
Assessing the Performance of Data Fusion Algorithms Using Human Response Models

A Thesis

Submitted to the Faculty

of

Drexel University

by

Donald J. Bucci

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

February 2015



c© Copyright 2015
Donald J. Bucci.



ii

Dedications

To Korban, Grace, and my sweet Chelsea.



iii

Acknowledgments

My time as a graduate student has been wonderful and thought-provoking. I have been privileged

to work with many intelligent and insightful individuals who contributed to what I consider the best

six years of my life.

I would first like to thank my advisor, Dr. Moshe Kam. Moshe has been an incredible mentor

during my time in the Data Fusion Lab. I am very grateful for the time he has invested in helping me

formulate and complete my thesis research. More importantly, Moshe has demonstrated to me what

it means to be a working professional. Whenever I am solving problems, writing papers, or giving

presentations I constantly find myself thinking, “How would Moshe approach this?” His wisdom is

something that I will take with me through the rest of my career.

I am also very grateful for the counsel provided by Dr. Timothy Pleskac and his student Shuli Yu.

Both Dr. Pleskac and Shuli made themselves available to me to answer questions regarding two-stage

dynamic signal detection. All of the cognitive psychology models used in this thesis were graciously

provided by them in the form of published and unpublished data. Without their contributions, this

work would not have been possible.

There were many Drexel University faculty members that contributed to my professional develop-

ment. I would like to thank the members of my dissertation committee: Drs. Thomas Chmielewski,

Leonid Hrebien, Pramod Abichandani, Spiros Mancoridis, and Matthew Stamm. It has also been a

privilege to work with Drs. Richard Primerano and Eli Fromm on the Drexel Freshman Engineering

Design curriculum and with Dr. Kapil Dandekar on a wireless communications research project for

the Office of Naval Research.

Moshe and I were able to use a subset of my thesis research to co-write a white paper for the

Army Research Lab and a grant proposal for the National Science Foundation. On both of these

efforts, we were very fortunate to collaborate with Dr. Pramod Varshney and his student Aditya

Vempaty from Syracuse University. Working with Dr. Varshney and Aditya has been a wonderful



iv

experience, and I am very thankful for their comments and insights.

My lab-mates in the Data Fusion Laboratory have been instrumental to my professional and

personal growth. In particular, I would like to thank Ryan Measel, Christopher Lester, Sayandeep

Acharya, Raymond Canzanese, Bradford Boyle, Marco Janko, George Sworo, Feiyu Xiong, Jeffrey

Wildman, Gabriel Ford, and David Dorsey. I have been very fortunate to work with these individuals,

and I consider them good friends.

Finally, I would not be here without the love and support of my family. This includes my wife

Chelsea, my mother-in-law Sharon, my mother Dorothy, and my father Donald. All of you have

invested so much in me during these past six years while I pursued my dreams. Thank you Chelsea,

for loving and supporting me unconditionally. Thank you Dad, for all of the sacrifices you made for

us. There are simply no words to fully express my gratitude.



v

Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Performance of Hard/Soft Fusion Systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Probabilistic Human Response Models and Data Fusion . . . . . . . . . . . . . . . . . 3

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I An Introduction to Data Fusion Tools and Human Response Simulation . 7

2. Data Fusion Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Interpretations of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Detection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Bayesian Theory of Beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Dempster-Shafer (DS) Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 General Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 DS Theory and the Bayesian Theory of Beliefs . . . . . . . . . . . . . . . . . . . . 22

2.5.4 Dempster’s Rule of Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.5 Alternative Belief Combination Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.6 Decision Making in Dempster-Shafer Theory . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Other Notable Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



vi

3. Human Response Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Random Walk/Diffusion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Two-stage dynamic signal detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Motivation and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Trial Variability of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Non-Decision and Non-Interjudgment Time . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 State-dependent decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.5 Evidence (Drift Rate) Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Human response tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Line length discrimination task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 City population size discrimination task . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Random dot motion discrimination task . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 2DSD Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Performance Assessment Techniques for Hard/Soft Fusion Systems . . . 45

4. Soft Fusion Studies with Binary Alternatives . . . . . . . . . . . . . . . . . . . . 46

4.1 Subject and Fusion Operator Performance Metrics . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Decision Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Decision Confidence (Belief) Performance . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Discounted Decisions and Confidences . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Fusion Study 1: Different Fusion Operator Input Considerations . . . . . . . . . . . . 49

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Fusion Study 2: Inclusion of Superior/Inferior Sources . . . . . . . . . . . . . . . . . . 55

4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

TABLE OF CONTENTS



vii

4.5 Fusion Study 3: Subjective Confidence and Reliability . . . . . . . . . . . . . . . . . . 62

4.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Fusion Study 4: Probability Transformation Performance . . . . . . . . . . . . . . . . 68

4.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5. Multihypothesis Fusion Operator Simulation Methods . . . . . . . . . . . . . . 77

5.1 Pairwise-Successive Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Aggregation of TAFC Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.2 Decision-Making and Confidence Assessment . . . . . . . . . . . . . . . . . . . . . 79

5.1.3 Imprecise Evidence Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.4 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Simulation of Subject Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Decision-Making on Varying Numbers of Alternatives . . . . . . . . . . . . . . . . . 80

5.2.2 Vague Decision-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Fusion Study 1: Fusion with Varying Numbers of Alternatives . . . . . . . . . . . . . . 89

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Fusion Study 2: Fusion of Vague Decisions and Confidences . . . . . . . . . . . . . . . 92

5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

TABLE OF CONTENTS



viii

6. Simulation of Hard and Soft Fusion Operators . . . . . . . . . . . . . . . . . . . 107

6.1 RDM Task Hard Sensor Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.2 Classifier Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Fusion Study 1: Fusion with Trained Hard Sensors . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Fusion Study 2: Online Training of Hard Sensors . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

III Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7. Areas of Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Cognitive Psychology Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1.1 Cognitive Models of Multihypothesis and Vague Decision-Making . . . . . . . . . . 128

7.1.2 Fatigue, Stress, and Anxiety Models . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.3 Response Models on Practical Applications . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Data Fusion Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1 Performance Bounds for Soft and Hard/Soft Fusion Operators . . . . . . . . . . . . 135

7.2.2 Adaptive Approaches to Optimal Soft and Hard/Soft Fusion . . . . . . . . . . . . . 136

7.2.3 Additional Simulation Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



ix

List of Tables

3.1 Estimated correct detection probabilities under the speed focus and the accuracy focus for
Subjects #1-3 when simulated on the line length discrimination task. Each simulation
involved comparing the lengths of a 32.00 millimeter and a 32.27 millimeter long line
placed on the left and right sides of the screen respectively. The estimation error is
approximately ±0.01 at the 95% confidence level. . . . . . . . . . . . . . . . . . . . . . 41

4.1 Average PIC for each probability transformation (H1 true, line length discrimination task
of [44]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Average PIC for each probability transformation (H1 true, city population size discrim-
ination task of [44]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Summary of M-ary soft fusion performance results for the experiment setup defined in
Section 5.3.2. Results shown in terms of the average post-fusion accuracy, ξBel, toward
the correct alternative and for each BMA/subjective probability construction case. These
trends were observed in the two, four, and eight alternative decision tasks simulated. . . 91

5.2 Summary of M-ary soft fusion performance results for the experiment setup defined in
Section 5.3.2. Results shown in terms of the average post-fusion precision, 1−(ξPl−ξBel),
toward the correct alternative and for each BMA/subjective probability construction case.
These trends were observed in the two, four, and eight alternative decision tasks simulated. 91

5.3 Best performing fusion operator associated with the experiment setup defined in Sec-
tion 5.4.2. Results shown in terms of the average post-fusion pignistic probability towards
the correct alternative and for each BMA/subjective probability construction case and
imprecision level. The observed trends were the same for the line length discrimination
and city population tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Best performing fusion operator associated with the experimental setup defined in Sec-
tion 5.4.2. Results shown in terms of the average post-fusion uncertainty measure towards
the correct alternative and for each BMA/subjective probability construction case and
imprecision level. The observed trends were the same for the line length discrimination
and city population tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Summary of hard/soft fusion performance results for the experiment setup defined in
Section 6.2.2. Results shown in terms of the average post-fusion pignistic probability
toward the correct alternative and for each BMA/subjective probability construction case.113

6.2 Summary of hard/soft fusion performance results for the experiment setup defined in
Section 6.2.2. Results shown in terms of the average post-fusion uncertainty metric
towards the correct alternative and for each BMA/subjective probability construction case.113



x

List of Figures

1.1 Hard and soft data fusion, conceptual block diagram. . . . . . . . . . . . . . . . . . . . . 2

2.1 Parallel hard and soft fusion problem considered in this thesis. . . . . . . . . . . . . . . 9

2.2 Abstraction of a soft source and the relevant cognitive processes involved in the formula-
tion of a decision. A decision and confidence assessment may not be immediately available
in the source’s response, in which case some sort of information extraction technique may
need to be applied (depicted here as dashed lines). . . . . . . . . . . . . . . . . . . . . . 10

3.1 Stimulus example for the line length discrimination task. A 32.00 millimeter long line is
shown on the left, and a 33.87 millimeter long line is shown on the right. . . . . . . . . . 38

3.2 Stimulus example for the city population size discrimination task. According to the 2010
U.S. Census estimate, Detroit, MI has a population rank of 18 and Washington, D.C.
has a population rank of 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Stimulus example instance for the random dot movement task. Dots move either towards
the right or left of the circle, masked by a subset of randomly moving dots. . . . . . . . 40

3.4 Four example 2DSD simulations, showing two simulations for the accumulated evidence
L(t) over time for three subjects on the line length discrimination task. Each simulation
involved comparing the lengths of a 32.00 millimeter and a 32.27 millimeter long line.
Parameters were obtained from [44] when subjects were asked to focus on making accurate
responses. The time of decision declaration and confidence assessment are shown are
vertical black lines. All thresholds and binning parameters are also shown. . . . . . . . . 42

3.5 Normalized histograms for the decision confidence values simulated for three (3) subjects
on the line length discrimination task of [44]. Each simulation involved comparing the
lengths of a 32.00 millimeter and a 32.27 millimeter long line placed on the left and
right sides of the screen respectively. For each subject, two types of responses were
simulated: one which placed an emphasis on accurate responses, and another which
placed an emphasis on fast responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Average evidence strength of fusion operators on the line length discrimination task
of [44], showcasing four BMA (or subjective probability) construction cases. Subjects
were simulated as comparing a 32.00 millimeter line with a 32.27 millimeter line while
focusing on providing accurate responses. Higher colored bars indicate better accuracy
performance. Smaller clear bars indicate better precision performance. . . . . . . . . . . 53

4.2 Average evidence strength of fusion operators on the line length discrimination task of
[44], showcasing four BMA (or subjective probability) construction cases. Subjects were
simulated as comparing a 32.00 millimeter line with a 32.27 millimeter line while focusing
on providing fast responses. Higher colored bars indicate better accuracy performance.
Smaller clear bars indicate better precision performance. . . . . . . . . . . . . . . . . . . 53



xi

4.3 Average evidence strength of fusion operators on the city population size discrimination
task of [44], showcasing four BMA (or subjective probability) construction cases. Subjects
were simulated as comparing U.S. city pairs having a population rank difference between
10 and 18 while focusing on providing accurate responses. Higher colored bars indicate
better accuracy performance. Smaller clear bars indicate better precision performance. . 54

4.4 Average evidence strength of fusion operators on the city population size discrimination
task of [44], showcasing four BMA (or subjective probability) construction cases. Subjects
were simulated as comparing U.S. city pairs having a population rank difference between
10 and 18 while focusing on providing fast responses. Higher colored bars indicate better
accuracy performance. Smaller clear bars indicate better precision performance. . . . . 54

4.5 Fusion performance on the line length discrimination task (accuracy focus) of [44] when
including an increasing number of responses from better or worse performing sources in
the combination. Subject BMAs (or subjective probability assignments) for each fusion
operator formed using simulated subject decision and confidence values according to the
“Confidences Only” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b)
Precision performance (i.e., evidence strength interval size). Lower is better. . . . . . . 58

4.6 Fusion performance on the line length discrimination task (accuracy focus) of [44] when
including an increasing number of responses from better or worse performing sources
in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according
to the “Evidence Strength Discounting” case from Study 1. (a) Accuracy performance
(i.e., minimum average evidence strength) versus number of best/worst source responses.
Higher is better. (b) Precision performance (i.e., evidence strength interval size). Lower
is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Fusion performance on the line length discrimination task (speed focus) of [44] when
including an increasing number of responses from better or worse performing sources in
the combination. Subject BMAs (or subjective probability assignments) for each fusion
operator formed using simulated subject decision and confidence values according to the
“Confidences Only” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b)
Precision performance (i.e., evidence strength interval size). Lower is better. . . . . . . 59

4.8 Fusion performance on the line length discrimination task (speed focus) of [44] when
including an increasing number of responses from better or worse performing sources
in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according
to the “Evidence Strength Discounting” case from Study 1. (a) Accuracy performance
(i.e., minimum average evidence strength) versus number of best/worst source responses.
Higher is better. (b) Precision performance (i.e., evidence strength interval size). Lower
is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Fusion performance on the city population size discrimination task (accuracy focus) of [44]
when including an increasing number of responses from better or worse performing sources
in the combination. Subject BMAs (or subjective probability assignments) for each fusion
operator formed using simulated subject decision and confidence values according to the
“Confidences Only” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b)
Precision performance (i.e., evidence strength interval size). Lower is better. . . . . . . 60

LIST OF FIGURES



xii

4.10 Fusion performance on the city population size discrimination task (accuracy focus) of [44]
when including an increasing number of responses from better or worse performing sources
in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according
to the “Evidence Strength Discounting” case from Study 1. (a) Accuracy performance
(i.e., minimum average evidence strength) versus number of best/worst source responses.
Higher is better. (b) Precision performance (i.e., evidence strength interval size). Lower
is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 Fusion performance on the city population size discrimination task (speed focus) of [44]
when including an increasing number of responses from better or worse performing sources
in the combination. Subject BMAs (or subjective probability assignments) for each fusion
operator formed using simulated subject decision and confidence values according to the
“Confidences Only” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b)
Precision performance (i.e., evidence strength interval size). Lower is better. . . . . . . 61

4.12 Fusion performance on the city population size discrimination task (speed focus) of [44]
when including an increasing number of responses from better or worse performing sources
in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according
to the “Evidence Strength Discounting” case from Study 1. (a) Accuracy performance
(i.e., minimum average evidence strength) versus number of best/worst source responses.
Higher is better. (b) Precision performance (i.e., evidence strength interval size). Lower
is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Normalized area under the ROC curve versus the number of sources included in combi-
nation for the line length discrimination task of [44]. Error bars show estimation error
at the 95% confidence level. (a) Comparing 32.00 versus 32.27 millimeter long lines (b)
Comparing 32.00 versus 32.59 millimeter long lines. (c) Comparing 32.00 versus 33.23
millimeter long lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Normalized area under the ROC curve versus the number of sources included in combi-
nation for the city population size discrimination task of [44]. Error bars show estimation
error at the 95% confidence level. (a) Comparing cities differing in population rank by
1 and up to 9 (e.g., New York, N.Y. versus Los Angeles, C.A.) (b) Comparing cities
differing in population rank by 10 and up to 18 (e.g., Houston, T.X. versus Baltimore,
M.D.). (c) Comparing cities differing in population rank by 19 and up to 29 (e.g., Detroit
M.I. versus Cleveland, O.H.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15 Normalized area under the ROC curve (AUC) versus the number of sources present
in combination, for each difficulty level of the line length discrimination task of [44].
Different lines represent the five different probability transforms investigated by this
work. Error bars shown for the 95% confidence intervals. In each of the four difficulty
levels, all five probability transforms are nearly overlapping. . . . . . . . . . . . . . . . . 71

4.16 ROC curves for each difficulty level of the line length discrimination task of [44], showing
false alarm rates up less than 0.30. Different lines represent the five different probability
transforms investigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

LIST OF FIGURES



xiii

4.17 Normalized area under the ROC curve (AUC) versus the number of sources present
in combination, for each difficulty level of the city population size discrimination task
of [44]. Different lines represent the five different probability transforms investigated by
this work. Error bars shown for the 95% confidence intervals. In each of the four difficulty
levels, all five probability transforms are nearly overlapping. . . . . . . . . . . . . . . . . 73

4.18 ROC curves for each difficulty level of the city population size discrimination task of [44],
showing false alarm rates up less than 0.30. Different lines represent the five different
probability transforms investigated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Linear fits of subject mean drift rates versus line length differences for the line length
discrimination task as presented in [44]. Equations and R2 values shown for each subject. 82

5.2 Simulated averages of evidence strengths, ξ, for all six 2DSD subject models from [44,
Tables 3 and 6] under the 2DSD M-ary human response simulator for the line length
discrimination task versus the incremental line length difference, d. Average evidence
strengths shown for M = 2, 4, 6, 8 alternatives. Averages obtained over 10,000 trials of
the M-ary extension algorithm for each subject. . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Estimated chance of no decision case for all six 2DSD subject models from [44, Tables 3
and 6] under the 2DSD M-ary extension algorithm. Averages obtained over 10,000 trials
for each subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Average imprecise evidence strength for each subject on the line length discrimination
task of [45]. The spectrum of colored bars represents the average imprecise evidence
strength of the 40 subjects when simulated to select the l longest lines amongst a set of
9.60, 9.65, 9.72, and 9.73 millimeter long lines, where l = 1, 2, 3. Subject decisions and
confidence assessments were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . 85

5.5 Average imprecise evidence strength for each subject on the city population size dis-
crimination task of [45]. The spectrum of colored bars represents the average imprecise
evidence strength of the 91 subjects when simulated to select the l most populated cities
among Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO), where
l = 1, 2, 3. Subject decisions and confidence assessments were simulated over 10,000 trials. 85

5.6 Normalized histogram of subject decisions on the line length discrimination task of [45].
A total of 40 subjects were simulated to select the longest line amongst a set of 9.60,
9.65, 9.72, and 9.73 millimeter long lines. Subject decisions and confidence assessments
were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Normalized histogram of subject decisions on the city population size discrimination task
of [45]. A total of 91 subjects were simulated to select the most populated city among
Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO). These four cities
were ranked the 4th, 5th, 31st, and 56th most populated United States cities respectively,
according to the 2010 US Census estimate. Subject decisions and confidence assessments
were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 Normalized histogram of subject decisions on the line length discrimination task of [45].
A total of 40 subjects were simulated to select the two longest lines amongst a set of 9.60,
9.65, 9.72, and 9.73 millimeter long lines. Subject decisions and confidence assessments
were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

LIST OF FIGURES



xiv

5.9 Normalized histogram of subject decisions on the city population size discrimination
task of [45]. A total of 91 subjects were simulated to select the two most populated cities
among Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO). These
four cities were ranked the 4th, 5th, 31st, and 56th most populated United States cities
respectively, according to the 2010 US Census estimate. Subject decisions and confidence
assessments were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . . . . . . . 87

5.10 Normalized histogram of subject decisions on the line length discrimination task of [45].
A total of 40 subjects were simulated to select the three longest lines amongst a set of 9.60,
9.65, 9.72, and 9.73 millimeter long lines. Subject decisions and confidence assessments
were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.11 Normalized histogram of subject decisions on the city population size discrimination task
of [45]. A total of 91 subjects were simulated to select the three most populated cities
among Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO). These
four cities were ranked the 4th, 5th, 31st, and 56th most populated United States cities
respectively, according to the 2010 US Census estimate. Subject decisions and confidence
assessments were simulated over 10,000 trials. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 Average accuracy performance (i.e., ξBel) for each of the five fusion methods versus the
number of sources present in combination (higher is better). Results simulated over
10,000 trials for the M-ary line length discrimination task with M = 2, 4, 8. The evidence
strengths for the best and worst subjects in the combination are also shown for comparison. 93

5.13 Average precision performance (i.e., 1 − (ξPl − ξBel) for each of the five fusion methods
versus the number of sources present in combination (higher is better). Results simulated
over 10,000 trials for the M-ary line length discrimination task with M = 2, 4, 8. . . . . 94

5.14 Performance of each of the six fusion operators versus the number of subjects included
in the combination for the M-ary line length discrimination task (M = 4). Subjects were
simulated to chose the l most correct alternatives, where l = 1. Subplots show average
pignistic probability and average uncertainty for the true alternative after performing
fusion, and in terms of the fusion operator input construction case used. . . . . . . . . . 101

5.15 Performance of each of the six fusion operators versus the number of subjects included
in the combination for the M-ary line length discrimination task (M = 4). Subjects were
simulated to chose the l most correct alternatives, where l = 2. Subplots show average
pignistic probability and average uncertainty for the true alternative after performing
fusion, and in terms of the fusion operator input construction case used. . . . . . . . . . 102

5.16 Performance of each of the six fusion operators versus the number of subjects included
in the combination for the M-ary line length discrimination task (M = 4). Subjects were
simulated to chose the l most correct alternatives, where l = 3. Subplots show average
pignistic probability and average uncertainty for the true alternative after performing
fusion, and in terms of the fusion operator input construction case used. . . . . . . . . . 103

5.17 Performance of each of the six fusion operators versus the number of subjects included
in the combination for the M-ary city population size discrimination task (M = 4).
Subjects were simulated to chose the l most correct alternatives, where l = 1. Subplots
show average pignistic probability and average uncertainty for the true alternative after
performing fusion, and in terms of the fusion operator input construction case used. . . 104

LIST OF FIGURES



xv

5.18 Performance of each of the six fusion operators versus the number of subjects included
in the combination for the M-ary city population size discrimination task (M = 4).
Subjects were simulated to chose the l most correct alternatives, where l = 2. Subplots
show average pignistic probability and average uncertainty for the true alternative after
performing fusion, and in terms of the fusion operator input construction case used. . . 105

5.19 Performance of each of the six fusion operators versus the number of subjects included
in the combination for the M-ary city population size discrimination task (M = 4).
Subjects were simulated to chose the l most correct alternatives, where l = 3. Subplots
show average pignistic probability and average uncertainty for the true alternative after
performing fusion, and in terms of the fusion operator input construction case used. . . 106

6.1 Sample images acquired by the RDM decision task hard sensor. . . . . . . . . . . . . . . 109

6.2 Diagram of a hard/soft fusion system where the hard sensor is trained offline. . . . . . . 111

6.3 Average post combination pignistic probability towards correct alternative versus the
number of responses included in the fusion operator. The different lines represent the
fusion operators being investigated. In all simulation cases, the hard sensor was the first
source in the combination, followed by a random permutation of the soft sources. Results
averaged over 10,000 simulation trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Average post combination uncertainty towards correct alternative versus the number
of responses included in the fusion operator. The different lines represent the fusion
operators being investigated. In all simulation cases, the hard sensor was the first source
in the combination, followed by a random permutation of the soft sources. Results
averaged over 10,000 simulation trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Estimated correct classification rate using a maximum a posteriori (MAP) decision rule
versus the number of responses included in the fusion operator. The different lines rep-
resent the fusion operators being investigated. In all simulation cases, the hard sensor
was the first source in the combination, followed by a random permutation of the soft
sources. Results averaged over 10,000 simulation trials. MAP correct classification rates
of the best and worst soft sources and the trained hard source are shown for comparison. 117

6.6 Diagram of a fusion system that applies online training of a single hard sensor using
feedback of the global decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 Estimated MAP correct classification rate of the RDM task hard sensor trained online
(Figure 6.6) versus the number of stimuli presented. The different lines represent the
fusion operators being investigated. In all simulation cases, the hard sensor was the
first source in the combination, followed by a random permutation of five soft sources.
Results averaged over 10,000 simulation trials. MAP correct classification rates of the
offline-trained hard source is shown for comparison. . . . . . . . . . . . . . . . . . . . . 122

6.8 Average post combination pignistic probability towards correct alternative versus the
number of stimuli presented to the hard and soft sources when training the RDM hard
sensor online. The different lines represent the fusion operators being investigated. In all
simulation cases, the hard sensor was the first source in the combination, followed by a
random permutation of five soft sources. Results averaged over 10,000 simulation trials. 123

LIST OF FIGURES



xvi

6.9 Average post combination uncertainty towards correct alternative versus the number of
stimuli presented to the hard and soft sources when training the RDM hard sensor online.
The different lines represent the fusion operators being investigated. In all simulation
cases, the hard sensor was the first source in the combination, followed by a random
permutation of of five soft sources. Results averaged over 10,000 simulation trials. . . . 124

6.10 Estimated post combination correct classification rate using a maximum a posteriori
(MAP) decision rule versus the number of stimuli presented to the hard and soft sources
when training the RDM hard sensor online. The different lines represent the fusion
operators being investigated. In all simulation cases, the hard sensor was the first source
in the combination, followed by a random permutation of five soft sources. Results
averaged over 10,000 simulation trials. MAP correct classification rates of the best and
worst soft sources and the trained hard source are shown for comparison. . . . . . . . . 125

7.1 Conceptual diagram of the LCA model proposed in [144] for modeling human decision-
making dynamics on multihypothesis tasks. Evidence is accumulated over time towards a
set of alternatives, denoted here as Ω = {A,B,C,D}. Evidence towards each alternative
can also decrease by a self-decaying process (i.e., leakage), or by evidence accumulated
towards the other alternatives (i.e., lateral inhibition). A decision is made when enough
evidence has been accumulated towards one of the alternatives (i.e., it passes a threshold
depicted here as the response criterion). . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Conceptual diagram of a possible 2DSD/LCA hybrid model of vague human responses on
a M -ary decision task. Evidence is accumulated over time towards a set of alternatives,
denoted here as Ω = {A,B,C,D}, until at least one crosses some threshold (i.e., the
response criterion). Then, the accumulators are run for a specified interjudgment period.
Any accumulators which are above the threshold are included as the simulated vague
decision, and the final values are used in a binning operation to produce a decision
confidence assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

LIST OF FIGURES



xvii

List of Symbols

Set Theoretic and Probabilistic Terminology

A The compliment (or negation) of a set, denoted here as A.

A ∪B The union of two sets, denoted here as A and B.

A ∩B The intersection of two sets, denoted here as A and B.

FΩ A set algebra over Ω, defining all possible unions and complements of the elements
ω ∈ Ω.

∅ The empty set.

2Ω The power set of Ω, defined as the set of all subsets of Ω including the empty set ∅.

|A| The cardinality of a set, denoted here as A. Since the sets here are assumed finite, it
denotes the number of elements contained by the set.

FΩ A set algebra over Ω, defining all possible unions and complements of the elements
ω ∈ Ω.

a ∈ A Read as “the element a is contained in the set A.”

A ⊆ B Read as “the set A is a subset or equal to B.”

A ⊂ B Read as “the set A is a subset of B.”

R Set of all real numbers.

N (µ, σ2) Normal distribution with mean µ and variance σ2.

U(a, b) Uniform distribution defined on the interval [a, b].

Data Fusion Terminology

Ω A finite set of disjoint alternatives or states that a phenomenon can exist in.

M The number of alternatives denoted by Ω (i.e., M = |Ω|).

N The number of information sources being combined by a data fusion operator.

PΩ(·) A probability measure defined over the set Ω. This notation is used when describing
statistical probabilities (i.e., propensities of occurrence).

PΩ(·) A subjective probability assignment defined over the set Ω. This notation is used when
describing epistemic probabilities (e.g., decision confidence assessments).

ui A decision generated by the ith source amongst a set of sources.



xviii

u0 A global decision, generated by a data fusion center.

u∗ The correct alternative amongst Ω.

pFi
Probability of false alarm for the ith source amongst a set of sources.

pMi
Probability of missed detection for the ith source amongst a set of sources.

pDi
Probability of correct detection for the ith source amongst a set of sources.

pEi
Total classification error for the ith source amongst a set of sources.

pF0 Probability of false alarm associated with the decision rule used at the data fusion
center.

pM0
Probability of missed detection associated with the decision rule used at the data
fusion center.

pD0 Probability of correct detection associated with the decision rule used at the data
fusion center.

pE0
Total classification error associated with the decision rule used at the data fusion
center.

mΩ(·) A belief mass assignment defined over the power set of Ω.

Bel(·) A Dempster-Shafer theory belief function.

Pl(·) A Dempster-Shafer theory plausibility function.

Un(·) A Dempster-Shafer theory uncertainty function.

C Core of a belief function according to a belief mass assignment m over Ω.

K Measure of conflict after conjunctively combining a set of belief mass assignments.

ξ(u, p) The evidence strength a subject’s decision u and decision confidence assessment p.

ξ Sample average of a subject’s observed evidence strengths.

ξ′(A, p) The imprecise evidence strength of a subject’s decision A and decision confidence
assessment pA.

ξ′ Sample average of a subject’s observed imprecise evidence strengths.

ξBel Lower bound of the evidence strength interval when using fusion operators from
Dempster-Shafer theory.

ξPl Upper bound of the evidence strength interval when using fusion operators from
Dempster-Shafer theory.

αi Discount rate for the ith subject’s belief mass or subjective probability assignment.

