, with 
product p3q3~ This is clearly larger than n. 0 

Given that the terms of the sequence have these specific forms, it is easy to count how 
many simple numbers are less than a given number. The bound is defined by the number 
theoretic function 

heX) 

which is the number of primes less than or equal to x. 

Theorem 16: Ifx is any integer, then the number of Smarandache Simple Numbers less 
than or equal to x is given by the formula 

,,(x) + Cyl) + h(Sqrt(X)) + ,,(cuberoot(x)) 

Where (:) is the number of independent ways n items can be chosen from a set of m 
items, sqrt(x) is the square root function and cuberoot(x) is the cube root. 

Proof: This is an exercise in counting the number of integers that satisfy each of the four 
types in the previous theorem. 

,,(x) is the number of primes less than or equal to x. 

,,(sqrt(x)) is the number of primes whose square is less than or equal to x. 

7f(cuberoot(x)) is the number of primes whose cube is less than or equal to x. 

(TiXl) is the number of ways 2 distinct primes can be chosen from all primes less than or 

equal to x. 

By theorem 15, the sum of these four numbers is then the number of simple numbers less 
than or equal to x. 0 

Unsolved problem (44) of[4] deals with primes, but in this case how far away a given 
integer is from the nearest prime. 

44) Smarandache Prime Additive Complements: 

Definition 14: For each positive integer n, SPAC(n) is the smallest number k such 
that n-'-k is prime. 
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The first thirty numbers in the SPAC(n) sequence are 

1,0,0,1,0, I ,0,3,2, I ,0, 1 ,0,3,2, I ,0, 1 ,0,3,2, 1 ,0,5,4,3,2, LO, 1 

Theorem 16: The range of SPAC(n) is all positive numbers. 

Proof: It is well-known that there are arbitrarily large gaps between primes. Therefore, it 
is possible to find two primes p > q such that p - q > M for any positive integer M. 
From this SPAC(p-"-l) = p-q-I, SPAC(p~2) = p-q-2, . ,SPAC(q-l) = 1, creating a 
sequence from k = p-q-I down to 1 Since k can be made arbitrarily large, all positive 
integers are included. D 

:'oIotel: "otice that the above theorem does not state that every possible odd number can 
be used for k Which would be equivalent to proving that every even number is the 
difference between two primes. And that problem is still unsolved[6] 

:'oIote 2: Given that the gap can be made arbitrarily large, the following result is unaffected 
if the definition is the nearest prime rather than the nearest prime greater than or equal to 
n. 

Computing the values of the Smarandache function involves the values the factorial 
function 

n' = n*(n-I )*(n-2)* * 1 

Given the following well-known theorem. 

It follows that if SCm) = n, then for any number k, where S(k) < n, S(km) = n. This leads 
to multiple solutions to equations involving the Smarandache function. One component of 
counting the number of solutions involves determining how many instances of a prime 
appear in a given factorial product 

The following sequence, (61) of [5], involves counting how many powers of two appear 
in the positive integers 

61) Smarandache Exponents of the Power 2 

Definition 15: SE2(n) = k if2k divides n but 2k
-

1 does not 
= ° if 2 does not divide n 
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The values of this sequence for the first 32 positive integers are 

0, I ,0,2,0, I ,0,3,0, I ,0,2,0, 1 ,0,4,0, 1,0,2,0, 1 ,0,3,0, 1,0,2,0, 1,0,5, 

containing an obvious pattern. 

Theorem 18: Let n be a positive integer. Then the number of instances of the prime 
number 2 in n ' is given by 

n 

L SE2(i) 
i=j 

Proof: By the definition, n' contains every number less than or equal to n as a factor. For 
any given number k, SE2(k) is the number of instances of2 as a factor ofk The sum of all 
the values of SE2(i) is then the total number of instances of 2 in all numbers less than or 
equal to n 0 

There is a very simple algorithm to compute the sum of theorem 18 

Algorithm 3: 
Input A positive integer n. 

n 

Output ~umber of twos = L SE2(i) 
i-I 

Variables two_toy ower is the current power of two in the division. 

Step I Make the following integer assignments 
number_oCtwos = 0; 
two_toyower = 2; 

Step 2 While(two_toyower ~ n) 
Step 2.1 number_oCtwos = number_of_twos + (n / two_toyower); 
Step 2.2 two_toyower = two_toyower*2; 
Step 2.3 End ofloop. 

Step 3· End of algorithm. 

Proof of algorithm: Dividing n by 2 will count the number of times a number evenly 
divisible by 2 appears in the list 

1,2,3,4, ,n 

Dividing n by 4 will count the number of times a number evenly divisible by 4 appears in 
the list. Since one of those instances of2 was already included in the previous step, we 
add only one per instance of divisibility by 4. Repeating by dividing by 8 will count the 
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number of times a number appeared that was divisible by 8. Since two of those instances 
of 2 have already been counted, we need add only one. Continuing until 
two _to yower > n is equivalent to continuing until there are no more powers of 2 to 
count. 0 

~ote: The above algorithm can be used for any arbitrary prime p. Simply change the line 

to 

and the line 

Step 2.2: two_toyower = two_toyower*2; to 

Step 2.2 two _to yower = two _to yower*p; . 

Which allows for the treatment of the general problem, (63) in [5]. 

63) Smarandache Exponents of Power p 

Definition 16: SEp(n) = k ifpk divides n and pH does not. 
= 0 if P does not divide n. 

Definition 17: Use the notation TPp(n) where p is prime to denote the function 

n 

TPp(n) = L SEp(i) 
i~l 

= 0 ifp > n. 

ifp ::; n 

Which as has been mentioned before, would be the number of instances of the prime factor 
p that occur in n! 0 

This function has many uses when dealing with some of the consequences of the 
Smarandache function Sen), most notably, the number of solutions to equations of the 
form 

SCm) = n. 

To demonstrate this, we need two other well-known theorems concerning the 
Smarandache function. For proofs of these theorems, see[2]. 

Theorem 19: Ifp is a prime, then S(p) = p. 
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Theorem 20: SCm) 'S m for all positive integers m. 

Ifp is a prime, we know by theorem 19 that S(p) = p. Let TP2 (p) = ill. Then 2m
: pi 

Applying theorem 17, it follows that S(2i * p) = S(p) = p, for 1 'S j 'S ill. Therefore, 
there are m solutions to S(np) = p where n is a power of2. Now, let TP3 (p) = r so that 
there are r solutions to S(np) = p where n is a power of three. Furthermore, there would 
be mr solutions to the equation S(np) = p where n contains a power of two and a power 
of three as a factor. 

This method can be continued for all primes less than p, but computing the number of 
solutions is not our point here. Suffice it to say that the number of integers m such that 

SCm) = p 

grows rapidly as p does. 

Sometimes it is advantageous to use a computer to compute the terms of a sequence. 
Then, by examining the terms, it may be possible to discern a significant pattern. Peter 
Castini sent the author an unpublished manuscript[7] in which several sequences are 
defined. The stated challenge was to write computer programs to compute the terms of 
the given sequences. 

Many of the series of sequences listed in the paper are called Smarandache-Recurrence 
Type Sequences and involve sums of powers. 

Definition 18: The Smarandache-Recurrence Type Sequence for Sums of Two 
Squares(SS2) is recursively defined 

I) 1,2 E SS2. 
2) Ifb,c E SS2, then a2 + b2 

E SS2. 
3) Only number constructed by rules 1 and 2 are in SS2. 

A program to construct the terms of this sequence was written. The language was C-"-, 
and that program appears below. It is designed to compute all terms whose value is less 
than 100,000,000 and dump those terms into the file called smarseq.datThe values are 
stored as long integers, so there is an inherent limit of slightly over 2,000,000,000 in the 
size of the terms. It is easy to modify this program to compute the terms of additional 
sequences and the locations of those changes are pointed out in the code. 

Note on programs: All of the C++ programs appearing in this book were written using 
the Borland C-"-+ compiler ver 4.5. The source files were always given the extension *cpp 
so the compiler treated them as C+-"- files even when the code is essentially C. 
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The other programs were written in L"BASIC veL 7.25, an extended precision language 
very similar to original BASIC, line numbers and all. L"BASIC is in the public domain so 
acquisition is easy Anyone interested in obtaining an older version can contact the author, 
although later versions are no doubt available elsewhere. Such programs were used when 
the size of the numbers overflowed the storage capacity ofC-"--long integers. All 
primality checks and factoring were also done using L"BASIC programs. D 

#include<stdio. h> 
II Given that such a large number of terms are to be computed, the items are all stored in a 
II doubly linked list rather than an array. The following class contains a long integer which 
II is the value of the term as well as the pointers to the previous and next terms in the list 

class sequence_member 
{ 

public 
long value; 
sequence_member *pprev, *pnext; 

}, 

void mainO 
{ 
1/ This is the pointer to the file 
FILE *fpJ, 

II Terminate serves as a flag to exit the loop. 
unsigned char terminate; 

II This integer serves to store the smallest value found in the search for the next term. 
long minterm; 

II This integer is used to store the current candidate as an additional term in the sequence. 
long test; 

II This integer is used to count the number of the term currently being computed 
long !count; 

II Pointers to the head and tail of the list of terms in the sequence. 
sequence_member *head _ of Jist, *tail_ of_list; 

II Working pointers to move through the list of terms. 
sequence_member *pmember, *tmember; 
fp J =fopen("smarseq.dat", "w"); 

I I Create the first item in the sequence and assign it the value I 
pmember=new sequence _member; 
pmember->value= J, 
pmember ->pprev=pmember ->pnext=). LLL; 
head _ ofJist=tail_ ofJist=pmember; 
Ii Dumps the term to the file in the case where term number is not necessary 
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fprintf(fp 1," 1 \n"); 
I I Dumps the term to the file in the case where term number is desired 
II fprintf(fp 1," 1 1 \n"); 

