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Introductory Note 

This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) 
neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors 
(alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf 
Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine 
Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, 
Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, 
Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, 
Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, 
Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, 
Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, 
Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad 
Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai 
Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga 
Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, 
Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, 
S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali,
Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela
Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao,
Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas
Kazimieras Zavadskas.

Florentin Smarandache’s Collected Papers series: 

Collected Papers, Vol. I 
(first edition 1996, second edition 2007)  
Free download: http://fs.unm.edu/CP1.pdf 

Collected Papers, Vol. II 
(Chişinău, Moldova, 1997)  
Free download: http://fs.unm.edu/CP2.pdf 

Collected Papers, Vol. III 
(Oradea, Romania, 2000)  
Free download: http://fs.unm.edu/CP3.pdf 

Collected Papers, Vol. IV (100 Collected Papers of Sciences)  
Multispace & Multistructure. Neutrosophic Transdisciplinarity 
(Hanko, Finland, 2010)  
Free download: http://fs.unm.edu/MultispaceMultistructure.pdf 

Collected Papers, Vol. V: Papers of Mathematics or Applied mathematics 
(Brussels, Belgium, 2014) 
Free download: http://fs.unm.edu/CP5.pdf 

Collected Papers, Vol. VI: on Neutrosophic Theory and Applications 
(Global Knowledge, 2022) 
Free download: http://fs.unm.edu/CP6.pdf 

Collected Papers, Vol. VII: on Neutrosophic Theory and Applications 
(Glocal Knowledge, 2022) 
Free download: http://fs.unm.edu/CP7.pdf  
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2. SHORT HISTORY

The fuzzy set (FS) was introduced 
by L. Zadeh in 1965, where each 
element had a degree of membership.

The intuitionistic fuzzy set (IFS) 
on a universe X was introduced by K. 
Atanassov in 1983 as a generalization 
of FS, where besides the degree 
of membership ( ) ],[xA 10∈µ  of
each element Xx ∈  set A there 
was considered a degree of non-
membership ( ) ],[xvA 10∈ , but such
that

( ) ( ) 1≤+µ∈∀ xvx,Xx AA             (2.1)
According to Deschrijver & 

Kerre (2003) the vague set defined by 
Gau and Buehrer (1993) was proven 
by Bustine & Burillo (1996) to be the 
same as IFS.

Goguen (1967) defined the L-fuzzy 
Set in X as a mapping LX →  such 
that ( )≤ ∗

∗
L,L  is a complete lattice,

1. INTRODUCTION

One first presents the evolution of 
sets from fuzzy set to neutrosophic set. 
Then one introduces the neutrosophic 
components T, I, F which represent 
the membership, indeterminacy, and 
non-membership values respectively, 
where]-0, 1+[ is the non-standard 
unit interval, and thus one defines 
the neutrosophic set. One gives 
examples from mathematics, physics, 
philosophy, and applications of the 
neutrosophic set. Afterwards, one 
introduces the neutrosophic set 
operations (complement, intersection, 
union, difference, Cartesian product, 
inclusion, and n-ary relationship), 
some generalizations and comments 
on them, and finally the distinctions 
between the neutrosophic set and the 
intuitionistic fuzzy set.

Neutrosophic Set - A Generalization 
of The Intuitionistic Fuzzy Set 

Florentin Smarandache 

Florentin Smarandache (2010). Neutrosophic Set – A Generalization of The 
Intuitionistic Fuzzy Set. Journal of Defense Resources Management 1(1): 
107-116

Abstract:In this paper one generalizes the intuitionistic fuzzy set (IFS), 
paraconsistent set, and intuitionistic set to the neutrosophic set (NS).  Many 
examples are presented. Distinctions between NS and IFS are underlined.

Keywords and Phrases: Intuitionistic Fuzzy Set, Paraconsistent Set, 
Intuitionistic Set, Neutrosophic Set, Non-standard Analysis, Philosophy. 
MSC 2000: 03B99, 03E99.
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or absolute non-membership and 
relative non-membership in set 
theory) I began to use the non-standard 
analysis.  Also, inspired from the sport 
games (winning, defeating, or tight 
scores), from votes (pro, contra, null/
black votes), from positive/negative/
zero numbers, from yes/no/NA, from 
decision making and control theory 
(making a decision, not making, or 
hesitating), from accepted/rejected/
pending, etc. and guided by the fact 
that the law of excluded middle did 
not work any longer in the modern 
logics, I combined the non-standard 
analysis with a tri-component 
logic/set/probability theory and 
with philosophy (I was excited by 
paradoxism in science and arts and 
letters, as well as by paraconsistency 
and incompleteness in knowledge). 
How to deal with all of them at once, 
is it possible to unity them? 

I proposed the term “neutrosophic”  
b e c a u s e “ n e u t r o s o p h i c ” 
etymologically comes from 
“neutro sophy” [French neutre < 
Latin neuter, neutral, and Greek 
sophia, skill/wisdom] which means 
knowledge of neutral thought, 
and this third/neutral represents 
the main distinction between 
“fuzzy” and “intuitionistic fuzzy” 
logic/set, i.e. the included middle 
component (Lupasco-Nicolescu’s 
logic in philosophy), i.e. the neutral/
indeterminate/unknown part (besides 
the “truth”/”membership” and 
“falsehood”/”non-membership” 
components that both appear in fuzzy 
logic/set).  

See the Proceedings of the 

Where

}xx,],[)x,x({L 110 21
2

21 ≤+∈=∗

and ( ) 112121 yx)y,y(x,x L ≤⇔≤ ∗

and 22 yx ≥ . 
The interval-valued fuzzy set 

(IVFS) apparently first studied by 
Sambuc (1975), which were called 
by Deng (1989) grey sets, and IFS are 
specific kinds of L-fuzzy sets.

According to Cornelis et al. 
(2003), Gehrke et al. (1996) stated 
that “Many people believe that 
assigning an exact number to an 
expert’s opinion is too restrictive, 
and the assignment of an interval of 
values is more realistic”, which is 
somehow similar with the imprecise 
probability theory where instead of a 
crisp probability one has an interval 
(upper and lower) probabilities as in 
Walley (1991).

Atanassov (1999) defined the 
interval-valued intuitionistic fuzzy set 
(IVIFS) on a universe X as an object 
A such that:

}xx,],[)x,x({L 110 21
2

21 ≤+∈=∗ (2.2)
with  MA:X →  Int([0,1]) and    

 NA:X →  Int([0,1]) and     (2.3)
1≤+∈∀ )x(Nsup)x(MsupXx AA (2.4)

Belnap (1977) defined a four-
valued logic, with truth (T), false (F), 
unknown (U), and contradiction (C).  
He used a billatice where the four 
components were inter-related.

In 1995, starting from philosophy 
(when I fretted to distinguish 
between absolute truth and relative 
truth or between absolute falsehood 
and relative falsehood in logics, 
and respectively between absolute 
membership and relative membership 
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of 50% x is in A, with a probability 
of 30% x is not in A, and the rest is 
undecidable); or y(0,0,1) belongs to 
A (which normally means y is not 
for sure in A); or z(0,1,0) belongs 
to A (which means one does know 
absolutely nothing about z’s affiliation 
with A); here 0.5+0.2+0.3=1; thus A 
is a NS and an IFS too. More general, 
y( (0.20-0.30), (0.40-0.45)4[0.50-
0.51], {0.20, 0.24, 0.28} ) belongs to 
the set B, which means: 
- with a probability in between 20-
30% y is in B (one cannot find an
exact approximation because of
various sources used);
- with a probability of 20% or 24% or
28% y is not in B;
- the indeterminacy related to the
appurtenance of y to B is in  between
40-45% or between 50-51% (limits
included);

The subsets representing the 
appurtenance, indeterminacy, and 
falsity may overlap, and n_sup = 
0.30+0.51+0.28 > 1 in this case; 
then B is a NS but is not an IFS; we 
can call it paraconsistent set (from 
paraconsistent logic, which deals 
with paraconsistent information). 
Or, another example, say the element 
z(0.1, 0.3, 0.4) belongs to the set C, 
and here 0.1+0.3+0.4<1; then B is a 
NS but is not an IFS; we can call it 
intuitionistic set (from intuitionistic 
logic, which deals with incomplete 
information). 

Remarkably, in the same NS 
one can have elements which have 
paraconsistent information (sum of 
components >1), others incomplete 
information (sum of components < 

First International Conference on 
Neutrosophic Logic, The University 
of New Mexico, Gallup Campus, 
1-3 December 2001, at http://www.
gallup.unm.edu/~smarandache/
FirstNeutConf.htm.

3. DEFINITION OF
NEUTROSOPHIC SET

Let T, I, F be real standard or non-
standard subsets of ]-0, 1+[, 
with 
           sup T = t_sup, inf T = t_inf, 
           sup I = i_sup, inf I = i_inf,
           sup F = f_sup, inf F = f_inf, 
and     n_sup = t_sup+i_sup+f_sup,
           n_inf = t_inf+i_inf+f_inf.

T, I, F are called neutrosophic 
components. Let U be a universe of 
discourse, and M a set included in U.  
An element x from U is noted with 
respect to the set M as x(T, I, F) and 
belongs to M in the following way:

it is t% true in the set, i% 
indeterminate (unknown if it is) in 
the set, and f% false, where t varies 
in T, i varies in I, f varies in F. 

4. GENERAL EXAMPLES

Let A, B, and C be three 
neutrosophic sets. 

One can say, by language abuse, 
that any element neutrosophically 
belongs to any set, due to the 
percentages of truth/indeterminacy/
falsity involved, which varies 
between 0 and 1 or even less than 0 
or greater than 1. 

Thus: x(0.5,0.2,0.3) belongs to 
A (which means, with a probability 
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the same time?  1P∈ζ  and 1P∉ζ as 
a true contradiction, or 1P∈ζ  and 

1P¬∉ζ .

6. PHILOSOPHICAL
EXAMPLES

Or, how to calculate the truth-
value of Zen (in Japanese) / Chan 
(in Chinese) doctrine philosophical 
proposition: the present is eternal and 
comprises in itself the past and the 
future?

In Eastern Philosophy the 
contradictory utterances form the 
core of the Taoism and Zen/Chan 
(which emerged from Buddhism and 
Taoism) doctrines. How to judge the 
truth-value of a metaphor, or of an 
ambiguous statement, or of a social 
phenomenon which is positive from 
a standpoint and negative from 
another standpoint? There are many 
ways to construct them, in terms of 
the practical problem we need to 
simulate or approach.  Below there 
are mentioned the easiest ones:

7. APPLICATION

A cloud is a neutrosophic set, 
because its borders are ambiguous, 
and each element (water drop) belongs 
with a neutrosophic probability to the 
set (e.g. there are a kind of separated 
water drops, around a compact mass 
of water drops, that we don’t know 
how to consider them: in or out of the 
cloud).  

Also, we are not sure where the 
cloud ends nor where it begins, 

1), others consistent information (in 
the case when the sum of components 
= 1), and others interval-valued 
components (with no restriction on 
their superior or inferior sums). 

5. PHYSICS EXAMPLES

a) For example the Schrödinger’s
Cat Theory says that the quantum 
state of a photon can basically be in 
more than one place in the same time, 
which translated to the neutrosophic 
set means that an element (quantum 
state) belongs and does not belong 
to a set (one place) in the same 
time; or an element (quantum state) 
belongs to two different sets (two 
different places) in the same time.  It 
is a question of “alternative worlds” 
theory very well represented by the 
neutrosophic set theory. 

In Schrödinger’s Equation on 
the behavior of electromagnetic 
waves and “matter waves” in 
quantum theory, the wave function 
ψ which describes the superposition 
of possible states may be simulated 
by a neutrosophic function, i.e. a 
function whose values are not unique 
for each argument from the domain 
of definition (the vertical line test 
fails, intersecting the graph in more 
points). 

Don’t we better describe, using 
the attribute “neutrosophic” than 
“fuzzy” or any others, a quantum 
particle that neither exists nor non-
exists? 
b) How to describe a particle ζ in the
infinite micro-universe that belongs
to two distinct places P1 and P2 in
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with    
           2121 SsupSinfSSinf −=Θ ,
           2121 SinfSsupSSsup −=Θ ;
and, as some particular cases, we 
have

22 sax|x{S}a{ −==Θ , where 
}Ss 22 ∈ ,

with    
           22 SsupaS}ainf{ −=Θ ,
           22 SinfaS}asup{ −=Θ ;
also

22 11 sx|x{S}{ −==Θ ++ , where 
}Ss 22 ∈ ,

with    
22 11 SsupS}inf{ −=Θ ++ ,

22 1001 SinfS}sup{ −=Θ+ .

8.3 Multiplication of classical Sets: 
2121 ssx|x{SS ⋅==⊗ , where

11 Ss ∈ and }Ss 22 ∈ .
with    
           22 SinfaS}ainf{ ⋅=⊗ ,
           22 SsupaS}asup{ ⋅=⊗ ;
also

22 11 sx|x{S}{ ⋅==⊗+ , where 
}Ss 22 ∈

with    
22 11 SinfS}inf{ ⋅=⊗ ++

22 11 SsupS}sup{ ⋅=⊗ ++ .

8.4 Division of a classical Set by a 
Number: 
Let ∗ℜ∈k , 
then

k/sx|x{kS 11 ==Ο , where }Ss 11 ∈ .

neither if some elements are or 
are not in the set. That’s why the 
percent of indeterminacy is required 
and the neutrosophic probability 
(using subsets - not numbers - as 
components) should be used for 
better modeling:  it is a more organic, 
smooth, and especially accurate 
estimation.  Indeterminacy is the 
zone of ignorance of a proposition’s 
value, between truth and falsehood.

8. OPERATIONS WITH
CLASSICAL SETS

We need to present these set 
operations in order to be able 
to introduce the neutrosophic 
connectors.  

Let S1 and S2 be two 
(unidimensional) real standard or 
non-standard subsets included in the 
non-standard interval ]-0, ∞) then one 
defines: 
8.1 Addition of classical Sets: 

,ssx|x{SS 2121 +==⊕  where   
11 Ss ∈ and }Ss 22 ∈ ,

with
      2121 SinfSinfSSinf +=⊕ ,    
      2121 SsupSsupSsupSsup +=⊕ ; 
and, as some particular cases, we 
have

22 sax|x{S}a{ +==⊕ , where 
}Ss 22 ∈ ,

with   
          22 SinfaS}ainf{ +=⊕ ,
          22 SsupaS}asup{ +=⊕ .

8.2 Subtraction of classical Sets: 
2121 ssx|x{SS −==Θ , where 

11 Ss ∈ and }Ss 22 ∈ .
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9.5. Cartesian Product: 
If    x(T1, I1, F1) A∈ ,  
      y(T’, I’, F’) B∈ , 
then 
(x( T1, I1, F1 ), y( T’, I’, F’ ) ) BA×∈ . 

9.6. M is a subset of N: 
If  x(T1, I1, F1 ) ⇒∈M x( T2, I2, F2 )

N∈ , 
where  
           inf T1≤inf T2, sup T1≤sup T2, 
and     

 inf F1 ≥ inf F2, sup F1 ≥ sup F2.

9.7. Neutrosophic n-ary Relation: 
Let A1, A2, …, An be arbitrary non-
empty sets. A Neutrosophic n-ary 
Relation R on A1×A2×  …×An is 
defined as a subset of the Cartesian 
product A1×A2×…×An, such that for 
each ordered n-tuple (x1, x2, …, xn)
(T, I, F), T represents the degree of 
validity, I the degree of indeterminacy, 
and F the degree of non-validity 
respectively of the relation R. 

It is related to the definitions 
for the Intuitionistic Fuzzy Relation 
independently given by Atanassov 
(1984, 1989), Toader Buhaescu 
(1989), Darinka Stoyanova (1993), 
Humberto Bustince Sola and P. 
Burillo Lopez (1992-1995). 

10. GENERALIZATIONS
AND COMMENTS

From the intuitionistic 
logic, paraconsistent logic, 
dialetheism, faillibilism, paradoxes, 
pseudoparadoxes, and tautologies 
we transfer the  “adjectives” to the 
sets, i.e. to intuitionistic set (set 

9. NEUTROSOPHIC SET
OPERATIONS

One notes, with respect to the sets 
A and B over the universe U,
x = x(T1, I1, F1)∈A and 
x = x(T2, I2, F2)∈B,
by mentioning x’s neutrosophic 
membership, indeterminacy, and 
non-membership respectively 
appurtenance. 
And, similarly, y = y(T’, I’, F’)∈B. 

If, after calculations, in the below 
operations one obtains values < 0 or 
> 1, then one replaces them with –0 or
1+ respectively.

9.1. Complement of A: 
If     x( T1, I1, F1 )∈A, 
then 
x( {1+}ӨT1,{1+}ӨI1,{1+}ӨF1)∈C(A). 

9.2. Intersection: 
If    x( T1, I1, F1 )∈A, 
       x( T2, I2, F2 )∈B, 
then 
x( T1 ⊗ T2, I1 ⊗ I2, F1 ⊗ F2 )∈A ∩ B. 

9.3. Union: 
If   x( T1, I1, F1 )∈A, 
      x( T2, I2, F2 )∈B, 
then 
x( T1 ⊕ T2 Ө T1 ⊗ T2, I1 ⊕ I2 Ө I1 ⊗ I2 , 
F1 ⊕ F2 Ө F1 ⊗ F2) BA ∪∈ . 

9.4. Difference: 
If    x( T1, I1, F1 )∈A, 
       x( T2, I2, F2 )∈B, 
then 
x( T1 Ө T1 ⊗ T2, I1 Ө I1 ⊗ I2 , F1 Ө F1 

⊗ F2) B\A∈ , 
because A \ B = ∩A C(B). 
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of sets, in the neutrosophic set each 
element has three components 
which are subsets (not numbers as 
in fuzzy set) and considers a subset, 
similarly to intuitionistic fuzzy set, of 
“indeterminacy” - due to unexpected 
parameters hidden in some sets, and let 
the superior limits of the components 
to even boil over 1 (overflooded) and 
the inferior limits of the components 
to even freeze under 0 (underdried).

For example: an element in some 
tautological sets may have t > 1, called 
“overincluded”. Similarly, an element 
in a set may be “overindeterminate” 
(for i > 1, in some paradoxist sets), 
“overexcluded” (for f > 1, in some 
unconditionally false appurtenances); 
or “undertrue” (for t < 0, in some 
unconditionally false appurtenances), 
“underindeterminate” (for i < 0, in 
some unconditionally true or false 
appurtenances), “underfalse” (for 
f < 0, in some unconditionally true 
appurtenances).

This is because we should make 
a distinction between unconditionally 
true (t > 1, and f < 0 or i < 0) and 
conditionally true appurtenances 
(t≤1, and f≤1 or i≤1).  

In a rough set RS, an element on 
its boundary-line cannot be classified 
neither as a member of RS nor of its 
complement with certainty.  

In the neutrosophic set a such 
element may be characterized by x(T, 
I, F), with corresponding set-values 
for T, I, F ⊆ ]-0, 1+[. 

Compared to Belnap’s quadruplet 
logic, NS and NL do not use 
restrictions among the  components 
– and that’s why the NS/NL have a

incompletely known), paraconsistent 
set, dialetheist set, faillibilist set 
(each element has a percenatge of 
indeterminacy), paradoxist set (an 
element may belong and may not 
belong in the same time to the set), 
pseudoparadoxist set, and tautologic 
set respectively. 

Hence, the neutrosophic set 
generalizes:
- the intuitionistic set, which supports
incomplete set theories (for 0 < n < 1
and i = 0, 0≤t, i, f≤1) and incomplete
known elements belonging to a set;
- the fuzzy set (for n = 1 and i = 0, and
0≤t, i, f≤1);
- the intuitionistic fuzzy set (for
t+i+f=1 and 0≤i<1);
- the classical set (for n = 1 and i = 0,
with t, f either 0 or 1);
- the paraconsistent set (for n > 1 and
i = 0, with both t, f < 1);
there is at least one element x(T,I,F)
of a paraconsistent set M which
belongs at the same time to M and to
its complement set C(M);
- the faillibilist set (i > 0);
- the dialethist set, which says that
the intersection of some disjoint sets
is not empty (for t = f = 1 and i = 0;
some paradoxist sets can be denoted
this way too);  every element x(T,I,F)
of a dialethist set M belongs at the
same time to M and to its complement
set C(M);
- the paradoxist set, each element has
a part of indeterminacy if it is or not
in the set (i > 1);
- the pseudoparadoxist set (0 < i < 1,
t + f > 1);
- the tautological set (i < 0).

Compared with all other types 
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defined as points, or sum of superior 
limits of all three components if they 
are defined as subsets can be >1 (for 
paraconsistent information coming 
from different sources), or < 1 for 
incomplete information}, while that 
information can not be described in 
IFS because in IFS the components 
T (membership), I (indeterminacy), 
F (non-membership) are restricted 
either to t+i+f=1 or to t2 + f2≤1, if T, 
I, F are all reduced to the points t, i, f 
respectively, or to sup T + sup I + sup 
F = 1 if T, I, F are subsets of [0, 1].  

Of course, there are cases when 
paraconsistent and incomplete 
informations can be normalized to 
1, but this procedure is not always 
suitable.  

c) Relation (2.3) from interval-
valued intuitionistic fuzzy set is 
relaxed in NS, i.e. the intervals do not 
necessarily belong to Int[0,1] but to 
[0,1], even more general to ]-0, 1+[. 

d) In NS the components T, I, F
can also be non-standard subsets 
included in the unitary non standard 
interval ]-0, 1+[, not only standard 
subsets included in the unitary 
standard interval [0, 1] as in IFS. 

e) NS, like dialetheism, can
describe paradoxist elements, 
NS(paradoxist element) = (1, I, 1), 
while IFL can not describe a paradox 
because the sum of components 
should be 1 in IFS. 

f) The connectors in IFS are
defined with respect to T and F, i.e. 
membership and non membership 
only (hence the Indeterminacy is 
what’s left from 1), while in NS they 
can be defined with respect to any of 

more general form, while the middle 
component in NS and NL (the 
indeterminacy) can be split in more 
subcomponents if necessarily in 
various applications. 

11. DIFFERENCES BETWEEN
NEUTROSOPHIC SET (NS) AND 
INTUITIONISTIC FUZZY SET 

(IFS)

a) Neutrosophic Set can distinguish
between absolute membership (i.e. 
membership in all possible worlds; 
we have extended Leibniz’s absolute 
truth to absolute membership) and 
relative membership (membership 
in at least one world but not in all), 
because NS (absolute membership 
element)=1+ while NS(relative 
membership element)=1.  This has 
application in philosophy (see the 
neutrosophy).  

That’s why the unitary standard 
interval   [0, 1] used in IFS has been 
extended to the unitary non-standard 
interval ]-0, 1+[ in NS. 

Similar distinctions for absolute 
or relative non-membership, and 
absolute or relative indeterminant 
appurtenance are allowed in NS. 

b) In NS there is no restriction on
T, I, F other than they are subsets of 
]-0, 1+[, thus:  -0≤inf T + inf I + inf 
F≤sup T + sup I +  sup F≤3+. 

The inequalities (2.1) and (2.4) of 
IFS are relaxed in NS. 

This non-restriction allows 
paraconsistent, dialetheist, and 
incomplete information to be 
characterized in NS {i.e. the sum 
of all three components if they are 

Florentin Smarandache (author and editor) Collected Papers, VIII

35
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2003, September 10-12, 2003, Zittau, 
Germany; University of Applied 
Sciences at Zittau/Goerlitz, 159-163. 
[5] J. L. Deng (1989), Introduction
to Grey System Theory, J. Grey
Systems, 1, 1-24.
[6] G. Deschrijver, E. E. Kerre
(2003), On the Relationship between
some Extensions of Fuzzy Set Theory,
Fuzzy Sets and Systems, 133, 227-
235.
[7] W. L. Gau, D. J. Buehrer (1993),
Vague Sets, IEEE Trans. Systems
Man Cybernet, 23 (2), 610 -614.
[8] M. Gehrke, C. Walker, E. Walker
(1996), Some Comments on Interval-
Valued Fuzzy Sets, Int. Journal of
Intelligent Systems, 11 (10), 751-759.
[9] J. Goguen (1967), L-fuzzy Sets, J.
Math. Anal. Appl., 18, 145-174.
[10] R. Sambuc (1975), Fonctions
Φ-floues. Application l’Aide
au Diagnostic en Pathologie
Thyroidienne, Ph. D. Thesis, Univ.
Marseille, France.
[11] F. Smarandache (2003),
Definition of Neutrosophic Logic – A
Generalization of the Intuitionistic
Fuzzy Logic, Proceedings of the Third
Conference of the European Society
for Fuzzy Logic and Technology,
EUSFLAT 2003, September 10-12,
2003, Zittau, Germany; University of
Applied Sciences at Zittau/Goerlitz,
141-146.
[12] F. Smarandache (2002a), A
Unifying Field in Logics: Neutrosophic
Logic, in Multiple-Valued Logic /
An International Journal, Vol. 8,
No. 3, 385-438, 2002, www.gallup.
unm.edu/~smarandache/eBook-
neutrosophics2.pdf.

them (no restriction). 
g) Component “I”, indeterminacy,

can be split into more subcomponents 
in order to better catch the vague 
information we work with, and 
such, for example, one can get more 
accurate answers to the Question-
Answering Systems initiated by 
Zadeh (2003).  {In Belnap’s four-
valued logic (1977) indeterminacy 
is split into Uncertainty (U) and 
Contradiction (C), but they were 
inter related.}

h) NS has a better and clear
name “neutrosophic” (which 
means the neutral part: i.e. neither 
true/membership nor false/
nonmembership), while IFS’s name 
“intuitionistic” produces confusion 
with Intuitionistic Logic, which is 
something different. 
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Keywords: Neutrosophic Set, Correlation Coefficient of Interval Neutrosophic Set, Weighted 
Correlation  Coefficient of Interval Neutrosophic Set. 

Abstract. In this paper we introduce for the first time the concept of correlation coefficients of  
interval valued neutrosophic set (INS for short).  Respective numerical examples are presented. 

1. Introduction
Neutrosophy was pioneered by Smarandache [1]. It is a branch of philosophy which studies the
origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra
[2]. Neutrosophic set theory is a powerful formal framework which generalizes the concept of the
classic set, fuzzy set [3], interval-valued fuzzy set [4], intuitionistic fuzzy set [5], interval-valued
intuitionistic fuzzy set [6], and so on. Neutrosophy introduces a new concept called <NeutA> which
represents indeterminacy with respect to <A>. It can solve certain problems that cannot be solved by
fuzzy logic. For example, a paper is sent to two reviewers, one says it is 90% acceptable and another
says it is 90% unacceptable. But the two reviewers may have different backgrounds. One is an
expert, and another is a new comer in this field. The impacts on the final decision of the paper by
the two reviewers should be different, even though they give the same grade level of the acceptance.
There are many similar problems, such as weather forecasting, stock price prediction, and political
elections containing indeterminate conditions that fuzzy set theory does not handle well. This theory
deals with imprecise and vague situations where exact analysis is either difficult or impossible. After
the pioneering work of Smarandache. In 2005, Wang et al. [7] introduced the notion of
interval neutrosophic set (INS) which is a particular case of the neutrosophic set (NS) that can be
described by a membership interval, a non-membership interval, and an indeterminate interval, thus
the NS is flexible and practical, and the NS provides a more reasonable mathematical framework to
deal with indeterminate and inconsistent information.
The theories of both neutrosophic set and interval neutrosophic set have achieved great success in
various areas such as medical diagnosis [8], database [9,10], topology[11], image processing
[12,13,14], and decision making problem [15].
Although several distance measures, similarity measures, and correlation measure of neutrosophic
sets have been recently presented in [16, 17], there is a rare investigation on correlation of interval
neutrosophic sets.
It is very common in statistical analysis of data to finding the correlation between variables or
attributes, where the correlation coefficient is defined on ordinary crisp sets, fuzzy sets [18],
intuitionistic fuzzy sets [19,20,21], and neutrosophic set [16,17] respectively. In this paper we first
discuss and derive a formula for the correlation coefficient defined on the domain of interval
neutrosophic sets. The paper unfolds as follows. The next section briefly introduces some
definitions related to the method. Section III presents the correlation and weighted correlation
coefficient of the interval neutrosophic set. Conclusions appear in the last section.

Correlation Coefficient of Interval Neutrosophic Set 

Said Broumi, Florentin Smarandache 

Said Broumi, Florentin Smarandache (2013). Correlation Coefficient of Interval Neutrosophic Set. 
Applied Mechanics and Materials 436: 511-517; DOI: 10.4028/www.scientific.net/AMM.436.511 
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2. Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets, and interval neutrosophic 
sets relevant to the present work. See especially [1, 7, 17] for further details and background. 
2.1 Definition ([1]). Let U be an universe of discourse;  then the neutrosophic set A is an object 
having the form A = {< x: , , >,x ∈ U}, where the functions T,I,F : U→]−0,1+[
define respectively the degree of membership, the degree of indeterminacy, and the degree of non-
membership of the element x ∈ U to the set A with the condition: 

−0 ≤ + + ≤ 3+.   (1) 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[.So instead of ]−0,1+[ we need to take the interval [0,1] for technical
applications, because ]−0,1+[will be difficult to apply in the real applications  such as in scientific
and engineering problems.  
2.2 Definition ([7]). Let X be a space of points (objects) with generic elements in X denoted by x. 
An interval neutrosophic set A in X is characterized by truth-membership function , 
indeteminacy-membership function , and falsity-membership function . For each point x 
in X, we have that  , ,  [ 0 ,1] . 
Remark 1. An INS is clearly a NS. 
2.3 Definition ([7]). 

 An INS A is empty if = 0, = 1, 
= 0, for all x in A. 

 Let  = <0, 1 ,1> and  = <1, 0 ,0>

2.4 Correlation Coefficient of Neutrosophic Set ([17]). 

Let A and B be two neutrosophic sets in the universe of discourse X = { , , …, }. 

The correlation coefficient of A and B is given by 

R(A,B)=     (2) 

where the correlation of two NSs A and B is given by 

C (A,B)  =  (3)

And the informational energy of two NSs A and B are given by 

E(A) =   (4)

E(B) =    (5) 

Respectively, the correlation coefficient of two neutrosophic sets A and B satisfies the following 
properties: 

(1) 0 R(A,B)  1   (6)      
(2) R(A,B)= R(B,A)   (7) 
(3) R(A,B)= 1 if A=B (8)
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3. Correlation of Two Interval Neutrosophic Sets
In this section, following the correlation between two neutrosophic sets defined by A. A. Salama in
[17], we extend this definition to interval neutrosophic sets. If we have a random non-crisp set, with
a triple membership form, for each of two interval neutrosophic sets, we get the interest in
comparing the degree of their relationship. We check if there is any linear relationship between the
two interval neutrosophic sets; thus we need a formula for the sample correlation coefficient of two
interval neutrosophic sets in order to find the relationship between them.
3.1.Definition

Assume that two interval neutrosophic sets A and B in the universe of discourse X = {x1, x2, x3,  …, 

xn}  are denoted by 

A=  ,   X, and        (9) 

B= X, where      (10) 

≤  ,  ≤ , , ≤ 

,  ,   ≤  , and they all belong to [0, 1]; 

then we define the correlation of the interval neutrosophic sets A and  B  in X by the formula  

=

 (11)   

Let us notice that this formula coincides with that given by A. A Salama [17] when 
=  ,  = ,  =  and 

 =  ,  = ,  =
and the correlation coefficient of the interval neutrosophic sets A and B given by 

[0, 1+[   (12) 

where 

=    (13)

     (14) 

express the so-called informational energy of the interval neutrosophic sets A and  B respectively. 

Remark 2: For the sake of simplicity we shall use the symbols: 
=     , = ,      (15)
= ,   = ,              (16)
= , = ,          (17)
=   ,   = ,    (18)
= , = ,     (19)
=    ,    = ,   (20)     

For the correlation of interval neutrosophic set, the following proposition is immediate from the 
definition. 
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3.2. Proposition 

For A, B in the universe of discourse X={x1,x2,x3,…,xn} the correlation of interval 

neutrosophic set have the following properties: 

(1) = (21) 

(2) = )         (22) 

3.3. Theorem. For all INSs A, B the correlation coefficient satisfies the following properties: 

(3)   If A = B , then .             (23) 

(4)  .      (24) 

(5)  .       (25) 

Proof. Conditions (1) and (2) are evident; we shall prove condition (3).  is evident. 

We will prove that . From the Schwartz inequality, we obtain 

×     (26)    

Let us adopt the following notations: 

 (27)

 (28)

  (29)

The above inequality is equivalent to 

   (30) 

Then, since  we have 
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=1-

1.  (31) 

And thus we have    .   (32)    

Remark 3: From the following counter-example, we can easily check that 

 = 1 but A   (33) 

Remark 4: 

Let A and B be two interval neutrosophic set defined on the universe   X = {x1} 

A={ x1: < [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]>} 

B={ x1: < [0.25, 0.25] [0.25, 0.25] [0.25, 0.25]>} 

 = 1 but A

3.4. Weighted Correlation Coefficient of Interval Neutrosophic Sets 

In order to investigate the difference of importance considered in the elements in the universe of 
discourse, we need to take the weights of the elements  (i = 1, 2, 3, …, n). In the following we 
develop a weighted correlation coefficient between the interval neutrosophic sets as follows: 

[0, 1+[   (34) 

If w = { }, equation (34) is reduced to the correlation coefficient (12); it is easy to check 

that the weighted correlation coefficient between INSs A and B also satisfies the 

properties:   

(1)        (35)     

(2) =   (36) 

(3) = 1 if A = B    (37) 

3.5. Numerical Illustration. 

In this section we present, an example to depict the method defined above, where the data is 
represented by an interval neutrosophic sets. 

Example. For a finite universal set X = {x1, x2}, if two interval neutrosophic sets are written, 
respectively 
A = { :<[0.2, 0.3] [0.4, 0.5] [0.1, 0.2]>; :<[0.3, 0.5] [0.1, 0.2] [0.4, 0.5]>} 

B = { :<[0.1, 0.2] [0.3, 0.4] [0.1, 0.3]>; :<[0.4, 0.5] [0.2, 0.3] [0.1, 0.2]>} 

Florentin Smarandache (author and editor) Collected Papers, VIII

42



Therefore, we have 

[0, 1+[

E(A) = 1,39 

E(B) = 0,99 

It shows that the interval neutrosophic sets A and B have  a good positively correlation. 

Conclusion: 
In this paper we introduced a method to calculate the correlation coefficient of two interval 
neutrosophic sets. 
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Abstract. Despite numerous attempts to refocus traditional bivalent logic, usually, logic is tributary 
by keeping fixed limits for truth or false. An alternative answer to this need is the system of 
Neutrosophy, and its connected logic, Neutrosophic Logic, presented in the work of the authors W. 
B. Vasantha Kandasamy and Florentin Smarandache. Neutrosophy is a new branch of philosophy
that studies the origin, nature and scope of neutralities, as well as their interactions with different
ideational spectra. We are surrounded by indeterminacy, which can be pointed in any situation that,
from one point of view can be considered true, and from another point of view can be considered
false. In Neutrosophic logic, every statement includes a percentage of truth (T), includes a
percentage of indeterminacy (I) and a percentage of falsity (F). The major novelty of the work is that
investment process is analyzed through the method of Neutrosophic logic, taking into account
investment parameters such as: economic return on investment, recovery duration on investment,
the resources involved (financial, human and time), the production capacity, the period of execution,
the work volume, the market demand, the training of the personnel, etc. Thus, this paper consists of
the analysis of interdependence and indeterminacy of these parameters. The model will be calibrated
by conducting case studies, with real parameters of input to be analyzed and known output data,
which will be used for the research of a present investment process.

Keywords: neutrosophic logic, investment, interdeterminancy, cognitive map. 

Introduction 

Evaluating quantitative and qualitative aspects of the economic process is an ensemble of 
instruments and methods which allow a better knowledge and assessment about the financial 
position and organizational performance. Due to an acceleration of the economic globalization in 
the last few years, the existing logics with its economic analysis and financial diagnosis have now 
an alternative to give solutions for elaborating strategies for improving the external relation of the 
organization (demand, offer, competition, resources), and also the internal strategy of the 
organization (production, inputs, commercial activity, organizational strategy, decisional system, 
organizational structure and informational system). This different method is the Neutrosophic 
Logic, as an alternative to the existing logic, which consists of a mathematical model of uncertainty, 
vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, inconsistency, 
redundancy, contradiction. In particular, the method solves problems regarding taking decisions 
about project selection, preparing negotiations for merging of two or more companies, appraisal of 
the company's position in the group, planning of policies and strategies for long-term development, 
all of these concerning also financial analysis, strategic analysis and risk analysis.  

Neutrosophic Modeling of Investment Architectures 

Emilia Calefariu, Mircea Boscoianu, Florentin Smarandache, Traian Alexandru Buda 
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Reliability, accuracy and availability of data can be a problem for existing organizations or 
organizations that are moving to new business industry, in fields where innovation is applied, and 
the lack of information, database and experience is evident. In Neutrosophic logic this is called 
indeterminacy (I). The importance of the decision making needs to be highlighted here, and the 
expert’s opinion is of great importance for the best result to be obtained. This is one of the most 
important advantages of this method’s usage, the Fuzzy Neutrosophic Matrices method. This 
method allows several experts opinion to be used in order to determine the best solution, or option 
for the problem or innovation that needs to be fixed or implemented.  

About the Fuzzy Neutrosophic Matrices Method

A fuzzy neutrosophic matrix can be defined as a matrix which consist in elements from [0,1] and 
[0,I]. The matrix can consist in elements included in Z ∪  I or R ∪  I or Q ∪  I or C ∪  I or Zn ∪  I 
or C(Zn) ∪  I. The indeterminate I has its fundamental application in I2 = I. If the indetermination I
is not an element of the matrix, than the matrix is not considered a neutrosophic one. This matrix 
includes both the fuzzy matrix and the 
real matrix.  

This method represents a 
generalization of Aristotle classical logic, 
Lukasiewicz’s three-valued logic and 
Zadeh’s fuzzy logic [1]. It allows the 
performance of revealing studies about 
the dynamic of the investigated events, 
events which are not observable by 
applying bivalent logics or Fuzzy Logic, 
nor statistical studies, the difference being 
the existence of the indeterminate I. 
Neutrosophic Logic is an alternative to the existing logic, and consists of a mathematical model of 
uncertainty, vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, 
inconsistency, redundancy, contradiction [2]. Even so, logics work with multiple levels of truth, 
without allowing the presence of other realities, or states of reality. This is why, in a world that 
reached saturation regarding traditional logic, scientists have aimed a different system, which could 
encapsulate a representation of the real world. 

The expert’s opinion is very important in evaluating the values of the neutrosiphics matrix 
elements. If he/she considers finding even the smallest degree of indeterminacy, than he/she will 
choose I to the real values. If the expert wishes to disregard the small degrees of indeterminacy, than 
the real values will be chosen to the detriment of the indeterminate I. 

The Neutrosophic Matrices method can be transformed in Neutrosophic Cognitive Maps, which 
are neutrosophic directed graphs that can transpose concepts like processes, events, economic 
policies, as nodes, and causalities and indeterminate as edges [3]. In this directed graph, which is 
associated with values for each relation, we can see a representation of the causal relationship 
between concepts. The nodes of the graph are noted with Ni, and they represent the neutrosophic 
vector from the neutrosophic vector space V. Each node can have values from the set {-1, 0, 1, I} 
where the value 1 means that the node is in the on state, I implies that the node is in the 
indeterminate state at that time, and the value 0 if the node is in the of state, that it has no influence 
on that node. The causality, as can be given by an expert in the field, which can connect two nodes, 
is detailed in Tab. 1. 

After the construction of the directed neutrosophic graph, the matrix associated with it is written, 
resulting thereby the adjacency matrix of the neutrosophic cognitive map.  

The next step is to threshold and update the state vector Y, which is known as resultant vector. 
„Updating means keeping the on state of the given vector to remain in the on state. The thresholding 

Table 1. The causality that can connect two nodes

Value Consequence
Node N1 Node N2

0 N1 – no effect N2 – no effect

1 
N1 – ↑         ⇒              N2 – ↑ 

or
N1 – ↓        ⇒              N2 – ↓

-1 
N1 – ↑        ⇒              N2 – ↓

or 
N1 – ↓        ⇒              N2 – ↑

I N1 –indeterminate ⇒ N2-indeterminate
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is, in the resultant every negative value is made as 0 and positive value is made as 1 and positive 
coefficient indeterminate value is made as I. The combination of 1 + I is made into I or 1 according 
to the wishes of the expert depending on the problem.“  [2] The result is interpreted by the 
specialists in order to improve or solve the problem under discussion. 

Investments 

Investments represent capital lock-ups. The investors decide to restrain themselves from present 
consumption, in order to create the possibility of obtaining future benefits. A production system 
consists in all the natural components and artificial ones like raw materials, energy, tools, devices, 
technological equipment, buildings labor and relations of production, concepts, work organization 
and management of manufacturing, aiming to obtain products and services that could be sold [4]. 

These components must be organized so as to fulfill the main objective of any economic activity: 
obtaining profit and raising the value of the company. The value of the company is given by the net 
asset value reflected in the balance sheet, and it can be determined as the net difference between the 
total assets of the company (fixed and current assets) and the liabilities of the company at a time. 

The decision to invest in one company can be difficult and risk involving in the same time. When 
facing several potential investment possibilities, the analysis of all the involved elements must be a 
very rigorous one. In order to maximize the value of a portfolio, it is advisable to consult the 
opinion of many specialists, to select the most opportune balance and mix of projects. The analysis 
must take into consideration the limited availability of the cash budget, the scarce of the resources, 
the plough back of the profit, the short-term and long-term development strategy of the 
organization, the organizational strategies, but also uncertainty and strategic importance.  

Table 2. Atlantic Global (2007) categorized projects based on the competitive advantage [5] 
Competitive advantage Explication 

Tactical Deliver competitive advantage today 
Strategic Deliver competitive advantage in the future 
Administrative Deliver concurrently promised service levels and supporting existing strategic 

projects 
Innovation Smaller and experimental projects, delivering possible competitive advantage 

tomorrow 

Future vision Contingent upon strategic and innovation projects 
The investment can be developed considering the managerial dimension, which can validate both 

the idea and the financial implementation, the organizational dimension, through reorganization and 
assuming the risk, the operational dimension regarding project functioning and the strategic 
dimension by taking in consideration the permanent adaptation on the continuing changing market. 

Application 

We now study the investment process and analyze it through the method of Neutrosophic logic, 
taking into account the investment parameters as discussed earlier, and customizing in the situation 
of a company that exists on the market and is interested in finding the experts opinion regarding 
reinvestment of profit. The method allows specialists, more freedom of intuition in order to express 
not only positive, negative and without impact, but also, the indeterminacy of the impact. 

We take the following nodes to be related with the company that considers profit reinvestment:
N1 – Economic return on investment 
N2 – Recovery duration on investment 
N3 – The resources involved (financial, human and time),  
N4 – The production capacity 
N5 – The period of execution 
N6 – The work volume 
N7 – The market demand and N8 – The training of the personnel 
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These eight nodes are taken as the domain nodes, as they are the most important aspects for the 
company’s management, when making an investment.  

The following four nodes are the range space related with the investment: 
L1 – Good investment; L2 – Average investment; L3 – Bad investment; L4 – Risk involving 
investment  

After consulting a number of five specialists, and they evaluated each factors influence over the 
investment, the following directed neutrosophic graph with the same set of domain space nodes and 
range space nodes resulted the graph from Fig. 1. The neutrosophic connection matrix associated 
with this neutrosophic directed graph is as it is presented in Fig. 1. 

Fig. 1. The directed neutrosophic graph and the matrix associated with it 

Each specialist evaluated each connection between a domain node and a range space related node 
with a value, according to his opinion. Equal importance is given to each expert’s opinion. The 
value could consist in elements from [0,1] and [0,I]. After each specialist evaluated all aspects taken 
into consideration, the arithmetic mean of all five specialists conducted to the neutrosophic 
connection matrix associated with this neutrosophic directed graph. The straight line arrow indicates 
that the specialists considered the relation between the nodes as a measurable one, assigning values 
within the range [0,1], and the dotted arrow indicates that the specialists considered the influence as 
an indeterminate one (I), assigning each connection values within the range [0,I].  

The investor is interested in studying the impact of the state vector A1 = ( 1 0 0 0 0 0 0 0 ) that is 
the  economic return on the investment which is in the on state and all the other nodes are in the off 
state. When taking the final decision, this is considered to be the most significant factor.

To find the effect of A1 on the neutrosophic dynamical system of investments N(E), we must 
perform the operation of multiplication between the vector A1 and the neutrosophic matrix:

A1N(E) = (  0.6  0.4  0.1  0.2I ) = B1.                                                                                      (1) 
B1(N(E))T = ( 0.53+0.04I  0.33+0.14I  0.54+0.16I  0.21+0.18I  0.58  0.67+0.02I  0.94+0.02I

0.69+0.06I).                                                                                                                                 (2) 
N(E)T is the transposed matrix N(E). The next step is to update and threshold (     ), by making

every negative value as 0 and positive value as 1 and positive coefficient indeterminate value as I: 
B1(N(E))T       (1 I I I 0 1 1 1) = A2 .  (3) 
A2N(E) = (3+I  2.4+0.9I  0.7+1.2I  3.1I).  (4) 

      (1 1 I I) = B2.       (5) 
B2N(E)T = (1+0.3I  0.6+1.2I  1+0.8I  0.3+1.6I  1  0.13+0.2I  1.8+0.3I  1.3+0.6I).  (6) 

 (1 I I I 0 1 1 1) = A2.  (7) 
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The operation of multiplication was performed until a constant result was obtained, in this case 
four times, applying the same method each time we updated and thresholded the vector.  

These operations lead to the hidden pattern of the system, as a fixed point given by {(1 I I I 0 1 1 
1) (1 1 I I)}. Since the uncertainty and indeterminacy is involved in these concepts, the usage of a
neutrosophic relational map is justified.

The five expert’s opinion has conducted to this result:  
- the economic return on investment, the work volume, the market demand and the training of the
personnel must be of great importance for the investor, and be paid an increased attention, when the
aim is obtaining a good investment;
- the period of execution is on the other hand of smaller importance to the investment, as the other
investments evaluation parameters mentioned before;
- the recovery duration on investment, the resources involved (financial, human and time) and the
production capacity are indeterminate, as this parameters are depending on the investors’ interest
and willingness to reinvest it’s profit;
- the result obtained is interdependent on this evaluation parameters. A bad investment or a risk full
one is an indetermination. On the other hand a good or an average investment is based on the
fulfillment of the parameters first discussed.

Conclusions 

The major novelty of the work is the adaptability of the model and the flexibility of it due to the 
results that the method can provide. This model can be applied in various spectrums of economic 
decisions, and can be an alternative or a second opinion for the financial analysis that every 
company depends on. Another novelty of the work is that investment process is analyzed through 
the method of Neutrosophic logic, taking into account investment parameters such as: economic 
return on investment, recovery duration on investment, the resources involved (financial, human and 
time), the production capacity, the period of execution, the work volume, the market demand, the 
training of the personnel, etc. Thus, this paper consists of the analysis of interdependence and 
indeterminacy of these parameters. The model was calibrated by conducting case studies, with real 
parameters that were used in an investment process.  

Future work is various in this method, especially because it is a new method with many 
application possibilities that have not been used before. 
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Abstract 

In this paper, we introduce for the first time the neutrosophic system and 

neutrosophic dynamic system that represent new per-spectives in science.  A 

neutrosophic system is a quasi- or (𝑡, 𝑖, 𝑓)–classical system, in the sense that the 

neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or 

(𝑡, 𝑖, 𝑓) − terms/ concepts/attributes], which are approximations of the classical 

terms/concepts/attributes, i.e. they are partially true/membership/probable (t%), 

partially indeterminate (i%), and partially false/nonmember-ship/improbable (f%), 

where 𝑡, 𝑖, 𝑓 are subsets of the unitary interval [0,1].  {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), etc. or mathematically ‘quasi’ 

means (𝑡, 𝑖, 𝑓) in a neutrophic way.}

Keywords 
neutrosophy, neutrosophics, neutrosophic system, neutrosophic patterns, 

neutrosophic model, neutrosophic synergy, neutrosophic interactions, neutrosophic 

complexity, neutrosophic process, neutrosophic cognitive science. 

1 Introduction 

A system 𝒮in general is composed from a space ℳ, together with its elements 

(concepts) {𝑒𝑗}, 𝑗 ∈ 𝜃, and the relationships {ℛ𝑘}, 𝑘 ∈ 𝜓, between them, where 

𝜃  and 𝜓  are countable or uncountable index sets. For a closed system, the 

space and its elements do not interact with the environment. For an open set, 

the space or its elements interact with the environment. 

2 Definition of the neutrosophic system 

A system is called neutrosophic system if at least one of the following occur: 

a. The space contains some indeterminacy.

b. At least one of its elements 𝑥 has some indeterminacy (it is not

well-defined or not well-known).

Neutrosophic Systems and Neutrosophic Dynamic Systems 

Florentin Smarandache 
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c. At least one of its elements x does not 100% belong to the space;

we say 𝑥(𝑡, 𝑖, 𝑓) ∈ ℳ, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

d. At least one of the relationships ℛ𝑜 between the elements of ℳ

is not 100% well-defined (or well-known); we say ℛ𝑜(𝑡, 𝑖, 𝑓) ∈

𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

e. For an open system, at least one [ℛ𝐸(𝑡, 𝑖, 𝑓)] of the system ’s

interactions relationships with the environment has some

indeterminacy, or it is not well-defined, or not well-known, with

(𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

2.1 Classical system as particular case of neutrosophic system 

By language abuse, a classical system is a neutrosophic system with 

indeterminacy zero (no indeterminacy) at all system’s levels. 

2.2 World systems are mostly neutrosophic 

In our opinion, most of our world systems are neutrosophic systems, not 

classical systems, and the dynamicity of the systems is neutrosophic, not 

classical. 

Maybe the mechanical and electronical systems could have a better chance to 

be classical systems. 

3 A simple example of neutrosophic system 

Let’s consider a university campus Coronado as a whole neutrosophic system 

𝒮, whose space is a prism having a base the campus land and the altitude such 

that the prism encloses all campus’ buildings, towers, observatories, etc. 

The elements of the space are people (administration, faculty, staff, and 

students) and objects (buildings, vehicles, computers, boards, tables, chairs, 

etc.). 

A part of the campus land is unused. The campus administration has not 

decided yet what to do with it: either to build a laboratory on it, or to sell it. 

This is an indeterminate part of the space. 

Suppose that a staff (John, from the office of Human Resources) has been fired 

by the campus director for misconduct. But, according to his co-workers, John 

was not guilty for anything wrong doing. So, John sues the campus. At this point, 

we do not know if John belongs to the campus, or not. John’s appurtenance to 

the campus is indeterminate. 
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Assume the faculty norm of teaching is four courses per semester. But some 

faculty are part-timers, therefore they teach less number of courses. If an 

instructor teaches only one class per semester, he belongs to the campus only 

partially (25%), if he teaches two classes he belongs to the campus 50%, and 

if he teaches three courses he belongs to the campus 75%.  

We may write: 

Joe (0.25, 0, 0.75) ∈  𝒮 

George (0.50, 0, 0.50) ∈  𝒮 

and   Thom (0.75, 0.10, 0.25) ∈  𝒮. 

Thom has some indeterminacy (0.10) with respect to his work in the campus: 

it is possible that he might do some administrative work for the campus (but 

we don’t know).  

The faculty that are full-time (teaching four courses per semester) may also do 

overload. Suppose that Laura teaches five courses per semester, therefore 

Laura (1.25, 0, 0) ∈ 𝒮. 

In neutrosophic logic/set/probability it’s possible to have the sum of 

components (𝑡, 𝑖, 𝑓) different from 1: 

𝑡 + 𝑖 + 𝑓 > 1, for paraconsistent (conflicting) information; 

𝑡 + 𝑖 + 𝑓 = 1, for complete information; 

𝑡 + 𝑖 + 𝑓 < 1, for incomplete information. 

Also, there are staff that work only ½ norm for the campus, and many students 

take fewer classes or more classes than the required full-time norm. Therefore, 

they belong to the campus Coronado in a percentage different from 100%. 

About the objects, suppose that 50 calculators were brought from IBM for one 

semester only as part of IBM’s promotion of their new products. Therefore, 

these calculators only partially and temporarily belong to the campus. 

Thus, not all elements (people or objects) entirely belong to this system, there 

exist many 𝑒𝑗(𝑡, 𝑖, 𝑓) ∈ 𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

Now, let’s take into consideration the relationships. A professor, Frank, may 

agree with the campus dean with respect to a dean’s decision, may disagree 

with respect to the dean’s other decision, or may be ignorant with respect to 

the dean’s various decisions. So, the relationship between Frank and the dean 

may be, for example: 

Frank
agreement (0.5,0.2,0.3)
→  dean, i. e. not (1, 0, 0) agreement. 

This campus, as an open system, cooperates with one Research Laboratory 

from Nevada, pending some funds allocated by the government to the campus. 
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Therefore, the relationship (research cooperation) between campus Coronado 

and the Nevada Research Laboratory is indeterminate at this moment. 

4 Neutrosophic patterns 

In a neutrosophic system, we may study or discover, in general, neutrosophic 

patterns, i.e. quasi-patterns, approximated patterns, not totally working; we 

say: (𝑡, 𝑖, 𝑓) − patterns, i.e. t% true, i% indeterminate, and f% false, and 

elucidate (𝑡, 𝑖, 𝑓) −principles. 

The neutrosophic system, through feedback or partial feedback, is 

(𝑡, 𝑖, 𝑓) −self-correcting, and (𝑡, 𝑖, 𝑓) −self-organizing. 

5 Neutrosophic holism 

From a holistic point of view, the sum of parts of a system may be: 

1. Smaller than the whole (when the interactions between parts

are unsatisfactory);

2. Equals to the whole (when the interactions between parts are

satisfactory);

3. Greater than the whole (when the interactions between parts

are super-satisfactory).

The more interactions (interdependance, transdependance, hyper-

dependance) between parts, the more complex a system is.  

We have positive, neutral, and negative interactions between parts. Actually, 

an interaction between the parts has a degree of positiveness, degree of 

neutrality, and degree of negativeness. And these interactions are dynamic, 

meaning that their degrees of positiveness/neutrality/negativity change in 

time. They may be partially absolute and partially relative. 

6 Neutrosophic model 

In order to model such systems, we need a neutrosophic (approximate, partial, 

incomplete, imperfect) model that would discover the approximate system 

properties. 

7 Neutrosophic successful system 

A neutrosophic successful system is a system that is successful with respect to 

some goals, and partially successful or failing with respect to other goals. 
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The adaptivity, self-organization, self-reproducing, self-learning, reiteration, 

recursivity, relationism, complexity and other attributes of a classical system 

are extended to (𝑡, 𝑖, 𝑓) −attributes in the neutrosophic system. 

8 (𝑡, 𝑖, 𝑓) −attribute 

A (𝑡, 𝑖, 𝑓) −attribute means an attribute that is t% true (or probable), i% 

indeterminate (with respect to the true/probable and false/improbable), and 

f% false/improbable - where t,i,f are subsets of the unitary interval [0,1]. 

For example, considering the subsets reduced to single numbers, if a 

neutrosophic system is (0.7, 0.2, 0.3)-adaptable, it means that the system is 

70% adaptable, 20% indeterminate regarding adaptability, and 30% 

inadaptable; we may receive the informations for each attribute phase from 

different independent sources, that’s why the sum of the neutrosophic 

components is not necessarily 1. 

9 Neutrosophic dynamics 

While classical dynamics was beset by dialectics, which brought together an 

entity 〈A〉 and its opposite 〈antiA〉, the neutrosophic dynamics is beset by tri-

alectics, which brings together an entity 〈A〉 with its opposite 〈antiA〉 and their 

neutrality 〈neutA〉. Instead of duality as in dialectics, we have tri-alities in our 

world.  

Dialectics failed to take into consideration the neutrality between opposites, 

since the neutrality partially influences both opposites. 

Instead of unifying the opposites, the neutrosophic dynamics unifies the triad 

〈A〉, 〈antiA〉, 〈neutA〉. 

Instead of coupling with continuity as the classical dynamics promise, one has 

“tripling” with continuity and discontinuity altogether. 

All neutrosophic dynamic system’s components are interacted in a certain 

degree, repelling in another degree, and neutral (no interaction) in a different 

degree. 

They comprise the systems whose equilibrium is the disechilibrium - systems 

that are continuously changing. 

The internal structure of the neutrosophic system may increase in complexity 

and interconnections, or may degrade during the time. 

A neutrosophic system is characterized by potential, impotential, and 

indeterminate developmental outcome, each one of these three in a specific 

degree. 
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10 Neutrosophic behavior gradient 

In a neutrosophic system, we talk also about neutrosophic structure, which is 

actually a quasi-structure or structure which manifests into a certain degree; 

which influences the neutrosophic behavior gradient, that similarly is a 

behavior quasi-gradient - partially determined by quasi-stimulative effects; 

one has: discrete systems, continuous systems, hybrid (discrete and 

continuous) systems. 

11 Neutrosophic interactions 

Neutrosophic interactions in the system have the form: 

 A  B 
 ■ ■ 

    (𝑡, 𝑖, 𝑓)  ⃡                  

Neutrosophic self-organization is a quasi-self-organization. The system’s 

neutrosophic intelligence sets into the neutrosophic patterns formed within 

the system’s elements. 

We have a neutrosophic causality between event E1, that triggers event E2, and 

so on. And similarly, neutrosophic structure S1 (which is an approximate, not 

clearly know structure) causes the system to turn on neutrosophic structure 

S2, and so on. A neutrosophic system has different levels of self-organizations. 

12 Potentiality/impotentiality/indeterminacy 

Each neutrosophic system has a potentiality/impotentiality/indeterminacy to 

attain a certain state/stage; we mostly mention herein about the transition 

from a quasi-pattern to another quasi-pattern. A neutrosophic open system is 

always transacting with the environment; since always the change is needed. 

A neutrosophic system is always oscilating between stability, instability, and 

ambiguity (indeterminacy). Analysis, synthesis, and neutrosynthesis of 

existing data are done by the neutrosophic system. They are based on system’s 

principles, antiprinciples, and nonprinciples. 

13 Neutrosophic synergy 

The Neutrosophic Synergy is referred to partially joined work or partially 

combined forces, since the participating forces may cooperate in a degree (𝑡), 

may be antagonist in another degree (𝑓), and may have a neutral interest in 

joint work in a different degree (𝑖). 
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14 Neutrosophic complexity 

The neutrosophic complex systems produce neutrosophic complex patterns. 

These patterns result according to the neutrosophic relationships among 

system’s parts. They are well described by the neutrosophic cognitive maps 

(NCM), neutrosophic relational maps (NRM), and neutrosophic relational 

equations (NRE), all introduced by W. B. Vasanttha Kandasamy and F. 

Smarandache in 2003-2004. 

The neutrosophic systems represent a new perspective in science. They deal 

with quasi-terms [or (𝑡, 𝑖, 𝑓) −terms], quasi-concepts [or (𝑡, 𝑖, 𝑓) −concepts], 

and quasi-attributes [or (𝑡, 𝑖, 𝑓) −attributes], which are approximations of the 

terms, concepts, attributes, etc., i.e. they are partially true (𝑡%),  partially 

indeterminate (𝑖%), and partially false (𝑓%). 

Alike in neutrosophy where there are interactions between 〈A〉, 〈neutA〉, and 

〈antiA〉, where 〈A〉 is an entity, a system is frequently in one of these general 

states: equilibrium, indeterminacy (neither equilibrium, nor disequilibrium), 

and disequilibrium. 

They form a neutrosophic complexity with neutrosophically ordered patterns. 

A neutrosophic order is a quasi or approximate order, which is described by a 

neutrosophic formalism. 

The parts all together are partially homogeneous, partially heterogeneous, and 

they may combine in finitely and infinitely ways. 

15 Neutrosophic processes 

The neutrosophic patterns formed are also dynamic, changing in time and 

space. They are similar, dissimilar, and indeterminate (unknown, hidden, 

vague, incomplete) processes among the parts.  

They are called neutrosophic processes. 

16 Neutrosophic system behavior 

The neutrosophic system’s functionality and behavior are, therefore, coherent, 

incoherent, and imprevisible (indeterminate). It moves, at a given level, from 

a neutrosophic simplicity to a neutrosophic complexity, which becomes 

neutrosophic simplicity at the next level. And so on. 

Ambiguity (indeterminacy) at a level propagates at the next level. 

Florentin Smarandache (author and editor) Collected Papers, VIII

56



17 Classical systems 

Although the biologist Bertalanffy is considered the father of general system 

theory since 1940, it has been found out that the conceptual portion of the 

system theory was published by Alexander Bogdanov between 1912-1917 in 

his three volumes of Tectology. 

18 Classical open systems 

A classical open system, in general, cannot be totally deterministic, if the 

environment is not totally deterministic itself.  

Change in energy or in momentum makes a classical system to move from 

thermodynamic equilibrium to nonequilibrium or reciprocally. 

Open classical systems, by infusion of outside energy, may get an unexpected 

spontaneous structure. 

19 Deneutrosophication 

In a neutrosophic system, besides the degrees of freedom, one also talk about 

the degree (grade) of indeterminacy. Indeterminacy can be described by a 

variable. 

Surely, the degrees of freedom should be condensed, and the indetermination 

reduced (the last action is called “deneutrosophication”). 

The neutrosophic system has a multi-indeterminate behavior. A neutrosophic 

operator of many variables, including the variable representing indeterminacy, 

can approximate and semi-predict the system’s behavior. 

20 From classical to neutrosophic systems 

Of course, in a bigger or more degree, one can consider the neutrosophic 

cybernetic system (quasi or approximate control mechanism, quasi 

information processing, and quasi information reaction), and similarly the 

neutrosophic chaos theory, neutrosophic catastrophe theory, or neutrosophic 

complexity theory. 

In general, when passing from a classical system 𝒮𝑐  in a given field of 

knowledge ℱ to a corresponding neutrosophic system 𝒮𝑁 in the same field of 

knowledge ℱ, one relaxes the restrictions about the system’s space, elements, 

and relationships, i.e. these components of the system (space, elements, 

relationships) may contain indeterminacy, may be partially (or totally) 
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unknown (or vague, incomplete, contradictory), may only partially belong to 

the system; they are approximate, quasi. 

Scientifically, we write: 

𝒮𝑁 = (𝑡, 𝑖, 𝑓) − 𝒮𝑐, 

and we read: a neutrosophic system is a (𝑡, 𝑖, 𝑓)–classical system. As mapping, 

between the neutrosophic algebraic structure systems, we have defined 

neutrosophic isomorphism. 

21 Neutrosophic dynamic system 

The behavior of a neutrosophic dynamic system is chaotic from a classical 

point of view. Instead of fixed points, as in classical dynamic systems, one deals 

with fixed regions (i.e. neighbourhoods of fixed points), as approximate values 

of the neutrosophic variables [we recall that a neutrosophic variable is, in 

general, represented by a thick curve – alike a neutrosophic (thick) function]. 

There may be several fixed regions that are attractive regions in the sense that 

the neutrosophic system converges towards these regions if it starts out in a 

nearby neutrosophic state. 

And similarly, instead of periodic points, as in classical dynamic systems, one 

has periodic regions, which are neutrosophic states where the neutrosophic 

system repeats from time to time. 

If two or more periodic regions are non-disjoint (as in a classical dynamic 

system, where the fixed points lie in the system space too close to each other, 

such that their corresponding neighbourhoods intersect), one gets double 

periodic region, triple periodic region: 

and so on: 𝑛 −uple periodic region, for 𝑛 ≥ 2. 

In a simple/double/triple/…/ 𝑛 − uple periodic region the neutrosophic 

system is fluctuating/oscilating from a point to another point. 

The smaller is a fixed region, the better is the accuracy. 
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22 Neutrosophic cognitive science 

In the Neutrosophic Cognitive Science, the Indeterminacy “I” led to the 

definition of the Neutrosophic Graphs (graphs which have: either at least one 

indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), and Neutrosophic Trees 

(trees which have: either at least one indeterminate edge, or at least one 

indeterminate vertex, or both some indeterminate edge and some 

indeterminate vertex), that have many applications in social sciences.  

Another type of neutrosophic graph is when at least one edge has a 

neutrosophic (𝑡, 𝑖, 𝑓) truth-value. 

As a consequence, the Neutrosophic Cognitive Maps (Vasantha & Smarandache, 

2003) and Neutrosophic Relational Maps (Vasantha & Smarandache, 2004) 

are generalizations of fuzzy cognitive maps and respectively fuzzy relational 

maps, Neutrosophic Relational Equations (Vasantha & Smarandache, 2004), 

Neutrosophic Relational Data (Wang, Smarandache,  Sunderraman, Rogatko - 

2008), etc. 

A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts 

like policies, events etc. as vertices, and causalities or indeterminates as edges. 

It represents the causal relationship between concepts. 

An edge is said indeterminate if we don’t know if it is any relationship between 

the vertices it connects, or for a directed graph we don’t know if it is a directly 

or inversely proportional relationship. We may write for such edge that (𝑡, 𝑖, 𝑓) 

= (0,1,0). 

A vertex is indeterminate if we don’t know what kind of vertex it is since we 

have incomplete information. We may write for such vertex that (𝑡, 𝑖, 𝑓)  = 

(0,1,0). 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are indeterminate and 

they are drawn as dotted): 
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and its neutrosophic adjacency matrix is: 























0110I
10100
110II
00I01
I0I10

The edges mean: 0 = no connection between vertices, 1 = connection between 

vertices, I = indeterminate connection (not known if it is, or if it is not). 

Such notions are not used in the fuzzy theory. 

Let’s give an example of Neutrosophic Cognitive Map (NCM), which is a 

generalization of the Fuzzy Cognitive Maps. 

We take the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 

The corresponding neutrosophic adjacency matrix related to this 

neutrosophic cognitive map is: 
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The edges mean: 0 = no connection between vertices, 1 = directly proportional 

connection, -1 = inversely proportionally connection, and I = indeterminate 

connection (not knowing what kind of relationship is between the vertices that 

the edge connects). 

Now, we give another type of neutrosophic graphs (and trees): An edge of a 

graph, let's say from A to B (i.e. how A influences B), 

may have a neutrosophic value (𝑡, 𝑖, 𝑓), where t means the positive influence 

of A on B, i means the indeterminate/neutral influence of A on B, and f means 

the negative influence of A on B.  

Then, if we have, let's say: 𝐴−> 𝐵−> 𝐶 such that 𝐴−> 𝐵 has the neutrosophic 

value (t1, i1, f1) and 𝐵−> 𝐶 has the neutrosophic value (t2, i2, f2), then 𝐴−> 𝐶 

has the neutrosophic value (t1, i1, f1)/\(t2, i2. f2), where /\ is the 𝐴𝑁𝐷𝑁 

neutrosophic operator. 

Also, again a different type of graph: we can consider a vertex A as: 𝑡% 

belonging/membership to the graph, 𝑖%  indeterminate membership to the 

graph, and 𝑓% nonmembership to the graph. 

Finally, one may consider any of the previous types of graphs (or trees) put 

together. 

23 (𝑡, 𝑖, 𝑓) −qualitative behavior 

We normally study in a neutrosophic dynamic system its long-term 

(𝑡, 𝑖, 𝑓) −qualitative behavior, i.e. degree of behavior’s good quality (t), degree 

of behavior’s indeterminate (unclear) quality (i), and degree of behavior’s bad 

quality (f). 

The questions arise: will the neutrosophic system fluctuate in a fixed region 

(considered as a neutrosophic steady state of the system)? Will the fluctuation 

be smooth or sharp? Will the fixed region be large (hence less accuracy) or 

small (hence bigger accuracy)? How many periodic regions does the 

Florentin Smarandache (author and editor) Collected Papers, VIII

61



neutrosophic system has? Do any of them intersect [i.e. does the neutrosophic 

system has some 𝑛 −uple periodic regions (for 𝑛 ≥ 2), and for how many]? 

24 Neutrosophic state 

The more indeterminacy a neutrosophic system has, the more chaotic it is from 

the classical point of view. A neutrosophic lineal dynamic system still has a 

degree of chaotic behavior. A collection of numerical sets determines a 

neutrosophic state, while a classical state is determined by a collection of 

numbers. 

25 Neutrosophic evolution rule 

The neutrosophic evolution rule decribes the set of neutrosophic states where 

the future state (that follows from a given current state) belongs to. If the set 

of neutrosophic states, that the next neutrosophic state will be in, is known, we 

have a quasi-deterministic neutrosophic evolution rule, otherwise the 

neutrosophic evolution rule is called quasi-stochastic. 

26 Neutrosophic chaos 

As an alternative to the classical Chaos Theory, we have the Neutrosophic 

Chaos Theory, which is highly sensitive to indeterminacy; we mean that small 

change in the neutrosophic system’s initial indeterminacy produces huge 

perturbations of the neutrosophic system’s behavior. 

27 Time quasi-delays and quasi-feedback thick-loops 

Similarly, the difficulties in modelling and simulating a Neutrosophic Complex 

System (also called Science of Neutrosophic Complexity) reside in its degree 

of indeterminacy at each system’s level. 

In order to understand the Neutrosophic System Dynamics, one studies the 

system’s time quasi-delays and internal quasi-feedback thick-loops (that are 

similar to thick functions ad thick curves defined in the neutrosophic 

precalculus and neutrosophic calculus). 

The system may oscillate from linearity to nonlinearity, depending on the 

neutrosophic time function. 
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28 Semi-open semi-closed system 

Almost all systems are open (exchanging energy with the environment). But, 

in theory and in laboratory, one may consider closed systems (completely 

isolated from the environment); such systems can oscillate between closed 

and open (when they are cut from the environment, or put back in contact with 

the environment respectively). Therefore, between open systems and closed 

systems, there also is a semi-open semi-closed system. 

29 Neutrosophic system’s development 

The system’s self-learning, self-adapting, self-conscienting, self-developing are 

parts of the system’s dynamicity and the way it moves from a state to another 

state – as a response to the system internal or external conditions. They are 

constituents of system’s behavior. 

The more developed is a neutrosophic system, the more complex it becomes. 

System’s development depends on the internal and external interactions 

(relationships) as well. 

Alike classical systems, the neutrosophic system shifts from a quasi-

developmental level to another. Inherent fluctuations are characteristic to 

neutrosophic complex systems. Around the quasi-steady states, the 

fluctuations in a neutrosophic system becomes its sources of new quasi-

development and quasi-behavior. 

In general, a neutrosophic system shows a nonlinear response to its initial 

conditions. The environment of a neutrosophic system may also be 

neutrosophic (i.e. having some indeterminacy). 

30 Dynamic dimensions of neutrosophic systems 

There may be neutrosophic systems whose spaces have dynamic dimensions, 

i.e. their dimensions change upon the time variable.

Neutrosophic Dimension of a space has the form (𝑡, 𝑖, 𝑓), where we are 𝑡% 

sure about the real dimension of the space, 𝑖% indeterminate about the real 

dimension of the space, and 𝑓% unsure about the real dimension of the space. 

31 Noise in a neutrosophic system 

A neutrosophic system’s noise is part of the system’s indeterminacy. A 

system’s pattern may evolve or dissolve over time, as in a classical system. 
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32 Quasi-stability 

A neutrosophic system has a degree of stability, degree of indeterminacy 

referring to its stability, and degree of instability. Similarly, it has a degree of 

change, degree of indeterminate change, and degree of non-change at any 

point in time. 

Quasi-stability of a neutrosophic system is its partial resistance to change. 

33 (𝑡, 𝑖, 𝑓) −attractors 

Neutrosophic system’s quasi-stability is also dependant on the 

(𝑡, 𝑖, 𝑓) −attractor, which 𝑡% attracts, 𝑖% its attraction is indeterminate, and 

𝑓%  rejects. Or we may say that the neutrosophic system 

(𝑡%, 𝑖%, 𝑓%) −prefers to reside in a such neutrosophic attractor. 

Quasi-stability in a neutrosophic system responds to quasi-perturbations. 

When (𝑡, 𝑖, 𝑓) → (1,0,0)  the quasi-attractors tend to become stable, but if 

(𝑡, 𝑖, 𝑓) → (0, 𝑖, 𝑓), they tend to become unstable.  

Most neutrosophic system are very chaotic and possess many quasi-attractors 

and anomalous quasi-patterns. The degree of freedom in a neutrosophic 

complex system increase and get more intricate due to the type of 

indeterminacies that are specific to that system. For example, the classical 

system’s noise is a sort of indeterminacy. 

Various neutrosophic subsystems are assembled into a neutrosophic complex 

system. 

34  (𝑡, 𝑖, 𝑓) − repellors 

Besides attractors, there are systems that have repellors, i.e. states where the 

system avoids residing. The neutrosophic systems have quasi-repellors, or 

(𝑡, 𝑖, 𝑓) −repellors, i.e. states where the neutrosophic system partialy avoid 

residing. 

35 Neutrosophic probability of the system’s states 

In any (classical or neutrosophic) system, at a given time ρ, for each system 

state τ one can associate a neutrosophic probability, 

𝒩𝒫(𝜏) = (t, i, f), 

where t, i, f are subsets of the unit interval [0, 1] such that: 
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t = the probability that the system resides in τ; 

i = the indeterminate probability/improbability about the system 

residing in τ; 

f = the improbability that the system resides in τ; 

For a (classical or neutrosophic) dynamic system, the neutrosophic probability 

of a system’s state changes in the time, upon the previous states the system 

was in, and upon the internal or external conditions. 

36 (𝑡, 𝑖, 𝑓) −reiterative 

In Neutrosophic Reiterative System, each state is partially dependent on the 

previous state. We call this process quasi-reiteration or (𝑡, 𝑖, 𝑓) −reiteration. 

In a more general case, each state is partially dependent on the previous n 

states, for 𝑛 ≥ 1. This is called n-quasi-reiteration, or 𝑛 − (𝑡, 𝑖, 𝑓) −reiteration. 

Therefore, the previous neutrosophic system history partialy influences the 

future neutrosophic system’s states, which may be different even if the 

neutrosophic system started under the same initial conditions. 

37 Finite and infinite system 

A system is finite if its space, the number of its elements, and the number of its 

relationships are all finite. 

If at least one of these three is infinite, the system is considered infinite. An 

infinite system may be countable (if both the number of its elements and the 

number of its relationships are countable), or, otherwise, uncountable. 

38 Thermodynamic (𝑡, 𝑖, 𝑓) −equilibrium 

The potential energy (the work done for changing the system to its present 

state from its standard configuration) of the classical system is a minimum if 

the equilibrium is stable, zero if the equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 

A classical system may be in stable, neutral, or unstable equilibrium. A 

neutrosophic system may be in quasi-stable, quasi-neutral or quasi-unstable 

equilibrium, and its potential energy respectively quasi-minimum, quasi-null 

(i.e. close to zero), or quasi-maximum. {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), etc. or mathematically 

‘quasi’ means (𝑡, 𝑖, 𝑓) in a neutrophic way.} 
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In general, we say that a neutrosophic system is in (𝑡, 𝑖, 𝑓) − equilibrium, or 

𝑡%  in stable equilibrium, 𝑖%  in neutral equilibrium, and 𝑓%  in unstable 

equilibrium (non-equilibrium). 

When 𝑓 ≫ 𝑡 (f is much greater than t), the neutroophic system gets into deep 

non-equilibrium and the perturbations overtake the system’s organization to 

a new organization. 

Thus, similarly to the second law of thermodynamics, the neutrosophic system 

runs down to a (𝑡, 𝑖, 𝑓) −equilibrium state. 

A neutrosophic system is considered at a thermodynamic  

(𝑡, 𝑖, 𝑓) −equilibrium state when there is not (or insignificant) flow from a 

region to another region, and the momentum and energy are uninformally at 

(𝑡, 𝑖, 𝑓) −level. 

39 The (𝑡1, 𝑖1,  𝑓1) −cause produces a (𝑡2, 𝑖2, 𝑓2) −effect 

The potential energy (the work done for changing the system to its present 

state from its standard configuration) of the classical system is a minimum if 

the equilibrium is stable, zero if the equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 

In a neutrosophic system, a (𝑡1, 𝑖1,  𝑓1)-cause produces a (𝑡2, 𝑖2, 𝑓2)-effect. We 

also have cascading (𝑡, 𝑖, 𝑓)-effects from a given cause, and we have permanent 

change into the system. 

(𝑡, 𝑖, 𝑓)-principles and (𝑡, 𝑖, 𝑓)-laws function in a neutrosophic dynamic system. 

It is endowed with (𝑡, 𝑖, 𝑓)-invariants and with parameters of (𝑡, 𝑖, 𝑓)-potential 

(potentiality, neutrality, impotentiality) control. 

40 (𝑡, 𝑖, 𝑓) −holism 

A neutrosophic system is a (𝑡, 𝑖, 𝑓) −holism, in the sense that it has a degree of 

independent entity (t) with respect to its parts, a degree of indeterminate (i) 

independent-dependent entity with respect to its parts, and a degree of 

dependent entity (f) with respect to its parts. 

41 Neutrosophic soft assembly 

Only several ways of assembling (combining and arranging) the neutrosophic 

system’s parts are quasi-stable. The others assemble ways are quasi-

transitional.  

Florentin Smarandache (author and editor) Collected Papers, VIII

66



The neutrosophic system development is viewed as a neutrosophic soft 

assembly. It is alike an amoeba that changes its shape. In a neutrosophic 

dynamic system, the space, the elements, the relationships are all flexible, 

changing, restructuring, reordering, reconnecting and so on, due to 

heterogeneity, multimodal processes, multi-causalities, multidimensionality, 

auto-stabilization, auto-hierarchization, auto-embodiement and especially 

due to synergetism (the neutrosophic system parts cooperating in a 

(𝑡, 𝑖, 𝑓) −degree). 

42 Neutrosophic collective variable 

The neutrosophic system is partially incoherent (because of the 

indeterminacy), and partially coherent. Its quasi-behavior is given by the 

neutrosophic collective variable that embeds all neutrosophic variables acting 

into the (𝑡, 𝑖, 𝑓) −holism. 

43 Conclusion 

We have introduced for the first time notions of neutrosophic system and 

neutrosophic dynamic system. Of course, these proposals and studies are not 

exhaustive. 

Future investigations have to be done about the neutrosophic (dynamic or not) 

system, regarding: the neutrosophic descriptive methods and neutrosophic 

experimental methods, developmental and study the neutrosophic differential 

equations and neutrosophic difference equations, neutrosophic simulations, 

the extension of the classical A-Not-B Error to the neutrosophic form, the 

neutrosophic putative control parameters, neutrosophic loops or 

neutrosophic cyclic alternations within the system, neutrosophic 

degenerating (dynamic or not) systems, possible programs within the 

neutrosophic system, from neutrosophic antecedent conditions how to predict 

the outcome, also how to find the boundary of neutrosophic conditions, when 

the neutrosophic invariants are innate/genetic, what are the relationships 

between the neutrosophic attractors and the neutrosophic repellors, etc. 
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Abstract 

In spite of researchers’ concerns to find causalities, reviewing the literature of 

psychological studies one may argue that the classical statistical methods applied in 

order to find causalities are unable to find uncertainty and indeterminacies of the 

relationships between concepts.  

A Comparison of Combined Overlap Block Fuzzy Cognitive Maps 

(COBFCM) and Combined Overlap Block Neutrosophic Cognitive 

Map (COBNCM) in finding the hidden patterns and 

indeterminacies in Psychological Causal Models: 

Case Study of ADHD 

Hojjatollah Farahani, Florentin Smarandache, Lihshing Leigh Wang 

Hojjatollah Farahani, Florentin Smarandache, Lihshing Leigh Wang (2015). A Comparison of 
Combined Overlap Block Fuzzy Cognitive Maps (COBFCM) and Combined Overlap Block 
Neutrosophic Cognitive Map (COBNCM) in finding the hidden patterns and indeterminacies in 
Psychological Causal Models: Case Study of ADHD. Critical Review X: 70-84 

In this paper, we introduce two methods to find effective solutions by identifying 

“hidden” patterns in the patients’ cognitive maps. Combined Overlap Block Fuzzy 

Cognitive Map (COBFCM) and Combined Overlap Block Neutrosophic Map (COBNCM) 

are effective when the number of concepts can be grouped and are large in numbers. 

In the first section, we introduce COBFCM, COBNCM, their applications, and the 

advantages of COBNCM over COBFCM in some cases. In the second section, we explain 

eight overlapped cognitive concepts related to ADHD in children and apply COBNCM 

and COBFCM to analyze the modeled data, comparing their results. Conclusions, 

limitations, and implications for applying COBNCM in other psychological areas are 

also discussed. 

Keywords 
Fuzzy Cognitive Map, Neutrosophic Cognitive Map, Fuzzy model, Causal model, ADHD, 

Methodology. 
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1 Introduction 

A portfolio of project is a group of project that share resources creating 

relation among them of complementarity, incompatibility or synergy [1]. The 

interdependency modeling and analysis have commonly been ignored in 

project portfolio management [2].  

Identifying causalities is one of the most important concerns of researchers, 

one may find out reviewing the literature of psychological research. Although 

there are some statistical methods to investigate this issue, all, or majority, rely 

on quantitative data. Less attention was directed towards scientific qualitative 

knowledge and experience. In some methods based on theoretical basics such 

as structural equation modeling (SEM), there is no chance to find optimal 

solutions, hidden patterns and indeterminacies (possibilities) of causal 

relationships between variables, which are common in psychological research. 

Therefore, for linking quantitative and qualitative knowledge, it seems an urge 

to use methods as fuzzy cognitive maps or neutrosophic cognitive maps in 

psychological research. The two methods are rooted in cognitive map (CM). 

The cognitive maps for representing social scientific knowledge and 

describing the methods that is used for decision-making were introduced by 

Axelrod in 1976. The fuzzy cognitive map (FCM) was proposed by Kosko (1986) 

to present the causal relationship between concepts and analyze inference 

patterns. Kosko (1986, 1988, 1997) considered fuzzy degree of inter 

relationships between concepts, its nodes corresponding to a relevant node 

and the edges stating the relation between two nodes, denoted by a sign. A 

positive sign implies a positive relation; moreover, any increase in its source 

value leads to increase in its target value. A negative sign stages a negative 

relation and any increase or decrease in its source value leads to reverse effect 
to its target value. If there is no edge between two nodes in a cognitive map, it 
means that there is no relation between them (Zhang et al., 1998). In a simple 
fuzzy cognitive map, the relation between two nodes is determined by taking 
a value in interval [-1, 1]. 
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While -1 corresponds to the strongest negative value, +1 corresponds 

to strongest positive value. The other values express different levels of 

influence (Lee, et al., 2003). Fuzzy cognitive maps are important 

mathematical models representing the structured causality knowledge for 

quantitative inferences (Carvalho & Tome, 2007). FCM is a soft computing 

technique that follows an approach similar to the human reasoning and 

decision-making process (Markinos, et al., 2004). Soft computing is an 

emerging field that combines and synergies advanced theories and 

technologies such as Fuzzy Logic, Neural Networks, Probabilistic 

reasoning and Genetic Algorithms. Soft computing provides a hybrid 

flexible computing technology that can solve real world problems. Soft 

computing includes not only the previously mentioned approaches, but 

also useful combinations of its components, e.g. Neurofuzzy systems, Fuzzy 

Neural systems, usage of Genetic Algorithms in Neural Networks and 

Fuzzy Systems, and many other hybrid methodologies (Stylios & Peter, 

2000). FCM can successfully represent knowledge and human 

experiences, introduce concepts to represent the essential elements, cause 

and effect relationships among the concepts, to model the behavior of a 

system (Kandasamy, 1999, 2004). This method is a very simple and powerful 

tool that is used in numerous fields (Thiruppathi, et al. 2010). When 

dataset is an unsupervised one and there is uncertainty within the concepts, 

this method is very useful. The FCM give us the hidden patterns; this method 

is one effective method, providing a tool for unsupervised data. In addition, 

using this method, one can analyze the data by directed graphs and 

connection matrices where nodes represent concepts and edges - strength 

of relationships (Stylios & Groumpos, 2000). FCM works on the opinion of 

experts or another uncertainty results like the obtained results using 

structural equation modeling (SEM). FCM clarify optimal solution by using a 

simple way, while other causal models such as SEM are complicated. They 

do not perform well to clarify what-if scenario, for example, their results 

do not clarify what happens to marital satisfaction if Alexithymia is very 

high and Family intimacy is very low. Another advantage of FCM is its 

functioning on experts’ opinions (Thiruppathi et al. 2010). FCM is a flexible 

method used in several models to display several types of problems 

(Vasantha Kandasamy & Devadoss, 2004; Vasantha Kandasamy & 

Kisho, 1999). Although by using this method we are able to study 

uncertainty and find hidden patterns, the FCM is unable to investigate 

indeterminate relationships, which is a limitation in psychological causal 
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models. A solution to overcome this limitation is the Neutrosophic Cognitive 

Map (NCM). 

Vasantha Kandasamy and Smarandache (2003) proposed the neutrosophic 

cognitive maps, making it possible to mitigate the limitation of fuzzy cognitive 

maps, which cannot represent the indeterminate relations between variables. 

The capability of neutrosophic cognitive maps to represent indetermination 

facilitates the apprehension of systems complexity, and thus elucidates and 

predicts their behaviors in the absence of complete information. 

Neutrosophic Cognitive Map (NCM) relies on Neutrosophy. Neutrosophy is a 

new branch of philosophy introduced by Smarandache in 1995 as a 

generalization of dialectics, which studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra. 

Neutrosophic Cognitive Map (NCM) is the generalization and combination of 

the Fuzzy Cognitive Map in which indeterminacy is included. Fuzzy theory only 

measures the grade of membership or the non-existence of a membership in a 

revolutionary way, but failing to attribute the concept when the relationship 

between concepts in debate are indeterminate (Vasantha Kandasamy & 

Smarandache, 2007). A Neutrosophic Cognitive Map is a neutrosophic directed 

graph with concepts like policies, events etc. as nodes and causalities, or 

indeterminacies as edges. It represents the causal relationship between 

concepts defined by Smarandache (2001) and Vasantha Kandasamy (2007). 

Fuzzy cognitive maps deals with the relation / non-relation between two 

nodes or concepts, but it declines to attribute the relation between two 

conceptual nodes when the relation is an indeterminate one. In Neutrosophic 

Logic, each proposition is estimated to have the percentage of truth in a subset 

T, the percentage of indeterminacy in a subset I, and the percentage of falsity 

in a subset F. Every logical variable x is described by an ordered triple x = (T, I, 

F), where T is the degree of truth, F is the degree of false and I - the level of 

indeterminacy. Neutrosophy means that any proposition has a percentage of 

truth, a percentage of indeterminacy and a percentage of falsity (some of these 

percentages may be zero). Neutrosophy also makes distinctions between 

absolute truth (a proposition true in all possible worlds), which is denoted by 

1, and relative truth (a proposition which is true in at least one world, but not 

in all), which is denoted by I (Smarandache & Liu, 2004). Sometimes, in 

psychological and educational research, the causality between the two 

concepts, i.e. the effect of Ci on Cj is indeterminate. Chances of indeterminacy 

are possible and frequent in case of unsupervised data. Therefore, the NCM is 

a flexible and effective method based on fuzzy cognitive map for investigating 

the relations of psychological casual models in which indeterminate 

relationships are not unusual. We describe the basic components in detail to 

explain differences between the two methods. 
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2 Combined Overlap Block Fuzzy Cognitive Maps 

(COBFCM) and Combined Overlap Block Neutrosophic 

Cognitive Map (COBNCM) 

We can combine arbitrarily FCM and NCM connection matrices F1, F2,…, FK by 

adding augmented FCM and NCM matrices, F1, …, FK. Each augmented matrix 

Fi has n-rows and n-columns; n equals the total number of distinct concepts 

used by the experts. We permute the rows and columns of the augmented 

matrices to bring them into mutual coincidence. Then we add the Fi’s point 

wise to yield the combined FCM and NCM matrix F, F = ΣFi. We can then use F 

to construct the combined FCM and NCM directed graph. The combination can 

be in disjoint or overlapping blocks. 

Combined overlap block fuzzy cognitive maps (COBFCM) were introduced and 

applied in social sciences by Vasantha Kandasamy et al. (2004), and combined 

overlap block neutrosophic cognitive map (COBNCM) - by Vasantha 

Kandasamy & Smarandache (2007). In these two methods, finite number of 

NCM and FCM can be combined together to produce the joint effect of all NCM 

and FCM. In NCM method, N (E1), N (E2),…, N(Ep) are considered  the 

neutrosophic adjacency matrices, with nodes C1, C2,…, Cn, and E1, E2, …, Ep are 

the adjacency matrices of FCM with nodes C1, C2, …, Cn. The combined NCM and 

the combined FCM are obtained by adding all the neutrosophic adjacency 

matrices N (E1)… N (Ep) and adjacency matrices by E1,..,EP respectively. We 

denote the Combined NCM adjacency neutrosophic matrix by N(E) =N(E1) + 

N(E2)+…+ N(Ep) and the Combined FCM adjacency matrix by E=E1+E2+…+Ep . 

Both models {C1, C2,C3,….Cn} contain n concepts associated with P (a given 

problem). We divide the number of concepts {C1, C2,C3,….Cn} into K classes S1, 

S2,S3,…SK , where the classes are such that Si  Si+1≠ф , U Si = { C1, C2, ...,Cn } and 

|Si| ≠|Sj| ,if i≠ j in general. To introduce these methods in detail, we explain their 

basic components below. 

3 Concepts and edges 

In Combined Overlap Block Fuzzy Cognitive Maps (COBFCM) and Combined 

Overlap Block Neutrosophic Cognitive Map (COBNCM), the edges are 

qualitative concepts considered as nodes and causal influences. Concept nodes 

possess a numeric state, which denotes qualitative measures of the concepts 

present in the conceptual domain. When the nodes of FCM are a fuzzy set, they 

are called fuzzy nodes. Fuzzy means the concepts are not quantitative, they are 

uncertain, and we have to study them using linguistic variables, such as “very 

high”, “high”, “middle”, etc. The nodes or concepts are presented by C1, C2 ,
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C3 ,…..,Cn. The state of concepts is portrayed as a vector. In COBNCM, we assume 

each node is a neutrosophic vector from neutrosophic vector space V. Let C1, 

C2, …, Cn denote n nodes, So a node Ci will be represented by (x1, …,xn), where 

xk’s - zero or one or I (I is the indeterminate) and xk = 1 means that the node Ck 

is in the ON state, and xk =0 means the node is in the OFF state, and xk = I means 

the nodes state is an indeterminate at that time or in that situation. Let C1, C2… 

Cn be the nodes of COBNCM and let A = (a1, a2,…, an), where ai  {0, 1, I}. A is 

called the instantaneous state neutrosophic vector and it denotes the ON – OFF 

– indeterminate state position of the node at an instant:

ai = 0 if ai is off (no effect), 

ai = 1 if ai is on (has effect), 

ai = I if ai is indeterminate (effect cannot be determined), 

for i = 1, 2,…, n. 

In COBNCM, the nodes C1, C2, …, Cn are nodes and not indeterminate nodes, 

because they indicate the concepts which are well known. But the edges 

connecting Ci and Cj may be indeterminate, i.e. an expert may not be in the 

position to say that Ci has some causality on Cj, either he will be in the position 

to state that Ci has no relation with Cj; in such cases, the relation between Ci 

and Cj, which is indeterminate, is denoted by I. The COBFCM with edge weights 

or causalities from the set {-1, 0, 1} are called simple, and COBNCM with edge 

weight from {-1, 0, 1, I} are called simple COBNCM. In COBFCM, the edges (eij) 

take values in the fuzzy causal interval [-1, 1], eij =0, eij>0 and eij<0 indicate no 

causality, positive and negative causality, respectively. In simple FCM, if the 

causality occurs, it occurs to a maximal positive or negative degree. Every edge 

in COBNCM is weighted with a number in the set {-1, 0, 1, I}. eij is the weight of 

the directed edge CiCj, eij  {–1, 0, 1, I}. eij = 0 if Ci does not have any effect on 

Cj, eij = 1 if increase (or decrease) in Ci causes increase (or decrease) in Cj, eij = 

–1 if increase (or decrease) in Ci causes decrease (or increase) in Cj . eij = I if

the relation or effect of Ci on Cj is an indeterminate. In such cases, it is denoted

by dotted lines in the model.

4 Adjacency Matrix 

In COBFCM and COBNCM, the edge weights are presented in a matrix. This 

matrix is defined by E= (eij), where eij  indicates the  weight of direct edge CiCj 

and eij {0, 1,-1}, and by N (E) = (eij), where eij is the weight of the directed 

edge Ci Cj, where eij  {0, 1, -1, I}. We denote by N(E) the neutrosophic 

adjacency matrix of the COBNCM. It is important to note that all matrices used 
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in these methods are always a square matrix with diagonal entries as zeros. All 

off-diagonal entries are edge weights that link adjacent nodes to each other. A 

finite number of  FCM and NCM can be combined together to produce the joint 

effect of all FCM and NCM. Suppose E1,E2 ,E3…..EP and N(E1),N(E2),N(E3)…N(EP) 

are adjacency matrices of FCM and neutrosophic adjacency matrix of NCM, 

respectively, with nodes C1, C2 ,C3 ,…..,Cn. Then combined FCM and NCM are 

obtained by adding all the adjacency matrices (Vasantha Kandasamy & 

Smarandache, 2003). In combined overlap FCM and NCM, all entries of all 

different overlapped matrices are put in a whole matrix and added to each 

other. 

5 Inference process 

The states of concepts are rendered as vectors. Therefore, the inference 

process of FCM and NCM can be represented by an iterative matrix calculation 

process. Let V0 be the initial state vector, Vn be the state vector after n th 

iterative calculation, and W be the causal effect degree matrix; then the 

inference process can be defined as a repeating calculation of Equation 1 until 

the state vector converges to a stable value or fall in to an infinite loop. Suppose 

X1 = [1 0 0 0….0] is the input vector and E is the associated adjacency matrix. 

X1E  is obtained by multiplying X1 by the matrix E. We obtain X1E =[x1,x2,x3,….xn] 

by replacing xi by 1, if xi>c, and xi by 0, if xi<c (c is a suitable positive integer). 

After updating the thresholding concept, the concept is included in the 

updated vector by making the first coordinate as 1 in the resulting vector. 

Suppose X1E→X2, then X2E  is considered; the same procedure is repeated until 

it gets limit cycle or a fixed point (Thiruppathi, et al., 2010). 

Vn+1 = f (Vn ×W + Vn), (1)   

where the f is usually simply defined as f(x) = f0(x) = 1 (x ≥ 1), 0 (1 > x > −1) 

and −1 (−1 ≤ x). 

If the equilibrium state of a dynamical system is a unique state vector, then it 

is called a fixed point. Consider FCM and NCM with C1, C2…, Cn as nodes. For 

example, let us start the dynamical system by switching on C1. Let us assume 

that NCM and FCM settle down with C1 and Cn ON, i.e. the state vector remains 

as (1, 0,…, 1); this state vector (1,0,…, 0, 1) is called the fixed point; if FCM and 

NCM settle down with a state vector repeating in the form A1 → A2 → … → Ai → 

A1, then this equilibrium is called a limit cycle of NCM and FCM (Tabar, 1991). 

Let C1, C2,…, Cn be the vector of FCM and NSM. Let E be the associated adjacency 

matrix. Let us find the hidden pattern when x1 is switched on when an input is 

given as the vector A1= (1, 0, 0,…, 0); the data should pass through the 
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neutrosophic matrix N(E); this is done by multiplying A1 by the matrix N(E). Let 

A1N(E) = (a1, a2,…, an) with the threshold operation, by replacing ai by 1, if ai > 

k, and ai by 0, if ai < k, and ai by I, if ai is not an integer. 

𝑓(𝑘){

𝑎𝑖 < 𝑘 → 𝑎𝑖 = 0
𝑎𝑖 > 𝑘 → 𝑎𝑖 = 1

𝑎𝑖 = 𝑏 + 𝑐 × 𝐼 → 𝑎𝑖 = 𝑏
𝑎𝑖 = 𝑐 × 𝐼 → 𝑎𝑖 = 𝐼

} 

(k depends on researcher’s opinion, for example K=1 or 0.5). 

Note that (a1, a2… an) and (a'1, a'2, …, a'n) are two neutrosophic vectors. We say 

(a1, a2, … , an) is equivalent to (a'1, a'2, … , a'n) denoted by (a1, a2, … , an) ~ (a'1, 

a'2, …, a'n), if we get (a'1, a'2, … , a'n) after thresholding and updating the vector 

(a1, a2, … , an), after passing through the neutrosophic adjacency matrix N(E). 

The initial state vector in FCM and NCM is included 0 and 1 only (OFF and ON 

states, respectively). But after it passes through the adjacency matrix, the 

updating resultant vector may have entries from (0 and 1) in FCM and from (0, 

1, I) in NCM, respectively. In this case, we cannot confirm the presence of that 

node (ON state), nor the absence (OFF state). Such possibilities are present 

only in the case of NCM. 

6 Cyclic and acyclic FCM and NCM 

If FCM and NCM possess a directed cycle, it is said to be cyclic (to have a 

feedback) and we call it a dynamical system. FCM and NCM are acyclic if they 

do not possess any directed cycle. 

7 FCM versus NCM 

Vasantha Kandasamy and Smarandache (2003) summarize the differences 

between FCM and NCM: 

[1] FCM indicates the existence of causal relation between two concepts,

and if no relation exists, it is denoted by 0.

[2] NCM does not indicate only the existence or absence of causal relation

between two concepts, but also gives representation to the

indeterminacy of relations between any two concepts.

[3] We cannot apply NCM for all unsupervised data. NCM will have

meaning only when relation between at least two concepts Ci and Cj are

indeterminate.

Florentin Smarandache (author and editor) Collected Papers, VIII

76



[4] The class of FCM is strictly contained in the class of NCM. All NCM can

be made into FCM by replacing I in the connection matrix by 0.

[5] The directed graphs in case of NCM are called neutrosophic graphs. In

the graphs, there are at least two edges, which are related by the dotted

lines, meaning the edge between those two vertices is an indeterminate.

[6] All connection matrices of the NCM are neutrosophic matrices. They

have in addition to the entries 0, 1, –1, the symbol I.

[7] The resultant vectors, i.e. the hidden pattern resulting in a fixed point

or a limit cycle of a NCM, can also be a neutrosophic vector, signifying

the state of certain conceptual nodes of the system to be an

indeterminate; indeterminate relation is signified by I.

[8] Because NCM measures the indeterminate, the expert of the model can

give careful representation while implementing the results of the

model.

[9] In case of simple FCM, we have the number of instantaneous state

vectors to be the same as the number of resultant vectors, but in the

case of NCM the number of instantaneous state vectors is from the set

{0,1}, whereas the resultant vectors are from the bigger set {0, 1, I}.

[10] Neutrosophic matrix {N (E)} converts to adjacency matrix (E) by easily

recoding I to 0.

8 Case study: The comparison of COBFCM and COBNCM 

to find solution for ADHD 

Attention-Deficit/Hyperactivity Disorder (ADHD) is not only the most 

common neuro-developmental disorder of childhood today, but also the most 

studied. Literature reviews report very different prevalence estimates. The 

DSM-IV states that the prevalence of ADHD is about 3–5% among school-age 

children [American Psychiatric Association, 1994]. Some of consequences of 

untreated ADHD children are social skills deficits, behavioral disinhibition and 

emotional skills deficits. Therefore, early diagnosis of ADHD is very important. 

The purpose of this paper is the comparison of application of COBFCM and 

COBNCM to identify the risk groups. When data is an unsupervised one and 

based on experts’ opinions and there is uncertainty in the concepts, COBFCM 

is the best option, and when data is an unsupervised one and there is 

indeterminacy in the concepts, COBNCM is a preferred method. The 

comparison of these methods clarifies this fundamental point and the 

relationship of to-be-determined and not-to-be-determined between the 

concepts, including the effect on results in casual models in psychological 

research.  
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Based on experts’ opinions (five child and developmental psychologists) and 

the corresponding literature, we determined eight cognitive concepts related 

to ADHD: 

[1] C1: Mother’s harmful substance use;

[2] C2: Mother’s low physical self-efficacy;

[3] C3: Mother’s bad nutrition;

[4] C4: Mother’s depression;

[5] C5: Family conflict;

[6] C6: Father’s addiction;

[7] C7: Child’s emotional problems;

[8] C8: Child’s hyper activity.

9 Combined Overlap Block NCM 

We divide these concepts in to 3 equal length classes; each class has just four 

concepts in the following manner: 

S1={C1,C2,C3,C4}, S2={C2,C4,C5,C6} and S3={C4,C5,C7,C8} 

These three classes are offered to experts in order to determine relationships 

and the strength. In addition, we asked them to delineate edges that have 

indeterminate effects by dotted lines in the figures and by I in the 

corresponding matrices. The directed graph and relation matrix for the S1, S2 

and S3 given by the expert is as follow: 

The combined overlap block connection matrix of NCM is given by E (N). 

   C1  C2 C3 C4 

C1   0 I 0 1 

C2   0 0 0 1 

C3   1 0 0 I 

C4   0 0 I 0  

  C2  C4  C5  C6  

C2 0 1  0  0 

C4  0 0 1 I 

C5  0 1 0 0 

C6  0  I I 0 

  C4  C5  C7  C8 

C4  0 1  1  0 

C5  1 0  1 1 

C7  1 0  0 1 

C8  0 0 1 0 

Figure 1  Figure 2 Figure 3 

 

C4C3

C2C1
C2

C5 C6

C4
C5C4

C7 C8
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The combined overlap block connection matrix of FCM is given by E. 

0, 0, 0, 1, 0, 0, 0, 0  
0, 0, 0, 2, 0, 0, 0, 0 
1, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 1, 0, 1, 0 
0, 0, 0, 2, 0, 0, 1, 1 
0, 0, 0, 0, 0, 0, 0, 0 
0, 0, 0, 1, 0, 0, 0, 1 
0, 0, 0, 0, 0, 0, 1, 0 

10 Hidden Patterns 

Now, using the combined matrix E(N), we can determine any hidden patterns 

embedded in the matrix. Suppose the concept C4 (Mother’s depression) is in 

the ON state. So, initial vector for studying the effects of these concepts on the 

dynamical system E is A= [0 0 0 1 0 0 0 0]. Let A state vector depicting the ON 

state of Mother’s depression passing the state vector A in to the dynamical 

system E (N): 

A=[0 0 0 1 0 0 0 0] 

AE(N) =[ 0, 0, I, 0, 1, I, 1, 0]        [0 0 I 1 1 I 1 0]=A1 

A1E(N)=[ I, 0, I, 2*I^2 + 3, I^2 + 1, I, 2, 2]  [I 0 I 1 1 I 1 1]=A2 

A2E(N)=[ I, I^2, I, 2*I^2 + I + 3, I^2 + 1, I, 3, 2]  

[I I I 1 1 I 1 1]=A3 

A3E(N) =[ I, I^2, I, 2*I^2 + 3*I + 3, I^2 + 1, I, 3, 2]    

[I I I 1 1 I 1 1]=A4=A3. 

  C1  C2 C3 C4 C5 C6 C7 C8 

C1 

C2  

C3  

C4  

C5  

C6  

C7 

C8  

E (N) 

 

C4C3

C2C1

C7 C8

C5

C6
0, I, 0, 1, 0, 0, 0, 0 
0, 0, 0, 2, 0, 0, 0, 0 
1, 0, 0, I, 0, 0, 0, 0 
0, 0, I, 0, 1, I, 1, 0 
0, 0, 0, 2, 0, 0, 1, 1 
0, 0, 0, I, I, 0, 0, 0 
0, 0, 0, 1, 0, 0, 0, 1 
0, 0, 0, 0, 0, 0, 1, 0 

  C1 C2 C3 C4 C5 C6 C7 C8 

C1 

C2  

C3  

C4  

C5  

C6  

C7 

 C8  

E 
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Since A4=A3 (we have reached the fixed point of the dynamical system). A3 is 

determined to be a hidden pattern. Now again using the COBFCM we can 

determine hidden patterns embedded in the matrix (E), such as COBNCM, here 

initial vector considered A= [0 0 0 1 0 0 0 0], i.e. we suppose the Mother’s 

depression is high. The results obtained are as following: 

 AE=[0 0 0 1 1 0 1 0] =A1 

 A1E=[ 0 0 0 1 1 0 1 1] =A2 

 A2E=[ 0 0 0 1 1 0 1 1] =A3=A2 

By A3=A2 we have reached the fixed point of the dynamical system. A2 is 

determined to be a hidden pattern using the COBFCM. 

11 Weighted Method 

We can use the weighted method to clarify the results, when there is a tie 

between the concepts inputs. Suppose the resultant vector be A= [10 0 1 1 1 

0], i.e., the half of the concepts suggest that the given problem exists, but other 

three suggest that the problem is not justified on the basis of available concept. 

In this case, we can adopts a simple weighted approach where in each of the 

concepts can be assigned weights based on experts’ opinions. For example, 

C1=20%, C2=10%, C3=10%, C4=60%, C5=25%, C6=30%, C7=20%. The ON - OFF 

state for each Concept in A vector leads to a weighted average score of the 

corresponding concepts. Suppose the initial vector is A= [0 0 0 0 0 1 0]; based 

on the resultant vector and the experts’  weights  for the concepts, we can find 

a weighted average score. In this case, Geometric mean is an accurate and 

appropriate  measure for calculating average score, because the data are 

expressed in percentage terms. The resulting of the example equals to 30% 

(which tends towards absence of the problem (since this is <50%, the point of 

no difference). 

The results based on the COBNCM indicated when a mother suffering from 

depression, i.e. the C4 is in the ON state; there will be family conflict, child’s 

emotional problems, Child’s hyper activity and also there may be Mother’s 

harmful substance use, Mother’s low physical self-efficacy, Mother’s bad 

nutrition and Father’s addiction. Based on the results of this study using the 

COBFCM, when a mother is depressed, there will be child’s hyperactivity, 

emotional problems, and family conflict. Although, based on the results of the 

two models mother’s depression being the main cause of ADHD, based on the 

COBFCM we cannot determine the occurrence of possibilities of some 

corresponding concepts in developing ADHD. 
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12 Discussion 

It is important to note that in COBFCM eij measures only absence or presence 

of influence of the node Ci on Cj, but untill now any researcher has not 

contemplated the indeterminacy of any relation between two nodes Ci and Cj. 

When researchers deal with unsupervised data, there are situations when no 

relation can be determined between two nodes (Vasantha Kandasamy & 

Smarandache, 2005). The presence of I in any coordinate implies the expert 

cannot tell the presence of that node, i.e. on state after passing through N (E), 

nor can we say the absence of the node, i.e. off state - the effect on the node 

after passing through the dynamical system is indeterminate, so it is 

represented by I. Thus, only in case of NCM we can identify that the effect of 

any node on other nodes can also be indeterminate. Such possibilities and 

analysis is totally absent in the case of FCM. Therefore, the COBFCM only 

indicates that what happens for Cj when Ci  is  in an ON state, but it cannot 

indicate the effects of the concepts on each other in neutral states. In other 

words, by using COBFCM, some of the latent layers of the relationships 

between the concepts are not discovered. Thus, only the COBNCM helps in 

such conditions.  

The core of psychology and education is theoretical. Theories themselves 

consist of constructs, concepts and variables, which are expressed by linguistic 

propositions - to describe, explain and predict the phenomena. For these 

characteristics of theory, Smarandache (2001) believes that no theory is 

exempted from paradoxes, because of language imprecision, metaphoric 

expression, various levels or meta-levels of understanding/interpretation, 

which might overlap. These propositions do not mean a fixed-valued 

components structure and it is dynamic, i.e. the truth value of a proposition 

may change from one place to another place and from one time to another time, 

and it changes with respect to the observer (subjectivity). For example, the 

proposition "Family conflict leads to divorce" does not mean a fixed-valued 

components structure; this proposition may be stated 35% true, 45% 

indeterminate, and 45% false at time t1; but at time t2 may change at 55% true, 

49% indeterminate, and 32% false (according with new evidences, sources, 

etc.); or the proposition " Jane is depressed " can be (.76,.56, .30) according to 

her psychologist, but (.85, .25, .15) according to herself, or (.50, .24, .35) 

according to her friend, etc. Therefore, considering the indeterminacies in 

investigating the causal relationships in psychological and educational 

research is important, and it is closer to the human mind reasoning. A good 

method in this condition is using the NCM, as seen before, using the FCM leads 

to ignoring indeterminacies (by converting the eij=I to eij=0), and this ignoring 

itself  leads to the covering  the latent effects of the concepts of the causal 

models. It is recommended that in the conditions that indeterminacies are 

important, researchers use the NCM method. 

Florentin Smarandache (author and editor) Collected Papers, VIII

81



13 References 

[1] Carvalho, J., & Tomé, J. (2007, December). Fuzzy Mechanisms for Causal
Relations. Proceedings of the 8 International Fuzzy Systems Association
World Congress. Greece, 65-74.

[2] Craiger, J.P., Weiss, R.J., Goodman, D.F., Butler, A.A. (1996). Simulating
organizational behavior with fuzzy cognitive maps. In “International
Journal of Computer”, 1, 120–133.

[3] Kosko, B. (1986). Fuzzy cognitive map. In “International Journal of Man-

Machine Studies”. January, 62-75.

[4] Kosko, B. (1997). Neural network and fuzzy system: A dynamical system

approach to machine Intelligence. Prentice Hall of India.

[5] Lee, K. C., & Lee, S. (2003). A cognitive map simulation approach to
adjusting the design factors of the electronic commerce web sites. In
“Expert Systems with Applications”, 24(1), 1–11.

[6] Lee, S., & Ahn, H. (2009). Fuzzy cognitive map based on structural
equation modeling for the design of controls in Business-to-consumer e-
commerce web-based systems. In “Expert Systems with Applications”, 36,
10447-10460.

[7] Markinos, A.T., Gemtos, T.A., Pateras, D., Toulios, L., Zerva, G., &
Papaeconomou, M. (2004). Introducing Fuzzy Cognitive Maps for
decision making in precision agriculture. Paper presented at Conference
on the Influence of Information and Communication Technology in
Agriculture. Thessaloniki.

[8] Özesmi, U. &. Özesmi, S., L. (2004). Ecological models based on people’s
knowledge: a multi-step fuzzy cognitive mapping approach. In
“Ecological Modeling”, 176, 43–64.

[9] Smarandache, F. (2001, December). Neutrosophy, Neutrosophic Logic.

Proceedings of the First International Conference on Neutrosophy,

Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and

Statistics (second printed edition). University of New Mexico.

[10] Smarandache,F. & Liu, F. (2004). Neutrosophic Dialogues. Phoenix.

Arizona.

[11] Stylios, C.D., and Groumpos, P.P. (2000, July). Fuzzy cognitive maps: A

soft computing Technique for Intelligent Control. Proceeding of the IEEE

International Symposium on Intelligent Control held in Patras, Greece,

97-102.

[12] Stylios, S.D. &Peter, P., G. (2000, July). Fuzzy Cognitive Maps: A soft
Computing Technique for Intelligent Control. Proceedings of the 15th
IEEE International  Symposium on Intelligent Control. Rio, Patras,
Greece, 97-102.

[13] Taber, R. (1991). Knowledge Processing with Fuzzy Cognitive Maps. In
“Expert Systems with Applications”. 2, 8, 83-87.

[14] Thiruppathi, P., Saivaraju, N., & Ravichandran, K., S. (2010). A solution

to control suicides using combined overlap block fuzzy cognitive maps. In

“International Journal of Computer Applications”, 11(2), 1–4.

Florentin Smarandache (author and editor) Collected Papers, VIII

82



[15] Vasantha Kandasamy, W.B., & Kishore, M.R. (1999). Symptom-Disease

model in children using FCM. In “Ultra science”, 11, 318-324.

[16] Vasantha Kandasamy, W. B., & Smarandache, Florentin (2003). Fuzzy
Cognitive Maps and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 211
p.

[17] Vasantha Kandasamy, W.B., & Smarandache, F. (2005). Fuzzy and
Neutrosophic Analysis Of Periyar‘s Views On Untouch Ability. Hexis.
Phoenix: Arizona.

[18] Vasantha Kandasamy, W.B., & Victor Devadoss, A. (2004). Some new

fuzzy techniques. In “Journal of Institute of Mathematics and Computer

Science”, 17, (2), 157-160.

[19] Zhang, W.R. &Chen, S., S. (1998). A logical Architecture for Cognitive

Maps. IEEE International Conference on Neural Networks. 224-232.

Florentin Smarandache (author and editor) Collected Papers, VIII

83



Abstract: Fuzzy sets are the most significant tools to handle uncertain data while neutro-

sophic sets are the generalizations of fuzzy sets in the sense to handle uncertain, incomplete,

inconsistent, indeterminate, false data. In this paper, we introduced fuzzy subspaces and neu-

trosophic subspaces (generalization of fuzzy subspaces) by applying group actions.Further, we

define fuzzy transitivity and neutrosophic transitivty in this paper. Fuzzy orbits and

neutrosophic orbits are introduced as well. We also studied some basic properties of fuzzy

subspaces as well as neutrosophic subspaces.

Key Words: Fuzzy set, neutrosophic set, group action, G-space, fuzzy subspace, neutro-

sophic subspace.

§1. Introduction

The theory of fuzzy set was first proposed by Zadeh in the seminal paper [22] in 1965. The

concept of fuzzy set is used successfully to modelling uncertain information in several areas of

real life. A fuzzy set is defined by a membership function µ with the range in unit interval

[0, 1]. The theory and applications of fuzzy sets and logics have been studied extensively in

several aspects in the last few decades such as control, reasoning, pattern recognition, and

computer vision etc. The mathematical framework of fuzzy sets become an important area for

the research in several phenomenon such as medical diagnosis, engineering, social sciences etc.

Literature on fuzzy sets can be seen in a wide range in [7, 24, 25, 26].

The degree of membership of an element in a fuzzy set is single value between 0 and 1.

Thus it may not always be true that the degree of non-membership of an element in a fuzzy

set is equal to 1 minus the membership degree because there is some kind of hesitation degree.

Therefore, in 1986, Atanassov [1] introduced an extension of fuzzy sets called intuitionistic fuzzy

set. An intuitionistic fuzzy sets incorporate the hesitation degree called hesitation margin and
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this hesitation margin is defining as 1 minus the sum of membership and non-membership

degree. Therefore the intuitionistic fuzzy set is defined by a membership degree µ as well as

a non-membership function υ with same range [0, 1]. The concpet of Intuitionistic fuzzy sets

have been applied successfully in several fields such as medical diagnosis, sale analysis, product

marketing, financial services, psychological investigations, pattern recognition, machine learning

decision making etc.

Smarandache [14] in 1980, introduced a new theory called Neutrosophy, which is basically

a branch of philosophy that focus on the origin, nature, and scope of neutralities and their

interactions with different ideational spectra. On the basis of neutrosophy, he proposed the

concept of neutrosophic set which is characterized by a degree of truth membership T , a de-

gree of indeterminacy membership I and a degree falsehood membership F . A neutrosophic

set is powerful mathematical tool which generalizes the concept of classical sets, fuzzy sets [22],

intuitionistic fuzzy sets [2], interval valued fuzzy sets [15], paraconsistent sets [14], dialetheist

sets [14], paradoxist sets [14], and tautological sets [14]. Neutrosophic sets can handle the in-

determinate, imprecise and inconsistent information that exists around our daily life. Wang et

al. [17] introduced single valued neutrosophic sets in order to use them easily in scientific and

engineering areas that gives an extra possibility to represent uncertain, incomplete, imprecise,

and inconsistent information. Hanafy et.al further studied the correlation coefficient of neutro-

sophic sets [5, 6]. Ye [18] defined the correlation coefficient for single valued neutrosophic sets.

Broumi and Smaradache conducted study on the correlation coefficient of interval neutrosophic

set in [2]. Salama et al. [12] focused on neutrosophic sets and netrosophic topological spaces.

Some more literature about neutrosophic set is presented in [4, 8, 10, 11, 13, 16, 19, 20, 23].

The notions of a G-spaces [3] were introduced as a consequence of an action of a group on

an ordinary set under certain rulers and conditions. Over the passed history of Mathematics

and Algebra, the theory of group action [3] has proven to be an applicable and effective

mathematical framework for the study of several types of structures to make connection among

them. The applications of group action can be found in different areas of science such as physics,

chemistry, biology, computer science, game theory, cryptography etc which has been worked

out very well. The abstraction provided by group actions is an important one, because it allows

geometrical ideas to be applied to more abstract objects. Several objects and things have found

in mathematics which have natural group actions defined on them. Specifically, groups can act

on other groups, or even on themselves. Despite this important generalization, the theory of

group actions comprise a wide-reaching theorems, such as the orbit stabilizer theorem, which

can be used to prove deep results in several other fields.

§2. Literature Review and Basic Concepts

Definition 2.1([22]) Let X be a space of points and let x ∈ X . A fuzzy set A in X is

characterized by a membership function µ which is defined by a mapping µ : X → [0, 1]. The

fuzzy set can be represented as

A = {〈x, µ (x)〉 : x ∈ X} .
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Definition 2.2([14]) Let X be a space of points and let x ∈ X. A neutrosophic set A in X is

characterized by a truth membership.

function T , an indeterminacy membership function I , and a falsity membership function

F . T, I, F are real standard or non-standard subsets of ]0−, 1+[, and T, I, F : X → ]0−, 1+[.

The neutrosophic set can be represented as

A = {〈x, T (x) , I (x) , F (x)〉 : x ∈ X} .

There is no restriction on the sum of T, I, F , so 0− ≤ T + I + F ≤ 3+.

From philosophical point of view, the neutrosophic set takes the value from real standard

or non-standard subsets of ]0−, 1+[. Thus it is necessary to take the interval [0, 1] instead of

]0−, 1+[ for technical applications. It is difficult to apply ]0−, 1+[ in the real life applications

such as engineering and scientific problems.

Definition 2.3([3]) Let Ω be a non empty set and G be a group. Let υ : Ω × G −→ Ω be a

mapping. Then υ is called an action of G on Ω if for all ω ∈ Ω and g, h ∈ G, there are

(1) υ (υ (ω, g) , h) = υ (ω, gh)

(2) υ (ω, 1) = ω, where 1 is the identity element in G.

Usually we write ωg instead of υ (ω, g). Therefore (1) and (2) becomes as

(1) (ω
g

)h = (ω)gh. For all ω ∈ Ω and g, h ∈ G.

(2) ω1 = ω.

A set Ω with an action of some group G on it is called a G-space or a G-set. It basically

means a triplet (Ω, G, υ).

Definition 2.4([3]) Let Ω be a G-space and Ω1 6= φ be a subset of Ω. Then Ω1 is called a

G-subspace of Ω if ωg ∈ Ω1 for all ω ∈ Ω1 and g ∈ G.

Definition 2.5([3]) Let Ω be a G-space. We say that Ω is transitive G-space if for any α, β ∈ Ω,

there exist g ∈ G such that αg = β.

§3. Fuzzy Subspace

Definition 3.1 Let Ω be a G-space. Let µ : Ω → [0, 1] be a mapping. Then µ is called a fuzzy

subspace of Ω if µ (ωg) ≥ µ (ω) and µ
(

ωg−1
)

≤ µ (ω) for all ω ∈ Ω and g ∈ G.

Example 3.1 Let Ω = (Z4,+) and G = {0, 2} ≤ Z4. Let υ : Ω ×G→ Ω be an action of G on

Ω defined by ωg = ω+g for all ω ∈ Ω and g ∈ G. Then Ω is a G-space. We define µ : Ω → [0, 1]

by

µ (0) =
1

2
and µ (1) = µ (2) = µ (3) = 1

Then clearly µ is a fuzzy subspace of Ω.
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Definition 3.2 Let Ωµ be a fuzzy subspace of the G-space Ω. Then µ is called transitive fuzzy

subspace if for any α, β from Ω, there exist g ∈ G such that µ (αg) = µ (β).

Example 3.2 Let Ω = G = (Z4,+). Let υ : Ω × G → Ω be an action of G on Ω defined by

ωg = ω + g for all ω ∈ Ω and g ∈ G. We define µ : Ω → [0, 1] by

µ (0) =
1

2
and µ (1) = µ (2) = µ (3) = 1

Then clearly µ is a transitive fuzzy subspace of Ω.

Theorem 3.1 If Ω is transitive G-space, then µ is also transitive fuzzy subspace.

Proof Suppose that Ω is transitive G-space. Then for any α, β ∈ Ω, there exist g ∈ G such

that αg = β. This by taking µ on both sides, we get µ (αg) = µ (β) for all α, β ∈ Ω. Hence by

definition µ is a transitive fuzzy subspace of Ω. 2
Definition 3.3 A transitive fuzzy subspace of Ω is called fuzzy orbit.

Example 3.3 Consider above Example, clearly µ is a fuzzy orbit of Ω.

Theorem 3.2 Every fuzzy orbit is trivially a fuzzy subspace but the converse may not be true.

For converse, see the following Example.

Example 3.4 Let Ω = S3 =
{

e, y, x, x2, xy, x2y
}

and G = {e, y} ≤ S3. Let υ : Ω ×G → Ω be

an action of G on Ω defined by ρσ = ρσ for all ρ ∈ Ω and σ ∈ G. Then clearly Ω is a G-space.

Let µ : Ω → [0, 1] be defined as µ (e) = µ (y) = µ (x) = µ
(

x2
)

= µ (xy) = µ
(

x2y
)

= 2
5 . Thus

µ is a fuzzy subspace of Ω but µ is not a transitive fuzzy subspace of Ω as µ has the following

fuzzy orbits:

µ1 =

{

µ (e) = µ (y) =
2

5

}

,

µ2 =

{

µ (x) = µ
(

x2
)

=
2

5

}

,

µ3 =

{

µ (xy) = µ
(

x2y
)

=
2

5

}

.

Definition 3.4 Let Ω be a G-space and Ωµ be a fuzzy subspace. Let α ∈ Ω. The fuzzy stabilizer

is denoted by Gµ(α) and is defined to be Gµ(α) = {g ∈ G : µ (αg) = µ (α)} .

Example 3.5 Consider the above Example. Then

Gµ(e) = Gµ(y) = Gµ(x) = Gµ(x2) = Gµ(xy) = Gµ(x2y) = {e} .

Theorem 3.3 If Gα is G-stabilizer, then Gµ(α) is a fuzzy stabilizer.

Theorem 3.4 Let Gµ(α) be a fuzzy stabilizer. Then Gµ(α) ≤ Gα.

Remark 3.1 Let Gµ(α) be a fuzzy stabilizer. Then Gµ(α) ≤ G.
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§4. Neutrosophic Subspaces

Definition 4.1 Let Ω be a G-space. Let A : Ω → [0, 1]
3

be a mapping. Then A is called a

neutrosophic subspace of Ω if The following conditions are hold.

(1) T (ωg) ≥ T (ω) and T
(

ωg−1
)

≤ T (ω),

(2) I (ωg) ≤ I (ω) and I
(

ωg−1
)

≥ I (ω) and

(3) F (ωg) ≤ F (ω) and F
(

ωg−1
)

≥ F (ω) for all ω ∈ Ω and g ∈ G.

Example 4.1 Let Ω = G = (Z4,+). Let υ : Ω × G → Ω be an action of G on Ω which is

defined by ωg = ω + g. Then Ω is a G-space under this action of G. Let A : Ω → [0, 1]
3

be a

mapping which is defined by

T (0) = 0.5, T (1) = T (2) = T (3) = 1,

I (0) = 0.3 and I (1) = I (2) = I (3) = 0.1,

and

F (0) = 0.4 and F (1) = F (2) = F (3) = 0.2.

Thus clearly A is a neutrosophic subspace as A satisfies conditions (1), (2) and (3).

Theorem 4.1 A neutrosophic subspace is trivially the generalization of fuzzy subspace.

Definition 4.2 Let A be a neutrosophic subspace of the G-space Ω. Then A is called fuzzy

transitive subspace if for any α, β from Ω, there exist g ∈ G such that

F (αg) = F (β) ,

F (αg) = F (β) ,

F (αg) = F (β) .

Example 4.2 Let Ω = G = (Z4,+). Let υ : Ω × G → Ω be an action of G on Ω defined by

ωg = ω + g for all ω ∈ Ω and g ∈ G. We define A : Ω → [0, 1]
3

by

T (0) =
1

2
and T (1) = T (2) = T (3) = 1,

I (0) =
1

3
and I (1) = I (2) = I (3) = 1,

F (0) =
1

4
and F (1) = F (2) = F (3) = 1.

Then clearly A is a neutrosophic transitive subspace of Ω.

Theorem 4.2 If Ω is transitive G-space, then A is also neutrosophic transitive subspace.

Proof Suppose that Ω is transitive G-space. Then for any α, β ∈ Ω, there exist g ∈ G such
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that αg = β. This by taking T on both sides, we get T (αg) = T (β) for all α, β ∈ Ω. Similarly,

we can prove it for the other two components I and F . Hence by definition A is a neutrosophic

transitive subspace of Ω. 2
Definition 4.3 A neutrosophic transitive subspace of Ω is called neutrosophic orbit.

Example 4.3 Consider above Example 4.2, clearly A is a neutrosophic orbit of Ω.

Theorem 4.3 All neutrosophic orbits are trivially the generalization of fuzzy orbits.

Theorem 4.4 Every neutrosophic orbit is trivially a neutrosophic subspace but the converse

may not be true.

For converse, see the following Example.

Example 4.4 Let Ω = S3 =
{

e, y, x, x2, xy, x2y
}

and G = {e, y} ≤ S3. Let υ : Ω ×G→ Ω be

an action of G on Ω defined by ρσ = ρσ for all ρ ∈ Ω and σ ∈ G. Then clearly Ω is a G-space.

Let A : Ω → [0, 1] be defined as

T (e) = T (y) = T (x) = T
(

x2
)

= T (xy) = T
(

x2y
)

=
2

5
,

I (e) = I (y) = I (x) = I
(

x2
)

= I (xy) = I
(

x2y
)

=
3

7
,

F (e) = F (y) = F (x) = F
(

x2
)

= F (xy) = F
(

x2y
)

=
4

9
.

Thus A is a neutrosophic subspace of Ω but A is not a neutrosophic transitive subspace of

Ω as A has the following neutrosophic orbits:

T1 =

{

µ (e) = µ (y) =
2

5

}

, I1 =

{

I (e) = I (y) =
3

7

}

, F1 =

{

F (e) = F (y) =
4

9

}

,

µ2 =

{

µ (x) = µ
(

x2
)

=
2

5

}

, I2 =

{

I (x) = I
(

x2
)

=
3

7

}

, F2 =

{

F (x) = F
(

x2
)

=
4

9

}

,

µ3 =

{

µ (xy) = µ
(

x2y
)

=
2

5

}

, I3 =

{

I (xy) = I
(

x2y
)

=
3

7

}

, F3 =

{

F (xy) = F
(

x2y
)

=
4

9

}

.

Definition 4.4 Let Ω be a G-space and A be a neutrosophic subspace. Let α ∈ Ω. The

neutrosophic stablizer is denoted by GA(α) and is defined to be

GA(α) = {g ∈ G : T (αg) = T (α) , I (αg) = I (α) , F (αg) = F (α)} .

Example 4.5 Consider the above Example 4.4. Then

GA(e) = GA(y) = GA(x) = GA(x2) = GA(xy) = GA(x2y) = {e} .

Theorem 4.5 If Gα is G-stabilizer, then GA(α) is a neutrosophic stabilizer.
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Theorem 4.6 Every neutrosophic stabilizer is a generalization of fuzzy stabilizer.

Theorem 4.7 Let GA(α) be a neutrosophic stabilizer. Then GA(α) ≤ Gα.

Remark 4.1 Let GA(α) be a neutrosophic stabilizer. Then GA(α) ≤ G.

§5. Conclusion

In this paper, we introduced fuzzy subspaces and neutrosophic subspaces (generalization of fuzzy

subspaces) by applying group actions.Further, we define fuzzy transitivity and neutrosophic

transitivity in this paper. Fuzzy orbits and neutrosophic orbits are introduced as well. We also

studied some basic properties of fuzzy subspaces as well as neutrosophic subspaces. In the near

future, we are applying these concepts in the field of physics, chemistry and other related fields

to find the uncertainty in symmetries.
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Abstract. This paper is a theoretical approach for a potential neutrosophic quantum 
computer to be built in the future, which is an extension of the classical theoretical 
quantum computer, into which the indeterminacy is inserted. 

Keywords: neutrobit, indeterminacy, neutrosophic quantum, neutrosophic polarization, 
neutrosophic particle,  entangled neutrosophic particles, neutrosophic superposition, 
neutrosophic dynamic system, neutrosophic Turing machine, neutrosophic quantum 
functions 

1. Introduction
Neutrosophic quantum communication is facilitated by the neutrosophic polarization, that
favors the use the neutrosophic superposition and neutrosophic entanglement. The
neutrosophic superposition can be linear or non-linear. While into the classical
presumptive quantum computers there are employed only the coherent superpositions of
two states (0 and 1), in the neutrosophic quantum computers one supposes the
possibilities of using coherent superpositions amongst three states (0, 1, and I =
indeterminacy) and one explores the possibility of using the decoherent superpositions as
well.

2. Neutrosophic polarization
The neutrosophic polarization of a photon is referred to as orientation of the oscillation
of the photon: oscillation in one direction is interpreted as 0, oscillation in opposite
direction is interpreted as 1, while the ambiguous or unknown or vague or fluctuating
back and forth direction as I (indeterminate).

Thus, the neutrosophic polarization of a photon is 0, 1, or I. Since 
indeterminacy (I) does exist independently from 0 and 1, we cannot use fuzzy nor 
intuitionistic fuzzy logic / set, but neutrosophic logic / set. 

These three neutrosophic values are used for neutrosophically encoding the 
data. 

3. Refined neutrosophic polarization
In a more detailed development, one may consider the refined neutrosophic polarization,
where we refine for example I as I1 (ambiguous direction), I2(unknown direction),
I3(fluctuating direction), etc.

Neutrosophic Quantum Computer 

Florentin Smarandache 
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Or we may refine 0 as 01(oscillation in one direction at a high angular speed), 02 
(oscillation in the same direction at a lower angular speed), etc. 

Or we may refine 1 as 11 (oscillation in opposite direction at a high angular 
speed), 12(oscillation in the same opposite direction at a lower angular speed), etc. 

The refinement of the neutrosophic polarization may be given by one or more 
parameters that influence the oscillation of the photon. 

4. Neutrosophic quantum computer
A Neutrosophic Quantum Computer uses phenomena of Neutrosophic Quantum
Mechanics, such as neutrosophic superposition and neutrosophic entanglement for
neutrosophic data operations.

5. Neutrosophic particle
A particle is considered neutrosophic if it has some indeterminacy with respect to at least
one of its attributes (direction of spinning, speed, charge, etc.).

6. Entangled neutrosophic particle
Two neutrosophic particles are entangled if measuring the indeterminacy of one of them,
the other one will automatically have the same indeterminacy.

7. Neutrosophic data
Neutrosophic Data is data with some indeterminacy.

8. Nutrosophic superposition
Neutrosophic Superposition, that we introduce now for the first time, means
superpositions only of 0 and 1 as in qubit (=quantum bit), but also involving
indeterminacy (I), as in neutrosophic set, neutrosophic logic, neutrosophic probability,
neutrosophic measure, and so on.

9. Indeterminate bit
An indeterminate bit, that we introduce now for the first time, is a bit that one does not
know if it is 0 or 1, so we note it by I (= indeterminacy).

Therefore, neutrosophic superposition means coherent superposition of 0 and I, 
1 and I, or 0 and 1 and I: 

�0�� , �1��,or �01��,

ordecoherent superposition of classical bits 0 and 1, or decoherence between 0, 1, I, such 
as: 

�01�	
�, �0��	
�, �1��	
�, �
01��	
�. 
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�0�� , �1�� , �
01��,or �01�	
�. 

A neutrobit acts in two or three universes. A neutrobit can exist with, of course, a (t, i, f)-
neutrosophic probability, simultaneously as 0 and I, or 1 and I, or 0, 1, and I, where t = 
percentage of truth, i = percentage of indeterminacy, and f = percentage of falsehood. 

11. Refined neutrosophic quantum computer
Thus, we extend the neutrosophic quantum computers to refined neutrosophic quantum
computers.

12. Neutrosophic filter polarization
The neutrosophic filter polarization of the receiver must match the neutrosophic
polarization of the transmitter, of course.

13. Neutrosophic quantum parallelism
The neutosophicquantum parallelism is referring to the simultaneously calculations done
in each universe, but some universe may contain indeterminate bits, or there might be
some decoherencesuperpositions.

14. n-Neutrobit quantum computer
Thus, an n-neutrobit quantum computer, whose register has nneutrobits, requires 3n- 1
numbers created from the digits 0, 1, and I (where I is considered as an indeterminate
digit).

A register of n classical bits represents any number from 0 to 2n-1. A register of 
n qubits such that each bit is in superposition or coherent state, can represent 
simultaneously all numbers from 0 to 2n-1. 

Being in neutrosophic superposition, a neutrosophic quantum computer can 
simultaneously act on all its possible states. 

15. Neutrosophic quantum gates
Moving towards neutrosophic quantum gates involves experiments in which one
observes quantum phenomena with indeterminacy.

16. Remarks
Building a Neutrosophic Quantum Computer requires a neutrosophic technology that
enables the “neutrobits”, either with coherent superpositions involving I, or with
decoherent superpositions.

Since neither classical quantum computers have been built yet, neutrosophic 
quantum computers would be as today even more difficult to construct. 

But we are optimistic that they will gather momentum in practice one time in 
the future. 

17. Reversibility of a neutrosophic quantum computer
The reversibility of a neutrosophic quantum computer is more problematic than that of a
classical quantum computer, since amongst its neutrosophic inputs that must be entirely
deducible from its neutrosophic outputs, there exists I (indeterminacy).
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10. Neutrobit
A neutrosophic bit (or “neutrobit”), that we also introduce for the first time, is any of the
above neutrosophicsuperpositions:



This becomes even more complex when one deals with refined neutrosophic 
polarisations, such as sub-indeterminacies (I1, I2) and sub-oscillations in one direction, or 
in another direction. 

A loss of neutrosophic information (i.e. information with indeterminacy) results 
from irreversible neutrosophic quantum computers (when its inputs are not entirely 
deducible from its outputs). The loss of information, which comes from the loss of heat 
of the photons, means loss of bits, or qubits, or neutrobits. 

18. Neutrosophic dynamical system
Any classical dynamical system is, in some degree neutrosophic, since any dynamical
system has some indeterminacy because a dynamic system is interconnected with its
environment, hence interconnected with other dynamical systems.

We can, in general, take any neutrosophic dynamical system, as a neutrosophic 
quantum computer, and its dynamicity as a neutrosophic computation. 

19. Neutrosophic Turing machine and neutrosophic Church-Turing principle
We may talk about a Neutrosophic Turing Machine, which is a Turing Machine which
works approximately (hence it has some indeterminacy), and about a Neutrosophic
Church-Turing Principle, which deviates and extends the classical Church-Turing
Principle to:

“There exists or can be built a universal 'neutrosophic quantum' [NB: our 
inserted words] that can be programmed to perform any computational task that can be 
performed by any physical object.” 

20. Human brain as an example of neutrosophic quantum computer
As a particular case, the human brain is a neutrosophic quantum computer (the
neutrosophic hardware), since it works with indeterminacy, vagueness, unknown,
incomplete and conflicting information from our-world. And because it processes
simultaneously information in conscience and sub-conscience (hence netrosophic
parallelism). The human mind is neutrosophic software, since works with approximations
and indeterminacy.

21. Neutrosophic quantum dot
In the classical theoretical quantum computers, a quantum dot is represented by one
electron contained into a cage of atoms. The electron at the ground state is considered the
0 state of the classical qubit, while the electron at the excited (that is caused by a laser
light pulse of a precise duration and wavelength) is considered the 1 state of the classical
qubit.

When the laser light pulse that excites the electron is only half of the precise 
duration, the electron gets in a classical superposition of 0 and 1 states simultaneously. 

A right duration-and-wavelength laser light pulse knocks the electron from 0 to 
1, or from 1 to 0. But, when the laser light pulse is only a fraction of the right duration, 
then the electron is placed in between the ground state (0) and the excited state (1), i.e. 
the electron is placed in indeterminate state (I). We denote the indeterminate state by “I”, 
as in neeutrosophic logic, and of course � ∈ 0, 1� in this case. 
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Hence, one has a refined neutrosophic logic, where the indeterminacy is refined 
infinitely many times, whose values are in the open interval (0, 1). Such as 

This is a neutrosophication process. 

22. Neutrosophic NOT function
The controlled neutrosophic NOT function is defined by the laser-light application:����: �0, 1� → �0, 1�.������ = 1 − �, where � ∈ �0, 1�.