LIST OF SYMBOLS



xix

Two-Stage Dynamic Signal Detection Terminology

A The set of alternatives defining a two-alternative forced-choice task.

t Elapsed time (in seconds).

L(t) A stochastic process representing an accumulation of evidence that occurs during
human deliberation.

∆L(t) Discrete increment of L(t) when modeled using a random walk approximation of a
Wiener drift diffusion process.

∆t Discrete time step (in seconds) used in a random walk approximation of a Wiener drift
diffusion process.

δ Drift rate of a drift diffusion process.

L0 The initial condition of the stochastic difference equation for computing L(t) (i.e.,
L0 = L(0)).

θA Decision threshold on L(t) for choosing alternative A ∈ A.

ε(·) White noise process having variance σ2.

σ Drift coefficient of a drift diffusion process.

a 2DSD declared decision (simulated).

p 2DSD declared decision confidence (simulated).

td Elapsed time between the start of deliberation and decision declaration.

tc Elapsed time between the start of deliberation and decision confidence declaration.

τ Time between the point of decision and decision confidence declaration (i.e., inter-
judgment time).

P(a) Set of Ka possible decision confidence assessment values associated with the simulated
2DSD decision a ∈ A.

C(a) Set of Ka − 1 bin values that are used to map the value of L(tc) into a decision
confidence assessment when the decision a ∈ A is produced by a 2DSD simulation.

SOST Base parameters of the 2DSD optional stopping model. These parameters are esti-
mated per subject based on experimentally determined decision, confidence assess-
ment, and response time statistics.

SINT Base parameters of the 2DSD interrogation model. These parameters are estimated
per subject based on experimentally determined decision, confidence assessment, and
response time statistics.

tED Mean non-decision time. Represents the average motor time exhibited by a subject
when making a decision.

LIST OF SYMBOLS



xx

tEJ Mean non-judgment time. Represents the average motor time exhibited by a subject
when assessing their decision confidence.

ν Optional 2DSD parameter. Specifies the mean drift rate when assuming that the
2DSD model drift rate δ is normally distributed per simulation.

η Optional 2DSD parameter. Specifies the drift rate standard deviation when assuming
that the 2DSD model drift rate δ is normally distributed for a given simulation.

z Optional 2DSD parameter. Specifies the center of an interval in which the 2DSD
model initial condition L0 may be uniformly distributed for a given simulation.

sz Optional 2DSD parameter. Specifies the size of an interval in which the 2DSD model
initial condition L0 may be uniformly distributed for a given simulation.

γ Optional 2DSD parameter. Specifies the rate of evidence decay in the 2DSD evidence
accumulation process.

ρ Optional 2DSD parameter. Specifies the fractional amount that the 2DSD drift rate
should be attenuated to during the interjudgment period.

Pairwise-Successive Aggregation Terminology

Z A set of unique stimuli associated with a class of M -ary decision tasks that involve
choosing the most apparent stimulus amongst a set of M stimuli.

zi The ith stimuli of Z, where i = {1, . . . ,M}.

zi∗ The most apparent stimuli of those defined by Z.

l The imprecision level of the decision generated by the pairwise-successive aggregation
method (i.e., the cardinality of the generated decision, where l ∈ {1, . . . ,M − 1}).

LIST OF SYMBOLS



xxi

Abstract
Assessing the Performance of Data Fusion Algorithms Using Human Response Models

Donald J. Bucci
Moshe Kam

There is ongoing interest in designing data fusion systems that make use of human opinions (i.e.,

“soft” data) alongside readings from various sensors that use mechanical, electromagnetic, optical,

and acoustic transducers (i.e., “hard” data). One of the major challenges in the development of

these hard/soft fusion systems is to determine accurately and flexibly the impact of human responses

on the performance of the fusion operator. Examples, counterexamples, and thought experiments

have been used to illustrate specific performance aspects of soft and hard/soft fusion operators.

However, these methods do not provide a systematic means for calculating performance statistics.

Data sets of human responses developed through human testing have also been used. However,

results obtained in this manner were often hard to generalize and difficult to tune up due to the

experimental and administrative limitations imposed on human testing. Models of human decision

making and confidence assessment from cognitive psychology offer a unique opportunity to assess

the performance of fusion systems which make use of human opinions. Such models, which can

programmed and modified readily and inexpensively, can be used to assess the performance of

hard/soft fusion systems and to make credit assignments to the multiple sources of data that lead

to the final estimate/decision of the fusion architecture.

The main contribution of this thesis is a set of algorithms for determining the performance of

various soft and hard/soft fusion operators using existing models of human decision-making. In the

first part of the thesis, we discuss the current state of the art and introduce applicable techniques

for hard/soft fusion. In the second part of the thesis, we present techniques and examples for

determining the performance of a family of soft and hard/soft fusion operators on a set of binary

and multihypothesis tasks. We also present a method for simulating “vague” human responses, and

correspondingly assess the statistical performance of soft fusion systems that have been proposed

for combining sources of such imprecise information.
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Chapter 1: Introduction

1.1 Context and Motivation

Data fusion is a broad field of research on combining data from multiple, often heterogeneous,

information sources which report on the same underlying phenomenon. Often the purpose of data

fusion is to develop improved decisions and/or parameter estimates compared to what could be

achieved by the use of a single information source.

Data fusion has been used in a wide variety of fields and applications. For example, the defense

research community has employed data fusion to improve the detection and tracking of objects

in oceanic and battlefield surveillance, air-to-air defense, and strategic warning systems [1]. Non-

defense related applications were demonstrated in air traffic control [2], forensics [3], medical imaging

and diagnostics [4], robotics [5], and automotive navigation systems [6].

Most traditional data fusion applications make use of data from electronic, optical, or mechanical

sensors. Such data tend to be relatively well structured and exhibit fixed and readily modeled

sensor-error characteristics. These are often called “hard sources.” There is an increasing interest

in designing fusion systems that also make use of opinions from human decision makers (i.e., “soft

sources”) [7]. These human opinions can be combined by themselves (i.e., “soft fusion”) [8–16])

or integrated with “hard” sensors. In the latter case we speak of “hard/soft fusion” [17–22]. Such

“soft sources” can consist of the direct opinions of experts, the opinion of a crowd, or information

obtained from the internet or social media. They are characterized as having highly unstructured

data representations, and their governing statistics may be very complex and affected by many

environmental factors [20]. Figure 1.1 is an attempt to depict hard and soft data fusion in a block

diagram.

The inclusion of human responses in a data fusion system is becoming a popular research topic

across a variety of applications. The initial need for structured research into the problem of hard and

soft fusion has risen over the last ten years out of the U.S. Army’s needs in asymmetric urban warfare
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Figure 1.1: Hard and soft data fusion, conceptual block diagram.

[7]. For example, counter-insurgency (COIN) operations have been known to rely on a wide spectrum

of information support sources including radio frequency sensors and imaging systems, along with

reports from soldiers and intelligence analysts. In this setting, a hard and soft fusion system could

be used to consolidate and combine relevant data in order to facilitate easier and improved decision-

making by analysts and warfighters [23]. Deeper research into hard and soft data fusion however, has

the potential for much broader impact [24]. The area of medical diagnostics, for example, makes use

of information from lab tests and medical imagery in addition to patient reports and the opinions of

doctors. These sources are integrated to arrive at an evaluation of some underlying pathology that,

which it is hoped, is accurate and actionable. Emergency response applications are marked by a

large influx of both hard and soft information (e.g., geospatial data acquired from satellite imagery;

human reports through social media). There are also many applications of hard and soft fusion in

criminal justice systems, where the end goal may be to determine the identity of a person of interest

given surveillance footage and fixed evidence from a crime scene, in addition to eyewitness accounts

and expert testimonies.

Chapter 1 1.1 Context and Motivation
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1.2 Performance of Hard/Soft Fusion Systems

One of the challenges facing the development of state-of-the-art soft and hard/soft fusion systems

is how one should to accurately and systematically evaluate their performance. A recent state-

of-the-art survey of multisensor data fusion suggested that the role of soft data has not yet been

extensively researched by the fusion community [25]. This apparent lack of research may be related

to the difficulties in representing and characterizing human opinions statistically in practical soft and

hard/soft fusion system applications [7]. In most studies, the performance of a given soft or hard/soft

fusion system is evaluated through the use of examples, counterexamples, and thought experiments

(e.g., [26–35]), or through direct human testing on standardized data sets (e.g., [13–15, 21, 36]).

Although the use of examples and counterexamples can illustrate specific performance aspects of

a data fusion operator, this approach does not lend itself towards wider applicability, nor does it

allow the prediction of performance in hitherto-untested circumstances. Direct human testing and

the use of predetermined data sets can provide estimates of average performance for specific fusion

problems. However this approach often depends on the specific experiment (i.e., human subjects;

data exposition schemes). Furthermore, the repeatability of the experiments may prove difficult

to achieve. This limitation is significant when a fusion system designer is interested in repeating

an experiment with the same humans many times, with only a small modification of parameters

between experiments; this is how sensitivity and record trends are often studied. Employing a large

number of humans for testing also tends to be logistically cumbersome, making opportunities to

re-test the same humans on modified data presentations for extensive periods of times impractical.

1.3 Probabilistic Human Response Models and Data Fusion

Probabilistic models of human decision making and confidence assessment from cognitive psychology

offer an opportunity to assess the performance of fusion operators which make use of human opinions.

However, little work has been conducted on using models of human decision-making and confidence

assessment in this manner. For example, human decision-making probability models have been used

to improve the performance of human-in-the-loop systems, where the human acts as the “data fusion

Chapter 1 1.2 Performance of Hard/Soft Fusion Systems
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center” and controls system-wide parameters in response to evolving performance metrics. Models

of human decision-making have been used in such systems to estimate strategies employed by the

human element for the purposes of optimizing human-system interactions [37–40]. After performing

a literature survey, we did not discover any soft or hard/soft fusion studies that made specific use of

probabilistic models of human decision-making from cognitive psychology. Such models may need

further validation with human decision-makers, but a lot of design, parameter selection, tuning, as

well as stability and convergence analyses can be significantly accelerated and made more efficient

by using them. They appear more promising than human testing or, as often is the case at the

present time, reliance on researcher intuition.

1.4 Main Contributions

This dissertation presents methods for assessing the statistical performance of several soft and

hard/soft fusion operators using models of human responses from cognitive psychology. Using data

available in the cognitive psychology literature, we showcase how one can estimate the statisti-

cal performance (e.g., error rates and confidence assessment accuracies) of an arbitrary collection

fusion operators frequently used in soft or hard/soft data fusion. These operators come from detec-

tion theory [41], Bayesian Epistemology [42], and Dempster-Shafer Theory [43]. We also propose

methods for extending human response simulation techniques in order to assess the performance of

multihypothesis and/or vague1 fusion operators. The main contributions of this dissertation are as

follows.

• This work is one of the first to use probabilistic models of human decision-making, confi-

dence assessment, and response time from cognitive psychology in assessing the performance

of automated soft and hard/soft data fusion systems.

• This work is one of the first to associate meaningful statistical performance with data fusion

operators from Dempster-Shafer theory using human decision-makers.

• This work explains the roles of decision confidence assessments and reliabilities of those as-

1For more information on how we define “vague” decisions, see Section 2.1.
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sessments in the context of soft and hard/soft fusion systems.

• This work addresses the utility of the probability information content (PIC) metric in assessing

the performance of a probability transformation2.

• This work has used models of human responses to showcase the effects of vague evidence in

terms of realistic fusion system performance metrics.

• This work is one of the first to implement a fully simulated hard and soft fusion system using

models of human-decision making and confidence assessment from the cognitive psychology

literature.

1.5 Organization of the Dissertation

This dissertation is organized into two parts and an epilogue. The first part consists of Chapters 2

and 3. The second part consists of Chapters 4 through 6. The final two chapters encompass the

epilogue.

• Part I: An Introduction to Data Fusion Tools and Human Response Simulation.

This part contains background material for this thesis. Chapter 2 reviews of a selection of

information fusion techniques used in soft and hard/soft fusion systems. Chapter 3 presents

a brief history and background on human response probability models, with a focus on two-

stage dynamic signal detection (2DSD) [44, 45]. We also discuss a selection of decision tasks

from [44, 45] that were used in this thesis to study the performance of several data fusion

operators.

• Part II: Performance Assessment Techniques for Hard/Soft Fusion Systems. This

part uses 2DSD models from [44, 45] to simulate the statistical performance of several fusion

operators. Chapter 4 studies soft fusion operator performance on binary decision tasks.

Chapter 5 discusses methods for generating multihypothesis and vague decisions and confi-

dence assessments using models of binary human decision-making and confidence assessment.

2A probability transformation is a mathematical construct used in Dempster-Shafer theory. It is explained later
in Section 2.5.6.
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These methods are then used to simulate the statistical performance of several soft fusion oper-

ators which combine multihypothesis and vague human decisions and confidence assessments.

Chapter 6 studies hard/soft fusion operator performance on binary decision tasks.

• The Epilogue of the dissertation is contained in Chapters 7 and 8. Chapter 7 discusses

future work and areas of potential collaboration between researchers in data fusion and cog-

nitive psychology. A summary of the dissertation and concluding remarks are presented in

Chapter 8.

Chapter 1 1.5 Organization of the Dissertation
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Part I

An Introduction to Data Fusion Tools and Human Response Simulation
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Chapter 2: Data Fusion Terminology

We present the necessary terminology and techniques required to implement the data fusion opera-

tors discussed in Chapters 4 through 6. We begin by outlining the general hard/soft fusion problem

as it pertains to the case studies of this thesis. Although all of the operators discussed in this thesis

make use of the rules of probability, their interpretations may not necessarily have the same under-

lying meaning. We first discuss the definition of probability as a measure, and then its statistical

and epistemological interpretations. We then use these definitions to discuss an arbitrary selection

of fusion operators from detection theory [41], Bayesian Epistemology [42], and Dempster-Shafer

Theory [43] that could potentially be used in the hard/soft fusion problem presented here.

2.1 Problem Overview

Figure 2.1 displays the general data fusion problem considered by this thesis. A fixed group of

machines and humans make observations on the state of some phenomenon. The machines and

humans each provide a decision towards the true state and a corresponding decision confidence

level. Each decision and confidence assessment is communicated to a data fusion center, which is

designed to aggregate the responses of all the sources into a single representation. This representation

may be, for example, an aggregated set of beliefs towards each of the possible outcomes or a single

decision that best captures the decisions and confidence assessments of the sources.

The decisions provided by some of the sources can be vague in the sense that they can consist

of the disjunction of two or more states of the phenomenon. To illustrate this, consider a simple

game between an illusionist and a volunteer where the volunteer chooses a card from a standard

deck of playing cards and the illusionist must make a decision as to which card the volunteer chose.

A precise decision would be one in which the illusionist decides that a specific card out of the 52

possible cards was chosen (e.g., the 7 of Clubs). A vague decision would be one in which the

illusionist decides that the volunteer has selected a specific type of card, but makes no distinction
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Machine (Hard) Sensor
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Global
Decision

or
Aggregated

Belief

Figure 2.1: Parallel hard and soft fusion problem considered in this thesis.

as to the exact identity of the card (e.g., a black face card, which is the disjunction of the Jack of

Clubs, Jack of Spades, Queen of Clubs, and so on).

When fusing hard sensors, a corresponding set of conditional probability models can usually be

estimated for each of the possible alternatives, and hence used in the construction of an optimal

fusion rule. With soft sensors however, such a characterization is more difficult to achieve since the

underlying probabilistic mechanisms may be very complicated and a closed form equation may not

necessarily exist. An example of the relationships between the cognitive processes involved in a soft

source is shown in Figure 2.2. In this abstraction, the soft source observes the phenomenon and

translates his/her observations into evidence for the each of the possible alternatives. The source

continues to collect observations and deliberate between alternatives before formulating a response.

In some cases, this response may be freeform text or speech, and an information extraction technique

may be needed in order to associate a decision and confidence rating. There are many external factors

that can potentially lead to errors in the decision/confidence values provided by a soft source. For

example, environmental factors such as stress, anxiety, and time constraints all would change the

statistical characterization of the source. Internally, the ability for a source to adequately sense and

deliberate between hypotheses may also be affected by their own experience or context.

Chapter 2 2.1 Problem Overview



10

Sense 
Observations

Deliberate Between
Alternatives

Environmental
Factors/Constraints

Prior Experiences,
Intuition, and Ability 

Phenomenon
Information
Extraction

Freeform
Response

Decision and
Confidence Value

Human (Soft) Sensor

Figure 2.2: Abstraction of a soft source and the relevant cognitive processes involved in
the formulation of a decision. A decision and confidence assessment may not be immediately
available in the source’s response, in which case some sort of information extraction technique
may need to be applied (depicted here as dashed lines).

2.2 Interpretations of Probability

Consider the countable set Ω and a corresponding set algebra1 FΩ. By probability we mean a

function which is a normalized and additive measure of Ω over the algebra FΩ. These notions are

summarized by the well known Kolmogorov axioms.

Definition 2.1: Kolmogorov Axioms. Consider some function PΩ : Ω → R. For any triple

(Ω,FΩ, PΩ), PΩ is a probability measure on Ω over the set algebra FΩ if and only if

(i) Non-Negativity: PΩ(A) ≥ 0 for all A ⊆ Ω

(ii) Unitarity: PΩ(Ω) = 1

(iii) Additivity: Any A ⊆ Ω with pairwise disjoint elements satisfies PΩ(A) =
∑
ω∈A PΩ(ω).

In an aleatory (i.e., statistical) interpretation of probability, the elements of Ω represent testable

hypotheses with observable outcomes. To avoid confusion, we denote a statistical probability assign-

ment associated with each of the hypotheses ω ∈ Ω as PΩ(ω). The values of each PΩ(ω) represent

propensities of occurrence, and can be described as follows [47, Chapter 1].

Definition 2.2: Aleatory (Statistical) Probabilities. Let the possible outcomes of a phe-

nomenon be represented by each ω ∈ Ω. An aleatory interpretation of probability states that there

1For a comprehensive overview of set theoretic concepts as they apply to this thesis, see [46].

Chapter 2 2.2 Interpretations of Probability
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exists a probability triple for this space, (Ω,F , PΩ), such that the probability measure PΩ(ω) for some

ω ∈ Ω represents the chance that ω will occur. Specifically, if one observes N total outcomes and

finds that ω∗ ∈ Ω occurs Nω∗ times, then

lim
N→∞

Nω∗

N
= PΩ(ω) (2.1)

All statistical tools are constructed with an aleatory usage of probability in mind [47, Chap-

ter 8]. This includes elements of detection and estimation theory [41] and portions of central-

ized/decentralized data fusion [48].

In an epistemic (i.e., subjective) interpretation of probability, the elements of Ω represent

choice alternatives that may not be statistically testable. Here, the Kolmogorov axioms are used in

a literal sense to represent degrees of belief held towards each alternative ω ∈ Ω. We represent these

probabilities as PΩ(ω) for each alternative ω ∈ Ω. Evidence towards the alternatives ω can be cast

objectively or subjectively. In the objective case, degrees of belief can be regarded as propensities

of occurrence (e.g., detection/error rates, system reliabilities, etc.). Hence the functions PΩ(·)

and PΩ(·) are the same. In the subjective case, degrees of belief are taken as a measure of one’s

confidences [43, Chapter 1], and hence PΩ(·) may have no relation to the probabilities that describe

the statistics of Ω. Work motivating the representation of subjective beliefs in a totally epistemic

manner was first formalized by Frank Ramsey and De Finetti in [49] and [50]. Ramsey and De

Finetti explained that epistemic probabilities could be thought of as betting rates an individual

holds towards the outcomes of a phenomenon, and if one were to enter a betting situation which

disobeyed the rules of probability then he or she would be considered irrational. With this in mind,

the use of probabilities to represent subjective beliefs implies the following interpretation of the

Kolmogorov Axioms.

Definition 2.3: Epistemic (Subjective) Probabilities. Let Ω denote all possible alternatives

(not necessarily testable) concerning a certain phenomenon. An epistemic interpretation of prob-

ability states that for a given observer, there exists a probability triple, (Ω,F ,PΩ), such that the

Chapter 2 2.2 Interpretations of Probability



12

probability measure PΩ(ω) represents the observer’s beliefs for each ω ∈ Ω. When viewed in light of

the Kolmogorov Axioms, this implies the following.

(i) Non-Negativity: Beliefs are represented by non-negative numbers.

(ii) Unitarity: Full belief (tautology) must be attributed to the possibility that any occurrence

in Ω can be true at a given time.

(iii) Additivity: The belief held for any collection of alternatives in Ω must be the same as the

sum of the beliefs held for each one of those alternatives.

Definition 2.3 describes a Bayesian interpretation of probability (i.e., Bayesian Epistemology) [51–

53]. The additivity requirement of the Kolmogorov axioms has been referred to as Bayes’ Rule of

Additivity [43, Chapter 1]. The empty set ∅ represents an impossible event (i.e., a contradiction).

As a consequence of the Kolmogorov axioms, it can be easily shown that the Bayesian theory of

beliefs will always assign such contradictions zero belief (i.e., PΩ(∅) = 0).

2.3 Detection Theory

When a fusion system designer has foreknowledge regarding the statistics of the phenomenon or

the sensors (i.e., decision makers), elements from classical detection theory [41, Chapter 1] can be

applied to select the best performing fusion operator. Such a fusion operator is chosen in order to

meet an optimization criteria (e.g., the Bayes’ criterion or the Neyman-Pearson criterion). When

using the Bayes’ criterion, additional statistical foreknowledge is required in the form of a priori

probabilities and the decision costs associated with each possible course of action. When using

the Neyman-Pearson criterion, the a priori probabilities and decision costs are not required. For a

binary set of alternatives, both optimization problems reduce to a likelihood ratio test. For multi-

hypothesis (M-ary) alternatives, the optimal decision rule for the Bayesian criterion is generalized

to the maximum a posteriori probability (MAP) rule. The optimal decision rule for the Neyman-

Pearson generalizes to a collection of likelihood ratio tests [41, Chapter 1]. The design and solution

of such optimization problems may not be feasible in a soft or hard/soft fusion system since the

required likelihood ratios may be too complicated to accurately compute in real time [27]. Further-

Chapter 2 2.3 Detection Theory
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more, a representation of the statistics governing soft source responses may not exist in closed form.

Nevertheless, we briefly mention two simple fusion operators from detection theory that could be

applied ad hoc to the hard/soft fusion problem depicted in Figure 2.1, when restricted to binary

hypotheses. The first is the k-out-of-N majority rule [54], which chooses an alternative when k or

more decision makers declare it as the true outcome.

Definition 2.4: k-out-of-N Majority Rule. Consider the binary hypothesis problem given by the

set of alternatives Ω = {H0, H1}. Suppose a set of N detectors employ a decision rule to make a

decision ui, i = 1, . . . , N such that

ui =


−1 if H0 is declared

+1 if H1 is declared

. (2.2)

Then, the k-out-of-N majority rule makes the global decision u0 such that

u0 =


−1

∑N
i=1 ui < 2k −N

+1 otherwise

. (2.3)

The value k is chosen based on the required sensitivity of the fusion rule. Notice that when k = 1

the k-out-of-N majority rule reduces to the OR fusion rule. When k = N it reduces to the AND

fusion rule. Finally, when k = N/2 it reduces to a majority rule. The corresponding false alarm rate

pF0
and correct detection rate pD0

that describe the performance of the k-out-of-N majority rule are

defined as

pF0
= PΩ(u0 = +1|H0) = PΩ(

N∑
i=1

ui ≥ 2k −N |H0) (2.4)

pD0
= PΩ(u0 = +1|H1) = PΩ(

N∑
i=1

ui ≥ 2k −N |H1) (2.5)

Alternatively, the Chair and Varshney fusion rule uses a weighted sum of local decisions where

the weights capture the reliability (i.e., missed detection and false alarm rates) of each decision maker

Chapter 2 2.3 Detection Theory
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[54]. Assuming statistical independence of the source distributions conditioned on the hypotheses,

the fusion rule is a likelihood ratio test that can be implemented in the following manner.

Definition 2.5: Chair and Varshney Fusion Rule (weighted k-out-of-N). Consider a binary

hypothesis testing problem defined by the set of alternatives Ω = {H0, H1}. Suppose a set of N

detectors employ a decision rule to produce a decision variable, ui with i = 1, . . . , N , such that

ui =


−1 if H0 is declared

+1 if H1 is declared

. (2.6)

Then, the Chair and Varshney fusion rule makes the global decision u0 such that

u0 =


−1

∑N
i=1 wiui < λ

+1 otherwise

(2.7)

where the weights wi are determined based on the false alarm rates, pFi
= P (ui = +1|H0), and

missed detection rates, (pMi = P (ui = −1|H1)), of the detectors. That is,

wi =


log
(

1−pFi

pMi

)
ui = −1

log
(

1−pMi

pFi

)
ui = +1

. (2.8)

The threshold λ is chosen to satisfy either the Bayes’ or Neyman-Pearson criterion.

For the Chair and Varshney Fusion rule, the corresponding false alarm rate pF0
and correct detection

rate pD0
that describe its performance are defined as

pF0
= PΩ(u0 = +1|H0) = PΩ(

N∑
i=1

wiui ≥ λ|H0) (2.9)

pD0
= PΩ(u0 = +1|H1) = PΩ(

N∑
i=1

wiui ≥ λ|H1). (2.10)
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2.4 Bayesian Theory of Beliefs

When using subjective confidences, deductive reasoning can be performed using conditional proba-

bilities. The use of epistemic probabilities and conditionalization as a means of deductive reasoning

has been referred to as the Bayesian Theory of Beliefs [43, Chapter 1]. In [42], Talbott describes

the epistemological significance of probabilistic conditioning as follows.

Definition 2.6: Simple Principle of Conditionalization. If one begins with prior subjective

probabilities Pinit, and acquires new evidence which can be represented as becoming certain of some

additional information x having non-zero subjective probability, then deduction can be applied by

transforming one’s initial probabilities to generate posterior subjective probabilities Pfinal by condi-

tionalizing on x. Specifically, for any alternative ω ∈ Ω we have that

Pfinal(ω) = Pinit(ω|x) =
Pinit(ω ∩ x)

Pinit(x)
. (2.11)

There are many way that Bayesian conditioning can be implemented, depending on the application.

For example, the well known Bayes’ theorem gives a way of updating evidence when when beliefs

are given as likelihoods of the different alternatives ω ∈ Ω producing some observation x ∈ X (i.e.,

P(x|ω)).

Theorem 2.1: Bayes’ Theorem. Suppose we observe a piece of evidence x ∈ X related to the

alternatives described by all ω ∈ Ω. The original ( i.e., a priori) beliefs, PΩ(ω), can be updated via

Bayes’ Rule:

PΩ(ω|x) =
PX (x|ω)PΩ(ω)∑
ω̂∈Ω PX (x|ω̂)PΩ(ω̂)

(2.12)

where PX (x|ω) is known as the likelihood that the alternative ω ∈ Ω would produce the evidence

x ∈ X . The quantity PΩ(ω|x) is known as the a posteriori belief in the alternative ω, given the

observation of the evidence x.

When the a priori probabilities and likelihoods are constructed from statistical information, the a

posteriori probabilities computed by Bayes’ theorem are also statistical and represent the chances of

Chapter 2 2.4 Bayesian Theory of Beliefs
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each alternative occurring given the observed evidence x. In this case, the application of Bayes’ rule

becomes synonymous with many of the fusion operators proposed in classical detection theory [41].

When evidence is provided by the sources in the form of subjective probabilities however, Bayes’

rule of probability combination has a more meaningful interpretation of Bayesian conditioning [55].

Specifically, Bayes’ rule of probability combination is the result of determining the joint subjective

probability mass function between the sources, conditioned on the fact that the true outcome has

not been ruled out (i.e., assigned probability zero) by any of the sources.

Theorem 2.2: Bayes’ Rule of Probability Combination. Consider two sources whose confi-

dences on a set of finite, disjoint alternatives Ω are given via the subjective probability functions P1

and P2. Let Ωi = {ω ∈ Ω|Pi(ω) 6= 0} for i = 1, 2 ( i.e., the outcomes which have not been ruled out

by the sources being combined)2. Given that the true outcome ω∗ ∈ Ω1,2 = Ω1∩Ω2 and assuming that

the sources assess their confidences independently of each other, the combined probability function

P1,2 can be represented as

P1,2(ω) = P1,2(ω = ω∗|ω∗ ∈ Ω1,2) =
P1(ω)P2(ω)∑

ω̂∈Ω1,2
P1(ω̂)P2(ω̂)

(2.13)

for any ω ∈ Ω1,2, provided that the Ω1 and Ω2 are non-contradictory ( i.e., Ω1 ∩ Ω2 6= ∅).

Although Bayes’ rule of probability combination and Bayes’ theorem are mathematically analogous,

their interpretations are fundamentally different.