Create the second item in the sequence and assign it the value 2. 
pmember=new sequence_member; 

pmember->value=2; 
pmember->pprev=pmember ->pnext= ~ loLL; 
head _ ofJist=tail_ ofJist=pmember; 
II Dumps the term to the file in the case where term number is not necessary 
fprintf(fp 1, "2\n"); 

1/ Dumps the term to the file in the case where term number is desired. 
II fprintf(fpl,"2 2\n"); 
lcount=3; 
terminate= 1, 
while(terminate) 
{ 

// Initial setting of mingood that is infinity in this context Guarantees that it will exceed 
1/ the first value computed 

mingood=2000000000L; 
/ / Search through all items in the list and find the smallest number mingood that satisfies 
// the following conditions 
/1 

/ / a) mingood is greater than all terms currently in the list 
// b) mingood = a*a -,- b*b where a and b are terms already in the list. 
1/ c) mingood is the smallest number satisfying conditions (a) and (b). 

pmember=head of list; 
while(pmember :=tail_ ofJist) 
{ 
tmember=pmember ->pnext; 
while(tmember!=XLLL) 
{ 
test=pmember ->value * pmember ->value+tmember ->value* tmember ->value; 
if( (test>tail_ ofJist ->value )&&(test<mingood)) 
{ 
mingood=test; 

} 
tmember=tmember ->pnext; 
} 
pmember=pmember ->pnext; 
} 
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II If the current value of min good is within the desired bounds, add it to the list Otherwise 
I I terminate the loop 

if( mingood< 1 OOOOOOOOL) 
{ 

II Dumps only the value of the term to the file 
fprintf(fp I, "%ld\n" ,mingood); 

I I Dumps the number and value of the term to the file 
II fprintf(fp I, "%ld %ld\n" ,lcount,mingood); 

lcount++; 
II Create the new term and add it to the tail of the list. 

pmember=new sequence_member; 
pmember->value=mingood; 
pmember ->pprev=tail_ ofJist; 
pmember ->pnext=r-.. ULL; 
tail_ ofJist->pnext=pmember; 
tail_ ofJist=pmember; 
} 

else 

} 
} 

terminate=O; 

fclose(fp I); 

II De-allocate the memory of the linked list. 
pmember=head of list; 
while(pmember!=NULL) 
{ 
tmember=pmember; 
pmember=pmember ->pnext; 

delete tmember; 
} 

} II end of main function 

If one wishes to change the initial two values of the sequence, it is only necessary to alter 
the assignments to the first two terms of the linked list. 

Another sequence defined in the letter by Castini uses cubes rather than squares. 

Definition 19: The Smarandache-Recurrence Type Sequence for the Sum of Two Cubes 
(CS2), is also recursively defined: 

I) 1,2 E CS2. 
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2) If a,b E CS2, then a3 -'- b3 E CS2. 
3) Only numbers formed using the rules (a) and (b) are in CS2. 

Replacing the line 

test = pmember->value*pmember->value -l- tmember->value*tmember->value; 

by the line 

test = pmember ->value*pmember ->value*pmember ->value + 
tmember->value*tmember->value*tmember->value; 

will alter the previous program so that it will compute the values of CS2. 

However, one must be careful with these values. Computing large numbers of elements of 
this and any sequence like it will always eventually run one up to and beyond the limit of 
storage of the identifiers 

Another sequence defined in [7] is a modification of the definition of SS2. 

Definition 20: The "converse" of the sequence SS2(n) is NSS2(n) and is defined using the 
following recurrence: 

1) 1,2ENSS2. 
2) Ifb,c E NSS2, then b2 + c2 t/:. NSS2. 
3) Only numbers obtained by rules I) and 2) are in NSS2. 

Or put another way, NSS2(n+ 1) is the smallest number, strictly greater than NSS2(n), 
which is not the sum of the squares of two previous distinct terms of the sequence. 

A program to compute the terms ofNSS2 can be created by adding a few features to the 
previous one, and the modified program follows. 

II Program to compute the elements of the sequence NSS2(n). 
#include<stdio. h> 
II Given that such a large number of terms is to be computed, the items are all stored in a 
II doubly linked list rather than an array. The following class contains a long integer which 
II is the value of the term as well as the pointers to the previous and next terms in the list. 

class sequence ~ member 
{ 

public 
long value; 
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sequence_member *pprev. *pnext: 
}, 

void mainO 
{ 
II This is the pointer to the file. 
FILE *fpl, 

I I Terminate serves as a flag to exit the loop 
unsigned char terminate; 

I I This integer serves to store the smallest value found in the search for the next term 
long minterm; 

II This integer is used to store the current candidate as an additional term in the sequence. 
long test; 

II This integer is used to count the number of term currently being computed. 
long lcount; 

II This integer stores the value of min good used to add items to the list. 
long lastmingood; 

II This integer will be a counter to the last item added to the list and the smallest number 
II that is the sum of two squares 
long addem; 

I I Pointers to the head and tail of the list of terms in the sequence. 
sequence_member *head _ of Jist, *tail_ of_list; 

II Working pointers to move through the list of terms. 
sequence_member *pmember, *tmember; 
fp 1 =fopen(H smarseq .datH, HWH); 

II Create the first item in the sequence and assign it the value 1 
pmember=new sequence _member; 
pmember ->value= 1 , 
pm ember ->pprev=pmember ->pnext= :\TL;LL; 
head _ ofJist=tail_ ofJist=pmember; 
II Dumps the term to the file in the case where term number is not necessary. 
fprintf{fp I," 1 \nH); 

II Dumps the term to the file in the case where term number is desired. 
II fprintf(fp I,': 1 1 \n"); 
II Create the second item in the sequence and assign it the value 2. 
pmember=new sequence_member; 
pmember ->value=2; 
pmember ->pprev=pmember ->pnext= ~LJLL; 
head_of Jist=tail_ ofJist=pmember; 
II Dumps the term to the file in the case where term number is not necessary. 
fprintf(fp 1, "2\n"), 
II Dumps the term to the file in the case where term number is desired 
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II fprintf(fpl,"2 2\n"); 
lcount=3, 
lastmingood=O; 
terminate= I, 
while( terminate) 
{ 

I I Initial setting of mingood that is infinity in this context. Guarantees that it will exceed 
I I the first value computed. 

mingood=2000000000L; 
II Search through all items in the list and find the smallest number mingood that satisfies 
I I the following conditions 
I I 
I I a) mingood is greater than all terms currently in the list 
II b) mingood = a*a - b*b where a and b are terms already in the list. 
II c) mingood is the smallest number satistying conditions (a) and (b). 

pmember=head _ oClist; 
while(pmember! =tail_ oUist) 
{ 

tmember=pmember ->pnext; 
while(tmember!=~L;LL) 

{ 
test=pmember ->value* pmember ->value+tmember ->value*tmember ->value; 
if( (test>tail_ oUist ->value )&&( test<mingood)) 
{ 

mingood=test; 
} 
tmember=tmember ->pnext; 
} 
pmember=pmember ->pnext; 
} 

II If the current value of min good is within the desired bounds, add all numbers between 
II the value of the tail of the list and mingood to the list. Otherwise terminate the loop. 

if(mingood< I OOOOOOOOL) 
{ 
for(addem=tail_ oUist->value+ I ;addem<mingood;addem++) 
{ 
fprintf(fp I, "%Id\n" ,addem); 

II fprintf(£Pl,"%ld %Id\n",lcount,addem); 
lcount++; 

II Create the new term and add it to the tail of the list. 
pmember=new sequence_member; 
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pmember ->value=addem; 
pmember ->pprev=tail_ oUist; 
pmember ->pnext= NliLL; 
tail_ oUist ->pnext=pmember; 
tail_of Jist=pmember; 
} 

} 
else 

} 
} 

terminate=O; 

fclose(fp 1); 

II De-allocate the memory of the linked list. 
pmember=head _ oelist; 
while(pmember l=l'H.TLL) 
{ 

} 

tmember=pmember; 
pmember=pmember ->pnext; 
delete tmember; 

} II end of main function 

As was the case with the squares, there is a similar sequence defined for cubes[7]. 

Definition 21: The converse ofCS2 is denoted by NCS2 and has the recursive definition 

I) 1,2 E NCS2. 
2) If c,d E NCS2, then c3 + d3 tic NCS2. 
3) Only numbers that can be constructed using steps I and 2 are in NCS2. 

In other words, NCS2(n+ 1) is the smallest number strictly greater than NCS2(n) that is 
not the sum of two cubes of previous terms in the sequence 

Again, changing one line of the previous program is all that is necessary to compute this 
sequence. 

Definition 22: The sequence SS 122 defined by the author is a simple modification of SS2 
and has the following recursive definition 

I) 1,2 E SS122. 
2) If a E SS 12, then a2 

E SS 122. 
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3) If a,b E SS 12, then a2 
7 b2 

E SS 122. 
4) Only numbers formed by steps (1), (2) or (3) are in SS122. 

In other words, SS 122(n-:-l) is the smallest number strictly greater than SS 122(n) that is 
the sum of one or two squares of numbers already in SS 122. 

To compute the values of SS 122, the only change necessary to the above program is to 
modifY the assignments of the initial elements. 

II Create the first item in the sequence and assign it the value 0 
pmember=new sequence_member; 
pmember ->value=O; 
pmember ->pprev=pmember ->pnext=" L LL; 
head _ ofJist=tail_ ofJist=pmember; 
II Do NOT dump it to the file 

II fprintf{fp 1 ,"O\n"); 
II Dumps the term to the file in the case where term number is desired. 