Therefore:  ����0� = 1, ����1� = 0,
and ������ = 1 − �.

For example, if indeterminacy � = 0.3, then ����0.3� = 1 − 0.3 = 0.7. 

Hence ���� (indeterminacy) = indeterminacy. 

23. Neutrosophic AND function
The neutrosophic AND function is defined as:����: �0, 1� × �0, 1� → �0, 1�. �����,  � = !"#$�,  %, for all �,  ∈ �0, 1�.

Therefore: ����0, 0� = 0, ����1, 1� = 1,����0, 1� = ����1, 0� = 0.
For indeterminacy, ����0, �� = 0, and ����1, �� = �.
Let � = 0.4, then: ����0, 0.4� = 0, ����1, 0.4� = 0.4.
Another example with indeterminacies. ����0.4, 0.6� = 0.4. 

24. Neutrosophic OR function
The neutrosophic OR function is defined as:�(�: �0, 1� × �0, 1� → �0, 1�. �(��,  � = !)�$�,  %, for all �,  ∈ �0, 1�.

Therefore: �(�0, 0� = 0, �(�1, 1� = 1,�(�0, 1� = 0, (�1, 0� = 0.

1 

I 

0 
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For indeterminacy, �(�0, �� = �, and �(�1, �� = 1.
If � = 0.2, then �(�0, 0.2� = 0.2, and �(�1, 0.2� = 0.2.

25. Neutrosophic IFTHEN function.
The neutrosophic �+�,-�� function is defined as:�+�,-��:�0, 1� × �0, 1� → �0, 1�.�+�,-��x, y� = !)�$1 − �,  %, for all �,  ∈ �0, 1�.�+�,-��is equivalent to �(�������,  �, similar to the Boolean logic:� → 0is equivalent to #1#�� or 0. 

Therefore: �+�,-��0, 0� = 1, �+�,-��1, 1� = 1,�+�,-��1, 0� = 0, �+�,-��0, 1� = 1.
Its neutrosophic value table is: 

�+�,-�� 

x 

y 

0 Iα Iβ 1 

0 1 1- Iα 1- Iβ 0 

Iα 1 max{1- Iα, Iα}  max{1- Iβ, Iα}  Iα 

Iβ 1 max{1- Iα, Iβ}  max{1- Iβ, Iβ}  Iβ 

1 1 1 1 1 

where �2, �3 are indeterminacies and they belong to 0, 1�. �2, �3 can be crisp numbers, interval-valued, or in general subsets of [0, 1]. 

26. Neutrosophic quantum liquids
In classical theoretical quantum computers, there also are used computing liquids. In
order to store the information, one employs a soup of complex molecules, i.e. molecules
with many nuclei. If a molecule is sunk into a magnetic field, each of its nuclei spins
either downward (which means state 0), or upward (which means state 1).

Precise radio waves bursts change the nuclei spinning from 0 to 1, and 
reciprocally. If the radio waves are not at a right amplitude, length and frequency, then 
the nuclei state is perturbed (which means neither 0nor 1, but I = indeterminacy). 
Similarly, this is a neutrosophication process.  

These spin states (0, 1, or I) can be detected with the techniques of NNMR 
(Neutrosophic Nuclear Magnetic Resonance). 
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The deneutrosophication means getting rid of indeterminacy (noise), or at least 
diminish it as much as possible. 

27. Conclusion
This is a theoretical approach and investigation about the possibility of building a
quantum computer based on neutrosophic logic. Future investigation in this direction is
required. As next research it would be the possibility of extending the Quantum
Biocomputer to a potential Neutrosophic Quantum Biocomputer, by taking into
consideration the inherent indeterminacy occurring at the microbiological universe.
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Abstract - In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce 
the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, 
complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and 
investigate some of their related properties. 

Keywords - Bipolar neutrosophic sets, bipolar single valued neutrosophic graph, strong bipolar single valued 
neutrosophic graph, complete bipolar single valued neutrosophic graph. 

1. Introduction

Zadeh [32] coined the term ‗degree of membership‘ and defined the concept of fuzzy set in 
order to deal with uncertainty. Atanassov [29, 31] incorporated the degree of non-
membership in the concept of fuzzy set as an independent component and defined the 
concept of intuitionistic fuzzy set. Smarandache [12, 13] grounded the term ‗degree of 
indeterminacy as an independent component and defined the concept of neutrosophic set 
from the philosophical point of view to deal with incomplete, indeterminate and 
inconsistent information in real world. The concept of neutrosophic sets is a generalization 
of the theory of fuzzy sets, intuitionistic fuzzy sets. Each element of a neutrosophic sets has 
three membership degrees including a truth membership degree, an indeterminacy 
membership degree, and a falsity membership degree which are within the real standard or 
nonstandard unit interval ]−0, 1+[. Therefore, if their range is restrained within the real 
standard unit interval [0, 1], the neutrosophic set is easily applied to engineering problems. 
For this purpose, Wang et al. [17] introduced the concept of a single valued neutrosophic 
set (SVNS) as a subclass of the neutrosophic set. Recently, Deli et al. [23] defined the 
concept of bipolar neutrosophic as an extension of the fuzzy sets, bipolar fuzzy sets, 
intuitionistic fuzzy sets 
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and neutrosophic sets studied some of their related properties including the score, certainty 
and accuracy functions to compare the bipolar neutrosophic sets. The neutrosophic sets 
theory of and their  extensions have been applied in various part[1, 2, 3, 16, 18, 19, 20, 21, 
25, 26, 27, 41, 42, 50, 51, 53 ].  

A graph is a convenient way of representing information involving relationship between 
objects. The objects are represented by vertices and the relations by edges. When there is 
vagueness in the description of the objects or in its relationships or in both, it is natural that 
we need to designe a fuzzy graph Model. The extension of fuzzy graph theory [4, 6, 11] 
have been developed by several researchers including intuitionistic fuzzy graphs [5, 35, 44] 
considered the vertex sets and edge sets as intuitionistic fuzzy sets. Interval valued fuzzy 
graphs [32, 34] considered the vertex sets and edge sets as interval valued fuzzy sets. 
Interval valued intuitionistic fuzzy graphs [8, 52] considered the vertex sets and edge sets as 
interval valued intuitionstic fuzzy sets. Bipolar fuzzy graphs [6, 7, 40] considered the vertex 
sets and edge sets as bipolar fuzzy sets. M-polar fuzzy graphs [39] considered the vertex sets 
and edge sets as m-polar fuzzy sets. Bipolar intuitionistic fuzzy graphs [9] considered the 
vertex sets and edge sets as bipolar intuitionistic fuzzy sets. But, when the relations between 
nodes(or vertices) in problems are indeterminate, the fuzzy graphs and their extensions are 
failed. For this purpose, Samarandache [10, 11] have defined  four main categories of 
neutrosophic graphs, two based on literal indeterminacy (I), which called them; I-edge 
neutrosophic graph and I-vertex neutrosophic graph, these concepts are studied deeply and 
has gained popularity among the researchers due to its applications via real world problems 
[7, 14, 15, 54, 55, 56]. The two others graphs are  based on (t, i, f) components and called 
them; The (t, i, f)-Edge neutrosophic graph and the (t, i, f)-vertex neutrosophic graph, these 
concepts are not developed at all. Later on, Broumi et al.[46] introduced a third neutrosophic 
graph model. This model allows the attachment of truth-membership (t), indeterminacy–
membership (i) and falsity- membership degrees (f) both to vertices and edges, and 
investigated some of their properties. The third neutrosophic graph model is called single 
valued neutrosophic graph ( SVNG for short). The single valued neutrosophic graph is the 
generalization of fuzzy graph and intuitionistic fuzzy graph. Also  the same authors [45] 
introduced neighborhood degree of a vertex and closed neighborhood degree of vertex in 
single valued neutrosophic graph as a generalization of neighborhood degree of a vertex and 
closed neighborhood degree of vertex in fuzzy graph and intuitionistic fuzzy graph. Also, 
Broumi et al.[47] introduced the concept of interval valued neutrosophic graph as a 
generalization  fuzzy graph, intuitionistic fuzzy graph, interval valued fuzzy graph, interval 
valued intuitionistic fuzzy graph and  single valued neutrosophic graph and have discussed 
some of their  properties with proof and examples. In addition Broumi et al [48] have 
introduced some operations such as cartesian product, composition, union and join on 
interval valued neutrosophic graphs and investigate some their properties. On the other 
hand, Broumi et al [49] have discussed a sub class of interval valued neutrosophic graph 
called strong interval valued neutrosophic graph, and  have  introduced some operations 
such as, cartesian product, composition and join of two strong interval valued neutrosophic 
graph  with proofs. In the literature the study of bipolar single valued neutrosophic graphs 
(BSVN-graph) is still blank, we shall focus on the study of bipolar single valued 
neutrosophic graphs in this paper.  In the present paper, bipolar neutrosophic sets are 
employed to study graphs and give rise to a new class of graphs called  bipolar single 
valued neutrosophic graphs. We introduce the notions of bipolar single valued neutrosophic 
graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued 
neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate 
some of their  related properties. This paper is organized as follows;  
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In section 2, we give all the basic definitions related bipolar fuzzy set, neutrosophic sets, 
bipolar neutrosophic set, fuzzy graph, intuitionistic fuzzy graph, bipolar fuzzy graph, N-
graph and single valued neutrosophic graph which will be employed in later sections. In 
section 3, we introduce certain  notions including bipolar single valued neutrosophic graphs, 
strong bipolar single valued neutrosophic graphs, complete bipolar single valued 
neutrosophic graphs, the complement of strong bipolar single valued neutrosophic graphs, 
regular bipolar single valued neutrosophic graphs and illustrate these  notions by several 
examples, also we  described degree of a vertex, order, size of bipolar single valued 
neutrosophic graphs. In section 4, we give the conclusion. 

2. Preliminaries

In this section, we mainly recall some notions related to bipolar fuzzy set, neutrosophic 
sets, bipolar neutrosophic set, fuzzy graph, intuitionistic fuzzy graph, bipolar fuzzy graph, 
N-graph and single valued neutrosophic graph  relevant to the present work. The readers
are referred to [9, 12, 17, 35, 36, 38, 43, 46, 57] for further details and background.

Definition 2.1 [12]. Let U be an universe of discourse;  then the neutrosophic set A is an 
object having the form A = {< x:      ,      ,      >, x ∈ U}, where the functions T, I, F 
: U→]−0,1+[  define respectively the degree of membership, the degree of indeterminacy,
and the degree of non-membership of the element x ∈ U to the set A with the condition: 
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−0 ≤  + +   ≤ 3+. (1) 

The functions      ,       and  are real standard or nonstandard subsets of ]−0,1+[. 
 Since it is difficult to apply NSs to practical problems, Wang et al. [16] introduced the 
concept of a SVNS, which is an instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [17]. Let X  be a space of points (objects) with generic elements in X 
denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function      , an indeterminacy-membership function      , and a falsity-
membership function      . For each point x in X       ,      ,       ∈ [0, 1]. A SVNS 
A can be written as  

          A = {< x:      ,      ,      >, x ∈ X}               (2) 

Definition 2.3 [9]. A bipolar neutrosophic set A in X is defined as an object of the form 

(x),A={<x,   (x),        (x), (x), (x), (x)>: x ∈ X}, 

where ,   , :X  [1, 0] and ,   , : X  [-1, 0] .The Positive membership degree 
(x), (x),    (x) denotes the truth membership, indeterminate membership and false 

membership of an element ∈ X corresponding to a bipolar neutrosophic set A and the 
negative membership degree   (x),    (x),    (x) denotes the truth membership, 
indeterminate membership and false membership of an element ∈  X to some implicit 
counter-property corresponding to a bipolar neutrosophic set A. 
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A = (  
 ,  ): X × X → [−1, 0] × [0, 1] 

a bipolar fuzzy relation on X such that (x, y) ∈ [0, 1] and (x, y) ∈ [−1, 0]. 

Definition 2.15 [36]. Let A = (  
 , ) and B = (  

 , ) be bipolar fuzzy sets on a set X. If 
A = (  

 , ) is a bipolar fuzzy relation on a set X, then A =(  
 , ) is called a bipolar 

fuzzy relation on 
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Definition 2.10 [43]. A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy 
subset of a non empty set V and 
and   : VxV [0,1] such that    

  is a symmetric fuzzy relation on σ. i.e  σ : V → [ 0,1] 
 (  ) ≤ σ(u)   σ(v)  for all u, v ∈ V where uv denotes the 

edge between u and v and σ(u)   σ(v) denotes the minimum of σ(u) and σ(v). σ is called the 
fuzzy vertex set of V and  is called the fuzzy edge set of E. 

Definition 2.11[38]: By a N-graph G of a graph , we mean a pair G= (  ,   ) where  is 
 is an N-relation on E such that   (u,v)  max ( (u),   (v)) all u, v an N-function in V and 

∈ V. 

Definition 2.12[35] : An Intuitionistic fuzzy graph is of the form G = ( V, E ) where 

i. V={  ,    ,….,    } such that   : V  [0,1] and   : V  [0,1] denote the degree of 
membership and non-membership of the element    ∈ V, respectively, and 

0 ≤   (  ) +   (  )) ≤ 1 

for every    ∈ V, (i = 1, 2, ……. n), 

ii. E  V x V where  : VxV [0,1] and  : VxV  [0,1] are such that 

(  ,   ) ≤ min [ (  ),   (  )] and   (  ,   )   max [ (  ),   (  )] 

and 0 ≤   (  ,   ) +   (  ,   ) ≤ 1 for every (  ,   ) ∈ E, ( i, j = 1,2, ……. n) 

Definition 2.13 [57]. Let X be a non-empty set. A bipolar fuzzy set A in X is an object 
having the form A = {(x,   

 (x),   
 (x)) | x ∈ X}, where   

 (x): X → [0, 1] and   
 (x): X → 

[−1, 0] are mappings. 
Definition 2.14 [ 57] Let X be a non-empty set. Then we call a mapping 

B = (  
 ,    

 )  if (x, y) ≤ min(  
 (x), (y)) 

and 
(x, y) ≥ max(  

 (x), (y) or all x, y ∈ X.

A bipolar fuzzy relation A on X is called symmetric if (x, y) = (y, x)  and (x, y) = 
(y, x) for all x, y ∈ X. 

Definition 2.16 [36]. A bipolar fuzzy graph of a graph =  (V, E)  is a pair G = (A,B), 
where A = (  

 , ) is a bipolar fuzzy set in V and B = (  
 ,    

 ) is a bipolar fuzzy set on  
E V x V such that   

 (xy)    min{   
 (x),    

 (y)} for all xy ∈  ,   
 (xy) 
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Here the sextuple (  ,         ,          ,         ,          ,               (  )) denotes the 
positive degree of truth-membership, the positive degree of indeterminacy-membership, the 
positive degree of falsity-membership, the negative degree of truth-membership, the 
negative degree of indeterminacy-membership, the negative degree of falsity- membership  
of the vertex vi.  

The sextuple (    ,   
 ,     ,    

 ,    
  ,          

 ) denotes the positive degree of truth-
membership, the positive degree of indeterminacy-membership, the positive degree of 
falsity-membership, the negative degree of truth-membership, the negative degree of 
indeterminacy-membership, the negative degree of falsity- membership of the edge relation 

 = (  ,   ) on V  V. 

Note 1. (i) When      =   = = 0 and  =  = = 0 for some i and j, then there is no 
edge between    and    . 

Otherwise there exists an edge between    and  . 

(ii) If one of the inequalities is not satisfied in (1) and (2), then G is not an BSVNG

Figure 1: Bipolar single valued neutrosophic graph. 
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Proposition 3.5: A bipolar  single valued neutrosophic graph is the generalization of fuzzy 
graph 

Proof: Suppose G= (A, B) be a bipolar  single valued neutrosophic graph. Then by setting 
the positive indeterminacy-membership, positive falsity-membership and negative truth-
membership, negative indeterminacy-membership, negative falsity-membership values of 
vertex set and edge set  equals to zero reduces the bipolar  single valued neutrosophic  
graph to fuzzy graph. 

Example 3.6: 

Figure 2: Fuzzy graph 

Proposition 3.7: A bipolar  single valued neutrosophic  graph is the generalization of 
intuitionistic fuzzy graph 

Proof: Suppose G= (A, B) be a bipolar  single valued neutrosophic  graph. Then by setting 
the positive indeterminacy-membership, negative truth-membership, negative 
indeterminacy-membership, negative falsity-membership values of vertex set and edge set  
equals to zero reduces the bipolar  single valued neutrosophic  graph to intuitionistic fuzzy 
graph. 

Example 3.8 

     Figur 3:  Intuitionistic fuzzy graph 

Proposition 3.9: A bipolar single valued neutrosophic graph is the generalization of single 
valued neutrosophic graph 

Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting 
the negative truth-membership, negative indeterminacy-membership, negative falsity-
membership values of vertex set and edge set  equals to zero reduces the bipolar  single 
valued neutrosophic  graph to single valued neutrosophic graph. 
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Example 3.10 

 Figure 4: Single valued neutrosophic  graph 

Proposition 3.11: A bipolar  single valued neutrosophic  graph is the generalization of 
bipolar intuitionstic fuzz graph 

Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting 
the positive indeterminacy-membership, negative indterminacy-membership values of 
vertex set and edge set  equals to zero reduces the bipolar  single valued neutrosophic  
graph to bipolar intuitionstic fuzzy graph 

Example 3.12 

 Figure 5: Bipolar intuitionistic fuzzy graph. 

Proposition 3.13: A bipolar  single valued neutrosophic graph is the generalization of N-
graph 

Proof: Suppose G= (A, B) be a bipolar single valued neutrosophic graph. Then by setting 
the positive degree membership such truth-membership, indeterminacy- membership, 
falsity-membership and negative indeterminacy-membership, negative falsity-membership 
values of vertex set and edge set  equals to zero reduces the  single valued neutrosophic 
graph to N-graph. 
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Example 3.14: 

      Figure 6: N- graph 

Definition 3.15. A bipolar single valued neutrosophic graph that has neither self loops nor 
parallel edge is called simple bipolar single valued neutrosophic graph. 

Definition 3.16. A bipolar single valued neutrosophic graph is said to be connected if every 
pair of vertices has at least one bipolar single valued neutrosophic graph between them, 
otherwise it is disconnected. 

Definition  3.17. When a vertex  is end vertex of some edges (  ,   )  of any BSVN-graph  
G= (A, B). Then   and (  , ) are said to be incident to each other. 

Figure 7 :  Incident BSVN-graph 

In this graph ,  and   are incident on   . 

Definition 3.18 Let G= (V, E) be a bipolar single valued neutrosophic graph. Then the 
degree of any vertex v is sum of positive degree of truth-membership, positive sum of 
degree of indeterminacy-membership, positive sum of degree of falsity-membership, 
negative degree of truth-membership, negative sum of degree of indeterminacy-
membership, and negative sum of degree of falsity-membership of all those edges which 
are incident on vertex v denoted by d(v)= (  

    ,   
    ,   

    ,   
    ,   

    ,   
    ) 

where  

 =∑   denotes the positive T- degree of a vertex v, 
 =∑  denotes the positive I- degree of a vertex v, 
 =∑   denotes the positive F- degree of a vertex v, 
 =∑  denotes the negative T- degree of a vertex v, 
 =∑  denotes the negative I- degree of a vertex v, 
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 =∑  denotes the negative F- degree of a vertex v 

Definition 3.19:  The minimum degree of G is 

 (G) = (  
    ,   

    ,  ,  ,  ,  ) 
where 

 =  {  | v ∈ V} denotes the minimum  positive T- degree, 
 =  {   | v ∈ V} denotes the minimum  positive I- degree, 
 =  {  | v ∈ V} denotes the minimum  positive F- degree, 
 =  {  | v ∈ V} denotes the minimum  negative T- degree, 
 =  {   | v ∈ V} denotes the minimum  negative I- degree, 
 =  {  | v ∈ V} denotes the minimum  negative F- degree 

Definition 3.20:  The maximum degree of G is 

 (G) = (  
    ,   

    ,  ,  ,  ,  ) 
where 

 =  {  | v ∈ V} denotes the maximum  positive T- degree, 
 =  {   | v ∈ V} denotes the maximum  positive I- degree, 
 =  {  | v ∈ V} denotes the maximum  positive F- degree, 
 =  {  | v ∈ V} denotes the maximum  negative T- degree, 
 =  {   | v ∈ V} denotes the maximum  negative I- degree, 
 =  {  | v ∈ V} denotes the maximum  negative F- degree 

Example 3.21. Let us consider a bipolar single valued  neutrosophic graph  G= (A, B) of  
 = (V, E), such that V = {  , ,   ,   }, E = {(  ,   ),(  ,   ), (  ,   ), (  ,   )} 

 

     Figure 8: Degree of a bipolar single valued neutrosophic graph G. 

In this example, the degree of is (0.3, 0.6, 1.1, -0.4, -0.6, -0.6). the degree of is (0.2, 
0.6, 1.2, -0.3, -0.9, -0.8). the degree of is (0.2, 0.8, 1.2, -0.2, -1.2, -1.2). the degree of 
is (0.3, 0.8, 1.1, -0.3, -0.9, -1) 

Order and size of a bipolar single valued neutrosophic graph is an important term in bipolar  
single valued neutrosophic graph theory. They are defined below. 

Definition 3.22:  Let G  =(V, E) be a  BSVNG.  The order  of  G, denoted O(G) is defined 
as O(G)= (     ,      ,      ,   

    ,   
    ,   

    ), where 
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 = ∑ ∈  denotes the positive T- order of a vertex v, 
 = ∑ ∈  denotes the positive I- order of a vertex v, 
 = ∑ ∈  denotes the positive F- order of a vertex v, 
 = ∑ ∈  denotes the negative T- order of a vertex v, 
 = ∑ ∈  denotes the negative I- order of a vertex v, 
 = ∑ ∈  denotes the negative F- order of a vertex v. 

Definition 3.23: Let G =(V, E) be a  BSVNG.  The size of G, denoted S(G) is defined as 
S(G)= (     ,      ,      ,   

    ,   
    ,   

    ), where 

 = ∑  denotes the positive T- size of a vertex v, 
 = ∑    denotes the positive I- size of a vertex v, 

 = ∑  denotes the positive F- size of a vertex v, 
 = ∑   denotes the negative T- size of a vertex v, 
 = ∑  denotes the negative  I- size of a vertex v, 

 = ∑  denotes the negative  F- size of a vertex v. 

Definition 3.24 A bipolar single valued neutrosophic graph G=(V, E) is  called constant if 
degree of each vertex is k =( , ,   ,   ,   ,   ). That is, d( ) = (  ,   ,   ,   ,   ,   ) 
for all   ∈ V. 

Figure 9: Constant bipolar single valued neutrosophic graph G. 

In this example, the degree of   , ,   ,  is (0.2, 0.6, 1.2, -0.4, -0.6, -1.4). 

O(G)=(0.8, 1, 1.8, -1.5, -1.1, -1.8) 
S(G) =(0.4, 1.2, 2.4 ,-0.7, -1.2, -2.8) 

Remark 3.25. G is a (  , ,   , ,  , )-constant BSVNG iff   =  = k, where k =   + 
+ + + .

Definition 3.26. A bipolar single valued  neutrosophic graph  G= (A, B) is called strong 
bipolar single valued  neutrosophic graph  if 

 =min(  ,  ), 
 =max(  ,  ), 
 =max(  ,  ) , 
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 =min(  ,  ), 
 =min(  ,  ) 

for all (u, v) ∈ E 

Example 3.27. Consider a  strong BSVN-graph  G  such that V = {  ,   ,   ,   }and E = 
{(  ,   ),(  ,   ), (  ,   ), (  ,   )} 

Figure 10: Strong bipolar single valued neutrosophic graph G. 

Definition 3.28. A bipolar single valued  neutrosophic graph  G= (A, B) is called complete 
if 

 =min(  ,  ), 
 =max(  ,  ), 
 =max(  ,  ) , 
 =max(  ,  ), 
 =min(  ,  ), 
 =min(  ,  ) 

for all u, v ∈ V. 

Example 3.29. Consider a  complete BSVN-graph  G  such that V = {  ,   ,   ,   }and E 
= {(  ,   ),(  ,   ), (  ,   ), (  ,   ), (  ,   ), ( ,   )} 

    Figure 11: Complete bipolar single valued neutrosophic graph G. 
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 = (0.5, 0.8, 1.4, -0 .6, -1.1, -1.6) 

Definition 3.30. The complement of a bipolar  single valued neutrosophic graph  G = (A, 
B) of a graph   = (V, E) is a bipolar  single valued neutrosophic graph   ̅ = ( ̅,  ̅) of   ̅̅ ̅  =
(V,V ×V), where  ̅   = A = ( , ,  ,  , ) and  ̅ = (   ̅̅̅̅ ,    ̅,    

 ̅̅̅̅ ,    ̅̅ ̅̅  ,    ̅̅ ̅     
 ̅̅ ̅̅ )

is defined by 

 ̅ 
 (u,v)=    (  ) -   for all  ∈ V, uv ∈  ̃
̅ (u,v)=    (  ) -   for all ∈ V, uv ∈  ̃

 ̅ 
 (u,v)=    (  ) -   for all ∈ V, uv ∈  ̃

 ̅ 
 (u,v)=    (  ) -   for all  ∈ V, uv ∈  ̃
̅ (u,v)=    (  ) -   for all ∈ V, uv ∈  ̃

 ̅ 
 (u,v)=    (  ) -   for all ∈ V, uv ∈  ̃

Proposition 3.31: The complement of complete BSVN-graph is a BSVN-graph with no 
edge. Or if G is a complete then in  ̅ the edge is empty. 

Proof. Let G= (V, E) be a complete BSVN-graph .  =min(  ,  ), 
So     

       =min(  ,  ),   =max(  ,  ), 

 =max(  ,  ),       =min(  ,  ), 
 =max(  ,  ),   =min(  , 

for all ∈ V. Hence in  ̅,

 ̅ 
 =    (  ) -   for all ∈ V 

        =    (  ) -    (  ) for all ∈ V 
 = 0      for all ∈ V 

and 

̅ =    (  ) -   for all ∈ V 
        =    (  ) -    (  ) for all ∈ V 

   = 0      for all ∈ V 

Also 

 ̅ 
 =    (  ) -   for all ∈ V 

        =    (  ) -    (  ) for all ∈ V 
   = 0      for all ∈ V 

Similarly 

  ̅ 
 =    (  ) -   for all ∈ V 

        =    (  ) -    (  ) for all ∈ V 
  = 0      for all ∈ V 
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and 

̅ =  (  ) -   for all ∈ V 
        =    (  ) -    (  ) for all ∈ V 

 = 0      for all ∈ V 

Also 

 ̅ 
 =    (  ) -   for all ∈ V 

        =    (  ) -    (  ) for all ∈ V 
 = 0      for all ∈ V 

( ̅ 
    ̅

 ,  ̅ 
   ̅ 

 ,   ̅ ,  ̅ 
  . Thus ( ̅ ̅ ,  ̅ 

   ̅ 
 ,   ̅ ,  ̅ 

  = (0 , 0, 0, 0, 0). Hence the edge set
of  ̅ is empty  if G is a complete BSVNG. 

Definition 3.32: A regular BSVN-graph is a BSVN-graph where each vertex has the same 
number of open neighbors degree.   (v)= (   

    ,    
    ,     

    ,    
    ,    

    , 
 ). 

The following example shows that there is no relationship between regular BSVN-graph 
and a constant BSVN-graph 

Example 3.33. Consider  a graph  such that V= {  , ,   , }, E={ , , , 
 }. Let A be a single valued neutrosophic subset of V and le B a single valued 

neutrosophic subset of E denoted by  

0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 

0.2 0.2 0.2 0.2 0.3 0.3 0.5 0.3 
0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.5 
-0.4 -0.4 -0.4 -0.4 -0.2 -0.1 -0.1 -0.2
-0.1 -0.4 -0.1 -0.1 -0.3 -0.6 -0.6 -0.3
-0.4 -0.4 -0.4 -0.4 -0.5 -0.7 -0.7 -0.5

 

Figure 12: Regular bipolar single valued neutrosophic graph G. 
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By routing calculations show that G is regular BSVN-graph  since each open neighbors 
degree is same , that is (0.4, 0.4, 0.8 ,-0.8, -0.2,-0.8). But it is not constant BSVN-graph 
since degree of each vertex is not same. 

Definition 3.34 :Let G=(V, E) be a bipolar single valued neutrosophic graph. Then the 
totally degree of a vertex   ∈ V  is defined by 

td(v)= (   ,    
    ,    

    ,    ,  ,  ) where 
 =∑ + denotes the totally positive T- degree of a vertex v,
 =∑ + denotes the totally positive I- degree of a vertex v,

 =∑ + denotes the totally positive F- degree of a vertex v,
 =∑ + denotes the totally negative T- degree of a vertex v,
 =∑ + denotes the totally negative I- degree of a vertex v,

 =∑ + denotes the totally negative F- degree of a vertex v

If each vertex of G has totally same degree m=( , , , , , ), then G is called 
a m-totally constant BSVN-Graph. 

Example 3.35. Let us consider a bipolar single valued  neutrosophic graph  G= (A, B) of  
 = (V, E), such that V = {  ,   ,   ,   }, E = {(  ,   ),(  ,   ), (  ,   ), (  ,   )} 

 

   Figure 13: Totally degree of a bipolar single valued neutrosophic graph G. 

In this example, the totally degree of is (0.5, 0.8, 1.4, -0.8, -0.7, -1.4). The totally degree 
of is (0.3, 0.9, 1.7, -0.9, -1.1, -1.5). The totally degree of   is (0.4, 1.1, 1.7, -0.5, -1.7, -
2). The totally degree of is (0.6, 1, 1.5, -0.5, -1.1, -1,7). 

Definition 3.36: A totally regular BSVN-graph is a BSVN-graph where each vertex has the 
same number of closed neighbors degree, it is noted d[v]. 

Example 3.37. Let us consider a BSVN-graph G= (A, B) of   = (V, E), such that V = 
{  ,   ,   ,   } and E = {(  ,   ),(  ,   ), (  ,   ), (  ,   )} 
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Figure 14: Degree of a bipolar single valued neutrosophic graph G. 

By routing calculations we show that G is regular BSVN-graph since the degree of  
 ,   ,   ,        is (0.2, 0.6, 1.2 , -0.4, -0.6, -1). It is neither totally regular BSVN-graph 
not constant BSVN-graph. 

4. Conclusion

In this paper, we have introduced the concept of bipolar single valued  neutrosophic graphs  
and described degree of a vertex, order, size of bipolar single valued neutrosophic graphs, 
also we have introduced the notion of complement of a bipolar  single valued neutrosophic 
graph, strong bipolar single valued neutrosophic graph, complete bipolar single valued 
neutrosophic graph,  regular bipolar single valued neutrosophic graph. Further, we are 
going to study some types of single valued neutrosophic graphs such irregular and totally 
irregular single valued neutrosophic graphs and bipolar single valued neutrosophic graphs.  
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Abstract. The traditional soft set is a mapping from a 
parameter set to family of all crisp subsets of a universe. 
Molodtsov introduced the soft set as a generalized tool 
for modelling complex systems involving uncertain or 
not clearly defined objects. In this paper, the notion of 
neutrosophic soft set is reanalysed. The novel theory is a 
combination of neutrosophic set theory and soft set 

theory. The complement, “and”, “or”, intersection and 
union operations are defined on the neutrosophic soft sets. 
The neutrosophic soft relations accompanied with their 
compositions are also defined. The basic properties of the 
neutrosophic soft sets, neutrosophic soft relations and 
neutrosophic soft compositions are also discussed.

Keywords: Soft sets, Fuzzy soft sets, Intuitionistic fuzzy soft sets, Neutrosophic soft sets, Neutrosophic soft relations

1 Introduction 

Uncertain data modelling is a complex problem 
appearing in many areas such as economics, engineering, 
environmental science, sociology and medical science. 
Some mathematical theories such as probability, fuzzy set 
[1], [2], intuitionistic fuzzy set [3], [4], rough set [5], [6], 
and the interval mathematics [7], [8] are useful approaches 
to describing uncertainty. However each of these theories 
has its inherent difficulties as mentioned by Molodtsov [9]. 
Soft set theory developed by Molodtsov [9] has become a 
new useful approach for handling vagueness and 
uncertainty. 

Later, Maji et al. [10] introduced several basic 
operations of soft set theory and proved some related 
propositions on soft set operations. Ali et al. [11] analysed 
the incorrectness of some theorems in [10]. Then they 
proposed some new soft set operations and proved that De 
Morgan’s laws hold with these new definitions. Maji et al. 
also [12] gave an application of soft set theory in a 
decision making problem. 

Above works are based on classical soft set. However, 
in practice, the objects may not precisely satisfy the 
problems’ parameters, thus Maji et al. [13] put forward the 
concept of fuzzy soft set by combining the fuzzy set and 
the soft set, then they [14] presented a theoretical approach 
of the fuzzy soft set in decision making problem. In [15], 
they considered the concept of intuitionistic fuzzy soft set. 
By combining the interval-valued fuzzy set and soft set, 
Yang et al. [16] proposed the interval-valued fuzzy soft set 
and then analyzed a decision making problem in the 
interval-valued fuzzy soft set. Yang et al [17] presented the 
concept of interval-valued intuitionistic fuzzy soft sets 
which is an interval-valued fuzzy extension of the 
intuitionistic fuzzy soft set theory. 

From philosophical point of view, Smarandache’s 
neutrosophic set [26] generalizes fuzzy set and 
intuitionistic fuzzy set. However, it is difficult to apply it 
to the real applications and needs to be specified. Wang et 
al. [27] proposed interval neutrosophic sets and some 
operators of then. Wang et al. [28] proposed a single 
valued neutrosophic set as an instance of the neutrosophic 
set accompanied with various set theoretic operators and 
properties. Ye [29] defined the concept of simplified 
neutrosophic sets, which can be described by three real 
numbers in the real unit interval  0,1 , and some
operational laws for simplified neutrosophic sets and to 
propose two aggregation operators, including a simplified 
neutrosophic weighted arithmetic average operator and a 
simplified neutrosophic weighted geometric average 
operator. In 2013 [18], we presented the definition of 
picture fuzzy sets, which is a generalization of the Zadeh’s 
fuzzy sets and Atanassov’s intuitionistic fuzzy sets, and 
some basic operations on picture fuzzy sets. In [18] we 
also discussed some properties of these operations, then the 
definition of the Cartesian product of picture fuzzy sets and 
the definition of picture fuzzy relations were given. Our 
picture fuzzy set turns out a special case of neutrosophic 
set. Thus, from now on, we also regard picture fuzzy set as 
standard neutrosophic set. 

The purpose of this paper is to combine the standard 
neutrosophic sets and soft models, from which we can 
obtain neutrosophic soft sets. Intuitively, the neutrosophic 
soft set presented in this paper is an extension of the 
intuitionistic fuzzy soft sets [13][15]. 

The rest of this paper is organized as follows. Section 2 
briefly reviews some background on soft sets, fuzzy soft 
sets, intuitionistic soft sets as well as neutrosophic set. In 
Section 3, we recall the concept of the standard 
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neutrosophic sets (SNSs) with some operations on SNSs, 
then we present the concept of neutrosophic soft sets 
(NSSs) with some operations. Some properties of these 
operations are discussed in the Sub-section 3.3. Sub-
section 3.4 is devoted to the Cartesian product of NSSs. 
The neutrosophic soft relations are presented in Section 4. 
Finally, in Section 5, we draw the conclusion and present 
some topics for future research. 

2 Preliminaries 

In this section, we briefly recall the notions of soft sets, 
fuzzy soft sets, intuitionistic fuzzy soft sets as well as 
neutrosophic sets. See especially [9][10][13][15] for 
further details and background.  

2.1 Soft sets and some extensions 

Molodtsov [8] defined the soft set in the following way. 
Let U  be an initial universe of objects and E  be the set of 
related parameters of objects in U . Parameters are often 
attributes, characteristics, or properties of objects. Let 
 P U denotes the power set of U and A E .

Definition 2.1. [8] A pair  ,F A is called a soft set over
U , where F is a mapping given by  : .F A P U

In other words, the soft set is not a kind of set, but a 
parameterized family of subsets of U  [9][10][16]. For any 
parameter e E ,  F e U  is considered as the set of e -
approximate elements of the soft set  ,F A .

Maji et al. [13] initiated the study on hybrid structures 
involving both fuzzy sets and soft sets. They introduced 
the notion of fuzzy soft sets, which can be seen as a fuzzy 
generalization of (crisp) soft set. 
Definition 2.2 [13] Let  U  be the set of all fuzzy
subsets of U , E  be the set of parameters and A E . A 
pair   ,F A  is called a fuzzy soft set over U , where F is a
mapping given by  :F A U .

It is easy to see that every (crisp) soft set can be 
considered as a fuzzy soft set. Generally speaking, for any 
parameter e E ,  F e  is a fuzzy subset of U  and it is
called fuzzy value set of parameter e . If for any parameter 
e A ,  F e  is a subset of  U , then   ,F A  is
degenerated to the standard soft set. For all x U  and 
e E , let us denote by 

   F e x  the membership degree
that the object x holds parameter e . So then  F e can be
written as        

      , F eF e x x x U  . 

Before introduce the notion of the intuitionistic fuzzy 
soft set, let us recall the concept of intuitionistic fuzzy set 
[3], [4]. 

Let X  be a fixed set. An intuitionistic fuzzy set (IFS) 
in X  is an object having the form 

    , ,A AA x x x x X   , 

where    0,1A x  and    0,1A x   respectively define 
the degree of membership and the degree of non-
membership of the element x  to the set A  such 
that     1A Ax x   for all x X . The set of all IFSs on

X is denoted by  IFS X .

In [15] Maji et al. proposed the concept of 
intuitionistic fuzzy soft set as follows. 
Definition 2.3 [15] Let E  the set of parameters and 
A E . A pair  ,F A is called a intuitionistic fuzzy soft

set over U , where F is a mapping  : .F A IFS U

Clearly, for any parameter e E  ,  F e  is an  IFS

          , ,F e F eF e x x x x U   , 

where 
 F e  and 

 F e are the membership and  non-
membership functions, respectively. If for any parameter 
e A , 

       1F e F ex x   , then  F e  is a fuzzy set
and  ,F A is reduced to a fuzzy soft set.

2.2 Neutrosophic sets 

Definition 2.4 [26] A neutrosophic set A in a on a 
universe X is characterized by a truth-membership 
function AT , an indeterminacy-membership function AI
and a falsity-membership function AF . For each x X , 

 AT x ,  AI x and  AF x are real standard or 
nonstandard subsets of 0 ,1   , that is AT , AI and AF : 

0 ,1X     .
There is no restriction on the sum of  AT x ,  AI x and 

 AF x , so      0 sup sup sup 3A A AT x I x F x     ,
for all x X . 

Definition 2.5 [26] The complement of a neutrosophic set 
A  is denoted by cA  and is defined 

as      1c AA
T x T x ,      1c AA

I x I x , and 
     1c AA

F x F x  for every x  in X . 

Definition 2.6 [26] A neutrosophic set A  is contained in 
the other neutrosophic set B , A B  if and only if  

   inf infA BT x T x ,    sup supA BT x T x , 

   inf infA BI x I x ,    sup supA BI x I x , 

   inf infA BF x F x , and    sup supA BF x F x for 
every x  in X . 

Definition 2.7 [26] The union of two neutrosophic sets A  
and B  is a neutrosophic set C , written as C A B  , 
whose truth-membership, indeterminacy membership and 
false-membership functions are related to those of A  and 
B  by  
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         C A B A BT x T x T x T x T x  ,

         C A B A BI x I x I x I x I x  ,and 

         C A B A BF x F x F x F x F x  for any x
in X . 

Definition 2.8 [1] The intersection of two neutrosophic 
sets A  and B  is a neutrosophic set C , written as 
C A B  , whose truth-membership, indeterminacy-
membership and false-membership functions are related to 
those of A  and B by      C A BT x T x T x , 

     C A BI x I x I x ,and      C A BF x F x F x for 
any x  in X . 

Definition 2.9 [29] Consider a neutrosophic set A  in X
characterized by a truth-membership function AT , a 
indeterminacy-membership function AI and a falsity -
membership function AF . If  AT x ,  AI x  and  AF x
are singleton values in the real standard  0,1 for every x
in X , that is AT , AI  and AF :  0,1X  . Then, a
simplification of the neutrosophic set A is denoted by 

      , , ,A A AA x T x I x F x x X  , 

which is called a simplified neutrosophic set. 

3 Neutrosophic soft sets 

In this section, first we recall the definition of the 
standard neutrosophic sets (SNSs), some basic operations 
with their properties, then we will present the neutrosophic 
soft set theory which is a combination of neutrosophic set 
theory and a soft set theory. 

3.1 Standard neutrosophic sets 

Intuitionistic fuzzy sets introduced by Atanassov in 
1983 constitute a generalization of fuzzy sets (FS) [3]. 
While fuzzy sets give the degree of membership of an 
element in a given set, intuitionistic fuzzy sets give a 
degree of membership and a degree of non-membership of 
an element in a given set. 

A generalization of fuzzy sets and intuitionistic fuzzy 
sets are the following notion of standard neutrosophic set 
(SNS) . 
Definition 3.1 [18] A SNS A  on a universe X  is an 
object of the form 

       , , ,A A AA x x x x x X    ,  

where    0,1A x   is called the “degree of positive 
membership of x in A ”,    0,1A x  is called the 
“degree of neutral membership of x in A ” and 

   0,1A x  is called the “degree of negative 
membership of x in A ”, and A , A and A satisfy the

following condition: 

      1A A Ax x x     , x X  .

The expression        1 A A Ax x x      is termed as 
“degree of refusal membership” of  x  in A . 

Basically, SNSs based models may be adequate in 
situations when we face human opinions involving more 
answers of type: yes, abstain, no and refusal. Voting can 
be a good example of such a situation as the voters are 
divided into four groups: vote for, abstain, vote against and 
refusal of the voting. 

Let  SNS X  denote the set of all the standard
neutrosophic set SNSs on a universe X . 
Definition 3.2 [18] For A ,  B SNS X , the union,
intersection and complement are defined as follows: 

 
   

   

   

A B

A B

A B

x x

A B x x

x x

 

 

 

 


  




, x X  ; 

 
A B

A B
B A


  


; 

  A B SNS X  with

      max ,A B A Bx x x    , 

      min ,A B A Bx x x    , and 

      min ,A B A Bx x x    , x X  ; 

  A B SNS X  with

      min ,A B A Bx x x    , 

      min ,A B A Bx x x    , and 

      max ,A B A Bx x x    , x X  ; 

        , , ,c
A A ACoA A x x x x x X     . 

In this paper, we denote  min ,a b a b   and

 max ,a b a b  , for every  a , b .

Definition 3.3 [18] Let X , Y be two universes 
and  A SNS X ,  B SNS Y . We define the Cartesian

product of these two SNSs by  A B SNS X Y    such
that 

     ,A B A Bx y x y     ,

     ,A B A Bx y x y     , and
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     ,A B A Bx y x y     ,  ,x y X Y   .

The validation of Definition 3.3 was shown in [18]. 
Now we consider some properties of the defined 
operations on SNSs. 

Proposition 3.4 [18] For every A , B ,  C SNS X :

(a) If A B  and B C , then A C ;

(b)  
ccA A ; 

(c) Operations   and   are commutative, associative
and distributive; 

(d) Operations   , Co  and   satisfy the law of De
Morgan. 

Proof. See [19][20] for detail proof. 

Convex combination is an important operation in 
mathematics, which is a useful tool on convex analysis, 
linear spaces and convex optimization.  In this sub-section 
convex combination firstly is defined with some simple 
propositions. 

Definition  3.5 [18] Let  A ,  B SNS X . For  each

 0,1  , the convex combination of  A and B is defined
as follows:

         , , , ,C C CC A B x x x x x X
 

     ,

where 

       1C A Bx x x


      , 

       1C A Bx x x


      , and 

       1C A Bx x x


      , x X  . 

Proposition 3.6 [18] Let A ,  B SNS X  and  , 1 ,

 2 0,1  , then

 If 1  , then  ,C A B A  ; and if 0  , then

 ,C A B B  ;

 If A B , then  ,A C A B B  ;

 If B A  and 1 2  , then    
1 2

, ,C A B C A B  .

3.2 Neutrosophic soft sets 

Definition 3.7 Let  SNS U  be the set of all standard neu-
trosophic sets of U , E  be the set of parameters and  
A E . A pair    ,F A  is called a standard neutrosophic

soft set (or neutrosophic soft set for short) over U , where 
F is a mapping given by  :F A SNS U .

Clearly, for any parameter e E ,  F e  is a SNS:

               , , ,F e F e F eF e x x x x x U    , 

where 
 F e ,

 F e and
 F e are positive membership,

neutral membership and negative membership functions 
respectively. If for all parameter e A  and for all x U , 

    0F e x  , then  F e will degenerated to be an intui-

tionistic fuzzy set  and then   ,F A  is degenerated to an
intuitionistic fuzzy soft set. 

We denote the set of all standard neutrosophic soft sets 
over   U  by  SNS U .

Example 1. We consider the situation which involves four 
economic projects evaluated by a decision committee ac-
cording to five parameters: good finance indicator ( 1e ), 
average finance indicator ( 2e ), good social contribution
( 3e ), average social contribution ( 4e ) and good environ-
ment indicator ( 5e ). The set of economic projects and the 
set of parameters are denoted  1 2 3 4, , ,U p p p p  and

 1 2 3 4 5, , , ,A e e e e e , respectively. So, the attractiveness of 
the projects to the decision committee can be represented
by a SNS  ,F A :

 
   

   

1 2
1

3 4

,0.8,0.12,0.05 , ,0.6,0.18,0.16 ,

,0.55,0.20,0.21 , ,0.50,0.20,0.24

p p
F e

p p

  
  
  

 , 

 
   

   

1 2
2

3 4

,0.82,0.05,0.10 , ,0.7,0.12,0.10 ,

,0.60,0.14,0.10 , ,0.51,0.10,0.24

p p
F e

p p

  
  
  

, 

 
   

   

1 2
3

3 4

,0.60,0.14,0.16 , ,0.55,0.20,0.16 ,

,0.70,0.15,0.11 , ,0.63,0.12,0.18

p p
F e

p p

  
  
  

, 

 
   

   

1 2
4

3 4

,0.7,0.12,0.07 , ,0.75,0.05,0.16 ,

,0.60,0.17,0.18 , ,0.55,0.10,0.22

p p
F e

p p

  
  
  

, 

 
   

   

1 2
5

3 4

,0.60,0.12,0.07 , ,0.62,0.14,0.16 ,

,0.55,0.10,0.21 , ,0.70,0.20,0.05

p p
F e

p p

  
  
  

. 

The standard neutrosophic soft set  ,F A  is a parame-

terized family   1, ,5iF e i   of standard neutrosophic 

sets over U . 
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Definition 3.8 1) For  ,F A ,    ,G B SNS U  over a

common universe U , we say that  ,F A  is a subset of

 ,G B ,    , ,F A G B , if the following conditions are
satisfied: 

(a) A B ; 

(b) For all e A ,  F e  and  G e are identical ap-
proximations. 

2)  ,F A is termed as a superset of  ,G B ,

   , ,F A G B , if   ,G B is a subset of  ,F A .

3)  ,F A and  ,G B are called to be equal,

   , ,F A G B ,  if    , ,F A G B  and    , ,G B F A .

It is easy to show that    , ,F A G B iff A B and

   F e G e for all e A .

3.3 Some operations and properties 

Now we define some operations on standard neutro-
sophic soft sets and present some properties. 

Definition 3.9 The complement of a NSS  ,F A ,  , cF A ,

is defined by    , ,c cF A F A , where  :cF A P U is 

a mapping given by     
ccF e F e , for all e A . 

Definition 3.10 If  ,F A ,    ,G B NSS U ,   then

“    , ,F A and G B ” is a NSS denoted by    , ,F A G B

and defined by      , , ,F A G B H A B   , where

     ,H F G      for all   , A B    , that is

            , min ,H F Gx x x
   

   , 

            , min ,H F Gx x x
   

   , and 

            , max ,H F Gx x x
   

   , x U  . 

Definition 3.11 If  ,F A ,    ,G B NSS U , then

“    , ,F A or G B ” is a NSS denoted by    , ,F A G B

and defined by      , , ,F A G B H A B   , where

     ,H F G      for all   , A B    , that is

            , max ,H F Gx x x
   

   , 

            , min ,H F Gx x x
   

   , and 

            , min ,H F Gx x x
   

   , x U  . 

Theorem 3.1 Let  ,F A ,    ,G B NSS U , then we have
the following properties: 

(1)         , , , ,
c c cF A G B F A G B   ; 

(2)         , , , ,
c c cF A G B F A G B   .

Proof. (1) Assume that      , , ,F A G B H A B   . Then

        , , , ,
c c cF A G B H A B H A B     .

For any  , A B    , x U , we have

           

        

        

, min , ,

min ,

max , ,

 

 

 

   

 

 

 F G

F G

F G

H x x x

x x

x x

which implies 

            

        

        

, max , ,

min ,

min , .

 

 

 

   

 

 

c
F G

F G

F G

H x x x

x x

x x

(1) 

On the other hand, 

       , , , ,  
c c c cF A G B F A G B . 

Let us assume that      , , ,  c cF A G B K A B . We 
obtain

   
 
 

 
  

 
 

 
  

 
 

 
  

, max , ,

min ,

min , .

 

 

 

   

 

 

 c

c c

c c

F G

F G

F G

K x x x

x x

x x

Since 
   

 c FF
, 

   
 c FF

, 
   

 c FF
, 

   
 c GG

, 
   

 c GG
, 

   
 c GG

, 

            

        

        

, max , ,

min ,

min , .

 

 

 

   

 

 

 F G

F G

F G

K x x x

x x

x x

(2)
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Combining (1) and (2), the proof is completed. 

(2) The proof is similar to (1).

Theorem 3.2 Let  ,F A ,  ,G B ,    , H C NSS U , then
we have the following properties: 

a)              , , , , , ,    F A G B H C F A G B H C ;

b)              , , , , , ,    F A G B H C F A G B H C .

Proof. (1) Assume that 

     , , ,  G B H C I B C ,

We have 

            

        

        

, min , ,

min ,

max , ,

 

 

 

   

 

 

 G H

G H

G H

I x x x

x x

x x

 ,   B C , x U .

We assume that 

        , , , ,    F A G B H C K A B C .

In other words, 

     , , ,    K A B C F A I B C .

By definition of   operator for two NSSs, 

                 

             

             

, , min ,min , ,

min ,min ,

max ,max , ,

  

  

  

     

  

  

 F G H

F G H

F G H

K x x x x

x x x

x x x

or 

               

            

            

, , min , , ,

min , ,

max , , .

F G H

F G H

F G H

K x x x x

x x x

x x x

  

  

  

     

  

  



By a similar argument, we get 

        , , , ,F A G B H C K A B C     .

This concludes the proof of a). 

The proof of b) is analogous. 

Definition 3.12 The intersection of  two NSSs  ,F A ,

   ,G B NSS U , denoted by    , ,F A G B , is a NSSs

 ,H C , where C A B  and for all e C ,

 
 
 
   

if \
if \
if

F e e A B
H e G e e B A

F e G e e A B

 


 
   

. (3)  

Definition 3.13 The union of two NSSs  ,F A ,

   ,G B NSS U , denoted by    , ,F A G B , is a NSSs

 ,H C , where C A B  and for all e C ,

 
 
 
   

if \
if \
if

F e e A B
H e G e e B A

F e G e e A B

 


 
   

. (3)  

Theorem 3.3. Let  ,F A ,    ,G B NSS U , then we have
the following properties: 

a)         , , , ,
c c cF A G B F A G B   ; 

b)         , , , ,
c c cF A G B F A G B   . 

Proof. a)   Assume that      , , ,F A G B H C  , with
C A B  , then 

        , , , ,
c c cF A G B H C H C   . 

By Definition 3.13, 

 
 
 
   

if \
if \
if

F e e A B
H e G e e B A

F e G e e A B

 


 
   

. 

It implies 

 
 
 
   

if \
if \
if

c

c c

c c

F e e A B
H e G e e B A

F e G e e A B

 


 
   

. (5) 

Similarly, we denote      , , ,c cF A G B K C  with 

C A B  . Since      , , ,c cK C F A G B  , 

 
 
 
   

if \
if \
if

c

c

c c

F e e A B
K e G e e B A

F e G e e A B

 


 
   

. (6) 

From (5) and (6), we get cH K . Hence, 
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        , , , ,
c c cF A G B F A G B   . 

b) Similarly, we have b).

3.4 Cartesian product of neutrosophic soft sets 

Definition 3.14 Let  1 1O SNS X  and  2 2O SNS X .
The Cartesian product of these two NSSs is 

 1 2 1 2O O SNS X X    defined as 

     
1 2 1 2

,O O O Ox y x y     ,

     
1 2 1 2

,O O O Ox y x y     , and

     
1 2 1 2

,O O O Ox y x y     ,   1 2,x y X X   . 

It is easy to check the validation of Definition 3.15. 

Theorem 3.4 For 1O ,  2 1O SNS X ,  3 2O SNS X , and 
 4 3O SNS X : 

a) 1 3 3 1O O O O   ;

b)    1 3 4 1 3 4O O O O O O     ;

c)      1 2 3 1 3 2 3O O O O O O O      ;

d)      1 2 3 1 3 2 3O O O O O O O      .

Proof. a) and b) are straightforward. We consider c) and d). 

c) We have

     
1 2 1 2O O O Ox x x     ,

     
1 2 1 2O O O Ox x x     , and

     
1 2 1 2O O O Ox x x     , 1x X  .

Thus, 

          
1 2 31 2 3

, O O OO O O x y x x y   
 

   ,

          
1 2 31 2 3

, O O OO O O x y x x y   
 

   , and 

          
1 2 31 2 3

, O O OO O O x y x x y   
 

   ,

  1 2,x y X X   . 

Using the properties of the operations   and   we obtain 

             

   

     

1 3 2 31 2 3

1 3 2 3

1 3 2 3

,

, ,

, ,

O O O OO O O

O O O O

O O O O

x y x y x y

x y x y

x y

    

 



 

 

  

   

 



             

   

     

1 3 2 31 2 3

1 3 2 3

1 3 2 3

,

, ,

, ,

O O O OO O O

O O O O

O O O O

x y x y x y

x y x y

x y

    

 



 

 

  

   

 



             

   

       

1 3 2 31 2 3

1 3 2 3

1 3 2 3 1 2

,

, ,

, , , .

O O O OO O O

O O O O

O O O O

x y x y x y

x y x y

x y x y X X

    

 



 

 

  

   

 

   

The proof is given. 

d) The proof of d) is analogous.

Now we give the definition of the Cartesian product of   
neutrosophic soft sets. 

Definition 3.15 Let 1X , 2X  be two universes, E  be the 
set of parameters, A , B E . Then the Cartesian product 
of  1,F A NSS X and  2,G B NSS X is denoted by 

, ,F A G B  and defined by ,H A B , where

            

        

        

, , min , ,

min , ,

max , ,

F G

F G

F G

H x y x y

x y

x y

 

 

 

   

 

 



 , A B    ,   1 2,x y X X   . 

Theorem 3.5 Let 1X , 2X , 3X  be three universes, E  be 
the set of parameters, 1A , 2A , B , D E . For 1 1,F A , 

 2 2 1,F A NSS X ,  2,G B NSS X and 

 3,H D NSS X , we have:

a) 1 1 1 1, , , ,F A G B G B F A   ; 

b)  1 1, , ,F A G B H D 

 1 1, , ,F A G B H D   ; 

c)  1 1 2 2, , ,F A F A G B 

   1 1 2 2, , , ,F A G B F A G B    ; 

d)  1 1 2 2, , ,F A F A G B 
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   1 1 2 2, , , ,F A G B F A G B    .

Proof. The proof of a) and b) is omitted. 

c) Use Definition 3.14, if 1 2 1 1 2 2, , ,F A A F A F A    , 
then for all 1 2A A   : 

 
 
 
   

1 1 2

2 2 1

1 2 1 2

if \
if \
if

F A A
H F A A

F F A A

 

  

  

 


  
   

. 

Let assume that  1 2 1 2, , ,K A A B F A A G B     . 

For all   1 2,x y X X  , there are following three cases : 

* Case 1:    1 2, \A A B    . 

            1, , min ,K F Gx y x y
   

   , 

            1, , min ,K F Gx y x y
   

   , and 

            1, , max ,K F Gx y x y
   

   . 

* Case 2:    2 1, \A A B    . 

            2, , min ,K F Gx y x y
   

   , 

            2, , min ,K F Gx y x y
   

   , and 

            2, , max ,K F Gx y x y
   

   . 

* Case 3:    2 1, A A B     . 

              1 2, , min ,K F F Gx y x y
    

  




             1 2
min max , ,F F Gx x y

  
  

                  1 2
max min , ,min ,F G F Gx y x y

   
    , 

              1 2, , min ,K F F Gx y x y
    

  




             1 2
min min , ,F F Gx x y

  
  

            1 2
min , ,F F Gx x y

  
   , and

              1 2, , max ,K F F Gx y x y
    

  




             1 2
max min , ,F F Gx x y

  
  

                  1 2
min max , ,max ,F G F Gx y x y

   
    . 

Let us denote 1 1 1 1, , ,H A B F A G B    and 

2 2 2 2, , ,H A B F A G B   . We have: 

            1 1, , min ,H F Gx y x y
   

   , 

            1 1, , min ,H F Gx y x y
   

   , 

            1 1, , max ,H F Gx y x y
   

   , 

  1, A B    and   1 2,x y X X  ; 

            2 2, , min ,H F Gx y x y
   

   , 

            2 2, , min ,H F Gx y x y
   

   , 

            2 2, , max ,H F Gx y x y
   

   ,

  2, A B    and   1 2,x y X X  . 

We consider, 

   1 2 1 1 1 1, , ,K A B A B H A B H A B        . 

Again, we have following three cases:

* Case 1:        1 2 1 2, \ \A B A B A A B       . We
have:

       
1, ,, ,K Hx y x y

   
 




        1
min ,F Gx y

 
  ;

       
1, ,, ,K Hx y x y

   
 




        1
min ,F Gx y

 
  ;

       
1, ,, ,K Hx y x y

   
 




        1
max ,F Gx y

 
  .

* Case 2:        2 1 2 1, \ \A B A B A A B       .

       
2, ,, ,K Hx y x y

   
 




        2
min ,F Gx y

 
  ;

       
2, ,, ,K Hx y x y
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        2
min ,F Gx y

 
  ;

       
2, ,, ,K Hx y x y

   
 




        2
max ,F Gx y

 
  .

* Case 3:        1 2 2 1, A B A B A A B         .

           
1 2, , ,, ,K H Hx y x y

     
 

 


        1 2, ,max , , ,H Hx y x y
   

 

                  1 2
max min , ,min ,F G F Gx y x y

   
    ; 

           
1 2, , ,, ,K H Hx y x y

     
 

 


        1 2, ,min , , ,H Hx y x y
   

 

                  1 2
min min , ,min ,F G F Gx y x y

   
   

            1 2
min , ,F F Gx x y

  
   ; and

           
1 2, , ,, ,K H Hx y x y

     
 

 


        1 2, ,min , , ,H Hx y x y
   

 

                  1 2
min max , ,max ,F G F Gx y x y

   
    . 

We then obtain K K  which completes the proof of 
c). The proof of d) is analogous. 

4 Standard neutrosophic soft relations 

4.1 Standard neutrosophic relations 

Fuzzy relations are one of the most important notions 
of fuzzy set theory and fuzzy system theory. The Zadeh’s 
composition rule of inference [2] is a well-known method 
in approximation theory and inference methods in fuzzy 
control theory. Intuitionistic fuzzy relations were received 
many results [21][22]. Xu [24] defined some new intuition-
istic preference relations, such as the consistent intuition-
istic preference relation, incomplete intuitionistic prefer-
ence relation and studied their properties. Thus, it is neces-
sary to develop new approaches to issues, such as multi-
period investment decision making, medical diagnosis, 
personnel dynamic examination, and military system effi-
ciency dynamic evaluation. In this section we shall present 
some preliminary results on standard neutrosophic rela-
tions.  

4.1.1 Standard neutrosophic relations 

Let X , Y  and Z be ordinary non-empty sets. A 
standard neutrosophic relation is defined as follows. 

Definition 4.1 [18] A standard neutrosophic relation 
(SNR) R  between X  and Y  is a SNS on X Y , i.e. 

           , , , , , , , ,R R RR x y x y x y x y x y X Y     , 

where R , R , : [0,1]R X Y    satisfy the condition 

     , , , 1R R Rx y x y x y     ,  ,x y X Y  .

We will denote by  SNR X Y  the set of all SNRs
between X  and Y . 

Definition 4.2 [18] Let  R SNR X Y  , the inverse rela-

tion 1R of R is a SNR between Y and X defined as

   1 , ,RR
y x x y   ,    1 , ,RR

y x x y   , and

   1 , ,RR
y x x y   ,  ,y x Y X   .

Now we will consider some simple properties of SNRs. 

Definition 4.3 [18] Let R ,  P SNR X Y  , for every, we 
define: 

a)
   

   

   

, ,

, ,

, ,

R P

R P

R P

x y x y

R P x y x y

x y x y

 

 

 

 


  




; 

b)

     

   

      

, , , , ,

, , ,

, , , ;

R P

R P

R P

R P x y x y x y

x y x y

x y x y x y X Y

 

 

 

  



  

c)

     

   

      

, , , , ,

, , ,

, , , ;

R P

R P

R P

R P x y x y x y

x y x y

x y x y x y X Y

 

 

 

  



  

d)
        

  

, , , , , , ,

,

c
R R RR x y x y x y x y

x y X Y

  

 

Proposition  4.1 [18]  Let R , P ,  Q SNS X Y  . Then

a)  
11R R


  ;

b) 1 1R P R P    ;
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c1)  
1 1 1R P R P     ;  c2)  

1 1 1R P R P     ;

d1)      R P Q R P R Q      ;

d2)      R P Q R P R Q      ;

e) R P R  , R P P  ;

f1)  If R P and  R Q then R P Q  ; 

f2) If R P and R Q then R P Q  . 

Proof. For the detail proof of this proposition, see [20]. 
4.1.2 Composition of standard neutrosophic 
relations 

In this sub-section we present some compositions of 
SNRs. 

Definition 4.4 [20] Let  R SNR X Y   and
 P SNR Y Z  . We will call max - min  composed

relation  1P R SNR X Z  to the one defined by

      
1

, , ,P R R Py
x z x y y z     , 

      
1

, , ,P R R Py
x z x y y z     , and

      
1

, , ,P R R Py
x z x y y z     ,  ,x z X Z   .

Definition 4.5 [20] Let  R SNR X Y   and

 P SNR Y Z  . We will call max - prod composed rela-

tion  2P R SNR X Z   to the one defined by  

      
2

, , ,P R R Py
x z x y y z     ,  

     
2

, , ,P R R Py
x z x y y z        , and

          
2

, , , , ,P R R P R Py
x z x y y z x y y z         ,

 ,x z X Z   .

Definition 4.6 [20] Let   be a t -norm,   be a t -conorm,     
 R SNR X Y  and  P SNR Y Z  . We will call

max - t composed relation  3R P PFR X Z   to the
one defined by   

     3
( , ) , , ,R P R Py
x z x y y z     ,  

     3
( , ) , , ,R P R Py
x z x y y z     , and

       3
, , , ,R P R Py

x z x y y z     ,

 ,x z X Z   .

The validation of Definitions 4.5-4.7 were given in 
[30]. 

4.2 Neutrosophic soft relations 

4.2.1 Some operations on neutrosophic soft 
relations 

In this sub-section, we give the definition of standard 
neutrosophic soft relation (SNSR) as a generalization of 
fuzzy soft relation and intuitionistic fuzzy soft relation. 
The novel concept is actually a parameterized family of 
standard neutrosophic relations (SNRs). 

In following definitions, X , Y  are ordinary non-
empty sets and E  is a set of parameters. 

Definition 4.7 Let A E . A pair  ,R A  is called a
standard neutrosophic soft relation (SNSR) over X Y  if 
R assigns to each parameter e  in E a SNR  R e  in

 SNR X Y , that is

 :R A SNR X Y  .

The set of all SNSRs between X  and Y  is denoted by 
 SNSR X Y .

Definition 4.8 Let A , B E . The intersection of two 
SNSRs  1,R A  and  2 ,R B  over X Y  is a SNSR

 3 ,R C  over X Y  such that C A B   and for all 
e C ,

 
 
 
   

1

3 2

1 2

if \ ,
if \ ,
if .

R e e A B
R e R e e B A

R e R e e A B

 


 
   

This relation is denoted by    1 1, ,R A R B .

Definition 4.9 Let ,A B E .The union of  two SNSRs 
 1,R A and  2 ,R B over X Y is a SNSR  3 ,R C over
X Y , where  C A B  and  for all e C , 

 
 
 
   

1

3 2

1 2

if \ ,
if \ ,
if .

R e e A B
R e R e e B A

R e R e e A B

 


 
   

This relation is denoted by    1 2, ,R A R B .

4.2.2 Composition of neutrosophic soft relations 
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We denote by  
1

ESNSR X Y  the set of all SNSRs on 

X Y with the corresponding parameter set 1E . Similarly, 

 
2

ESNSR Y Z denotes the set of all SNSRs on Y Z

with the corresponding parameter set 2E . 

Definition 4.10 Let  
1

 ER SNSR X Y  and

 
2

 EP SNSR Y Z . We will call max - min composed 

relation  
1 21   E EP R SNSR X Z   to the one defined by   

       

   

      

1

1

1

1 1 2 1 2

1 2

1 2

, , , , , ,

, ,

, , , ,

P R

P R

P R

P R e e x z x y e e

x z e e

x z e e x z X Z













 

 

 1 2 1 2,e e A A   . Where

           1 1 21 2, , , ,P R R e P ey
x z e e x y y z      ,

           1 1 21 2, , , ,P R R e P ey
x z e e x y y z      ,

           1 1 21 2, , , ,P R R e P ey
x z e e x y y z      ,

for all  ,x z X Z  ,  1 2 1 2,e e A A  . 

Definition 4.11 Let  
1

 ER SNSR X Y  and 

 
2

 EP SNSR Y Z . We will call max - prod composed

relation  
1 22   E EP R SNSR X Z   to the one defined by                

       

   

      

2

2

2

2 1 2 1 2

1 2

1 2

, , , , , ,

, ,

, , , ,

P R

P R

P R

P R e e x z x y e e

x z e e

x z e e x z X Z













 

 

 1 2 1 2,e e A A   . Where

           2 1 21 2, , , ,P R R e P ey
x z e e x y y z      ,

           2 1 21 2, , , ,P R R e P ey
x z e e x y y z      ,

           

       
2 1 2

1 2

1 2, , , ,

, , ,

P R R e P ey

R e P e

x z e e x y y z

x y y z

  

 

   

 

for all  ,x z X Z  ,  1 2 1 2,e e A A  . 

Definition 4.12 Let  
1

 ER SNSR X Y , 

 
2

 EP SNSR Y Z ,  is a t -norm and  is a t -conorm.
We will call max - t composed relation 

 
1 23 E EP R SNSR X Z    to the one defined by  

       

   

      

3

3

3

3 1 2 1 2

1 2

1 2

, , , , , ,

, ,

, , , ,

P R

P R

P R

P R e e x z x y e e

x z e e

x z e e x z X Z













 

 

 1 2 1 2,e e A A   . Where

            3 1 21 2, , , , ,P R R e P ey
x z e e x y y z      ,  

            3 1 21 2, , , , ,P R R e P ey
x z e e x y y z      , 

            2 1 21 2, , , , ,P R R e P ey
x z e e x y y z      ,

for all  ,x z X Z  ,  1 2 1 2,e e A A  . 

The validation of Definitions 4.11-4.13 is trivial by fol-
lowing arguments. For each pair  1 2 1 2,e e A A  , 

 1 1 2,P R e e is max - min composition of two SNRs

 1R e and  2P e , i.e. 

     1 1 2 2 1 2,P R e e P e P e  .

By the validation of 1 ,    1 1 2,P R e e SNR X Z  

which yields  
1 21 E EP R SNSR X Z   . The validation of

2 and 3 are also obtained by analogous calculations.

Conclusion

In 2013, the new notion of picture fuzzy sets was in-
troduced. The novel concept, which is also termed as 
standard neutrosophic set (SNS), constitutes an importance 
case of neutrosophic set. Our neutrosophic soft set (NSS) 
theory is a combination of the standard neutrosophic theo-
ry and the soft set theory. In other words,   neutrosophic 
soft set theory is a neutrosophic extension of the intuition-
istic fuzzy soft set theory. The complement, “and”, “or”, 
union and intersection operations are defined on the NSSs. 
The standard neutrosophic soft relations (SNSR) are also 
considered. The basic properties of the NSSs and the 
SNSRs are also discussed. Some future work may be con-
cerned interval- valued neutrosophic soft sets and interval-
valued neutrosophic relations should be considered. 
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Abstract 

In this paper, we introduce the concept of neutrosophic less than or equal to. 

The neutrosophy considers every idea < A >  together with its opposite 

or negation < antiA >  and with their spectrum of neutralities < neutA > 

in between them (i.e. notions or ideas supporting neither < A > nor < antiA
>). The < neutA >  and < antiA >  ideas together are referred to as <

nonA > . Neutrosophic Set and Neutrosophic Logic are generalizations of the 

fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy 

set and respectively intuitionistic fuzzy logic) [5]. In neutrosophic logic, a 

proposition has a degree of truth (T), a degree of indeterminacy (I), and a 

degree of falsity (F), where T, I, F are standard or non-standard subsets 

of  ]-0, 1+[.  Another purpose of this article is to explain the mathematical 

theory of neutrosophic geometric programming (the unconstrained 

posynomial case). It is necessary 

to work in fuzzy neutrosophic space FNs = [0,1] ∪ [0, nI], n ∈ [0,1]. The 

theory stated in this article aims to be a complementary theory of 

neutrosophic geometric programming.      

Keywords 

Neutrosophic Less Than or Equal To, Geometric Programming (GP), Signomial 

Geometric Programming (SGP), Fuzzy Geometric Programming (FGP), Neutrosophic 

Geometric Programming (NGP), Neutrosophic Function in Geometric Programming. 
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1 Introduction 

The classical Geometric Programming (GP) is an optimization technique 

developed for solving a class of non-linear optimization problems in 

engineering design. GP technique has its origins in Zener’s work (1961). Zener 

tried a new approach to solve a class of unconstrained non-linear optimization 

problems, where the terms of the objective function were posynomials. To 

solve these problems, he used the well-known arithmetic-geometric mean 

inequality (i.e. the arithmetic mean is greater than or equal to the geometric 

mean). Because of this, the approach came to be known as GP technique. Zener 

used this technique to solve only problems where the number of posynomial 

terms of the objective function was one more than the number of variables, 

and the function was not subject to any constraints. Later on (1962), Duffin 

extended the use of this technique to solve problems where the number of 

posynomial terms in the objective function is arbitrary. Peterson (1967), 

together with Zener and Duffin, extended the use of this technique to solve 

problems which also include the inequality constraints in the form of 

posynomials. As well, Passy and Wilde (1967) extended this technique further 

to solve problems in which some of the posynomial terms have negative 

coefficients. Duffin (1970) condensed the posynomial functions to a monomial 

form (by a logarithmic transformation, it became linear), and particularly 

showed that a "duality gap" function could not occur in geometric 

programming. Further, Duffin and Peterson (1972) pointed out that each of 

those posynomial programs GP can be reformulated so that every constraint 

function becomes posy-/bi-nomial, including at most two posynomial terms, 

where posynomial programming - with posy-/mo-nomial objective and 

constraint functions - is synonymous with linear programming.  

As geometric programming became a widely used optimization technique, it 

was desirable that an efficient and highly flexible method of solutions were 

available. As the complexity of prototype geometric programs to be solved 

increased, several considerations became important. Canonically, the degree 

of problem difficulty and the inactive constraints reported an algorithm 

capable of dealing with these considerations. Consequently, McNamara (1976) 

proposed a solution procedure for geometric programming involving the 

formulation of an augmented problem that possessed zero degree of difficulty. 

Accordingly, several algorithms have been proposed for solving GP (1980’s). 

Such algorithms are somewhat more effective and reliable when they are 

applied to a convex problem, and also avoid difficulties with derivative 

singularities, as variables raised to fractional powers approach zero, since logs 

of such variables will approach  −∞ , and large negative lower bounds should 

be placed on those variables.  
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In the 1990’s, a strong interest in interior point (IP) algorithms has spawned 

several (IP) algorithms for GP. Rajgopal and Bricker (2002) produced an 

efficient procedure for solving posynomial geometric programming. The 

procedure, which used the concept of condensation, was embedded within an 

algorithm for a more general (signomial) GP problem. The constraint structure 

of the reformulation provides insight into why this algorithm is successful in 

avoiding all of the computational problems, traditionally associated with dual-

based algorithms.  

Li and Tsai (2005) proposed a technique for treating (positive, zero or negative) 

variables in SGP. Most existing methods of global optimization for SGP actually 

compute an approximate optimal solution of a linear or convex relaxation of 

the original problem. However, these approaches may sometimes provide an 

infeasible solution, or might form the true optimum to overcome these 

limitations. 

A robust solution algorithm is proposed for global algorithm optimization of 

SGP by Shen, Ma and Chen (2008). This algorithm guarantees adequately to 

obtain a robust optimal solution which is feasible and close to the actual 

optimal solution, and is also stable under small perturbations of the 

constraints [6].   

In the past 20 years, FGP has developed extensively. In 2002, B. Y. Cao 

published the first monography of fuzzy geometric programming as applied 

optimization. A large number of FGP applications have been discovered in a 

wide variety of scientific and non-scientific fields, since FGP is superior to 

classical GP in dealing with issues in fields like power system, environmental 

engineering, postal services, economical analysis, transportation, inventory 

theory; and so more to be discovered.  

Arguably, fuzzy geometric programming potentially becomes a ubiquitous 

optimization technology, the same as fuzzy linear programming, fuzzy 

objective programming, and fuzzy quadratic programming [2]. 

This work is the first attempt to formulate the neutrosophic posynomial 

geometric programming (the simplest case, i.e. the unconstrained case). A 

previous work investigated the maximum and the minimum solutions to the 

neutrosophic relational GP [7,8]. 

2 Neutrosophic Less than or Equal To 

In order to understand the concept of neutrosophic less than or equal to in 

optimization, we begin with some preliminaries which serve the subject. 
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Definition 2.1 

Let 𝑋 be the set of all fuzzy neutrosophic variable vectors 𝑥𝑖 , 𝑖 = 1,2,… ,𝑚 , i.e. 

𝑋 = {(𝑥1, 𝑥2, … , 𝑥𝑚)
T│𝑥𝑖 ∈ FNs}. The function g(𝑥): 𝑋 →  R ∪ I is said to be the

neutrosophic GP function of 𝑥 , where g(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1 ,   ck ≥ 0  are

constants, γkl - are arbitrary real numbers. 

Definition 2.2 

Let g(𝑥) be any linear or non-linear neutrosophic function, and let A0 be the 

neutrosophic set for all functions g(𝑥) that are neutrosophically less than or 

equal to 1. 

A0 = { g(𝑥) < ₦1, 𝑥𝑖 ∈ FNs}

=  { g(𝑥) < 1, anti( g(𝑥)) > 1, neut( g(𝑥)) = 1, 𝑥𝑖 ∈ FNs}. 

Definition 2.3 

Let g(𝑥) be any linear or non-linear neutrosophic function, where 𝑥𝑖 ∈ [0,1] ∪

[0, nI] and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)
T  a m-dimensional fuzzy neutrosophic variable

vector. 

We have the inequality 

 g(𝑥) < ₦  1  (1) 

where " < ₦" denotes the neutrosophied version for  " ≤ " with the linguistic 

interpretation being "less than (the original claimed), greater than (the anti-

claim of the original less than), equal (neither the original claim, nor the anti-

claim)". 

The inequality (1) can be redefined as follows: 

  
g(x) < 1

anti (g(x)) > 1

neut( g(x)) = 1

}  (2) 

Definition 2.4 

Let A0  be the set of all neutrosophic non-linear functions that are 

neutrosophically less than or equal to 1. 

A0 = { g(𝑥) < ₦  1, 𝑥𝑖 ∈ FNs}

=  { g(𝑥) < 1, anti( g(𝑥)) > 1, neut( g(𝑥)) = 1, 𝑥𝑖 ∈ FNs}. 

It is significant to define the following membership functions: 

μAo( g(x)) = {
1  0 ≤ g(x) ≤ 1

(e
−1

do
(g(x)−1)

+ e
−1

do
(anti( g(x))−1)

− 1) ,  1 < g(x) ≤ 1 − do ln 0.5
(3)
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μAo(anti( g(x))) = {
0        0 ≤ g(x) ≤ 1

(1 − e
−1

do
(anti( g(x))−1)

− e
−1

do
(g(x)−1)

) , 1 − do ln 0.5 ≤ g(x) ≤ 1 + do
  (4) 

It is clear that μAo(neut( g(𝑥))) consists of intersection the following functions:

 e
−1

do
(g(x)−1)

,    1 − e
−1

do
(anti( g(x))−1)

i.e.

μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−1)

   1 ≤ g(x) ≤ 1 − do ln 0.5

e
−1

do
(g(x)−1)

 1 − do ln 0.5 < g(x) ≤ 1 + do

            (5) 

Note that do > 0 is a constant expressing a limit of the admissible violation of 

the neutrosophic non-linear function g(𝑥) [3]. 

2.1        The relationship between g(x), anti g(x) in NGP 

1. At
 1 < g(x) ≤ 1 − do ln 0.5  
μAo( g(x) ) > μAo(anti( g(x) ) (see Figure 1) 

e
−1

do
(g(x)−1)

> 1 − e
−1

do
(anti( g(x) )−1)

e
−1

do
(anti( g(x) )−1)

> 1 − e
−1

do
(g(x)−1)

−1

do
(anti( g(x) ) − 1) > ln(1 − e

−1

do
(g(x)−1)

) 

anti( g(x) ) < 1 − do  ln(1 − e
−1
do
(g(x)−1)

) 

2. Again at
  1 − do ln 0.5 < g(x) ≤ 1 + do 

μAo( g(x)) < μAo(anti( g(x)))

 ∴   anti( g(x) ) > 1 − do  ln(1 − e
−1
do
(g(x)−1)

) 

3 Neutrosophic Geometric Programming (the unconstrained case) 

Geometric programming is a relative method for solving a class of non-linear 

programming problems. It was developed by Duffin, Peterson, and Zener 

(1967) [4]. It is used to minimize functions that are in the form of posynomials, 

subject to constraints of the same type.   

Inspired by Zadeh's fuzzy sets theory, fuzzy geometric programming emerged 

from the combination of fuzzy sets theory with geometric programming.  

Fuzzy geometric programming was originated by B.Y. Cao in the Proceedings 

of the second IFSA conferences (Tokyo, 1987) [1].  

In this work, the neutrosophic geometric programming (the unconstrained 

case) was established where the models were built in the form of posynomials. 
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Definition 3.1 

Let 

N
(P)

 g(x)min
N  

xi ∈ FNs

} .    (6)    

The neutrosophic unconstrained  posynomial  geometric programming , where 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) 
T  is a m-dimensional fuzzy neutrosophic variable vector,

"T"  represents a transpose symbol, and g(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1  is a

neutrosophic posynomial GP function of 𝑥 , ck ≥ 0 a constant , γkl an arbitrary 

real number,  g(𝑥) < ₦ z → g(𝑥)min
N  ; the objective function g(𝑥) can be written 

as a minimizing goal in order to consider 𝑧  as an upper bound; 𝑧  is an 

expectation value of the objective function g(𝑥) , " < ₦ "  denotes the 

neutrosophied version of " ≤ "  with the linguistic interpretation (see 

Definition 2.3), and do > 0 denotes a flexible index of g(𝑥). 

Note that the above program is undefined and has no solution in the case of  

γkl < 0 with some xl′s taking indeterminacy value, for example, 

 g(𝑥)min
N  = 2𝑥1

−.2x2
.3𝑥4

1.5 + 7𝑥1
3x2

−.5𝑥3,

where  𝑥𝑖 ∈ FNs, 𝑖 = 1,2,3,4. 

This program is not defined at 𝑥 = (.2I, .3, .25, I)T ,  g(𝑥) = 2(. 2I)−.2(. 3).3I1.5 +

7(. 2I)3(. 3)−.5(.25) is undefined at  𝑥1 = .2I with  γ1 = −0.2. 

Definition 3.2 

Let A0  be the set of all neutrosophic non-linear functions g(𝑥)  that are 

neutrosophically less than or equal to 𝑧, i.e.  

A0 = {  g(x) < ₦ z, xi ∈ FNs}.  

The membership functions of g(𝑥) and  anti(g(𝑥)) are: 

μAo( g(x)) = {
1  0 ≤ g(x) ≤ z

(e
−1

do
(g(x)−z)

+ e
−1

do
(anti (g(x))−z)

− 1) ,      z < g(x) ≤ z − do ln 0.5
    (7) 

μAo(anti( g(x))) = {
0        0 ≤ g(x) ≤ z

(1 − e
−1

do
(anti (g(x))−z)

− e
−1

do
(g(x)−z)

) , z − do ln 0.5 ≤ g(x) ≤ z + do
  (8) 

Eq. (6) can be changed into 

g(x) < ₦   z,  x = (x1, x2, … , xm), xi ∈ FNs  (9) 

The above program can be redefined as follow: 
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g(x) < z       

anti( g(x)) > z       

neut( g(x)) = z       

x = (x1, x2, … , xm), xi ∈ FNs}

        (10) 

It is clear that μAo(neut( g(𝑥))) consists from the intersection of the following

functions: 

e
−1

do
(g(x)−z)

 &  1 − e
−1

do
(anti(g(x))−z)

μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−z)

        z ≤ g(x) ≤ z − do ln 0.5

e
−1

do
(g(x)−z)

 z − do ln 0.5 < g(x) ≤ z + do

         (11) 

Definition 3.3 

Let Ñ be a fuzzy neutrosophic set defined on [0,1] ∪ [0, nI], 𝑛 ∈ [0,1]; if there 

exists a fuzzy neutrosophic optimal point set Ao
∗  of g(𝑥) such that

Ñ(𝑥) =
min{μ(neut g(x))}

x = (x1, x2, … , xm), xi ∈ FNs
 (12) 

Ñ(x) = e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti( ∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

, 

then maxÑ(𝑥)  is said to be a neutrosophic geometric programming (the 

unconstrained case) with respect to Ñ(𝑥) of g(𝑥)  .  

Definition 3.4 

Let 𝑥∗ be an optimal solution to Ñ(𝑥), i.e.  

Ñ(x∗) = maxÑ(x) , x = (x1, x2, … , xm), xi ∈ FNs ,  (13) 

and the fuzzy neutrosophic set  Ñ  satisfying (12) is a fuzzy neutrosophic 

decision in (9). 

Theorem 3.1 

The maximum of Ñ(x) is equivalent to the program: 

maxα     
g(x) < z − do ln α    

anti g(x) > z − do ln(1 − α)       

x = (x1, x2, … , xm), xi ∈ FNs , do > 0 

 }  (14) 

Proof 

It is known by definition (3.4) that 𝑥∗  satisfied eq. (12), called an optimal 

solution to (9). Again, 𝑥∗  bears the similar level for g(𝑥) ,

anti(g(𝑥)) &  neut(g(𝑥)).  Particularly, 𝑥∗  is a solution to neutrosophic 
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posynomial geometric programming (6) at Ñ(𝑥∗) = 1 . However, when g(𝑥) <

𝑧 and anti(g(𝑥)) > 𝑧, there exists  

Ñ(x) = e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

 , 

given α = Ñ(x). Now,  ∀ α ∈ FNs; it is clear that 

e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

≥ α  (15) 

1 − e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

≥ α    (16) 

From (15), we have 

−1

do
(∑ ck

J
k=1 ∏ xl

γklm
l=1 − z) ≥ ln α

g(x) = (∑ ck
J
k=1 ∏ xl

γklm
l=1 ) ≤ z − do ln α .    (17) 

From (16), we have 

1 − α ≥ e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

→ anti (∑ ck
J
k=1 ∏ xl

γklm
l=1 ) − z ≥ −do ln(1 − α)          (18) 

anti (g(x)) ≥ z − do ln(1 − α).   

Note that, for the equality in (17) & (18), it is exactly equal to  neut g(𝑥). 

Therefore, the maximization of Ñ(𝑥) is equivalent to (14) for arbitrary α ∈ FNs, 

and the theorem holds. 

Figure 1. The orange color means the region covered  by μAo( g(𝑥)), the red color

means the region covered by  μAo(anti( g(𝑥))), and the yellow color means the region

covered by  μAo(neut( g(𝑥))).
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4 Conclusion 

The innovative concept and procedure explained in this article suit to the 

neutrosophic GP. A neutrosophic less than or equal to form can be completely 

turned into classical less than, greater than and equal forms. The feasible 

region for unconstrained neutrosophic GP can be determined by a fuzzy 

neutrosophic optimal point set in the fuzzy neutrosophic decision region 

Ñ(x∗) . 
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Abstract: In this  paper , the authors  explore 
neutrosophic statistics, that was initiated by Florentin 
Smarandache in 1998 and developed in 2014, by 
presenting various examples of several statistical 

distributions, from the work [1]. The paper is 
presented with more case studies, by means of which 
this neutrosophic version of statistical distribution 
becomes more pronounced. 

Key words: Neutrosophy, Binomial & Normal distributions, Neutrosophic logic etc. 

I.Introduction: Neutrosophy was first proposed by
Prof. Florentin Smarandache in 1995 . It is a new
branch of philosophy , where one can study origin ,
nature and scope  of neutralities . According to Prof.
Dr.Huang, this gives advantages to break the
mechanical understanding of human culture. For
example, according to mechanical theory ,existence
and non-existence couldn’t be simultaneously , due to
some indeterminacy [ 2 ].

This theory considers every notion or idea <A> 
together with its opposite or negation <Anti-A>. The 
<neut-A> and <Anti-A> ideas together called as a 
<non-A>. Neutrosophic logic is a general framework 
for unification of many existing logics, intutionstic 
logic, paraconsistent logic etc. The focal objective of 
neutrosophic logic is to characterize each logical 
statements in a 3D-neutrosophic space, where each 
dimension of space represents respectively the 
truth(T) , falsehood(F) and indeterminacies of the 
statements under consideration . Where T,I,F are 
standard or non-standard real subset of (-0,1+) 
without necessary connection between them. [ 3] 

The classical distribution is extended 
neutrosophically. That means that there is some 
indeterminacy related to the probabilistic experiment. 
Each experimental observation of each trial can result 
in an outcome of each trial can result in an outcome 
labelled failure (F) or some 
indeterminacy(I).Neutrosophic statistics is an 
extended form of classical statistics, dealing with 
crisp values. In this paper, we will discuss about one 
discrete random distribution such as Binomial 
distribution and a continuousone by approaching 
neutrosophically. Before focusing the light on this 
context, we should familiar with the following 
notions.  

Neutrosophic statistical number ‘N’ has the form 

     N = d + I; 

Where, d: Determinate part 

   I: Indeterminate part of N. 

The Neutrosophic Statistical Distribution: 

More Problems, More Solutions 

S. K. Patro, Florentin Smarandache 

S. K. Patro, Florentin Smarandache (2016). The Neutrosophic Statistical Distribution: More 
Problems, More Solutions. Neutrosophic Sets and Systems 12: 73-78 
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For example, a = 5 + I  ; where I ∈ [ 0 , 0.4] is 
equivalent to  a∈ [ 5 , 5.4 ]. So for sure a ≥ 5, where I 
∈[ O , O.4 ] . 

I.A. Preliminaries: In this context, we are going to
discuss about the classical distributions[4] .

  A). Binomial distribution, 

B). Normal distribution. 

I. A. a). Binomial distribution:

I. A.a.i. Definition: A random variable X is said to
follow Binomial distribution, if it assumes only non-
negative values and its probability mass function is
given by,

 
!( ) ( )

! !
otherwise equal to zero .

x nnp X x p x p q
x n x

  


I.A.a.ii. Physical conditions: We get Binomial
distribution under the following conditions–

1. Each trials results in two exhaustive and mutually
disjoint outcomes termed as success and failure.

2. The number of trials ‘n’ is finite.

3. The trials are independent on each other.

4. The probability of success ‘p’ is constant for each
trial.

I.A.b. Normal Distribution:

I.A.b.i. Definition: A random variable is said to have
a normal distribution with parameters μ and 2  ,
ifitsp.d.f is given by the probability law ,

2
2

2
)1 ) 221 1(  ;  ;  )

2 2
 -  and - < , 0.

x

xx

X

f x e e

x


 

   

 




 

       

A.I.b.ii. Chief characteristics of Normal
Distribution and normal probability curve:

The normal probability curve is given by the equation 

2

2
( )

21( ) ;-  < x <
2

X

X

x

X

f x e




 

 

  

I.A.b.iii.Properties:

1.The point of inflexion of the curve are:

1/21, f(x) =
2X X

X

x e 
 

 

2. The curve is symmetrical and bell shaped about the
line x = μ.

3. Mean, Median, Mode of distribution coincide.

4. X-axis is an asymptote to the curve.

5. Quartiles, Q₁ = μ – 0.6745σ

   Q₃ = μ + 0.6745σ. 

6.

II. Neutrosophic Statistical Distribution:

II.i. Neutrosophic Binomial Distribution: The
neutrosophic binomial random variable ‘x’ is then
defined as the number of success when we perform
the experiment n ≥ 1 times. The neutrosophic
probability distribution of ‘x’ is also called
neutrosophic binomial probability distribution.

II.i.a.Definitions:

1. Neutrosophic Binomial Random
Variable: It is defined as the number of
success when we perform the experiment n
≥ 1 times, and is denoted as ‘x’.

2. Neutrosophic Binomial Probability
Distribution: The neutrosophic probability
distribution of ‘x’ is called n.p.d.

3. Indeterminacy: It is not confined to
experimental results (either success or
failures).

4. Indeterminacy Threshold: It is the number
of trials whose outcome is indeterminate.
Where

th∈{0,1,2…n} 

Let P(S) = The chance of a particular trial results in a     
success.    

P(F) = The chance of a particular trial results in a 
failure , for both S and f different from indeterminacy 
. 
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P(I) = The chance of a particular trial results in an 
indeterminacy .  

For example: for x∈ {0,1,2,…,n} , NP =(TX,IX,FX) 
with  

TX : Chances of ‘x’ success and (n-x) failures and 
indeterminacy but such that the no. of indeterminacy 
is less than or equal to indeterminacy threshold. 

FX : Chances of ‘y’ success , with y≠x and (n-y) 
failures and indeterminacy is less than the 
indeterminacy threshold. 

IX : Chances of ‘z’ indeterminacy , where ‘z’ is 
strictly greater than thee indeterminacy threshold. 

TX + FX + IX = (P(S) + P(I) + P(F))ⁿ 

For complete probability, P(S) + P(I) + P(F) = 1 ; 

For incomplete probability , 

0 ≤ P(S) + P(I) + P(F) < 1 ; 

For paraconsistent probability , 

1< P(S) + P(I) + P(F) ≤ 3 . 

Now , 

   

 

0

0

0

! ![ ( ) ( ) ( )
! ! ( )! !

! ( )!( ) ( ) ( )
! ! ( )!

! ( ) . ( )= ( ) .
! !( )!

th
x K n x k

k

th
x k n x k

k

k n x kth
x

k

n kTx P S P I P F
x n x n x k n x

n n xP S P I P F
x n x n x k

n P I P FP S
x k n x k
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1 0
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! !( )!
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! ( ) . ( )= ( ) .
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k n y kn th
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y
y y y x k

n n z
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z th k
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n P S P FFx T P S
y k n y k

n n zIx P I P S P F
z n z n z n z k

n P S P FP I
z k n z k

 

   


 

  

 

  

 
 




   

 

  

 

 

Where , 

Tx , Ix , Fx ,P(S) ,P(I) , P(F)  have their usual 
meaning. Now  we are going to discuss several cases. 

II.i.b.1. Case studies :

1. Two friends Asish and Rajesh are going to
throw 5 coins simultaneously. There are
60% of chance to get head and 30% of
chance to get tail. Independent on the view
of Asish ,Rajes said that the probability of
the result that are neither Head nor Tail is
20% . Then find the probability of getting 3
Heads  when indeterminacy threshold is 2.

Solution: 

   

 

2
3 2

0

3 2

3 2

1 0

2

3

5! ![(0.6) (0.2) (0.3) ]
3! 5 3 ! 2! 2 !

5! 2!= [(0.6) { (0.2) }]
3! 5 3 ! 2!

=10[(0.6) {(0.2) }] 0.0864
! ( ) . ( )( ) .
! !( )!
5! (0.6) (0.3)I  = (0.2)
3! !(2

k k

k

k n z kn n z
z

x
z th k

k k
z

kTx
k

n P S P FI P I
z k n z k

k





 

  




 






 





 

5 2

3 0

2 25

3
2 25

3

)!
5! (0.3) (0.6)= (0.2) { (0.6)(0.3) }
3! 2! 2!
5! (0.3) (0.6)= (0.2) { (0.6)(0.3) }
3! 2! 2!

={0.324+0.072+0.1008}=0.496
F  =(P(S)+P(I)+P(F))

z k

z

z

z

z

n
x

k

Tx Fx

F

 







 

 





 





5
3 (0.6 0.3 0.2) 0.0864 0.496

=1.02811
    

2. Five coins  are thrown simultaneously , the
probability of success is 1/3 and the
indeterminacy (the surface is very rough , so
the coins may stand up ) is 1/3 . Then find
the probability of getting 3 Heads  when the
indeterminacy threshold is 2.

Solution: 
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0

22
3

3
0

2 2
3 2

x be no. of chances of getting heads in 5 trials .
! ( ) ( )( )
! !( )!
5! (0.33) (0.33)(0.33)
3! !(2 )!
5! (0.33) (0.33)= (0.33) { (0.33) }
3! 2! 2!

=40.(

k n x kth
x

x
k

k k

k

Let
n P I P FT P S
x k n x k

T
k k

 








 

 


 





5

1 0

25 2
3

3
3 0

5

3

0.33) 0.15654
! ( ) ( )( ) .
! !(2 )!

5! (0.33) (0.33)(0.33) .
3! !(2 )!

=(0.33) [40 (7.5)(0.33) 1] 0.17014
( ( ) ( ) ( ))

(0.33 0.33 0.33

k n z kn n z
z

x
z th k

k k

z k

n
x x x

n P S P FI P I
z k k

I
k k

F P S P I P F T I
F

 

  



 






 


  

    

   

 

 

5)
, ( , , ) (0.15654,0.17014,0.67332)

x x

x x x

T I
so T I F

 



3. Two friends Liza and Laxmi play a game in
which their chance of winning is 2:3 . The
chances of dismissing game is 30% . Then
find the probability of Liza’s chances of
winning at least 3 games out of 5 games
played when the indeterminacy threshold is
2.

solution: 

0

2
3

3
0

4

 the no. of chances of winning the game 
Let th = 2

! ( ) . ( )( ) .
! !( )!
5! (0.3) (0.6)(0.4) .
3! !(2 )!

=20(0.405) 0.53808
! ( ) ( )( ) .
! !(

k n x kth
X

X
k

k kth

k

k n z k
Z

x

x is

n P I P FT P S
x k n x k
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z k n z
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55

3
0

3 4

3

)!
5! (0.4) (0.6)(0.3) .

! !(5 )!
=20(0.3) (0.5) 5(0.3) (0.42)
=0.28701

and F 2.88785,  a paraconsistent probability which is 3 .

n n z

z th k

k z kn z
z

Z k

k

I
z k z k

this is



  

 

 




 



 

 

 

4. In a precision bombing attack there is a 50%
chance that any one bomb will strike the
target . Two direct hits are required to
destroy the target . If the chance of failure of
mission is 30% , then find how many bombs

are required to give a 99% chance with th=2 
. 

Solution: 

0

22
3

3
0

5

0

x is the no. of chances of hitting bomb
! ( ) ( )T ( ) .
! !( )!
5! (0.3) (0.3)(0.5) .
3! !(2 )!

=40(0.5) 0.0972
! ( ) ( )( ) .
! !( )!
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3 3 3

5! (0.5) (0.3)(0.3) .
! !(5 )!

=0.1728+0.0078975=0.18069
therefore F ( ( ) ( ) ( ))

=(1.1) 0.27789 1.33262
 ( , , ) (0.0972,1.3326
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,0.1806).
  an example of paraconsistent probability.It is

5. It is decided that a  cricket player ,
Jagadiswar has to appear 4 times for a
physical test . If  the possibility of  passing
the test is 2/3 ; and one referee  guess that
the chance of dismiss of game is 30% , then
what is the probability of that the player
passes the test at least 3 times, provided
th=2?

Solution: 

0

12
3

3
0

3

  no. of chances that the player passes the test
! ( ) ( )T ( ) .
! !( )!
4! (0.3) (0.33)(0.66) .
3! !(1 )!

=8(0.66) (0.33) 0.7589
! ( ) ( )( ) .
! !

k n x kth
x

x
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3 3 3
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( )!

4(0.33) . {(0.66) (0.33) } /{ !(1 )!}

=(0.33) [3.96 0.33] 0.15416
F (0.66 0.33 0.3)

=2.76922 0.91306 1.85616
(T , ,
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z th k

z k k

z k

n z k

I k k
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SO I F



  



 

 

  

 

    

 

 

 

3) (0.7589,0.1541,1.8561).

II.i.b.2.Exercises:

1. In a B.Sccourse , suppose that a student has to
pass a minimum of 4 tests out of 8 
conducted tests during the year to get 
promoted to next academic year . One 
student, Sarmistha says that his chance of 
winning is 80% , another student, Baisakhi 
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says that his chance of winning is 0.3 . Then 
find the probability of the promotion of 
Sarmistha , when the indeterminacy ( either  
illegal paper correction or system error ) is 
20% , provided th=2. 

2. If a car agency sells 40% of its inventory of a
certain foreign cars equipped with air bags , the
asst. manager says that the cars which are neither
equipped with air bags nor a general one is 30% ,
then find  theprobability distribution of the 2 cars
with airbags among the next 4 cars sold  with
th=2?

3. A question paper contain 5 questions and a
candidate will be declared to have passed the
exam. If he/she answered at least one question
correctly, considering the uncertainty as 33% (
may be improper paper correction or system
error etc.). What is the probability that the
candidate passes the examination?

II.ii.Neutrosophic Normal Distribution:

Neutrosophic normal distribution of a continuous 
variable X is a classical normal distribution of X, but 
such that its mean μ or its standard deviation σ or 
variance 2 or both are imprecise. For example , μ or 
σ or both can be set with two or more elements . The 
most common such distribution are when μ, σ or both 
are intervals . 

2

2
( )( )

21~ ( , )
2

: distribution may be neutrosophic
: X may be neutrosophic

N

N

X

N N N N
N

N

N

X N e

N Normal
X



 
 





II.ii.a. Case studies:

1. In a college examination of a particular year,
60% of the Student failed when the mean of
marks was 50% and the standard deviation
is 5% with uncertainty I∈ [0,0.4] .The
college decided to relax the condition of
passing by lowering the passing marks to
show its result as 80%  passed , find the
minimum marks to be kept for passing when
marks are distributed normally .

Solution : Let μ = 50 , σ = 5 with indeterminacy 
I∈[0,0.4] ,so σ = 5 + [0,0.4] = [5,5.4] . therefore,μ±σ 
=50 ± [5,5.4] = [50-5.4,50+5] = [44.6 ,55] . Thus, 
66.04 % of values lies in [44.6,55] . 

0.2

.2

0.8 ( )
=1-P(X )

50=1-P( ) 1 ( )
[5,5.4]

50 50( ) 0.2, 0,  , ( ) 0.8
[5,5.4] [5,5.4]
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[5,5.4]

N N

N N

N N N N N
N

N N

N
N

N
O

P X a

X P Z
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2. If the monthly machine repair and
maintenance cost X in a certain factory is
known to be neutrosophically normal with
mean 1000 and standard deviation 10000 ,
find the followings-

         μ±σ,μ±2σ,when I∈[0,0.3]. 

Solution: Let μ=10000 ,σ=1000+[0,0.3],then 
μ±σ=10000±[1000,1000.03] . Thus 66.06% of values 
lies in [9000.03,11000]. And 
μ±2σ=10000±2[1000,1000.03]=[7999.97,12000]. 
Thus 75.04% of values lies in [7999.97,12000]. 

II.ii.b. Exercises:

1. A machine fills  boxes weighting B kg with
A kg of salt , where A and B are
neutrosophically normal with mean 200kg
and  10kg respectively and standard
deviation of 2kg and 1kg respectively , what
percentage of filled boxes weighting
between 110kg an 120kg are to be expected
when I∈[0,0.5].

2. The average life of a bulb is 2000 hours and
the standard deviation is 400 hours .If NX is
the life period of a bulb which is distributed

FIG-1: CREDIT TO FLORENTIN  SMARANDACHE IN NEUTROSOPHIC STATISTICS 
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normally in a neutrosophic plane. Find the 
probability that a randomly picked bulb will 
lasts ≤600 hrs. , considering the distribution 
is neutrosophically normal with 
indeterminacy I∈[0,0.2]. 

Till now, we have discussed various types of 
practical cases in statistical approach. Now we 
review the general formula for fusioning classical 
subjective probability provided by 2 sources. 

The principle of redistributing the conflicting chances 
for ex. t and I are same as in PCR5 rule for the DSmT 
used in information fusion if 2 sources of information 

1 2  S and S give the subjective probability P₁ and P₂
about ‘t’ to combining by PCR5 rule ,[5] 

2
1 2 2 1

1 2 1 2
1 2 2 2

( ) ( ) ( ) ( )( ) ( ) ( ) [ ]
( ) ( ) ( ) ( )x E x E

P E P X P E P XP P E P E P E
P E P X P E P X   

   
 



It helps to the generalization of classical probability 
theory, fuzzy set, fuzzy logic to their respective 
domains. They are useful in artificial intelligence, 
neutrosophic dynamic system, quantum mechanics 
[6].

This theory can be used for topical communication 
study [7]. It may also be applied to neutrosophic 
cognitive map study [8]. 

Thus we have presented our discussion with certain 
essential area of neutrosophy in a synchronized 
manner. Now we are going to explore some open 
challenges as follows.   

Which are designed for inquiring minds. 

Open Problems: 

1. Can this Neutrosophic Statistics be applied
to Industrial Management study?

2. Can we apply it with the study of Digital
Signal Processing?

3. Can we merge the Representation theory [ 9
]with  Neutrosophy for a new theory ?

4. Is the uncertain theory, K-theory [ 10 ]solve
the recent intriguing statistical problems by
the power of this Neutrosophic logic ?

5. Can we construct  a special master-space by
the fusion of manifold concepts [11], soft
topology [ 12 ], Ergodic  theory
[ 13],with Neutrosophic distribution ?

6. Is it possible for the construction of
Neutrosophic manifold?

7. Is it possible for the construction of
neutrosophic algebraic geometry[ 14 ] ?

III. Conclusion:

The actual motto of this short paper is to present the 
theory of Neutrosophic probability distribution in a 
more lucid and clear-cut way .The author presents 
various solved and unsolved problems, which are 
existed in reference to Neutrosophic 3D- space 
.Various practical situations are described and were 
tried to solve by Neutrosophic logic. The spectra of 
this theory may be applied to Quantum physics 
[15]and M-theory [ 16]. It may be said that it can also
be applied to Human psychology as well as 
Behavioral study. I hope that the more extended 
version (with large no. of case studies) with the area 
of application of this theory will see the light of the 
day in recent future. Here we limited our discussion 
of problem analysis to some extent due to limited 
scope of presentation. And lastly but important that if 
some unmatched/contradicted idea will occur in this 
paper, then it is surely unintentional. Finally I hope 
that the idea on the advanced version of this 
theory,which is already raised in my brain, will 
change their abstractskeleton into a paper, in coming 
future. 

References: 

[1].Smarandache .F, Neutrosophicalstatistics,Sitech& 
Education publishing , 2014. 
[2].Smarandache.F, Neutrosophy and its application 
(collected  
papers),sitech publisher, 2014. 
[3]. Dr. Huang ,cheng-gui, A note on neutrosophy, 
amritahcg@263.net 
[4]. Gupta.A.C,Kapoor.V.K , Mathematical statistics , s 
chandpublisher,india , 2009. 
[5]. Smarandache F, Introduction to Neutrosophic Measure, 
Integral, Probability, Sitech Education publisher. 

Florentin Smarandache (author and editor) Collected Papers, VIII

144



[6]. Smarandache.F , A unifying field of 
logic:Neutrosophic logic , American Research press, 2000. 
[7]. Vladutesa.S ,Smarandache.F, Topical communication 
uncertainity  , Zip publisher, 2014. 
[8].Khandasami.V.B, Smarandache .F, Fuzzy Cognitive 
Maps& Neutrosophic Cognitive Maps, Xiquan ,2003 
[9].Kwalski.E, Representation theory , ETH Zurich. 
[10].Max karoubi , Lectures on K-theory,2002. 
[11].Loring W.Tu, An introduction to manifold, Springer 
publishing, 2010. 

[12].Zorlutuna.I, M.Akdag , et al. Remarks on soft 
topological space , Annals of FMI, www.afmi.or.kr 
[13].Charles walkden, Ergodic theory,2015. 
[14].Milne.J.S, Algebric geometry,2015 . 
[15].Phillips.A.C, Introduction to quantum 
mechanics ,wiley publisher. 
[16].Jchwarz.J et al., S and M theory, Cambridge, 2006 . 

Florentin Smarandache (author and editor) Collected Papers, VIII

145

http://www.afmi.or.kr/


Abstract— Fuzzy sets and intuitionistic fuzzy sets can’t 
handle imprecise, indeterminate, inconsistent, and 
incomplete information. Neutrosophic sets play an 
important role to overcome this difficulty. A 
neutrosophic set has a truth membership function, 
indeterminate membership function, and a falsehood 
membership functions that can handle all types of 
ambiguous information. New type of union and 
intersection has been proposed in this paper. In this 
paper, � -equalities of neutrosophic sets have been

introduced. Further, some basic properties of � -

equalities have been discussed. Moreover, these � -
equalities have been applied to set theoretic operations 
of neutrosophic set such as union, intersection, 
complement, product, probabilistic sum, bold sum, bold 
intersection, bounded difference, symmetrical 
difference, and convex linear sum of min and max. 
These � -equalities of neutrosophic sets have been
further extended to neutrosophic relations and 
neutrosophic norms respectively. In this paper, � -
equalities also applied in the composition of 
neutrosophic relations, Cartesian product and 
neutrosophic triangular norms. The applications and 
utilizations of � -equalities have been presented in this

paper. In this regards, � -equalities have been
successfully applied in Fault Tree Analysis and 
Neutrosophic Reliability (generalization of Profust 
Reliability). 

Keywords— Fuzzy set, intuitionistic fuzzy set, neutrosophic set, 
neutrosophic relation, � -equalities.

I. INTRODUCTION

Fuzzy sets were introduced by Zadeh [31] in 1965. This 
novel mathematical framework is used to handle uncertainty 
in several areas of our real life. The characterization of a fuzzy 
set is made by a membership function �  which has the 
range� �0,1 . The applications and utilization of fuzzy sets have
been extensively found in different aspects from the last few 

decades such as control [31], pattern recognition[13], and 
computer vision[32] etc. This theory also become an 
important area for the researchers in medical diagnosis [32],
engineering [13], social sciences [32] etc. A huge amount of 
literature on fuzzy set theory can be found in [13,22,32]. In 
fuzzy set, the membership function �  is a single value 
between in the unit interval [0,1]. Therefore it is not always 
true that the non-membership function � of an element is 
equal to1 �� , because there is some kind of hesitation. Thus
in 1986, Atanassov [1] introduced intuitionistic fuzzy sets to 
explain this situation by incorporating the hesitation degree 
called hesitation margin. The hesitation margin is defined 
as1 � �� � .  Thus an intuitionistic fuzzy set has a membership 
function �  and non-membership function �  which has range
[0,1] with an extra condition that 0 1� �� 	 � . In this way, the 
intuitionistic fuzzy set theory became the generalization of 
fuzzy set theory. As an application point of view, the 
intuitionistic fuzzy set theory have been successfully applied 
in medical diagnosis [21], pattern recognition [22], social 
sciences [6] and decision making [11] etc. 

Fuzzy sets and intuitionistic fuzzy sets can’t handle
imprecise, indeterminate, inconsistent, and incomplete
information. Therefore, Smarandache [20] in 1998, introduced 
neutrosophic logic and set inspired from Neutrosophy, a 
branch of philosophy that deals with the origin, nature, and 
scope of neutralities and their interactions with different 
ideational spectra. A neutrosophic set has a truth membership 
function T , an indeterminate membership function I  and a 
falsehood membership function F . The indeterminacy degree 
I plays a very important role of mediocrity. Thus, 
neutrosophic set theory generalizes the concept of classical set 
theory [20], fuzzy sets theory [31], intuitionistic fuzzy sets 
theory [1], interval valued fuzzy set theory [22], 
paraconsistent theory [20], dialetheist theory [20], paradoxist 
theory [20], and tautological theory [20]. Neutrosophic set is a 
powerful tool to handle the indeterminate and inconsistent 
information that exists in our real world. The researchers have 
been successfully applied neutrosophic set theory in several 
areas. In this regard, Wang et al. [26] introduced single valued 
neutrosophic sets in order to use them in scientific and 
engineering that gives some additional possibility to represent 
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uncertain, incomplete, imprecise, and inconsistent data. 
Hanafy et.al discussed the correlation coefficient of 
neutrosophic set [8,9]. Ye [27] conducted study on the 
correlation coefficient of single valued neutrosophic sets. 
Broumi and Smaradache studied the correlation coefficient of 
interval neutrosophic set in [2]. Salama et al. [18] discussed 
neutrosophic topological spaces. Some more literature on 
neutrosophic set can be seen in [5, 12, 14, 17, 19, 25, 28, 29, 
30]. Neutrosophic set have been applied successfully in 
decision making theory [5, 27-30], data base [25], medical 
diagnosis [30], pattern recognition [7,15] and so on. 

 The notion of proximity measure was introduced by Pappis 
[16] to show that values of precise membership has no
practical significance. He believed that the maxmin
compositional rule of inference is preserved with
approximately equal fuzzy sets. Hong and Hwang [10]
proposed another important generalization of the work of
Pappis [16] which is mainly based that the maxmin
compositional rule of inference is preserved with respect to
‘approximately equal fuzzy sets’ and ‘approximately equal’ 
fuzzy relation respectively. But, Cai [3, 4] felt that both the 
Pappis [16] and Hong and Hwang [10] tactics were limited to 
fixed  . Therefore, Cai [3, 4] took a different methodology to 
introduced � -equalities of fuzzy sets. Cai [3, 4] proposed that 
if two fuzzy sets are equal to a degree of � , then they are said 
to be � -equal. The approach of � -equalities have 
significances in the fuzzy statistics as well as fuzzy reasoning. 
Virant [23] applied � -equalities of fuzzy sets in synthesis of 
real-time fuzzy systems while Cai [3,4] used them for 
assessing the robustness of fuzzy reasoning. Cai [3,4] also 
explain several reliability examples of � -equalities. 

 This paper extends the theory of � -equalities to 
neutrosophic sets. Basically we followed the philosophy of 
Cai [3, 4] to studied � -equalities of neutrosophic sets. The 
organization of the rest of the paper is followed. In section 2, 
some basic and fundamental concepts of neutrosophic sets 
were presented. New type of union and intersection has been 
introduced. � -equalities on neutrosophic sets were 
introduced in section 3. Moreover, these � -equalities have 
been applied to set theoretic operations of neutrosophic set 
such as union, intersection, complement, product, probabilistic 
sum, bold sum, bold intersection, bounded difference, 
symmetrical difference, and convex linear sum of min and 
max. In section 4, these � -equalities of neutrosophic sets 
have been further extended to neutrosophic relations and 
neutrosophic norms respectively. The applications and 
utilizations of � -equalities have been presented in section 5. 
In this regards, � -equalities have been successfully applied in 
Fault Tree Analysis and Neutrosophic Reliability 
(generalization of Profust Reliability). Conclusion is given in 
section 6. 

 We now review some basic concepts of neutrosophic sets 
and other related notion which will be used in this paper. 

II. LITERATURE REVIEW

In this section, some basic concepts of neutrosophic sets and 
other related notions have been presented. These notions and 
definitions have been taken from [3], [4], [20], and [26]. 
Definition 2.1 [20]. Neutrosophic Set 
Let U be a space of points and let u U� . A neutrosophic
set S  in U  is characterized by a truth membership function 

ST , an indeterminacy membership function SI , and a falsity

membership function SF . � ST u , � SI u  and � SF u  are real 

standard or non-standard subsets of 0 ,1� 	� �� � , that is

, I ,F : 0 ,1S S ST X � 	� �� � � . The neutrosophic set can be

represented as 
�  �  � � � �, , , :S S SS u T u I u F u u U� �

There is no restriction on the sum of �  � ,S ST u I u  and 

� SF u , so �  �  � 0 3S S ST u I u F u� 	� 	 	 � . From
philosophical point view, the neutrosophic set takes the value 
from real standard or non-standard subsets of 0 ,1� 	� �� � . Thus it

is necessary to take the interval � �0,1  instead of 0 ,1� 	� �� � for

technical applications. It is difficult to apply 0 ,1� 	� �� �  in the

real life applications such as engineering and scientific 
problems. We now give some set theoretic operations of 
neutrosophic sets. 
Definition 2.2 [26]. Complement of Neutrosophic Set 
The complement of a neutrosophic set S  is denoted by cS
and is defined by  

�  � 1c SS
T u T u� � , �  � 1c SS

I u I u� � , 

�  � 1c SS
F u F u� �  for all u U� .

Definition 2.3 [26]. Union of Neutrosophic Sets 
Let A  and B  be two neutrosophic sets in a universe of 
discourse X . Then the union of A  and B  is denoted by 
A B� , which is defined by 

�  �  �  �  �  � � � �, , , :A B A B A BA B x T x T x I x I x F x F x x X� � � � � �

for all x X� , and  �  denote the max-operator  and �  
denote the min-operator respectively. 
Definition 2.4 [26]. Intersection of Neutrosophic Sets 
Let A  and B  be two neutrosophic sets in a universe of 
discourse X . Then the intersection of A  and B  is denoted 
as A B� , which is defined by  

�  �  �  �  �  � � � �, , , :A B A B A BA B x T x T x I x I x F x F x x X� � � � � �  

Lemma 2.1 [3,4]: Let � 1 2 1 2max 0, 1� � � �� � 	 � , where 

1 20 , 1� �� � . Then 

1. 10 0�� � ; for all � �1 0,1� � ,

2. 1 11 � �� � ; for all � �1 0,1� � ,

3. 1 20 1� �� � � ; for all � �1 2, 0,1� � � , 
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4. ' '
1 1 1 2 1 2� � � � � �� � � � � ; for all � �'

1 1 2, , 0,1� � � � , 

5. 1 2 2 1� � � �� � � ; for all � �1 2, 0,1� � � , 

6. �  �  1 2 3 1 2 3� � � � � �� � � � � ; for all � �1 2 3, , 0,1� � � � . 

III. � -EQUALITIES OF NEUTROSOPHIC SETS

   In this section, new type of union and intersection of 
neutrosophic set introduced which will be used in this paper. 
Further, � -equalities of neutrosophic sets introduced and 
discussed some of their properties. Moreover, these � -
equalities utilized in set theoretic operations of neutrosophic 
set such as union, intersection, complement, product, 
probabilistic sum, bold sum, bold intersection, bounded 
difference, symmetrical difference, and convex linear sum of 
min and max. 
Definition 3.1: Let A  and B  be two complex neutrosophic 
sets in a universe of discourseU . Then the union of A  and 
B  is denoted by A B� , which is defined by  

�  �  �  �  �  � � � �, , , :A B A B A BA B u T u T u I u I u F u F u u U� � � � � �  

for all u U� , and  � denote the max-operator. 
Definition 3.2: Let A  and B  be two complex neutrosophic 
sets in a universe of discourse U . Then the intersection of A
and B  is denoted as A B� , which is defined by 

�  �  �  �  �  � � � �, , , :A B A B A BA B u T u T u I u I u F u F u u U� � � � � �

for all u U� , and �  denote the min-operator. 
Definition 3.3: Let U  be a universe of discourse. Let A  and 
B  be two neutrosophic sets on U , and � AT u , � AI u , � AF u
and � BT u , � BI u , � BF u , their truth membership functions, 
indeterminate membership functions and falsehood 
membership functions respectively. Then A  and B  are said 
to be � -equal if and only if  

�  � sup 1A B
u U

T u T u �
�

� � � , �  � sup 1A B
u U

I u I u �
�

� � � ,

�  � sup 1A B
u U

F u F u �
�

� � � , for all u U�  and 0 1�� � .

We denote it as � A B�� . From the definition it is clear

that 1 ��  is the maximum difference or proximity measure 
between A and B  and �  is the degree of equality between 
them. It is customary to be noted that � -equality of 
neutrosophic sets construct the class of neutrosophic relations. 
Proposition 3.1: For two neutrosophic sets A  and B , defined 
on U . The following assertions hold. 

1. � 0A B� ,

2. � 1A B� if and only if A B� ,

3. � A B��  if and only if � B A�� ,

4. � 1A B��  and if 
1 2� �� , then � 2A B�� , 

5. If � A B���  for all J�� , where J  is an index set, 

then sup
J

A B�
�

�
�

� ��  !
" #

, 

6. For all A , B , there exist a unique �  such that

� A B�� and if � 'A B�� , then '� �� . 

Proposition 3.2: If � 1A B��  and � 2B C�� , then 

� A C��  where 1 2� � �� � . 

Proposition 3.3: Let � 1 1 1A B��  and � 2 2 2A B�� . Then 

� � 1 2 1 2 1 2min ,A A B B� �� �  �  2 1 2 1 2�  �  11�i � B B  2 1 21  A �22 �min �� �11 . 

Proposition 3.4: Let � A B� � ��� , for all J�� , where J  is 
an index set. Let 

J
A�

��J
A�

��

 represents the union of { : }A J� � �  

and 
J
B�

��J
B�

��
 represents the union of { : }B J� � � , and

�  � sup
J

A A
J

T u T u
� �

� �� �
�

J
A �u�A �
�
��

��

, �  � inf
J

A AJ
I u I u

� �
� �� �

�
J

A �u�A �
�
��

��

,

�  � inf
J

A AJ
F u F u

� �
� �� �

�
J

A �u�A �
�
��

��

 and �  � sup
J

B B
J

T u T u
� �

� �� �
�

J
B �u�B �
�
��

��

,

�  � inf
J

B BJ
I u I u

� �
� �� �

�
J

B �u�B �
�
��

��

, �  � inf
J

B BJ
F u F u

� �
� �� �

�
J

B �u�B �
�
��

��

their truth

membership functions, indeterminacy membership functions
and falsity membership functions, respectively. Then  

� inf
JJ J

A B� � ��� �
�

�� �
� �  i f

JJ J
�  J

A �inf B � � ��  J
B �inf

� J
�  J

�
J

�  J
.

Proposition 3.5: Let cA  be the complement of A  and cB  be 
the complement of B . Further let � A B�� . Then  

� c cA B�� . 

Proposition 3.6: Let � A B� � ��� , for all J�� , where J
is an index set. Let 

J
A�

��J
A�

��
 represents the intersection of 

{ : }A J� � �  and
J
B�

��J
B�

��

 represents the intersection of 

{ : }B J� � � , and �  � inf
J

A AJ
T u T u

� �
� �� �

�
J

A �u�A �
�
��

��

, �  � sup
J

A A
J

I u I u
� �

� �� �
�

J
A �u�A �
�
��

��

,

�  � sup
J

A A
J

F u F u
� �

� �� �
�

J
A �u�A �
�
��

��

and �  � inf
J

B BJ
T u T u

� �
� �� �

�
J

B �u�B �
�
��

��

,

�  � sup
J

B B
J

I u I u
� �

� �� �
�

J
B �u�B �
�
��

��

, �  � sup
J

B B
J

F u F u
� �

� �� �
�

J
B �u�B �
�
��

��

their truth

membership functions, indeterminacy membership functions 
and falsity membership functions, respectively. Then  

� inf
JJ J

A B� � ��� �
�

�� �
� �  i f

JJ J
�  J

A �inf B � � ��  J
B �inf

� J
�  J

�
J

�  J
. 

Corollary 3.1: Let � A B�$ �$ �$�� ; 
1J� �  and

2J$ �  where

1J  and 2J are index sets. Then 

� 
1 21 2 1 2

inf inf
J JJ J J J

A B�$ � �$� $� $ � $
�

� �� � � �
� �  

2

i f i f
J2

A �inf inf B �$ � �$�  J J
B �inf inf

J� $J J � JJJJ JJ$ �� JJ
�

JJ JJ2 112J22J J �
1 2

� J11

,  and 

� 
1 21 2 1 2

inf inf
J JJ J J J

A B�$ � �$� $� $ � $
�

� �� � � �
�

2

i f i f
J2

A inf inf B�$ � �$J J
Binf inf

J� $J J JJJ JJ$ JJ
�

JJ JJ2 112J22J J1 2 J11

. 
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Corollary 3.2: Let  k k kA B�� , where 1,2,3,k �  and

let  
1

limsup n kn n k n
A A

% %

�% � �
� k

n k n1
Akk

% %

kk1
, 

1
liminf n kn n k n

A A
% %

�% � �
� k

n k n1
Akk

% %

kk1
; 

1
limsupBn kn n k n

B
% %

�% � �
� k

n k n1
Bk

% %

kk1
, 

1
liminf n kn n k n

B B
% %

�% � �
� k

n k n1
Bk

% %

kk1
.

Then 

� 1
limsup inf limsupn n nn n n

A B�
�% � �%

� ,

� 1
liminf inf liminfn n nn n n

A B�
�% � �%

� .

Proposition 3.7: Let � 1 1 1A B�� , � 2 2 2A B�� . Let 

1 2A A  represent the product of 1A , 2A  ,and 1 2B B  represent 

the product of 1B , 2B . Let  �  �  � 
1 2 1 2A A A AT u T u T u� , 

�  �  � 
1 2 1 2A A A AI u I u I u� , �  �  � 

1 2 1 2A A A AF u F u F u�  and 

�  �  � 
1 2 1 2B B B BT u T u T u� , �  �  � 

1 2 1 2B B B BI u I u I u� , 

�  �  � 
1 2 1 2B B B BF u F u F u�  their truth membership functions, 

indeterminacy membership functions and falsity membership 
functions, respectively. Then   

� 1 2 1 2 1 2A A B B� �� � . 

Proposition 3.8: Let � j j jA B�� , where 1,2,3, ,j n� n, . Then 

� 1 1 1n n nA A B B� �� ��  1 1�  n n n�  1 11�  B B 1 A �� 11� �1111�� 1
.

Proposition 3.9: Let � 1 1 1A B��  and � 2 2 2A B�� . Let 

1 2A A
�

	 represent the probabilistic sum of 1A  and 2A , and 

1 2B B
�

	 represent the probablisitc sum of 1B  and 2B
respectively. Let � 

1 2A A
T u�

	

, � 
1 2A A

I u�
	

, � 
1 2A A

F u�
	

and

� 
1 2B B

T u�
	

, � 
1 2B B

I u�
	

, � 
1 2B B

F u�
	

be their truth membership

functions, indeterminacy membership functions and falsity 
membership functions respectively, where  

�  �  �  �  � 
1 2 1 2

1 2
A A A A

A A
T u T u T u T u T u�

	
� 	 � ,

�  �  �  �  � 
1 2 1 2

1 2
A A A A

A A
I u I u I u I u I u�

	
� 	 � ,

�  �  �  �  � 
1 2 1 2

1 2
A A A A

A A
F u F u F u F u F u�

	
� 	 � , and

�  �  �  �  � 
1 2 1 2

1 2
B B B B

B B
T u T u T u T u T u�

	
� 	 � ,

�  �  �  �  � 
1 2 1 2

1 2
B B B B

B B
I u I u I u I u I u�

	
� 	 � ,

�  �  �  �  � 
1 2 1 2

1 2
B B B B

B B
F u F u F u F u F u�

	
� 	 � .  Then

� 1 2 1 2 1 2A A B B� �
� �

	 � � 	 .
Corollary 3.3: Suppose � j j jA B�� , where 1,2,3, ,j n� n, . Then

� 1 1 1n n nA A B B� �
� � � �

	 � � � 	�  1 1�  n n n�  1 11�  B B A � 11� �11

� � �

B 1 AA �� 11 .

Proposition 3.10: Suppose � 1 1 1A B��  and � 2 2 2A B��  and 

let 1 2A A
&

2A22

&
 represent the bold sum of 1A  and 2A , and 1 2B B

&

2B2

&

represent the bold sum of 1B  and 2B  respectively. Let 

� 
1 2A A

T u& �  
2A22

&
, � 

1 2A A
I u& �  

2A22

&
, � 

1 2A A
F u& �  

2A22

&
 and � 

1 2B B
T u& �  

2B2

&
, � 

1 2B B
I u& �  

2B2

&
, 

� 
1 2B B

F u& �  
2B2

&
 their truth membership functions, indeterminacy 

functions and falsity membership functions respectively, 
where  

�  �  � � 1 2
1 2

min 1, A A
A A

T u T u T u& � 	�  
2A22

&
, 

�   � � 1 2
1 2

min 1, IA A
A A

I u u I u& � 	�  
2A22

& ,

�   � � 1 2
1 2

min 1, FA A
A A

F u u F u& � 	�  
2A22

&
and

�  �  � � 1 2
1 2

min 1, B B
B B

T u T u T u& � 	�  
2B2

&
, 

�  �  � � 1 2
1 2

min 1, B B
B B

I u I u I u& � 	�  
2B

& ,

�   � � 1 2
1 2

min 1, FB B
B B

F u u F u& � 	�  
2B2

& . Then 

� 1 2 1 2 1 2A A B B� �
& &

� ��  2 1 2 1 2�  B B 2 11 A �22 � 11� �11

& &

�� 1 . 
Proposition 3.11: Suppose � 1 1 1A B��  and � 2 2 2A B��  and 

let 1 2A A
&

2A22
&

 represent the bold intersection of 1A  and 2A , and 

1 2B B
&

2B2
&

 represent the bold intersection of 1B  and 2B

respectively. Let � 
1 2A AT u

&

�  
2A22

u�A
&

, � 
1 2A AI u

&

�  
2A22

u�A
&

, � 
1 2A AF u

&

�  
2A22

u�A
&

 and

� 
1 2B BT u

&

�  
2B2

u�B
&

, � 
1 2B BI u

&

�  
2B2

u�B
&

, � 
1 2B BF u

&

�  
2B2

u�B
&

 their truth membership 

functions, indeterminacy functions and falsity membership 
functions respectively, where  

�  �  � �1 2 1 2
max 0, 1A A A AT u T u T u

&

� 	 �
2
�  A �  

22
�  u�  A �  

&

,

�   � �1 2 1 2
max 0, I 1A A A AI u u I u

&

� 	 �
2
�  A �  

22
�  u�  A �  

&

,

�   � �1 2 1 2
max 0,F 1A A A AF u u F u

&

� 	 �
2
�  A �  

22
�  u�  A �  

&

and

�  �  � �1 2 1 2
max 0, 1B B B BT u T u T u

&

� 	 �
2
�  B �  

2
�  u�  B �  

&

,

�   � �1 2 1 2
max 0, I 1B B B BI u u I u

&

� 	 �
2
�  B �  

2
�  u�  B �  

&

,

�   � �1 2 1 2
max 0,F 1B B B BF u u F u

&

� 	 �
2
�  B �  

2
�  u�  B �  

&

. Then

� 1 2 1 2 1 2A A B B� �
& &

� ��  2 1 2 1 2�  B B 2 11 A �22 � 11� �11
& &

�� 1 .

Proposition 3.12: Suppose � 1 1 1A B��  and � 2 2 2A B��

and let 1 2A A�  represent the bounded difference of 1A  and 

2A , and 1 2B B�  represent the bounded difference of 1B
and 2B  respectively. Let � 

1 2A AT u�
, � 

1 2A AI u�
, � 

1 2A AF u�
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and � 
1 2B BT u� , � 

1 2B BI u�
, � 

1 2B BF u�
 their truth membership 

functions, indeterminacy functions and falsity membership 
functions respectively, where  

�  �  � � 1 21 2
max 0, A AA AT u T u T u� � � , 

�   � � 1 21 2
max 0, IA AA AI u u I u� � � , 

�   � � 1 21 2
max 0,FA AA AF u u F u� � �  and 

�  �  � � 1 21 2
max 0, B BB BT u T u T u� � � , 

�   � � 1 21 2
max 0, IB BB BI u u I u� � � , 

�   � � 1 21 2
max 0,FB BB BF u u F u� � � . Then 

� 1 2 1 2 1 2A A B B� �� � � � . 
Proposition 3.13: Suppose � 1 1 1A B��  and � 2 2 2A B��  and 

let 1 2A A'  represent the symmetrical difference of 1A  and 

2A , and 1 2B B'  represent the symmetrical difference of 1B
and 2B  respectively. Let � 

1 2A AT u' , � 
1 2A AI u' , � 

1 2A AF u'

and � 
1 2B BT u' , � 

1 2B BI u' , � 
1 2B BF u' their truth membership

functions, indeterminacy functions and falsity membership 
functions respectively, where  

�  �  � 
1 2 1 2A A A AT u T x T x' � � , �  �  � 

1 2 1 2A A A AI u I x I x' � � ,  

�  �  � 
1 2 1 2A A A AF u F x F x' � �  an �  �  � 

1 2 1 2B B B BT u T x T x' � � , 

�  �  � 
1 2 1 2B B B BI u I x I x' � � , �  �  � 

1 2 1 2B B B BF u F x F x' � � . 

Then � 1 2 1 2 1 2A A B B� �' � � ' . 

Proposition 3.14: Suppose � 1 1 1A B��  and � 2 2 2A B��

and let 1 2A A( represent the convex linear sum of min and

max of 1A  and 2A , and 1 2B B( represent the convex linear

sum of 1B  and 2B respectively. Let � 
1 2A AT u

(
, � 

1 2A AI u
(

,

� 
1 2A AF u

(
 and � 

1 2B BT u
(

, � 
1 2B BI u

(
, � 

1 2B BF u
(

 their truth 

membership functions, indeterminacy functions and falsity 
membership functions respectively, where  

�  �  � �  �  �  �  � 1 2 1 21 2
min , 1 max ,A A A AA AT u T u T u T u T u

(
( (� 	 � , 

�  �  � �  �  �  �  � 1 2 1 21 2
min , I 1 max ,A A A AA AI u I u u I u I u

(
( (� 	 � , 

�  �  � �  �  �  �  � 1 2 1 21 2
min , 1 max ,A A A AA AF u F u F u F u F u

(
( (� 	 �   

and 
�  �  � �  �  �  �  � 1 2 1 21 2

min , 1 max ,B B B BB BT u T u T u T u T u
(

( (� 	 � , 

�  �  � �  �  �  �  � 1 2 1 21 2
min , 1 max ,B B B BB BI u I u I u I u I u

(
( (� 	 � , 

�  �  � �  �  �  �  � 1 2 1 21 2
min , 1 max ,B B B BB BF u F u F u F u F u

(
( (� 	 � , 

where � �0,1( � . Then � 1 2 1 2 1 2A A B B( (� �� � . 

IV. � -EQUALITIES WITH RESPECT TO NEUTROSOPHIC 
RELATIONS AND NORMS 

In this section, � -equalities of neutrosophic sets have been 
further extended to neutrosophic relations and neutrosophic 
norms respectively. These � -equalities applied in the 
composition of neutrosophic relations, Cartesian product and 
neutrosophic triangular norms.  
Proposition 4.1: Let ,X Y and Z  be initial universes, and )
be the collection of all neutrosophic sets defined on X Y*  
and +  denote the collection of all neutrosophic sets defined 
on Y Z*  respectively.  Let ',R R �)  and ',S S �+ , i.e., 

', ,R R S  and 'S  are neutrosophic relations on X Y*  and

Y Z*  respectively. Further, let R SS  and ' 'R S 'S  be their 
composition, and � ,R ST x y�S x y� ,S

, � ,R SI x y�S x y� ,S
, � ,R SF x y�S x y� ,S

 and 

� ' ' ,
R S

T x y�S
x y�' ,

S
, � ' ' ,

R S
I x y�S

x y�' ,
S

 and � ' ' ,
R S

F x y�S
x y�' ,

S
 their truth membership 

functions, indeterminate membership functions and falsehood 
membership functions respectively, where  

�  �  �  � , z sup min , , ,R S R S
y Y

T x T x y T y z
�

��S �x� zS � , z ,

�  �  �  � , z sup min , , ,R S R S
y Y

I x I x y I y z
�

��S �x� zS � , z , 

�  �  �  � , z sup min , , ,R S R S
y Y

F x F x y F y z
�

��S �x� zS � , z ,  

and 
�  �  �  � ' ' , z sup min , , ,R SR S

y Y
T x T x y T y z

�
��S

x�' , z
S

, 

�  �  �  � ' ' , z sup min , , ,R SR S
y Y

I x I x y I y z
�

��S
x�' , z

S
, 

�  �  �  � ' ' , z sup min , , ,R SR S
y Y

F x F x y F y z
�

��S
x�' , z

S
,

for all x X�  and z Z� .  Suppose �  '
1R R��  and 

�  '
2S S�� . Then 

� �  ' '
1 2min ,R S R S� �� �  �  ' '
1 2mi � 1 R S  '

2S �min � �,1
. 

Proposition 4.2: Let 1 2, , nU U UnUn  be universes and ,j jA B
be neutrosophic sets defined on jU , 1,2, ,j n� n, . Let 

� j j jA B�� , where 1,2, ,j n� n, .

Let 1 2 nA A A A� * * * nA  and 1 2 nB B B B� * * * nB  and 

� 1 2, , ,A nT u u u  n,u, , � 1 2, , ,A nI u u u  n,u, , � 1 2, , ,A nF u u u  n,u,
and � 1 2, , ,B nT u u u  n,u, , � 1 2, , ,B nI u u u  n,u, , � 1 2, , ,B nF u u u  n,u, ,
be their truth membership functions, indeterminacy 
membership functions and falsity membership functions 
respectively, where 

�  �  �  �  1 21 2, , , min , , ,
nA n A A AT u u u T u T u T u� �  �  �  �  1 2

�  �  �  i 
nn A A A �  

1 21 2
�  , , ,,�  �  ,  

1 2
�  

nn
T u��  �  min A, , ,,,�  �  , min , 

�  �  �  �   1 21 2, , , min , , ,
nA n A A AI u u u I u I u I u� �  �  �  �  1 2

�  �  �  i � nn A A A �  � 1 21 2
�  , , ,,�  �  ,  � 1 2
�  I u��  �  min � A, , ,�  �  , min � ,

�  �  �  �  1 21 2, , , min , , ,
nA n A A AF u u u F u F u F u� �  �  �  �  1 2

�  �  �  i � nn A A A �  � 1 21 2
�  , , ,,�  �  ,  � 1 2
�  

nn
F u��  �  min � A, , ,,,�  �  , min � , 
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and 
�  �  �  �  1 21 2, , , min , , ,

nB n B B BT u u u T u T u T u� �  �  �  �  1 2
�  �  �  i � nn B B �  � 1 2
�  , , ,,�  �  ,  � 1 2
�  T u��  �  min � B, , ,,,�  �  , min � ,

�  �  �  �  1 21 2, , , min , , ,
nB n B B BI u u u I u I u I u� �  �  �  �  1 2

�  �  �  i � nn B B B �  � 1 2
�  , , ,,�  �  ,  � 1 2
�  I u��  �  min � B, , ,,,�  �  , min � , 

�  �  �  �   1 21 2, , , min , , ,
nB n B B BF u u u F u F u F u� �  �  �  �  1 2

�  �  �  i � nn B B �  � 1 2
�  , , ,,�  �  ,  � 1 2
�  F u��  �  min � B, , ,,,�  �  , min � . 

Then �  1
inf jj n

A B�
� �

� .

Proposition 4.3: Let 1 1 1, ,A B C  and 2 2 2, ,A B C  be 

neutrosophic sets on U  such that 
�  �  � 

1 1 1A B CT u T u T u� � , �  �  � 
1 1 1A B CI u I u I u� � ,  

�  �  � 
1 1 1A B CF u F u F u� � ,  and  �  �  � 

2 2 2A B CT u T u T u� � ,

�  �  � 
2 2 2A B CI u I u I u� � , �  �  � 

2 2 2A B CF u F u F u� � ,  

for all u U� . Also, let � 1 2aA A�� , � 1 2cC C��  and 

� 1 1acA C�� . Then � � 1 2min ,ac a cB B� � �� � . 