2.5 Dempster-Shafer (DS) Theory

2.5.1 History

The notion of Dempster-Shafer Theory (DS Theory) is in most instances attributed to work in the

1970s by Glenn Shafer [43]. When introduced, DS Theory consisted of two major components:

(1) beliefs are represented by independently assigning evidence to all elements of the power set of

alternatives, and (2) belief combination is achieved through a generalization of Bayesian condition-

ing, known as Dempster’s Rule of Combination (DRC). DS Theory has been proposed for many

2We use the notation P1 and P2 as shorthand for PΩ1
and PΩ2

.
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applications where uncertainty due to vague evidence is a factor.

When first introduced, Shafer promoted DS Theory as a universal theory of beliefs for both

subjective and objective sources of evidence. Later Shafer admits in [56] that he had taken a

“youthfully amibtious” view of the situation. Arguments regarding the usage of DS Theory began to

surface in the early-to-mid 1980’s through work done by Lotfi Zadeh in [30, 57]. Specifically, Zadeh

had provided examples which showed that under certain cases of highly conflicting evidence, the

DRC seemed to produce illogical and counterintuitive results. Although now these viewpoints could

be attributed to a misunderstanding of what DS Theory represented (e.g., [58]), this nevertheless

caused a multitude of belief function alternatives to surface, leaving many users in the field of expert

reasoning systems confused3.

The tensions and disagreements resulting from this confusion resulted in a debate in the early

1990’s between Glenn Shafer and Judea Pearl in the International Journal of Approximate Reasoning

volume 4, issues 5-6. The main points of this debate were to assess how belief functions should be

interpreted and their merit when used in place of a probabilistic approach4. Shafer’s major points

were aimed at further clarifying the use of probability functions as tools that model a ”special case”

of reality in which aleatoric knowledge is known, and hence epistemic and aleatoric knowledge are

identical. In such cases, Shafer reaffirmed that probabilistic reasoning proved to be more than suffi-

cient, however he noted that expert reasoning systems usually go beyond such statistical problems.

Hence, he advocated a constructive interpretation of probability in which one should be advised not

to speak of probabilities in an application unless (1) his/her meaning was clarified and (2) he/she

was assured to a reasonable extent that such probabilities actually existed [61]. Alternatively, Judea

Pearl pointed out that the merit of the belief function representation was still yet to be verified.

For example, in his first position paper Pearl showed that belief functions could be mapped into

an equivalent likelihood function for use in probabilistic reasoning. Hence, the same results could

theoretically be achieved on a lower level of computational complexity5 [60]. Ten years later, Jerome

3Many of these methods are summarized in [59], using this viewpoint as the overarching theme.
4The position papers given by Shafer and Pearl on the usage of belief functions can be found in [56] and [60]

respectively. All response papers can be found in the International Journal of Approximate Reasoning Volume 6,
Issue 3, including Shafer’s and Pearl’s responses in [61] and [62] respectively.

5Later, this was emphasized through the results of papers similar to [63]
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Braun showed through simulations in [64] that reasoning via belief functions under traditional DS

Theory provided a higher level of accuracy than a traditional probabilistic approach in cases of high

uncertainty and high conflict. In almost all other cases, the accuracies of both approaches were

shown to be identical.

Despite the controversies, Dempster-Shafer theory continues to be a popular tool in the data

fusion community. It has been used in pattern recognition applications in which the images under

consideration are of sufficiently low resolution, preventing standard probability-based edge detection

techniques [65–68]. Similarly, DS Theory has been adapted into some facial recognition systems [69,

70] and various other multimodal biometric recognition systems [71]. There also exist a wide variety

of applications in biomedical engineering [72–76], navigation systems [77–79], risk and reliability

assessment systems [80–84], and various other detection systems [85–89].

2.5.2 General Terminology

Again, we let Ω denote the set of possible alternatives for a certain phenomenon. In a DS theoretic

setting, Ω is commonly referred to as the frame of discernment [43]. Because we assumed the

existence of M disjoint alternatives6 in the problem overview of Figure 2.1, the corresponding

algebra on Ω reduces to the power set F = 2Ω. For convenience, we will refer to the elements of

the power set as propositions. The fundamental measure of belief in DS theory is the belief mass

assignment (BMA), which in a manner similar to Bayesian epistemology assigns values between zero

and one to the propositions defined by power set.

Definition 2.7: Belief Mass Assignment (BMA). A function m : 2Ω → [0, 1] is a belief mass

assignment for some frame Ω if and only if
∑
X⊆Ωm(X) = 1.

The belief function describes the minimum amount of evidence that is committed to a proposition,

according to some BMA on Ω.

Definition 2.8: Belief Function7. Consider the BMA m on some frame Ω. The function Bel :

6The most common assumption in DS theory is that Ω is finite and thus is isomorphic to some disjoint, finite set
of alternatives.

7The notion of Bel(∅) = 0 is mentioned by Smets in [90]
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2Ω → [0, 1] is called a belief function on Ω, and is given for any A ⊆ Ω as

Bel(A) =


0 A = ∅

∑
X 6=∅
X⊆A

m(X) A 6= ∅
. (2.14)

The relationship between a BMA and a belief function is unique. The inverse mapping is defined

using a Möbius transformation [43]. We call the quantities m(A) and Bel(A) the belief mass and the

committed belief to the proposition A ⊆ Ω. The quantities Bel(Ω) and m(∅) represent the belief in

the sufficiency and insufficiency of Ω respectively. In the special case of a closed world assumption, Ω

is considered completely sufficient (i.e., m(∅) = 0) and hence the function Bel becomes a normalized

monotonic measure [46].

Since it is not necessary to assign a belief mass to every possible subset of Ω, it becomes valuable

to denote those belief masses which are non-zero.

Definition 2.9: Focal Element. Any proposition A ⊆ Ω such that m(A) > 0 is called a focal

element of some belief function over Ω as given by m.

Definition 2.10: Belief Core. The set of sets C ⊆ 2Ω consisting of all focal elements of Ω as given

by m is called the core of the belief function.

It is important to note that belief in any A ⊆ Ω does not fully describe the extent to which one

doubts A, or rather one’s belief in its negation Bel(A). Together, Bel(A) and Bel(A) provide a

complete description of a source’s oppinion towards A ⊆ Ω. Alternatively, we can consider the

degree of belief in A and the degree at which one finds A plausible.

Definition 2.11: Plausibility Function. Consider the BMA m on some frame Ω. The plausibility

function Pl : 2Ω → [0, 1] is given as

Pl(A) =


0 A = ∅

Bel(Ω)− Bel(A) =
∑
X∩A6=∅m(X) A 6= ∅

. (2.15)
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Uncertainty representation in a belief function setting comes from the assessment of evidence on

disjunctions (i.e., vague evidence). For example, belief assigned to {ω1} and {ω2} are the amounts

of evidence that directly imply the propositions {ω1} and {ω2} respectively. Evidence assigned to the

proposition {ω1, ω2} represents evidence which could be assigned to either {ω1} or {ω2}, however due

to uncertainty it cannot be further divided amongst them. When calculating belief and plausibility

functions from a BMA, one can think of them as minimum and maximum amounts of evidence

which can be attributed to a given proposition. The uncertainty measure of a proposition in Ω can

thus be viewed as the amount of evidence which could possibly be committed to a given proposition.

Specifically, it is the amount of evidence which does not imply a given proposition, but also does

not contradict it.

Definition 2.12: Uncertainty Function. Consider the BMA m on some frame Ω. The uncer-

tainty function Un : 2Ω → [0, 1] is given as

Un(A) = Pl(A)− Bel(A) =
∑

X∩A6=∅
X 6⊂A

m(X). (2.16)

Finally, we introduce the concept of three specialized belief structures: a vacuous support func-

tion, a simple support function, and a categorical belief function.

Definition 2.13: Vacuous Support Function. For some belief function whose frame of discern-

ment is given by Ω, total ignorance to all propositions can be represented by

Bel(A) =


1 A = Ω

0 A 6= Ω

. (2.17)

The corresponding BMA for a vacuous support function is given as

m(A) =


1 A = Ω

0 A 6= Ω

. (2.18)
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Definition 2.14: Simple Support Function. For some belief function whose frame of discern-

ment is given by Ω, a simple support function is a belief function whose evidence points precisely and

unambiguously to a single non-empty A∗ ⊂ Ω. Specifically, we say that a simple support function

holds the degree of support s ∈ [0, 1] for A∗ such that for any A ⊂ Ω we have that

Bel(A) =



0 A 6⊃ A∗

s A ⊃ A∗, A 6= Ω

1 A = Ω

. (2.19)

The corresponding BMA for a simple support function is given as

m(A) =



s A = A∗

1− s A = Ω

0 otherwise

. (2.20)

Definition 2.15: Categorical Support Function. For some belief function whose frame of dis-

cernment is given by Ω, a categorical belief function is a belief function whose evidence is completely

committed to a single non-empty A∗ ⊂ Ω. Specifically, a categorical support function on A∗ is given

for any A ⊆ Ω such that

Bel(A) =


0 A 6⊃ A∗

1 A ⊇ A∗
. (2.21)

The corresponding BMA for a categorical support function is given as

m(A) =


1 A = A∗

0 A 6= A∗

. (2.22)

Chapter 2 2.5 Dempster-Shafer (DS) Theory



22

2.5.3 DS Theory and the Bayesian Theory of Beliefs

As originally introduced by Shafer in [43], DS Theory assumes that the set of alternatives Ω is

sufficient (i.e., m(∅) = 0) [43, Chapters 2]. With this in mind, it is straightforward to prove the

following theorem.

Theorem 2.1. Consider the belief function Bel resulting from the BMA m over the set of alternatives

Ω. If m(∅) = 0. then the following must be true

(i) Non-Negativity: Bel(A) ≥ 0 for all A ⊆ Ω.

(ii) Unitarity: Bel(Ω) = 1.

(iii) Superadditivity8: For any A ⊆ Ω, Bel(A) ≥
∑
ω∈A Bel(ω).

Notice that Theorem 2.1 is almost identical to the Kolmogorov Axioms, with the only difference

being that the additivity requirement has been relaxed to superadditivity. From a measure theoretic

standpoint, belief functions can also be described as totally monotonic measures [46, Chapter 4], [91].

Theorem 2.2. Monotonicity/Convexity of Belief Functions9.Consider the belief function

Bel resulting from the BMA m over the set of alternatives Ω. If m(∅) = 0, then Bel is classified as a

totally monotonic measure. That is, for all integers k ≥ 2 and for all family of sets A1, . . . , Ak ⊂ Ω,

the following inequalities are satisfied.

Bel

 k⋃
j=1

Aj

 ≥ ∑
K⊆Nk

K 6=∅

(−1)|K|+1Bel

⋂
j∈K

Aj

 (2.23)

where Nk = {1, 2, . . . , k}. Convexity is covered as the case in which k = 2,

Bel(A1 ∪A2) ≥ Bel(A1) + Bel(A2)− Bel(A1 ∩A2). (2.24)

Unsurprisingly, probability functions can also be classified as totally monotonic measures. Using

Theorems 2.1 and 2.2, we can now describe a Bayesian belief function (i.e., subjective probability

8This follows immediately from Theorem 2.1 in [43, Chapter 2]
9The proof of this is given as a portion of Theorem 2.1 from [43, Chapter 2].
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function) as a special type of belief function.

Theorem 2.3. Relation to Subjective Probabilities10. The following statements are equivalent

and define a special type of belief function over a frame Ω known as a Bayesian belief function ( i.e.,

subjective probability assignment).

(i) The core of the belief function consists only of singleton elements from 2Ω.

(ii) Bel(A) = Pl(A) for all A ⊆ Ω.

(iii) Un(A) = 0 for all A ⊆ Ω.

(iv) Bel(A) + Bel(A) = 1 for all A ⊂ Ω.

(v) Bel(A) =
∑
ω∈A Bel(ω) for all A ⊆ Ω.

Subjective probabilities thus form a natural subset of belief functions. Relating Theorem 2.3 back

to Definitions 2.8 and 2.11, it’s easy to see that for any A ⊆ Ω that Bel(A) ≤ Pl(A), with equality

only when Un(A) = 0. This relationship leads to a set of intervals [Bel(A),Pl(A)] for every A ⊆ Ω.

The meaning of these belief and plausibility intervals has been debated at length. In general, one

can think of them as merely minimum and maximum amounts of evidence which can be attributed

to the proposition A. The intervals thus represent spectra of belief for evidence that is committed

to evidence that could be committed to a given proposition [92, Chapter 7]. There is another inter-

pretation however in which belief and plausibility intervals determine the envelope for a supporting

class of subjective probability functions. This is not hard to see given the convexity of both belief

and probability functions, and the results of Theorem 2.3. However, it has been discussed at length

that these probabilities may not have any connection to any statistical probabilities, regardless of

how their associated BMA is constructed. Instead, these probabilities should only be interpreted as

possible subjective probabilities from which the evidence assessed by their associated BMA supports

(i.e., probabilities of provability, as discussed in [60]).

10This is a modified version of Theorem 2.8 from [43, Chapter 2]
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2.5.4 Dempster’s Rule of Combination

Shafer cites Dempster’s Rule of Combination (DRC) in [43] as the primary method for belief ag-

gregation and updating. It usage can have many interpretations, depending on the application.

However, Shafer presents DRC as an axiom of DS Theory in [43], and motivates it as an orthogonal

sum of two belief masses.

Definition 2.16: Dempster’s Rule of Combination (DRC) [43]. Consider the opinions of

two sources, represented by the BMAs m1 and m2. Dempster’s Rule of Combination is defined such

that the resulting BMA after combination, m1,2(A) for any A ⊆ Ω, is given by

m1,2(A) =

(
1

1−K

) ∑
X1,X2⊆Ω
X1∩X2=A

m1(X1)m2(X2) (2.25)

where K < 1 is the measure of conflict after combination, given by

K =
∑

X1,X2⊆Ω
X1∩X2=∅

m1(X1)m2(X2). (2.26)

When K = 1, Dempster’s rule is undefined.

The DRC is both commutative and associative [93]. It can be viewed as a two step evidence

combination process. In the first step, evidence is conjunctively combined through the sum of

products expression in the numerator of Equation 2.25. Because Ω is assumed to consist of disjoint

alternatives, a portion of the combined evidence is committed to the empty set. In the second step,

the BMAs after conjunctive combination are normalized such that the belief mass assigned to the

empty set is equal to zero.

2.5.5 Alternative Belief Combination Rules

Notice that Bayes’ rule of probability combination (Definition 2.2) and DRC (Definition 2.16) per-

form source combination by conjunctively combining the evidence presented from the sources and

renormalizing the combined evidence on the amount of non-conflicting evidence. In fact, it is not

difficult to show that both of these combination rules are the same if the BMAs being combined are
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Bayesian. If the combined sources present highly conflicting opinions however, evidence combination

in this manner may not provide an acceptable result [28, 30]. For this reason, a plethora of BMA

combination operators have been proposed as alternatives to DRC. We summarize a selection of

them here, as they pertain to the soft and hard/soft fusion studies discussed later in the thesis.

One possible variation known as Yager’s Rule calls for interpreting the evidence in conflict as

total uncertainty.

Definition 2.17: Yager’s Rule [94]. Consider two BMAs m1 and m2 over some set of alternatives

Ω. The resulting BMA m1,2 after combination via Yager’s rule for any A ⊆ Ω is given as

m1,2(A) =


∑

X1,X2⊆Ω
X1∩X2=A

m1(X1)m2(X2) A 6= Ω

m1(A)m2(A) +K A = Ω

(2.27)

where K is the degree of conflict between m1 and m2 as given in equation (2.26).

Yager’s rule is commutative but in general not associative [95]. A generalization of Yager’s rule

is Dubois and Prade’s rule [95, 96], which attributes conflict between two sources as uncertainty

between the conflicting elements of the sources, rather than total uncertainty.

Definition 2.18: Dubois and Prade’s Rule. Consider two BMAs m1 and m2 over some set

of alternatives Ω. The resulting BMA m1,2 after combination via Dubois and Prade’s rule for any

A ⊆ Ω, A 6= ∅ is given as

m1,2(A) =
∑

X1,X2⊆Ω
X1∩X2=A

m1(X1)m2(X2) +K(A) (2.28)

where m1,2(∅) = 0 and

K(A) =
∑

X1,X2⊆Ω
X1∩X2=∅
X1∪X2=A

m1(X1)m2(X2). (2.29)

Similar to Yager’s rule, Dubois and Prade’s rule is commutative but in general not associative [95]. It

is also possible to subdivide evidence amongst conflicting propositions proportionate to the degrees
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of belief held by the sources before combination. This concept has lead to the family of Proportional

Conflict Redistribution (PCR) rules by Dezert and Smarandache. In this dissertation we only make

use of PCR5 for brevity.

Definition 2.19: Proportional Conflict Redistribution Rule #5 (PCR5) [97]. Consider

two BMAs m1 and m2 over some set of alternatives Ω. The resulting BMA m1,2 after combination

via PCR5 for any A ⊆ Ω is given as

m1,2(A) =
∑

A1,A2⊆Ω
A1∩A2=A

m1(A1)m2(A2) +
∑
X⊆Ω
X∩A=∅

(
m1(X)2m2(A)

m1(X) +m2(A)
+

m2(X)2m1(A)

m2(X) +m1(A)

)
. (2.30)

Similar to Yager’s Rule, the PCR5 is commutative but in general not associative [97]. Next, the

consensus operator [98] use the general terminology of BMAs, belief functions, and uncertainty while

providing a way of representing any Ω as a binary frame focused on some A ⊆ Ω and its negation.

The result is a four-valued vector known as an opinion tuple, which can be rephrased in terms of

BMAs for a binary Ω as follows.

Definition 2.20: Consensus Operator (Binary Frames) [98]. Consider the binary frame

Ω = {A,A}. The consensus operator m1,2 can be represented completely in terms of the BMAs m1

and m2 as

m1,2(A) =
m1(A)m2(A ∪A) +m2(A)m1(A ∪A)

KC

m1,2(A) =
m1(A)m2(A ∪A) +m2(A)m1(A ∪A)

KC

m1,2(A ∪A) =
m1(A ∪A)m2(A ∪A)

KC

(2.31)

where KC = m1(A∪A)+m2(A∪A)−m1(A∪A)m2(A∪A). If KC = 0, then the consensus operator
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becomes

m1,2(A) =
m1(A) +m2(A)

2
,

m1,2(A) =
m1(A) +m2(A)

2
,

m1,2(A ∪A) = 0.

(2.32)

The consensus operator is both commutative and associative [98]. Finally, BMAs can be combined

by simply averaging them. In general, this averaging operation is known as the mixing combination

rule [99].

Definition 2.21: Mixing Combination Rule [99]. Consider two BMAs m1 and m2 over some

set of alternatives Ω. The resulting BMA m1,2 after combination via the mixing combination rule

for any A ⊆ Ω is given as

m1,2(A) = w1m1(A) + w2m2(A) (2.33)

where the weights w1, w2 ∈ [0, 1] and w1 + w2 = 1.

According to [59], the mixing combination rule is in general not commutative nor associative. When

the weights are equal w1 = w2 = 0.5, the mixing rule reduces to Murphy’s combination rule [100].

When the BMAs being combined are equivalent to subjective probability assignments, this combi-

nation rule is identical to linear opinion pooling [101].

2.5.6 Decision Making in Dempster-Shafer Theory

Although there have been methods proposed on relating belief and plausibility functions to subjective

utility intervals (e.g., [91]), decision making in DS theory is usually achieved by transforming a

post-combination BMA into a subjective probability assignment [95]. Once a subjective probability

assignment has been obtained from a BMA, it can then be used to implement a decision-making

rule. There are a large number of these so called probability transforms proposed throughout the

DS theory literature. We summarize a few of them here as they pertain to the fusion simulations

described later in the thesis.

The pignistic probability transformation (BetP ) was first proposed by Philippe Smets in [102]
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and then included in [103] as a part of the Transferable Belief Model. The pignistic probability

transform involves transferring the belief mass from each non-singleton element of a BMA to its

respective singleton elements by dividing its mass equally (i.e., according to its cardinality).

Definition 2.22: Pignistic Probability Transform [102]. The pignistic probability is defined

for any A ⊆ Ω as

BetP (A) =
∑
X⊆Ω
X 6=∅

|A ∩X|
|X|

m(X), (2.34)

where | · | is the cardinality of a set. The pignistic probability transform satisfies all three Kolmogorov

Axioms, and hence it only needs to be computed for the singleton elements ω ∈ Ω.

Sudano has also proposed a suite of five probability transformations in [104]: PrP l, PrNPl, PraP l,

PrBel, and PrHyb. In this dissertation, we will only focus on the PrNPl, PrP l, and PrHyb

transforms.

Definition 2.23: Sudano Probability Transforms [104]. Sudano’s proportional plausibility

(PrP l), normalized proportional plausibility (PrNPl), and hybrid (PrHyb) probability transforms

are given for each ω ∈ Ω and for the corresponding belief Bel, and plausibility Pl, and BMA m

functions as

PrP l(ω) = Pl(ω)
∑
Z⊆Ω
ω∈Z

m(Z)∑
ω̂∈Z Pl(ω̂)

, (2.35)

PrNPl(ω) =
Pl(ω)∑
ω̂∈Ω Pl(ω̂)

, (2.36)

and

PrHyb(ω) = PraP l(ω)
∑
Z⊆Ω
ω∈Z

m(Z)∑
ω̂∈Z PraP l(ω̂)

, (2.37)

where

PraP l(ω) = Bel(ω) +

(
1−

∑
X⊆Ω Bel(X)∑

X⊆Ω Pl(X)

)
Pl(ω). (2.38)

Finally, the recently proposed DSmP probability transform is introduced by Dezert and Smaran-

dache in [105]. DSmP distributes belief masses assigned to the non-singleton elements of Ω pro-
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portionally, according to the belief masses assigned to the singleton elements. The transformation

is defined in [105] using Dedekind lattices (i.e., the hyper powerset of alternatives). We define it

here in terms of the power set.

Definition 2.24: Dezert-Smarandache Probability Transform [105]. The Dezert-Smarandache

probability transform is defined for any subset A ⊆ Ω and a corresponding BMA m as

DSmPε(A) =
∑
X⊆Ω

∑
ω̂∈A∩X m(ω̂) + ε|A ∩X|∑

ω̂∈X m(ω̂) + ε|X|
m(X), (2.39)

where ε ∈ [0,∞] is a tuning parameter.

As ε → 0, DSmP approaches Sudano’s PrBel transform [104]; as ε → ∞, DSmP approaches

BetP [105]. The authors of [105] suggest selecting a small value for ε in order to minimize the

amount of entropy present in the resulting subjective probabilities. With this in mind, the studies

in this dissertation use ε = 0.001 as suggested in [105]. Similar to BetP , DSmP satisfies all three

Kolmogorov Axioms and only needs to be computed for the singleton elements ω ∈ Ω.

2.6 Other Notable Techniques

The fusion operators discussed in this section represent a small sample of those which could be

applied to the hard/soft fusion problem. There are many other fusion rules which could be used; we

mention a few of them here with references for further reading. Bayesian belief networks [106] are a

useful tool in information fusion and are beginning to see applications in hard/soft fusion scenarios

(e.g., [107]). We have chosen not to implement any Bayesian network approaches here, since we will

already be evaluating an instance of Bayes’ rule (i.e., Bayes’ rule of probability combination). There

have also been Dempster-Shafer operators proposed specifically for hard/soft fusion. For example,

the authors of [19] propose the conditional update equation which makes use of Fagin-Halpern belief

function conditioning [108]. We have chosen not to implement the conditional update equation in

this dissertation because its usage is dependent on the selection of multiple tuning parameters. There

are also many potential operators from probabilistic opinion pooling [101], fuzzy logic [46, Chapter
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2], and random sets [109]. For a recent state-of-the-art review in fusion operators, we direct the

reader to [25].
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Chapter 3: Human Response Simulation

We present the relevant cognitive psychology background for understanding the human response

simulation methods employed by this dissertation. We begin by discussing a sequential sampling

theory of human decision-making that makes use of drift diffusion or random walk processes [110].

We then discuss the recently proposed two-stage dynamic signal detection (2DSD) model [44] as an

extension of the drift diffusion process that captures the interrelationships between choice accuracy,

confidence accuracy, and response time. Using 2DSD, we investigate the performance of fusion

systems on three benchmark tasks which were studied by Pleskac et al. in [44] and Shuli et al.

in [45]: a line length discrimination task, a city population size discrimination task, and a random

dot motion discrimination task.

3.1 Random Walk/Diffusion Theory

Stochastic human decision-making models have been researched by psychologists since the early

1960s [111–115]. The majority of this work addressed human decision making in two-alternative

forced choice (TAFC) tasks, where a subject is presented with a scenario and is forced to choose

between two alternatives. Consider a TAFC task defined by the set of alternatives A = {A,A}.

Sequential sampling models of human decision making based on TAFC tasks assume that (1) internal

evidence favoring each alternative is accumulated over time; (2) the process of internal evidence

accumulation is subject to random fluctuations; and (3) a decision is made when sufficient amount of

internal evidence has been accumulated for one of the two alternatives [116]. These three assumptions

have been frequently modeled in the cognitive psychology literature as a discrete (i.e., directed

random walk) or continuous (i.e., Wiener drift diffusion) stochastic processes [110].

Let L(t) be the amount of internal evidence a human decision-maker holds towards alternative

A over alternative A after t seconds. For example, when L(t) > 0, alternative A is favored. When

L(t) < 0, alternative A is favored. When L(t) = 0, both alternatives are equally preferred. In this
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thesis, we make use of the directed random walk model, which simulates L(t) by accumulating a

white noise process, ε(t), with a drift rate, δ, over time in discrete time steps of ∆t [44]. The variance

of the white noise process is given as σ2, where σ is referred to as the drift coefficient. The internal

evidence L(t) is determined using the stochastic difference equation

L(t+ ∆t) = L(t) + ∆L(t+ ∆t), (3.1)

with L(0) = L0 and

∆L(t+ ∆t) = δ∆t+ ε(t+ ∆t)
√

∆t. (3.2)

The drift rate, δ, is a stimulus-dependent model parameter that affects the decision accuracy and

the response time of the response. The initial condition, L0, is also a model parameter representing

the bias of the decision maker. The drift coefficient, σ, can be a model parameter, however it is

set as a constant in many cases [44, 45]. By construction, the values of ∆L(t) are independent and

identically distributed for all discrete values of t, with a mean of δ∆t and variance σ2∆t. The value

of δ is either positive or negative, depending on which alternative is true. The time step ∆t is

chosen to be small enough such that the directed random walk model converges to a Wiener drift

diffusion process [44,117]. As a consequence, the evidence accumulation process approaches a normal

distribution (i.e., L(t) ∼ N (tδ, tσ2)). To make a decision, L(t) is accumulated until it passes one

of two thresholds, θA or θA. These thresholds correspond to the two possible alternatives A and A.

Alternative A is chosen if L(t) > θA; alternative A is chosen if L(t) < −θA. The time at which this

decision occurs is denoted td.

3.2 Two-stage dynamic signal detection

3.2.1 Motivation and Definition

A model of human decision making based on random walk/diffusion theory does not directly account

for subjective decision confidence assessments [118, 119]. The modeling and simulation of decision

confidences, however, is still important to the types of soft and hard/soft fusion operators investi-

gated by this thesis. The two-stage dynamic signal detection (2DSD) [44] is a recently developed
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sequential sampling model of human decision making that accounts for a wide range of phenomena

in human decision making, while also taking into account the modeling of confidence assessments.

The rationale behind 2DSD is that decisions and confidence assessments are modeled as a two stage

process. In the first stage, a decision and decision response time are modeled according to ran-

dom walk/diffusion theory. In the second stage, the internal evidence L(t), modeled by random

walk/diffusion theory, continues to accumulate for a fixed interjudgment time, τ . The resulting

accumulated evidence, L(tc = td + τ) is then mapped into a subjective decision confidence via a

binning operation.

We implement two forms of 2DSD: the optional stopping (i.e., free response) model proposed

in [44], and an interrogation (i.e., cued response) model proposed in [45]. In the optional stopping

model, a subject provides decisions and confidence assessments when he/she is ready. In the interro-

gation model, an external event (e.g., an experimenter) interrupts the deliberation of a subject and

asks him/her for a response. We present both implementations below, as well as the corresponding

parameter sets which represent the modeled human decision-maker.

Definition 3.1: Two-stage Dynamic Signal Detection (2DSD), Optional Stopping [44].

Let A = {A,A} denote the alternatives of a TAFC task. In the optional stopping model of 2DSD,

the deliberation between alternatives is modeled via the stochastic difference equation

L(t+ ∆t) = L(t) + ∆L(t+ ∆t), (3.3)

where

∆L(t) = δ∆t+
√

∆t ε(t+ ∆t), L(0) = L0, (3.4)

and where ε(t) is a simulated white noise process with zero mean and variance σ2. The drift rate δ

is either positive or negative, depending on whether A or A is true. The evidence accumulation is

simulated until a threshold, either θA, θA, is crossed (where −θA < L0 < θA). A decision, a ∈ A, is
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determined such that

a =



A L(t) > θA

A L(t) < −θA

wait otherwise

. (3.5)

Let P(a) = [p
(a)
1 · · · p

(a)
Ka

] denote the Ka possible confidence values associated with choosing a ∈ A at

time td. The assigned confidence level p ∈ P(a) associated with deciding a after waiting tc = td + τ

is given as

p = p
(a)
i when L(tc) ∈ [c

(a)
i−1, c

(a)
i ], (3.6)

where c
(a)
0 = −∞ and c

(a)
Ka

= ∞ for each a ∈ A. The value τ is known as the interjudgment time.