II fprintf(fpl,"1 1\n"); 

II Create the second item in the sequence and assign it the value 1. This will be the first 
II number dumped to the file. The numbering of the items of the sequence will be one less 
II than the number of the item in the doubly-linked list used to create it. 

pmember=new sequence_member; 
pmember ->value= 1; 
pmember ->pprev=pmember ->pnext=:\L LL; 
head _ ofJist=tail_ ofJist=pmember; 

II Dumps the term to the file in the case where term number is not necessary. 
fprintf(fp 1," 1 \n"); 

II Dumps the term to the file in the case where term number is desired. 
II fprintf{fpl,"1 l\n"); 

II Create the third item in the sequence and assign it the value 2. 
pmember=new sequence_member; 
pmember ->value=2; 
pmember ->pprev=pmember ->pnext= 1\ L'LL; 
head _ ofJist=tail_ ofJist=pmember; 

II Dumps the term to the file in the case where term number is not necessary 
fprintf(fp I, "2\n"); 

II Dumps the term to the file in the case where term number is desired. 
II fprintf{fpl,"2 2In"); 
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Where numbers that are the sum of one square are actually computed as the sum of two 
squares, one of which is zero 

Clearly, a similar modification to the program for cubes will allow for the computation of 
the elements of the sequence SS 123. 

Definition 23: The sequence SS123, a slight modification ofCS2 is defined in the 
following way 

I) 1,2 E SSI23 
2) Ifa E SS123, then a3 

E SS123. 
3) Ifa,b E SS123, then a3 

- b3 
E SS123. 

4) Only numbers formed by rules (1), (2) and (3) are in SSI23 

The given programs, along with the stated modifications will compute the elements of 
four of the sequences in the paper by Castini. That is enough for now, so it is time to 
move on to other things. 

The following problem is defined in an unpublished manuscript sent to the author by 
A Srinivas[8], a student at Arizona State Cniversity 

Definition 24: Smarandache Lucas-Partial Digital Sub-Sequence 

123 is a number where the sum of two initial groups of the digits is the same as the 
number formed by the remaining digits, i.e I - 2 = 3 It is also a number in the Lucas 
sequence defined by 

L(O) = 2, L(1) = I, L(n-'-2) = L(n-;-I) + L(n) for n 2: 2 

All numbers possessing these properties are members of the Smarandache Lucas-Partial 
Digital Sub-Sequence. 

The manuscript author then posed the question 

Is 123 the only Lucas number that satisfies a Smarandache Type Partition,) 

The following C++ program was written to search for additional solutions to this 
problem. Unfortunately, the unsigned long integer ofC+-'- only allows for numbers up 
through 4,000,000,000, which does not really allow for serious searches. It is easily 
modified to deal with other types of numbers, so it is included here. 

#include<stdio. h> 
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void mainO 
{ 

II These three numbers are the three Lucas numbers used in the construction of additional 
I I numbers in the sequence 

unsigned long 10,11,12; 
II These arrays will store the digits of the number 12. They will first be placed in the array 
II first[.] in reverse order They will then be copied in inverse order into the array 
II digs[ .. ] so that digs[O] is the most significant digit. 

int first[15],digs[15]; 
II Firsterm is the number constructed from the first group of digits, secondterm from the 
II second group and thirdterm from the remaining group. 

unsigned long firsterm,secondterm,thirdterm; 
II Temp is used for temporary storage and power stores the current power often needed 
I I in the building of the integer. 

unsigned long temp,power; 
II The following integers are all counters of one form or another. 

int m,ij,i] ,j 1 ,k,count,lucascount; 
II The first three digit Lucas number is L(lO) = L(9) + L(8), formed from the sum 
11]23 = 47 -'- 76. Lucascount is the subscript of the current Lucas number L(lucascount) 

lucascount=lO; 
10=47; 
1]=76; 
12=11-'-10; 

II The following while loop is used to terminate before overflow of the unsigned long.!t 
II must be used cautiously as the sum may overflow into the negative numbers before this 
II test is done. 
while(l2 < 4000000000L) 
{ 

II Dump the current count to the screen, if desired. 
II printf("%ld\n" ,1ucascount); 
II Count is used to keep track of the number of digits in 12, the number of interest. Temp 
II is used as the number to be split up and the digits ofl2 are placed in the array first[ 1 

count=O; 
temp=12; 
while(temp>O) 
{ 
first[ count ]=temp% 1 0; 
temp=temp/lO; 
count-'--'-; 
} 

II ;\14-] is the number of digits in 12. Since arrays in C-t--t- start at zero, the last filled 
I I position is first[ m 1 The next step is to place the digits into the array 
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I I digs[ .. ] in the proper order 
m=count-I, 
for(i=O;i<=m;i~-'-) 
{ 

digs[i]=first[ m-i]; 
} 

I I The next step is to split the digits up into three groups. Firsterm will be the number 
II formed from the first group and is constructed from the digits in the array positions 
II digs[O]. .. digs[i]. Secondterm is formed from the second group and is constructed 
II from the array positions digs[i+ l]. .. digs[j]. Thirdterm is the last group and is formed 
II from array positions digs[j+l]. .digs[m]. 

for(i=O;i<m-1 ;ih ) 

{ 
II Construct firsterm by going from position i to position 0 in the array 

firsterm=O; 
power=l, 
for(i 1 =i;i I >=O;i 1--) 
{ 
firsterm=firsterm-t-digs[i I] *power; 
power=power* 10; 
} 

II Construct secondterm by going from position j to position i+ 1 in the array. 
forG=i+ 1 ;j<=m-I ;j++) 
{ 

secondterm=O; 
power=l; 
forG 1 =j;j I >i,j 1--) 
{ 

secondterm=secondterm+digs[j I] * power; 
power=power* I 0; 
} 

I I Construct thirdterm by going from position m to j-,-I. 
thirdterm=O; 
power=l; 
for(k=m;k>j ;k--) 
{ 

thirdterm=thirdterm+digs[k] * power; 
power=power* 1 0; 
} 
sum=firsterm-t-secondterm; 
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II If the sums match dump the solution to the screen 
if( sum==thirdterm) 
{ 

printf("lucascount %d\", lucascount); 
printf("%ld %Id %Id\n" ,firsterm,secondterm, thirdterm); 
printf("%ld\n",sum); 

} 
} 

} 

II Increment lucascount and compute the value of the next Lucas number. 
lucascount++; 
10=11; 
11=12; 
12=11+10; 
} 

} 

This program was run up through all values that the unsigned longs can store The 
additional solution 

L(35) = 20633239 206 + 33 = 239 

was found. 

In problems of this nature, limitations in the size of the numbers creates a very serious 
bottleneck lJBASIC is an extended precision language that is similar to original BASIC 
(it contains mandatory line numbers), that allows integers with large numbers of digits. It 
is also in the public domain, so it is readily available for use. 

The following program is a lJBASIC translation of the previous C+-'- program. 

10 dim first%(600),digs%(600) 
40 lucascount= 1 0 
5010=47 
6011=76 

10012=11-'-10 
110 print lucascount 
200 count=l 
210 temp=12 
220 temp=temp\10 
230 first%( count )=res 
240 iftemp<l then goto 400 
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250 count=count+ 1 
260 goto 220 
400 for i= 1 to count 
410 digs%(count-i+ l)=first%(i) 
420 next i 
500 for i=1 to count 
5 10 firsterrn=O 
520 power=1 
530 for il=i to 1 step-l 
540 firsterrn=firsterrn+digs%(i 1 )*power 
550 power=power*10 
560 next il 
580 for j=i+ 1 to count-l 
590 secondterrn=O 
600 power=1 
610 for j 1 =j to i-'-1 step -1 
620 secondterrn=secondterrn+digs%(j 1 )*power 
630 power=power* 10 
640 next jl 
660 thirdterrn=O 
670 power=1 
680 for k=count to j-'-1 step -1 
690 thirdterrn=thirdterm-'-digs%(k) *power 
700 power=power* 10 
710 next k 

This program was run up to lucascount = 442, where 

L(442) = 23579630239668871433952802821819139712445105158 99403318227148960 
19626503374749639733405162203 

and found only the two solutions already mentioned 

The Fibonacci sequence has a similar definition 

F(O) = 0, F(I) = L F(n~2) = F(n-'-l) -'- F(n) 

and the first three digit Fibonacci number is 

F(12) = 144 = 89 -,- 55. 

It is easy to modify the following two programs to search for solutions to the given 
problem that are Fibonacci numbers. Simply modify the initial lines to 
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lucascount= 12 
10=55 
11=89 

The lJBASIC program was run up to lucasnumber=419, and the only solution discovered 
was 

F(30) = 832040 8 -+- 32 = 040. 

The author is well aware that the performance of this algorithm can be dramatically 
improved. For example, if the number of digits in firsterm or secondterm exceeds the 
number in thirdterm, then it is already known that it is not possible for the sum to equal 
thirdterm. One immediate correction that can be done is to terminate the loop on i once 
more than half the digits in digs[ .. ] are being used to create firsterm. 

There are many other sequences of numbers that may satisfY the Smarandache type 
partition for some value. Some examples are 

Cullen numbers C(n) = n * 20 
-'- 1 for n 2 o. 

Catalan numbers Ca(n) = I ifn = I 1 ( 20 - 2 ) if n > 2 
n n-1 

Triangular numbers T (n) = n( n+ 1 )/2 

Tetrahedral numbers Th(n) 

Factorials Fact(n) = n ' 

Smarandache numbers Sen). 