Definition 4.1: A neutrosophic triangular norm tN  is a 
function 

 2
: 0 ,1 0 ,1 0 ,1 0 ,1 0 ,1 0 ,1NT � 	 � 	 � 	 � 	 � 	 � 	� � � � � � � � � � � �* * � * *� � � � � � � � � � � �  

defined by 
�  �  �  �  �  � � 1 1 1 2 2 2, , , , , , , , , ,t t t tN x T I F y T I F N T x y N I x y N F x y� ,

where �  �  � , , , , ,t t tN T x y N I x y N F x y  are truth 
membership, indeterminacy membership and falsity 
membership components respectively.  tN  satisfies the 
following conditions: 

i. � 0,0 0;tN � �  � ,1 1,t tN x N x x� � ;

ii. �  �  , ,t tN x y N w z� , whenever x w�  and y z� ;

iii. �  � , ,t tN x y N y x� ; 

iv. � �  � � , , , ,t t t tN N x y z N x N y z� . 

Proposition 4.4: Let U  be a universe of discourse, and 
',A A  and ',B B  be neutrosophic sets on U . Let tN  be a 

neutrosophic triangular norm and let ',C C  be neutrosophic 

sets define on U  via tN ,  

�  �  � � ,C t A BT u N T u T u� , �  �  � � , IC t A BI u N I u u� ,

�  �  � � ,C t A BF u N F u F u� , and �  �  � � ' ' ',tC A B
T u N T u T u� , 

�  �  � � ' ' ', ItC A B
I u N I u u� , �  �  � � ' ' ',tC A B

F u N F u F u� . 

Suppose that � 1A B��  and � ' '
2A B�� . Then

� �  '
1 2min ,C C� � �� � , where

�  � �
�  � � 

:max , 1
1 sup min ,

A B u

A B
u T u T

T u T u�
,

� � ,

�  � �
�  � � 

:max ,I 1
1 sup min , I

A B u

A B
u I u

I u u�
,

� � , 

�  � �
�  � � 

:max , 1
1 sup min ,F

A B u

A B
u F u F

F u u�
,

� � . 

v. APPLICATIONS OF � -EQUALITIES

    In this section, the applications and utilizations of � -
equalities have been presented. In this regards, � -equalities 
have been successfully applied in Fault Tree Analysis, 
Canonical Computer Reliability and Neutrosophic Reliability 
(generalization of Profust Reliability). 

Fault Tree Analysis. 
A fault tree can be seen as following in the Fig. 1 [3,4]. We 
mainly concerned with the relationship between the 
probability of top events and bottom events in fault tree 
analysis. Suppose that  1 2 5, , ,P P P5P5  denote the occurrence 

probabilities of bottom events 1 2 5, , ,e e e5e5  and tP  represent 

of top event. Further, suppose that 1 2 5, , ,e e e5e5  are 
independent events. Therefore, 

1 2 3 4 51 (1 )(1 )(1 )tP PP P P P� � � � � . 
On the other hand, in conventional fault tree analysis 

1 2 5, , ,P P P5P5 are assumed to accurate numbers, but in [3,4], 

1 2 5, , ,P P P5P5  are treated as fuzzy numbers. Cai [3,4] utilized 

the concept of � -equalities by applying it in fault tree 
analysis by considering 1 2 5, , ,P P P5P5  as fuzzy numbers. 

Here, we consider 1 2 5, , ,P P P5P5  as neutrosophic numbers 
instead of fuzzy numbers. In engineering, an expert presents 
his judgement on jP  as '

j j ja P a� �  for truth membership,
'

j j jb P b� �  for indeterminacy membership and 
'

j j jc P c� �  for falsehood membership respectively. Since 

we suppose that jP ’s can be treated as neutrosophic number,
therefore, we can define the following truth membership 
functions � 

jPT u , � 
jPI u  and � 

jPF u  can be defined as 

following. 

� 

1

1

1 2

2

2

'
'

'

T , ,

T , ,

T ,

0, otherwise.

j

j

j

j

j
P j j

j j

P j j
P

j
P j j

j j

u a
a u a

a a

a u a
T u

a u
a u a

a a

�-
� ./ �/

/ � ./� 0
�/ � ./ �/

/1

 

� 

� 

� 

1

1

1

1 2

2

2

2

'
'

'

, ,

, ,

,

1, otherwise.

j

j

j

j

j P j
j j

j j

P j j
P

j P j
j j

j j

b u I u b
b u b

b b

I b u b
I u

u b I b u
b u b

b b

- � 	 �
/ � .

�/
/ � ./� 0

� 	 �/
� ./

�/
/
1
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� 

� 

� 

1

1

1

1 2

2

2

2

'
'

'

, ,

, ,

,

1, otherwise.

j

j

j

j

j P j
j j

j j

P j j
P

j P j
j j

j j

c u F u c
c u c

c c

F c u c
F u

u c F c u
c u c

c c

- � 	 �
/ � .

�/
/ � ./� 0

� 	 �/
� ./

�/
/
1

Suppose there is another expert who presents his judgement 
for jP  as " "'

j j ja P a� �  for truth membership, 
'' '"

j j jb P b� �  for indeterminacy membership and 
'' "'

j j jc P c� �  for falsehood membership respectively. 

� 

1

1

1 2

2

2

"
' " ''

" "

' " "
'

"'
' " '''

''' ''

T , ,

T , ,

T ,

0, otherwise.

j

j

j

j

j
P j j

j j

P j j
P

j
P j j

j j

u a
a u a

a a

a u a
T u

a u
a u a

a a

- �
� ./

�/
/ � ./� 0

�/
� ./ �/

/1

 

� 

� 

� 

1

1

1

1 2

2

2

2

" ' "
" ''

" "

' " "
'

'' ' "'
" '''

''' ''

, ,

, ,

,

1, otherwise.

j

j

j

j

j P j
j j

j j

P j j
P

j P j
j j

j j

b u I u b
b u b

b b

I b u b
I u

u b I b u
b u b

b b

- � 	 �
/ � .

�/
/ � ./� 0

� 	 �/
� ./

�/
/
1

� 

� 

� 

1

1

1

1 2

2

2

2

" ' "
" ''

" "

' " "
'

'' ' "'
" '''

''' ''

, ,

, ,

,

1, otherwise.

j

j

j

j

j P j
j j

j j

P j j
P

j P j
j j

j j

c u F u c
c u c

c c

F c u c
F u

u c F c u
c u c

c c

- � 	 �
/ � .

�/
/ � ./� 0

� 	 �/
� ./

�/
/
1

Since 1 2 5, , ,P P P5P5  are treated as neutrosophic numbers, 

therefore, tP  is a neutrosophic set. The effect of estimation 
errors of in truth membership functions, indeterminacy 
membership functions and falsity membership functions of 

1 2 5, , ,P P P5P5  on tP  can be formulated as following. 
Let �  � '

0 1
1 sup

j jj P P
u

T u T u�
� �

� � � , �  � '

0 1
1 sup

j jj P P
u

I u I u�
� �

� � �  and 

�  � '

0 1
1 sup

j jj P P
u

F u F u�
� �

� � � . Let � 
tPT u , � 

tPI u  and 

� 
tPF u  be the truth membership function, indeterminacy 

membership function and falsity membership function of tP
corresponding to �  �  � � �, ,

j j jP P PT u I u F u  and � '
tPT u , � '

tPI u

and � '
tPF u  be the truth membership function, indeterminacy 

membership function and falsity membership function of tP

corresponding to �  �  � � �' ' ', ,
j j jP P PT u I u F u  respectively. Then

from Proposition 4.3, we have  
�  �  � '

1 50 1
sup 1 min

j jP P jju
T u T u �

� �� �
� � � ,

�  �  � '

1 50 1
sup 1 min

j jP P jju
I u I u �

� �� �
� � � , 

�  �  � '

1 50 1
sup 1 min

j jP P jju
F u F u �

� �� �
� � � . 

It is to be noted that j� is a function of
' ' ' " '' " '" "' '", , , , , , , , , , ,j j j j j j j j j j j ja b c a b c a b c a b c . 

Neutrosophic Reliability (Generalization of Profust 
Reliability). 
     Cai [3,4] uses successfully the concept of � -equalties in 
profust reliability which is based on the probability 
assumption and fuzzy-state assumption. For more detail, we 
refer the readers to [3,4]. But there is another state called 
neutrosophic-state assumption. In neutrosophic-state 
assumption, we have three state, i.e. the membership state, 
indeterminate membership state and non-membership state. In 
other words, state of success, state of failure and a state of 
neither failure nor success. From this we can say that 
neutrosophic Reliability is more general framework than the 
profust reliability. A neutrosophic reliability is based on 
neutrosophic probability and neutrosophic-state assumption. 
Now we can say that a system of order n  ( n -component) is 
referred to as a neutrosophic system if it satisfies the following 
conditions.  

� 
1

n
j

F Fj
� �

�
� + , � �

1
1 1

n
j

S Sj
� �

�
� � + �  and �  � � 

1

n
j j

I F Sj
� � �

�
� + 	 , 

where F� , S�  and I�  are the false membership function of 
neutrosophic failure, truth membership function of 
neutrosophic success and indeterminate membership function 
of neutrosophic indeterminacy ( both failure and success at the 
same time) of the neutrosophic system, respectively, and 

� j
F� , � j

S� and �  �  � j j j
I F S� � �� 	  are false 

membership, truth membership and indeterminate membership 
functions of failure, success and indeterminate of the 
component j . 
      From here it is clear that neutrosophic system is the 
generalization of the parallel system as by setting the 
indeterminate component I�  equals to 0, the neutrosophic 
system reduced to parallel system. 
Now suppose that there are estimations errors in � j

F� ,
� j

S� , � j
I� , or we have � ' j

F� , � ' j
S� , � ' j

I� and suppose
that  

�  �  �  � 'sup 1j j F
F F j

u
u u� � �� � � , 

�  �  �  � 'sup 1j j S
S S j

u
u u� � �� � � , 

�  �  �  � 'sup 1j j I
I I j

u
u u� � �� � � . 
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Then by using Proposition 3.3 and 3.5, we have 
�  �  � '

1 2sup 1 F F F
F F n

u
u u� � � � �� � � � � �  F

n� , 

�  �  � '
1 2sup 1 S S S

S S n
u

u u� � � � �� � � � � �  S
n� , 

�  �  � '
1 2sup 1 I I I

I I n
u

u u� � � � �� � � � � �  I
n� , 

where � '
F u�  corresponds to �  �  �  �1' ', , n

F Fu u� � �F
�  �' n�  �F,�, , 

� '
S u�  corresponds to �  �  �  � 1' ', , n

S Su u� � �S
�  �' n u�  �S,�,  and � '

I u�

corresponds to �  �  �  � 1' ', , n
I Iu u� � �I

�  �' n u�  �I,�, . 

vi. CONCLUSION
New type of union, intersection and � -equalities of 
neutrosophic sets presented in this paper. Two neutrosophic 
sets are said to be � -equal if they are equal to some degree 
of � .  Later, these � -equalities applied in several set 
theoretic operations such as union, intersection, complement, 
product, probabilistic sum, bold sum, bold intersection, 
bounded difference, symmetrical difference, and convex linear 
sum of min and max. It has also shown that how �  varies 
with different operation. These � -equalities of neutrosophic 
sets have been further extended to neutrosophic relations and 
neutrosophic norms respectively. In this paper,� -equalities 
also applied in the composition of neutrosophic relations, 
Cartesian product and neutrosophic triangular norms. The 
applications and utilizations of � -equalities have been 
presented in this paper. In this regards, � -equalities have 
been successfully applied in Fault Tree Analysis and 
Neutrosophic Reliability (generalization of Profust 
Reliability). 
The significance of � -equality can be justified in theory as 
well as in practice. On the one hand, this paper shows that the 
� -equalities of neutrosophic sets can be defined and
investigated in a general framework by introducing � which
is basically a difference between the truth membership
functions T , a difference between the indeterminate
membership functions I  and a difference between the
falsehood membership functions F  of two neutrosophic sets
respectively. On the other hand, as shown in the application
section 5, the concept of � -equalities of neutrosophic sets may
be useful in various applications where errors of membership
functions, non-membership functions and indeterminate
membership function of neutrosophic sets are of concern.
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Abstract—R-unions and R-intersections of T-external (I-
external, F-external) neutrosophic cubic sets are considered.
Examples to show that the R-intersection and R-union of T-
external (I-external, F-external) neutrosophic cubic sets may not
be a T-external (I-external, F-external) neutrosophic cubic set
are provided. Conditions for the R-union and R-intersection of
T-external (I-external, F-external) neutrosophic cubic sets to be
a T-external (I-external, F-external) neutrosophic cubic set are
discussed.

Index Terms—Truth-internal (indeterminacy-internal, falsity-
internal) neutrosophic cubic set, truth-external (indeterminacy-
external, falsity-external) neutrosophic cubic set, R-union, R-
intersection.

I. INTRODUCTION

SMARANDACHE ([5], [6]) developed the concept of neu-
trosophic set as a more general platform which extends

the concepts of the classic set and fuzzy set, intuitionistic
fuzzy set and interval valued intuitionistic fuzzy set. We know
that neutrosophic set theory is applied to various part (refer
to the site http:// fs.gallup.unm.edu/neutrosophy.htm). Ali and
Smarandache [1] introduced complex neutrosophic sets to
handle imprecise, indeterminate, inconsistent, and incomplete
information of periodic nature. Deli et al. [2] introduced the
concept of bipolar neutrosophic set and its some operations.

In [3], Jun et al. introduced the notion of (internal, external)
cubic sets, and investigated several properties. Jun et al. [4]
extended the concept of cubic sets to the neutrosophic sets, and
introduced/investigated the notions/properties of T-internal (I-
internal, F-internal) neutrosophic cubic sets and T-external (I-
external, F-external) neutrosophic cubic sets. As a continuation
of the paper [4], we consider R-unions and R-intersections
of T-external (I-external, F-external) neutrosophic cubic sets.
We provide examples to show that the R-intersection and
the R-union of T-external (resp. I-external and F-external)
neutrosophic cubic sets may not be a T-external (resp. I-
external and F-external) neutrosophic cubic set. We discuss
conditions for the R-union of T-external (resp. I-external and
F-external) neutrosophic cubic sets to be a T-external (resp. I-
external and F-external) neutrosophic cubic set. We consider a
condition for the R-intersection of T-external (resp. I-external
and F-external) neutrosophic cubic sets to be a T-external
(resp. I-external and F-external) neutrosophic cubic set.
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II. R-INTERSECTIONS AND R-UNIONS OF
NEUTROSOPHIC CUBIC SETS

Jun et al. [4] considered the notion of neutrosophic cubic
sets as an extension of cubic sets.

Let X be a non-empty set. A neutrosophic cubic set (NCS)
in X is a pair A = (A, Λ) where

A := {〈x; AT (x), AI(x), AF (x)〉 | x ∈ X}
is an interval neutrosophic set in X and

Λ := {〈x;λT (x), λI(x), λF (x)〉 | x ∈ X}
is a single-valued neutrosophic set in X .

For further particulars on the notions of T (resp., I, F)-
internal neutrosophic cubic sets, T (resp., I, F)-external neutro-
sophic cubic sets, R-union and R-intersection of neutrosophic
cubic sets, we refer the reader to the the paper [4].

We know that R-intersection and R-union of T-external
(resp., I-external and F-external) neutrosophic cubic sets may
not be a T-external (resp., I-external and F-external) neutro-
sophic cubic sets as seen in the following example.

Example 2.1: Let A = (A,Λ) and B = (B,Ψ) be
neutrosophic cubic sets in X = [0, 1] where

A = {〈x; [0.5, 0.7], [0.2, 0.4], [0.3, 0.5]〉 | x ∈ [0, 1]},
Λ = {〈x; 0.6, 0.7, 0.8〉 | x ∈ [0, 1]},
B = {〈x; [0.6, 0.7], [0.6, 0.8], [0.7, 0.9]〉 | x ∈ [0, 1]},
Ψ = {〈x; 0.5, 0.9, 0.8〉 | x ∈ [0, 1]}.

Then A = (A, Λ) and B = (B, Ψ) are I-external neutro-
sophic cubic sets in X = [0, 1]. The R-union A ∪R B =
(A ∪ B,Λ ∧ Ψ) of A = (A,Λ) and B = (B, Ψ) is given as
follows:

A ∪ B = {〈x; [0.6, 0.7], [0.6, 0.8], [0.7, 0.9]〉 | x ∈ [0, 1]} ,
Λ ∧ Ψ = {〈x; 0.5, 0.7, 0.8〉 | x ∈ [0, 1]} ,

and it is not an I-external neutrosophic cubic set in X = [0, 1].
We provide a condition for the R-union of two T-external

(resp., I-external, F-external) neutrosophic cubic sets to be T-
external (resp., I-external, F-external).

Theorem 2.2: Let A = (A,Λ) and B = (B, Ψ) be I-external
neutrosophic cubic sets in X such that

max
{

min{A+
I (x), B−

I (x)}, min{A−
I (x), B+

I (x)}}
≤ (λI ∧ ψI)(x)
< min

{

max{A+
I (x), B−

I (x)}, max{A−
I (x), B+

I (x)}}
for all x ∈ X . Then the R-union A ∪R B = (A ∪ B, Λ ∧ Ψ)
is an I-external neutrosophic cubic set in X .

Proof. For any x ∈ X , let
ax := max

{

min{A+
I (x), B−

I (x)},min{A−
I (x), B+

I (x)}}
and

bx := min
{

max{A+
I (x), B−

I (x)},max{A−
I (x), B+

I (x)}} .
Then bx = A−

I (x), bx = B−
I (x), bx = A+

I (x), or
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bx = B+
I (x). It is possible to consider the cases bx = B−

I (x)
and bx = B+

I (x) only because the remaining cases are similar
to these cases. If bx = B−

I (x), then A+
I (x) ≤ B−

I (x) and so

A−
I (x) ≤ A+

I (x) ≤ B−
I (x) ≤ B+

I (x).

Thus ax = A+
I (x), and so

(AI ∪ BI)−(x) = B−
I (x) = bx > (λI ∧ ψI)(x)

Hence

(λI ∧ ψI)(x) /∈ (

(AI ∪ BI)−(x), (AI ∪ BI)+(x)
)

.

If bx = B+
I (x), then A−

I (x) ≤ B+
I (x) ≤ A+

I (x) and thus
ax = max{A−

I (x), B−
I (x)}. Suppose that ax = A−

I (x). Then

B−
I (x) ≤ A−

I (x) = ax ≤ (λI ∧ ψI)(x)
< bx = B+

I (x) ≤ A+
I (x).

It follows that

B−
I (x) ≤ A−

I (x) < (λI ∧ ψI)(x) < B+
I (x) ≤ A+

I (x) (1)

or

B−
I (x) ≤ A−

I (x) = (λI ∧ ψI)(x) < B+
I (x) ≤ A+

I (x). (2)

The case (1) induces a contradiction. The case (2) implies that

(λI ∧ ψI)(x) /∈ (

(AI ∪ BI)−(x), (AI ∪ BI)+(x)
)

since (λI ∧ ψI)(x) = A−
I (x) = (AI ∪ BI)−(x). Now, if

ax = B−
I (x), then

A−
I (x) ≤ B−

I (x) = ax ≤ (λI ∧ ψI)(x)
< bx = B+

I (x) ≤ A+
I (x).

Hence we have

A−
I (x) ≤ B−

I (x) < (λI ∧ ψI)(x) < B+
I (x) ≤ A+

I (x) (3)

or

A−
I (x) ≤ B−

I (x) = (λI ∧ ψI)(x) < B+
I (x) ≤ A+

I (x). (4)

The case (3) induces a contradiction. The case (4) implies that

(λI ∧ ψI)(x) /∈ (

(AI ∪ BI)−(x), (AI ∪ BI)+(x)
)

.

Therefore the R-union A ∪R B = (A ∪ B, Λ ∧ Ψ) is an I-
external neutrosophic cubic set in X .

Similarly, we have the following theorems.
Theorem 2.3: Let A = (A, Λ) and B = (B,Ψ) be T-

external neutrosophic cubic sets in X such that
max

{

min{A+
T (x), B−

T (x)}, min{A−
T (x), B+

T (x)}}
≤ (λT ∧ ψT )(x)
< min

{

max{A+
T (x), B−

T (x)}, max{A−
T (x), B+

T (x)}}
for all x ∈ X . Then the R-union A ∪R B = (A ∪ B, Λ ∧ Ψ)
is a T-external neutrosophic cubic set in X .

Theorem 2.4: Let A = (A, Λ) and B = (B, Ψ) be F-
external neutrosophic cubic sets in X such that

max
{

min{A+
F (x), B−

F (x)}, min{A−
F (x), B+

F (x)}}
≤ (λF ∧ ψF )(x)
< min

{

max{A+
F (x), B−

F (x)}, max{A−
F (x), B+

F (x)}}
for all x ∈ X . Then the R-union A ∪R B = (A ∪ B, Λ ∧ Ψ)
is an F-external neutrosophic cubic set in X .

Corollary 2.5: Let A = (A, Λ) and B = (B, Ψ) be external
neutrosophic cubic sets in X . Then the R-union of A = (A, Λ)
and B = (B,Ψ) is an external neutrosophic cubic set in X
when the conditions in Theorems 2.2 2.3 and 2.4 are valid.

The following examples show that the R-intersection of two
T-external (resp., I-external, F-external) neutrosophic cubic
sets may not be T-external (resp., I-external, F-external).

Example 2.6: Let A = (A,Λ) and B = (B,Ψ) be
neutrosophic cubic sets in X = [0, 1] where

A = {〈x; [0.2, 0.4], [0.5, 0.7], [0.3, 0.5]〉 | x ∈ [0, 1]},
Λ = {〈x; 0.1, 0.4, 0.8〉 | x ∈ [0, 1]},
B = {〈x; [0.6, 0.8], [0.4, 0.7], [0.7, 0.9]〉 | x ∈ [0, 1]},
Ψ = {〈x; 0.3, 0.3, 0.8〉 | x ∈ [0, 1]}.

Then A = (A, Λ) and B = (B,Ψ) are T-external neutrosophic
cubic sets in X = [0, 1]. The R-intersection A ∩R B =
(A ∩ B,Λ ∨ Ψ) of A = (A,Λ) and B = (B, Ψ) is given
as follows:

A ∩ B = {〈x; [0.2, 0.4], [0.4, 0.7], [0.3, 0.5]〉 | x ∈ [0, 1]} ,

Λ ∨ Ψ = {〈x; 0.3, 0.4, 0.8〉 | x ∈ [0, 1]} ,

and it is not a T-external neutrosophic cubic set in X = [0, 1].
We provide a condition for the R-intersection of two T-

external (resp., I-external, F-external) neutrosophic cubic sets
to be T-external (resp., I-external, F-external).

Theorem 2.7: Let A = (A, Λ) and B = (B,Ψ) be T-
external neutrosophic cubic sets in X such that

max
{

min{A+
T (x), B−

T (x)}, min{A−
T (x), B+

T (x)}}
< (λT ∨ ψT )(x)
≤ min

{

max{A+
T (x), B−

T (x)}, max{A−
T (x), B+

T (x)}}
for all x ∈ X . Then the R-intersection A ∩R B =
(A ∩ B,Λ ∨ Ψ) is a T-external neutrosophic cubic set in X .

Proof. For any x ∈ X , let

cx := max
{

min{A+
T (x), B−

T (x)}, min{A−
T (x), B+

T (x)}}

and

dx := min
{

max{A+
T (x), B−

T (x)},max{A−
T (x), B+

T (x)}} .

Then dx = A−
T (x), dx = B−

T (x), dx = A+
T (x), or dx =

B+
T (x). It is possible to consider the cases dx = A−

T (x) and
dx = A+

T (x) only because the remaining cases are similar to
these cases. If dx = A−

T (x), then

B−
T (x) ≤ B+

T (x) ≤ A−
T (x) ≤ A+

T (x).

Thus cx = B+
T (x), and so

B−
T (x) = (AT ∩ BT )−(x) ≤ (AT ∩ BT )+(x)

= B+
T (x) = cx < (λT ∨ ψT )(x).

Hence (λT ∨ ψT )(x) /∈ ((AT ∩ BT )−(x), (AT ∩ BT )+(x)).
If dx = A+

T (x), then B−
T (x) ≤ A+

T (x) ≤ B+
T (x) and thus

cx = max{A−
T (x), B−

T (x)}. Suppose that cx = A−
T (x). Then

B−
T (x) ≤ A−

T (x) = cx < (λT ∨ ψT )(x)
≤ dx = A+

T (x) ≤ B+
T (x).

It follows that

B−
T (x) ≤ A−

T (x) < (λT ∨ ψT )(x) < A+
T (x) ≤ B+

T (x) (5)
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or

B−
T (x) ≤ A−

T (x) < (λT ∨ ψT )(x) = A+
T (x) ≤ B+

T (x). (6)

The case (5) induces a contradiction. The case (6) implies that

(λT ∨ ψT )(x) /∈ (

(AT ∩ BT )−(x), (AT ∩ BT )+(x)
)

since (λT ∨ ψT )(x) = A+
T (x) = (AT ∩ BT )+(x). Now, if

cx = B−
T (x), then

A−
T (x) ≤ B−

T (x) = cx < (λT ∨ ψT )(x)
≤ dx = A+

T (x) ≤ B+
T (x).

Hence we have

A−
T (x) ≤ B−

T (x) < (λT ∨ ψT )(x) < A+
T (x) ≤ B+

T (x) (7)

or

A−
T (x) ≤ B−

T (x) < (λT ∨ ψT )(x) = A+
T (x) ≤ B+

T (x). (8)

The case (7) induces a contradiction. The case (8) induces

(λT ∨ ψT )(x) /∈ (

(AT ∩ BT )−(x), (AT ∩ BT )+(x)
)

.

Therefore the R-intersection A ∩R B = (A ∩ B, Λ ∨ Ψ) is a
T-external neutrosophic cubic set in X .

Similarly, we have the following theorems.
Theorem 2.8: Let A = (A, Λ) and B = (B,Ψ) be I-external

neutrosophic cubic sets in X such that
max

{

min{A+
I (x), B−

I (x)}, min{A−
I (x), B+

I (x)}}
< (λI ∨ ψI)(x)
≤ min

{

max{A+
I (x), B−

I (x)}, max{A−
I (x), B+

I (x)}}
for all x ∈ X . Then the R-intersection A ∩R B =
(A ∩ B,Λ ∨ Ψ) is an I-external neutrosophic cubic set in X .

Theorem 2.9: Let A = (A, Λ) and B = (B, Ψ) be F-
external neutrosophic cubic sets in X such that

max
{

min{A+
F (x), B−

F (x)}, min{A−
F (x), B+

F (x)}}
< (λF ∨ ψF )(x)
≤ min

{

max{A+
F (x), B−

F (x)}, max{A−
F (x), B+

F (x)}}
for all x ∈ X . Then the R-intersection A ∩R B =
(A ∩ B,Λ ∨ Ψ) is an F-external neutrosophic cubic set in X .

Corollary 2.10: Let A = (A, Λ) and B = (B, Ψ) be
external neutrosophic cubic sets in X . Then the R-intersection
of A = (A, Λ) and B = (B, Ψ) is an external neutrosophic
cubic set in X when the conditions in Theorems 2.7, 2.8 and
2.9 are valid.

III. CONCLUSION

We have considered the R-union and R-intersection of T-
external (I-external, F-external) neutrosophic cubic sets. We
have provided examples to show that the R-intersection and
R-union of T-external (resp. I-external and F-external) neutro-
sophic cubic sets may not be a T-external (resp. I-external
and F-external) neutrosophic cubic set. We have discussed
conditions for the R-union and R-intersection of T-external
(resp. I-external and F-external) neutrosophic cubic sets to
be a T-external (resp. I-external and F-external) neutrosophic
cubic set. Based on this paper, we will study conditions
for the R-intersection of two neutrosophic cubic sets to be
both an α-external neutrosophic cubic set and an α-internal
neutrosophic cubic set for α ∈ {T, I, F}. Also, we will

consider conditions for the R-union and R-intersection of
two α-internal neutrosophic cubic sets to be an α-external
neutrosophic cubic set for α ∈ {T, I, F}.
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Abstract - This study introduces the concept of uncertainty analysis of 
Neutrosophic Theory in the sphere of Maintenance Operating System 
(MOS).  The aim of this study is to underline the importance of 
uncertainties solving in Maintenance Operating System. In maintenance 
process appear ambiguous states that can’t be assimilated neither true, 
nor false, meaning that the threshold state is a neutral one, being defined 
as fault in most of cases. In this regard, this uncertaintymaking decision 
process can be associated as functioning according to rules of 
Neutrosophy, and can be evaluated using elements of Neutrosophic 
Structures, Pareto Charts, maintenance metrics. Identification of 
uncertainties and study of their impact on maintenance, making the right 
decision, is the main focus of this paper.  

The study is useful for business area, especially manufacturing lines 
endowed with complex equipment and facilities, also for researchers 
interested to make improvements for maintenance procedures. 

Keywords-uncertainty; neutrosophic theory; constraints; 
throughput to potential; uncertainty making decision; 

I. INTRODUCTION

All advanced systems depend on having a foundation of 
Maintenance Operating Systems (MOS) in place, even if the 
owners will not admit that. 

A method to improve efficiency and to decrease the downtime 
in manufacturing process is a goal for everybody. 

An efficient maintenance offers a stable manufacturing process 
assuring reliability of the system.  

Vision for MOS is a standardized, proactive and disciplined 
operating system that engages all team members to maintain the 
integrity and availability of equipment, facilities and processes. 

Desired outcomes mean to engage stakeholders in the 
development and implementation of a standard MOS that ensures 
world class manufacturing Throughput to Potential (TTP) of 
plant facilities and equipment. Uncertainty represents an 
unsolved situation; it defines a fuzziness state [5]. 

The aim of this study is to identify uncertainties of MOS that 

definitely decrease efficiency of the system, to evaluate them 
through Neutrosophic Theory (NT) and to show the potentiality 
of the method for uncertainties solving.  

The paper is structured as follows: Section 2 briefly describes 
the preview works related to Neutrosophic Theory, Section 3 
discusses about MOS and uncertainties, Section 4 presents some 
results and statistics interpretation and finally, Section 5 depicts 
conclusions and directions for future work. 

II. PREVIEW WORKS

In this section will be presented some pragmatic areas where 
neutrosophy is suitable and the basic concept of neutrosophic 
theory. 

Neutrosophy is an available method for uncertainties 
investigation for any complex manufacturing line that involves 
advanced technology, many parameters and metrics. It can be 
applied to evaluate the uncertainty level, to analyze it [8]. 

Logistics is the field of study focused on the design, control, 
and implementation of the efficient flow and storage of goods 
and services. Because of numerous other related information 
from the point of origin to the point of final consumption with the 
aim to satisfy the requirements of its existing and prospective 
customers, the system can generate a lot of uncertainty [1]. 

A sample of using neutrosophic decision making model on 
manufacturing line as used for selection quality clay-brick for 
construction is developed and denoted to be suitable. 
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Neutrosophy set is a tool that can deal with indeterminacy and 
inconsistent data [13]. 

According to the neutrosophy theory, the neutral (uncertainty) 
instances can be analyzed and accordingly, reduced. There are 
some spectacular results of applying neutrosophy in practical 
application such as artificial intelligence [3].  

Extending these results, neutrosophy theory can be applied for 
solving uncertainty also on other domains such as Robotics, 
where are confirmed results of neutrosophics logics applied to 
make decisions when appear situations of uncertainty [10],[11]. 

The real-time adaptive networked control of rescue robots is 
another project that used neutrosophic logic to control the robot 
movement in a surface with uncertainties for it [12]. 

Neutrosophy analyzes, evaluates and interprets uncertainties. 
The specialty literature denotes that Zadeh introduced the degree 
of membership/truth (t), so the rest would be (1-t) equal to f, their 
sum being 1, and he defined the fuzzy set in 1965 [6]. Further, 
Atanassov improved Zadeh’s theory by introducing the degree of 
nonmembership/falsehood (f) and defining the intuitionist fuzzy 
set [7].    

As novelty to previous theory, Smarandache introduced and 
defined explicitly the degree of indeterminacy/neutrality (i) as 
independent component. In any field of knowledge, each 
structure is composed of two parts: a space, and a set of axioms 
(or laws) acting (governing) on it. If the space, or at least one of 
its axioms (laws), has some indeterminacy of the form (t, i, f) ≠ 
(1, 0, 0), that structure is a (t, i, f) -Neutrosophic Structure [4].  

III. MAINTENANCE OPERATING SYSTEM

Maintenance definition according to Business Dictionary, 

represents activities required or undertaken to conserve as nearly, 
and as long as possible the original condition of an asset or 
resource while compensating for normal wear and tear [2]. 

Without any operating system, a management system, some 
metrics to measure the progress, you are trying to build a 
foundation on the sand.  

In maintenance process also intervene some uncertainties 
regarding failures involving equipment efficiency, process flow 
(bottlenecks on production line, constraints), operators skills, 
spare parts management, manufacturing line potential, etc. All of 
them decrease somehow the manufacturing process, directly or 
indirectly the efficiency of production flow. It is a challenge with 
the seconds of cycle time of product manufacturing, with 
maintenance concept of preventive, predictive or corrective, with 
people training, equipment spare parts or maintenance costs 
reducing [9].  

Nowadays, when manufacturing processes are very complex, 
involving a lot of different types of machines and equipment, in 
which the product in fact, is an intricate one, maintenance is 
deployed as a system subordinated to manufacturing process. The 
main principles of maintenance are: safety and quality always in 
top; using data to make decisions; using standardized tools, 
practices, procedures; applying prevention through a 
continuously improvement process; optimization of the 
resources; maintaining the integrity of the equipment; maximize 
throughput of installed equipment and facilities to its potential, 
such as shown in Fig. 1. 

There are 3 major inputs that generate faults or uncertainties: 
- People: poor training, lack of versatility, missing

technically competent, poor communication; 

Fig. 1. The structure and elements of MOS 
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- Machine: not affordable maintainability, not realistic
preventive maintenance, not existing production monitoring 
system, not applicable predictive maintenance (thermo camera, 
ultrasonic, vibration);  

- Materials: spare parts control with errors,
nonstandardization of spare parts, not affordable predictive tools, 
small maintenance budget . 

There are Key Process to control the threats of input: 
constraint management, planning and scheduling the 
maintenance, optimize maintenance, do unplanned maintenance. 

The efficiency of maintenance is revealed by metrics such as 
JPH (Job Per Hour) and TTP (Throughput to Potential).  

The goal of each system is ZERO defects, meaning no 
downtime on manufacturing process, an idealistic situation. 

According to our goal, we proposed to analyze the faults that 
generate downtime of the system. The faults are revealed on 
TTP, a metric that shows the potentiality of manufacturing line to 
produce parts to high capacity related to engineering capacity. 
There are 3 zones of TTP that can be interpreted according to an 
established level (designed) L = 100% : 

TTP  < L – 2.5%   -   red zone;             (1) 

L – 2.5% <= TTP < L – 0.5%  -   yellow zone;      (2) 

TTP >= L – 0.5%   -   green zone;              (3) 

Daily collected data shows the status of manufacturing lines, 

emphasizing the constraints and bottle-necks, such as in Fig. 2. 
TTP is a maintenance metric that emphasizes the line 

balancing from cycle time point of view. This means that within 
manufacturing line the stations have different cycle time to 
perform a product, according to the assigned operations. The 
stations with cycle time at the highest limit are called 
“constraints” and they can supply “bottle-necks” on 
manufacturing process. 

According to these data it can be analyzed monthly 
productivity trend related to occurred faults, as in Fig. 3. The 
graphic underlines the evolution of TTP for constraints stations 
monthly, weekly for the previous month and daily for the current 
month. 

Evaluating and analyzing the faults, they can be grouped such 
as: people training (operator lack skill), low communication 
level, missing spare parts, equipment obsolete level part, 
equipment parameters out of range, operating error, logistic error 
(wrong part supply)… Each fault type is generator of uncertainty, 
and involves uncertainty making decision process. 

To evaluate correctly the fault rate we will make it in step 1, 
Pareto analysis for the most frequent faults group, as in Fig. 4. 

Looking into Pareto Charts we see that “operator lack skill” 
induces a percentage of 25% relative frequency. Interpreting this 
data, we can say that reducing the rate of this item, it can be also 
reduced the fault rate of whole system. Operator lack skill 
involves confusion and uncertainty in faults solving making 
decision.  

Fig. 2. Throughput to Potential Analysis 
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Fig. 3. Evolution in time of TTP

Increasing versatility of maintenance operators, it will cover 
the solving of wide area of faults making decision, such as quick 
intervention to equipment, right selection of part replacement, 
right selection of damaged equipment, avoiding inter-areas  

blockages, and so on. This is an important moment to make the 
right decision regarding to choose the appropriate truth degree 
membership (acceptance), indeterminacy degree membership and 
falsity degree membership (reject). 

Fig. 4. Pareto Chart Analysis  - step 1 
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To apply the neutrosophic method we have to define the space 
and the set of axioms for occurred uncertainties. Each operator 
has skills in different level of specialty knowledge in order to 
solve a maintenance fault. 

To evaluate the level of uncertainty it is important to establish 
each level of uncertainty related to make the right decision, as is 
shown in TABLE 1, (as proposal). 

The space is represented by operators and the set of axioms, by 
the skill level of fault solving for each operator. In Fig. 5 is 
shown the set of axioms for each operator, so we have a (T, I, F), 
as follows: 

a11  - operator 1/skill 1 
a12  - operator 1/skill 2 … 

a15  - operator 1/ skill 5 and so on to 
… 

a55 - operator 5/ skill 5. 

In this context, we can establish the whole space of states True, 
Indeterminacy, False (T, I, F), and the value of the space. In 
Fig.6,  are presented the spaces and sets of axioms for 5 operators 
such as aij (T, I, F). 

A complete cycle time to produce a part consists of a sum of 
specific times, such as: cycle time (effectively), starvation, 
blockage, wait for auxiliary parts, wait for attention, repair in 
progress, break, set-up, tool change, no communication. 
Uncertainties are focused on “wait for attention” when operator 
is confronted with confusion and ambiguous states, the moment 
of fault making a decision. The situation is eased  byan IT 
application that monitors and handles the states of equipment in 
detail, and guides the operator to make more accurate the fault 
location.

TABLE 1
LEVEL OF UNDERTERMINACY

No. #L Level of uncertainty State 
T I F 

1 L1 Solve the fault JIT (Just In Time) 1 0 0 
2 L2 Solve the fault  +  Δt <1 <0,5 <0,2 
3 L3 Solve the fault with help from other operator <0,5 <0,5<1 <1 
4 L4 Nonsolving the fault by operator 0 0 1 
5 L5 Nonsolving the fault, nobody in place 0 1 1 

Fig. 5. Relation operator/skill - step 1
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IV. RESULTS AND STATISTICS

In these conditions we got a realistic distribution of 
uncertainties regarding solving faults on the manufacturing line. 
For the step 2, it was applied training for operators in 5 major 
types of faults (equipment), as a consequence, the level of 
solving faults increased and uncertainties degree, decreased. So, 
we obtained the distribution of states as in Fig. 6. 

Evaluating the faults occurred during a month, after applying 
training courses for operators, by  ParetoCharts, we got the data 
shown in Fig. 7. 

The number of solved faults decreased from 120 to 54, related 
to all types of faults. 

The goal of MOS aspirs to an intelligent maintenance system, 
to achieve and sustain zero breakdown. This is the futere of 
maintenance, equipment, machines and systems to achieve 
highest performance including also self maintenance capabilities. 
The operator is a risk factor in this system that has to be taken 
into consideration. Such a goal can be achieved transforming raw 
data to valuable information regarding current and future 
condition and request of the asset. 

Fig. 7. Relation operator/skill – step 2, after training 

Fig. 6. Relation operator/skill – step 2, after training

Fig 7. Pareto Chart Analysis - step 2 
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V. CONCLUSIONS AND FUTURE WORK

The presentedwork in this study is a step towards developing a 
procedure available to uncertainties emerging in maintenance 
process of the complex manufacturing lines. Identification, 
evaluation, proceeding of the specified uncertainties of suggested 
metrics are incentive and supporting. It is helpful for MOS 
analysis, to be sustained by IT application monitoring equipment 
function, classifying faults, downtime calculus, revealing the 
reliability of the system. It is a real potentiality to make a 
decision for uncertainties degree towards. 

Solving the uncertainties through mentioned method, 
classifying them into faults (false) or solving state 
(true),increases the efficiency of the process. 

Analyzing the results, we observed that applying NT it can be 
emphasized the states of neutrality, ambiguously, uncertainty 
whereby we can act to transform them into stable status, true or 
false. Finding this applicability in Business, we can get through 
the next step, to design an algorithm the more inclusive, that 
reduce the time to make decision regarding the involved status 
and to decrease the downtime of equipment. 

As future research we will extend our work using the complex 
neutrosophic set to more effectively capture the uncertainties in 
MOS. 

The science of prognostics is based on the analysis of failure 
modes, detection of early signs of wear and aging, also fault 
conditions. Uncertainties, as we have seen in above example, are 
a source of failure. In this regard, we consider that it is a good 
opportunity to apply the Neutrosophic Theory to evaluate, 
analyse and make the right decision solving faults in maintenance 
process. 
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Abstract—Interval valued bipolar fuzzy weighted 
neutrosophic set(IVBFWN-set) is a new generalization of 
fuzzy set, bipolar fuzzy set, neutrosophic set and bipolar 
neutrosophic set so that it can handle uncertain information 
more flexibly in the process of decision making. Therefore, in 
this paper, we propose concept of IVBFWN-set and its 
operations. Also we give the IVBFWN-set weighted average 
operator and IVBFWN-set weighted geometric operator to 
aggregate the IVBFWN-sets, which can be considered as the 
generalizations of some existing ones under fuzzy, 
neutrosophic environments and so on. Finally, a decision 
making algorithm under IVBFWN environment is given based 
on the given aggregation operators and a real example is used 
to demonstrate the effectiveness of the method. 

Keywords—Neutrosophic set, interval valued neutrosophic set, 
IVBFWN-set, average and geometric operator, multi-criteria decision 
making.

I. INTRODUCTION

To overcome containing various kinds of uncertainty, the 
concept of fuzzy sets [18] has been introduced by Zadeh. 
After Zadeh, many studies on mathematical modeling have 
been developed. For example; to model indeterminate and 
inconsistent information Smarandache [13] introduced the 
concept of neutrosophic set which is independently 
characterized by three functions called truth-membership 
function, indeterminacy-membership function and falsity 
membership function.  Recently, studies on neutrosophic sets 
are made rapidly in [1,2]. 

Bipolar fuzzy sets, which are a generalization of Zadeh’s 
fuzzy sets [18], were originally proposed by Lee [9]. Bosc and 
Pivert [4] said that “Bipolarity refers to the propensity of the 
human mind to reason and make decisions on the basis of 
positive and negative effects. Positive information states what 
is possible, satisfactory, permitted, desired, or considered as 
being acceptable. On the other hand, negative statements 
express what is impossible, rejected, or forbidden. Negative 

preferences correspond to constraints, since they specify 
which values or objects have to be rejected (i.e., those that do 
not satisfy the constraints), while positive preferences 
correspond to wishes, as they specify which objects are more 
desirable than others (i.e., satisfy user wishes) without 
rejecting those that do not meet the wishes.”  Presently, works 
on bipolar fuzzy sets are progressing rapidly in [3,4,8-12,17]. 
Also, bipolar neutrosophic set(BN-set) and its operations is 
given in [7]. 

In this study, to handling some uncertainties in fuzzy sets and 
neutrosophic sets, the extensions of fuzzy sets[18], bipolar 
fuzzy sets[9], neutrosophic sets[13] and bipolar neutrosophic 
sets[7], interval valued bipolar fuzzy weighted neutrosophic 
sets with application  are introduced. 

II. PRELIMINARIES

In the section, we give some concepts related to bipolar 
fuzzy sets, neutrosophic sets, interval valued neutrosophic set, 
and bipolar neutrosophic sets. 

Definition 2.1. [14] Let X  be a universe of discourse. Then a 
single valued neutrosophic set is defined as: 

{ }, ( ) , ( ), ( ) :NS A A AA x T x I x F x x X= ∈

which is characterized by a truth-membership 
function [ ]( ) : 0,1 ,AT x X →  an indeterminacy-membership 

function [ ]( ) : 0,1 ,AI x X → and a falsity-membership function 

[ ]( ) : 0,1 .AF x X → There is not restriction on the sum of 

( ), ( ),A AT x I x  and ( )AF x so 0 ( ) ( ) ( ) 3A A AT x I x F x≤ ≤ ≤ ≤ . 

Definition 2.2. [15] Let ,X  be a space of points (objects) 
with generic elements in ,X  denoted by .x  An interval 
valued neutrosophic set (for short IVNS) A  in ,X  is 
characterized by truth-membership function ( ),AT x  
indeteminacy-membership function ( ),AI x  and falsity-
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membership function ( ).AF x  For each point x  in ,X  we 
have that ( ), ( ),A AT x I x [ ]( ) 0,1 .AF x ⊆
For two IVNS 

[{ ] [ ], inf ( ), sup ( ) , inf ( ), sup ( ) ,IVNS A A A AA x T x T x I x I x=

[ ] }inf ( ) , sup ( ) :A AF x F x x X∈  
and 

[{ ] [ ], inf ( ), sup ( ) , inf ( ) , sup ( ) ,IVNS B B B BB x T x T x I x I x=

[ ] }inf ( ) , sup ( ) :B BF x F x x X∈  
Then, 
1. IVNS IVNSA B⊆  if and only if 

( ) ( )inf inf ,A BT x T x≤  ( ) ( )sup sup ,A BT x T x≤  

( ) ( )inf inf ,A BI x I x≥  ( ) ( )sup sup ,A BI x I x≥  

( ) ( )sup sup ,A BF x F x≥  ( ) ( )sup supA BF x F x≥  
for all .x X∈  

2. IVNS IVNSA B=  if and only if 

( ) ( )inf inf ,A BT x T x=  ( ) ( )sup sup ,A BT x T x=  

( ) ( )inf inf ,A BI x I x=  ( ) ( )sup sup ,A BI x I x=

( ) ( )sup sup ,A BF x F x=  ( ) ( )sup supA BF x F x=  
for any .x X∈  

3. C
IVNSA  if and only if 

[{ ] [, inf ( ), sup ( ) , 1 sup ( ) ,C
IVNS A A AA x F x F x I x= −

] [ ] }1 inf ( ) , inf ( ) , sup ( ) :A A AI x T x T x x X− ∈

4. IVNS IVNSA B∩  if and only if 

[{ , inf ( ) inf ( ),IVNS IVNS A BA B x T x T x∩ = ∧

] [sup ( ) sup ( ) , inf ( ) inf ( ),A B A BT x T x I x I x∧ ∨
 

]sup ( ) sup ( ) ,A BI x I x∨ [inf ( ) inf ( ),A BF x F x∨

] }sup ( ) sup ( ) :A BF x F x x X∨ ∈  

5. IVNS IVNSA B∪  if and only if 

[{ , inf ( ) inf ( ),IVNS IVNS A BA B x T x T x∪ = ∨

] [sup ( ) sup ( ) , inf ( ) inf ( ),A B A BT x T x I x I x∨ ∧
 

]sup ( ) sup ( ) ,A BI x I x∧ [inf ( ) inf ( ),A BF x F x∧

] }sup ( ) sup ( ) :A BF x F x x X∧ ∈  

Definition 2.3. [9] Let X be a non-empty set. Then, a bipolar-
valued fuzzy set, denoted by BFA  is defined as; 

( ) ( ){ }, , :BF B BA x x x x Xµ µ+ −= ∈

Where ( ) [ ]: 0,1B x Xµ+ →  and ( ) [ ]: 0,1 .B x Xµ− →  The 

positive membership degree ( )B xµ+ denotes the satisfaction 
degree of an element x  to the property corresponding to BFA
and the negative membership degree ( )B xµ−  denotes the 
satisfaction degree of x  to some implicit counter property of 

.BFA  

Definition 2.4. [7]  A bipolar neutrosophic set A  in X  is 
defined as an object of the form 

( ) ( ){ }, ( ), ( ), ( ), , , ( ) :A x T x I x F x T x I x F x x X+ + + − − −= ∈ ,

where [ ], , : 1,0T I F X+ + + →  and [ ], , : 1,0T I F X− − − → − . 

The positive membership degree ( ), ( ), ( )T x I x F x+ + +  denotes 
the truth membership, indeterminate membership and false 
membership of an element x X∈  corresponding to a bipolar 
neutrosophic set A  and the negative membership degree 

( ), ( ), ( )T x I x F x− − −  denotes the truth membership, 
indeterminate membership and false membership of an 
element x X∈ to some implicit counter-property 
corresponding to a bipolar neutrosophic set A . 

Definition 2.5. [7]   Let 
( ) ( ){ }1 1 1 1 1 1 1, ( ), ( ), ( ), , , ( ) :A x T x I x F x T x I x F x x X+ + + − − −= ∈

and 
( ) ( ){ }2 2 2 2 2 2 2, ( ), ( ), ( ), , , ( ) :A x T x I x F x T x I x F x x X+ + + − − −= ∈

be two bipolar neutrosophic  sets. 

I. Then 1 2A A⊆  if and only if 

1 2( ) ( )T x T x+ +≤ 1 2( ) ( )I x I x+ +≤ , 1 2( ) ( )F x F x+ +≥ , 
and 

1 2( ) ( )T x T x− −≥ , 1 2( ) ( )I x I x− −≥ , 1 2( ) ( )F x F x− −≤  
for all .x X∈  

II. Then 1 2A A=  if and only if 

1 2( ) ( )T x T x+ += , 1 2( ) ( )I x I x+ += , 1 2( ) ( )F x F x+ +=
and

1 2( ) ( )T x T x− −= , 1 2( ) ( )I x I x− −= , 1 2( ) ( )F x F x− −=

for all .x X∈

III. Then their union is defined as:
1 2( )( )A A x∪ =

{ }{ { }1 2
1 2 1 2

( ) ( )max ( ), ( ) , , min ( ), ( ) ,
2

I x I xT x T x F x F x
+ +

+ + + ++

{ } { }}1 2
1 2 1 2

( ) ( )min ( ), ( ) , , max ( ), ( )
2

I x I xT x T x F x F x
− −

− − − −+ fo

r all .x X∈  
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IV. Then their intersection is defined as:
1 2( )( )A A x∩ =

{ }{ { }1 2
1 2 1 2

( ) ( )min ( ), ( ) , , max ( ), ( ) ,
2

I x I xT x T x F x F x
+ +

+ + + ++

{ } { }}1 2
1 2 1 2

( ) ( )max ( ), ( ) , , min ( ), ( )
2

I x I xT x T x F x F x
− −

− − − −+ fo

r all .x X∈  

V. Then the complement of 1A  is denoted by 1
cA  and is 

defined by

11
( ) {1 } ( )c AA

T x T x+ + += − , 
11

( ) {1 } ( )c AA
I x I x+ + += − , 

11
( ) {1 } ( )c AA

F x F x+ + += −

and 

11
( ) {1 } ( )c AA

T x T x− − −= − , 
11

( ) {1 } ( )c AA
I x I x− − −= − , 

11
( ) {1 } ( )c AA

F x F x− − −= − , 

for all x X∈ . 

Definition 2.6. [7]  Let 
( ) ( ){ }1 1 1 1 1 1 1, ( ), ( ), ( ), , , ( ) :A x T x I x F x T x I x F x x X+ + + − − −= ∈

and 
( ) ( ){ }2 2 2 2 2 2 2, ( ), ( ), ( ), , , ( ) :A x T x I x F x T x I x F x x X+ + + − − −= ∈

be two bipolar neutrosophic  number. Then the operations for 
these numbers are defined as below; 

a. ( ) ( ) ( ) ( ) ( )1 1 1 1 1 11 1 , , , , ,A T I F T I
λ λ λ λ λ

λ + + + − −= − − − − − −

( )( )( )11 1 F
λ

−− − − −

b. ( ) ( ) ( )1 1 1 1,1 1 ,1 1 ,A T I F
λ λ λλ + + += − − − −

( )( )( )11 1 ,T
λ

−− − − − ( ) ( )1 1,I F
λ λ− −− − − −  

c. 1 2 1 2 1 2 1 2 1 2 1 2. , , , . ,A A T T T T I I F F T T+ + + + + + + + − −+ = + − −

1 2 1 2 1 2 1 2( . ), ( . )LI I I I F F F F− − − − − − − −− − − − − − − −

d. 1 2 1 2 1 2 1 2 1 2 1 2, . , . ,A A T T I I I I F F F F+ + + + + + + + + += + − + −  

1 2 1 2 1 2 1 2( . ), ,T T T T I I F F− − − − − − − −− − − −

where 0.λ >  

Definition 2.7. [7]  Let 
( ) ( ){ }, ( ), ( ), ( ), , , ( ) :a x T x I x F x T x I x F x x X+ + + − − −= ∈

be a bipolar neutrosophic number. Then, the score function 
( )s a , accuracy function ( )a a  and certainty function ( )c a of 

an NBN are defined as follows:  

( ) (1 1 1 1 )
6

s a T I F T I F+ + + − − −= + − + − + + − −

( )a a T F T F+ + − −= − + −  

( )c a T F+ −= −  

Definition 2.8. [7]  Let 
( ), , , , , 1, 2,...,j j j j j j ja T I F T I F j n+ + + − − −= =   

be a family of bipolar neutrosophic numbers. Then, 

a) :W nF ℑ → ℑ  is called bipolar neutrosophic weighted 
average operator if it satisfies; 

( )1 2
1

, ,...,
n

W n j j
j

F a a a w a
=

= ∑

( ) ( ) ( )
1 1 1 1

1 1 , , ( ) ,j j j j
n n n nw w w w

j j j j
j j j j

T I F T+ + + −

= = = =

= − − − −∏ ∏ ∏ ∏

( )( ) ( )( )
1 1

1 1 , 1 1j j
n nw w

j j
j j

I F− −

= =

   
− − − − − − − −   

   
∏ ∏

where jw  is the weight of ( 1,2,..., ),ja j n= [ ]0,1jw ∈  and 

1
1

n

j
j

w
=

=∑ .

b) :W nH ℑ → ℑ  is called bipolar neutrosophic weighted 
geometric operator if it satisfies; 

( )1 2
1

, ,..., j
n

w
W n j

j

H a a a a
=

= ∏

( ) ( ) ( )
1 1 1

,1 1 ,1 1 ,j j j
n n nw w w

j j j
j j j

T I F+ + +

= = =


= − − − −


∏ ∏ ∏

( ) ( ) ( )
1 1 1

1 1 ( ) , ,j j j
n n nw w w

j jL j
j j j

T I F− − −

= = =

 
− − − − − − − − 

 
∏ ∏ ∏

where jw  is the weight of ( 1,2,..., ),ja j n= [ ]0,1jw ∈  and 

1
1

n

j
j

w
=

=∑ .

III. INTERVAL VALUED BIPOLAR FUZZY WEIGHTED 
NEUTROSOPHIC SET 

In this section we give concept of IVBFWN-set and its 
operations. Also we give the IVBFWN-set weighted average 
operator and IVBFWN-set weighted geometric operator with 
properties to aggregate the IVBFWN-sets based on the study 
given in [7].

Definition 3.1.  A interval valued bipolar fuzzy weighted 
neutrosophic set(IVBFWN-set) A  in X  is defined as an 
object of the form 
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{ , ( ), ( ) , ( ), ( ) , ( ), ( ) ,
L R L R L RA x T x T x I x I x F x F x+ + + + + +     =     

}( ), ( ) , ( ), ( ) , ( ), ( ) , ( ) :L R L R L RT x T x I x I x F x F x p x x X− − − − − −      ∈     

where [ ], , , , , : 0,1L R L R L RT T I I F F X+ + + + + + →  and , , , ,L R L RT T I I− − − −  

[ ], : 1,0L RF F X− − → − . Also [ ]: 0,1p X →  fuzzy weighted
index of the element x in X. 

Example 3.2.  Let 1 2 3{ , , }X x x x= . Then 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1

2

3

, 0.3,0.9 , 0.1,0.8 , 0.2,0.5 , 0.8, 0.7 , 0.5, 0.1 , 0.4, 0.3 ,0.5 ,

, 0.3,0.8 , 0.3,0.9 , 0.1,0.2 , 0.7, 0.6 , 0.6, 0.2 , 0.6, 0.2 ,0.7 ,

, 0.4,0.7 , 0.5,0.7 , 0.3,0.4 , 0.9, 0.5 , 0.4, 0.3 , 0.8, 0.1 ,0.8

x

A x

x

 − − − − − −
  = − − − − − − 
 

− − − − − −  
is a IVBFWN subset of X . 

Theorem 3.3. A IVBFWN-set is the generalization of a 
bipolar fuzzy set and bipolar neutrosophic set. 

Proof: Straightforward. 

Definition 3.4. Let 

{ 1 1 1 1 1 11 , ( ), ( ) , ( ), ( ) , ( ), ( ) ,
L R L R L R

A x T x T x I x I x F x F x+ + + + + +     =      

}1 1 1 1 1 1 1( ), ( ) , ( ), ( ) , ( ), ( ) , ( ) :
L R L R L R

T x T x I x I x F x F x p x x X+ + + + + +      ∈     
and 

{ 2 2 2 2 2 22 , ( ), ( ) , ( ), ( ) , ( ), ( ) ,
L R L R L R

A x T x T x I x I x F x F x+ + + + + +     =      

}
2 2 2 2 2 2 2( ), ( ) , ( ), ( ) , ( ), ( ) , ( ) :

L R L R L R
T x T x I x I x F x F x p x x X− − − − − −     ∈    

be two IVBFWN-sets. 

1. Then 1 2A A⊆  if and only if 

1 2
( ) ( ),

L L
T x T x+ +≤

1 2
( ) ( ),

R R
T x T x+ +≤

1 2
( ) ( ),

L L
I x I x+ +≥

1 2
( ) ( ),

R R
I x I x+ +≥

1 2
( ) ( ),

L L
F x F x+ +≥

1 2
( ) ( ),

R R
F x F x+ +≥

1 2
( ) ( ),

L L
T x T x− −≤

1 2
( ) ( ),

R R
T x T x− −≤

1 2
( ) ( ),

L L
I x I x− −≥

1 2
( ) ( ),

R R
I x I x− −≥

1 2
( ) ( ),

L L
F x F x− −≥

1 2
( ) ( ),

R R
F x F x− −≥

and
1 2( ) ( )p x p x≤

for all x X∈ .

2. Then 1 2A A=  if and only if 

1 2
( ) ( ),

L L
T x T x+ +=

1 2
( ) ( ),

R R
T x T x+ +=

1 2
( ) ( ),

L L
I x I x+ +=

1 2
( ) ( ),

R R
I x I x+ +=

1 2
( ) ( ),

L L
F x F x+ +=

1 2
( ) ( ),

R R
F x F x+ +=  

1 2
( ) ( ),

L L
T x T x− −=

1 2
( ) ( ),

R R
T x T x− −=

1 2
( ) ( ),

L L
I x I x− −=

1 2
( ) ( ),

R R
I x I x− −=

1 2
( ) ( ),

L L
F x F x− −=

1 2
( ) ( ),

R R
F x F x− −=  

and 1 2( ) ( )p x p x= for all x X∈ . 

3. Then their union is defined as:

1 2( )( )A A x∪ =

{ } { }1 2 1 2
max ( ), ( ) , max ( ), ( ) ,

L L R R
T x T x T x T x+ + + + 

 

1 2 1 2
( ) ( ) ( ) ( )

, ,
2 2

L L R R
I x I x I x I x+ + + + + +

 
  

{ } { }1 2 1 2
min ( ), ( ) ,min ( ), ( ) ,

L L R R
F x F x F x F x+ + + + 

 

{ } { }1 2 1 2
min ( ), ( ) , min ( ), ( ) ,

L L R R
T x T x T x T x− − − − 

 

1 2 1 2
( ) ( ) ( ) ( )

, ,
2 2

L L R R
I x I x I x I x− − − − + +

 
  

{ } { }1 2 1 2
max ( ), ( ) ,max ( ), ( )

L L R R
F x F x F x F x− − − − 

 
for all x X∈ . 

4. Then their intersection is defined as:

1 2( )( )A A x∩ =

{ } { }1 2 1 2
min ( ), ( ) , min ( ), ( ) ,

L L R R
T x T x T x T x+ + + + 

 

1 2 1 2
( ) ( ) ( ) ( )

, ,
2 2

L L R R
I x I x I x I x+ + + + + +

 
  

{ } { }1 2 1 2
max ( ), ( ) ,max ( ), ( ) ,

L L R R
F x F x F x F x+ + + + 

 

{ } { }1 2 1 2
max ( ), ( ) , max ( ), ( ) ,

L L R R
T x T x T x T x− − − − 

 

1 2 1 2
( ) ( ) ( ) ( )

, ,
2 2

L L R R
I x I x I x I x− − − − + +

 
  

{ } { }1 2 1 2
min ( ), ( ) ,min ( ), ( )

L L R R
F x F x F x F x− − − − 

 
for all x X∈ . 

5. Then the complement of 1A  is denoted by 1
cA , is defined 

by

{ ( ), ( ) , 1 ( ),1 ( ) , , ( ), ( ) ,
L R L RL RA F x F x I x I x x T x T x+ + + + + +    = − −     

}( ) ( ) , 1 ( ),1 ( ) , ( ), ( ) ,1 ( ) :L R L R L RF x F x I x I x T x T x p x x X− − − − − −     − − − ∈    

Example 3.5. Let 1 2 3{ , , }X x x x= . Then 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1

1 2

3

, 0.3,0.9 , 0.1,0.8 , 0.2,0.5 , 0.8, 0.7 , 0.5, 0.1 , 0.4, 0.3 ,

, 0.3,0.8 , 0.3,0.9 , 0.1,0.2 , 0.7, 0.6 , 0.6, 0.2 , 0.6, 0.2 ,

, 0.4,0.7 , 0.5,0.7 , 0.3,0.4 , 0.9, 0.5 , 0.4, 0.3 , 0.8, 0.1

x

A x

x

 − − − − − −
  = − − − − − − 
 

− − − − − −  
and 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1

2 2

3

, 0.2,0.8 , 0.3,0.6 , 0.3,0.6 , 0.3, 0.2 , 0.6, 0.2 , 0.5, 0.4 ,

, 0.4,0.7 , 0.5,0.7 , 0.2,0.3 , 0.2, 0.1 , 0.8, 0.3 , 0.9, 0.8 ,

, 0.5,0.6 , 0.4,0.5 , 0.1,0.4 , 0.4, 0.2 , 0.9, 0.5 , 0.7, 0.6

x

A x

x

 − − − − − −
  = − − − − − − 
 

− − − − − −  
are two IVBFWN-sets in X . 
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Then their union is given as follows: 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1

1 2 2

3

, 0.3,0.9 , 0.1,0.6 , 0.2,0.5 , 0.8, 0.7 , 0.5, 0.1 , 0.4, 0.3 ,

, 0.4,0.8 , 0.3,0.7 , 0.1,0.2 , 0.7, 0.6 , 0.6, 0.2 , 0.6, 0.2 ,

, 0.5,0.7 , 0.4,0.5 , 0.1,0.4 , 0.9, 0.5 , 0.4, 0.3 , 0.7, 0.1

x

A A x

x

 − − − − − −
  ∪ = − − − − − − 
 

− − − − − −  

  

Then their intersection is given as follows: 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

1

1 2 2

3

, 0.2,0.8 , 0.3,0.8 , 0.3,0.6 , 0.3, 0.2 , 0.6, 0.2 , 0.5, 0.4 ,

, 0.3,0.7 , 0.5,0.9 , 0.2,0.3 , 0.2, 0.1 , 0.8, 0.3 , 0.9, 0.8 ,

, 0.4,0.6 , 0.5,0.7 , 0.3,0.4 , 0.4, 0.2 , 0.9, 0.5 , 0.8, 0.6

x

A A x

x

 − − − − − −
  ∩ = − − − − − − 
 

− − − − − −  

Definition 3.6.  Let 

1 1 1 1 1 11 ( ), ( ) , ( ), ( ) , ( ), ( ) ,
L R L R L R

A T x T x I x I x F x F x+ + + + + +     =      

1 1 1 1 1 1 1( ), ( ) , ( ), ( ) , ( ), ( ) , ( )
L R L R L R

T x T x I x I x F x F x p x+ + + + + +          
and 

2 2 2 2 2 22 ( ), ( ) , ( ), ( ) , ( ), ( ) ,
L R L R L R

A T x T x I x I x F x F x+ + + + + +     =      

2 2 2 2 2 2 2( ), ( ) , ( ), ( ) , ( ), ( ) , ( )
L R L R L R

T x T x I x I x F x F x p x− − − − − −         be 

two IVBFWN-numbers. 

. Then the operations for IVBFWN-numbers are defined as 
below; 

i. ( ) ( )1 1 1 ,1 1 ,L RA T T
λ λ

λ + + = − − − −  

( ) ( ) ( ) ( ), , , ,L R L RI I F F
λ λ λ λ+ + + +   

      

( ) ( ) ( ) ( ), , , ,L R L RT T I I
λ λ λ λ− − − −   − − − − − − − −      

 

( )( )( ) ( )( )( )1 1 , 1 1L RF F
λ λ

− −− − − − − − − −

ii. ( ) ( ) ( ) ( )1 , , 1 1 ,1 1 ,L R L RA T T I I
λ λ λ λλ + + + +   = − − − −      

( ) ( ) ( )( )( )1 1 ,1 1 , 1 1 ,L R LF F T
λλ λ+ + − − − − − − − − −   

( )( )( ) ( ) ( )1 1 , , ,R L RT I I
λ λ λ− − −  − − − − − − − −   

( ) ( ),L RF F
λ λ− − − − − −  

 

iii. 1 2 1 2 1 2 1 2 1 2. , . ,L L L L R R R RA A T T T T T T T T+ + + + + + + + + = + − + − 

1 2 1 2 1 2 1 2 1 2, , , , . ,L L R R L L R R L LI I I I F F F F T T+ + + + + + + + − −    −    

1 2 1 2 1 2. , ( . ),R R L L L LT T I I I I− − − − − − − − − − −   

1 2 1 2 1 2 1 2( . ) , ( . ),R R R R L L L LI I I I F F F F− − − − − − − − − − − − − − − − 

1 2 1 2( . )R R R RF F F F− − − − − − − − 

iv. 1 2 1 2 1 2, ,L L R RA A T T T T+ + + + =  

1 2 1 2 1 2 1 2. , . ,L L L L R R R RI I I I I I I I+ + + + + + + + + − + − 

1 2 1 2 1 2 1 2. , . ,L L L L R R R RF F F F F F F F+ + + + + + + + + − + −   

1 2 1 2 1 2 1 2( . ), ( . ) ,L L L L R R R RT T T T T T T T− − − − − − − − − − − − − − − − 

1 2 1 2 1 2 1 2, , ,L L R R L L R RI I I I F F F F− − − − − − − −      
where 0.λ >  

Definition 3.7. Let 
, , , , , , , ,L R L R L R L Ra T T I I F F T T+ + + + + + − −       =        

, , ,L R L RI I F F− − − −      

be a IVBFWN-number. Then, the score function ( )S a  

accuracy function ( )A a and certainty function ( )C a  of an 
NBN are defined as follows: 

( ) (( ) 1 1 1 1
12 L R L R L R

p xS a T T I I F F+ + + + + += + + − + − + − + − +

)1 1L R L R L RT T I I F F− − − − − −+ + + − − − −

( ) ( )( )L R L R L R L RA a p x T T F F T T F F+ + + + − − − −= + − − + + − −  

( ) ( )( )L R L RC a p x T T F F+ + − −= + − −

The comparison method can be defined as follows: 

i. If ( ) ( )1 2 ,S a S a> then 1a  is greater than 2 ,a  that is, 

1a is superior to 2 ,a  denoted by 1 2 ;a a>  
ii. If ( ) ( )1 2 ,S a S a= and ( ) ( )1 2 ,A a A a> then 1a is 

greater than 2 ,a  that is, 1a is superior to 2 ,a denoted by 

1 2 ;a a<

iii. If ( ) ( )1 2 ,S a S a= ( ) ( )1 2 ,A a A a= and ( )1C a >

( )2 ,C a   then 1a is greater than 2 ,a  that is, 1a  is 
superior to 2 ,a  denoted by 1 2 ;a a>

iv. If ( ) ( )1 2 ,S a S a= ( ) ( )1 2 ,A a A a> and 

( )1C a = ( )2 ,C a then 1a  is equal to 2 ,a  that is, 1a  is 
indifferent to 2 ,a  denoted by 1 2 ;a a>  

Definition 3.8. Let 

, , , , , , , ,j jL jR jL jR jL jR jL jRa T T I I F F T T+ + + + + + − −       =        

( ), , , , 1, 2,...,jL jR jL jR jI I F F p j n− − − −    =   
be a family of IVBFWN-numbers. A mapping :p nA ℑ → ℑ  is 
called IVBFWN-weighted average operator if it satisfies 

( )1 2
1

, ,...,
n

p n j j
j

A a a a p a
=

= ∑

( ) ( )
1 1

1 1 ,1 1 ,j j
n nw w

jL jR
j j

T T+ +

= =

 
= − − − − 

 
∏ ∏
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( ) ( ) ( ) ( )
1 1 1 1

, , , ,j j j j
n n n nw w w w

jL jR jL jR
j j j j

I I F F+ + + +

= = = =

   
   
   
∏ ∏ ∏ ∏

1 1

( ) , ( ) ,j j
n n

w w
jL jR

j j

T T− −

= =

 
− − − − 

 
∏ ∏

( )( ) ( )( )
1 1

1 1 , 1 1 ,j j
n nw w

jL jR
j j

I I− −

= =

    
− − − − − − − −    

     
∏ ∏

( )( ) ( )( )
1 1

1 1 , 1 1 ,j j
n nw w n

jL jR j
j j

F F p− −

= =

    
− − − − − − − −    

     
∏ ∏

where jw  is the weight of ( 1,2,..., ),ja j n= [ ]0,1jw ∈  and 

1
1

n

j
j

w
=

=∑ .

Theorem 3.9. Let 

, , , , , , , ,j jL jR jL jR jL jR jL jRa T T I I F F T T+ + + + + + − −       =        

( ), , , 1, 2,...,jL jR jL jRI I F F j n− − − −    =   
be a family of IVBFWN-numbers. Then, 
i. If ja a=  for all 1,2,...,j n=  then, 

( )1 2, ,...,W nA a a a a=  

ii. ( )1 21,2,..., 1,2,...,
min , ,..., maxj W n jj n j n

a A a a a a
= =

≤ ≤

iii. If *
j ja a=  for all 1,2,...,j n=  then, 

( ) ( )* * *
1 2 1 2, ,..., , ,...,W n W nA a a a A a a a≤

Definition 3.10. Let 

, , , , , , , ,j jL jR jL jR jL jR jL jRa T T I I F F T T+ + + + + + − −       =        

( ), , , 1, 2,...,jL jR jL jRI I F F j n− − − −    =      

be a family of IVBFWN-numbers. A mapping :W nG ℑ → ℑ  
is called IVBFWN-weighted geometric operator if it satisfies 

( )1 2
1

, ,..., j
n

w
W n j

j

G a a a a
=

= ∏

( ) ( )
1 1

, ,j j
n nw w

jL jR
j j

T T+ +

= =

 
=  

 
∏ ∏

( ) ( )
1 1

1 1 ,1 1 ,j j
n nw w

jL jR
j j

I I+ +

= =

 
− − − − 

 
∏ ∏

( ) ( )
1 1

1 1 ,1 1 ,j j
n nw w

jL jR
j j

F F+ +

= =

 
− − − − 

 
∏ ∏

( ) ( )
1 1

1 1 ( ) , 1 1 ( ) ,j j
n nw w

jL jR
j j

T T− −

= =

    
− − − − − − − −    

     
∏ ∏

( ) ( )
1 1

, ,j j
n nw w

jL jR
j j

I I− −

= =

 
− − − − 

 
∏ ∏

( ) ( )
1 1

,j j
n nw w

jL jR
j j

F F− −

= =

 
− − − − 

 
∏ ∏

where jw  is the weight of ( 1,2,..., ),ja j n= [ ]0,1jw ∈  and 

1
1

n

j
j

w
=

=∑ .

Theorem 3.11. Let 

, , , , , , , ,j jL jR jL jR jL jR jL jRa T T I I F F T T+ + + + + + − −       =        

( ), , , 1, 2,...,jL jR jL jRI I F F j n− − − −    =   

be a family of IVBFWN-numbers. Then, 
i. If ja a=  for all 1,2,...,j n=  then, 

( )1 2, ,...,W nG a a a a=

ii. ( )1 21,2,..., 1,2,...,
min , ,..., maxj W n jj n j n

a G a a a a
= =

≤ ≤

iii. If *
j ja a=  for all 1,2,...,j n=  then, 

( ) ( )* * *
1 2 1 2, ,..., , ,...,W n W nG a a a G a a a≤

Note that the aggregation results are still NBNs 

IV. NBN- DECISION MAKING METHOD

In this section, we develop an approach based on the WA
(or WG ) operator and the above ranking method to deal with 
multiple criteria decision making problems with IVBFWN-
information. 

Suppose that { }1 2, ,..., mA A A A=  and { }1 2, ,..., nC C C C=  is
the set of alternatives and criterions or attributes, respectively. 
Let ( )1 2, ,..., T

nw w w w=  be the weight vector of attributes, 

such that 
1

1,
n

j
j

w
=

=∑ ( )0 1,2,...,jw j n≥ =  and jw  refers to the 

weight of attribute .jC An alternative on criterions is evaluated 
by the decision maker, and the evaluation values are 
represented by the form of IVBFWN-numbers.  Assume that 

( ) ( , , , , , , , ,ij ijL ijR ijL ijR ijL ijR ijL ijRm n
a T T I I F F T T+ + + + + + − −

×
       =        

), , ,ijL ijR ijL ijR
m n

I I F F− − − −

×
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is the decision matrix provided by the decision maker; ija  is a 

IVBFWN-number for alternative .iA associated with the 

criterions .jC  We have the conditions 

, , , , , ,ijL ijR ijL ijR ijL ijRT T I I F F+ + + + + + and [ ], , , , , 0,1ijL ijR ijL ijR ijL ijRT T I I F F− − − − − − ∈

 such that 
0 ijL ijR ijL ijR ijL ijRT T I I F F+ + + + + +≤ + + + + + −

12ijL ijR ijL ijR ijL ijRT T I I F F− − − − − −− − − − − ≤  

for ( 1, 2,..., )i m=  and ( 1, 2,..., ).j n=  
Now, we can develop an algorithm as follows; 

Algorithm 

Step 1. Construct the decision matrix provided by the decision 
maker as;  

( ) ( , , , , , , , ,ij ijL ijR ijL ijR ijL ijR ijL ijRm n
a T T I I F F T T+ + + + + + − −

×
       =        

), , ,ijL ijR ijL ijR
m n

I I F F− − − −

×
      

Step 2. Compute ( )1 2, ,...,i W i i ina A a a a= 1 2(   ( , ,W i ior G a a  
..., ))ina  for each ( 1, 2,..., )ia i m=  

Step 3. Calculate the score values of ( )iS a for the ( 1,i =  
2,..., )m collective overall IVBFWN-number of 

( 1, 2,..., )ia i m=  

Step 4. Rank all the software systems of 
( 1, 2,..., )ia i m= according to the score values  

Now, we give a numerical example as follows; 

Example 4.1. Let us consider decision making problem 
adapted from Ye [16]. There is an investment company, which 
wants to invest a sum of money in the best option. There is a 
panel with the set of the four alternatives is denoted by 

1C = car company 2C = food company, 3C = computer 
company, 4C = arms company to invest the money. The 
investment company must take a decision according to the set 
of the four attributes is denoted by 1A = risk, 2A = growth, 

3A = environmental impact, 4A =  performance. Also, the 
weight vector of the attributes ( 1,2,3,4)jC j =  is 

(0.24,0.26,0.26,024) .Tw = Then the according to this 
algorithm, we have,  

Step1. Construct the decision matrix provided by the customer 
as;  

Table 1: Decision matrix given by customer 

1C

1A [ ] [ ] [ ] [ ] [ ] [ ]0.5,0.6 , 0.2,0.5 , 0.1,0.7 , 0.2, 0.1 , 0.6, 0.2 , 0.4, 0.3− − − − − −

2A [ ] [ ] [ ] [ ] [ ] [ ]0.1,0.2 , 0.3,0.8 , 0.2,0.4 , 0.5, 0.2 , 0.9, 0.3 , 0.6, 0.1− − − − − −

3A [ ] [ ] [ ] [ ] [ ] [ ]0.4,0.8 , 0.4,0.6 , 0.4,0.6 , 0.3 0.2 , 0.7, 0.5 , 0.5, 0.4− − − − − −

4A [ ] [ ] [ ] [ ] [ ] [ ]0.6,0.9 , 0.3,0.8 , 0.5,0.6 , 0.8, 0.5 , 0.5, 0.1 , 0.2, 0.1− − − − − −

2C

1A [ ] [ ] [ ] [ ] [ ] [ ]0.3,0.9 , 0.1,0.8 , 0.2,0.5 , 0.8, 0.7 , 0.5, 0.1 , 0.4, 0.1− − − − − −

2A [ ] [ ] [ ] [ ] [ ] [ ]0.2,0.8 , 0.1,0.4 , 0.3,0.4 , 0.5, 0.1 , 0.3, 0.1 , 0.9, 0.4− − − − − −

3A [ ] [ ] [ ] [ ] [ ] [ ]0.1,0.6 , 0.3,0.9 , 0.3,0.5 , 0.8, 0.7 , 0.4, 0.3 , 0.7, 0.6− − − − − −

4A [ ] [ ] [ ] [ ] [ ] [ ]0.1,0.2 , 0.8,0.9 , 0.2,0.7 , 0.5, 0.4 , 0.6, 0.3 , 0.5, 0.3− − − − − −

3C

1A [ ] [ ] [ ] [ ] [ ] [ ]0.1,0.6 , 0.1,0.5 , 0.1,0.4 , 0.5, 0.2 , 0.7, 0.3 , 0.4, 0.2− − − − − −

2A [ ] [ ] [ ] [ ] [ ] [ ]0.3,0.4 , 0.1,0.6 , 0.5,0.7 , 0.5, 0.1 , 0.8, 0.7 , 0.9, 0.8− − − − − −

3A [ ] [ ] [ ] [ ] [ ] [ ]0.3,0.9 , 0.2,0.8 , 0.2,0.3 , 0.5, 0.4 , 0.6, 0.5 , 0.7, 0.6− − − − − −

4A [ ] [ ] [ ] [ ] [ ] [ ]0.2,0.7 , 0.5,0.8 , 0.8,0.9 , 0.9, 0.8 , 0.8, 0.5 , 0.5, 0.2− − − − − −

4C

1A [ ] [ ] [ ] [ ] [ ] [ ]0.6,0.8 , 0.4,0.6 , 0.1,0.3 , 0.4, 0.3 , 0.6, 0.3 , 0.7, 0.5− − − − − −

2A [ ] [ ] [ ] [ ] [ ] [ ]0.3,0.8 , 0.3,0.9 , 0.1,0.2 , 0.8, 0.6 , 0.6, 0.4 , 0.4, 0.2− − − − − −

3A [ ] [ ] [ ] [ ] [ ] [ ]0.7,0.9 , 0.1,0.4 , 0.2,0.6 , 0.7, 0.6 , 0.9, 0.5 , 0.3, 0.2− − − − − −

4A [ ] [ ] [ ] [ ] [ ] [ ]0.4,0.6 , 0.3,0.5 , 0.1,0.7 , 0.3, 0.1 , 0.6, 0.5 , 0.7, 0.3− − − − − −

Step 2. Compute ( )1 2 3 4, , ,i W i i i ia A a a a a=  for each 

( )1,2,3,4i =  as; 

1a [ ] [ ] [ ] [ ] [ ] [ ]0.4,0.8 , 0.2,0.6 , 0.1,0.5 , 0.4, 0.3 , 0.6, 0.2 , 0.5, 0.3− − − − − −

2a [ ] [ ] [ ] [ ] [ ] [ ]0.2,0.6 , 0.2,0.6 , 0.2,0.4 , 0.6, 0.2 , 0.7, 0.4 , 0.8, 0.5− − − − − −

3a [ ] [ ] [ ] [ ] [ ] [ ]0.4,0.8 , 0.2,0.7 , 0.3,0.5 , 0.5, 0.4 , 0.7, 0.5 , 0.6, 0.5− − − − − −

4a [ ] [ ] [ ] [ ] [ ] [ ]0.3,0.7 , 0.4,0.7 , 0.3,0.7 , 0.6, 0.4 , 0.6, 0.4 , 0.5, 0.2− − − − − −

Step 3. Calculate the score values of ( )( )1,2,3,4iS a i =  for 
the collective overall IVBFWN-number of  ( 1, 2,..., )ia i m=  
as; 

( )1 0.56S a =
   ( )2 0.59S a =

  ( )3 0.57S a = ( )4 0.47S a =

Step 4. Rank all the software systems of  ( )1,2,3,4iA i =  
according to the score values as; 
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2 3 1 4A A A A
and thus 2A  is the most desirable alternative. 

CONCLUSION

This paper presented an interval-valued bipolar 
neutrosophic set and its score, certainty and accuracy 
functions.  In the future, we shall further study more 
aggregation operators for interval-valued bipolar neutrosophic 
set and apply them to solve practical applications in group 
decision making, expert system, information fusion system, 
game theory, and so on.
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Abstract—In this paper, (1) one simplified the standard 
TOPSIS to new Multi-Criteria Decision-Making (MCDM) called 
Simplified-TOPSIS. Simplified-TOPSIS gives the same results 
and simplifies the calculation of the classical TOPSIS. An 
example is presented distinctions between Simplified-TOPSIS 
and classical TOPSIS are underlined. (2) extend the new 
Simplified-TOPSIS method to Neutrosophic-simplified-TOPSIS 
using single valued Neutrosophic information. An example 
showing the interest of Neutrosophic-simplified-TOPSIS to 
manipulate the uncertainty linked to information presented in 
Multi-Criteria Decision-Making. 

Keywords—Simplified TOPSIS; Neutrosophic; MCDM; 
Neutrosophic-simplified-TOPSIS 

I. INTRODUCTION

Standard TOPSIS, the Technique for Order Preference by 
Similarity to Ideal Solution method is a multi-criteria decision-
making approach, was introduced by Hwang and Yoon [1]. 
The classical TOPSIS is one of sophisticated MCDM for 
solving problems with respect to crisp numbers, often 
involving complicated steps of calculation algorithms that are 
difficult to learn and apply. 

In the real MCDM problems, the attribute values are 
always be expressed with imperfect information, however, 
decision-makers may prefer to use an easy, simple technique 
and give same result rather than complex algorithm. The 
objective of this paper, we present, firstly, simplified-TOPSIS, 
a new MCDM method that simplifies the calculation and gives 
the same results of traditional TOPSIS. Secondly, we introduce 
a hybrid method to resolve real MCDM problems with 
imperfect information based on Neutrosophic and simplified-
TOPSIS method (Neutrosophic-simplified-TOPSIS). 

Smarandache [2,3] proposed a generalization of the 
Intuitionistic Fuzzy Set (IFS), called  Neutrosophic Set (NS) 
which based on three values ( truth, indeterminacy and falsity) 
and able to handle incomplete information (such as uncertainty, 
imprecise, incomplete and inconsistent information)[4].  

 Wang and Smarandache [5] defined single valued 
Neutrosophic Set (SVNS). Broumi and Smarandache [4,6,7] 
offered different operators such as distance and similarity 
measures over the single valued Neutrosophic Set and their 
basic properties were studied. 

Mumtaz and Smarandache [8] introduced complex 
Neutrosophic Set. Mumtaz et al. [9] proposed and applied the 
theory of Neutrosophic cubic Sets in pattern recognition area. 

Bahramloo and Hoseini [10] used MCDM method in 
Intuitionist Fuzzy Sets, which extended by Smarandache [2] to 
Neutrosophic Set, for raking alternatives. 

Biswas [11] summarized the definition given by Wang and 
Smarandache [5] of single valued Neutrosophic Set as well as 
the definition of some aggregation operators such as 
aggregated single valued Neutrosophic, weighted Neutrosophic 
to solve MCDM problems using extended TOPSIS. 

Broumi [7] studied multiple attribute decision making by 
using interval Neutrosophic uncertain linguistic variables. 

Peng [12] also developed a Multi-criteria decision making 
method based on aggregation operators and TOPSIS in multi 
hesitant fuzzy environment. Furthermore, Deli et al. [13] 
applied bipolar Neutrosophic Sets on MCDM problems. 

The paper is organized as follows. In the next section we 
present TOPSIS method. Section 3 will focus on the proposed 
method Simplified-TOPSIS. Afterwards, the Neutrosophic-
TOPSIS in section 4. In section 5 a Neutrosophic-simplified-
TOPSIS is introduced and it is shown how it can be applied for 
ranking preferences. In the final section, conclusions are 
drawn. 

II. TOPSIS METHOD

Let us assume that  is a set of Criteria, 
with ,  is the set of Preferences 
(Alternatives), with ,  the score of preference  with 
respect to criterion  , and let  weight of criteria  . 

Using we construct the decision matrix denoted by 

 

TOPSIS method summarizes as follow : 

Step 1: The normalized decision matrix is obtained, which is 
given here with . 

Neutrosophic-simplified-TOPSIS. Multi-Criteria Decision-Making 

using combined Simplified-TOPSIS method and Neutrosophics 

Azeddine Elhassouny, Florentin Smarandache 

Azeddine Elhassouny, Florentin Smarandache (2016). Neutrosophic-simplified-TOPSIS. Multi-
Criteria Decision-Making using combined Simplified-TOPSIS method and Neutrosophics. IEEE 
International Conference on Fuzzy Systems (FUZZ-IEEE): 2468-2474; DOI: 10.1109/FUZZ-
IEEE.2016.7738003 
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0.5
2

=1
= / ; =1,2, , ; =1,2 ,

m

ij ij ij
i

r a a j n i m 
 
 
  

Step 2: Obtain the weighted normalized decision matrix : 

Multiply each column of the normalized decision matrix by 
its associated weight.  

= ; =1,2, , ; =1,2 ,ij j ijv w r j n i m

Step 3: Determine the ideal and negative ideal solutions. 

{ }( )
{ }( )1 2

| ,
= ( , , , ) =

|

i ij

n

i ij

max v j B
A v v v

min v j C
+ + + +

∈∫ ∫

∈∫ ∫

{ }( )
{ }( )1 2

| ,
= ( , , , ) =

|

i ij

n

i ij

min v j B
A v v v

max v j C
− − − −

∈∫ ∫

∈∫ ∫

Where sets   and  are associated with the benefit and cost 
attribute sets, respectively. 

Step 4: Calculate the separation measures for each alternative 
from the positive (negative) ideal solution. 

The separation from the positive ideal alternative is 
0.5

2

=1
= ( ) ; = 1,2 ,

n

i ij j
j

S v v i m+ +−  

Similarly, the separation from the negative ideal alternative 
is 

0.5

2

=1
= ( ) ; = 1,2 ,

n

i ij j
j

S v v i m− −−  

Step 5: The relative closeness to the ideal solution of each 
alternative is calculated as. 

= ; = 1, 2 ,
( )

i
i

i i

ST i m
S S

−

+ −+

A set of alternatives can now be ranked according to the 
descending order of the value of . 

A. Numerical example
In the examples below we used TOPSIS to rank the four

alternatives. 

The table (Table I) below contains the weights of criteria 
(three criteria ,  and ) and the decision matrix 
summarized by the score of preference  ( , ,  and ) 
with respect to criterion  . 

TABLE I.  DECISION MATRIX 

    

 12/16 3/16 1/16 

 7 9 9 

 8 7 8 

 9 6 8 

 6 7 8 

Calculate  for each column, we get (Table II). 

TABLE II.  MULTIPLE DECISION MATRIX 

    

 12/16 3/16 1/16 

 49 81 81 

 64 49 64 

 81 36 64 

 36 49 64 

 230  215 273  

Divide each column by 2 1/2
=1

( )n
iji

a to get ijr

(Table III). 

TABLE III. NORMALIZED DECISION MATRIX 

    

 12/16 3/16 1/16 

 0.4616 0.6138  0.5447 

 0.5275  0.4774 0.4842 

 0.5934  0.4092 0.4842 

 0.3956  0.4774 0.4842 

 230  215 273  

Multiply each column by  to get  (Table IV). 

TABLE IV.  WEIGHTED DECISION MATRIX 

    

 12/16 3/16 1/16 

 0.3462 0.1151 0.0340 

 0.3956  0.0895 0.0303 

 0.4451  0.0767 0.0303 

 0.2967  0.0895 0.0303 

 0.4451 0.1151 0.0340 

 0.2967  0.0767  0.0303  

The distance values from the positive and negative ideal 
solution and the final rankings for decision matrix are showed 
in Table V. 
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TABLE V.  DISTANCE MEASURE AND RANKING COEFFICIENT 

Alternative    

 0.0989 0.0627 0.3880 

 0.0558 0.0997  0.6412 

 0.0385 0.1484 0.7938 

 0.1506 0.0128  0.0783 

According to values of ranking measure coefficients, the 
Table V indicates that better alternative is  and preferences 
are classified as . 

III. SIMPLIFIED-TOPSIS METHOD (OUR PROPOSED METHOD)
Let consider  is a set of Criteria, with

,  is the set of Preferences 
(Alternatives), with ,  the score of preference  with 
respect to criterion , and let  weight of criteria  . 

 

Our proposed MCDM method called Simplified-TOPSIS 
can be described in following steps:  

Step 1: Calculate weighted decision matrix . 

Multiply each column of the normalized decision matrix by 
its associated weight 

= ; = 1,2, , ; = 1,2 ,ij j ijv w a j n i m

In our method we have not normalized the decision matrix 
(step1 of classical TOPSIS (section II)), but we calculate 
directly the weighted decision matrix  by multiplying  
with . 

Step 2: Determine the maximum (largest) ideal solution (LIS) 
and minimum (smallest) ideal solution (SIS). 

{ }( )1 2= ( , , , ) = | 1, 2, ,m i ijA v v v max v j n+ + + + =

{ }( )1 2= ( , , , ) = min | 1, 2, ,m i ijA v v v v j n+ − − − =

Step 3: Calculate the sums for each line, by subtracting each 
number from LIS (from SIS). 

0.5

2

=1
= ( ) ;  = 1,2 ,

n

i ij j
j

S v v i m+ +−  

Similarly, we compute the sums for each line, by 
subtracting each number from SIS. 

0.5

2

=1
= ( ) ;  = 1,2 ,

n

i ij j
j

S v v i m− −−

Classifying these sums which one is closer to the 
maximum (or is further from the minimum) 

A set of alternatives can now be ranked according to the 
descending order of the value of sums  or .

Step 4(facultative): We can compute , though the previous 
steps enough to rank the alternatives. 

= ;  = 1, 2 ,
( )

i
i

i i

ST i m
S S

−

+ −+
 

A. Numerical example
In order to compare the result with classical TOPSIS we

use the same numerical examples used in classical TOPSIS. 

TABLE VI.  DECISION MATRIX 

    

 12/16 3/16 1/16 

 7 9 9 

 8 7 8 

 9 6 8 

 6 7 8 

One multiplies on columns with the weights , , 
and  respectively, and one gets: 

TABLE VII.  WEIGHTED DECISION MATRIX 

    

 12/16 3/16 1/16 

 84/16 27/16 9/16 

 96/16 21/16 8/16 

 108/16 18/16 8/16 

 72/16 21/16 8/16 

We compute the sums for each line, by subtracting each 
number from the largest one: 

 

 

 

 

Classifying these sums we get them on places: , , 
,  in the order of which one is closer to the maximum. 

We compute the sums for each line, by subtracting each 
number from the smaller one: 
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Classifying these sums we get them on places: , , 
,  in the order of which one is further from the 

minimum. 

If we compute , we get the same ordering of classical 
TOPSIS: 

 

 

 

 

The following table (Table VIII) summarized previous 
calculations 

TABLE VIII.  DISTANCE MEASURE AND RANKING COEFFICIENT 

Alternative    

 1.5000 1.3750 0.478261 

 1.1875 1.6875 0.586957 

 0.6250 2.2500 0.782609 

 2.6875 0.1875  0.065217 

By applying Simplified-TOPSIS, we get for (0.782609), 
(0.586957), (0.478261) and (0.065217), and we got with 

classical TOPSIS (0.7938), (0.6412), (0.3880) and 
(0.0783). 

Hence the order obtained with our approach simplified-
TOPSIS is the same of classical TOPSIS: , , and ,with 
little change in values between both approaches. 

IV. NEUTROSOPHIC TOPSIS [11]
The MCDM Neutrosophic TOPSIS approach is explained 

in the following steps. 

Step 1: Construction of the aggregated single valued 
Neutrosophic decision matrix based on decision makers 
assessments 

1
1

1
1

( ) ( , , )
i n
j m

ij i n ij ij ij
j m

D d T I F
≤ ≤
≤ ≤

≤ ≤
≤ ≤

= =

Where  denote truth,  indeterminacy and  falsity 
membership score of preference  with respect to criterion  in 
single valued Neutrosophic. 

 with  a single valued Neutrosophic 
weight of criteria (so ). 

Example 1: For compare the results obtained by our approach 
Neutrosophic-simplified-TOPSIS (will be presented 
afterwards) with those obtained with Neutrosophic-TOPSIS, 
we use the example introduced by Biswas [11]. 

Let  fours decisions makers aims to 
select an alternative  with respect six criteria 

. 

The Neutrosophic weight of each criterion (Table IX) and 
Neutrosophic decision matrix (Table X) presented respectively. 

TABLE IX.  CRITERIA WEIGHTS 

   

    

   

    

TABLE X.  NEUTROSOPHIC DECISION MATRIX 

   

    

    

    

    

   

    

    

    

    

Step 2: Aggregation of the weighted Neutrosophic decision 
matrix 

1
1

1
1

( ) ( , , )
i n
j m

w w w w w
ij i n ij ij ij

j m
D D W d T I F

≤ ≤
≤ ≤

≤ ≤
≤ ≤

= ⊗ = =

Step 3: Determination of the relative Neutrosophic positive 
ideal solution (RNPIS) and the relative negative ideal solution 
(RNIS) for SVNSs. 

1 2= ( , , , )w w w
N nQ d d d+ + + +

1 2= ( , , , )w w w
N nQ d d d− − − −
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Where sets  and  are associated with the benefit and cost 
attribute sets, respectively  

Step 4: Determination of the distance measure of each 
alternative from the RNPIS and the RNNIS for SVNSs. 

( )
( )
( )
( )

2

2

=1
2

( ) ( )
1, ( ) ( )
3

( ) ( )

wj w
ij ij

n
i wj w wj w
Eu ij ij ij ij

j
wj w

ij ij

T x T x

D d d I x I x
n

F x F x

+

+ + +

+

− +
∫ ∫
∫ ∫= − +
∫ ∫
∫ ∫−



with = 1, 2 ,i m

And 

( )
( )
( )
( )

2

2

=1
2

( ) ( )
1, ( ) ( )
3

( ) ( )

wj w
ij ij

n
i wj w wj w
Eu ij ij ij ij

j
wj w

ij ij

T x T x

D d d I x I x
n

F x F x

−

− − −

−

− +
∫ ∫
∫ ∫= − +
∫ ∫
∫ ∫−



Step 5: Determination of the relative closeness coefficient to 
the Neutrosophic ideal solution for SVNSs. 

* = ; = 1, 2 ,
( )

i
i

i i

NSC i m
NS NS

−

+ −+

A set of alternatives can now be ranked according to the 
descending order of the value of .

Table below (Table XI) shows the results obtained by 
Neutrosophic-TOPSIS. 

TABLE XI.  CLOSENESSCOEFFICIENT 

Alternative  

 0.8190 

 0.1158 

0.8605

 0.4801 

Based on the values of closeness coefficient, the four 
alternatives are classified as . Then, the 
alternative  is the best solution. 

V. NEUTROSOPHIC-SIMPLIFIED-TOPSIS (OUR PROPOSED 
METHOD) 

Step 1: Building of the SVNS decision matrix and SVNS 
weight of each criterion. 

1
1

1
1

( ) ( , , )
i n
j m

ij i n ij ij ij
j m

D d T I F
≤ ≤
≤ ≤

≤ ≤
≤ ≤

= =

1 2

1 11 12 1

2 21 22

1

n

n

m m mn

C C C
A d d d
A d d

A d d

 
 
 
 
 
 

Where  denote truth,  indeterminacy and  falsity 
membership score of preference  with respect to criterion  in 
single valued Neutrosophic. 

 with  a single valued Neutrosophic 
weight of criteria (so ) 

Step 2: Calculate SVNS weighted decision matrix 

1
1

1
1

( ) ( , , )
i n
j m

w w w w w w
ij i n j ij ij ij ij

j m
D D W d d T I Fω

≤ ≤
≤ ≤

≤ ≤
≤ ≤

= ⊗ = = ⊗ =

 

Step 3: Determine the maximum (larger) Neutrosophic ideal 
solution (LNIS) and minimum (smaller) Neutrosophic ideal 
solution (SNIS). 

1 2= ( , , , )w w w
N nA d d d+ + + +

1 2= ( , , , )w w w
N nA d d d− − − −

 

Step 4: Calculate the Neutrosophic separation measures for 
each alternative from LNIS and from SNIS. 

In this case we have introduced à new distance measure 
(definition 1) between two single-valued Neutrosophic (SVNs) 
using Manhattan distance [14] instead of the Euclidean 
distance used to calculate similarity measure between two 
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SVNs in literature and in Neutrosophic-TOPSIS method, the 
defined distance is used to calculate distance measure. 

Definition 1. Let  and  be a 
SVN numbers. Then the separation measure between  and 

 based on Manhattan distance is defined as follows:  

 

The separation from the maximum Neutrosophic ideal 
solution is : 

( )
( ) ( )

, ( ) ( )

( ) ( )

wj w
ij ij

j wj w wj w
Manh ij ij ij ij

wj w
ij ij

T x T x

D d d I x I x

F x F x

+

+ + +

+

− +
∫ ∫∫ ∫= − +
∫ ∫

−∫ ∫

with = 1, 2 ,j n

( )
=1

= ,
n

j wj w
i Manh ij ij

j
NS D d d+ + +  with = 1, 2 ,i m

Similarly, the separation from the minimum Neutrosophic 
ideal solution is: 

( )
( ) ( )

, ( ) ( )

( ) ( )

wj w
ij ij

j wj w wj w
Manh ij ij ij ij

wj w
ij ij

T x T x

D d d I x I x

F x F x

−

− − −

−

− +
∫ ∫∫ ∫= − +
∫ ∫

−∫ ∫

with = 1, 2 ,j n

( )
=1

= ,
n

j wj w
i Manh ij ij

j
NS D d d− − −  with = 1, 2 ,i m

Ranking the alternatives according to the values of  or
according to 

Step 5: The measure ranking coefficient is calculated as. 

= ;  = 1, 2 ,
( )

i
i

i i

NSNT i m
NS NS

−

+ −+
 

A set of alternatives can now be ranked according to the 
descending order of the value of  

A. Numerical example
Step 1: Building of the SVNS decision matrix and SVNS 
weight of each criterion. 

Let  a set of alternative and 
 a set of criteria. 

Let considers the following Neutrosophic weights of 
criteria (Table XII) and Neutrosophic decision matrix (Table 
XIII) respectively (used in above example 1).

TABLE XII.  CRITERIA NEUTROSOPHIC WEIGHTS 

   

    

   

    

TABLE XIII.  NEUTROSOPHIC DECISION MATRIX 

    

    

    

    

    

   

    

    

    

    

Step 2: Calculate SVNs weighted decision matrix 

1
1

1
1

( ) ( , , )
i n
j m

w w w w w
ij i n ij ij ij

j m
D d T I F

≤ ≤
≤ ≤

≤ ≤
≤ ≤

= =

One multiplies each columns of Neutrosophic decision 
matrix with the weights of criteria, and one gets: 

TABLE XIV.  WEIGHTED DECISION MATRIX 

    

    

    

    

    

   

    

    

    

    
a. Numbers are rounded to three decimal place.

Step 3: Determine the maximum (larger) Neutrosophic ideal 
solution (LNIS) and minimum (smaller) Neutrosophic ideal 
solution (SNIS). 
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TABLE XV.  MAXIMUM (LARGE) NEUTROSOPHIC IDEAL SOLUTION(LNIS) 

   

    

   

    

TABLE XVI.  MINIMUM (SMALLER) NEUTROSOPHICIDEAL SOLUTION 
(SNIS) 

   

    

   

    

Step 4: Calculate the Neutrosophic separation measures for 
each alternative from the LNIS and from SNIS. 

We compute the sums for each line, by subtracting each 
alternative from the larger one and by subtracting each 
alternative from the smaller one. 

TABLE XVII.  NEUTROSOPHIC SEPARATION MEASURES AND NEUTROSOPHIC 
MEASURE RANKING 

   

 0,324 2,07 0,86459295

 2,31 0,084 0,03521102

 0,047 2,347 0,98021972 

 1,293 1,101 0,45987356

Based on the values of coefficients of decreasing rank, four 
alternatives are ranked as  as in Table 
XVII. Then, the alternative  is also the best solution.

Hence, we get the same rank of Neutrosophic-TOPSIS.

VI. CONCLUSION

In this paper, we have presented two new MCDM methods, 
the first is simplified-TOPSIS, that simplifies the calculation of 
classical TOPSIS to a simple formulas easy to applying and a 
reduced number of steps and give same results of classical 
TOPSIS. The second is MCDM method in Neutrosophic 
environment, which is too simplifies the Neutrosophic-
TOPSIS, extending the Simplified-TOPSIS using single valued 
Neutrosophic information. Maximum larger) Neutrosophic 
Ideal Solution (LNIS) and Minimum (smaller) Neutrosophic 
Ideal Solution (SNIS) are defined from weighted decision 
matrix. Manhattan distance Neutrosophic measure is defined 
and used to determine the distances of each alternative from 
maximum as well as minimum Neutrosophic ideal solutions, 
which used to calculate the measure ranking coefficient of each 
alternative. 
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Keywords: Bipolar single valued neutrosophic graph; Score function; Shortest path problem 

Abstract. This main purpose of this paper is to develop an algorithm to find the shortest path on a 
network in which the weights of the edges are represented by bipolar neutrosophic 
numbers. Finally, a numerical example has been provided for illustrating the proposed approach. 

Introduction 

Smarandache [1, 2] introduced neutrosophic set and neutrosophic logic by considering the non-
standard analysis. The concept of neutrosophic sets generalized the concepts of fuzzy sets [3] and 
intuitionistic fuzzy set [4] by adding an independent indeterminacy-membership. Neutrosophic set 
is a powerful tool to deal with incomplete, indeterminate and inconsistent information in real world, 
which have attracted the widespread concerns for researchers. The concept of neutrosophic set is 
characterized by three independent degrees namely truth-membership degree (T), indeterminacy-
membership degree (I), and falsity-membership degree (F). From scientific or engineering point 
of view, the neutrosophic set and set- theoretic operator will be difficult to apply in the 
real application. The subclass of the neutrosophic sets called single-valued neutrosophic sets [5] 
(SVNS for short) was studied deeply by many researchers. The concept of single valued 
neutrosophic theory has proven to be useful in many different field such as the decision making 
problem, medical diagnosis and so on.  Additional literature on neutrosophic sets can be found in 
[6]. Recently, Deli et al. [7] introduced the concept of bipolar neutrosophic sets which is an 
extension of the fuzzy sets, bipolar fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets. 
The bipolar neutrosophic set (BNS) is an important concept to handle uncertain and vague 
information exciting in real life, which consists of three membership functions including 
bipolarity. Also, they give some operations including the score, certainty and accuracy functions to 
compare the bipolar neutrosophic sets and operators on the bipolar neutrosophic sets. The shortest 
path problem is a fundamental algorithmic problem, in which a minimum weight path is computed 
between two nodes of a weighted, directed graph. The shortest path problem has been widely 
studied in the fields of operations research, computer science, and transportation engineering. In 
literature, there are many publications which deal with shortest path problems [8-13] that have 
been studied with different types of input data, including fuzzy set, intuitionstic fuzzy sets, 
trapezoidal intuitionistic fuzzy sets and vague set. Recently, Broumi et al. [14-17] presented 
the concept of neutrosophic graphs, interval valued neutrosophic graphs and bipolar single 
valued neutrosophic graphs. Smarandache [18-19] proposed another variant of neutrosophic 
graphs based on literal indeterminacy component (I). Also Kandasamy et al. [20] studied 
the concept of neutrosophic graphs, To do best of our knowledge, few research papers deal 
with shortest path in neutrosophic environment. Broumi et al. [21] proposed an algorithm for 
solving neutrosophic shortest path problem based on score function. 

Shortest Path Problem under Bipolar Neutrosophic Setting 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, Mumtaz Ali 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, Mumtaz Ali (2016). Shortest 
Path Problem under Bipolar Neutrosophic Setting. Applied Mechanics and Materials 859: 59-66; 
DOI: 10.4028/www.scientific.net/amm.859.59 
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neutrosophic number on a network. Till now, there is no study in the literature for 
computingThe same authors in [22] proposed a study of neutrosphic shortest path with interval valued 
shortest path problem in bipolar neutrosophic environment. The structure of the paper is as 
follows. In Section 2, we review some basic concepts about neutrosophic sets, single valued 
neutrosophic sets and bipolar neutrosophic sets. In section 3, we give the network terminology. In 
Section 4, an algorithm is proposed for finding the shortest path and shortest distance in bipolar 
neutrosophic graph.  In section 5 an illustrative example is provided to find the shortest path and 
shortest distance between the source node and destination node. Finally, in Section 6 we provide 
conclusion and proposal for further research.  

Preliminaries 

In this section, some basic concepts and definitions on neutrosophic sets, single valued 
neutrosophic sets and bipolar neutrosophic sets are reviewed from the literature. 
Definition 2.1 [1-2]. Let X be a space of points (objects) with generic elements in X denoted by x; 

then the neutrosophic set A (NS A) is an object having the form A = {< x: ( )AT x , ( )AI x , ( )AF x >,
x ∈  X}, where the functions T, I, F: X→]−0,1+[define respectively the truth-membership function,
an indeterminacy-membership function, and a falsity-membership function of the element x ∈  X to
the set A with the condition: 

−0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+. (1)  

The functions ( )AT x , ( )AI x  and ( )AF x are real standard or nonstandard subsets of ]−0,1+[.

Since it is difficult to apply NSs to practical problems, Wang et al. [14] introduced the concept of a 
SVNS, which is an instance of a NS and can be used in real scientific and engineering applications.  

Definition 2.2 [3]. Let X  be a space of points (objects) with generic elements in X denoted by x.  

A single valued neutrosophic set A (SVNS A) is characterized by truth-membership function ( )AT x ,

an indeterminacy-membership function ( )AI x , and a falsity-membership function ( )AF x . For each

point x in X ( )AT x , ( )AI x , ( )AF x ∈  [0, 1]. A SVNS A can be written as

A = {< x: ( )AT x , ( )AI x , ( )AF x >, x ∈X} (2) 
Deli et al. [15] proposed the concept of bipolar neutrosophic set, which is an instance of a 
neutrosophic set, and introduced the definition of an BNS. 

Definition 2.3 [4]. A bipolar neutrosophic set A in X is defined as an object of the form  

A={<x, ( )pT x , ( )pI x , ( )pF x , ( )nT x , ( )nI x , ( )nF x >: x ∈  X}, where pT , pI , pF :X →  [1, 0] and nT ,
nI , nF : X →  [-1, 0] .The positive membership degree ( )pT x , ( )pI x , ( )pF x  denotes the truth

membership, indeterminate membership and false membership of an element ∈  X corresponding to

a bipolar neutrosophic set A and the negative membership degree ( )nT x , ( )nI x , ( )nF x denotes the
truth membership, indeterminate membership and false membership of an element ∈  X to some
implicit counter-property corresponding to a bipolar neutrosophic set A. 

Definition 2.4 [4]. An empty bipolar  neutrosophic set 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T=< >  is defined as 

1 1 10, I 0, F 1p p pT = = =  and 1 1 11, I 0, F 0n n nT = − = = (4)
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Definition 2.5 [7]. Let 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T=< >  and 2 2 2 22 2 2, I , F , , I , Fp p p n n nA T T=< > be two bipolar 
neutrosophic numbers and 0λ >  . Then, the operations of these numbers defined as below;

(i) 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

, I , F

, ( I ), ( F )

p p p p p p p p

p p p p p p p pn n

A A T T T T I F

T T I I I F F F

⊕ =< + −

− − − − − − − − − > (5) 

(ii)  
1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, I , F

( ), ,

p p p p p p p p p p

n n n n n n n n

A A T T I I I F F F

T T T T I I F F

⊗ =< + − + −

− − − − − − > (6) 

(iii) 1 1 1 11 1 11 (1 ) ,(I ) , ( ) , ( ) , ( ) , (1 (1 ( F )) )p p p n n nA T F T Iλ λ λ λ λ λλ =< − − − − − − − − − − > (7) 

(iv) ( ) ,1 (1 ) ,1 (1 ) , (1 (1 ( )) ), ( ) , ( F )) )1 1 1 1 1 1 1
p p p n n nA T I F T Iλ λ λ λ λ λ λ=< − − − − − − − − − − − − > where 0λ > (8) 

Definition 2.6 [7]. In order to make a comparisons between two BNN. Deli et al.  [7], introduced a 
concept of score function. The score function is applied to compare the grades of BNS. This 
function shows that greater is the value, the greater  is the bipolar neutrosphic sets and by using this 

concept paths can be ranked. Let , I ,F , , I , Fp p p n n nA T T=< >  be a bipolar neutrosophic number. Then, 
the score function ( )s A , accuracy function ( )a A and certainty function ( )c A of an BNN are defined 
as follows:

(i) 
1( ) 1 1 1
6

p p p n n ns A T I F T I F   = × + − + − + + − −     (9) 

(ii) ( ) p p n na A T F T F= − + − (10) 

(iii) ( ) p nc A T F= − (11) 

Comparison of bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T=< >  and 2 2 2 22 2 2, I , F , , I , Fp p p n n nA T T=< > be two bipolar  neutrosophic numbers 
then 

i. If 1 2( ) ( )s A s A , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A

ii. If 1 2( ) ( )s A s A= ,and 1 2( ) ( )a A a A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted
by 1 2A A

iii. If 1 2( ) ( )s A s A= , 1 2( ) ( )a A a A= , and 1 2c( ) ( )A c A  then 1A  is greater than 2A , that is, 1A is superior
to 2A , denoted by 1 2A A

iv. If 1 2( ) ( )s A s A= , 1 2( ) ( )a A a A= , and 1 2c( ) ( )A c A=  then 1A  is equal to 2A , that is, 1A is indifferent
to 2A , denoted by 1 2A A=

Network Terminology 

Consider a directed network G(V, E) consisting of a finite set of nodes V={1, 2,…,n} and a set of m 
directed edges E ⊆ VxV. Each edge is denoted is denoted by an ordered pair (i, j) where i, j ∈  V and
i j≠ . In this network, we specify two nodes, denoted by s and t, which are the source node and the 
destination node, respectively. We define a path ijP ={i= 1i , 1 2( , )i i , 2i ,…, 1li − , 1( , )l li i− , li =j} of
alternating nodes and edges. The existence of at least one path siP in G (V, E) is assumed for every i 
∈V-{s}.
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ijd  denotes bipolar neutrosophic number associated with the edge (i, j), corresponding to the length
necessary to traverse (i, j) from i to j. the bipolar neutrosophic distance along the path P is denoted 
as d(P) is defined as 

d(P)= (i, j P)
ijd

∈
∑

(12)

Bipolar Neutrosophic Path Problem 

In this paper the arc length in a network is considered to be a neutrosophic number, namely, bipolar  
neutrosophic number. 

The algorithm for the shortest path proceeds in 6 steps. 

Step 1 Assume 1d =<0, 1, 1, -1, 0, 0>and label the source node (say node1) as [ 1d =<0, 1, 1, -1, 0,
0>,-]. 

Step 2 Find jd = minimum{ i ijd d⊕ };j=2,3,…,n. 

Step 3 If minimum occurs corresponding to unique value of i i.e., i= r then label node j as [ jd ,r].
If minimum occurs corresponding to more than one values of i then it represents that there are more 
than one bipolar neutrosophic path between source node and node j but bipolar neutrosophic 

distance along path is jd , so choose any value of i. 

Step 4 Let the destination node (node n) be labeled as [ nd , l], then the bipolar neutrosophic shortest
distance between source node is nd .

Step 5 Since destination node is labeled as [ nd , l], so, to find the bipolar neutrosophic shortest path
between source node and destination node, check the label of node l. Let it be [ ld , p], now check
the label of node p and so on. Repeat the same procedure until node 1 is obtained. 

Step 6 Now the bipolar neutrosophic shortest path can be obtained by combining all the nodes 
obtained by the step 5. 

Remark: Let iA ; i =1, 2,…, n be a set of bipolar neutrosophic numbers, if S( kA ) < S( iA ), for all i, 
the bipolar neutrosophic number  is the minimum of kA

Illustrative Example 

In order to illustrate the above procedure consider a small example network shown in Fig1, where 
each arc length is represented as bipolar neutrosophic number as shown in Table 1.The problem is 
to find the shortest distance and shortest path between source node and destination node on the 
network. 
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Fig.1. A network with bipolar neutrosophic edges
In this network each edge has been assigned to bipolar neutrosophic number as follows: 

Table 1. Weights of the bipolar neutrosophic graphs 

Solution since node 6 is the destination node, so n= 6. 
assume 1d =<0, 1, 1, -1, 0, 0>and label the source node ( say node 1) as [<0, 1, 1, -1, 0, 0>,-], the

value of jd ; j= 2, 3, 4, 5 ,6 can be obtained as follows:
Iteration 1 Since only node 1 is the predecessor node of node 2, so putting i=1 and j= 2 in step2 of 
the proposed algorithm, the value of 2d  is

2d = minimum{ 1 12d d⊕ }=minimum{<0, 1, 1, -1, 0, 0> ⊕  <0.2, 0.4, 0.5, -0.2, -0.4, -0.6>= <0.2, 0.4,
0.5, -0.2, -0.4, -0.6> Since minimum occurs corresponding to i=1, so label node 2 as [<0.2, 0.4, 0.5, 
-0.2, -0.4, -0.6> , 1]
Iteration 2 The predecessor node of node 3 are node 1 and node 2, so putting i= 1, 2 and j= 3
in step 2 of the proposed algorithm, the value of 3d  is 3d =minimum{ 1 13 2 23,d d d d⊕ ⊕ }= 
minimum{<0, 1, 1, -1, 0, 0> ⊕  <0.5, 0.1, 0.6, -0.3, -0.8, -0.7>, <0.2, 0.4, 0.5, -0.2, -0.4, -0.6 ⊕  <0.2,
0.6, 0.4, -0.1, -0.3, -0.4>}= minimum{<0.5, 0.1, 0.6, -0.3, -0.8, -0.7>, <0.36, 0.24, 0.2, -0.02, -0.58, 
-0.76>}

S (<0.5, 0.1, 0.6, -0.3, -0.8, -0.7>) =
1( ) 1 1 1
6

p p p n n ns A T I F T I F   = × + − + − + + − −     =0.66 

S (<0.36, 0.24, 0.2, -0.02, -0.58, -0.76>) =0.70 

Since S (<0.5, 0.1, 0.6, -0.3, -0.8, -0.7>) <  S (<0.36, 0.24, 0.2, -0.02, -0.58, -0.76>)

Edges  Bipolar Neutrosophic distance 
1-2 <0.2, 0.4, 0.5, -0.2, -0.4, -0.6> 

1-3 <0.5, 0.1, 0.6, -0.3, -0.8, -0.7> 

2-3 <0.2, 0.6, 0.4, -0.1, -0.3, -0.4> 

2-5 <0.3, 0.5, 0.4, -0.6, -0.2, -0.3> 

3-4 <0.6, 0.2, 0.1, -0.4, -0.5, -0.2> 

3-5 <0.7, 0.3, 0.6, -0.3, -0.6, -0.5> 

4-6 <0.8, 0.5, 0.3, -0.5, -0.3, -0.6> 

5-6 <0.3, 0.3, 0.2, -0.2, -0.5, -0.4> 

<0.5,0.1, 0.6,-0.3,-0.8,-0.7> 

<0.2, 0.6, 0.4,-0.1,-0.3-0.4> 

<0.2,0.4,0.5,-0.2,-0.4,-0.6>
<0.7, 0.3,0.6,-0.3,-0.6,-0.5> 

<0.3, 0.5,0.4,-0.6,-0.2,-0.3> 

<0.3, 0.3, 0.2, -0.2,-0.5,-0.4 > 

<0.8, 0.5,0.3,-0.5,-0.3,-0.6>

<0.6,0.2, 0.1, -0.4,-0.5,-0.2> 

1 

3 4 

6 

2 

5 
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So minimum{<0.5, 0.1, 0.6, -0.3, -0.8, -0.7>, <0.36, 0.24, 0.2, -0.02, -0.58, -0.76>}=<0.5, 0.1, 0.6,  
-0.3, -0.8, -0.7>
Since minimum occurs corresponding to i=1, so label node 3 as [<0.5, 0.1, 0.6, -0.3, -0.8, -0.7>, 1]
Iteration 3. The predecessor node of node 4 is node 3, so putting i= 3 and j= 4 in step 2 of the
proposed algorithm, the value of 4d  is 4d =minimum{ 3 34d d⊕ }=minimum<0.5, 0.1, 0.6, -0.3, -0.8,
-0.7> ⊕  <0.6, 0.2, 0.1, -0.4, -0.5, -0.2>}= <0.8, 0.02, 0.06, -0.12, -0.9, -0.76>

So minimum<0.5, 0.1, 0.6, -0.3, -0.8, -0.7> ⊕  <0.6, 0.2, 0.1, -0.4, -0.5, -0.2>}= <0.8, 0.02, 0.06,
-0.12, -0.9, -0.76>

Since minimum occurs corresponding to i=3, so label node 4 as [<0.8, 0.02, 0.06, -0.12, -0.9,
-0.76>,3]
Iteration 4. The predecessor node of node 5 are node 2 and node 3, so putting i= 2, 3and j= 5 in
step 2 of the proposed algorithm, the value of 5d

 is 5d =minimum{ 2 25 3 35,d d d d⊕ ⊕ }= 
minimum{<0.2, 0.4, 0.5, -0.2, -0.4, -0.6> ⊕  <0.3, 0.5, 0.4, -0.6, -0.2, -0.3> , <0.5, 0.1, 0.6, -0.3,
-0.8, -0.7> ⊕  <0.7, 0.3, 0.6, -0.3, -0.6, -0.5>}=
Minimum{<0.44, 0.2, 0.2, -0.12, -0.52, -0.76>, <0.85, 0.03, 0.36, -0.09, -0.92, -0.85>}
S (<0.44, 0.2, 0.2, -0.12, -0.52, -0.76>) =0.69
S (<0.85, 0.03, 0.36, -0.09, -0.92, -0.85>) =0.85
Since S (<0.44, 0.2, 0.2, -0.12, -0.52, -0.76>) <  S (<0.85, 0.03, 0.36, -0.09, -0.92, -0.85>)
Minimum{<0.44, 0.2, 0.2, -0.12, -0.52, -0.76>, <0.85, 0.03, 0.36, -0.09, -0.92, -0.85>}
= <0.44, 0.2, 0.2, -0.12, -0.52, -0.76>

5d = <0.44, 0.2, 0.2, -0.12, -0.52, -0.76>
Since minimum occurs corresponding to i=2, so label node 5 as [<0.44, 0.2, 0.2, -0.12, -0.52,
-0.76>,  2]
Iteration 5 The predecessor node of node 6 are node 4 and node 5, so putting i= 4, 5and j= 6 in step
2 of the proposed algorithm, the value of 6d  is 6d =minimum{ 4 46 5 56,d d d d⊕ ⊕ }=minimum{ <0.8, 
0.02, 0.06, -0.12, -0.9, -0.76> ⊕  <0.8, 0.5, 0.3, -0.5, -0.3, -0.6>, <0.44, 0.2, 0.2, -0.12, -0.52, -0.76>
⊕ <0.3, 0.3, 0.2, -0.2, -0.5, -0.4> }= minimum{ <0.96, 0.01, 0.018, -0.06, -0.93, -0.904>, <0.60,
0.06, 0.04, -0.024, -0.76, -0.85>}
S (<0.96, 0.01, 0.018, -0.06, -0.93, -0.904>) =0.95 
S (<0.60, 0.06, 0.04, -0.024, -0.76, -0.85> ) =0.85 
Since S (<0.60, 0.06, 0.04, -0.024, -0.76, -0.85>) S (<0.96, 0.01, 0.018, -0.06, -0.93, -0.904>)  
So minimum { <0.96, 0.01, 0.018, -0.06, -0.93, -0.904>,  <0.60, 0.06, 0.04, -0.024, -0.76, -0.85>} 
= <0.60, 0.06, 0.04, -0.024, -0.76, -0.85> 

6d =<0.60, 0.06, 0.04, -0.024, -0.76, -0.85>
Since minimum occurs corresponding to i=5, so label node 6 as [<0.60, 0.06, 0.04, -0.024, -0.76, 
-0.85>, 5]
Since node 6 is the destination node of the given network, so the bipolar neutrosophic shortest 
distance between node 1 and node 6 is <0.60, 0.06, 0.04, -0.024, -0.76, -0.85> 
Now the bipolar neutrosophic shortest path between node 1 and node 6 can be obtained by using the 
following procedure: 
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Since node 6 is labeled by [<0.60, 0.06, 0.04, -0.024, -0.76, -0.85>, 5], which represents that we are 
coming from node 5. Node 5 is labeled by [<0.44, 0.2, 0.2, -0.12, -0.52, -0.76>, 2], which represents 
that we are coming from node 2.  Node 2 is labeled by [<0.2, 0.4, 0.5, -0.2, -0.4, -0.6>,1]which 
represents that we are coming from node 1. Now the bipolar shortest path between node 1 and node 
6 is obtaining by joining all the obtained nodes. Hence the bipolar neutrosophic shortest path is 
1 2 5 6→ → →

The bipolar neutrosophic shortest distance and the neutrosophic shortest path of all nodes from node 
1 is shown in the table 2 and the labeling of each node is shown in figure 4 

Table 2. Tabular representation of different bipolar neutrosophic shortest path 
Node 
No.(j) 

id Bipolar neutrosophic shortest 
path between jth and 1st node 

2 <0.2, 0.4, 0.5, -0.2, -0.4, -0.6> 1 2→  

3 <0.5, 0.1, 0.6, -0.3, -0.8, -0.7> 1 3→  

4 <0.8, 0.02, 0.06, -0.12, -0.9, -0.76> 1 3 4→ →  

5 <0.44, 0.2, 0.2, -0.12, -0.52, -0.76> 1 2 5→ →  

6 <0.60, 0.06, 0.04, -0.024, -0.76, -0.85> 1 2 5 6→ → →

 

Fig. 2. Network with bipolar neutrosophic shortest distance of each node from node 1 

Conclusion 

In this paper we developed an algorithm for solving shortest path problem on a network with 
bipolar neutrosophic arc lengths. The process of ranking the path is very useful to make decisions in 
choosing the best of all possible path alternatives. We have explained the method by an example 
with the help of a hypothetical data. Further, we plan to extend the following algorithm of bipolar 
neutrosophic shortest path problem in an interval valued bipolar fuzzy neutrosophic environment. 

[<0.44, 0.2, 0.2, -0.12, -0.52, -0.76>, 2] 

[<0.2, 0.4, 0.5, -0.2, -0.4, -0.6>,1] 

[<0, 1, 1, -1, 0, 0>,-] 

[<0.60, 0.06, 0.04, -0.024, -0.76, -0.85>, 5] 

<0.5, 0.1, 0.6, -0.3,-0.8,-0.7 > 

<0.2, 0.6, 0.4, -0.1,-0.3-0.4 > 

<0.2, 0.4, 0.5, -0.2,-0.4,-0.6 > 
<0.7, 0.3, 0.6, -0.3,-0.6,-0.5 > 

<0.3, 0.5, 0.4, -0.6,-0.2,-0.3 > 

<0.3, 0.3, 0.2, -0.2,-0.5,-0.4 > 

<0.8, 0.5, 0.3, -0.5,-0.3,-0.6 > 

<0.6, 0.2, 0.1, -0.4,-0.5,-0.2 > 

1 

3 4 

6 

2 

5 

[<0.8, 0.02, 0.06, -0.12, -0.9, -0.76>,3] [<0.8, 0.02, 0.06, -0.12, -0.9, -0.76>,3] 
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Abstract. Double Refined Indeterminacy Neutrosophic Set (DRINS) is an inclusive case of the refined 
neutrosophic set, defined by Smarandache [1], which provides the additional possibility to represent 
with sensitivity and accuracy the uncertain, imprecise, incomplete, and inconsistent information which 
are available in real world. More precision is provided in handling indeterminacy; by classifying in-
determinacy (I) into two, based on membership; as indeterminacy leaning towards truth membership 
(IT ) and indeterminacy leaning towards false membership (IF ). This kind of classification of indeter-
minacy is not feasible with the existing Single Valued Neutrosophic Set (SVNS), but it is a particular 
case of the refined neutrosophic set (where each T , I , F can be refined into T1, T2, …; I1, I2, …; F1, 
F2, …). DRINS is better equipped at dealing indeterminate and inconsistent information, with more 
accuracy than SVNS, which fuzzy sets and Intuitionistic Fuzzy Sets (IFS) are incapable of. Based on 
the cross entropy of neutrosophic sets, the cross entropy of DRINSs, known as double refined Inde-
terminacy neutrosophic cross entropy, is proposed in this paper. This proposed cross entropy is used 
for a multicriteria decision-making problem, where the criteria values for alternatives are considered 
under a DRINS environment. Similarly, an indeterminacy based cross entropy using DRINS is also 
proposed. The double refined Indeterminacy neutrosophic weighted cross entropy and indeterminacy 
based cross entropy between the ideal alternative and an alternative is obtained and utilized to rank the 
alternatives corresponding to the cross entropy values. The most desirable one(s) in decision making 
process is selected. An illustrative example is provided to demonstrate the application of the proposed 
method. A brief comparison of the proposed method with the existing methods is carried out.

Introduction

Fuzzy set theory introduced by Zadeh (1965) [2] provides a constructive analytic tool for soft division 
of sets. Zadeh’s fuzzy set theory [2] was extended to intuitionistic fuzzy set (A-IFS), in which each 
element is assigned a membership degree and a non-membership degree by Atanassov (1986) [3]. 
A-IFS is more suitable in dealing with data that has fuzziness and uncertainty than fuzzy set. A-IFS
was further generalized into the notion of interval valued intuitionistic fuzzy set (IVIFS) by Atanassov
and Gargov (1989) [4].

Entropy is an essential concept for measuring uncertain information. Zadeh introduced the concept 
of fuzzy entropy [5]. The beginning for the cross entropy approach was founded in information theory 
by Shannon [6]. A measure of the cross entropy distance between two probability distributions was 
put forward by Kullback-Leibler [7], later a modified cross entropy measure was proposed by Lin [8]. 
A fuzzy cross entropy measure and a symmetric discrimination information measure between fuzzy 
sets was proposed by Shang and Jiang [9]. Since intuitionistic fuzzy set is a generalization of a fuzzy 
set, an extension of the De-Luca-Termini non probabilistic entropy [10] known as intuitionistic fuzzy 
cross-entropy was proposed by Vlachos and Sergiadis [11] and it was applied to pattern recognition, 
image segmentation and also to medical diagnosis. Vague cross-entropy between Vague Sets (VSs) by

Multicriteria Decision Making Using Double Refined Indeterminacy 

Neutrosophic Cross Entropy and Indeterminacy Based Cross 

Entropy 

Ilanthenral Kandasamy, Florentin Smarandache 

Ilanthenral Kandasamy, Florentin Smarandache (2016). Multicriteria Decision Making Using Double 
Refined Indeterminacy Neutrosophic Cross Entropy and Indeterminacy Based Cross Entropy. Applied 
Mechanics and Materials 859: 129-143; DOI: 10.4028/www.scientific.net/AMM.859.129 
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equivalence with the cross entropy of probability distributions was defined by Zhang and Jiang [12]
and its application to the pattern recognition and medical diagnosis was carried out.

The fault diagnosis problem of turbine using the cross entropy of Vague Sets was investigated by Ye
[13]. Intuitionistic fuzzy cross entropy was applied to multicriteria fuzzy decision-making problems
by Ye [14]. An interval-valued intuitionistic fuzzy cross-entropy based on the generalization of the
vague cross-entropy was proposed and applied to multicriteria decision-making problems by Ye [15].

To represent uncertain, imprecise, incomplete, and inconsistent information that are present in real
world, the concept of a neutrosophic set from philosophical point of view was proposed by Smaran-
dache [16]. The neutrosophic set is a prevailing framework that generalizes the concept of the classic
set, fuzzy set, intuitionistic fuzzy set, interval valued fuzzy set, interval valued intuitionistic fuzzy set,
paraconsistent set, paradoxist set, and tautological set. Truth membership, indeterminacy member-
ship, and falsity membership are represented independently in the neutrosophic set. However, the
neutrosophic set generalizes the above mentioned sets from the philosophical point of view, and
its functions TA(x), IA(x), and FA(x) are real standard or nonstandard subsets of ]−0, 1+[, that is,
TA(x) : X →]−0, 1+[, IA(x) : X →]−0, 1+[, and FA(x) : X →]−0, 1+[, respectively with the
condition −0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

It is difficult to apply neutrosophic set in this form in real scientific and engineering areas. To over-
come this difficulty, Wang et al. [17] introduced a Single Valued Neutrosophic Set (SVNS), which
is an instance of a neutrosophic set. SVNS can deal with indeterminate and inconsistent information,
which fuzzy sets and intuitionistic fuzzy sets are incapable of. Ye [18, 19, 20] presented the correlation
coefficient of SVNSs and its cross-entropy measure and applied them to single-valued neutrosophic
decision-making problems. Recently, Ye [21] had proposed a Single Valued Neutrosophic cross en-
tropy to do decision making in multicriteria decision making problems with the data represented by
SVNSs.

Owing to the fuzziness, uncertainty and indeterminate nature of many practical problems in the real
world, neutrosophy has found application in many fields including Social Network Analysis (Salama
et al [22]), Image Processing (Cheng and Guo[23], Sengur and Guo[24], Zhang et al [25]), Social
problems (Vasantha and Smarandache [26], [27]) etc.

To provide more accuracy and precision to indeterminacy, the indeterminacy value present in the
neutrosophic set has been classified into two; based on membership; as indeterminacy leaning towards
truth membership and as indeterminacy leaning towards false membership. When the indeterminacy
I can be identified as indeterminacy which is more of truth value than false value, but it cannot be
classified as truth it is considered to be indeterminacy leaning towards truth (IT ). When the indeter-
minacy can be identified to be indeterminacy which is more of the false value than the truth value,
but it cannot be classified as false it is considered to be indeterminacy leaning towards false (IF ).
Indeterminacy leaning towards truth and indeterminacy leaning towards falsity makes the indetermi-
nacy involved in the scenario to be more accurate and precise. This modified refined neutrosophic
set was defined as Double Refined Indeterminacy Neutrosophic Set (DRINS) alias double refined
Indeterminacy Neutrosophic Set (DVNS) by Kandasamy [28].

To provide a illustration of real world problem where DRINS can be used to represent the problem;
the following scenarios are given: Consider the scenario where the expert’s opinion is requested about
a particular statement, he/she may state that the possibility in which the statement is true is 0.6 and
the statement is false is 0.5, the degree in which he/she is not sure but thinks it is true is 0.2 and the
degree in which he/she is not sure but thinks it is false is 0.1. Using a double refined Indeterminacy
neutrosophic notation or double refined Indeterminacy neutrosophic representation it can be expressed
as x(0.6, 0.2, 0.1, 0.5).

Assume another example, suppose there are 10 voters during a voting process. Two people vote
yes, two people vote no, three people are for yes but still undecided and two people are favouring
towards a no but still undecided. Using a double refined Indeterminacy neutrosophic notation, it can
be expressed as x(0.2, 0.3, 0.3, 0.2). However, these expressions are beyond the scope of representation
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using the existing SVNS. Therefore, the notion of a Double Refined Indeterminacy neutrosophic set
is more general and it overcomes the aforementioned issues.

This paper is organised into seven sections: Section one is introductory in nature. The basic con-
cepts related to the paper is given in section two. Section three of the paper introduces and defines
the cross entropy of Double Refined Indeterminacy Neutrosophic Set (DRINS). Section four deals
with the solving multi criteria decision making problems using the cross entropy of DRINS under a
DRINS based environment. Illustrative examples are provided to demonstrate the proposed approach
in section five. Section six provides a brief comparison of the proposed approach with the existing
approach. Conclusions and future direction of work is given in the last section.

Preliminaries / Basic Concepts

Neutrosophy and Single Valued Neutrosophic Set (SVNS). Neutrosophy is a branch of philosophy,
introduced by Smarandache [16], which studies the origin, nature, and scope of neutralities, as well as
their interactions with different ideational spectra. It considers a proposition, concept, theory, event,
or entity, “A” in relation to its opposite, “Anti-A” and that which is not A, “Non-A”, and that which
is neither “A” nor “Anti-A”, denoted by “Neut-A”. Neutrosophy is the basis of neutrosophic logic,
neutrosophic probability, neutrosophic set, and neutrosophic statistics.

The concept of a neutrosophic set from philosophical point of view, introduced by Smarandache
[16], is as follows.

Definition 1. [16] Let X be a space of points (objects), with a generic element in X denoted by x.
A neutrosophic set A in X is characterized by a truth membership function TA(x), an indeterminacy
membership function IA(x), and a falsity membership function FA(x). The functions TA(x), IA(x),
and FA(x) are real standard or nonstandard subsets of ]−0, 1+[, that is, TA(x) : X →]−0, 1+[, IA(x) :
X →]−0, 1+[, andFA(x) : X →]−0, 1+[,with the condition −0 ≤ supTA(x)+supIA(x)+supFA(x) ≤
3+.

This definition of neutrosophic set is difficult to apply in real world application of scientific and
engineering fields. Therefore, the concept of Single Valued Neutrosophic Set (SVNS), which is an
instance of a neutrosophic set was introduced by Wang et al. [17].

Definition 2. [17] Let X be a space of points (objects) with generic elements in X denoted by x. An
Single Valued Neutrosophic Set (SVNS) A in X is characterized by truth membership function TA(x),
indeterminacy membership function IA(x), and falsity membership function FA(x). For each point x
in X , there are TA(x), IA(x), FA(x) ∈ [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. Therefore, an
SVNS A can be represented by A = {⟨x, TA(x), IA(x), FA(x)⟩ | x ∈ X}. The following expressions
are defined in [17] for SVNSs A,B:

• A ∈ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x) for any x in X .

• A = B if and only if A ⊆ B and B ⊆ A.

• Ac = {⟨x, FA(x), 1− IA(x), TA(x)⟩|x ∈ X}.

The refined neutrosophic logic defined by [1] is as follows:

Definition 3. T can be split into many types of truths: T1, T2, . . . , Tp, and I into many types of inde-
terminacies: I1, I2, . . . , Ir, and F into many types of falsities: F1, F2, . . . , Fs, where all p, r, s ≥ 1
are integers, and p + r + s = n. In the same way, but all subcomponents Tj, Ik, Fl are not symbols,
but subsets of [0, 1], for all j ∈ {1, 2, . . . , p} all k ∈ {1, 2, . . . , r} and all l ∈ {1, 2, . . . , s}. If all
sources of information that separately provide neutrosophic values for a specific subcomponent are
independent sources, then in the general case we consider that each of the subcomponents Tj, Ik, Fl is
independent with respect to the others and it is in the non-standard set ]−0, 1+[.

Florentin Smarandache (author and editor) Collected Papers, VIII

189



Cross Entropy of SVNSs and Multicriteria Decision Making.
The concepts of cross-entropy and symmetric discrimination information measures between two

fuzzy sets proposed by Shang and Jiang [9] and between two SVNSs was proposed by Ye [20].