The remaining confidence bin parameters C(a) = [c
(a)
1 · · · c

(a)
Ka−1] are chosen such that ci−1 < ci for

each i ∈ {1, . . . ,Ka − 1} and each a ∈ A. The time step ∆t is chosen small enough such that the

evidence accumulation approaches a continuous process. A modeled human decision-maker in this

construction consists of a set of 2(KA +KA) + 4 parameters, SOST , where

SOST = {δ, σ, L0, θA, θA, τ,P
(A),P(A),C(A),C(A)}. (3.7)

The interrogation version of 2DSD is similar to the optional stopping version. The most notable

difference is that the subject chooses alternative A when prompted at td if L(td) > 0. Otherwise,

the subject chooses alternative A. Another cue is presented to the subjects at tc > td to make a

decision confidence assessment. The mapping between L(tc) and confidence values is again performed

through a binning operation.

Definition 3.2: Two-stage Dynamic Signal Detection (2DSD), Interrogation [45]. Let

A = {A,A} denote the alternatives of a TAFC task. In the interrogation model of 2DSD, the

deliberation between alternatives is again modeled via the stochastic difference equation

L(t+ ∆t) = L(t) + ∆L(t+ ∆t), (3.8)
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where

∆L(t) = δ∆t+
√

∆t ε(t+ ∆t), L(0) = L0, (3.9)

and where ε(t) is a simulated white noise process with zero mean and variance σ2. The drift rate δ is

again either positive or negative, depending on whether A or A is true. The evidence accumulation

occurs until a predetermined time td. A decision, a ∈ A, is determined such that

a =


A L(tD) > 0

A otherwise

. (3.10)

Let P(a) = [p
(a)
1 · · · p

(a)
Ka

] denote the Ka possible confidence values associated with choosing a ∈ A

at time td. A response for a confidence assessment is cued at a predetermined time tc > td. The

assigned confidence level p ∈ P(a) associated with deciding a at time tc is given as

p = p
(a)
i when L(tc) ∈ [c

(a)
i−1, c

(a)
i ], (3.11)

where c
(a)
0 = −∞ and c

(a)
Ka

= ∞ for each a ∈ A. The remaining confidence bin parameters C(a) =

[c
(a)
1 · · · c

(a)
Ka−1] are chosen such that ci−1 < ci for each i ∈ {1, . . . ,Ka − 1} and each a ∈ A. The

time step ∆t is chosen small enough such that the evidence accumulation approaches a continuous

process. A modeled human decision-maker in this construction consists of a set of 2(KA +KA) + 3

parameters, SINT , where

SINT = {δ, σ, L0, td, tc,P
(A),P(A),C(A),C(A)}. (3.12)

Regardless of which implementation is used, the 2DSD parameter set for a given subject is

estimated using decision accuracy, confidence accuracy, and response time statistics and a maximum

likelihood estimation technique (i.e., quantile maximum probability estimation [120]). For more

information on the validation of the 2DSD model with respect to actual human responses, we direct

the reader to [44] and [45].
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3.2.2 Trial Variability of Parameters

Using the above formulations, 2DSD may not always be able to predict the relative response times

associated with correct and incorrect responses. For example, the study in [121] demonstrates

that incorrect responses can sometimes be slower than correct responses for difficult decision tasks.

Sequential sampling models of human decision making may predict the opposite. To compensate,

2DSD can be amended by considering the drift rate δ and initial condition L0 as random variables

chosen at the start of each simulation, instead of model parameters1. Specifically, the authors of [44]

suggest that δ be normally distributed with mean ν and variance η2, and that L0 be uniformly

distributed in an interval of size sz and centered at z. That is,

δ ∼ N (ν, η2), (3.13)

and

L0 ∼ U(z − 0.5sz, z + 0.5sz). (3.14)

In these cases, the parameter δ is replaced by ν and η, and L0 is replaced by z and sz. At the

beginning of a simulation, a value of δ and L0 would be randomly chosen based on their respective

distributions, and then used to implement the evidence accumulation process, L(t).

3.2.3 Non-Decision and Non-Interjudgment Time

As previously mentioned, the statistics of the subject’s decision and confidence assessment response

times, td and tc are used in the estimation of a 2DSD parameter set. A non-negligible portion of td

and tc may be attributed to recognizing the stimulus and responding according to the constraints of

the experiment (i.e., motor time). Let the observed decision and interjudgment times for a subject

be given as t′d and τ ′. Here, td is the decision time predicted by (or used in) the model, and τ is

interjudgment time used in the model. To account for motor time in the estimation of the model

parameters, two additional parameters known as the mean nondecision time tED and the mean

1This is also done for random walk/diffusion decision models, as described in [122].

Chapter 3 3.2 Two-stage dynamic signal detection



37

nonjudgment time tEJ are appended to the 2DSD parameter set in [44] and [45], such that

t′d = tED + td, (3.15)

and

τ ′ = tEJ + τ. (3.16)

In this formulation, tED and tEJ are estimated per subject in place of td and τ . For information

on how this change affects the parameter estimation of 2DSD subject model, we direct the readers

to [44] and [45].

3.2.4 State-dependent decay

In [44], the authors state that the stochastic process L(t) associated with the 2DSD model accumu-

lates at a constant average rate (i.e., with mean δ∆t). A recent set of studies in [45] has suggested

that the accumulation of L(t) may tend to decay exponentially towards a steady state value. To

account for this trend, the evidence accumulation increment ∆L(t) can be generalized to include a

decay parameter γ ≥ 0 in the diffusion process such that

∆L(t) = (δ − γL(t)) ∆t+
√

∆tε(t+ ∆t). (3.17)

This decay parameter generalizes the drift diffusion model to an Ornstein-Uhlenbeck process with

drift [45, 122]. In this construction, it is likely that evidence accumulated for correct choices will

tend to decelerate whereas evidence accumulated for incorrect choices will accelerate to the correct

state. As the interjudgment time is increased, this acceleration/deceleration implies that confidence

assessments will remain relatively stable for correct choices, whereas confidence in incorrect choices

falls [45]. Notice that for γ = 0, Equation (3.17) reduces to Equation (3.9).

3.2.5 Evidence (Drift Rate) Attenuation

For certain subjects and decision tasks, there may also be an attenuation in the rate of incoming

evidence after a choice is made. This attenuation was observed in a set of decision tasks studied
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Figure 3.1: Stimulus example for the line length discrimination task. A 32.00 millimeter long
line is shown on the left, and a 33.87 millimeter long line is shown on the right.

in [45], and attributed to reduced attention between the declaration of a decision and decision

confidence assessment. To incorporate evidence attenuation, a parameter2 ρ is appended to the

2DSD parameter set, to produce a new drift rate δIJT that replaces δ at the start of the interjudgment

period, where

δIJT = ρδ. (3.18)

3.3 Human response tasks

We make use of three decision tasks studied in [44,45]. These are: a line length discrimination task, a

city population size discrimination task, and a random dot motion discrimination task. We introduce

these three tasks below, but direct the reader to [44] and [45] for more information regarding the

experimental design and the discussion of fitting the human responses to the 2DSD model.

3.3.1 Line length discrimination task

In the line length discrimination task, subjects were positioned in front of a computer screen and

asked to compare pairs of two horizontal orange lines with different lengths on a black background.

The lines were separated by a vertical white line of fixed length as depicted in Figure 3.1. Subjects

were asked to make a declaration on which of the two lines presented (i.e., right or left) is longer,

and then assess their own confidence in that decision on a subjective probability scale. The task

becomes easier as the length difference between the two lines increases. Longer line length differences

correspond to higher values of the estimated drift rates δ for each subject.

2This parameter in [45] is denoted θ. We use ρ in this thesis for consistency with other symbols.
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Figure 3.2: Stimulus example for the city population size discrimination task. According to
the 2010 U.S. Census estimate, Detroit, MI has a population rank of 18 and Washington, D.C.
has a population rank of 24.

3.3.2 City population size discrimination task

In the city population size discrimination task, subjects were positioned in front of a computer screen

and asked to compare pairs of U.S. cities. Included with the cities were their corresponding state

abbreviations. Similar to the line length task, the cities were separated by a vertical line of fixed

length as in Figure 3.2. Subjects were asked to make a declaration towards which of the two cities

(i.e., left or right) has a higher population, and then assess their own confidence in that decision on

a subjective probability scale. The difficulty of the city population size discrimination task decreases

as the difference between the populations of the two cities increases. Equivalently, one could also

consider U.S. city population ranks and rank differences, resulting from enumerating the cities from

the most populated to the least populated. Higher city population differences (or population rank

differences) correspond to higher values of the estimated drift rates δ for each subject.

3.3.3 Random dot motion discrimination task

In the random dot motion discrimination task, subjects were positioned in front of a computer

screen and presented with a circular field of moving white dots on a black background, similar to

Figure 3.3. In the center of the circle was a stationary red dot. A proportion of the dots were

programmed to move either towards the left or right of the field, whereas the remainder of the dots

were programmed to appear in random locations. The chance that a given dot remains moving

in the “correct” direction is termed motion coherence. Subjects were asked to make a declaration

as to which overall direction the dots were moving in (i.e., left or right), and then assess their

own confidence in that decision on a subjective probability scale. The task becomes easier as the
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Figure 3.3: Stimulus example instance for the random dot movement task. Dots move either
towards the right or left of the circle, masked by a subset of randomly moving dots.

motion coherence increases [45]. Higher motion coherence values correspond to higher values of the

estimated drift rates δ for each subject.

3.4 2DSD Simulations

We present a few example 2DSD simulations to supplement the discussions presented in this chapter.

The 2DSD parameter estimates for subjects #1, #2, and #3 in [44, Table 6] were simulated over

a line length discrimination task. The 2DSD parameters for this particular task are fit to a 2DSD

optional stopping model, employing trial variability on the drift rate, δ, and the initial condition,

L0. For this specific task, the authors of [44] constrain the 2DSD parameters such that the decision

thresholds for each alternative are equal (i.e., θA = θA) and the confidence bin parameters for each

alternative are negatives of each other (i.e., C(A) = −C(A)). The simulated stimulus presented to

the three subjects was a pair of lines which were 32.00 millimeters and a 32.27 millimeters in length.

The 32.27 millimeter line was on the right side of the screen, whereas the the 32.00 millimeter line

was on the left. Each subject was simulated to provide a decision as to which line was longer (i.e.,

the right or left line) and a corresponding subjective probability to represent his/her confidence in

Chapter 3 3.4 2DSD Simulations
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Table 3.1: Estimated correct detection probabilities under the speed focus and the accuracy
focus for Subjects #1-3 when simulated on the line length discrimination task. Each simulation
involved comparing the lengths of a 32.00 millimeter and a 32.27 millimeter long line placed on
the left and right sides of the screen respectively. The estimation error is approximately ±0.01
at the 95% confidence level.

Accuracy Focus Speed Focus

Subject 1 0.61 0.60
Subject 2 0.57 0.56
Subject 3 0.58 0.55

that decision. According to the 2DSD models in [44], possible subjective probabilities were simulated

from {0.50, 0.60, . . . , 1.00}. Additionally, two types of responses were simulated from the subjects:

one in which subjects were focused on provided accurate responses, and another in which subjects

were focused on providing fast responses.

Figure 3.4 shows two representations of the accumulated evidence L(t) for each subject when

focused on providing accurate responses. Also shown on each graph are the relevant thresholds, θA

and −θA, and the confidence bins c1, . . . , c5 parameters (depending on which response was declared).

The comparison of a 32.00 and 32.27 millimeter long lines is difficult, hence there are times when the

subjects will declare an alternative and reconsider during the interjudgment time (e.g., Figure 3.4b,

Figure 3.4d, and Figure 3.4f). Alternatively, the subject may waiver in their deliberation before

settling on a decision (e.g., Figure 3.4c).

Table 3.1 shows the estimated correct detection rates of Subjects #1-3 under the speed focus

and the accuracy focus. The estimates were obtained by simulating the decisions of each subject

over 10,000 trials. The corresponding estimation error was at most ±0.01 at the 95% confidence

level. For these three subjects on this task, time constraints do not seem to have a profound affect

the statistics for each subject’s correct detection rate. In fact, only Subject 3 exhibits a statistically

significant change in the correct detection rate. These results are most likely attributed to the

difficulty level simulated here for this task; the task is so difficult that allowing subjects more time

to respond does not give them a significantly better chance at providing a better decision.

Figure 3.5 shows normalized histograms for the assessed confidence values of each subject under
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(f) Subject 3, Example B

Figure 3.4: Four example 2DSD simulations, showing two simulations for the accumulated
evidence L(t) over time for three subjects on the line length discrimination task. Each simu-
lation involved comparing the lengths of a 32.00 millimeter and a 32.27 millimeter long line.
Parameters were obtained from [44] when subjects were asked to focus on making accurate
responses. The time of decision declaration and confidence assessment are shown are vertical
black lines. All thresholds and binning parameters are also shown.
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(d) Subject 2, Speed Focus
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(e) Subject 3, Accuracy Focus
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(f) Subject 3, Speed Focus

Figure 3.5: Normalized histograms for the decision confidence values simulated for three (3)
subjects on the line length discrimination task of [44]. Each simulation involved comparing
the lengths of a 32.00 millimeter and a 32.27 millimeter long line placed on the left and right
sides of the screen respectively. For each subject, two types of responses were simulated: one
which placed an emphasis on accurate responses, and another which placed an emphasis on fast
responses.
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the speed focus and the accuracy focus. The support of each histogram is the range of possible

confidence values which could be simulated for this task (i.e., {0.50, 0.60, . . . , 1.00}). Each histogram

was estimated over 10,000 simulation trials. The frequencies were normalized such that each bar in

the histogram represents the conditional probability that one of the six possible confidence levels

was selected, given that either the left or right line was declared as being longer. The three subjects

were observed to declare full belief (i.e., a subjective confidence of 1.00) more often towards the

correct alternative than towards the incorrect alternative. The three subjects were also observed to

declare indifference (i.e., a subjective confidence of 0.50) more often towards the incorrect alternative

than towards the correct alternative. When focusing on accurate responses, subject #2 appeared to

make frequent use of all possible confidence assessment values (Figure 3.5c). Subject #1 appeared to

declare mostly full belief or indifference (i.e., a subjective confidence of 0.50) (Figure 3.5a). Subject

#3 was observed to declare indifference for either alternative infrequently (Figure 3.5e). When

focusing on fast responses, all subjects appeared to express indifference more often (i.e., increased

conditional probability towards selecting a subjective confidence of 0.50, given either alternative)

and full belief less often (i.e., decreased conditional probability towards selecting a subjective

confidence of 1.00, given either alternative). Subject #2 (Figure 3.5d) appeared to also assess

decision confidences more frequently on intermediate values (i.e., 0.60 and 0.70) than what was

observed when focusing on accurate responses. Otherwise, the overall shape of the normalized

histograms for each subject when focusing on fast responses appeared similar to when they focused

on accurate responses.
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Part II

Performance Assessment Techniques for Hard/Soft Fusion Systems
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Chapter 4: Soft Fusion Studies with Binary Alternatives

We simulate responses from a set of human decision-makers using two-stage dynamic signal detection

(2DSD) (Chapter 3) in order to determine the performance of a selection of the soft fusion operators

described in Chapter 2. Specifically, the studies presented in this chapter focus on the effects of

time constraints, foreknowledge of subject reliabilities, subjective confidence, and superior/inferior

performing sources on the performance of a fusion operator combining information on binary decision

tasks. As a preliminary, we discuss the metrics used for assessing the decision-making performance

of the subjects and of the fusion operators. Then, we present four case studies using 2DSD models

from [44]. These case studies all focus on implementing several soft fusion operators on binary

decision tasks.

4.1 Subject and Fusion Operator Performance Metrics

4.1.1 Decision Performance

Recall from Chapter 3 that the alternatives of a two-alternative forced choice task (TAFC) were

denoted as A = {A,A}. To coincide with the notation used in classical detection theory [41], we can

further specify these alternatives as the binary hypotheses H1 = A and H0 = A. Consider a pool

of N subjects, enumerated according to i ∈ {1, 2, . . . , N}. Recall from Chapter 2 that the decisions

of each subject are denoted as ui. If we do not consider subject-generated decision confidence

assessments, we can define performance in terms of the false alarm pFi
and correct detection pDi

(or missed detection pMi
) rates that were discussed in Chapter 2. For convenience, we repeat them

below as

pFi
= P (ui = +1|H0), (4.1)

pDi
= P (ui = +1|H1) (4.2)
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and

pMi
= 1− pDi

. (4.3)

Recall from Chapter 2 that ui = +1 when the ith source declares H1, and ui = −1 when it declares

H0. One could also look at the total classification error rate pEi
= pFi

P (H0) + pMi
P (H1) if the

a priori probabilities P (H0) and P (H1) are available. When the fusion center output is a global

decision u0 ∈ {−1,+1}, the false alarm, correct detection, missed detection, and total classification

error rates associated with it are analogously defined as pF0
, pD0

, pM0
, and pE0

. Since the studies

presented in this dissertation are not concerned with utility and/or risk functions, we consider better

performing sources (or fusion operators) as those which exhibit lower total classification error rates

(i.e., or similarly, lower false alarm and missed detection rates).

4.1.2 Decision Confidence (Belief) Performance

If decision confidence self-assessments are provided by the subjects, then subject performance can

be assessed using a quadratic scoring rule. Suppose a subject provides a decision ui ∈ {−1,+1} and

subjective confidence assessment pi ∈ [0, 1] on a TAFC task. This information can be summarized

in the subjective probability assignment

PA(ui) =pi (4.4)

PA(ui) =1− pi (4.5)

Let u∗ ∈ A represent the correct choice. Better performing subjects should frequently assign high

confidence to the correct choice. As a subject assigns less belief to u∗, the quality of the decision and

confidence assessment decreases. Motivated by [44], we denoted this idea of subject opinion quality

in [123] as evidence strength, ξ, where

ξ(ui, pi|u∗) =


1− (1− pi)2 ui = u∗

1− p2
i ui 6= u∗

. (4.6)
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Evidence strength is derived from the quadratic scoring rule known as Brier score [124]. An evidence

strength value of one means that the subject has assigned the correct outcome full decision confi-

dence. An evidence strength value of zero means that the subject has assigned the correct outcome

outcome no decision confidence. In this thesis, we consider the sample average of evidence strengths,

ξi as a measure of the ith subject’s decision and confidence assessment performance. Subjects with

higher average evidence strengths will tend to give better confidence assessments than those with

lower average evidence strengths.

When the output fusion center is a set of beliefs aggregated in the form of a subjective probability

assignment, a performance metric similar to average evidence strength can be used. Recall from

Chapter 2 however, that the fusion operators from Dempster-Shafer (DS) theory in general produce

a set of belief/plausibility ranges that can be used to describe a class of subjective probability assign-

ments supported by the fused evidence. We quantify fusion operator performance as the nearness of

its combined subjective probability assignments to one which assigns the correct alternative u∗ ∈ A

full belief (i.e., a subjective probability of one).

The result is a class of evidence strengths defined by the intervals [ξBel, ξPl], where

ξBel = ξ(u∗,Bel(u∗)|u∗), (4.7)

and

ξPl = ξ(u∗,Pl(u∗)|u∗). (4.8)

The functions Bel(·) and Pl(·) are evaluated based on an aggregated belief mass assignment (BMA)

after fusion.The lower envelope ξBel can be thought of as a measure of the accuracy of the combination

operator, and the size of the interval (ξPl−ξBel) can be thought of as the precision of the combination

operator. Accurate belief combination operators will tend assign subjective probabilities close to one

to the correct outcome, resulting in values of ξBel close to one. Precise belief combination operators

will tend to produce more specific evidence, resulting in values of (ξPl − ξBel) being close to zero.

Since Bel(u∗) ≤ Pl(u∗) ≤ 1 [43], it follows that ξBel ≤ ξPl ≤ 1. Hence systems with high accuracy
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(i.e., ξBel close to one) will also be very precise (i.e., (ξPl − ξBel) close to zero). In the Bayesian

case, (ξPl − ξBel) = 0 since Bel(u∗) = Pl(u∗) = P(u∗) [43].

4.2 Discounted Decisions and Confidences

There are many ways to take into account the performance of the subject when performing fusion.

For example, if decision error rates (i.e., false alarm and missed detection rates) can be estimated,

then the Chair and Varshney Fusion rule can be applied1 using their decisions. When decisions

and confidences are used, a discounting operation can be used to take the average source evidence

strength into account. Recall from Chapter 3 that Ω describes the set of alternatives for a possi-

ble phenomenon. For BMAs, the discounting operation used here is well known [59] and can be

represented mathematically for any X ⊆ Ω as

mi(X;αi) =


αimi(X) X 6= Ω

αimi(X) + (1− αi) X = Ω

(4.9)

where mi(·) and αi are the BMA and the discount rate associated with the ith subject. For subjective

probability assignments, this operation can be similarly written [123,125] as

Pi(ω;αi) = αiPi(ω) + |Ω|−1(1− αi). (4.10)

Here, these discounting operations are used to scale the evidence present in the belief mass or sub-

jective probability assignment according to a subject’s discount rate αi. When αi = 1, the BMA (or

subjective probability assignment) is unmodified. When α = 0, the BMA (or subjective probability)

is transformed into a vacuous belief mass assignment (or a subjective probability assignment with

equiprobable alternatives).

4.3 Fusion Study 1: Different Fusion Operator Input Considerations

A subset of this study’s results were previously published in [123].

1Optimal decision performance however may not necessarily be guaranteed as the conditional probabilities of the
sources may not be stationary or independent conditioned on the hypotheses.
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4.3.1 Motivation

As mentioned in Chapter 2, Bayesian epistemology and DS theory are popular tools for combining

beliefs (i.e., decisions and decision confidence assessments). To use the combination operators from

either area, subject decisions ui and confidence assessments pi must be translated into BMAs (or in

the case of Bayes’ Rule, subjective probability functions). In this study, we seek to determine how

such operator input constructions affect the performance of the fusion operator when working with

human opinions. For Bayes’ rule of probability combination, we consider a subjective probability

assignment that assigns probability si towards the subject’s choice ui and divides the remainder

equally amongst the remaining alternatives (for the general case of M alternatives over the set Ω)2.

That is,

Pi(ω) =


si ω = ui

1
M−1 (1− si) otherwise

. (4.11)

To implement the operators from Dempster-Shafer theory, a BMA must be constructed. Here we

make use of the simple support function, defined similarly as

mi(X) =



si X = ui

1− si X = Ω

0 otherwise

. (4.12)

In this study, we seek to investigate the performance of a fusion operator in terms of the value si

and the use of discounting (i.e., Equations 4.9 and 4.10).

4.3.2 Experimental Setup

Decisions and confidence assessments were simulated from six subjects under the line length dis-

crimination task and city population size discrimination tasks using the 2DSD models given in [44].

For the line length discrimination task, subjects were simulated as comparing a pair of 32.00 and

2For the binary case, Ω = A and M = 2. We define these equations for M alternatives for use later in Chapters 5
and 6.
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32.27 millimeter long lines. For the city population size discrimination task, subjects were simulated

as comparing U.S. city pairs which exhibited a population rank difference between 10 and 18 (e.g.,

Houston, TX versus Baltimore, MD). For both decision tasks, subjects were simulated to provide

decisions and decision confidence assessments when focusing on either accurate or fast responses.

The following four BMAs (or subjective probability) construction cases were examined.

1. Decisions Only: Each subject’s source strength si was estimated beforehand by estimating

the subject’s proportion of correct decisions over 2,000 simulations. The subject’s simulated

confidence value pi was not used.

2. Confidences Only: Each subject’s source strength si was taken as the simulated confidence

value pi.

3. Detection Rate Discounting: Each subject’s source strength si was taken as the simulated

confidence value pi. The resulting simple support function was then discounted using expres-

sion 4.9 (or in the Bayesian case, expression 4.10). The discount rates for each subject αi was

taken as their proportion of correct decisions over 2,000 simulations.

4. Evidence Strength Discounting: Each subject’s source strength si was taken as the sim-

ulated confidence value pi. The resulting simple support function was then discounted using

expression 4.9 (or in the Bayesian case, expression 4.10). The discount rate for each subject

αi was taken as the subject’s average evidence strength ξi, estimated beforehand over 2,000

simulations.

Simulated decisions and confidence assessments were used to generate subjective probability assign-

ments and simple support functions for each subject according to the four fusion operator input

cases mentioned above. The following five fusion operators were implemented: Bayes’ rule of proba-

bility combination [97], Dempsters Rule of Combination (DRC) [43], Yagers Rule [94], Proportional

Conflict Redistribution Rule #5 (PCR5) [97], and the Consensus Operator [29]. The combination

order of each source was fixed across all fusion rules, such that the first source of [44] was combined

with the second, and then the third, and so on. A total of 2,000 simulation trials were conducted for
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each case, and the average evidence strengths associated with each fusion operator were determined.

4.3.3 Results

Figures 4.1 through 4.4 each show the average evidence strength values for each of the five fusion

operators when using each of the four BMA (or subjective probability) construction cases discussed

above. Figures 4.1 and 4.2 each show the performance of the fusion operators on the line length

discrimination task when subjects were simulated to provide accurate and fast responses respec-

tively. Figures 4.3 and 4.4 show the performance of the fusion operators on the city population

size discrimination task, also when subjects were simulated to provide accurate and fast responses

respectively. In each of these four figures, horizontal lines are included to represent the best and

worst average evidence strength values amongst the subjects. The height of each colored bar repre-

sents the minimum average evidence strength produced after fusion (i.e., ξBel). The height of the

colored and clear bars represents the maximum average evidence strength after fusion (i.e., ξPl). As

discussed earlier, higher colored bars represent higher accuracy fusion rules, whereas smaller clear

bars represent more precise fusion rules.

Based on the parameters of the 2DSD models used in this study, it is possible that subjects can

provide conflicting decisions and decision confidence assessments (i.e., assess full belief in conflicting

alternatives). Therefore, it is not surprising that Bayes’ rule of probability combination and DRC

could not be used in the “Confidences Only” BMA formulation case (see [59] for a more detailed

discussion). It is also not surprising that many fusion operators exhibit inferior performance in

the “Confidences Only” case, since it is the only one in which the statistical performance of the

subjects are not taken into account. Placing an increased focus on fast responses did not change the

overall performance of the fusion operators significantly. Additional decision time in these cases most

likely does not make a considerable difference in subject decision and confidence assessment quality

because of the difficulty level of the tasks. In terms of the fusion operators, Yager’s rule was found

to exhibit the worst performance across all simulation cases, followed very closely by the consensus

operator. In many cases, the minimum average evidence strength of Yager’s rule was lower than

the average evidence strength of the worst performing source. Excluding Bayes’ rule of probability
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Figure 4.1: Average evidence strength of fusion operators on the line length discrimination
task of [44], showcasing four BMA (or subjective probability) construction cases. Subjects
were simulated as comparing a 32.00 millimeter line with a 32.27 millimeter line while focusing
on providing accurate responses. Higher colored bars indicate better accuracy performance.
Smaller clear bars indicate better precision performance.
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Figure 4.2: Average evidence strength of fusion operators on the line length discrimination
task of [44], showcasing four BMA (or subjective probability) construction cases. Subjects were
simulated as comparing a 32.00 millimeter line with a 32.27 millimeter line while focusing on
providing fast responses. Higher colored bars indicate better accuracy performance. Smaller
clear bars indicate better precision performance.
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Figure 4.3: Average evidence strength of fusion operators on the city population size dis-
crimination task of [44], showcasing four BMA (or subjective probability) construction cases.
Subjects were simulated as comparing U.S. city pairs having a population rank difference be-
tween 10 and 18 while focusing on providing accurate responses. Higher colored bars indicate
better accuracy performance. Smaller clear bars indicate better precision performance.
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Figure 4.4: Average evidence strength of fusion operators on the city population size dis-
crimination task of [44], showcasing four BMA (or subjective probability) construction cases.
Subjects were simulated as comparing U.S. city pairs having a population rank difference be-
tween 10 and 18 while focusing on providing fast responses. Higher colored bars indicate better
accuracy performance. Smaller clear bars indicate better precision performance.
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combination, the PCR5 fusion operator was found to exhibit the best precision performance across

all simulation cases.

4.4 Fusion Study 2: Inclusion of Superior/Inferior Sources

A subset of this study’s results were previously published in [123].

4.4.1 Motivation

In the previous study, the average evidence strength values associated with the fusion operators were

relatively close. This could possibly be attributed to the number of subjects combined by each of

the fusion operators. In the next study, we further investigate fusion operator performance using

the six 2DSD models of [44] as the number of subject responses included in the fusion operator

increases. This is important, as monotonically increasing fusion performance with respect to the

number of responses in the combination is a very desirable property [126]. More specifically, we

investigate fusion performance with an increasing number of responses from the best and worst

performing subjects (i.e., subjects with the highest and lower average evidence strength values).