0(0-IXo-2) 
6 

The programs are easy to modifY to perform the search for any of these sequences of 
numbers. For example, the first three digit Cullen number is 

C(5) = 5*25 -,- 1=161 

Let powertwo be a new identifier and initialize it by 

powertwo = 32 

which will be the power of two segment of the number. The initialization for lucascount is 

lucascount = 5 
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And the computation of the analog ofl2, the number that is to be examined would then be 

12 = lucascount *powertwo - I 

The modification to prepare for the computation of the next Cullen number would then be 

lucascount=lucascount-'-l 
powertwo=powertwo*2 

The L13ASIC version of the program for the Cullen numbers was run up to 
lucascount = 282 and no solution was found. 

After modifications to compute the values of the triangular numbers, the C-'--'- version was 
run to search for solutions. Thirteen were found in the region 14 < n < 1099 and a 
complete list of those solutions follows. 

T(25) = 325 =} 3 -,- 2 = 5 
T(77) = 3003 =} 3 - 00 = 3 =} 3 - 0 = 03 
T(173) = 15051 = I -,- 50 = 51 
T(214) = 23005 =} 2 -,- 3 = 005 
T(216) = 23436 =} 2 - 34 = 36 
T(286) = 41041 =} 41 + 0 = 41 
T(363) = 66066 =} 6 -'- 60 = 66 
T(479)= ]]4960 =} 11-'-49=60 
T(724) = 262450 =} 26 -'- 24 = 50 
T(819) = 335790 =} 33 -'- 57 = 90 
T(1011) = 511566 =} 51 -'- 15 = 66 
T(1 095) = 600060 =} 60 - 00 = 60 =} 60 -+- 0 = 060 
T(1099) = 604450 =} 6 -;- 044 = 50 

The decision to terminate at 1099 was made solely because of the number of solutions 
discovered to that point. :\otice that for two of the solutions, multiple sums are possible. 

~odifications were then made to study the sequence of tetrahedral numbers, and the 
search was conducted for the range 8 < n ::; 2467. Eleven solutions were found and a 
complete list follows. 

Th(22) = 2024 =} 2 -'- 2 = 4 
Th(76) = 76076 =} 76 - 0 = 76 
Th(77) = 79079 =} 79 -;- 0 = 79 
Th(274) = 3466100 =} 34 -,- 66 = 100 
Th(352) = 7331104 =} 73 -+- 31 = 104 
Th(368) = 8373840 =} 837 - 3 = 840 
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Th(495) = 20337240 =} 203 -'- 37 = 240 
Th(560) = 29426320 =} 294 ~ 26 = 320 
Th(1188) = 280152180 =} 28 -!- 152 = 180 
Th(l804) = 980122220 =} 98 -'- 122 = 220 
Th(2467) = 2505440794 =} 250 -'- 544 = 794 

Again, the decision to terminate at this point was made solely on the basis of the number 
of solutions discovered. 

In all such sequences, the digits are not random, but repeat certain sequences according 
to the rules of arithmetic. With this in mind, the author makes the following conjectures 

Conjecture 1: There is no value of n such that the Cullen number 

CCn) = n * 2n 
-'- 1 

satisfies the Smarandache type partition. 

Conj ecture 2: There are an infinite number of positive integers n such that the triangular 
number 

T(n) = n(n
2
-1) 

satisfies the Smarandache type partition. 

Conjecture 3: There are an infinite number of positive integers n such that the tetrahedral 
number 

satisfies the Smarandache type partition 

It is readily conceded here that these conjectures are based on very little numeric 
evidence. They should be considered as items put forward for additional study by readers 
rather than as firm beliefs of the author. 

The triangular numbers are the first particular instance of the general family of polygonal 
numbers. This is an infinite family of arithmetic sequences of the second order and the 
general formula for the family is 

Zn = ~ [ 2 -'- (n - l)d 1 

where d = 1,2,3, 
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If d = I, we have the triangular numbers used previously 

Zn = H2-'-(n-I)]= n(n~I)/2 

If d = 2, we have the square numbers 

Zn = H 2 T 2n - 2] = n~ 

If n = 3, we have the pentagonal numbers 

Zn = ~[2+3n-3]=n(3n-I)/2 

etc. 

Of course, each of these additional sequences could form the basis for further exploration 
using the given computer programs. 

Another sequence of numbers that can be investigated are the pyramidal numbers, given 
by the formula 

Pen) = n(n-l ~2n-l) 

Reader Exercise 1: Search for values of n such that the corresponding pyramidal number 
satisfies the Smarandache type partition. 

The name of the tetrahedral numbers is derived from the fact that if a triangular number 
of balls is placed as a base and all subsequently smaller triangular numbers piled on top, 
the construction is a tetrahedron. If one abstracts this into the fourth dimension, then one 
can start with a tetrahedral number as a base and "place" subsequently smaller tetrahedral 
numbers on top, creating a four dimensional "tetrahedron." The formula for this sequence 
IS 

FDT(n) = n(n-lX;~2xn-3) . 

Reader exercise 2: Search for values ofn such that the corresponding four dimensional 
tetrahedral number satisfies the Smarandache type partition 

There remains an enormous amount of unexplored territory here. At this time we will 
leave it and let the reader explore further if they choose. As was mentioned in the preface, 
the author is interested in hearing from any reader who makes progress in this area. 
Especially if anyone is able to verifY or refute the conjectures. 

Another sequence defined in [8] concerns splitting the numbers up into two pieces that 
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satisfy a simple property. 

Definition 25: The Smarandache Even-Digital Subsequence(SEDS) is the set of all 
numbers 

where n can be split into two pieces 

di and n2 = di_1 .. d1 do 

such that 2*nl = n2 

The first few numbers in the sequence are 

SEDS = { 12,24,36,48,510,612,714, 

since 2*6 = 12 etc. Clearly, this set of numbers is infinite 

A question that is easy to answer concerns the number of elements in this set having a 
specified number of digits. 

Theorem 21: For any number of digits k, the number of elements of SEDS depends on 
the parity ofk. 

a) Ifk = 2j, then the number of elements of SEDS having m digits is given by 

400 0 
j-l O's 

b) If k = 2j+ 1, then the number of elements of SEDS having m digits is given by 

500 0 
j-l O's 

Proof: Clearly, the number of digits in n I must be less than or equal to the number of 
digits in n2. Furthermore, the difference in number of digits can be at most one. 

a) With k = 2j, the principles listed above force the number of digits in nl and n2 to both 
be j. Gsing simple arithmetic, all values in the range 

nl = 100 000 to nl = 499 999 
j-l O's j-l 9's 
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yield a j-digit number when multiplied by 2 

b) With k = 2j-l, the principles listed above force the number of digits in n I to be j and 
the number of digits in n2 to be j-I Therefore, 2*n I must vield a (j-l )-digit number 
Again, using simple arithmetic, all numbers in the range 

nl = 500 000 to nl = 999 999 
j - I O's j 9's 

satisfY this condition. 0 

An additional sequence that is introduced in [8] deals with square numbers that can be 
partitioned into groups of digits that form square numbers. 

Definition 26: The Smarandache Square-Partial-Digital Subsequence(SPDS) is the set of 
all numbers n = dk d3d2d1 do such that n = k2 for k some integer and there is some 
number i such that 

d 

are both perfect squares 0 

The first few numbers in this sequence are 

49,100,144,169,361,400,441, 

:\ote that the definition allows for the partition to have more than one part, as in 

Given that all numbers of the form 

n = dOO. 00 
2k O's 

where d is a perfect square satisfY the conditions, it is clear that SPDS is an infinite set. 

The definition is then followed by the question 

If numbers of the form 

n = dOOO 000 
2k O's 
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where d is a perfect square are removed, how many elements remain in SPDS') 

Theorem 22: If all numbers of the form 

n = dOOO 000 
2k O's 

where d is a perfect square are removed from SPDS, it remains an infinite set. 

Proof: Consider the infinite family 

1022 = 10404 
10022 = 1004004 
100022 = 100040004 

etc. 

which remain in the set after removal of the first infinite family. Note that 
100040004 can be split into squares several different ways 

12 , (0002)2 and (0002)2 
102 , (02)2 and (0002)2 
102 , (020)2 and (02)" 0 

It should be clear that as additional zeros are added to this family of solutions, the 
number of ways the number can be partitioned rises, going to infinity as the number of 
zeros goes to infinity 

The infinite family 

2122 = 44944 
20 I 022 = 404090404 
20010022 = 4004009004004 
2000 I 00022 = 40004000900040004 

also satisfies the conditions of the problem. 

Another problem also found in [8] has a similar definition. 

Definition 28: A number n is a member of the Smarandache Square-Digital Subsequence 
(SSDS) ifit satisfies the following conditions 

a) n is a perfect square 
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b) All the digits ofn are perfect squares, ie all digits ofn are in the set { 0,1,4,9 } 

"otice that the numbers of the previous theorem can be used to verifY that SSDS again 
remains infinite if all numbers of the form 

n = dOOO 000 
2k O's 

are removed. 

The Smarandache Cube-Digital Subsequence(SCDS) of [8] has a definition similar to that 
ofSSDS. 

Definition 29: A number n is an element the Smarandache Cube-Digital Subsequence 
(SCDS) ifit satisfies the following properties 

a) n is a perfect cube. 

b) All the digits ofn are a perfect cube, i.e an element of the set { 0,1,8 } 

As can be seen from the initial elements of the set 

{ 0,1,8, I 000,8000, 1000000,8000000, 

SCDS is infinite 

Again the question can be asked 

If all numbers of the form 

n = dOOO 000 
3k O's 

where d E { 1,8 } are removed how many elements ofSCDS remain? 