Definition 4. Assume that A = (A(x1), A(x2), . . . , A(xn)) and B = (B(x1), B(x2), . . . , B(xn)) are
two fuzzy sets in the universe of discourse X = x1, x2, . . . , xn. The fuzzy cross entropy of A from B
is defined as follows:

H(A,B) =
n∑

i=1

{
A(xi)log2

A(xi)
1
2
(A(xi) +B(xi))

+ (1− A(xi))log2
(1− A(xi))

1− 1
2
(A(xi) +B(xi))

}
(1)

which indicates the degree of discrimination of A from B.

Shang and Jiang [9] proposed a symmetric discrimination information measure
I(A,B) = H(A,B)+H(B,A) since H(A,B) is not symmetric with respect to its arguments. More-
over, there are I(A,B) ≥ 0 and I(A,B) = 0 if and only if A = B. The cross entropy and symmetric
discrimination information measures between two fuzzy sets was extended to SVNSs by Ye [20].

Let A and B be two SVNSs in a universe of discourse X = {xl, x2, . . . , xn}, which are denoted
by A = {⟨xi, TA(xi), IA(xi), FA(xi)⟩ | xi ∈ X} and B = {⟨xi, TB(xi), IB(xi), FB(xi)⟩ | xi ∈ X},
where TA(xi), IA(xi), FA(xi), TB(xi), IB(xi), FB(xi) ∈ [0, 1] for every xi ∈ X .

The information carried by the truth, indeterminacy and falsity memberships in SVNSs, A and B
is considered as fuzzy spaces with three elements. Based on Equation 1, the amount of information
for discrimination of TA(xi) from TB(xi) (i = 1, 2, . . . , n) is given as

ET (A,B;xi) = TA(xi)log2
TA(xi)

TB(xi)
+ (1− TA(xi))log2

1− TA(xi)

1− 1
2
(TA(xi) + TB(xi))

.

The expected information based on the single membership for discrimination of A against B is

ET (A,B) =
n∑

i=1

{
TA(xi)log2

TA(xi)

TB(xi)
+ (1− TA(xi))log2

1− TA(xi)

1− 1
2
(TA(xi) + TB(xi))

}
.

Similarly, the indeterminacy and the falsity membership function, have the following amounts of in-
formation:

EI(A,B) =
n∑

i=1

{
IA(xi)log2

IA(xi)

IB(xi)
+ (1− IA(xi))log2

1− IA(xi)

1− 1
2
(IA(xi) + IB(xi))

}

EF (A,B) =
n∑

i=1

{
FA(xi)log2

FA(xi)

FB(xi)
+ (1− FA(xi))log2

1− FA(xi)

1− 1
2
(FA(xi) + FB(xi))

}
.

The single valued neutrosophic cross entropy measure between A and B is obtained as the sum of
the three measures:

E(A,B) = ET (A,B) + EI(A,B) + EF (A,B)

E(A,B) also indicates discrimination degree of A from B.
According to Shannon’s inequality [6], it is seen that E(A,B) ≥ 0, and E(A,B) = 0 if and only

if TA(xi) = TB(xi), IA(xi) = IB(xi), and FA(xi) = FB(xi) for any xi ∈ X . Moreover, it is seen
that E(Ac, Bc) = E(A,B), where Ac and Bc are the complement of SVNSs of A and B, respec-
tively. Then, E(A,B) is not symmetric, i.e., E(B,A) ̸= E(A,B), so it is modified to a symmetric
discrimination information measure for SVNSs as

D(A,B) = E(A,B) + E(B,A).
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The larger the difference between A and B is, the larger D(A,B) is. The cross entropy of SVNS was
used to handle the multicriteria decision making problem under single valued neutrosophic environ-
ment by means of the cross entropy measure of SVNSs.

The weighted cross entropy between an alternative Ai and the ideal alternative A∗ is calculated as

D(A∗, Ai) =
n∑

i=1

wj

{
log2

1
1
2
(1 + Tij)

+ log2
1

1 + 1
2
(Iij)

+ log2
1

1 + 1
2
(Fij)

}

+
n∑

i=1

wj

{
Tijlog2

Tij

1
2
(1 + Tij)

+ (1− Tij)log2
1− Tij

1− 1
2
(1 + Tij)

}

+
n∑

i=1

wj

{
Iij + (1− Iij)log2

1− Iij
1− 1

2
(Iij)

}

+
n∑

i=1

wj

{
Fij + (1− Fij)log2

1− Fij

1− 1
2
(Fij)

}
.

Based on the cross entropy value the ranking is carried out. The best alternative is selected based
in the ranking of the cross entropy values.

Double Refined Indeterminacy Neutrosophic Sets (DRINSs) and Their Properties.
Indeterminacy deals with uncertainty that is faced in every sphere of life by everyone. It makes

research/science more realistic and sensitive by introducing the indeterminate aspect of life as a con-
cept. There are times in real world where the indeterminacy I can be identified to be indeterminacy
which has more of truth value than false value, but it cannot be classified as truth. Similarly in some
cases the indeterminacy can be identified to be indeterminacy which has more of false value than truth
value, but it cannot be classified as false. To provide more sensitivity to indeterminacy, this kind of
indeterminacy is classified into two. When the indeterminacy I can be identified as indeterminacy
which is more of truth value than false value, but it cannot be classified as truth, it is considered to be
indeterminacy leaning towards truth (IT ). Whereas in case the indeterminacy can be identified to be
indeterminacy which is more of false value than truth value, but it cannot be classified as false, it is
considered to be indeterminacy leaning towards false (IF ).

Indeterminacy leaning towards truth and indeterminacy leaning towards falsity make the handling
of the indeterminacy involved in the scenario to be more meaningful, logical, accurate and precise. It
provides a better and detailed view of the existing indeterminacy.

The definition of Double Refined Indeterminacy Neutrosophic Set (DRINS) [28] is as follows:

Definition 5. Let X be a space of points (objects) with generic elements in X denoted by x. A Double
Refined Indeterminacy Neutrosophic Set (DRINS) A in X is characterized by truth membership func-
tion TA(x), indeterminacy leaning towards truth membership function ITA(x), indeterminacy leaning
towards falsity membership function IFA(x), and falsity membership functionFA(x). For each generic
element x ∈ X , there are TA(x), ITA(x), IFA(x), FA(x) ∈ [0, 1], and 0 ≤ TA(x)+ITA(x)+IFA(x)+
FA(x) ≤ 4.

Therefore, a DRINS A can be represented by

A = {⟨x, TA(x), ITA(x), IFA(x), FA(x)⟩ | x ∈ X}.

A DRINS A is represented as

A =

∫
X

{⟨T (x), IT (x), IF (x), F (x)⟩/dx, x ∈ X}
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when X is continuous. It is represented as

A =
n∑

i=1

{⟨T (xi), IT (xi), IF (xi), F (xi)⟩ | xi, xi ∈ X}

when X is discrete.
To illustrate the application of DRINS in the real world condsider parameters that are commonly

used to define quality of service of semantic web services like capability, trustworthiness and price
for illustrative purpose. The evaluation of quality of service of semantic web services [29] is used to
illustrate set theoretic operation on Double Refined Indeterminacy Neutrosophic Sets (DRINSs).

Definition 6. The complement of a DRINS A denoted by c(A) is defined as Tc(A)(x) = FA(x),
ITc(A)(x) = 1− ITA(x), IFc(A)(x) = 1− IFA(x) and Fc(A)(x) = TA(x) for all x in X .

Definition 7. A DRINS A is contained in the other DRINS B, that is A ⊆ B, if and only if TA(x) ≤
TB(x), ITA(x) ≤ ITB(x), IFA(x) ≤ IFB(x) and FA(x) ≥ FB(x) ∀x in X .

Note that by the definition of containment relation, X is a partially ordered set and not a totally
ordered set.

Definition 8. Two DRINSs A and B are equal, denoted as A = B, if and only if A ⊆ B and B ⊆ A.

The union of two DRINSs A and B is a DRINS C, denoted as C = A∪B, , the intersection of two
DRINSs A and B is a DRINS C, denoted as C = A∩B, and the difference of two DRINSs A and B
is D, written as D = A \B, was defined in [28]. Three operators called as truth favourite (△), falsity
favourite (▽) and indeterminacy neutral (∇) are defined over DRINSs. Two operators truth favourite
(△) and falsity favourite (▽) are defined to remove the indeterminacy in the DRINSs and transform
it into intuitionistic fuzzy sets or paraconsistent sets. Similarly the DRINS can be transformed into a
SVNS by applying indeterminacy neutral (∇) operator that combines the indeterminacy values of the
DRINS. These three operators are unique on DRINSs.

Definition 9. The truth favourite of a DRINS A, written as B = △A, whose truth membership and
falsity membership functions are related to those of A by TB(x) = min(TA(x)+ITA(x), 1), ITB(x) =
0, IFB(x) = 0 and FB(x) = FA(x) for all x in X .

Definition 10. The falsity favourite of a DRINS A, written as B = ▽A, whose truth membership and
falsity membership functions are related to those of A by TB(x) = TA(x), ITB(x) = 0, IFB(x) = 0
and FB(x) = min(FA(x) + IFA(x), 1) for all x in X .

Definition 11. The indeterminacy neutral of a DRINS A, written as B = ∇A, whose truth mem-
bership, indeterminate membership and falsity membership functions are related to those of A by
TB(x) = TA(x), ITB(x) = min(ITA(x) + ITB(x), 1), IFB(x) = 0 and FB(x) = FA(x) for all x in
X .

All set theoretic operators like commutativity, Associativity, Distributivity, Idempotency, Absorp-
tion and the De Morgan’s Laws were defined over DRINSs [28]. The definition of complement, union
and intersection of DRINSs and DRINSs itself satisfies most properties of the classical set, fuzzy set,
intuitionistic fuzzy set and SNVS. Similar to fuzzy set, intuitionistic fuzzy set and SNVS, it does not
satisfy the principle of middle exclude.
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Cross Entropy of Double Refined Indeterminacy Neutrosophic Sets (DRINSs)

Consider two DRINSs A and B in a universe of discourse X = xl, x2, . . . , xn, which are denoted by
A = {⟨xi, TA(xi), ITA(xi), IFA(xi), FA(xi)⟩ | xi ∈ X}
and B = {⟨xi, TB(xi), ITB(xi), IFB(xi), FB(xi)⟩ | xi ∈ X},
where TA(xi), ITA(xi), IFA(xi), FA(xi), TB(xi), ITB(xi), IFB(xi), FB(xi) ∈ [0, 1] for every xi ∈ X .

The information carried by the truth membership, indeterminacy leaning towards truth member-
ship, indeterminacy leaning towards falsity membership, and the falsity membership in DRINSs A
and B are considered as fuzzy spaces with four elements. Thus based on Equation 1, the amount of
information for discrimination of TA(xi) from TB(xi) (i = 1, 2, . . . , n) can be given by

ET (A,B;xi) = TA(xi)log2
TA(xi)

TB(xi)
+ (1− TA(xi))log2

1− TA(xi)

1− 1
2
(TA(xi) + TB(xi))

Therefore, the expected information based on the single membership for discrimination of A against
B is expressed by

ET (A,B) =
n∑

i=1

{
TA(xi)log2

TA(xi)

TB(xi)
+ + (1− TA(xi))log2

1− TA(xi)

1− 1
2
(TA(xi) + TB(xi))

}
Similarly, considering the indeterminacy leaning towards truth membership function, indetermi-

nacy leaning towards falsity membership function and falsity membership function the following
amounts of information is given:

EIT (A,B) =
n∑

i=1

{
ITA(xi)log2

ITA(xi)

ITB(xi)
+ (1− ITA(xi))log2

1− ITA(xi)

1− 1
2
(ITA(xi) + ITB(xi))

}
,

EIF (A,B) =
n∑

i=1

{
IFA(xi)log2

IFA(xi)

IFB(xi)
+ (1− IFA(xi))log2

1− IFA(xi)

1− 1
2
(IFA(xi) + IFB(xi))

}
,

EF (A,B) =
n∑

i=1

{
FA(xi)log2

FA(xi)

FB(xi)
+ (1− FA(xi))log2

1− FA(xi)

1− 1
2
(FA(xi) + FB(xi))

}
.

The Double Refined Indeterminacy neutrosophic cross entropy measure between A and B is obtained
as the sum of the four measures:

E(A,B) = ET (A,B) + EIT (A,B) + EIF (A,B) + EF (A,B)

E(A,B) also indicates discrimination degree of A from B. According to Shannon’s inequality [5], it
can be easily proved that E(A,B) ≥ 0, and E(A,B) = 0 if and only if TA(xi) = TB(xi), ITA(xi) =
ITB(xi), IFA(xi) = IFB(xi), and FA(xi) = FB(xi) for any xi ∈ X . It easily seen that E(Ac, Bc) =
E(A,B), where Ac and Bc are the complement of DRINSs A and B, respectively. Since E(A,B) is
not symmetric it is modified to a symmetric discrimination information measure for DRINSs as

D(A,B) = E(A,B) + E(B,A) (2)

The larger D(A,B) is, the larger the difference between A and B is.
A cross entropy measure based only on the indeterminacy involved in the scenario is introduced

in this paper. Indeterminacy based cross entropy is defined as the sum of information of indeter-
minacy leaning towards falsity membership and information of indeterminacy leaning towards truth
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membership. The indeterminacy based cross entropy IE(A,B) is the Double Refined Indeterminacy
neutrosophic cross entropy measure based on indeterminacy between A and B; is obtained as the sum
of the two measures:

IE(A,B) =
n∑

i=1

{
ITA(xi)log2

ITA(xi)

ITB(xi)
+ (1− ITA(xi))log2

1− ITA(xi)

1− 1
2
(ITA(xi) + ITB(xi))

}

+
n∑

i=1

{
IFA(xi)log2

IFA(xi)

IFB(xi)
+ (1− IFA(xi))log2

1− IFA(xi)

1− 1
2
(IFA(xi) + IFB(xi))

}
It indicates the discrimination degree of indeterminacy of A from B. According to Shannon’s

inequality [5], it can be easily proved that IE(A,B) ≥ 0, and IE(A,B) = 0 if and only if TA(xi) =
TB(xi), ITA(xi) = ITB(xi), IFA(xi) = IFB(xi), andFA(xi) = FB(xi) for any xi ∈ X . It is easily seen
that IE(Ac, Bc) = IE(A,B), whereAc andBc are the complement of DRINSsA andB, respectively.
Since IE(A,B) is not symmetric, it is modified to a symmetric discrimination information measure
for DRINSs as

ID(A,B) = IE(A,B) + IE(B,A). (3)

The larger the difference in indeterminacy between A and B is, the larger ID(A,B) is.

Multicriteria Decision Making Method Based on the Cross Entropy of DRINS

In a multicriteria decision making problem all the alternatives are evaluated depending on a number of
criteria or some attributes, and the best alternative is selected from all the possible alternatives. Mostly
multicriteria decision making problem have to be inclusive of uncertain, imprecise, incomplete, and
inconsistent information that are present in real world to make it more realistic. DRINS can be used to
represent this information with accuracy and precision. In this section, by means of utilizing the cross
entropy measure of DRINSs and indeterminacy based cross entropy a method for solving the multi-
criteria decision making problem when considered in a Double Refined Indeterminacy neutrosophic
environment, is proposed.

Let A = {A1, A2, . . . , Am} be a set of feasible alternatives and C = {C1, C2, . . . , Cn} be the
set of criteria under consideration. The weight of the criterion Cj(j = 1, 2, . . . , n), provided by the
decision maker, is wj , wj ∈ [0, 1] and

∑n
i=1

wi = 1. The characteristic of the alternative Ai(i =
1, 2, . . . ,m) is given by DRINS Ai = {⟨Cj, TAi

(Cj), ITAi
(Cj), IFAi

(Cj), FAi
(Cj)⟩ | Cj ∈ C} where

TAi
(Cj), ITAi

(Cj), IFAi
(Cj), FAi

(Cj) ∈ [0, 1], j = 1, 2, . . . , n and i = 1, 2, . . . ,m.
Now, TAi

(Cj) specifies the degree to which the alternative Ai fulfils the criterion Cj , ITAi
(Cj)

specifies the indeterminacy leaning towards truth degree to which the alternative Ai fulfils or does not
fulfil the criterion Cj . Similarly IFAi

(Cj) specifies the indeterminacy leaning towards false degree (or
false leaning indeterminacy) to which the alternative Ai fulfils or does not fulfil the criterion Cj , and
FAi

(Cj) specifies the degree to which the alternative Ai does not fulfil the criterion Cj .
A criterion value is generally obtained from the calculation of an alternative Ai with respect to

a criteria Cj by means of a score law and data processing in practice [12, 17]. It is represented as
⟨Cj, TAi

(Cj), ITAi
(Cj), IFAi

(Cj), FAi
(Cj)⟩ in Ai, is denoted by the symbol aij = ⟨Tij, ITij, IFij, Fij⟩

(j = 1, 2, . . . , n, and i = 1, 2, . . . ,m),
Therefore, a Double Refined Indeterminacy neutrosophic decision matrix A = (aij)m×n is ob-

tained.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn
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=


⟨T11, IT11, IF11, F11⟩ ⟨T12, IT12, IF12, F12⟩ . . . ⟨T1n, IT1n, IF1n, F1n⟩
⟨T21, IT21, IF21, F21⟩ ⟨T22, IT22, IF22, F22⟩ . . . ⟨T2n, IT2n, IF2n, F2n⟩

...
...

...
⟨Tm1, ITm1, IFm1, Fm1⟩ ⟨Tm2, ITm2, IFm2, Fm2⟩ . . . ⟨Tmn, ITmn, IFmn, Fmn⟩

 .

The concept of ideal point is utilized to aid the identification of the best alternative in the decision
set, in multicriteria decision making environments. It is known that an ideal alternative cannot exist
in the real world; but it does serves as a useful theoretical construct against which alternatives can be
evaluated [12].

Therefore an ideal criterion value a∗j = ⟨T ∗
j , I

∗
Tj, I

∗
Fj, F

∗
j ⟩= ⟨1, 0, 0, 0⟩(j = 1, 2, . . . , n) is defined

in the ideal alternative A∗. By applying Equation 2 the weighted cross entropy between an alternative
Ai and ideal alternative A∗ is obtained to be

D(A∗, Ai) =
n∑

j=1

wj

{
log2

1
1
2
(1 + Tij)

+ log2
1

1− 1
2
(ITij)

+log2
1

1− 1
2
(IFij)

+ log2
1

1− 1
2
(Fij)

}
+

n∑
j=1

wj

{
Tijlog2

Tij

1
2
(1 + Tij)

+ (1− Tij)log2
1− Tij

1− 1
2
(1 + Tij)

}

+
n∑

j=1

wj

{
ITij + (1− ITij)log2

1− ITij

1− 1
2
(ITij)

}
+

n∑
j=1

wj

{
IFij + (1− IFij)log2

1− IFij

1− 1
2
(IFij)

}

+
n∑

j=1

wj

{
Fij + (1− Fij)log2

1− Fij

1− 1
2
(Fij)

}
. (4)

The smaller the value of Di(A
∗, Ai) is, the better the alternative Ai is, it implies that the alternative

Ai is close to the ideal alternative A∗. The ranking order of all alternatives is determined and the best
one is identified, through the calculation of the weighted cross entropy Di(A

∗, Ai) (i = 1, 2, . . . ,m)
between each alternative and the ideal alternative.

For calculating the indeterminate based cross entropy measure ITD between alternative A and
the indeterminate ideal alternative A∗

IT
the indeterminate ideal alternative A∗

IT
is defined as an ideal

criterion value
a∗j = ⟨T ∗

j , I
∗
Tj, I

∗
Fj, F

∗
j ⟩ = ⟨0, 1, 0, 0⟩(j = 1, 2, . . . , n).

By applying Equation 3 the weighted indeterminacy based cross entropy between an alternative
Ai and the ideal alternative A∗

IT
is obtained to be

ITD(A∗
IT
, Ai) =

n∑
j=1

wj

{
log2

1
1
2
(1 + ITij)

+ log2
1

1− 1
2
(IFij)

}
+

n∑
j=1

wj

{
ITijlog2

ITij

1
2
(1 + ITij)

+ (1− ITij)log2
1− ITij

1− 1
2
(1 + ITij)

}

+
n∑

j=1

wj

{
IFij + (1− IFij)log2

1− IFij

1− 1
2
(IFij)

}
. (5)

To study the indeterminate ideal alternative A∗
IF

, which based on indeterminacy leaning towards
falsity, it is defined using the ideal criterion value a∗j = ⟨T ∗

j , I
∗
Tj, I

∗
Fj, F

∗
j ⟩ = ⟨0, 0, 1, 0⟩(j = 1, 2, . . . , n).
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Calculating the indeterminate based cross entropy measure IFD between alternative A and the
indeterminate ideal alternative A∗

IF

IFD(A∗
IF , Ai) =

n∑
i=1

wj

{
log2

1
1
2
(1 + IFij)

+ log2
1

1− 1
2
(ITij)

}
+

n∑
i=1

wj

{
IFijlog2

IFij

1
2
(1 + IFij)

+ (1− IFij)log2
1− IFij

1− 1
2
(1 + IFij)

}

+
n∑

i=1

wj

{
ITij + (1− ITij)log2

1− ITij

1− 1
2
(ITij)

}
(6)

The average of ITD(A∗
IT , Ai) and IFD(A∗

IF , Ai) is taken as ID(A∗
I , Ai) .

ID(A∗, Ai) =
ITD(A∗

IT , Ai) + IFD(A∗
IF , Ai)

2
. (7)

The larger the value of ID(A∗, Ai) is, the better the alternative Ai is, it implies that the alternativeAi is
farther to the ideal alternative A∗. The ranking order of all alternatives is determined and the best one
is identified, through the calculation of the indeterminacy based weighted cross entropy ID(A∗, Ai)
(i = 1, 2, . . . ,m) between each alternative and the ideal alternative.

Illustrative Examples

To illustrate the application of the proposed method, the multicriteria decision making problem from
Tan and Chen [30] and Ye[19] is adapted. It is related with a manufacturing company that wants to
select the best global supplier according to the core competencies of suppliers. Suppose that there
are four suppliers A = A1, A2, A3, A4 enlisted; whose core competencies are evaluated based of the
following four criteria (C1, C2, C3, C4):

1. (C1) the level of technology innovation,

2. (C2) the control ability of flow,

3. (C3) the ability of management, and

4. (C4) the level of service.

The weight vector related to the four criteria is w = (0.3, 0.25, 0.25, 0.2).
The proposed multicriteria decision making approach is applied to select the best supplier. From

the questionnaire of a domain expert, the evaluation of an alternative Ai (i = 1, 2, 3, 4) with respect
to a criterion Cj(j = 1, 2, 3, 4), is obtained. For instance, when the opinion of an expert about an
alternative A1 with respect to a criterion C1 is asked, he or she may say that the possibility in which
the statement is true is 0.5, the degree in which he or she feels it true but is not sure is 0.07, the degree
in which he or she feels it is false but is not sure is 0.03 and the possibility the statement is false is 0.3.
It can be expressed as a11 = ⟨0.5, 0.07, 0.03, 0.2⟩, using the neutrosophic expression of DRINS. The
possible alternatives with respect to the given four criteria is evaluated by the similar method from the
expert, the following Double Refined Indeterminacy neutrosophic decision matrix A is obtained.

A =


⟨0.5, 0.07, 0.03, 0.2⟩ ⟨0.5, 0.08, 0.02, 0.4⟩ ⟨0.7, 0.06, 0.04, 0.2⟩ ⟨0.3, 0.4, 0.1, 0.1⟩
⟨0.4, 0.12, 0.08, 0.3⟩ ⟨0.3, 0.04, 0.16, 0.4⟩ ⟨0.9, 0.06, 0.04, 0.1⟩ ⟨0.5, 0.1, 0.1, 0.2⟩
⟨0.4, 0.17, 0.03, 0.1⟩ ⟨0.5, 0.18, 0.02, 0.3⟩ ⟨0.5, 0.06, 0.04, 0.4⟩ ⟨0.6, 0.14, 0.06, 0.1⟩
⟨0.6, 0.07, 0.03, 0.2⟩ ⟨0.2, 0.15, 0.05, 0.5⟩ ⟨0.4, 0.16, 0.04, 0.2⟩ ⟨0.7, 0.11, 0.09, 0.1⟩
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The cross entropy values between an alternative Ai (i = 1, 2, 3, 4) and the ideal alternative A∗ is
obtained by applying Equation 4 is D(A∗, A1) = 1.5054, D(A∗, A2) = 1.1056, D(A∗, A3) = 1.0821
and D(A∗, A4) = 1.1849. The ranking order of the four suppliers according to the cross entropy values
is

D(A∗, A1) ≤ D(A∗, A3) ≤ D(A∗, A2) ≤ D(A∗, A4)

The truth-indeterminacy based cross entropy values between an alternative Ai (i = 1, 2, 3, 4) and the
ideal alternative A∗

IT
is obtained by applying Equation 5, are ITD(A∗, A1) = 1.5054, ITD(A∗, A2)

= 1.6920, ITD(A∗, A3) = 1.4392 and ITD(A∗, A4) = 1.5067. The false-indeterminacy based cross
entropy values between an alternative Ai (i = 1, 2, 3, 4) and the ideal alternative A∗

IF
is obtained

by applying Equation 6, are IFD(A∗, A1) = 1.9000, IFD(A∗, A2) = 1.6348, IFD(A∗, A3) = 1.9256
and IFD(A∗, A4) = 1.8447. The indeterminacy based cross entropy values based on Equation 7are
ID(A∗, A1) = 1.7027, ID(A∗, A2) = 1.6634, ID(A∗, A3) = 1.6824 and ID(A∗, A4) = 1.6757.

The ranking order of the four suppliers according to the cross entropy values is

ID(A∗, A1) ≥ ID(A∗, A3) ≥ ID(A∗, A4) ≥ ID(A∗, A2).

The DRINS cross entropy and indeterminacy based cross entropy results of the different alternatives
and the ideal alternatives are tabulated in Table 1.

Table 1: DRIN Cross Entropy and indeterminacy based Cross Entropy Results
Cross Entropy Value DRIN Cross Entropy Indeterminate based cross entropy

Ai D(A∗, Ai) ID(A∗
I , Ai)

A1 1.0793 1.7027
A2 1.1056 1.6634
A3 1.0821 1.6824
A4 1.1845 1.6757

Result A1 A1

An alternative is considered to be best if it has the least DRIN cross entropy value and the maximum
indeterminate based DRIN cross entropy. Therefore it is seen that A1 is the best supplier.

It is clearly seen that the proposed Double Refined Indeterminacy neutrosophic multicriteria de-
cision making method is more preferable and suitable for real scientific and engineering applications
because it can handle not only incomplete information but also the indeterminate information and
inconsistent information which exist commonly in real situations more logically with much more ac-
curacy and precision that SVNS are incapable of dealing.

Comparison

This paper proposes a technique that extends existing SVNS and fuzzy decision making methods and
provides an improvement in dealing indeterminate and inconsistent information with accuracy which
is new for decision making problems. For comparative purpose, the results of cross entropy of SVNS
[20] and the proposed method are given in Table 2.

From Table 2, it is seen that the results are quite different. The important reason can be obtained
by the following comparative analysis of the methods and their capacity to deal indeterminate, incon-
sistent and incomplete information.

Double Refined Indeterminacy neutrosophic information is a generalization of neutrosophic in-
formation. It is observed that neutrosophic information / single valued neutrosophic information is
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Table 2: Cross Entropy results of different cross entropy between ideal alternative and alternative
Cross Entropy SVN cross Entropy DRIN Cross Entropy Indeterminate based cross entropy

Value Di(A
∗, Ai) D(A∗, Ai) ID(A∗

I , Ai)

A1 1.1101 1.0793 1.7027
A2 1.1801 1.1056 1.6634
A3 0.9962 1.0821 1.6824
A4 1.2406 1.1850 1.6757

Result A3 A1 A1

generalization of intuitionistic fuzzy information, and intuitionistic fuzzy information is itself a gen-
eralization of fuzzy information.

DRINS is an instance of a neutrosophic set, which approaches the problem more logically with
accuracy and precision to represent the existing uncertainty, imprecise, incomplete, and inconsistent
information. It has the additional feature of being able to describe with more sensitivity the inde-
terminate and inconsistent information. While, the SVNS can handle indeterminate information and
inconsistent information, it is cannot describe with accuracy about the existing indeterminacy.

It is known that the connector in fuzzy set is defined with respect to T (membership only) so the
information of indeterminacy and non membership is lost. The connectors in intuitionistic fuzzy set
are defined with respect to truth membership and false membership only; here the indeterminacy is
taken as what is left after the truth and false membership.

The intuitionistic fuzzy set cannot deal with the indeterminate and inconsistent information but
it has provisions to describe and deal with incomplete information. In SVNS, truth, indeterminacy
and falsity membership are represented independently, and they can also be defined with respect to
any of them (no restriction) and the approach is more logical. This makes SVNS equipped to deal
information better than IFS, whereas in DRINS, more scope is given to describe and deal with the
existing indeterminate and inconsistent information because the indeterminacy concept is classified
as two distinct values. This provides more accuracy and precision to indeterminacy in DRINS, than
SVNS.

It is clearly noted that in the case of the SVN cross entropy based multicriteria decision making
method that was proposed in [20], that the indeterminacy concept/ value is not classified into two, but
it is represented as a single valued neutrosophic data leading to a loss of accuracy of the indeterminacy.
SVNS are incapable of giving this amount of logical approach with accuracy or precision about the
indeterminacy concept. Similarly when the intuitionistic fuzzy cross entropy was considered, it was
not possible to deal with the indeterminacy membership function independently as it is dealt in SVN
or DRIN cross entropy based multicriteria decision making method, leading to a loss of information
about the existing indeterminacy. In the fuzzy cross entropy, only the membership degree is considered,
details of non membership and indeterminacy are completely lost. It is clearly observed that the DRINs
representation and the DRIN-cross entropy based multicriteria decision-making method are better
logically equipped to deal with indeterminate, inconsistent and incomplete information.

Conclusions

In this paper a special case of refined neutrosophic set, called as Double Refined Indeterminacy Neu-
trosophic Set (DRINS), with two distinct indeterminate values was utilized in multicriteria decision
making problem. Better logical approach and precision is provided to indeterminacy since the inde-
terminate concept/value is classified into two based on membership: one as indeterminacy leaning
towards truth membership and another as indeterminacy leaning towards false membership. This kind
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of classification of indeterminacy is not feasible with SVNS. DRINS is better equipped at dealing
indeterminate and inconsistent information, with more accuracy than Single Valued Neutrosophic Set
(SVNS), which fuzzy sets and Intuitionistic Fuzzy sets are incapable of.

In this paper the cross entropy of DRINS was defined and it was applied solve the multicriteria
decision making problem, this approach is called as DRIN cross entropy based multicriteria decision-
making method. Through the illustrative computational sample of the DRIN cross entropy based mul-
ticriteria decision-making method and other methods, the results have shown that the DRIN-cross
entropy based multicriteria decision-making method is more general and more reasonable than the
others. Furthermore, in situations that are represented by indeterminate information and inconsistent
information, the DRIN cross entropy based multicriteria decision-making method exhibits its great
superiority in clustering those Double Refined Indeterminacy neutrosophic data because the DRINSs
are a powerful tool to deal with uncertain, imprecise, incomplete, and inconsistent information with
accuracy. In the future, DRINS sets and the DRIN cross entropy based multicriteria decision-making
method can be applied to many areas such as online social networks, information retrieval, investment
decision making, and data mining where fuzzy theory has been used.
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Abstract: The purpose of this study is to propose new similarity
measures namely rough variational coefficient similarity measure 
under the rough neutrosophic environment. The weighted rough 
variational coefficient similarity measure has been also defined. 
The weighted rough variational coefficient similarity measures 
between the rough ideal alternative and each alternative are 
xxxxx

calculated to find the best alternative. The ranking order of all the
alternatives can be determined by using the numerical values of 
similarity measures. Finally, an illustrative example has been 
provided to show the effectiveness and validity of the proposed 
approach. Comparisons of decision results of existing rough 
similarity measures have been provided.  

Keywords: Neutrosophic set, Rough neutrosophic set; Rough variation coefficient similarity measure; Decision making. 

1 Introduction 

In 1965, L. A. Zadeh grounded the concept of degree 
of membership and defined fuzzy set [1] to repre-
sent/manipulate data with non-statistical uncertainty. In 
1986, K. T. Atanassov [2] introduced the degree of non-
membership as independent component and proposed intu-
itionistic fuzzy set (IFS). F. Smarandache introduced the 
degree of indeterminacy as independent component and 
defined the neutrosophic set [3, 4, 5]. For purpose of solv-
ing practical problems, Wang et al. [6] restricted the con-
cept of neutrosophic set to single valued neutrosophic set 
(SVNS), since single value is an instance of set value. 
SVNS is a subclass of the neutrosophic set.  SVNS consists 
of the three independent components namely, truth-
membership, indeterminacy-membership and falsity-
membership functions.  

The concept of rough set theory proposed by Z. Pawlak 
[7] is an extension of the crisp set theory for the study of
intelligent systems characterized by inexact, uncertain or
insufficient information. The hybridization of rough set
theory and neutrosophic set theory produces the rough neu-
trosophic set theory [8, 9], which was proposed by Broumi,
Dhar and Smarandache [8, 9]. Rough neutrosophic set the-
ory is also a powerful mathematical tool to deal with in-
completeness.

Literature review reflects that similarity measures play 
an important role in the analysis and research of clustering 
analysis, decision making, medical diagnosis, pattern 
recognition, etc. Various similarity measures [10, 11, 12, 
13, 14, 15, 16, 17, 18] of SVNSs and hybrid SVNSs are 

available in the literature. The concept of similarity 
measures in rough neutrosophic environment [19, 20, 21] 
has been    recently proposed. 

Pramanik and Mondal [19] proposed cotangent 
similarity measure of rough neutrosophic sets. In the same 
study [19],Pramanik and Mondal established its basic 
properties and provided its application to medical 
diagnosis. Pramanik and Mondal [20] also proposed cosine 
similarity measure of rough neutrosophic sets and its 
application in medical diagnosis. The same authors [21] 
also  studied Jaccard similarity measure and Dice 
similarity measures in rough neutrosophic environment 
and provided their applications to multi attribute decision 
making. Mondal and Pramanik [22] presented tri-complex 
rough neutrosophic similarity measure and its application 
in multi-attribute decision making. Together with F. 
Smarandache and S. Pramnik, K. Mondal [23] presented 
hypercomplex rough neutrosophic similarity measure and 
its application in multi-attribute decision making.  Mondal,
Pramanik, and Smarandache [24] presented several trigo-
nometric Hamming similarity measures of rough neutro-
sophic sets and their applications in multi attribute decision 
making problems.  

Different methods for multiattribute decision making 
(MADM) and multicriteria decision making (MCDM) 
problems  are available in the literature in different 
environment such as crisp environment [25, 26, 27, 28, 29], 
fuzzy environment [30, 31], intuitionistic fuzzy 
environment [32, 33, 34, 35, 36, 37, 38, 39, 40], 
neutrosophic environment [41, 42, 43, 44, 45, 46, 47, 48, 

Multi-attribute Decision Making based on Rough Neutrosophic 
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Kalyan Mondal, Surapati Pramanik, Florentin Smarandache 
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49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], 
interval neutrosophic environment [63, 65, 66, 67, 68], 
neutrosophic soft expert environment [69], neutrosophic 
bipolar environment [70, 71], neutrosophic soft 
environment [72, 73, 74, 75, 76], neutrosophic hesitant 
fuzzy environment [77, 78, 79], rough neutrolsophic
environment [80, 81], etc. In neutrosophic environment 
Biswas, Pramanik and Giri [82] studied hybrid vector 
similarity measure and its application in multi-attribute 
decision making. Getting motivation from the work of 
Biswas, Pramanik and Giri [82], for hybrid vector 
similarity measure in neutrosophic envionment, we extend 
the concept in rough neutrosophic environment.  

In this paper, a new similarity measurement is 
proposed, namely rough variational coefficient similarity
measure under rough neutrosophic environment. A 
numerical example is also provided. 

Rest of the paper is structured as follows. Section 2 
presents neutrosophic and rough neutrosophic preli-
minaries. Section 3 discusses  various similarity measures 
and varional coefficient similarity measure in crisp envi-
ronment. Section 4 presents various similarity measures 
and variational similarity measure for single valued 
neutrosophic sets. Section 5 presents variational coefficient 
similarity measure and weighted variational coefficient 
similarity measure for rough neutrosophic sets and 
establishes their  basic properties.  Section 6   is devoted to 
present multi attribute decision making based on rough 
neutrosophic variational coefficient similarity measure. 
Section 7 demonstrates the application of rough variational 
coefficient similarity measures to investment problem 
Finally, section 8 concludes the paper with stating the 
future scope of research. 

2 Neutrosophic preliminaries 
Definition 2.1 [3, 4, 5] Neutrosophic set 

Let X be a space of points (objects) with generic 
element in X denoted by x. Then a neutrosophic set A in X 
is denoted by   XxxFxIxTxA AAA  :)(),(),(  where, 

)(xTA is the truth membership function, )(xI A is the 
indeterminacy membership function and )(xFA is the 
falsity membership function. The 
functions )(xTA , )(xI A and )(xFA  are real standard or non-

standard subsets of ]  1,0 [ . There is no restriction on the 
sum of )(xTA , )(xI A  and )(xFA  

i.e.   3)()()(0 xFxIxT AAA . 
Definition 2.2 [6] (Single-valued neutrosophic set). 

Let X be a universal space of points (objects), with a 
generic element xX. A single-valued neutrosophic set 
(SVNS)  N X is denoted by 

XxxxFxIxTN
x

NNN ∈∀,/∫ )(),(),( , when X is continuous; 

XxxxFxIxTN m
i NNN   ,/)(),(),(1 ,      when X is discrete. 

SVNS is characterized by a true membership 
function )(xT N , a falsity membership function )(xFN  and 
an indeterminacy function )(xI N ith )(xT N , )(xFN , )(xI N    
[0, 1] for all xX.  For each Xx , of a SVNS N

3≤)()()(≤0 xFxIxT NNN  .        

2.1 Some operational rules and properties of SVNSs 

Let FITN AAAA ,,  and FITN BBBB ,,  be two SVNSs 
in X. Then the following operations are defined as follows: 
I.  Complement: TI-FN AAAcA ,1, Xx . 
II. Addition: FFIITTTTNN BABABABABA ,,

III. Multiplication:
FFFFIIIITTNN BABABABABABA -,-, 

IV. Scalar Multiplication:
FITN AAAA


 ,,)1(1 .0for 

V. 
 )1(1,)1(1,)( FITN AAAA .0for 

Definition 2.3 [6] 
  Complement of a SVNS N is denoted by Nc

 and is 
defined by  

)()( xFxT NcN  ; )(1)( xIxI NcN  ; )()( xTxF NcN 

Definition 2.4 [6]
      A SVNS NA is contained in the other SVNS NB, 
denoted as NN BA , if and only if 

)()( xTxT BNAN  ; )()( xIxI BNAN  ; )()( xFxF BNAN  Xx

Definition 2.5 [6] 
      Two SVNSs NA and NB are equal, i.e. NA= NB, if and 
only if NN BA  and NN BA  
Definition 2.6 [6] 
 Union of two SVNSs NA and NB is a SVNS NC, written 
as NNN BAC  . Its truth membership, indeterminacy-
membership and falsity membership functions are related 
to those of NA and NB by 

 )(),(max)( xTxTxT BNANCN  ;  )(),(min)( xIxIxI BNANCN  ; 
 )(),(min)( xFxFxF BNANCN  for all x in X. 

Definition 2.7 [6] Intersection of two SVNSs NA and NB is 
a SVNS ND, written as NNN BAD  , whose truth 
membership, indeterminacy-membership and falsity
membership functions are related to those of NA and NB by 

 )(),(min)( xTxTxT BNANCN  ;  )(),(max)( xIxIxI BNANCN  ;
 )(),(max)( xFxFxF BNANCN  for all x in X. 

Definition 2.8 Rough Neutrosophic Sets [8, 9]

Let Z be a non-null set and R be an equivalence 
relation on Z. Let P be neutrosophic set in Z with the 
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membership function TP indeterminacy function IP and 
non-membership function FP. The lower and the upper 
approximations of P in the approximation (Z, R) denoted 
by )(PN and )(PN   are respectively defined as follows:

,,][/)(),(),(,)( )()()( ZxxzxFxIxTxPN RPNPNPN 

,,][/)(),(),(,)( )()()( ZxxzxFxIxTxPN RPNPNPN 

   Here, ),(][)()( zTxxT PRzPN  ),(][)()( zIxxI PRzPN   
),(][)()( zFxxF PRzPN  ),(][)()( zTxxT PRzPN   

),(][)()( zxx II PRzPN  )(][)()( zFxxF PRzPN 

So, 0 )(sup )( xT PN )(sup )( xI PN )(sup )( xF PN 3

0 )(sup )( xT PN )(sup )( xI PN )(sup )( xF PN 3
Here  and  denote “max” and “min’’ operators 

respectively. TP(z), IP(z) and FP(z) denote  respectively the 
membership, indeterminacy and non-membership function 
of z with respect to P. It is easy to see 
that )(PN and )(PN are two neutrosophic sets in Z. 

Thus NS mappings ,N N : N(Z)   N(Z) are, 
respectively, referred to as the lower  and  the upper  rough 
NS  approximation  operators,  and the pair ))(),(( PNPN  is 
called the rough neutrosophic set [8, 9] in (Z, R). 

From the above definition, it is seen 
that )(PN and )(PN  have constant membership on the 
equivalence classes of R. if )(PN = )(PN  i.e.

)()( xT PN ,)()( xT PN )()( xI PN )()( xI PN and 
)()( xF PN .),()( ZxxF PN 

P is said to be a definable neutrosophic set in the 
approximation (Z, R). It can be easily proved that zero 
neutrosophic set (0N = (0, 1, 1)) and unit neutrosophic sets 
(1N = (1, 0, 0)) are definable neutrosophic sets. 

Definition 2.9 [8, 9] 
 If ))(),(()( PNPNPN  is a rough neutrosophic set in 

(Z, R) , the rough complement [8, 9] of N(P) is the rough 
neutrosophic set denoted by ))(,)(()(~ cc PNPNPN   
where ,)( cPN cPN )( are  the  complements of neutrosophic 
sets of ),(PN )(PN respectively.

ZxxTxIxFxPN PNPNPN
c  /)(),(1),(,)( )()()( and 

ZxxTxIxFxPN PNPNPN
c  /)(),(1),(,)( )()()(

Definition 2.10 [8, 9] 
 If N(P1) and N(P2)  are  the two  rough neutrosophic  

sets  of  the  neutrosophic  set P respectively in Z, then the 
following definitions [8, 9] hold: 

)()()()()()( 212121 PNPNPNPNPNPN 

)()()()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN 

 )()(),()()()( 212121 PNPNPNPNPNPN

 )().(),().()(.)( 212121 PNPNPNPNPNPN
If N, M, L are the rough neutrosophic sets in (Z, R), 

then the following proposition are stated from definitions 
[8, 9]. 
Proposition 1 [8, 9] 

NN )(~~.1
NMMNNMMN   ,.2

)()(
,)()(.3

NMLNML
NMLNML









)()()(
,)()()(.4

NLMLNML
NLMLNML









Proposition 2 [8, 9] 
De Morgan‘s Laws are satisfied for rough neutrosophic 

sets . 
))((~))(((~))()((~.1 2121 PNPNPNPN  

))((~)(((~))()((~.2 2121 PNPNPNPN  

Proposition 3 [8, 9]
If P1 and P2 are two neutrosophic sets in U such that 

thenPP 21 )()( 21 PNPN 

)()()(.1 2121 PNPNPPN  

)()()(.2 2121 PNPNPPN  

Proposition 4 [8, 9] 
)(~~)(.1 PNPN 

)(~~)(.2 PNPN 

)()(.3 PNPN 

3 Similarity measures and variational coefficient simi-
larity measure in crisp environment 

      The vector similarity measure is one of the important 
tools for the degree of similarity between objects. However, 
the Jaccard, Dice, and cosine similarity measures are often 
used for this purpose. Jaccard [83] , Dice [84] , and cosine 
[85] similarity measures between two vectors are stated
below.
Let X = (x1, x2, …, xn) and Y = (y1, y2, …, yn)  be two n-
dimensional vectors with positive co-ordinates.

Definition 3.1 [83] 
  Jeccard index of two vectors (measuring the 

“similarity” of these vectors) can be defined as follows:   

J(X, Y) = 
YXYX

YX
.-

.
22

=
  



  



n
i

n
i

n
i iiii

n
i ii

yxyx
yx

1 1 1
22

1

-
  (1) 

where 2X =  
n
i ix1

2 and 2Y =  
n
i iy1

2 are the Euclidean

norm of X and Y, X.Y = 
n
i ii yx1 is the inner product of the

vector X and Y.  
Proposition 5 [83] 

  Jaccard index satisfies the following properties: 
1. 0 ≤  J(X, Y) ≤ 1
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2. J(X, Y) = J(Y, X)
3. J(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for every
xi ∈  X and yi ∈  Y
Definition 3.2 [84]

The Dice similarity measure can be defined as follows: 

E(X, Y) = 22 +
.2
YX
YX

=
 



 



n
i

n
i ii

n
i ii

yx

yx

1 1
22

12 (2)         
 

Proposition 6 [84] 
      The Dice similarity measure satisfies the following 
properties: 
1. 0 ≤  E(X, Y) ≤ 1
2. E(X, Y) = E(Y, X)
3. J(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for every
xi ∈  X and yi ∈  Y .
Definition 3.3 [85]

The cosine similarity measure between two vectors 
X and Y is the inner product of these two vectors divided 

by the product of their lengths and can be defined as 
follows: 

C(X, Y) = 
YX

YX
.
. =









n
i i

n
i i

n
i ii

yx

yx

1
2

1
2

1      (3)                                   

Proposition 7 [85] 
The cosine similarity measure satisfies the following 

properties 
1. 0 ≤  C(X, Y) ≤ 1
2. C(X, Y) = C(Y, X)
3. C(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for

every xi ∈  X and yi ∈  Y . 
These three formulas are similar in the sense that they 

take values in the interval [0, 1]. Jaccard and Dice 
similarity measures are undefined when xi = 0, and yi = 0 
for i = 1, 2, …, n  and cosine similarity measure is 
undefined when xi = 0 or yi = 0 for i = 1, 2, …, n. 
Definition 3.4 [86]  
      Variational co-efficient similarity measure can be 
defined as follows:  

V(X, Y) = 22 +
.2

λ
YX
YX +  

YX
YX
.
.)-1(                                             
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n
i ii
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yx

1 1
22
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n
i i

n
i i

n
i ii

yx

yx

1
2

1
2

1)1(      (4)                                                         

Proposition 8 [86] 
Variational co-efficient similarity measure satisfies 
the following properties: 
1. 0 ≤  V(X, Y) ≤ 1
2. V(X, Y) = V(Y, X)
3. V(X, Y) = 1, for X = Y i.e, xi = yi (i = 1, 2, …, n) for
every xi ∈  X and yi ∈  Y .

4. Various similarity measures for single valued
neutrosophic sets.

Assume FITN AAAA ,,  and FITN BBBB ,, be two 
SVNSs in a universe of discourse X = (x1, x2,…, xn). 

]1,0[,, FIT AAA  for any Xxi  in NA or ]1,0[,, FIT BBB  for 
any Xxi in NB can be considered as a vector 
representation with three elements. Let ]1,0[iw  be the 
weight of each element xi for i = 1, 2, …, n such 
that 11  

n
i iw  , then Jaccard, Dice and cosine similarity 

measures can be presented as follows:   
Definition 4.1[10] Jaccard similarity measure between 

FITN AAAA ,, and FITN BBBB ,, can be defined as
follows: 
Jac(NA, NB) = 

      
      
















n
i

iBiA

iBiAiBiA

iBiBiB

iAiAiA

iBiA

iBiAiBiA

xFxF
xIxIxTxT
xFxIxT

xFxIxT
xFxF

xIxIxTxT

n 1

222

222

)}()(
)()()()({
)()()(

)()()(
))()(

)()()()((
1

   (5)         

Proposition 9 [10] 
Jaccard similarity measure satiefies the following 
properites:

;1),(0.1  NNJac BA

;),(),(.2 NNJacNNJac ABBA 

;1),(.3 NNJac BA if NA=NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.1.1 [10]  Weighted Jaccard similarity measure 
between FITN AAAA ,,  and FITN BBBB ,, can be 
defined as follows: 

Jacw(NA, NB)= 

      
      

 













n
i

iBiA

iBiAiBiA

iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxF
xIxIxTxT
xFxIxT

xFxIxT
xFxF

xIxIxTxT

w1

222

222

)}()(
)()()()({
)()()(

)()()(
))()(

)()()()((

 (6)

Proposition 10 [10] 
Weighted Jaccard similarity measure satisfies the 

following properties:
;1),(0.1  NN BAwJac

;),(),(.2 NNJacNNJac ABwBAw 

;1),(.3 NNJac BAw if NA = NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.
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Definition 4.2 [11] 
Dice similarity measure between FITN AAAA ,,

and FITN BBBB ,, is defined as: 
Dic(NA, NB) = 
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iBiA

iBiAiBiA

xFxIxT

xFxIxT

xFxF
xIxIxTxT

n 1

222

222
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)()()(

)()(
)()()()(

2
1

       (7)         

Proposition 11 [11] 
Dice similarity measure satisfies the following 

properties:
;1),(0.1  NNDic BA  

),(.2 NNDic BA ;),( NNDic AB

;1),(.3 NNDic BA  if NA=NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.2.1  [11] 
  Weighted Dice similarity measure between 

FITN AAAA ,, and FITN BBBB ,, can be defined as 
follows: 
Dicw(NA, NB) = 

      
      





















n
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iBiBiB

iAiAiA

iBiA

iBiAiBiA

i

xFxIxT

xFxIxT

xFxF
xIxIxTxT

w1

222

222

)()()(

)()()(

)()(
)()()()(

2

 (8)           

Proposition 12 [11] 
Weighted Dice similarity measure

;1),(0.1  NNDic BAw

;),(),(.2 NNDicNNDic ABwBAw 

;1),(.3 NNDic BAw  if NA = NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Definition 4.3 [12] 
  Cosine similarity measure between FITN AAAA ,,

and FITN BBBB ,, can be defined as follows: 

Cos(NA, NB) = 
     

     












n
i

iBiBiB

iAiAiA

iBiA

iBiAiBiA

xFxIxT

xFxIxT

xFxF
xIxIxTxT

n 1

222
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))()(
)()()()((

1
  (9)                                 

Proposition 13 [12] 
  Cosine similarity measure satisfies the following 

properties:

 ;1≤ ),(≤ 0.1 NNCos BAw

),(),(.2 NNCosNNCos ABwBAw 

;1),(.3 NNCos BAw  if NA = NB i.e., ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.
Definition 4.3.1 [12] 

Weighted cosine similarity measure between 
FITN AAAA ,,  and FITN BBBB ,, can be defined as 

follows: 
Cosw(NA, NB)= 
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iBiBiB

iAiAiA
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iBiAiBiA
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xFxF
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  (10)

Proposition 14 [12] 
 Weighted cosine similarity measure satisfies the 

following properties:
;1≤ ),(≤ 0.1 NNCos BAw

),(),(.2 NNCosNNCos ABwBAw 

;1),(.3 NNCos BAw  if NA = NB i.e.,  ),()( xTxT iBiA 

),()( xIxI iBiA  and ),()( xFxF iBiA  for every xi (i = 1, 2, …, 
n) in X.

Jaccard and Dice similarity measures between two 
neutrosophic sets FITN AAAA ,, and FITN BBBB ,,

are undefined when 0)()()(  xFxIxT iAiAiA  and 
0)()()(  xFxIxT iBiBiB for all i = 1, 2, …, n. Similarly 

the cosine formula for two neutrosophic sets 
FITN AAAA ,,  and FITN BBBB ,, is undefined when 

0)()()(  xFxIxT iAiAiA or 0)()()(  xFxIxT iBiBiB for 
all i = 1, 2, …, n.  

5 Variational similarity measures for rough    neu-
trosophic sets 

The notion of rough neutrosophic set (RNS) is used as 
vector representations in 3D-vector space. Assume that X = 
(x1, x2,…, xn) and Y = (y1, y2, …, yn)  be two n-dimensional 
vectors with positive co-ordinates. Jaccard, Dice, cosine 
and cotangent similarity measures between two vectors are 
stated as follows. 
Definition 5.1 [21] Jaccard similarity measure under rough 
neutrosophic environment 

Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = (x1, 

x2,…, xn) be any two rough neutrosophic sets.  Jacard simi-
larity measure [21] between rough neutrosophic sets A and 
B can be defined as follows: 

JacRNS(A, B) = 
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 (11)                  
  

Proposition 15 [21] 
Jaccard similarity measure [21] between A and B 

satisfies the following properties: 
;1),(0.1  BAJacRNS

;),(),(.2 ABJacBAJac RNSRNS 

;1),(.3 BAJacRNS iff A = B
4. If C is a RNS in Y and CBA  then,
JacRNS (A, C)  JacRNS(A, B), and JacRNS (A, C)  JacRNS(B, C)
Definition 5.1.1 [21]

  If we consider the weights of each element xi, weighted 
rough Jaccard similarity measure [21] between rough 
neutrosophic sets A and B can be defined as follows: 
JacWRNS(A, B) =   
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(12)            
                                                    

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 ,

i = 1, 2,…, n, then JacWRNS(A, B) = JacRNS(A,B) 
Proposition 16 [21] 

The weighted rough Jaccard similarity [21] measure 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BAJacWRNS

;),(),(.2 ABJacBAJac WRNSWRNS 

;1),(.3 BAJacWRNS iff A = B
4. If C is a WRNS in Y and CBA  then, JacWRNS(A, C)
 JacWRNS(A, B) , and JacWRNS(A, C)  JacWRNS(B, C)
Definition 5.2 [21] Dice similarity measure under rough
neutrosophic environment

 In this section, Dice similarity measure and the 
weighted Dice similarity measure for rough neutrosophic 
sets have been stated due to Pramanik and Mondal [21]. 

Suppose that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   be any 

two rough neutrosophic sets in X = (x1, x2,…, xn). Dice 
similarity measure between rough neutrosophic sets A and 
B can be defined as follows: 

DICRNS(A, B)= 
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   (13)

Proposition 17 [21] 
Dice similarity measure [21]  satisfies the following 

properties. 
;1),(0.1  BADICRNS

;),(),(.2 ABDICBADIC RNSRNS 

;1),(.3 BADICRNS iff A = B
4. If C is a RNS in Y and CBA  then,

DICRNS(A, C)   DICRNS(A, B) , and DICRNS(A, C) DICRNS(B, C), 
For proofs of the above mentioned four properties, see 

[21]. 
Definition 5.2.1

If we consider the weights of each element xi, a 
weighted rough Dice similarity measure between rough 
neutrosophic sets A and B can be defined as follows: 
DICWRNS(A, B) = 
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     (14)

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 ,

i = 1, 2,…, n, then DICWRNS(A, B) = DICRNS(A,B) 

Proposition 18 [21] 
The weighted rough Dice similarity [21] measure 

between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BADICWRNS

;),(),(.2 ABDICBADIC WRNSWRNS 

;1),(.3 BADICWRNS iff A = B
4. If C is a RNS in Y and CBA  then,
DICWRNS(A, C)   DICWRNS(A, B), and
DICWRNS(A, C)   DICWRNS(B, C).

For proofs of the above mentioned four properties, see 
[21]. 

Definition 5.3 [20] 
  Cosine similarity measure can be defined as the inner 

product of two vectors divided by the product of their 
lengths. It is the cosine of the angle between the vector 
representations of two rough neutrosophic sets. The cosine 
similarity measure is a fundamental measure used in 
information technology. Pramanik and Mondal [20] 
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defined cosine similarity measure between rough 
neutrosophic sets in 3-D vector space. 

  Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB   in X = (x1, 

x2,…, xn) be any rough neutrosophic sets.  Pramanik and 
Mondal [20] defined cosine similarity measure between 
rough neutrosophic sets A and B as follows: 
CRNS(A, B) =  
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Proposition 19 [20]         
Let A and B be rough neutrosophic sets. Cosine similarity 
measure [20] between A and B satisfies the following 
properties. 

;1),(0.1  BAC RNS

;),(),(.2 ABCBAC RNSRNS 

;1),(.3 BAC RNS iff A = B
4. If C is a RNS in Y and CBA  then, CRNS(A, C) 
CRNS(A, B) , and CRNS(A, C)   CRNS(B, C).
Definition 5.3.1 [20]

If we consider the weights of each element xi, a 
weighted rough cosine similarity measure between rough 
neutrosophic sets A and B can be defined as follows: 

CWRNS(A,B) =
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 (16)    

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we 

take
nwi
1

 , i = 1, 2,…, n, then CWRNS(A, B) = CRNS(A, B)

Proposition 20 [20] 
The weighted rough cosine similarity measure [20] 
between two rough neutrosophic sets A and B also satisfies 
the following properties: 

;1),(0.1  BACWRNS

;),(),(.2 ABCBAC WRNSWRNS 

;1),(.3 BACWRNS iff A = B
4. If C is a WRNS in Y and CBA  then, CWRNS(A, C) 
CWRNS(A, B) , and CWRNS(A, C)   CWRNS(B, C).

For proofs of the above mentioned four properties, see 
[20]. 
Definition 5.4 [19] Cotangent similarity measures of
rough neutrosophic sets 

Assume that 
   )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  in X = (x1, 

x2,…, xn) be any two rough neutrosophic sets. Pramanik 
and Mondal [19] defined cotangent similarity measure 
between rough neutrosophic sets A and B as follows: 
COTRNS(A, B) = 
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Proposition 21 [19] 
 Cotangent similarity measure satisfies the following 

properties: 
;1),(0.1  BACOT RNS

;),(),(.2 ABCOTBACOT RNSRNS 

;1),(.3 BACOT RNS iff A = B
4. If C is a RNS in Y and CBA  then, COTRNS(A, C) 
COTRNS(A, B) , and COTRNS(A, C)   COTRNS(B, C).
Definition 5.4.1 

If we consider the weights of each element xi, a 
weighted rough cotangent similarity measure [19] between 
rough neutrosophic sets A and B can be defined as follows:
COTWRNS(A, B) = 
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     (18) 

]1,0[wi , i = 1, 2,…, n and 11  
n
i iw . If we take

nwi
1

 , i

= 1, 2,…, n, then COTWRNS(A, B) = COTRNS(A, B) 
Proposition 22 [19] 

The weighted rough cosine similarity measure between 
two rough neutrosophic sets A and B also satisfies the 
following properties: 

;1),(0.1  BACOT WRNS

;),(),(.2 ABCOTBACOT WRNSWRNS 

;1),(.3 BACOT WRNS iff A = B
4. If C is a WRNS in Y and CBA  then, COTWRNS(A, C)
 COTWRNS(A, B) , and COTWRNS(A, C)   COTWRNS(B, C)
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Definition 5.5 (Variational co-efficient similarity
measure between rough neutrosophic sets) 

Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA 

and    )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  be 

two rough neutrosophic sets. Variational co-efficient 
similarity measure between rough neutrosophic sets can be 
presented as follows: 
VarRNS(A, B) = 
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Proposition 23 
 The variational co-efficient similarity measure VarRNS(A, 
B) between two rough neutrosophic sets A and B,
satisfies the following properties:

;1),(0.1  BAVarRNS

;),(),(.2 ABVarBAVar RNSRNS 

;1),(.3 BAVarRNS if A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and 
),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X.                                                     

Proof.
(1.) It is obvious that .0≥),( BAVar RNS Thus it is 

required to prove that 1),( BAVar RNS . 
From rough neutrosophic dice similarity measure it can 

be witten that  
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and from rough neutrosophic cosine similarity measure it 
can be written that  
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Combining Eq.(20) and Eq.(21) , we obtain 
VarRNS(A, B) =  
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Thus, ;1),(0  BAVarRNS

(2.) VarRNS(A, B) = 
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(3.) If A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and 

),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X , 
VarRNS(A, A) = 
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These results show the completion of the proofs of 

the three properties. 
Definition 5.6 (Weighted variational co-efficient 
similarity measure between rough neutrosophic sets) 
Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and 

   )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB  be any 

two rough neutrosophic sets. Rough variational co-efficient 
similarity measure between rough neutrosophic setsA and 
B in 3-D vector space can be presented as follows:  
VarWRNS(A, B) =
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If 
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w

T1...,,1,1 , then Eq.(23) is reduced to Eq.(19).

Proposition 24 
The weighted variational co-efficient similarity measure 
also satisfies the following properties: 

;1),(0.1  BAVarWRNS

;),(),(.2 ABVarBAVar WRNSWRNS 

3. VarWRNS(A, B) = 1; if A = B i.e.,
),()( xTxT iBiA  ),()( xIxI iBiA  and ),()( xFxF iBiA 

for every xi (i = 1, 2, …, n) in X. 
Proof: 

 (1.) It is obvious that .0),( BAVarW RNS  Thus it is 
required to prove that 1),( BAVarWRNS . 

From rough neutrosophic weighted dice similarity 
measure, it can be written that  
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and from rough neutrosophic weighted cosine 
similarity measure it can be written that   
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Combining Eq.(24) and Eq.(25), we obtain 
VarWRNS(A, B) =  
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Thus, ;1),(0  BAVarWRNS

(2.) VarWRNS(A, B) = 
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(3.) If A = B i.e.,
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),()( xTxT iBiA  ),()( xIxI iBiA  and 
),()( xFxF iBiA  for every xi (i = 1, 2, …, n) in X,                                                                            

VarWRNS(A, A) = 
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These results show the completion of the proofs of the 
three proiperties. 

6. Multi attribute decision making based on rough
neutrosophic variational coefficient similarity
measure

In this section, a rough variational co-efficient 
similarity measure is employed to multi-attribute decision 
making in rough neutrosophic environment. Assume that 
A = {A1, A2,..., Am} be the set of alternatives and C = {C1, 
C2,..., Cn} be the set of attributes in a multi-attribute 
decision making problem. Assune that wj be the weight of 
the attribute Cj provided by the decision maker such that 
each ]1,0[wi  and 11  

n
j jw  However, in real situation 

decision maker may often face difficulty to evaluate 
alternatives over the attributes due to vague or incomplete 
information about alternatives in a decision making 
situation. Rough neutrosophic set can be used in MADM 
to deal with incomplete information of the alternatives. In 
this paper, the assessment values of all the alternatives 
with respect to attributes are considered as the rough 
neutrosophic values (see  Table 1).  

Table1: Rough neutrosophic decision matrix
nmijijRNS ddD  , = 

mnmnmmmmm

nn

nn

n

ddddddA

ddddddA

ddddddA
CCC

,...,,
.............
.............
,...,,

,...,,
.

2211

22222221212

11121211111

21

         (27)       

Here ijij dd , is the rough neutrosophic number for the 

i-th alternative and the j-th attribute.

Definition 6.1: Transforming operator for SVNSs [80]
The rough neutrosophic decision matrix (27) can be 

transformed to single valued neutrosophic decision matrix 
whose ij-th element ij  can be presented as follows: 

nm
ijij

ij 2
dd




 , for i = 1, 2, 3,..., m; 

j = 1, 2, 3, ..., n.           .      (28) 
Step1. Determine the neutrosophic relative positive 
ideal solution 

In multi-criteria decision-making environment, the 
concept of ideal point has been used to help identify the 
best alternative in the decision set.  
Definition 6.2 [51]. 

Let H be the collection of two types of attributes, 
namely, benefit type attribute (P) and cost type attribute 
(L) in the MADM problems. The relative positive ideal
neutrosophic solution (RPINS) ]...,,,[ q Sq Sq SSQ 

  is the
solution of the decision matrix nmijijijS FITD  ,, where, 

every component of QS
  has the following form:

for benefit type attribute, every component of QS
 has the 

following form: 

PjforFIT ij
i

ij
i

ij
i

jjjS FITq



 

}{min},{min},{max

,,
   (29) 

and for cost type attribute, every component of  QS
 has 

the following form 

LjforFIT

FITq

ijiijiiji

jjjS



 

}{max},{max},{min

,,
 (30) 

Step 2. Determine the weighted variational co-efficient 
similarity measure between ideal alternative and each 
alternative.

The variational co-efficient similarity measure between 
ideal alternative QS

 and each alternative Ai for i = 1, 2, …, 
m can be determined by the following equation as follows: 


 ),( SSWRNS DQVar
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  (31) 

Step3. Rank the alternatives. 
According to the values obtained from Eq.(31), the 

ranking order of all the alternatives can be easily 
determined. Highest value indicates the best alternative.
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Step 4. End. 

7 Numerical example 
In this section, rough neutrosophic MADM regarding 

investment problem is considered to demonstrate the 
applicability and the effectiveness of the proposed 
approach. However, investment problem is not easy to 
solve. It not only requires oodles of patience and discipline, 
but also a great deal of research and a sound understanding 
of the market, mathematical tools, among others. Suppose 
an investment company wants to invest a sum of money in 
the best option. Assume that there are four possible 
alternatives to invest the money: (1) A1 is a computer 
company; (2) A2 is a garment company; (3) A3 is a 
telecommunication company; and (4) A4 is a food company. 
The investment company must take a decision based on the 
following three criteria: (1) C1 is the growth factor; (2) C2 
is the environmental impact; and (3) C3 is the risk factor. 
The four possible alternatives are to be evaluated under the 
attribute by the rough neutrosophic assessments provided 
by the decision maker. These assessment values are given 
in the rough neutrosophic decision matrix (see the table 2).  

Table2. Rough neutrosophic decision matrix 
 34)(),( PNPND ijij

)1.0,1.0,4.0(
),3.0,3.0,2.0(

)2.0,2.0,7.0(
),4.0,4.0,5.0(

)2.0,2.0,2.0(
),4.0,4.0,0.0(

)2.0,2.0,2.0(
),4.0,2.0,0.0(

)1.0,2.0,7.0(
),3.0,2.0,5.0(

)1.0,2.0,5.0(
),3.0,2.0,3.0(

)3.0,2.0,3.0(
),3.0,4.0,1.0(

)1.0,1.0,8.0(
),3.0,3.0,6.0(

)3.0,2.0,4.0(
),3.0,4.0,2.0(

)1.0,2.0,5.0(
),3.0,2.0,3.0(

)3.0,2.0,8.0(
),3.0,4.0,6.0(

)2.0,2.0,3.0(
),2.0,2.0,1.0(

4

3

2

1

321

A

A

A

A

CCC

    (32) 

The known weight information is given as follows: 
W = [w1, w2, w3]T = [0.3, 0.3, 0.4] and 13

1  i iw . 

Step1. Determine the types of criteria. 
First two types i.e. 1C  and 2C  of the given criteria are 

benefit type criteria and the last one criterion i.e. 3C  is the 
cost type criteria. 
Step2. Determine the relative neutrosophic positive 
ideal solution 

Using Eq. (29), Eq.(30), the relative positive ideal 
neutrosophic solution for the given matrix defined in 
Eq.(32) can be obtained as: 

)]3.0,3.0,1.0(),2.0,2.0,7.0(),2.0,2.0,4.0[(
QS

Step3. Determine the weighted variational similarity 
measure 

The weighted variational co-efficient similarity 
measure is determined by using Eq.(28), Eq.(31) and 
Eq.(32). The results obtained for different values of 
have been  shown in the Table-3. 

Table-3. Results of rough variational similarity measure for different values of , 10 

Similarity measure method Values of s Measure values Ranking order 

),( SSWRNS DQVar 

0.10 0.8769; 0.9741; 0.9917; 0.8107 A3 > A2 > A1 > A4
0.25 0.8740, 0.9739 0.9905 0.8078 A3 > A2 > A1 > A4

0.50 0.8692; 0.9735; 0.9887; 0.8028 A3 > A2 > A1 > A4

0.75 0.8643; 0.9730; 0.9868; 0.7979 A3 > A2 > A1 > A4

0.90 0.8614; 0.9728; 0.9857; 0.7949 A3 > A2 > A1 > A4

Step 4. Rank the alternatives. 
According to the different values of , the results 

obtained in Table-3 reflects that A3 is the best alternative. 

8. Comparisons of different rough similarity
measure with rough variation similarity measure

In this section, four existing rough similarity measures
- namely: rough cosine similarity measure, rough dice
similarity measure, rough cotangent similarity measure and
rough Jaccard similarity measure - have been  compared
with proposed rough variational co-efficient similarity
measure for different values of  . The comparison results
are  listed in the Table 3 and Table 4.
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Table-4. Results of existing rough neutrosophic similarity measure methods. 
Rough similarity 
measure methods 

Values of s Measure values Ranking order 

),( SSWRNS DQJAC  [21] ... 0.7870, 0.9471; 0.9739; 0.6832 A3 > A2 > A1 > A4

),( SSWRNS DQDIC  [21] ... 0.8595; 0.9726; 0.9873; 0.7929 A3 > A2 > A1 > A4

),( SSWRNS DQC  [20] ... 0.8788; 0.9738; 0.9920; 0.9132 A3 > A2 > A4> A1

),( SSWRNS DQCOT  [19] ... 0.8472; 0.9358; 0.9643; 0.8103 A3 > A2 > A1 > A4

Conclusion 

      In this paper, we have proposed rough variational coef-
ficient similarity measures. We also proved some of their 
basic properties. We have presented an application of 
rough neutrosophic variational coefficient similarity meas-
ure for a decision making problem on investment. The 
concept presented in the paper can be applied to deal with 
other multi attribute decision making problems in rough 
neutrosophic environment.  
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Abstract: This paper is devoted to present Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) method for 
multi-attribute group decision making under rough neutrosophic 
environment. The concept of rough neutrosophic set is a 
powerful mathematical tool to deal with uncertainty, 
indeterminacy and inconsistency. In this paper, a new approach 
for multi-attribute group decision making problems is proposed 
by extending the TOPSIS method under rough neutrosophic 
environment. Rough neutrosophic set is characterized by the 
upper and lower approximation operators and the pair of 

neutrosophic sets that are characterized by truth-membership 
degree, indeterminacy membership degree, and falsity 
membership degree.  In the decision situation, ratings of 
alternatives with respect to each attribute are characterized by 
rough neutrosophic sets that reflect the decision makers’ opinion. 
Rough neutrosophic weighted averaging operator has been used 
to aggregate the individual decision maker’s opinion into group 
opinion for rating the importance of attributes and alternatives. 
Finally, a numerical example has been provided to demonstrate 
the applicability and effectiveness of the proposed approach.  

Keywords: Multi-attribute group decision making; Neutrosophic set; Rough set; Rough neutrosophic set; TOPSIS 

1 Introduction
Hwang and Yoon [1] put forward the concept of Technique 
for Order Preference by Similarity to Ideal Solution 
(TOPSIS) in 1981 to help select the best alternative with a 
finite number of criteria.  Among numerous multi criteria 
decision making (MCDM) methods developed to solve 
real-world decision problems, (TOPSIS) continues to work 
satisfactorily in diverse application areas such as supply 
chain management and logistics [2, 3, 4, 5], design, 
engineering and manufacturing systems [6, 7], business 
and marketing management [8, 9], health, safety and 
environment management[10, 11],  human resources 
management [12, 13, 14], energy management [15], 
chemical engineering [16], water resources management 
[17, 18], bi-level programming problem [19, 20], multi-
level programming problem [21], medical diagnosis [22], 
military [23], education [24], others topics  [25, 26, 27, 28, 
29, 30],  etc. Behzadian et al. [31] provided a state-of the-
art literature survey on TOPSIS applications and 
methodologies.  According to C. T. Chen [32], crisp data 
are inadequate to model real-life situations because human 
judgments including preferences are often vague. 
Preference information of alternatives provided by the 
decision makers may be poorly defined, partially known 
and incomplete.  The concept of fuzzy set theory grounded 

by L. A. Zadeh [33] is capable of dealing with 
impreciseness in a mathematical form. Interval valued 
fuzzy set [34, 35, 36, 37] was proposed by several authors 
independently in 1975 as a generalization of fuzzy set.  In 
1986, K. T.  Atanassov [38] introduced the concept of 
intuitionistic fuzzy set (IFS) by incorporating non-
membership degree as independent entity to deal non-
statistical impreciseness. In 2003, mathematical 
equivalence of intuitionistic fuzzy set (IFS) with interval-
valued fuzzy sets was proved by Deschrijver and Kerre 
[39]. C. T. Chen [32] studied the TOPSIS method in fuzzy 
environment for solving multi-attribute decision making 
problems.  Boran et al. [12]  studied TOPSIS method in 
intuitionistic fuzzy environment and provided an 
illustrative example of personnel selection in a 
manufacturing company for a sales manager position. 
However, fuzzy sets and interval fuzzy sets are not capable 
of all types of uncertainties in different real physical 
problems involving indeterminate information.  
In order to deal with indeterminate and inconsistent 
information, the concept of neutrosophic set [40, 41, 42, 
43] is useful. In neutrosophic set each element of the uni-
verse is characterized by the truth membership degree, in-
determinacy membership degree and falsity membership
degree lying in the non-standard unit interval]-0, 1+[.
However, it is difficult to apply directly the neutrosophic
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set in real engineering and scientific applications. Wang et 
al. [44] introduced single-valued neutrosophic set (SVNS) 
to face real scientific and engineering fields involving 
imprecise, incomplete, and inconsistent information. 
However, the idea was envisioned some years earlier by 
Smarandache [43]    SVNS, a subclass of NS, can also rep-
resent each element of universe with the truth membership 
values, indeterminacy membership values and falsity 
membership values lying in the real unit interval [0, 1]. 
SVNS has caught much attention to the researchers on var-
ious topics such as, medical diagnosis [45], similarity 
measure [46, 47, 48, 49, 50], decision making [51, 52, 53, 
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 
70], educational problems [71, 72], conflict resolution [73], 
social problem [74, 75], optimization [76, 77, 78, 79, 80, 
81], etc. 
Pawlak [82] proposed the notion of rough set theory for the 
study of intelligent systems characterized by inexact, 
uncertain or insufficient information. It is a useful 
mathematical tool for dealing with uncertainty or 
incomplete information.  Broumi et al. [83, 84] proposed 
new hybrid intelligent structure called rough neutrosophic 
set by combining the concepts of single valued 
neutrosophic set and rough set. The theory of rough 
neutrosophic set [83, 84] is also a powerful mathematical 
tool to deal with incompleteness.  Rough neutrosophic set 
can be applied in addressing problems with uncertain, 
imprecise, incomplete and inconsistent information 
existing in real scientific and engineering applications. In 
rough neutrosophic environment, Mondal and Pramanik 
[85] proposed rough neutrosophic multi-attribute decision-
making based on grey relational analysis.  Mondal and
Pramanik [86] also proposed rough neutrosophic multi-
attribute decision-making based on rough accuracy score
function. Pramanik and Mondal [87] proposed cotangent
similarity measure of rough neutrosophic sets and its
application to medical diagnosis.  Pramanik and Mondal
[88] also proposed cosine similarity measure of rough 
neutrosophic sets and its application in medical diagnosis. 
Pramanik and Mondal [88] also proposed some similarity 
measures namely, Dice and Jaccard similarity measures in 
rough neutrosophic environment and applied them for 
multi attribute decision making problem. Pramanik and 
Mondal [90] studied decision making in rough interval 
neutrosophic environment in 2015.  Mondal and Pramanik 
[91] studied cosine, Dice and Jaccard similarity measures
for interval rough neutrosophic sets and presented their
applications in decision making problem.  So decision
making in rough neutrosophic environment appears to be a
developing area of study. Mondal et al. [92] proposed
rough trigonommetric Hamming similarity measures such
as cosine, sine and cotangent rough similarity meaures and
proved their basic properties. In the same study Mondal et

al. [92] also provided a numerical example of selection of a 
smart phone for rough use based on the proposed methods. 
The objective of the study is to extend the concept of 
TOPSIS method for multi-attribute group decision making 
(MAGDM) problems under single valued neutrosophic 
rough neutrosophic environment. All information provided 
by different domain experts in MAGDM problems about 
alternative and attribute values take the form of rough 
neutrosophic set. In a group decision making process, 
rough neutrosophic weighted averaging operator is used to 
aggregate all the decision makers’ opinions into a single 
opinion to select best alternative.  
The remaining part of the paper is organized as follows: 
section 2 presents some preliminaries relating to 
neutrosophic set, section 3 presents the concept of rough 
neutrosophic set. In section 4, basics of TOPSIS method 
are discussed. Section 5 is devoted to present TOPSIS 
method for MAGDM under rough neutrosophic 
environment. In section 6, a numerical example is provided 
to show the effectiveness of the proposed approach. Finally, 
section 7 presents the concluding remarks and scope of 
future research.  
2 Neutrosophic sets and single valued neutrosophic set 
[43, 44] 
2.1 Definition of Neutrosophic sets [40, 41, 42, 43] 
Definition 2.1.1. [43]:  
Assume that V be a space of points and v be a generic 
element in V. Then a neutrosophic set G in V is 
characterized by a truth membership function TG, an 
indeterminacy membership function IG and a falsity 
membership function FG. The functions TG, IG and FG are 
real standard or non-standard subsets of ]  1,0 [ i.e. 
TG: V  ]  1,0 [, IG: V ]  1,0 [, FG: V ]  1,0 [, 

and 3)v(F)v(I)v(T0 GGG
  . 

2.1.2.[43]: 
The complement of a neutrosophic set G is denoted by Gc

and is defined by  
)v(TGc   )v(T1 G ; )v(IGc   )v(I1 G ;

  )v(I1)v(F GGc  

Definition 2.1.3. [43]: 
A neutrosophic set G is contained in another neutrosophic 
set H, HG  iff the following conditions holds. 

)v(Tinf)v(Tinf HG  )v(Tsup)v(Tsup HG 

)v(Iinf)v(Iinf HG  ,  )v(Isup)v(Isup HG 

)v(Finf)v(Finf HG  , )v(Fsup)v(Fsup HG 

for all v in V. 
Definition 2.1.4. [44]:  
Assume that V be a universal space of points, and v be a 
generic element of V. A single-valued neutrosophic set P 
is characterized by a truth membership function TP(v), a 
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falsity membership function IP(v), and an indeterminacy 
membership function FP(v).  Here, TP(v), IP(v), FP(v)  [0, 
1]. When V is  continuous,  a SVNS P can be written as 

P = .Vv,v/)v(I),v(F),v(T
V

PPP  

When V is discrete, a SVNS P can be written as 
,v)v(I),v(F),v(TP PPP Vv

It is obvious that for a SVNS P, 
,3)v(Isup)v(Fsup)v(Tsup≤0 PPP  Vv

Definition 2.1.5. [44]: 
The complement of a SVNS set P is denoted by PC and is 
defined as follows: 

)v(F)v(T P
C

P  ; )v(I1)v(I P
C

P  ; )v(T)v(F P
C

P 

Definition 2.1.6. [44]: 
A SVNS PG is contained in another SVNS PH, denoted as 
PG PH if the following conditions hold. 

)v(T)v(T HPGP  ; )v(I)v(I HPGP  ; )v(F)v(F HPGP  , 
Vv . 

Definition 2.1.7. [44]: 
Two SVNSs PG and PH are equal, i.e., PG = PH, iff 

HG P⊆P and HG P⊇P
Definition 2.1.8. [44]: 
The union of two SVNSs PG and PH is a SVNS PQ, written 
as HGQ P∪PP  . 
Its truth, indeterminacy and falsity membership functions 
are as follows: 

))v(T,)v(Tmax()v(T HPGPQP  ;
))v(I,)v(Imin()v(I HPGPQP  ; 
))v(F,)v(Fmin()v(F HPGPQP  , Vv . 

Definition 2.1.9. [44]: 
 The intersection of two SVNSs PG and PH is a SVNS PC 
written as HGC PPP  . Its truth, indeterminacy and 
falsity membership functions are as follows:  

;))v(T,)v(Tmin()v(T HPGPCP 

;))v(I,)v(Imax()v(I HPGPCP 

,))v(F,)v(Fmax()v(F HPGPCP  Vv . 
Definition 2.1.10. [44]: 
Wang et al. [44] defined the following operation for two 
SVNS PG and PH as follows: 

PG  PH = 
)().()()(

),().()()(),().(

vFvFvFvF

vIvIvIvIvTvT

HPGPHPGP

HPGPHPGPHPGP




, 

Vv . 
Definition 2.1.11. [93] 
Assume that 
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be two SVNSs in v = {v1, v2, v3,…,vn} 

Then the Hamming distance [93] between two SVNSs PG 
and PH is defined as follows:  
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and normalized Hamming distance [93] between two 
SVNSs PG and PH is defined as 
follow
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with the following two properties
  3≤P,Pd≤0.i HGP

  1P,Pd0.ii HG
N

P 

Distance between two SVNSs: 
Majumder and Samanta [93] studied similarity and entropy 
measure by incorporating Euclidean distances of SVNSs. 
Definition 2.1.12. [93]: (Euclidean distance) 

Let
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 be two 

SVNSs for vi ∈ V, where i = 1, 2, . . . , n. Then the 
Euclidean distance between two SVNSs PG and PH can be 
defined as follows: 
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and the normalized Euclidean distance [93] between two 
SVNSs PG and PH can be defined as follows: 

)P,P(D HG
N
euclid

   
 

5.0
1 2

22

)()(

)()()()(

3
1























n
i

iHPiGP

iHPiGPiHPiGP

vFvF

vIvIvTvT

n
   (4) 

Definition 2.1.13. (Deneutrosophication of SVNS) [53]: 
Deneutrosophication of SVNS PG can be defined as a 
process of mapping PG into a single crisp output V*

i.e. *
GP:f  for v ∈ V. If PG is discrete set then the 

vector  Vv |)v(F),v(I),v(T|vP GPGPGPG  is 

reduced to a single scalar quantity V* by
deneutrosophication. The obtained scalar quantity 

V* best represents the aggregate distribution of three
membership degrees of neutrosophic 
element )v(F),v(I),v(T GPGPGP

3 Rough neutrosophic set [83, 84] 
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Rough set theory [82] has been developed based on two 
basic components. The components are crisp set and 
equivalence relation. The rough set logic is based on the 
approximation of sets by a couple of sets. These two are 
known as the lower approximation and the upper 
approximation of a  set. Here, the lower and upper 
approximation operators are based on equivalence relation. 
Rough neutrosophic sets [83, 84] are the generalization of 
rough fuzzy sets [94, 95, 96] and rough intuitionistic fuzzy 
sets [97]. 
Definition 3.1. Rough neutrosophic set [83,84] 
Assume that S be a non-null set and   be an equivalence 
relation on S. Assume that E be neutrosophic set in S with 
the membership function TE, indeterminacy function IE and 
non-membership function FE. The lower and the upper 
approximations of E in the approximation ),( S  denoted 
by  EL  and  EU   are respectively defined as follows: 

  )5(,][/)(),(),(, )()()( SvvsvFvIvTvEL ELELEL  

  )6(,][/)(),(),(, )()()( SvvsvFvIvTvEU EUEUEU  

 
Here, ),(][)()( sTvvT EsEL  ),(][)()( sIvvI EsEL 

),(][)()( sFvvF EsEL  ),(][)()( sTvvT EsEU 

),(][)()( sTvvI EsEU  )(][)()( sIvvF EsEU  . 

So, 3)()()(0 )()()(  vFvIvT ELELEL  
3)()()(0 )()()(  vFvIvT EUEUEU

The symbols  and   indicate “max” and “min’’ 
operators respectively. )(sT E , )(sI E  and )(sF E represent 
the membership , indeterminacy and non-membership of S 
with respect to E.  EL and  EU are two neutrosophic sets 
in S. 
Thus the mapping ,L U : N(S)   N(S) are, respectively, 
referred to as the lower  and  upper  rough  neutrosophic 
approximation  operators,  and the pair ))(),(( EUEL is called 
the rough neutrosophic set in .),( S  

)(EL and )(EU have constant membership on the
equivalence classes of  if )()( EUEL  ; i.e. 

)()( )()( vTvT EUEL  , )()( )()( vIvI EUEL  ’ )()( )()( vFvF EUEL  for 

any v belongs to S.
E is said to be definable neutrosophic set in the 
approximation ).,( S  It is obvious that zero neutrosophic 
set (0N) and unit neutrosophic sets (1N) are definable 
neutrosophic sets.  
Definition 3.2 [83, 84].   
If N(E) = ( )(),( EUEL ) be a rough neutrosophic set in 

),,S(   the complement of N(E) is the rough neutrosophic 
set and is denoted as ))(,)(()(~ CC EUELEN  ,where 

CC EUEL )(,)( are  the complements of neutrosophic sets of 
)(),( EUEL respectively.

  SvvFvIvTvEL ELELEL
c  /)(),(1),(, )()()( and

  SvvFvIvTvEU EUEUEU
c  /)(),(1),(, )()()(

Definition 3. 3 [83, 84] 
If )E(Nand)E(N 21 be two rough neutrosophic sets in S, 
then the following definitions hold: 

)()()()()()( 212121 EUEUELELENEN 

)()()()()()( 212121 EUEUELELENEN 

 )()(,)()()()( 212121 EUEUELELENEN 

 )()(,)()()()( 212121 EUEUELELENEN 

 )()(,)()()()( 212121 EUEUELELENEN

 )(.)(,)(.)()(.)( 212121 EUEUELELENEN

If  ,, be rough neutrosophic sets in ),,S(  then the 
following properties are satisfied. 
Properties I: 

)(~~.1
 ,.2

)()(
,)()(.3





)()()(
,)()()(.4





Proof. For proofs of the properies, see [83,84]. 
Properties II: 
De Morgan’s Laws are satisfied for rough neutrosophic 
sets  

))((~))(~())()((~.1 2121 ENENENEN 

))((~))((~))()((~.2 2121 ENENENEN 

Proof. For proofs of the properies, see [83,84]. 

Properties III: 
If E1 and E2 are two neutrosophic sets of universal 
collection (U) such that thenEE ,21 )()(.1 21 ENEN   

)()(⊆)(.2 2221 ENENEEN 

)()(⊇)(.3 2221 ENENEEN 

Proof. For proofs of the properies, see [83,84]. 
Properties IV: 

)(~~ )(.1 EUEL 

)(~~ )(.2 ELEU 

)( )(.3 EUEL 

Proof. For proofs of the properies, see [83,84]. 

4 TOPSIS 
The TOPSIS is used to determine the best alternative from 
the compromise solutions. The best compromise solution 
should have the shortest Euclidean distance from the 
positive ideal solution (PIS) and the farthest Euclidean 
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distance from the negative ideal solution (NIS). The 
TOPSIS method can be described as follows. Assume that 
K = {K1, K2, …,Km} be the set of alternatives, L = {L1, L2, 
…, Ln} be the set of criteria and      

n , . . . 2, 1, = j ; m , . . . 2, 1, = i,pij   is the rating of  the 
alternative Ki with respect to the criterion Lj , wj is the 
weight of the j- th criterion Lj. 
The procedure of TOPSIS method is presented using the 
following steps: 
Step 1. Normalization the decision matrix 
Calculation of the normalized value N

ij][  is as follows: 

 For benefit criterion, )/()(  
jjjijij , 

where
i

j max )v( ij and 
i

j min )v( ij

or setting  j  is the desired level and  j  is the worst level. 

For cost criterion, )/()(   jjijjij

Step 2. Weighted normalized decision matrix 
In the weighted normalized decision matrix, the upgraded 
ratings are calculated as follows: 

ijjij w  for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Here wj 

is the weight of the j-th criterion such that 0w j  for j = 1,

2, . . . , n and 11  
n
j jw

Step 3. The positive and the negative ideal solutions 
The positive ideal solution (PIS) and the negative ideal 
solution (NIS) are calculated as follows: 

  nMPIS ,, 21 = 

njCjCj ij
j

ij
j

,,2,1:∈/min, /max 21 
















 and 

  nMNIS ,, 21 = 

njCjCj ij
j

ij
j

,,2,1:∈/max,∈/min 21 


















where C1and C2 are the benefit and cost type criteria 
respectively. 
Step 4. Calculation of the separation measures for each 
alternative from the PIS and the NIS 
The separation values for the PIS and the separation values 
for the NIS can be determined by using the n-dimensional 
Euclidean distance as follows: 

  5.0
1

2
  

 n
j jiji for i = 1, 2, . . . , m. 

  5.02
1  

 n
j jiji for i = 1, 2, . . . , m. 

Step 5. Calculation of the relative closeness coefficient 
to the PIS 
The relative closeness coefficient for the alternative Ki 
with respect to M+ is 

)( ii

i
i 






 for i = 1, 2, . . . m. 

Obviously, 10 i . According to relative closeness 
coefficient to the ideal alternative, larger value of 

i indicates the better alternative Ki. 
Step 6. Ranking the alternatives 
Rank the alternatives according to the descending order of 
the relative-closeness coefficients to the PIS. 

5 Topsis method for multi-attribute decision making 
under rough neutrosophic environment 
Assume that a multi-attribute decision-making problem be 
characterized by m alternatives and n attributes. Assume 
that K = (K1, K2,..., Km) be the set of alternatives, and L = 
(L1, L2, ..., Ln) be the set of attributes. The rating measured 
by the decision maker describes the performance of the 
alternative Ki against the attribute Lj. Assume that W = {w1, 
w2 . . . , wn} be the weight vector assigned for the attributes 
L1, L2, ..., Ln by the decision makers. The values associated 
with the alternatives for multi-attribute decision-making 
problem (MADM) with respect to the attributes can be 
presented  in  rough neutrosophic decision matrix (see 
Table 1).

Table1: Rough neutrosophic decision matrix 
 nmijij ddD ,

)7(

,...,,
.............
.............
,...,,

,...,,

2211

22222221212

11121211111

21

mnmnmmmmm

nn

nn

n

ddddddK

ddddddK

ddddddK
LLL 

Here ijij dd , is the rough neutrosophic number according 

to the i-th alternative and the j-th attribute. 
In decision-making situation, there exist many attributes of 
alternatives. Some of them are important and others may 
be less important. So it is important to select proper 
weights of attributes for decision-making situation. 
Definition 5.1. Accumulated geometric operator (AGO) 
[85]     
Assume a rough neutrosophic number in the 
form: ),,(,),,( ijijijijijijijij FITUFITL . We transform the rough 

neutrosophic number into SVNNs using the accumulated 
geometric operator (AGO). The operator is expressed as 
follows. 

ijijijij FITN ,, 5.0. ijij UL

5.05.05.0 )(,)(,)( ijijijijijijij FFIITTN (8) 
Using AGO operator [85], the rating of each alternative 
with respect to each attribute is transformed into SVNN for 
MADM problem. The rough neutrosophic values 
(transformed as SVNN) associated with the alternatives for 
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MADM problems can be represented in decision matrix  
( see Table 2).   
Table 2. Tranformed rough neutrosiphic decision matrix 

  nmijijijnm F,I,TdD

)9(

,,...,,,,
.............
.............

,,...,,,,
,,...,,,,

...

222111

2222222222121212

1111212121111111

21

mnmnmnmmmmmmm

nnn

nnn

n

FITFITFITK

FITFITFITK
FITFITFITK

LLL

                                                        

             

 In the matrix nmijijijnm FITd   ,, , Tij, Iij and Fij (i = 1, 2,..., 
n and j = 1, 2,..., m) denote the degree of truth membership 
value, indeterminacy membership value and falsity 
membership value of alternative Ki with respect to attribute 
Lj. 
The ratings of each alternative with respect to the attributes 
can be explained by the neutrosophic cube [98] proposed 
by Dezert. The vertices of neutrosophic cube are (0, 0, 0), 
(1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1) and 
(0, 1, 1). The acceptance ratings [53, 99] in neutrosophic 
cube are classified in three types namely,  

I. Highly acceptable neutrosophic ratings,
II. Manageable neutrosophic rating
III. Unacceptable neutrosophic ratings.

Definition 5.2. (Highly acceptable neutrosophic ratings) 
[99] 
In decision making process, the sub cube (  ) of a 
neutrosophic cube (  ) (i.e.  ) reflects the field of 
highly acceptable neutrosophic ratings (  ). Vertices of Λ 
are defined with the eight points (0.5, 0, 0),(1, 0, 0),(1, 0, 
0.5), (0.5, 0, 0.5), (0.5, 0, 0.5), (1, 0, 0.5), (1, 0.5, 0.5) and 
(0.5, 0.5, 0.5). U includes all the ratings of alternative 
considered with the above average truth membership 
degree, below average indeterminacy degree and below 
average falsity membership degree for multi-attribute 
decision making. So,   has a great role in decision 
making process and can be defined as follows: 

 = 5.05.05.0 )(,)(,)( ijijijijijij FFIITT  where 0.5 < 
5.0)( ijijTT < 1, 0 < 5.0)( ijij II < 0.5 and 0 < 5.0)( ijij FF < 0.5,

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. 
Definition 5.3. (Unacceptable neutrosophic ratings) [99] 
 The field  of unacceptable neutrosophic ratings  is 
defined by the ratings which are characterized by 0% 
membership degree, 100% indeterminacy degree and 
100% falsity membership degree. Hence, the set of 
unacceptable ratings  can be considered as the set of all 
ratings whose truth membership value is zero. 

  = 5.05.05.0 )(,)(,)( ijijijijijij FFIITT  where 5.0)( ijijTT = 0, 0 

< 5.0)( ijij II ≤ 1 and 0 < 5.0)( ijij FF ≤ 1, for i = 1, 2, . . . , m 
and j = 1, 2, . . . , n. 
In decision making situation, consideration of   should be 
avoided. 
Definition 5.4. (Manageable neutrosophic ratings) [99] 
Excluding the field of high acceptable ratings and 
unacceptable ratings from a neutrosophic cube, tolerable 
neutrosophic rating field   (=   ) is determined. 
The tolerable neutrosophic rating (  ) considered 
membership degree is taken in decision making process. 
 can be defined by the expression as follows: 
 = 5.05.05.0 )(,)(,)( ijijijijijij FFIITT  where 0 < 5.0)( ijijTT < 

0.5, 0.5 < 5.0)( ijij II  < 1 and 0.5 < 5.0)( ijij FF < 1. 
for i = 1, 2, . . . , m and j = 1, 2, . . . , n.   
Definition 5.5 [53]. 
Fuzzification of transformed rough neutrosophic set 

)v(F),v(I),v(TN NNN for any v ∈ V can be defined as
a process of mapping N into fuzzy set F 
=  Vv/)v(/v F  i.e. f: N  F for v ∈ V. The 
representative fuzzy membership degree ]1,0[)v(F  of 
the vector }Vv,)v(F),v(I),v(T/v{ NNN  is defined 
from the concept of neutrosophic cube. It can be obtained 
by determining the root mean square of 1-TN(v), IN(v), and 
FN(v) for all v ∈ V. Therefore the equivalent fuzzy 
membership degree is defined as follows: 

      
)10(

0

3)()()(11
)(

5.0222













v

vvvv
v FIT NNN

F


Now the steps of decision making using TOPSIS method 
under rough neutrosophic environment are stated as 
follows.
Step 1. Determination of the weights of decision makers  
Assume that a group of k decision makers having their 
own decision weights involved in the decision making. The 
importance of the decision makers in a group may not be 
equal. Assume that the importance of each decision maker 
is considered with linguistic variables and expressed it by 
rough neutrosophic numbers.  
Assume that ),,(,),,( kkkkkkkk FITNFITN  be a rough 

neutrosophic number for the rating of k−th decision maker. 
Using AGO operator, we obtain Ek = kkk FIT ,,  as a single 
valued neutrosophic number for the rating of k−th decision 
maker. Then, according to equation (10) the weight of the 
k−th decision maker can be written as: 

      
        





r
k kkk

kkk
k

vFvIvT

vFvIvT

1
5.0222

5.0222

3)()()(11

3)()()(11
(11)
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and 1∑ 1 
r
k k

Step 2. Construction of the aggregated rough 
neutrosophic decision matrix based on the assessments 
of decision makers 
Assume that nm

k
ij

k
ij

k ddD 
)()( , be the rough neutrosophic 

decision matrix of the k−th decision maker. According to 
equation (11),   nm

k
ij

k dD 
)( be the single-valued 

neutrosophic decision matrix corresponding to the rough 
neutrosophic decision matrix and T

k)...,,,( 21  be the 
weight vector of decision maker such that each k ∈ [0, 1]. 
In the group decision making process, all the individual 
assessments need to be accumulated into a group opinion 
to make an aggregated single valued neutrosophic decision 
matrix. This aggregated matrix can be obtained by using 
rough neutrosophic aggregation operator as follows:  

nmijdD  )( where, 

 r
ijijijnmij dddRNWAd ,,,)( 21 
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Now the aggregated rough neutrosophic decision matrix is 
defined as follows: 

nmijd )( nmijijijijijij FFIITT 
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)13(

,,...,,,,
.............
.............

,,...,,,,
,,...,,,,

...

222111

2222222222121212

1111212121111111

21

mnmnmnmmmmmmm

nnn

nnn

n

FITFITFITK

FITFITFITK
FITFITFITK

LLL

                                                 

 
Here,  FITd ijijijij ,, 5.05.05.0 ).(,).(,).( ijijijijijij FFIITT is the 

aggregated element of rough neutrosophic decision matrix 
D for i = 1, 2, . . . m and j = 1, 2, . .. n. 
Step 3. Determination of the attribute weights 
In the decision-making process, all attributes may not have 
equal importance. So, every decision maker may have their 
own opinion regarding attribute weights. To obtain the 
group opinion of the chosen attributes, all the decision 
makers’ opinions need to be aggregated.  Assume that 

j
k

j
k ww )()( , be rough neutrosophic number (RNN) assigned

to the attribute Lj by the k−th decision maker. According to 
equation (8) j

kw be the neutrosophic number assigned to the 
attribute Lj by the k−th decision maker. Then the combined 
weight W = (w1, w2 . . . , wn) of the attribute can be 
determined by using rough neutrosophic weighted 
aggregation (RNWA) operator 

),,,( )()2()1( r
jjjj wwwRNWAw  )()2(

2
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jrjj www  

  
  




r

k

r

k

r

k

kr
j

kr
j

kr
j FIT

1 1 1

)()()( )(,)(,)1(1 (14) 

;., ijij
r
ij ddHere   FITw r

j
r
j

r
jj

)()()( ,,

5.0)()(5.0)()(5.0)()( ).(,).(,).( r
j

r
j

r
j

r
j

r
j

r
j FFIITT for j = 1, 2, . . . n.

W = (w1, w2 . . . , wn)  (15)
 Step 4. Aggregation of the weighted rough neutrosophic 

decision matrix 
In this section, the obtained weights of attribute and 
aggregated rough neutrosophic decision matrix need to be 
further fused to make the aggregated weighted rough 
neutrosophic decision matrix. Then, the aggregated 
weighted rough neutrosophic decision matrix can be 
defined by using the multiplication properties between two 
neutrosophic sets as follows: 
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  (16) 

Here, jw
ij

jw
ij

jw
ij

jw
ij FITd ,, is an element of the aggregated 

weighted rough neutrosophic decision matrix DW for i = 1, 
2, . . . , m and j = 1, 2, . . . , n. 
Step 5. Determination of the rough relative positive 
ideal solution (RRPIS) and the rough relative negative 
ideal solution (RRNIS) 
After transferring RNS decision matrix, 
assume ND  nm

W
ijd nmijijij FIT ,, be a SVNS based 

decision matrix, where, Tij, Iij and Fij are the membership 
degree, indeterminacy degree and non-membership degree 
of evaluation for the attribute Lj with respect to the 
alternative Ki. In practical siuation, two types of attributes 
namely, benefit type attribute and cost type attribute are 
considered in multi-attribute decision making problems. 
Definition 5.6. 
Assume that C1and C2 be the benefit type attribute and cost 
type attribute respectively. Suppose that 

NG is the relative 
rough neutrosophic positive ideal solution (RRNPIS) and 


NG is the relative rough neutrosophic negative ideal 

solution (RRNNIS). 
Then 

NG can be defined as follows: 

dddG w
n

ww
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  ,,, 21    (17)
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)}/)(max(),/}{min{( 21 CjFCjFF jw
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Then 
NG can be defined as follows: 
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Step 6. Determination of the distance measure of each 
alternative from the RRNPIS and the RRNNIS  
 The normalized Euclidean distance measure of all 
alternative FIT jw

ijjw
ijjw

ij ,, from the RRNPIS 

ddd w
n

ww  ...,,, 21 for i = 1, 2, …, m and j = 1, 2, …, n can be 
written as follows: 
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The normalized Euclidean distance measure of all 
alternative FIT jw

ijjw
ijjw

ij ,, from the RRNPIS 

ddd w
n

ww  ...,,, 21 for i = 1, 2, …, m and j = 1, 2, …, n can be 
written as follows: 
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Step 7. Determination of the relative closeness co-
efficient to the rough neutrosophic ideal solution for 
rough neutrosophic sets 
The relative closeness coefficient of each alternative Ki 
with respect to the neutrosophic positive ideal solution 
G N
  is defined as follows: 
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Here 10 *  i . According to the relative closeness 
coefficient values larger the values of *

i reflects the better 
alternative Ki for i = 1, 2, …, n. 
Step 8. Ranking the alternatives 
Rank the alternatives according to the descending order of 
the relative-closeness coefficients to the RRNPIS. 

6 Numerical example 
In order to demonstrate the proposed method, logistic 
center location selection problem is described here. 
Suppose that a new modern logistic center is required in a 

town. There are three locations K1, K2, K3. A committee of 
three decision makers or experts D1, D2, D3 has been 
formed to select the most appropriate location on the basis 
of six parameters obtained from expert opinions, namely, 
cost (L1), distance to suppliers (L2), distance to customers 
(L3), conformance to government and law (L4), quality of 
service (L5), and environmental impact (L6).  
Based on the proposed approach the considered problem is 
solved using the following steps: 
Step 1. Determination of the weights of decision makers 
The importance of three decision makers in a selection 
committee may be different based on their own status. 
Their decision values are considered as linguistic terms 
(seeTable-3). The importance of each decision maker 
expressed by linguistic term with its corresponding rough 
neutrosophic values shown in Table-4. The weights of 
decision makers are determined with the help of equation 
(11) as:  
1= 0.398, 2 = 0.359, 3 = 0.243.
We transform rough neutrosophic number (RNN) to 
neutrosophic number (NN) with the help of AGO operator 
[85] in Table 3, Table 4 and Table 5. 

Step 2. Construction of the aggregated rough 
neutrosophic decision matrix based on the assessments 
of decision makers 
The linguistic terms along with RNNs are defined in 
Table-5 to rate each alternative with respect to each 
attribute. The assessment values of each alternative Ki (i = 
1, 2, 3) with respect to each attribute Lj (j = 1, 2, 3, 4, 5, 6) 
provided by three decision makers are listed in Table-6. 
Then the aggregated neutrosophic decision matrix can be 
obtained by fusing all the decision maker opinions with the 
help of aggregation operator (equation 12) (see Table 7). 
Step 3. Determination of the weights of attributes 
The linguistic terms shown in Table-3 are used to evaluate 
each attribute. The importance of each attribute for every 
decision maker is rated with linguistic terms shown in 
Table-6. Three decision makers’ opinions need to be 
aggregated to final opinion. 
The fused attribute weight vector is determined by using 
equation (14) as follows: 

W















172.0,184.0,804.0,172.0,203.0,774.0,169.0,223.0,761.0

,196.0,241.0,737.0,159.0,181.0,800.0,195.0,205.0,761.0
(23) 

Step 4. Construction of the aggregated weighted rough 
neutrosophic decision matrix 
Using equation (16) and clculating the combined weights 
of the attributes and the ratings of the alternatives, the 
aggregated weighted rough neutrosophic decision matrix is 
obtained (see Table-8). 
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Step 5. Determination of the rough neutrosophic 
relative positive ideal solution and the rough 
neutrosophic relative negative ideal solution 
The RNRPIS can be calculated from the aggregated 
weighted decision matrix on the basis of attribute types i.e. 
benefit type or cost type by using equation (17) as 

















253.0,270.0,708.0,303.0,331.0,642.0,286.0,374.0,607.0

,309.0,388.0,588.0,252.0,284.0,694.0,274.0,289.0,670.0

GN

(25) 

Here FITd wwww   1111 ,, is calculated as: 

T w
1 max [0.670, 0.485, 0.454]  = 0.670, I w

1 min [0.289, 
0.449, 0.471] = 0.289, 

F w
1 min [0.274, 0.377, 0.463]= 0.274. 

Similarly, other RNRPISs are calculated. 
Using equation (18), the RNRNIS are calculated from 
aggregated weighted decision matrix based on attribute 
types i.e. benefit type or cost type. 

















414.0,435.0,512.0,372.0,429.0,524.0,358.0,441.0,522.0

,309.0,480.0,469.0,353.0,377.0,588.0,463.0,471.0,454.0
GN

(26) 

Here, FITd wwww   1111 ,,  is calculated as 

T w
1  min [0.670, 0.485, 0.454] =  0.454, I w

1 max [0.289, 
0.449, 0.471] = 0.471, 

F w
1 max [0.274, 0.377, 0.463] = 0.463. 

Other RNRNISs are calculated in similar way.
Step 6. Determination of the distance measure of each 
alternative from the RRNPIS and the RRNNIS and 
relative closeness co-efficient 
Normalized Euclidean distance measures defined in 
equation (19) and equation (20) are used to determine the 
distances of each alternative from the RRNPIS and the
RNNIS.  
Step 7. Determination of the relative closeness co-
efficient to the rough neutrosophic ideal solution for 
rough neutrosophic sets 
Using equation (21) and distances, relative closeness 
coefficient of each alternative K1 , K2 , K3 with respect to 
the rough neutrosophic positive ideal solution G N

 is 
calculated (see Table 9).
Table 9. Distance measure and relative closeness co-
efficient 

3425.00534.01025.0
3639.00682.01192.0
9411.01248.00078.0

3

2

1

*

K
K
K

)(K esAlternativ i
i
euclid

i
euclidi 



(27)  

Step 9. Ranking the alternatives 
According to the values of relative closeness coefficient of 
each alternative (see Table 9), the ranking order of three 
alternatives is obtained as follows: 
K1 ≻ K2 ≻ K3. 
Thus K1 is the best the logistic center. 

7 Conclusion
In general, realistic MAGDM problems adhere to uncertain, 
imprecise, incomplete, and inconsistent data and rough 
neutrosophic set theory is adequate to deal with it. In this 
paper, we have proposed rough neutrosophic TOPSIS 
method for MAGDM. We have also proposed rough neu-
trosophic aggregate operator and rough neutrosophic 
weighted aggregate operator. In the decision-making situa-
tion, the ratings of each alternative with respect to each at-
tribute are presented as linguistic variables characterized 
by rough neutrosophic numbers. Rough neutrosophic ag-
gregation operator has been used to aggregate all the opin-
ions of decision makers. Rough neutrosophic positive ideal 
and rough neutrosophic negative ideal solution have been 
defined to form aggregated weighted decision matrix. Eu-
clidean distance measure has been used to calculate the 
distances of each alternative from positive as well as nega-
tive ideal solutions for relative closeness co-efficient of 
each alternative. The proposed rough neutrosophic TOP-
SIS approach can be applied in pattern recognition, artifi-
cial intelligence, and medical diagnosis in rough neutro-
sophic environment.
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Table 3. Linguistic terms  for rating attributes  
 Linguistic Terms Rough neutrosophic numbers Neutrosophic numbers 

Very good / Very important (VG/VI) 0.15) 0.15, (0.95, 0.05), 0.05, (0.85, 0.087 0.087, 0.899,

Good / Important(G /I) 0.20) 0.25, (0.85, 0.10), 0.15, (0.75, 0.141 0.194, 0.798,

Fair / Medium(F/M) 0.55) 0.45, (0.55, 0.35), 0.35, (0.45, 0.439 0.397, 0.497,

Bad / Unimportant (B / UI) 0.75) 0.65, (0.45, 0.65), 0.55, (0.25, 0.698 0.598, 0.335,

Very bad/Very Unimportant (VB/VUI) 0.95) 0.85, (0.15, 0.85), 0.75, (0.05, 0.899 0.798, 0.087,

Table 4. Importance of decision makers expressed in terms of rough neutrosophic numbers 
DM D1 D2 D3 
LT VI I M 
RNN 

0.15) 0.15, (0.95,
 0.05), 0.05, (0.85,

0.20) 0.25, (0.85, 
0.10), 0.15, (0.75,

0.55) 0.45, (0.55,
 0.35), 0.35, (0.45,

NN 0.087 0.087, 0.899, 0.141 0.194, 0.798, 0.439 0.397, 0.497,

Table 5. Linguistic terms for rating the candidates innterms of rough neutrosophic numbers and neutrosophic numbers 

Table 6. Assessments of alternatives and attribute in terms of linguisterm terms given by three decision makers 

Alternatives (Ki) Decision Makers L1 L2 L3 L4 L5 L6

K1

D1 VG G G G G VG
D2 VG VG  G  G G VG
D3 G VG G G  VG  G

K2

D1 M G M G  G  M
D2 G MG G G MG G
D3 M G M MG M M

K3

D1 M VG G MG VG M
D2 M M G G M G
D3  G M M MG G VG

Linguistic terms RNNs         NNs 
Extremely Good/High (EG/EH) )00.0,00.0,00.1(),00.0,00.0,00.1( 000.0,000.0,000.1

Very Good/High (VG/VH) )15.0,15.0,95.0(),05.0,05.0,85.0( 0.087 0.087, 0.899,

Good/High (G/H) )20.0,25.0,85.0(),10.0,15.0,75.0( 0.141 0.194, 0.798,

Medium Good/High (MG/MH) )35.0,40.0,65.0(),25.0,30.0,55.0( 296.0,346.0,598.0

Medium/Fair (M/F) )55.0,55.0,55.0(),35.0,45.0,45.0( 439.0,497.0,497.0

MediumBad/MediumLaw(MB/ML) )65.0,70.0,40.0(),55.0,60.0,30.0( 598.0,648.0,346.0

Bad/Law (G/L) )85.0,80.0,25.0(),75.0,70.0,15.0( 798.0,748.0,194.0

Very Bad/Low (VB/VL) )95.0,90.0,15.0(),85.0,80.0,05.0( 899.0,849.0,087.0

VeryVeryBad/low(VVB/VVL) )95.0,85.0,05.0(),95.0,95.0,05.0( 950.0,899.0,050.0
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Table 7. Aggregated transformed rough neutrosophic decision matrix 

197.0
,212.0,755.0

175.0
,182.0,787.0

227.0
,281.0,686.0

186.0
,231.0,748.0

231.0
,217.0,735.0

333.0
,334.0,597.0

K

292.0
,307.0,637.0

242.0
,284.0,677.0

169.0
,223.0,761.0

292.0
,315.0,637.0

184.0
,239.0,741.0

292.0
,307.0,637.0

K

098.0
,106.0,880.0

125.0
,160.0,830.0

141.0
,194.0,798.0

141.0
,194.0,798.0

111.0
,126.0,867.0

098.0
,106.0,881.0

K

LLLLLL

3

2

1

654321

Table 8. Aggregated weighted rough neutrosophic decision matrix

                

335.0
,357.0,607.0

317.0
,348.0,609.0

358.0
,441.0,522.0

346.0
,416.0,551.0

353.0
,359.0,588.0

463.0
,471.0,454.0

K

414.0
,435.0,512.0

372.0
,429.0,524.0

309.0
,396.0,579.0

431.0
,480.0,469.0

344.0
,377.0,593.0

377.0
,449.0,485.0

K

253.0
,270.0,708.0

303.0
,331.0,642.0

286.0
,374.0,607.0

309.0
,388.0,588.0

252.0
,284.0,694.0

274.0
,289.0,670.0

K

LLLLLL

3

2

1

654321
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Abstract. Gathering the attitudes of the examined re-
spondents would be very significant in some evaluation 
models. Therefore, a multiple criteria approach based on 
the use of the neutrosophic set is considered in this paper. 

An example of the evaluation of restaurants is considered 
at the end of this paper with the aim to present in detail 
the proposed approach. 

Keywords: neutrosophic set, single valued neutrosophic set, multiple criteria evaluation.

1. Introduction
In order to deal with indeterminate and incon-

sistent information, Smarandache [1] proposed a 
neutrosophic set (NS), thus simultaneously providing 
a general framework generalizing the concepts of the clas-
sical, fuzzy [2], interval-valued [3, 4], intuitionistic [5] 
and interval-valued intuitionistic [6] fuzzy sets. 

The NS has been applied in different fields, such as: 
the database [7], image processing [8, 9, 10], the medical 
diagnosis [11, 12], decision making [13, 14], with a partic-
ular emphasis on multiple criteria decision making [15, 16, 
17, 18, 19, 20]. 

In addition to the membership function, or the so-
called truth-membership TA(x), proposed in fuzzy sets, At-
anassov [5] introduced the non-membership function, or 
the so-called falsity-membership FA(x), which expresses 
non-membership to a set, thus creating the basis for the 
solving of a much larger number of decision-making prob-
lems. 

In intuitionistic fuzzy sets, the indeterminacy )(xI A is 
)()(1 xFxT AA   by default. 

In the NS, Smarandache [21] introduced independent 
indeterminacy-membership )(xI A , thus making the NS
more flexible and the most suitable for solving some com-
plex decision-making problems, especially decision-
making problems related to the use of incomplete and im-
precise information, uncertainties and predictions and so 
on.  

Smarandache [1] and Wang et al. [22] further pro-
posed the single valued neutrosophic set (SVNS) suitable 
for solving many real-world decision-making problems.  

In multiple criteria evaluation models, where evalua-

tion is based on the ratings generated from respondents, the 
NS and the SVNS can provide some advantages in relation 
to the usage of crisp and other forms of fuzzy numbers. 

Therefore, the rest of this paper is organized as fol-
lows: in Section 2, some basic definitions related to the 
SVNS are given. In Section 3, an approach to the deter-
mining of criteria weights is presented, while Section 4 
proposes a multiple criteria evaluation model based on the 
use of the SVNS. In Section 5, an example is considered 
with the aim to explain in detail the proposed methodology. 
The conclusions are presented at the end of the manuscript. 

2. The Single Valued Neutrosophic Set
Definition 1. [21] Let X be the universe of discourse,

with a generic element in X denoted by x. Then, the Neu-
trosophic Set (NS) A in X is as follows:  

}|)(),(),({ XxxFxIxTxA AAA  , (1) 

where TA(x), IA(x) and FA(x) are the truth-membership 
function, the indeterminacy-membership function and the 
falsity-membership function, respectively, 

[1,0]:,, XFIT AAA and 0 TA(x)+IA(x)+UA(x) 
 3
Definition 2. [1, 22] Let X be the universe of dis-

course. The Single Valued Neutrosophic Set (SVNS) A 
over X is an object having the form: 

}|)(),(),({ XxxFxIxTxA AAA  , (2) 

where TA(x), IA(x) and FA(x) are the truth-membership 
function, the intermediacy-membership function and the 
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falsity-membership function, respectively, 
]1,0[:,, XFIT AAA and 0 ≤ TA(x)+IA(x)+UA(x) ≤ 3.

Definition 3. [21] For an SVNS A in X, the tri-
ple  AAA fit ,, is called the single valued neutrosophic 
number (SVNN). 

Definition 4. SVNNs. Let  1111 ,, fitx and 
 2222 ,, fitx  be two SVNNs and 0 ; then, the basic 

operations are defined as follows: 

 2121212121 ,, ffiittttxx . (3) 

 2121,21212121 , ffffiiiittxx . (4) 

  1111 ,,)1(1 fitx . (5) 

  )1(1,, 1111 fitx . (6) 

Definition 5. [23] Let  xx fitx , , x be a SVNN; 
then the cosine similarity measure S(x) between SVNN x 
and the ideal alternative (point) <1,0,0> can be defined as 
follows: 

  222 fit

tS x


 . (7) 

Definition 6. [23] Let  jjj fitA , , j  be a collection 
of SVNSs and T

nwwwW ),...,,( 21  be an associated 
weighting vector. Then the Single Valued Neutrosophic 
Weighted Average (SVNWA) operator of Aj is as follows: 
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j
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jjj fit
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1 11

1
21

)(,)(,)1(1

),...,,(

, (8) 

where: wj is the element j of the weighting vector, 
]1 ,0[jw and 11  

n
j jw . 

3. The SWARA Method
The Step-wise Weight Assessment Ratio Analysis

(SWARA) technique was proposed by Kersuliene et al. 
[25]. The computational procedure of the adapted SWARA 
method can be shown through the following steps: 

Step 1. Determine the set of the relevant evaluation 
criteria and sort them in descending order, based on their 
expected significances. 

Step 2. Starting from the second criterion, determine 
the relative importance sj of the criterion j in relation to the 
previous (j-1) criterion, and do so for each particular crite-
rion as follows: 























1

1

1

  1
  1
 1

jj

jj

jj

j

CCce ofsignificanwhen
CCse ofsignificanwhen
CCficance ofwhen signi

s




. (9) 

By using Eq. (9), respondents are capable of express-
ing their opinions more realistically compared to the ordi-
nary SWARA method, proposed by Kersuliene et al. [25]. 

Step 3. The third step in the adapted SWARA method 
should be performed as follows: 










12
11

js
j

k
j

j . (10) 

where kj is a coefficient. 
Step 4. Determine the recalculated weight qj as fol-

lows: 










 1
11

1 jkq
j

q
jj

j . (11) 

Step 5. Determine the relative weights of the evalua-
tion criteria as follows: 

 
n
k kjj qqw 1 , (12) 

where wj denotes the relative weight of the criterion j.

4. A Multiple Criteria Evaluation Model Based on
the Use of the SVNS

For a multiple criteria evaluation problem involving 
the m alternatives that should be evaluated by the K re-
spondents based on the n criteria, whereby the performanc-
es of alternatives are expressed by using the SVNS, the 
calculation procedure can be expressed as follows: 

The determination of the criteria weights. The deter-
mination of the criteria weights can be done by applying 
various methods, for example by using the AHP method. 
However, in this approach, it is recommended that the 
SWARA method should be used due to its simplicity and a 
smaller number of pairwise comparisons compared with 
the well-known AHP method. 

The determination of the criteria weight is done by us-
ing an interactive questionnaire made in a spreadsheet file. 
By using such an approach, the interviewee can see the 
calculated weights of the criteria, which enables him/her 
modify his or her answers if he or she is not satisfied with 
the calculated weights. 

Gathering the ratings of the alternatives in relation to 

the selected set of the evaluation criteria. Gathering the 
ratings of the alternatives in relation to the chosen set of 
criteria is also done by using an interactive questionnaire. 
In this questionnaire, a declarative sentence is formed for 
each one of the criteria, thus giving an opportunity to the 
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respondents to fill in their attitudes about the degree of 
truth, indeterminacy and falsehood of the statement. 

The formation of the separated ranking order based 

on the weights and ratings obtained from each respond-

ent. At this steep, the ranking order is formed for each one 
of the respondents, based on the respondent’s respective 
weights and ratings, in the following manner: 

 the determination of the overall ratings expressed 
in the form of the SVNN by using Eq. (8), for 
each respondent; 

 the determination of the cosine similarity measure, 
for each respondent; and 

 the determination of the ranking order, for each 
respondent. 

The determination of the most appropriate alternative. 
Contrary to the commonly used approach in group decision 
making, no group weights and ratings are used in this ap-
proach. As a result of that, there are the K ranking orders 
of the alternatives and the most appropriate alternative is 
the one determined on the basis of the theory of dominance 
[26]. 

5. A Numerical Illustration

In this numerical illustration, some results adopted
from a case study are used. In the said study, four tradi-
tional restaurants were evaluated based on the following 
criteria: 

 the interior of the building and the friendly at-
mosphere, 

 the helpfulness and friendliness of the staff, 
 the variety of traditional food and drinks, 
 the quality and the taste of the food and drinks, 

including the manner of serving them, and 
 the appropriate price for the quality of the services 

provided. 
The survey was conducted via e-mail, using an interac-

tive questionnaire, created in a spreadsheet file. By using 
such an approach, the interviewee could see the calculated 
weights of the criteria and was also able to modify his/her 
answers if he or she was not satisfied with the calculated 
weights. 

In order to explain the proposed approach, three com-
pleted surveys have been selected. The attitudes related to 
the weights of the criteria obtained in the first survey are 
shown in Table 1. Table 1 also accounts for the weights of 
the criteria. 

Criteria sj kj qj wj 

C1 1 1 0.15 
C2 1.00 1.00 1.00 0.15 
C3 1.15 0.85 1.18 0.18 
C4 1.30 0.70 1.68 0.26 
C5 1.00 1.00 1.68 0.26 

Table 1. The attitudes and the weights of the criteria obtained on the basis 
of the first of the three surveys 

The attitudes obtained from the three surveys, as well 
as the appropriate weights, are accounted for in Table 2. 

E1 E1 E1
sj wj sj wj sj wj

C1 0.15 0.16 0.19 
C2 1.00 0.15 1.00 0.16 1.00 0.19 
C3 1.15 0.18 1.20 0.20 1.05 0.20 
C4 1.30 0.26 1.10 0.22 1.10 0.22 
C5 1.00 0.26 1.10 0.25 0.95 0.21 

Table 2. The attitudes and the weights obtained from the three surveys 

The ratings of the alternatives expressed in terms of the 
SVNS obtained on the basis of the three surveys are given 
in Tables 3 to 5. 

C1 C2 C3 C4 C5 
wj 0.15 0.15 0.18 0.26 0.26 
A1 <0.8,0.1,0.3> <0.7,0.2,0.2> <0.8,0.1,0.1> <1,0.01,0.01> <0.8,0.1,0.1> 
A2 <0.7,0.1,0.2> <1.0,0.1,0.1> <1.0,0.2,0.1> <1,0.01,0.01> <0.8,0.1,0.1> 
A3 <0.7,0.1,0.1> <1.0,0.1,0.1> <0.7,0.1,0.1> <0.9,0.2,0.01> <0.9,0.1,0.1> 
A4 <0.7,0.3,0.3> <0.7,0.1,0.1> <0.8,0.1,0.2> <0.9,0.1,0.1> <0.9,0.1,0.1> 
Table 3. The ratings obtained based on the first survey 

C1 C2 C3 C4 C5 
wj 0.16 0.16 0.20 0.22 0.25 
A1 <0.8,0.1,0.4> <0.9,0.15,0.3> <0.9,0.2,0.2> <0.85,0.1,0.25> <1.0,0.1,0.2> 
A2 <0.9,0.15,0.3> <0.9,0.15,0.2> <1.0,0.3,0.2> <0.7,0.2,0.1> <0.8,0.2,0.3> 
A3 <0.6,0.15,0.3> <0.55,0.2,0.3> <0.55,0.3,0.3> <0.6,0.3,0.2> <0.7,0.2,0.3> 
A4 <0.6,0.4,0.5> <0.6,0.3,0.1> <0.6,0.1,0.2> <0.7,0.1,0.3> <0.5,0.2,0.4> 
Table 4. The ratings obtained based on the second survey 

C1 C2 C3 C4 C5 
wj 0.19 0.19 0.20 0.22 0.21 
A1 <1.0,0.1,0.1> <0.9,0.15,0.2> <1.0,0.2,0.1> <0.8,0.1,0.1> <0.9,0.1,0.2> 
A2 <0.8,0.15,0.3> <0.9,0.15,0.2> <1,0.2,0.2> <0.7,0.2,0.1> <0.8,0.2,0.3> 
A3 <0.6,0.15,0.3> <0.55,0.2,0.3> <0.55,0.3,0.3> <0.6,0.3,0.2> <0.7,0.2,0.3> 
A4 <0.8,0.4,0.5> <0.6,0.3,0.1> <0.6,0.4,0.1> <0.7,0.1,0.3> <0.5,0.2,0.4> 
Table 5. The ratings obtained from the third of the third survey 

The calculated overall ratings obtained on the basis of 
the first of the three surveys expressed in the form of 
SVNSs are presented in Table 6. The cosine similarity 
measures, calculated by using Eq. (7), as well as the rank-
ing order of the alternatives, are accounted for in Table 6.  

Overall ratings Si Rank 

A1 <1.0,0.06,0.07> 0.995 2 
A2 <1.0,0.06,0.06> 0.996 1 
A3 <1.0,0.12,0.06> 0.991 3 
A4 <1.0,0.12,0.13> 0.978 4 

Table 6. The ranking orders obtained on the basis of the ratings of the 
first survey 
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The ranking orders obtained based on all the three sur-
veys are accounted for in Table 7.  

E1 E2 E3 E1 E2 E3 
Si Si Si Rank Rank Rank 

A1 0.995 0.963 0.985 2 1 1 
A2 0.996 0.962 0.966 1 2 2 
A3 0.991 0.864 0.867 3 4 4 
A4 0.978 0.882 0.894 4 3 3 

Table 7. The ranking orders obtained from the three examinees 

According to Table 7, the most appropriate alternative 
based on the theory of dominance is the alternative denoted 
as A1. 

6. Conclusion

A new multiple criteria evaluation model based on us-
ing the single valued neutrosophic set is proposed in this 
paper. For the purpose of determining criteria weights, the 
SWARA method is applied due to its simplicity, whereas 
for the determination of the overall ratings for each re-
spondent, the SVNN is applied. In order to intentionally 
avoid the group determination of weights and ratings, the 
final selection of the most appropriate alternative is deter-
mined by applying the theory of dominance. In order to 
form a simple questionnaire and obtain the respondents’ 
real attitudes, a smaller number of the criteria were initially 
selected. The proposed model has proven to be far more 
flexible than the other MCDM-based models and is based 
on the conducted numerical example suitable for the solv-
ing of problems related to the selection of restaurants. The 
usability and efficiency of the proposed model have been 
demonstrated on the conducted numerical example.  
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Abstract. In this paper, we defined  (𝓘, 𝓣) −  standard 
neutrosophic rough sets based on an implicator 𝓘 and a t-
norm 𝓣 on 𝑫∗; lower and upper approximations of stand-
ard neutrosophic sets in a standard neutrosophic approxi-
mation are defined.  

Some properties of (𝓘, 𝓣) − standard neutrosophic rough 
sets are investigated. We consider the case when the neu-
trosophic components (truth, indeterminacy, and false-
hood) are totally dependent, single-valued, and hence their 
sum is ≤ 1. 

Keywords: standard neutrosophic, (𝓘, 𝓣) − standard neutrosophic rough sets 

1. Introduction

Rough set theory was introduced by Z. Pawlak in 1980s
[1]. It becomes a useful mathematical tool for data mining, 
especially for redundant and uncertain data. At first, the 
establishment of the rough set theory is based on 
equivalence relation. The set of equivalence classes of the 
universal set, obtained by an equivalence relation, is the 
basis for the construction of upper and lower approximation 
of the subset of the universal set. 

Fuzzy set theory was introduced by L.Zadeh since 1965 
[2]. Immediately, it became a useful method to study the 
problems of imprecision and uncertainty. Since, a lot of new 
theories treating imprecision and uncertainty have been 
introduced. For instance, Intuitionistic fuzzy sets were 
introduced in1986, by K. Atanassov [3], which is a 
generalization of the notion of a fuzzy set. When fuzzy set 
give the degree of membership of an element in a given set, 
Intuitionistic fuzzy set give a degree of membership and a 
degree of non-membership of an element in a given set. In 
1998 [22], F. Smarandache gave the concept of 
neutrosophic set which generalized fuzzy set and 
intuitionistic fuzzy set. This new concept is difficult to apply 
in the real appliction. It is a set in which each proposition is 
estimated to have a degree of truth (T), adegree of 
indeterminacy (I) and a degree of falsity (F). Over time, the 
subclass of neutrosophic sets was proposed. They are also 
more advantageous in the practical application. Wang et al. 
[11] proposed interval neutrosophic sets and some operators
of them. Smarandache [22] and Wang et al. [12] proposed a
single valued neutrosophic set as an instance of the
neutrosophic set accompanied with various set theoretic
operators and properties. Ye [13] defined the concept of
simplified neutrosophic sets, it is a set where each element
of the universe has a degree of truth, indeterminacy, and
falsity respectively and which lie between [0, 1] and some

operational laws for simplified neutrosophic sets and to 
propose two aggregation operators, including a simplified 
neutrosophic weighted arithmetic average operator and a 
simplified neutrosophic weighted geometric average 
operator. In 2013, B.C. Cuong and V. Kreinovich 
introduced the concept of picture fuzzy set [4,5], and picture 
fuzzy set is regarded  the standard neutrosophic set [6]. 

More recently, rough set have been developed into the 
fuzzy environment and obtained many interesting results. 
The approximation of rough (or fuzzy) sets in fuzzy 
approximation space gives us the fuzzy rough set [7,8,9]; 
and the approximation of fuzzy sets in crisp approximation 
space gives us the rough fuzzy set [8, 9]. In 2014, X.T. 
Nguyen introduces the rough picture fuzzy set as the result 
of approximation of a picture fuzzy set with respect to a 
crisp approximation space [18]. Radzikowska and Kerre 
defined (𝓘, 𝓣) − fuzzy rough sets [19], which determined by 
an implicator 𝓘 and a t-norm 𝓣 on [0,1]. In 2008, L. Zhou et 
al. [20] constructed (𝓘, 𝓣) − intuitionistic fuzzy rough sets 
determined by an implicator 𝓘 and a t-norm 𝓣 on 𝐿∗.  

In this paper, we considered the case when the 
neutrosophic components are single valued numbers in [0, 
1] and they are totally dependent [17], which means that
their sum is ≤ 1. We defined  (𝓘, 𝓣) − standard neutrosophic
rough sets based on an implicator 𝓘 and a t-norm 𝓣 on 𝐷∗;
in which,  implicator 𝓘 and a t-norm 𝓣 on 𝐷∗ is investigated
in [21].

2. Standard neutrosophic logic

We consider the set 𝐷∗ defined by the following definition. 

Definition 1. We denote: 
𝐷∗ = {𝑥 = (𝑥1, 𝑥2, 𝑥3)|𝑥1 + 𝑥2 + 𝑥3 ≤ 1, 𝑥𝑖 ∈ [0,1], 𝑖

= 1,2,3}
For  𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗, we define:
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𝑥 ≤𝐷∗ 𝑦  iff ((𝑥1 < 𝑦1) ∧ (𝑥3 ≥ 𝑦3)) ∨ ((𝑥1 =
𝑦1) ∧ (𝑥3 > 𝑦3)) ∨ ((𝑥1 = 𝑦1) ∧ (𝑥3 = 𝑦3) ∧ (𝑥2 ≤ 𝑦2)) ,
and  𝑥 = 𝑦 ⟺ (𝑥 ≤𝐷∗ 𝑦) ∧ ( 𝑦 ≤𝐷∗ 𝑥).
Then (𝐷∗, ≤𝐷∗) is a lattice, in which 0𝐷∗ = (0,0,1) ≤ 𝑥 ≤
1𝐷∗ = (1,0,0), ∀𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ . The meet operator
∧  and the join operator ∨  on ( 𝐷∗, ≤𝐷∗)  are defined as
follows: 
For  𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗,

𝑥 ∧ 𝑦 = (min(𝑥1, 𝑦1) , min(𝑥2, 𝑦2) , max(𝑥3, 𝑦3)),
𝑥 ∨ 𝑦 = (max(𝑥1, 𝑦1) , min(𝑥2, 𝑦2) , min(𝑥3, 𝑦3)).

On 𝐷∗, we consider logic operators as negation, t-norm, 
t-conorm, implication.

2.1.  Standard neutrosophic negation 

Definition 2. A standard neutrosophic negation is any 
nonincreasing 𝐷∗ → 𝐷∗  mapping 𝑛  satisfying 𝑛(0𝐷∗) =
1𝐷∗ và 𝑛(1𝐷∗) = 0𝐷∗.

Example 1. For all 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ , we have some
standard neutrosophic negations on 𝐷∗ as follows: 
+ 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)
+ 𝑛1(𝑥) = (𝑥3, 𝑥4, 𝑥2) where 𝑥4 = 1 − 𝑥1 − 𝑥2 − 𝑥3.

2.2.  Standard neutrosophic t-norm 

For 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗, we denote
Γ(𝑥) = {𝑦 ∈ 𝐷∗: 𝑦 = (𝑥1, 𝑦2, 𝑥3), 0 ≤ 𝑦2 ≤ 𝑥2}

Obviously, we have Γ(0𝐷∗) = 0𝐷∗, Γ(1𝐷∗) = 1𝐷∗.

Definition 3. A standard neutrosophic t-norm is an (𝐷∗)2 →
𝐷∗ mapping 𝓣 satisfying the following conditions 
(T1) 𝓣(𝑥, 𝑦) = 𝓣(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝐷∗  
(T2) 𝓣(𝑥, 𝓣(𝑦, 𝑧)) = 𝓣(𝓣(𝑥, 𝑦), 𝑧)), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ 
(T3) 𝓣(𝑥, 𝑦) ≤ 𝓣(𝑥, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ and 𝑦 ≤𝐷∗ 𝑧
(T4) 𝓣(1𝐷∗ , 𝑥) ∈ Γ(𝑥).

Example 2. Some standard neutrosophic t-norm, for all 
𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗

+ t-norm min: 𝓣𝑀(𝑥, 𝑦) = (𝑥1 ∧ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∨ 𝑦3)
+ t-norm product: 𝓣P(𝑥, 𝑦) = (𝑥1𝑦1, 𝑥2𝑦2, 𝑥3 + 𝑦3 − 𝑥3𝑦3)
+ t-norm Lukasiewicz: 𝓣𝐿(𝑥, 𝑦) = (max (0, 𝑥1+𝑦1 −
1), max (0, 𝑥2+𝑦2 − 1), min (1, 𝑥3 + 𝑦3)).

Remark 1. 
+ 𝓣(0𝐷∗ , 𝑥) = 0𝐷∗ for all 𝑥 ∈ 𝐷∗. Indeed, for all 𝑥 ∈ 𝐷∗ we
have 𝓣(0𝐷∗ , 𝑥) ≤ 𝓣(0𝐷∗,1𝐷∗) = 0𝐷∗

+𝓣(1𝐷∗ , 1𝐷∗) = 1𝐷∗ (obvious)

2.3.  Standard neutrosophic t-conorm 

Definition 4. A standard neutrosophic t-conorm is an 
(𝐷∗)2 → 𝐷∗ mapping 𝑆 satisfying the following conditions 
(S1) 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝐷∗  
(S2) 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧)), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ 
(S3) 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥, 𝑧), ∀𝑥, 𝑦, 𝑧 ∈ 𝐷∗ and 𝑦 ≤𝐷∗ 𝑧
(S4) 𝑆(0𝐷∗ , 𝑥) ∈ Γ(𝑥)

Example 3. Some standard neutrosophic t-norm, for all 
𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗

+ t-conorm max: 𝑆𝑀(𝑥, 𝑦) = (𝑥1 ∨ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∧ 𝑦3)
+ t-conorm product: 𝑆𝑃(𝑥, 𝑦) = (𝑥1+𝑦1 −
𝑥1 𝑦1, 𝑥2𝑦2, 𝑥3𝑦3)
+ t-conorm Luksiewicz: 𝑆𝐿(𝑥, 𝑦) =
(min (1, 𝑥1+𝑦1), max (0, 𝑥2+𝑦2 − 1), max (0, 𝑥3 + 𝑦3 −
1)). 

Remark 2. 
+ 𝑆(1𝐷∗ , 𝑥) = 1𝐷∗ for all 𝑥 ∈ 𝐷∗. Indeed, for all 𝑥 ∈ 𝐷∗ we
have 𝑆(0𝐷∗ , 1𝐷∗) ∈ Γ(1𝐷∗) = 1𝐷∗  so that ≤ 𝑆(0𝐷∗ , 1𝐷∗) ≤

𝑆(0𝐷∗,𝑥) ≤ 1𝐷∗.
+ 𝑆(0𝐷∗ , 0𝐷∗) = 0𝐷∗ (obvious).
A standard neutrosophic t-norm 𝓣  and a standard
neutrosophic  t-conorm 𝑆  on 𝐷∗  are said to be dual with
respect to (w.r.t) a standard neutrosophic negation 𝑛 if

𝓣(𝑛(𝑥), 𝑛(𝑦)) = 𝑛𝑆(𝑥, 𝑦)      ∀𝑥, 𝑦 ∈ 𝐷∗, 
𝑆(𝑛(𝑥), 𝑛(𝑦)) = 𝑛𝓣(𝑥, 𝑦)      ∀𝑥, 𝑦 ∈ 𝐷∗. 

Example 4. With negation 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)  we have
some t-norm and t-conorm dual as follows: 

a. 𝓣𝑀 and 𝑆𝑀

b. 𝓣𝑃 and 𝑆𝑃

c. 𝓣𝐿 and 𝑆𝐿

Many properties of t-norms, t-conorms, negations should be 
given in [21]. 

2.4 Standard neutrosophic implication operators 

In this section, we recall two classes of standard 
neutrosophic implication in [21]. 
A standard neutrosophic implication off class 1. 