The performance of a fusion operator in these two cases showcase how quickly a fusion operator

can incorporate “good” information and also how robust a fusion operator can be towards “bad”

information.

4.4.2 Experimental Setup

An experimental setup similar to Study 1 (Section 4.3.2) was used here to simulate fusion perfor-

mance on the line length and city population size discrimination tasks of [44]. Simulated decisions

and confidence assessments were used to generate subjective probability assignments and simple

support functions for each of the six 2DSD subject models as given in [44]. Two of the four sub-

jective probability and BMA construction cases described in Section 4.3.2 were investigated: the

Confidences Only case and the Evidence Strength Discounting case. In addition to responses from

the six 2DSD subjects, an increasing number of responses were simulated from the best and worst

performing sources. The same five fusion operators from Study 1 were implemented, namely Bayes’

rule of probability combination [97], Dempsters Rule of Combination (DRC) [43], Yagers Rule [94],
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Proportional Conflict Redistribution Rule #5 (PCR5) [97], and the Consensus Operator [29]. The

combination order was again fixed across all fusion rules (see [123] for a detailed explanation). For

the line length discrimination task, subjects were again simulated as comparing a pair of 32.00 and

32.27 millimeter long lines. For the city population size discrimination task, subjects were again

simulated as comparing U.S. city pairs which exhibited a population rank difference between 10

and 18 (e.g., Houston, TX versus Baltimore, MD). For both decision tasks, subjects were again

simulated to provide decisions and decision confidence assessments when focusing on either accurate

or fast responses. A total of 2,000 simulation trials were conducted for each case.

4.4.3 Results

Figures 4.5 through 4.12 each show the the accuracy and precision performance for each of the five

fusion operators versus the number of responses included from either the best or worst performing

source in final fused result. Recall that the accuracy performance of the fusion operator is given as

ξBel (higher is better). The precision performance of the fusion operator is given as (ξPl − ξBel).

For the subplots which show accuracy performance, the average evidence strengths of the best and

worst performing sources are shown for comparison. Figures 4.5 and 4.6 show the accuracy and

precision performance of each fusion operator on the line length discrimination task with subjects

focused on accurate responses and fusion operator inputs constructed using the “Confidences Only”

and “Evidence Strength Discounting” cases from Study 1 respectively. Figures 4.7 and 4.8 show

fusion operator performance on the line length discrimination task for the “Confidences Only” and

“Evidence Strength Discounting” cases, but with subjects focused on fast responses. Figures 4.9

and 4.10 show fusion operator performance on the city population size discrimination task with

subjects focused on accurate responses and fusion operator inputs constructed using the “Confidences

Only” and “Evidence Strength Discounting” cases. Finally, Figures 4.11 and 4.12 show fusion

operator performance on the city population size discrimination task for the “Confidences Only”

and “Evidence Strength Discounting” cases, but with subjects focused on fast responses.

As in Study 1 (Section 4.3.3), performance relating the Bayes’ rule of probability combination

and DRC are not pictured for the “Confidences Only” case, since neither of these fusion operators
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can be used when the BMAs and subjective probabilities being combined can be contradictory.

Also in the “Confidences Only” case, the precision performance of every fusion operator excluding

Yager’s rule appears to approach the best possible precision performance very quickly (i.e., after

including approximately five sources in the final fused result). This trend in precision performance

is observed for both the line length and city population size discrimination tasks, regardless of a

fast or accurate response focus. The accuracy performance of the operators in the “Confidences

Only” case was observed to change considerably when including an increasing number of responses

from either the best or worst source in the final fused result (e.g., Figures 4.5a and 4.11a). This

trend was observed across all pairs of decision tasks and response foci, excluding the city population

size discrimination task with accurate responses. It seems logical that the “Confidences Only”

case would have instances in which the accuracy performance of the final fused result would be

greatly affected by the performance of the sources, since no a priori knowledge of average source

performance is considered, nor are there any heuristics employed to identify inferior sources. Finally,

the accuracy performance of PCR5 and Yager’s rule in the “Confidences Only” case stop increasing

after about five or ten sources are included in the final fused result. The accuracy performance of

the consensus operator appears to be increasing when an increasing number of the best sources are

included in the combination. When an increasing number of the worst sources are included, the

accuracy performance of the consensus operator stops increasing.

In the “Evidence Strength Discounting” case, the accuracy and precision performance of all five

fusion rules generally increases over the “Confidences Only” case. Almost all of the fusion operators

eventually approach the best possible precision performance. These two observations occurred for all

possible decision tasks and response foci pairings. For the line length discrimination task, including

an increasing number of the best or worst performing subject exhibits minimal differences in accuracy

performance, regardless of the response focus. A similar trend was observed for the city population

size discrimination task when subjects were simulated to provide fast responses. Excluding Yager’s

rule, each of the fusion operators exhibited higher average evidence strengths than that of the best

source included in the final fused result. The accuracy performance of PCR5 and the consensus
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(a) Accuracy performance
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(b) Precision performance

Figure 4.5: Fusion performance on the line length discrimination task (accuracy focus) of [44]
when including an increasing number of responses from better or worse performing sources in
the combination. Subject BMAs (or subjective probability assignments) for each fusion operator
formed using simulated subject decision and confidence values according to the “Confidences
Only” case from Study 1. (a) Accuracy performance (i.e., minimum average evidence strength)
versus number of best/worst source responses. Higher is better. (b) Precision performance (i.e.,
evidence strength interval size). Lower is better.
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(b) Precision performance

Figure 4.6: Fusion performance on the line length discrimination task (accuracy focus) of [44]
when including an increasing number of responses from better or worse performing sources in
the combination. Subject BMAs (or subjective probability assignments) for each fusion opera-
tor formed using simulated subject decision and confidence values according to the “Evidence
Strength Discounting” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b) Precision
performance (i.e., evidence strength interval size). Lower is better.
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(b) Precision performance

Figure 4.7: Fusion performance on the line length discrimination task (speed focus) of [44]
when including an increasing number of responses from better or worse performing sources in
the combination. Subject BMAs (or subjective probability assignments) for each fusion operator
formed using simulated subject decision and confidence values according to the “Confidences
Only” case from Study 1. (a) Accuracy performance (i.e., minimum average evidence strength)
versus number of best/worst source responses. Higher is better. (b) Precision performance (i.e.,
evidence strength interval size). Lower is better.
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(b) Precision performance

Figure 4.8: Fusion performance on the line length discrimination task (speed focus) of [44]
when including an increasing number of responses from better or worse performing sources in
the combination. Subject BMAs (or subjective probability assignments) for each fusion opera-
tor formed using simulated subject decision and confidence values according to the “Evidence
Strength Discounting” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b) Precision
performance (i.e., evidence strength interval size). Lower is better.
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Figure 4.9: Fusion performance on the city population size discrimination task (accuracy
focus) of [44] when including an increasing number of responses from better or worse performing
sources in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according to
the “Confidences Only” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b) Precision
performance (i.e., evidence strength interval size). Lower is better.
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(b) Precision performance

Figure 4.10: Fusion performance on the city population size discrimination task (accuracy
focus) of [44] when including an increasing number of responses from better or worse performing
sources in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according to the
“Evidence Strength Discounting” case from Study 1. (a) Accuracy performance (i.e., minimum
average evidence strength) versus number of best/worst source responses. Higher is better. (b)
Precision performance (i.e., evidence strength interval size). Lower is better.
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Figure 4.11: Fusion performance on the city population size discrimination task (speed focus)
of [44] when including an increasing number of responses from better or worse performing
sources in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according to
the “Confidences Only” case from Study 1. (a) Accuracy performance (i.e., minimum average
evidence strength) versus number of best/worst source responses. Higher is better. (b) Precision
performance (i.e., evidence strength interval size). Lower is better.
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(b) Precision performance

Figure 4.12: Fusion performance on the city population size discrimination task (speed focus)
of [44] when including an increasing number of responses from better or worse performing
sources in the combination. Subject BMAs (or subjective probability assignments) for each
fusion operator formed using simulated subject decision and confidence values according to the
“Evidence Strength Discounting” case from Study 1. (a) Accuracy performance (i.e., minimum
average evidence strength) versus number of best/worst source responses. Higher is better. (b)
Precision performance (i.e., evidence strength interval size). Lower is better.
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operator were observed to stop increasing after approximately ten to fifteen sources were included

in the final fused result. On the other hand, Bayes’ rule of probability combination and DRC were

observed to exhibit similar, monotonically increasing accuracy performance until eventually they

both approached the best possible accuracy performance.

Similar to Study 1 (Section 4.3.3), Yager’s rule exhibited the worst accuracy and precision per-

formance across all cases. In fact, in almost all of the cases examined the accuracy performance of

Yager’s rule was strictly lower than the average evidence strength of the worst performing source in

the final fused result. This seems logical for the same reasons discussed earlier in Study 1. Yager’s

rule resolves conflict amongst the sources conservatively by regarding it as total uncertainty to-

wards the alternatives. Although this method of conflict management may seem logical, many times

conflict can be relegated to shortcomings in the omniscience3 of the sources being fused.

4.5 Fusion Study 3: Subjective Confidence and Reliability

A subset of this study’s results were previously published in [127].

4.5.1 Motivation

As discussed in the problem overview of Chapter 2, the output of a fusion operator can be an

aggregated set of beliefs towards each of the alternatives on some phenomenon, or a global decision

that takes into account all of the data from each source. In Studies 1 and 2, we considered the

former by assessing the performance of a set of fusion operators without an accompanying decision

rule. In this study, we examined the performance of a set of fusion operators while implementing

a set of decision rules (i.e., threshold tests) in order to produce global decisions from each fusion

operator. This study compared four types of fusion operators that can produce global decisions:

(1) operators that use human-subject decisions (e.g., the k-out-of-N majority rule); (2) operators

that use subject decisions and their error rates (e.g., the Chair and Varshney fusion rule); (3)

operators that use subject decisions and confidence assessments (e.g., Yager’s rule and PCR5);

and (4) operators that use subject decisions, confidence assessments, and their average evidence

strength (e.g., Dempster’s rule of combination and Bayes’ rule of probability combination). For

3See [59] for a more detailed discussion of such qualities.
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these fusion operator types, 2DSD human response models were used to determine the performance

gains possible by incorporating decision confidences and the accuracy of decision confidences into the

fusion operator. Although it seems intuitive that including subjective confidences and/or reliabilities

should produce a performance benefit, we seek to emphasize the importance of quantifying this

benefit in order to keep it in context with the implementation complexities associated with each

fusion operator.

4.5.2 Experimental Setup

The 2DSD human response models from [44] were simulated on the line length and city size dis-

crimination tasks. Subjects were simulated to focus on producing accurate decisions and confidence

assessments. The decision performance of six fusion operators were simulated: (1) the k-out-of-N

majority rule [54], (2) the Chair and Varshney fusion rule [54], (3) Yager’s rule [94], (4) PCR5 [97],

(5) Bayes’ rule of probability combination [97], and (6) DRC [43]. The k-out-of-N majority rule

and the Chair and Varshney fusion rule were implemented according to Definitions 2.4 and 2.5

(Chapter 2). Yager’s rule and PCR5 were implemented according to the “Confidences only” fusion

operator input construction case that was discussed in Section 4.3.2. Bayes’ rule of probability

combination and DRC were implemented according to the “Evidence Strength Discounting” fusion

operator input construction case that was also discussed in Section 4.3.2. The decision rules and

corresponding false alarm and correct detection rates for the k-out-of-N majority rule and the Chair

and Varshney fusion rule are described in Section 2.3. For the remaining fusion operators, the

pignistic probability transform, BetP(·), defined in Equation (2.34) was implemented to produce

subjective probability assignments. Using the resulting subjective probability assignments, a global

decision u0 was generated for each fusion rule such that

u0 =


+1 BetP(H1) ≥ λ

−1 otherwise

(4.13)
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where λ ∈ [0, 1] is a decision threshold that controls the balance between errors due to false alarms

and missed detections. For these fusion rules, the corresponding false alarm and correct detection

rate associated with u0 are given as

pF0
= P (u0 = +1|H0) = P (BetP(H1) ≥ λ|H0), (4.14)

pD0
= P (u0 = +1|H1) = P (BetP(H1) ≥ λ|H1) (4.15)

Notice here that we maintain the format for the global decision u0 as set forth for the k-out-of-N

majority rule and the Chair and Varshney fusion rule. When u0 = +1, the global decision is H1.

When u0 = −1, the global decision is H0.

Subject decisions and confidence assessments were simulated over three difficulty levels (i.e.,

stimuli) for each task. For the line length discrimination task, the stimuli were a pair of 32.00

and 32.27 millimeter long lines, a pair of 32.00 and 32.59 millimeter long lines, and a pair of 32.00

and 33.23 millimeter long lines. For the city population size discrimination task, the stimuli were

pairs of cities that differed in population rank by 1 and up to 9 (e.g., New York, N.Y. versus Los

Angeles, C.A.), by 10 and up to 18 (e.g., Houston, T.X. versus Baltimore, M.D.), and by 19 and up

to 29 (e.g., Detroit M.I. versus Cleveland, O.H.). For each simulation trial, a set of 24 simulated

human responses were generated by simulating 4 decision and confidence assessment pairs from each

of the six subjects according to the 2DSD parameter sets in [44, Tables 3 and 6]. Each fusion

operator was implemented by randomly selecting one response at a time from the human response

set. Once all of the responses were fused, the decision rule of each operator was implemented for

a given threshold value. In total, 10,000 trials were conducted for the second stimuli (located on

the right) being correct (i.e., H1) and 10,000 first stimuli (located on the left) being correct (i.e.,

H0). For each fusion operator, the corresponding thresholds were varied for the trials in which H1

was true and H0 was true, to generate sets of false alarm and detection rates. These were used to

generate empirical receiver operating characteristic (ROC) curves for each fusion operator, and the

corresponding normalized areas under the curves (AUCs) [128]. Higher AUC values represent fusion
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operators which can discriminate better between alternatives (i.e., producing higher detection rates

for a given false alarm rate).

4.5.3 Results

Figure 4.13 shows the normalized AUCs for each fusion operator versus the number of responses

present in the combination for the line length discrimination task of [44]. Figure 4.14 also shows the

normalized AUCs for each fusion operator versus the number of responses present in the combination,

but for the city population size discrimination task of [44]. The subplots of Figure 4.13 and

Figure 4.14 show the normalized AUC values observed for each of the three task difficulty levels

simulated. Error bars show the estimation error at the 95% confidence level. For a small number

of responses (e.g., two), fusion operators which incorporate confidences yielded higher normalized

AUCs (i.e., Bayes’ rule, DRC, Yager’s rule, and PCR5). As the number of responses in combination

is increased (e.g., greater than 5), the fusion operators which incorporate decisions, confidence

assessments, and reliabilities (i.e., Bayes’ rule and DRC) yielded the highest normalized AUCs,

followed very closely by the Chair and Varshney fusion rule and then by the k-out-of-N majority

rule for both tasks and all difficulty levels. Similar discriminability performance between the k-

out-of-N majority rule and the Chair and Varshney fusion rule are due to the sources exhibiting

similar detection and false alarm rates. Also as the number of responses in combination increases,

the fusion rules which incorporate confidences and decisions alone (i.e., Yager’s rule and PCR5)

produce the lowest AUC values. Furthermore, these normalized AUC values were observed to stop

increasing, whereas the AUC values for the remaining fusion operators continue to increase. These

results support the notion that as the number of sources increases, the importance of decision self-

assessment diminishes. In fact, the inclusion of the self-assessment seems to have caused “confusion”

and degradation in the cases where the subjects’ ability to give good confidence assessments was not

taken into account. This confusion may occur because the subjects in the line length and city size

discrimination task are not proficient in providing accurate decision confidence values.
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Figure 4.13: Normalized area under the ROC curve versus the number of sources included in
combination for the line length discrimination task of [44]. Error bars show estimation error at
the 95% confidence level. (a) Comparing 32.00 versus 32.27 millimeter long lines (b) Comparing
32.00 versus 32.59 millimeter long lines. (c) Comparing 32.00 versus 33.23 millimeter long lines.
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Figure 4.14: Normalized area under the ROC curve versus the number of sources included in
combination for the city population size discrimination task of [44]. Error bars show estimation
error at the 95% confidence level. (a) Comparing cities differing in population rank by 1 and up
to 9 (e.g., New York, N.Y. versus Los Angeles, C.A.) (b) Comparing cities differing in population
rank by 10 and up to 18 (e.g., Houston, T.X. versus Baltimore, M.D.). (c) Comparing cities
differing in population rank by 19 and up to 29 (e.g., Detroit M.I. versus Cleveland, O.H.).

Chapter 4 4.6 Fusion Study 4: Probability Transformation Performance



68

4.6 Fusion Study 4: Probability Transformation Performance

A subset of this study’s results were previously published in [129].

4.6.1 Motivation

As mentioned in Chapter 2, the Dempster-Shafer (DS) theory is a popular tool in the information fu-

sion community [19,21,27,130–132]. As opposed to the use of subjective probabilities (i.e., Bayesian

epistemology [42]), a Dempster-Shafer approach employs a normalized measure of evidence (i.e., a

BMA) on a powerset of alternatives [43]. To facilitate decision making, probability transformations

are used to generate a subjective probability supported by a given belief mass assignment. There

exists several Dempster-Shafer theory based fusion rules [59], as well as a large number of probabil-

ity transformations (e.g., [104, 105, 133]). These transforms are usually evaluated through the use

of hypothetical examples and by measuring the amount of entropy present in the resulting trans-

formed probabilities for a given set of evidence. Such information has been characterized using the

probability information content (PIC) mertic [105,134], which is defined for a subjective probability

assignment P(·) generated by a probability transformation as

PICP(ω) = 1 +
1

logM

∑
ω∈Ω

P(ω) logP(ω) (4.16)

where M = |Ω|. A low PIC value represents a subjective probability assignment where the alter-

natives are close to being equiprobable (i.e., a difficult decision). A high PIC value represents a

subjective probability assignment where one of the alternatives is close to having probability one

(i.e., an easier decision). There have been studies however that suggest that the PIC metric alone

may not be sufficient in evaluating the performance of a probability transformation (e.g., [135]).

This study makes use of the 2DSD human response models from [44] to investigate these claims in

terms of the effect that the choice of probability transform has on the statistical performance of the

fusion operator (i.e., decision error rates and AUC values).

Chapter 4 4.6 Fusion Study 4: Probability Transformation Performance



69

4.6.2 Experimental Setup

Similar to the setup of Study 3, a pool of 24 human responses were generated for the line length

and city population discrimination tasks of [44], with subjects focused on providing accurate re-

sponses. For the line length discrimination task, we let H1 denote the hypothesis that the second

line presented to the subject is longer than the first, and let H0 denote the hypothesis that the

first line presented to the subject is longer than the second. For the city population size discrim-

ination task, we let H1 denote the hypothesis that the second city presented to the subject has a

higher population than the first and let H0 denote the hypothesis that the first city presented has

a higher population than the second. For each task, a total of 10,000 trials were conducted for

H1 being true and 10,000 trials for H0 being true. The subject responses were combined two at a

time using Yager’s rule [94]. Since Yager’s rule is not associative [59], the combination order was

randomized by choosing from the subject response pool with equal probability. The final combined

BMAs were then each transformed into a subjective probability assignments P(·) by using one of six

probability transformations, namely BetP ( Equation (2.34)), PrP l ( Equation (2.35)), PrNPl (

Equation (2.36)), PrHyb ( Equation (2.37)), and DSmP ( Equation (2.39)). A decision rule similar

to Equation (4.13) was used, that is

u0 =


+1 P(H1) ≥ λ

−1 otherwise

, (4.17)

where the threshold λ ∈ [0, 1] is chosen to obtain a desired global decision false alarm and correct

detection rate. Again, when u0 = +1, the global decision is H1, and when u0 = −1, the global

decision is H0. The threshold test of Equation (4.17) was used to estimate false alarm rates and

detection rates for varying threshold values λ using the 10,000 simulated responses with H1 true

and the 10,000 responses with H0 true after applying Yager’s rule and each of the five probability

transforms. The resulting sets of false alarm and detection rates were then used to determine

empirical ROC curves, and the resulting normalized AUC values for each probability transform.
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Table 4.1: Average PIC for each probability transformation (H1 true, line length discrimina-
tion task of [44]).

Line Length Difference BetP PrP l PrNPl PrHyb DSmP
0.27 mm 0.56 0.63 0.51 0.68 0.83
0.59 mm 0.67 0.72 0.64 0.76 0.88
1.23 mm 0.85 0.87 0.84 0.89 0.95
1.87 mm 0.93 0.94 0.92 0.95 0.98

Table 4.2: Average PIC for each probability transformation (H1 true, city population size
discrimination task of [44]).

City Rank Difference BetP PrP l PrNPl PrHyb DSmP
1 - 9 0.49 0.57 0.43 0.64 0.80

10 - 18 0.53 0.61 0.48 0.67 0.82
19 - 29 0.60 0.67 0.56 0.73 0.85
30 - 43 0.68 0.73 0.64 0.78 0.89

4.6.3 Results

Tables 4.1 and 4.2 show the average PIC values after applying each of the five probability transfor-

mations to the combined BMAs resulting from the line length discrimination task and the city size

discrimination task. Higher PIC values are usually considered better [105, 134, 136]. The results in

Tables 4.1 and 4.2 show increasing PIC values as task difficulty decreases, which seems reasonable.

For each difficulty level, the PIC values follow the same trend with PrNPl having the lowest PIC

and DSmP having the highest PIC. These trends supports the notion that DSmP produces subjec-

tive probabilities which are the most committed towards one of the alternatives (i.e., having the

lowest entropy) [105].

Figures 4.15 and 4.17 show the normalized AUCs versus the number of human responses present

in combination for all five probability transforms on the line length discrimination task and the city

size discrimination task. Each subplot of Figures 4.15 and 4.17 shows the observed normalized AUC

values for the four task difficulty levels simulated here. As expected, normalized AUC values increase

as the task becomes easier. For any given difficulty level however, all five probability transformations

exhibited statistically insignificant differences between normalized AUC values. This indicates that

the overall discriminating performance of each probability transform is actually same.

Figures 4.16 and 4.18 show the ROC curves after combination for all five probability transforms
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(a) Line length difference 0.27 mm
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(b) Line length difference 0.59 mm
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(c) Line length difference 1.23 mm
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(d) Line length difference 1.87 mm

Figure 4.15: Normalized area under the ROC curve (AUC) versus the number of sources
present in combination, for each difficulty level of the line length discrimination task of [44].
Different lines represent the five different probability transforms investigated by this work.
Error bars shown for the 95% confidence intervals. In each of the four difficulty levels, all five
probability transforms are nearly overlapping.
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(b) Line length difference 0.59 mm
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(c) Line length difference 1.23 mm
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(d) Line length difference 1.87 mm

Figure 4.16: ROC curves for each difficulty level of the line length discrimination task of [44],
showing false alarm rates up less than 0.30. Different lines represent the five different probability
transforms investigated.
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(a) City rank difference 1 - 9
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(b) City rank difference 10 - 18
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(c) City rank difference 19 - 29
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(d) City rank difference 30 - 43

Figure 4.17: Normalized area under the ROC curve (AUC) versus the number of sources
present in combination, for each difficulty level of the city population size discrimination task
of [44]. Different lines represent the five different probability transforms investigated by this
work. Error bars shown for the 95% confidence intervals. In each of the four difficulty levels,
all five probability transforms are nearly overlapping.

Chapter 4 4.6 Fusion Study 4: Probability Transformation Performance



74

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

 

 
BetP
PrPl
PrNPl
PrHyb
DSmP

(a) City rank difference 1 - 9

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate
D

et
ec

tio
n 

R
at

e
 

 

BetP
PrPl
PrNPl
PrHyb
DSmP

(b) City rank difference 10 - 18
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(c) City rank difference 19 - 29
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(d) City rank difference 30 - 43

Figure 4.18: ROC curves for each difficulty level of the city population size discrimination task
of [44], showing false alarm rates up less than 0.30. Different lines represent the five different
probability transforms investigated.
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on the line length discrimination task and the city size population task. Each subplot of Figures 4.16

and 4.18 shows ROC curves for the four task difficulty levels simulated here. The ranges of the graph

axes correspond to “reasonable” false alarm rates (i.e., up to 0.30)). Again, the overall shape of

the ROC for all probability transforms improves as the tasks become easier (supporting the results

shown in Figure 4.17). For lower false alarm rates (e.g., less than 0.07), BetP , PrP l, PrNPl, and

PrHyb produce similar detection rates, which are all higher than those produced by DSmP . For

higher false alarm rates (e.g., greater than 0.10), DSmP produces higher detection rates over the

remaining four probability transforms. As false alarm rates become even higher (e.g., greater than

0.25), similar performance is observed for all probability transforms. For the hardest and easiest

variations of both tasks, these performance gains become less apparent. These observations support

the conclusions reached by [135]; depending on the acceptable error rate for a specific task, a higher

PIC value may not necessarily indicate better decision performance by itself. According to the

average PIC values, the easiest decisions can be made when using DSmP , but at a cost of slightly

reduced detection performance at small fixed false alarm rates.

4.7 Chapter Summary

In this chapter, we have shown how the performance of fused decisions and/or beliefs produced

by soft fusion operators on binary decision tasks can be assessed using two-stage dynamic signal

detection (2DSD). Specifically, we have investigated four case studies to assess the performance of

fusion operators from Bayesian epistemology and Dempster-Shafer (DS) theory, in addition to as-

sessing the performance of various probability transformations. In the first study, several BMA (or

subjective probability) construction cases were investigated along with a selection of fusion oper-

ators. It was observed that fusion operators which incorporate some sort of statistical knowledge

regarding the reliability of the subjects perform better than those which do not. These results were

further examined in the second study, in which an increasing number of responses from the best or

worst performing source were included in the fusion step. Bayes’ rule of probability combination

and Dempster’s rule of combinatioin (DRC) were both observed to exhibit monotonically increasing

performance with respect to the number of responses in combination when some sort of source dis-
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counting was performed. In most cases, source discounting was observed to make the performance

operators less sensitive to variability in the reliability of each of the subjects. In the third study, the

effects of confidences and reliability were assessed on a selection of fusion operators that incorpo-

rated decision rules. When the reliability of confidences was not considered in the fusion operator,

increasing the number of responses in the fusion operator resulted in inferior performance. When

discounting was performed using subject average evidence strengths, the incorporation of decision

confidences slightly improved fused decision performance over the k-out-of-N majority rule and Chair

and Varshney fusion rule was observed. Finally, in the fourth study we evaluated the performance

of a variety of probability transformations from DS theory alongside a probability transformation

performance metric known as the probability information content (PIC). It was determined that a

higher PIC value may not necessarily indicate better decision performance by itself. For our specific

results, highest average PIC values were obtained when using the DSmP probability transform, but

at a cost of slightly reduced detection performance at small fixed false alarm rates.
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Chapter 5: Multihypothesis Fusion Operator Simulation Methods

As mentioned in Chapter 3, the majority of human response models developed by cognitive psychol-

ogists so far are focused on two-alternative forced choice (TAFC) tasks. Theoretical and experimen-

tal investigation into multihypothesis human decision-making models has only recently become an

active topic of research [137]. There has been very little investigation of the development of multihy-

pothesis human decision-making models that also account for the generation of decision confidence

assessments. Furthermore, vague1 human decision making models have seen little investigation.

In this chapter, we present a method for generating multihypothesis human decisions and decision

confidence assessments. This method aggregates simulated pairwise-successive comparisons using

binary human decision making models (i.e., two-stage dynamic signal detection (2DSD)). We then

discuss how this pairwise-successive comparison method can be used to generate vague decisions

and confidence assessments. The dynamics of the aggregation method is then assessed using sample

simulations on multihypothesis extensions of the line length and city population size discrimina-

tion tasks. Finally, we use the proposed pairwise-successive comparison method to simulate the

performance of several fusion operators defined in Chapter 2.

5.1 Pairwise-Successive Comparisons

A more specific version of the pairwise successive comparison aggregation method was discussed

in [125] for precise responses on the line length discrimination task modeled by the authors of [44].

We present the general form of the aggregation method and detail its relationship to a given TAFC

human decision-making model (i.e., 2DSD).

5.1.1 Aggregation of TAFC Responses

Consider some phenomenon in which an individual is presented with a set of M stimuli, each

having some commonly quantifiable feature. We label a given instance of these M features as

1We define vague human decision-making in Section 2.1.
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{z1, . . . , zM} = Z ⊂ RM , and further assume that each one of these features has a distinct value

(i.e., zi = zj if and only if i = j for any i, j ∈ {1, . . . ,M}). Define a decision task consisting of M

alternatives {ω1, . . . , ωM} = Ω such that ωi corresponds to the decision that feature zi ∈ Z is the

most apparent. For example, in an M -ary line length discrimination task zi denotes the length of

the ith line among M enumerated lines, and hence ωi corresponds to decision that zi is the longest

length line among the line lengths given in Z. For an M -ary city population size discrimination task

zi denotes the population of the ith city among M enumerated cities, and hence ωi corresponds to

the decision that zi is the most populated city among the cities given in Z.