A simple lJBASIC program to search for elements of SCDS was written and run up to 
n < 1 x 1018 and no solution not an element of the infinite families 

1000 00000 8000 000 
3k O's 3k O's 

was found 
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Conjecture 4: There is no element ofSCDS that is not of the form 

dOOO 00000 
3k O's 

where d = I or 8. 

Rationale: From the computer evidence, it appears that there are no additional infinite 
families As has been seen in previous work, as the number of digits in a number increases, 
the probability that the number contains only a certain small class of digits grows small 
very rapidly Furthermore, a simple scan through all possible two digit endings 

oil 08 modulo 100 
lil 28 modulo 100 
223 48 modulo 100 
323 68 modulo 100 
423 88 modulo 100 
523 08 modulo 100 
623 28 modulo 100 
723 48 modulo 100 
823 68 modulo 100 
923 88 modulo 100 

reveals that the two digit combination 18 cannot terminate a cube. It is also easy to verifY 
that 10 also cannot terminate a cube. 

Relaxing the restriction that all of the digits be cubes leads to a similar problem that is 
also defined in [8]. 

Definition 30: The Smarandache Cube-Partial-Digital(SCPD) sequence is the set of all 
numbers m satisfYing the following properties 

a) m is a perfect cube. 

b) It is possible to partition the digits of m into two or more groups that are themselves 
perfect cubes. 

The first few numbers of SCPD are 

1000, 8000, 10648, 27000, 

Clearly, all numbers of the form 
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mOOO. 000 
3k O's 

where m is a perfect cube are elements of SCPD 

With the inclusion of 10648, it is clear that not all elements of SCPD are of the form of 
those above. This brings up an obvious next question which is resolved below. 

Theorem 23: There are an infinite number of elements of the set SCPD that are not of the 
form 

mOOO 000 
3k O's 

where m is a perfect cube. 

Proof: Ifwe examine the family of cubes 

3033 = 27818127 
3003 3 = 27081081027 
300033 = 27008100810027 
3000033 = 27000810008100027 
30000033 =27000081000081000027 

etc. 

it is clear that there is an infinite family of solutions. 0 

Note once again that the number of ways the cube can be partitioned goes to infinity as 
the number of zeros goes to infinity. Since no extensive search for such families was 
performed, it is very possible that additional such families exist 

Ifwe replace cubes by primes, a much harder problem is created, which also appeared in 
[8]. 

Definition 31: A number m is an element of the Smarandache Prime-Digital 
Subsequence(SPDS) ifit satisfies the following set of properties. 

a) m is a prime 

b) All of the digits ofm are prime, ie they are all elements of the set { 2,3,5,7 } 

The first few elements ofSPDS are 

2,3,5,7,23,37,53.73, 
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As a follow up, there was the conjecture 

Conjecture 5: SPDS is an infinite set. 

Since so little is known about specific sequences of primes, that it should come as no 
surprise that this problem is as yet unsolved This question is similar to another that also 
remains unsolved. 

Unsolved problem 3: How many primes are there of the form 

III III 
k l's 

where of course k is odd. 

It is very likely that any machinery used to resolve the unsolved problem will also have 
relevance in the search for a solution to the previous conjecture 

A short UBASIC program was written that counts the number of prime numbers as well 
as those that are elements of SPDS. The program was run for all numbers up to 1,000,000 
and the counts were 

78498 primes < 1,000,000 

578 members ofSPDS < 1,000,000. 

Which is what one would expect. Assuming some form of even distribution of the primes, 
not allowing an initial digit of 1,4,6,8 or 9 immediately eliminates ~ of the primes. 

Adding additional digits places additional restrictive parameters on the numbers. All of 
which leads to the following question 

Unsolved problem 4: Let SPDSN(n) represent the number of elements of SPDS that are 
less than or equal to n. Then 

lim SPDSN(n) 0 
n~oo ~ 

Note that a proof of the above is not a proof that SPDS is a finite set. 

An additional problem similar to the above also appears in [8]. 

Definition 32: A number n is said to be a member of the set of the Smarandache Prime­
Partial Digital Sequence(SPPDS) ifit satisfies the following properties 
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a) n is prime 

b) It is possible to partition n into groups of digits so that each group is prime 0 

The first few elements of this sequence are 

23,37,53,73, 113, 137, 173, 

With the corresponding c0njecture that SPPDS is an infinite set. 

Clearly, SPDS :::: SPPDS, so any proof that SPDS is infinite implies that SPPDS is also 
infinite 

It seems very likely that SPPDS is indeed an infinite set. Since such a high percentage, 
~ of two digit numbers are prime and ~~~ of three digit numbers are also prime, if a 
nonzero digit d is chosen at random, the probability is quite good that d is a component of 
either a two or three digit prime. 

Example 
Assume that the digit 3 is embedded in a list of digits where all other digits are randomly 

distributed 

Since 03, 13,23,43,53,73 and 83 are all prime, the probability is ~ that d23 is prime, 
where three of the leading digits are not prime The probability that 3d:; is prime is fu 

There are 100 possible combinations for the leading digits d j d2 and 42 of those 
combinations yield a prime number that terminates in 3, so the probability that d j d2 3 is 
prime is j~~ Of the 100 possible combinations for d3 dj , 16 yield a prime number of the 

form 3d3d4 

Example 
Assume that the digit 8 is embedded in a list of digits that are randomly distributed 

Clearly, there is no combination of d28 or d j d2 8 that is prime. There are three choices for 
d3 where 8d3 is prime and 15 choices for d3d4 that yield a prime number 8d3d4 

Sieving the natural numbers is a well-known process. One way the prime numbers can be 
approached is to consider them to be the result of the sieving process known as the Sieve 
of Erasthosthenes. 
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Algorithm 4: Sieve of Erasthosthenes 

I) Start at p=2. 
2) Remove all multiples ofp. 
3) \1ove to the next number remaining in the list and call it p 
4) Go to step 2 

Other sieving methods modifY steps (2) and (3) so that different classes of numbers are 
removed from the list. The most widely known example are the so-called Lucky numbers 
defined by the following by the following process. 

Csing the natural numbers 

K = { 1,2,3,4, 

I) Set p = 2, start= 1 
2) Starting at start, strike out every p-th number in the remaining list. 
3) Move p to the smallest number remaining in the list larger than the current p. 
4) Goto step 2. 

Those that remain after this process is carried out are said to be Lucky. 

Kote that the first step eliminates all numbers of the form 2k, and the second step all 
those of the form 6k-l The key point is to realize that unlike the Sieve ofErasthosthenes, 
the elimination of numbers is not based on being evenly divisible. Therefore, the final 
result contains both prime and composite numbers 

The first few Lucky numbers are 

1,3,7,9,13,15,19,21,25,27,31,33,37,43,49,51,63, 

It is pointed out in [8] that L3 = 7 and 37 is a Lucky number and L4 = 9 and 49 is also a 
Lucky number 

The question is then posed 

How many other Lucky numbers satisfY these conditions') 

The Lucky numbers are generated by a process that eliminates numbers based on 
positions more than the properties of those numbers. Each Lucky number L(k) = m also 
generates a number km that is also based more on position than properties. Therefore, one 
would expect the probability that any number km where L(k) = m is a Lucky number to be 
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based largely on the distribution of the Lucky numbers in the region ofkm To investigate 
this further, a computer program to search for additional solutions was written in the 
language C++ The program was run for all Lucky numbers L(k) <:;; 100,000 and a 
complete list of solutions appears below 

L(3) = 7 
L(4) = 9 
L(6) = 15 
L(9) = 31 
L(l5) = 63 
L(20) = 79 
L(21) = 87 
L(26) = 115 
L(28) = 129 
L(35) = 169 
L(40) = 201 
L(42) = 211 
L(54) = 285 
L(57) = 303 
L(63) = 339 
L(68) = 385 
L(80) = 475 
L(85) = 495 
L(88) = 519 
L(90) = 535 
L(95) = 577 
L(96) = 579 

and 37 is a Lucky number 
and 49 is a Lucky number 
and 615 is a Lucky number 
and 931 is a Lucky number 
and 1563 is a Lucky number 
and 2079 is a Lucky number 
and 2187 is a Lucky number 
and 26115 is a Lucky number 
and 28129 is a Lucky number 
and 35169 is a Lucky number 
and 40201 is a Lucky number 
and 42211 is a Lucky number 
and 54285 is a Lucky number 
and 57303 is a Lucky number 
and 63339 is a Lucky number 
and 68385 is a Lucky number 
and 80475 is a Lucky number 
and 85495 is a Lucky number 
and 88519 is a Lucky number 
and 90535 is a Lucky number 
and 95577 is a Lucky number 
and 96579 is a Lucky number 

Given that at least 22 out of the first 100 Lucky numbers satisfY the conditions, the 
following conjecture seems a safe one: 

Conjecture 6: There are an infinite number of integers k such that Lucky number k is m 
(L(k) = m) and km is also a Lucky number. Note that in this case, km is k concatenated 
with m and not k multiplied with m. 

Another form of sieve that can be used on the natural numbers is called the binary sieve in 
[5]. 

U sing the natural numbers 

N = { 1,2,3,4, ... } 

1) Set p = 2, start= 1. 
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2) Starting at start, strike out every p-th number in the remaining list. 
3) Multiply P by 2. 
4) Goto step 2. 

And the first few numbers in this sequence are 

1,3,5,9, 11, 13, 17,21,25,27,29,33,35,37,43, 

There were two conjectures associated with this sieve. 

a) There are an infinite number of primes in this sequence 

b) There are an infinite number of composite numbers in this sequence. 

Part (b) is fairly easy to resolve, and the method of solution will also apply to similar 
problems. 