Definition 5. A mapping 𝓘: (𝐷∗)2 → 𝐷∗ is referred to as a 
standard neutrosophic implicator off class 1 on 𝐷∗  if it 
satisfying following conditions: 
𝓘(0𝐷∗ , 0𝐷∗) = 1𝐷∗; 𝓘(0𝐷∗ , 1𝐷∗) = 1𝐷∗; 𝓘(1𝐷∗ , 1𝐷∗) = 1𝐷∗;

𝐼(1𝐷∗ , 0𝐷∗) = 0𝐷∗

Proposition 1. Let 𝓣, 𝑆 and 𝑛 be standard neutrosophic t-
norm 𝓣, a standard neutrosophic  t-conorm 𝑆 and a standard 
neutrosophic negation  on 𝐷∗, respectively. Then, we have 
a standard neutrosophic implication on 𝐷∗, which defined as 
following: 
𝓘𝑆,𝓣,𝑛(𝑥, 𝑦) = 𝑆(𝓣(𝑥, 𝑦), 𝑛(𝑥)), ∀𝑥, 𝑦 ∈ 𝐷∗.

Proof. 
We consider border conditions in definition  5. 

𝓘(0𝐷∗ , 0𝐷∗) =  𝑆(𝓣(0𝐷∗ , 0𝐷∗), 𝑛(0𝐷∗)) =
𝑆(0𝐷∗ , 1𝐷∗) = 1𝐷∗,

𝓘(0𝐷∗ , 1𝐷∗) =  𝑆(𝓣(0𝐷∗ , 1𝐷∗), 𝑛(0𝐷∗)) =
𝑆(0𝐷∗ , 1𝐷∗) = 1𝐷∗,

𝓘(1𝐷∗ , 1𝐷∗) =  𝑆(𝓣(1𝐷∗ , 1𝐷∗), 𝑛(1𝐷∗)) =
𝑆(1𝐷∗ , 0𝐷∗) = 1𝐷∗,
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and 
𝓘(1𝐷∗ , 0𝐷∗) =  𝑆(𝓣(1𝐷∗ , 0𝐷∗), 𝑛(1𝐷∗)) =

𝑆(0𝐷∗ , 0𝐷∗) = 0𝐷∗.
We have the proof.⧠ 

Example 5. For all 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷 ,
we have some standard neutrosophic implication of class 1 
on 𝐷∗ based on proposition 1 as follows 

a. If 𝓣 = 𝓣𝑀, 𝑆 = 𝑆𝑀  and 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)  then
𝓘𝑆𝑀,𝓣𝑀,𝑛0

(𝑥, 𝑦) =

(max(min(𝑥1, 𝑦1) , 𝑥3) , 0, min (max(𝑥3, 𝑦3) , 𝑥1).
b. If 𝓣 = 𝓣𝑃 , 𝑆 = 𝑆𝑃 and 𝑛1(𝑥) = (𝑥3, 𝑥4, 𝑥1) then

𝓘𝑆𝑃,𝓣𝑃,𝑛1
(𝑥, 𝑦) = (𝑥1𝑦1+𝑥3 −

𝑥1𝑦1𝑥3, 𝑥2𝑦2𝑥4, 𝑥1(𝑥3 + 𝑦3 − 𝑥3𝑦3)).

A standard neutrosophic implication off cals 2. 

Definition 6. A mapping 𝓘: (𝐷∗)2 → 𝐷∗ is referred to as a 
standard neutrosophic implicator off class 2 on 𝐷∗ if it is 
decreasing in its first component, increasing in its second 
component and satisfying following conditions: 

𝓘(0𝐷∗ , 0𝐷∗) = 1𝐷∗;  𝓘(1𝐷∗ , 1𝐷∗) = 1𝐷∗;
𝓘(1𝐷∗ , 0𝐷∗) = 0𝐷∗

Definition 7. A standard neutrosophic implicator 𝓘 off class 
2 is called boder standard neutrosophic implication if  
𝓘(1D∗ , 𝑥) = 𝑥 for all 𝑥 ∈ 𝐷∗.

Proposition 2. Let 𝓣, 𝑆 and 𝑛 be standard neutrosophic t-
norm 𝓣, a standard neutrosophic  t-conorm 𝑆 and a standard 
neutrosophic negation  on 𝐷∗, respectively. Then, we have 
a standard neutrosophic implication on 𝐷∗, which defined as 
following: 

𝓘𝑆,𝑛(𝑥, 𝑦) = 𝑆(𝑛(𝑥), 𝑦), ∀𝑥, 𝑦 ∈ 𝐷∗.

Example 6. For all 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷 ,
we have some standard neutrosophic implication of class 1 
on 𝐷∗ based on proposition ? as follows 

a. If 𝑆 = 𝑆𝑀 and 𝑛0(𝑥) = (𝑥3, 0, 𝑥1)  then
𝓘𝑆𝑀,𝑛0

(𝑥, 𝑦) = (max (x3, y1),0, min (𝑥1, 𝑦3))

b. If 𝑆 = 𝑆𝑃 and 𝑛1(𝑥) = (𝑥3, 𝑥4, 𝑥1) then
𝓘𝑆𝑃,𝑛1

(𝑥, 𝑦) = (𝑥3+𝑦1 − 𝑥3𝑦1, 𝑥4𝑦2, 𝑥1𝑦3)

Note that, we can define the negation operators from 
implication operators, such as, the mapping 𝑛𝓘(𝑥) =
𝓘(𝑥, 0𝐷∗), ∀𝑥 ∈ 𝐷∗, is a standard negation on 𝐷∗.  For
example, if 
𝓘𝑆𝑃,𝑛1

(𝑥, 𝑦) = (𝑥3+𝑦1 − 𝑥3𝑦1, 𝑥4𝑦2, 𝑥1𝑦3)  then we
obtain 𝑛𝐼𝑆𝑃,𝑛1

(𝑥) = 𝓘𝑆𝑃,𝑛1
(𝑥, 0𝐷∗) = (𝑥3, 0, 𝑥1) =

𝑛0(𝑥).

2.5 Standard neutrosophic set 

Definition 8.  Let 𝑈  be a universal set. A standard 
neutrosophic (PF) set A on the universe U is an object of the 

form       A  A AA { x,μ x ,η x ,  γ x | x U} 

where μA(x)(∈ [0,1])  is called the “degree of positive

membership of x  in A ”, ηA(x)(∈ [0,1])  is called the
“degree of neutral membership of  x  in A ” and 

    Aγ x 0,1 γA(x)(∈ [0,1]) is called the “degree of

negative membership of x  in A ”, and where A Aμ ,  η
μA, γAand Aγ ηAsatisfy the following condition:

       A  A Aμ x η x  γ x 1,    x X     μA(x) + γA(x) +

ηA(x)) ≤ 1, (∀x ∈ X).

The family of all standard neutrosophic set in U is denoted 
by PFS(U). 

3. Standard neutrosophic rough set

Definition 9. 
Suppose that 𝑅 is a standard neutrosophic relation on the set 
of universe 𝑈. 𝓣 is a 𝑡 −norm on 𝐷∗, 𝓘 an implication on 
𝐷∗ , for all 𝐹 ∈ 𝑃𝐹𝑆(𝑈) , we denote 𝐹(𝑣) =
(𝜇𝐹(𝑣), 𝜂𝐹(𝑣), 𝛾𝐹(𝑣)) . Then (𝑈, 𝑅)  is a standard neutro-
sophic approximation space. We define the upper and lower 
approximation set of 𝐹 on (𝑈, 𝑅) as following 

�̅�𝓣(𝐹)(𝑢) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑢, 𝑣), 𝐹(𝑣)), ∀𝑢 ∈ 𝑈

and 
𝑅𝓘(𝐹)(𝑢) = ∧

𝑣∈𝑈 
𝓘(𝑅(𝑢, 𝑣), 𝐹(𝑣)), 𝑢 ∈ 𝑈.

Example 7. Let 𝑈 = {𝑎, 𝑏, 𝑐}  be an universe and 𝑅 is a 
standard neutrosophic relation on 𝑈 

𝑅 = (

(0.7,0.2,0.1) (0.6,0.2,0.1) (0.5,0.3,0.2)
(0.5,0.4,0.1) (0.6,0.1,0.2) (0.5,0.1,0.2)
(0.3,0.5,0.1) (0.4,0.2,0.3) (0.7,0.1,0.1)

)

A standard neutrosophic on 𝑈  is  𝐹 =
{〈𝑎, 0,6,0.2,0.2〉, 〈𝑏, 0.5,0.3,0.1〉, 〈𝑐, (0.7,0.2,0.1)〉} . Let 
𝓣𝑀(𝑥, 𝑦) = (𝑥1 ∧ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∨ 𝑦3) be a t-norm on 𝐷∗ ,
and 𝓘(𝑥, 𝑦) = (𝑥3 ∨ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥1 ∧ 𝑦3) be an implication
on 𝐷∗, forall  𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈
𝐷∗, We compute 

𝓣(𝑅(𝑎, 𝑎), 𝐹(𝑎)) = 𝓣((0.7,0.2, 0.1), (0.6,0.2,0.2))

= (0.6,0.2,0.2)

𝓣(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.2,0.1), (0.5,0.3,0.1))

= (0.5,0.2,0.1)

𝓣(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓣((0.5,0.3,0.2), (0.7,0.2,0.1))

= (0.5,0.2,0.2)

Hence  �̅�𝑇(𝐹)(𝑎) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑎, 𝑣), 𝐹(𝑣)) = (0.6,0.2,0.1). 
And 

𝓣(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓣((0.5,0.4, 0.1), (0.6,0.2,0.2))

= (0.5,0.2,0.2)

𝓣(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.1,0.2), (0.5,0.3,0.1))

= (0.5,0.1,0.3)

𝓣(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓣((0.5,0.1,0.2), (0.7,0.2,0.1))

= (0.5,0.1,0.2)

Hence  �̅�𝓣(𝐹)(𝑏) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑏, 𝑣), 𝐹(𝑣)) = (0.5,0.1,0.2)
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𝓣(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓣((0.3,0.5, 0.1), (0.6,0.2,0.2))

= (0.3,0.2,0.2)

𝓣(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓣((0.4,0.2,0.3), (0.5,0.3,0.1))

= (0.4,0.2,0.3)

𝓣(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓣((0.7,0.1,0.1), (0.7,0.2,0.1))

= (0.7,0.1,0.1)

So that  �̅�𝓣(𝐹)(𝑐) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑐, 𝑣), 𝐹(𝑣)) = (0.7,0.1,0.1). 

We obtain the upper approximation  �̅�𝑇(𝐹) =
(0.6,0.2,0.1)

𝑎
+

(0.5,0.1,0.2)

𝑏
+

(0.7,0.1,0.1)

𝑐
. 

Similarly, computing with the lower approximation  set, we 
have 𝓘((0.7,0.2, 0.1), (0.6,0.2,0.2)) = (0.1,0.2, 0.7) ∨
(0.6,0.2,0.2) = (0.6,0.2,0.2)

𝓘(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.2,0.1), (0.5,0.3,0.1))

= (0.1,0.2,0.6) ∨ (0.5,0.3,0.1)
= (0.5,0.2,0.1)

𝓘(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓘((0.5,0.3,0.2), (0.7,0.2,0.1))

= (0.2,0.3,0.5) ∨ (0.7,0.2,0.1)
= (0.7,0.2,0.1)

𝑅𝓘(𝐹)(𝑎) = ∧
𝑣∈𝑈 

𝓘(𝑅(𝑎, 𝑣), 𝐹(𝑣)) = (0.5,0.2,0.2). 
And 

𝓘(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓘((0.5,0.4, 0.1), (0.6,0.2,0.2))

= (0.6,0.2,0.1)

𝓘(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.1,0.2), (0.5,0.3,0.1))

= (0.5,0.1,0.1)

𝓘(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓘((0.5,0.1,0.2), (0.7,0.2,0.1))

= (0.7,0.1,0.1)

𝑅𝓘(𝐹)(𝑏) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑏, 𝑣), 𝐹(𝑣)) = (0.5,0.1,0.1). 
𝓘(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓘((0.3,0.5, 0.1), (0.6,0.2,0.2))

= (0.6,0.2,0.1)

𝓘(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓘((0.4,0.2,0.3), (0.5,0.3,0.1))

= (0.5,0.2,0.1)

𝓘(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓘((0.7,0.1,0.1), (0.7,0.2,0.1))

= (0.7,0.1,0.1)

Hence  𝑅𝓘(𝐹)(𝑐) = ∧
𝑣∈𝑈 

𝓘(𝑅(𝑐, 𝑣), 𝐹(𝑣)) = (0.5,0.1,0.1). 
So that  
𝑅𝓘(𝐹) =

(0.5,0.2,0.2)

𝑎
+

(0.5,0.1,0.1)

𝑏
+

(0.5,0.1,0.1)

𝑐
.

Now, we have the upper and lower approximations of 𝐹 =
(0,6,0.2,0.2)

𝑎
+

(0.5,0.3,0.1)

𝑏
+

(0.7,0.2,0.1)

𝑐
  are 

�̅�𝓣(𝐹) =
(0,6,0.2,0.1)

𝑎
+

(0.5,0.1,0.2)

𝑏
+

(0.7,0.1,0.1)

𝑐
and 

𝑅𝓘(𝐹) =
(0.5,0.2,0.2)

𝑎
+

(0.5,0.1,0.1)

𝑏
+

(0.5,0.1,0.1)

𝑐
Example 8. Let 𝑈 = {𝑎, 𝑏, 𝑐} be an universe set.  And 𝑅 is 
a standard neutrosophic relation on 𝑈 with 

𝑅 = (

(1,0,0) (0.6,0.3,0) (0.6,0.3,0)
(0.6,0.3,0) (1,0,0) (0.6,0.3,0)
(0.6,0.3,0) (0.6,0.3,0) (1,0,0)

)

Let 𝐹 =
(0.4,0.3,0.3)

𝑎
+

(0.5,0.2,0.3)

𝑏
+

(0.4,0.4,0.1)

𝑐
be standard 

neutrosophic set on 𝑈 . A 𝑡 −  norm 𝓣(𝑥, 𝑦) = (𝑥1 ∧
𝑦1, 𝑥2 ∧ 𝑦2, 𝑥3 ∨ 𝑦3), and an implication operator 𝓘(𝑥, 𝑦) =
(𝑥3 ∨ 𝑦1, 𝑥2 ∧ 𝑦2, 𝑥1 ∧ 𝑦3)  for all  𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝐷∗ ,
𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝐷∗, we put

𝓣(𝑅(𝑎, 𝑎), 𝐹(𝑎)) = 𝓣((1,0, 0), (0.7,0.2,0.1))

= (0.7,0,0.1)

𝓣(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.3,0), (0.5,0.2,0.3))

= (0.5,0.2,0.3)

𝓣(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓣((0.6,0.3,0), (0.4,0.4,0.1))

= (0.4,0.3,0.1)

Then �̅�𝓣(𝐹)(𝑎) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑎, 𝑣), 𝐹(𝑣)) = (0.7,0,0.1). 

𝓣(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓣((0.6,0.3, 0), (0.7,0.2,0.1))

= (0.6,0.2,0.1)

𝓣(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓣((1,0,0), (0.5,0.2,0.3))

= (0.5,0,0.3)

𝓣(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓣((0.6,0.3,0), (0.4,0.4,0.1))

= (0.4,0.3,0.1)

Hence �̅�𝓣(𝐹)(𝑏) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑏, 𝑣), 𝐹(𝑣)) = (0.6,0,0.1). 

𝓣(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓣((0.6,0.3, 0), (0.7,0.2,0.1))

= (0.6,0.2,0.1)

𝓣(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓣((0.6,0.3,0), (0.5,0.2,0.3))

= (0.5,0.2,0.3)

𝓣(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓣((1,0,0), (0.4,0.4,0.1))

= (0.4,0,0.1)

�̅�𝓣(𝐹)(𝑎) = ⋁
𝑣∈𝑈

𝓣(𝑅(𝑎, 𝑣), 𝐹(𝑣)) =

(0.6,0,0.1). 
We obtain the upper approximation set �̅�𝓣(𝐹) =

(0.7,0,0.1)

𝑎
+

(0.6,0,0.1)

𝑏
+

(0.6,0,0.1)

𝑐
. 

Similarly, computing with the lower approximation, we 
have 
𝓘(𝑅(𝑎, 𝑎), 𝐹(𝑎)) = 𝓘((1,0, 0), (0.7,0.2,0.1))

= (0,0, 1) ∨ (0.7,0.2,0.1) = (0.7,0,0.1)

𝓘(𝑅(𝑎, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.3,0), (0.5,0.2,0.3))

= (0,0.3,0.6) ∨ (0.5,0.2,0.3)
= (0.5,0.2,0.3)

𝓘(𝑅(𝑎, 𝑐), 𝐹(𝑐)) = 𝓘((0.6,0.3,0), (0.4,0.4,0.1))

= (0,0.3,0.6) ∨ (0.4,0.4,0.1)
= (0.4,0.3,0.1)

𝑅𝓘(𝐹)(𝑎) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑎, 𝑣), 𝐹(𝑣)) = (0.4,0,0.3). 

Compute 
𝓘(𝑅(𝑏, 𝑎), 𝐹(𝑎)) = 𝓘((0.6,0.3, 0), (0.7,0.2,0.1))

= (0,0.3, 0.6) ∨ (0.7,0.2,0.1)
= (0.7,0.2,0.1)

𝓘(𝑅(𝑏, 𝑏), 𝐹(𝑏)) = 𝓘((1,0,0), (0.5,0.2,0.3))

= (0,0,1) ∨ (0.5,0.2,0.3) = (0.5,0,0.3)
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𝓘(𝑅(𝑏, 𝑐), 𝐹(𝑐)) = 𝓘((0.6,0.3,0), (0.4,0.4,0.1))

= (0,0.3,0.6) ∨ (0.4,0.4,0.1)
= (0.4,0.3,0.1)

𝑅𝓘(𝐹)(𝑏) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑏, 𝑣), 𝐹(𝑣)) = (0.4,0,0.3). 
and 

𝓘(𝑅(𝑐, 𝑎), 𝐹(𝑎)) = 𝓘((0.6,0.3, 0), (0.7,0.2,0.1))

= (0,0.3, 0.6) ∨ (0.7,0.2,0.1)
= (0.7,0.2,0.1)

𝓘(𝑅(𝑐, 𝑏), 𝐹(𝑏)) = 𝓘((0.6,0.3, 0), (0.5,0.2,0.3))

= (0,0.3, 0.6) ∨ (0.5,0.2,0.3)
= (0.5,0.2,0.3)

𝓘(𝑅(𝑐, 𝑐), 𝐹(𝑐)) = 𝓘((1,0,0), (0.4,0.4,0.1))

= (0,0,1) ∨ (0.4,0.4,0.1) = (0.4,0,0.1)

𝑅𝓘(𝐹)(𝑐) = ∧
𝑣∈𝑈 

𝓘(𝑇(𝑐, 𝑣), 𝐹(𝑣)) = (0.4,0,0.3). 
Hence 

𝑅𝓘(𝐹) =
(0.4,0,0.1)

𝑎
+

(0.4,0,0.3)

𝑏
+

(0.4,0,0.3)

𝑐
Now, we have the upper and lower approximation sets of 
𝐹 =

(0.4,0.3,0.3)

𝑎
+

(0.5,0.2,0.3)

𝑏
+

(0.4,0.4,0.1)

𝑐
 as following 

�̅�𝓣(𝐹) =
(0.7,0,0.1)

𝑎
+

(0.6,0,0.1)

𝑏
+

(0.6,0,0.1)

𝑐
and 

𝑅𝓘(𝐹) =
(0.4,0,0.3)

𝑎
+

(0.4,0,0.3)

𝑏
+

(0.4,0,0.3)

𝑐
 . 

Remark 3. If R is reflexive, symmetric transitive then 
𝑅𝓘(𝐹) ⊂ 𝐹 ⊂ �̅�𝓣(𝐹).

4. Some properties of standard neutrosophic
rough set

Theorem 1. Let (𝑈, 𝑅) be the standard neutrosophic ap-
proximation space.  Let 𝓣, 𝑆 be the t-norm , and t –conorm 
𝐷∗, 𝑛 is a negative on 𝐷∗. If  𝑆 and T are dual w.r.t 𝑛 then 

(i) ∼𝑛 𝑅𝓘(𝐴) = �̅�𝓣(~𝑛𝐴)

(ii) ∼𝑛 �̅�𝓣(𝐴) = 𝑅𝓘(~𝐴)

where 𝓘(𝑥, 𝑦) = 𝑆(𝑛(𝑥), 𝑦), ∀𝑥, 𝑦 ∈ 𝐷∗. 

Proof. 

(i) ∼𝑛 �̅�𝓣(~𝑛𝐴) = 𝑅𝓘(𝐴) .

Indeed, for all 𝑥 ∈ 𝑈, we have 

�̅�𝓣(~𝑛𝐴)(𝑥) = ∨
𝑦∈𝑈 

𝓣[𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)] 

= ∨
𝑦∈𝑈 

𝑛𝑆[𝑛𝑅(𝑥, 𝑦), 𝑛(∼𝑛 𝐴(𝑦))] 

= ∨
𝑦∈𝑈 

𝑛𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)] . 

Moreover, 

𝑅𝓘(𝐴)(𝑥) = ∧
𝑦∈𝑈 

𝓘(𝑅(𝑥, 𝑦), 𝐴(𝑦))

= ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)] 

Hence 

∼𝑛 𝑅𝓘(𝐴)(𝑥)(𝑥) = 𝑛( ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)])

=  = ∨
𝑦∈𝑈 

𝑛𝑆[𝑛𝑅(𝑥, 𝑦), 𝐴(𝑦)] 

and      �̅�𝑇(~𝑛𝐴)(𝑥) =∼𝑛 𝑅𝓘(𝐴)(𝑥), ∀𝑥 ∈ 𝑈.

(ii) 𝑅𝓘(~𝑛𝐴) =∼𝑛 �̅�𝓣(𝐴)

Indeed, for all  𝑥 ∈ 𝑈 we have 

𝑅𝓘(~𝑛𝐴)(𝑥) = ∧
𝑦∈𝑈 

𝓘(𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)), 𝑥 ∈

𝑈 = ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)] 

And ~𝑛

�̅�𝑇(𝐴)(𝑥) = 𝑛( ∨
𝑦∈𝑈 

𝓣[𝑅(𝑥, 𝑦), 𝐴(𝑦))]) = ∨
𝑦∈𝑈 

𝑛𝓣[𝑅(𝑥, 𝑦), 𝐴(𝑦)] 

= ∧
𝑦∈𝑈 

𝑆[𝑛𝑅(𝑥, 𝑦), ∼𝑛 𝐴(𝑦)] 

It means that 𝑅𝓘(~𝑛𝐴)(𝑥) =∼𝑛 �̅�𝓣(𝐴)(𝑥), ∀𝑥 ∈ 𝑈. ⧠

Theorem 2. a) �̅�𝓣((𝛼, 𝛽, 𝜃)̂ ) ⊂ (𝛼, 𝛽, 𝜃)̂ , where
(𝛼, 𝛽, 𝜃)̂ 𝑥 = (𝛼, 𝛽, 𝜃) , ∀𝑥 ∈ 𝑈

b) 𝑅𝓘((𝛼, 𝛽, 𝜃))̂ ⊃ (𝛼, 𝛽, 𝜃)̂ , where 𝐼 is a
border implication in class 2. 

Proof. 

a) We have
�̅�𝓣((𝛼, 𝛽, 𝜃)̂ )(𝑢) =

∨
𝑣∈𝑈

𝓣 (𝑅(𝑢, 𝑣), (𝛼, 𝛽, 𝜃)̂ (𝑣)) =

𝓣 ( ∨
𝑣∈𝑈

𝑅(𝑢, 𝑣), (𝛼, 𝛽, 𝜃)) ≤𝐷∗ 𝓣(1𝐷∗ , (𝛼, 𝛽, 𝜃))

= (𝛼, 𝛽, 𝜃) = (𝛼, 𝛽, 𝜃)̂ (𝑢),  ∀𝑢 ∈ 𝑈

b) We have

𝑅𝓘((𝛼, 𝛽, 𝜃)̂ )(𝑢) =

∧
𝑣∈𝑈 

𝓘 (
𝑅(𝑢, 𝑣),

(𝛼, 𝛽, 𝜃)̂ (𝑣)
) = ∧

𝑣∈𝑈 
𝓘 (

𝑅(𝑢, 𝑣),
(𝛼, 𝛽, 𝜃)

) ≥𝐷∗  ∧
𝑣∈𝑈 

𝓘(1𝐷∗ , (𝛼, 𝛽, 𝜃)) =

(𝛼, 𝛽, 𝜃) = (𝛼, 𝛽, 𝜃)̂ (𝑢),  ∀𝑢 ∈ 𝑈⧠

5. Conclusion

In this paper, we introduce the ( 𝓘, 𝓣) −  standard 
neutrosophic rough sets based on an implicator 𝓘 and a t-
norm 𝓣 on 𝐷∗, lower and upper approximations of standard 
neutrosophic sets in a standard neutrosophic approximation 
are first introduced. We also have some notes on logic 
operations. Some properties of ( 𝓘, 𝓣) −  standard 
neutrosophic rough sets are investigated. In the feature, we 
will investigate more properties on ( 𝓘, 𝓣) −  standard 
neutrosophic rough sets. 
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Abstract 

In our lives, reality becomes a game, and in the same way, the game becomes reality, the game 
is an exercise, simulation of real life on a smaller scale, then it extends itself into reality. This 
article aims to make a connection between decision making in game which comprises all the issues 
that intervene in the process and further making a connection with real life. The method for 
identification involved, detected or induced uncertainties is a jointing process from linked data 
fuzzy to neutrosophic data set on a case study, EVE Online game. This analysis is useful for 
psychologists, sociologists, economic analysis, process management, business area, also for 
researchers of games domain. 

Keywords 

Game theory, real life, decision making, neutrosophic theory, uncertainty. 

1. Introduction
The aim of this study is to offer a method of refining the uncertainties, neutral states appeared

in a process being a game reflected in the real life, through neutrosophic theory. 
In higher forms concerning us, we can associate the function of play as derived from two basic 

aspects met by us: “as a contest for something or a representation of something”, as asserts 
Huizinga (Huizinga,1980, p.13). 

The games, in their configuration, structure, follow the rules, procedures, concepts defined by 
game theory.  There are three categories of games: games of skills, games of chance and games of 
strategy. 

Games of chance type face uncertainty and risk in decision making process (Janis, Mann, 1977). 
These decisions are evaluated, analyzed and taken in accordance with game theory, according to 
the social system involved. 

Neutrosophic theory applied in decision making for solving the uncertainties matches with 
game theory requirements (Von Neumann, Morgenstern, 1944). 
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From the multitude of games we chose to study neutrosophic making decisions, for the case of 
the EVE online, a complex game both as structure and players, involving complex criteria of the 
decisions making mechanism.  

We have to take into consideration that Dr. Eyjólfur Guðmundsson as economist of the game 
EVE Online, applied the concept of Vernon Smith, Nobel Laureate for experimental economics, 
asserting: "This would be any economist's dream, because this is not just an experiment, this is 
more like a simulation. More like a fully-fledged system where you can input to see what happens" 
(http://www.ibtimes.co.uk/eve-online-meet-man-controlling-18-million-space-economy-
1447437). 

Our opinion is that the game is a precious source of ideas, energy, adrenaline, a simulator, an 
exercise for real life that promotes success but also decay through addiction, tolerance and thus it 
can be treated just like drugs. But we want to discuss only the positive side of the game. 

This game covers both linked data and social media practices, in this context, social media 
representing computer-mediated tools that allow people or entities to create, share, or exchange 
information, emotions, feelings, ideas, pictures/videos in virtual communities and networks and 
on the other side, to provide linked data as method of publishing structured data, interlinked and 
to become more useful through semantic queries.  It builds upon standard Web technologies (such 
as HTTP, RDF and URIs). It extends them to share information in a way that can be read 
automatically by computers.  

2. Background
We are surrounded by data characterized by the performance of our activities, the fuel efficiency

of our cars, a multitude of products from different vendors, the values of the air parameters, or the 
way our taxes are spent.  It helps us to make better decision; this data is playing an increasingly 
central role in our lives, driving the emergence of data economy. Increasing numbers of individuals 
and organizations are contributing to this deluge by choosing to share their data with others. 
Availability of data is very important in evaluating, analysis, making decision process (Heath, 
Bizer, 2011). 

2.1 Fundamentals of  Neutrosophic Theory 
Uncertainty represents an unsolved situation, it defines a fuzziness state. Uncertainty is an 

actant’s subjective state related to a phenomenon, or decision making, and it becomes objective 
when it is inserted in a probability calculus system or into an algorithm. 

It is mentioned in specialty literature that Zadeh introduced the degree of membership/truth (t), 
the rest would be (1-t) equal to f, their sum being 1, so he defined the fuzzy set in 1965 (Zadeh, 
1965). Further, Atanassov introduced the degree of non- membership /falsehood (f) and he defined 
the intuitionistic fuzzy set (Atanassov, 1986), asserting: if 0<= t + f<= 1 and 0<= 1 – t – f, it would 
be interpreted as indeterminacy t + f <= 1. In this case, the indeterminacy state, as proposition, 
cannot be described in fuzzy logic, is missing the uncertainty state; the neutrosophic logic helps to 
make a distinction between a “relative truth” and an “absolute truth”, while fuzzy logic does not.  
As novelty to previous theory, Smarandache introduced and defined explicitly the degree of 
indeterminacy/ neutrality (i) as independent component 0 <= t+ i +f<= 3 . In neutrosophy set, the 
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three components t, i, f are independent because it is possible from a source to get (t), from another 
independent source to get (i) and from the third source to get (f). Smarandache goes further; he 
refined the range (Smarandache, 2005). 

Neutrosophic Set:  Let U be a universe of discourse, and M a set included in U.  An element x 
from U is noted with respect to the set M as x(T, I, F) and belongs to M in the following way:  it 
is t% true in the set, i% indeterminate (unknown if it is) in the set, and f% false, where t varies in 
T, i varies in I, f varies in F (Smarandache, 2005). 

Statically T, I, F are subsets, but dynamically T, I, F are functions/operators depending on many 
known or unknown parameters. Neutrosophic set generalizes the fuzzy set (especially intuitionistic 
fuzzy set), paraconsistent set, intuitionistic set, etc. 

2.2 Applicability of Neutrosophic Theory 
Applicability of neutrosophic theory is large, from social sciences such as sociology, 

philosophy, literature, arts (Smarandache, Vlăduțescu, 2014; Smarandache, 2015; Păun, 
Teodorescu, 2014; Opran, Voinea, Teodorescu,2014; Smarandache, Gîfu, Teodorescu, 2015 ) to 
sciences such as physics, artificial intelligence, mathematics (Smarandache, Vlădăreanu, 2014). 

There are some remarkable results of netrosophic theory applied in practical applications such 
as artificial intelligence (Gal et al, 2014), in robotics there are confirmed results of neutrosofics 
logics applied to make decisions for uncertainty situations  (Okuyama  el al 2013; Smarandache, 
2011), also for the real-time adaptive networked control of the robot movement on surface with 
uncertainties (Smarandache, 2014). 

Athar Kharal has also a contribution to multi criteria making decision (MCDM) developing an 
algorithm of uncertainty criteria selection using neutrosophic sets. The proposed method allows 
the degree of satisfiability (t), non-satisfiability (f) and indeterminacy (i) mentioning a set of 
criteria represented by neutrosophic sets (Kharal, 2014).  

There is no instant game, or instant action; if they existed, it would involve a very limited time 
fund, if they were instant, we could calculate the uncertainty, we should not have too many 
variables. If the time is longer, more variables appear, more uncertainties. We evaluate the situation 
“1” according to what every social actor wants, it is the sustained decision. The state "0" represents 
the decision that is rejected by social actors. Between “0” and “1” remain states of uncertainty, 
neutrality, uncertain decisions. In this manner we extend the fuzzy theory to neutrosophic theory. 
In fact, the novelty of neutrosophy consists of approaching the indeterminacy status. (Smarandahe, 
2005). 

Starting of this point, we are confidence that neutrosophic theory can help to analyze, evaluate 
and make the right decision in process analysis taking into account all sources that can generate 
uncertainty, from human being (not appropriate skill), logistics concept, lack of information, 
programming automation process according to requirements, etc.   
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3. Games, elements of culture, double articulated

Probably, Ludwig Wittgenstein was the first academic philosopher who addressed the definition 
of the word game. In his work, Philosophical Investigations, Wittgenstein argued that the 
“elements of games, such as play, rules, and competition”, all contribute to define what games are, 
but not totally (Wittgenstein, 1953).  
Jean Piaget suggested in his work, Genetic Epistemology, “that children think differently than 
adults and proposed a stage theory of cognitive development”. He was the first one to note that 
children play an active role in gaining knowledge of the world, playing games; children can be 
thought of as "little scientists" who are actively constructing their knowledge and understanding 
of the world (Piaget, 1970; Piaget, 1983). 

Argument 1.

Games are culture related, everything is repeated by as many people as possible, and it becomes 
acceptable to most, spread and cultivated (e.g. internet; it shows a minimal know-how). Culture is 
a complex principle of behavior, spiritual and material values created by mankind, beliefs, tradition 
and art, passed down from generation to generation. The sense of culture finds its significance in 
the life of an individual and society. In this context, "any authentic creation is a gift to the future." 
– asserts Albert Camus.

For humans, culture is the specific environment of existence. It defines an existential field,
characterized by a synthesis between objective and subjective, between real and ideal. Culture 
defines a synthetic human way of existence and it is the symbol of man's creative force. It 
represents a real value system. 

Argument 2.

Games produce culture, the Internet being unlimited, is a huge catalyst of desire. It is a sublime 
achievement in economic terms. For example, the Internet can offer so many texts about Kant that 
you never got around to finish in silence any of his “Critiques”. The time of assimilation is now 
dedicated to search. More than ever, McLuhan's equation says it all about the Internet: “The 
medium is the message”, says a voice that is heard beyond any meaning of utterances made. Only 
the pleasure, the voice, the search on Internet are now authentic. Time is limited, not space. From 
time only desire can provide the intensity necessary to forget this ontological asymmetry (Luhan, 
1967). 

The Internet allows many people to discover their identity more easily. Some people who were 
shy or lonely or feel unattractive, discover that they can socialize more successfully and express 
themselves more freely in an online environment. 
Being able to pretend you are someone else is an important mental skill that the child acquires if 
he is involved in such games. The same thing is experienced by an adult on Internet games, on 
Facebook, for example, a doubling of personality, a place where you can be different, without 
constraints, where you are at your own free will, where decision belongs entirely to you, where 
only uncertainties hinder you. You can think what you want but you can never think of everything 
that can be thought. If it were possible for every man to think all that is conceivable and with a 
consistent content, there would be no freedom of thought or thoughts individualized particular to 
each topic. Mentally anticipating the future, one can access one’s individual mental states of the 
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distant future; one can get art work depicting thoughts, theories or advanced and complicated 
scientific technologies, currently unimaginable. 

4. Case study
EVE Online is a “massively multiplayer online game set 23,000 years in the future. As an elite

pilot of one of the four controlling races, the player will explore, build, and dominate across an 
universe of over 7,000 star systems”1, see Figure 1. In EVE Online the possibilities are endless. 
Eve Online is a peculiar concept, it is a simulation, it is an experiment which mirrors the social 
interactions and communications of the real world, just like the real world, it has a fully functioning 
economy. In fact, “it has an economy which could be used and studied in order to help what we 
do in the real world, according to the man charged with overseeing how the $18 million economy 
operates”2.

Figure 1.Very real implications 

While what is happening in universe environment of EVE planets in the far off star systems 
may not have much relevance in today's world, but the way the EVE economy functions could 
have very real implications: "We try to have a relative balance of money coming in and money 
coming out and the increase per month should represent the net increase in economic value”; “We 
function as a national economics institute, statistics office and central bank giving advice to 
government, with the government being the developers and us being the monitoring authority"3. 

Considering data of EVE Online game, the complexity of environment, we can estimate some 
causes that can generate uncertainties such as: unknown universe; cohesion of the team members; 
alliance trust; financial system crisis; equipment reliability. 

1 https://www.eveonline.com 
2 David Gilbert, Eve Online: Meet the Man Controlling the $18 Million Space Economy, International 
Business Time, May 6, 2014 
3 http://www.ibtimes.co.uk/eve-online-meet-man-controlling-18-million-space-economy-1447437 
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For each of these causes the occurrences in a time unit are analyzed (e.g.: 1 week), the space M 
assimilated to the environment of universe, the governance is poorly defined in this space: the 
control of universe, defeat the forces of evil, building a stable system. According to this conditions 
we can simulate the situation by a Pareto Chart, see Figure 2: 

Figure 2. Pareto Chart Step 1 

Pareto analysis is a creative way of evaluation causes of problems because it helps to stimulate 
the processes, thinking and organize thoughts,  assessing the causes that lead to system instability 
through neutrosophic theory. 

In this context, we define a space M consisting of 5 elements, where t means true, i means 
uncertainty and f means false: 

M = { a1 (t1, i1, f1), a2 (t2, i2, f2), a3 (t3, i3, f3), a4 (t4, i4, f4), a5 (t5, i5, f5)} 

 Unknown universe: a1(t1, i1, f1)

 Team cohesion: a2(t2, i2, f2)

 Alliance trust: a3(t3, i3, f3)

 Financial stability: a4(t4, i4, f4)

 Equipment reliability: a5 (t5, i5, f5)

According to Pareto Chart, we established the rate for each space element percentage for the 
set (t, i, f). 

Analyzing the content of elements data, we can establish that relative frequency of events  
means uncertainty and events solving means true, respectively non solving, false. The process is 
revealed in Table 1.  
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Table 1. Determination of T, I, F consistency - Step 1 

Neutrosophic interpretation gives an ordered list of alternatives of uncertainties, depending on 
us, which is the most preferred element.  

We will stop at a2component that generates uncertainty for the cause of “team cohesion”.  Pareto 
Chart says that by addressing the cause 20%, it determines 80% uncertainty and can also solve 
80% of problems of the system stability. We have to concentrate on uncertainty of a2 component, 
to reduce its value, 

a21(t21, i21, f21)  a21(53,85%, 25,49%, 46,15%) in the first step of the process. 
The refining process, step 2, can be seen in the next set of data presented in Figure 3. 

Figure 3. Pareto Chart Step 2 

The relative dataset for the step 2 is shown in Table 2, where we follow up the element a22. 

Table 2. Determination of T, I, F consistency - Step 2 
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a22(t22, i22, f22)  a22(66,67%,  15,38%, 33,33%) the second step of the process. 
On the third step of the refining process, the data set is presented in Table 3. 

Table 3. Determination of T, I, F consistency - Step 3 

a23(t23, i23, f23)  a23(75%,  10.81%, 25%) the third step of the process. 
a24(t24, i24, f24)  a24(100%,  8,33%, 0%) the last step of the process. 
The data set of last step of the refining process, is shown in Table 4. 

Table 4. Determination of T, I, F consistency - Step 4 
We show below the effects of refining process in 4 steps, until the value of F is zero. The 

representation of “team cohesion” evolution is shown in Figure 4. 

Figure 4. Refining the process for “Team cohesion”, element of space M 
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The process of The Uncertainty Risk Management will take into consideration: 
 Uncertainty management is a creative process, it involves identifying, evaluation

and mitigation of the impact of the uncertainties in the process;
 Uncertainty management can be very formal with defined work process, or

informal with no defined processes or methods;
 Uncertainty evaluation prioritizes the identified uncertainties by the likelihood and

the potential impact if the event happens;
 Uncertainty mitigation is the development and deployment of a plan to avoid,

transferring, sharing and reducing the process uncertainties.
When we try to make a good decision, a person must weigh the positives, negatives and 

uncertainty of each option, and to consider all the alternatives. For effective decision making, a 
person must be able to forecast the outcome of each option as well, and based on all these items, 
to determine which option is the best for that particular situation. 

Decision-making is identified as a cognitive process that results in the selection of a belief or 
an action among several alternative possibilities. Decision-making is a complex process of 
identifying, analyzing and choosing alternatives based on the values and preferences of the 
decision maker. Decision-making is one of the central activities of management and it is an 
important part of any implementation process (Kahneman, Tversky, 2000). 

Usually, in our daily lives, we implicitly compare multiple criteria and we want to be 
comfortable with the consequences of such decisions that are mostly made based only on intuition. 
On the other hand, when we confront with high stakes, it is important to structure the problem and 
to evaluate multiple criteria. In decision making process based on multiple criteria (Multi Criteria 
Decision Making) of whether to do an important issue or not, there are involved not only very 
complex multiple criteria, there are also inferred multiple parties who are deeply affected from the 
consequences, because present decisions, act in the future. 

Decisions making related to games area, shows its similitude with real life, can be easily 
transferred to the real world. It is our choice whether to do this or not.  

5. Conclusions
Decisions making is a complex act including variables related to uncertainty, with implications

for the future work.  Uncertainty, in turn, involves classification criteria based on methods that 
may be applied for determining the degree of uncertainty and settlement. Establishing the types of 
variables that influence uncertainty, it makes possible the identification of the decisions that we 
are referring, that will influence, will constrain the process on the one hand, and will be influenced 
and constrained by a specific decision on the other hand.  

Problem solving and decision-making are important skills for business and life. Problem-
solving often involves decision-making, and decision-making is especially important for 
management and leadership. Between them there is the correspondence: identification of the 
problem vs. frame of the decision; exploring the alternatives vs. improve to address needs and 
identify alternatives; select an alternative vs. decision and commitment to act; implementation of 
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the solution vs. management of the consequences; evaluation of the situation vs. management of 
the consequences and frame the related decisions. 

What we deduced on the basis of this study is that the game is reality and reality is game. We 
build reality through the game, we take risks that include uncertainties, the game becomes a 
training and an experimentation place for many specialists, proving that the school becomes life. 
Here is how the neutrosophic theory, guide us to be closer to solve uncertainties, transforming 
them into true or false, stable and controllable states of the systems. 
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Abstract 
Combining the single valued neutrosophic set with graph theory, a new graph model emerges, 

called single valued neutrosophic graph. This model allows attaching the truth-membership (t), 
indeterminacy–membership (i) and falsity- membership degrees (f) both to vertices and 
edges. Combining the interval valued neutrosophic set with graph theory, a new graph model 
emerges, called interval valued neutrosophic graph. This model generalizes the fuzzy graph, 
intuitionistic fuzzy graph and single valued neutrosophic graph. In this paper, the authors define 
operations of Cartesian product, composition, union and join on interval valued 
neutrosophic graphs, and investigate some of their properties, with proofs and examples. 

Keywords 
Neutrosophy, neutrosophic set, fuzzy set, fuzzy graph, neutrosophic graph, interval valued 

neutrosophic set, single valued neutrosophic graph, interval valued neutrosophic graph. 

1. Introduction
The neutrosophy was pioneered by F. Smarandache (1995, 1998). It is a branch of philosophy

which studies the origin, nature, and scope of neutralities, as well as their interactions with different 
ideational spectra. The neutrosophic set proposed by Smarandache is a powerful tool to deal with 
incomplete, indeterminate and inconsistent information in real world, being a generalization of 
fuzzy set ( Zadeh 1965; Zimmermann 1985), intuitionistic fuzzy set (Atanassov 1986; Atanassov 
1999),interval valued fuzzy set (Turksen 1986) and interval valued intuitionistic fuzzy sets 
(Atanassov and Gargov 1989).The neutrosophic set is characterized by a truth-membership degree 
(t), an indeterminacy-membership degree (i) and a falsity-membership degree (f) independently, 
which are within the real standard or nonstandard unit interval ]−0, 1+[. If the range is restrained 
within the real standard unit interval [0, 1], the neutrosophic set easily applies to engineering 
problems. For this purpose, Wang et al. (2010) introduced the concept of single valued 
neutrosophic set (SVNS) as a subclass of the neutrosophic set. The same author introduced the 
notion of interval valued neutrosophic sets (Wang et al. 2005b, 2010) as subclass of neutrosophic 
sets in which the value of truth-membership, indeterminacy-membership and falsity-membership 

Operations on Interval Valued Neutrosophic Graphs 

Said Broumi, Florentin Smarandache, M. Talea, A. Bakali 

Said Broumi, Florentin Smarandache, M. Talea, A. Bakali (2016). Operations on Interval Valued 
Neutrosophic Graphs. New Trends in Neutrosophic Theory and Applications I: 231-254 
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degrees are intervals of numbers instead of real numbers. The single valued neutrosophic set and 
the interval valued neutrosophic set have been applied in a wide variety of fields, including 
computer science, engineering, mathematics, medicine and economics (Ansari 2013a, 2013b, 
2013c;Aggarwal 2010;Broumi 2014;Deli 2015;Hai-Long 2015;Liu and Shi 2015;Şahin 2015; 
Wang et al. 2005b;Ye 2014a, 2014b,2014c). 

Graph theory has now become a major branch of applied mathematics and it is generally 
regarded as a branch of combinatorics. Graph is a widely used tool for solving combinatorial 
problems in different areas, such as geometry, algebra, number theory, topology, optimization 
and computer science. To be noted that, when there is uncertainty regarding either the set of 
vertices or edges, or both, the model becomes a fuzzy graph. Many works on fuzzy graphs, 
intuitionistic fuzzy graphs and interval valued intuitionistic fuzzy graphs (Antonios K et al. 2014; 
Bhattacharya 1987; Mishra and Pal 2013; Nagoor Gani and Shajitha Begum 2010; Nagoor Gani 
and Latha 2012; Nagoor Gani and Basheer Ahamed 2003;Parvathi and Karunambigai 
2006; Shannon and Atanassov 1994) have been carried out and all of them have considered the 
vertex sets and edge sets as fuzzy and /or intuitionistic fuzzy sets. But, when the relations 
between nodes (or vertices) are indeterminate, the fuzzy graphs and intuitionistic fuzzy graphs 
fail to work. For this purpose, Smarandache (2015a, 2015b, 2015c) defined four main 
categories of neutrosophic graphs. Two are based on literal indeterminacy (I): I-edge 
neutrosophic graph and I-vertex neutrosophic graph. The two categories were deeply studied and 
gained popularity among the researchers (Garg et al. 2015,Vasantha Kandasamy2004, 2013, 
2015) due to their applications via real world problems. The other neutrosophic graph 
categories are based on (t, i, f) components and are called:(t, i, f)-edge neutrosophic graph and 
(t, i, f)-vertex neutrosophic graph. These two categories are not developed at all.  

Further on, Broumi et al. (2016b) introduced a new neutrosophic graph model, called single 
valued neutrosophic graph (SVNG), and investigated some of its properties as well. This model 
allows attaching the membership (t), indeterminacy (i) and non-membership degrees (f) both to 
vertices and edges. The single valued neutrosophic graph is a generalization of fuzzy graph 
and intuitionistic fuzzy graph. Broumi et al. (2016a) also introduced neighborhood degree of a 
vertex and closed neighborhood degree of a vertex in single valued neutrosophic 
graph, as a generalization of neighborhood degree of a vertex and closed neighborhood degree 
of a vertex in fuzzy graph and intuitionistic fuzzy graph. Moreover, Broumi et al. (2016c) 
introduced the concept of interval valued neutrosophic graph, as a generalization of single valued 
neutrosophic graph, and discussed some properties, with proofs and examples. In addition, 
Broumi et al.(2016c) introduced the concept of bipolar single valued neutrosophic graph, as a 
generalization of fuzzy graphs, intuitionistic fuzzy graph, N-graph, bipolar fuzzy graph and 
single valued neutrosophic graph, and studied some related properties. 

In this paper, researchers’ objective is to define some operations on interval valued neutrosophic 
graphs, and to investigate some properties.
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2. Preliminaries

In this section, the authors mainly recall some notions related to neutrosophic sets, single valued
neutrosophic sets, interval valued neutrosophic sets, fuzzy graphs, intuitionistic fuzzy graphs, 
interval valued intuitionistic fuzzy graphs, single valued neutrosophic graphs and interval valued 
neutrosophic graphs, relevant to the present work. The readers are referred for further details to 
(Broumi et al. 2016b;Mishra and Pal 2013;Nagoor Gani and Basheer Ahamed 2003;Parvathi and 
Karunambigai 2006;Smarandache 2006;Wang et al. 2010;Wang et al. 2005a). 

Definition 1 (Smarandache 2006) 

Let X be a space of points (objects) with generic elements in X denoted by x; then the 
neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), IA(x), FA(x)>, x ∈X}, 
where the functions T, I, F: X→]−0,1+[  define respectively a truth-membership function, an 
indeterminacy-membership function, and a falsity-membership function of the element x ∈X to 
the set A with the condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                            (1)

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0,1+[.

Since it is difficult to apply NSs to practical problems, Wang et al. 2010 introduced the concept
of a SVNS, which is an instance of a NS and can be used in real scientific and engineering 
applications. 

Definition 2 (Wang et al. 2010) 

Let X be a space of points (objects) with generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-membership function TA(x) , an 
indeterminacy-membership function IA(x), and a falsity-membership function FA(x). For each 
point x in X, TA(x), IA(x), FA(x)∈ [0, 1]. A SVNS A can be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X} 
(2) 

Definition 3 (Wang et al. 2005a) 

Let X be a space of points (objects) with generic elements in X denoted by x. An interval valued 
neutrosophic set (for short IVNS A) A in X is characterized by truth-membership function TA(x), 
indeteminacy-membership function IA(x) and falsity-membership function FA(x). For each point 
x in X, one has that 

TA(x) = [𝑇𝐴𝐿(x), 𝑇𝐴𝑈(x)], 

IA(x) = [𝐼𝐴𝐿(𝑥), 𝐼𝐴𝑈(𝑥)], 

FA(x) = [𝐹𝐴𝐿(𝑥), 𝐹𝐴𝑈(𝑥)] ⊆[0, 1], and 

0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3.  (3)
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Definition 4 (Wang et al. 2005a) 

An IVNS A is contained in the IVNS B, A ⊆ B, if and only if 

𝑇𝐴𝐿(x) ≤ 𝑇𝐵𝐿(x),  𝑇𝐴𝑈(x) ≤ 𝑇𝐵𝑈(x),   

𝐼𝐴𝐿(x) ≥ 𝐼𝐵𝐿(x), 𝐼𝐴𝑈(x) ≥ 𝐼𝐵𝑈(x),  

𝐹𝐴𝐿(x) ≥ 𝐹𝐵𝐿(x), 𝐹𝐴𝑈(x) ≥ 𝐹𝐵𝑈(x), for any x in X.    (4) 

Definition 5 (Wang et al. 2005a) 

The union of two interval valued neutrosophic sets A and B is an interval neutrosophic set C, 

written as C = A ∪  B, whose truth-membership, indeterminacy-membership, and false 

membership are related to those A and B by 

𝑇𝐶𝐿(x) =  max (𝑇𝐴𝐿(x),  𝑇𝐵𝐿(x)) 

𝑇𝐶𝑈(x) =  max (𝑇𝐴𝑈(x),  𝑇𝐵𝑈(x)) 

𝐼𝐶𝐿(x) =  min (𝐼𝐴𝐿(x),  𝐼𝐵𝐿(x)) 

𝐼𝐶𝑈(x) =  min (𝐼𝐴𝑈(x),  𝐼𝐵𝑈(x)) 

𝐹𝐶𝐿(x) =  min (𝐹𝐴𝐿(x),  𝐹𝐵𝐿(x)) 

𝐹𝐶𝑈(x) = min (𝐹𝐴𝑈(x),  𝐹𝐵𝑈(x)), for all x in X.               (5) 

Definition 6 (Wang et al 2005a) 

Let X and Y be two non-empty crisp sets. An interval valued neutrosophic relation R(X, Y) is a 

subset of product space X × Y, and is characterized by the truth membership function 𝑇𝑅(x, y), 

the indeterminacy membership function IR(x, y), and the falsity membership function 𝐹𝑅(x, y), 

where x ∈ X and y ∈ Y and 𝑇𝑅(x, y),IR(x, y),𝐹𝑅(x, y) ⊆ [0, 1]. 

Definition 7 (Nagoor Gani and Basheer Ahamed 2003) 

A fuzzy graph is a pair of functions G = (σ, µ), where σ is a fuzzy subset of a non-empty set V and 

μ is a symmetric fuzzy relation on σ, i.e.σ: V → [ 0,1] and  μ: VxV→[0,1], such that    μ(uv) ≤ 

σ(u) ⋀σ(v), for all u, v ∈ V where uv denotes the edge between u and v and σ(u) ⋀σ(v) denotes 

the minimum of σ(u) and σ(v). σ is called the fuzzy vertex set of G andμ is called the fuzzy edge 

set of G. 
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Figure 1: Fuzzy Graph 

Definition 8 (Nagoor Gani and Basheer Ahamed 2003) 

The fuzzy subgraph H=(τ,ρ) is called a fuzzy subgraph of G =( σ, µ) if τ(u) ≤ σ(u) for all u ∈ V 

and ρ(u, v) ≤  μ(u, v)  for all u, v ∈ V. 

Definition 9 (Parvathi and Karunambigai 2006) 

An Intuitionistic fuzzy graph is of the form G=<V,E>,where V={v1,v2,….,vn},such that 𝜇1:V→ 
[0,1] and 𝛾1:V→ [0,1] denote the degree of membership and non-membership of the elementvi ∈ 
V, respectively, and 

0≤ 𝜇1(vi)+𝛾1(vi))≤ 1,forevery  vi ∈ V,(i=1, 2,……. n),  (6) 

 E  ⊆ VxVwhere 𝜇2:VxV→[0,1]and 𝛾2:VxV→ [0,1] are such that 𝜇2(vi,vj)≤ min[𝜇1(vi),𝜇1(vj)] 

and 𝛾2(vi,vj)≥ max[𝛾1(vi),𝛾1(vj)], and 

0≤𝜇2(vi,vj)+𝛾2(vi,vj)≤1 for every (vi,vj) ∈E,(i,j =1,2,……. n) (7) 

Figure 2: Intuitionistic Fuzzy Graph 
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Definition 10 (Mishra and Pal 2013) 

An interval valued intuitionistic fuzzy graph (IVIFG) G= (A, B) satisfies the following 
conditions:  

1.V= {𝑣1  ,𝑣2  ,…  ,𝑣𝑛 } such that 𝑀𝐴𝐿 :V→[0, 1],𝑀𝐴𝑈 :V→[0, 1]  and 𝑁𝐴𝐿 :V→[0,1],
𝑁𝐴𝑈 :V→[0, 1] denote the degree of membership and non-membership of the element 𝑦 ∈ V, 
respectively,  and 

0≤ 𝑀𝐴(𝑥) +𝑁𝐴(𝑥) ≤1 for every  𝑥 ∈ V
(8) 

2.The functions  𝑀𝐵𝐿:V x V →[0, 1],𝑀𝐵𝑈:V x V →[0, 1] and 𝑁𝐵𝐿:V x V →[0,1], 𝑁𝐵𝑈:V x
V →[0, 1] are denoted by 

𝑀𝐵𝐿(𝑥𝑦) ≤ min [𝑀𝐴𝐿(𝑥), 𝑀𝐴𝐿(𝑦)], 𝑀𝐵𝑈(𝑥𝑦) ≤ min [𝑀𝐴𝑈(𝑥), 𝑀𝐴𝑈(𝑦)] 

𝑁𝐵𝐿(𝑥𝑦) ≥ max [𝑁𝐵𝐿(𝑥), 𝑁𝐵𝐿(𝑦)] ,  𝑁𝐵𝑈(𝑥𝑦) ≥ max[𝑁𝐵𝑈(𝑥), 𝑁𝐵𝑈(𝑦)] 

such that    0≤ 𝑀𝐵(𝑥𝑦)  + 𝑁𝐵(𝑥𝑦) ≤1, for every  𝑥𝑦 ∈ E     (9) 

Figure 3: Interval valued intuitionistic graph 

Definition 11 (Broumi et al. 2016b) 

A single valued neutrosophic graph (SVN-graph) with underlying set V is defined to be a pair 
G= (A, B), where: 

1.The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ V, 
respectively, and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3, for all  𝑣𝑖 ∈ V (i=1, 2, …,n) (10) 

2. The functions   𝑇𝐵: E ⊆ V x V →[0, 1],𝐼𝐵: E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x V →[0,
1] are defined by
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𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 

𝐼𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 

𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]            (11)      

and denote the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3, 

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2,…, n). (12) 

“A”is called the single valued neutrosophic vertex set of V, “B” - the single valued neutrosophic 
edge set of E, respectively. B is a symmetric single valued neutrosophic relation on A. The notation 
(𝑣𝑖 , 𝑣𝑗)is used for an element of E. Thus, G = (A, B) is a single valued neutrosophic graph of G∗= 
(V, E), if : 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],     for all  (𝑣𝑖 , 𝑣𝑗) ∈ E (13) 

Figure 4: Single valued neutrosophic graph 

Definition 12 (Broumi et al. 2016b) 

Let G = (A, B) be a single valued neutrosophic graph. Then the degree of a vertex v is defined 
by d(v)= (𝑑𝑇(𝑣), 𝑑𝐼(𝑣),𝑑𝐹(𝑣)), where  

𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣 , 𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  and 𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  (14) 
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Definition 13 (Broumi et al. 2016b) 

A single valued neutrosophic graph G= (A,  B) and 𝐺∗ is called  strong neutrosophic graph 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)] 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]  

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]  for all (𝑣𝑖 , 𝑣𝑗) ∈ E.   (15) 

Definition 14 (Broumi et al. 2016b) 

The complement of a strong single valued neutrosophic graph G on  𝐺∗ is strong single valued 
neutrosophic graph �̅� on 𝐺∗ where 

1.�̅� =V

2.𝑇𝐴
̅̅ ̅(𝑣𝑖)= 𝑇𝐴(𝑣𝑖),𝐼�̅�(𝑣𝑖)= 𝐼𝐴(𝑣𝑖),𝐹𝐴

̅̅ ̅(𝑣𝑖)= 𝐹𝐴(𝑣𝑖), 𝑣𝑗 ∈ V.

3.𝑇𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)]-𝑇𝐵(𝑣𝑖, 𝑣𝑗)

𝐼�̅�(𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]-𝐼𝐵(𝑣𝑖 , 𝑣𝑗) and

𝐹𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]-𝐹𝐵(𝑣𝑖 , 𝑣𝑗), for all (𝑣𝑖 , 𝑣𝑗) ∈ E. (16) 

Definition 15 (Broumi et al. 2016b) 

A single valued neutrosophic graph G = (A, B) is called complete, if: 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗)= min(𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)),  

𝐼𝐵(𝑣𝑖 , 𝑣𝑗)= max(𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗))  

and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗)= max(𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)), for every 𝑣𝑖 , 𝑣𝑗 ∈ V. (17) 

Example 1 

Consider a graph 𝐺∗= (V, E) such that V = {a, b, c, d} , E= {ab ,ac ,bc , cd}. Then, G= (A, B) 
is a single valued neutrosophic complete graph of 𝐺∗. 

Figure 5:  Complete single valued neutrosophic graph 
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3. Operations on Interval-Valued Neutrosophic Graphs

Throughout this section, G∗ = (V, E) denotes a crisp graph, and G - an interval valued neutrosophic

graph.

Definition 16 

By an interval-valued neutrosophic graph of a graph 𝐺∗=(V,E)one means a pair G=(A,B), where 

A=< [𝑇𝐴𝐿, 𝑇𝐴𝑈], [𝐼𝐴𝐿, 𝐼𝐴𝑈], [𝐹𝐴𝐿, 𝐹𝐴𝑈]>is an interval-valued neutrosophic set on V and B=< [𝑇𝐵𝐿, 

𝑇𝐵𝑈], [𝐼𝐵𝐿 , 𝐼𝐵𝑈], [𝐹𝐵𝐿 , 𝐹𝐵𝑈 ] > is an interval-valued neutrosophic relation on E satisfying the 

following condition:  

1.V= {𝑣1,𝑣2 ,…,𝑣𝑛} such that 𝑇𝐴𝐿:V→[0, 1],𝑇𝐴𝑈:V→[0, 1], 𝐼𝐴𝐿 :V→[0,1],𝐼𝐴𝑈 :V→[0, 1] and
𝐹𝐴𝐿:V→[0,1], 𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-membership, the degree of  indeterminacy- 
membership and falsity-membership of the element 𝑦 ∈ V, respectively, and 

0≤ 𝑇𝐴(𝑣𝑖)+ 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3, 

for every𝑣𝑖 ∈ V.  (18) 

2. The functions 𝑇𝐵𝐿:V x V →[0, 1],𝑇𝐵𝑈:V x V →[0, 1],𝐼𝐵𝐿:V x V →[0, 1],𝐼𝐵𝑈:V x V →[0, 1]
and 𝐹𝐵𝐿:V x V →[0,1], 𝐹𝐵𝑈:V x V →[0, 1], such that 

𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗) ≤ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)] 

𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]          

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)]  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)]  

and 

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)]  

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)] (19) 

denote the degree of truth-membership, indeterminacy-membership and falsity-membership of 
the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where 

0≤ 𝑇𝐵(𝑣𝑖, 𝑣𝑗) + 𝐼𝐵(𝑣𝑖, 𝑣𝑗)+ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤3, 

for all (𝑣𝑖 , 𝑣𝑗) ∈ E.         (20) 

Example 2 

Figure 5 is an example for IVNG, G = (A,B) defined on a graph 𝐺∗= (V, E)  

such that V = {x, y, z}, E = {xy, yz, zx}, A is an interval valued neutrosophic set of V 
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A={ < x, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>, <y, [0.6, 0.7],[0.2, 0.4], [0.1, 0.3]>, <z, [0.4, 0.6],[0.1, 
0.3], [0.2, 0.4],>}, and B an interval valued neutrosophic set of  E⊆V x V 

B={ <xy, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>, <yz, [0.3, 0.5],[0.2, 0.5], [0.2, 0.4]>, <xz, [0.3, 
0.5],[0.3,  0.5], [0.2, 0.4]>}. 

Figure 6:  Interval valued neutrosophic graph 

By routine computations, it is easy to see that G=(A,B) is an interval valued neutrosophic graph of 

𝐺∗. 

Here, the new concept of Cartesian product is given. 

Definition 17 

Let 𝐺∗ =  𝐺1
∗×𝐺2

∗=(V, E) be the Cartesian product of two graphs where V = 𝑉1×𝑉2and E= {(𝑥, 
𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,  𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1}; then, the Cartesian product 
G = 𝐺1×𝐺2 = ( 𝐴1×𝐴2, 𝐵1×𝐵2 ) is an interval valued neutrosophic graph defined by 

1) (𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥1,𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2))
(𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥1,𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 
(𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥1,𝑥2) = max (𝐼𝐴1𝐿(𝑥1), 𝐼𝐴2𝐿(𝑥2)) 
(𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥1,𝑥2) = max (𝐼𝐴1𝑈(𝑥1), 𝐼𝐴2𝑈(𝑥2)) 
(𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥1,𝑥2) = max (𝐹𝐴1𝐿(𝑥1), 𝐹𝐴2𝐿(𝑥2)) 
(𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥1,𝑥2) = max (𝐹𝐴1𝑈(𝑥1), 𝐹𝐴2𝑈(𝑥2)) 

for all ( 𝑥1,𝑥2) ∈ 𝑉. 
(21) 

2) (𝑇𝐵1𝐿×𝑇𝐵2𝐿) ((𝑥,𝑥2)(𝑥,𝑦2)) = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥2𝑦2))
(𝑇𝐵1𝑈×𝑇𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2))  = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 
(𝐼𝐵1𝐿×𝐼𝐵2𝐿) ((𝑥,𝑥2)(𝑥,𝑦2)) = max (𝐼𝐴1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥2𝑦2)) 
(𝐼𝐵1𝑈×𝐼𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2)) = max (𝐼𝐴1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥2𝑦2)) 
(𝐹𝐵1𝐿×𝐹𝐵2𝐿) ((𝑥,𝑥2) (𝑥,𝑦2)) = max (𝐹𝐴1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥2𝑦2)) 

Florentin Smarandache (author and editor) Collected Papers, VIII

260



(𝐹𝐵1𝑈×𝐹𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2)) = max(𝐹𝐴1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥2𝑦2)), 

∀ x ∈ 𝑉1,∀𝑥2𝑦2 ∈ 𝐸2. 
(22) 

3) (𝑇𝐵1𝐿×𝑇𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧))
(𝑇𝐵1𝑈×𝑇𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) 
(𝐼𝐵1𝐿×𝐼𝐵2𝐿) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝐿(𝑥1𝑦1), 𝐼𝐴2𝐿(𝑧)) 
(𝐼𝐵1𝑈×𝐼𝐵2𝑈) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) 
(𝐹𝐵1𝐿×𝐹𝐵2𝐿) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) 
(𝐹𝐵1𝑈×𝐹𝐵2𝑈) ((𝑥1 ,𝑧) (𝑦1,𝑧)) = max (𝐹𝐵1𝑈(𝑥1𝑦1), 𝐹𝐴2𝑈(𝑧)) 

∀ z ∈ 𝑉2, ∀𝑥1𝑦1 ∈ 𝐸1. (23) 

Example 3 

Let 𝐺1
∗= (𝐴1, 𝐵1) and 𝐺2

∗= (𝐴2, 𝐵2) be two graphs where𝑉1 ={a, b}, 𝑉2 ={c, d},𝐸1 ={a, b} and 
𝐸2 ={c, d}.Consider two interval valued neutrosophic graphs: 

𝐴1={ <a, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>, <b, [0.6, 0.7],[0.2, 0.4], [0.1, 0.3]>}, 

𝐵1={ <ab, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>}; 

𝐴2={ <c, [0.4, 0.6], [0.2, 0.3], [0.1, 0.3]>, <d, [0.4, 0.7],[0.2, 0.4], [0.1, 0.3}>}, 

𝐵2={ <cd, [0.3, 0.5], [0.4, 0.5], [0.3, 0.5]>}. 

Figure 7: Interval valued neutrosophic graph G1

Figure 8: Interval valued neutrosophic graph G2 
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Figure 9: Cartesian product of interval valued neutrosophic graph 

By routine computations, It is easy to see that G1×G2 is an interval-valued neutrosophic graph of 

𝐺1
∗×𝐺2

∗. 

Proposition 1 

The Cartesian product G1×G2=( 𝐴1×𝐴2, 𝐵1×𝐵2 ) of two interval  valued neutrosophic graphs of 

the graphs 𝐺1
∗and𝐺2

∗ is an interval valued neutrosophic graph of 𝐺1
∗×𝐺2

∗. 

Proof. Verifying only conditions for B1×B2, because conditions for A1×A2 areobvious. 

Let E= {(𝑥,𝑥2) (𝑥,𝑦2) /𝑥 ∈ 𝑉1,𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2,𝑥1𝑦1 ∈ 𝐸1} 

Considering (𝑥,𝑥2) (𝑥,𝑦2) ∈ 𝐸, one has: 

( 𝑇𝐵1𝐿×𝑇𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = min ( 𝑇𝐴1𝐿(𝑥 ), 𝑇𝐵2𝐿(𝑥2𝑦2 )) ≤  min ( 𝑇𝐴1𝐿(𝑥 ), 
min(𝑇𝐴2𝐿(𝑥2),𝑇𝐴2𝐿(𝑦2))) = min(min (𝑇𝐴1𝐿(𝑥),𝑇𝐴2𝐿(𝑥2)), min (𝑇𝐴1𝐿(𝑥),𝑇𝐴2𝐿(𝑦2))) 

= min ((𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥,𝑥2),(𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥,𝑦2)), (24) 

(𝑇𝐵1𝑈×𝑇𝐵2𝑈 ) (( 𝑥 ,𝑥2 ) (𝑥 ,𝑦2 )) = min ( 𝑇𝐴1𝑈(𝑥 ), 𝑇𝐵2𝑈(𝑥2𝑦2 ))  ≤ min (𝑇𝐴1𝑈(𝑥 ), 
min(𝑇𝐴2𝑈(𝑥2),𝑇𝐴2𝑈(𝑦2)))= min(min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑥2)), min 𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑦2)))= min 
((𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥,𝑥2),(𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥,𝑦2)),    (25) 

( 𝐼𝐵1𝐿×𝐼𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐵2𝐿(𝑥2𝑦2 )) ≥  max ( 𝐼𝐴1𝐿(𝑥 ), 
max(𝐼𝐴2𝐿(𝑥2),𝐼𝐴2𝐿(𝑦2))) = max(max (𝐼𝐴1𝐿(𝑥),𝐼𝐴2𝐿(𝑥2)), max (𝐼𝐴1𝐿(𝑥),𝐼𝐴2𝐿(𝑦2))) = max 
((𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥,𝑥2),(𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥,𝑦2)),    (26) 

( 𝐼𝐵1𝑈×𝐼𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) (𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝑈(𝑥 ), 𝐼𝐵2𝑈(𝑥2𝑦2 )) ≥ max ( 𝐼𝐴1𝑈(𝑥 ), 
max(𝐼𝐴2𝑈(𝑥2 ),𝐼𝐴2𝑈(𝑦2)))= max(max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑥2 )), max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑦2))) = 
max ((𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥,𝑥2),(𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥,𝑦2)),    (27) 
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(𝐹𝐵1𝐿×𝐹𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 ,𝑦2 )) = max ( 𝐹𝐴1𝐿(𝑥 ), 𝐹𝐵2𝐿(𝑥2𝑦2 )) ≥ max ( 𝐹𝐴1𝐿(𝑥 ), 
max(𝐹𝐴2𝐿(𝑥2),𝐹𝐴2𝐿(𝑦2))) = max(max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑥2)), max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑦2))) = 
max ((𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥,𝑥2),(𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥,𝑦2)), (28) 

(𝐹𝐵1𝑈×𝐹𝐵2𝑈 ) ((𝑥 ,𝑥2 ) (𝑥 ,𝑦2 )) = max (𝐹𝐴1𝑈(𝑥 ), 𝐹𝐵2𝑈(𝑥2𝑦2 )) ≥  max (𝐹𝐴1𝑈(𝑥 ), 
max(𝐹𝐴2𝑈(𝑥2),𝐹𝐴2𝑈(𝑦2))) = max(max (𝐹𝐴1𝑈(𝑥),𝐹𝐴2𝑈(𝑥2)), max (𝐹𝐴1𝑈(𝑥),𝐹𝐴2𝑈(𝑦2)))= 
max ((𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥,𝑥2),(𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥,𝑦2)). (29) 

Similarly, for(𝑥1, 𝑧) (𝑦1, 𝑧)∈ 𝐸, one has: 

(𝑇𝐵1𝐿×𝑇𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧))≤ min (𝑚𝑖𝑛(𝑇𝐴1𝐿(𝑥1), 
𝑇𝐴1𝐿(𝑦1))),𝑇𝐴2𝐿(𝑧 ))) = min(min (𝑇𝐴1𝐿(𝑥 ),𝑇𝐴2𝐿(𝑧 )), min (𝑇𝐴1𝐿(𝑦1 ),𝑇𝐴2𝐿(𝑧)))= min 
((𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑥1,𝑧),(𝑇𝐴1𝐿×𝑇𝐴2𝐿) (𝑦1,𝑧)),     (30) 

(𝑇𝐵1𝑈×𝑇𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) ≤ min (𝑚𝑖𝑛(𝑇𝐴1𝑈(𝑥1), 
𝑇𝐴1𝑈(𝑦1))),𝑇𝐴2𝑈(𝑧)))= min(min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑧)), min (𝑇𝐴1𝑈(𝑦1),𝑇𝐴2𝑈(𝑧))) = min 
((𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑥1 ,𝑧),(𝑇𝐴1𝑈×𝑇𝐴2𝑈) (𝑦1 ,𝑧)), (31) 

(𝐼𝐵1𝐿×𝐼𝐵2𝐿 ) ((𝑥1 , 𝑧) (𝑦1 , 𝑧)) = max (𝐼𝐵1𝐿(𝑥1𝑦1), 𝐼𝐴2𝐿(𝑧))≥ max(𝑚𝑎𝑥(𝐼𝐴1𝐿(𝑥1 ), 
𝐼𝐴1𝐿(𝑦1))),𝐼𝐴2𝐿(𝑧))) = max(max (𝐼𝐴1𝐿(𝑥 ),𝐼𝐴2𝐿(𝑧)), max (𝐼𝐴1𝐿(𝑦1 ),𝐼𝐴2𝐿(𝑧 ))) = max 
((𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑥1,𝑧),(𝐼𝐴1𝐿×𝐼𝐴2𝐿) (𝑦1,𝑧)),     (32) 

(𝐼𝐵1𝑈×𝐼𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) ≥ max (𝑚𝑎𝑥(𝐼𝐴1𝑈(𝑥1), 
𝐼𝐴1𝑈(𝑦1))),𝐼𝐴2𝑈(𝑧))) = max(max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑧)), max (𝐼𝐴1𝑈(𝑦1),𝐼𝐴2𝑈(𝑧))) = max 
((𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑥1,𝑧),(𝐼𝐴1𝑈×𝐼𝐴2𝑈) (𝑦1,𝑧)),    (33) 

(𝐹𝐵1𝐿×𝐹𝐵2𝐿) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max(𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) ≥ max (𝑚𝑎𝑥(𝐹𝐴1𝐿(𝑥1), 
𝐹𝐴1𝐿(𝑦1))),𝐹𝐴2𝐿(𝑧))) = max(max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑧)), max (𝐹𝐴1𝐿(𝑦1),𝐹𝐴2𝐿(𝑧))) = max 
((𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑥1 ,𝑧),(𝐹𝐴1𝐿×𝐹𝐴2𝐿) (𝑦1 ,𝑧)),    (34) 

(𝐹𝐵1𝑈×𝐹𝐵2𝑈) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝐴1𝑈(𝑥1𝑦1), 𝐹𝐵2𝑈(𝑧))≥ max (max(𝐹𝐴1𝑈(𝑥1), 
𝐹𝐴1𝑈(𝑦1))),𝐹𝐴2𝑈(𝑧))) = max(max (𝐹𝐴1𝑈(𝑥),𝐹𝐴2𝑈(𝑧)), max (𝐹𝐴1𝑈(𝑦1),𝐹𝐴2𝑈(𝑧))) = max 
((𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑥1,𝑧),(𝐹𝐴1𝑈×𝐹𝐴2𝑈) (𝑦1,𝑧)). (35) 

This completes the proof. 

Definition 18 

Let 𝐺∗ = 𝐺1
∗×𝐺2

∗=(𝑉1×𝑉2, E) be the composition of two graphs where E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈

𝑉1 , 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1 ,  𝑧) (𝑦1 , 𝑧) /𝑧 ∈ 𝑉2 , 𝑥1𝑦1 ∈ 𝐸1}∪ {( 𝑥1 , 𝑥2) ( 𝑦1 , 𝑦2) |𝑥1𝑦1 ∈ 𝐸1 , 𝑥2 ≠

𝑦2},then the composition of interval valued neutrosophic graphs 𝐺1[ 𝐺2] = (𝐴1 ∘ 𝐴2, 𝐵1 ∘ 𝐵2) is 
an interval valued neutrosophic graphs defined by: 

1. (𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥1,𝑥2) = min (𝑇𝐴1𝐿(𝑥1), 𝑇𝐴2𝐿(𝑥2)) (36) 
(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥1,𝑥2) = min (𝑇𝐴1𝑈(𝑥1), 𝑇𝐴2𝑈(𝑥2)) 
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(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥1,𝑥2) = max (𝐼𝐴1𝐿(𝑥1), 𝐼𝐴2𝐿(𝑥2)) 
(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐼𝐴1𝑈(𝑥1), 𝐼𝐴2𝑈(𝑥2)) 
(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥1, 𝑥2) = max (𝐹𝐴1𝐿(𝑥1), 𝐹𝐴2𝐿(𝑥2)) 
(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥1, 𝑥2) = max (𝐹𝐴1𝑈(𝑥1), 𝐹𝐴2𝑈(𝑥2))  ∀ 𝑥1 ∈ 𝑉1,𝑥2 ∈ 𝑉2; 

2. (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥,𝑥2)(𝑥,𝑦2)) = min (𝑇𝐴1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥2𝑦2)) (37) 
(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐴1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥2𝑦2)) 
(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥2𝑦2)) 
(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐴1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥2𝑦2)) 
(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥,𝑥2) (𝑥,𝑦2)) = max (𝐹𝐴1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥2𝑦2)) 
(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈) ((𝑥,𝑥2)(𝑥,𝑦2)) = max (𝐹𝐴1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥2𝑦2)) ∀ 𝑥 ∈ 𝑉1, ∀𝑥2𝑦2 ∈ 𝐸2; 

3. (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝐿(𝑥1𝑦1), 𝑇𝐴2𝐿(𝑧))
(38) 
(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧)) = min (𝑇𝐵1𝑈(𝑥1𝑦1), 𝑇𝐴2𝑈(𝑧)) 
(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝐿(𝑥1𝑦1), 𝐼𝐴2𝐿(𝑧)) 
(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐼𝐵1𝑈(𝑥1𝑦1), 𝐼𝐴2𝑈(𝑧)) 
(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐹𝐵1𝐿(𝑥1𝑦1), 𝐹𝐴2𝐿(𝑧)) 
(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈) ((𝑥1,𝑧) (𝑦1,𝑧))= max (𝐹𝐵1𝑈(𝑥1𝑦1), 𝐹𝐴2𝑈(𝑧)) ∀ z ∈ 𝑉2, ∀𝑥1𝑦1 ∈ 𝐸1; 

4. (𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = min (𝑇𝐴2𝐿(𝑥2), 𝑇𝐴2𝐿(𝑦2), 𝑇𝐵1𝐿(𝑥1𝑦1))
(39) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = min (𝑇𝐴2𝑈(𝑥2), 𝑇𝐴2𝑈(𝑦2), 𝑇𝐵1𝑈(𝑥1𝑦1)) 

(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐼𝐴2𝐿(𝑥2), 𝐼𝐴2𝐿(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1)) 

(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐼𝐴2𝑈(𝑥2), 𝐼𝐴2𝑈(𝑦2), 𝐼𝐵1𝑈(𝑥1𝑦1)) 

(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐹𝐴2𝐿(𝑥2), 𝐹𝐴2𝐿(𝑦2), 𝐹𝐵1𝐿(𝑥1𝑦1)) 

( 𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 )(( 𝑥1 , 𝑥2 ) ( 𝑦1 , 𝑦2 )) = max ( 𝐹𝐴2𝑈(𝑥2 ), 𝐹𝐴2𝑈(𝑦2 ), 𝐹𝐵1𝑈(𝑥1𝑦1 )), 
∀ (𝑥1,𝑥2)( 𝑦1,𝑦2) ∈ 𝐸0-E,where 𝐸0= E ∪ {( 𝑥1,𝑥2) ( 𝑦1,𝑦2) |𝑥1𝑦1 ∈ 𝐸1, 𝑥2 ≠  𝑦2}. 

Example 4 

Let 𝐺1
∗= (𝑉1, 𝐸1) and 𝐺2

∗= (𝑉2, 𝐸2) be two graphs such that 𝑉1 ={a, b}, 𝑉2 ={c, d},𝐸1 ={a, b} 
and 𝐸2 ={c, d}. Consider two interval-valued neutrosophic graphs: 

𝐴1={ < a, [0.5, 0.7], [0.2, 0.3], [0.1, 0.3]>, <b, [0.6, 0.7],[0.2, 0.4], [0.1, 0.3}, 

𝐵1={ < ab, [0.3, 0.6], [0.2, 0.4], [0.2, 0.4]>}; 

𝐴2={ < c, [0.4, 0.6], [0.2, 0.3], [0.1, 0.3]>, <d, [0.4, 0.7],[0.2, 0.4], [0.1, 0.3}, 

𝐵2={ < cd, [0.3, 0.5], [0.2, 0.5], [0.3, 0.5]>}. 
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Figure 10: Interval valued neutrosophic graph G1 

Figure 11: Interval valued neutrosophic graph G2 

Figure 12: Composition of interval valued neutrosophic graph. 

Proposition2 

The composition𝐺1[ 𝐺2] =(𝐴1 ∘ 𝐴2, 𝐵1 ∘ 𝐵2) of two interval valued neutrosophic graphs of the 

graphs 𝐺1
∗and 𝐺2

∗ is an interval valued neutrosophic graph of 𝐺1
∗[𝐺2

∗]. 

Proof. Verifying only conditions for B1 ∘ B2, because conditions for A1 ∘ A2 are obvious. Let 

E= {(𝑥,𝑥2) (𝑥,𝑦2) /𝑥1 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1, 𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2,𝑥1𝑦1 ∈ 𝐸1}.Considering(𝑥,𝑥2) 

(𝑥,𝑦2) ∈ 𝐸, one has: 

( 𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = min ( 𝑇𝐴1𝐿(𝑥 ), 𝑇𝐵2𝐿(𝑥2𝑦2 )) ≤ min ( 𝑇𝐴1𝐿(𝑥 ), 
min(𝑇𝐴2𝐿(𝑥2 ),𝑇𝐴2𝐿(𝑦2 )))= min(min (𝑇𝐴1𝐿(𝑥 ),𝑇𝐴2𝐿(𝑥2 )), min (𝑇𝐴1𝐿(𝑥 ),𝑇𝐴2𝐿(𝑦2 )))= min 
((𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥,𝑥2),(𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥,𝑦2)),    (40) 

Florentin Smarandache (author and editor) Collected Papers, VIII

265



( 𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = min ( 𝑇𝐴1𝑈(𝑥 ), 𝑇𝐵2𝑈(𝑥2𝑦2 )) ≤  min ( 𝑇𝐴1𝑈(𝑥 ), 
min(𝑇𝐴2𝑈(𝑥2),𝑇𝐴2𝑈(𝑦2)))= min(min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑥2)), min (𝑇𝐴1𝑈(𝑥),𝑇𝐴2𝑈(𝑦2)))= min 
((𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥,𝑥2),(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥,𝑦2)), (41) 

( 𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐵2𝐿(𝑥2𝑦2 )) ≥ max ( 𝐼𝐴1𝐿(𝑥 ), 
max( 𝐼𝐴2𝐿(𝑥2 ), 𝐼𝐴2𝐿(𝑦2 ))) = max(max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐴2𝐿(𝑥2 )), max ( 𝐼𝐴1𝐿(𝑥 ), 𝐼𝐴2𝐿(𝑦2 ))) = 
max((𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥,𝑥2),(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥,𝑦2)),    (42) 

( 𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐼𝐴1𝑈(𝑥 ), 𝐼𝐵2𝑈(𝑥2𝑦2 )) ≥ max ( 𝐼𝐴1𝑈(𝑥 ), 
max(𝐼𝐴2𝑈(𝑥2),𝐼𝐴2𝑈(𝑦2))) = max(max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑥2)), max (𝐼𝐴1𝑈(𝑥),𝐼𝐴2𝑈(𝑦2))) = max 
((𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥,𝑥2),(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥,𝑦2)),    (43) 

( 𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿 ) (( 𝑥  , 𝑥2 ) ( 𝑥  , 𝑦2 )) = max ( 𝐹𝐴1𝐿(𝑥 ), 𝐹𝐵2𝐿(𝑥2𝑦2 )) ≥ max ( 𝐹𝐴1𝐿(𝑥 ), 
max(𝐹𝐴2𝐿(𝑥2),𝐹𝐴2𝐿(𝑦2))) = max(max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑥2)), max (𝐹𝐴1𝐿(𝑥),𝐹𝐴2𝐿(𝑦2))) = max 
((𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥,𝑥2),(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥,𝑦2)), (44) 

( 𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 ) (( 𝑥 , 𝑥2 ) ( 𝑥 , 𝑦2 )) = max ( 𝐹𝐴1𝑈(𝑥 ), 𝐹𝐵2𝑈(𝑥2𝑦2 )) ≥ max ( 𝐹𝐴1𝑈(𝑥 ), 
max(𝐹𝐴2𝑈(𝑥2 ),𝐹𝐴2𝑈(𝑦2 ))) = max(max (𝐹𝐴1𝑈(𝑥 ),𝐹𝐴2𝑈(𝑥2 ), max (𝐹𝐴1𝑈(𝑥 ),𝐹𝐴2𝑈(𝑦2 )) = 
max((𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥,𝑥2),(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥,𝑦2)). (45) 

In the case (𝑥1, 𝑧) (𝑦1, 𝑧)∈ 𝐸, the proof is similar. 

In the case (𝑥1,𝑥2) (𝑦1,𝑦2) ∈ 𝐸0-E. 

(𝑇𝐵1𝐿 ∘ 𝑇𝐵2𝐿)((𝑥1,𝑥2) (𝑦1,𝑦2)) = min (𝑇𝐴2𝐿(𝑥2), 𝑇𝐴2𝐿(𝑦2), 𝑇𝐵1𝐿(𝑥1𝑦1))≤ min (𝑇𝐴2𝐿(𝑥2), 
𝑇𝐴2𝐿(𝑦2 ),min  (𝑇𝐴1𝐿(𝑥1 ), 𝑇𝐴1𝐿(𝑦1 ))) = min(min ( 𝑇𝐴1𝐿(𝑥1 ), 𝑇𝐴2𝐿(𝑥2 )), min 
(𝑇𝐴1𝐿(𝑦1),𝑇𝐴2𝐿(𝑦2))) = min ((𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑥1,𝑥2),(𝑇𝐴1𝐿 ∘ 𝑇𝐴2𝐿) (𝑦1,𝑦2)), (46) 

(𝑇𝐵1𝑈 ∘ 𝑇𝐵2𝑈 ) (( 𝑥1 ,𝑥2 ) (𝑦1 , 𝑦2 )) =  min (𝑇𝐴2𝑈(𝑥2 ), 𝑇𝐴2𝑈(𝑦2 ), 𝑇𝐵1𝐿(𝑥1𝑦1 )) ≤ min 
( 𝑇𝐴2𝑈(𝑥2 ), 𝑇𝐴2𝑈(𝑦2 ),min  (𝑇𝐴1𝑈(𝑥1 ), 𝑇𝐴1𝑈(𝑦1 ))) = min(min ( 𝑇𝐴1𝑈(𝑥1 ),𝑇𝐴2𝑈(𝑥2 )), min 
(𝑇𝐴1𝑈(𝑦1),𝑇𝐴2𝑈(𝑦2))) = min ((𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑥1,𝑥2),(𝑇𝐴1𝑈 ∘ 𝑇𝐴2𝑈) (𝑦1,𝑦2)),(47) 

(𝐼𝐵1𝐿 ∘ 𝐼𝐵2𝐿) ((𝑥1 ,𝑥2) (𝑦1 ,𝑦2)) = max (𝐼𝐴2𝐿(𝑥2), 𝐼𝐴2𝐿(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1)) ≥ max (𝐼𝐴2𝐿(𝑥2), 
𝐼𝐴2𝐿(𝑦2 ),max (𝐼𝐴1𝐿(𝑥1 ), 𝐼𝐴1𝐿(𝑦1 ))) = max(max ( 𝐼𝐴1𝐿(𝑥1 ), 𝐼𝐴2𝐿(𝑥2 )), max 
(𝐼𝐴1𝐿(𝑦1),𝐼𝐴2𝐿(𝑦2))) = max ((𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑥1,𝑥2),(𝐼𝐴1𝐿 ∘ 𝐼𝐴2𝐿) (𝑦1,𝑦2)), (48)

(𝐼𝐵1𝑈 ∘ 𝐼𝐵2𝑈) ((𝑥1,𝑥2) (𝑦1,𝑦2)) = max (𝐼𝐴2𝑈(𝑥2), 𝐼𝐴2𝑈(𝑦2), 𝐼𝐵1𝐿(𝑥1𝑦1))≥ max (𝐼𝐴2𝑈(𝑥2), 
𝐼𝐴2𝑈(𝑦2 ),max (𝐼𝐴1𝑈(𝑥1 ), 𝐼𝐴1𝑈(𝑦1 ))) = max(max ( 𝐼𝐴1𝑈(𝑥 ), 𝐼𝐴2𝑈(𝑥2 )), max 
(𝐼𝐴1𝑈(𝑦1),𝐼𝐴2𝑈(𝑦2))) =  max ((𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑥1,𝑥2),(𝐼𝐴1𝑈 ∘ 𝐼𝐴2𝑈) (𝑦1,𝑦2)), (49) 

(𝐹𝐵1𝐿 ∘ 𝐹𝐵2𝐿 ) (( 𝑥1  ,𝑥2 ) (𝑦1  ,𝑦2 )) = max (𝐹𝐴2𝐿(𝑥2 ), 𝐹𝐴2𝐿(𝑦2 ), 𝐹𝐵1𝐿(𝑥1𝑦1 )) ≥ max 
( 𝐹𝐴2𝐿(𝑥2 ), 𝐹𝐴2𝐿(𝑦2 ),max (𝐹𝐴1𝐿(𝑥1 ), 𝐹𝐴1𝐿(𝑦1 ))) = max(max ( 𝐹𝐴1𝐿(𝑥 ), 𝐹𝐴2𝐿(𝑥2 )), max 
(𝐹𝐴1𝐿(𝑦1),𝐹𝐴2𝐿(𝑦2)))= max ((𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑥1,𝑥2),(𝐹𝐴1𝐿 ∘ 𝐹𝐴2𝐿) (𝑦1,𝑦2)), (50) 
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(𝐹𝐵1𝑈 ∘ 𝐹𝐵2𝑈 ) (( 𝑥1 , 𝑥2 ) ( 𝑦1 , 𝑦2 )) = max( 𝐹𝐴2𝑈(𝑥2 ) , 𝐹𝐴2𝑈(𝑦2 ), 𝐹𝐵1𝐿(𝑥1𝑦1 )) ≥ max 
(𝐹𝐴2𝑈(𝑥2 ), 𝐹𝐴2𝑈(𝑦2 ),max  (𝐹𝐴1𝑈(𝑥1 ), 𝐹𝐴1𝑈(𝑦1 ))) = max(max (𝐹𝐴1𝑈(𝑥 ),𝐹𝐴2𝑈(𝑥2 )), max 
(𝐹𝐴1𝑈(𝑦1),𝐹𝐴2𝑈(𝑦2))) = max ((𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑥1,𝑥2),(𝐹𝐴1𝑈 ∘ 𝐹𝐴2𝑈) (𝑦1 ,𝑦2)). (51) 

This completes the proof. 

Definition 19 

The union𝐺1 ∪  𝐺2= (𝐴1 ∪ 𝐴2, 𝐵1 ∪ 𝐵2 ) of two interval valued neutrosophic graphs of the graphs 

𝐺1
∗and𝐺2

∗is an interval-valued neutrosophic graph of 𝐺1
∗ ∪ 𝐺2

∗. 

1) (𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥) = 𝑇𝐴1𝐿(𝑥) if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥) = 𝑇𝐴2𝐿(𝑥)  if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥) = max (𝑇𝐴1𝐿(𝑥), 𝑇𝐴2𝐿(𝑥))   if x ∈ 𝑉1 ∩ 𝑉2, 
(52) 

2) (𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥) = 𝑇𝐴1𝑈(𝑥) if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥) = 𝑇𝐴2𝑈(𝑥) if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥) = max (𝑇𝐴1𝑈(𝑥), 𝑇𝐴2𝑈(𝑥))   if x ∈ 𝑉1 ∩ 𝑉2, 
(53) 

3) (𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑥) = 𝐼𝐴1𝐿(𝑥)             if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑥) = 𝐼𝐴2𝐿(𝑥)             if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑥) = min (𝐼𝐴1𝐿(𝑥), 𝐼𝐴2𝐿(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2, (54) 

4) (𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑥) = 𝐼𝐴1𝑈(𝑥) if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑥) = 𝐼𝐴2𝑈(𝑥) if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑥) = min (𝐼𝐴1𝑈(𝑥), 𝐼𝐴2𝑈(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2, 
(55) 

5) (𝐹𝐴1𝐿 ∪ 𝐹𝐴2𝐿) (𝑥) = 𝐹𝐴1𝐿(𝑥)                if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝑁𝐴1𝐿 ∪ 𝑁𝐴2𝐿) (𝑥) = 𝐹𝐴2𝐿(𝑥)     if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝑁𝐴1𝐿 ∪ 𝑁𝐴2𝐿) (𝑥) = min (𝐹𝐴1𝐿(𝑥), 𝐹𝐴2𝐿(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2, 
(56) 

6) (𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥) = 𝐹𝐴1𝑈(𝑥)    if  x ∈ 𝑉1 and x ∉ 𝑉2, 
(𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥) = 𝐹𝐴2𝑈(𝑥)     if x ∉ 𝑉1 and x ∈ 𝑉2, 
(𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥) = min (𝐹𝐴1𝑈(𝑥), 𝐹𝐴2𝑈(𝑥) )   if x ∈ 𝑉1 ∩ 𝑉2, 
(57) 

7) (𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿) (𝑥𝑦) = 𝑇𝐵1𝐿(𝑥𝑦) if  xy ∈ 𝐸1and xy ∉ 𝐸2, 
(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿) (𝑥𝑦) = 𝑇𝐵2𝐿(𝑥𝑦) if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿) (𝑥𝑦) = max (𝑇𝐵1𝐿(𝑥𝑦), 𝑇𝐵2𝐿(𝑥𝑦) )   if xy ∈ 𝐸1 ∩ 𝐸2, (58) 

8) (𝑇𝐵1𝑈
∪ 𝑇𝐵2𝑈) (𝑥𝑦) = 𝑇𝐵1𝑈(𝑥𝑦)                if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 

(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈) (𝑥𝑦) = 𝑇𝐵2𝑈(𝑥𝑦) if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈) (𝑥𝑦) = max (𝑇𝐵1𝑈(𝑥𝑦), 𝑇𝐵2𝑈(𝑥𝑦) )   if xy ∈ 𝐸1 ∩ 𝐸2, 
(59) 

9) (𝐼𝐵1𝐿 ∪ 𝐼𝐵2𝐿) (𝑥𝑦) =𝐼𝐵1𝐿(𝑥𝑦) if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 
(𝐼𝐵1𝐿 ∪ 𝑀𝐵2𝐿) (𝑥𝑦) = 𝐼𝐵2𝐿(𝑥𝑦) if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
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(𝐼𝐵1𝐿 ∪ 𝐼𝐵2𝐿) (𝑥𝑦) = min (𝐼𝐵1𝐿(𝑥𝑦), 𝐼𝐵2𝐿(𝑥𝑦) )         if xy ∈ 𝐸1 ∩ 𝐸2,  (60) 
10) (𝐼𝐵1𝑈

∪ 𝐼𝐵2𝑈) (𝑥𝑦) = 𝐼𝐵1𝑈(𝑥𝑦)                if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 
(𝐼𝐵1𝑈 ∪ 𝐼𝐵2𝑈) (𝑥𝑦) = 𝐼𝐵2𝑈(𝑥𝑦) if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝐼𝐵1𝑈 ∪ 𝐼𝐵2𝑈) (𝑥𝑦) = min (𝐼𝐵1𝑈(𝑥𝑦), 𝐼𝐵2𝑈(𝑥𝑦) )       if xy ∈ 𝐸1 ∩ 𝐸2,  (61) 

11) (𝐹𝐵1𝐿 ∪ 𝐹𝐵2𝐿) (𝑥𝑦) = 𝐹𝐵1𝐿(𝑥𝑦) if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 
(𝐹𝐵1𝐿 ∪ 𝐹𝐵2𝐿) (𝑥𝑦) = 𝐹𝐵2𝐿(𝑥𝑦)                            if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝐹𝐵1𝐿 ∪ 𝐹𝐵2𝐿) (𝑥𝑦) = min (𝐹𝐵1𝐿(𝑥𝑦), 𝐹𝐵2𝐿(𝑥𝑦) )     if xy ∈ 𝐸1 ∩ 𝐸2,  (62) 

12) (𝐹𝐵1𝑈
∪ 𝐹𝐵2𝑈) (𝑥𝑦) =𝐹 𝐵1𝑈(𝑥𝑦) if  xy ∈ 𝐸1  and  xy ∉ 𝐸2, 

(𝐹𝐵1𝑈 ∪ 𝐹𝐵2𝑈) (𝑥𝑦) = 𝐹𝐵2𝑈(𝑥𝑦)                            if xy ∉ 𝐸1 and xy ∈ 𝐸2, 
(𝐹𝐵1𝑈 ∪ 𝐹𝐵2𝑈) (𝑥𝑦) = min (𝐹𝐵1𝑈(𝑥𝑦), 𝐹𝐵2𝑈(𝑥𝑦) )      if xy ∈ 𝐸1 ∩ 𝐸2.  (63) 

Proposition 3 

Let 𝐺1 and 𝐺2 are two interval valued neutrosophic graphs, then 𝐺1 ∪ 𝐺2 is an interval valued 
neutrosophic graph. 

Proof. Verifying only conditions for B1 ∘ B2, because conditions for A1 ∘ A2 are obvious. 

Let x y ∈ 𝐸1 ∩ 𝐸2. 

Then: 

( TB1L ∪ TB2L )( xy ) = max( TB1L(xy ), TB2L(xy )) ≤  max(min( TA1L(x ), TA1L(y )), 
min( TA2L(x ), TA2L(y ))) = min(max( TA1L(x ), TA2L(x )), max( TA1L(y ), TA2L(y ))) =  
min((𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑥), (𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿) (𝑦)));     (64) 

( TB1U ∪ TB2U )( xy ) = max( TB1U(xy ), TB2U(xy )) ≤ max(min( TA1U(x ), TA1U(y )), 
min( TA2U(x ), TA2U(y ))) = min(max( TA1U(x ), TA2U(x )), max( TA1U(y ), TA2U(y ))) = 
min((𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑥), (𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈) (𝑦)));     (65) 

( IB1L ∪ IB2L )( xy ) = min( IB1L(xy ), IB2L(xy )) ≥ min(max( IA1L(x ), IA1L(y )), 
max(IA2L(x),IA2L(y))) = min(min(IA1L(x),IA2L(x)), min(IA1L(y),IA2L(y))) = max((𝐼𝐴1𝐿 ∪

𝐼𝐴2𝐿) (𝑥), (𝐼𝐴1𝐿 ∪ 𝐼𝐴2𝐿) (𝑦)));     (66) 

( IB1U ∪ IB2U )( xy ) = min( IB1U(xy ), IB2U(xy )) ≥ min(max( IA1U(x ), IA1U(y )), 
max(IA2U(x),IA2U(y))) = max(min(IA1U(x),IA2U(x)), min(IA1U(y),IA2U(y))) = max((𝐼𝐴1𝑈 ∪

𝐼𝐴2𝑈) (𝑥), (𝐼𝐴1𝑈 ∪ 𝐼𝐴2𝑈) (𝑦)));     (67) 

( FB1L ∪ FB2L )( xy ) = min( FB1L(xy ), FB2L(xy ))  ≥  min(max( FA1L(x ), FA1L(y )), 
max( FA2L(x ), FA2L(y ))) = min(min( FA1L(x ), FA2L(x )), min( FA1L(y ), FA2L(y ))) = 
max((𝐹𝐴1𝐿 ∪ 𝐹𝐴2𝐿) (𝑥), (𝐹𝐴1𝐿 ∪ 𝐹𝐴2𝐿) (𝑦)));     (68) 

( FB1U ∪ FB2U )( xy ) = min( FB1U(xy ), FB2U(xy ))  ≥ min(max( FA1U(x ), FA1U(y )), 
max( FA2U(x ), FA2U(y ))) = max(min( FA1U(x ), FA2U(x )), min( FA1U(y ), FA2U(y ))) = 
max((𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑥), (𝐹𝐴1𝑈 ∪ 𝐹𝐴2𝑈) (𝑦))).    (69) 

Florentin Smarandache (author and editor) Collected Papers, VIII

268



This completes the proof. 

Example 5 

Let 𝐺1
∗ = ( 𝑉1 , 𝐸1 ) and 𝐺2

∗ = ( 𝑉2 , 𝐸2 ) be two graphs such that 𝑉1  ={𝑣1 ,𝑣2 ,𝑣3 ,𝑣4 , 𝑣5 }. 𝑉2 
={𝑣1 ,𝑣2 ,𝑣3 ,𝑣4},𝐸1  ={𝑣1𝑣2 , 𝑣1𝑣5 , 𝑣2𝑣3 , 𝑣5𝑣3 , 𝑣5𝑣4 ,𝑣4𝑣3} and 𝐸2  ={𝑣1𝑣2 , 𝑣2𝑣3 , 𝑣2𝑣4 , 𝑣3𝑣34 , 
𝑣4𝑣1}. Consider two interval valued neutrosophic graphs  𝐺1= (𝐴1, 𝐵1) and 𝐺2= (𝐴2, 𝐵2). 

Figure 13: Interval valued neutrosophic graph G1 

Figure 14: Interval valued neutrosophic graph G1 
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Figure 15: Interval valued neutrosophic graph G1∪G2 

Definition 20 

The join of 𝐺1 + 𝐺2  = ( 𝐴1 + 𝐴2 , 𝐵1 + 𝐵2 ) interval valued neutrosophic graphs 𝐺1  and 
G2of the graphs 𝐺1

∗and𝐺2
∗  is defined as follows: 

1) (𝑇𝐴1𝐿 + 𝑇𝐴2𝐿)(𝑥) ={

(𝑇𝐴1𝐿 ∪ 𝑇𝐴2𝐿)(𝑥)  if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝑇𝐴1𝐿(𝑥)       if 𝑥 ∈ 𝑉1

𝑇𝐴2𝐿(𝑥)       if 𝑥 ∈ 𝑉2

 (70) 

(𝑇𝐴1𝑈 + 𝑇𝐴2𝑈)(𝑥) = {
(𝑇𝐴1𝑈 ∪ 𝑇𝐴2𝑈)(𝑥)  if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝑇𝐴1𝑈(𝑥)       if 𝑥 ∈ 𝑉1

𝑇𝐴2𝑈(𝑥)       if 𝑥 ∈ 𝑉2

 

(𝐼𝐴1𝐿 + 𝐼𝐴2𝐿) (𝑥) = {
(𝐼𝐴1𝐿 ∩ 𝐼𝐴2𝐿)(𝑥)  if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐼𝐴1𝐿(𝑥)       if 𝑥 ∈ 𝑉1

𝐼𝐴2𝐿(𝑥)       if 𝑥 ∈ 𝑉2

 

(𝐼𝐴1𝑈 + 𝐼𝐴2𝑈) (𝑥) = {
(𝐼𝐴1𝑈 ∩ 𝐼𝐴2𝑈)(𝑥)  if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐼𝐴1𝑈(𝑥)       if 𝑥 ∈ 𝑉1

𝐼𝐴2𝑈(𝑥)       if 𝑥 ∈ 𝑉2
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(𝐹𝐴1𝐿 + 𝐹𝐴2𝐿) (𝑥) = {
(𝐹𝐴1𝐿 ∩ 𝐹𝐴2𝐿)(𝑥)  if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐹𝐴1𝐿(𝑥)       if 𝑥 ∈ 𝑉1

𝐹𝐴2𝐿(𝑥)       if 𝑥 ∈ 𝑉2

 

(𝐹𝐴1𝑈 + 𝐹𝐴2𝑈) (𝑥) = {
(𝐹𝐴1𝑈 ∩ 𝐹𝐴2𝑈)(𝑥)  if 𝑥 ∈ 𝑉1 ∪ 𝑉2

𝐹𝐴1𝑈(𝑥)       if 𝑥 ∈ 𝑉1

𝐹𝐴2𝑈(𝑥)       if 𝑥 ∈ 𝑉2

 

2) (𝑇𝐵1𝐿 + 𝑇𝐵2𝐿) (𝑥y)= {

(𝑇𝐵1𝐿 ∪ 𝑇𝐵2𝐿)(xy)  if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝑇𝐵1𝐿(𝑥𝑦)       if 𝑥𝑦 ∈ 𝐸1

𝑇𝐵2𝐿(𝑥𝑦)      if 𝑥𝑦 ∈ 𝐸2

 (71) 

(𝑇𝐵1𝑈 + 𝑇𝐵2𝑈) (𝑥y)={

(𝑇𝐵1𝑈 ∪ 𝑇𝐵2𝑈)(xy)  if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝑇𝐵1𝑈(𝑥𝑦)       if 𝑥𝑦 ∈ 𝐸1

𝑇𝐵2𝑈(𝑥𝑦)       if 𝑥𝑦 ∈ 𝐸2

 

(𝐼𝐵1𝐿 + 𝐼𝐵2𝐿) (𝑥y)= {
(𝐼𝐵1𝐿 ∩ 𝐼𝐵2𝐿)(xy)  if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐼𝐵1𝐿(𝑥𝑦)  if 𝑥𝑦 ∈ 𝐸1

𝐼𝐵2𝐿(𝑥𝑦)  if 𝑥𝑦 ∈ 𝐸2

(𝐼𝐵1𝑈 + 𝐼𝐵2𝑈) (𝑥y)={

(𝐼𝐵1𝑈 ∩ 𝐼𝐵2𝑈)(xy)  if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐼𝐵1𝑈(𝑥𝑦)        if 𝑥𝑦 ∈ 𝐸1

𝐼𝐵2𝑈(𝑥𝑦)        if 𝑥𝑦 ∈ 𝐸2

 

(𝐹𝐵1𝐿 + 𝐹𝐵2𝐿) (𝑥y)={

(𝐹𝐵1𝐿 ∩ 𝐹𝐵2𝐿)(xy)  if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐹𝐵1𝐿(𝑥𝑦)  if 𝑥𝑦 ∈ 𝐸1

𝐹𝐵2𝐿(𝑥𝑦)  if 𝑥𝑦 ∈ 𝐸2

(𝐹𝐵1𝑈 + 𝐹𝐵2𝑈) (𝑥 y) = {
(𝐹𝐵1𝑈 ∩ 𝐹𝐵2𝑈)(xy)  if 𝑥𝑦 ∈ 𝐸1 ∪ 𝐸2

𝐹𝐵1𝑈(𝑥𝑦)  if 𝑥𝑦 ∈ 𝐸1

𝐹𝐵2𝑈(𝑥𝑦)  if 𝑥𝑦 ∈ 𝐸2

3) (𝑇𝐵1𝐿 + 𝑇𝐵2𝐿) (𝑥 y) = min (𝑇𝐵1𝐿(𝑥), 𝑇𝐵2𝐿(𝑥)) (72) 
(𝑇𝐵1𝑈 + 𝑇𝐵2𝑈) (𝑥y) = min (𝑇𝐵1𝑈(𝑥), 𝑇𝐵2𝑈(𝑥)) 
(𝐼𝐵1𝐿 + 𝐼𝐵2𝐿) (𝑥y)=max (𝐼𝐵1𝐿(𝑥), 𝐼𝐵2𝐿(𝑥)) 
(𝐼𝐵1𝑈 + 𝐼𝐵2𝑈) (𝑥 y) = max (𝐼𝐵1𝑈(𝑥), 𝐼𝐵2𝑈(𝑥) 
(𝐹𝐵1𝐿 + 𝐹𝐵2𝐿) (𝑥y)=max (𝐹𝐵1𝐿(𝑥), 𝐹𝐵2𝐿(𝑥)) 
(𝐹𝐵1𝑈 + 𝐹𝐵2𝑈) (𝑥 y) = max (𝐹𝐵1𝑈(𝑥), 𝐹𝐵2𝑈(𝑥))𝑖𝑓𝑥𝑦 ∈  𝐸′, 

where 𝐸′ is the set of all edges joining the nodes of 𝑉1 and 𝑉2, assuming𝑉1 ∩ 𝑉2=∅. 

Example 6 

Let 𝐺1
∗= (𝑉1, 𝐸1) and 𝐺2

∗= (𝑉2, 𝐸2) be two graphs such that 𝑉1 ={𝑢1,𝑢2,𝑢3},𝑉2 ={𝑣1,𝑣2,𝑣3},𝐸1 
={𝑢1𝑢2, 𝑢2𝑢3} and 𝐸2 ={𝑣1𝑣2, 𝑣2𝑣3}. Consider two interval valued neutrosophic graphs  𝐺1= (𝐴1, 
𝐵1) and 𝐺2= (𝐴2, 𝐵2). 
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Figure 16: Interval valued neutrosophic graph ofG1 and G2 

Figure 17: Interval valued neutrosophic graph of G1 + G2

5. Conclusion

The interval valued neutrosophic models give more precision, flexibility and compatibility to the 
system as compared to the classical, fuzzy, intuitionistic fuzzy and neutrosophic models. In this 
paper, the authors introduced some operations: Cartesian product, composition, union and join 
on interval valued neutrosophic graphs, and investigated some of their properties. In the future, 
the authors plan to study others operations, such as: tensor product and normal product of two 
interval valued neutrosophic graphs. 
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Abstract 

In this article, we discuss all possible cases to construct an atom of matter, antimatter, 
or unmatter, and also the cases of contradiction (i.e. impossible case). 

1. Introduction
Anti-particle in physics means a particle which has one or more opposite properties to its

"original particle kind". If one property of a particle has the opposite sign to its original state, this 
particle is anti-particle, and it annihilates with its original particle. 

The anti-particles can be electrically charged, color or fragrance (for quarks). Meeting each 
other, a particle and its anti-particle annihilate into gamma-quanta. 

This formulation may be mistaken with the neutrosophic <antiA>, which is strong opposite to 
the original particle kind. The <antiA> state is the ultimate case of anti-particles [6]. 

In [7], F. Smarandache discusses the refinement of neutrosophic logic. Hence, <A>, <neutA> 
and <antiA> can be split into: <A1>, <A2>, ...; <neutA1>, <neutA2>, ...; <antiA1>, <antiA2>, ...; 
therefore, more types of matter, more types of unmatter, and more types of antimatter. 

One may refer to <A>, <neutA>, <anti-A> as "matter", "unmatter" and "anti-matter". 
Following this way, in analogy to anti-matter as the ultimate case of anti-particles in physics, 

the unmatter can be extended to "strong unmatter", where all properties of a substance or a field 
are unmatter, and to "regular unmatter", where just one of the properties of it satisfies the unmatter. 

2. Objective
The aim is to check whether the indeterminacy component 𝐼 can be split to sub-indeterminacies

𝐼1, 𝐼2, 𝐼3, and then justify that the below are all different:
𝐼1 ∩ 𝐼2 ∩ 𝐼3, 𝐼1 ∩ 𝐼3 ∩ 𝐼2,  𝐼2 ∩ 𝐼3 ∩ 𝐼1,  𝐼2 ∩ 𝐼1 ∩ 𝐼3, 𝐼3 ∩ 𝐼1 ∩ 𝐼2,  𝐼3 ∩ 𝐼2 ∩ 𝐼1.       (1) 

3. Cases
Let 𝑒 , 𝑒+, 𝑃, 𝑎𝑛𝑡𝑖𝑃 , 𝑁, 𝑎𝑛𝑡𝑖𝑁 be electrons, anti-electrons, protons, anti-protons, neutrons, anti-

neutrons respectively, also ∪ means union/OR, while ∩ means intersection/AND, and suppose: 
𝐼 = (𝑒 ∪  𝑒+) ∩ (𝑃 ∪  𝑎𝑛𝑡𝑖𝑃) ∩ (𝑁 ∪  𝑎𝑛𝑡𝑖𝑁)  (2)

The statement (2) shows indeterminacy, since one cannot decide the result of the 
interaction if it will produce any of the following cases: 

A New Order Relation on the Set of Neutrosophic Truth Values 

Florentin Smarandache, Huda E. Khalid, Ahmed K. Essa 
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1. (𝑒 ∪  𝑒+) ∩ (P ∪  antiP) ∩ (N ∪  antiN) → 𝑒 ∩  P ∩  antiN,

which is unmatter type (a), see reference [2]; 
2. (𝑒 ∪  𝑒+) ∩ (N ∪  antiN) ∩ (P ∪  antiP) → 𝑒+  ∩  N ∩  antiP,

which is unmatter type (b), see reference [2]; 
3. (P ∪  antiP) ∩ (N ∪  antiN) ∩ (𝑒 ∪  𝑒+) → P ∩  N ∩  𝑒+ = 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛;

4. (P ∪  antiP) ∩ (𝑒 ∪  𝑒+) ∩ (N ∪  anti N) → antiP ∩  e ∩  𝑎𝑛𝑡𝑖N =

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛;

5. (N ∪  antiN) ∩ (𝑒 ∪ 𝑒+) ∩ (P ∪  antiP) → N ∩  e ∩  P,

which is a matter; 
6. (N ∪  antiN) ∩ (P ∪  antiP) ∩ (𝑒 ∪  𝑒+) → antiN ∩  𝑎𝑛𝑡𝑖P ∩ 𝑒+,

which is antimatter. 

4. Comment
It is obvious that all above six cases are not equal in pairs; suppose:

𝑒 ∪  𝑒+ = 𝐼1 =  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦,
P ∪  antiP = 𝐼2 = 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦,
N ∪  antiN = 𝐼3 = 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦.

Consequently, the statement (2) can be rewritten as: 
𝐼 = 𝐼1 ∩ 𝐼2  ∩  𝐼3

but we cannot get the equality for any pairs in eq. (1). 

5. Remark
This example is a response to the article [4], where Florentin Smarandache stated that "for each

application we might have some different order relations on the set of neutrosophic truth values; 
(…) one can get one such order relation workable for all problems", and also to a commentary in 
[5], that "It would be very useful to define suitable order relations on the set of neutrosophic truth 
values". 

References 
1. F. Smarandache: A new form of matter — unmatter, formed by particles and anti-particles. CERN CDS,

EXT-2004-182, 2004.
2. F. Smarandache: Verifying Unmatter by Experiments, More Types of Unmatter, and a Quantum

Chromodynamics Formula. In: “Progress in Physics”, Vol. 2, July 2005, pp. 113-116.
3. F. Smarandache: (T, I, F)-Neutrosophic Structures, In: “Neutrosophic Sets and Systems”, Vol. 8, 2015,

pp. 3-10.
4. F. Smarandache: Neutrosophic Logic as a Theory of Everything in Logics.

http://fs.gallup.unm.edu/NLasTheoryOfEverything.pdf.
5. U. Rivieccio: Neutrosophic logics: Prospects and problems. In: “Fuzzy Sets and Systems”, Vol. 159, Issue

14, 2008, pp. 1860-1868.
6. Dmitri Rabounski, F. Smarandache, Larissa Borisova: Neutrosophic Methods in General Relativity.

Hexis: Phoenix, Arizona, USA, 2005, 78 p.
7. F. Smarandache: Symbolic Neutrosophic Theory. EuropaNova, Brussels, Belgium, 2015, 194 p.

Florentin Smarandache (author and editor) Collected Papers, VIII

276

http://fs.gallup.unm.edu/NLasTheoryOfEverything.pdf


Abstract 

In this paper, one extends the single-valued complex neutrosophic set to the subset-

valued complex neutrosophic set, and afterwards to the subset-valued 

complex refined neutrosophic set. 

Keywords 

single-valued complex neutrosophic set, subset-valued complex neutrosophic 

set, subset-valued complex refined neutrosophic set. 

1 Introduction 

One first recalls the definitions of the single-valued neutrosophic set (SVNS), 

and of the subset-value neutrosophic set (SSVNS). 

Definition 1.1. 

Let X be a space of elements, with a generic element in X denoted by x. A 

Single-Valued Neutrosophic Set (SVNS) A is characterized by a truth 

membership function 𝑇𝐴 (x), an indeterminacy membership function 𝐼𝐴 (x), 

and a falsity membership function 𝐹𝐴(x), where for each element x ∈X, 𝑇𝐴(x), 

𝐼𝐴(x), 𝐹𝐴(x) ∈ [0 , 1] and 0 ( ) ( ) ( ) 3A A AT x I x F x + +  .

Definition 1.2. 

Let X be a space of elements, with a generic element in X denoted by x. A 

SubSet-Valued Neutrosophic Set (SSVNS) A [3] is characterized by a truth 

membership function 𝑇𝐴 (x), an indeterminacy membership function 𝐼𝐴 (x), 

and a falsity membership function 𝐹𝐴(x), where for each element x ∈X, the 

subsets ( ), ( ), ( ) [0,1],A A AT x I x F x 

with 0 sup( ( )) sup( ( )) sup( ( )) 3.A A AT x I x F x + + 
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2 Complex Neutrosophic Set 

Ali and Smarandache [1] introduced the notion of single-valued complex 

neutrosophic set (SVCNS) as a generalization of the single-valued 

neutrosophic set (SVNS) [2]. 

Definition 2.1. 

Let X be a space of elements, with a generic element in X denoted by x. A 

Single-Valued Complex Neutrosophic Set (SVCNS) A [1] is characterized by a 

truth membership function 2 ( )
1 ( ) ,A

A

iT xT x e an indeterminacy membership 

function 2 ( )
1 ( ) ,A

A

iI xI x e and a falsity membership function 2 ( )
1 ( ) ,A

A

iF xF x e  where 

for each element x ∈ X, single-valued numbers 1 1 1( ), ( ), ( ) [0,1],
A A A

T x I x F x 

1 1 10 ( ) ( ) ( ) 3,
A A A

T x I x F x + +  1,i = −

and the single-valued numbers 2 2 2( ), ( ), ( ) [0,2 ]
A A A

T x I x F x  ,

with 2 2 20 ( ) ( ) ( ) 6
A A A

T x I x F x  + +  . 

1 1 1( ), ( ), ( )
A A A

T x I x F x represent the real part (or amplitude) of the truth 

membership, indeterminacy membership, and falsehood membership 

respectively; while 2 2 2( ), ( ), ( )
A A A

T x I x F x represent the imaginary part (or

phase) of the truth membership, indeterminacy membership, and falsehood 

membership respectively. 

Definition 2.2. 

In the previous Definition 2.1., if one replaces the single-valued numbers with 

subset-values, i.e. the subset-values 1 1 1( ), ( ), ( ) [0,1],
A A A

T x I x F x   1,i = − and

the subset-values 2 2 2( ), ( ), ( ) [0,2 ]
A A A

T x I x F x  , 

with 1 1 10 sup( ( )) sup( ( )) sup( ( )) 3,
A A A

T x I x F x + + 

and 2 2 20 sup( ( )) sup( ( )) sup( ( )) 6 ,
A A A

T x I x F x  + + 

one obtains the SubSet-Valued Complex Neutrosophic Set (SSVCNS). 

3 Refined Neutrosophic Set 

Smarandache introduced the refined neutrosophic set [4] in 2013. 
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Definition 3.1. 

Let X be a space of elements, with a generic element in X denoted by x. A 

Single-Valued Refined Neutrosophic Set (SVRNS) A is characterized by p  sub-

truth membership functions 1 2( ), ( ),..., ( ),
A A ApT x T x T x r sub-indeterminacy 

membership functions 1 2( ), ( ),..., ( ),
A A Ar

I x I x I x and s sub-falsity membership

functions 1 2( ), ( ),..., ( ),
A A AsF x F x F x where for each element x ∈X, the single-

valued numbers 

1 2 1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ) [0,1]
A A A A A A A A Ap r sT x T x T x I x I x I x F x F x F x  , 

1 2 1 2 1 20 ( ) ( ) ... ( ) ( ) ( ) ... ( ) ( ) ( ) ...

... ( ) ,
A A A A A A A A

A

p r

s

T x T x T x I x I x I x F x F x

F x p r s

 + + + + + + + + + +

+  + +

and the integers p, r, s ≥ 0, with at least one of p, r, s to be ≥ 2. 

In other words, the truth membership function TA(x) was refined (split) into 

p sub-truths 1 2( ), ( ),..., ( ),
A A ApT x T x T x the indeterminacy membership function 

IA(x) was refined (split) into r sub-indeterminacies 1 2( ), ( ),..., ( ),
A A Ar

I x I x I x and 

the falsity membership function FA(x) was refined (split) into s sub-falsities 

1 2( ), ( ),...,
A A AsF x F x F . 

 Definition 3.2. 

In the previous Definition 3.1., if one replaces the single-valued numbers with 

subset-values i.e., the subset-values 

1 2 1 2 1 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ) [0,1],
A A A A A A A A Ap r sT x T x T x I x I x I x F x F x F x  and 

1 2 1 2

1 2

0 sup( ( )) sup( ( )) ... sup( ( )) sup( ( )) sup( ( )) ...

... sup( ( )) sup( ( )) sup( ( )) ... sup( ( )) ,
A A A A A

A A A A

p

r s

T x T x T x I x I x

I x F x F x F x p r s

 + + + + + +

+ + + + +  + +

one obtains the SubSet-Valued Refined Neutrosophic Set (SSVRNS). 

4 Complex Refined Neutrosophic Set 

Now one combines the complex neutrosophic set with refined neutrosophic 

set in order to get the complex refined neutrosophic set. 

Definition 4.1. 

Let X be a space of elements, with a generic element in X denoted by x. A 

Single-Valued Complex Refined Neutrosophic Set (SVCRNS) A is characterized 
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by p sub-truth membership functions 

21 22 2( ) ( ) ( )
11 12 1( ) , ( ) ,..., ( ) ,pA A A

A A A

iT x iT x iT x
pT x e T x e T x e r sub-indeterminacy membership 

functions 21 22 2( ) ( ) ( )
11 12 1( ) , ( ) ,..., ( ) ,rA A A

A A A

iI x iI x iI x
rI x e I x e I x e and s sub-falsity 

membership functions 21 22 2( ) ( ) ( )
11 12 1( ) , ( ) ,..., ( ) ,sA A A

A A A

iF x iF x iF x
sF x e F x e F x e  and 

1,i = − where for each element x ∈X, the single-valued numbers (sub-real 

parts, or sub-amplitudes) 

11 12 1 11 12 1 11 12 1( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ) [0,1]
A A A A A A A A Ap r sT x T x T x I x I x I x F x F x F x 

with 

11 12 1 11 12 1 11 12

1

0 ( ) ( ) ... ( ) ( ) ( ) ... ( ) ( ) ( )

... ( ) ,
A A A A A A A A

A

p r

s

T x T x T x I x I x I x F x F x

F x p r s

 + + + + + + + + + +

+  + +

and the single-valued numbers (sub-imaginary parts, or sub-phases) 

21 22 2 21 22 2 21 22 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ) [0,2 ]
A A A A A A A A Ap r sT x T x T x I x I x I x F x F x F x 

with 

21 22 2 21 22 2 21 22

2

0 ( ) ( ) ... ( ) ( ) ( ) ... ( ) ( ) ( ) ...

( ) 2( ) ,
A A A A A A A A

A

p r

s

T x T x T x I x I x I x F x F x

F x p r s 

 + + + + + + + + + +

+  + +

and the integers p, r, s ≥ 0, with at least one of p, r, s to be ≥ 2. 

Definition 4.2. 

In the previous Definition 4.1., if one replaces the single-valued numbers with 

subset-values i.e., the subset-values  

11 12 1 11 12 1 11 12 1( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ) [0,1]
A A A A A A A A Ap r sT x T x T x I x I x I x F x F x F x 

with 

11 12 1 11 12

1 11 12 1

0 sup( ( )) sup( ( )) ... sup( ( )) sup( ( )) sup( ( )) ...

... sup( ( )) sup( ( )) sup( ( )) ... sup( ( )) ,
A A A A A

A A A A

p

r s

T x T x T x I x I x

I x F x F x F x p r s

 + + + + + +

+ + + + +  + +

and 

21 22 2 21 22 2 21 22 2( ), ( ),..., ( ), ( ), ( ),..., ( ), ( ), ( ),..., ( ) [0,2 ]
A A A A A A A A Ap r sT x T x T x I x I x I x F x F x F x 

with 
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21 22 2 21 22

2 21 22 2

0 sup( ( )) sup( ( )) ... sup( ( )) sup( ( )) sup( ( )) ...

... sup( ( )) sup( ( )) sup( ( )) ... sup( ( )) 2( ) ,
A A A A A

A A A A

p

r s

T x T x T x I x I x

I x F x F x F x p r s 

 + + + + + +

+ + + + +  + +

one obtains the SubSet-Valued Complex Refined Neutrosophic Set (SSVCRNS). 

5 Conclusion 

After the introduction of the single-valued and subset-valued complex 

refined neutrosophic sets as future research is the construction of their 

aggregation operators, the study of their properties, and their applications in 

various fields. 
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Abstract. In this paper, multi attribute decision making 
problem based on grey relational analysis in neutrosophic 
cubic set environment is investigated. In the decision 
making situation, the attribute weights are considered as 
single valued neutrosophic sets. The neutrosophic weights 
are converted into crisp weights. Both positve and neg-
ative GRA coefficients, and weighted GRA coefficients 
are determined.   

Hamming distances for weighted GRA coefficients and 
standard (ideal) GRA coefficients are determined. The 
relative closeness coefficients are derived in order to rank 
the alternatives. The relative closeness coefficients are 
designed in ascending order. Finally, a numerical example 
is solved to demonstrate the applicability of the proposed 
approach. 

Keywords: Grey relational coefficient, interval valued neutrosophic set, multi attribute decision making, neutrosophic set,  
neutrosophic cubic set, relative closeness coefficient 

1 Introduction
In management section, banking sector, factory, plant 

multi attribute decision making (MADM) problems are to 
be extensively encountered. In a MADM situation, the most 
appropriate alternative is selecting from the set of alter-
natives based on highest degree of acceptance. In a decision 
making situation, decision maker (DM) considers the ef-
ficiency of each alternative with respect to each attribute. In 
crisp MADM, there are several approaches [1, 2, 3, 4, 5] in 
the literature. The weight of each attribute and the elements 
of decision matrix are presented by crisp numbers. But in 
real situation, DMs may prefer to use linguistic variables 
like ‘good’, ‘bad’, ‘hot’, ‘cold’, ‘tall’, etc.  So, there is an 
uncertainty in decision making situation which can be 
mathematically explained by fuzzy set [6]. Zadeh [6] 
explained uncertainty mathematically by defining fuzzy set 
(FS). Bellman and Zadeh [7] studied decision making in 
fuzzy environment. Atanassov [8, 9] narrated uncertainty by 
introducing non-membership as independent component 
and defined intuitionistic fuzzy set (IFS). Degree of indeter-
minacy (hesitency) is not independent .  

Later on DMs have recognized that indeterminacy plays 
an important role in decision making. Smarandache [10] 
incorporated indeterminacy as independent component and 
developed neutrosophic set (NS) and together with  Wang 
et a. [11] defined single valued neutrosophic set (SVNS) 
which is an instance of neutrosophic set. Ye [12] proposed 

a weighted correlation coefficients for ranking the altern-
atives for multicriteria decision making (MCDM). Ye [13] 
established single valued neutrosophic cross entropy for 
MCDM problem. Sodenkamp [14] studied multiple-criteria 
decision analysis in neutrosophic environment. Mondal and 
Pramanik [15] defined neutrosophic tangent similarity 
measure and presented its application to MADM. Biswas et 
al. [16] studied cosine similarity measure based MADM 
with trapezoidal fuzzy neutrosophic numbers. Mondal and 
Pramanik [17] presented multi-criteria group decision 
making (MCGDM) approach for teacher recruitment in 
higher education. Mondal and Pramanik [18] studied 
neutrosophic decision making model of school choice.  Liu 
and Wang [19] presented MADM method based on single-
valued neutrosophic normalized weighted Bonferroni mean. 
Biswas et al. [20] presented TOPSIS method for MADM 
under single-valued neutrosophic environment. Chi and Liu 
[21] presented extended TOPSIS method for MADM on
interval neutrosophic set. Broumi et al. [22] presented
extended TOPSIS method for MADM based on interval
neutrosophic uncertain linguistic variables. Nabdaban and
Dzitac [23] presented a very short review of TOPSIS in
neutrosophic environment. Pramanik et al. [24] studied
hybrid vector similarity measures and their applications to
MADM under neutrosophic environment. Biswas et al. [25]
presented triangular fuzzy neutrosophic set information and
its application to MADM. Sahin and Liu [26] studied

GRA for Multi Attribute Decision Making in Neutrosophic Cubic 

Set Environment 

Durga Banerjee, Bibhas C. Giri, Surapati Pramanik, Florentin Smarandache 
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maximizing deviation method for neutrosophic MADM 
with incomplete weight information. Ye [27] studied 
bidirectional projection method for MADM with neutr-
osophic numbers of the form a + bI, where I is characterized 
by indeterminacy. Biswas et al. [28] presented value and 
ambiguity index based ranking method of single-valued 
trapezoidal neutrosophic numbers and its application to 
MADM. Dey et al. [29] studied extended projection-based 
models for solving MADM problems with interval-valued 
neutrosophic information. 

Deng [30, 31] studied grey relational analysis (GRA). 
Pramanik and Mukhopadhyaya [32]  developed GRA based 
intuitionistic fuzzy multi criteria decision making (MCDM) 
approach for teacher selection in higher education. Dey et al. 
[33] established MCDM in intuitionistic fuzzy environment
based on GRA for weaver selection in Khadi institution.
Rao, and Singh [34] established modified GRA method for
decision making in manufacturing situation. Wei [35]
presented GRA method for intuitionistic fuzzy MCDM.
Biswas et al. [36] studied GRA method for MADM under
single valued neutrosophic assessment based on entropy.
Dey et al. [37] presented extended GRA based neutrosophic
MADM in interval uncertain linguistic setting. Pramanik
and K. Mondal [38] employed GRA for interval neutros-
ophic MADM and presented numerical examples.

Several neutrosophic hybrid sets have been recently  
proposed in the literature, such as neutrosophic soft set 
proposed by Maji [39], single valued soft expert set pro-
posed by Broumi and Smarandache  [40], rough neutros-
ophic set proposed by  Broumi, et al. [41], neutrosophic bi-
polar set proposed by Deli et al. [42], rough bipolar neutro-
sophic set proposed by Pramanik and Mondal [43], neutro-
sophic cubic set proposed by Jun et al. [44] and Ali et al. 
[45]. Jun et al. [44]  presented the concept of neut-rosophic 
cubic set by extending the concept of cubic set proposed by 
Jun et al. [46] and introduced the notions of truth-internal 
(indeterminacy-internal, falsity-internal) neut-rosophic 
cubic sets and truth-external (indeterminacy-external, 
falsity-external) and investigated related properties. Ali et al. 
[45] presented concept of neutrosophic cubic set by
extending the concept of cubic set [46] and defined internal
neutrosophic cubic set (INCS) and external neutrosophic
cubic set (ENCS).  In their study,  Ali et al.[45]  also
introduced an adjustable approach to neutrosophic cubic set
based decision making.

GRA based MADM/ MCDM problems have been pro-
posed for various neutrosophic hybrid environments [47, 48, 
49, 50]. MADM with neutrosophic cubic set is yet to appear 
in the literature. It is an open area of research in 
neutrosophic cubic set environment. 

The present paper is devoted to develop GRA method 
for MADM in neutrosophic cubic set environment. The 
attribute weights are described by single valued neutros-
ophic sets. Positive and negative grey relational coefficients 
are determined. We define ideal grey relational coefficients 
and relative closeness coefficients in neutrosophic cubic set 

environment. The ranking of alternatives is made in 
descending order.   

The rest of the paper is designed as follows: In Section 
2, some relevant definitions and properties are recalled.  
Section 3 presents MADM in neutrosophic cubic set 
environment based on GRA. In Section 4, a numerical 
example is solved to illustrate the proposed approach. 
Section 5 presents conclusions and future scope of research. 

2 Preliminaries 
In this section, we recall some established definitions 

and properties which are connected in the present article. 

2.1 Definition (Fuzzy set) [6] 
 Let W be a universal set. Then a fuzzy set F over W can 

be  defined by F={<w,  )w(F : w ∈W} where :)w(F W 
 [0, 1]is called membership function of F and )w(F is 
the degree of  membership to which w F. 

2.2 Definition (Interval valued fuzzy set) [52] 
Let W be a universal set. Then, an interval valued fuzzy 

set F over W is defined by F = {[  w:w/)]w(F),w(F W}, 
where )w(F  and )w(F   are referred to as the lower and 
upper degrees of membership w ∈W where 

0 ≤ )w(F + )w(F ≤ 1, respectively. 

 2.3 Definition (Cubic set) [46] 
Let W be a non-empty set. A cubic set C in W is of the 

form c = {  w/))w(),w(F,w  W} where F is an interval 
valued fuzzy set in W and  is a fuzzy set in W.  

2.4 Definition (Neutrosophic set (NS)) [10] 
Let W be a space of points (objects) with generic 

element w in W. A neutrosophic set N in W is denoted by 
N= {< w: TN(w), IN(w), FN(w)>: w W} where TN, IN, FN 
represent membership, indeterminacy and non-membership 
function respectively. TN, IN, FN can be defined as follows: 

NT : W →]  0, 1+ [

NI : W →]  0, 1+ [

AF : W →]  0, 1+ [

Here, TN(w), IN(w), FN(w) are the real standard and non-
standard subset of ]  0, 1+ [ and

 0 ≤ TN(w)+IN(w)+FN(w) ≤ 3+. 

2.5 Definition (Complement of neutrosophic set) 
[10] 

The complement of a neutrosophic set N is denoted by 
Nand defined as 
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N= {<w: TN(w), IN(w), FN(w)>, Ww }

TN(w) = {1+}- TN(w) 

IN(w) = {1+} -IN(w) 

FN(w) = {1+} - FN(w) 

2.6 Definition (Containment) [10, 20] 
A neutrosophic set P is contained in the other 

neutrosophic set Q, P ⊆ Q, if and only if 

inf (TP ) ≤ inf (TQ),sup (TP ) ) ≤ sup ((TQ), 

inf (IP )   inf (IQ),sup (IP ) )   sup ((IQ). 

inf (FP )   inf (FQ),sup (FP ) )   sup ((FQ). 

2.7 Definition (Union)  [10]  
The union of two neutrosophic sets P and Q is a 

neutrosophic set R, written as R = P ∪ Q, whose truth-
membership, indeterminacy-membership and falsity 
membership functions are related to those of P and Q by 

    TR(w) = TP(w) + TQ(w) – TP(w) ×TQ(w), 

 IR(w) = IP(w) + IQ(w) – IP(w) × IQ(w), 

FR(w) = FP(w) + FQ(w) – FP(w) × FQ(w), for all wW. 

2.8 Definition (Intersection)  [10]
The intersection of two neutrosophic sets P and Q is a 

neutrosophic set C, written as R =P∪Q, whose truth-
membership, indeterminacy-membership and falsity- 
membership functions are related to those of P and Q by  

TR(w) = TP(w) ×TQ(w), 

 IR(w) = IP(w) × IQ(w), 

FR(w) = FP(w) × FQ(w), for all wW. 

2.9 Definition (Hamming distance) [20, 53]           

Let  n...,,2,1i,)w(F),w(I),w(T:wP iPiPiPi   and
 n...,,2,1i,)w(F),w(I),w(T:wQ iQiQiPi  be  any two 

neutrosophgic sets. Then the Hamming distance between P 
and Q can be defined as follows:  

)Q,P(d =

))w(F)w(F)w(I)w(I)w(T)w(T(
n

1i
iQiPiQiPiQiP 



                                                                                       

2.10 Definition (Normalized Hamming distance) 
The normalized Hamming distance between two 

SVNSs, A and B can be defined as follows: 

)Q,P(dN =   

 


n

1i
iQiPiQiPiQiP ))w(F)w(F)w(I)w(I)w(T)w(T(

n3
1

2. 11 Definition (Interval neutrosophic set) [51]
Let W be a non-empty set. An interval neutrosophic set

(INS) P in W is characterized by the truth-membership 
function PT, the indeterminacy-membership function PI and 
the falsity-membership function PF. For each point w ∈ W, 
PT(w), PI(w),PF(w))⊆[0,1]. Here P can be presented as 
follows:  

P ={< w, )]w(P),w(P[ U
T

L
T , )]w(P),w(P[ U

I
L
I , 

)]w(P),w(P[ U
F

L
F > :w ∈W}.

2.12 Definition (Neutrosophic cubic set) [44, 45]
Let W be a set. A neutrosophic cubic set (NCS) in W is 

a pair ),P(  where P = { /)w(P),w(P),w(P,w FIT wW}  is 
an interval neutrosophic set in W and 

 Ww/)w(),w(),w(,w FIT  is a neutrosophic set 
in W. 

3 GRA for MADM in neutrosophic cubic set 
environment

We consider a MADM problem with r alternatives {A1, 
A2, …, Ar} and s attributes {C1, C2, …, Cs}. Every attribute 
is not equally important to decision maker. Decision maker 
provides the neutrosophic weights for each attribute. Let 

 T
s21 w...,,w,w W  be the neutrosophic weights of the attrib-

utes. 

Step 1 Construction of decision matrix 
Step1.The decision matrix (see Table 1) is constructed 

as follows: 

Table 1: Decision matrix 

srrsrs2r2r1r1rr

s2s2222221212
s1s1121211111

s21

s

),A(...),A(),A(A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
),A(...),A(),A(A
),A(...),A(),A(A

C...CC





































  rij )(aA

Here ),A( ijij 
i j
a ,  ]F,F[],I,I[],T,T[A U

ij
L

ij
U
ij

L
ij

U
ij

L
ijij  , 

)F,I,T( ijijijij  , 
i j
a means the rating of alternative Ai with 

respect to the attribute Cj. Each weight component 
j
w of 

attribute jC has been taken as neutrosophic set and 

)F,I,T( jjj
j
w ,  ]F,F[],I,I[],T,T[A U

ij
L

ij
U
ij

L
ij

U
ij

L
ijij 

are interval neutrosophic set and )F,I,T( ijijijij  is a 
neutrosophic set. 