Regardless of the decision task, we denote the actual most apparent feature as zi∗ ∈ Z, and

hence ωi corresponds to the choice that zi∗ = zi. The goal of the pairwise successive comparison

aggregation method is to construct a subjective probability assignment on Ω by use of simulated

pairwise comparisons of the elements zi ∈ Z. Given that each feature zi ∈ Z has a distinct value,

we can write the subjective probability of ωi as

P(ωi) = P(zi∗ = zi|zi∗ ∈ Z) =
P(zi∗ = zi)∑M
î=1 P(zi∗ = zî)

. (5.1)

Let zi � zj be a binary comparison denoting that feature zi is more apparent than zj for any

i, j ∈ {1, . . . ,M}. Thus, expression 5.1 can be rewritten as

P(ωi) =

P(
⋂
j∈{1,...,M}

j 6=i
zi � zj)∑M

î=1 P(
⋂
j∈{1,...,M}

j≺i
zî � zj)

. (5.2)

Assuming that beliefs are assessed independently between each binary comparison, zi � zj , the

pairwise successive comparison aggregation method can be finally written as

P(ωi) =

∏
j∈{1,...,M}

j 6=i
P(zi � zj)∑M

î=1

∏
j∈{1,...,M}

j 6=î
P(zî � zj)

, (5.3)

where the subjective probability functions P(zi � zj) can be obtained by simulating decision and

decision confidence assessments using a TAFC human response model for each possible pairing of
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i, j ∈ {1, . . . ,M}. Equivalently, every value of P(ωi) can be determined by first simulating TAFC

human response models to compute the numerators of Equation 5.3, and then normalizing them

such that they sum to one.

5.1.2 Decision-Making and Confidence Assessment

After aggregating the subjective probabilities P(ωi) for each ωi ∈ Ω, a vague decision A ⊂ Ω can be

generated by choosing the one which maximizes the value of P(A) for a given level of vagueness, or

imprecision level, l = |A|. That is,

A = arg max
A⊂Ω
|A|=l

(∑
ωi∈A

P (ωi)

)
, (5.4)

with a corresponding decision confidence value of pA =
∑
ωi∈A P (ωi). When l = 1, this rule reduces

to the one proposed in [125] for the line length discrimination task. Since 2DSD models choose

from a finite set of confidence values [44], the following three cases can occur: A is unique, A is not

unique, or A does not exist because the denominator of Equation (5.3) is zero. In the second case,

a single vague decision A can be made by choosing one of the maximizing sets of Equation (5.4) at

random, assuming each is equally likely. In the third case, a decision cannot be reached and a “no

decision” state is returned.

5.1.3 Imprecise Evidence Strength

To assess the quality of the information in a subject’s vague decision, the evidence strength metric

ξ as defined in Equation (4.6) needs to be altered. We define a more generalized metric known as

imprecise evidence strength ξ′ such that

ξ′(A, pA|ω∗) =


1− (1− pA)2 ω∗ ∈ A

1− p2
A ω∗ 6∈ A

, (5.5)

where ω∗ denotes the correct alternative. Notice that if a decision is precise (i.e., |A| = 1), then

ξ′(·) = ξ(·). As opposed to average evidence strength, the average imprecise evidence strength ξ′
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does not fully characterize the decision-making performance of the subject. For example, subjects

may exhibit high values of ξ′ but yield very vague decisions. Therefore, ξ′ only measures the net

amount of decision confidence provided by a subject which does not rule out the correct alternative.

5.1.4 Assumptions and Limitations

The pairwise successive comparison method for simulating M -ary human responses assumes that

subjects consider every possible pair stimuli. In diffusion models of human decision making, the

difficulty of various stimuli are captured through different drift rates, δ [44,45]. The beliefs produced

by the proposed M -ary extension methodology are therefore dependent on the various drift rates

used in generating each of the binary responses of the pairwise successive comparisons. Any pairwise

successive comparison involving two stimuli which are clearly distinct will correspond to large drift

rate values and consequently lead to exponentially fast response times [44]. In reality however,

human subjects may not even make use of a pairwise comparison technique for alternatives which

are clearly different. Furthermore, this method assumes that drift rates are known (or can be reliably

estimated) for every possible pair of stimuli.

5.2 Simulation of Subject Performance

Before continuing, we present two sample subject simulations in order to emphasize the properties

of the proposed successive pairwise comparison technique. The results of the first simulation were

published earlier in [125].

5.2.1 Decision-Making on Varying Numbers of Alternatives

In this first set of subject simulations, we simulated the performance of M-ary decisions using the

proposed successive pairwise comparison technique and the 2DSD parameter tuples for subjects

#1 through #6 on the line length discrimination task modeled in [44]. Similar to the simulation

presented in Chapter 3, a 2DSD optional stopping model with trial variability on the drift rate, δ, and

initial condition, L0, was used. All six subject tuples were simulated under the accuracy focus. The

line lengths presented to the simulated subjects were Z = {32, 32 + d, 32 + 2d, . . . , 32 + (M − 1)d}

where M was the number of lines being compared and d was the incremental length difference
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between lines, in millimeters. Subject decisions and confidence assessments were generated using

the successive pairwise comparison aggregation method of Equation (5.3). The evidence strengths of

each subject were determined and averaged over 10,000 trials from d = 0.01 to d = 1.0 in increments

of 0.01 and for M = 2, 4, 6, and 8. For each subject, trials which produced the “no decision” state

were repeated until a decision and confidence value were reached.

For the line length discrimination task performed in [44], only five stimuli were presented to the

subjects: a 32.00 millimeter long line paired with either a 32.27, 32.59, 33.23, 33.87, or a 34.51. To

simulate responses on additional line length pairs, we performed linear interpolation to estimate the

corresponding mean drift rates ν. Let ∆l represent the length difference between each line, such

that

∆l = lR − lL, (5.6)

where lR and lL represent the lengths of the right and left lines as presented to the subjects. Linear

regression was applied to the coordinate pairs (∆l, ν) for each subject of the line length discrimination

task in [44] (Figure 5.1). All subject drifts rates appear to follow a linear relationship. With this

relationship in mind, the value of ν used to simulate a comparison of lines having a length difference

of ∆l is determined such that

ν = νm∆l. (5.7)

Here νm is the slope of the linear fit as given for each subject in Figure 5.1.

Figure 5.2 shows the average evidence strength, ξ, of each subject versus the incremental line

length difference, d. Evidence strengths for different numbers of alternatives M for each subject

are also shown. As expected, increasing the perceptual difficulty of the task (i.e., decreasing d)

decreased subject performance. For large enough d (e.g., d > 0.60), increasing the number of

alternatives was found to have little effect on subject performance. For smaller d (e.g., d < 0.40),

increasing the number of alternatives caused the largest decrease in performance when going from

M = 2 to M = 4 alternatives. For M > 4 however, the subject performance was similar to the

M = 4 case. This outcome seems logical, as increasing the number of alternatives without changing
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.1: Linear fits of subject mean drift rates versus line length differences for the line
length discrimination task as presented in [44]. Equations and R2 values shown for each subject.

the task difficulty will result in some alternatives being easier to rule out than others.

Figure 5.3 shows the chance of a no decision case occurring for each simulated subject, estimated

over 10,000 trials. For the subjects that exhibited large evidence strengths across all values of M

and d, the chances of a no decision case occurring were found to be low (e.g., Subjects 1, 2, and 6).

For the subjects that exhibited small evidence strengths at small values of d, the chances of a no

decision case were found to be high (e.g., Subjects 3, 4, and 5).

5.2.2 Vague Decision-Making

In this second set of subject simulations. we simulated the performance of vague human decision-

makers using subjects from the line length and city population size discrimination tasks of [45]. For

the line length discrimination task, the authors of [45] modeled 40 human decision makers comparing

line lengths in a manner similar to [44]. For the city population size discrimination task, the authors

of [45] modeled 91 human decision makers comparing city populations sizes ranked according to

the 2010 United States Census Bureau. The decision, confidence assessment, and response time

statistics from all subjects for both tasks were used by the authors of [45] to estimate parameters
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.2: Simulated averages of evidence strengths, ξ, for all six 2DSD subject models
from [44, Tables 3 and 6] under the 2DSD M-ary human response simulator for the line length
discrimination task versus the incremental line length difference, d. Average evidence strengths
shown forM = 2, 4, 6, 8 alternatives. Averages obtained over 10,000 trials of the M-ary extension
algorithm for each subject.

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.3: Estimated chance of no decision case for all six 2DSD subject models from [44,
Tables 3 and 6] under the 2DSD M-ary extension algorithm. Averages obtained over 10,000
trials for each subject.
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for a 2DSD interrogation model using state-dependent decay and drift rate attenuation. For the

line length discrimination task, subject decisions were cued after 250 milliseconds, followed by an

interjudgment period of 50 milliseconds before a confidence assessment was cued. For the city

population size discrimination task, subject decisions were cued after 1600 milliseconds, followed by

an interjudgment period of 500 milliseconds before a confidence assessment was cued. We used the

corresponding parameter sets of [45] to simulate M -ary decisions and confidence assessments using

Equation (5.3) and Equation (5.4). For the line length discrimination task, decisions were simulated

for choosing the l = 1, 2, 3 longest lines amongst a set of 9.60, 9.65, 9.72, and 9.73 millimeter long

lines. When simulating line length comparisons, pairs of lines which did not have a corresponding

drift rate given by [45] were estimated using a similar technique described in Section 5.2.1. For

the city population size discrimination task, decisions were simulated for choosing the l = 1, 2, 3

most populated city amongst the following four cities: Houston (TX), Philadelphia (PA), Las Vegas

(NV), and Aurora (CO). These four cities were ranked as being the 4th, 5th, 31st, and 56th most

populated United States cities according to the 2010 United States Census estimate. A total of

10,000 decisions and decision confidence assessments were simulated for each subject and each task,

repeating instances in which the “no decision” state was returned.

Figure 5.4 and Figure 5.5 show grouped bar graphs for the average imprecise evidence strength

for varying imprecision levels l of the simulated decision A for the line length and city population

size discrimination tasks respectively. For a given imprecision level l, the spectrum of colored bars

represents the different subjects. For both tasks, the evidence strength of the subjects appears to

increase as the subjects are allowed to make less specific decisions (i.e., higher imprecision levels).

These trends seem logical, as requiring less specific decisions from subjects should in general lead

to higher amounts of subjective confidence being assessed to a correct (i.e., non-contradictory)

decision.

Figures 5.6, 5.8, and 5.10 show the normalized histograms for the observed subject decisions on

the line length discrimination task while instructing subjects to choose the longest, two longest, and

three longest lines respectively. Figures 5.7, 5.9, and 5.11 also show similar normalized histograms,
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Figure 5.4: Average imprecise evidence strength for each subject on the line length discrim-
ination task of [45]. The spectrum of colored bars represents the average imprecise evidence
strength of the 40 subjects when simulated to select the l longest lines amongst a set of 9.60,
9.65, 9.72, and 9.73 millimeter long lines, where l = 1, 2, 3. Subject decisions and confidence
assessments were simulated over 10,000 trials.
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Figure 5.5: Average imprecise evidence strength for each subject on the city population size
discrimination task of [45]. The spectrum of colored bars represents the average imprecise
evidence strength of the 91 subjects when simulated to select the l most populated cities among
Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO), where l = 1, 2, 3. Subject
decisions and confidence assessments were simulated over 10,000 trials.
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Figure 5.6: Normalized histogram of subject decisions on the line length discrimination task
of [45]. A total of 40 subjects were simulated to select the longest line amongst a set of 9.60,
9.65, 9.72, and 9.73 millimeter long lines. Subject decisions and confidence assessments were
simulated over 10,000 trials.
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Figure 5.7: Normalized histogram of subject decisions on the city population size discrimina-
tion task of [45]. A total of 91 subjects were simulated to select the most populated city among
Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO). These four cities were
ranked the 4th, 5th, 31st, and 56th most populated United States cities respectively, according
to the 2010 US Census estimate. Subject decisions and confidence assessments were simulated
over 10,000 trials.
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Figure 5.8: Normalized histogram of subject decisions on the line length discrimination task
of [45]. A total of 40 subjects were simulated to select the two longest lines amongst a set of
9.60, 9.65, 9.72, and 9.73 millimeter long lines. Subject decisions and confidence assessments
were simulated over 10,000 trials.
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Figure 5.9: Normalized histogram of subject decisions on the city population size discrim-
ination task of [45]. A total of 91 subjects were simulated to select the two most populated
cities among Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO). These four
cities were ranked the 4th, 5th, 31st, and 56th most populated United States cities respectively,
according to the 2010 US Census estimate. Subject decisions and confidence assessments were
simulated over 10,000 trials.
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Figure 5.10: Normalized histogram of subject decisions on the line length discrimination task
of [45]. A total of 40 subjects were simulated to select the three longest lines amongst a set of
9.60, 9.65, 9.72, and 9.73 millimeter long lines. Subject decisions and confidence assessments
were simulated over 10,000 trials.
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Figure 5.11: Normalized histogram of subject decisions on the city population size discrim-
ination task of [45]. A total of 91 subjects were simulated to select the three most populated
cities among Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora (CO). These four
cities were ranked the 4th, 5th, 31st, and 56th most populated United States cities respectively,
according to the 2010 US Census estimate. Subject decisions and confidence assessments were
simulated over 10,000 trials.
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but for the city population size discrimination task while instructing subjects to chose the largest,

two largest, and three largest cities respectively. As expected, the subject decisions which occur most

frequently are those which support the correct stimuli. This trend is observed for both decision tasks,

and for each of the simulated imprecision levels. Furthermore, for the l = 2 imprecision level (i.e.,

choosing the two longest lines or most populated cities), we note that the most frequently occurring

decisions have markedly higher normalized frequencies of occurrence. This trend is again logical,

since in both simulated decision tasks, the two longest lines or most populated cities are very similar

while also markedly different from the remaining stimuli.

5.3 Fusion Study 1: Fusion with Varying Numbers of Alternatives

A subset of this study’s results were previously published in [125].

5.3.1 Motivation

As discussed in the beginning of this chapter, many important soft and hard/soft fusion tasks consist

of subjects and sensors discriminating between multiple alternatives. Hence, in this first study we

seek to observe the statistical trends in a selection of information fusion operators that have been

proposed for use in soft and hard/soft data fusion applications. More specifically, we focus on a

selection of fusion operators in which the determination of statistical performance is very difficult

in closed form (e.g., Dempster-Shafer theory operators).

5.3.2 Experimental Setup

The proposed successive pairwise comparison method of Equation (5.3) and Equation (5.4) was

used to generate M -ary decisions and confidence assessments for the line length discrimination task

of [44] where a 2DSD optional stopping model using trial variability on the drift rate, δ, and initial

condition, L0, was used. A total of 10,000 simulation trials were conducted. For each of these trials,

a pool of thirty-six human decisions and confidence assessments were generated by simulating six

responses from each of the six subject parameters estimated in [44] associated with the line length

discrimination task. Furthermore, subjects were simulated to focus on providing accurate decisions

and decision confidence assessments. The line lengths presented to the simulated subjects were
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Z = {32, 32 + d, 32 + 2d, . . . , 32 + (M − 1)d} where M was the number of lines being compared and

d was the incremental length difference between lines, in millimeters. For this study, we set d = 0.20

millimeters and let M = 2, 4, 8.

Each of the decision and confidence assessment pairs were used to construct subjective proba-

bility assignments and belief mass assignments (BMA) according to the “Confidences Only” and

“Evidence Strength Discounting” construction cases described in Section 4.3.2. When a subject

returned the “no decision state”, an equiprobable subject probability assignment or a vacuous BMA

was generated. The resulting subjective probability assignments and BMAs were used to implement

a set of five fusion operators. They are Bayes’ rule of probability combination [55], Dempster’s

Rule of Combination (DRC) [43], Yager’s Rule [94], Dubois and Prade’s rule (DPR) [138], and the

Proportional Conflict Redistribution Rule #5 [97]. These fusion operators were used to combine

subjective probabilities or BMAs two at a time, and hence the combination order used was random-

ized for each simulation trial. The performance of these operators were assessed according to the

metrics discussed in Section 4.1.2. Namely, accuracy performance was taken as the average value

of ξBel (Equation 4.7) and precision performance was taken as the average value of 1− (ξPl − ξBel)

(Equations 4.7 and (Equation 4.8). As a reminder, accurate belief combination operators will tend

to assign probability one to the correct outcome, resulting in values of ξBel close to one. Precise belief

combination operators will tend to produce more specific evidence, resulting in values of (ξPl− ξBel)

being close to zero, and hence values of 1− (ξPl − ξBel) being close to one.

5.3.3 Results

Figure 5.12 shows the accuracy performance for each of the five fusion operators simulated here

(i.e., ξBel) versus the number of sources in the combination. The precision performance for each

of the five fusion operators simulated here (i.e., 1 − (ξPl − ξBel)) is shown in Figure 5.13. The six

subfigures associated with each of these two figures represent different combinations of the number

of alternatives (M = 2, 4, 8) and the two fusion operator input construction cases, “Confidences

Only” and “Evidence Strength Discounting.”

When source discounting is not performed, Bayes’ rule of probability combination and DRC could
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Table 5.1: Summary of M-ary soft fusion performance results for the experiment setup defined
in Section 5.3.2. Results shown in terms of the average post-fusion accuracy, ξBel, toward the
correct alternative and for each BMA/subjective probability construction case. These trends
were observed in the two, four, and eight alternative decision tasks simulated.

Performance
Order

Confidences
Only

Evidence Strength
Discounting

1 (Best) PCR5 Bayes/DRC
2 Yager/DPR PCR5
3 — Yager/DPR
4 — —

5 (Worst) — —

Table 5.2: Summary of M-ary soft fusion performance results for the experiment setup defined
in Section 5.3.2. Results shown in terms of the average post-fusion precision, 1− (ξPl−ξBel), to-
ward the correct alternative and for each BMA/subjective probability construction case. These
trends were observed in the two, four, and eight alternative decision tasks simulated.

Performance
Order

Confidences
Only

Evidence Strength
Discounting

1 (Best) PCR5 Bayes
2 Yager/DPR DRC/PCR5
3 — Yager/DPR
4 — —

5 (Worst) — —

not be used, for similar reasons discussed in Section 4.3.3; the chances of any two simulated subjects

presenting totally conflicting evidence was non-negligible, resulting in the possibility of a division

by zero in the equations for Bayes’ rule of probability combination and for DRC. A summary of the

fusion results are shown in Table 5.1 for the average accuracy performance and in Table 5.2 for the

average precision performance of each operator. We also make note of the following observations.

• When source discounting was performed using average source evidence strength, Bayes’ rule

of probability combination and DRC exhibited similar accuracy performance. The number of

alternatives was also observed to have a stronger impact on the accuracy performance when

source discounting was not performed (Figure 5.12).

• Similar to the subject performance results (Figure 5.2), the largest decrease in accuracy per-

formance occurred when going from 2 to 4 alternatives. The decrease was smaller when going

from 4 to 8 alternatives (Figure 5.12).

• When source discounting was performed, similar performance was observed by PCR5, Bayes’
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rule of probability combination and DRC, as long as there were twelve or less human responses

in the combination. When more than twelve human responses were included in the combina-

tion, Bayes’ rule of probability combination and DRC exhibited higher accuracy performance

than PCR5 (Figures 5.12b, 5.12d, and 5.12f).

• When source discounting was performed, PCR5 and DRC precision increased as the number

of sources present in the combination increased. Eventually the precision converged to one for

both PCR5 and DRC. This convergence was observed to occur more quickly with PCR5 than

with DRC. Additionally, it was observed that increasing the number of alternatives decreased

the rate of convergence for both PCR5 and DRC (Figures 5.13b, 5.13d, and 5.13f).

• When source discounting was not performed, the precision performance of PCR5 was found

to be the same regardless of the number of line length task alternatives (Figures 5.13a, 5.13c,

and 5.13e).

• Yager’s rule and Dubois and Prade’s rule exhibited inferior accuracy performance in all cases.

Both rules exhibited accuracy performance that was worse than the worst single source present

in the combination. Furthermore, Yager’s rule and Dubois and Prade’s rule also exhibited the

lowest precision performance.

5.4 Fusion Study 2: Fusion of Vague Decisions and Confidences

5.4.1 Motivation

In all of the studies thus far, the performance of Bayes’ rule and Dempster’s rule of combination

(DRC) has been similar. Several studies have investigated the proper usage of each of these combi-

nation operators (e.g., [61–64]). The conclusions were not consistent owing to the use of different

examples/counterexamples and Monte Carlo simulations based on different assumptions. For ex-

ample, the results of [63] suggest similar accuracy performance between Bayes’ rule and DRC, and

further that Bayes’ rule exhibits faster convergence time in a target tracking application when com-

pared to DRC. The work in [64] however suggests that as the imprecision in the combined evidence
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(a) “Confidences Only”, M = 2 (b) “Evidence Strength Discounting”, M = 2

(c) “Confidences Only”, M = 4 (d) “Evidence Strength Discounting”, M = 4

(e) “Confidences Only”, M = 8 (f) “Evidence Strength Discounting”, M = 8

Figure 5.12: Average accuracy performance (i.e., ξBel) for each of the five fusion methods
versus the number of sources present in combination (higher is better). Results simulated over
10,000 trials for the M-ary line length discrimination task with M = 2, 4, 8. The evidence
strengths for the best and worst subjects in the combination are also shown for comparison.
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(a) “Confidences Only”, M = 2 (b) “Evidence Strength Discounting”, M = 2

(c) “Confidences Only”, M = 4 (d) “Evidence Strength Discounting”, M = 4

(e) “Confidences Only”, M = 8 (f) “Evidence Strength Discounting”, M = 8

Figure 5.13: Average precision performance (i.e., 1 − (ξPl − ξBel) for each of the five fu-
sion methods versus the number of sources present in combination (higher is better). Results
simulated over 10,000 trials for the M-ary line length discrimination task with M = 2, 4, 8.
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increases, the Dempster-Shafer theory rules tend to perform better than rules from Bayesian epis-

temology. In this section, we seek to investigate these claims further for soft fusion operators that

use vague decisions. This is an important simulation case, as one of the main motivations of using

a Dempser-Shafer (DS) theoretic approach over a Bayesian approach is in the purported ability of

fusion operators from DS theory to handle vague information better [43,59].

5.4.2 Experimental Setup

The proposed successive pairwise comparison method of Equation (5.3) and Equation (5.4) was

used to generate vague decisions and confidence assessments in a manner similar to that used in

Section 5.2.2 using the line length and city population size discrimination tasks of [45]. Specifically,

all 40 human decision makers on the line length discrimination task and the first 40 of the 91 human

decision makers on the city population size discrimination task were simulated using the 2DSD pa-

rameters estimated by the authors of [45]. A total of 10,000 simulation trials were conducted. For

each trial, decisions and confidence assessments were generated using Equation (5.3) and Equa-

tion (5.4). For the line length discrimination task, decisions were simulated for choosing the l = 1, 2, 3

longest lines amongst a set of 9.60, 9.65, 9.72, and 9.73 millimeter long lines. When simulating line

length comparisons, pairs of lines which did not have a corresponding drift rate given by [45] were

estimated using linear interpolation of the drift rates estimated in [45] (Section 5.2.1). For each of

the pairwise successive comparisons, the 2DSD parameter sets that were used cued simulated deci-

sions approximately 250 milliseconds after initial presentation of the stimuli, and decision confidence

assessments approximately 50 milliseconds after declaration of a decision. For the city population

size discrimination task, decisions were simulated for choosing the m = 1, 2, 3 most populated city

amongst the following four cities: Houston (TX), Philadelphia (PA), Las Vegas (NV), and Aurora

(CO). These four cities were ranked as being the 4th, 5th, 31st, and 56th most populated United

States cities respectively. For each of the pairwise comparison simulations, the 2DSD parameter sets

that were used cued simulated decisions approximately 1600 milliseconds after initial presentation

of the stimuli, and decision confidence assessments approximately 500 milliseconds after declaration

of a decision.
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Each of the subject decision and confidence assessment pairs were used to construct subjective

probability assignments and belief mass assignments (BMAs) similar to the “Confidences Only” and

“Evidence Strength Discounting” construction cases described in Section 4.3.2. In the “Confidences

Only” case, subjective probability assignments and BMAs were constructed for the ith simulated

human decision-maker such that the belief attributed to his or her decision, Ai ⊆ Ω, is equal to his

or her decision confidence, pAi
∈ [0, 1]. Specifically, the subjective probabilities for each subject,

Pi(·), were constructed such that

Pi(ω) =


1
|Ai|pAi

ω ∈ Ai

1
|Ω|−|Ai| (1− pAi) otherwise

. (5.8)

Similarly, simply supported BMAs for each subject, mi(·), were constructed such that

mi(X) =



pAi X = Ai

1− pAi
X = Ω

0 otherwise

. (5.9)

When a subject returned the “no decision state”, an equiprobable subjective probability assignment

or a vacuous BMA was generated. For the “Evidence Strength Discounting” case, the average im-

precise evidence strength for each subject was used as their corresponding discount rates in order

to implement the source discounting methods described by Equation 4.10 for subjective probabil-

ity assignments and Equation 4.9 for BMAs. We also considered a third subjective probability

assignment and BMA construction case known as “Intersubject Conflict Discounting.” Average in-

tersubject conflict discounting is presented in [139], and again implements the discounting operation

of Equation (4.10) and Equation (4.9). For a given simulation trial, the discount rate used for each

subject is defined as the average distance of the current subject’s BMA (or subjective probability

assignment) from those produced by the other subjects. Formally, the intersubject conflict discount
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rate αi is defined for the ith subject amongst a pool of N subjects as

αi = 1− 1

N − 1

∑
j∈{1,...,N}

j 6=i

√
1

2
(mi −mj)TD(mi −mj). (5.10)

Here mi and mj are BMAs written in vector form, and D is a 2M × 2M matrix whose elements are

constructed such that

DA,B =


1 A = B = ∅

|A∩B|
|A∪B| otherwise

. (5.11)

In the above formulation, the sets A and B are elements of the power set corresponding to the

element order used in construction of the BMA vectors mi and mj .

When a subject returned the “no decision state,” an equiprobable subjective probability assign-

ment or a vacuous BMA was generated. The resulting subjective probability assignments and BMAs

were used to implement a set of six fusion operators. They are Bayes’ rule of probability combi-

nation [55]; Dempster’s Rule of Combination (DRC) [43]; Yager’s Rule [94]; Dubois and Prade’s

rule (DPR) [138]; the Proportional Conflict Redistribution Rule #5 [97]; and Murphy’s combina-

tion rule [99, 100]. These fusion operators were used to combine subjective probabilities or BMAs

two at a time. The combination order used was randomized for each simulation trial. For the

Dempster-Shafer theory operators, combined BMAs were used to generate subjective probabilities

using the pignistic probability transform defined in Equation (2.34). The pignistic probabilities

generated from each fusion operator towards the correct alternative were averaged over all of the

simulation trials. Additionally, the uncertainty towards the correct alternative of Equation (2.16)

was calculated from each combined BMA and averaged over all of the simulation trials.

5.4.3 Results

Figures 5.14 through 5.16 show the performance of the six (6) fusion operators investigated in this

study versus the number of subject responses included in the final fused result for the M -ary line

length discrimination task (M = 4). Specifically, Figure 5.14 shows the performance of the six (6)

fusion operators when subjects were simulated to choose a single most correct alternative (l = 1),
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Table 5.3: Best performing fusion operator associated with the experiment setup defined in
Section 5.4.2. Results shown in terms of the average post-fusion pignistic probability towards the
correct alternative and for each BMA/subjective probability construction case and imprecision
level. The observed trends were the same for the line length discrimination and city population
tasks.

Imprecision Level
(l = |A|)

Confidences
Only

Evidence Strength
Discounting

Intersubject
Conflict Discounting

l = 1 PCR5/Yager/DPR Bayes Bayes
l = 2 PCR5/Yager/DPR Bayes/DRC Bayes
l = 3 PCR5/Yager/DPR Bayes/DRC Bayes/DRC

Figure 5.15 shows the performance of the six (6) fusion operators when subjects were simulated to

chose the l = 2 most correct alternatives, and Figure 5.16 shows the performance of the six (6) fusion

operators when subjects were simulated to chose the l = 3 most correct alternatives. Similar plots

are shown for the M -ary city population size discrimination task (M = 4) in Figures 5.17 through

5.19. Each of these figures consist of 6 subplots. In subplots (a), (c), and (e) of each figure, the

average post-fusion pignistic probability generated for true alternative is shown versus the number

of subject responses included in the final fused result. Subplots (b), (d), and (f) of each figure show

the average post-fusion uncertainty for the true alternative versus the number of subject responses

included in the final fused result. For both sets of subplots, the performance of each fusion operator

is shown for the “Confidences Only,” “Evidence Strength Discounting,” and “Intersubject Conflict

Discounting” fusion operator input construction cases (Section 5.4.2). For this study, we consider

fusion operators that give higher pignistic probabilities towards the correct outcome to be more

accurate, and fusion operators that give lower average uncertainty towards the correct outcome to

be more precise.