Consider the list of natural numbers 

1,2,3,4,5,6, 7, 8, .. ,n 

where n is very large. 

The first step in the sieve deletes every second number, so the number left after this step 
is ~. The next step removes every fourth number, so ~ of those left after the first step will 

remain after the second. Continuing, k are removed by the third step, t; by the fourth etc. 

The number remaining after performing all of the operations is then given by the product 

The term surrounded by the square brackets gives us the percentage of the natural 
numbers that remain after the sieve is performed. This product is non-zero and is slightly 
greater than 0.25. This will allow us to answer part (b). 

The function ,,(x) is the number of primes less than or equal to x and by the well known 
prime number 

for x large. 

The percentage of numbers from 1 to x that are prime is then given by the ratio 
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x 

which is clearly less than 0.25 for large x Therefore, since there are a higher percentage of 
numbers left after the binary sieve than there are primes, the sieve leaves composite 
numbers. Taking the percentages to infinity it follows that the number of composite 
numbers must be infinite 0 

Another sieve found in [5] is based on 3 rather than 2 and is called the trinary sieve 

Start with the natural numbers 

~ = { 1,2,3,4, 

I) Set p = 3, start= 1 
2) Starting at start, strike out every p-th number in the remaining list 
3) ~ultiply P by 3. 
4) Goto step 2. 

Where the first few numbers that remain are 

1,2,4,5,7,8,10, II, 14, 16, 17, 19,20,22,23,25,28,29,31,32,34,35, 
37,38,41, 43 

Notice that for the trinary sieve, there are 26 numbers less than 44 and for the binary 
sieve there are 15. That holds in general and is easily explained. The first deletion in this 
case leaves ~ of the numbers, the second ~ of that , the third ~ of the remainder and so 
on. The final product in this case is then 

* U] 3k 

where the product of the fractions is clearly larger than the corresponding term for the 
binary sieve. 

From this, it is clear that the trinary sieve also leaves an infinite number of composite 
numbers. 

The more general problem is also defined in [5] and is called the n-ary sieve. 

Start with the natural numbers 

:\={ 1,2,3,4, 

For n a positive integer greater than I 
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1) Set p = n, start= I 
2) Starting at start, strike out e\ery p-th number in the remaining list. 
3) \1ultiply p by n. 
4) Goto step 2. 

It should also be obvious that if any n-ary sieve is performed on the natural numbers 
where n > 3, the set of numbers that are left after the sieve contains an infinite number of 
composite numbers. 

Again, the numbers removed by the actions of the n-ary sieve are done on the basis of 
position rather than any divisibility properties that they possess. So, it seems reasonable 
that the likelihood of an r-digit number of the remaining numbers being prime is based 
more on the number of primes with r digits than anything else. Therefore. the conjecture 
that there are an infinite number of primes remaining after the action of any n-ary sieve 
appears to be a safe one. 

Conjecture 7: Ifwe start with the natural numbers 

;\ = { 1,2,3,4,5, 

and perform the action of any n-ary sieve, the list of remaining numbers contains an 
infinite number of primes 

The first problem in [5] deals with the sequence of numbers formed by successively 
appending the natural numbers to the least significant end of the previous number in the 
sequence. 

Definition 32: The Smarandache Consecutive Sequence(SCS) consists of all numbers 
satisfYing the following properties 

1)1 ESCS 
2) Ifn E SCS where n consists of the first k natural numbers concatentated in the order 

12345 .. (k-l)k 

then n(k-'-l) E SCS, where the operation is concatenation. D 

The first few members of the sequence are 

L 12, 123, 1234, 12345. 123456, 1234567, 12345678, 123456789, 

The question is then asked. 
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How many primes are contained in SCS~ 

Clearly, every other number is even and cannot be prime. using another modulo 
argument, we can refine this much further. 

Theorem 24: Ifp = 123456 ... k E SCS, where p is prime, then k == I modulo 3. 

Proof: The following theorem is well-known 

An integer n is divisible by 3 if and only if the sum of the digits of n are divisible by 3. 

If we start at the number 

n = 1234 k 

where k == 0 modulo 3 and n is evenly divisible by 3, the sum of the digits of 

nl = 1234 .. k(k+l) 

will be congruent to I modulo 3. Since k+2 will then be congruent to 2 modulo 3, 
appending it to nl will construct a number the sum of whose digits are evenly divisible by 
3 and therefore divisible by 3. Appending a number with digit sum evenly divisible by 3 
will then also create a number evenly divisible by 3 and we repeat the cycle. 

The initial or basis number for this repeated cycling is 

n = 1234. 

Therefore, all numbers of this form where the terminal number is either 0 or 2 modulo 3 
are evenly divisible by 3 and cannot be prime. D 

Furthermore, every other number of the form 3k + I is even. So, in a search for primes, 
we are reduced to starting with an initial number 

n = 1234 . k 

where k == I modulo 3 and k is odd, and examining the sequence 

n = 1234 k . (k+6j). 

Following this, the first number that can possibly be prime is 

n = 1234567. 
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However the first nine numbers of this sequence are not prime, as 

1234567 = 127 * 9721 
12345678910111213 = 113 * 125693 * 869211457 
12345678910111213141516171819 = 13 * 43 * 79 * 281 * 1193 * 

833929457645867563. 
12345678910111213141516171819202122232425 is evenly divisible by 5. 
1234 ... 28293031 = 29 * k 
1234 .. 353637 = 71 *12378 * k 
1234 414243 = 7 * 17 * 449 * k 
1234. .474849 = 23 * 109 * k 
1234 535455 = 5 * k 

Where the last number also shows that the every fifth number in the sequence to be 
searched is evenly divisible by 5. 

Which leads to the following question, perhaps much easier than the similar one posed 
earlier: 

Unsolved problem 5: Find the first prime member of SCS or prove that none are prime. 

Another, similar sequence also found in [5] is called the Smarandache Symmetric 
Sequence(SSS). 

1,11,121,1221,12321,123321,1234321, 12344321, 123454321, 1234554321, 
12345654321, 123456654321, 1234567654321, 12345677654321, 123456787654321, 
1234567887654321, . 

With the corresponding question 

How many primes are there in this sequence? 

Clearly, there is at least one, namely II. As was the case in the previous sequence, 
examining the values of the numbers modulo 3 provides a way to eliminate many of the 
numbers. 

Theorem 25: For any number of the form 

n = 1234. (k-l)kk(k-l) ... 321 

ifk == 2 modulo 3, then n is evenly divisible by 3. 

Proof: If we examine any number of the form 
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m = j(j-I)(j-2) 

where j -2 is evenly divisible by 3, it is clear that m is evenly divisible by 3 Since the digit 
sum is also divisible by 3, any permutation into the form 

ml = (j-2)(j-I)j 

does not alter the divisibility by 3. 

Therefore, the digit sums of 

1234 (k-2) and (k-2)(k-3) 321 

are both evenly divisible by 3 

Examining the remaining quadruplet 

(k-I )kk(k-I) 

k - I == I modulo 3 and k == 2 modulo 3 Adding this up, we get 
I -'- I - 2 -'- 2 == 0 modulo 3 Therefore, the digit sum of n is evenly divisible by 3 and 
therefore so is n. 0 

Corollary 4: For any number of the form 

n = 1234. (k-l)k(k-l) 4321 

or 

n = 1234 (k-l )kk(k-l) 4321 

ifk == 0 modulo 3, then n is evenly divisible by 3 

Proof: By the previous theorem, all numbers of the form 

n = 1234 (k-l )(k-l) 4321 

have a digit sum evenly divisible by 3. Since k has a digit sum evenly divisible by 3, the 
insertion of either k or kk yields a number also having digit sum evenly divisible by 3 0 

Corollary 5: Ifn is of the form 

n = 1234 k 4321 

58 



or 

n = 1234 kk 4321 

where k == I modulo 3 , then n is not evenly divisible by 3 

Proof: By the previous theorem 

m = 1234 (k-I)(k-I) 4321 

has a digit sum evenly divisible by 3. Insertion of one instance of k yields a number with 
digit sum congruent to one modulo 3 and two instances of k a number congruent to 2 
modulo k Therefore, neither of those numbers can be evenly divisible by 3. 0 

Corollary 6: If n is of the form 

n = 1234 k 4321 

where k == 2 modulo 3, then n is not evenly divisible by 3 

Proof: By the previous corollary, 

m = 1234 (k-I )(k-I) 4321 

is congruent to 2 modulo 3. Insertion of one instance of k yields a number congruent to 1 
modulo k, and therefore cannot be evenly divisible by 3. 0 

All numbers in SSS up through 

1234 111211 4321 

were examined and the two additional primes 

12345678910987654321 and 1234567891010987654321 

were discovered. 

The Smarandache 'V1irror Sequence(S'\1S) is a sequence of palindromic numbers defined 
in problem 5 of[5] 

1.212, 32123, 432123~ 543212345. 6543212345~ 765432123456~ 
876543212345678. 98765432123456789, 109876543212345678910, 

59 



With the corresponding question 

How many of the numbers in this sequence are prime') 

Clearly, half of the numbers are even and cannot be prime If we examine the digit sums 
of the numbers in this sequence, we are unable to eliminate any additional numbers, as 

I == I modulo 3 
212 == 2 modulo 3 
32123 == 2 modulo 3 
4321234 == I modulo 3 
543212345 == 2 modulo 3 
65432123456 == 2 modulo 3 
7654321234567 == I modulo 3 

and the pattern repeats indefinitely. 

The odd numbers in the list up through 

191817 32123 171819 

were examined and the only prime discovered was 

131211. 32123 .111213. 