(1) 

(2)
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Step 2 Crispification of neutrosophic weight set 
Let  jjjj F,I,Tw   be the j – th neutrosophic weight 

for the attribute jC . The equivalent crisp weight of  jC is 
defined as follows:

 






n

1j

2
j

2
j

2
j

2
j

2
j

2
jc

j
FIT

FIT
w and 1w

s

1j

c
j 



.   

Step 3 Conversion of interval neutrosophic set into neu-
trosophic set decision matrix  

In the decision matrix (1), each 
 ]F,F[],I,I[],T,T[A U

ij
L
ij

U
ij

L
ij

U
ij

L
ijij  is an INS. Taking

mid value of each interval the decision matrix reduces to 
single valued neutrosophic decision matrix (See Table 2). 

Table 2: Neutrosophic decision matrix 

srrsrs2r2r1r1rr

s2s2222221212
s1s1121211111

s21

s

),M(...),M(),M(A
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.
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 rij )(mM

where each  ijij ,M 
i j
m and 
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2
TT U
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L
ij

U
ij

L
ij

U
ij

L
ij

ijM  .F,I,T m
ij

m
ij

m
ij

Step 4 Some definitions of GRA method for MADM with 
NCS  

The GRA method for MADM with NCS can be pre-
sented in the following steps: 

Step 4.1 Definition: 
The ideal neutrosophic estimates reliability solution 

(INERS) can be denoted as 
       ],...,,,,,[, q21

 
q21 MMMM

and defined as    jjjj F,I,TM , where m
ij

i
j TmaxT  , 

m
ij

i

m
j IminI  , m

ij
i

m
j FminF  and )F,I,T( jjjj

 

where ij
i

j TmaxT  , ij
i

j IminI  , ij
i

j FminF  in the neutro-

sophic cubic decision matrix 
qpij

)(mM


 , i = 1,2,...,r and j 
= 1, 2, ..., s. 

Step 4.2 Definition: 
The ideal neutrosophic estimates unreliability solution 

(INEURS) can be denoted as 
          s21 ,...,,,,,, s21 MMMM

and defined as    m
j

m
j

m
jj F,I,TM where m

ij
i

m
j TminT  , 

m
ij

i

m
j ImaxI  , m

ij
i

m
j FmaxF  and )F,I,T( jjjj

  where 

ij
i

j TminT  , ij
i

j ImaxI  , ij
i

j FmaxF   in the neutrosophic 

cubic decision matrix s rij )(mM , i = 1,2,...,r and j = 1, 2, 
...,s. 

Step 4.3 Definition: 
The grey relational coefficients of each alternative 

from INERS can be defined as: 

 







































ij
ji

ij

ij
ji

ij
ji

ij
ji

ij

ij
ji

ij
ji

ijij

maxmax

maxmaxminmin
,

maxmax

maxmaxminmin

,

Here, 
)M,M(d ijjij

 

  



r

1i

m
ij

m
j

m
ij

m
j

m
ij

m
j FFIITT

and  ijjij ,d     



r

1i
ijjijjijj FFIITT  , 

i = 1, 2 ,..., r and j = 1, 2, ..., s, ]1,0[ . 
We call    ijij , as positive grey relational coeffi-

cient. 

Step 4.4 Definition: 

The grey relational coefficient of each alternative from 
INEURS can be defined as: 

 ,ij ij   































ijjiij

ijjiijji

ijjiij

ijjiijji

maxmax

maxmaxminmin

maxmax

maxmaxminmin
,

Here,
)M,M(d ijjij

    



r

1i

m
ij

m
j

m
ij

m
j

m
ij

m
j FFIITT

and: 

 ijjij ,d     



r

1i
ijjijjijj FFIITT  , i = 1, 

2,..., r and j = 1, 2, ..., s, ]1,0[ . 
We call    ijij , as negative grey relational coefficient. 

 is called distinguishable coefficient or identification coef-
ficient and it is used to reflect the range of comparison en-
vironment that controls the level of differences of the grey
relational coefficient. 0  indicates comparison environ-
ment disappears and 1  indicates comparison environ-
ment is unaltered. Generally, 5.0 is assumed for decision 
making. 
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Step 4.5 Calculation of weighted grey relational coeffi-
cients for MADM with NCS 

We can construct two sr order matrices namely 



GRM  
srijij ,


   and 

GRM  
srijij , 

  . The crisp weight is
to be multiplied with the corresponding elements of 

GRM
and 

GRM     to obtain weighted matrices 

GRW M and 


GRW M and defined as:



GRW M  
srij

c
jij

c
j w,w



    srijij
~

,~


 

and 

GRW M  
srij

c
jij

c
j w,w



    srijij
~,~


 

Step 4.6 
From the definition of grey relational coefficient, it is 

clear that grey relational coefficients of both types must be 
less than equal to one. This claim is going to be proved in 
the following theorems.  

Theorem 1 
The positive grey relational coefficient is less than unity 
i.e. ,1ij  and 1ij  . 
Proof: 
From the definition 
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ij

ij
ji

ij
ji

ij maxmax

maxmaxminmin

Now, 
  ijij
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maxmaxmaxmaxminmin

1
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maxmaxminmin
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ij

ij
ji
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1ij  

 Again, from the definition, we can write: 
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Now,   ijij
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ji
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ij
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ji
ij
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ji
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ji

ij maxmax

maxmaxminmin

1ij   .

Theorem 2 

The negative grey relational coefficient is less than unity 
i.e. 1,1 ijij   . 
Proof: 

  From the definition, we can write 
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 Again, from the definition 
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Note 1: 

i. Since 1ij  1w, c
j  1wthen c

jij  1~
ij  

ii. Since 1ij  1w, c
j  1wthen c

jij  1~
ij  

iii. Since 1ij  1w, c
j  1wthen c

jij  1~
ij  

iv. Since 1ij  1w, c
j  1wthen c

jij  1~
ij  

Step 4.7 
We define the ideal or standard grey relational coeffi-

cient as (1, 1). Then we construct ideal grey relational coef-
ficient matrix of order sr  (see Table 3). 

Table 3: Ideal grey relational coefficient matrix 
of order sr  
     
     

      sr1,1...1,11,1
...................

1,1...1,11,1
1,1...1,11,1

I

























Step 5 Determination of Hamming distances 
We find the distance 

id between the corresponding el-
ements of i-th row of I and 

GRW M  by employing Hamming 
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distance. Similarly, 
id  can be determined between I   and 



GRW M by employing Hamming distance as follows: 

 ]~
1~1[

s2
1d

s

1j
ijiji  



 , i = 1, 2, …, r.

 ]~
1~1[

s2
1d

s

1j
ijiji  



 , i = 1, 2, …, r. 

Step 6 Determination of relative closeness coefficient 
The relative closeness coefficient can be calculated as: 








ii

i
i dd

d
 i = 1, 2, ..., r. 

Step 7 Ranking the alternatives 
According to the relative closeness coefficient, the rank-

ing order of all alternatives is determined. The ranking order 
is made according to descending order of relative closeness 
coefficients. 

4 Numerical example 
Consider a hypothetical MADM problem. The prob-

lem consists of single decision maker, three alternatives 
with three alternatives {A1, A2, A3} and four attributes {C1, 
C2, C3, C4}.  The solution of the problem is presented using 
the following steps: 

Step 1. Construction of neutrosophic cubic decision ma-
trix 

The decison maker forms the decision matrix which is 
displayed in the  Table 4, at the end of article. 

Step 2. Crispification of neutrosophic weight set 

The neutrosophic weights of the attributes are taken as: 
 T)4.0,3.0,6.0(),1.0,2.0,9.0(),1.0,1.0,6.0(),1.0,2.0,5.0(W

The equivalent crisp weights are
  Tc )2719.0(),3228.0(),2146.0(),1907.0(W 

Step 3 Conversion of interval neutrosophic set into neu-
trosophic set in decision matrix  

Taking the mid value of INS in the Table 4, the new decision 
matrix is presented in the following Table 5, at the end of 
article.  

Step 4 Some Definitions of GRA method for MADM 
with NCS 
The ideal neutrosophic estimates reliability solution (IN-
ERS)   ,M and the ideal neutrosophic estimates unrelia-
bility solution (INEURS)   ,M are presented in the Ta-
ble 6, at the end of article. 

j,i))M,M(d()( ijjij   is presented as below: 



















45.025.015.005.0
25.07.0065.0
15.005.095.085.0

The   j,i),d()( ijjij   is presented as below: 

















 

5.02.03.025.0
2.02.05.005.0

15.04.02.145.0

j,i))M,M(d()( ijjij   is presented as below: 

















 

25.06.065.005.1
45.002.145.0
55.07.03.025.0

The   j,i),d()( ijjij   is presented as: 

The positive grey relational coefficient 

GRM

 
43ijij , 

  is presented in the Table 7, at the end of article. 

The negative grey relational coefficient 

GRM  
43ijij , 

  is 
presented in the Table 8, at the end of article. 

Now, we multiply the crisp weight with the corresponding 
elements of 

GRM and 

GRM to get weighted matrices 
GRW M

and 

GRW M and which are described in the Table 9 and 10 
respectively, at the end of article. 

Step 5 Determination of Hamming distances 

Hamming distances are calculated as follows: 
,84496.0d1  ,83845625.0d1 



,82444375.0d 2 
 ,85328875.0d 2 



,82368675.0d 3 
 .85277.0d 3 



Step 6 Determination of relative closeness coefficient
The relative closeness coefficients are calculated as:

501932.0
dd

d

11

1
1 








491403576.0
dd

d

22

2
2 








49132.0
dd

d

33

3
3 








Step 7 Ranking the alternatives 

The ranking of alternatives is made according to de-
scending order of relative closeness coefficients. The rank-
ing order is shown in the Table 11 below. 
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Conclusion 
This paper develops GRA based MADM in neutr-

osophic cubic set environment. This is the first approach of 
GRA in MADM in neutrosophic cubic set environment. 
The proposed approach can be applied to other decision 
making problems such as pattern recognition, personnel se-
lection, etc.   

The proposed approach can be applied for decision mak-
ing problem described by internal NCSs and external NCSs. 
We hope that the proposed approach will open up a new av-
enue of research in newly developed neutrosophic cubic set 
environment.   
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Table 4: Construction of neutrosophic cubic decision matrix 
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Table 5: Construction of neutrosophic decision matrix 
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Table 6: The ideal neutrosophic estimates reliability solution (INERS)   ,M
and the ideal neutrosophic estimates unreliability solution (INEURS)   ,M
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Table 7: The positive grey relational coefficient 

GRM  
43ijij , 

 



GRM
















)5909.0,5135.0()8125.0,6552.0()7222.0,76.0()7647.0,9048.0(
)8125.0,6552.0()8125.0,4042.0()5909.0,1()1,4222.0(

)7222.0,76.0()65.0,9048.0()3611.0,333.0()6190.0,3585.0(
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Table 8: The negative grey relational coefficient 

GRM  
43ijij , 

 



GRM
















)75.0,7059.0()75.0,5.0()3333.0,48.0()7059.0,3636.0(
)5454.0,5714.0()5454.0,1()4286.0,3333.0()5714.0,5714.0(

)6.0,5217.0()75.0,4615.0()1,6667.0()5454.0,7059.0(

Table 9: Weighted matrix 
GRW M 

GRW M

















)16066.0,13962.0()26228.0,21150.0()15498.0,163096.0()14583.0,17252.0(
)22092.0,17815.0()26228.0,13048.0()12681.0,2146.0()1907.0,08051.0(
)19637.0,20664.0()20982.0,29207.0()07749.0,07153.0()11804.0,06836.0(

Table 10: Weighted matrix 

GRW M

 


GRW M
















)20392.0,19193.0()2421.0,1614.0()07153.0,10301.0()13461.0,06934.0(
)14829.0,15536.0()17606.0,3228.0()08173.0,07153.0()10896.0,10896.0(
)16314.0,14185.0()2421.0,14897.0()2146.0,14307.0()10401.0,13461.0(
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Abstract. Bipolar neutrosophic sets are the extension of 
neutrosophic sets and are based on the idea of positive and 
negative preferences of information. Projection measure is 
a useful apparatus for modelling real life decision making 
problems. In the paper, we define projection, bidirectional 
projection and hybrid projection measures between bipo-
lar neutrosophic sets. Three new methods based on the 
proposed projection measures are developed for solving 
multi-attribute decision making problems. In the solution 
process, the ratings of performance values of the alterna-
tives with respect to the attributes are expressed in terms 

of bipolar neutrosophic values. We calculate projection, 
bidirectional projection, and hybrid projection measures 
between each alternative and ideal alternative with bipolar 
neutrosophic information. All the alternatives are ranked 
to identify the best alternative. Finally, a numerical exam-
ple is provided to demonstrate the applicability and effec-
tiveness of the developed methods. Comparison analysis 
with the existing methods in the literature in bipolar neu-
trosophic environment is also performed. 

Keywords: Bipolar neutrosophic sets; projection measure; bidirectional projection measure; hybrid projection measure; multi-
attribute decision making.

1 Introduction
For describing and managing indeterminate and inconsistent 
information, Smarandache [1] introduced neutrosophic set 
which has three independent components namely truth 
membership degree (T), indeterminacy membership degree 
(I) and falsity membership degree (F) where T, I, and F lie
in]-0, 1+[.  Later, Wang et al. [2] proposed single valued
neutrosophic set (SVNS) to deal real decision making
problems where T, I, and F lie in [0, 1].

Zhang [3] grounded the notion of bipolar fuzzy sets by 
extending the concept of fuzzy sets [4]. The value of 
membership degree of an element of bipolar fuzzy set 
belongs to [-1, 1]. With reference to a bipolar fuzzy set, the 
membership degree zero of an element reflects that the 
element is irrelevant to the corresponding property, the 
membership degree belongs to (0, 1] of an element reflects 
that the element somewhat satisfies the property, and the 
membership degree belongs to [−1,0) of an element reflects 
that the element somewhat satisfies the implicit counter-
property. 

Deli et al. [5] extended the concept of bipolar fuzzy set 
to bipolar neutrosophic set (BNS). With reference to a 
bipolar neutrosophic set Q, the positive membership degrees 

)(xTQ
 , )(xIQ

 , and )(xFQ
 represent respectively the truth 

membership, indeterminate membership and falsity 
membership of an element x X  corresponding to the 
bipolar neutrosophic set Q and the negative membership 
degrees )(xTQ

 , )(xIQ
 , and )(xFQ

 denote respectively the 
truth membership, indeterminate membership and false 
membership degree of an element x X to some implicit 
counter-property corresponding to the bipolar neutrosophic 
set Q. 

Projection measure is a useful decision making device 
as it takes into account the distance as well as the included 
angle for measuring the closeness degree between two 
objects [6, 7].  Yue [6] and Zhang et al. [7] studied 
projection based multi-attribute decision making (MADM) 
in crisp environment i.e. projections are defined by ordinary 
numbers or crisp numbers. Yue [8] further investigated a 
new multi-attribute group decision making (MAGDM) 
method based on determining the weights of the decision 
makers by employing projection technique with interval 
data. Yue and Jia [9] established a methodology for 
MAGDM based on a new normalized projection measure, 
in which the attribute values are provided by decision 
makers in hybrid form with crisp values and interval data.  

Xu and Da [10] and Xu [11] studied projection method 
for decision making in uncertain environment with 

Bipolar Neutrosophic Projection Based Models for Solving 
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preference information. Wei [12] discussed a MADM 
method based on the projection technique, in which the 
attribute values are presented in terms of intuitionistic fuzzy 
numbers. Zhang et al. [13] proposed a grey relational 
projection method for MADM based on intuitionistic 
trapezoidal fuzzy number. Zeng et al. [14] investigated 
projections on interval valued intuitionistic fuzzy numbers 
and developed algorithm to the MAGDM problems with 
interval-valued intuitionistic fuzzy information.   Xu and Hu 
[15] developed two projection based models for MADM in
intuitionistic fuzzy environment and interval valued
intuitionistic fuzzy environment. Sun [16] presented a group
decision making method based on projection method and
score function under interval valued intuitionistic fuzzy
environment. Tsao and Chen [17] developed a novel
projection based compromising method for multi-criteria
decision making (MCDM) method in interval valued
intuitionistic fuzzy environment.

In neutrosophic environment, Chen and Ye [18] 
developed projection based model of neutrosophic numbers 
and presented MADM method to select clay-bricks in 
construction field. Bidirectional projection measure [19, 20] 
considers the distance and included angle between two 
vectors x, y. Ye [19] defined bidirectional projection 
measure as an improvement of the general projection 
measure of SVNSs to overcome the drawback of the general 
projection measure. In the same study, Ye [19] developed 
MADM method for selecting problems of mechanical 
design schemes under a single-valued neutrosophic 
environment. Ye [20] also presented bidirectional projection 
method for MAGDM with neutrosophic numbers.  

Ye [21] defined credibility – induced interval 
neutrosophic weighted arithmetic averaging operator and 
credibility – induced interval neutrosophic weighted 
geometric averaging operator and developed the projection 
measure based ranking method for MADM problems with 
interval neutrosophic information and credibility 
information. Dey et al. [22] proposed a new approach to 
neutrosophic soft MADM using grey relational projection 
method. Dey et al. [23] defined weighted projection 
measure with interval neutrosophic assessments and applied 
the proposed concept to solve MADM problems with inter-
val valued neutrosophic information. Pramanik et al. [24] 
defined projection and bidirectional projection measures 
between rough neutrosophic sets and proposed two new 
multi-criteria decision making (MCDM) methods based on 
projection and bidirectional projection measures in rough 
neutrosophic set environment. 

In the field of bipolar neutrosophic environment, Deli 
et al. [5] defined score, accuracy, and certainty functions in 
order to compare BNSs and developed bipolar neutrosophic 
weighted average (BNWA) and bipolar neutrosophic 
weighted geometric (BNWG) operators to obtain collective 
bipolar neutrosophic information.  In the same study, Deli 

et al. [5] also proposed a MCDM approach on the basis of 
score, accuracy, and certainty functions and BNWA, 
BNWG operators. Deli and Subas [25] presented a single 
valued bipolar neutrosophic MCDM through correlation 
coefficient similarity measure. Şahin et al. [26] provided a 
MCDM method based on Jaccard similarity measure of 
BNS. Uluçay et al. [27] defined Dice similarity, weighted 
Dice similarity, hybrid vector similarity, weighted hybrid 
vector similarity measures under BNSs and developed 
MCDM methods based on the proposed similarity measures. 
Dey et al. [28] defined Hamming and Euclidean distance 
measures to compute the distance between BNSs and 
investigated a TOPSIS approach to derive the most 
desirable alternative.  

In this study, we define projection, bidirectional      pro-
jection and hybrid projection measures under bipolar neu-
trosophic information. Then, we develop three methods for 
solving MADM problems with bipolar neutrosophic assess-
ments. We organize the rest of the paper in the following 
way. In Section 2, we recall several useful definitions con-
cerning SVNSs and BNSs. Section 3 defines projection, bi-
directional projection and hybrid projection measures be-
tween BNSs. Section 4 is devoted to present three models 
for solving MADM under bipolar neutrosophic environment. 
In Section 5, we solve a decision making problem with bi-
polar neutrosophic information on the basis of the proposed 
measures. Comparison analysis is provided to demonstrate 
the feasibility and flexibility of the proposed methods in 
Section 6. Finally, Section 7 provides          conclusions and 
future scope of research. 

2 Basic Concepts Regarding SVNSs and BNSs 
In this Section, we provide some basic definitions regarding 
SVNSs, BNSs which are useful for the construction of the 
paper. 

2.1 Single valued neutrosophic sets [2] 
Let X be a universal space of points with a generic element 
of X denoted by x, then a SVNS P is characterized by a truth 
membership function )(xTP , an indeterminate membership 
function )(xI P and a falsity membership function )(xFP . A 
SVNS P is expressed in the following way. 

P = {x, )(),(),( xFxIxT PPP   xX} 
where, )(xTP , )(xI P , )(xFP : X  [0, 1] and 0  )(xTP +

)(xI P + )(xFP  3 for each point x X.

2.2 Bipolar neutrosophic set [5] 
Consider X be a universal space of objects, then a BNS Q in 
X is presented as follows: 

Q = {x, )( ),( ),(),(),(),( xFxIxTxFxIxT QQQQQQ
   x 

X}, 

Florentin Smarandache (author and editor) Collected Papers, VIII

293



where )(xTQ
 , )(xIQ

 , )(xFQ
 : X  [0, 1] and )(xTQ

 , )(xIQ
 ,

)(xFQ
 : X  [-1, 0].The positive membership degrees

)(xTQ
 , )(xIQ

 , )(xFQ
 denote the truth membership,

indeterminate membership, and falsity membership 
functions of an element x X corresponding to a BNS Q and 
the negative membership degrees )(xTQ

 , )(xIQ
 , )(xFQ



denote the truth membership, indeterminate membership, 
and falsity membership of an element x X to several 
implicit counter property associated with a BNS Q. For 
convenience, a bipolar neutrosophic value (BNV) is 
presented as q~ = < 

QT , 

QI , 

QF , 

QT , ,

QI 

QF >. 

Definition 1 [5] 
Let, Q1 = 
{x, )( ),( ),(),(),(),(

111111
xFxIxTxFxIxT QQQQQQ

   x X} 

and Q2 = {x,
)( ),( ),(),(),(),(

222222
xFxIxTxFxIxT QQQQQQ

   x X} be 

any two BNSs. Then Q1    Q2 if and only if 
)(

1
xTQ


 )(

2
xTQ

 , )(
1

xI Q


 )(
2

xI Q
 , )(

1
xFQ


 )(

2
xFQ

 ;

)(
1

xTQ


 )(
2

xTQ
 , )(

1
xI Q


 )(

2
xI Q

 , )(
1

xFQ


 )(
2

xFQ
 for all 

x X. 

Definition 2 [5] 
Let, Q1 = {x, )( ),( ),(),(),(),(

111111
xFxIxTxFxIxT QQQQQQ



 x X} and Q2 = 
{x, )( ),(),(),(),(),(

222222
xFx IxTxFxIxT QQQQQQ

   x X} 

be any two BNSs. Then Q1 = Q2 if and only if 
)(

1
xTQ

 = )(
2

xTQ
 , )(

1
xI Q

 = )(
2

xI Q
 , )(

1
xFQ

 = )(
2

xFQ
 ; )(

1
xTQ



= )(
2

xTQ
 , )(

1
xI Q

 = )(
2

xI Q
 , )(

1
xFQ

 = )(
2

xFQ
 for all x X. 

Definition 3 [5] 
Let, Q = {x, )( ),( ),(),(),(),( xFxIxTxFxIxT QQQQQQ

 

x X} be a BNS. The complement of Q is represented by Qc 
and is defined as follows: 

)(c xTQ
 = {1+} - )(xTQ

 , )(c xIQ
 = {1+} - )(xIQ

 , )(c xFQ
 = 

{1+} - )(xFQ
 ; 

)(c xTQ
 = {1-} - )(xTQ

 , )(c xIQ
 = {1-} - )(xIQ

 , )(c xFQ
 = 

{1-} - )(xFQ
 . 

Definition 4 
Let, Q1 = 
{x, )( ),( ),(),(),(),(

111111
xFxIxTxFxIxT QQQQQQ

   x X} 

and Q2 = {x,

)( ),( ),(),(),(),(
222222

xFxIxTxFxIxT QQQQQQ
   x X} be 

any two BNSs. Their union Q1Q2 is defined as follows: 
Q1Q2 = {Max ( )(

1
xTQ

 , )(
2

xTQ
 ), Min ( )(

1
xIQ

 , )(
2

xIQ
 ), 

Min ( )(
1

xFQ
 , )(

2
xFQ

 ), Min ( )(
1

xTQ
 , )(

2
xTQ

 ), Max ( )(
1

xIQ
 ,

)(
2

xIQ
 ), Max ( )(

1
xFQ

 , )(
2

xFQ
 )},  xX. 

Their intersection Q1Q2 is defined as follows: 
Q1Q2 = {Min ( )(

1
xTQ

 , )(
2

xTQ
 ), Max ( )(

1
xIQ

 , )(
2

xIQ
 ), 

Max ( )(
1

xFQ
 , )(

2
xFQ

 ), Max ( )(
1

xTQ
 , )(

2
xTQ

 ), Min ( )(
1

xIQ
 ,

)(
2

xIQ
 ), Min ( )(

1
xFQ

 , )(
2

xFQ
 )},  x X. 

Definition 5 [5] 
Let 1

~q = < 

1QT , 

1QI , 

1QF , 

1QT , 

1QI , 

1QF > and 2
~q = < 

2QT , 

2QI ,


2QF , 

2QT , 

2QI , 

2QF > be any two BNVs, then

i.  . 1
~q = < 1 – (1 - 

1QT )  , ( 

1QI )  , ( 

1QF )  , - (- 

1QT )  , -

(- 

1QI )  , - (1 - (1 - (- 

1QF ))  ) >;

ii. ( 1
~q )  = < ( 

1QT )  , 1 - (1 - 

1QI )  , 1 -  (1 - 

1QF )  , - (1

– (1 - (- 

1QT ))  ), - (- 

1QI )  , (- 

1QF )  ) >;

iii. 1
~q + 2

~q = < 

1QT + 

2QT - 

1QT . 

2QT , 

1QI . 

2QI , 

1QF . 

2QF , -  

  

1QT . 

2QT , - (- 

1QI - 

2QI - 

1QI . 

2QI ), - 

  (- 

1QF - 

2QF - 

1QF . 

2QF ) >; 

iv. 1
~q . 2

~q = < 

1QT . 

2QT , 

1QI + 

2QI - 

1QI . 

2QI , 

1QF + 

2QF - 


1QF . 

2QF , - (- 

1QT - 

2QT - 

1QT . 

2QT ), -


1QI . 

2QI , - 

1QF . 

2QF > where  > 0.

3 Projection, bidirectional projection and hybrid 
projection measures of BNSs
This Section proposes a general projection, a bidirectional 
projection and a hybrid projection measures for BNSs. 

Definition 6 
Assume that X = (x1, x2, …, xm) be a finite universe of 
discourse and Q be a BNS in X, then modulus of Q is defined 
as follows: 

|| Q || = 


m α
1j

2
j  = 




 
m

QQQQQQ FITFIT
1j

222222 ])()()()()()[(
jjjjjj

(1) 

where jα = )( ),( ),(),(),(),( xFxIxTxFxIxT
jjjjjj QQQQQQ
  , 

j = 1, 2, ..., m. 
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Definition 7 [10, 29] 
Assume that u = (u1, u2, …, um) and v = (v1, v2, …, vm) be 
two vectors, then the projection of vector u onto vector v can 
be defined as follows: 

Proj (u)v = || u || Cos (u, v) = 


m u
1j

2
j 











mm

m

vu

vu

1j

2
j1j

2
j

1j jj )(
=







m

m

v

vu

1j

2
j

1j jj )(
   (2) 

where, Proj (u)v represents that the closeness of u and v in 
magnitude. 

Definition 8 
Assume that X = (x1, x2, …, xm) be a finite universe of 
discourse and R, S be any two BNSs in X, then 

Proj SR)( = || R|| Cos (R, S) =
||||

1
S

 (R.S)     (3) 

is called the projection of R on S, where 
 ||R|| =




 
m

iRiRiRiRiRiR xFxIxTxFxIxT
1i

222222 )]()()()()()()()()()()()[( , 

 ||S||= 
,)]()()()()()()()()()()()[(

1i

222222



 
m

iSiSiSiSiSiS xFxIxTxFxIxT

and R.S = 

.
)].()(

)()()()()()()()()()([
1i


 





m

iSiR

iSiRiSiRiSiRiSiRSiR

xFxF

xIxIxTxTxFxFxIxIxTxT

Example 1. Suppose that R = < 0.5, 0.3, 0.2, -0.2, -0.1, -
0.05 >, S = < 0.7, 0.3, 0.1, -0.4, -0.2, -0.3 > be the two BNSs 
in X, then the projection of R on S is obtained as follows: 

Proj SR)( =
||||

1
S

 (R.S) =

222222 )3.0()2.0()4.0()1.0()3.0()7.0(

)3.0)(05.0()2.0)(1.0()4.0)(2.0()1.0)(2.0()3.0)(3.0()7.0)(5.0(





= 0.612952 
The bigger value of Proj SR)(  reflects that R and S are 
closer to each other. 
    However, in single valued neutrosophic environment, Ye 
[20] observed that the general projection measure cannot
describe accurately the degree of  close to .  We also
notice that the general projection incorporated by Xu [11] is 
not reasonable in several cases under bipolar neutrosophic 
setting, for example let, =  = < a, a, a, -a, -a, -a > and 
= < 2a, 2a, 2a, -2a, -2a, -2a >, then Proj  )( = 2.44949 ||a|| 
and Proj  )( = 4.898979 ||a||. This shows that  is much
closer to  than which is not true because =  . Ye [20] 
opined that  is equal to  whenever Proj  )( and Proj

 )( should be equal to 1. Therefore, Ye [20] proposed an 
alternative method called bidirectional projection measure 
to overcome the limitation of general projection measure as 
given below. 

Definition 9 [20] 
Consider x and y be any two vectors, then the bidirectional 
projection between x and y is defined as follows: 
B-proj (x, y) =

|
||y||

y.x
||x||

y.x|1

1



= 

yxyxyx
yx

.||||||||||||||||||
||||||||


   (4) 

where ||x||, ||y|| denote the moduli of x and y respectively, 
and x. y is the inner product between x and y.  
Here, B-Proj (x, y) = 1 if and only if x = y and 0  B-Proj (x, 
y)  1, i.e. bidirectional projection is a normalized measure.

Definition 10 
 Consider R = 

)( ),(),(),(),(),( iRiRiRiRiRiR xFxIxTxFxIxT   and S = 

)( ),( ),(),(),(),( iSiSiSiSiSiS xFxIxTxFxIxT   be any 

two BNSs in X = (x1, x2, …, xm), then  the bidirectional 
projection measure between R and S is defined as follows: 
B-Proj (R, S) =

|
||S||

S.R
||R||

S.R
|1

1



= 
S.R|||S||||R|||||S||||R||

||S||||R||


  (5) 
where 
 ||R|| = 




 
m

iRiRiRiRiRiR xFxIxTxFxIxT
1i

222222 )]()()()()()()()()()()()[(

, 
 ||S|| = 




 
m

iSiSiSiSiSiS xFxIxTxFxIxT
1i

222222 )]()()()()()()()()()()()[(

and R.S = 


 





m

iSiR

iSiRiSiRiSiRiSiRSiR

xFxF

xIxIxTxTxFxFxIxIxTxT
1i )].()(

)()()()()()()()()()([

Proposition 1. Let B-Proj SR)(  be a bidirectional 
projection measure between any two BNSs R and S, then 

1. 0 B-Proj (R, S) 1;
2. B-Proj (R, S) = B-Proj (S, R);
3. B-Proj (R, S) = 1 for R = S.

Proof. 
1. For any two non-zero vectors R and S,

|
||||

.
||||

.|1

1

S
SR

R
SR


,0  0,0
1

1



xwhen

x
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B-Proj (R, S)

 

,0 for any two non-zero vectors R and S. 
B-Proj (R, S) = 0 if and only if  either || R || = 0 or || S || = 0
i.e. when either R = (0, 0, 0, 0, 0, 0)  or S = (0, 0, 0, 0, 0, 0)
which is trivial case.

 B-Proj (R, S) 0 . 
For two non-zero vectors R and S, 
|| R || || S || + | || R || - || S || | R.S  || R || || S || 
|| R || || S || || R || || S || + | || R || - || S || | R.S 

 
SRSRSR

SR
.||||||||||||||||||

||||||||


 1 

B-Proj (R, S)  1. 
0 B-Proj (R, S) 1; 

2. From definition, R.S = S.R, therefore,

B-Proj (R, S) =
SRSRSR

SR
.||||||||||||||||||

||||||||


= 

RSRSRS
RS

.||||||||||||||||||
||||||||


= B-Proj (S, R). 

Obviously, B-Proj (R, S) = 1, only when || R || = || S ||    i. 
e. when )( iR xT  = )( iS xT  , )( iR xI  = )( iS xI  , 

)( iR xF  = )( iS xF  , )( iR xT  = )( iS xT  , )( iR xI  = 
)( iS xI  , )( iR xF  = ).( iS xF 

This completes the proof. 

 Example 2. Assume that R = < 0.5, 0.3, 0.2, -0.2, -0.1, -
0.05 >, S = < 0.7, 0.3, 0.1, -0.4, -0.2, -0.3 > be the BNSs in 
X, then the bidirectional projection measure between R on S 
is computed as given below. 
B-Proj (R, S) =

)575.0(|065764739380832.0|)9380832.0).(6576473.0(
)9380832.0).(6576473.0(



= 0.7927845 

Definition 11 
 Let R = 

)( ),(),(),(),(),( iRiRiRiRiRiR xFxIxTxFxIxT  and S = 

)( ),( ),(),(),(),( iSiSiSiSiSiS xFxIxTxFxIxT   be any 

two BNSs in X = (x1, x2, …, xm), then  hybrid projection 
measure is defined as the combination of projection 
measure and bidirectional projection measure. The hybrid 
projection measure between R and S is represented as 
follows: 
Hyb-Proj (R, S) =  Proj SR)( + (1 -  ) B-Proj (R, S) 

 = 
||||

.
S
SR + (1 -  )

SRSRSR
SR

.||||||||||||||||||
||||||||


(6) 

where 

||R|| =
,)]()()()()()()()()()()()[(

1i

222222



 
m

iRiRiRiRiRiR xFxIxTxFxIxT

||S|| = 
,)]()()()()()()()()()()()[(

1i

222222



 
m

iSiSiSiSiSiS xFxIxTxFxIxT

and 
R.S =


 

 m

iSiR

iSiRiSiRiSiRiSiRSiR

xFxF

xIxIxTxTxFxFxIxIxTxT
1i )]()(

)()()()()()()()()()([

where 0   1. 
Proposition 2 
Let Hyb-Proj (R, S) be a hybrid projection measure between 
any two BNSs R and S, then  

1. 0  Hyb-Proj (R, S)  1;
2. Hyb-Proj (R, S) = B-Proj (S, R);
3. Hyb-Proj (R, S)  = 1 for R = S.

Proof. The proofs of the properties under Proposition 2 are 
similar as Proposition 1.  
Example 3. Assume that R = < 0.5, 0.3, 0.2, -0.2, -0.1, -0.05 
>, S = < 0.7, 0.3, 0.1, -0.4, -0.2, -0.3 > be the two BNSs, then 
the hybrid projection measure between R on S with  = 0.7 
is calculated as given below. 

Hyb-Proj (R, S) = (0.7). (0.612952) + (1 - 0.7). 
(0.7927845) = 0.6669018. 

4 Projection, bidirectional projection and hybrid 
projection based decision making methods for 
MADM problems with bipolar neutrosophic infor-
mation 
In this section, we develop projection based decision 
making models to MADM problems with bipolar 
neutrosophic assessments. Consider E = {E1, E2, …, Em}, 
(m  2) be a discrete set of m feasible alternatives,  F = {F1, 
F2, …, Fn}, (n  2) be a set of attributes under consideration 
and w = (w1, w2, …, wn)T be the weight vector of the 
attributes such that 0  wj  1 and 



n w
1j j = 1. Now, we present 

three algorithms for MADM problems involving bipolar 
neutrosophic information. 

4.1. Method 1 

Step 1. The rating of evaluation value of alternative Ei (i = 
1, 2, …, m) for the predefined attribute Fj (j = 1, 2, …, n) is 
presented by the decision maker in terms of bipolar 
neutrosophic values and the bipolar neutrosophic decision 
matrix is constructed as given below. 

nmij


q = 























mnmm

n

n

qqq

qqq
qqq

...
......
......

...
...

21

22221

11211
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where qij = < ( 

ijT , 

ijI , 

ijF , 

ijT , 

ijI , 

ijF ) > with 

ijT , 

ijI , 

ijF , 

- 

ijT , - 

ijI , - 

ijF [0, 1] and 0  

ijT + 

ijI + 

ijF - 

ijT - 

ijI - 

ijF
 6 for i = 1, 2, …, m; j = 1, 2, …, n.

Step 2. We formulate the bipolar weighted decision matrix 
by multiplying weights wj of the attributes as follows: 

wj
nmij


q  =

nmij


z = 























mnm2m1

2n2221

1n1211

...
......
......

...
...

zzz

zzz
zzz

where zij = wj. ijq = < 1 – (1 - 

ijT ) jw , ( 

ijI ) jw , ( 

ijF ) jw , - (-


ijT ) jw , - (- 

ijI ) jw , - (1 – (1 – (- 

ijF )) jw ) > = < 

ij , 

ij , 

ij ,


ij , 

ij , 

ij > with 

ij , 

ij , 

ij , - 

ij , - 

ij , - 

ij [0, 1] and 

0 

ij + 

ij + 

ij - 

ij - 

ij - 

ij  6 for i = 1, 2, …, m; j = 1,
2, …, n. 

Step 3.  We identify the bipolar neutrosophic positive ideal 
solution (BNPIS) [27, 28] as follows: 

PISz 

jjjjjj ,,,,, gfegfe = < [{ )(Max iji

 |j  }; 

{ )(Min iji

 |j  }], [{ )(Min iji

 | j  }; { )(Max iji

 |j

 }], [{ )(Min iji

 |j  }; 

{ )(Max ij
i

 |j  }], [{ )(Min iji

 |j }; { )(Max ij
i

 |j

 }], [{ )(Max iji

 |j  }; { )(Min iji

 |j   }],

[{ )(Max iji

 |j }; { )(Min iji

 |j  }] >, j = 1, 2, …, n, 

where  and  are benefit and cost type  attributes 
respectively. 

Step 4.  Determine the projection measure between PISz and 
Zi =

nm
z


ij  for all i = 1, 2, …, m; j = 1, 2, …, n by using the 

following Eq.
Proj PISz

iZ )(

=














n

j jjjjjj

n
jijjijjijjijjijjij

gfegfe

gfegfe

1

222222

1j

])()()()()()[(

][ 
(7) 

Step 5. Rank the alternatives in a descending order based on 
the projection measure Proj PISz

iZ )( for i = 1, 2, …, m and 

bigger value of Proj PISz
iZ )( determines the best alternative.

4.2. Method 2 

Step 1. Give the bipolar neutrosophic decision matrix

nmij


q , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 2. Construct weighted bipolar neutrosophic decision 
matrix

nm
z

ij  , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 3. Determine PISz 

jjjjjj ,,,,, gfegfe ; j 
= 1, 2, …, n. 

Step 4.  Compute the bidirectional projection measure 
between PISz and Zi =

nmij 
z  for all i = 1, 2, …, m; j = 1,

2, …, n  using the Eq. as given below. 
B-Proj (Zi, PISz ) =

PISiPISiPISi

PISi

zZzZzZ
zZ

.||||||||||||||||||
||||||||


(8) 

where |||| iZ = 


 
n

j ijijijijijij1

222222 ])()()()()()[(  , i 

= 1, 2, ..., m. 
|||| PISz =




 
n

j jjjjjj gfegfe
1

222222 ])()()()()()[( and 

PISi zZ . = 


 
n

1j
][ jijjijjijjijjijjij gfegfe  , i = 

1, 2, ..., m. 

Step 5. According to the bidirectional projection measure B-
Proj (Zi, PISz ) for i = 1, 2, …, m the alternatives are ranked 
and highest value of B-Proj (Zi, PISz ) reflects the best 
option. 

4.3. Method 3 

Step 1. Construct the bipolar neutrosophic decision matrix

nm
q

ij , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 2. Formulate the weighted bipolar neutrosophic 
decision matrix

nm
z

ij  , i = 1, 2, …, m; j = 1, 2, …, n. 

Step 3. Identify PISz 

jjjjjj ,,,,, gfegfe ,  j = 1, 2, …, 

n. 
Step 4.  By combining projection measure Proj PISz

iZ )( and 

bidirectional projection measure B-Proj (Zi, PISz ), we 
calculate the hybrid projection measure between PISz and Zi 
=

nmijz


 for all i = 1, 2, …, m; j = 1, 2, …, n as follows. 
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Hyb-Proj (Zi, PISz ) =   Proj PISz
iZ )( + (1 -  ) B-Proj (Zi, 

PISz ) = 


|||||
.
PIS

PISi

z
zZ + (1 -  )

PISiPISiPISi

PISi

z.Z|||z||||Z|||||z||||Z||
||z||||Z||



 (9) 
where |||| iZ =




 
n

j ijijijijijij1

222222 ])()()()()()[(  , i = 1, 2, …, 

m, 
|||| PISz =




 
n

j jjjjjj gfegfe
1

222222 ])()()()()()[( , 

PISi zZ . =




 
n

jijjijjijjijjijjij gfegfe
1j

][  , i = 1, 2, 

…, m, with 0   1. 

Step 5. We rank all the alternatives in accordance with the 
hybrid projection measure Hyb-Proj (Zi, PISz ) and greater 
value of Hyb-Proj (Zi, PISz ) indicates the better alternative. 

5 A numerical example 
We solve the MADM studied in [5, 28] where a customer 
desires to purchase a car. Suppose four types of car 
(alternatives) Ei, (i = 1, 2, 3, 4) are taken into consideration 
in the decision making situation. Four attributes namely 
Fuel economy (F1), Aerod (F2), Comfort (F3) and Safety 
(F4) are considered to evaluate the alternatives. Assume the 
weight vector [5] of the attribute is given by w = (w1, w2, w3, 
w4) = (0.5, 0.25, 0.125, 0.125). 

Method 1: The proposed projection measure based decision 
making with bipolar neutrosophic information for car 
selection is presented in the following steps: 

Step 1: Construct the bipolar neutrosophic decision matrix 
The bipolar neutrosophic decision matrix 

nmij


q presented 

by the decision maker as given below (see Table 1) 

Table 1. The bipolar neutrosophic decision matrix 

F1 F2 F3 F4 

E1 <0.5, 0.7, 0.2, -
0.7, -0.3,  -0.6> 

<0.4, 0.5, 0.4, -
0.7, -0.8,  -0.4> 

<0.7, 0.7, 0.5, -0.8, 
-0.7,    -0.6> 

<0.1, 0.5, 0.7, -
0.5, -0.2, -0.8> 

E2 <0.9, 0.7, 0.5, -
0.7, -0.7,  -0.1> 

<0.7, 0.6, 0.8, -
0.7, -0.5,  -0.1> 

<0.9, 0.4, 0.6, -0.1, 
-0.7,    -0.5> 

<0.5, 0.2, 0.7, -
0.5, -0.1, -0.9> 

E3 <0.3, 0.4, 0.2, -
0.6, -0.3,  -0.7> 

<0.2, 0.2, 0.2, -
0.4, -0.7,  -0.4> 

<0.9, 0.5, 0.5, -0.6, 
-0.5,    -0.2> 

<0.7, 0.5, 0.3, -
0.4, -0.2, -0.2> 

E4 <0.9, 0.7, 0.2, -
0.8, -0.6,  -0.1> 

<0.3, 0.5, 0.2, -
0.5, -0.5,  -0.2> 

<0.5, 0.4, 0.5, -0.1, 
-0.7,    -0.2> 

<0.2, 0.4, 0.8, -
0.5, -0.5, -0.6> 

Step 2. Construction of weighted bipolar neutrosophic 
decision matrix 
The weighted decision matrix

nmij


z is obtained by 

multiplying weights of the attributes to the bipolar 
neutrosophic decision matrix as follows (see Table 2). 

Table 2. The weighted bipolar neutrosophic decision matrix 
F1 F2 F3 F4 

E1 <0.293, 0.837, 
0.447,-0.837,  -
0.818, -0.182 >  

<0.120, 0.795, 
0.841,     0.915,   

-0.946, -0.120> 

<0.140, 0.956, 
0.917,     0.972,   

-0.956, -0.108> 

<0.013, 0.917, 
0.956,      -0.917, 
-0.818, -0.182> 

E2 <0.684, 0.837, 
0.707, -0.837, -
0.837, -0.051> 

<0.260, 0.880, 
0.946,  -0.915, -
0.841, -0.026> 

<0.250, 0.892, 
0.938,     -

0.750,      -0.956, -
0.083> 

<.083, 0.818, 
0.956,     0.917,        
-0.750, -0.250> 

E3 <0.163, 0.632, 
0.447, -0.774,  -
0.548, -0.452> 

<0.054, 0.669, 
0.669,   - 0.795, -

0.915, -0.120> 

<0.250, 0.917, 
0.917,     -

0.938,      -0.917, -
0.028> 

<.140, 0.917, 
0.860,     -

0.892, -0.818, -
0.028> 

E4 <0.648, 0.837, 
0.447, ,     -0.894,-

-0.774, -0.051> 

<0.085, 0.841, 
0.669,    -0.841,   
-0.841, -0.054> 

<0.083, 0.892, 
0.917,     -

0.750,      -0.956, -
0.028> 

<0.062, 0.818, 
0.972,     -0.917, 
-0.917, -0.108> 

Step 3. Selection of BNPIS 
The BNRPIS ( PISz ) = 

jjjjjj ,,,,, gfegfe , (j = 1, 2, 3, 

4) is computed from the weighted decision matrix as
follows:



111111 ,,,,, gfegfe = < 0.684, 0.632, 0.447, -0.894, -

0.548, -0.051 >; 


222222 ,,,,, gfegfe = < 0.26, 0.669, 0.669, -0.915, -

0.841, -0.026 >;


333333 ,,,,, gfegfe = < 0.25, 0.892, 0.917, -0.972, -

0.917, -0.028 >;


444444 ,,,,, gfegfe = < 0.14, 0.818, 0.86, -0.917, -0.75, 

-0.028 >.
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Step 4. Determination of weighted projection measure 
The projection measure between positive ideal bipolar 
neutrosophic solution PISz  and each weighted decision 
matrix

nmijz  can be obtained as follows: 

Proj PISzZ )( 1  = 3.4214, Proj PISzZ )( 2  = 3.4972, Proj 

PISzZ )( 3 = 3.1821, Proj PISzZ )( 4  = 3.3904. 

Step 5. Rank the alternatives 
We observe that Proj PISzZ )( 2 > Proj PISzZ )( 1 > Proj

PISzZ )( 4 > Proj PISzZ )( 3 . Therefore, the ranking order of the 
cars is E2   E1  E4  E3. Hence, E2 is the best alternative
for the customer. 

Method 2: The proposed bidirectional projection measure 
based decision making for car selection is presented as 
follows: 
Step 1. Same as Method 1 
Step 2. Same as Method 1 
Step 3. Same as Method 1 
Step 4. Calculation of bidirectional projection measure 
The bidirectional projection measure between positive ideal 
bipolar neutrosophic solution P ISz  and each weighted 
decision matrix

nmijz


 can be determined as given below. 

B-Proj (Z1, PISz ) = 0.8556, B-Proj (Z2, PISz ) = 0.8101, B-
Proj (Z3, PISz ) = 0.9503, B-Proj (Z4, PISz ) = 0.8969.
Step 5. Ranking the alternatives
Here, we notice that B-Proj (Z3, PISz ) > B-Proj (Z4, PISz ) >
B-Proj (Z1, PISz ) > B-Proj (Z2, PISz ) and therefore, the
ranking order of the alternatives is obtained as E3   E4 
E1  E2. Hence, E3 is the best choice among the alternatives.

Method 3: The proposed hybrid projection measure based 
MADM with bipolar neutrosophic information is provided 
as follows: 
Step 1. Same as Method 1 
Step 2. Same as Method 1 
Step 3. Same as Method 1 
Step 4. Computation of hybrid projection measure 
The hybrid projection measures for different values of  
[0, 1] and the ranking order are shown in the Table 3.

Table 3. Results of hybrid projection measure for differ-
ent valus of   

Similarity 
measure 

 Measure values Ranking order 

Hyb-Proj 

(Zi, PISz )

0.25 
Hyb-Proj (Z1, PISz ) = 1.4573 

Hyb-Proj (Z2, PISz ) = 1.4551 

Hyb-Proj (Z3, PISz ) = 1.5297 

Hyb-Proj (Z4, PISz ) = 1.5622 

E4 > E3 > E1 > E2 

Hyb-Proj 

(Zi, PISz )

0.50 
Hyb-Proj (Z1, PISz ) = 2.1034 

Hyb-Proj (Z2, PISz ) = 2.0991 

Hyb-Proj (Z3, PISz ) = 2.0740 

Hyb-Proj (Z4, PISz ) = 2.1270 

E4 > E1 > E2 > E3 

Hyb-Proj 

(Zi, PISz )

0.75 
Hyb-Proj (Z1, PISz ) = 2.4940 

Hyb-Proj (Z2, PISz ) = 2.7432 

Hyb-Proj (Z3, PISz ) = 2.6182 

Hyb-Proj (Z4, PISz ) = 2.6919 

E2 > E4 > E3 > E1 

Hyb-Proj 

(Zi, PISz )

0.90 
Hyb-Proj (Z1, PISz ) = 3.1370 

Hyb-Proj (Z2, PISz ) = 3.1296 

Hyb-Proj (Z3, PISz ) = 2.9448 

Hyb-Proj (Z4, PISz ) = 3.0308 

E1 > E2 > E4 > E3 

6 Comparative analysis 

In the Section, we compare the results obtained from the 
proposed methods with the results derived from other exist-
ing methods under bipolar neutrosophic environment to 
show the effectiveness of the developed methods. 

Dey et al. [28] assume that the weights of the 
attributes are not identical and weights are fully unknown to 
the decision maker. Dey et al. [28] formulated maximizing 
deviation model under bipolar neutrosophic assessment to 
compute unknown weights of the attributes as w = (0.2585, 
0.2552, 0.2278, 0.2585). By considering w = (0.2585, 
0.2552, 0.2278, 0.2585), the proposed projection measures 
are shown as follows:  
Proj PISzZ )( 1  = 3.3954, Proj PISzZ )( 2  = 3.3872, Proj 

PISzZ )( 3  = 3.1625, Proj PISzZ )( 4 = 3.2567. 
Since, Proj PISzZ )( 1 > Proj PISzZ )( 2 > Proj 

PISzZ )( 4 > Proj PISzZ )( 3 , therefore the ranking order of the 
four alternatives is given by E1   E2  E4  E3. Thus, E1 is
the best choice for the customer. 

Now, by taking w = (0.2585, 0.2552, 0.2278, 
0.2585), the bidirectional projection measures are calculated 
as given below. 
B-Proj (Z1, PISz ) = 0.8113, B-Proj (Z2, PISz ) = 0.8111, B-
Proj (Z3, PISz ) = 0.9854, B-Proj (Z4, PISz ) = 0.9974.

Since, B-Proj (Z4, PISz ) > B-Proj (Z3, PISz ) > B-
Proj (Z1, PISz ) > B-Proj (Z2, PISz ), consequently the ranking 
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order of the four alternatives is given by E4   E3  E1 
E2. Hence, E4 is the best option for the customer. 
Also, by taking w = (0.2585, 0.2552, 0.2278, 0.2585), the 
proposed hybrid projection measures for different values of 
 [0, 1] and the ranking order are revealed in the Table 4. 

Deli et al. [5] assume the weight vector of the 
attributes as w = (0.5, 0.25, 0.125, 0.125) and the ranking 
order based on score values is presented as follows:

E3   E4  E2  E1
Thus, E3 was the most desirable alternative. 

Dey et al. [28] employed maximizing deviation 
method to find unknown attribute weights as w = (0.2585, 
0.2552, 0.2278, 0.2585). The ranking order of the 
alternatives is presented based on the relative closeness 
coefficient as given below. 

E3   E2  E4  E1.
Obviously, E3 is the most suitable option for the customer. 

Dey et al. [28] also consider the weight vector of 
the attributes as w = (0.5, 0.25, 0.125, 0.125), then using 
TOPSIS method, the ranking order of the cars is represented 
as follows: 

E4   E2  E3  E1.

So, E4 is the most preferable alternative for the buyer. We 
observe that different projection measure provides different 
ranking order and the projection measure is weight sensi-
tive. Therefore, decision maker should choose the projection 
measure and weights of the attributes in the decision making 
context according to his/her needs, desires and practical sit-
uation. 

Conclusion

In this paper, we have defined projection, bidirectional pro-
jection measures between bipolar neutrosophic sets. Fur-
ther, we have defined a hybrid projection measure by com-
bining projection and bidirectional projection measures. 
Through these projection measures we have developed three 
methods for multi-attribute decision making models under 
bipolar neutrosophic environment. Finally, a car selection 
problem has been solved to show the flexibility and applica-
bility of the proposed methods. Furthermore, comparison 
analysis of the proposed methods with the other existing 
methods has also been demonstrated.  

The proposed methods can be extended to interval bipolar 
neutrosophic set environment. In future, we shall apply pro-
jection, bidirectional projection, and hybrid projection 
measures of interval bipolar neutrosophic sets for group de-
cision making, medical diagnosis, weaver selection, pattern 
recognition problems, etc. 

Table 4. Results of hybrid projection measure for differ-
ent values of 

Similarity 
measure 

 Measure values Ranking order 

Hyb-Proj 

(Zi, PISz )

0.25 
Hyb-Proj (Z1, PISz ) = 1.4970 

Hyb-Proj (Z2, PISz ) = 1.4819 

Hyb-Proj (Z3, PISz ) = 1.5082 

Hyb-Proj (Z4, PISz ) = 1.5203 

E4 > E3 > E1 > E2 

Hyb-Proj 

(Zi, PISz )

0.50 
Hyb-Proj (Z1, PISz ) = 2.1385 

Hyb-Proj (Z2, PISz ) = 2.1536 

Hyb-Proj (Z3, PISz ) = 2.0662 

Hyb-Proj (Z4, PISz ) = 2.1436 

E4 > E1 > E2 > E3 

Hyb-Proj 

(Zi, PISz )

0.75 
Hyb-Proj (Z1, PISz ) = 2.7800 

Hyb-Proj (Z2, PISz ) = 2.8254 

Hyb-Proj (Z3, PISz ) = 2.6241 

Hyb-Proj (Z4, PISz ) = 2.7670 

E2 > E4 > E3 > E1 

Hyb-Proj 

(Zi, PISz )

0.90 
Hyb-Proj (Z1, PISz ) = 3.1648 

Hyb-Proj (Z2, PISz ) = 3.2285 

Hyb-Proj (Z3, PISz ) = 2.9589 

Hyb-Proj (Z4, PISz ) = 3.1410 

E2 > E1 > E4 > E3 
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Abstract Complex fuzzy sets and complex intuitionistic

fuzzy sets cannot handle imprecise, indeterminate, incon-

sistent, and incomplete information of periodic nature. To

overcome this difficulty, we introduce complex neutro-

sophic set. A complex neutrosophic set is a neutrosophic

set whose complex-valued truth membership function,

complex-valued indeterminacy membership function, and

complex-valued falsehood membership functions are the

combination of real-valued truth amplitude term in asso-

ciation with phase term, real-valued indeterminate ampli-

tude term with phase term, and real-valued false amplitude

term with phase term, respectively. Complex neutrosophic

set is an extension of the neutrosophic set. Further set

theoretic operations such as complement, union, intersec-

tion, complex neutrosophic product, Cartesian product,

distance measure, and d-equalities of complex neutro-

sophic sets are studied here. A possible application of

complex neutrosophic set is presented in this paper.

Drawbacks and failure of the current methods are shown,

and we also give a comparison of complex neutrosophic set

to all such methods in this paper. We also showed in this

paper the dominancy of complex neutrosophic set to all

current methods through the graph.

Keywords Fuzzy set � Intuitionistic fuzzy set � Complex

fuzzy set � Complex intuitionistic fuzzy set � Neutrosophic
set � Complex neutrosophic set

1 Introduction

Fuzzy sets were first proposed by Zadeh in the seminal

paper [38]. This novel concept is used successfully in

modeling uncertainty in many fields of real life. A fuzzy set

is characterized by a membership function l with the range

[0,1]. Fuzzy sets and their applications have been exten-

sively studied in different aspects from the last few decades

such as control [19, 38], reasoning [44], pattern recognition

[19, 44], and computer vision [44]. Fuzzy sets become an

important area for the research in medical diagnosis [29],

engineering [19], etc. A large amount of the literature on

fuzzy sets can be found in [8, 9, 15, 21, 30, 40–43]. In fuzzy

set, the membership degree of an element is single value

between 0 and 1. Therefore, it may not always be true that

the non-membership degree of an element in a fuzzy set is

equal to 1 minus the membership degree because there is

some degree of hesitation. Thus, Atanassov [2] introduced

intuitionistic fuzzy sets in 1986 which incorporate the

hesitation degree called hesitation margin. The hesitation

margin is defining as 1 minus the sum of membership and

non-membership. Therefore, the intuitionistic fuzzy set is

characterized by a membership function l and non-mem-

bership function m with range [0,1]. An intuitionistic fuzzy

set is the generalization of fuzzy set. Intuitionistic fuzzy sets

can successfully be applied in many fields such as medical

diagnosis [29], modeling theories [11], pattern recognition

[31], and decision making [17].

Ramot et al. [23] proposed an innovative concept to the

extension of fuzzy sets by initiating the complex fuzzy sets

Complex Neutrosophic Set 

Mumtaz Ali, Florentin Smarandache 

Mumtaz Ali, Florentin Smarandache (2017). Complex Neutrosophic Set. Neural Computing 
and Applications 28(7): 1817-1834; DOI: 10.1007/s00521-015-2154-y 

Florentin Smarandache (author and editor) Collected Papers, VIII

302

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2154-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2154-y&amp;domain=pdf


where the degree of membership l is traded by a complex-

valued of the form

rs xð Þ � ejxSðxÞ; j ¼
ffiffiffiffiffiffiffi

�1
p

where rS(x) and xSðxÞ are both belongs to [0,1] and

rs xð Þ : ejxSðxÞ has the range in complex unit disk. Complex

fuzzy set is completely a different approach from the fuzzy

complex number discussed by Buckley [4–7], Nguyen et al.

[21], and Zhang et al. [41]. The complex-valued mem-

bership function of the complex fuzzy set has an amplitude

term with the combination of a phase term which gives

wavelike characteristics to it. Depending on the phase term

gives a constructive or destructive interference. Thus,

complex fuzzy set is different from conventional fuzzy set

[38], fuzzy complex set [23], type 2 fuzzy set [19], etc. due

to the character of wavelike. The complex fuzzy set [23]

still preserves the characterization of uncertain information

through the amplitude term having value in the range of

[0,1] with the addition of a phase term. Ramot et al. [23,

24] discussed several properties of complex fuzzy sets such

as complement, union, and intersection. with sufficient

amount of illustrative examples. Some more theory on

complex fuzzy sets can be seen in [10, 35]. Ramot et al.

[24] also introduced the concept of complex fuzzy logic

which is a novel framework for logical reasoning. The

complex fuzzy logic is a generalization of fuzzy logic,

based on complex fuzzy set. In complex fuzzy logic [24],

the inference rules are constructed and fired in such way

that they are closely resembled to traditional fuzzy logic.

Complex fuzzy logic [24] is constructed to hold the

advantages of fuzzy logic while enjoying the features of

complex numbers and complex fuzzy sets. Complex fuzzy

logic is not only a linear extension to the conventional

fuzzy logic but rather a natural extension to those problems

that are very difficult or impossible to describe with one-

dimensional grades of membership. Complex fuzzy sets

have found their place in signal processing [23], physics

[23], stock marketing [23] etc.

The concept of complex intuitionistic fuzzy set in short

CIFS is introduced by Alkouri and Saleh in [1]. The

complex intuitionistic fuzzy set is an extension of complex

fuzzy set by adding complex-valued non-membership

grade to the definition of complex fuzzy set. The complex

intuitionistic fuzzy sets are used to handle the information

of uncertainty and periodicity simultaneously. The com-

plex-valued membership and non-membership function can

be used to represent uncertainty in many corporal quanti-

ties such as wave function in quantum mechanics, impe-

dance in electrical engineering, complex amplitude, and

decision-making problems. The novel concept of phase

term is extend in the case of complex intuitionistic fuzzy

set which appears in several prominent concepts such as

distance measure, Cartesian products, relations, projec-

tions, and cylindric extensions. The complex fuzzy set has

only one extra phase term, while complex intuitionistic

fuzzy set has two additional phase terms. Several properties

of complex intuitionistic fuzzy sets have been studied such

as complement, union, intersection, T-norm, and S-norm.

Smarandache [28] in 1998 introduced Neutrosophy that

studies the origin, nature, and scope of neutralities and their

interactions with distinct ideational spectra. A neutrosophic

set is characterized by a truth membership function T, an

indeterminacy membership function I and a falsehood

membership function F. Neutrosophic set is powerful

mathematical framework which generalizes the concept of

classical sets, fuzzy sets [38], intuitionistic fuzzy sets [2],

interval valued fuzzy sets [30], paraconsistent sets [28],

dialetheist sets [28], paradoxist sets [28], and tautological

sets [28]. Neutrosophic sets handle the indeterminate and

inconsistent information that exists commonly in our daily

life. Recently neutrosophic sets have been studied by

several researchers around the world. Wang et al. [33]

studied single-valued neutrosophic sets in order to use

them in scientific and engineering fields that give an

additional possibility to represent uncertainty, incomplete,

imprecise, and inconsistent data. Hanafy et al. [13, 14]

studied the correlation coefficient of neutrosophic set. Ye

[35] studied the correlation coefficient of single-valued

neutrosophic sets. Broumi and Smaradache presented the

correlation coefficient of interval neutrosophic set in [3].

Salama et al. [26] studied neutrosophic sets and neutro-

sophic topological spaces. Some more literature on neu-

trosophic sets can be found in [12–14, 18, 20, 25, 27, 32,

34, 36, 37, 40].

Pappis [22] studied the notion of ‘‘proximity measure,’’

with an attempt to show that ‘‘precise membership values

should normally be of no practical significance.’’ Pappis

observed that the max–min compositional rule of inference

is preserved with respect to ‘‘approximately equal’’ fuzzy

sets. An important generalization of the work of Pappis

proposed by Hong and Hwang [15] which is mainly based

that the max–min compositional rule of inference is pre-

served with respect to ‘‘approximately equal fuzzy sets’’

and ‘‘approximately equal’’ fuzzy relation. But, Cai noticed

that both the Pappis and Hong and Hwang approaches were

confined to fixed e. Therefore, Cai [8, 9] takes a different

approach and introduced d-equalities of fuzzy sets. Cai

proposed that if two fuzzy sets are equal to an extent of d,
then they are said to be d-equal. The notions of d-equality
are significance in both the fuzzy statistics and fuzzy rea-

soning. Cai [8, 9] applied them for assessing the robustness

of fuzzy reasoning as well as in synthesis of real-time fuzzy

systems. Cai also gave several reliability examples of d-
equalities [8, 9]. Zhang et al. [39] studied the d-equalities
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of complex fuzzy set by following the philosophy of Ramot

et al. [23, 24] and Cai [8, 9]. They mainly focus on the

results of Cai’s work [8, 9] to introduce d-equalities of

complex fuzz sets, and thus, they systematically develop

distance measure, equality and similarity of complex fuzzy

sets. Zhang et al. [39] then applied d-equalities of complex

fuzzy sets in a signal processing application.

This paper is an extension of the work of Ramot et al.

[23], Alkouri and Saleh [1], Cai [8, 9], and Zhang et al.

[39] to neutrosophic sets. Basically, we follow the philos-

ophy of the work of Ramot et al. [23] to introduce complex

neutrosophic set. The complex neutrosophic is character-

ized by complex-valued truth membership function, com-

plex-valued indeterminate membership function, and

complex-valued falsehood membership function. Further,

complex neutrosophic set is the mainstream over all

because it not only is the generalization of all the current

frameworks but also describes the information in a com-

plete and comprehensive way.

1.1 Why complex neutrosophic set can handle

the indeterminate information in periodicity

As we can see that uncertainty, indeterminacy, incom-

pleteness, inconsistency, and falsity in data are periodic in

nature, to handle these types of problems, the complex

neutrosophic set plays an important role. A complex neu-

trosophic set S is characterized by a complex-valued truth

membership function TS(x), complex-valued indeterminate

membership function IS(x), and complex-valued false

membership function FS(x) whose range is extended from

[0,1] to the unit disk in the complex plane. The complex

neutrosophic sets can handle the information which is

uncertain, indeterminate, inconsistent, incomplete,

ambiguous, false because in TS(x), the truth amplitude term

and phase term handle uncertainty and periodicity, in IS(x),

the indeterminate amplitude term and phase term handle

indeterminacy and periodicity, and in FS(x), the false

amplitude term and phase term handle the falsity with

periodicity. Complex neutrosophic set is an extension of

the neutrosophic set with three additional phase terms.

Thus, the complex neutrosophic set deals with the

information/data which have uncertainty, indeterminacy,

and falsity that are in periodicity while both the complex

fuzzy set and complex intuitionistic fuzzy sets cannot deal

with indeterminacy, inconsistency, imprecision, vagueness,

doubtfulness, error, etc. in periodicity.

The contributions of this paper are:

1. We introduced complex neutrosophic set which deals

with uncertainty, indeterminacy, impreciseness, incon-

sistency, incompleteness, and falsity of periodic

nature.

2. Further, we studied set theoretic operations of complex

neutrosophic sets such as complement, union, inter-

section complex neutrosophic product, and Cartesian

product.

3. We also introduced the novel concept ‘‘the game of

winner, neutral, and loser’’ for phase terms.

4. We studied a distance measure on complex neutro-

sophic sets which we have used in the application.

5. We introduced d-equalities of complex neutrosophic

set and studied their properties.

6. We also gave an algorithm for signal processing using

complex neutrosophic sets.

7. Drawbacks and failures of the current methods

presented in this paper.

8. Finally, we gave the comparison of complex neutro-

sophic sets to the current methods.

The organization of this paper is as follows. In

Sect. 2, we presented some basic and fundamental

concepts of neutrosophic sets, complex fuzzy sets, and

complex intuitionistic fuzzy sets. In the next section, we

introduced complex neutrosophic sets and gave some

interpretation of complex neutrosophic set for intuition.

We also introduced the basic set theoretic operations of

complex neutrosophic sets such as complement, union,

intersection, complex neutrosophic product, and Carte-

sian product in the current section. Further, in this

section, the game of winner, neutral, and loser is

introduced for the phase terms in the case of union and

intersection of two complex neutrosophic sets. It is

completely an innovative approach for the phase terms.

In Sect. 4, we introduced distance measure on complex

neutrosophic sets, d-equality on complex neutrosophic

sets and studied some of their properties. An application

in signal processing is presented for the possible uti-

lization of complex neutrosophic set in the Sect. 5. In

Sect. 6, we give the drawbacks of fuzzy sets, intu-

itionistic fuzzy sets, neutrosophic sets, complex fuzzy

sets, and complex intuitionistic fuzzy sets. We also give

a comparison of different current methods to complex

neutrosophic set in this section. Further, the dominancy

of complex neutrosophic sets over other existing meth-

ods is shown in this section.

We now review some basic concepts of neutrosophic

sets, single-valued neutrosophic set, complex fuzzy sets,

and complex intuitionistic fuzzy sets.

2 Literature review

In this section, we present some basic material which will

help in our later pursuit. The definitions and notions are

taken from [1, 23, 28, 39].
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Definition 2.1 [28] Neutrosophic set.

Let X be a space of points and let x 2 X. A neutrosophic

set S in X is characterized by a truth membership function

TS, an indeterminacy membership function IS, and a falsity

membership function FS. TS(x), IS(x), and FS(x) are real

standard or non-standard subsets of ]0-, 1?[, and

TS; IS;FS : X ! 0�; 1þ� ½. The neutrosophic set can be rep-

resented as

S ¼ x; TS xð Þ; IS xð Þ;FS xð Þð Þ : x 2 Xf g

There is no restriction on the sum of TS(x), IS(x), and

FS(x), so 0� � TS xð Þ þ IS xð Þ þ FS xð Þ� 3þ.
From philosophical point view, the neutrosophic set

takes the value from real standard or non-standard subsets

of �0�; 1þ½. Thus, it is necessary to take the interval [0,1]

instead of �0�; 1þ½ for technical applications. It is difficult
to apply �0�; 1þ½ in the real-life applications such as

engineering and scientific problems.

A single-valued neutrosophic set [23] is characterized

by a truth membership function, TS(x), an indeterminacy

membership function IS(x) and a falsity membership

function FS(x) with TS(x), IS(x), FS(x) 2 [0, 1] for all

x 2 X. If X is continuous, then

S ¼
Z

X

TS xð Þ; IS xð Þ;FS xð Þð Þ
x

for all x 2 X:

If X is discrete, then

S ¼
X

X

TS xð Þ; IS xð Þ;FS xð Þð Þ
x

for all x 2 X:

Actually, SVNS is an instance of neutrosophic set that

can be used in real-life situations such as decision-making,

scientific, and engineering applications. We will use single-

valued neutrosophic set to define complex neutrosophic set.

We now give some set theoretic operations of neutro-

sophic sets.

Definition 2.2 [33] Complement of neutrosophic set.

The complement of a neutrosophic set S is denoted by

c(S) and is defined by

Tc Sð Þ xð Þ ¼ FS xð Þ; Ic Sð Þ xð Þ ¼ 1� IS xð Þ; Fc Sð Þ xð Þ
¼ TS xð Þ for all x 2 X:

Definition 2.3 [23] Union of neutrosophic sets.

Let A and B be two complex neutrosophic sets in a

universe of discourse X. Then, the union of A and B is

denoted by A [ B, which is defined by

A[B¼ x;TA xð Þ _ TB xð Þ; IA xð Þ ^ IB xð Þ;FA xð Þ ^FB xð Þð Þ : x 2 Xf g

for all x 2 X, and _ denote the max operator and ^ denote

the min operator, respectively.

Definition 2.4 [23] Intersection of neutrosophic sets.

Let A and B be two complex neutrosophic sets in a

universe of discourse X. Then, the intersection of A and B is

denoted as A \ B, which is defined by

A\B¼ x;TA xð Þ ^ TB xð Þ; IA xð Þ _ IB xð Þ;FA xð Þ _FB xð Þð Þ : x 2 Xf g

for all x 2 X.

The definitions and other notions of complex fuzzy sets

are given as follows.

Definition 2.5 [23] Complex fuzzy set.

A complex fuzzy set S, defined on a universe of dis-

course X, is characterized by a membership function gS(-
x) that assigns any element x 2 X a complex-valued grade

of membership in S. The values gS(x) all lie within the unit

circle in the complex plane and thus all of the form

pS xð Þ:ej:lSðxÞ where pS(x) and lS(x) are both real-valued and

pS xð Þ 2 0; 1½ �. Here, pS(x) is termed as amplitude term and

ej:lSðxÞ is termed as phase term. The complex fuzzy set may

be represented in the set form as

S ¼ x; gS xð Þð Þ : x 2 Xf g:

The complex fuzzy set is denoted as CFS.

We now present set theoretic operations of complex

fuzzy sets.

Definition 2.6 [23] Complement of complex fuzzy set.

Let S be a complex fuzzy set on X, and gS xð Þ ¼
pS xð Þ:ej:lS xð Þ its complex-valued membership function. The

complement of S denoted as c(S) and is specified by a

function

gc Sð Þ xð Þ ¼ pc Sð Þ xð Þ:ej:lc Sð Þ xð Þ ¼ 1� pS xð Þð Þ:ej 2p�lS xð Þð Þ:

Definition 2.7 [23] Union of complex fuzzy sets.

Let A and B be two complex fuzzy sets on X, and

gA xð Þ ¼ rA xð Þ:ej:lA xð Þ and gB xð Þ ¼ rB xð Þ:ej:lB xð Þ be their

membership functions, respectively. The union of A and

B is denoted as A [ B, which is specified by a function

gA[B xð Þ ¼ rA[B xð Þ:ej:lA[B xð Þ ¼ rA xð Þ _ rB xð Þð Þ:ej lA xð Þ_lB xð Þð Þ

where _ denote the max operator.

Definition 2.8 [23] Intersection of complex fuzzy sets.

Let A and B be two complex fuzzy sets on X, and gA xð Þ ¼
rA xð Þ:ej:lA xð Þ and gB xð Þ ¼ rB xð Þ:ej:lB xð Þ be their membership

functions, respectively. The intersection of A and B is

denoted as A \ B, which is specified by a function

gA\B xð Þ ¼ rA\B xð Þ:ej:lA\B xð Þ ¼ rA xð Þ ^ rB xð Þð Þ:ej lA xð Þ^lB xð Þð Þ

where ^ denote the max operator.
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We now give some basic definitions and set theoretic

operations of complex intuitionistic fuzzy sets.

Definition 2.9 [39] Let A and B be two complex fuzzy

sets on X, and gA xð Þ ¼ rA xð Þ:ej:lA xð Þ and gB xð Þ ¼
rB xð Þ:ej:lB xð Þ be their membership functions, respectively.

The complex fuzzy product of A and B, denoted as A � B,
and is specified by a function

gA�B xð Þ ¼ rA�B xð Þ:ej:lA�B xð Þ ¼ rA xð Þ:rB xð Þð Þ:ej2p
lA xð Þ
2p :

lB xð Þ
2p

� �

:

Definition 2.10 [39] Let A and B be two complex fuzzy

sets on X, and gA xð Þ ¼ rA xð Þ:ej:lA xð Þ and gB xð Þ ¼
rB xð Þ:ej:lB xð Þ be their membership functions, respectively.

Then, A and B are said to be d equal if and only if

d A;Bð Þ� 1� d, where 0� d� 1.

For more literature on d-equality, we refer to [8, 9] and

[35].

Definition 2.11 [1] Complex intuitionistic fuzzy set.

A complex intuitionistic fuzzy set S, defined on a uni-

verse of discourse X, is characterized by a membership

function gS xð Þ and non-membership function fS xð Þ,
respectively, that assign an element x 2 X a complex-val-

ued grade to both membership and non-membership in

S. The values of gS xð Þ and fS xð Þ all lie with in the unit

circle in the complex plane and are of the form gS xð Þ ¼
pS xð Þ:ej:lSðxÞ and fS xð Þ ¼ rS xð Þ:ej:xSðxÞ, where pS xð Þ; rS xð Þ;
lS xð Þ, and xS xð Þ are all real-valued and pS xð Þ, rS xð Þ 2
0; 1½ � with j ¼

ffiffiffiffiffiffiffi

�1
p

. The complex intuitionistic fuzzy set

can be represented as

S ¼ x; gS xð Þ; fS xð Þð Þ : x 2 Uf g:

It is denoted as CIFS.

Definition 2.12 [1] Complement of complex intuitionis-

tic fuzzy set.

Let S be a complex intuitionistic fuzzy set, and gS xð Þ ¼
pS xð Þ:ej:lSðxÞ and fS xð Þ ¼ rS xð Þ:ej:xSðxÞ its membership and

non-membership functions, respectively. The complement

of S, denoted as c(S), is specified by a function

gc Sð Þ xð Þ ¼ pc Sð Þ xð Þ:ej:lc Sð ÞðxÞ ¼ rS xð Þ:ej 2p�lS xð Þð Þ and

fc Sð Þ xð Þ ¼ rc Sð Þ xð Þ:ej:xc Sð ÞðxÞ ¼ pS xð Þ:ej 2p�xS xð Þð Þ

Definition 2.13 [1] Union of complex intuitionistic fuzzy

sets.

Let A and B be two complex intuitionistic fuzzy sets on

X, and gA xð Þ ¼ pA xð Þ:ej:lA xð Þ, fA xð Þ ¼ rA xð Þ:ej:xA xð Þ and

gB xð Þ ¼ pB xð Þ:ej:lB xð Þ and fB xð Þ ¼ rB xð Þ:ej:xB xð Þ be their

membership and non-membership functions, respectively.

The union of A and B is denoted as A [ B, which is

specified by a function

gA[B xð Þ ¼ pA[B xð Þ:ej:lA[B xð Þ ¼ pA xð Þ _ pB xð Þð Þ:ej lA xð Þ_lB xð Þð Þ

and

fA[B xð Þ ¼ rA[B xð Þ:ej:xA[B xð Þ ¼ rA xð Þ ^ rB xð Þð Þ:ej xA xð Þ^xB xð Þð Þ

where _ and ^ denote the max and min operator,

respectively.

Definition 2.14 [1] Intersection of complex intuitionistic

fuzzy sets.

Let A and B be two complex intuitionistic fuzzy sets on

X, and gA xð Þ ¼ pA xð Þ:ej:lA xð Þ, fA xð Þ ¼ rA xð Þ:ej:xA xð Þ and

gB xð Þ ¼ pB xð Þ:ej:lB xð Þ and fB xð Þ ¼ rB xð Þ:ej:xB xð Þ be their

membership and non-membership functions, respectively.

The intersection of A and B is denoted as A \ B, which is

specified by a function

gA\B xð Þ ¼ pA\B xð Þ:ej:lA\B xð Þ ¼ pA xð Þ ^ pB xð Þð Þ:ej lA xð Þ^lB xð Þð Þ and

fA\B xð Þ ¼ rA\B xð Þ:ej:xA\B xð Þ ¼ rA xð Þ _ rB xð Þð Þ:ej xA xð Þ_xB xð Þð Þ

where ^ and _ denote the min and max operators,

respectively.

Next, the notion of complex neutrosophic set is

introduced.

3 Complex neutrosophic set

In this section, we introduced the innovative concept of

complex neutrosophic set. The definition of complex neu-

trosophic set is as follows.

Definition 3.1 Complex neutrosophic set.

A complex neutrosophic set S defined on a universe of

discourse X, which is characterized by a truth membership

function TSðxÞ, an indeterminacy membership function

ISðxÞ, and a falsity membership function FSðxÞ that assigns
a complex-valued grade of TSðxÞ, ISðxÞ, and FSðxÞ in S for

any x 2 X. The values TSðxÞ, ISðxÞ, FSðxÞ and their sum

may all within the unit circle in the complex plane and so is

of the following form,

TSðxÞ ¼ pSðxÞ:ejlSðxÞ; ISðxÞ ¼ qSðxÞ:ejmSðxÞ and FSðxÞ
¼ rSðxÞ:ejxSðxÞ

where pSðxÞ, qSðxÞ, rSðxÞ and lSðxÞ, mSðxÞ, xSðxÞ are,

respectively, real valued and pSðxÞ; qSðxÞ; rSðxÞ 2 ½0; 1�
such that �0� pSðxÞ þ qSðxÞ þ rSðxÞ� 3þ.

The complex neutrosophic set S can be represented in

set form as

S ¼ x; TSðxÞ ¼ aT ; ISðxÞ ¼ aI ;FSðxÞ ¼ aFð Þ : x 2 Xf g;

Florentin Smarandache (author and editor) Collected Papers, VIII

306



where TS:X ! faT :aT 2 C; aTj j � 1g; IS:X ! faI :aI 2
C; aIj j � 1g and FS:X ! faF:aF 2 C; aFj j � 1g and

TSðxÞ þ ISðxÞ þ FSðxÞj j � 3:

Throughout the paper, complex neutrosophic set refers

to a neutrosophic set with complex-valued truth member-

ship function, complex-valued indeterminacy membership

function, and complex-valued falsity membership function

while the term neutrosophic set with real-valued truth

membership function, indeterminacy membership function,

and falsity membership function.

3.1 Interpretation of complex neutrosophic set

The concept of complex-valued truth membership function,

complex-valued indeterminacy membership function, and

complex-valued falsity membership function is not a sim-

ple task in understanding. In contrast, real-valued truth

membership function, real-valued indeterminacy member-

ship function, and real-valued falsity membership function

in the interval [0,1] can be easily intuitive.

The notion of complex neutrosophic set can be easily

understood from the form of its truth membership function,

indeterminacy membership function, and falsity member-

ship function which appears in above Definition 3.1.

TSðxÞ ¼ pSðxÞ:ejlSðxÞ; ISðxÞ ¼ qSðxÞ:ejmSðxÞ and FSðxÞ
¼ rSðxÞ:ejxSðxÞ

It is clear that complex grade of truth membership

function is defined by a truth amplitude term pSðxÞ and a

truth phase term lSðxÞ. Similarly, the complex grade of

indeterminacy membership function is defined as an inde-

terminate amplitude term qSðxÞ and an indeterminate phase

term mSðxÞ, while the complex grade of falsity membership

function is defined by false amplitude term rSðxÞ and a false
phase term xSðxÞ, respectively. It should be noted that the

truth amplitude term pSðxÞ is equal to TSðxÞj j, the amplitude

of TSðxÞ. Also, the indeterminate amplitude term qSðxÞ is

equal to ISðxÞj j and the false amplitude term rSðxÞ is equal
to FSðxÞj j.

Complex neutrosophic sets are the generalization of

neutrosophic sets. It is a easy task to represent a neutro-

sophic set in the form of complex neutrosophic set. For

instance, the neutrosophic set S is characterized by a real-

valued truth membership function aSðxÞ, indeterminate

membership function bSðxÞ, and falsehood membership

function cSðxÞ. By setting the truth amplitude term pSðxÞ
equal to aSðxÞ, and the truth phase term lSðxÞ equal to zero

for all x and similarly we can set the indeterminate

amplitude term qSðxÞ equal to bSðxÞ and the indeterminate

phase term equal to zero, while the false amplitude term

rSðxÞ equal to cSðxÞ with the false phase term equal to zero

for all x. Thus, it has seen that a complex neutrosophic set

can be easily transformed into a neutrosophic set. From this

discussion, it is concluded that the truth amplitude term is

equivalent to the real-valued grade of truth membership

function, the indeterminate amplitude term is equivalent to

the real-valued grade of indeterminate membership func-

tion, and the false amplitude term is essentially equivalent

to the real-valued grade of false membership function. The

only distinguishing factors are truth phase term, indeter-

minate phase term, and false phase term. This differs the

complex neutrosophic set from the ordinary neutrosophic

set. In simple words, if we omit all the three phase terms,

the complex neutrosophic set will automatically convert

into neutrosophic set effectively. All this discussion is

supported by the reality that pSðxÞ, qSðxÞ, and rSðxÞ have

range [0,1] which is for real-valued grade of truth mem-

bership, real-valued grade of indeterminate membership,

and real-valued grade of false membership.

It should also be noted that complex neutrosophic sets

are the generalization of complex fuzzy sets, conventional

fuzzy sets, complex intuitionistic fuzzy sets and intuition-

istic fuzzy sets, classical sets. This means that complex

neutrosophic set is an advance generalization to all the

existence methods and due to this feature, the concept of

complex neutrosophic set is a distinguished and novel one.

3.2 Numerical example of a complex neutrosophic

set

Example 3.2 Let X ¼ fx1; x2; x3g be a universe of dis-

course. Then, S be a complex neutrosophic set in X as given

below:

S ¼
0:6ej:0:8; 0:3:ej:

3p
4 ; 0:5:ej:0:3

� �

x1

þ
0:7ej:00:2:ej:0:9; 0:1:ej:

2p
3

� �

x2

þ 0:9ej:0:1; 0:4:ej:p; 0:7:ej:0:7ð Þ
x3

:

3.3 Set theoretic operations on complex neutrosophic

set

Ramot et al. [23], calculated the complement of member-

ship phase term lS xð Þ by several possible method such as

lcS xð Þ ¼ lS xð Þ; 2p� lS xð Þ. Zhang [39] defined the com-

plement of the membership phase term by taking the

rotation of lS xð Þ by p radian as lcS xð Þ ¼ lS xð Þ þ p.
To define the complement of a complex neutrosophic

set, we simply take the neutrosophic complement [29] for
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the truth amplitude term pS xð Þ, indeterminacy amplitude

term qS xð Þ, and falsehood amplitude term rS xð Þ. For phase
terms, we take the complements defined in [23]. We now

proceed to define the complement of complex neutrosophic

set.

Definition 3.3 Complement of complex neutrosophic set.

Let S ¼ x; TSðxÞ; ISðxÞ;FSðxÞð Þ : x 2 Xf g be a complex

neutrosophic set in X. Then, the complement of a complex

neutrosophic set S is denoted as c(S) and is defined by

c Sð Þ ¼ x; Tc
SðxÞ; IcSðxÞ;Fc

SðxÞ
� �

: x 2 X
� �

;

where Tc
SðxÞ ¼ c pS xð Þ:ej:lSðxÞ

� �

, IcSðxÞ ¼ c qS xð Þ:ej:mSðxÞ
� �

,

and Fc
SðxÞ ¼ c rS xð Þ:ej:xSðxÞ

� �

in which c pS xð Þ:ej:lSðxÞ
� �

¼
c pS xð Þð Þ:ej:lcsðxÞ is such that c pS xð Þð Þ ¼ rSðxÞ and mcS xð Þ ¼
mS xð Þ; 2p� mS xð Þ or mS xð Þ þ p. Similarly, c rS xð Þ:ð
ej:lSðxÞÞ ¼ c rS xð Þð Þ:ej:xc

s ðxÞ, where c qS xð Þð Þ ¼ 1� qS xð Þ and
mcS xð Þ ¼ mS xð Þ; 2p� mS xð Þ or mS xð Þ þ p.

Finally, c rS xð Þ:ej:lSðxÞ
� �

¼ c rS xð Þð Þ:ej:xc
sðxÞ, where

c rS xð Þð Þ ¼ pS xð Þ and xc
S xð Þ ¼ xS xð Þ; 2p� xS xð Þ or

xS xð Þ þ p.

Proposition 3.4 Let A be a complex neutrosophic set on

X. Then, c c Að Þð Þ ¼ A:

Proof By definition 3.1, we can easily prove it.

Proposition 3.5 Let A and B be two complex neutro-

sophic sets on X. Then, c A \ Bð Þ ¼ c Að Þ [ c Bð Þ.

Definition 3.6 Union of complex neutrosophic sets.

Ramot et al. [23] defined the union of two complex

fuzzy sets A and B as follows.

Let lA xð Þ ¼ rA xð Þ:ej:xAðxÞ and lB xð Þ ¼ rB xð Þ:ej:xBðxÞ be

the complex-valued membership functions of A and B,

respectively. Then, the membership union of A [ B is given

by lA[B xð Þ ¼ rA xð Þ � rB xð Þ½ �:ej:xA[BðxÞ. Since rA xð Þ and

rB xð Þ are real-valued and belong to ½0; 1�, the operators max

and min can be applied to them. For calculating phase term

xA[B xð Þ, they give several methods.

Now we define the union of two complex neutrosophic

sets as follows:

Let A and B be two complex neutrosophic sets in X,

where

A ¼ x; TA xð Þ; IA xð Þ;FA Xð Þð Þ : x 2 Xf g and

B ¼ x; TB xð Þ; IB xð Þ;FB Xð Þð Þ : x 2 Xf g:

Then the union of A and B is denoted as A [N B and is

given as

A [N B ¼ x; TA[B xð Þ; IA[B xð Þ;FA[B xð Þð Þ : x 2 Xf g

where the truth membership function TA[B xð Þ, the inde-

terminacy membership function IA[B xð Þ, and the falsehood

membership function FA[B xð Þ are defined by

TA[B xð Þ ¼ pA xð Þ _ pB xð Þð Þ½ �:ej:lTA[B ðxÞ;
IA[B xð Þ ¼ qA xð Þ ^ qB xð Þð Þ½ �:ej:mIA[B ðxÞ;
FA[B xð Þ ¼ rA xð Þ ^ rB xð Þð Þ½ �:ej:xFA[B ðxÞ;

where _ and ^ denote the max and min operators,

respectively. To calculate phase the terms ej:lA[BðxÞ, ej:mA[BðxÞ,

and ej:xA[BðxÞ, we define the following:

Definition 3.7 Let A and B be two complex neutrosophic

sets in X with complex-valued truth membership functions

TA xð Þ and TB xð Þ, complex-valued indeterminacy member-

ship functions IA xð Þ and IB xð Þ, and complex-valued false-

hood membership functions FA xð Þ and FB xð Þ, respectively.
The union of the complex neutrosophic sets A and B is

denoted by A [N B which is associated with the function:

h : aT ;aI ;aFð Þ :aT ;aI ;aF2C; aTþaIþaFj j�3; aTj j; aIj j; aFj j�1f g
� bT ;bI ;bFð Þ :bT ;bI ;bF2C; bTþbIþbFj j�3; bTj j; bIj j; bFj j�1f g
! dT ;dI ;dFð Þ :dT ;dI ;dF2C; dTþdIþdFj j�3; dTj j; dIj j; dFj j�1f g;

where a; b; d, a0; b0; d0, and a00; b00; d00 are the complex truth

membership, complex indeterminacy membership, and

complex falsity membership of A, B, and A [ B,

respectively.

A complex value is assigned by h, that is, for all x 2 X,

h TA xð Þ; TB xð Þð Þ ¼ TA[B xð Þ ¼ dT ;

h IA xð Þ; IB xð Þð Þ ¼ IA[B xð Þ ¼ dI and

h FA xð Þ;FB xð Þð Þ ¼ FA[B xð Þ ¼ dF:

This function h must obey at least the following axio-

matic conditions.

For any a; b; c; d; a0; b0; c0; d0; a00; b00; c00; d00 2 fx : x 2 C;

xj j � 1g:

• Axiom 1: hT a; 0ð Þj j ¼ aj j; hI a0; 1ð Þj j ¼ a0j j and

hF a00; 1ð Þj j ¼ a00j j (boundary condition).

• Axiom 2: hT a; bð Þ ¼ hT b; að Þ; hI a0; b0ð Þ ¼ hI b0; a0ð Þ and
hF a00; b00ð Þ ¼ hF b00; a00ð Þ (commutativity condition).

• Axiom 3: if bj j � dj j, then hT a; bð Þj j � hT a; dð Þj j and if

b0j j � d0j j, then hI a0; b0ð Þj j � hI a0; d0ð Þj j and if

b00j j � d00j j, then hF a00; b00ð Þj j � hF a00; d00ð Þj j (monotonic

condition).

• Axiom 4: hT hT a; bð Þ; cð Þ ¼ hT a; hT b; cð Þð Þ, hI hI a0;ðð
b0Þ; c0Þ ¼ hI a0; hI b0; c0ð Þð Þ and hF hF a00; b00ð Þ; c00ð Þ ¼
hF a00; hF b00; c00ð Þð Þ (associative condition).

It may be possible in some cases that the following are

also hold:
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• Axiom 5: h is continuous function (continuity).

• Axiom 6: hT a; að Þj j[ aj j, hI a0; a0ð Þj j\ a0j j and

hF a00; a00ð Þj j\ a00j j (superidempotency).

• Axiom 7: aj j � cj j and bj j � dj j, then hT a;ðj
bÞj � hT c; dð Þj j, also a0j j 	 c0j j and b0j j 	 d0j j, then

hI a0; b0ð Þj j 	 hI c0; d0ð Þj j and a00j j 	 c00j j and b00j j � d00j j,
then hF a00; b00ð Þj j 	 hF c0; d0ð Þj j (strict monotonicity).

The phase term of complex truth membership function,

complex indeterminacy membership function, and complex

falsity membership function belongs to ð0; 2pÞ. To define

the phase terms, we suppose that lTA[B xð Þ ¼ lA[B xð Þ,
mIA[B xð Þ ¼ mA[B xð Þ, and xFA[B xð Þ ¼ xA[B xð Þ. Now we take

those forms which Ramot et al. presented in [23] to define

the phase terms of TA[B xð Þ, IA[B xð Þ, and FA[B xð Þ,
respectively.

(a) Sum:

lA[B xð Þ ¼ lA xð Þ þ lB xð Þ;
mA[B xð Þ ¼ mA xð Þ þ mB xð Þ;
xA[B xð Þ ¼ xA xð Þ þ xB xð Þ:

(b) Max:

lA[B xð Þ ¼ max lA xð Þ; lB xð Þð Þ;
mA[B xð Þ ¼ max mA xð Þ; mB xð Þð Þ;
xA[B xð Þ ¼ max xA xð Þ;xB xð Þð Þ:

(c) Min:

lA[B xð Þ ¼ min lA xð Þ; lB xð Þð Þ;
mA[B xð Þ ¼ min mA xð Þ; mB xð Þð Þ;
xA[B xð Þ ¼ min xA xð Þ;xB xð Þð Þ:

(d) ‘‘The game of winner, neutral, and loser’’:

lA[B xð Þ ¼
lAðxÞ if pA [ pB

lBðxÞ if pB [ pA

�

;

mA[B xð Þ ¼
mAðxÞ if qA\qB

mBðxÞ if qB\qA
;

�

xA[B xð Þ ¼
xAðxÞ if rA\rB

xBðxÞ if rB\rA

�

:

The game of winner, neutral, and loser is a novel con-

cept, and it is the generalization of the concept ‘‘winner

take all’’ introduced by Ramot et al. [23] for the union of

phase terms.

Example 3.8 Let X ¼ fx1; x2; x3g be a universe of dis-

course. Let A and B be two complex neutrosophic sets in

X as shown below:

A ¼
0:6ej:0:8; 0:3:ej:

3p
4 ; 0:5:ej:0:3

� �

x1

þ
0:7ej:00:2:ej:0:9; 0:1:ej:

2p
3

� �

x2

þ 0:9ej:0:1; 0:4:ej:p; 0:7:ej:0:7ð Þ
x3

;

and

B ¼
0:8ej:0:9; 0:1:ej:

p
4; 0:4:ej:0:5

� �

x1

þ
0:6ej:0:1; 1:ej:0:6; 0:01:ej:

4p
3

� �

x2

þ
0:2ej:0:3; 0:ej:2p; 0:5:ej:0:5
� �

x3
;

Then

A[N B¼
0:8:ej:0:9;0:3:ej:

3p
4 ;0:5:ej:0:5

� �

x1
;

0:6:ej:0:1;0:2:ej:0:9;0:01;ej:
4p
3

� �

x2
;
0:2:ej:0:3;0:ej:2p;0:5:ej:0:7ð Þ

x3
:

Definition 3.9 Intersection of complex neutrosophic sets.

Let A and B be two complex neutrosophic sets in X,

where

A ¼ x; TA xð Þ; IA xð Þ;FA Xð Þð Þ : x 2 Xf g and

B ¼ x; TB xð Þ; IB xð Þ;FB Xð Þð Þ : x 2 Xf g:

Then, the intersection of A and B is denoted as A \N B

and is defined as

A \N B ¼ x; TA\B xð Þ; IA\B xð Þ;FA\B xð Þð Þ : x 2 Xf g;

where the truth membership function TA\B xð Þ, the inde-

terminacy membership function IA\B xð Þ, and the falsehood

membership function FA\B xð Þ are given as:

TA\B xð Þ ¼ pA xð Þ ^ pB xð Þð Þ½ �:ej:lTA\B ðxÞ;
IA\B xð Þ ¼ qA xð Þ _ qB xð Þð Þ½ �:ej:mIA\B ðxÞ;
FA\B xð Þ ¼ rA xð Þ _ rB xð Þð Þ½ �:ej:xFA\B ðxÞ;

where _ and ^ denote the max and min operators,

respectively. We calculate phase terms ej:lA\BðxÞ, ej:mA\BðxÞ,

and ej:xA\BðxÞ after define the following:

Definition 3.10 Let A and B be two complex neutro-

sophic sets in X with complex-valued truth membership

functions TA xð Þ and TB xð Þ, complex-valued indeterminacy

membership functions IA xð Þ and IB xð Þ, and complex-valued

falsehood membership functions FA xð Þ and FB xð Þ,
respectively. The intersection of the complex neutrosophic
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sets A and B is denoted by A \N B which is associated with

the function:

/ : aT ;aI ;aFð Þ :aT ;aI ;aF2C; aTþaIþaFj j�3; aTj j; aIj j; aFj j�1f g
� bT ;bI ;bFð Þ :bT ;bI ;bF2C; bTþbIþbFj j�3; bTj j; bIj j; bFj j�1f g
! dT ;dI ;dFð Þ :dT ;dI ;dF2C; dTþdIþdFj j�3; dTj j; dIj j; dFj j�1f g;

where a;b;d, a0;b0;d0, and a00;b00;d00 are the complex truth

membership, complex indeterminacy membership, and

complex falsity membership of A, B, and A\B, respec-
tively. / assigned a complex value, that is, for all x2X;

/ TA xð Þ; TB xð Þð Þ ¼ TA\B xð Þ ¼ dT ;

/ IA xð Þ; IB xð Þð Þ ¼ IA\B xð Þ ¼ dI and

/ FA xð Þ;FB xð Þð Þ ¼ FA\B xð Þ ¼ dF :

/ must satisfy at least the following axiomatic

conditions.

For any a; b; c; d; a0; b0; c0; d0; a00; b00; c00; d00 2 fx : x 2 C;

xj j � 1g:

• Axiom 1: If bj j ¼ 1, then /T a; bð Þj j ¼ aj j. If b0j j ¼ 0,

then /I a
0; b0ð Þj j ¼ a0j j and if /F a00; b00ð Þj j ¼ a00j j

(boundary condition).

• Axiom 2: /T a; bð Þ ¼ /T b; að Þ; /I a
0; b0ð Þ ¼ /I b

0; a0ð Þ,
and /F a00; b00ð Þ ¼ /F b00; a00ð Þ (commutative condition).

• Axiom 3: if bj j � dj j, then /T a; bð Þj j � /T a; dð Þj j and if

b0j j � d0j j, then /I a
0; b0ð Þj j � /I a

0; d0ð Þj j and if

b00j j � d00j j, then /F a00; b00ð Þj j � /F a00; d00ð Þj j (monotonic

condition).

• Axiom 4: /T /T a; bð Þ; cð Þ ¼ /T a;/T b; cð Þð Þ, /I /I a
0;ðð

b0Þ; c0Þ ¼ /I a
0;/I b

0; c0ð Þð Þ, and /F /F a00; b00ð Þ; c00ð Þ ¼
/F a00;/F b00; c00ð Þð Þ (associative condition).

The following axioms also hold in some cases.

• Axiom 5: / is continuous function (continuity).

• Axiom 6: /T a; að Þj j[ aj j, /I a
0; a0ð Þj j \ a0j j, and

/F a00; a00ð Þj j\ a00j j (superidempotency).

• Axiom 7: aj j � cj j and bj j � dj j, then /T a;ðj
bÞj � /T c; dð Þj j, also a0j j 	 c0j j and b0j j 	 d0j j, then

/I a
0; b0ð Þj j 	 /I c

0; d0ð Þj j and a00j j 	 c00j j and b00j j � d00j j,
then /F a00; b00ð Þj j 	 /F c00; d00ð Þj j (strict monotonicity).

We can easily calculate the phase terms ej:lA\BðxÞ,

ej:mA\BðxÞ, and ej:xA\BðxÞ on the same lines by winner, neutral,

and loser game.

Proposition 3.11 Let A;B;C be three complex neutro-

sophic sets on X. Then,

1. A [ Bð Þ \ C ¼ A \ Cð Þ [ A \ Bð Þ;
2. A \ Bð Þ [ C ¼ A [ Cð Þ \ A [ Bð Þ:

Proof Here we only prove part 1. Let A;B;C be three

complex neutrosophic sets in X and TA xð Þ; IA xð Þ,FA xð Þ,
TB xð Þ; IB xð Þ;FB xð Þ and TC xð Þ; IC xð Þ;FV xð Þ, respectively,

be their complex-valued truth membership function, com-

plex-valued indeterminate membership function, and

complex-valued falsehood membership functions. Then,

we have

T A[Bð Þ\C xð Þ ¼ p A[Bð Þ\C xð Þ:ej:l A[Bð Þ\C xð Þ

¼ min pA[B xð Þ; pC xð Þð Þ:ej:min lA[B xð Þ;lC xð Þð Þ;

¼ min max pA xð Þ; pB xð Þð Þ; pC xð Þð Þ
: ej:min max lA xð Þ;lB xð Þð Þ;lC xð Þð Þ;

¼ max min pA xð Þ; pc xð Þð Þ;min pB xð Þ; pC xð Þð Þð Þ
: ej:max min lA xð Þ;lC xð Þð Þ;min lB xð Þ;lC xð Þð Þð Þ;

¼ max pA\C xð Þ; pB\C xð Þð Þ: ej:max lA\C xð Þ;lB\C xð Þð Þ;

¼ p A\Cð Þ[ B\Cð Þ xð Þ:ej:l A\Cð Þ[ B\Cð Þ xð Þ ¼ T A\Cð Þ[ B\Cð Þ xð Þ:

Similarly, on the same lines, we can show it for

I A[Bð Þ\C xð Þ and F A[Bð Þ\C xð Þ, respectively. h

Proposition 3.12 Let A and B be two complex neutro-

sophic sets in X. Then,

1. A [ Bð Þ \ A ¼ A;

2. A \ Bð Þ [ A ¼ A:

Proof We prove it for part 1. Let A and B be two complex

neutrosophic sets in X and TA xð Þ; IA xð Þ,FA xð Þ and

TB xð Þ; IB xð Þ;FB xð Þ, respectively, be their complex-valued

truth membership function, complex-valued indeterminate

membership function, and complex-valued falsehood

membership functions. Then,

T A[Bð Þ\A xð Þ ¼ p A[Bð Þ\A xð Þ: ej:l A[Bð Þ\A xð Þ

¼ min pA[B xð Þ; pA xð Þð Þ
: ei:min lA[B xð Þ;lA xð Þð Þ;

¼ min max pA xð Þ; pB xð Þð Þ; pA xð Þð Þ
: ei:min max lA xð Þ;lB xð Þð Þ;lA xð Þð Þ

¼ TA xð Þ:

Similarly, we can show it for I A[Bð Þ\A xð Þ and

F A[Bð Þ\A xð Þ, respectively. h

Definition 3.13 Let A and B be two complex neutro-

sophic sets on X, and TA xð Þ ¼ pA xð Þ:ej:lA xð Þ, IA xð Þ ¼
qA xð Þ:ej:mA xð Þ, FA xð Þ ¼ rA xð Þ:ej:xA xð Þ and TB xð Þ ¼ pB xð Þ:
ej:lB xð Þ, IB xð Þ ¼ qB xð Þ:ej:mB xð Þ, FB xð Þ ¼ rB xð Þ:ej:xB xð Þ,
respectively, be their complex-valued truth membership

function, complex-valued indeterminacy membership

function, and complex-valued falsity membership function.
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The complex neutrosophic product of A and B denoted as

A � B and is specified by the functions,

TA�B xð Þ ¼ pA�B xð Þ:ej:lA�B xð Þ ¼ pA xð Þ:pB xð Þð Þ:ej:2p
lA xð Þ
2p :lB xð Þ

2pð Þ;

IA�B xð Þ ¼ qA�B xð Þ:ej:lA�B xð Þ ¼ qA xð Þ:qB xð Þð Þ:ej:2p
mA xð Þ
2p :mB xð Þ

2pð Þ;

FA�B xð Þ ¼ rA�B xð Þ:ej:lA�B xð Þ ¼ rA xð Þ:rB xð Þð Þ:ej:2p
xA xð Þ
2p :lB xð Þ

2pð Þ:

Example 3.14 Let X ¼ x1; x2; x3f g and let

A ¼
0:6ej1:2p; 0:3ej0:5p; 1:0ej0:1p
� �

x1

þ 1:0ej2p; 0:2ej:3p; 0:5ej0:4pð Þ
x2

þ
0:8ej1:6p; 0:1ej1:2; 0:6ej0:1p
� �

x3
;

B ¼ 0:6ej1:2p; 0:1ej0:4p; 1:0ej0:1pð Þ
x1

þ
1:0ej1:2p; 0:3ej:2p; 0:7ej0:5p
� �

x2

þ
0:2ej1:6p; 0:2ej1:3p; 0:7ej0:1p
� �

x3

Then

A � B ¼
0:36ej0:72p; 0:3ej0:1p; 1:0ej0:0025p
� �

x1
;

1:0ej1:2p; 0:06ej3p; 0:35ej0:1pð Þ
x3

;

0:16ej1:28p; 0:02ej0:78p; 0:42ej0:005p
� �

x3

Definition 3.15 Let An be N complex neutrosophic sets on

X n ¼ 1; 2; . . .;Nð Þ, and TAn
xð Þ ¼ pAn

xð Þ:ej:lAn xð Þ,

IAn
xð Þ ¼ qAn

xð Þ:ej:mAn xð Þ, andFAn
xð Þ ¼ rAn

xð Þ:ej:xAn xð Þ be their
complex-valued membership function, complex-valued inde-

terminacy membership function and complex-valued non-

membership function, respectively. The Cartesian product of

An, denoted as A1 � A2 � � � � � AN , specified by the function

TA1�A2�����AN
xð Þ ¼ pA1�A2�����AN

xð Þ:ej:lA1�A2�����AN
xð Þ

¼ min pA1
x1ð Þ; pA2

x2ð Þ; . . .; pAN
xNð Þð Þ

: ejmin lA1 x1ð Þ;lA2 x2ð Þ;...;lAN xNð Þð Þ;

IA1�A2�����AN
xð Þ ¼ qA1�A2�����AN

xð Þ:ej:mA1�A2�����AN
xð Þ

¼ max qA1
x1ð Þ; qA2

x2ð Þ; . . .; qAN
xNð Þð Þ

: ejmax mA1 x1ð Þ;mA2 x2ð Þ;...;mAN xNð Þð Þ;

and

FA1�A2�����AN
xð Þ ¼ rA1�A2�����AN

xð Þ:ej:xA1�A2�����AN
xð Þ

¼ max rA1
x1ð Þ; rA2

x2ð Þ; . . .; rAN
xNð Þð Þ

: ejmax xA1
x1ð Þ;xA2

x2ð Þ;...;xAN
xNð Þð Þ;

where x ¼ x1; x2; . . .; xNð Þ 2 X � X � � � � � X
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

N

:

4 Distance measure and d-equalities of complex
neutrosophic sets

In this section, we introduced distance measure and other

operational properties of complex neutrosophic sets.

Definition 4.1 Let CN Xð Þ be the collection of all com-

plex neutrosophic sets on X and A;B 2 CN Xð Þ. Then, A 

B if and only if TA xð Þ� TB xð Þ such that the amplitude

terms pA xð Þ� pB xð Þ and the phase terms lA xð Þ� lB xð Þ,
and IA xð Þ	 IB xð Þ such that the amplitude terms

qA xð Þ	 qB xð Þ and the phase terms mA xð Þ	 mB xð Þ whereas

FA xð Þ	FB xð Þ such that the amplitude terms rA xð Þ	 rB xð Þ
and the phase terms xA xð Þ	xB xð Þ.

Definition 4.2 Two complex neutrosophic sets A and

B are said to equal if and only if pA xð Þ ¼ pB xð Þ,
qA xð Þ ¼ qB xð Þ, and rA xð Þ ¼ rB xð Þ for amplitude terms and

lA xð Þ ¼ lB xð Þ, mA xð Þ ¼ mB xð Þ, xA xð Þ ¼ xB xð Þ for phase

terms (arguments).

Definition 4.3 A distance of complex neutrosophic sets is

a function dCNS:CN Xð Þ � CN Xð Þ ! 0; 1½ � such that for any

A;B;C 2 CN Xð Þ

1. 0� dCNS A;Bð Þ� 1;

2. dCNS A;Bð Þ ¼ 0 if and only if A ¼ B;

3. dCNS A;Bð Þ ¼ dCNS B;Að Þ;
4. dCNS A;Bð Þ� dCNS A;Cð Þ þ dCNS C;Bð Þ:

Let dCNS:CN Xð Þ � CN Xð Þ ! 0; 1½ � be a function which

is defined as

dCNS A;Bð Þ ¼ max
max supx2X pA xð Þ � pB xð Þj j; supx2X qA xð Þ � qB xð Þj j; supx2X rA xð Þ � rB xð Þj jð Þ;
max 1

2p supx2X lA xð Þ � lB xð Þj j; 1
2p supx2X mA xð Þ � mB xð Þj j; 1

2p supx2X xA xð Þ � xB xð Þj jð Þ
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Theorem 4.4 The function dCNS A;Bð Þ defined above is a

distance function of complex neutrosophic sets on X.

Proof The proof is straightforward. h

Definition 4.5 Let A and B be two complex neutrosophic

sets on X, and TA xð Þ ¼ pA xð Þ:ej:lA xð Þ, IA xð Þ ¼ qA xð Þ:ej:mA xð Þ,

FA xð Þ ¼ rA xð Þ:ej:xA xð Þ and TB xð Þ ¼ pA xð Þ:ej:lB xð Þ, IB xð Þ ¼
qB xð Þ:ej:mB xð Þ; FB xð Þ ¼ rB xð Þ:ej:xB xð Þ are their complex-val-

ued truth membership, complex-valued indeterminacy

membership, and complex-valued falsity membership

functions, respectively. Then, A and B are said to be d-
equal, if and only if dCNS A;Bð Þ� 1� d, where 0� d� 1. It

is denoted by A ¼ dð ÞB.

Proposition 4.6 For complex neutrosophic sets A, B, and

C, the following holds.

1. A ¼ 0ð ÞB,
2. A ¼ 1ð ÞB if and only if A ¼ B;

3. If A ¼ dð ÞB if and only if B ¼ dð ÞA;
4. A ¼ d1ð ÞB and d2 � d1, then A ¼ d2ð ÞB;
5. If A ¼ dað ÞB, then A ¼ supa2J dað ÞB for all a 2 J,

where J is an index set,

6. If A ¼ d0ð ÞB and there exist a unique d such that A ¼
dð ÞB; then d0 � d for all A;B

7. If A ¼ d1ð ÞB and B ¼ d2ð ÞC; then A ¼ dð ÞC; where

d ¼ d1 � d2:

Proof 4.7 Properties 1–4, 6 can be proved easily. We only

prove 5 and 7.

5. Since A ¼ dað ÞB for all a 2 J; we have

Therefore,

sup
x2X

pA xð Þ � pB xð Þj j � 1� sup
a2J

da;

sup
x2X

qA xð Þ � qB xð Þj j � 1� sup
a2J

da;

sup
x2X

rA xð Þ � rB xð Þj j � 1� sup
a2J

da; and

1

2p
sup
x2X

lA xð Þ � lB xð Þj j � 1� sup
a2J

da;

1

2p
sup
x2X

mA xð Þ � mB xð Þj j � 1� sup
a2J

da

1

2p
sup
x2X

xA xð Þ � xB xð Þj j � 1� sup
a2J

da:

Thus,

dCNS A;Bð Þ ¼ max
max supx2X pA xð Þ � pB xð Þj j; supx2X qA xð Þ � qB xð Þj j; supx2X rA xð Þ � rB xð Þj jð Þ;
max 1

2p supx2X lA xð Þ � lB xð Þj j; 1
2p supx2X mA xð Þ � mB xð Þj j; 1

2p supx2X xA xð Þ � xB xð Þj jð Þ

	 


� 1� da

dCNS A;Bð Þ ¼ max

max supx2X pA xð Þ � pB xð Þj j; supx2X qA xð Þ � qB xð Þj j; supx2X rA xð Þ � rB xð Þj jð Þ;

max
1

2p
sup
x2X

lA xð Þ � lB xð Þj j; 1

2p
sup
x2X

mA xð Þ � mB xð Þj j; 1

2p
sup
x2X

xA xð Þ � xB xð Þj j
	 


0

@

1

A

� 1� sup
a2J

da
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Hence, A ¼ supa2J dað ÞB.
7. Since A ¼ d1ð ÞB, we have

which implies

sup
x2X

pA xð Þ � pB xð Þj j � 1� d1;

sup
x2X

qA xð Þ � qB xð Þj j � 1� d1;

sup
x2X

rA xð Þ � rB xð Þj j � 1� d1 and

1

2p
sup
x2X

lA xð Þ � lB xð Þj j � 1� d1;
1

2p
sup
x2X

mA xð Þ � mB xð Þj j � 1� d1

1

2p
sup
x2X

xA xð Þ � xB xð Þj j � 1� d1:

Also we have B ¼ d2ð ÞC, so

which implies

sup
x2X

pB xð Þ�pC xð Þj j�1�d2;

sup
x2X

qB xð Þ�qC xð Þj j�1�d2;

sup
x2X

rB xð Þ� rC xð Þj j�1�d1 and

1

2p
sup
x2X

lB xð Þ�lC xð Þj j�1�d2;
1

2p
sup
x2X

mB xð Þ� mC xð Þj j�1�d2;

1

2p
sup
x2X

xB xð Þ�xC xð Þj j�1�d2:

Now,

dCNS A;Bð Þ ¼ max
max supx2X pA xð Þ � pB xð Þj j; supx2X qA xð Þ � qB xð Þj j; supx2X rA xð Þ � rB xð Þj jð Þ;
max 1

2p supx2X lA xð Þ � lB xð Þj j; 1
2p supx2X mA xð Þ � mB xð Þj j; 1

2p supx2X xA xð Þ � xB xð Þj jð Þ

	 


� 1� d1

dCNS B;Cð Þ ¼ max

max supx2X pB xð Þ � pC xð Þj j; supx2X qB xð Þ � qC xð Þj j; supx2X rB xð Þ � rC xð Þj jð Þ;

max 1
2p supx2X lB xð Þ � lC xð Þj j; 1

2p supx2X mB xð Þ � mC xð Þj j; 1
2p

sup
x2X

xB xð Þ � xC xð Þj j
	 


0

@

1

A� 1� d2
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From Definition 4.3, dCNS A;Cð Þ� 1. Therefore, dCNS
A;Cð Þ� 1� d1 � d2 ¼ 1� d; where d ¼ d1 � d2: Thus,

A ¼ dð ÞC. h

Theorem 4.8 If A ¼ dð ÞB, then c Að Þ ¼ dð Þc Bð Þ; where
c Að Þ and c Bð Þ are the complement of the complex neu-

trosophic sets A and B.

Proof Since

5 Application of complex neutrosophic set
in signal processing

The complex neutrosophic set and d-equalities of complex

neutrosophic sets are applied in signal processing appli-

cation which demonstrates to point out a particular signal

of interest out of a large number of signals that are received

by a digital receiver. This is the example which Ramot

et al. [23] discussed for complex fuzzy set. We now apply

complex neutrosophic set to this example.

Suppose that there are L0 different signals,

S1 tð Þ; S2 tð Þ; . . .; SL0 tð Þ. These signals have been detected

and sampled by a digital receiver and each of which is

sampled N times. Suppose that Sl0 k
0ð Þ denote the k0th of the

l0-th signal, where 1� k0 �N and 1� l0 � L0. Now we form

the following algorithm for this application.

5.1 Algorithm

Step 1. Write the discrete Fourier transforms of the L0

signals in the form of complex neutrosophic set,

Sl0 k
0ð Þ ¼ 1

N
:
X

N

n¼1

Cl0;n;Dl0;n;El0;n

� �

:e
2pjðn�1Þðk0�1Þ

N ð1Þ

where Cl0;n;Dl0;n;El0;n are the complex-valued Fourier

coefficients of the signals and 1� n�N.

The above sum may be written as

Sl0 k
0ð Þ ¼ 1

N
:
X

N

n¼1

Ul0;n;Vl0;n;Wl0;n

� �

:e
jð2pðn�1Þðk0�1Þþa

l0 ;nÞ
N ð2Þ

where Cl0;n ¼ Ul0;n:e
jal0 ;n , Dl0;n ¼ Vl0;n:e

jal0 ;n , and El0;n ¼
Wl0;n:e

jal0 ;n with Ul0;n, Vl0;n, Wl0;n 	 0, and al0;n are real-valued
for all n.

dCNS A;Cð Þ ¼ max
max supx2X pA xð Þ � pC xð Þj j; supx2X qA xð Þ � qC xð Þj j; supx2X rA xð Þ � rC xð Þj jð Þ;
max 1

2p supx2X lA xð Þ � lC xð Þj j; 1
2p supx2X mA xð Þ � mC xð Þj j; 1

2p supx2X xA xð Þ � xC xð Þj jð Þ

	 


�max

max supx2X pA xð Þ � pB xð Þj j; supx2X qA xð Þ � qB xð Þj j; supx2X rA xð Þ � rB xð Þj jð Þþ
max supx2X pB xð Þ � pC xð Þj j; supx2X qB xð Þ � qC xð Þj j; supx2X rB xð Þ � rC xð Þj jð Þ;
max 1

2p supx2X lA xð Þ � lB xð Þj j; 1
2p supx2X mA xð Þ � mB xð Þj j; 1

2p supx2X xA xð Þ � xB xð Þj jð Þþ
max 1

2p supx2X lB xð Þ � lC xð Þj j; 1
2p supx2X mB xð Þ � mC xð Þj j; 1

2p supx2X xB xð Þ � xC xð Þj jð Þ

0

B

B

B

@

1

C

C

C

A

�max 1� d1ð Þ þ 1� d2ð Þ; 1� d1ð Þ þ 1� d2ð Þð Þ ¼ 1� d1ð Þ þ 1� d2ð Þ ¼ 1� d1 þ d2 � 1ð Þ;

dCNS c Að Þ; c Bð Þð Þ ¼ max

max supx2X pC Að Þ xð Þ � pc Bð Þ xð Þ
�

�

�

�; supx2X qc Að Þ xð Þ � qc Bð Þ xð Þ
�

�

�

�; supx2X rc Að Þ xð Þ � rc Bð Þ xð Þ
�

�

�

�

� �

;

max
1
2p supx2X lc Að Þ xð Þ � lc Bð Þ xð Þ

�

�

�

�

�

�
; 1
2p supx2X mc Að Þ xð Þ � mc Bð Þ xð Þ

�

�

�

�;

1
2p supx2X xc Að Þ xð Þ � xc Bð Þ xð Þ

�

�

�

�

0

@

1

A

0

B

B

B

@

1

C

C

C

A

¼ max

max supx2X rA xð Þ � rB xð Þj j; supx2X 1� qA xð Þð Þ � 1� qB xð Þð Þj j; supx2X pA xð Þ � pB xð Þj jð Þ;

max
1
2p supx2X 2p� lA xð Þð Þ � 2p� lB xð Þð Þj j; 1

2p supx2X 2p� mA xð Þð Þ � 2p� mB xð Þð Þj j;
1
2p supx2X 2p� xA xð Þð Þ � 2p� xB xð Þð Þj j

	 


0

B

@

1

C

A

¼ max

max supx2X pA xð Þ � pB xð Þj j; supx2X qA xð Þ � qB xð Þj j; supx2X rA xð Þ � rB xð Þj jð Þ;

max
1
2p supx2X lA xð Þ � lB xð Þj j; 1

2p supx2X mA xð Þ � mB xð Þj j;
1
2p supx2X xA xð Þ � xB xð Þj j

	 


0

B

@

1

C

A

¼ dCNS A;Bð Þ� 1� d

h
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The purpose of this application is to point out the ref-

erence signals R0 of the L0 signals. This reference signal

R\prime has been also sampled N times 1� n�Nð Þ.
Step 2. Write the Fourier coefficient of R0 in the form of

complex neutrosophic set,

R0 k0ð Þ ¼ 1

N
:
X

N

n¼1

CR0;n;DR0;n;ER0;n

� �

:e
j2pðn� 1Þðk0 � 1Þ

N

ð3Þ

where CR0;n;DR0;n;ER0;n are the complex Fourier coefficients

of the reference signals.

The above expression can be rewritten as

R0 k0ð Þ ¼ 1

N
:
X

N

n¼1

UR0;n;VR0;n;WR0;n

� �

:e
jð2pðn� 1Þðk0 � 1Þ þ aR0;nÞ

N

ð4Þ

where CR0;n ¼ UR0;n:e
jaR0 ;n , DR0;n ¼ VR0;n:e

jaR0 ;n , and ER0;n ¼
WR0;n:e

jaR0 ;n with UR0;n, VR0;n, WR0;n 	 0, and aR0;n are real-

valued for all n.

Step 3 Since the sum of truth amplitude term, indeter-

minate amplitude term, and falsity amplitude term (in the

case when they are crisp numbers, not sets) is not neces-

sarily equal to 1, the normalization is not required and we

can keep them un-normalized. But if the normalization is

needed, we can normalize the amplitude terms of Sl0 k
0ð Þ

and R0 k0ð Þ, respectively, as follows:

U
�

l0;n
¼ Ul0;n

Ul0;n þ Vl0;n þWl0;n
; V

�

l0;n
¼ Vl0;n

Ul0;n þ Vl0;n þWl0;n
;

W
�

l0;n
¼ Wl0;n

Ul0;n þ Vl0;n þWl0;n
and U

�

R0;n
¼ UR0;n

UR0;n þ VR0;n þWR0;n
;

V
�

R0;n
¼ VR0;n

UR0;n þ VR0;n þWR0;n
; W

�

R0;n
¼ WR0;n

UR0;n þ VR0;n þWR0;n
:

Step 4 Calculate the similarity/distances between the

signals R0ðk0Þ and the signals Sl0 ðk0Þ as follows.

Step 5 In order to identify Sl0 as R0, compare 1�
dCNSðSl0 ;R0ðk0ÞÞ to a threshold d, where 1� l0 � L0

If 1� dCNS S0l k
0ð Þ;R0 k0ð Þ

� �

exceeds the threshold, iden-

tify Sl0 as R
0.

The similarity between two signals can be measured by

this method. By this method, we can find the right signals

which have not only uncertain but also indeterminate,

inconsistent, false because when the signals are received by

a digital receiver, there is a chance for the right signals,

chance for the indeterminate signals, and the chance that

the signals are not the right one. Thus, by using a complex

neutrosophic set, we can find the correct reference signals

by taking all the chances, while the complex fuzzy set and

complex intuitionistic fuzzy set cannot find the correct

reference signals if we take all the chances because they

are not able to deal with the chance of indeterminacy.

This method can be effectively used for any application

in signal analysis in which the chance of indeterminacy is

important.

6 Drawbacks of the current methods

The complex fuzzy sets [23] are used to represents the infor-

mation with uncertainty and periodicity simultaneously. The

novelty of complex fuzzy sets appears in the phase term with

membership term (amplitude term). The main problem with

complex fuzzy set is that it can only handle the problems of

uncertainty with periodicity in the form of amplitude term

(real-valued membership function) which handle uncertainty

and an additional term called phase term to represent peri-

odicity, but the complex fuzzy set cannot deal with inconsis-

tent, incomplete, indeterminate, false etc. information which

appears in a periodic manner in our real life. For example, in

quantummechanics, awaveparticle such as an electron can be

in two different positions at the same time. Thus, the complex

fuzzy set is not able to deal with this phenomenon.

Complex intuitionistic fuzzy set [1] represents the infor-

mation involving two ormore answers of type: yes, no, I do not

know, I am not sure, and so on, which is happening repeatedly

over a period of time. CIFS can represent the information on

people’s decision which happens periodically. In CIFS, the

novelty also appears in thephase termbut for bothmembership

and non-membership functions in some inherent concepts in

contrast to CFS which is only characterized by a membership

function. The complex fuzzy set [23] has only one additional

dCNS Sl0 k
0ð Þ;R0 k0ð Þð Þ ¼ max

max sup
x2X

Ul0;n � UR0;n

�

�

�

�; sup
x2X

Vl0;n � VR0;n

�

�

�

�; sup
x2X

Wl0;n �WR0;n

�

�

�

�

	 


;

max
1

2p
sup
x2X

ð2pðn� 1Þðk0 � 1Þ þ al0;nÞ
N

� ð2pðn� 1Þðk0 � 1Þ þ aR0;nÞ
N

�

�

�

�

�

�

�

�

	 


0

B

B

B

@

1

C

C

C

A
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phase term, but in CIFS [1], we have two additional phase

terms. This confers more range values to represent the uncer-

tainty and periodicity semantics simultaneously, and to define

the values of belongingness and non-belongingness for any

object in these complex-valued functions. The failure of the

CIFS appears in the inconsistent, incomplete, indeterminate

information which happening repeatedly.

The current research (complex fuzzy set) cannot solve this

problembecause the complex fuzzy set is not able to dealwith

indeterminate, incomplete, and inconsistent date which is in

periodicity. The weaknesses of complex fuzzy set are that it

deals only with uncertainty, but indeterminacy and falsity are

far away from the scope of complex fuzzy sets. Similarly, the

complex intuitionistic fuzzy set cannot handle the inconsis-

tent, indeterminate, incomplete data in periodicity simulta-

neously. Thus, both the approaches are unable to deal with

inconsistent, indeterminate, and incomplete data of periodic

nature. For example, both the methods fail to deal with the

information which is true and false at the same time or neither

true nor false at the same time.

It is a fundamental fact that some informationhas not only a

certain degree of truth, but also a falsity degree as well as

indeterminacy degree that are independent from each other.

This indeterminacy exits both in a subjective and an objective

sense in a periodic nature. What should we do if we have the

following situation? For instance [16], a 20� temperature

means a cool day in summer and a warm day in winter. But if

we assume this situation as in the following manner, a 20�
temperature means cool day in summer and a warm day in

winter but neither cool norwarmday in spring. The question is

thatwhywe ignore this situation?Howwe can handle it?Why

the current methods fail to handle it? We cannot ignore this

kind of situation of daily life. This phenomenon indicates that

information is not only of semantic uncertainty and period-

icity but also of semantic indeterminacy and periodicity.

7 Discussion

In the Table 1, we showed comparison of different current

approaches to complex neutrosophic sets. In the Table 1,

from 1, we mean that the corresponding method can handle

the uncertain, false, indeterminate, uncertainty with period-

icity, falsity with periodicity, and indeterminacy with peri-

odicity, while from 0, we mean the corresponding method

fails. It is clear from the Table 1 that how complex neutro-

sophic sets are dominant over all the current methods.

Consider two voting process for some attribute q. In the

first voting process, 0.4 voters say ‘‘yes,’’ 0.3 say ‘‘no,’’ and

0.3 are undecided. Similarly, in second voting process, 0.5

voters say ‘‘yes,’’ 0.3 say ‘‘no’’ and 0.2 are undecided for the

same attribute q. These two voting processes held on two

different dates.

We now apply all these mentioned methods in the

table one by one to show that which method is suitable to

describe the situation of above mentioned voting process

best and what is the failure of the rest of the methods. It is

clear that the fuzzy set cannot handle this situation because it

only represents themembership 0.4 voterswhile it fails to tell

about the non-membership 0.3 and indeterminate member-

ship 0.3 simultaneously in first voting process. Similar is the

situation in second voting process. Now when we apply

intuitionistic fuzzy set to both the voting process, it tells us

only about the membership 0.4 and non-membership 0.3 in

first voting process, but cannot tell anything about the 0.3

undecided voters in first process. Thus, intuitionistic fuzzy

set also fails to handle this situation. We now apply neutro-

sophic set. The neutrosophic set tells about the membership

0.4 voters, non-membership 0.3 voters, and indeterminate

membership or undecided 0.3 voters in the first round, and

similarly, it tells about the second round but neutrosophic set

cannot describe both the voting process simultaneously. By

applying complex fuzzy set to both the voting process, if we

set that the amplitude term represents the membership 0.4 in

first voting process and the phase term represents 0.5 voters

in second process which form complex-valued membership

function to represent in both the voting process for an attri-

bute q. But complex fuzzy set remains unsuccessful to

describe the non-membership and indeterminacy in both the

process. The complex intuitionistic fuzzy set only handle

complex-valued membership and complex-valued non-

membership in both the process by setting 0.4 and 0.3 as

amplitude membership and amplitude non-membership in

process one and setting 0.5 and 0.3 as phase terms in second

process. But clearly it fails to identify the indeterminacy

(undecidedness) in both the voting process. Finally, by

applying the complex neutrosophic set to both the voting

process by considering the votes in process one as amplitude

terms of membership, non-membership and indeterminate

membership, and setting the second process vote as phase

terms of membership, non-membership, and indeterminacy.

Therefore, the amplitude term ofmembership in first process

and the phase term in second process forms complex-valued

truth membership function. Similarly, the amplitude term of

non-membership in process one and the phase term of non-

membership in second process form complex-valued falsity

membership function. Also, the amplitude term of unde-

cidedness in first process and the phase term of indetermi-

nacy in second process form the complex-valued

indeterminate membership function. Thus, both the voting

process forms a complex neutrosophic set as whole which is

shown below:

S ¼ q; TS qð Þ ¼ 0:4:ej2p 0:5ð Þ; IS qð Þ ¼ 0:3:ej2p 0:3ð Þ;
�n

FS qð Þ ¼ 0:3:ej2p 0:2ð Þ
o
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Therefore, complex neutrosophic set represent both the

situations in a single set simultaneously, whereas all the

other mentioned methods in the table are not able to handle

this situation as whole.

The graphical representation in Fig. 1 shows the domi-

nancy of the complex neutrosophic set to all other existing

methods. The highest value indicates the ability of the

approach to handle all type of uncertain, incomplete,

inconsistent, imprecise information or data in our real-life

problems. Each value on the left vertical line shows the

value of the ability of the corresponding method on the

horizontal line in the graph.

8 Conclusion

An extended form of complex fuzzy set and complex

intuitionistic fuzzy set is presented in this paper, so-called

complex neutrosophic set. Complex neutrosophic set can

handle the redundant nature of uncertainty, incomplete-

ness, indeterminacy, inconsistency, etc. A complex neu-

trosophic set is defined by a complex-valued truth

membership function, complex-valued indeterminate

membership function, and a complex-valued falsehood

membership function. Therefore, a complex-valued truth

membership function is a combination of traditional truth

membership function with the addition of an extra term.

The traditional truth membership function is called truth

amplitude term, and the additional term is called phase

term. Thus, in this way, the truth amplitude term represents

uncertainty and the phase term represents periodicity in the

uncertainty. Thus, a complex-valued truth membership

function represents uncertainty with periodicity as a whole.

Similarly, complex-valued indeterminate membership

function represents indeterminacy with periodicity and

complex-valued falsehood membership function represents

falsity with periodicity. Further, we presented an interpre-

tation of complex neutrosophic set and also discussed some

of the basic set theoretic properties such as complement,

union, intersection, complex neutrosophic product, Carte-

sian product in this paper. We also presented d-equalities
of complex neutrosophic set and then using these d-
equalities in the application of signal processing. Draw-

backs of the current methods are discussed and a com-

parison of all these methods to complex neutrosophic sets

was presented in this paper.

This paper is an introductory paper of complex neutro-

sophic sets, and indeed, much research is still needed for

the full comprehension of complex neutrosophic sets. The

complex neutrosophic set presented in this paper is an

entire general concept which is not limited to a specific

application.
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Complex Neutrosophic sets A
given universe of discourse
Complex unit interval

Complex Intuitionistic Fuzzy
sets A given universe of
discourse Complex unit
interval
Complex Fuzzy sets A given
universe of discourse Complex
unit interval

Neutrosophic sets A given
universe of discourse Real unit
interval

Intuitionistic Fuzzy sets A
given universe of discourse
Real unit interval

Fuzzy sets A given universe of
discourse Real unit interval

Fig. 1 Dominancy of complex neutrosophic sets to all other current approaches
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Appendix

Comparison of complex neutrosophic sets to fuzzy sets, intu-

itionistic fuzzy sets, neutrosophic sets, complex fuzzy sets, and

complex intuitionistic fuzzy sets is listed below (Table 1).
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Abstract. Today, soft computing is a field that is used 
a lot in solving real-world problems, such as problems in 
economics, finance, banking... With the aim to serve for 
solving the real problem, many new theories and/or tools 
which were proposed, improved to help soft computing 
used more efficiently. We can mention some theories as 
fuzzy sets theory (L. Zadeh, 1965), intuitionistic fuzzy set 
(K Atanasov, 1986), neutrosophic set (F. Smarandache 

1999). In this paper, we introduce a new notion of sup-
port-neutrosophic set (SNS), which is the combination a 
neutrosophic set with a fuzzy set. So, SNS set is a direct 
extension of fuzzy set and neutrosophic sets (F. 
Smarandache). Then, we define some operators on the 
support-neutrosophic sets, and investigate some properties 
of these operators. 

Keywords: support-neutrosophic sets, support-neutrosophic fuzzy relations, support- neutrosophic similarity relations

1 Introduction 

In 1998, Prof. Smarandache gave the concept of the 
neutrosophic set (NS) [3] which generalized fuzzy set [10] 
and intuitionistic fuzzy set [1]. It is characterized by a de-
gree of truth (T), a degree of indeterminacy (I) and a de-
gree of falsity (F). Over time, the sub-class of the neutro-
sophic set were proposed to capture more advantageous in 
practical applications. Wang et al. [5] proposed the interval 
neutrosophic set and its operators. Wang et al. [6] 
proposed a single-valued neutrosophic set as an instance of 
the neutrosophic set accompanied with various set 
theoretic operators and properties. Ye [8] defined the 
concept of simpli-fied neutrosophic set whose elements of 
the universe have a degree of truth, indeterminacy and 
falsity respectively that lie between [0, 1]. Some 
operational laws for the simplified neutrosophic set and 
two aggregation operators, including a simplified 
neutrosophic weighted arithmetic average operator and a 
simplified neutrosophic weighted geometric average 
operator were presented. 

In 2015, Nguyen et al. [2] introduced a Support-
intuitionistic fuzzy set, it combines a intuitionistic fuzzy 
set with a fuzzy set (the support of an intuitionistic). Apter, 
Young et al [9] applied support – intuitionistic in decision 
making.   

Practically, lets' consider the following case: a 
customer is interested in two products A and B. The 

customer has one rating of good (i), indeterminacy (ii) or 
not good (iii) for each of the products. These ratings (i),(ii) 
and (iii) (known as neutrosophic ratings) will affect the 
customer's decision of which product to buy. However, the 
customer's financial capacity will also affect her decision. 
This factor is called the support factor, with the value is 
between 0 and 1. Thus, the decision of which product to 
buy are determined  by truth factors (i), indeterminacy 
factors (ii),  falsity factors (iii) and support factor (iv). If a 
product is considered good and affordable, it is the best 
situation for a buying decision. The most unfavorable 
situation is when a product is considered bad and not 
affordable (support factor is bad),in this case, it would be 
easy to refuse to buy the product. 

Another example, the business and purchase of cars in 
the Vietnam market. For customers, they will care about 
the quality of the car (good, bad and indeterminacy, they 
are neutrosophic) and prize, which are considered as 
supporting factors for car buyers. For car dealers, they are 
also interested in the quality of the car, the price and the 
government's policy on importing cars such as import 
duties on cars. Price and government policies can be 
viewed as supporting components of the car business. 

In this paper, we combine a neutrosophic set with a 
fuzzy set. This raise a new concept called support-
neutrosophic set (SNS). In which, there are four 
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membership functions of  an element in  a given set. The 
remaining of this paper was structured as follows: In 
section 2, we introduce the concept of support-
neutrosophic set and study some properties of SNS. In 
section 3, we give some distances between two SNS sets. 
Finally, we construct the distance of two support-
neutrosophic sets.  

2 Support-Neutrosophic set 

Throughout this paper, U will be a nonempty set called 
the universe of discourse. First, we recall some the concept 
about fuzzy set and neutrosophic set. Here, we use 
mathematical operations on real numbers. Let 𝑆1 and 𝑆2 be
two real standard or non-standard subsets, then  

𝑆1 + 𝑆2 = {𝑥|𝑥 = 𝑠1 + 𝑠2, 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}

𝑆1 − 𝑆2 = {𝑥|𝑥 = 𝑠1 − 𝑠2, 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}

𝑆2̅ = {1+} − 𝑆2 = {𝑥|𝑥 = 1+ − 𝑠2, 𝑠2 ∈ 𝑆2}

𝑆1×𝑆2 = {𝑥|𝑥 = 𝑠1×𝑠2, 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}

𝑆1 ∨ 𝑆2 = [max{𝑖𝑛𝑓𝑆1, 𝑖𝑛𝑓𝑆2} , max{𝑠𝑢𝑝𝑆1, 𝑠𝑢𝑝𝑆2}]

𝑆1 ∧ 𝑆2 = [min{𝑖𝑛𝑓𝑆1, 𝑖𝑛𝑓𝑆2} , min{𝑠𝑢𝑝𝑆1, 𝑠𝑢𝑝𝑆2}]

1 1 2 2
1 2 1 2,

( , ) inf ( , )
s S s S

d S S d s s
 



Remark: 𝑆1 ∧ 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ ∨ 𝑆2̅ and 𝑆1 ∨ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ ∧ 𝑆2̅. Indeed,
we consider two cases:  

+ if 𝑖𝑛𝑓𝑆1 ≤ 𝑖𝑛𝑓𝑆2 and sup 𝑆1 ≤ sup 𝑆2 then 1 − 𝑖𝑛𝑓𝑆2 ≤
1 − 𝑖𝑛𝑓𝑆1 , 1 − 𝑠𝑢𝑝𝑆2 ≤ 1 − 𝑠𝑢𝑝𝑆1   and 𝑆1 ∧ 𝑆2 = 𝑆1 ,
𝑆1 ∨ 𝑆2 = 𝑆2. So that 𝑆1 ∧ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ = 𝑆1̅ ∨ 𝑆2̅ and 𝑆1 ∨ 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑆2̅ = 𝑆1̅ ∧ 𝑆2̅.