Similar to the results of Section 5.3.3, Bayes’ rule of probability combination and DRC could

not be used when source discounting was not performed (i.e., all of the “Confidences Only” fusion

operator input construction cases). A summary of the best performing fusion operators in each

case is shown in Table 5.3 in terms of average post-fusion pignistic probabilities towards the correct

alternative and in Table 5.4 in terms of the average post-fusion uncertainty measure towards the

correct alternative. We make the following additional observations.

Chapter 5 5.4 Fusion Study 2: Fusion of Vague Decisions and Confidences



99

Table 5.4: Best performing fusion operator associated with the experimental setup defined in
Section 5.4.2. Results shown in terms of the average post-fusion uncertainty measure towards the
correct alternative and for each BMA/subjective probability construction case and imprecision
level. The observed trends were the same for the line length discrimination and city population
tasks.

Imprecision Level
(l = |A|)

Confidences
Only

Evidence Strength
Discounting

Intersubject
Conflict Discounting

l = 1 PCR5 Bayes Bayes
l = 2 PCR5 Bayes Bayes
l = 3 PCR5 Bayes Bayes

• Increasing the vagueness of the decision task generally leads to a decrease in the average

pignistic probability and an increase in the average uncertainty measure towards the correct

alternative. This trend was observed for both the M -ary line length and city population size

discrimination tasks.

• Out of the three (3) fusion operator input construction cases, the “Evidence Strength Discount-

ing” case produced the highest average pignistic probabilities and lowest average uncertainty

measures towards the correct alternative. For the M -ary line length discrimination task, the

average pignistic probabilities when going from the “Evidence Strength Discounting” case to

the “Intersubject Conflict Discounting” case was minimal. Also for the M -ary line length

discrimination task, it took the fusion operators an additional five (5) subjects in the “Inter-

subject Conflict Discounting” to reach the average uncertainty towards the correct alternative

achieved by the “Evidence Strength Discounting” case. For the M -ary city population size

discrimination task, the decreases in performance were much more significant when decision

vagueness was increased.

• In six (6) out of the twelve (12) cases where Bayes’ rule of probability combination and DRC

could be used (i.e., the “Evidence Strength Discounting” and “Intersubject Conflict Discount-

ing” cases), Bayes’ rule produced higher pignistic probabilities towards the correct alternative

than DRC. In the remaining six (6) cases, the average pignistic probabilities towards the

correct alternative for Bayes’ rule and DRC were indistinguishable. The next highest average

pignistic probabilities were then produced by PCR5, followed by DPR, Yager’s rule, and finally
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Murphy’s combination rule. This performance ordering of the fusion operators was similarly

observed for the average uncertainty towards the correct outcome (i.e., Bayes’ rule and DRC

yielded the lowest uncertainties, followed by PCR5, and so on).

• Similar to the results of Section 5.3.3, the use of source discounting with Bayes’ rule of proba-

bility combination and DRC were observed to produce monotonically increasing belief in the

true outcome with respect to the number of sources included in fusion. The belief towards the

true outcome for all of the remaining fusion operators was observed to stop increasing after a

certain number of sources were included in fusion.

5.5 Chapter Summary

In this chapter, a method for simulating precise and vague human decisions and decision confidence

assessments using pairwise successive comparisons was presented. After discussing the general defi-

nition of the pairwise successive comparison technique, two-stage dynamic signal detection (2DSD)

parameters from [44] and [45] were used to simulate the performance of a selection of fusion operators

on a M -ary line length discrimination task and a M -ary city population size discrimination task. In

the first study, we observed the performance of a set of fusion operators when increasing the number

of decision alternatives. In the second study, we observed the performance of a set of fusion opera-

tors when increasing the level of vagueness present in subject decisions while holding the number of

alternatives constant. In both studies, Bayes’ rule of probability combination [55] exhibited similar

performance to DRC [43]. In fact, we observed that Bayes’ rule produced slightly higher post fusion

subjective probabilities towards the correct alternative in half of the vague fusion simulation cases

investigated where Bayes’ rule and DRC could be used. The worst fusion performance was given by

Yager’s rule [94], Dubois and Prade’s rule [138], and Murphy’s combination rule [100].
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(a) Average pignistic probability for true alter-
native after fusion, “Confidences Only” operator
input construction case
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(b) Average uncertainty for true alternative af-
ter fusion, “Confidences Only” operator input
construction case
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(c) Average pignistic probability for true al-
ternative after fusion, “Evidence Strength Dis-
counting” operator input construction case
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(d) Average uncertainty for true alternative af-
ter fusion, “Evidence Strength Discounting” op-
erator input construction case
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(e) Average pignistic probability for true alter-
native after fusion, “Intersubject Conflict Dis-
counting” operator input construction case
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(f) Average uncertainty for true alternative af-
ter fusion, “Intersubject Conflict Discounting”
operator input construction case

Figure 5.14: Performance of each of the six fusion operators versus the number of subjects
included in the combination for the M-ary line length discrimination task (M = 4). Subjects
were simulated to chose the l most correct alternatives, where l = 1. Subplots show average
pignistic probability and average uncertainty for the true alternative after performing fusion,
and in terms of the fusion operator input construction case used.
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(a) Average pignistic probability for true alter-
native after fusion, “Confidences Only” operator
input construction case
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(b) Average uncertainty for true alternative af-
ter fusion, “Confidences Only” operator input
construction case
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(c) Average pignistic probability for true al-
ternative after fusion, “Evidence Strength Dis-
counting” operator input construction case
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(d) Average uncertainty for true alternative af-
ter fusion, “Evidence Strength Discounting” op-
erator input construction case

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Subject Responses Combined

A
ve

ra
ge

 P
ig

ni
st

ic
 P

ro
ba

bi
lit

y 
fo

r 
C

or
re

ct
 A

lte
rn

at
iv

e

 

 
Bayes
DRC
Yager
DPR
PCR5
Mixing

(e) Average pignistic probability for true alter-
native after fusion, “Intersubject Conflict Dis-
counting” operator input construction case
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(f) Average uncertainty for true alternative af-
ter fusion, “Intersubject Conflict Discounting”
operator input construction case

Figure 5.15: Performance of each of the six fusion operators versus the number of subjects
included in the combination for the M-ary line length discrimination task (M = 4). Subjects
were simulated to chose the l most correct alternatives, where l = 2. Subplots show average
pignistic probability and average uncertainty for the true alternative after performing fusion,
and in terms of the fusion operator input construction case used.
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(a) Average pignistic probability for true alter-
native after fusion, “Confidences Only” operator
input construction case
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(b) Average uncertainty for true alternative af-
ter fusion, “Confidences Only” operator input
construction case
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(c) Average pignistic probability for true al-
ternative after fusion, “Evidence Strength Dis-
counting” operator input construction case
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(d) Average uncertainty for true alternative af-
ter fusion, “Evidence Strength Discounting” op-
erator input construction case
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(e) Average pignistic probability for true alter-
native after fusion, “Intersubject Conflict Dis-
counting” operator input construction case
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(f) Average uncertainty for true alternative af-
ter fusion, “Intersubject Conflict Discounting”
operator input construction case

Figure 5.16: Performance of each of the six fusion operators versus the number of subjects
included in the combination for the M-ary line length discrimination task (M = 4). Subjects
were simulated to chose the l most correct alternatives, where l = 3. Subplots show average
pignistic probability and average uncertainty for the true alternative after performing fusion,
and in terms of the fusion operator input construction case used.
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(a) Average pignistic probability for true alter-
native after fusion, “Confidences Only” operator
input construction case
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(b) Average uncertainty for true alternative af-
ter fusion, “Confidences Only” operator input
construction case
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(c) Average pignistic probability for true al-
ternative after fusion, “Evidence Strength Dis-
counting” operator input construction case
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(d) Average uncertainty for true alternative af-
ter fusion, “Evidence Strength Discounting” op-
erator input construction case
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(e) Average pignistic probability for true alter-
native after fusion, “Intersubject Conflict Dis-
counting” operator input construction case
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(f) Average uncertainty for true alternative af-
ter fusion, “Intersubject Conflict Discounting”
operator input construction case

Figure 5.17: Performance of each of the six fusion operators versus the number of subjects
included in the combination for the M-ary city population size discrimination task (M = 4).
Subjects were simulated to chose the l most correct alternatives, where l = 1. Subplots show
average pignistic probability and average uncertainty for the true alternative after performing
fusion, and in terms of the fusion operator input construction case used.
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(a) Average pignistic probability for true alter-
native after fusion, “Confidences Only” operator
input construction case
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(b) Average uncertainty for true alternative af-
ter fusion, “Confidences Only” operator input
construction case
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(c) Average pignistic probability for true al-
ternative after fusion, “Evidence Strength Dis-
counting” operator input construction case
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(d) Average uncertainty for true alternative af-
ter fusion, “Evidence Strength Discounting” op-
erator input construction case
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(e) Average pignistic probability for true alter-
native after fusion, “Intersubject Conflict Dis-
counting” operator input construction case
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(f) Average uncertainty for true alternative af-
ter fusion, “Intersubject Conflict Discounting”
operator input construction case

Figure 5.18: Performance of each of the six fusion operators versus the number of subjects
included in the combination for the M-ary city population size discrimination task (M = 4).
Subjects were simulated to chose the l most correct alternatives, where l = 2. Subplots show
average pignistic probability and average uncertainty for the true alternative after performing
fusion, and in terms of the fusion operator input construction case used.
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(a) Average pignistic probability for true alter-
native after fusion, “Confidences Only” operator
input construction case
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(b) Average uncertainty for true alternative af-
ter fusion, “Confidences Only” operator input
construction case
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(c) Average pignistic probability for true al-
ternative after fusion, “Evidence Strength Dis-
counting” operator input construction case
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(d) Average uncertainty for true alternative af-
ter fusion, “Evidence Strength Discounting” op-
erator input construction case
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(e) Average pignistic probability for true alter-
native after fusion, “Intersubject Conflict Dis-
counting” operator input construction case
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(f) Average uncertainty for true alternative af-
ter fusion, “Intersubject Conflict Discounting”
operator input construction case

Figure 5.19: Performance of each of the six fusion operators versus the number of subjects
included in the combination for the M-ary city population size discrimination task (M = 4).
Subjects were simulated to chose the l most correct alternatives, where l = 3. Subplots show
average pignistic probability and average uncertainty for the true alternative after performing
fusion, and in terms of the fusion operator input construction case used.
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Chapter 6: Simulation of Hard and Soft Fusion Operators

In the previous chapters, we considered probabilistic models of human decision making when eval-

uating statistical performance trends of “soft” fusion operators. In this chapter, two-stage dynamic

signal detection (2DSD) models are used to simulate fusion operator performance when combin-

ing “hard” and “soft” decisions and decision confidence assessments on the random dot movement

(RDM) decision task investigated by the authors of [45]. We begin this chapter by summarizing the

experimental setup of the RDM task used in [45]. Then, we describe a Naive Bayes pattern recog-

nition algorithm [128] for the RDM decision task. This algorithm is used in an experimental setup

similar to the one used by the authors of [45] in order to generate a database of “hard” data on the

RDM decision task. The database is then used to simulate “soft” data using 2DSD human decision

making models. Finally, we use the resulting “hard” and “soft” data sets to consider two fusion

cases. In the first case, the “hard” sensor is trained before performing fusion of “hard” and “soft”

data. In the second case, the “hard” sensor is trained online by feeding back the global decision

after performing “hard” and “soft” fusion. In both cases, we implement a set of fusion operators

from Chapter 2 and compare their performances.

6.1 RDM Task Hard Sensor Construction

As discussed in Chapter 3 (Section 3.3.3), the random dot movement (RDM) decision task investi-

gated by the authors of [45] consisted of human subjects positioned in front of a computer screen

and presented with a circular field of moving dots. A subset of the dots were moving in a random

direction, while the remaining dots were moving either to the right or to the left of the field. Subjects

were instructed to choose which of the two directions they believed the dots were moving in and

assess their decision confidence on a subjective probability scale. The chances of a dot moving in

the correct direction, termed in [45] as motion coherence, quantifies the complexity of a given RDM

trial. Higher values of motion coherence indicate that there are less dots moving randomly, making



108

it easier to determine the direction that the dot field is moving in. The authors of [45] chose motion

coherences for each trial of the RDM experiment from from the values 0.02, 0.04, 0.08, 0.16, and

0.32. The field movement direction was also chosen randomly during each RDM trial.

Simulated RDM animations were coded by the authors of [45] using MATLAB and Psychtoolbox

[140]. We used this same MATLAB code to produce RDM task stimuli, and to simulate the fusion

of hard/soft data. RDM fields were displayed on the screen of an Asus UX32V laptop at a resolution

of 1920x1080 pixels. The hard sensor was a Naive Bayes classifier [128] that used an estimate of the

time/space horizontal movement of the RDM field to output a subjective probability assignment on

which direction the RDM field was moving in. Then, the same RDM fields were used to simulate

human decision and confidence assessments using the 2DSD models. These models were simulated

using the model parameters estimated for each subject in [45] in order to produce decision and

decision confidence assessments towards which direction the RDM field was moving in. In the

following subsections, we detail the feature extraction and classifier algorithms used to construct the

RDM hard sensor.

6.1.1 Feature Extraction

A Logitech Webcam Pro 9000 was positioned approximately 60 centimeters from the screen of the

laptop displaying RDM fields. For a given RDM field, 5 video frames were acquired at a speed of

10 frames per second and a resolution of 1280x1024 pixels (I420). For the first video acquisition, a

cropping window was manually specified to eliminate background interference (Figure 6.1a). Each

frame was then cropped and converted to gray scale. A block matching function from the MATLAB

computer vision toolbox [141] was used to determine the horizontal components of movement between

adjacent video frames for 25x25 pixel subsections. The specific parameters used for the block matcher

consisted of a maximum block displacement of 14 pixels (horizontal or vertical) and a three-step

search method. An example of the estimated horizontal components of movement between two

adjacent frames is shown in Figure 6.1b for each block of 25x25 pixels. The horizontal components

of movement for each block were averaged for each of the adjacent frames in the acquired video,

resulting in an average horizontal component of movement between frames. Finally, these inter-frame

Chapter 6 6.1 RDM Task Hard Sensor Construction
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(a) Sample RDM image with crop window (b) Results of block matching

Figure 6.1: Sample images acquired by the RDM decision task hard sensor.

horizontal components of movement were averaged, resulting in a time/space average of horizontal

movement.

6.1.2 Classifier Construction

Let x ∈ R denote the time/space average of horizontal movement acquired for a given video, and let

H0 and H1 represent the hypotheses that the RDM field is moving to the left or right respectively.

For a single feature, the Naive Bayes pattern recognition algorithm [128] returns the a posteriori

probabilities P (Hi|x) for i = 1, 2 using Bayes rule. That is,

P (Hi|x) =
P (x|Hi)P (Hi)∑2
j=1 P (x|Hj)P (Hj)

(6.1)

where the model parameters, P (x|Hi) and P (Hi), are denoted the likelihood and a priori class

probabilities respectively. A decision can be generated by selecting the hypothesis which yields

the maximum a posteriori probability (MAP). For the RDM task simulated here, the a priori class

probabilities P (Hi) are known by construction of the experiment. For simplicity, we assume that the

likelihoods P (x|Hi) are normally distributed with differing means and variances. That is, P (x|H0) ∼

N (µ0, σ
2
0) and P (x|H1) ∼ N (µ1, σ

2
1). Although a non-normal distribution may prove to be a better

fit of the likelihoods, the implementation of the fusion operators will not change and hence their

performance trends should be similar.

Chapter 6 6.1 RDM Task Hard Sensor Construction
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6.2 Fusion Study 1: Fusion with Trained Hard Sensors

6.2.1 Motivation

In chapters 4 and 5, we observed that the use of discounting techniques improved the performance of

many fusion operators. In these cases, we also observed that Bayes’ rule of probability combination

[55] and Dempster’s rule of combination (DRC) [43] yielded superior fusion performance, and further

that the performance of these operators was monotonic with respect to the number of responses

included in fusion. In this study, we consider a similar approach but while also fusing the a posteriori

probabilities of the hard sensor described in Section 6.1. The hard sensor is trained offline using a

known set of training examples. The results of this study should give insight as to how the quality

of the final fused result increases when incorporating both hard and soft data over hard data alone.

6.2.2 Experimental Setup

A database of 15,000 RDM task stimuli was generated using the Psychtoolbox code of [45] by

randomly choosing a motion coherence from the set 0.02, 0.04, 0.08, 0.16, and 0.32, and randomly

choosing a direction of movement (i.e., left or right). The likelihood functions of the RDM hard

sensor, P (x|H0) and P (x|H1) were estimated using 5,000 of the 15,000 stimuli in the generated

database. Then, the remaining 10,000 stimuli were used to simulate a posteriori probabilities from

the hard sensor, and decisions and confidence assessments from 14 2DSD human decision making

models. The 2DSD human decision making models were those estimated by the authors of [45].

We simulated 2DSD human decisions having a decision response time of 800 milliseconds and an

interjudgment time of 500 milliseconds.

The hard sensor a posteriori probabilities were combined with the decisions and confidence as-

sessments of the human decision makers using Bayes’ rule of probability combination [55] (Equa-

tion 2.13), Dempster’s rule of combination (DRC) [43] (Equation 2.25), Yager’s rule [94] (Equa-

tion 2.27), the Proportional Conflict Redistribution Rule #5 (PCR5) [97] (Equation 2.30), and

Murphy’s combination rule [99, 100] (Equation 2.33). When needed, hard sensor belief mass as-

signments (BMAs) were constructed as simple support functions (Equation 2.20) focused on the

hypothesis with the higher a posteriori probability. BMAs and subjective probabilities for the soft

Chapter 6 6.2 Fusion Study 1: Fusion with Trained Hard Sensors
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Figure 6.2: Diagram of a hard/soft fusion system where the hard sensor is trained offline.

sensors were constructed in four different manners. The first two cases were the the “Confidences

Only” and “Evidence Strength Discounting” construction cases described in Section 4.3.2. The third

case was the “Intersubject Conflict discounting” construction case described in Section 5.4.2. The

fourth case investigated by this study was known as the “Hard Sensor Discounting” construction

case, which involved choosing a discount rate α′i for subjects i = 1, 2, . . . , 14 such that

αi = 1−
√

1

2
(mi −mH)TD(mi −mH), (6.2)

where mi and mH are BMAs written in vector form with mH being the BMA or subjective proba-

bility of the hard sensor. The matrix D is of size 2M×2M whose elements are given in Equation 5.11.

All BMAs and subjective probabilities were combined in pairs of two, with the hard sensor BMA

or subjective probability being first in the combination (Figure 6.2). The soft sources were then

included in the combination in a random order. For the Dempster-Shafer theory operators, combined

BMAs were used to generate subjective probabilities using the pignistic probability transform defined

in Equation (2.34). The pignistic probabilities associated with the correct alternatives generated

from each fusion operator were averaged over all of the simulation trials. The uncertainty metric

associated with the correct alternatives of Equation (2.16) was also calculated from each fusion

operator and averaged over all of the simulation trials. Finally, the correct classification rate for

each fusion operator was determined by applying a MAP decision rule to the pignistic probabilities

produced by each fusion operator.

Chapter 6 6.2 Fusion Study 1: Fusion with Trained Hard Sensors
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6.2.3 Results

Figures 6.3 through 6.5 show the performance of the five fusion operators investigated in this study.

Figure 6.3 shows the average pignistic probability associated with to the correct alternative versus the

number of sources included in the combination. Figure 6.4 shows the average uncertainty measure

associated with the correct alternative versus the number of sources included in the combination.

Figure 6.5 shows the correct classification rate when applying a MAP decision rule to the pignistic

probabilities produced after fusion versus the number of sources included in the combination. Also

shown in Figure 6.5 is the MAP correct classification rate associated with the best and worst soft

sources, and the trained hard source. In each of these three figures, the four subplots correspond

to the four BMA and subjective probability cases investigated, namely “Confidences Only” (Sec-

tion 4.3.2), “Evidence Strength Discounting” (Section 4.3.2), “Intersubject Conflict Discounting”

(Section 5.4.2), and “Hard sensor discounting” (Section 6.2.2). Better performing fusion operators

will have higher pignistic probabilities associated towards the correct alternative, lower uncertainty,

and higher correct classification rates.

Similar to the results of Section 5.3.3, Bayes’ rule of probability combination and DRC could

not be used when source discounting was not performed (i.e., all of the “Confidences Only” fusion

operator input construction cases). A summary of the fusion results are shown in Table 6.1 for the

average post-fusion pignistic probability toward the correct alternative and Table 6.2 for the average

post-fusion uncertainty metric toward the correct alternative. In terms of MAP correct classification

rates, the performance of Bayes’ rule, DRC, Yager’s rule, and PCR5 were the same in three out of

the four BMA construction cases. In the hard sensor discounting case, the performance order for

MAP correct classification rates was Bayes’ rule, the mixing rule, Yager’s rule, and DRC/PCR5.

We make note of the following additional observations.

• For the “Evidence Strength Discounting” and “Intersubject Conflict Discounting” cases, Bayes’

rule of probability combination and DRC exhibit the highest post-fusion average subjective

probabilities toward the correct alternative. The subjective probabilities associated with Bayes’

rule of probability combination were observed to be be monotonically increasing with respect
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Table 6.1: Summary of hard/soft fusion performance results for the experiment setup defined
in Section 6.2.2. Results shown in terms of the average post-fusion pignistic probability toward
the correct alternative and for each BMA/subjective probability construction case.

Performance
Order

Confidences
Only

Evidence Strength
Discounting

Intersubject
Conflict Discounting

Hard Sensor
Discounting

1 (Best) Yager/PCR5 Bayes/DRC Bayes/DRC Bayes
2 Mixing Yager/PCR5 Yager/PCR5 DRC/Yager/PCR5
3 — Mixing Mixing Mixing
4 — — — —

5 (Worst) — — —- —

Table 6.2: Summary of hard/soft fusion performance results for the experiment setup defined
in Section 6.2.2. Results shown in terms of the average post-fusion uncertainty metric towards
the correct alternative and for each BMA/subjective probability construction case.

Performance
Order

Confidences
Only

Evidence Strength
Discounting

Intersubject
Conflict Discounting

Hard Sensor
Discounting

1 (Best) PCR5 Bayes Bayes Bayes
2 Yager DRC/PCR5 DRC/PCR5 DRC/PCR5
3 Mixing Yager Yager Yager
4 — Mixing Mixing Mixing

5 (Worst) — — —- —

to the number of subjects included in the combination. The subjective probabilities asso-

ciated with DRC were observed to be monotonically increasing in the “Evidence Strength

Discounting” and “Intersubject Conflict Discounting” cases.

• Bayes’ rule of probability combination exhbited the highest post fusion pignistic probabilities

towards the correct alternative in the“Hard Sensor Discounting” case. The performance of

Bayes’ rule of probability combination was very similar to its performance in the “Intersubject

Conflict Discounting” case.

• Across all fusion operator input construction cases, the average post-fusion uncertainty measure

of the correct alternative associated with DRC and and PCR5 converges to zero, indicating

that their post fusion BMAs eventually converge to subjective probability assignments.

• The Mixing combination rule was observed to produce the lowest post-fusion average subjective

probabilities across all BMA construction cases.

• The average post-fusion uncertainty measures associated with Yager’s rule and the Mixing
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combination rule were observed to approach steady-state values. The steady-state values

associated with Yager’s rule were observed to be the highest in the “Confidences Only” and

“Evidence Strength Discounting” cases. The steady-state values associated with the Mixing

combination rule were observed to be the highest in the “Intersubject Conflict Discounting”

and “Hard sensor discounting” cases. These results are logical as Yager’s rule will tend to

increase the imprecision present in the post-fusion result according to the conflict amongst

the sources. The mixing combination rule does not incorporate a conjunction operation, and

therefore it has no method of reducing the imprecision in its post-fusion BMAs.

• In general, all five of the fusion operators investigated produced MAP correct classification

rates between 85 and 95%. The highest MAP correct classification rates are equally achieved

by Bayes rule of probability combination, DRC, PCR5, and Yager’s rule in the “Evidence

Strength Discounting” and “Intersubject Conflict Discounting” cases.

• The Mixing combination rule exhibited the lowest MAP correct classification rates of the five

fusion operators in the “Confidences Only,” “Evidence Strength Discounting,” and “Intersub-

ject Conflict Discounting” cases. However, the Mixing combination rule exhibited the second

highest MAP correct decision rates in the “Hard Sensor Discounting” case.

• The best performing fusion operators exhibited 3-4% higher MAP correct classification rates

than the best performing source for the “Evidence Strength Discounting” and “Intersubject

Conflict Discounting” cases. In the “Confidences Only” and “Hard Sensor Discounting” cases,

the best performing fusion operator exhibited MAP correct classification rates approximately

equal to the best performing source in the combination.

• All fusion operators in the “Confidences Only” and “Hard Sensor Discounting” cases were not

observed to exhibit MAP correct classification rates higher than the best performing source.

Based on the above observations, Bayes’ rule of probability combination would be the best overall

fusion operator for this specific RDM decision task when applying evidence strength discounting or

intersubject conflict discounting. Bayes’ rule of probability combination was among the fusion
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(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.3: Average post combination pignistic probability towards correct alternative versus
the number of responses included in the fusion operator. The different lines represent the fusion
operators being investigated. In all simulation cases, the hard sensor was the first source in
the combination, followed by a random permutation of the soft sources. Results averaged over
10,000 simulation trials.

operators that were observed to produce the highest post-fusion average subjective probabilities

towards the correct alternatives and the highest MAP correct classification rates. Although similar

performance was acheived by DRC and PCR5 in some cases, they exhibit higher computational

complexity since the number of required operations to use them in fusion are on the scale of 2|Ω|,

whereas the computations required for Bayes’ rule are on the order of |Ω|.
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(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.4: Average post combination uncertainty towards correct alternative versus the
number of responses included in the fusion operator. The different lines represent the fusion
operators being investigated. In all simulation cases, the hard sensor was the first source in
the combination, followed by a random permutation of the soft sources. Results averaged over
10,000 simulation trials.
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(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.5: Estimated correct classification rate using a maximum a posteriori (MAP) decision
rule versus the number of responses included in the fusion operator. The different lines represent
the fusion operators being investigated. In all simulation cases, the hard sensor was the first
source in the combination, followed by a random permutation of the soft sources. Results
averaged over 10,000 simulation trials. MAP correct classification rates of the best and worst
soft sources and the trained hard source are shown for comparison.
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6.3 Fusion Study 2: Online Training of Hard Sensors

6.3.1 Motivation

In this study, we investigate the performance of a hard and soft fusion operator when its output is

used to perform online training of the hard sensors included the fusion. This is an important case

to evaluate, as a training period for the hard sensors may not always be feasible. A diagram of the

fusion-enabled online training system investigated in this study is shown in Figure 6.6. Similar to

Section 6.2, a hard sensor is designed using a Naive Bayes pattern recognition system where the

likelihoods are estimated as normal random variables. For a given observation, the a posteriori

probabilities produced by the hard sensor are combined at a data fusion center with the BMAs or

subjective probabilities of the simulated human decision-makers (depending on the fusion operator

employed at the fusion center). For the Dempster-Shafer theoretic fusion operators, a probability

transform is used on the final fused result to produce subjective probabilities towards each of the

possible alternatives. Then, a MAP decision rule is applied to generate a global decision. The

global decision produced by the data fusion center is fedback to the hard sensor. The observed

feature set of the hard sensor and the fed back decision constitute a single training example that is

used to update the likelihood function parameter estimates (i.e., mean and variance) of the hard

sensor online using Welford’s algorithm [142,143]. To apply Welford’s algorithm, at least 3 training

examples are needed for each likelihood function, P (x|Hi). If there were ever less than 3 available

training examples associated with either alternative, H0 or H1, the hard sensor was constructed to

output equiprobable a posteriori probabilities.

6.3.2 Experimental Setup

A total of 20,000 RDM task stimuli were generated in the same manner as Section 6.2.2. The 20,000

stimuli were separated into 1,000 Monte Carlo simulation trials in which 20 consecutive RDM stimuli

were used to train the hard sensor and perform fusion. In order to implement the online training

architecture of Figure 6.6, each RDM stimulus was used to generate decisions and confidence as-

sessments from the first 5 of the 14 2DSD human decision making models estimated in [45]. We

again simulated 2DSD human decisions having a decision response time of 800 milliseconds and
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Figure 6.6: Diagram of a fusion system that applies online training of a single hard sensor
using feedback of the global decision.

an interjudgment time of 500 milliseconds. The same five fusion operators from the first hard and

soft fusion study (Section 6.2.2) were used here, namely Bayes’ rule of probability combination [55],

Dempster’s rule of combination (DRC) [43], Yager’s rule [94], the Proportional Conflict Redistri-

bution Rule #5 (PCR5) [97], and Murphy’s combination rule [99, 100]. This study evaluated the

“Confidences Only” (Section 4.3.2), “Evidence Strength Discounting” (Section 4.3.2), “Intersubject

Conflict Discounting” (Section 5.4.2), and “Hard sensor discounting” (Section 6.2.2) cases.