And so, there appears no reason to doubt that there are more primes in this sequence. As 
to whether there are an infinite number, nothing as yet would indicate that there is only a 
finite number of primes in this sequence. 

Reader exercise 3: Find the next prime in the Smarandache Mirror Sequence or prove 
that none exist 

Problem (19) of [5] is called the Smarandache Pierced Chain(SPC). In this case, the 
sequence is 

101,1010101,10101010101,101010101010101, 

Clearly, each number in this sequence is evenly divisible by 101, so the posed question 
here is 

How many elements ofSPC(n) 1101 are prime') 

The first few elements of this sequence are 
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SPC(l)1101 = 1011101 = 1 
SPC(2)1101 = 10101011101 = 10001 = 73 * 137 
SPC(3)/101 = 101010101011101 = 3 * 7 * 13 * 37 * 9901 
SPC(4)1101 = 1010101010101011101 = 17 * 73 * 137 * 5882353 
SPC(5)1101 = 10101010101010101011101 = 41 * 271 * 3541 * 9091 * 27961 
SPC(6)1101 = 101010101010101010101011101 = 3 * 7 * 13 * 37 * 73 * 137 * 

9901 * 99990001 
which points out some patterns. 

a) Ifk is evenly divisible by 3, then so is SPC(k) as the number of 1 's is also evenly 
divisible by 3. 

b) SPC(2k) is evenly divisible by 73 for k = 1, 2, 3, 4, . 

Proof: SPC(2) = 73 * 101 *137. Since SPC(4) is formed by appending the character 
string 01010101 to SPC(2) and 

01010101/73 = 13837 

it follows that SPC(4) is also evenly divisible by 73. Repeating this will guarantee that 
SPC(2k) is always evenly divisible by 73. 0 

c) SPC(3 + 4k) is evenly divisible by 37 for k = 1,2, 3, 4, . 

Proof: SPC(3) is evenly divisible by 37. SPC(7) is formed by appending the character 
string 010101010101 to SPC(3) 

10101010101 = 37 * 273000273 

so if SPC(3) is evenly divisible by 37, SPC(7) must be as well. Repeating this process 
gives the general result. 0 

Many similar results can also be verified, all of which indicate that it is unlikely that there 
are any primes in this sequence. Therefore, the question put forward is 

Unsolved problem 6: Find the first prime in the SPC sequence or prove that none exist. 
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Chapter 2 

While the first chapter was devoted to Smarandache notions concerning sequences, the 
purpose of chapter two is to examine problems that do not involve sequences. Problems 
relating the Smarandache function to magic squares have also been posed by \1ike \1udge 
in his regular ':\'umbers Count' column in Personal Computer World 

Definition 33: A magic square is a collections of numbers a], a2, ., ak such that k = n*n 
is a perfect square and the numbers can be placed in an n x n array where the sum on any 
column, row or diagonal is the same. For example, the numbers { 1,2,3, , 16 } can be 
placed in the array 

16 3 2 13 
5 10 II 8 
9 6 7 12 

,4 15 14 I 

such that the common sum is 34. 

It is well-known that magic squares can be constructed using only primes, so it is also 
known that there exist positive integers a], a2, . , ak such that the corresponding 
Smarandache Numbers Seal), S(a2), . , SCad can be used to construct a magic square. 
For example, consider the 3 x 3 magic square 

101 29 83 
53 71 89 
59 113 41 

composed only of primes Since S(p) = P for p a prime, the Smarandache values would 
form the same 3 x 3 magic square. 

A logical extension of this problem places a restriction on the numbers. 

Theorem 26: It is possible to find a set of numbers a], a2, .. , ak where k = n2 and not 
all aj are prime such that the corresponding set of Smarandache numbers S(a]), S(a2), 
S(ak) can be used to construct an n x n magic square. In fact, there are an infinite number 
of such sets. 

Proof: In the previous volume of this series[2], it was proven that the range of the Sen) 
contains all non-negative numbers except I. It is also well-known that all 3 x 3 magic 
squares follow the pattern: 

62 



a~5b~2c a a~4b~c 

a~2b a~3b~c a~4b~2c 

a~2b~c a~6b~2c a~b 

with magic sum 3a ~ 9b ~ 3c. 

Since a can be chosen as composite, we are guaranteed to have at least one composite 
entry in the array. Of course, this will guarantee several composite entries in the array D 

We continue our treatment of magic squares with the following problem 

Problem 1: Is it possible to find a set of numbers A = { aI, a2, .. , ak } where 
k = n2 and not all a, are prime such that an n x n magic square can be constructed using 
the elements of A and it is also possible to construct an n x n magic square using the 
elements of the set SA = { Seal), S(a2), ,S(ak) P :'\ote that this does :\OT mean that 
the positions of a; and Sea;) are the same. 

At first glance, this problem may appear to be complex, but in fact it has a simple 
solution. 

Again, consider the 3 x 3 magic square 

!OI 29 83 
53 71 89 
59 113 41 

constructed of nine primes. 

The smallest prime in this list is 29, so if we take any prime p < 29, we can multiply 
every entry in this square by that prime and the square will remain magic. If p and q are 
distinct primes, S(pq) = largest ofp and q, so the Smarandache values will remain 
unaltered. Therefore, the resulting magic square satisfies the conditions of the problem. 

For example, if we take p = 3, the square 

I 303 87 i 249 
159 213 267 
177 339 123 

is also magic with sum 639. The square of corresponding values of the Smarandache 
function would be the same as the previous 
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In fact, any prime in the set { 2, 3, 5, 7, 11, 13, 17, 19,23 } will yield a solution. 

In 1988, Harry L Nelson used a CRA Y supercomputer to find the following 3 x 3 magic 
square composed of9 consecutive primes[9]. 

! 1480028201 1480028129! 1480028183 i 

1480028153 1480028171 11480028189 I 
1480028159 : 1480028213 ! 1480028141 1 

Clearly, multiplying the entries by any prime p < 1480028129 will yield a solution to the 
given problem. Even that is not the end of the matter. Ifm is any number where 
SCm) < 1480028129, then the entries of this square can be multiplied by m and the 
result is also a solution. Which means that the number of solutions to the problem rises 
rapidly as the size of the primes increases. 

Another notion culled from the Smarandache archives is the concept of the 
Smarandache Bad Numbers. 

Definition 34: A number n is said to be a Smarandache Bad Number if there are no 
integers rand s such that 

In the text of the manuscript sent to the author, it is stated that 

5,6, 7, 10, 13, 14 

are probably bad numbers 

and 

1,2,3,4,8,9, ll, 12, 15 

are not as 

1 = 1 23 
- 32 : 

8=11 3 -32
1 

15 = I 43 
- 72 i 

2 = i 33 - 52! 3 = ! 13 - 22 i 4 = ! 53 - 112 i 
9 = ! 63 - 152 I II = 133 

- 42 1 12 = 1133 - 472 I 

And the problem concludes with a challenge to write a computer program to search for 
numbers that are not Smarandache bad numbers. 

The following simple {}BASIC program was written to search for numbers that are not 
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bad Smarandache numbers. 

I 0 testnum= I 0 
20 cube=1 
30 print testnum 
40tl=cube*cube*cube 
50 square=1 
60 t2=square*square 
70 t3=t l-t2 
80 t3=abs( t3) 
90 if t3 <>testnum then goto 140 

100 print testnum, t I, t2 
110 print cube,square 
120 input z% 
130 goto 230 
140 square=square-'-l 
150 t2=square*square 
160 t3=tl+testnum 
170 ift2>t3 then goto 190 
180 goto 70 
190 cube=cube-'-I 
200 if cube> 1 000 then goto 230 
210tl=cube*cube*cube 
220 goto 50 
230 testnum=testnum+ 1 
240 goto 20 

The program searches for solutions to the equation 

testnum = cube * cube * cube - square * square 

For each value oftestnum the search range of values for cube is 

I ::; cube ::; 1000 

And once the value of cube is fixed, the range for square is 

I ::; square < cube*cube*cube ~ testnum 

The program uses a planned infinite loop, and if a solution is found, it is printed out and 
the program waits for a user response. Once the user responds by typing in an integer, the 
program proceeds to the next number. Clearly, if no solution is found, this does not mean 
that the number is Smarandache bad, just that there is no solution where the value of r is 
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less than or equal to 1000 

The program was run for all values of testnum in the range [5, I 00] The numbers 7 and 
13, given as probably bad in the paper, are not as can be seen from 

13 = Ii' - 70~ 

Additional numbers within the examined range that are also probably Smarandache bad 
are 

16,21,27,29,31,32,33,34,42,43,46,50,51,52,58,59, 62, 66, 69, 70, 75, 77, 78, 
82,84,85,86,88,90,91,93,96. 

Problem (126) of [5] can easily be proven using well-known results of number theory 

126) Smarandache Divisibility Theorem 
If a and m are integers, and m > 0, then 

(am - a)(m - I)' 

is divisible by m. 

Proof: The following theorem in number theory is well-known, 

Ifp is prime and a is a positive integer, then aP - a is evenly divisible by p. 

which deals with the case of m being prime So suppose, m is not prime It follows that the 
prime factors ofm are all less than m and by definition, each is found in (m-I)! 0 

Problems (l07), (l08) and (109) of[ 5] all deal with the same concept. 

107) Smarandache Paradoxist Numbers 

There exist a few "Smarandache" number sequences. 

A number n is called a "Smarandache paradoxist number" if and only if n does not belong 
to any of the Smarandache defined numbers. 

Solution? 

1) If a number k is a Smarandache paradoxist number, then k does not belong to any of 
the Smarandache defined numbers, therefore k does not belong to the Smarandache 
paradoxist numbers either. 