+ if 𝑖𝑛𝑓𝑆1 ≤ 𝑖𝑛𝑓𝑆2 ≤ 𝑠𝑢𝑝𝑆2 ≤ sup 𝑆1 . Then 𝑆1 ∧ 𝑆2 =
[𝑖𝑛𝑓𝑆1, 𝑠𝑢𝑝𝑆2]  and 𝑆1̅ ∨ 𝑆2̅ = [1 − 𝑠𝑢𝑝𝑆2, 1 − 𝑖𝑛𝑓𝑆1] .
Hence 𝑆1 ∧ 𝑆2

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆1̅ ∨ 𝑆2̅ . Similarly, we have 𝑆1 ∧ 𝑆2
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑆1̅ ∨ 𝑆2̅.

Definition 1. A fuzzy set A on the universe U is an object 
of the form  

A = {(x, μA(x))|x ∈ U}

where μA(x)(∈ [0,1])  is called the degree of
membership of x in A.  

Definition 2. A neutrosophic set A on the universe U is an 
object of the form  

A = {(x, TA(x), IA(x), FA(x))|x ∈ U}

where 𝑇𝐴  is a truth –membership function, 𝐼𝐴  is an
indeterminacy-membership function, and 𝐹𝐴  is falsity –

membership function of 𝐴. TA(x), IA(x) and FA(x) are real
standard or non-standard subsets of ]0−, 1+[ ,  that is 

𝑇𝐴: 𝑈 →]0−, 1+[

𝐼𝐴: 𝑈 →]0−, 1+[

𝐹𝐴: 𝑈 →]0−, 1+[

In real applications, we usually use 

𝑇𝐴: 𝑈 → [0,1]

𝐼𝐴: 𝑈 → [0,1]
𝐹𝐴: 𝑈 → [0,1]

Now, we combine a neutrosophic set with a fuzzy 
set. That leads to a new concept called support-
neutrosophic set (SNS). In which, there are four 
membership functions of each element in a given set. This 
new concept is stated as follows:  

Definition 3. A support – neutrosophic set (SNS) 𝐴 on the 
universe 𝑈  is characterized by a truth –membership 
function 𝑇𝐴 , an indeterminacy-membership function 𝐼𝐴 , a
falsity – membership function 𝐹𝐴 and support-membership
function 𝑠𝐴 . For each 𝑥 ∈ 𝑈  we have TA(x), IA(x), FA(x)
and 𝑠𝐴(𝑥) are real standard or non-standard subsets of
]0−, 1+[ ,  that is 

𝑇𝐴: 𝑈 →]0−, 1+[

𝐼𝐴: 𝑈 →]0−, 1+[

𝐹𝐴: 𝑈 →]0−, 1+[

𝑠𝐴: 𝑈 →]0−, 1+[

We denote support – neutrosophic set (SNS) 
A = {(x, TA(x), IA(x), FA(x), sA(x))|x ∈ U}.

There is no restriction on the sum of TA(x), IA(x) ,
FA(x), so 0− ≤ 𝑠𝑢𝑝TA(x) + 𝑠𝑢𝑝IA(x)+  𝑠𝑢𝑝  FA(x) ≤ 3+ ,
and 0− ≤ 𝑠𝐴(𝑥) ≤ 1+.

When 𝑈 is continuous, a SNS can be written as 

𝐴 = ∫
< 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), 𝑠𝐴(𝑥) >

𝑥⁄

𝑈

When 𝑈 = {𝑥1, 𝑥2, . . , 𝑥𝑛}  is discrete, a SNS can be
written as 

𝐴 =  ∑
< 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝑠𝐴(𝑥𝑖) >

𝑥𝑖

𝑛

𝑖=1

We denote 𝑆𝑁𝑆(𝑈) is the family of SNS sets on 𝑈. 

Remarks: 

+ The element 𝑥∗ ∈ 𝑈  is called “worst element” in 𝐴  if
𝑇𝐴(𝑥∗) = 0, 𝐼𝐴(𝑥∗) = 0, 𝐹𝐴(𝑥∗) = 1, 𝑠𝐴(𝑥∗) = 0 . The
element 𝑥∗ ∈ 𝑈 is called “best element” in 𝐴 if

𝑇𝐴(𝑥∗ ) = 1, 𝐼𝐴(𝑥∗ ) = 1, 𝐹𝐴(𝑥∗) = 0, 𝑠𝐴(𝑥∗) = 1
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(if there is restriction 𝑠𝑢𝑝TA(x) + 𝑠𝑢𝑝IA(x)+ 𝑠𝑢𝑝 FA(x) ≤
1 then the element 𝑥∗ ∈ 𝑈 is called “best element” in 𝐴 if  

𝑇𝐴(𝑥∗ ) = 1, 𝐼𝐴(𝑥∗ ) = 0, 𝐹𝐴(𝑥∗) = 0, 𝑠𝐴(𝑥∗) = 1).

+ the support – neutrosophic set 𝐴 reduce an neutrosophic
set if 𝑠𝐴(𝑥) = 𝑐 ∈ [0,1], ∀𝑥 ∈ 𝑈.

+ the support – neutrosophic set 𝐴  is called a support-
standard neutrosophic set if

TA(x), IA(x), FA(x) ∈ [0,1] and

TA(x) + IA(𝑥) + FA(x) ≤ 1

for all 𝑥 ∈ 𝑈.  

+ the support – neutrosophic set 𝐴  is a support-
intuitionistic fuzzy set if TA(x),  FA(x) ∈ [0,1], IA(𝑥) = 0
and TA(x) + FA(x) ≤ 1 for all 𝑥 ∈ 𝑈.

+ A constant SNS set

(𝛼, 𝛽, 𝜃, 𝛾)̂ = {(𝑥, 𝛼, 𝛽, 𝜃, 𝛾)|𝑥 ∈ 𝑈

where 0 ≤ 𝛼, 𝛽, 𝜃, 𝛾 ≤ 1}.

+ the SNS universe set is

𝑈 = 1𝑈 = (1,1,0,1)̂ = {(𝑥, 1,1,0,1)|𝑥 ∈ 𝑈}

+ the SNS empty set is

𝑈 = 0𝑈 = (0,0,1,0)̂ = {(𝑥, 0,0,1,0)|𝑥 ∈ 𝑈}

Definition 4. The complement of a SNS 𝐴 is denoted by  
𝑐(𝐴) and is defined by  

 

 

( )

(

( )

( )

( ) ( )

( ) 1 ( )

( ) ( )

( ) 1 ( )

C A A

C A A

C A A

C A A

T x F x

I x I x

F x T x

s x s x













for all 𝑥 ∈ 𝑈. 

Definition 5. A SNS 𝐴 is contained in the other SNS 𝐵, 
denote 𝐴 ⊆ 𝐵, if and only if 

𝑖𝑛𝑓𝑇𝐴(𝑥) ≤ 𝑖𝑛𝑓𝑇𝐵(𝑥), 𝑠𝑢𝑝𝑇𝐴(𝑥) ≤ sup 𝑇𝐵(𝑥)

𝑖𝑛𝑓 𝐹𝐴(𝑥) ≥ 𝑖𝑛𝑓 𝐹𝐵(𝑥), 𝑠𝑢𝑝𝐹𝐴(𝑥) ≥ 𝑠𝑢𝑏 𝐹𝐵(𝑥) 

𝑖𝑛𝑓𝑠𝐴(𝑥) ≤ 𝑖𝑛𝑓𝑠𝐵(𝑥), 𝑠𝑢𝑝𝑠𝐴(𝑥) ≤ sup 𝑠𝐵(𝑥)

for all 𝑥 ∈ 𝑈. 

 Definition 6. The union of two SNS 𝐴 and 𝐵 is a SNS 
𝐶 = 𝐴 ∪ 𝐵, that is defined by  

𝑇𝐶 = 𝑇𝐴 ∨ 𝑇𝐵

𝐼𝐶 = 𝐼𝐴 ∨ 𝐼𝐵

𝐹𝐶 = 𝐹𝐵 ∧ 𝐹𝐵

𝑠𝐶 = 𝑠𝐴 ∨ 𝑠𝐵

Definition 7. The intersection of two SNS 𝐴 and 𝐵  is a 
SNS 𝐷 = 𝐴 ∩ 𝐵, that is defined by  

𝑇𝐷 = 𝑇𝐴 ∧ 𝑇𝐵

𝐼𝐷 = 𝐼𝐴 ∧ 𝐼𝐵

𝐹𝐷 = 𝐹𝐵 ∨ 𝐹𝐵

𝑠𝐷 = 𝑠𝐴 ∧ 𝑠𝐵

Example 1. Let 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}  be the universe.
Suppose that 

       

1

0.5,0.8 , 0.4,0.6 , 0.2,0.7 , 0.7,0.9
A

x


       

2

0.4,0.5 , 0.45,0.6 , 0.3,0.6 , 0.5,0.8
x



       

3

0.5,0.9 , 0.4,0.5 , 0.6,0.7 , 0.2,0.6
x



       

4

0.5,0.9 , 0.3,0.6 , 0.4,0.8 , 0.1,0.6
x



and 

       

1

0.2,0.6 , 0.3,0.5 , 0.3,0.6 , 0.6,0.9
B

x


       

2

0.45,0.7 , 0.4,0.8 , 0.9,1 , 0.4,0.9
x



       

3

0.1,0.7 , 0.4,0.8 , 0.6,0.9 , 0.2,0.7
x



       

4

0.5,1 , 0.2,0.9 , 0.3,0.7 , 0.1,0.5
x



are two support –neutrosophic set on 𝑈. 

We have   

+ complement of 𝐴, denote 𝑐(𝐴) or ∼ 𝐴, defined by

Florentin Smarandache (author and editor) Collected Papers, VIII

322



 
       

1

0.2,0.7 , 0.4,0.6 , 0.5,0.8 , 0.1,0.3
c A

x


       

2

0.3, 0.6 , 0.4,0.55 , 0.4,0.5 , 0.2,0.5
x



       

3

 0.6,0.7 , 0.5,0.6 , 0.5,0.9 , 0.4,0.8
x



       

4

0.4,0.8 , 0.4,0.7 , 0.5,0.9 , 0.4,0.9
x



+ Union 𝐶 = 𝐴 ∪ 𝐵:

       

1

0.5,0.8 ,  0.4,0.6 ,  0.2,0.6 , 0.7,0.9
C

x


       

2

0.45,0.7 , 0.45,0.8 , 0.3,0.6 , 0.4,0.9
x



       

3

0.5,0.9 , 0.4,0.8 , 0.6,0.7 , 0.2,0.7
x



       

4

0.5,1 , 0.3,0.9 , 0.3,0.7 , 0.1,0.6
x



+ the intersection 𝐷 = 𝐴 ∩ 𝐵:

       

1

0.2,0.6 ,  0.3,0.5 , 0.3,0.7 ,  0.6,0.9
D

x


       

2

0.4,0.5 , 0.4,0.6 , 0.9,1 , 0.4,0.8
x



       

3

0.1,0.7 , 0.4,0.5 , 0.6,0.9 , 0.2,0.6
x



       

4

0.5,0.9 , 0.2,0.6 , 0.4,0.8 , 0.1,0.5
x



Proposition 1. For all A, B, C ∈ SNS(U), we have 

(a) If A ⊆ B  and B⊆ C then A ⊆ C,
(b) c(c(A)) = A,
(c) Operators ∩  and ∪ are commutative, associa-

tive, and distributive, 

(d) Operators ∩, ∼  and ∪  satisfy the law of De
Morgan. It means that A ∩ B̅̅ ̅̅ ̅̅ ̅ = A̅ ∪ B̅  and
A ∪ B̅̅ ̅̅ ̅̅ ̅ = A̅ ∩ B̅

Proof. 

It is easy to verify that (a), (b), (c) is truth. 

We show that (d) is correct. Indeed, for each 

𝑇∼(𝐴∩𝐵) = 𝐹𝐴∩𝐵 = 𝐹𝐴 ∨ 𝐹𝐵 = 𝑇∼𝐴 ∨ 𝑇∼𝐵

𝐼∼(𝐴∩𝐵) = {1+} − 𝐼(𝐴 ∩ 𝐵) = 𝐼(𝐴) ∧ 𝐼(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= I(A)̅̅ ̅̅ ̅̅ ∨ I(B)̅̅ ̅̅ ̅̅ = 𝐼∼𝐴 ∨ I∼𝐵

𝐹∼(𝐴∩𝐵) = 𝑇𝐴∩𝐵 = 𝑇𝐴 ∧ 𝑇𝐵 = 𝐹∼𝐴 ∧ 𝐹∼𝐵

𝑠∼(𝐴∩𝐵) = {1+} − 𝑠(𝐴 ∩ 𝐵) = 𝑠(𝐴) ∧ 𝑠(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= s(A)̅̅ ̅̅ ̅̅ ∨ s(B)̅̅ ̅̅ ̅̅ = 𝑠∼𝐴 ∨ s∼𝐵

So that A ∩ B̅̅ ̅̅ ̅̅ ̅ = A̅ ∪ B̅. By same way, we have A ∪ B̅̅ ̅̅ ̅̅ ̅ =
A̅ ∩ B̅. ⧠ 

3 The Cartesian product of two SNS
Let 𝑈, 𝑉 be two universe sets. 

Definition 8. Let 𝐴, 𝐵 two SNS on 𝑈, 𝑉, respectively. We 
define the Cartesian product of these two SNS sets: 

a)

     

   

, , , , , ,
| ,   

, , ,
A B A B

A B A B

x y T x y I x y
A B x U y V

F x y s x y




  
    

   where 
𝑇𝐴×𝐵(𝑥, 𝑦) = 𝑇𝐴(𝑥)𝑇𝐵(𝑦),

𝐼𝐴×𝐵(𝑥, 𝑦) = 𝐼𝐴(𝑥)𝐼𝐵(𝑦), 

𝐹𝐴×𝐵(𝑥, 𝑦) = 𝐹𝐴(𝑥)𝐹𝐵(𝑦)

and 
𝑠𝐴×𝐵(𝑥, 𝑦) = 𝑠𝐴(𝑥)𝑠𝐵(𝑦), ∀𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉.

     

   

, , , , , ,
| ,  

, , ,
A B A B

A B A B

x y T x y I x y
A B x U y V

F x y s x y




  
    

   

Where 

     , ,A B A BT x y T x T y  ě

      , ,A B A BI x y I x I y  ě

     ,A B A BF x y F x F y  ę

and 

     , , ,A B A Bs x y s x s y x U y V    ě . 
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Example 2. Let 𝑈 = {𝑥1, 𝑥2} be the universe set. Suppose
that 

       

1

0.5,0.8 , 0.4,0.6 , 0.2,0.7 , 0.7,0.9
A

x


       

2

0.4,0.5 , 0.45,0.6 , 0.3,0.6 , 0.5,0.8
x



and 

       

1

0.2,0.6 , 0.3,0.5 , 0.3,0.6 , 0.6,0.9
B

x


       

2

0.45,0.7 , 0.4,0.8 , 0.9,1 , 0.4,0.9
x



are two SNS on 𝑈. Then we have 

       

 1

0.25,0.72 , 0.16,0.3 , 0.12,.49 , 0.14,0.54
 

,
A B

x x


       

 1

0.225,0.56 , 0.16,0.48 , 0.18,0.7 , 0.28,1
,x x



       

 2

0.2,0.45 , 0.18,0.3 , 0.18,0.42 , 0.1,0.48
,x x



       

 2

0.2,0.45 , 0.135,  0.36 , 0.12,0.48 ,  0.05,0.48
,x x



and 

       

 1

0.5,0.8 , 0.4,0.5 , 0.6,0.7 , 0.2,0.6
,

A B
x x



       

 1

05,0.8 , 0.3,0.6 , 0.4,0.8 , 0.1,0.6
,x x



       

 2

0.4,0.5 , 0.4,0.5 , 0.6,0.7 , 0.2,0.6
,x x



       

 2

0.4,0.5 , 0.3,0.6 , 0.4,0.8 , 0.1,0.6
,x x



Proposition 2. For every three universes 𝑈, 𝑉, 𝑊 and three 
universe sets  𝐴 on 𝑈, 𝐵 on 𝑉, 𝐶 on 𝑊. We have  

a) 𝐴×𝐵 = 𝐵×𝐴 and 𝐴 ⊗ 𝐵 = 𝐵 ⊗ 𝐴
b) (𝐴×𝐵)×𝐶 = 𝐴×(𝐵×𝐶)

and (𝐴 ⊗ 𝐵) ⊗ 𝐶 = 𝐴 ⊗ (𝐵 ⊗ 𝐶)

Proof. It is obvious. 

4 Distance between support-neutrosophic sets 
In this section, we define the distance between 
two support-neutrosophic sets in the sene of 
Szmidt and Kacprzyk are presented: 
Definition 9. Let 𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}  be the
universe set. Given  𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑈), we define 

a) The Hamming distance
𝑑𝑆𝑁𝑆(𝐴, 𝐵) =

1

𝑛
∑ [𝑑(𝑇𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖)) +𝑛

𝑖=1

𝑑(𝐼𝐴(𝑥𝑖), 𝐼𝐵(𝑥𝑖)) + 𝑑(𝐹𝐴(𝑥𝑖), 𝐹𝐵(𝑥𝑖)) +

𝑑(𝑠𝐴(𝑥𝑖), 𝑠𝐵(𝑥𝑖))]

b) The Euclidean distance
𝑒𝑆𝑁𝑆(𝐴, 𝐵) =
1

𝑛
∑ [𝑑2(𝑇𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖)) +𝑛

𝑖=1

𝑑2(𝐼𝐴(𝑥𝑖), 𝐼𝐵(𝑥𝑖)) +

𝑑2(𝐹𝐴(𝑥𝑖), 𝐹𝐵(𝑥𝑖)) +

𝑑2(𝑠𝐴(𝑥𝑖), 𝑠𝐵(𝑥𝑖))]
1

2

Example 3. Let 𝑈 = {𝑥1, 𝑥2} be the universe set.
Two SNS 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑈)  as in example 2 we 
have 𝑑𝑆𝑁𝑆(𝐴, 𝐵) = 0.15; 𝑒𝑆𝑁𝑆(𝐴, 𝐵) = 0.15.
If 

       

1

0.5,0.7 , 0.4,0.6 , 0.2,0.7 , 0.7,0.9
C

x


       

2

0.4,0.5 , 0.45,0.6 , 0.3,0.6 , 0.5,0.8
x



and 

       

1

0.2,0.4 , 0.3,0.5 , 0.3,0.6 , 0.6,0.9
D

x


       

2

0.6,0.7 , 0.4,0.8 , 0.9,1 , 0.4,0.9
x



then 𝑑𝑆𝑁𝑆(𝐶, 𝐷) = 0,25  and 𝑒𝑆𝑁𝑆(𝐶, 𝐷) =
0,2081. 
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the distance and the Cartesian product of two support – 
neutrosophic sets. In the future, we will study more results 
on the support-neutrosophic set and their applications. 
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In this paper, we introduce a new concept: support-
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Abstract. Neutrosophic theory has many applications in graph theory,
bipolar single valued neutrosophic graphs (BSVNGs) is the generalization
of fuzzy graphs and intuitionistic fuzzy graphs, SVNGs. In this paper we
introduce some types of BSVNGs, such as subdivision BSVNGs, middle
BSVNGs, total BSVNGs and bipolar single valued neutrosophic line graphs
(BSVNLGs), also investigate the isomorphism, co weak isomorphism and
weak isomorphism properties of subdivision BSVNGs, middle BSVNGs,
total BSVNGs and BSVNLGs.

Keywords: Bipolar single valued neutrosophic line graph, Subdivision BSVNG,
middle BSVNG, total BSVNG.

1. Introduction

Neutrosophic set theory (NS) is a part of neutrosophy which was introduced
by Smarandache [43] from philosophical point of view by incorporating the degree
of indeterminacy or neutrality as independent component for dealing problems with
indeterminate and inconsistent information. The concept of neutrosophic set the-
ory is a generalization of the theory of fuzzy set [50], intuitionistic fuzzy sets [5],
interval-valued fuzzy sets [47] interval-valued intuitionistic fuzzy sets [6]. The con-
cept of neutrosophic set is characterized by a truth-membership degree (T), an
indeterminacy-membership degree (I) and a falsity-membership degree (f) indepen-
dently, which are within the real standard or nonstandard unit interval ]−0, 1+[.
Therefore, if their range is restrained within the real standard unit interval [0, 1] :
Nevertheless, NSs are hard to be apply in practical problems since the values of the
functions of truth, indeterminacy and falsity lie in ]−0, 1+[. The single valued neu-
trosophic set was introduced for the first time by Smarandache [43]. The concept
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of single valued neutrosophic sets is a subclass of neutrosophic sets in which the
value of truth-membership, indeterminacy membership and falsity-membership de-
grees are intervals of numbers instead of the real numbers. Later on, Wang et al. [49]
studied some properties related to single valued neutrosophic sets. The concept of
neutrosophic sets and its extensions such as single valued neutrosophic sets, interval
neutrosophic sets, bipolar neutrosophic sets and so on have been applied in a wide
variety of fields including computer science, engineering, mathematics, medicine and
economic and can be found in [9, 15, 16, 30, 31, 32, 33, 34, 35, 36, 37, 51]. Graphs
are the most powerful tool used in representing information involving relationship
between objects and concepts. In a crisp graphs two vertices are either related or
not related to each other, mathematically, the degree of relationship is either 0 or 1.
While in fuzzy graphs, the degree of relationship takes values from [0, 1]. Atanassov
[42] defined the concept of intuitionistic fuzzy graphs (IFGs) using five types of
Cartesian products. Theconcept fuzzy graphs, intuitionistic fuzzy graphs and their
extensions such interval valued fuzzy graphs, bipolar fuzzy graph, bipolar intuition-
itsic fuzzy graphs, interval valued intuitionitic fuzzy graphs, hesitancy fuzzy graphs,
vague graphs and so on, have been studied deeply by several researchers in the liter-
ature. When description of the object or their relations or both is indeterminate and
inconsistent, it cannot be handled by fuzzy intuitionistic fuzzy, bipolar fuzzy, vague
and interval valued fuzzy graphs. So, for this purpose, Smaranadache [45] proposed
the concept of neutrosophic graphs based on literal indeterminacy (I) to deal with
such situations. Later on, Smarandache [44] gave another definition for neutrosphic
graph theory using the neutrosophic truth-values (T, I, F) without and constructed
three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic
vertex graphs and neutrosophic vertex-edge graphs. Recently, Smarandache [46]
proposed new version of neutrosophic graphs such as neutrosophic offgraph, neutro-
sophic bipolar/tripola/multipolar graph. Recently several researchers have studied
deeply the concept of neutrosophic vertex-edge graphs and presented several exten-
sions neutrosophic graphs. In [1, 2, 3]. Akram et al. introduced the concept of
single valued neutrosophic hypergraphs, single valued neutrosophic planar graphs,
neutrosophic soft graphs and intuitionstic neutrosophic soft graphs. Then, followed
the work of Broumi et al. [7, 8, 9, 10, 11, 12, 13, 14, 15], Malik and Hassan [38]
defined the concept of single valued neutrosophic trees and studied some of their
properties. Later on, Hassan et Malik [17] introduced some classes of bipolar single
valued neutrosophic graphs and studied some of their properties, also the authors
generalized the concept of single valued neutrosophic hypergraphs and bipolar sin-
gle valued neutrosophic hypergraphs in [19, 20]. In [23, 24] Hassan et Malik gave
the important types of single (interval) valued neutrosophic graphs, another impor-
tant classes of single valued neutrosophic graphs have been presented in [22] and in
[25] Hassan et Malik introduced the concept of m-Polar single valued neutrosophic
graphs and its classes. Hassan et al. [18, 21] studied the concept on regularity and
total regularity of single valued neutrosophic hypergraphs and bipolar single valued
neutrosophic hypergraphs. Hassan et al. [26, 27, 28] discussed the isomorphism
properties on SVNHGs, BSVNHGs and IVNHGs. Nasir et al. [40] introduced a new
type of graph called neutrosophic soft graphs and established a link between graphs
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and neutrosophic soft sets. The authors also studeied some basic operations of neu-
trosophic soft graphs such as union, intersection and complement. Nasir and Broumi
[41] studied the concept of irregular neutrosophic graphs and investigated some of
their related properties. Ashraf et al. [4], proposed some novels concepts of edge reg-
ular, partially edge regular and full edge regular single valued neutrosophic graphs
and investigated some of their properties. Also the authors, introduced the notion
of single valued neutrosophic digraphs (SVNDGs) and presented an application of
SVNDG in multi-attribute decision making. Mehra and Singh [39] introduced a
new concept of neutrosophic graph named single valued neutrosophic Signed graphs
(SVNSGs) and examined the properties of this concept with suitable illustration.
Ulucay et al. [48] proposed a new extension of neutrosophic graphs called neu-
trosophic soft expert graphs (NSEGs) and have established a link between graphs
and neutrosophic soft expert sets and studies some basic operations of neutrosophic
soft experts graphs such as union, intersection and complement. The neutrosophic
graphs have many applications in path problems, networks and computer science.
Strong BSVNG and complete BSVNG are the types of BSVNG. In this paper, we
introduce others types of BSVNGs such as subdivision BSVNGs, middle BSVNGs,
total BSVNGs and BSVNLGs and these are all the strong BSVNGs, also we discuss
their relations based on isomorphism, co weak isomorphism and weak isomorphism.

2. Preliminaries

In this section we recall some basic concepts on BSVNG. Let G denotes BSVNG
and G∗ = (V,E) denotes its underlying crisp graph.

Definition 2.1 ([10]). Let X be a crisp set, the single valued neutrosophic set
(SVNS) Z is characterized by three membership functions TZ(x), IZ(x) and FZ(x)
which are truth, indeterminacy and falsity membership functions, ∀x ∈ X

TZ(x), IZ(x), FZ(x) ∈ [0, 1].

Definition 2.2 ([10]). Let X be a crisp set, the bipolar single valued neutrosophic
set (BSVNS) Z is characterized by membership functions T+

Z (x), I+Z (x), F+
Z (x),

T−Z (x), I−Z (x), and F−Z (x). That is ∀x ∈ X

T+
Z (x), I+Z (x), F+

Z (x) ∈ [0, 1],

T−Z (x), I−Z (x), F−Z (x) ∈ [−1, 0].

Definition 2.3 ([10]). A bipolar single valued neutrosophic graph (BSVNG) is a
pair G = (Y, Z) of G∗, where Y is BSVNS on V and Z is BSVNS on E such that

T+
Z (βγ) ≤ min(T+

Y (β), T+
Y (γ)), I+Z (βγ) ≥ max(I+Y (β), I+Y (γ)),

I−Z (βγ) ≤ min(I−Y (β), I−Y (γ)), F−Z (βγ) ≤ min(F−Y (β), F−Y (γ)),

F+
Z (βγ) ≥ max(F+

Y (β), F+
Y (γ)), T−Z (βγ) ≥ max(T−Y (β), T−Y (γ)),

where

0 ≤ T+
Z (βγ) + I+Z (βγ) + F+

Z (βγ) ≤ 3

−3 ≤ T−Z (βγ) + I−Z (βγ) + F−Z (βγ) ≤ 0

∀ β, γ ∈ V.
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In this case, D is bipolar single valued neutrosophic relation (BSVNR) on C. The
BSVNG G = (Y, Z) is complete (strong) BSVNG, if

T+
Z (βγ) = min(T+

Y (β), T+
Y (γ)), I+Z (βγ) = max(I+Y (β), I+Y (γ)),

I−Z (βγ) = min(I−Y (β), I−Y (γ)), F−Z (βγ) = min(F−Y (β), F−Y (γ)),

F+
Z (βγ) = max(F+

Y (β), F+
Y (γ)), T−Z (βγ) = max(T−Y (β), T−Y (γ)),

∀ β, γ ∈ V (∀ βγ ∈ E). The order of BSVNG G = (A,B) of G∗, denoted by O(G), is
defined by

O(G) = (O+
T (G), O+

I (G), O+
F (G), O−T (G), O−I (G), O−F (G)),

where

O+
T (G) =

∑
α∈V

T+
A (α), O+

I (G) =
∑
α∈V

I+A (α), O+
F (G) =

∑
α∈V

F+
A (α),

O−T (G) =
∑
α∈V

T−A (α), O−I (G) =
∑
α∈V

I−A (α), O−F (G) =
∑
α∈V

F−A (α).

The size of BSVNG G = (A,B) of G∗, denoted by S(G), is defined by

S(G) = (S+
T (G), S+

I (G), S+
F (G), S−T (G), S−I (G), S−F (G)),

where

S+
T (G) =

∑
βγ∈E

T+
B (βγ), S−T (G) =

∑
βγ∈E

T−B (βγ),

S+
I (G) =

∑
βγ∈E

I+B (βγ), S−I (G) =
∑
βγ∈E

I−B (βγ),

S+
F (G) =

∑
βγ∈E

F+
B (βγ), S−F (G) =

∑
βγ∈E

F−B (βγ).

The degree of a vertex β in BSVNG G = (A,B) of G∗,, denoted by dG(β), is
defined by

dG(β) = (d+T (β), d+I (β), d+F (β), d−T (β), d−I (β), d−F (β)),

where

d+T (β) =
∑
βγ∈E

T+
B (βγ), d−T (β) =

∑
βγ∈E

T−B (βγ),

d+I (β) =
∑
βγ∈E

I+B (βγ), d−I (β) =
∑
βγ∈E

I−B (βγ),

d+F (β) =
∑
βγ∈E

F+
B (βγ), d−F (β) =

∑
βγ∈E

F−B (βγ).
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3. Types of BSVNGs

In this section we introduce the special types of BSVNGs such as subdivision,
middle and total and intersection BSVNGs, for this first we give the basic definitions
of homomorphism, isomorphism, weak isomorphism and co weak isomorphism of
BSVNGs which are very useful to understand the relations among the types of
BSVNGs.

Definition 3.1. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the homomorphism χ : G1 → G2 is
a mapping χ : V1 → V2 which satisfies the following conditions:

T+
C1

(p) ≤ T+
C2

(χ(p)), I+C1
(p) ≥ I+C2

(χ(p)), F+
C1

(p) ≥ F+
C2

(χ(p)),

T−C1
(p) ≥ T−C2

(χ(p)), I−C1
(p) ≤ I−C2

(χ(p)), F−C1
(p) ≤ F−C2

(χ(p)),

∀ p ∈ V1,
T+
D1

(pq) ≤ T+
D2

(χ(p)χ(q)), T−D1
(pq) ≥ T−D2

(χ(p)χ(q)),

I+D1
(pq) ≥ I+D2

(χ(p)χ(q)), I−D1
(pq) ≤ I−D2

(χ(p)χ(q)),

F+
D1

(pq) ≥ F+
D2

(χ(p)χ(q)), F−D1
(pq) ≤ F−D2

(χ(p)χ(q)),

∀ pq ∈ E1.

Definition 3.2. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the weak isomorphism υ : G1 → G2

is a bijective mapping υ : V1 → V2 which satisfies following conditions:
υ is a homomorphism such that

T+
C1

(p) = T+
C2

(υ(p)), I+C1
(p) = I+C2

(υ(p)), F+
C1

(p) = F+
C2

(υ(p)),

T−C1
(p) = T−C2

(υ(p)), I−C1
(p) = I−C2

(υ(p)), F−C1
(p) = F−C2

(υ(p)),

∀ p ∈ V1.

Remark 3.3. The weak isomorphism between two BSVNGs preserves the orders.

Remark 3.4. The weak isomorphism between BSVNGs is a partial order relation.

Definition 3.5. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the co-weak isomorphism κ : G1 →
G2 is a bijective mapping κ : V1 → V2 which satisfies following conditions:
κ is a homomorphism such that

T+
D1

(pq) = T+
D2

(κ(p)κ(q)), T−D1
(pq) = T−D2

(κ(p)κ(q)),

I+D1
(pq) = I+D2

(κ(p)κ(q)), I−D1
(pq) = I−D2

(κ(p)κ(q)),

F+
D1

(pq) = F+
D2

(κ(p)κ(q)), F−D1
(pq) = F−D2

(κ(p)κ(q)),

∀ pq ∈ E1.

Remark 3.6. The co-weak isomorphism between two BSVNGs preserves the sizes.

Remark 3.7. The co-weak isomorphism between BSVNGs is a partial order rela-
tion.

Florentin Smarandache (author and editor) Collected Papers, VIII

330



Table 1. BSVNSs of BSVNG.

A T+
A I+A F+

A T−A I−A F−A
a 0.2 0.1 0.4 -0.3 -0.1 -0.4
b 0.3 0.2 0.5 -0.5 -0.4 -0.6
c 0.4 0.7 0.6 -0.2 -0.6 -0.2

B T+
B I+B F+

B T−B I−B F−B
p 0.2 0.4 0.5 -0.2 -0.5 -0.6
q 0.3 0.8 0.6 -0.1 -0.7 -0.8
r 0.1 0.7 0.9 -0.1 -0.8 -0.5

Definition 3.8. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the isomorphism ψ : G1 → G2 is a
bijective mapping : V1 → V2 which satisfies the following conditions:

T+
C1

(p) = T+
C2

(ψ(p)), I+C1
(p) = I+C2

(ψ(p)), F+
C1

(p) = F+
C2

(ψ(p)),

T−C1
(p) = T−C2

(ψ(p)), I−C1
(p) = I−C2

(ψ(p)), F−C1
(p) = F−C2

(ψ(p)),

∀ p ∈ V1,
T+
D1

(pq) = T+
D2

(ψ(p)ψ(q)), T−D1
(pq) = T−D2

(ψ(p)ψ(q)),

I+D1
(pq) = I+D2

(ψ(p)ψ(q)), I−D1
(pq) = I−D2

(ψ(p)ψ(q)),

F+
D1

(pq) = F+
D2

(ψ(p)ψ(q)), F−D1
(pq) = F−D2

(ψ(p)ψ(q)),

∀ pq ∈ E1.

Remark 3.9. The isomorphism between two BSVNGs is an equivalence relation.

Remark 3.10. The isomorphism between two BSVNGs preserves the orders and
sizes.

Remark 3.11. The isomorphism between two BSVNGs preserves the degrees of
their vertices.

Definition 3.12. The subdivision SVNG be sd(G) = (C,D) of G = (A,B), where
C is a BSVNS on V ∪ E and D is a BSVNR on C such that

(i) C = A on V and C = B on E,
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = min(T+

A (v), T+
B (e)), I+D(ve) = max(I+A (v), I+B (e))

I−D(ve) = min(I−A (v), I−B (e)), F−D (ve) = min(F−A (v), F−B (e))

F+
D (ve) = max(F+

A (v), F+
B (e)), T−D (ve) = max(T−A (v), T−B (e))

else
D(ve) = O = (0, 0, 0, 0, 0, 0).

Example 3.13. Consider the BSVNG G = (A,B) of a G∗ = (V,E), where V =
{a, b, c} and E = {p = ab, q = bc, r = ac}, the crisp graph of G is shown in Fig.
1. The BSVNSs A and B are defined on V and E respectively which are defined
in Table 1. The SDBSVNG sd(G) = (C,D) of a BSVNG G, the underlying crisp
graph of sd(G) is given in Fig. 2. The BSVNSs C and D are defined in Table 2.
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Figure 1. Crisp Graph of BSVNG.

Figure 2. Crisp Graph of SDBSVNG.

Table 2. BSVNSs of SDBSVNG.

C T+
C I+C F+

C T−C I−C F−C
a 0.2 0.1 0.4 -0.3 -0.1 -0.4
p 0.2 0.4 0.5 -0.2 -0.5 -0.6
b 0.3 0.2 0.5 -0.5 -0.4 -0.6
q 0.3 0.8 0.6 -0.1 -0.7 -0.8
c 0.4 0.7 0.6 -0.2 -0.6 -0.2
r 0.1 0.7 0.9 -0.1 -0.8 -0.5

D T+
D I+D F+

D T−D I−D F−D
ap 0.2 0.4 0.5 -0.2 -0.5 -0.6
pb 0.2 0.4 0.5 -0.2 -0.5 -0.6
bq 0.3 0.8 0.6 -0.1 -0.7 -0.8
qc 0.3 0.8 0.6 -0.1 -0.7 -0.8
cr 0.1 0.7 0.9 -0.1 -0.8 -0.5
ra 0.1 0.7 0.9 -0.1 -0.8 -0.5

Proposition 3.14. Let G be a BSVNG and sd(G) be the SDBSVNG of a BSVNG
G, then O(sd(G)) = O(G) + S(G) and S(sd(G)) = 2S(G).

Remark 3.15. Let G be a complete BSVNG, then sd(G) need not to be complete
BSVNG.
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Figure 3. Crisp Graph of TSVNG.

Definition 3.16. The total bipolar single valued neutrosophic graph (TBSVNG) is
T (G) = (C,D) of G = (A,B), where C is a BSVNS on V ∪ E and D is a BSVNR
on C such that

(i) C = A on V and C = B on E,
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = min(T+

A (v), T+
B (e)), I+D(ve) = max(I+A (v), I+B (e))

I−D(ve) = min(I−A (v), I−B (e)), F−D (ve) = min(F−A (v), F−B (e))

F+
D (ve) = max(F+

A (v), F+
B (e)), T−D (ve) = max(T−A (v), T−B (e))

else

D(ve) = O = (0, 0, 0, 0, 0, 0),

(iii) if αβ ∈ E, then

T+
D (αβ) = T+

B (αβ), I+D(αβ) = I+B (αβ), F+
D (αβ) = F+

B (αβ)

T−D (αβ) = T−B (αβ), I−D(αβ) = I−B (αβ), F−D (αβ) = F−B (αβ),

(iv) if e, f ∈ E have a common vertex, then

T+
D (ef) = min(T+

B (e), T+
B (f)), I+D(ef) = max(I+B (e), I+B (f))

I−D(ef) = min(I−B (e), I−B (f)), F−D (ef) = min(F−B (e), F−B (f))

F+
D (ef) = max(F+

B (e), F+
B (f)), T−D (ef) = max(T−B (e), T−B (f))

else

D(ef) = O = (0, 0, 0, 0, 0, 0).

Example 3.17. Consider the Example 3.13 the TBSVNG T (G) = (C,D) of under-
lying crisp graph as shown in Fig. 3. The BSVNS C is given in Example 3.13. The
BSVNS D is given in Table 3.

Proposition 3.18. Let G be a BSV NG and T (G) be the TBSVNG of a BSVNG
G, then O(T (G)) = O(G) + S(G) = O(sd(G)) and S(sd(G)) = 2S(G).

Proposition 3.19. Let G be a BSVNG, then sd(G) is weak isomorphic to T (G).
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Table 3. BSVNS of TBSVNG.

D T+
D I+D F+

D T−D I−D F−D
ab 0.2 0.4 0.5 -0.2 -0.5 -0.6
bc 0.3 0.8 0.6 -0.1 -0.7 -0.8
ca 0.1 0.7 0.9 -0.1 -0.8 -0.5
pq 0.2 0.8 0.6 -0.1 -0.7 -0.8
qr 0.1 0.8 0.9 -0.1 -0.8 -0.8
rp 0.1 0.7 0.9 -0.1 -0.8 -0.6
ap 0.2 0.4 0.5 -0.2 -0.5 -0.6
pb 0.2 0.4 0.5 -0.2 -0.5 -0.6
bq 0.3 0.8 0.6 -0.1 -0.7 -0.8
qc 0.3 0.8 0.6 -0.1 -0.7 -0.8
cr 0.1 0.7 0.9 -0.1 -0.8 -0.5
ra 0.1 0.7 0.9 -0.1 -0.8 -0.5

Definition 3.20. The middle bipolar single valued neutrosophic graph (MBSVNG)
M(G) = (C,D) of G, where C is a BSVNS on V ∪E and D is a BSVNR on C such
that

(i) C = A on V and C = B on E, else C = O = (0, 0, 0, 0, 0, 0),
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = T+

B (e), I+D(ve) = I+B (e), F+
D (ve) = F+

B (e)

T−D (ve) = T−B (e), I−D(ve) = I−B (e), F−D (ve) = F−B (e)

else

D(ve) = O = (0, 0, 0, 0, 0, 0),

(iii) if u, v ∈ V, then

D(uv) = O = (0, 0, 0, 0, 0, 0),

(iv) if e, f ∈ E and e and f are adjacent in G, then

T+
D (ef) = T+

B (uv), I+D(ef) = I+B (uv), F+
D (ef) = F+

B (uv)

T−D (ef) = T−B (uv), I−D(ef) = I−B (uv), F−D (ef) = F−B (uv).

Example 3.21. Consider the BSVNG G = (A,B) of a G∗, where V = {a, b, c} and
E = {p = ab, q = bc} the underlaying crisp graph is shown in Fig. 4. The BSVNSs
A and B are defined in Table 4. The crisp graph of MBSVNG M(G) = (C,D) is
shown in Fig. 5. The BSVNSs C and D are given in Table 5.

Remark 3.22. Let G be a BSVNG and M(G) be the MBSVNG of a BSVNG G,
then O(M(G)) = O(G) + S(G).

Remark 3.23. Let G be a BSVNG, then M(G) is a strong BSVNG.

Remark 3.24. Let G be complete BSVNG, then M(G) need not to be complete
BSVNG.

Proposition 3.25. Let G be a BSVNG, then sd(G) is weak isomorphic with M(G).
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Figure 4. Crisp Graph of BSVNG.

Table 4. BSVNSs of BSVNG.

A T+
A I+A F+

A T−A I−A F−A
a 0.3 0.4 0.5 -0.2 -0.1 -0.3
b 0.7 0.6 0.3 -0.3 -0.3 -0.2
c 0.9 0.7 0.2 -0.5 -0.4 -0.6

B T+
B I+B F+

B T−B I−B F−B
p 0.2 0.6 0.6 -0.1 -0.4 -0.3
q 0.4 0.8 0.7 -0.3 -0.5 -0.6

Table 5. BSVNSs of MBSVNG.

C T+
C I+C F+

C T−C I−C F−C
a 0.3 0.4 0.5 -0.2 -0.1 -0.3
b 0.7 0.6 0.3 -0.3 -0.3 -0.2
c 0.9 0.7 0.2 -0.5 -0.4 -0.6
e1 0.2 0.6 0.6 -0.1 -0.4 -0.3
e2 0.4 0.8 0.7 -0.3 -0.5 -0.6

D T+
D I+D F+

D T−D I−D F−D
pq 0.2 0.8 0.7 -0.1 -0.5 -0.6
ap 0.2 0.6 0.6 -0.1 -0.4 -0.3
bp 0.2 0.6 0.6 -0.1 -0.4 -0.3
bq 0.2 0.6 0.6 -0.3 -0.5 -0.6
cq 0.4 0.8 0.7 -0.3 -0.5 -0.6

Figure 5. Crisp Graph of MBSVNG.
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Proposition 3.26. Let G be a BSVNG, then M(G) is weak isomorphic with T (G).

Proposition 3.27. Let G be a BSVNG, then T (G) is isomorphic with G ∪M(G).

Definition 3.28. Let P (X) = (X,Y ) be the intersection graph of a G∗, let C1 and
D1 be BSVNSs on V and E, respectively and C2 and D2 be BSVNSs on X and Y
respectively. Then bipolar single valued neutrosophic intersection graph (BSVNIG)
of a BSVNG G = (C1, D1) is a BSVNG P (G) = (C2, D2) such that,

T+
C2

(Xi) = T+
C1

(vi), I
+
C2

(Xi) = I+C1
(vi), F

+
C2

(Xi) = F+
C1

(vi)

T−C2
(Xi) = T−C1

(vi), I
−
C2

(Xi) = I−C1
(vi), F

−
C2

(Xi) = F−C1
(vi)

T+
D2

(XiXj) = T+
D1

(vivj), T
−
D2

(XiXj) = T−D1
(vivj),

I+D2
(XiXj) = I+D1

(vivj), I
−
D2

(XiXj) = I−D1
(vivj),

F+
D2

(XiXj) = F+
D1

(vivj), F
−
D2

(XiXj) = F−D1
(vivj)

∀ Xi, Xj ∈ X and XiXj ∈ Y.

Proposition 3.29. Let G = (A1, B1) be a BSVNG of G∗ = (V,E), and let P (G) =
(A2, B2) be a BSVNIG of P (S). Then BSVNIG is a also BSVNG and BSVNG is
always isomorphic to BSVNIG.

Proof. By the definition of BSVNIG, we have

T+
B2

(SiSj) = T+
B1

(vivj) ≤ min(T+
A1

(vi), T
+
A1

(vj)) = min(T+
A2

(Si), T
+
A2

(Sj)),

I+B2
(SiSj) = I+B1

(vivj) ≥ max(I+A1
(vi), I

+
A1

(vj)) = max(I+A2
(Si), I

+
A2

(Sj)),

F+
B2

(SiSj) = F+
B1

(vivj) ≥ max(F+
A1

(vi), F
+
A1

(vj)) = max(F+
A2

(Si), F
+
A2

(Sj)),

T−B2
(SiSj) = T−B1

(vivj) ≥ max(T−A1
(vi), T

−
A1

(vj)) = max(T−A2
(Si), T

−
A2

(Sj)),

I−B2
(SiSj) = I−B1

(vivj) ≤ min(I−A1
(vi), I

−
A1

(vj)) = min(I−A2
(Si), I

−
A2

(Sj)),

F−B2
(SiSj) = F−B1

(vivj) ≤ min(F−A1
(vi), F

−
A1

(vj)) = min(F−A2
(Si), F

−
A2

(Sj)).

This shows that BSVNIG is a BSVNG.
Next define f : V → S by f(vi) = Si for i = 1, 2, 3, . . . , n clearly f is bijective.

Now vivj ∈ E if and only if SiSj ∈ T and T = {f(vi)f(vj) : vivj ∈ E}. Also

T+
A2

(f(vi)) = T+
A2

(Si) = T+
A1

(vi), I
+
A2

(f(vi)) = I+A2
(Si) = I+A1

(vi),

F+
A2

(f(vi)) = F+
A2

(Si) = F+
A1

(vi), T
−
A2

(f(vi)) = T−A2
(Si) = T−A1

(vi),

I−A2
(f(vi)) = I−A2

(Si) = I−A1
(vi), F

−
A2

(f(vi)) = F−A2
(Si) = F−A1

(vi),

∀ vi ∈ V,
T+
B2

(f(vi)f(vj)) = T+
B2

(SiSj) = T+
B1

(vivj),

I+B2
(f(vi)f(vj)) = I+B2

(SiSj) = I+B1
(vivj),

F+
B2

(f(vi)f(vj)) = F+
B2

(SiSj) = F+
B1

(vivj),

T−B2
(f(vi)f(vj)) = T−B2

(SiSj) = T−B1
(vivj),

I−B2
(f(vi)f(vj)) = I−B2

(SiSj) = I−B1
(vivj),

F−B2
(f(vi)f(vj)) = F−B2

(SiSj) = F−B1
(vivj),

∀ vivj ∈ E. �
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Table 6. BSVNSs of BSVNG.

A1 T+
A1

I+A1
F+
A1

T−A1
I−A1

F−A1

α1 0.2 0.5 0.5 -0.1 -0.4 -0.5
α2 0.4 0.3 0.3 -0.2 -0.3 -0.2
α3 0.4 0.5 0.5 -0.3 -0.2 -0.6
α4 0.3 0.2 0.2 -0.4 -0.1 -0.3

B1 T+
B1

I+B1
F+
B1

T−B1
I−B1

F−B1

x1 0.1 0.6 0.7 -0.1 -0.4 -0.5
x2 0.3 0.6 0.7 -0.2 -0.3 -0.6
x3 0.2 0.7 0.8 -0.3 -0.2 -0.6
x4 0.1 0.7 0.8 -0.1 -0.4 -0.5

Definition 3.30. Let G∗ = (V,E) and L(G∗) = (X,Y ) be its line graph, where
A1 and B1 be BSVNSs on V and E, respectively. Let A2 and B2 be BSVNSs on X
and Y, respectively. The bipolar single valued neutrosophic line graph (BSVNLG)
of BSVNG G = (A1, B1) is BSVNG L(G) = (A2, B2) such that,

T+
A2

(Sx) = T+
B1

(x) = T+
B1

(uxvx), I+A2
(Sx) = I+B1

(x) = I+B1
(uxvx),

I−A2
(Sx) = I−B1

(x) = I−B1
(uxvx), F−A2

(Sx) = F−B1
(x) = F−B1

(uxvx),

F+
A2

(Sx) = F+
B1

(x) = F+
B1

(uxvx), T−A2
(Sx) = T−B1

(x) = T−B1
(uxvx),

∀ Sx, Sy ∈ X and

T+
B2

(SxSy) = min(T+
B1

(x), T+
B1

(y)), I+B2
(SxSy) = max(I+B1

(x), I+B1
(y)),

I−B2
(SxSy) = min(I−B1

(x), I−B1
(y)), F−B2

(SxSy) = min(F−B1
(x), F−B1

(y)),

F+
B2

(SxSy) = max(F+
B1

(x), F+
B1

(y)), T−B2
(SxSy) = max(T−B1

(x), T−B1
(y)),

∀ SxSy ∈ Y.

Remark 3.31. Every BSVNLG is a strong BSVNG.

Remark 3.32. The L(G) = (A2, B2) is a BSVNLG corresponding to BSVNG G =
(A1, B1).

Example 3.33. Consider the G∗ = (V,E) where V = {α1, α2, α3, α4} and E =
{x1 = α1α2, x2 = α2α3, x3 = α3α4, x4 = α4α1} and G = (A1, B1) is BSVNG of
G∗ = (V,E) which is defined in Table 6. Consider the L(G∗) = (X,Y ) such that
X = {Γx1 ,Γx2 ,Γx3 ,Γx4} and Y = {Γx1Γx2 ,Γx2Γx3 ,Γx3Γx4 ,Γx4Γx1}. Let A2 and B2

be BSVNSs of X and Y respectively, then BSVNLG L(G) is given in Table 7.

Proposition 3.34. The L(G) = (A2, B2) is a BSVNLG of some BSVNG G =
(A1, B1) if and only if

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)),

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)),
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Table 7. BSVNSs of BSVNLG.

A1 T+
A1

I+A1
F+
A1

T−A1
I−A1

F−A1

Γx1 0.1 0.6 0.7 -0.1 -0.4 -0.5
Γx2 0.3 0.6 0.7 -0.2 -0.3 -0.6
Γx3

0.2 0.7 0.8 -0.3 -0.2 -0.6
Γx4

0.1 0.7 0.8 -0.1 -0.4 -0.5

B1 T+
B1

I+B1
F+
B1

T−B1
I−B1

F−B1

Γx1
Γx2

0.1 0.6 0.7 -0.1 -0.4 -0.6
Γx2Γx3 0.2 0.7 0.8 -0.2 -0.3 -0.6
Γx3Γx4 0.1 0.7 0.8 -0.1 -0.4 -0.6
Γx4

Γx1
0.1 0.7 0.8 -0.1 -0.4 -0.5

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)),

∀ SxSy ∈ Y.

Proof. Assume that,

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)),

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)),

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)),

∀ SxSy ∈ Y. Define

T+
A1

(x) = T+
A2

(Sx), I+A1
(x) = I+A2

(Sx), F+
A1

(x) = F+
A2

(Sx),

T−A1
(x) = T−A2

(Sx), I−A1
(x) = I−A2

(Sx), F−A1
(x) = F−A2

(Sx)

∀ x ∈ E. Then

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)) = max(I+A2

(x), I+A2
(y)),

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)) = min(I−A2

(x), I−A2
(y)),

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)) = min(T+
A2

(x), T+
A2

(y)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)) = max(T−A2

(x), T−A2
(y)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)) = min(F−A2

(x), F−A2
(y)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)) = max(F+
A2

(x), F+
A2

(y)).

A BSVNS A1 that yields the property

T+
B1

(xy) ≤ min(T+
A1

(x), T+
A1

(y)), I+B1
(xy) ≥ max(I+A1

(x), I+A1
(y)),

I−B1
(xy) ≤ min(I−A1

(x), I−A1
(y)), F−B1

(xy) ≤ min(F−A1
(x), F−A1

(y)),

F+
B1

(xy) ≥ max(F+
A1

(x), F+
A1

(y)), T−B1
(xy) ≥ max(T−A1

(x), T−A1
(y))

will suffice. Converse is straight forward. �
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Proposition 3.35. If L(G) be a BSVNLG of BSVNG G, then L(G∗) = (X,Y ) is
the crisp line graph of G∗.

Proof. Since L(G) is a BSVNLG,

T+
A2

(Sx) = T+
B1

(x), I+A2
(Sx) = I+B1

(x), F+
A2

(Sx) = F+
B1

(x),

T−A2
(Sx) = T−B1

(x), I−A2
(Sx) = I−B1

(x), F−A2
(Sx) = F−B1

(x)

∀ x ∈ E, Sx ∈ X if and only if x ∈ E, also

T+
B2

(SxSy) = min(T+
B1

(x), T+
B1

(y)), I+B2
(SxSy) = max(I+B1

(x), I+B1
(y)),

I−B2
(SxSy) = min(I−B1

(x), I−B1
(y)), F−B2

(SxSy) = min(F−B1
(x), F−B1

(y)),

F+
B2

(SxSy) = max(F+
B1

(x), F+
B1

(y)), T−B2
(SxSy) = max(T−B1

(x), T−B1
(y)),

∀ SxSy ∈ Y . Then Y = {SxSy : Sx ∩ Sy 6= φ, x, y ∈ E, x 6= y}. �

Proposition 3.36. The L(G) = (A2, B2) be a BSVNLG of BSVNG G if and only
if L(G∗) = (X,Y ) is the line graph and

T+
B2

(xy) = min(T+
A2

(x), T+
A2

(y)), I+B2
(xy) = max(I+A2

(x), I+A2
(y)),

I−B2
(xy) = min(I−A2

(x), I−A2
(y)), F−B2

(xy) = min(F−A2
(x), F−A2

(y)),

F+
B2

(xy) = max(F+
A2

(x), F+
A2

(y)), T−B2
(xy) = max(T−A2

(x), T−A2
(y)),

∀ xy ∈ Y.

Proof. It follows from propositions 3.34 and 3.35. �

Proposition 3.37. Let G be a BSVNG, thenM(G) is isomorphic with sd(G)∪L(G).

Theorem 3.38. Let L(G) = (A2, B2) be BSVNLG corresponding to BSVNG G =
(A1, B1).

(1) If G is weak isomorphic onto L(G) if and only if ∀ v ∈ V, x ∈ E and G∗ to
be a cycle, such that

T+
A1

(v) = T+
B1

(x), I+A1
(v) = T+

B1
(x), F+

A1
(v) = T+

B1
(x),

T−A1
(v) = T−B1

(x), I−A1
(v) = T−B1

(x), F−A1
(v) = T−B1

(x).

(2) If G is weak isomorphic onto L(G), then G and L(G) are isomorphic.

Proof. By hypothesis, G∗ is a cycle. Let V = {v1, v2, v3, . . . , vn} and E = {x1 =
v1v2, x2 = v2v3, . . . , xn = vnv1}, where P : v1v2v3 . . . vn is a cycle, characterize a

BSVNS A1 by A1(vi) = (pi, qi, ri, p
′

i, q
′

i, r
′

i) and B1 by B1(xi) = (ai, bi, ci, a
′

i, b
′

i, c
′

i)
for i = 1, 2, 3, . . . , n and vn+1 = v1. Then for pn+1 = p1, qn+1 = q1, rn+1 = r1,

ai ≤ min(pi, pi+1), bi ≥ max(qi, qi+1), ci ≥ max(ri, ri+1),

a
′

i ≥ max(p
′

i, p
′

i+1), b
′

i ≤ min(q
′

i, q
′

i+1), c
′

i ≤ min(r
′

i, r
′

i+1),

for i = 1, 2, 3, . . . , n.
Now let X = {Γx1

,Γx2
, . . . ,Γxn} and Y = {Γx1

Γx2
,Γx2

Γx3
, . . . ,ΓxnΓx1

}. Then
for an+1 = a1, we obtain

A2(Γxi) = B1(xi) = (ai, bi, ci, a
′

i, b
′

i, c
′

i)
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andB2(ΓxiΓxi+1) = (min(ai, ai+1),max(bi, bi+1),max(ci, ci+1),max(a
′

i, a
′

i+1),min(b
′

i, b
′

i+1),

min(c
′

i, c
′

i+1)) for i = 1, 2, 3, . . . , n and vn+1 = v1. Since f preserves adjacency, it in-
duce permutation π of {1, 2, 3, . . . , n},

f(vi) = Γvπ(i)vπ(i)+1

and

vivi+1 → f(vi)f(vi+1) = Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

,

for i = 1, 2, 3, . . . , n− 1. Thus

pi = T+
A1

(vi) ≤ T+
A2

(f(vi)) = T+
A2

(Γvπ(i)vπ(i)+1
) = T+

B1
(vπ(i)vπ(i)+1) = aπ(i).

Similarly, p
′

i ≥ a
′

π(i), qi ≥ bπ(i), ri ≥ cπ(i), q
′

i ≤ b
′

π(i), r
′

i ≤ c
′

π(i) and

ai = T+
B1

(vivi+1) ≤ T+
B2

(f(vi)f(vi+1))

= T+
B2

(Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

)

= min(T+
B1

(vπ(i)vπ(i)+1), T+
B1

(vπ(i+1)vπ(i+1)+1))

= min(aπ(i), aπ(i)+1).

Similarly, bi ≥ max(bπ(i), bπ(i)+1), ci ≥ max(cπ(i), cπ(i)+1), a
′

i ≥ max(a
′

π(i), a
′

π(i)+1),

b
′

i ≤ min(b
′

π(i), b
′

π(i)+1) and c
′

i ≤ min(c
′

π(i), c
′

π(i)+1) for i = 1, 2, 3, . . . , n. Therefore

pi ≤ aπ(i), qi ≥ bπ(i), ri ≥ cπ(i), p
′

i ≥ a
′

π(i), q
′

i ≤ b
′

π(i), r
′

i ≤ c
′

π(i)

and

ai ≤ min(aπ(i), aπ(i)+1), a
′

i ≥ max(a
′

π(i), a
′

π(i)+1),

bi ≥ max(bπ(i), bπ(i)+1), b
′

i ≤ min(b
′

π(i), b
′

π(i)+1),

ci ≥ max(cπ(i), cπ(i)+1), ci ≤ min(c
′

π(i), c
′

π(i)+1)

thus

ai ≤ aπ(i), bi ≥ bπ(i), ci ≥ cπ(i), a
′

i ≥ a
′

π(i), b
′

i ≤ b
′

π(i), c
′

i ≤ c
′

π(i)

and so

aπ(i) ≤ aπ(π(i)), bπ(i) ≥ bπ(π(i)), cπ(i) ≥ cπ(π(i))
a

′

π(i) ≥ a
′

π(π(i)), b
′

π(i) ≤ b
′

π(π(i)), c
′

π(i) ≤ c
′

π(π(i))

∀ i = 1, 2, 3, . . . , n. Next to extend,

ai ≤ aπ(i) ≤ . . . ≤ aπj(i) ≤ ai, a
′

i ≥ a
′

π(i) ≥ . . . ≥ a
′

πj(i) ≥ a
′

i

bi ≥ bπ(i) ≥ . . . ≥ bπj(i) ≥ bi, b
′

i ≤ b
′

π(i) ≤ . . . ≤ b
′

πj(i) ≤ b
′

i

ci ≥ cπ(i) ≥ . . . ≥ cπj(i) ≥ ci, c
′

i ≤ c
′

π(i) ≤ . . . ≤ c
′

πj(i) ≤ c
′

i

where πj+1 identity. Hence

ai = aπ(i), bi = bπ(i), ci = cπ(i), a
′

i = a
′

π(i), b
′

i = b
′

π(i), c
′

i = c
′

π(i)

∀ i = 1, 2, 3, . . . , n. Thus we conclude that

ai ≤ aπ(i+1) = ai+1, bi ≥ bπ(i+1) = bi+1, ci ≥ cπ(i+1) = ci+1

a
′

i ≥ a
′

π(i+1) = a
′

i+1, b
′

i ≤ b
′

π(i+1) = b
′

i+1, c
′

i ≤ c
′

π(i+1) = c
′

i+1
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which together with

an+1 = a1, bn+1 = b1, cn+1 = c1, a
′

n+1 = a
′

1, b
′

n+1 = b
′

1, c
′

n+1 = c
′

1

which implies that

ai = a1, bi = b1, ci = c1, a
′

i = a
′

1, b
′

i = b
′

1, c
′

i = c
′

1

∀ i = 1, 2, 3, . . . , n. Thus we have

a1 = a2 = . . . = an = p1 = p2 = . . . = pn

a
′

1 = a
′

2 = . . . = a
′

n = p
′

1 = p
′

2 = . . . = p
′

n

b1 = b2 = . . . = bn = q1 = q2 = . . . = qn

b
′

1 = b
′

2 = . . . = b
′

n = q
′

1 = q
′

2 = . . . = q
′

n

c1 = c2 = . . . = cn = r1 = r2 = . . . = rn

c
′

1 = c
′

2 = . . . = c
′

n = r
′

1 = r
′

2 = . . . = r
′

n

Therefore (a) and (b) holds, since converse of result (a) is straight forward. �

4. Conclusion

The neutrosophic graphs have many applications in path problems, networks and
computer science. Strong BSVNG and complete BSVNG are the types of BSVNG. In
this paper, we discussed the special types of BSVNGs, subdivision BSVNGs, middle
BSVNGs, total BSVNGs and BSVNLGs of the given BSVNGs. We investigated
isomorphism properties of subdivision BSVNGs, middle BSVNGs, total BSVNGs
and BSVNLGs.
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Abstract. The paper proposes a new technique for deal-
ing with multi-attribute decision making problems 
through an extended TOPSIS method under neutrosophic 
cubic environment. Neutrosophic cubic set is the general-
ized form of cubic set and is the hybridization of a neu-
trosophic set with an interval neutrosophic set. In this 
study, we have defined some operation rules for neutro-
sophic cubic sets and proposed the Euclidean distance 
between neutrosophic cubic sets. In the decision making 
situation, the rating of alternatives with respect to some 

predefined attributes are presented in terms of neutro-
sophic cubic information where weights of the attributes 
are completely unknown. In the selection process, neu-
trosophic cubic positive and negative ideal solutions have 
been defined. An extended TOPSIS method is then pro-
posed for ranking the alternatives and finally choosing 
the best one. Lastly, an illustrative example is solved to 
demonstrate the decision making procedure and effec-
tiveness of the developed approach. 

Keywords: TOPSIS; neutrosophic sets; interval neutrosophic set; neutrosophic cubic sets; multi-attribute decision making.

1 Introduction 

Smarandache [1] proposed neutrosophic set (NS) that 
assumes values from real standard or non-standard subsets 
of] -0, 1+[. Wang et al. [2] defined single valued 
neutrosophic set (SVNS) that assumes values from the unit 
interval [0, 1]. Wang et al. [3] also extended the concept of 
NS to interval neutrosophic set (INS) and presented the 
set-theoretic operators and different properties of INSs. 
Multi-attribute decision making (MADM) problems with 
neutrosophic information caught much attention in recent 
years due to the fact that the incomplete, indeterminate and 
inconsistent information about alternatives with regard to 
predefined attributes are easily described under 
neutrosophic setting. In interval neutrosophic environment, 
Chi and Liu [4] at first established an extended technique 
for order preference by similarity to ideal solution 
(TOPSIS) method [5] for solving MADM problems with 
interval neutrosophic information to get the most 
preferable alternative. Şahin, and Yiğider [6] discussed 
TOPSIS method for multi-criteria decision making 
(MCDM) problems with single neutrosophic values for 
supplier selection problem. Zhang and Wu [7] developed 
an extended TOPSIS for single valued neutrosophic 
MCDM problems where the incomplete weights are 

obtained by maximizing deviation method. Ye [8] 
proposed an extended TOPSIS method for solving MADM 
problems under interval neutrosophic uncertain linguistic 
variables. Biswas et al. [9] studied TOPSIS method for 
solving multi-attribute group decision making problems 
with single-valued neutrosophic information where 
weighted averaging operator is employed to aggregate the 
individual decision maker’s opinion into group opinion.  
In 2016, Ali et al. [10] proposed the notion of neutrosophic 
cubic set (NCS) by extending the concept of cubic set to 
neutrosophic cubic set. Ali et al. [10] also defined internal 
neutrosophic cubic set (INCS) and external neutrosophic 
cubic set (ENCS), 3

1 -INCS ( 3
2 -ENCS), 3

2 -INCS 

( 3
1 -ENCS) and also proposed some relevant properties.

In the same study, Ali et al. [10] proposed Hamming 
distance between two NCSs and developed a decision 
making technique via similarity measures of two NCSs in 
pattern recognition problems. Jun et al. [11] studied the 
notions of truth-internal (indeterminacy-internal, falsity-
internal) neutrosophic cubic sets and truth-external 
(indeterminacy-external, falsity-external) neutrosophic 
cubic and investigated related properties. Pramanik et al. 
[12] defined similarity measure for neutrosophic cubic sets
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and proved its basic properties. In the same study, 
Pramanik et al. [12]   developed multi criteria group deci-
sion making method with linguistic variables in neutrosophic 
cubic set environment.

In this paper, we develop a new approach for MADM 
problems with neutrosophic cubic assessments by using 
TOPSIS method where weights of the attributes are un-
known to the decision maker (DM). We define a few oper-
ations on NCSs and propose the Euclidean distance be-
tween two NCSs. We define accumulated arithmetic opera-
tor (AAO) to convert neutrosophic cubic values (NCVs) to 
single neutrosophic values (SNVs).

 
We also define neutro-

sophic cubic positive ideal solution (NCPIS) and neutro-
sophic cubic negative ideal solution (NCNIS) in this study. 
The rest of the paper is organized in the following way. 
Section 2 recalls some basic definitions which are useful 
for the construction of the paper. Subsection 2.1 provides 
several operational rules of NCSs. Section 3 is devoted to 
present an extended TOPSIS method for MADM problems 
in neutrosophic cubic set environment. In Section 4, we 
solve an illustrative example to demonstrate the applicabil-
ity and effectiveness of the proposed approach. Finally, the 
last Section presents concluding remarks and future scope 
research. 

2 The basic definitions 

Definition: 1 
Fuzzy sets [13]: Consider U be a universe. A fuzzy set 
Φ over U is defined as follows: 

Φ = { )(  , xμx Φ  x U} 
where )(xμΦ : U  [0, 1] is termed as the membership 
function of Φ  and )(xμΦ  represents the degree of mem-
bership to which xΦ . 

Definition: 2 
Interval valued fuzzy sets [14]: An interval-valued fuzzy 
set (IVFS) Θ over U is represented as follows: 

Θ = { )(),(  , xΘxΘx - 
 x U}

where )(),( xΘxΘ -   denote the lower and upper degrees
of membership of the element x U to the set Θ with
0 )(xΘ - + xΘ ( ) 1.

Definition: 3 
Cubic sets [15]: A cubic set Ψ in a non-empty set U is a 
structure defined as follows: 

Ψ = { )(),(, xΦxΘx  x U} 

where Θ and Φ respectively represent an interval valued 
fuzzy set and a fuzzy set. A cubic set Ψ is denoted by Ψ = 
< Θ ,Φ >. 

Definition: 4 
Internal cubic sets [15]: A cubic set Ψ = < Θ ,Φ > in U is 
said to be internal cubic set (ICS) if 

)(xΘ -  )(xμ  )(xΘ  for all x U.

Definition: 5 
External cubic sets [15]: A cubic set Ψ = < Θ ,Φ > in U is 
called external cubic set (ECS) if )(xμ    ( )(xΘ - , )(xΘ )
for all x U. 

Definition: 6 
Consider 1Ψ = < 1Θ , 1Φ > and 2Ψ = < 2Θ , 2Φ > be two cubic 
sets in U, then we have the following relations [15]. 

1. (Equality) 1Ψ = 2Ψ if and only if 1Θ = 2Θ

and 1μ = .2μ  

2. (P-order) PΨ 1 2Ψ  if and only 
if 1Θ  2Θ and 1μ  .2μ

3. (R-order) RΨ 1 2Ψ  if and only 
if 1Θ  2Θ and 1μ  .2μ

Definition: 7 
Neutrosophic set [1]: Consider U be a space of objects, 
then a neutrosophic set (NS) χ on U is defined as follows: 

χ = {x, )(),(),( xγxβxα  xU} 
where )(),(),( xγxβxα :U ]-0, 1+[ define respectively the 
degrees of truth-membership, indeterminacy-membership, 
and falsity-membership of an element xU to the 
set χ with  -0   sup )(xα + sup )(xβ + sup )(xγ  3+.

Definition: 8 
Interval neutrosophic sets [9]: An INS Γ  in the 
universal space U is defined as follows: 
Γ = {x, )](),([)],(),([,)](),([ xΓxΓxΓxΓxΓxΓ γ

-
γβ

-
βα

-
α

   

x U} 
where, )(xΓ α , )(xΓ β , )(xΓ γ are the truth-membership 
function, indeterminacy-membership function, and falsity-
membership function, respectively with )(xΓα , )(xΓ β , 

)(xΓ γ  [0, 1] for each point x U and 0  sup )(xΓα + 
sup )(xΓ β + sup )(xΓ γ  3.
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Definition: 9 
Neutrosophic cubic sets [15] 
A neutrosophic cubic set (NCS) Ξ in a universe U is 
presented in the following form: 

Ξ = { )(),( , xχxΓx  x U} 
where Γ and χ are respectively an interval neutrosophic set 
and a neutrosophic set in U. 
However, NSs take the values from] -0, 1+[ and single-
valued neutrosophic set defined by Wang et al. [2] is 
appropriate for dealing with real world problems. 
Therefore, the definition of NCS should be modified in 
order to solve practical decision making purposes. Hence, 
a neutrosophic cubic set (NCS) Ξ in U is defined as 
follows: 

Ξ = { )(),( , xχxΓx  x U} 
Here, Γ and χ are respectively an INS and a SVNS in U 
where 0  )(xα + )(xβ + )(xγ  3 for each point x U. 
Generally, a NCS is denoted by Ξ = < Γ , χ > and sets of 
all NCS over U will be represented by NCSU.  

Example 1. Assume that U = {u1, u2, u3, u4} be a universal 
set. An INS A in U is defined as 
 = {< [0.15, 0.3], [0.25, 0.4], [0.6, 0.75] >/ u1 + < [0.25,
0.35], [0.35, 0.45], [0.4, 0.65] >/ u2 + < [0.35, 0.5], [0.25,
0.35], [0.55, 0.85] >/ u3 + < [0.7, 0.8], [0.15, 0.45], [0.2,
0.3] >/ u4}
and a SVNS χ in U defined by
χ = {< 0.35, 0.3, 0.15 >/ u1, < 0.5, 0.1, 0.4 >/ u2, < 0.25, 
0.03, 0.35 >/ u3, < 0.85, 0.1, 0.15 >/ u4} 
Then  = < A, χ > is represented as a NCS in U. 

Definition: 10 
Internal neutrosophic cubic set [10]: Consider Ξ = < Γ , 
χ >  NCSU, if )(xΓ -

α  )(xα  )(xΓα
 ;

)(xΓ -
β  )(xβ  )(xΓ β

 ; and )(xΓ -
γ  )(xγ  )(xΓ γ

 for
all x U, then Ξ is said to be an internal neutrosophic 
cubic set (INCS). 

Example 2. Consider Ξ = < Γ , χ >  NCSU, if )( xΓ = <
[0.65, 0.8], [0.1, 0.25], [0.2, 0.4] > and )(xχ = < 0.7, 0.2, 
0.3 > for all x U, then Ξ = < Γ , χ > is an INCS. 

Definition: 11 
External neutrosophic cubic set [10]: Consider Ξ = < Γ , 
χ >  NCSU, if )(xα  ( )(xΓ -

α , )(xΓα
 );

)(xβ  ( )(xΓ -
β , )(xΓ β

 ); and )(xγ  ( )(xΓ -
γ , )(xΓ γ

 ) for
all x U, then Ξ = < Γ , χ > is said to be an external 
neutrosophic cubic set (ENCS). 

Example 3. Consider Ξ = < Γ , χ >  NCSU, if )( xΓ = <
[0.65, 0.8], [0.1, 0.25], [0.2, 0.4] > and )(xχ = < 0.85, 0.3, 
0.1 > for all x U, then Ξ = < Γ , χ > is an ENCS. 

Theorem 1. [10] 
Consider Ξ = < Γ , χ >  NCSU, which is not an ENCS,
then there exists xU such that 

)(xΓ -
α  )(xα  )(xΓα

 ; )(xΓ -
β  )(xβ  )(xΓ β

 ; or

)(xΓ -
γ  )(xγ  )(xΓ γ

 .

Definition: 12 

3
2 -INCS(

3
1 -ENCS) [10]: Consider Ξ = < Γ , χ >  NCSU,

if )(xΓ -
α  )(xα  )(xΓ α

 ; )(xΓ -
β  )(xβ  )(xΓ β

 ; 

and )(xγ  ( )(xΓ -
γ , )(xΓ γ

 ) or )(xΓ -
α  )(xα  )(xΓα

 ;

)(xΓ -
γ  )(xγ  )(xΓ γ

 and )(xβ  ( )(xΓ -
β , )(xΓ β

 ) or

)(xΓ -
β  )(xβ  )(xΓ β

 ; and )(xΓ -
γ  )(xγ  )(xΓ γ

  

and )(xα  ( )(xΓ -
α , )(xΓα

 ) for all x U, then Ξ = < Γ ,

χ > is said to be an 
3
2 -INCS or

3
1 -ENCS.

Example 4. Consider Ξ = < Γ , χ >  NCSU, if )( xΓ = <
[0. 5, 0.7], [0.1, 0.2], [0.2, 0.45] > and )(xχ = < 0.65, 0.3, 

0.4 > for all x U, then Ξ = < Γ , χ > is an 
3
2 -INCS or

3
1 -

ENCS. 

Definition: 13 

3
1 -INCS (

3
2 -ENCS) [10]: Consider Ξ = < Γ , χ > 

NCSU, if )(xΓ -
α  )(xα  )(xΓα

 ; )(xβ  ( )(xΓ -
β , )(xΓ β

 );

and )(xγ  ( )(xΓ -
γ , )(xΓ γ

 ) or )(xΓ -
γ  )(xγ  )(xΓ γ

 ;

)(xα  ( )(xΓ -
α , )(xΓα

 ) and )(xβ  ( )(xΓ -
β , )(xΓ β

 ) or

)(xΓ -
β  )(xβ  )(xΓ β

 ; )(xα  ( )(xΓ -
α , )(xΓα

 ) and

)(xγ  ( )(xΓ -
γ , )(xΓ γ

 ) for all x U, then Ξ = < Γ , χ > is

said to be an 
3
1 -INCS or

3
2 -ENCS.

Example 5. Consider Ξ = < Γ , χ >  NCSU, if )(xΓ  = <
[0. 5, 0.8], [0.15, 0.25], [0.2, 0.35 ] > and )(xχ = < 0.55, 

0.4, 0.5 > for all x U, then Ξ = < Γ , χ > is an 
3
1 -INCS

or
3
2 -ENCS.

Definition: 14 [10] 
Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two
NCSs in U, then 
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1. (Equality) 1Ξ = 2Ξ if and only if 1Γ = 2Γ
and 1χ = 2χ . 

2. (P-order) P1 Ξ 2Ξ  if and only if 1Γ ~ 2Γ
and 1χ 


2χ . 

3. (R-order) R1 Ξ 2Ξ  if and only 
if 1Γ ~ 2Γ and 1χ 


2χ . 

For convenience, p = < ([ -
αΓ , 

1αΓ ], [ 

1βΓ , 

1βΓ ], [ -
γΓ , 

γΓ ]), 

( α , β , γ ) > is said to represent neutrosophic cubic value 
(NCV) 

Definition: 15 
Complement [10]: Consider Ξ = < Γ , χ > be an NCS, 
then the complement of Ξ = < Γ , χ > is given by 

CΞ = { )(),(  ,
~

xχxΓx CC


  x U}. 

2.1 Several operational rules of NCVs 

Consider p1 =  < ([ -
αΓ

1
, 

1αΓ ], [ 

1βΓ , 

1βΓ ], [ -
γΓ

1
, 

1γ
Γ ]), 

( 1α , 1β , 1γ ) > and p2 = < ([ -
αΓ

2
, 

2αΓ ], [ 

2βΓ , 

2βΓ ], 

[ -
γΓ

2
, 

2γΓ ]), ( 2α , 2β , 2γ ) > be two NCVs in U, then the 
operational rules are presented as follows: 
1. The complement [10] of p1 is Cp1 = < ([ -

γΓ
1
, 

1γ
Γ ], [1-



1βΓ ,1- 

1βΓ ], [ -
αΓ

1
, 

1αΓ ]), ( 1γ , 1- 1β , 1α ) >. 

2. The summation between p1 and p2 is defined as
follows:

p1   p2 = < ([ -
αΓ

1
+ -

αΓ
2
- -

αΓ
1

-
αΓ

2
, 

1αΓ  + 

2αΓ -


1αΓ 

2αΓ ], [ 

1βΓ 

2βΓ , 

1βΓ 

2βΓ ], 

[ -
γΓ

1

-
γΓ

2
, 

1γ
Γ 

2γΓ ]), ( 1α + 2α - 1α 2α , 1β 2β , 1γ 2γ ) 
>. 

3. The multiplication between p1 and p2 is defined as
follows:

p1   p2= < ([ -
αΓ

1

-
αΓ

2
, 

1αΓ 

2αΓ ], [ 

1βΓ + 

2βΓ -


1βΓ 

2βΓ , 

1βΓ + 

2βΓ - 

1βΓ 

2βΓ ], [ -
γΓ

1
+ -

γΓ
2

-
-
γΓ

1

-
γΓ

2
, 

1γ
Γ + 

2γΓ - 

1γ
Γ 

2γΓ ]), ( 1α 2α , 1β + 2β -

1β 2β , 1γ + 2γ - 1γ 2γ ) >. 

4. Consider p1 =  < ([ -
αΓ

1
, 

1αΓ ], [ 

1βΓ , 

1βΓ ], [ -
γΓ

1
, 

1γ
Γ ]), 

( 1α , 1β , 1γ ) > be a NCV and κ be an arbitrary positive 

real number, then κ p1and κp1 are defined as follows: 

(i) κ p1= < ([1- (1- κ-
αΓ )

1
,1- (1- κ

αΓ )
1

 ], 

[( κ
βΓ )

1

 , κ
βΓ )(

1

 ],[( κ)
1



γΓ , κ)(
1



γΓ ]), (1- (1-
κα )1 , ( κβ )1 , ( κγ )1 ) >; 

(ii) κp1 = < ([( κ-
αΓ )

1
, ( κ

αΓ )
1

 ], [1- (1- κ
βΓ )

1

 ,1- (1-
κ

βΓ )
1

 ], [1- (1- κ
γΓ )

1

 ,1- (1- κ
γΓ )

1

 ]), 

(( κα )1 ,1-(1- κβ )1 ,1- (1- κγ )1 ) >. 

Definition: 16 [10] 
Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 
NCSs in U, then the Hamming distance between 1Ξ  and 

2Ξ is defined as follows: 

DH ( 1Ξ , 2Ξ ) = 


n

n 1i9
1

(| )( i1 xΓ -
α - )( i2 xΓ -

α | + | )( i1 xΓ -
β -

)( i2 xΓ -
β | + | )( i1 xΓ -

γ - )( i2 xΓ -
γ | + | )( i1 xΓ α

 - )( i2 xΓ α
 | + 

| )( i1 xΓ β
 - )( i2 xΓ β

 | + | )( i1 xΓ γ
 - )( i2 xΓ γ

 | + | )( i1 xα - )( i2 xα | 
+ | )( i1 xβ - )( i2 xβ | + | )( i1 xγ - )( i2 xγ |). 

Example 7: Suppose that 1Ξ = < 1Γ , 1χ >  = < ([0.6, 0.75], 
[0.15, 0.25], [0.25, 0.45]), (0.8, 0.35, 0.15) > and 2Ξ = 
< 2Γ , 2χ > = < ([0.45, 0.7], [0.1, 0.2], [0.05, 0.2]), (0.3, 
0.15, 0.45) > be two NCSs in U, then DH ( 1Ξ , 2Ξ ) = 
0.1944. 

Definition: 17  
Consider 1Ξ = < 1Γ , 1χ > and 2Ξ = < 2Γ , 2χ > be two 
NCSs in U, then the Euclidean distance between 1Ξ  and 

2Ξ is defined as given below. 
DE ( 1Ξ , 2Ξ ) = 
































n

1i
2

i2i1
2

i2i1
2

i2i1

2
i2i1

2
i2i1

2
i2i1

2
i2i1

2
i2i1

2
i2i1

))(-)(())(-)(())(-)((

))(-)(())(-)(())(-)((

))(-)(())(-)(())(-)((

9
1

xγxγxβxβxαxα

xΓxΓxΓxΓxΓxΓ

xΓxΓxΓxΓxΓxΓ

n γγ
-
γ

-
γββ

-
β

-
βαα

-
α

-
α

with the condition 0   DE ( 1Ξ , 2Ξ )  1. 

Example 8: Suppose that 1Ξ = < 1Γ , 1χ > = < ([0.4, 0.5], 
[0.1, 0.2], [0.25, 0.5]), (0.4, 0.3, 0.25) > and 2Ξ = < 2Γ , 

2χ > = < ([0.5, 0.9], [0.15, 0.3], [0.05, 0.1]), (0.7, 0.1, 
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0.15) > be two NCSs in U, then DE ( 1Ξ , 2Ξ ) = 0.2409. 

3 An extended TOPSIS method for MADM prob-
lems under neutrosophic cubic set environment 

In this Section, we introduce a new extended TOPSIS 
method to handle MADM problems involving 
neutrosophic cubic information. Consider B = {B1, B2, …, 
Bm}, (m  2) be a discrete set of m feasible alternatives and 
C = {C1, C2, …, Cn}, (n  2) be a set of attributes. Also, let 
w = (w1, w2, …, wn)T be the unknown weight vector of the
attributes with 0wj 1 such that 



n w
1j j = 1. Suppose that 

the rating of alternative Bi (i = 1, 2, …, m) with respect to 
the attribute Cj (j = 1, 2, …, n) is described by aij where  aij 
= < ([ -

αij
Γ , 

ijαΓ ], [ 

ijβΓ , 

ijβΓ ], [ -
γij

Γ , 

ijγΓ ]), ( ijα , ijβ , ijγ ) >. 
The proposed approach for ranking the alternatives under 
neutrosophic cubic environment is shown using the 
following steps: 

Step 1. Construction and standardization of decision 
matrix with neutrosophic cubic information 

Consider the rating of alternative Bi (i = 1, 2, …, m) with 
respect to the predefined attribute Cj, (j = 1, 2, …, n) be 
presented by the decision maker in the neutrosophic cubic 
decision matrix ( See eqn. 1). 

nmij


a = 























mnmm

n

n

a...aa
......
......
a...aa
a...aa

21

22221

11211

  (1)

In general, there are two types of attributes appear in the 
decision making circumstances namely (i) benefit type 
attributes J1, where the more attribute value denotes 
better alternative (ii) cost type attributes J2, where the 
less attribute value denotes better alternative. We 
standardize the above decision matrix 

nmij


a in order to 

remove the influence of diverse physical dimensions to 
decision results.  
Consider 

nmij


s  be the standardize decision matrix, 

where 

ijs = < ([ -
αij

Γ , 

ijαΓ ], [ 

ijβΓ , 

ijβΓ ], [ -
γij

Γ , 

ijγΓ ]),

( ijα , ijβ , ijγ )>, 
where 

ijs = aij, if the attribute j is benefit type;

ijs = c
ija , if the attribute j is cost type. 

Here c
ija denotes the complement of aij.

Step 2. Identify the weights of the attributes 
To determine the unknown weight of attribute in the 
decision making situation is a difficult task for DM. 
Generally, weights of the attributes are dissimilar and they 
play a decisive role in finding the ranking order of the 
alternatives. Pramanik and Mondal [16] defined arithmetic 
averaging operator (AAO) in order to transform interval 
neutrosophic numbers to SVNNs. Based on the concept of 
Pramanik and Mondal [16], we define AAO to transform 
NCVs to SNVs as follows: 
NCij <

ijαΓ ,
ijβΓ ,

ijγΓ > =

NCij 3
,

3
,

3
ijγ

-
γijβ

-
βijα

-
α γΓΓβΓΓαΓΓ

ijijijijijij
  

In this paper, we utilize information entropy method to 
find the weights of the attributes wj where weihgts of the 
attributes are unequal and fully unknown to the DM. 
Majumdar and Samanta [17] investigated some similarity 
measures and entropy measures for SVNSs where entropy 
is used to measure uncertain information. Here, we take the 
following notations: 

PΩT (xi) =












  

3
ijα

-
α αΓΓ

i ji j


, 
PΩI (xi) =













  

3
ijβ

-
β βΓΓ

i ji j


, 

P
F (xi) = 













  

3
ijγ

-
γ γΓΓ

ijij


Then we can write PΩ = )(),(),( iii xFxIxT
PPP ΩΩΩ . 

The entropy value is given as follows: 

Ei ( PΩ ) = 1 - )()())()((1
iii1i i xIxIxFxT

n
c
ΩΩΩ

m
Ω PPPP




which has the following properties: 
(i). Ei ( PΩ ) = 0 if PΩ is a crisp set and )( ixI

PΩ = 0, 
)( ixF

PΩ = 0 xE. 

(ii). Ei ( P ) = 0 if )(,)(,)( iii xFxIxT
PPP ΩΩΩ  = < )( ixT

PΩ , 

0.5, )( ixF
PΩ  >,  x  E. 

(iii). Ei ( PΩ )  Ei ( QΩ ) if PΩ is more uncertain 
than QΩ i.e. 

)( ixT
PΩ + )( ixF

PΩ  )( ixT
QΩ + )( ixF

QΩ

and )()( ii xIxI c
ΩΩ PP

  )()( ii xIxI c
ΩΩ QQ

 . 

(iv). Ei ( PΩ ) = Ei ( c
PΩ ), x  E. 

Consequently, the entropy value Evj of the j-th attribute 
can be calculated as as follows:. 
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Evj = 1 - )()())()((1
iii1i i xIxIxFxT

n
C
ijijij

m
ij 


, i = 1, 2, …, 

m; j = 1, 2,…, n.
We observe that 0  Evj  1. Based on Hwang and Yoon 
[18] and Wang and Zhang [19] the entropy weight of the
j-th attribute is defined as follows:

wj = 
 





n

1j j

j

)Ev(1

Ev1
 with 0  wj  1 and 



n w
1j j = 1. 

Step 3. Formulation of weighted decision matrix     
The weighted decision matrix is obtained by multiplying 
weights of the attributes (wj) and the standardized decision 
matrix

nmij


s . Therefore, the weighted neutrosophic cubic 

decision matrix
nmij


z  is obtained as: 

nmij


z = jw 
nmij


a =





















mnnmm

nn

nn

sw...swsw

......
sw...swsw

sw...swsw

2211

2222211

1122111

 = 























mnmm

n

n

z...zz
......
......
z...zz
z...zz

21

22221

11211

where 
zij = < ([ -

αij
Γ , 

ijαΓ ], [ 

ijβΓ , 

ijβΓ ], [ -
γij

Γ , 

ijγΓ ]), ( ijα , ijβ , ijγ ) > 

= < ([1- (1- j

ij
)w-

αΓ ,1- (1- j)w
αij

Γ  ], 

[( j)w
βij

Γ  , j

ij
)( w

βΓ  ],[( j

i j
)w

γΓ  , j)( w
γij

Γ  ]), (1- (1- j)ij
wα , 

( j)ij
wβ , ( j)ij

wγ ) > 

Step 4. Selection of neutrosophic cubic positive ideal 
solution (NCPIS) and neutrosophic cubic negative ideal 
solution (NCNIS) 
Consider zU = ( Uz1 , Uz2 , …, U

nz ) and zL = ( Lz1 , Lz2 , …, L
nz ) 

be the NCPIS and NCNIS respectively, then U
jz is defined

as follows: 
U
jz = < ([( -

α j
Γ )U, ( 

jαΓ )U], [( 

jβΓ )U, ( 

jβΓ )U], [( -
γ j

Γ )U,

( 

jγΓ )U]), (( jα )U, ( jβ )U, ( jγ )U) > 
where 

( -
α j

Γ )U = {(
i

max { -
αij

Γ }| jJ1), (
i

min { -
αij

Γ }| jJ2)},

( 

jαΓ )U = {(
i

max { 

ijαΓ }| jJ1), (
i

min { 

ijαΓ }| jJ2)},

( 

jβΓ )U = {(
i

min { 

ijβΓ }| jJ1), (
i

max { 

ijβΓ }| jJ2)},

( 

jβΓ )U ={(
i

min { 

ijβΓ }| jJ1), (
i

max { 

ijβΓ }| jJ2)},

( -
γ j

Γ )U= {(
i

min { -
γij

Γ }| jJ1), (
i

max { -
γij

Γ }| jJ2)},

( 

jγΓ )U ={(
i

min { 

ijγΓ }| jJ1), (
i

max { 

ijγΓ }| jJ2)},

( jα )U = {(
i

max { ijα }| jJ1), (
i

min { ijα }| jJ2)},

( jβ )U = {(
i

min { ijβ }| jJ1), (
i

max { ijβ }| jJ2)},

 ( jγ )U = {(
i

min { ijγ }| jJ1), (
i

max { ijγ }| jJ2)};

and L
jz is defined as given below 

L
jz = < [( -

αij
Γ )L, ( 

ijαΓ )L], [( 

ijβΓ )L, ( 

ijβΓ )L], [( -
γij

Γ )L,

( 

ijγΓ )L], (( ijα )L, ( ijβ )L, ( ijγ )L)> 

where ( -
α j

Γ )L = {(
i

min { -
αij

Γ }| jJ1), (
i

max { -
αij

Γ }|

jJ2)}, ( 

jαΓ )L = {(
i

min { 

ijαΓ }| jJ1), (
i

max { 

ijαΓ }|

jJ2)}, ( 

jβΓ )L = {(
i

max { 

ijβΓ }| jJ1), (
i

min { 

ijβΓ }|

jJ2)}, ( 

jβΓ )L ={(
i

max { 

ijβΓ }| jJ1), (
i

min { 

ijβΓ }|

jJ2)}, ( -
γ j

Γ )L= {(
i

max { -
γij

Γ }| jJ1), (
i

min { -
γij

Γ }|

jJ2)}, ( 

jγΓ )L ={(
i

max { 

ijγΓ }| jJ1), (
i

min { 

ijγΓ }|

jJ2)}, ( jα )L = {(
i

min { ijα }| jJ1), (
i

max { ijα }| jJ2)},

( jβ )L = {(
i

max { ijβ }| jJ1), (
i

min { ijβ }| jJ2)}, ( jγ )L = 

{(
i

max { ijγ }| jJ1), (
i

min { ijγ }| jJ2)}.

Step 5. Calculate the distance measure of alternatives 
from NCPIS and NCNIS 
The Euclidean distance measure of each alternative Bi, i = 
1, 2, …, m from NCPIS can be defined as follows: 



iED = 
































n

1j
222

222

222

))(())(()((

))(()(())((

()(

9
1

U
jij

U
jij

U
jij

U
γγ

U-
γ

-
γ

U
ββ

U
ββ

U
αα

U-
α

-
α

γ-γβ-β)α-α

Γ-Γ)Γ-ΓΓ-Γ

))Γ-(Γ())Γ-(Γ)Γ-(Γ

n jijjijjij

jijjijjij
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Similarly, the Euclidean distance measure of each 
alternative Bi, i = 1, 2, …, m from NCNIS can be written as 
follows: 



iED = 
































n

j
L

jij
L

jij
L

jij

L
γγ

L-
γ

-
γ

L
ββ

L
ββ

L
αα

L-
α

-
α

γ-γβ-βα-α

Γ-ΓΓ-ΓΓ-Γ

Γ-ΓΓ-ΓΓ-Γ

n jijjijjij

jijjijjij

1
222

222

222

))(())(())((

))(())(())((

))(())(())((

9
1







. 

Step 6. Evaluate the relative closeness co-efficient to the 
neutrosophic cubic ideal solution 
The relative closeness co-efficient *

iRCC of each Bi, i = 1, 

2, …, m with respect to NCPIS U
jz , j = 1, 2, …, n is 

defined as follows: 

*
iRCC =






ii

i

EE

E

DD
D

, i = 1, 2, …, m. 

Step 7. Rank the alternatives 
We obtain the ranking order of the alternatives based on 
the *

iRCC . The bigger value of *
iRCC reflects the better 

alternative. 

4. Numerical example

In this section, we consider an example of neutrosophic 
cubic MADM, adapted from Mondal and Pramanik [20] to 
demonstrate the applicability and the effectiveness of the 
proposed extended TOPSIS method.  
Consider a legal guardian desires to select an appropriate 
school for his/ her child for basic education [20]. Suppose 
there are three possible alternatives for his/ her child:  
(1) B1, a Christian missionary school
(2) B2, a Basic English medium school
(3) B3, a Bengali medium kindergarten.
He/ She must take a decision based on the following four
attributes:
(1) C1 is the distance and transport,
(2) C2 is the cost,
(3) C3 is the staff and curriculum, and
(4) C4 is the administrative and other facilities
Here C1 and C2 are cost type attributes; while C3 and C4 are
benefit type attributes. Suppose the weights of the four
attributes are unknown. Using the the following steps, we
solve the problem.

Step 1. The rating of the alternative Bi, i = 1, 2, 3 with 
respect to the alternative Cj, j = 1, 2, 3, 4 is represented by 
neutrosophic cubic assessments. The decision matrix 

43ij


a is shown in Table 1. 

Table 1. Neutrosophic cubic decision matrix 
C1 C2

B1 ]),35.0,2.0[],2.0,1.0[],4.0,3.0([

)25.0,4.0,3.0(
]),3.0,2.0[],1.0,05.0[],7.0,6.0([

)25.0,1.0,5.0(
B2 ]),3.0,15.0[],2.0,1.0[],9.0,8.0([

)3.0,15.0,7.0(
]),5.0,3.0[],4.0,1.0[],5.0,3.0([

)2.0,3.0,4.0(
B3 ]),4.0,25.0[],4.0,2.0[],7.0,6.0([

)3.0,3.0,5.0(
]),3.0,2.0[],25.0,1.0[],35.0,2.0([

)4.0,3.0,3.0(

C3 C4
B1 ]),3.0,1.0[],4.0,2.0[],6.0,5.0([

)4.0,3.0,5.0(
]),3.0,1.0[],25.0,1.0[],6.0,4.0([

)4.0,2.0,5.0(
B2 ]),2.0,05.0[],35.0,2.0[],5.0,4.0([

)1.0,1.0,35.0(
]),25.0,1.0[],35.0,2.0[],3.0,2.0([

)1.0,1.0,4.0(
B3 ]),25.0,15.0[],3.0,1.0[],7.0,4.0([

)2.0,2.0,5.0(
]),25.0,2.0[],2.0,1.0[],7.0,5.0([

)2.0,1.0,3.0(

Step 2. Standardize the decision matrix. 
 The standardized decision matrix 

43ij


s  is constructed as 

follows (see Table 2): 

Table 2. The standardized neutrosophic cubic decision 
matrix 

C1 C2
B1 ]),4.0,3.0[,9.0,8.0[],35.0,2.0([

)3.0,6.0,25.0(
]),7.0,6.0[],95.0,9.0[],3.0,2.0([

)5.0,9.0,25.0(
B2 ]),9.0,8.0[],9.0,8.0[],3.0,15.0([

)7.0,85.0,3.0(
]),5.0,3.0[],9.0,6.0[],5.0,3.0([

)4.0,7.0,2.0(
B3 ]),7.0,6.0[],8.0,6.0[],4.0,25.0([

)5.0,7.0,3.0(
]),35.0,2.0[],9.0,75.0[],3.0,2.0([

)3.0,7.0,4.0(

C3 C4
B1 ]),3.0,1.0[],4.0,2.0[],6.0,5.0([

)4.0,3.0,5.0(
]),3.0,1.0[],25.0,1.0[],6.0,4.0([

)4.0,2.0,5.0(
B2 ]),2.0,05.0[],35.0,2.0[],5.0,4.0([

)1.0,1.0,35.0(
]),25.0,1.0[],35.0,2.0[],3.0,2.0([

)1.0,1.0,4.0(
B3 ]),25.0,15.0[],3.0,1.0[],7.0,4.0([

)2.0,2.0,5.0(
]),25.0,2.0[],2.0,1.0[],7.0,5.0([

)2.0,1.0,3.0(

Step 3. Using AAO, we transform NCVs into SNVs. We 
calculate entropy value Ej of the j-th attribute as follows: 

Ev1 = 0.644, Ev2 = 0.655, Ev3 = 0.734, Ev4 = 0.663. 
The weight vector of the four attributes are obtained as: 

w1 = 0.2730, w2 = 0.2646, w3 = 0.2040, w4 = 0.2584. 

Step 4. After identifying the weight of the attribute (wj), 
we multiply the standardized decision matrix with wj, j = 1, 
2, …, n to obtain the weighted decision matrix 

43ij


z (see 

Table 3). 
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Table 3. The weighted neutrosophic cubic decision matrix 
C1 C2

B1 ]),779.0,720.0[,972.0,941.0[],110.0,059.0([

)72.0,87.0,075.0(
]),91.0,874.0[],986.0,972.0[,090.0,057.0([

)832.0,972.0,073.0(
B2 ]),972.0,941.0[],972.0,941.0[],093.0,043.0([

)907.0,957.0,093.0(
]),832.0,727.0[],972.0,874.0[],168.0,09.0([

)785.0,910.0,057.0(
B3 ]),907.0,87.0[],941.0,87.0[],13.0,076.0([

( )828.0,907.0,093.0
]),757.0,653.0[],972.0,928.0[],090.0,057.0([

)727.0,910.0,126.0(

C3 C4
B1 ]),782.0,625.0[],830.0,720.0[],17.0,132.0([

)625.0,625.0,084.0(
]),733.0,552.0[],699.0,552.0[],211.0,124.0([

)789.0,660.0,164.0(
B2 ]),720.0,543.0[],807.0,720.0[],132.0,100.0([

)625.0,625.0,084.0(
]),699.0,552.0[],762.0,66.0[],088.0,056.0([

)552.0,552.0,124.0(
B3 ]),754.0,679.0[],782.0,625.0[],218.0,100.0([

)720.0,720.0,132.0(
]),699.0,660.0[],660.0,552.0[],267.0,164.0([

)660.0,522.0,088.0(

Step 5. From Table 3, the NCPIS U
jz , j = 1, 2, 3, 4 is 

obtained as follows: 
U
1z = < ([0.043, 0.093], [0.941, 0.972], [0.941, 0.972]), 

(0.075, 0.957, 0.907) >, 
U
2z = < ([0.057, 0.09], [0.972, 0.986], [0.874, 0.91]), (0.057, 

0.972, 0.832) >, 
U
3z = < ([0.132, 0.218], [0.625, 0.782], [0.543, 0.72],

(0.132, 0.625, 0.625)>, 
U
4z = < [0.164, 0.267], [0.552, 0.66], [0.552, 0.699], (0.66,

0.552, 0.552)>; 
The NCNIS L

jz , j = 1, 2, 3, 4 is determined from the 
weighted decision matrix (see Table 3) as follows: 

L
1z = < [0.076, 0.13], [0.87, 0.941], [0.72, 0.779], (0.093, 

0.87, 0.72)>, 
L
2z = < [0.09, 0.168], [0.874, 0.972], [0.653, 0.757], (0.126, 

0.91, 0.727)>, 
L
3z = < [0.1, 0.132], [0.72, 0.83], [0.679, 0.782], (0.084, 

0.782, 0.83)>, 
L
4z = < [0.056, 0.088], [0.66, 0.762], [0.66, 0.733], (0.088, 

0.66, 0.789)>. 

Step 6. The Euclidean distance measure of each alternative 
from NCPIS is obtained as follows: 



1ED = 0.1232, 

2ED = 0.1110, 

3ED = 0.1200. 
Similarly, the Euclidean distance measure of each 
alternative from NCNIS is computed as follows: 



1ED = 0.0705, 

2ED = 0.0954, 

3ED = 0.0736. 

Step 7. The relative closeness co-efficient *
iRCC , i = 1, 2,

3 is obtained as follows: 
*RCC1 = 0.3640, *RCC2 = 0.4622, *RCC3 = 0.3802. 

Step 8. The ranking order of the feasible alternative 
according to the relative closeness co-efficient of the 
neutrosophic cubic ideal solution is presented as follows: 

B2 > B3 > B1 
Therefore, B2 i.e. a Basic English medium school is the 
best option for the legal guardian. 

5 Conclusions 

In the paper, we have presented a new extended TOPSIS 
method for solving MADM problems with neutrosophic 
cubic information. We have proposed several operational 
rules on neutrosophic cubic sets. We have defined 
Euclidean distance between two neutrosophic cubic sets. 
We have defined arithmetic average operator for 
neutrosophic cubic numbers. We have employed 
information entropy scheme to calculate unknown weights 
of the attributes. We have  also defined neutrosophic cubic 
positive ideal solution and neutrosophic cubic negative 
ideal solution in the decision making process. Then, the 
most desirable alternative is selected based on the 
proposed extended TOPSIS method under neutrosophic 
cubic environment. Finally, we have solved a numerical 
example of MADM problem regarding school selection for 
a legal guardian to illustarte the proposed TOPSIS method. 
We hope that the proposed TOPSIS method will be 
effective in dealing with different MADM problems such 
as medical diagnosis, pattern recognition, weaver selection, 
supplier selection, etc in neutrosophic cubic set 
environment. 
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Abstract. In this research paper, we propose the graph of the bipolar
single-valued neutrosophic set (BSVNS) model. This graph generalized the
graphs of single-valued neutrosophic set models. Several results have been
proved on complete and isolated graphs for the BSVNS model. Moreover, an
essential and satisfactory condition for the graphs of the BSVNS model to
become an isolated graph of the BSVNS model has been demonstrated.

Keywords: BSVNGs � Complete BSVNG � Isolated BSVNGs

1 Introduction

Smarandache [1] proposed the concept of neutrosophic sets (in short NSs) as a means
of expressing the inconsistencies and indeterminacies that exist in most real-life
problems. The proposed concept generalized fuzzy sets and intuitionistic fuzzy sets
theory [2, 3]. The notion of NS is described with three functions: truth, an indeter-
minacy and a falsity, where the functions are totally independent; the three functions
are inside the unit interval]−0, 1+[. To practice NSs in real-life situations efficiently, a
new version of NSs. A new version of NSs named single-valued neutrosophic sets (in
short SVNSs) was defined by Smarandache in [1]. Subsequently, Wang et al. [4]
defined the various operations and operators for the SVNS model. In [5], Deli et al.
introduced the notion of bipolar neutrosophic sets, which combine the bipolar fuzzy
sets and SVNS models. Neutrosophic sets and their extensions have been paid great
attention recent years [6]. The theory of graphs is the mostly used tool for resolving
combinatorial problems in various fields such as computer science, algebra and
topology. Smarandache [1, 7] introduced two classes of neutrosophic graphs to deal
with situations in which there exist inconsistencies and indeterminacies among the
vertices which cannot be dealt with by fuzzy graphs and different hybrid structures [8–
10]. The first class is relied on literal indeterminacy (I) component, and the second class
of neutrosophic graphs is based on numerical truth values (T, I, F). Subsequently,

An Isolated Bipolar Single-Valued Neutrosophic 
Graphs 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache (2017). An 
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Broumi et al. [11–13] introduced the concept single-valued neutrosophic graphs (in
short SVNGs) and discussed some interesting results. Later on, the same authors [14–
17] proposed the concept of bipolar single-valued neutrosophic graphs (BSVNGs) and
established some interesting results with proofs and illustrations.

The objective of our article is to demonstrate the essential and satisfactory condi-
tion of BSVNGs to be an isolated BSVNG.

2 Background of Research

Some of the important background knowledge for the materials that are presented in
this paper is presented in this section. These results can be found in [1, 4, 5, 12, 13].

Definition 2.1 [1]. Let f be a universal set. The neutrosophic set A on the universal set
f is categorized into three membership functions, namely the true TAðxÞ, indeterminate
IAðxÞ and false FAðxÞ contained in real standard or non-standard subset of ]−0, 1+[,
respectively.

�0� sup TAðxÞþ sup IAðxÞþ sup FAðxÞ� 3þ ð1Þ

Definition 2.2 [4]. Let f be a universal set. The single-valued neutrosophic sets
(SVNSs) A on the universal f is denoted as following

A ¼ f\x : TAðxÞ; IAðxÞ; FAðxÞ[ x 2 fg ð2Þ

The functions TAðxÞ 2 0; 1½ �, IAðxÞ 2 0; 1½ � and FAðxÞ 2 0; 1½ � are called “degree of
truth, indeterminacy and falsity membership of x in A”, which satisfy the following
condition:

0� TAðxÞþ IAðxÞþFAðxÞ� 3 ð3Þ

Definition 2.3 [12]. A SVNG of G� ¼ ðV;EÞ is a graph G = (A, B) where

a. The following memberships: TA : V ! 0; 1½ �, IA : V ! 0; 1½ � and FA : V ! 0; 1½ �
represent the truth, indeterminate and false membership degrees of x 2 V
respectively and

0� TAðwÞþ IAðwÞþFAðwÞ� 3 8w 2 V ð4Þ

b. The following memberships: TB : E ! 0; 1½ �, IB : E ! 0; 1½ � and FB : E ! 0; 1½ � are
defined by

TBðv;wÞ�min½TAðvÞ;TAðwÞ� ð5Þ

IBðv;wÞ�max½IAðvÞ; IAðwÞ� and ð6Þ
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FBðv; wÞ�max½FAðvÞ; FAðwÞ� ð7Þ

Represent the true, indeterminate and false membership degrees of the arc (v, w) 2
(V x V), where (Fig. 1)

0�TBðv; wÞþ IBðv;wÞþ FBðv;wÞ� 3 8ðv;wÞ 2 E ð8Þ

Definition 2.4 [12]. A SVNG G = (A, B) is named complete SVNG if

TBðv;wÞ ¼ min½TAðvÞ;TAðwÞ� ð9Þ

IBðv; wÞ ¼ max½IAðvÞ; IAðwÞ� ð10Þ

FBðv; wÞ ¼ max½FAðvÞ; FAðwÞ� 8 v;w 2 V ð11Þ

Definition 2.5 [12]. Given a SVNG G = (A, B). Hence, the complement of SVNG on
G� is a SVNG �G on G� where

a:�A ¼ A ð12Þ

b:�TAðwÞ ¼ TAðwÞ;�IAðwÞ ¼ IAðwÞ; �FAðwÞ ¼ FAðwÞ 8w 2 V ð13Þ

c:�TBðv;wÞ ¼ min TAðvÞ;TAðwÞ½ � � TBðv;wÞ ð14Þ

(0.5, 0.4 ,0.5)

(0
.2

, 0
.3

 ,0
.4

)

(0
.4

, 0
.3

 ,0
.6

)

(0.2, 0.3 ,0.4)

(0.5, 0.1 ,0.4)

4v
3v

1v 2v

(0.6, 0.3 ,0.2)

(0.2, 0.4,0.5)
(0.4 0.2 ,0.5)

Fig. 1. SVN graph
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�IBðv;wÞ ¼ max IAðvÞ; IAðwÞ½ � � IBðv;wÞ and ð15Þ
�FBðv; wÞ ¼ max FAðvÞ;FAðwÞ½ � � FBðv;wÞ; 8ðv;wÞ 2 E ð16Þ

Definition 2.6 [14]. A BSVNG of G� ¼ ðV;EÞ is a partner G = (A, B) where A ¼
ðTP

A; I
P
A; F

P
A;T

N
A; I

N
A; F

N
AÞ is a BSVNS in V and B ¼ ðTP

B; I
P
B; F

P
B;T

N
B ; I

N
B ; F

N
BÞ is a BSVNS

in ~V
2
such that (Fig. 2)

TP
Bðv;wÞ�minðTP

AðvÞ;TP
AðwÞÞ; TN

Bðv;wÞ�maxðTN
AðvÞ;TN

AðwÞÞ ð17Þ

IPBðv;wÞ�maxðIPAðvÞ; IPAðwÞÞ INBðv; wÞ�minðINAðvÞ; INAðwÞÞ ð18Þ

FPBðv;wÞ�maxðFPAðvÞ; FPAðwÞÞ; FNBðv;wÞ�minðFNAðvÞ; FNAðwÞÞ 8 v;w 2 ~V
2 ð19Þ

Definition 2.7 [14]. The complement of BSVNG G = (A, B) of G� ¼ ðA;BÞ is a
BSVNG �G ¼ ð�A; �BÞ of �G� ¼ ðV;VxVÞ where �A ¼ A ¼ ðTP

A; I
P
A; F

P
A;T

N
A; I

N
A; F

N
AÞ and

�B ¼ ð�TP
B;
�IPB; �F

P
B;

�TN
B ;
�INB ; �F

N
BÞ is defined as

�TP
Bðv; wÞ ¼ minðTP

AðvÞ;TP
AðwÞÞ � TP

Bðv;wÞ ð20Þ

�IPBðv; wÞ ¼ maxðIPAðvÞ; IPAðwÞÞ � IPBðv;wÞ ð21Þ

�FPBðv;wÞ ¼ maxðFPAðvÞ; FPAðwÞÞ � FPBðv;wÞ ð22Þ
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 -0
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Fig. 2. BSVNG
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T
N
Bðv;wÞ ¼ maxðTN

AðvÞ;TN
AðwÞÞ � TN

Bðv;wÞ ð23Þ

�INBðv;wÞ ¼ minðINAðvÞ; INAðwÞÞ � INBðv;wÞ ð24Þ

�FNBðv;wÞminðFNAðvÞ; ðwÞÞ � FNBðv;wÞ 8 v;w 2 V; vw 2 ~V
2 ð25Þ

Definition 2.8 [14]. A BSVNG G = (A, B) is said to be complete BSVNG if

TP
Bðv; wÞ ¼ minðTP

AðvÞ;TP
AðwÞÞ; TN

Bðv;wÞ ¼ maxðTN
AðvÞ;TN

AðwÞÞ; ð26Þ

IPBðv;wÞ ¼ maxðIPAðvÞ; IPAðwÞÞ; INBðv; wÞ ¼ minðINAðvÞ; INAðwÞÞ ð27Þ

FPBðv;wÞ ¼ maxðFPAðvÞ; FPAðwÞÞ; FNBðv;wÞ ¼ minðFNAðvÞ; FNAðwÞÞ 8 v;w 2 V ð28Þ

Theorem 2.9 [13]: Let G = (A,B) be a SVNG, then the SVNG is called an isolated
SVNG if and only if the complement of G is a complete SVNG.

3 Main Results

Theorem 3.1: A BSVNG = (A,B) is an isolated BSVNG iff the complement of
BSVNG is a complete BSVNG.
Proof: Given G = (A, B) be a complete BSVNG.

So TP
Bðv;wÞ ¼ minðTP

AðvÞ;TP
AðwÞÞ; Tn

Bðv; wÞ ¼ maxðTn
AðvÞ;Tn

AðwÞÞ;
IPBðv;wÞ ¼ maxðIPAðvÞ; IPAðwÞÞ; InBðv;wÞ ¼ minðInAðvÞ; InAðwÞÞ;
FPBðv; wÞ ¼ maxðFPAðvÞ; FPAðwÞÞ; FnBðv; wÞ ¼ minðFnAðvÞ; FnAðwÞÞ;
8 v;w 2 V :

Hence in �G,

�TP
B ðv; wÞ ¼ minðTP

A ðvÞ; TP
A ðwÞÞ � TP

B ðv;wÞ
¼ minðTP

A ðvÞ; TP
A ðwÞÞ � minðTP

A ðvÞ; TP
A ðwÞÞ

¼ 0

and

�IPBðv;wÞ ¼ maxðIPAðvÞ; IpAðwÞÞ � IPBðv;wÞ
¼ maxðIPAðvÞ; IPAðwÞÞ � maxðIPAðvÞ; IPAðwÞÞ
¼ 0
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In addition

�FP
Bðv;wÞ ¼ maxðFP

AðvÞ;Fp
AðwÞÞ � FP

Bðv;wÞ
¼ maxðFP

AðvÞ;FP
AðwÞÞ � maxðFP

AðvÞ;FP
AðwÞÞ

¼ 0

We have for the negative membership edges

�TN
B ðv;wÞ ¼ maxðTN

AðvÞ;TN
AðwÞÞ � TN

B ðv;wÞ
¼ maxðTN

A ðvÞ; TN
A ðwÞÞ � maxðTN

AðvÞ;TN
AðwÞÞ

¼ 0

and

�INB ðv;wÞ ¼ minðINA ðvÞ; INA ðwÞÞ � INB ðv;wÞ
¼ minðINA ðvÞ; INA ðwÞÞ � minðINA ðvÞ; INA ðwÞÞ
¼ 0

In addition

�FN
B ðv;wÞ ¼ minðFN

A ðvÞ;FN
A ðwÞÞ � FN

B ðv;wÞ
¼ minðFN

A ðvÞ;FN
A ðwÞÞ � minðFN

A ðvÞ;FN
A ðwÞÞ

¼ 0

So ð�TP
B ðv;wÞ;�IpBðv; wÞ; �FP

Bðv;wÞ; �TN
B ðv;wÞ;�INB ðv;wÞ; �FN

B ðv; wÞÞ ¼ ð0; 0; 0; 0; 0; 0Þ

Hence G ¼ ðA;BÞ is an isolated BSVNGs

Proposition 3.2: The notion of isolated BSVNGs generalized the notion of isolated
fuzzy graphs.

Proof: If the value of IPAðwÞ ¼ FPAðwÞ ¼ Tn
AðwÞ ¼ InAðwÞ ¼ FnAðwÞ ¼ 0, then the notion

of isolated BSVNGs is reduced to isolated fuzzy graphs.

Proposition 3.3: The notion of isolated BSVNGs generalized the notion of isolated
SVNGs.

Proof: If the value of Tn
AðwÞ ¼ InAðwÞ ¼ FnAðwÞ ¼ 0InAðwÞ, then the concept of isolated

BSVNGs is reduced to isolated SVNGs.

4 Conclusion

In this article, we have extended the notion of isolated SVNGs to the notion of isolated
BSVNGs. The notion of isolated BSVNGs generalized the isolated SVNGs.
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Abstract. In this paper, an algorithm for searching the minimum spanning tree
(MST) in a network having trapezoidal fuzzy neutrosophic edge weight is
presented. The network is an undirected neutrosophic weighted connected graph
(UNWCG). The proposed algorithm is based on matrix approach to design the
MST of UNWCG. A numerical example is provided to check the validity of the
proposed algorithm. Next, a comparison example is made with Mullai’s algorithm
in neutrosophic graphs.

Keywords: Neutrosophic sets · Trapezoidal fuzzy neutrosophic sets
Score function · Neutrosophic graph · Minimum spanning tree

1 Introduction

In 1998, Smarandache [1] proposed the concept of neutrosophic set (NS) from the phil‐
osophical point of view, to represent uncertain, imprecise, incomplete, inconsistent, and
indeterminate information that are exist in the real world. The concept of neutrosophic
set generalizes the concept of the classic set, fuzzy set, and intuitionistic fuzzy set (IFS).
The major differences between the IFS and neutrosophic set (NS) are the structure of
the membership functions, the dependence of the membership functions, and the
constraints in the values of the membership functions. A NS has a triple-membership
structure which consists of three components, namely the truth, falsity and indetermi‐
nacy membership functions, as opposed to the IFS in which information is described by
a membership and non-membership function only. Another major difference is the
constraint between these membership functions. In a NS, the three membership func‐
tions are independent of one another and the only constraint is that the sum of these
membership functions must not exceed three. This is different from the IFS where the
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values of the membership and non-membership functions are dependent on one another, 
and the sum of these must not exceed one. To apply the concept of neutrosophic sets 
(NS) in science and engineering applications, Smarandache [1] initiated the concept of 
single-valued neutrosophic set (SVNS). In a subsequent paper, Wang et al. [2], studied 
some properties related to SVNSs. We refer the readers to [3, 11, 13–15] for more 
information related to the extensions of NSs and the advances that have been made in 
the application of NSs and its extensions in various fields. The minimum spanning tree 
problem is one of well–known problems in combinatorial optimization. When the edge 
weights assigned to a graph are crisp numbers, the minimum spanning tree problem can 
be solved by some well-known algorithms such as Prim and Kruskal algorithm. By 
combining single valued neutrosophic sets theory [1, 2] with graph theory, references 
[6–9] introduced single valued neutrosophic graph theory (SVNGT for short). The 
SVNGT is generation of graph theory. In the literature some scholars have studied the 
minimum spanning tree problem in neutrosophic environment. In [4], Ye introduced a 
method for finding the minimum spanning tree of a single valued neutrosophic graph 
where the vertices are represented in the form of SVNS. Mandal and Basu [5] proposed 
an approach based on similarity measure for searching the optimum spanning tree prob‐
lems in a neutrosophic environment considering the inconsistency, incompleteness and 
indeterminacy of the information. In their work, they applied the proposed approach to 
a network problem with multiple criteria. In another study, Mullai et al. [10] discussed 
about the minimum spanning tree problem in bipolar neutrosophic environment.

The main purpose of this paper is to propose a neutrosophic version of Kruskal
algorithm based on the matrix approach for searching the cost minimum spanning tree
in a network having trapezoidal fuzzy neutrosophic edge weight [12].

The rest of the paper is organized as follows. Section 2 briefly introduces the concepts
of neutrosophic sets, single valued neutrosophic sets and the score function of trape‐
zoidal neutrosophic number. Section 3 proposes a novel approach for searching the
minimum spanning tree in a network having trapezoidal fuzzy neutrosophic edge length.
In Sect. 4, a numerical example is presented to illustrate the proposed method. In
Sect. 5, a comparative example with other method is provided. Finally, Sect. 6 presents
the main conclusions.

2 Preliminaries and Definitions

In this section, the concept of neutrosophic sets single valued neutrosophic sets and
trapezoidal fuzzy neutrosophic sets are presented to deal with indeterminate data, which
can be defined as follows.

Definition 2.1 [1]. Let 𝜉 be an universal set. The neutrosophic set A on the universal
set 𝜉 categorized in to three membership functions called the true TA(x), indeterminate
IA(x) and false FA(x) contained in real standard or non-standard subset of ]−0, 1+[ respec‐
tively.

−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+ (1)
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Definition 2.2 [2]. Let 𝜉 be a universal set. The single valued neutrosophic sets (SVNs)
A on the universal 𝜉 is denoted as following

A =
{
< x: TA(x), IA(x), FA(x) > x ∈ 𝜉

}
(2)

The functions TA(x) ∈ [0. 1], IA(x) ∈ [0. 1] and FA(x) ∈ [0. 1] are named degree
of truth, indeterminacy and falsity membership of x in A, satisfy the following condition:

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 (3)

Definition 2.3 [12]. Let 𝜁 be a universal set and 𝜓 [0, 1] be the sets of all trapezoidal
fuzzy numbers on [0, 1]. The trapezoidal fuzzy neutrosophic sets (In short TrFNSs) 

⌣

A

on the universal is denoted as following:

⌣

A =

{
< x:

⌣

TA(x),
⌣

IA(x),
⌣

FA(x) >, x ∈ 𝜁

}
(4)

Where 
⌣

TA(x): 𝜁 → 𝜓[0, 1], 
⌣

IA(x): 𝜁 → 𝜓[0, 1] and 
⌣

FA(x): 𝜁 → 𝜓[0, 1]. The trape‐
zoidal fuzzy numbers

⌣

TA(x) =
(
T1

A
(x), T2

A
(x), T3

A
(x), T4

A
(x)

)
(5)

⌣

IA(x) =
(
I1

A
(x), I2

A
(x), I3

A
(x), I4

A
(x)

)
(6)

and
⌣

FA(x) =
(
F1

A
(x), F2

A
(x), F3

A
(x), F4

A
(x)

)
, respectively denotes degree of truth, inde‐

terminacy and falsity membership of x in 
⌣

A∀x ∈ 𝜁.

0 ≤ T4
A
(x) + I4

A
(x) + F4

A
(x) ≤ 3 (7)

Definition 2.4. [12]. Let 
⌣

A1 be a TrFNV denoted as
⌣

A1 = ⟨(t1, t2, t3, t4), (i1, i2, i3, i4), (f1, f2, f3, f4)⟩ Hence, the score function and the
accuracy function of TrFNV are denoted as below:

(i) s(
⌣

A1) =
1

12
[
8 + (t1 + t2 + t3 + t4) − (i1 + i2 + i3 + i4) − (f1 + f2 + f3 + f4)

]
(8)

(ii) H(
⌣

A1) =
1
4
[
(t1 + t2 + t3 + t4) − (f1 + f2 + f3 + f4)

]
(9)

In order to make a comparisons between two TrFNV, Ye [12], presented the order
relations between two TrFNVs.

Definition 2.5 [12]. Let 
⌣

A1 and 
⌣

A2 be two TrFNV defined on the set of real numbers.
Hence, the ranking method is defined as follows:
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i. If s(
⌣

A1) ≻ s(
⌣

A2), then 
⌣

A1 is greater than 
⌣

A2, that is, 
⌣

A1 is superior to 
⌣

A2, denoted by
⌣

A1 ≻
⌣

A2

If s(
⌣

A1) = s(
⌣

A2), and H(
⌣

A1) ≻ H(
⌣

A2) then 
⌣

A1 is greater than 
⌣

A2, that is, 
⌣

A1 is superior
to 

⌣

A2, denoted by 
⌣

A1 ≻
⌣

A2.

3 Minimum Spannig Tree Algorithm of TrFN- Undirected Graph

In this section, a neutrosophic version of Kruskal’s algorithm is proposed to handle
Minimum spanning tree in a neutrosophic environment and a trapezoidal fuzzy neutro‐
sophic minimum spanning tree algorithm, whose steps are described below:

Algorithm:

Input: The weight matrix M =
[
Wij

]
n×n

 for which is constructed for undirected
weighted neutrosophic graph (UWNG).

Step 1: Input trapezoidal fuzzy neutrosophic adjacency matrix A.

Step 2: Construct the TrFN-matrix into a score matrix 
[
Sij

]
n×n

 by using the score func‐
tion (8).
Step 3: Repeat step 4 and step 5 up to time that all nonzero elements are marked or in
another saying all (n−1) entries matrix of S are either marked or set to zero.
Step 4: There are two ways to find out the weight matrix M that one is columns-wise
and the other is row-wise in order to determine the unmarked minimum entries Sij,
besides it determines the weight of the corresponding edge eij in M.
Step 5: Set Sij = 0 else mark Sij provided that corresponding edge eij of selected Sij

generate a cycle with the preceding marked entries of the score matrix S.
Step 6: Construct the graph T including the only marked entries from the score matrix
S which shall be the desired minimum cost spanning tree of G.
Step 7: Stop.

4 Numerical Example

In this section, a numerical example of TrFNMST is used to demonstrate of the proposed
algorithm. Consider the following graph G = (V, E) shown Fig. 1, with fives nodes and
fives edges. The various steps involved in the construction of the minimum cost spanning
tree are described as follow:
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3

5

4

1

2

Fig. 1. A neutrosophic graph with TrFN edge weights

The TrFN- adjacency matrix A is written as follows:

=

⎡
⎢
⎢
⎢
⎢
⎣

0 e12 e13 e14 0
e12 0 0 e24 0
e13 0 0 e34 e35
e14 e24 e34 0 e45
0 0 e35 e45 0

⎤
⎥
⎥
⎥
⎥
⎦

Thus, using the score function, we get the score matrix:

Fig. 2. Score matrix

We observe that the minimum record 0.458 according to Fig. 2 is selected and the
corresponding edge (3, 4) is marked with red color. Repeat the procedure until the iter‐
ation will exist (Table 1).

Table 1. The values of edge weights

eij Edge weights
e12 < (0.2, 0.3, 0.5, 0.5), (0.1, 0.4, 0.4, 0.6), (0.1, 0.2, 0.3, 0.5) >
e13 < (0.3, 0.4, 0.6, 0.7), (0.1, 0.3, 0.5, 0.6), (0.2, 0.3, 0.3, 0.6) >
e14 < (0.4, 0.5, 0.7, 0.7), (0.1, 0.4, 0.4, 0.5), (0.3, 0.4, 0.5, 0.7) >
e24 < (0.4, 0.5, 0.6, 0.7), (0.3, 0.4, 0.6, 0.7), (0.2, 0.4, 0.5, 0.6) >
e34 < (0.1, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7), (0.3, 0.4, 0.4, 0.7) >
e35 < (0.4, 0.4, 0.5, 0.6), (0.1, 0.3, 0.3, 0.6), (0.1, 0.3, 0.4, 0.6) >
e45 < (0.3, 0.5, 0.6, 0.7), (0.1, 0.3, 0.4, 0.7), (0.3, 0.4, 0.8, 0.8) >
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According to the Figs. 3 and 4, the next non zero minimum entries 0.525 is marked
and corresponding edges (4, 5) are also colored.

0.458

0.592

0.6
3

0.525 

5

0.542
4

0.575

1

2

0.583

Fig. 3. An illustration of the marked edge

Fig. 4. Score matrix

0.458

0.592

0.6
3

0.525 

5

0.542
4

0.575

1

2

0.583

Fig. 5. An illustration of the marked edge (4, 5)

According to the Fig. 6, the next minimum non zero element 0.542 is marked
(Figs. 5 and 7).
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Fig. 6. Score matrix

4580.

0.592

0.6
3

0.525

5

4
0.575

1

2

0.583

0.542

Fig. 7. An illustration of the marked edge (2, 4)

According to the Fig. 8. The next minimum non zero element 0.575 is marked, and
corresponding edges (1, 2) are also colored (Fig. 9).

Fig. 8. Score matrix

0.542

0.458

0.592

0.6
3

0.525 

5

4
0.575

1

2

0.583

Fig. 9. An illustration of the marked edge (1, 2)
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According to the Fig. 10. The next minimum non zero element 0.583 is marked. But
while drawing the edges it produces the cycle. So we delete and mark it as 0 instead of
0.583.

Fig. 10. Score matrix

The next non zero minimum entries 0.592 is marked it is shown in the Fig. 11. But
while drawing the edges it produces the cycle. So we delete and mark it as 0 instead of
0.592.

Fig. 11. Score matrix

According to the Fig. 12. The next minimum non zero element 0.6 is marked. But
while drawing the edges it produces the cycle so we delete and mark it as 0 instead of
0.6.

Fig. 12. Score matrix

After the above steps, the final path of minimum cost of spanning tree of G is
portrayed in Fig. 13.

Based on the procedure of matrix approach applied to undirected neutrosophic graph.
hence, the crisp minimum cost spanning tree is 2, 1 and the final path of minimum cost
of spanning tree is {1, 2}, {2, 4}, {4, 3}, {4, 5}.
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5 Comparative Example

To demonstrate the rationality and effectiveness of the proposed method, a comparative
example with Mullai’s algorithm [10] is provided. Following the step of Mullai’s algo‐
rithm.

Iteration 1: Let C1 = {1} and C1 = {2, 3, 4, 5}
Iteration 2: Let C2 = {1, 2} and C2 = {3, 4, 5}
Iteration 3: Let C3 = {1, 2, 4} and C3 = {3, 5}
Iteration 4: Let C4 = {1, 2, 4, 3} and C4 = {5}

From the results of the iteration processes, the TrFN minimal spanning tree is:

3

5

4

1

2

Fig. 14. TrFN minimal spanning tree obtained by Mullai’s algorithm.

From the Fig. 14, it can be observed that the TrFN minimal spanning tree {1, 2}, {2,
4}, {4, 3}, {4, 5} obtained by Mullai’s algorithm, after deneutrosophication of edges’
weight, is the same as the path obtained by the proposed algorithm.

0.54

45

0.57

0.

3

0.52

5

4

1

2

Fig. 13. Final path of minimum cost of spanning tree of G.
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The difference between the proposed algorithm and Mullai’s algorithm is that
Mullai’s algorithm is based on the comparison of edges in each iteration of the algorithm
and this leads to high computation whereas the proposed approach based on Matrix
approach can be easily implemented in Matlab.

6 Conclusion

In this paper, a new approach for searching the minimum spanning tree in a network
having trapezoidal fuzzy neutrosophic edge length is presented. The proposed algorithm
use the score function of TrFN number, then a comparative example is worked out to
illustrate the applicability of the proposed approach. In the next research paper, we can
apply the proposed approach to the case of directed neutrosophic graphs and other kinds
of neutrosophic graphs including bipolar neutrosophic graphs, and interval valued
neutrosophic graphs.
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ABSTRACT 

In this research paper, the graph of the bipolar 

single-valued neutrosophic set model (BSVNS) is 

proposed. The graphs of single valued neutrosophic 

set models is generalized by this graph. For the 

BSVNS model, several results have been proved on 

complete and isolated graphs. Adding, an important 

and suitable condition for the graphs of the BSVNS 

model to become an isolated graph of the BSVNS 

model has been demonstrated. 

KEYWORDS 

Bipolar single valued neutrosophic graphs 

(BSVNG) , complete-BSVNG, isolated-BSVNGs. 

1 Introduction 

The concept of ‘Neutrosophic logic’ was 

developed by Prof. Dr. F. Smarandache in 1995 

and get published in 1998. “It is a branch of 

philosophy which studies the origin, nature, and 

scope of neutralities, as well as their interactions 

with different ideational spectra”[4].  The 

concepts of fuzzy sets [8] and intuitionistic fuzzy 

set [6] were generalized by adding an 

independent indeterminacy-membership. 

Neutrosophic logic is a powerful tool to deal 

with incomplete, indeterminate, and inconsistent 

information, which is the main reason for 

widespread concerns of researchers. The concept 

of neutrosophic set(NS for short) is characterized 

by three independent degrees namely truth-

membership degree (T), indeterminacy-

membership degree (I), and falsity-membership 

degree (F).To practice NSs in real life situations 

efficiently,The subclass of the neutrosophic sets 

called single-valued neutrosophic set (in short 

SVNS) was defined by Smarandache in [4].  In 

another paper [5], Wang et al. defined the 

various operations and operators for the SVNS 

model. In [11] Deli et al. proposed a new 

concept called bipolar neutrosophic sets. This 

concept appear as a generalization of fuzzy sets, 

intuitionistic fuzzy sets, bipolar fuzzy sets, 

bipolar intuitionistic fuzzy sets and single valued 

neutrosophic set. The benefits of applying the 

NSs have been addressed in [18].The theory of 

graphs is the mostly used tool for resolving 

combinatorial problems in diverse disciplines 

like computer science, algebra and topology, etc. 

In [2, 4] Smarandache proposed two kinds of 

neutrosophic graphs to deal with situations in 

which there exist inconsistencies and 

indeterminacies among the vertices which cannot 

be dealt with by fuzzy graphs and different 

hybrid structures including bipolar fuzzy graphs, 

intuitionistic fuzzy graphs, bipolar intuitionsitc 
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fuzzy graphs [1,7,9, 10], The first kind is based 

on literal indeterminacy (I) component, the 

second kind of neutrosophic graphs is based on 

numerical truth-values (T, I, F), Recently, a 

hybrid study by combining SVNS and classical 

graph theory was carried out and that concept is 

called Single valued neutrosophic graph (SVNG) 

was presented by Broumi et al [12, 13, 14, 17, 

20, 22].In addition, the concept of bipolar 

neutrosophic set was combined with graph 

theory and new graph model was presented. This 

concept is called bipolar single valued 

neutrosophic graph (BSVNGs). In [15,16] 

Broumi et al. proposed the concept of bipolar 

single valued neutrosophic graph as a 

generalized the concept of fuzzy graph, 

intuitionistic fuzzy graph, bipolar fuzzy graph 

and single valued neutrosophic graph. 

The objective of this article is to demonstrate 
the essential and satisfactory condition of 
BSVNGs to be an isolated-BSVNG. 

2.Background of research

Some of the important background knowledge in 

this paper is presented in this section. These 

results can be found in [4, 5, 12,13,15, 21]. 

Definition 2.1 [4] Le  ζ  be a universal set. The 

neutrosophic set A on the universal set ζ 

categorized into three membership functions 

called the true membership function (x), 

indeterminate membership function (x) and 

false membership function (x) contained in real 

standard or non-standard subset of ]
-
0, 1

+
[

respectively and  satisfy the following  condition  

 −
0  sup (x) + sup (x) + (x) 3

+

(1) 

Definition 2.2 [5] Let ζ be a universal set. The 

single valued neutrosophic sets (SVNs)  A on the 

universal ζ  is denoted as  following  

 A = { (x),  (x),  (x)  x ζ}      (2)      

The functions (x) [0. 1] , (x)  [0. 1] and 

(x) [0. 1] are  called “ degree of truth,

indeterminacy and falsity membership of x in 

A”, satisfy the following condition: 

 0  (x)+  (x)+ (x) 3  (3) 

Definition 2.3 [12]  A SVNG   of = ( V, E) is 

a graph  G = (A, B)  where 

a. The following memberships: : [0, 1], 

:V [0 ,1] and :V [0, 1] represent the 

truth, indeterminate and false membership 

degrees of x  V 

 0 + ( ) +  3  (4) 

 V 

b. The following memberships: :  E [0 ,1], 

: E  [0, 1] and : E  [0, 1]are  defined by 

 (v, w)   min [  (v), (w)]  (5) 

 (v, w)  max [  (v), (w)] and  (6) 

(v, w)  max [  (v), (w)]  (7) 

Represent the true, indeterminate and false 

membership degrees of the arc (v, w)  (V x V), 

where 

0  (v, w)+  (v, w) 3    (8) 

E 

Fig.1.SVN-graph 

Definition 2.4 [12]. A SVNG  G= (A, B) is 

named a  complete-SVNG  if  

(v, w) =min [ (v) ,  (w) ]             (9) 

(v, w)= max[  (v) ,  (w) ]  (10) 

 (v, w) = max  [ (v) ,  (w)]  (11) 

(0.5, 0.4 , 0.5) 

(0
.2

, 
0

.3
 ,
0

.4
) 

(0
.4

, 
0

.3
 ,
0

.6
) 

(0.2, 0.3 ,0.4) 

(0.5, 0.1  ,0.4) 

4v
3v

1v 2v

(0.6, 0.3 ,0.2) 

(0.2, 0.4,0.5) 
(0.4 0.2 ,0.5) 
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 v, w  V 

Definition 2.5[12]. Let G = ( A, B) be SVNG. 

Hence, the complement of SVNG G on  is a 

SVNG on  where 

a. = A  (12)    

b. ( = , = (w) , (w)= (w) 

w  V  (13) 

c. (v, w) = min  (v, w) 

 (14) 

 (v, w) =  (v, w)  (15) 

(v, w)=  (v, w), 

 (v, w)   E . 

Definition 2.6 [15].A BSVNG G= ( A, B)of 

= (V, E) is a partner such that A= ( , ,  ,

, ) is a BSVNS in V and B= ( , ,  ,

, ) is a BSVNS in   such that 

(i)  (v, w)  min ( (v), (w))    and 

(v, w) max (  (v),  (w)) 

(17)     

(ii) ( ) max ( ( ), ( ))     and 

 (v, w)  min( v), (w)) 

(18) 

(iii) (v, w)  max( ( ), ( ))

and (v ,w)   min(  (v),  (w)) , 

(v, w)  (19) 

Fig.2 BSVNG 

1v The values of vertex 

1v (0.2, 0.2, 0.4 ,-0.4, -0.1,-0.4) 

2v (0.1, 0.3, 0.5 ,-0.6, -0.2,-0.3) 

3v (0.2, 0.3, 0.5 ,-0.3, -0.2,-0.1) 

4v (0.3, 0.2, 0.4 ,-0.2, -0.3,-0.5) 

Table1. The values of vertex of BSVNG 

The values of edge 

12v (0.1, 0.3, 0.6 ,-0.2, -0.3,-0.1) 

23v (0.1, 0.3, 0.6 ,-0.1, -0.6,-0.7) 

34v (0.1, 0.5, 0.6 ,-0.1, -0.6,-0.5) 

14v (0.2, 0.3, 0.5 ,-0.2, -0.3,-0.5) 

Table2. The values of edge of BSVNG 

Definition 2.7 [15].The complement of BSVNG 

G= (A, B) of  =( V, E) is a  BSVNG   = (   , 

) of  =( V, E) such that 

(i) =A=( , , ,  , ) and 

(ii) = ( ) on E= V× V is 

defined as

(v, w) = - (v, w)

 (v , w)= max - (v, w)  (20)

 (v, w) = max - (v, w)

(v, w) = min - (v, w)  (21) 

(v, w) = - (v, w)

 (v, w) min - (v, w),  (22) 

 (v,w)

Definition 2.8 [15]. A BSVNG  G= (A, B) is 

called a complete-BSVNG if   

 (v, w) = min  (  (v),  (w)),   (23) 

(v ,w) = max( , ),    (24)

= max  ( , ),  (25) 

(v, w) = min  (  (v),  (w))  (26) 

(v, w) = max (  (v),  (w)),   (27)

(v, w) =min  (  (v), (w))    (28) v, w  V

Definition 2.9[7].The complement of BIFG  G= 

(A, B) of  =( A, B) is a  BIFG   = (   ,  ) of 

 =(V, V x V) where  =A=( , ,  , ) 

and  = ( , ,  , ) are defined as 

(v, w) = - (v, w) (29)

(v, w) = - (v, w) (30)

 (v , w)= max - (v, w)  (31)

 (v, w) min - (v, w) v, 

w , vw

Theorem 2.10[13]Let G =(A,B) be a SVNG, 

then the SVNG is called an isolated-SVNG if 

v
4v

3v

1v 2v
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and only if  the complement of G is a complete- 

SVNG. 