All BMAs and subjective probabilities were combined in pairs of two, with the hard sensor BMA

or subjective probability being first in the combination. The soft sources were then included in

the combination in a random order. For the Dempster-Shafer theory operators, combined BMAs

were used to generate subjective probabilities using the pignistic probability transform defined in

Equation (2.34). These post fusion subjective probabilities were used to generate the same three

performance metrics discussed alongside the first hard and soft fusion study (Section 6.2.2), namely

the average pignistic probability towards the correct outcome, the average uncertainty metric towards

the correct outcome, and the estimated MAP decision rule correct classification rate.

6.3.3 Results

Figures 6.7 through 6.10 show the performance of the five fusion operators and four fusion operator

input construction cases investigated in this study. Figure 6.7 shows the estimated MAP correct
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classification rate of the online-trained hard sensor versus the sequential number of stimuli presented

to the hard and soft sources. For comparison, the MAP correct classification rate for a hard sensor

trained offline is also shown in Figure 6.7. Similar to Section 6.2.3, the average pignistic probabil-

ity associated with correct alternative, the average uncertainty metric associated with the correct

alternative, and the estimated post-fusion MAP correct classification rate are shown in Figures 6.8

through 6.5 versus the sequential number of stimuli presented to the hard and soft sources. Also

shown in Figure 6.10 is the MAP correct classification rate associated with the best and worst soft

sources, and the offline trained hard source. In each of these four figures, the four subplots correspond

to the four BMA and subjective probability cases investigated, namely “Confidences Only” (Sec-

tion 4.3.2), “Evidence Strength Discounting” (Section 4.3.2), “Intersubject Conflict Discounting”

(Section 5.4.2), and “Hard sensor discounting” (Section 6.2.2).

In summary, Bayes’ rule of probability combination, DRC, Yager’s rule, and PCR5 performed

equally as well in terms of post-fusion average pignistic probability towards the correct alternative

and MAP correct classification rate. In terms of the average post-fusion uncertainty metric to-

wards the correct alternative, Bayes’ rule of probability combination, DRC, and PCR5 exhibited

similar performance, followed by Yager’s rule and then the mixing combination rule. The following

paragraphs discuss these performance trends in more detail.

Excluding the “Hard Sensor Discounting” case, the five fusion operators and remaining three

fusion operator input construction cases were observed to exhibit similar trends in performance.

In these cases, after approximately 15 iterations the MAP correct classification rate of the online-

trained hard sensor approached the MAP correct classification rate obtained by the offline trained

hard sensor (Figure 6.7). The subjective probabilities towards the correct alternative, uncertainty

metric, and MAP correct classification rate associated with the output of the data fusion operators

also exhibited fairly consistent performance, even at the earlier stages of training (e.g., when less

than five stimuli presented to the hard sensor).

In the “Hard Sensor Discounting” case, the five fusion operators and the online-trained hard

sensor produced markedly lower performance. After presenting 20 stimuli to the hard and soft
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sensors, the MAP correct classification rate of the online-trained hard sensor was found to be lower

than that of the offline trained hard sensor (Figure 6.7d). Furthermore, the subjective probabilities

towards the correct alternative, uncertainty metric, and MAP correct classification rate associated

with the output of the data fusion operators were observed to decrease as the number of stimuli

presented to the hard and soft sensors increased. The mixing combination rule was observed to

produce MAP correct classification rates close to the best soft source present in the combination

(Figure 6.10d). The remaining four fusion operators were observed to eventually converge to a MAP

correct classification rate similar to the worst soft source present in the combination.

6.4 Chapter Summary

In this chapter, we have used the 2DSD model parameters from [45] on the RDM decision task to

simulate the performance of a variety of hard and soft fusion schemes. After describing a feature

extraction and pattern recognition algorithm for a RDM hard sensor, we investigated two hard

and soft fusion studies. In the study, we considered a hard sensor trained offline and observed

how the post combination average subjective probability towards the correct alternative, average

uncertainty towards the correct alternative, and the MAP correct classification rate changed with

respect to the number of soft sources included in the combination. It was determined that Bayes’

rule of probability combination was the best overall fusion operator for this specific task when

applying evidence strength discounting or intersubject conflict discounting. In the second fusion

study, we considered a hard sensor trained online using global decisions produced by a variety of

fusion operators and fusion operator input considerations. The “Hard Sensor Discounting”’ was

observed as the worst performing fusion operator input construction case, as it lead to MAP correct

detection rates significantly lower than the best source in the combination. This is not surprising,

as this input construction case will falsely discount the information from the soft sources based

on incomplete training information at the hard source. The remaining three fusion operator input

construction cases exhibited similar trends in performance for all five the fusion operators evaluated.

Because of the similar levels of performance, we consider the best performing fusion rule in these cases

as Bayes’ rule of probability combination when applying either “Evidence Strength Discounting” or

Chapter 6 6.4 Chapter Summary



122

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Stimuli Presented

M
A

P
 C

or
re

ct
 C

la
ss

ifi
ca

tio
n 

R
at

e

 

 

 

 

Hard Source (Trained)

Yager
PCR5
Mixing

(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.7: Estimated MAP correct classification rate of the RDM task hard sensor trained
online (Figure 6.6) versus the number of stimuli presented. The different lines represent the
fusion operators being investigated. In all simulation cases, the hard sensor was the first source
in the combination, followed by a random permutation of five soft sources. Results averaged
over 10,000 simulation trials. MAP correct classification rates of the offline-trained hard source
is shown for comparison.
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(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.8: Average post combination pignistic probability towards correct alternative versus
the number of stimuli presented to the hard and soft sources when training the RDM hard sensor
online. The different lines represent the fusion operators being investigated. In all simulation
cases, the hard sensor was the first source in the combination, followed by a random permutation
of five soft sources. Results averaged over 10,000 simulation trials.
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(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.9: Average post combination uncertainty towards correct alternative versus the
number of stimuli presented to the hard and soft sources when training the RDM hard sensor
online. The different lines represent the fusion operators being investigated. In all simulation
cases, the hard sensor was the first source in the combination, followed by a random permutation
of of five soft sources. Results averaged over 10,000 simulation trials.
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(a) Confidences only case
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(b) Evidence strength discounting case
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(c) Intersubject conflict discounting case
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(d) Hard sensor discounting case

Figure 6.10: Estimated post combination correct classification rate using a maximum a pos-
teriori (MAP) decision rule versus the number of stimuli presented to the hard and soft sources
when training the RDM hard sensor online. The different lines represent the fusion operators
being investigated. In all simulation cases, the hard sensor was the first source in the combi-
nation, followed by a random permutation of five soft sources. Results averaged over 10,000
simulation trials. MAP correct classification rates of the best and worst soft sources and the
trained hard source are shown for comparison.
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“Intersubject Conflict Discounting” (depending on the availability of a priori information). Even

though a selection of the Dempster-Shafer theory fusion operators exhibit similar performance in

some cases, Bayes’ rule of probability combination exhbits lower implementation complexity as it is

calculated over the set of alternatives, as opposed to the powerset of alternatives.

Chapter 6 6.4 Chapter Summary
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Part III

Epilogue
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Chapter 7: Areas of Future Work

The work presented in this thesis suggests future studies for evaluating the statistical the performance

of soft and hard/soft data fusion operators. Specifically, we have shown through a number of

examples that human decision-making models from cognitive psychology can be used to estimate the

statistical performance of a soft or hard/soft fusion operator. In this chapter, we discuss the natural

progression of this work towards new research opportunities for cognitive psychology and data fusion

researchers. The ares of future work are separated into two categories: (1) research opportunities

in cognitive psychology, motivated by the needs of soft and hard/soft fusion researchers and (2)

research opportunities in soft and hard/soft fusion motivated by the human response probability

models developed by cognitive psychologists.

7.1 Cognitive Psychology Research Areas

7.1.1 Cognitive Models of Multihypothesis and Vague Decision-Making

As discussed in Chapter 3, the majority of research performed by cognitive psychologists in modeling

human decision-making dynamics has been on two-alternative, forced choice (TAFC) tasks [44].

Research on modeling multihypothesis human decision-making is still relatively new, and studies

combining experimental results and theoretical analyses have only begun surfacing over the past

few years [137]. There has been little effort towards the development of multihypothesis human

response models that account for the generation of decision confidence assessments and also the

generation of vague decisions. As described in Chapters 1 and 2, these types of decision tasks are

of importance to researchers in soft and hard/soft data fusion. In this thesis (Chapter 5), we have

proposed methods for simulating vague human decisions using available human decision-making

models on binary decision tasks. There is however a need for developing a stochastic model of vague

human decision-making and confidence assessment on multihypothesis decision tasks. Such a model

should be able to capture the statistical connections between time pressure, the number of decision
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alternatives, and task difficulty to the observed decision, confidence assessment, and response time

statistics associated with a human decision-maker.

We briefly outline how a formal cognitive model of precise/imprecise human decision-making and

confidence assessment on M -ary decision tasks could be constructed using leaky competing accu-

mulators. The leaky competing accumulator (LCA) model of human decision-making was initially

proposed by Usher and McClelland in [144] and has been discussed as a natural candidate for ex-

tending the drift diffusion model of human decision-making to M -ary decision tasks [137]. Consider

a multihypothesis decision task defined by the alternatives ω ∈ Ω, where |Ω| = M . A LCA model

consists of M time-dependent accumulators, denoted xω(t), that update in a manner similar to a

drift diffusion process (Figure 7.1). Specifically, each accumulator increments in finite time steps of

∆t such that xω(t + ∆t) = max (xω(t) + ∆xω(t+ ∆t), 0). The incremental evidence ∆xω(t + ∆t)

for each alternative ω ∈ Ω is defined as

∆xω(t+ ∆t) =

δω − κωxω(t)− βω
∑
ω̂∈Ω
ω̂ 6=ω

xω̂(t)

∆t+
√

∆tεω(t+ ∆t) (7.1)

where δω is the evidence accumulation rate, κω is the evidence decay rate, βω is the lateral inhibition

rate due to evidence accumulation for the other alternatives, and εω(·) is a white noise process with

fixed variance. Furthermore, the values of δω are usually constrained such that
∑
ω∈Ω δω = 1.

The decision rule for the LCA model is to declare ω when xω(t) > θω, where θω is a response

threshold towards declaring ω. There is no known closed form solution (i.e., distribution) that

summarizes the LCA model [137], and hence parameter estimation must be performed using Monte

Carlo methods [137].

Using the LCA model as a starting point, there are a few ways to take into account the generation

of subjective confidences on imprecise decisions. One method would be to apply the same logic of

two-stage dynamic signal detection (2DSD) to the LCA model. Specifically, a set of M accumulators

would be simulated as described above until at least one of them crosses the response criterion

threshold θω. Then, each accumulator would continue for a specified interjudgment period, after

Chapter 7 7.1 Cognitive Psychology Research Areas
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Figure 7.1: Conceptual diagram of the LCA model proposed in [144] for modeling human
decision-making dynamics on multihypothesis tasks. Evidence is accumulated over time towards
a set of alternatives, denoted here as Ω = {A,B,C,D}. Evidence towards each alternative can
also decrease by a self-decaying process (i.e., leakage), or by evidence accumulated towards the
other alternatives (i.e., lateral inhibition). A decision is made when enough evidence has been
accumulated towards one of the alternatives (i.e., it passes a threshold depicted here as the
response criterion).

which the final values of all accumulators above the response criterion threshold would be used in

a binning operation to produce a decision confidence assignment. If more than one accumulator

is above the response threshold at the end of the interjudgment period, then the final decision

of the model would be the disjunction of the corresponding alternatives. A graphical example of

such a 2DSD/LCA hybrid model is shown in Figure 7.2 for a decision task with four alternatives,

hypothetically labeled as A, B, C, and D. The accumulators are simulated for a deliberation

period until at least one crosses the response criterion threshold (in this case, alternative “D”).

The accumulators are continued for a fixed interjudgment period, after which their final values are

used to assess a decision and decision confidence assessment. In Figure 7.2a, only one accumulator

is above the response criterion at the end of the interjudgment period, and hence the 2DSD/LCA

hybrid model would produce a single decision (namely, alternative “D”) with some confidence rating.

In Figure 7.2b, two accumulators are above the response criteria at the end of the interjudgment

period, and hence the model would produce a vague decision (namely, the disjunction B ∪D) with

some confidence rating.

Although this extension of the LCA model may seem straightforward, the generalization of

the 2DSD model of human decision making to multihypothesis tasks is non-trivial. In the most

general case, the number of parameters required in a 2DSD/LCA hybrid would be an increasing

Chapter 7 7.1 Cognitive Psychology Research Areas
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(a) 2DSD/LCA hybrid example showing a decision of alternative “D” declared.

(b) 2DSD/LCA hybrid example showing a vague decision of the disjunction “B∪D” declared.

Figure 7.2: Conceptual diagram of a possible 2DSD/LCA hybrid model of vague human
responses on a M -ary decision task. Evidence is accumulated over time towards a set of alter-
natives, denoted here as Ω = {A,B,C,D}, until at least one crosses some threshold (i.e., the
response criterion). Then, the accumulators are run for a specified interjudgment period. Any
accumulators which are above the threshold are included as the simulated vague decision, and
the final values are used in a binning operation to produce a decision confidence assessment.

function of not only the number of possible confidence values per alternative, but also for the

number of alternatives themselves. Furthermore, the absence of closed form expressions for the LCA

model makes parameter estimation per subject computationally complex as all of the probability

distributions must be estimated via Monte Carlo methods. Much research (i.e., theoretical and

experimental) needs to be conducted in order to understand what parameter estimation constraints

for such a 2DSD/LCA hybrid model are required to produce the best fitting model while at the

same time minimizing dimensionality and computational complexity. With this in mind, it would

also be interesting to analyze experimentally the model accuracy of the vague decision-making and

confidence assessment extension methods presented in Chapter 5 with respect to a 2DSD/LCA

hybrid model. Although simulating multihypothesis responses using pairwise successive comparisons

of TAFC subtasks may not prove as accurate as a direct model of multihypothesis decision-making,

it may prove to be a preferred method of response simulation because of the reduced complexity in

Chapter 7 7.1 Cognitive Psychology Research Areas
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parameter estimation.

7.1.2 Fatigue, Stress, and Anxiety Models

As discussed in Chapter 3, The 2DSD human response models used in this thesis were constructed

over highly controlled TAFC tasks (i.e., the line length, city population size, and random dot move-

ment discrimination tasks). Although these specific decision tasks have proven useful in determining

the cognitive underpinnings of decision and confidence assessment generation under time constraints,

they are limited in determining the effects of environmental constraints that exist in practical fusion

scenarios such as stress, fatigue, and anxiety. There have been some investigations geared towards

determining what cognitive mechanisms are affected by fatigue and anxiety. The study in [145]

investigated conditions for which an anxiety-related threat bias will and will not manifest using drift

diffusion models on TAFC tasks. In [146], drift diffusion models on TAFC tasks are again used to

model the effects of fatigue on the human decision-making process in the case of sleep deprivation.

Both of these studies however, do not address how anxiety and/or fatigue affect the generation

of subjective confidences. Furthermore, experimental and theoretical analyses considering anxiety

and fatigue have not yet been conducted on multihypothesis (or vague) decision tasks. It would be

beneficial to develop a series of models (either 2DSD or 2DSD/LCA hybrid) to better understand

how stress, fatigue, and anxiety affect the performance of human decision makers, and ultimately

the performance of the data fusion center. Such research would be used to inform soft and hard/soft

fusion researchers in the design of fusion systems which are most appropriate for the tasks at hand.

7.1.3 Response Models on Practical Applications

Although the decision tasks currently used by cognitive psychologists researchers in decision field

theory have been proven useful in assessing the underpinnings of many cognitive processes, they are

detached from applications which have direct relevance to the data fusion research community. In this

thesis we have discussed the decision tasks given in [44,45], namely the line length, city population

size, and random dot movement discrimination tasks. Indirectly, the line length discrimination task

can be thought of as representing perceptual decision-making problems in which a subject’s decision

Chapter 7 7.1 Cognitive Psychology Research Areas
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involves differentiating between two (or more) visual stimuli. The random dot movement task also

can be thought of as representing a perceptual decision making task, but differs from the line length

task in that it involves detecting the presence of a stimuli amongst noise. The city population

size discrimination task can be thought of as representing intellectual decision-making problems, in

which a subject must draw upon prior knowledge and experience to chose the most correct stimuli.

Investigations on more applicable decision tasks exist, and involve topics as textual processing [145]

and purchasing decisions [147].

There are several relevant soft and hard/soft fusion applications that can be readily modeled

using stochastic models of human decision-making. We briefly outline two of these tasks while

describing their real-world significance, application to fusion, and general methods in which human

response models can be developed.

Handwriting Forgery Detection

Authenticating signatures is a common task in the field of forensics document analysis [148], in which

a trained forensic document examiner (FDE) uses known true samples of a subject’s handwriting

to determine if a questioned signature or document is authentic. FDEs usually undergo years of

training in order to become proficient in extracting and matching trends in handwriting [149], and as

a result their services are usually expensive and in high demand. For these reasons, forgery detection

has been heavily investigated over the past decade as a machine learning problem (e.g., [3,149,150]).

There has been a substantial amount of work on applying data fusion techniques to combine multiple

classifiers (e.g., [3, 151–153]), however there has been little work concerning the fusion of document

examiner opinions (i.e., soft fusion), and similarly, the fusion of document examiner opinions with

opinions generated via a forgery detection classifier (i.e., hard/soft fusion). In fact, a recent state of

the art review noted that handwriting examination continues to be predominantly focused on using

expert opinions [154]. The review goes on to state that this trend is not surprising, as the role of

expert opinions in “high stakes” systems usually considers automation as only a part of the overall

decision-making process.

The forgery detection problem not only presents itself as an ideal candidate for soft and hard/soft
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fusion, but it can also be readily modeled using human decision making models from cognitive

psychology that operate on TAFC tasks. In a hypothetical experimental setup, subjects would

be instructed to observe a set of authentic and questioned handwriting samples, declare that the

questioned samples are “Authentic” or “Not Authentic”, and assess their confidence on a subjective

probability scale. The difficulty of the forgery detection task scales with the level of similarity

between the questioned and authentic handwriting samples (i.e., higher signature similarity yields

higher task difficulty). Many metrics have been proposed for assessing image similarity (e.g., the

study in [154]), implying that stimulus difficulty could be quantified in a straightforward manner.

The same logic could probably also be applied in modeling subjects responding in writer identification

tasks, in which an unknown document must be matched against one of many sample of handwriting

from possibly different authors.

Facial Recognition in Unconstrained Crowds

Many threat response scenarios, such as the recent 2013 Boston Marathon bombing [155], have

highlighted the need for automated systems that can use surveillance footage to detect persons-

of-interest among large, unconstrained crowds. As opposed to a lineup of suspects, unconstrained

crowds typically involve a very large number of faces that may have non-ideal poses, thus making it

difficult to apply standard facial recognition algorithms. Multiple images of large crowds prove very

difficult for law enforcement officials and analysts to parse, motivating the need for algorithms which

can accurately isolate and detect the faces of persons-of-interest. Unfortunately, facial recognition

in such crowds is challenging for existing facial detection methods and databases [156]. As an

example, the study in [157] evaluated the performance of existing facial detection algorithms on being

able to detect the Boston Marathon bombings perpetrators. Their results showed that the facial

recognition algorithms that were investigated tended to rank images of the perpetrators with lower

scores than images of many other people, sometimes on the order of hundreds or even thousands.

Alongside the development of improved facial detection/recognition systems [156], the problem of

facial recognition in unconstrained crowds may benefit from the use of hard/soft fusion operators to

combine the outputs of facial recognition software suites in addition to the opinions of bystanders
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and law enforcement officials.

There are a few different task structures in which we can envision casting the facial recognition

in unconstrained crowds problem. In a TAFC task construction, subjects would be shown images of

a person (or persons) of interest and asked to answer “Suspects Present” or “Suspects Not Present”

when presented with multiple images of unconstrained crowds. In a multihypothesis construction,

subjects could be asked to answer as to which (if any) of the persons of interest are present in a given

image. As opposed to the other tasks discussed in the thesis, task difficulty for a subject making

decisions on unconstrained crowds might be difficult to assess directly. There are many factors that

may make it more difficult for a subject to render a decision, such as the number of people present in

the image, the number of faces which are partially or totally obstructed, or the overall quality of the

image itself. Thus for this task, it would be very important to address the impact of each possible

source of task difficulty to determine its effects both on the subjects and also on the performance of

the fusion operators being investigated.

7.2 Data Fusion Research Areas

7.2.1 Performance Bounds for Soft and Hard/Soft Fusion Operators

Recall from Chapter 2 that we assumed the human sources in a soft or hard/soft fusion system

provided responses over a set of alternatives in the form of decisions and a probabilistic decision

confidence assessments. We noted that this assumption was reasonable, since other information

extraction or data association algorithms could be used on data from a human to arrive at a de-

cision and decision confidence assessment (e.g., natural language processing algorithms). When

viewed in this manner, the soft and hard/soft data fusion problem can be considered similar to a

distributed detection (i.e., decision fusion) problem. Many well-known decision fusion operators

exist, and satisfy some sort of optimality criterion (e.g., minimizing a risk function or maximizing a

correct detection rate for some fixed error rate constraint). A few of these decision fusion operators

have been discussed in this thesis (e.g., the Chair and Varshney Fusion rule [54]). The challenge

in using many of these optimal decision fusion operators however, lies in the fact that they require

knowledge (or partial knowledge) of the probability models governing the information sources in a
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fusion system. It would seem natural to attempt to use the human response models developed by

cognitive psychologists. However, such an approach may prove to be impractical due to the compli-

cated nature of the human response models from decision field theory. Furthermore, implementing

the optimal fusion rule becomes increasingly difficult as the number of alternatives increase because

of the increased complexity for both the human response models and the optimal fusion rule.

Nevertheless, if the optimal decision fusion rule exists and is applicable to a given soft or hard/soft

fusion scenario then it is possible to implement it in very specific and highly controlled situations

(e.g., simulation). In such situations, the optimal fusion rule gives an “upper bound” on the per-

formance possible over any decision fusion rules that can be used. Other practical and easily im-

plementable fusion operators could be tested in order to see how close to the optimal fusion rule

they perform. It may then be possible to chose a fusion operator that yields statistical properties

and performance which are closest to the optimal rule. For this approach to be feasible, a larger

number of cognitive psychology models and decision tasks must be evaluated to create a diverse

set of case studies. Additionally, methods and computational tools for systematically implementing

such human response models on new fusion rules in a straight forward manner would need to be

developed and proposed to the data fusion research community.

7.2.2 Adaptive Approaches to Optimal Soft and Hard/Soft Fusion

As mentioned in the previous section, the optimal fusion rule for a given soft or hard/soft fusion

scenario may not be known or be practical to implement in real-world scenarios. Alternatively, it may

be possible to develop heuristic-based soft and hard/soft fusion operators that are asymptotically

optimal (i.e., that approximate the optimal rule in the long run). Several decision fusion operators

that make use of adaptive learning algorithms exist for traditional binary decision fusion scenarios

(e.g., see [158, Chapter 4] for a full summary). There have also been studies that address the

multihypothesis adaptive decision fusion problem [159] and studies that attempt to develop adaptive

methods for vague decisions using Dempster-Shafer (DS) theory [160]. It would be interesting to first

evaluate a selection of these adaptive fusion operators on soft and hard/soft fusion scenarios, using

a selection of human response-models from cognitive psychology. Then, assuming a general form of
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human response probability models from decision field theory, one could investigate the possibility

of developing adaptive fusion rules that learn (or indirectly learn) the relevant parameters of the

human response models in order to approximate an optimal fusion rule.

7.2.3 Additional Simulation Areas

There are a number of additional simulations and case studies that could also be performed using

the content of this thesis as a starting point. We have focused on parallel fusion schemes that

perform “one-shot” data combinations. Alternatively, it would be very interesting to investigate

the performance of “sequential” data fusion operators. This is an important area to investigate,

especially since “response time” is an important element of the human response models from cognitive

psychology. We have also assumed in this thesis that the subjects being combined were all honest

in their responses. There has been recent interest in analyzing the performance of data fusion

operators in light of malicious (or faulty) sources of information; such information sources have been

referred to as Byzantines [161]. When choosing amongst alternatives, for example, a Byzantine

information source would attempt to determine the most correct alternative and then select an

incorrect alternative in an attempt to lower the overall performance of the fusion center. It is

possible to perform set of fusion studies similar to this thesis while incorporating a few example

Byzantine strategies from the literature into the human response models.
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138

Chapter 8: Concluding Remarks

In this thesis, we have discussed how probabilistic models of human decision-making can be used

in the evaluation of various soft and hard/soft fusion operators. Specifically, we have used a model

of human decision-making, confidence assessment, and response time known as two-stage dynamic

signal detection (2DSD) to simulate the statistical performance of fusion operators from detection

and estimation theory, Bayesian epistemology, and Dempster-Shafer theory when used in a variety of

soft and hard/soft fusion cases. Unlike the use of examples, counterexamples, thought experiments,

or direct human testing, we have demonstrated how models of human decision-making and confidence

assessment can be used to flexibly evaluate the performance of fusion operators in a statistically

meaningful manner..

In addition to fusion operator performance, 2DSD parameter sets from [44] and [45] were used

to evaluate the performance of different fusion operator input considerations, the value of includ-

ing human subjective confidences over decisions alone, and the performance of various probability

transformation operators from Dempster-Shafer theory. We presented four soft fusion studies in

Chapter 4 and 2 hard/soft fusion studies in Chapter 6. The results in Chapter 4 show improvements

in fusion performance when discounting accordingly to subject decisions and confidence assessment

reliability. These results also showed that the importance of decision confidence self-assessment de-

creased as the number of human responses included in the fusion combination increased. Similar

results were observed for the cases of hard/soft fusion evaluated in Chapter 6.

In Chapter 5, we considered the problem of soft fusion again, but focusing on multihypothesis

(M -ary) decision tasks. Since multihyptohesis decision-making and confidence assessment modeling

has not yet seen significant attention by cognitive psychologists, we proposed a pairwise successive

comparison technique for generating M -ary human decision making from binary models of human

decision making. This method was also used to simulate imprecise human decisions and decision

confidence assessments. We then presented two fusion studies in Chapter 5. In the first study, we
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investigated the performance of a few fusion operators as the number of alternatives was increased.

We observed that the performance losses were more negligible as the number of sources were in-

creased. In the second study, we evaluated the performance of the same set of fusion operators while

considering vague human decisions and confidence assessments. It was observed that the overall

performance of the fusion operators decreased as the human decisions became more vague.

Some of the performance trends exhibited by the fusion operators discussed in this dissertation

were very similar across all of the studies in Chapters 4 through 6. For example, fusion operators

which regard source conflict as uncertainty tended to produce inferior fusion performance (e.g.,

Yager’s rule and Dubois and Prade’s rule). Bayes’s rule of probability combination and Dempster’s

rule of combination (DRC) were observed to exhibit monotonically increasing belief towards the true

outcome with respect to the number of human decision and confidence assessment pairs present in

the combination. Although their usage requires that the sources cannot assign probability zero or

one to an alternative, this was shown to be easily circumvented by some of the methods investigated

in Chapters 4 through 6. Across every fusion simulation case investigated, it was found that Bayes’s

rule of probability combination yielded fusion performance that was either as good as or better than

DRC. These results were especially apparent in Chapter 5 when simulating the fusion of vague human

decisions and confidence assessments, an area of soft and hard/soft fusion that Dempster-Shafer

theory operators have been heavily proposed for use in. Combined with its reduced computational

complexity, Bayes’ rule of probability combination may prove to be a more appropriate operator for

soft and hard/soft fusion scenarios, however further investigation is needed.

Finally, we have presented a few interdisciplinary areas for future work in Chapter 7. We have

discussed how the logic of 2DSD could be used in extending existing models M -ary human decision-

making, a selection of fusion-relevant cognitive mechanisms that warrant investigation, and a set of

fusion-relevant decision tasks which could be straightforwardly modeled by cognitive psychologists.

We have also discussed how knowledge of the forms of the actual human decision-making and con-

fidence assessment probabilistic models could be used in the design of an optimal soft or hard/soft

fusion operator, in addition to near-optimal and adaptive variants.

Chapter 8
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Soft and had/soft data fusion is an area of research that could provide many potential benefits to

a variety of societally relevant applications (e.g., defense, forensics, medicine, and disaster response).

By definition, this problem is inherently interdisciplinary and hence addressing it will depend heavily

on the cooperation of data fusion and cognitive psychology researchers. We believe that the studies

provided by this dissertation motivate the need for further investigation in appropriate methods for

designing and evaluating the performance of data fusion systems which incorporate human opinions.

Chapter 8
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