66 



2) Ifa number k does not belong to any of the Smarandache defined numbers, then k is a 
Smarandache paradoxist number. Therefore, k belongs to a Smarandache defined number 
sequence, because the sequence of Smarandache paradoxist numbers is also in the same 
category. Which is a contradiction. 

Dilemma Is the Smarandache paradoxist number sequence empty') D 

1 08) ~on-Smarandache '-:umbers 
A number n is called a "non-Smarandache number" if and only if n is neither a 

Smarandache paradoxist number nor any of the Smarandache defined numbers. 

Question Find the non-Smarandache number sequence. 

Dilemma I Is the non-Smarandache number sequence empty too') 
Dilemma 2 Is a non-Smarandache number equivalent to a Smarandache paradoxist 

number? D 

109) The paradox of Smarandache numbers 
Any number is a Smarandache number, the non-Smarandache numbers too. 
This is deduced from the following paradox (see the reference[ .]) 

"All is possible, the impossible too I" D 

Like many other statements, implied assumptions or ambiguous language are used to give 
a paradoxical appearance. At this time, we will attempt to resolve the apparent conflicts. 

For purposes of notation, let SPl" denote the set of Sma rand ache Paradoxist 2'.'umbers. 

Also, let Sk denote an element of the collection of sequences of Smarandache defined 
numbers as sets. Furthermore, let SC represent the union of all these sequences 

and SK the collection of sequences Sk 

SK = { Sk ; Sk is a Smarandache defined sequence }. 

We have no explicitly defined set of discourse, so let U represent the universal set. 

For each of the sets Sk, x is an element of that set by virtue of having satisfied the 
properties defining Sk. Therefore, any object x is an element of SU because it satisfies the 
properties defining at least one of the sets Sk 
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Since there is no explicit definition of SK, we split the treatment into two cases, 
depending on whether or not SP:\ is an element of SK. 

Case I. SP:\ f/: SK. 

In this case, the results are simple. An object x is in SP~ if it is not in any of Sk and by 
definition of SP:\ 

SP;-'; L: SC C 

IfSC = C then SP~ = 0. 

:'\ote that there is a clear causality here, in that all of the objects Sk must be defined 
before SP;-'; can be determined 

Case 2 SPN E SK 

Let Sj denote the element of SK that is SPN. Choose an arbitrary element x E li and 
attempt to determine if x E SPN. To do this, execute the following algorithm 

Step I Setj = 1 
Step2 Ifx E SJ then x f/: SPN and exit. 
Step 3· Increment j by 1 if possible, if not exit with x E SPN 
Step 4 Go to step 2. 

and at some point, we must reach the key set Sj. And it is here that there is a problem 
When step 2 is performed, the question is reduced to 

Ifx E SPN then x f/: SPN 

which is a contradiction of the laws of set theory if x is indeed an element of SPN A 
statement equivalent to this would be 

If x is even, then x is odd 

Which is a contradiction only if x is even and not a paradox. 

Since all elements of li will be tested in this fashion, the only way to avoid a contradiction 
is to have SPN = 0 This result does not violate any principles of number theory or any 
of the notation used here. 

For example, the statement 
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The set of integers that are both even and odd. 

is not nonsense, it simply describes a set with no elements. Each item in the list Sk is a 
set, so we are notationally correct as well D 

This result then eliminates the doubts raised in the "solution"" that follows problem 
(107), where the implied assumption is that SP;\' E SK. In the case where SP1\" is empty, 
the iflabeled with (1) is satisfied in the vacuous sense, i e. 

If a number is a Smarandache paradoxist number .. 

is true because there are no such numbers. 

The iflabeled (2) is also satisfied in the vacuous sense as this is just a restatement of the 
previous if 

For problem (108) it is clear that the set of non-Sma rand ache numbers must be empty, as 

SP?\ G SK = L. 

by the definitions of the two sets "ote that this result is independent of whether or not 
SP~ E SK. 

This resolves the first dilemma following this problem. 

Since it is a direct consequence of the definitions that there no such numbers, the answer 
to the second dilemma is actually yes, but in the vacuous sense. 

Finally, problem (109) is not a paradox at all. Since the set of non-Sma rand ache numbers 
is empty, all non-Smarandache numbers are vacuously Smarandache numbers. This is a 
result of the way satisfaction is interpreted when there are no elements to test. 

The supposed "paradox" following problem (109) is not a paradox, but another instance 
where vacuous satisfaction is taken to be a paradox. 

Let E denote the set of all possible events. Define the subsets 

P = { e: e E E and E is possible} 

I = {e e E E and E is impossible} 

or equivalently 
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I = {e e E E and e rt p } 

:\ote that by the choice of sets, P v I = E. 

The truth of the statement 

"All is possible, the impossible too'" 

then follows from the laws oflogic and set theory 

Proof: If the initial phrase 

"All is possible 

is true then I = 0 and the entire statement is true since the set I is empty, and the second 
component is vacuously true. 

If the initial phrase is false, then by the laws of logic the entire statement is true as one can 
deduce any result from a false premise. D 

And finally, problem (10) in [45] is sufficiently different from all others and is a good 
way to terminate this work. 

10) Smarandache Logic 
Is it true that for any question there is at least an answer') Reciprocally: Is any 

assertion the result of at least a question') 

This problem mayor may not have a solution, depending on how the terms are defined. In 
a mathematical sense, the word assertion is used to refer to a statement that can be 
assigned a value of either true or false. Using that interpretation, it is always possible to 
create a question having that assertion as a result. 

However, the well-known result of Godel's Incompleteness Theorem states that in any 
system powerful enough to perform arithmetic, there will always be statements that are 
true, but a proof is not possible. Sometimes this will mean that the proof is simply 
impossible and in other cases it will mean that a proof would require an infinite amount of 
time to carry olit. 

For example, the question 

The digits in the decimal expansion of" are randomly distributed. 

is either true or false, but the answer may always remain indeterminate At this time the 
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lack of suitable theory requires that it would take an infinite amount of time to resolve 

From this, it then falls into the definition of the term answer. Ifindeterminate answers are 
not allowed, then it is a direct consequence of Godel's Theorem that there are questions 
for which it is mathematically impossible to form an answer Therefore, the answer to the 
first part of the question is no. 

At this point, it is time to stop once again There are still unexplored regions in that area 
of mathematics loosely defined as the Smarandache notions, but they will be left for a 
future time. 

It is again the authors fervent hope that you, the reader, have gained by examining this 
book. If anyone should feel an overpowering urge to comment on any conclusion 
expressed here, feel free to contact the author at the address given in the preface. 
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Appendix A 

The following is a summary of all Smarandache notions that are represented as acronyms 
and the page where they are introduced. 

SPS(n) - Smarandache Permutation Sequence, page 5. 
SSC(n) - Smarandache Square Complements, page 9. 
SCC(n) - Smarandache Cube Complements, page 9. 
SPS3 - Smarandache Pseudo-Square of the third kind, page 14. 
SPC3 - Smarandache Pseudo-Cube of the third kind, page 14. 
SPOI - Smarandache Pseudo-Odd number of the first kind, page 16. 
SP02 - Smarandache Pseudo-Odd number of the second kind, page 16. 
SPE 1 - Smarandache Pseudo-Even number of the first kind, page 17. 
SPM15 - Smarandache Pseudo-Multiple of the first kind of 5, page 18. 
SP'vI 1 P - Smarandache Pseudo-Multiple of the first kind of p, page 19. 
SPAC(n) - Smarandache Prime Additive Complements, page 21. 
SE2(n) - Smarandache Exponents of the Power 2, page 22. 
SEp(n) - Smarandache Exponents of power p, page 24. 
SS2 - Smarandache-Recurrence Type Sequence for sums of two squares, page 25. 
CS2 - Smarandache-Recurrence Type Sequence for sums of two cubes, page 28. 
:\SS2(n) - converse of SS2, page 29. 
:\CS2(n) - converse ofCS2, page 32. 
SS 122 - modification of SS2 where the sum is of one or two squares, page 33. 
SS 123 - modification of CS2 where the sum is of one or two cubes, page 34. 
SLPSS - Smarandache Lucas-Partial Digital Sub-Sequence, page 34. 
SEDS - Smarandache Even-Digital Subsequence, page 43. 
SPDS - Smarandache Square-Partial-Digital Subsequence, page 44. 
SSDS - Smarandache Square-Digital Subsequence, page 45. 
SCDS - Smarandache Cube-Digital Subsequence, page 46. 
SCPD - Smarandache Cube-Partial-Digital sequence, page 47 
SPDS - Smarandache Prime-Digital Subsequence, page 48. 
SPPDS - Smarandache Prime-Partial Digital Sequence, page 49. 
SCS - Smarandache Consequtive Sequence, page 55. 
SMS - Smarandache Mirror Sequence, page 59. 
SPC - Smarandache Pierced Chain, page 60. 
SP", - Smarandache Paradoxist :\umber, page 67. 
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In this book, we will explore several avenues of what are called Smarandache notions. 
The obvious question at this point is, "What is a Smarandache notion?" The answer is both 
simple and complex. A Smarandache notion is a problem in one of the following 
sets: 

a) A problem posed by Florentin Smarandache. 

b) A problem posed by someone else that is an extension of an element of set (a). 

See Some ~otions and Questions in Number Theory, edited by C. Durnitrescu 
and V Seleacu, Erhus University Press, Glendale, 1994. 

A Smarandache notion is an element of an ill-defined set, sometimes being almost an 
accident of labeling. However, that takes nothing away from the interest and excitement 
that can be generated by exploring the consequences of such a problem. 

Charles Ashbacher 
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