Theorem 2.11[21]Let G =(A,B) be a FG, then 

the FG is called an isolated-FG if and only if  the 

complement of G is a complete- FG 

3. MAIN RESULTS

Theorem 3.1: A BSVNG =(A,B) is an isolated-

BSVNG iff the complement of BSVNG is a 

complete- BSVNG. 

Proof: Let  G =(A, B) be a complete- BSVNG. 

Therefore (v, w) =min ( , , 

(v, w)= max ( , ), 

(v, w)= max ( , , 

 (v, w) = min ( , ), 

(v, w)= max ( , , 

 (v, w)= min ( , v, w  V. 

Hence in , 

 (v, w)= min ,  (v, w) 

=

=0 

and 

=

= 0 

In addition 

=

= 0 

We have for the negative membership edges 

=

= 0    and 

 (v, w) = min  (v, w) 

= min  min 

= 0 

In addition 

 (v, w) = min  (v, w) 

=   min  min 

= 0 

So ( ,   (v, w),   (v ,w) ,  (v, w) , 

 (v, w),  (v, w) ) = (0, 0, 0, 0, 0, 0) 

Hence G =( , ) is an isolated-BSVNGs 

Proposition 3.2: The notion of isolated-

BSVNGs generalized the notion of isolated 

fuzzy graphs. 

Proof: If the value of  =  =  = 

 =  = 0, then the notion of isolated-

BSVNGs is reduced to isolated fuzzy graphs. 

Proposition 3.3: The notion of isolated-

BSVNGs generalized the notion of isolated-

SVNGs. 

Proof: If the value of  =  = = 

0, then the concept of isolated-BSVNGs is 

reduced to isolated-SVNGs. 

Proposition 3.4: The notion of isolated-

BSVNGs generalized the notion of isolated-

bipolar intuitionistic fuzzy graph. 

Proof: If the value of  = , then the 

concept of isolated-BSVNGs is reduced to 

isolated-bipolar  intutuitionistic fuzzy graphs 

IV.COMPARTIVE STUDY

In this section, we present a table showing that 

the bipolar single valued neutrosophic graph 

generalized the concept of the crisp graph, fuzzy 

graph [9], intuitionistic fuzzy graph[1], bipolar 

fuzzy graph[10], bipolar intuitionistic fuzzy 

graph[7] and single valued neutrosophic 

graph[12]. 

For convenience we denote 

F-graph : Fuzzy graphs
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IF-graph:  Intuitionistic fuzzy graph 

BF-graph: Bipolar fuzzy graph 

BIF-graph: Bipolar intutionistic fuzzy graph 

SVN-graph: Single valued neutrosophic graph 

BSVN-graph: Bipolar single valued 

neutrosophic graph 

Type 

of 

graphs 

The membership values of vertex/ edge 

crisp 

graph 

1 or 0 0 0 0 0 0 

FG 

[0,1] 

0 0 0 0 0 

IFG 

[0,1] 

0 

[0,1] 

0 0 0 

SVNG 

[0,1] [0,1] [0,1] 

0 0 0 

BFG 

[0,1] 

0 0 

[-1,0] 

0 0 

BIFG 

[0,1] 

0 

[0,1]  [-1,0] 

0 

[-1,0] 

BSVN

G [0,1] [0,1] [0,1]  [-1,0] [-1,0] [-1,0] 

Table3. Different types of graphs 

Neutrosophic graph is the generalization of crisp 

graph, fuzzy graph, intuitionistic fuzzy graph, bi-

polar fuzzy graph, bi-polar intuitionistic fuzzy 

graph and single-valued neutrosophic graph. In 

this table, we can see that by removing the 

indeterminacy and non-membership values from 

neutrosophic graph, the neutrosophic graph 

reduces to fuzzy graph. By removing the 

indeterminacy value from neutrosophic graph, 

the neutrosophic graph reduces to intuitionistic 

fuzzy graph. Similarly, by removing the positive 

and negative indeterminacy and non-

membership values from bi-polar neutrosophic 

graph, the bi-polar neutrosophic graph reduces to 

bi-polar fuzzy graph. By removing the positive 

and negative indeterminacy values from bi-polar 

neutrosophic graph, the bi-polar neutrosophic 

graph reduces to bi-polar intuitionistic fuzzy 

graph. By the similar way, we can reduce a bi-

polar single valued neutrosophic graph to a 

neutrosophic graph by removing the negative 

membership, indeterminacy and non-

membership values.  

5. CONCLUSION

In this article, we have proved necessary and 

sufficient condition under which BSVNGs is an 

isolated-BSVNGs. The notion of isolated-

BSVNGs generalized the isolated-fuzzy graph 

and isolated- SVNGs. In addition, in future 

research, we shall concentrate on extending the 

idea of this paper by using the interval valued 

bipolar neutrosophic graph as a generalized form 

of bipolar neutrosophic graph. 
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Abstract—The concept of single valued neutrosophic graphs 
(SVNGs) generalizes the concept of fuzzy graphs and 
intuitionistic fuzzy graphs. The purpose of this research paper is 
to define different types of strong degrees in SVNGs and 
introduce novel concepts, such as the vertex truth-membership, 
vertex indeterminacy-membership and falsity-membership 
sequence in SVNG with proof and numerical illustrations. 

 Keywords—Single valued neutrosophic graph (SVNG); 

neutrosophic set; sequence; strong degree 

I. INTRODUCTION

In [1], [3] Smarandache  explored  the  notion of 
neutrosophic sets (NS in short) as a powerful tool which 
extends the concepts of crisp set, fuzzy sets and intuitionistic 
fuzzy sets [2]-[6]. This concept deals with uncertain, 
incomplete and indeterminate information that exist in real 
world. The concept of NS sets associate to each element of the 
set a degree of membership ( )AT x ,a degree of 
indeterminacy     and a degree of falsity      , in which 
each membership degree is a real standard or non-standard 
subset of the nonstandard unit ]-0, 1+[. Smaranadache [1], [2] 
and Wang [7] defined the concept of single valued 
neutrosophic sets (SVNS), an instance of NS, to deal with real 
application. In [8], the readers can found a rich literature on 
SVNS. 

In more recent times, combining the concepts of NSs, 
interval valued neutrosophic sets (IVNSs) and  bipolar 
neutrosophic sets with graph theory, Broumi et al. introduced 
various types of neutrosophic graphs including single valued 
neutrosophic graphs (SVNGs for short) [9], [11], [14], interval 
valued neutrosophic graphs [13], [18], [20], bipolar 
neutrosophic graphs [10], [12], all these graphs are studied 
deeply. Later on, the same authors presented some papers for 
solving the shortest path problem on a network having  single 

valued neutrosophic edges length [17], interval valued 
neutrosophic edge length [32], bipolar neutrosophic edge 
length [21], trapezoidal neutrosophic numbers [15], SV-
trapezoidal neutrosophic numbers [16], triangular 
fuzzy  neutrosophic [19].Our approach of neutrosophic graphs 
are different from that of Akram et al. [26]-[28] since while 
Akram considers, for the neutrosophic environment (<=, <=, 
>=) we do (<=, >=, >=) which is better, since while T is a 
positive quality, I, F are considered negative qualities. Akram 
et al. include “I” as a positive quality together with “T”. So 
our papers improve Akram et al.’s papers. After that, several 
authors are focused on the study of SVNGs and many 
extensions of SVNGs have been developed. Hamidi and 
Borumand Saeid [25] defined the notion of accessible-SVNGs 
and apply it social networks. In [24], Mehra and Manjeet 
defined the notion of single valued neutrosophic signed 
graphs. Hassan et al. [30] proposed some kinds of bipolar 
neutrosophic graphs. Naz et al. [23] studied some basic 
operations on SVNGs and introduced vertex degree of these 
operations for SVNGs and provided an application of single 
valued neutrosophic digraph (SVNDG) in travel time. Ashraf 
et al. [22] defined new classes of SVNGs and studied some of 
its important properties. They solved a multi-attribute decision 
making problem using a SVNDG. Mullai [31] solved the 
spanning tree problem in bipolar neutrosophic environment 
and gave a numerical example. 

Motivated by the Karunambigai work’s [29].The concept 
of strong degree of intuitionistic fuzzy graphs is extended to 
strong degree of SVNGs 

This paper has been organized in five sections. In 
Section 2, we firstly review some basic concepts related to 
neutrosophic set, single valued neutrosophic sets and SVNGs. 
In Section 3, different strong degree of SVNGs are proposed 
and studied with proof and example. In Section 4, the concepts 
of vertex truth-membership, vertex indeterminacy-

Strong Degrees in Single Valued Neutrosophic Graphs 
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membership and vertex falsity- membership is discussed. 
Lastly, Section 5 concludes the paper. 

II. PRELIMINAREIS AND DEFINTIONS

In the following, we briefly describe some basic concepts 
related to neutrosophic sets, single valued neutrosophic sets 
and SVNGs. 

Definition 2.1 [1] Given the universal set . A 
neutrosophic set A on  is characterized by  a truth 
membership function ,an indeterminacy membership 
function  and falsity membership function   , where 
 ,  ,  :  ]−0,1 +[. For all x  , x=(x, 
A is neutrosophic element of A. 

The neutrosophic set can be written in the following form: 

A = {<x:                >, x  }  (1) 

with the condition 

 (2) 

Definition 2.2 [7] Given the universal set  . A single 
valued neutrosophic set A on  is characterized by a truth 
membership function  , an indeterminacy membership 
function and falsity membership function , 
where   ,   ,   :        . For all x , x=(x, 

,  A is a single valued neutrosophic 
element of A. 

The single valued neutrosophic set can be written in the 
following form: 

A = {<x:     ,   >, x  }  (3) 

with the condition 

0   3  (4) 

Definition 2.3 [14] ASVN-graph G is of the form 
G=(A,B)  where A 

1. A={          }Such that the functions   : A   [0 ,1], 
:   [0, 1 ],   :A  [0, 1]denote the truth-membership 

function, an indeterminacy-membership function and falsity-
membership function of the element     A respectively and 

0  + +  3 

i=1,2,…,n. 

2.B={(  ,  ); (  ,  )  } and the function :B 
 0,1], 

:B  [0,1] ,   :B  [0, 1] are defined by 

  min (  )      (5) 

  max(  )      (6) 

 max(  )      (7) 

Where  ,   , denotes the truth-membership function, 
indeterminacy membership function and falsity membership 
function of the edge ( )  B respectively where 

 0  + +  3      (8) 

  , i, j {1,2,…,n} 

A is called the vertex set of G and B is the edge set of G. 

The following Fig. 1 represented a graphical representation 
of single valued neutrosophic graph. 

Fig. 1. Single valued neutrosophic graph. 

III. STRONG DEGREE IN SINGLE VALUEDNEUTROSOPHIC
GRAPH 

The following section introduces new concepts and proves 
their properties. 

 Definition 3.1 Given the SVN-graph G= (V, E). The T-
strong degree of a vertex iv V is defined as

( ) ( )
ij

s T i ij
e E

d v T


  , ije are strong edges incident at iv . 

Definition 3.2 Given the SVN-graph G=(V, E).The I-
strong degree of a vertex iv V is defined as

( ) ( )
ij

s I i ij
e E

d v I


  , ije are strong edges incident at iv . 

Definition 3.3 Given the SVN-graph G=(V, E).The F-
strong degree of a vertex iv V is defined as

( ) ( )
ij

s F i ij
e E

d v F


  , ije are strong edges incident at iv . 

Definition3.4 Let G = (V,E) be SVNG. The strong degree 
of a vertex  iv V  is as follow

( ) , ,
ij ij ij

s i ij ij ij
e E e E e E

d v T I F
  



  
   , where ije are strong edge

incident at iv . 

Definition 3.5 Let G=(V, E) be a SVNG. The minimum 
strong degree of G is defined as 

( ) ( ) ( )(G) ( (G), (G), (G)s s T s I s F   
, where 

 (T) (T)(G) (v ) / vs s i id V    is the minimum T-
strong degree of G. 
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 ( ) (I)( ) (v ) / vs I s i iG d V    is the minimum I-
strong degree of G. 

 ( ) ( )( ) (v ) / vs F s F i iG d V    is the minimum F-
Strong degree of G. 

Definition 3.6 Given the SVN-graph G=(V, E). The 
maximum strong degree of G is defined as 

(T) (I) (F)( ) ( (G), (G), (G))s s s sG    
, where 

 ( ) (T)( ) (v ) / vs T s i iG d V    is the maximum T-
strong degree of G. 

 ( ) ( )( ) (v ) / vs I s I i iG d V    is the maximum I-
strong degree of G. 

 (F) (F)(G) (v ) / vs s i id V    is the maximum F-
Strong degree of G. 

Definition 3.7 Let G be a SVNG, the T-total strong degree 
of a vertex iv V in G is defined as

(T) (T)( ) ( )s i s i itd v d v T  , 

Definition 3.8 Let G be a SVNG, the I-total strong degree 
of a vertex in G is defined as iv V

(I) (I)( ) ( )s i s i itd v d v I  , 

Definition 3.9 Let G be a SVNG, the F-total strong degree 
of a vertex  iv V  in G is defined

( ) ( )( ) ( )s F i s F i itd v d v F  , 

Definition 3.10 Let G be a SVNG, the total strong degree 
of a vertex iv V in G is defined as 

( ) ( ) ( )( ) ( ), ( ), ( )s i s T i s I i s F itd v td v td v td v   

Definition 3.11 Given the SVN-graph G=(V, E). The 
minimum total strong degree of G is defined as 

( ) ( ) ( )( ) ( ( ), ( ), ( ))ts ts T ts I ts FG G G G   
, where 

 ( ) ( )( ) (v ) / vts T ts T i iG d V    is the minimum T-
total strong degree of G. 

 ( ) (I)( ) (v ) / vts I ts i iG d V    is the minimum I- 
total strong degree of G. 

 ( ) ( )( ) (v ) / vts F ts F i iG d V    is the minimum F-
total strong degree of G. 

Definition 3.12 Given the SVN-graph G = (V, E). The 
maximum total strong degree of G is defined as: 

( ) ( ) ( )( ) ( ( ), (G), ( ))ts ts T ts I ts FG G G    
, where 

 ( ) (T)(G) (v ) / vts T ts i id V    is the maximum T-
total strong degree of G. 

 ( ) ( )( ) (v ) / vts I ts I i iG d V    is the maximum I- 
total strong degree of G. 

 (F) (F)(G) (v ) / vts ts i id V    is the maximum F-
total strong degree of G. 

Definition 3.13 Given the SVN-graph G=(V,E). The T-
strong size of a SVNG is defined as 

( ) ( )
i j

s T ij
v v

S G T


  where ijT
is the membership of strong

edge ije E
.

Definition 3.14 Given the SVN-graph G=( V, E). The I-
strong size of a SVNG is defined as 

( ) ( )
i j

s I ij
v v

S G I


  where ijI is the indeterminacy-

membership of strong edge ije E . 

Definition 3.15 Given the SVN-graph G=(V, E). The F-
strong size of a SVNG is defined as 

( ) ( )
i j

s F ij
v v

S G F


  where ijF
is the non-membership of 

strong edge ije E
.

Definition 3.16 Given the SVN-graph G=(V, E). The 
strong size of a SVNG is defined as 

(T) (I) ( )( ) (G), (G), (G)s s s s FS G S S S   
Definition 3.17 Given the SVN-graph G=(V,E). The T-

strong order of a SVNG is defined as 

( ) ( )
i

s T i
v V

O G T


 where iv is the strong vertex in G. 

Definition 3.18 Given the SVN-graph G=(V, E). The I-
strong order of a SVNG is defined as 

(I) ( )
i

s i
v V

O G I


 where iv is the strong vertex in G.

Definition 3.19 Given the SVN-graph G=(V, E).The F-
strong order of a SVNG is defined as 

(F) ( )
i

s i
v V

O G F


 where iv is the strong vertex in G. 

Definition 3.20 Given the SVN-graph G=(V, E). The 
strong order of a SVNG is defined as 

( ) ( ) ( )( ) ( ), ( ), ( )s s T s I s FO G O G O G O G   
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Definition 3.21 Let G be a SVNG. If ( ) 1( )s T id v k ,

( ) 2( )s I id v k and , ( ) 3( )s F id v k for all vi V , then the

SVNG is called as ( 1k , 2k , 3k ) - strong constant SVNG (or) 

Strong constant SVNG of degree  ( 1k , 2k , 3k ). 

Definition 3.22 Let G be a SVNG. If ( ) 1)s T itd v r , 

( ) 2)s I itd v r and , (F) 3)sd v r for all vi V , then the

SVNG is called as ( 1r , 2r , 3r ) – totally strong constant SVNG

(or) totally strong constant SVNG of degree  ( 1r , 2r , 3r ).

Proposition 3.23 In a SVNG, G 

2 ( ( )s TS
= (

1
)

n

s T i
i

d


 , 2 ( ) ( )s IS
= (

1
)

n

s I i
i

d


  and 

2 ( ( )s FS
= (

1
( )

n

s F i
i

d




Proposition 3.24 In a connected SVNG, 

1)      (vi)       ,      (vi)       and  (vi) 
2) (vi)  , (vi) and

t     (vi) .

Proposition 3.25 Let G be a SVNG where crisp graph 
is an odd cycle. Then G is strong constant if f      ,    , 
is constant function for every      E. 

Proposition 3.26 Let G be a SVNG where crisp graph 
is an even cycle. Then G is strong constant if f  
 ,    ,      is constant function or alternate edges have same 
true membership, indeterminate membership and false 
membership  for every      E. 

Remark 3.27 The above proposition 3.25 and proposition 
3.26 hold for totally strong constant SVNG, if    ,   ,     is 
a constant function. 

Remark 3.28 A complete SVNG need not be a strong 
constant SVNG and totally strong constant SVNG. 

Remark 3.29 A strong SVNG need not be a strong 
constant SVNG and totally strong constant SVNG. 

Remark 3.30 For a strong vertex  V, 

1) (  ) = (  ) ,   (  ) = (  ) and 
(  ) = (  ) 

2) (  ) = (  ) , (  ) = t   (  ) and 
t  (  ) = (  ) 

Theorem 3.31 Let G be a complete SVNG with V = 
{  ,  ,… ,  } such that   ≤   ≤    ≤ … ≤   ,    ≥   ≥   ≥ … 
≥   and  ≥   ≥ ≥ … ≥  Then 

1) is minimum edge truth membership,  is the 
maximum edge indeterminacy membership and  is the 

maximum edge falsity membership of  emits from  for all 
j = 2,3,4,…, n. 

2)    is maximum edge truth membership,    is the 
minimum edge indeterminacy membership and     is the 
minimum edge falsity membership of among all edges from  
emits from    to    for all i = 1, 2,3,4,…, n-1. 

3) t  (  ) = (G) = n.T1 , t  (  ) = (G) = n.I1 and
t  (  ) = (G) = n.F1.

4) t  (  ) = (G) = ∑ , t  (  ) = (G) =
∑ , and t  (  ) = (G) = ∑ . 

Proof: Throughout the proof, suppose that ≤   ≤ ≤ 
… ≤   ,    ≥   ≥   ≥ … ≥   and  ≥   ≥   ≥ … ≥  . 

1) To prove that  is minimum edge truth membership, 
 is the maximum edge indeterminacy membership and 

is the maximum edge falsity membership of     emits from 
v1 j=2,3,….,n. Assume the contrary  i.e.     is not an edge of 
minimum true membership, maximum indeterminate 
membership and maximum false membership emits from  . 
Also let     , 2 ≤ k ≤ n,k  l be an edge with minimum true 
membership,, maximum indeterminate membership and 
maximum false membership  emits from   . 

Being a complete SVNG, 

= min {   ,  } ,    = max {    ,    } and = max {   , 
 } 

Then = min { ,  } , = max {    ,    } and 

= max { ,  } 

Since   min {   ,  }   min {   ,  } 

Thus either or . 

Also since  max {    ,    }  max {   ,    }, so 
either or . 

Since l, k  1, this is contradiction to our vertex 
assumption that   is the unique minimum vertex true 
membership,   is the maximum vertex indeterminate 
membership and   is the maximum vertex false membership. 

Hence  is minimum edge true membership, is the 
maximum edge indeterminate membership and is the 
maximum edge false membership of  emits from  to   for 
all j = 2, 3, 4,…, n. 

2) On the contrary, assume let is not an edge with 
maximum true membership, minimum indeterminate 
membership and minimum false membership emits from 
for 1   k   n-1. On the other hand, let  be an edge with 
maximum true membership, minimum indeterminate 
membership and minimum false membership emits from 
from 1   r n-1, k   r.

Then  min { ,  }  min{ ,  }  , 
so  , 

 max{  ,  }  max{   ,  }  , so 
and 
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Similarly  max { ,  }  max { ,  } 
,  

So     =   =    ,    =    =     and     =    =     , which 
is a contradiction. Hence     is an edge with maximum true 
membership, minimum indeterminate membership and 
minimum false membership among all edges emits from   to 

. 

3) Now
t  (  ) = (  ) 

 = ∑              = ∑

= (n-1).   +   = n  -   +   = n  , 

t  (  ) =    (  )   

 = ∑              = ∑

= (n-1).   +   = n  -   +   = n   and 

Similarly, 

t  (  ) =    (  )  

= ∑              = ∑

 = (n-1).   +   = n  -   +   = n 

Suppose that t  (  )      
(G) and let  , k  1 be a 

vertex in G with minimum T- total degree. 

Then, 

t  (  )  t ( ) 

∑ ∑

∑ ∑

Since  =  for i = 1, 2, 3, …, n and for all other 
indices j, , it follow that 

(n - 1).   + ∑  (n-1).   + 

Hence, t  (  )   t  (  ) , a contradiction. 

Therefore, t  (  ) =     
(G). 

Suppose that t  (v1)      
(G) and let  , k  1 be a 

vertex in G with maximum I- total degree. 

Then, 

t  (  )   t  (  ) 

∑ ∑

∑ ∑

Since  =  for i = 1, 2, 3, …, n and for all other 
indices j, , it follow that 

(n-1).   +   ∑  (n-1).   + 

So that t  (  ) t  (  ) , a contradiction. 

Therefore, t  (  ) =     
(G). 

Also, Suppose that t  (v1)      
(G) and let  , k   1 

be a vertex in G with maximum F- total degree. 

Then 

t  (  )  t ( ) 

∑ ∑

∑ ∑

Since  =  for i = 1, 2, 3, …, n and for all other 
indices j, , it follow that 

(n-1).   +    ∑  (n-1).   + 

So that t  (  ) t  (  ) , a contradiction . 

Therefore, t  (  ) =     
(G). 

Hence, 

t  (v1) =     
(G) = n.T1 , 

t  (v1) =     
(G) = n.I1 and 

t  (v1) =      
(G) = n.F1.

4) Since,  ,  and  , i = 1, 2, 3, …, n-1 
and G is complete 

  =      =   ,  =  =   and  =  =  . 

Hence, t  (  ) = ∑

= ∑  = ∑

= ∑   
 
    , 

t  (  ) = ∑

  = ∑  = ∑

= ∑

And t (  ) = ∑

 = ∑  = ∑

 = ∑  . 

Suppose that t  (  )   (G). Let  , 1 ≤ l ≤ n-1 be a 
vertex in G such that t  (  )  (G) and

t  (  )   t  (  ) . In addition, 

t  (  ) = [ ∑    
   
    + ∑ + ] +
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 [ ∑ + (n-l)   +  ] + 

∑  + 

∑   
 
    = t   ( ). Thus t ( )  t ( ) , 

contradiction. So, t  (  ) = (G) = ∑ . 

Suppose that t  (  )   (G). Let  , 1 ≤ l ≤ n-1 be a 
vertex in G such that t  (  )  (G) and t  (  )   t ) . 

In addition, 

t  (  ) = [ ∑ + ∑ + ] +

 [ ∑ + (n-l)   +    ] +

∑  + 

∑  = t  (  ). Thus t  (  )  t  (  ) , contradiction. 
So, t  (  ) = (G) = ∑   

 
   . 

Also, suppose that t  (  )   (G). Let  , 1 ≤ l ≤ n-1 
be a vertex in G such that t  (  ) (G) and t  (  )
t ) . In addition, 

t  (  ) = [ ∑ + ∑ + ] +

 [ ∑   
   
    + (n-l)   +  ] + 

∑  + 

∑  = t ( ). Thus ( ) t ( ) , 
contradiction. So, (  ) = (G) = ∑ . 

Hence the lemma is proved. 

Remark 3.32 In a complete SVNG G, 

1) There exists at least one pair of vertices   and  such
that =    

=   (G) ,    
=    

 =   (G) and     
=  = (G), 

2) t  =   t  = (G) 
and  =  (G)= (G)for a vertex  V, 

3) ∑  = 2 (G)+ (G) , ∑  = 
2  and ∑  = 2  (G) + (G). 

IV. VERTEX TRUTH MEMBERSHIP , VERTEX INDTERMINACY 
MEMBERSHIP AND VERTEX FALSITY MEMEBERSHIP SEQUENCE 

IN SVNG 
In this section, vertex truth membership, vertex 

indeterminacy membership and vertex falsity membership 
sequences are defined in SVNGs. 

Definition 4.1 Given a SVN-graph G with | | = n. The 
vertex truth membership sequence of G is defined to be 

 with           …    where   , 0     1, is 
the truth membership value of the vertex    when vertices are 
arranged so that their truth membership values are non- 
decreasing. 

Particular,  is smallest vertex truth membership value 
and  is largest vertex truth membership value in G. 

Note 4.2 If vertex truth membership sequence  is 
repeated more than once in G, say r  1 times, then it is 
denoted by  in the sequence. 

Example 4.3 In Fig. 2 the vertex truth membership 
sequence of G is {0.1, 0.1, 0.3, 0.3, 0.4, 0.8 } or {     ,      , 
0.4, 0.8 }. 

Fig. 2. Vertex truth membership sequence. 

Definition 4.4 Let G be a SVNG with | | = n. The vertex 
indeterminacy membership sequence of G is defined to be 

 with           …    where    , 0  1, is 
the indeterminacy membership value of the vertex  when 
vertices are arranged so that their indeterminacy membership 
values are non- increasing. 

Particular,   is largest vertex indeterminacy membership 
value and  is smallest vertex indeterminacy membership 
value in G. 

Note 4.5 If vertex indeterminacy membership sequence 
is repeated more than once in G, say r  1 times, then it is 
denoted by  in the sequence. 

Example 4.6 In Fig. 3 the vertex indeterminacy 
membership sequence of G is {0.7, 0.6, 0.6, 0.5, 0.4, 0.4 } or { 
0.7     , 0.5,     }. 

Fig. 3. Vertex indeterminacy membership sequence. 

Definition 4.7 Let G be a SVNG with | | = n. The vertex 
falsity membership sequence of G is defined to be  with 

 …    where    , 0  1, is the falsity 
membership value of the vertex  when vertices are arranged 
so that their falsity membership values are non- increasing. 
Particular,    is largest vertex falsi Y membership value and 

 is smallest vertex falsity membership value in G. 
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Note 4.8 If vertex falsity membership sequence  is 
repeated more than once in G, say r  1 times, then it is 
denoted by  in the sequence. 

Example 4.9 In Fig. 4 the vertex falsity membership 
sequence of G is {0.8, 0.8, 0.7, 0.6, 0.6, 0.5} or {    , 
0.7,    , 0.5}. 

Fig. 4. Vertex falsity membership sequence. 

Definition 4.10 If a SVNG with | | = n has vertex truth 
membership sequence  , vertex indeterminacy 
membership sequence   and vertex falsity membership 
sequence  in same order, then it said to have vertex 
single valued neutrosophic sequence and denoted by 

. 

Example 4.11 In Fig. 5 the vertex truth membership, 
vertex indeterminacy membership and vertex falsity 
membership sequence of G is{<0.4, 0.4, 0.5>, < 0.2,0.3,0.5>,< 
0.1,0.2,0.6> , < 0.5,0.4,0.8>, < 0.4,0.5,0.4>, < 0.3,0.1,0.7> }. 

Fig. 5. Vertex single valued neutrosophic sequence. 

The properties of vertex truth membership, vertex 
indeterminacy membership and vertex falsity sequences of 
complete SVNGs are discussed below: 

Theorem 4.12 Let G=(V,E) be a complete SVNG with| | 
= n. Then  

1) If the vertex truth membership sequence of G is of the
form { ,   }, vertex indeterminacy membership sequence 
of G is of the form { ,  } and vertex falsity membership 
sequence of G is of the form { ,  }, then 

a. (G) = n.   and (G)=  ∑

(G) = n.   and (G)=∑

c. (G)= n.   and (G) =  ∑

2) If the vertex truth membership sequence of G is of the
form {  

  ,  }, vertex indeterminacy membership of G is 
of the form { , } and vertex falsity membership 
sequence of G is of the form { ,   

    } with 0     n-2, 
then there exists exactly  vertices with minimum T- total 
degree (G), maximum I-total degree     

   and 
maximum F-total degree   and exactly (n-  ) vertices with 
maximum T- total degree (G) , minimum I- total degree

(G) and minimum F- total degree (G). 
3) If the vertex truth membership sequence of G is of the

form {  
  ,   

   ,   
  , . . . , }, vertex indeterminacy 

membership sequence of G is of the form { ,   
   ,   

  , . . 
. ,  } and vertex falsity membership sequence of G is of the 
form { ,   

   ,   
  , . . . ,   

  } with     1 and k   2, then 
there exists exactly  vertices with minimum T- total degree 

(G), maximum I- total degree and maximum F-total 
degree . Also, there exists exactly    vertices with 
maximum T- total degree (G), minimum I- total degree 

(G) and minimum F- total degree (G). 

Proof: The proof of (1) and (2) are obvious. 3 Let    be 
the set of vertices in G, for j = 1, 2, 3, . . . ,    , 1   i   k. Then 
by the Theorem3.31 

 =  =n.  =n.   , 

 =  = n.  =n.   , and 

 =  = n.  =n.   , , for j= 1, 2, 3,. . ,   . 

Since T(  ,    ) = T( > for 2   i   k , j= 1, 2, 3,.
.. . ,    , l = 1, 2, 3, . . . ,  , no vertex with truth membership 
more than  can have degree (G), 

 I(  ,    ) = I(  for 2   i   k , j = 1, 2, 3, . . . , 
  , l = 1, 2, 3, . . . ,  , no vertex with indeterminacy 
membership less than   can have degree      

(G) 

And F( ,    ) = F(  for 2   i   k , j = 1, 2, 3, . 
. . ,  , l = 1, 2, 3, . . . ,  , no vertex with falsity 
membership less than  can have degree (G). 

Thus, there exist exactly  vertices with degree (G), 
(G),     

(G). 

To prove ( ) =  , 

t  ( ) = (G) and

( ) =  (G), t=1,2,3 . . ,   . 

Since, T( ) is maximum vertex truth membership, 

T( , )  t  j, t, j=1, 2, 3,…, 

T( , ) = min { T(  ) , T(  )} = T( )  for t= 
1,2,3. . . ,  , j = 1, 2, 3, . . . ,   ,  i=1,2,3,… , k-1 
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Thus for  t= 1,2,3, . . . ,   , 

  (  
   ) = ∑ ∑ 

   + (  - 1)

= ∑

=     
(G) by Theorem 3.31

Now, if   is vertex such that =  , then 

t  (  ) = ∑ ∑ + (    - 1+   )  + 

= ∑ ∑   
   + ∑ + (  -1)  + 

∑ ∑ + ∑ + (  -1)   +

= (G) 

Thus, there exist exactly  vertices with degree (G). 

To prove t  ( ) = (G) , for t = 1, 2, 3, . . . ,

Since I( ) is minimum vertex indeterminacy 
membership, 

I( , ) =  , t   j , t, j = 1, 2, 3, . . . , 

I( ,  ) = max{ I( ) , I( )} = I( ) for t = 1, 2, 3, 
. . . ,  , j = 1, 2, 3, . . . ,   ,  

i = 1, 2, 3, . . . , k-1. 

Thus for t = 1, 2, 3, . . . ,   , 

t  (  
   ) = ∑ ∑ 

   + (  - 1)

= ∑

=     
(G) by Theorem 3.31

Now, if   is vertex such that   =  , then 

t  (  ) = ∑ ∑ + (    - 1+   )  + 

= ∑ ∑   
   + ∑ + (  -1)  + 

∑ ∑ + ∑ + (  -1)   +

= (G) 

So, there exist exactly  vertices with degree (G). 

Similarly, it can be proved that t  ( ) = (G) , for t =
1, 2, 3, . . . ,   

Since F( ) is minimum vertex falsity membership, 

F( , ) =  , t   j , t, j = 1, 2, 3, . . . , 

F( , ) = max{ F(  ), F(  )} = F(  ) for t = 1, 2, 
3, . . . ,  , j = 1, 2, 3, . . . ,   , i = 1, 2, 3, . . . , k-1. 

Thus for t = 1, 2, 3, . . . ,   , 

t  (  
   ) = ∑ ∑ 

   + (  - 1)

= ∑

= (G) by Theorem 3.31

Now, if is vertex such that =  , then 

t  (  ) = ∑ ∑ + (    - 1+   )  + 

      = ∑ ∑ + ∑ + (  -1)  + 

∑ ∑ + ∑ + (  -1)   +

= (G) 

So, there exist exactly  vertices with degree (G). 

V. CONCLUSION

In this paper, the idea of strong degree is imposed on the 
existing concepts of degrees in SVNGs. After that, we defined 
the vertex truth-membership, vertex indeterminacy-
membership and vertex falsity membership sequence in 
SVNG with proofs and suitable examples. In the next 
research, the proposed concepts can be extended to labeling 
neutrosophic graph and also characterize the corresponding 
properties. 
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ABSTRACT 
Gathering the attitudes of the examined respondents would be very significant in some evaluation models. 
Therefore, an approach to the evaluation of websites based on the use of the neutrosophic set is proposed 
in this paper. An example of websites evaluation is considered at the end of this paper with the aim to 
present in detail the proposed approach. 

KEYWORDS:  neutrosophic set; single valued neutrosophic set; website quality; website 
evaluation; multiple criteria decision making. 

1. INTRODUCTION
A company’s website can have a very important role in a competitive environment.  It can be used to 
provide information to its customers, collect new and retain old users and so on. 
A website can be visited by various groups of users that could have different requirements, needs and 
interests. In order to assess the quality of a website, it is necessary to obtain as realistic attitudes of its 
visitors about the fulfillment of their expectations and the perceived reality as possible. 
The evaluation of the quality of websites has been considered in numerous studies, for which reason many 
approaches have been proposed. Some of them have been devoted to determining the impact of the website 
quality on customer satisfaction, such as: Al-Manasra et al. (2016), Bai et al. (2008), Lin (2007) and Kim 
and Stoel (2004).  
Some other studies have been intended to determine the quality of websites and/or define the elements of 
the website that affect its quality, such as: Canziani and Welsh (2016), Salem and Cavlek (2016), Ting et 
al. (2013), Rocha (2012), Chiou et al. (2011) and Kincl and Strach (2012).  
In some of them, the evaluation of websites has been considered as a multiple criteria decision making-
problem, including the FS theory or its extensions, such as: Stanujkic et al. (2015), Chou and Cheng 
(2012), Kaya and Kahraman (2011), and Kaya (2010).  
It is also known that a significant progress in multiple criteria decision making has been made after Zadeh 
(1965) proposed the Fuzzy Sets (FS) theory, thus introducing partial belonging to a set, expressed by using 
the membership function. 
The FS theory has later been extended in order to provide an effective method for solving many complex 
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decision-making problems, often related to uncertainties and predictions. The Interval-Valued Fuzzy Set 
(IVFS) Theory, proposed by Turksen (1986; 1996) and Gorzalczany (1987), the Intuitionistic Fuzzy Sets 
(IFS) Theory, proposed by Atanassov (1986) and the Interval-Valued Intuitionistic Fuzzy Set (IVIFS) 
Theory, proposed by Atanassov and Gargov (1989), can be mentioned as the prominent and widely used 
extensions of the FS theory. 
In the IFS, Atanassov introduced the non-membership function. Smarandache (1998) proposed the 
Neutrosophic Set (NS) and so further generalized the IFS by introducing the indeterminacy-membership 
function, thus providing a general framework generalizing the concepts of the classical, fuzzy, interval-
valued fuzzy and intuitionistic fuzzy sets. 
Compared with the FS and its extensions, the NS can be identified as more flexible, for which reason they 
have been chosen in this approach for collecting the respondents’ attitudes. 
Therefore, this manuscript is organized as follows: in Section 2, the NSs are considered and in Section 3, 
the SWARA method is presented. In Section 4, a procedure for evaluating companies’ websites is 
considered and in Section 5, its usability is demonstrated. Finally, the conclusion is given. 

2. PRELIMINARIES
Definition. Fuzzy sets (FS). Let X be the universe of discourse, with a generic element in X denoted by x. 
Then, the FS A~  in X is as follows: 

}|))(({~ XxxxA A   , (1) 

where: ]1,0[: XA is the membership function and )(xA  denotes the degree of the membership of 

the element x in the set A~  (Zadeh, 1965). 
Definition. Intuitionistic fuzzy set (IFS). Let X be the universe of discourse, with a generic element in X 
denoted by x. Then, the IFS A~  in X can be defined as follows: 

}|)(),({~ XxxxxA AA   , (2)

where: )(xA  and )(xA are the truth-membership and the falsity-membership functions of the element x
in the set A, respectively; ]1 ,0[:, XAA   and .1)()(0  xx AA 

In intuitionistic fuzzy sets, indeterminacy )(xA is )()(1 xx AA   by default (Atanassov, 1986). 

Definition. Neutrosophic set (NS). Let X be the universe of discourse, with a generic element in X 
denoted by x. Then, the NS A in X is as follows: 

}|)(),(),({ XxxFxIxTxA AAA  , (3)

where TA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-membership function 
and the falsity-membership function, respectively, [1,0]:,, XFIT AAA

and   3)()()(0 xFxIxT AAA  (Smarandache, 1999). 

Definition. Single valued neutrosophic set (SVNS). Let X be the universe of discourse. The SVNS A over 
X is an object having the form 

}|)(),(),({ XxxFxIxTxA AAA  , (4) 

where TA(x), IA(x) and FA(x) are the truth-membership function, the intermediacy-membership function 
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and the falsity-membership function, respectively, ]1,0[:,, XFIT AAA

and   3)()()(0 xFxIxT AAA  (Wang et al., 2010). 

Definition. Single valued neutrosophic number. For the SVNS A in X the triple  AAA fit ,,  is called the 
single valued neutrosophic number (SVNN) (Smarandache, 1999). 
Definition. Basic operations on SVNNs. Let  1111 ,, fitx  and  2222 ,, fitx  be two SVNNs, then 
additive and multiplication operations are defined as follows (Smarandache, 1998): 

 2121212121 ,, ffiittttxx , (5) 

 2121,21212121 , ffffiiiittxx . (6) 

Definition. Scalar multiplication. Let  xx fitx , , x be a SVNN and 0 , then scalar multiplication 
is defined as follows (Smarandache, 1998): 

  1111 ,,)1(1 fitx . (7) 

Definition. Power. Let  xx fitx , , x be a SVNN and 0 , then power is defined as follows: 

  )1(1,, 1111 fitx . (8) 

Definition. Score function. Let  xx fitx , , x be a SVNN, then the score function sx of x can be as
follows: 

2/)21( xxxx fits  , (9) 

where ]1,1[xs  (Smarandache, 1998). 

Definition. Accuracy function. Let  xx fitx , , x  be a SVNN, then the score function sx of x can be as 
follows: 

3/)2( xxxx fith  , (10) 

where ]1,0[xh  (Smarandache, 1998). 

Definition. Ranking based on score and accuracy functions. Let x1 and x2 be two SVNNs. Then, the 
ranking method can be defined as follows (Mondal & Pramanik, 2014): 

(1) If sx1 > sx2, then x1> x2;
(2) If sx1 = sx2 and hx1 ≥ hx2, then x1 ≥ x2.

Definition. Single Valued Neutrosophic Weighted Average Operator. Let  jjj fitA , , j be a 

collection of SVNSs and T
nwwwW ),...,,( 21  is an associated weighting vector. Then, the Single Valued 

Neutrosophic Weighted Average (SVNWA) operator of Aj is as follows (Sahin, 2014): 
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where: wj is the element j of the weighting vector, ]1 ,0[jw  and 11  
n
j jw . 
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3. The SWARA Method
The Step-wise Weight Assessment Ratio Analysis (SWARA) technique was proposed by Kersuliene et al.
(2010). The computational procedure of the adapted SWARA method can be shown through the
following steps (Kersuliene et al., 2010; Stanujkic et al., 2015):
Step 1. Determine the set of the relevant evaluation criteria and sort them in descending order, based on
their expected significances.
Step 2. Starting from the second criterion, determine the relative importance sj of the criterion j (Cj) in
relation to the previous j-1 Cj-1 criterion, and do so for each particular criterion as follows:























1

1

1

  1
  1
 1

jj

jj

jj
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. (12)

where Cj and Cj-1 denote criteria. 
Using Eq. (11) respondents can more realistically express their opinions compared to the ordinary 
SWARA method, proposed by Kersuliene et al. (2010). 
Step 3. The third step in the adapted SWARA method should be performed as follows: 
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where kj is a coefficient. 
Step 4. Determine the recalculated weight qj as follows: 
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Step 5. Determine the relative weights of the evaluation criteria as follows: 
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w

1

, (15) 

where wj denotes the relative weight of the criterion j. 

4. PROCEDURE FOR EVALUATING WEBSITES BASED ON THE SINGLE VALUED
NEUTROSOPHIC SET AND THE SWARA METHOD
In their studies, many authors have identified different phases in the multiple criteria decision-making
process. In order to precisely define the procedures for evaluating websites, the below phases have
specially been emphasized:
 the selection of evaluation criteria
 the determination of the weights of the criteria
 the evaluation of alternatives in relation to the criteria
 the aggregation and analysis of the results
Selection of Evaluation Criteria

The choice of an appropriate set of the evaluation selection criteria is very important for the successful 
solving of each MCDM problem. 
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In many published studies, a number of authors have proposed different criteria for the evaluation of 
various websites. For example, Kapoun (1998) has proposed the use of the following criteria: Accuracy, 
Authority, Objectivity, Currency and Coverage. After that, Lydia (2009) has proposed Authority, 
Accuracy, Objectivity, Currency, Coverage and Appearance for evaluating the quality of a website. For 
the evaluation of websites at the California State University at Chico 
(http://www.csuchico.edu/lins/handouts/eval_websites.pdf), the so-called CRAAP test, based on the 
following criteria: Currency, Relevance, Authority, Accuracy and Purpose, has been proposed. 
In this approach, the proven set of the criteria adopted from the Webby Awards 
(http://webbyawards.com/judging-criteria/) is proposed for the evaluation of the quality of websites. This 
set of the evaluation criteria is as follows:  

 Content (C1),
 Structure and Navigation (C2),
 Visual Design (C3),
 Interactivity (C4),
 Functionality (C5) and
 Overall Experience (C6).

The meaning of the proposed evaluation criteria is as follows: 
 Content. The content is the information provided on the website. It is not just a text, but also

music, a sound, an animation or a video – anything that communicates the website’s body of
knowledge.

 Structure and Navigation. The structure and navigation refer to the framework of a website,
the organization of the content, the prioritization of information and the method in which you
move through the website. Websites with the good structure and navigation are consistent,
intuitive, and transparent.

 Visual Design. A visual design is the appearance of a website. It is more than just a pretty
homepage and it does not have to be cutting-edge or trendy. A good visual design is high-
quality, appropriate and relevant for the audience and the message it is supportive of. It
communicates a visual experience and may even take your breath away.

 Interactivity. Interactivity is the way a site allows a user to perform an action. Good
interactivity refers to providing opportunities for users to personalize their search and find
information or perform some action more easily and efficiently.

 Functionality. Functionality is the use of technology on a website. Good functionality means
that a website works well. It loads quickly, has live links and any new technology that has
been used is functional and relevant for the intended audience.

 Overall Experience. Demonstrating that websites are frequently more or less than just the sum
of their parts, overall experience encompasses the content, a visual design, functionality,
interactivity and the structure and navigation, but also includes the intangibles that make one
stay on the website or leave it.

Determination of the Weights of the Criteria 
In this approach, the SWARA method is used for determining the weights of the criteria. The SWARA 
method has been chosen because it is relatively simple to use and requires a relatively small number of 
comparisons in pairs. 
The determination of the weights of the criteria is done by using an interactive questionnaire made in a 
spreadsheet file. By using such an approach, the interviewee can see the calculated weights of the criteria 
and can also modify his/her answers if he or she is not satisfied with the calculated weights. 
Evaluation of Alternatives in Relation to the Evaluation Criteria 
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In this phase, there are several sub-phases that can be identified. 
The evaluation of alternatives in relation to the chosen set of the criteria is also done by using an 
interactive questionnaire made in a spreadsheet file.  
For each criterion, declarative sentences are formed. The respondents have a possibility to fill in their 
attitudes about the degree of truth, indeterminacy and the falsehood of the statement. 

For the sake of simplicity, the respondents fill in their attitudes in the percentage form, which are later 
transformed into the corresponding numbers in [0,1] intervals. 

For completing the questionnaire, it is necessary that between 30 and 90 fields should be filled in, which 
can be dissuasive for a significant number of respondents. However, this approach can be good because it 
can distract uninterested respondents from completing the questionnaire, thus reducing the number of the 
completed questionnaires with incorrect information. 
In addition, the Overall Experience criterion has also been used to assess the validity of the data entered. 
Aggregation and Analysis of Results 

In the Aggregation and Analysis phase, several components, sub-phases, could be identified, such as: 
 the determination of the overall ratings and the ranking order of the considered alternatives,
 the assessment of the validity of the data in the completed questionnaire and
 the determination of the overall group ratings and the ranking order of the considered

alternatives etc.
The first of them – the determination of the overall ratings – is mandatory, whereas the others are 
optional. 
The determination of the overall ratings and the ranking order of the considered alternatives. The process 
of assessing the determination of the overall ratings and the ranking order could be shown through the 
following steps: 

 the calculation of the overall single valued neutrosophic ratings of the alternatives by using
the SVNWA operator based on the values of the criteria C1-C5;

 the calculation of the score function by using Eq. (9) for each alternative; and
 the sorting of the considered alternatives based on the values of the score function and the

determination of the best one. The alternative with the highest value of the score function is
the best one.

The assessment of the validity of the data in the completed questionnaire. The Overall Experience 
criterion is omitted from the calculation of the overall single valued neutrosophic ratings because it plays 
a special role in the proposed approach. More precisely, the ratings filled in for this criterion are used to 
assess the validity of the data in the completed questionnaire.  
The process of assessing the validity of the data could be accounted for through the following steps: 

 Calculate the value of the score function based on the ratings of the Overall Experience
criterion, and do so for each alternative.

 Determine the ranking order of the alternatives based on the value of the score function.
 Calculate the correlation coefficient between the ranking order obtained based on C1-C5 and

the ranking order obtained based on the Overall Experience criterion.
Based on the value of the correlation coefficient, the questionnaire could be either accepted or rejected. 
The determination of the overall group ratings and the ranking order of the considered alternatives. In 
the case of real examinations, when more than one respondent is involved in the evaluation, it is 
necessary to determine the overall group ratings, and based on them the final ranking order of the 
alternatives. 

Florentin Smarandache (author and editor) Collected Papers, VIII

391



The process of determining the overall group ratings and the final ranking order of the alternatives is as 
follows: 

 the calculation of the overall group ratings by using the SVNWA operator, based on the
overall ratings;

 the calculation of the score function of the overall group rating by using Eq. (9) for each
alternative, and

 the sorting of the considered alternatives based on the values of the score function and the
determination of the best one. The alternative with the highest value of the score function is
the best one.

5. A NUMERICAL ILLUSTRATION

In this numerical illustration, one case of selecting websites is considered. The initial set of the
alternatives has been formed based on the keyword “vinarija”, which is the Serbian word for a “winery”,
in the Google search engine.
The list of eight top placed websites is as follows:

 Vinarija Zvonko Bogdan - http://www.vinarijazvonkobogdan.com/
 Vinarija Coka - http://www.vinarijacoka.rs/
 Vinarija Dulka - http://www.dulka-vinarija.com/
 Vinarija Milosavljevic - http://www.vinarija-milosavljevic.com/
 Vinarija Kis - http://www.vinarijakis.com/
 Vinarija Vink - http://www.dobrovino.com/
 Vinarija Matalj - http://www.mataljvinarija.rs/
 Vinarija Aleksandrovic - http://www.vinarijaaleksandrovic.rs/

From the above, a set of five alternatives has been formed, denoted A1 to A5. 
The survey has been conducted by email, with the aim to collect the attitudes from the respondents 
regarding the significance of the criteria and the ratings of the alternatives.  
The interactive questionnaire made in the spreadsheet was used for attitudes gathering, so the participants 
had an opportunity to see the results and possibly change their own attitudes. 
The attitudes obtained from the first of the three examinees are given in Table 1, which also accounts for 
the weights of the criteria calculated based on the examinees’ responses. 

Table 1: The responses and weights of the criteria obtained from one of the evaluated 
respondents 
Criteria sj kj qj wj 
C1 Content 1 1 0.22 
C2 Structure and Navigation 0.90 1.10 0.91 0.20 
C3 Visual Design 1.20 0.80 1.14 0.25 
C4 Interactivity 0.60 1.40 0.81 0.18 
C5 Functionality 0.90 1.10 0.74 0.16 

The attitudes obtained from the three examinees, as well as the appropriate weights, are presented in 
Table 2 as well. 
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Table 2: The attitudes and weights obtained from the three examinees 
E1 E1 E1 

sj wj sj wj sj wj 
C1 0.22 0.20 0.20 
C2 0.90 0.20 1.10 0.22 1.00 0.20 
C3 1.20 0.25 1.10 0.25 1.10 0.22 
C4 0.60 0.18 0.60 0.18 0.90 0.20 
C5 0.90 0.16 0.90 0.16 0.90 0.18 

The following are the responses obtained from the three examinees regarding the evaluation of the 
websites. 

Table 3: The ratings obtained from the first of the three examinees 
C1 C2 C3 C4 C5 C6 

A1 <1.0, 0.0, 0.0> <1.0, 0.2, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <0.8, 0.2, 0.2> <0.9, 0.1, 0.1> 
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <0.7, 0.0, 0.0> 
A3 <0.9, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 2.0, 2.0> 
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.0, 0.2> 
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.2> 

Table 4: The ratings obtained from the second of the three examinees 
C1 C2 C3 C4 C5 C6 

A1 <0.8, 0.2, 0.2> <1.0, 0.0, 0.0> <0.7, 0.3, 0.1> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.8, 0.1, 0.1> 
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1> 
A3 <0.7, 0.3, 0.2> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.2> 
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.1, 0.2> 
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.0> 

Table 5: The ratings obtained from the third of the three examinees 
C1 C2 C3 C4 C5 C6 

A1 <0.9, 1.0, 1.0> <0.9, 0.0, 0.2> <1.0, 0.0, 1.0> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.1> 
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1> 
A3 <0.6, 0.3, 0.2> <0.9, 0.0, 0.0> <0.5, 0.2, 0.3> <0.5, 0.3, 0.3> <0.9, 0.3, 0.4> <0.7, 0.0, 0.0> 
A4 <0.6, 0.0, 0.3> <0.5, 0.3, 0.4> <0.4, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.3, 0.3> <0.7, 0.0, 0.2> 
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.0> 

The remaining part of the evaluation process is explained on the first of the three examinees. 
The overall SVNN ratings calculated by using the SVNWA, i.e. by using Eq. (11), are shown in Table 4. 
The ranking order obtained based on the values of the score function, calculated by using Eq. (9), is also 
presented in table 6. 
The ranking order obtained based on the Overall Experience criterion is given in table 6, too. 
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Table 6: The ranking orders obtained on the basis of the ratings of the first of the three 
examinees 

C1- C5 Score Rank C6 Score Rank 
A1 <1.000, 0.006, 0.000> 0.9936 3 <0.9, 0.1, 0.1> 0.80 3 
A2 <1.000, 0.000, 0.000> 0.9997 1 <0.7, 0.0, 0.0> 0.85 2 
A3 <0.826, 0.001, 0.001> 0.9118 4 <0.7, 2.0, 2.0> -2.15 5 
A4 <0.695, 0.004, 0.018> 0.8345 5 <0.5, 0.0, 0.2> 0.65 4 
A5 <1.000, 0.000, 0.000> 0.9997 1 <0.9, 0.0, 0.2> 0.85 1 

The Pearson correlation coefficient between the two ranking orders, shown in Table 6, is 0.884, which is 
indicative of the fact that the data in the questionnaire are valid.  
The ranking orders obtained from the three examinees obtained based on the ratings of the criteria C1 to 
C5 are shown in Table 7.  

Table 7: The ranking orders obtained from the three examinees 
I II II 
Score Rank Score Rank Score Rank 

A1 0.99 3 0.98 3 0.93 3 
A2 1.00 1 1.00 1 1.00 1 
A3 0.91 4 0.88 4 0.78 4 
A4 0.83 5 0.83 5 0.75 5 
A5 1.00 1 1.00 1 1.00 1 
R 0.884 0.884 0.795 

The correlation coefficients are also accounted for in Table 7. 
The obtained correlation coefficients indicate that there is no significant difference between the ranking 
orders obtained based on the criteria C1 to C5 and the Overall Experience criterion, which is indicative of 
the fact that the data in the selected questionnaires are valid.  

CONCLUSION 

Obtaining a realistic attitude by surveying could often be related to some difficulties, when the data 
collected in such a manner are then further used in multiple criteria decision making. 
There are two opposite possibilities. The first one is using a greater number of criteria, often organized 
into two or more hierarchical levels. Such an approach should lead to the formation of accurate models. 
However, an increase in the number of criteria could lead to the creation of complex questionnaires, 
which could have a negative impact on the examinee’s response as well as on the verisimilitude of the 
collected data. 
Opposite to the previously said, the usage of a smaller number of criteria could have a positive impact on 
the collection of data, i.e. respondents’ attitudes, on the one hand, but could also lead to the creation of 
less precise decision-making models, on the other. 
The neutrosophic set, or more precisely single valued neutrosophic numbers, could be an adequate basis 
for collecting the examinee’s attitudes by using a smaller number of criteria without losing precision.  
By combining the SWARA method, in order to determine the importance of criteria, on the one hand, and 
Single Valued Neutrosophic Numbers, in order to acquire respondents’ attitudes, on the other, effective 
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and easy-to-use multiple criteria decision-making models can be created, as has been shown in the 
considered numerical illustration. 
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ABSTRACT 

In this study, we give some concepts concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued 
neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter-valued neutrosophic hesitant fuzzy 
sets, refined neutrosophic sets, bipolar neutrosophic refined sets, multi-valued neutrosophic sets, simplified 
neutrosophic linguistic sets, neutrosophic over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic 
sets, rough neutrosophic  hyper-complex set, and their basic operations. Then we introduce triangular neutrosophic 
numbers, trapezoidal neutrosophic fuzzy number and their basic operations. Also some comparative studies between 
the existing neutrosophic sets and neutrosophic number are provided. 

KEYWORDS: Neutrosophic sets (NSs), Single valued neutrosophic sets (SVNSs), Interval-valued 
neutrosophic sets (IVNSs), Bipolar neutrosophic sets (BNSs), Neutrosophic hesitant fuzzy sets 
(NHFSs), Interval valued neutrosophic hesitant fuzzy sets (IVNHFSs), Refined neutrosophic sets 
(RNSs), Bipolar neutrosophic refined sets (BNRSs), Multi-valued neutrosophic sets (MVNSs), 
Simplified neutrosophic linguistic sets, Neutrosophic numbers, Neutrosophic over/off/under sets, 
Rough neutrosophic sets, Bipolar rough neutrosophic sets, Rough neutrosophic sets,  Bipolar 
rough neutrosophic sets, Rough neutrosophic hyper-complex set 

1. INTRODUCTION

The concept of fuzzy sets was introduced by L. Zadeh (1965). Since then the fuzzy sets and fuzzy logic are 
used widely in many applications involving uncertainty. But it is observed that there still remain some 
situations which cannot be covered by fuzzy sets and so the concept of interval valued fuzzy sets (Zadeh, 
1975) came into force to capture those situations, Although Fuzzy set theory is very successful in handling 
uncertainties arising from vagueness or partial belongingness of an element in a set, it cannot model all 
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sorts of uncertainties prevailing in different real physical problems such as problems involving incomplete 
information. Further generalization of the fuzzy set was made by Atanassov (1986), which is known as 
intuitionistic fuzzy sets (IFs). In IFS, instead of one membership grade, there is also a non-membership 
grade attached with each element. Further there is a restriction that the sum of these two grades is less or 
equal to unity. The conception of IFS can be viewed as an appropriate/ alternative approach in case where 
available information is not sufficient to define the impreciseness by the conventional fuzzy sets. Later on 
intuitionistic fuzzy sets were extended to interval valued intuitionistic fuzzy sets (Atanassov & Gargov, 
1989). Neutrosophic sets (NSs) proposed by (Smarandache, 1998, 1999, 2002, 2005, 2006, 2010) which is 
a generalization of fuzzy sets and intuitionistic fuzzy set, is a powerful tool to deal with incomplete, 
indeterminate and inconsistent information which exist in the real world. Neutrosophic sets are 
characterized by truth membership function (T), indeterminacy membership function (I) and falsity 
membership function (F). This theory is very important in many application areas since indeterminacy is 
quantified explicitly and the truth membership function, indeterminacy membership function and falsity 
membership functions are independent. Wang, Smarandache, Zhang, & Sunderraman (2010) introduced 
the concept of single valued neutrosophic set. The single-valued neutrosophic set can independently express 
truth-membership degree, indeterminacy-membership degree and falsity-membership degree and deals 
with incomplete, indeterminate and inconsistent information. All the factors described by the single-valued 
neutrosophic set are very suitable for human thinking due to the imperfection of knowledge that human 
receives or observes from the external world. 

Single valued neutrosophic set has been developing rapidly due to its wide range of theoretical elegance 
and application areas; see for examples (Sodenkamp, 2013; Kharal, 2014; Broumi & Smarandache, 2014; 
Broumi & Smarandache, 2013; Hai-Long, Zhi-Lian, Yanhong, & Xiuwu, 2016; Biswas, Pramanik, & Giri, 
2016a, 2016b, 2016c; 2017; Ye, 2014a, 2014b, 2014c, 2015a, 2016).  
Wang, Smarandache, Zhang, & Sunderraman (2005) proposed the concept of interval neutrosophic set 
(INS) which is an extension of neutrosophic set. The interval neutrosophic set (INS) can represent uncertain, 
imprecise, incomplete and inconsistent information which exists in real world. 
Single valued neutrosophic number is an extension of fuzzy numbers and intuitionistic fuzzy numbers. 
Single valued fuzzy number is a special case of single valued neutrosophic set and is of importance for 
decision making problems.  Ye (2015b) and Biswas, Pramanik, and Giri (2014) studied the concept of 
trapezoidal neutrosophic fuzzy number as a generalized representation of trapezoidal fuzzy numbers, 
trapezoidal intuitionistic fuzzy numbers, triangular fuzzy numbers and triangular intuitionistic fuzzy 
numbers and applied them for dealing with multi-attribute decision making (MADM) problems. Deli & 
Subas  (2017) and Biswas et al. (2016b) studied the ranking of single valued neutrosophic trapezoidal 
numbers and applied the concept to solve MADM problems. Liang, Wang, & Zhang (2017) presented a 
multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference 
relations with complete weight information.  

Ye (2014b) proposed the concept of single valued neutrosophic hesitant fuzzy sets (SVNHFS). As a 
combination of hesitant fuzzy sets (HFS) and singled valued neutrosophic sets (SVNs), the single valued 
neutrosophic hesitant fuzzy set (SVNHF) is an important concept to handle uncertainty and vague 
information existing in real life which consists of three membership functions and encompass the fuzzy set 
(FS), intuitionistic fuzzy sets (IFS), hesitant fuzzy set (HFs), dual hesitant fuzzy set (DHFs) and single 
valued neutrosophic set (SVNS). Theoretical development and applications of such concepts can be found 
in (Wang & Li, 2016; Ye, 2016). Peng, Wang, Wu,  Wang, & Chen, 2014;  Peng &Wang, 2015) introduced 
the concept of multi-valued neutrosophic set as a new branch of NSs which is the same concept of 
neutrosophic hesitant fuzzy set. Multi-valued neutrosophic sets can be applied in addressing problems with 
uncertain, imprecise, incomplete and inconsistent information existing in real scientific and engineering 
applications. 

Tian, Wang, Zhang, Chen, & Wang (2016) defined the concept of simplified neutrosophic linguistic sets 
which combine the concept of simplified neutrosophic sets and linguistic term sets. Simplified neutrosophic 
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linguistic sets have enabled great progress in describing linguistic information to some extent. It may be 
considered to be an innovative construct.  

Deli, Ali, and Smarandache (2015a)  defined the concept of bipolar neutrosophic set and its score, certainty 
and accuracy functions. In the same study, Deli et al. (2015a) proposed the A୵  and G୵  operators to 
aggregate the bipolar neutrosophic information. Furthermore, based on the A୵ and G୵ operators and the 
score, certainty and accuracy functions, Deli et al. (2015a) developed a bipolar neutrosophic  multiple 
criteria decision-making approach, in which the evaluation values of alternatives on the attributes assume 
the form of bipolar neutrosophic  numbers. Some theoretical and applications using bipolar neutrosophic 
sets are studied by several authors (Uluçay, Deli, & Şahin,2016; Dey, Pramanik, & Giri, 2016a; Pramanik, 
Dey, Giri, & Smarandache, 2017;).  

Maji (2013) defined neutrosophic soft set. The development of decision making algorithms using 
neutrosophic soft set theory has been reported in the literature (Deli & Broumi, 2015; Dey, Pramanik, & 
Giri, 2015, 2016b, 2016c; Pramanik & Dalapati (2016), Das, Kumar, Kar, & Pal, 2017).  

Broumi, Smarandache, and Dhar (2014a, 2014b) defined rough neutrosophic set and proved its basic 
properties. Some theoretical advancement and applications have been reported in the literature (Mondal & 
Pramanik, 2014, 2015a, 2015b, 2015c, 2015d, 2015e, 2015f, 2015g, 2015h); Mondal, Pramanik, and 
Smarandache (2016a, 2016b, 2016c, 2016d); Pramanik & Mondal (2015a, 2015b, 2015c); Pramanik, Roy, 
Roy, &Smarandache (2017); Pramanik, Roy, & Roy (2017).   

Ali, Deli, and Smarandache (2016) and Jun, Smarandache, and Kim (2017) proposed neutrosophic cubic 
set by extending the concept of cubic set. Some studies in neutrosophic cubic set environment have been 
reported in the literature (Banerjee, Giri, Pramanik, & Smarandache (2017); Pramanik, Dey, Giri, & 
Smarandache (2017b); Pramanik, Dalapati, Alam, & Roy (2017a, 2017b); Pramanik, Dalapati, Alam, Roy 
& Smarandache (2017); Ye (2017); Lu & Ye (2017). 

Another extension of neutrosophic set namely, neutrosophic refined set and its appilication was studied by 
several researchers ( Deli, Broumi,  & Smarandache, 2015b;  Broumi & Smarandache, 2014b; Broumi,& 
Deli,2014;. Uluçay, Deli, & Şahin, 2016, Pramanik, S., Banerjee, D., & Giri, 2016a, 2016b; Mondal & 
Pramanik, 2015h, 2015i.; Ye & Smarandache, 2016., Chen, Ye, & Du, 2017). 

Later on, several extensions of neutrosophic set have been proposed in the literature by researchers to deal 
with different type of problems such as bipolar neutrosophic refined sets (Deli & Şubaş, 2016), tri-complex 
rough neutrosophic set (Mondal & Pramanik, 2015g), rough neutrosophic hyper-complex set (Mondal, 
Pramanik & Smarandache, 2016d), rough bipolar neutrosophic set.(Pramanik a& Mondal, 2016)  simplified 
neutrosophic linguistic sets (SNLS) (Tian, Wang, Zhang, Chen, & Wang, 2016), quadripartitioned single 
valued neutrosophic sets (Chatterjee, Majumdar, Samanta, 2016). Smarandache (2016a. 2016b) proposed 
new version of neutrosophic sets such as  neutrosophic off/under/over sets. To have a glimpse of new trends 
of neutrosophic theory and applications, readers can see the latest editorial book (Smarandache & Pramanik, 
2016). Interested readers can find a variety of applications of single valued neutrosophic sets and their 
hybrid extensions in the website of the Journal “Neutrosophic Sets and Systems” namely, 
http://fs.gallup.unm.edu/nss. 

BASIC AND FUNDAMENTAL CONCEPTS 
2.1. Neutrosophic sets (Smarandache, 1998) 

Let 𝜉 be the universe. A neutrosophic set (NS) A in 𝜉 is characterized by a truth membership function AT , 

an indeterminacy membership function AI  and a falsity membership function AF where AT , AI and AF are 

real standard elements of [0,1]. It can be written as 
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{ , ( ( ), ( ), ( )) : , , , 0,1 }A A A A A AA x T x I x F x x E T I F         

There is no restriction on the sum of AT (x), AI  (x)and AF (x) and so 0 ( ) ( ) ( )) 3A A AT x I x F x    

2.2 Single valued neutrosophic sets (Wang et al., 2010) 

Let X be a space of points (objects) with generic elements in 𝜉 denoted by x. A single valued neutrosophic 

set A (SVNS ) is characterized by truth-membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . For each point x in 𝜉, ( )AT x , ( )AI x , ( )AF x
[0, 1]. A SVNS A can be written as 

A = {< x: ( )AT x , ( )AI x , ( )AF x >, x   𝜉} 

2.3 Interval valued neutrosophic sets (Wang et al., 2005) 

Let 𝜉  be a space of points (objects) with generic elements in X denoted by x. An interval valued 

neutrosophic set A (IVNS A) is characterized by an interval truth-membership function ( ) ,L U
A A AT x T T   

, an interval indeterminacy-membership function ( ) , IL U
A A AI x I    , and an interval falsity-membership

function ( ) , FL U
A A AF x F    . For each point x ∈ 𝑋 ( )AT x , ( )AI x , ( )AF x  [0, 1]. An IVNS A can be 

written as 

 A = {< x: ( )AT x , ( )AI x , ( )AF x >, x   𝜉} 

Numerical Example: Assume that 1 2 3{ , , }X x x x , 1x is capability, 2x trustworthiness, 3x price. The 

values of 1x , 2x  and 3x  are in [0,1].They are obtained from questionnaire of some domain experts and the 

result can be obtained as the degree of good, degree of indeterminacy and the degree of poor. Then an 
interval neutrosophic set can be obtained as  

1

2

3

,[0.5,0.3],[0.1,0.6],[0.4,0.2] ,

,[0.3,0.2],[0.4,0.3],[0.4,0.5] ,

,[0.6,0.3],[0.4,0.1],[0.5,0.4]

x

A x

x

 
  
  

2.3 Bipolar neutrosophic sets (Deli et al., 2015) 

A bipolar neutrosophic set A in 𝜉 is defined as an object of the form 

A={<x, ( )pT x , ( )pI x , ( )pF x , ( )nT x , ( )nI x , ( )nF x >: x 𝜉}, where pT , pI , pF : 𝜉  [1, 0] and nT , nI ,
nF : 𝜉  [-1, 0] .The positive membership degree ( )pT x , ( )pI x , ( )pF x  denote the truth membership,

indeterminate membership and false membership of an element 𝜉  corresponding to a bipolar 

neutrosophic set A and the negative membership degree ( )nT x , ( )nI x , ( )nF x denotes the truth membership,
indeterminate membership and false membership of an element 𝜉  to some implicit counter-property 
corresponding to a bipolar neutrosophic set A. 
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An empty bipolar  neutrosophic set 1 1 1 11 1 1, I ,F , , I ,Fp p p n n nA T T   is defined as 1 1 10, I 0,F 1p p pT     and 

1 1 11, I 0, F 0n n nT     . 

Numerical Example: Let 1 2 3{ , , }X x x x then

1

2

3

,0.5,0.3,0.1, 0.6, 0.4, 0.01 ,

,0.3,0.2,0.4, 0.03, 0.004, 0.05 ,

,0.6,0.5,0.4, 0.1, 0.5, 0.004

x

A x

x

    
     
     

 

is a bipolar neutrosophic number. 

2.4 Neutrosophich hesitant fuzzy set (Ye, 2014) 

Let  𝜉 be a non-empty fixed set, a neutrosophic hesitant fuzzy set (NHFS) on X is expressed by:𝑁 =

൛〈𝑥, �̃�(𝑥), 𝚤̃(𝑥), 𝑓ሚ(𝑥)〉ห𝑥 ∈ 𝜉ൟ,  where �̃�(𝑥) = {𝛾|𝛾 ∈ �̃�(𝑥)}, 𝚤̃(𝑥) = ൛𝛿ሚห𝛿ሚ ∈ 𝚤̃(𝑥)ൟand𝑓ሚ(𝑥) = ൛𝜗ሚห𝜗ሚ ∈

𝑓ሚ(𝑥)ൟ are three sets with some values in interval [0,1], which represents the possible truth-membership 
hesitant degrees,indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees of 
the element  𝑥 ∈ 𝜉 to the set N , and satisfies these limits : 

𝛾 ∈ [0,1], 𝛿ሚ ∈ [0,1], 𝜗ሚ ∈ [0,1]and 0 ≤ 𝑠𝑢𝑝𝛾ା + 𝑠𝑢𝑝𝛿ሚା + 𝑠𝑢𝑝𝜗ሚା ≤ 3 

where𝛾ା = ⋃ 𝑚𝑎𝑥{𝛾}ఊ∈௧ሚ(௫) , 𝛿ሚା = ⋃ 𝑚𝑎𝑥൛𝛿ሚൟఋ෩∈ప̃(௫) and 𝜗ሚା = ⋃ 𝑚𝑎𝑥൛𝜗ሚൟణ෩∈ప̃(௫) for𝑥 ∈ 𝑋.

The𝑛 = ൛�̃�(𝑥), 𝚤(̃𝑥), 𝑓ሚ(𝑥)ൟ is called a neutrosophic hesitant fuzzy element (NHFE) which is the 

basic unit of the NHFS and is denoted by the symbol 𝑛 = ൛�̃�, 𝚤,̃ 𝑓ሚൟ. 

2.5 Interval neutrosophic hesitant fuzzy set (Ye, 2016) 

Let 𝜉 be a fixed set, an INHFS on 𝜉 is defined as 

𝑁 = ൛〈𝑥, �̃�(𝑥), 𝚤(̃𝑥), 𝑓ሚ(𝑥)〉ห𝑥 ∈ 𝜉ൟ. 

Here �̃�(𝑥), 𝚤̃(𝑥) and𝑓ሚ(𝑥) are sets of some different interval values in [0, 1], representing the possible truth-
membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership 
hesitant degrees of the element  𝑥 ∈ 𝜉  to the set N, respectively. Then �̃�(𝑥)  reads  �̃�(𝑥) = {𝛾|𝛾 ∈
�̃�(𝑥)}, 𝑤here 𝛾 = [𝛾, 𝛾]  is an interval number,  𝛾 = 𝑖𝑛𝑓𝛾  and 𝛾 = 𝑠𝑢𝑝𝛾  represent the lower and 
upper limits of  𝛾,  respectively; 𝚤̃(𝑥) reads  𝚤̃(𝑥) = ൛𝛿ሚห𝛿ሚ ∈ �̃�(𝑥)ൟ, 𝑤here𝛿ሚ = ൣ𝛿ሚ, 𝛿ሚ൧ is an interval number, 
𝛿ሚ = 𝑖𝑛𝑓𝛿ሚ and 𝛿ሚ = 𝑠𝑢𝑝𝛿ሚ represent the lower and upper limits of  𝛿ሚ,  respectively;𝑓ሚ(𝑥) reads  𝑓ሚ(𝑥) =

൛𝜗ሚห𝜗ሚ ∈ �̃�(𝑥)ൟ, 𝑤here𝜗ሚ = ൣ𝜗ሚ, 𝜗ሚ൧ is an interval number, 𝜗ሚ = 𝑖𝑛𝑓𝜗ሚ and 𝜗ሚ = 𝑠𝑢𝑝𝜗ሚrepresent the lower 
and upper limits of  𝜗ሚ,  respectively. Hence, there is the condition 

0 ≤ 𝑠𝑢𝑝𝛾ା + 𝑠𝑢𝑝𝛿ሚା + 𝑠𝑢𝑝𝜗ሚା ≤ 3 

where𝛾ା = ⋃ 𝑚𝑎𝑥{𝛾}ఊ∈௧ሚ(௫) , 𝛿ሚା = ⋃ 𝑚𝑎𝑥൛𝛿ሚൟఋ෩∈ప̃(௫) and𝜗ሚା = ⋃ 𝑚𝑎𝑥൛𝜗ሚൟణ෩∈ప̃(௫) for𝑥 ∈ 𝑋. 

For convenience,  𝑛 = ൛�̃�(𝑥), 𝚤(̃𝑥), 𝑓ሚ(𝑥)ൟ is called an interval neutrosophic hesitant fuzzy element (INHFE), 
which is denoted by the simplified symbol 𝑛 = ൛�̃�, 𝚤,̃ 𝑓ሚൟ. 
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2.6 Multi-valued neutrosophic sets (Wang & Li, 2015; Peng & Wang, 2015) 

Let X  be a space of points (objects) with generic elements in X denoted by x, then multi-valued 

neutrosophic sets A in X is characterized by a truth-membership function ( )AT x , a indeterminacy-

membership function ( )AI x , and a falsity-membership function ( )AF x . Multi-valued neutrosophic sets

can be defined as the following form: 

{ , ( ), ( ), ( ) },A A AA x T x I x F x x X   

where ( ) [0,1]AT x  , ( ) [0,1]AI x  , ( ) [0,1]AF x  , are sets of finite discrete values, and satisfies the

condition 0 , , 1    , 0 3        , ( )AT x   , ( )AI x  , ( )AF x   , sup ( )AT x    ,

sup ( )AI x   , sup ( )AF x    . For the sake of simplicity, , ,A A AA T I F     is called as multi-valued

neutrosophic number. 

If ( )AT x , ( )AI x , ( )AF x  has only one value, the multi-valued neutrosophic sets is single valued

neutrosophic sets. If ( )AT x  , the multi-valued neutrosophic sets is double hesitant fuzzy sets. If

( ) ( )A AT x F x   , the multi-valued neutrosophic sets is hesitant fuzzy sets.

Numerical example: Investment company have four options (to invest): the car company, the food 
company, the computer company, and the arms company, and it considers three criteria: the risk control 
capability, the growth potential, and the environmental impact. Then the decision matrix based on the multi-
valued neutrosophic numbers is R. 

{0.4,0.5},{0.2},{0.3} {0.4},{0.2,0.3},{0.3} {0.2},{0.2},{0.5}

{0.6},{0.1,0.2},{0.2} {0.6},{0.1},{0.2} {0.5},{0.2},{0.1,0.2}

{0.3,0.4},{0.2},{0.3} {0.5},{0.2},{0.3} {0.5},{0.2,0.3},{0.2}

{0.7},{0.1,0.2},{0.1}

R 

{0.6},{0.2},{0.3} {0.4},{0.3},{0.2}

 
 
 
 
 
  

. 

2.7 Neutrosophic overset/ underset/offset (Smarandache, 2016a) 

2.7.1. Definition of neutrosophic overset: Let 𝜉 be a universe of discourse and 

the neutrosophic set A ⊂  𝜉 . Let T(x) , I(x) , F(x)  be the functions that describe the degree of 
membership, indterminate membership and non-membership respectively of a generic element x ∈ 𝜉 with 
respect to the neutrosophic set A. A neutrosophic overset (NOVs) A on the universe of discourse 𝜉 is 
defined as: 

A=൛൫x, T(x), I(x), F(x)൯, x ∈ 𝜉 and T(x), I(x), F(x) ∈ [0, Ω ]ൟ, where  

T(x), I(x), F(x): 𝜉 → [0, Ω ],     0 < 1< Ω and  Ω is called over limit. Then there exist at least one element in 
A such that it has at least one neutrosophic  component > 1, and no element has neutrosophic component < 
0.
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2.7.2 Definition of neutrosophic underset: Let 𝜉 be a universe of discourse and 

the neutrosophic set A ⊂  𝜉 . Let T(x) , I(x) , F(x)  be the functions that describe the degree of 
membership, indterminate membership and non-membership respectively of a generic element x ∈ 𝜉 with 
respect to the neutrosophic set A. A neutrosophic under set (NUs) A on the universe of discourse 𝜉 is 
defined as: 

A=൛൫x, T(x), I(x), F(x)൯, x ∈ 𝜉 and T(x), I(x), F(x) ∈ [Ψ, 1 ]ൟ 

Where 

T(x), I(x), F(x): 𝜉 → [Ψ, 1 ],     Ψ<0<1 and  Ψ is called lowerlimit.Then there exist at least one element in 
A such that it has at least one neutrosophic  component < 0, and no element has neutrosophic component > 
1. 

 2.7.3 Definition of neutrosophic offset: Let 𝜉 be a universe of discourse and 

the neutrosophic set A ⊂  𝜉 . Let T(x) , I(x) , F(x)  be the functions that describe the degree of 
membership, indterminate membership and non-membership respectively of a generic element x ∈ 𝜉 with 
respect to the neutrosophic set A. A neutrosophic offset (NOFFs) A on the universe of discourse 𝜉 is defined 
as: 

A=൛൫x, T(x), I(x), F(x)൯, x ∈ 𝜉 and T(x), I(x), F(x) ∈ [Ψ, Ω ]ൟ, where 

T(x), I(x), F(x): 𝜉 → [Ψ, 1 ],     Ψ <0< 1<  Ω    and  Ψ is called underlimit while Ω is called overlimit. Then 
there existe some elments in A such that at least one neutrosophic component > 1, and at least another 
neutrosophic component < 0. 

Numerical example: A={(𝑥ଵ,<1.2, 0.4,0.1>),(𝑥ଶ,<0.2, 0.3,-0.7>)}, since T(𝑥ଵ) = 1.2 >1 , F(𝑥ଶ) = 

- 0.7 < 0.

2.7.4 Some operations of neutrosophic over/off/under sets 

Definition 1: The complement of a neutrosophic overset/ underset/offset A is denoted by C(A) 

and is defined by 

C(A) ={(x,<𝐹(𝑥), Ψ + Ω-𝐼(𝑥),𝑇(𝑥)), x∈ 𝜉}. 

Definition 2: The intersection of two neutrosophic overset/ underset/offset A and B is a 

neutrosophic overset/ underset/offset denoted C and is denoted by  

 C= A∩ B and is defined by 

 C= A∩ B ={(x,<min (𝑇(𝑥), 𝑇(𝑥)), max (𝐼(𝑥), 𝐼(𝑥)), max (𝐹(𝑥), 𝐹(𝑥))),x∈ 𝜉}. 

Definition 3: The union of two overset/ underset/offset A and B is a neutrosophic overset/ 

underset/offset denoted C and is denoted by  

 C= A∪ B and is defined by 
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 C= A∪ B ={(x,<max (𝑇(𝑥), 𝑇(𝑥)), min(𝐼(𝑥), 𝐼(𝑥)), min (𝐹(𝑥), 𝐹(𝑥))), x∈ 𝜉}. 

Let 𝜉 be a universe of discourse and A the neutrosophic set A⊂U. Let T(x), I(x),F(x) be the functions 
that describe the degree of membership, indterminate membership and non-membership respectively of a 
generic element x ∈ 𝜉with respect to the neutrosophic set A. A neutrosophic overset (NOV) A on the 
universe of discourse U is defined as: 

A=൛൫x, T(x), I(x), F(x)൯, x ∈ 𝜉 and T(x), I(x), F(x) ∈ [0, Ω ]ൟ, where 

T(x), I(x), F(x): 𝜉U→ [0, Ω ],     0 < 1 < Ω and  Ω is called overlimit.Then there exist at least one element 
in A such that it has at least one neutrosophic  component >1, and no element has neutrosophic component 
<0. 

2. OPERATIONS ON SOME NEUTROSOPHIC NUMBERS AND NEUTROSOPHIC
SETS

2.1 Single valued neutrosophic number 

Let 1 1 1 1( , I , F )A T and 2 2 2 2( , I ,F )A T be two single valued neutrosophic number. Then, the operations
for SVNNs are defined as below; 

i. 1 2 1 2 1 2 1 2 1 2, I I , F FA A T T T T     

ii. 1 2 1 2 1 2 1 2 1 2 1 2, I I I I , F F F F )A A T T       

iii. 1 1 1 11 (1 ) ), I , )A T F      

iv. 1 1 1 1( ,1 (1 ) ,1 (1 ) )A T I F        where 0 
It is to be noted here that 0n may be defined as follow: 

0 { x, (0,1,1) : x X}n     . 

2.2 Neutrosophic hesitant fuzzy set (Ye, 2014) 

For two NHFEs 𝑛ଵ = ൛�̃�ଵ, 𝚤ଵ̃, 𝑓ሚଵൟ  , 𝑛ଶ = ൛�̃�ଶ, 𝚤ଶ̃, 𝑓ሚଶൟ and a positivescale > 0  , the operations 

operations can be defined as follows:  

(1) 𝑛ଵ ⊕ 𝑛ଶ = ൛�̃�ଵ ⊕ �̃�ଶ, 𝚤ଵ̃ ⊗ 𝚤ଶ̃, 𝑓ሚଵ ⊗ 𝑓ሚଶൟ = ⋃ ൛𝛾ଵ + 𝛾ଶ −ఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ,ఊమ∈௧ሚమ,ఋ෩మ∈ప̃మ,ణ෩మ∈ሚమ

𝛾ଵ. 𝛾ଶ, 𝛿ሚଵ. 𝛿ሚଶ, 𝜗ሚଵ. 𝜗ሚଶൟ

(2) 𝑛ଵ ⊗ 𝑛ଶ = ൛�̃�ଵ ⊗ �̃�ଶ, 𝚤ଵ̃ ⊕ 𝚤ଶ̃, 𝑓ሚଵ ⊕ 𝑓ሚଶൟ = ⋃ ൛𝛾ଵ. 𝛾ଶ−, 𝛿ሚଵ +ఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ,ఊమ∈௧ሚమ,ఋ෩మ∈ప̃మ,ణ෩మ∈ሚమ

𝛿ሚଶ − 𝛿ሚଵ. 𝛿ሚଶ, 𝜗ሚଵ + 𝜗ሚଶ − 𝜗ሚଵ. 𝜗ሚଶൟ

(3) 𝑘𝑛ଵ = ⋃ ቄ1 − (1 − 𝛾ଵ) , 𝛿ሚଵ


, 𝜗ሚଵ


ቅఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ

(4) 𝑛ଵ
 = ⋃ ቄ𝛾ଵ

 , 1 − ൫1 − 𝛿ሚଵ൯


, 1 − ൫1 − 𝜗ሚଵ൯


ቅఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ
. 

2.3 Interval neutrosophic hesitant fuzzy set [Ye, 2016] 

For two INHFEs 𝑛ଵ = ൛�̃�ଵ, 𝚤ଵ̃, 𝑓ሚଵൟ , 𝑛ଶ = ൛�̃�ଶ, 𝚤̃ଶ, 𝑓ሚଶൟ  and a positive scale > 0 , the follwing operations can 
be given as follows: 
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(1) 𝑛ଵ ⊕ 𝑛ଶ = ൛�̃�ଵ ⊕ �̃�ଶ, 𝚤ଵ̃ ⊗ 𝚤ଶ̃, 𝑓ሚଵ ⊗ 𝑓ሚଶൟ = ⋃ ቄൣ𝛾ଵ
 + 𝛾ଶ

 −ఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ,ఊమ∈௧ሚమ,ఋ෩మ∈ప̃మ,ణ෩మ∈ሚమ

𝛾ଵ
. 𝛾ଶ

, 𝛾ଵ
 + 𝛾ଶ

 − 𝛾ଵ
. 𝛾ଶ

൧, ቂ𝛿ሚଵ


. 𝛿ሚଶ


, 𝛿ሚଵ


. 𝛿ሚଶ


ቃ , ቂ𝜗ሚଵ


. 𝜗ሚଶ


, 𝜗ሚଵ


. 𝜗ሚଶ


ቃቅ 

(2) 𝑛ଵ ⊗ 𝑛ଶ = ൛�̃�ଵ ⊗ �̃�ଶ, 𝚤ଵ̃ ⊕ 𝚤ଶ̃, 𝑓ሚଵ ⊕ 𝑓ሚଶൟ =

⋃ ቄൣ𝛾ଵ
. 𝛾ଶ

, 𝛾ଵ
. 𝛾ଶ

൧−, ቂ𝛿ሚଵ


+ 𝛿ሚଶ


− 𝛿ሚଵ


. 𝛿ሚଶ


, 𝛿ሚଵ


+ 𝛿ሚଶ


−ఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ,ఊమ∈௧ሚమ,ఋ෩మ∈ప̃మ,ణ෩మ∈ሚమ

𝛿ሚଵ


. 𝛿ሚଶ


ቃ , ቂ𝜗ሚଵ


+ 𝜗ሚଶ


− 𝜗ሚଵ


. 𝜗ሚଶ


, 𝜗ሚଵ


+ 𝜗ሚଶ


− 𝜗ሚଵ


. 𝜗ሚଶ


ቃቅ 

(3) 𝑘𝑛ଵ = ⋃ ൜ቂ1 − ൫1 − 𝛾ଵ
൯


, 1 − ൫1 − 𝛾ଵ

൯


ቃ , ቀ𝛿ሚଵ


ቁ


, ቀ𝛿ሚଵ


ቁ


൨ ,ఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ

ቀ𝜗ሚଵ


ቁ


, ቀ𝜗ሚଵ


ቁ


൨ൠ 

(4) 𝑛ଵ
 = ⋃ ൜ቂ൫𝛾ଵ

൯


, ൫𝛾ଵ
൯


ቃ , 1 − ቀ1 − 𝛿ሚଵ


ቁ


, 1 − ቀ1 − 𝛿ሚଵ


ቁ


൨ , 1 − ቀ1 −ఊభ∈௧ሚభ,ఋ෩భ∈ప̃భ,ణ෩భ∈ሚభ

𝜗ሚଵ


ቁ


, 1 − ቀ1 − 𝜗ሚଵ


ቁ


൨ൠ. 

4. SCORE FUNCTION, ACCURACY FUNCTION AND CERTAINTY FUNCTION
OF NEUTROSOPHIC NUMBERS

A convenient method for comparing of single valued neutrosophic number is described as follows: 

Let 1 1 1 1( , I , F )A T  be a single valued neutrosophic number. Then, the score function 1( )s A , accuracy function

1( )a A and certainty function 1( )c A of a SVNN are defined as follows:

(i) 1 1 1
1

2
( )

3

T I F
s A

  


(ii) 1 1 1( )a A T F 

(iii) 1 1c( )A T .

5. RANKING OF NEUTROSOPHIC NUMBERS

Suppose that 1 1 1 1( , I , F )A T  and 2 2 2 2( , I , F )A T   are two single valued neutrosophic numbers. Then, the
ranking method is defiend as follows:  

i. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
ii. If  1 2( ) ( )s A s A  ,and  1 2( ) ( )a A a A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted

by 1 2A A 
iii. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is greater than 2A , that is, 1A is superior

to 2A , denoted by 1 2A A 
iv. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is equal to 2A , that is, 1A is indifferent

to 2A , denoted by 1 2A A 
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A single valued triangular neutrosophic number (SVTrN-number) 1 1 1(a , , ); ,I ,Fa a aa b c T  is a special
neutrosophic set on the real number set R, whose truth membership, indeterminacy-membership, and a 
falsity-membership are given as follows: 

1
1 1

1 1

1

1
1 1

1 1

( ) ( )( )

( )
( )

( ) ( )( )

0

a

a
a

a

x a T a x bb a

T x b
T x

c x T b x cc b

otherwise

   


    



1 1
1 1

1 1

1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) ( )( )

1

a

a
a

a

b x I x a a x bb a

I x b
I x

b I c x b x cc b

otherwise

     


      



1 1
1 1

1 1

1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) ( )( )

1

a

a
a

a

b x F x a a x bb a

F x b
F x

c F c x b x cc b

otherwise

     


 
    




where  0≤ aT ≤ 1;    0≤ aI ≤ 1; 0≤ aF ≤ 1  and  0≤ aT + aI + aF ≤ 3; 1 1 1a , ,b c R

Numerical Example: 

Let (2, 4, 6); 0.3, 0.4, 0.5a    be a single valued triangular neutrosophic number, then the truth 
membership, indeterminacy membership and falsity membership are expressed as follows 

0.3( 2)
, 2 4

2
0.3, 4( )

0.3(5 ), 4 5

0,

a

x
x

xT x
x x

otherwise

  
  
   



4 0.3( 2)
,2 4

2
0.4, 4( )

4 0.4(5 ),4 5

1,

a

x x
x

xI x
x x x

otherwise

    
  
     



6. DIFFERENT TYPES OF NEUTROSOPHIC NUMBERS AND RELATED TERMS
ASSOCIATED WITH THEM

6.1 Single valued-triangular neutrosophic numbers (Ye 2015b) 
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4 0.5( 2)
, 2 4

2
0.5, 4( )

4 0.4(5 ),4 5

1,

a

x x
x

xF x
x x x

otherwise

    
  
     



6.1.1 Operations on singled valued triangular neutrosophic numbers 

Let 1 1 2 3 1 1 1(a , , ); , I , FA a a T  and 2 1 2 3 2 2 2( , , ); , I , FA b b b T  be two single valued triangular neutrosophic
numbers. Then, the operations for SVTrN-numbers are defined as below; 

(i) 1 2 1 1 2 2 3 3 1 2 1 2 1 2(a , a , a ); min( , ), max(I , I ), max(F , F )A A b b b T T      

(ii) 1 2 1 1 2 2 3 3 1 2 1 2 1 2(a , a , a ); min( , ), max(I , I ), max(F , F ))A A b b b T T  

(iii) 1 1 2 3 1 2 1 2 1 2( a , a , a ); m in( , ), m ax(I , I ), m ax(F , F )A T T    

6.1.2 Score function and accuracy function of single valued triangular neutrosophic numbers 

The convenient method for comparing of two single valued triangular neutrosophic numbers is described 
as follows: 

Let 1 1 2 3 1 1 1(a , , ); , I , FA a a T   be a single valued triangular neutrosophic number. Then, the score function

1( )s A and accuracy function 1( )a A  of a SVTrN-numbers are defined as follows:

(i)  1 1 2 3 1 1 1
1

( ) 2 2
12

s A a a a T I F
           
 



(ii)  1 1 2 3 1 1 1
1

( ) 2 2
12

a A a a a T I F
          
 



 6.1.3 Ranking of single valued triangular neutrosophic numbers 

Let 1A  and 2A be two SVTrN-numbers. The ranking of 1A  and 2A by score function and accuracy function
is defined as follows: 

(i) If 1 2( ) ( )s A s A  , then     1 2A A 

(ii) If 1 2( ) ( )s A s A   and if

(1) 1 2a( ) ( )A a A  , then 1 2A A 

(2) 1 2a( ) ( )A a A  , then 1 2A A 

(3) 1 2a( ) ( )A a A  , then 1 2A A  .
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A single valued trapezoidal neutrosophic number (SVTN-number) 1 1 1 1(a , , , ); ,I ,Fa a aa b c d T  is a special
neutrosophic set on the real number set R, whose truth membership, indeterminacy-membership, and a 
falsity-membership are given as follows 

1
1 1

1 1

1 1

1
1 1

1 1

( ) ( )( )

( )
( )

( ) (c )( )

0

a

a
a

a

x a T a x bb a

T b x c
T x

d x T x dd c

otherwise

   


     



1 1
1 1

1 1

1 1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) (c )( )

1

a

a
a

a

b x I x a a x bb a

I b x c
I x

c I d x x dd c

otherwise

     


       



1 1
1 1

1 1

1 1

1 1
1 1

1 1

( ( )) ( )( )

( )
( )

(x ( )) (c )( )

1

a

a
a

a

b x F x a a x bb a

F b x c
F x

c F d x x dd c

otherwise

     


  
    




where  0≤ aT ≤ 1; 0≤ aI ≤ 1; 0≤ aF ≤ 1 and   0≤ aT + aI + aF ≤ 3; 1 1 1 1a , , ,b c d R .

Numerical example: 

Let (1, 2, 5, 6); 0.8, 0.6, 0.4a    be a single valued trapezoidal neutrosophic  number. Then the truth 
membership, indeterminacy membership and falsity membership are expressed as follows: 

0.8( 1),1 2

0.8,2 5
( )

0.8(6 ),5 6

0,

a

x x

x
T x

x x

otherwise

  
      


1.4 0.4 ,1 2

0.6,2 5
( )

0.8 1.4,5 6

1,

a

x x

x
I x

x x

otherwise

  
      


1.6 0.6 ,1 2

0.4,2 5
( )

0.6 2.6,5 6

1,

a

x x

x
F x

x x

otherwise

  
      


. 

6.2.1 Operation on single valued trapezoidal neutrosophic numbers. 

Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T  and 2 1 2 3 4 2 2 2( , , , ); , I , FA b b b b T  be two single valued trapezoidal neutrosophic
numbers. Then, the operations for SVTN-numbers are defined as below; 

6.2 Single valued-trapezoidal neutrosophic numbers (Deli & Subas, 2017) 
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(i) 1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2(a , a , a , a ); min( , ), max(I , I ), max(F , F )A A b b b b T T       

(ii) 1 2 1 1 2 2 3 3 4 4 1 2 1 2 1 2(a , a , a , a ); min( , ), max(I , I ), max(F , F ))A A b b b b T T  

(iii) 1 1 2 3 4 1 2 1 2 1 2( a , a , a , a ); m in( , ), m ax(I , I ), m ax(F , F )A T T     

6.2.2Score function and accuracy function of single valued trapezoidal neutrosophic 
numbers 

The convenient method for comparing of two single valued trapezoidal neutrosophic numbers is described 
as follows: 

Let 1 1 2 3 4 1 1 1(a , , , ); , I ,FA a a a T   be a single valued trapezoidal neutrosophic number. Then, the score function

1( )s A and accuracy function 1( )a A  of a SVTN-numbers are defined as follows:

(i)  1 1 2 3 4 1 1 1
1

( ) 2
12

s A a a a a T I F
            
 



(ii)  1 1 2 3 4 1 1 1
1

( ) 2
12

a A a a a a T I F
            
 



6.2.3 Ranking of single valued trapezoidal neutrosophic numbers 

Let 1A  and 2A be two SVTN-numbers. The ranking of 1A  and 2A by score function is defined as follows:

(i) If 1 2( ) ( )s A s A  then     1 2A A 

(ii) If 1 2( ) ( )s A s A   and if

(1) 1 2a( ) ( )A a A  then 1 2A A 

(2) 1 2a( ) ( )A a A  then 1 2A A 

(3) 1 2a( ) ( )A a A  then 1 2A A 

Later on, Liang et al. (2017) redefined the score function, accuracy function and certainty function as 
follows:  

Let a = < [aଵ,aଶ,aଷ,aସ], (Tୟ  , Iୟ  , Fୟ ) > be a SVTNN. Then, the score function, accuracy function, and 
certainty function of SVTNN a are defined, respectively, as: 

E(a) = COG(K) ×
(ଶାି ୍ି )

ଷ
 

A(a)= COG(K) × (Tୟ  - Fୟ ) 

C(a)= COG(K) × Tୟ  

where (COG) denotes  the center of gravity  of  K and can be defined as follows: 
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COG(K)=൝
a  if      aଵ = aଶ = aଷ = aସ
ଵ

ଷ
ቂaଵ + aଶ + aଷ + aସ −

ୟరୟయିୟమୟభ

ୟరାୟయିୟమିୟభ
ቃ , otherwise

6.3 Interval valued neutrosophic number 

6.3.1Operations on interval valued neutrosophic number 

Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 and 2 2 2 2 2 2 2, , , I , ,FL U L U L UA T T I F           

  be two interval valued 

neutrosophic numbers. Then, the operations for IVNNs are defined as below; 

(i) , , ,I , ,1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
L L L L U U U U L L U U L L U UA A T T T T T T T T I I I F F F F                     

 

(ii) 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 , , , I ,

, F

L L U U L L L L U U U U

L L L L U U U U

T T T T I I I I I I I

F F F F F F F

A A     

    

        
 
 

 

(iii) 1 1 1 1 1 11 (1 ) ,1 (1 ) ) , (I ) ,(I ) , ( ) ,( )L U L U L UA T T F F                          
  

(iv) ( ) ,( ) ) , 1 (1 ) ,1 (1 ) ) , 1 (1 ) ,1 (1 ) )1 1 1 1 1 1 1
L U L U L UA T T I I F F                              

 where 0  

An interval valued neutrosophic number 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
  is said to be empty if and only if 

1 1 1 10, 0, 1, 1,L U L UT T I I     and 
UL FF

11
 and is denoted by

     0,  0 ,  1,  1 ,  1,  0 { x, : x X}1n     

6.3.2 Score function and accuracy functions of interval valued neutrosophic number 

The convenient method for comparing of interval valued neutrosophic numbers is described as follows: 

Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 be a single valued neutrosophic number. Then, the score function 1( )s A

and accuracy function 1H ( )A  of an IVNN are defined as follows:

(i) 1 1 1 1 1 1 1
1

( ) 2 2 2
4

L U L U L Us A T T I I F F
              



(ii) 1 1 1 1 1 1 1 1 1 1
1

(1 ) (1 ) (1 ) (1 )
H ( )

2

L U U U L L U U L LT T I T I T F I F I
A

        


6.3.3 Ranking of interval valued neutrosophic numbers 

Let 1 1 1 1 1 1 1, , , I , ,FL U L U L UA T T I F           
 and 2 2 2 2 2 2 2, , , I , ,FL U L U L UA T T I F           

  are two interval valued 

neutrosophic numbers. Then, the  ranking method for comparing two IVNS is defiend as follows: 

v. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
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vi. If  1 2( ) ( )s A s A  ,and 1 2( ) ( )H A H A  then 1A  is greater than 2A , that is, 1A is superior to 2A ,
denoted by 1 2A A  .

6.4 Bipolar neutrosophic Number 

6.4.1Operation on bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T   and 2 2 2 22 2 2, I , F , , I , Fp p p n n nA T T  be two bipolar neutrosophic numbers and

0  . Then, the operations of these numbers defined as below; 

(i) 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

, I ,F

, ( I ), ( F )

p p p p p p p p

p p p p p p p pn n

A A T T T T I F

T T I I I F F F

   

         

 

(ii) 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, I ,F

( ), ,

p p p p p p p p p p

n n n n n n n n

A A T T I I I F F F

T T T T I I F F

     

      

 

(iii) 1 1 1 11 1 11 (1 ) ,(I ) ,( ) , ( ) , ( ) , (1 (1 ( F )) )p p p n n nA T F T I                 

(iv) ( ) ,1 (1 ) ,1 (1 ) , (1 (1 ( )) ), ( ) , ( F )) )1 1 1 1 1 1 1
p p p n n nA T I F T I                    where 0 . 

6.4.2 Score function, accuracy function and certainty function of bipolar neutrosophic 
number 

In order to make comparison between two BNNs. Deli et al. (2015) introduced a concept of score function. 
The score function is applied to compare the grades of BNS. This function shows that greater is the value, 
the greater is the bipolar neutrosophic sets and by using this concept paths can be ranked. Let 

,I ,F , ,I ,Fp p p n n nA T T   be a bipolar neutrosophic number. Then, the score function ( )s A , accuracy

function ( )a A and certainty function ( )c A of an BNN are defined as follows: 

(i) 1
( ) 1 1 1

6
p p p n n ns A T I F T I F

                


(ii) ( ) p p n na A T F T F   

(iii) ( ) p nc A T F 

6.4.3 Comparison of bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I , F , , I , Fp p p n n nA T T   and 2 2 2 22 2 2, I , F , , I , Fp p p n n nA T T  be two bipolar  neutrosophic numbers. 
then 

vii. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
viii. If  1 2( ) ( )s A s A  ,and  1 2( ) ( )a A a A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted

by 1 2A A 
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ix. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is greater than 2A , that is, 1A is superior
to 2A , denoted by 1 2A A 

x. If  1 2( ) ( )s A s A  , 1 2( ) ( )a A a A  , and 1 2c( ) ( )A c A   then 1A  is equal to 2A , that is, 1A is indifferent

to 2A , denoted by 1 2A A  .

7. TRAPEZOIDAL NEUTROSOPHIC SETS (Ye, 2015b; Biswas et al., 2014)

Assume that X be the finite universe of discourse and F [0, 1] be the set of all trapezoidal fuzzy numbers 
on [ 0, 1]. A trapezoidal fuzzy neutrosophic  set (TrFNS) A in X is represented as:

A  = {< x: ( )AT x , ( )AI x , ( )AF x >, x X}, where  ( ):X 0,1AT x F ,   ( ):X 0,1AI x F   and

 ( ):X 0,1AF x F .

The trapezoidal  fuzzy numbers ( )AT x = (
1T ( )A x ,

2T ( )A x ,
3T ( )A x ,

4T ( )A x ), ( )AI x = (
1 ( )AI x ,

2( )AI x ,
3( )AI x ,

4( )AI x ) and ( )AF x = (
1( )AF x ,

2 ( )AF x ,
3( )AF x ,

4 ( )AF x ) ,   respectively , denote the truth-membership,

indeterminacy-membership and a falsity-membership degree of x in A  and for every xX, 0 ≤ 
4T ( )A x +

4( )AI x + 
4 ( )AF x ≤ 3.

For notational convenience, the trapezoidal fuzzy  neutrosophic value (TrFNV) A  is denoted by

1 2 3 4 1 2 3 4 1 2 3 4( , , , ),( , ,b ,b ),( , , , )A a a a a b b c c c c where,

( 1T ( )A x , 2T ( )A x , 3T ( )A x ,
4T ( )A x ) = 1 2 3 4( , , , )a a a a , 

( 1 ( )AI x , 2 ( )AI x , 3 ( )AI x ,
4( )AI x ) = 1 2 3 4( , , b , b )b b , and 

( 1 ( )AF x , 2 ( )AF x , 3 ( )AF x ,
4 ( )AF x ) = 1 2 3 4( , , , )c c c c

The parameters satisfy the  following relations  1 2 3 4a a a a   ,  1 2 3 4b b b b    and 1 2 3 4c c c c   . 

The truth membership function is defined as follows 

1
1 2

2 1

2 3

1
3 4

2 1

,

1,
( )

,

0,

   
 

    
 




A

x a
a x a

a a

a x a
T x

x a
a x a

a a

otherwise

The indeterminacy membership function is defined as follows: 
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1
1 2

2 1

2 3

4
3 4

4 3

,

1,
( )

,

0,

   
 

    
 




A

x b
b x b

b b

b x b
I x

b x
b x b

b b

otherwise

and the falsity membership function is defined as follows: 

1
1 2

2 1

2 3

4
3 4

4 3

,

1,
( )

,

0,

   
 

    
 




A

x c
c x c

c c

c x c
F x

c x
c x c

c c

otherwise

A trapezoidal neutrosophic number 1 2 3 4 1 2 3 4 1 2 3 4( , , , ),( , ,b ,b ),( , , , )A a a a a b b c c c c  is said to be zero

triangular fuzzy neutrosophic number if and only if 

1 2 3 4( , , , )a a a a =( 0, 0, 0, 0), 1 2 3 4( , , b , b )b b  =( 1, 1, 1, 1) and 1 2 3 4( , , , )c c c c =( 1, 1, 1, 1). 

Remark: The trapezoidal fuzzy neutrosophic number is a particular case of trapezoidal neutrosophic 
number when all the three vector are equal: 1 2 3 4( , , , )a a a a = 1 2 3 4( , , b ,b )b b = 1 2 3 4( , , , )c c c c . 

7.1 Operation on trapezoidal fuzzy neutrosophic value 

Let 1 1 2 3 4 1 2 3 4 1 2 3 4( ,a ,a ,a ),(b ,b ,b ,b ),(c ,c ,c ,c )A a  and 2 1 2 3 4 1 2 3 4 1 2 3 4(e ,e ,e ,e ),(f ,f ,f ,f ),(g ,g ,g ,g )A  be two

TrFNVs in the set of real numbers,  and 0  . Then, the operational rules are defined as follows; 

(i) 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 2 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

, ,
,

,

(b , b , b , b ),

( , , , )

a e a e a e a e

a e a e a e a e

A A f f f f

c g c g c g c g

    
     

  

(ii) 

1 1 2 2 3 3 4 4

1 1 1 1 2 2 2 2
1 2

3 3 3 3 4 4 4 4

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

( , , , ),

, b ,
,

, b

,c ,

, c

a e a e a e a e

b f b f f b f
A A

b f b f f b f

c g c g g c g

c g c g g c g
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(iii) 
1 2

3 4

1 2 3 4 1 2 3 4

(1 (1 ) ,1 (1 ) ,

1 (1 ) ),1 (1 ) )

( , , , ), ( , c , c , c )

a a

A a a

b b b b c

 

 

       



     
      



(iv)  
 

1 2 3 4

1 1 2 3 4

1 2 3 4

( , , , ),

(1 (1 ) ,1 (1 ) ,1 (1 ) ),1 (1 ) ) ,

(1 (1 ) ,1 (1 ) ,1 (1 ) ),1 (1 ) )

a a a a

A b b b b

c c c c

   

    

   

        

       

 where 0 . 

Ye (2015b) presented the following definitions of score function and accuracy function. The score function 
S and the accuracy function H are applied to compare the grades of TrFNSs. These functions show that 
greater is the value, the greater is the TrFNS. 

7.2 Score function and accuracy function of trapezoidal fuzzy neutrosophic value 

Let 1 1 2 3 4 1 2 3 4 1 2 3 4( ,a ,a ,a ),(b ,b ,b ,b ),(c ,c ,c ,c )A a be a TrFNV. Then, the score function 1( )S A  and an

accuracy function 1( )H A  of TrFNV are defined as follows:

(i) 1 1 2 3 4 1 2 3 4 1 2 3 4
1

( ) 8 ( a a a ) (b b b b ) (c c c c )
12

s A a              

(ii) 1 1 2 3 4 1 2 3 4
1

( ) ( a a a ) (c c c c )
4

H A a          .

In order to make a comparison between two TrFNV, Ye (2015b) presented the order relations between two 
TrFNVs.  

7.3 Ranking of trapezoidal fuzzy neutrosophic value 

Let 1 1 2 3 4 1 2 3 4 1 2 3 4( ,a ,a ,a ),(b ,b ,b ,b ),(c ,c ,c ,c )A a  and 2 1 2 3 4 1 2 3 4 1 2 3 4(e ,e ,e ,e ),(f ,f ,f ,f ),(g ,g ,g ,g )A  be two

TrFNVs in the set of real numbers. Then, we define a ranking method as follows: 

xi. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
xii. If  1 2( ) ( )s A s A  , and  1 2( ) ( )H A H A  then 1A  is greater than 2A , that is, 1A is superior to 2A ,

denoted by 1 2A A  .

8. TRIANGULAR FUZZY NEUTROSOPHIC SETS (Biswas et al., 2014)

Assume that X be the finite universe of discourse and F [0, 1] be the set of all triangular fuzzy numbers on 
[ 0, 1]. A triangular fuzzy neutrosophic  set (TFNS) A in X is represented

A  = {< x: ( )AT x , ( )AI x , ( )AF x >, x X} ,

where  ( ):X 0,1AT x F ,   ( ):X 0,1AI x F   and  ( ):X 0,1AF x F . The triangular fuzzy numbers
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( )AT x = (
1T ( )A x ,

2T ( )A x ,
3T ( )A x ), ( )AI x = (

1 ( )AI x ,
2( )AI x ,

3( )AI x ) and

( )AF x = (
1( )AF x ,

2 ( )AF x ,
3( )AF x ) , respectively, denote the truth-membership, indeterminacy-

membership and a falsity-membership degree of x in A  and for every xX

0 ≤ 
3T ( )A x + 

3( )AI x + 
3( )AF x ≤ 3.

For notational convenience, the triangular fuzzy neutrosophic value (TFNV) A  is denoted by

( , , ),( , , ),( , , )A a b c e f g r s t where,( 1T ( )A x , 2T ( )A x , 3T ( )A x ) = (a, b, c),

( 1 ( )AI x , 2 ( )AI x , 3 ( )AI x ) = (e, f, g), and  ( 1 ( )AF x , 2 ( )AF x , 3 ( )AF x ) = (r, s, t). 

8.1 Zero triangular fuzzy neutrosophic number 

A triangular fuzzy neutrosophic number ( , , ),( , , ),( , , )A a b c e f g r s t  is said to be zero triangular

fuzzy neutrosophic number if and only if  

 (a, b, c) = (0, 0, 0), (e, f, g) = (1, 1, 1) and (r, s, t) = (1, 1, 1) 

8.2 Operation on triangular fuzzy neutrosophic value 

Let 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )A a b c e f g r s t  and 2 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )A a b c e f g r s t be two TFNVs in the set

of real numbers, and 0  . Then, the operational rules are defined as follows; 

(i) 1 2 1 2 1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2

( ,b , ),

( , , ),( , , )

a a a a b b b c c c c
A A

e e f f g g r r s s t t

     
  

(ii) 
1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

( , , ),

( , , ),

( , , )

a a b b c c

A A e e e e f f f f g g g g

r r r r s s s s t t t t

       
     

 

(iii)  1 1 1

1 1 1 1 1 1

(1 (1 ) ,1 (1 ) ,1 (1 ) ) ,

(e , , ), ( , s , )

a b c
A

f g r t

  

     


     


(iv)  
 

1 1 1

1 1 1 1

1 1 1

( , , ),

(1 (1 ) ,1 (1 ) ,1 (1 ) ) ,

(1 (1 ) ,1 (1 ) ,1 (1 ) )

a b c

A e f g

r s t

  

   

  

      

     

 where 0 . 

Ye (2015b) introduced the concept of score function and accuracy function TFNS. The score function S 
and the accuracy function H are applied to compare the grades of TFNS. These functions show that greater 
is the value, the greater is the TFNS. 
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8.3 Score function and accuracy function of triangular fuzzy neutrosophic value 

Let 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )A a b c e f g r s t be a TFNV. Then, the score function 1( )S A  and an accuracy function

1( )H A  of TFNV are defined as follows:

(i)  1 1 1 1 1 1 1 1 1 1
1

( ) 8 ( 2 ) ( 2 ) ( 2 )
12

s A a b c e f g r s t         

(ii)  1 1 1 1 1 1 1
1

( ) ( 2 ) ( 2 )
4

H A a b c r s t     

In order to make a comparison between two TFNVs, Ye (2015b) presented the order relations between two 
TFNVs. 

8.4 Ranking of triangular fuzzy neutrosophic values 

Let 1 1 1 1 1 1 1 1 1 1( , , ),( , , ),( , , )A a b c e f g r s t  and 2 2 2 2 2 2 2 2 2 2( , , ),( , , ),( , , )A a b c e f g r s t be two TFNVs in the set

of real numbers. Then, the ranking method is defined as follows:  

i. If 1 2( ) ( )s A s A  , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A 
ii. If  1 2( ) ( )s A s A  ,and 1 2( ) ( )H A H A  then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted

by 1 2A A  .

9. DIFFERENCE BETWEEN TRAPEZOIDAL INTUITIONISTIC FUZZY NUMBER AND
TRAPEZOIDAL NEUTROSOPHIC FUZZY NUMBER

9.1 Trapezoidal intuitionistic fuzzy number (Nayagam, Jeevaraj,& Sivaraman, 2016) 

Definition 1.  A trapezoidal intuitionistic fuzzy number 1 2( , , , ); ,a aa a a a a w u    is a convex

intuitionistic fuzzy set on the set   of real numbers, whose membership and non-membership functions 
are follows 

1 1

1 2

2 2

( ) / ( ) ( )

( )
( )

( ) / ( ) ( )

0 ( , ),

a

a
a

a

x a w a a a x a

w a x a
x

a x w a a a a a

x a x a



   
   

   
  








 

1 1 1

1 2

2 2 2

[ ( )]/( ) ( )

( )
( )

[ ( )]/( ) ( )

1 ( , ).

a

a
a

a

a x u x a a a a x a

u a x a
x

x a u a x a a a x a

x a x a
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where 0 1aw  ， 0 1au   and 0 1a aw u    , aw  and au  respectively represent the maximum

membership degree and the minimum membership degree of a, ( ) 1 ( ) ( )a a ax x x        is called as the

intuitionistic fuzzy index of an element xin a . 1a and 2a  respectively represent the minimum and

maximum values of the most probable value of the fuzzy number a, a represents the minimum value of

the a, and a  represents the maximum value of the a.

9.2 Trapezoidal neutrosophic fuzzy number 

Definition 2.  Let X be a universe of discourse, then a trapezoidal fuzzy neutrosophic set N in X is defined
as the following form: 

{ , ( ), ( ), ( ) },
N N N

N x T x I x F x x X   


where ( ) [0,1]
N

T x  , ( ) [0,1]
N

I x  and ( ) [0,1]
N

F x  are three trapezoidal fuzzy neutrosophic numbers,

        1 2 3 4( ) , , , : [0,1]
N N N N N

T x t x t x t x t x X      ,         1 2 3 4( ) , , , : [0,1]
N N N N N

I x i x i x i x i x X     

, 

and         1 2 3 4( ) , , , : [0,1]
N N N N N

F x f x f x f x f x X      with the condition 

     4 4 40 3,
N N N

t x i x f x x X       .

9.3 Difference and comparison between trapezoidal intuitionistic fuzzy number and 
trapezoidal neutrosophic fuzzy number 

The difference and comparison between the trapezoidal intuitionistic fuzzy number and trapezoidal 
neutrosophic fuzzy number are represented in the following way: 

First, we give the graphical representation of trapezoidal neutrosophic fuzzy number (TrNFN) and 
trapezoidal intuitionistic fuzzy number (TrIFN), as shown in Figure 1, 

(a) Graphical representation of TrNFN (b) Graphical representation of TrIFN

5

1 

0 

Fig.1 Graphical representation of trapezoidal neutrosophic fuzzy number and trapezoidal intuitionistic 
fuzzy number 
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It can be observed from the Fig. 1, there are some differences between trapezoidal intuitionistic fuzzy 
number and trapezoidal neutrosophic fuzzy number. On one hand, the membership degree, non-membership 
degree and hesitancy of trapezoidal intuitionistic fuzzy number are mutually constrained, and the maximum 
value of the sum of them is not more than 1. However, the truth membership, indeterminacy membership 
and falsity membership functions of trapezoidal neutrosophic fuzzy number are independent, and their 
values are between 0 and 3. And the maximum value of their sum is not more than 3. On the other hand, 
trapezoidal neutrosophic fuzzy number is a generalized representation of trapezoidal fuzzy number and 
trapezoidal intuitionistic fuzzy number, and trapezoidal intuitionistic fuzzy number is a special case of 
trapezoidal neutrosophic fuzzy number.  

10. DIFFERENCE BETWEEN TRIANGULAR FUZZY NUMBERS, INTUITIONISTIC
TRIANGULAR FUZZY NUMBER AND SINGLED VALUED NEUTROSOPHIC SET

Fuzzy sets have been introduced by Zadeh (1965) in order to deal with imprecise numerical quantities in a 
practical way. A fuzzy number  (Kaufmann& Gupta, 1988) is a generalization of a regular, real number in 
the sense that it does not refer to one single value but rather to a connected set of possible values, where 
each possible value has its own weight between 0 and 1. This weight is called the membership function. A 
fuzzy number is thus a special case of a convex, normalized fuzzy set of the real line . 

10.1 Triangular fuzzy number (Lee, 2005) 

A triangular fuzzy number 1 2 3[ , , ]A a a a is expressed by the following membership function

1
1 2

2 1

3
2 3

3 2

,

( ) ,

0,

A

x a
a x a

a a

a x
x a x a

a a

otherwise



   


   




10.2 Triangular intuitionistic fuzzy number (Li, Nan, & Zhang, 2012) 

A TIFN (See Fig. 2) A is a subset of IFS in R with the following membership functions and non-membership function as follows 

1
1 2

2 1

3
2 3

3 2

,

( ) ,

0,

A

x a
a x a

a a

a x
x a x a

a a

otherwise



   


   




2
1 2

2 1

2
2 3

3 2

,

( ) ,

1,

A

a x
a x a

a a

x a
x a x a

a a

otherwise
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where 1 1 2 3 3a a a a a    

Fig.2. Graphical representation of triangular intuitionistic fuzzy number 

It can be observed from the membership functions that in case of triangular intuitionistic fuzzy number, 
membership and non-membership degrees are triangular fuzzy numbers. Further it can be noted that the 
neutrosophic components are best suited in the presentation of indeterminacy and inconsistent information 
whereas intuitionistic fuzzy sets cannot handle indeterminacy and inconsistent information.  
The difference between the fuzzy numbers and singled valued neutrosophic set can be understood clearly 
with the help of an example. Suppose it is raining continuously for few days in a locality. Then one can 
guess whether there would be a flood like situation in that area. Observing the rainfall of this year and 
recalling the incidents of previous years one can only give his judgment on the basis of guess in terms of 
yes or no but still there remains an indeterminate situation and that indeterminate situation is expressed 
nicely by the single valued neutrosophic set. 

Triangular fuzzy numbers (TFNs) and single valued neutrosophic numbers (SVNNs) are both 
generalizations of fuzzy numbers that are each characterized by three components. TFNs and SVNNs have 
been widely used to represent uncertain and vague information in various areas such as engineering, 
medicine, communication science and decision science. However, SVNNs are far more accurate and 
convenient to be used to represent the uncertainty and hesitancy that exists in information, as compared to 
TFNs. SVNNs are characterized by three components, each of which clearly represents the degree of truth 
membership, indeterminacy membership and falsity membership of a the SVNNs with respect to a an 
attribute. Therefore, we are able to tell the belongingness of a SVNN to the set of attributes that are being 
studied, by just looking at the structure of the SVNN. This provides a clear, concise and comprehensive 
method of representation of the different components of the membership of the number. This is in contrast 
to the structure of the TFN which only provides us with the maximum, minimum and initial values of the 
TFN, all of which can only tell us the path of the TFN, but does not tell us anything about the degree of 
non-belongingness of the TFN with respect to the set of attributes that are being studied. Furthermore, the 

0.

1

0
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structure of the TFN is not able to capture the hesitancy that naturally exists within the user in the process 

of assigning membership values. These reasons clearly show the advantages of SVNNs compared to TFNs. 

11. REFINED NEUTROSOPHIC SETS (Smarandache, 2013; Deli et al., 2015b)

Refined neutrosophic sets can be expressed as follows: 

Let E be a universe.  A neutrosophic refined set (NRS) A on E can be defined as follows 

1 2 1 2

1 2

, ( (x), (x), ..., (x)), ( (x), (x),..., (x)),

( (x), (x), ..., (x))

p p
A A A AA A

p
A A A

x T T T I I I
A

F F F

    
  

 

Where 1 2(x), (x), ..., (x)p
A A AT T T : E  [ 0, 1], 1 2(x), (x), ..., (x)p

A A AI I I : E  [ 0, 1] and 1 2(x), (x), ..., (x)p
A A AF F F : E 

 [ 0, 1] 

12. BIPOLAR NEUTROSOPHIC REFINED SETS

Bipolar neutrosophic refined sets (Deli et al., 2015a) can be described as follows: 

Let E be a universe.  A bipolar neutrosophic refined set (BNRS) A on E can be defined as follows: 

1 2 1 2

1 2 1 2

1 2 1 2

, ( (x), (x),..., (x), (x), (x),..., (x)),

(I (x), I (x),..., I (x), I (x), I (x),..., I (x)),

(F (x),F (x),...,F (x),F (x),F (x),...,F (x)) :

p p
A A A AA A

p p
A A A AA A

p p
A A A AA A

x T T T T T T

A

x X

    

    

    

 
    
 

   

, where 

1 2 1 2( (x), (x),..., (x), (x), (x),..., (x))p p
A A A AA AT T T T T T    

: E  [0, 1],

1 2 1 2(I (x), I (x), ..., I (x), I (x), I (x), ..., I (x))p p
A A A AA A

     : E  [0, 1] and  

1 2 1 2(F (x), F (x), ..., F (x), F (x), F (x), ..., F (x))p p
A A A AA A

     : E  [0, 1] such that   0 ≤ ( )i
AT x + ( )i

AI x + ( )i
AF x ≤ 3  (i 

=1,2,3,…,p) 

1 2 1 2( (x), (x),..., (x), (x), (x),..., (x))p p
A A A AA AT T T T T T    

1 2 1 2(I (x), I (x), ..., I (x), I (x), I (x), ..., I (x))p p
A A A AA A

    

1 2 1 2(F (x), F (x), ..., F (x), F (x), F (x), ..., F (x))p p
A A A AA A

      is respectively the truth membership sequence, 

indeterminacy membership sequence and falsity membership sequence of the element x. Also, P is called 
the dimension of BNRS. 

The set of all bipolar neutrosophic refined sets on E is denoted by BNRS(E). 

13 MULTI-VALUED NEUTROSOPHIC SETS (Peng & Wang, 2015) 

13.1 Operation on multi-valued neutrosophic numbers 

Let ( ), ( ), ( )A A AA T x I x F x    , ( ), ( ), ( )B B BB T x I x F x    are two multi-valued neutrosophic numbers. If

,a
A AT T   b

B BT T   , a
A AI I   , b

B BI I   , a
A AF F   , b

B BF F   , and a b
A BI I  , a b

A BF F  , a b
A BT T  , then B is

superior to A, denoted as A B .
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Let ( ), ( ), ( )A A AA T x I x F x    , ( ), ( ), ( )B B BB T x I x F x    are any two MVNNs, and 0 . The operations for
MVNNs are defined as follows. 
(1) {1 (1 ) }, {( ) }, {( ) }

A AA A A AA A
AT I FA   

               ; 

(2) {( ) }, {1 (1 ) }, {1 (1 ) }
A AA A A AA A

AT I FA   
                ; 

(3) 
, , ,{ }, { }, { }

A B A BA A B B A B A BA B A B
A B A BT T I I F FA B                                 ; 

(4) 
, , ,{ }, { }, { }

A B A B A B A BA A B B A B A BA B A B
A BT T I I F FA B                                     ; 

13.2 Score function, accuracy function and certainty function of multi-valued neutrosophic 
number 

(1) 
, ,

1
( ) ( 1 1 ) / 3

k
i A A Aj k

A A A

i jT I F
T I F

s A
l l l   

  
  

     
     

  
;

(2) 
,

1
( ) ( )

k
i A Ak

A A

iT F
T F

a A
l l  

 
 

  
   

 
 ; 

(3) 
1

( )
i A

A

iT
T

c A
l 




  


 ; 

13.3 Comparison of multi-valued neutrosophic numbers 

Let ( ), ( ), ( )A A AA T x I x F x    , ( ), ( ), ( )B B BB T x I x F x    are two multi-valued neutrosophic numbers. Then
the comparision method can be defined as follows: 

i. If ( ) ( )s A s B , then A  is greater than B , that is, A is superior to B , denoted by A B .

ii. If ( ) ( )s A s B  and ( ) ( )a A a B , then A  is greater than B , that is, A is superior to B , denoted by

A B .
iii. If ( ) ( )s A s B ,  ( ) ( )a A a B  and ( ) ( )c A c B , then A  is greater than B , that is, A is superior to B

, denoted by A B .
iv. If ( ) ( )s A s B ,  ( ) ( )a A a B  and ( ) ( )c A c B , then A  is equal to B , that is, A is indifferent to B

, denoted by A B .

14. Simplified neutrosophic linguistic sets (SNLSs)  (Tian et al., 2016)

14.1 SNLSs 

Definition 1. Let X be a space of points (objects) with a generic element in X, denoted by x and

0 1 2 2{ , , , , }tH h h h h   be a finite and totally ordered discrete term set, where t is a nonnegative real number.
A SNLS A in X is characterized as 

( ){ , ,( ( ), ( ), ( )) }xA x h t x i x f x x X    ,

where 
( )xh H  , ( ) [0,1]t x  , ( ) [0,1]i x  , ( ) [0,1]f x  , with the condition 0 ( ) ( ) ( ) 3t x i x f x     for any 

x X . And ( )At x , ( )Ai x  and ( )Af x represent, respectively, the degree of truth-membership, indeterminacy-
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membership and falsity-membership of the element x in X to the linguistic term 
( )xh . In addition, if 1X 

, a SNLS will be degenerated to a SNLN, denoted by , ( , , )A h t i f  . And A will be degenerated to a 

linguistic term if 1,t  0i  , and 0f  . 

14.2 Operations of SNLNs 
Let , ( , , )

ii i i ia h t i f  and ,( , , )
jj j j ja h t i f   be two SNLNs, *f  be a linguistic scale function

and 0 . Then the following operations of SNLNs can be defined. 

(1) 

* * * * * *
* 1 * *

* * * * * *

( ) ( ) ( ) ( ) ( ) ( )
( ( ) ( )),( , , )

( ) ( ) ( ) ( ) ( ) ( )

i j i j i j

i j

i j i j i j

i j i j i j
i j

f h t f h t f h i f h i f h f f h f
a a f f h f h

f h f h f h f h f h f h

     
 

     


  

  
  

 ; 

(2) * 1 * *( ( ) ( )), ( , , )
i ji j i j i j i j i j i ja a f f h f h t t i i i i f f f f 

       ; 

(3) * 1 *( ( )), ( , , )
ii i i ia f f h t i f   ;

(4) * 1 *(( ( )) ), ( ,1 (1 ) ,1 (1 ) )
ii i i ia f f h t i f    


      ; 

(5) * 1 * *
2( ) ( ( ) ( )), ( ,1 , )

ii t i i ineg a f f h f h f i t
    ; 

15. COMPARISON ANALYSIS

Refined neutrosophic set is a generalization of fuzzy set, intuitionistic fuzzy set, neutrosophic set, interval- 
valued neutrosophic set, neutrosophic hesitant fuzzy set and interval-valued neutrosophic hesitant fuzzy 
set. Also differences and similarities between these sets are given in Table 1. 

Table 1. Comparison of fuzzy set anditsextensive set theory 

Fuzzy 
intuitionstic 

fuzzy  

Interval- 
Valued 

neutrosophi
c 

Interval- Valued 
neutrosophic 

HesitantFuzzy Set 
Neutro
sophic 

Neutrosophic 
HesitantFuzzy 

Set 
Neutrosophicre

fined 

Domain 
Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of discourse 

Univer
se of 

discour
se 

Universe of 
discourse 

Universe of 
discourse 

Co-domain 
Single-value 

in [0,1] 
Two-value 

in [0,1] 

Unipolar 
interval in 

[0,1] 
Unipolar interval in [0,1] [0,1]3 [0,1]3 [0,1]3 

Number Yes Yes Yes Yes Yes No No  

Membershipf
unction 

regular regular Regular irregular regular irregular Regular 

Uncertainty Yes Yes Yes Yes Yes Yes Yes 

True Yes Yes Yes Yes Yes Yes Yes 

Falsity No Yes Yes Yes Yes Yes Yes 

Indeterminac
y 

No No Yes Yes Yes Yes Yes 

Negativity No  No  No  No  
Yes in 
[0,1] 

No No 

Membership
valued 

Membershipv
alued 

Singlevalue
d 

İnterv-
valued 

Singlevalued 
Singlev
alued 

Singlevalued Multi- valued 
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Bosc and Pivert (2013) said that “Bipolarity refers to the propensity of the human mind to reason and make 
decisions on the basis of positive and negative effects. Positive information states what is possible, 
satisfactory, permitted, desired, or considered as being acceptable. On the other hand, negative statements 
express what is impossible, rejected, or forbidden. Negative preferences correspond to constraints, since 
they specify which values or objects have to be rejected (i.e., those that do not satisfy the constraints), while 
positive preferences correspond to wishes, as they specify which objects are more desirable than others 
(i.e., satisfy user wishes) without rejecting those that do not meet the wishes.”  Therefore, Lee (2000, 2009) 
introduced the concept of bipolar fuzzy sets which is a generalization of the fuzzy sets. Bipolar neutrosophic 
refined sets which is an extension of the fuzzy sets, bipolar fuzzy sets, intuitionistic fuzzy sets and bipolar 
neutrosophic sets. Also differences and similarities between these sets are given in Table 2. 

Table 2. Comparison of bipolar fuzzy set and its  various extensions 

Bipolar Fuzzy 

Bipolar 
Intuitionistic 

fuzzy 

Bipolar 
İnterval- Valued 

neutrosophic 

Bipolar 
 Neutrosophic 

Bipolar 
neutrosophic 

refined 

Domain 
Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Co-domain 
Single-value in 

[-1,1] 
Two-value in [-

1,1] 
Unipolar interval in 

[-1,1] 
Bipolar [-1,1]3 Bipolar 

 [-1,1]3 

Number Yes Yes Yes Yes Yes 

Uncertainty Yes Yes Yes Yes Yes 

True Yes Yes Yes Yes Yes 

Falsity No Yes Yes Yes Yes 

Membership 
valued 

Singlevalued Singlevalued Singlevalued Singlevalued Multi valued 

Table 3. Comparison of different types of neutrosophic sets 

SVNS IVNS BNSs 
Multi-valued 
neutrosophic 
sets 

Trapezoidal 
Neutrosophic 
sets 

Triangular 
Fuzzy 
Neutrosophic 
sets 

SNLSs 

Domain 

Universe 
of 
discourse 

Universe 
of 
discourse 

Universe 
of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe 
of 
 iscourse 

Co-domain [0,1]3 
Unipolar 
İnterval 
in [0,1] 

Bipolar 
[-1,1]3 

[0,1]3 [0,1]3 [0,1]3 
[0, 2t] or 
[-t, t] 

Number Yes Yes Yes Yes Yes Yes No 

Uncertainty Yes Yes Yes Yes Yes Yes Yes 

True Yes Yes Yes Yes Yes Yes Yes 

Falsity Yes Yes Yes Yes Yes Yes Yes 

Indeterminacy Yes Yes Yes Yes Yes Yes Yes 
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CONCLUSIONS 

NSs are characterized by truth, indeterminacy, and falsity membership functions which are independent in 
nature. NSs can handle incomplete, indeterminate, and inconsistent information quite well, whereas IFSs 
and FSs can only handle incomplete or partial information. However, SVNS, subclass of NSs gain much 
popularity to apply in concrete areas such as real engineering and scientific problems. Many extensions of 
NSs have been appeared in the literature. Some of them are discussed in the paper. New hybrid sets derived 
from neutrosophic sets gain popularity as new research topics. Extensions of neutrosophic sets have been 
developed by many researchers. This paper presents some of their basic operations. Then, we investigate 
their properties and the relation between defined numbers and function on neutrosophic sets. We present 
comparison between bipolar fuzzy sets and its various extensions. We also present the comparison between 
different types of neutrosophic sets and numbers. The paper can be extended to review different types of 
neutrosophic hybrid sets and their theoretical development and applications in real world problems.   
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Abstract 

In this paper, we present a hybrid model of Neutrosophic-MOORA 
for supplier selection problems. Making a suitable model for 
supplier selection is an important issue to amelioration 
competitiveness and capability of the organization, factory, project 
etc. selecting of the best supplier selection is not decrease delays in 
any organizations but also maximum profit and saving of material 
costs. Thus, now days supplier selection is become competitive 
global environment for any organization to select the best alternative 
or taking a decision. From a large number of availability alternative 
suppliers with dissimilar strengths and weaknesses for different 
objectives or criteria, requiring important rules or steps for supplier 
selection. In the recent past, the researchers used various multi 
criteria decision-making (MCDM) methods successfully to solve the 
problems of supplier selection. In this research, Multi-Objective 
Optimization based on Ratio Analysis (MOORA) with neutrosophic 
is applied to solve the real supplier selection problems. We selected 
a real life example to present the solution of problem that how 
ranking the alternative based on decreasing cost for each alternative 
and how formulate the problem in steps by Neutrosophic- MOORA 
technique. 

Keywords 

MOORA; Neutrosophic; Supplier selection; MCDM. 
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1 Introduction 

The purpose of this paper is to present a hybrid method between MOORA 
and Neutrosophic in the framework of neutrosophic for the selection of suppliers 
with a focus on multi-criteria and multi-group environment. These days, 
Companies, organizations, factories seek to provide a fast and a good service to 
meet the requirements of peoples or customers [1, 2].The field of multi criteria 
decision-making is considered for the selection of suppliers [3]. The selecting of 
the best supplier increasing the efficiency of any organization whether company, 
factory according to [4].  

Hence, for selecting the best supplier selection there are much of 
methodologies we presented some of them such as fuzzy sets (FS), Analytic 
network process (ANP), Analytic hierarchy process (AHP), (TOPSIS) technique 
for order of preference by similarity to ideal solution, (DSS) Decision support 
system, (MOORA) multi-objective optimization by ratio analysis. A 
classification of these methodologies to two group hybrid and individual can 
reported in [4, 5].  

We review that the most methodologies shows the supplier selection 
Analytic hierarchy process (AHP), Analytic network process (ANP) with 
neutrosophic in [6]. 

1.1 Supplier Selection Problem 

A Supplier selection is considered one of the most very important 
components of production and vulgarity management for many organizations
service.  

The main goal of supplier selection is to identify suppliers with the 
highest capability for meeting an organization needs consistently and with 
the minimum cost. Using a set of common criteria and measures for abroad 
comparison of suppliers. 

However, the level of detail used for examining potential suppliers may 
vary depending on an organization’s needs. The main purpose and objective 
goal of selection is to identify high‐potential suppliers. To choose suppliers, 
the organization present judge of each supplier according to the ability of 
meeting the organization consistently and cost effective it’s needs using 
selection criteria and appropriate measure.

Criteria and measures are developed to be applicable to all the 
suppliers being considered and to reflect the firm's needs and its supply and 
technology strategy. 

We show Supplier evaluation and selection process [7]. 
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Figure 1. Supplier evaluation and selection process. 

1.2 MOORA Technique 

Multi-Objective Optimization on the basis of Ratio Analysis (MOORA), 

also known as multi criteria or multi attribute optimization. (MOORA) method 

seek to rank or select the best alternative from available option was introduced 

by Brauers and Zavadskas in 2006 [8]. 

The (MOORA) method has a large range of applications to make decisions 

in conflicting and difficult area of supply chain environment. MOORA can be 

applied in the project selection, process design selection, location selection, 

product selection etc. the process of defining the decision goals, collecting 

relevant information and selecting the best optimal alternative is known as 

decision making process.  

The basic idea of the MOORA method is to calculate the overall 

performance of each alternative as the difference between the sums of its 

normalized performances which belongs to cost and benefit criteria.  

This method applied in various fields successfully such as project 

management [9]. 
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Table 1. Comparison of MOORA with MADM approaches

MADM method Computational Time Simplicity Mathematical 
Calculations required 

MOORA Very less Very simple Minimum 

AHP Very high Very critical Maximum 

ANP Moderate Moderately critical Moderate 

TOPSIS Moderate Moderately critical Moderate 

GRA Very high Very critical Maximum 

1.3 Neutrosophic Theory 

Smarandache first introduced neutrosophy as a branch of philosophy which 
studies the origin, nature, and scope of neutralities. Neutrosophic set is an 
important tool which generalizes the concept of the classical set, fuzzy set, 
interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic 
fuzzy set, paraconsistent set, dial theist set, paradoxist set, and tautological 
set[14-22]. Smarandache (1998) defined indeterminacy explicitly and stated that 
truth, indeterminacy, and falsity-membership are independent and lies within]-0, 
1+[. which is the non-standard unit interval and an extension of the standard 
interval ]-0, 1+[. 

We present some of methodologies that it used in the multi criteria decision 
making and presenting the illustration between supplier selection, MOORA and 
Neutrosophic. Hence the goal of this paper to present the hybrid of the MOORA 
(Multi-Objective Optimization on the basis of Ratio Analysis) method with 
neutrosophic as a methodology for multi criteria decision making (MCDM).  

This is ordered as follows: Section 2 gives an insight into some basic 
definitions on neutrosophic sets and MOORA. Section 3 explains the proposed 
methodology of neutrosophic MOORA model. In Section 4 a numerical example 
is presented in order to explain the proposed methodology. Finally, the 
conclusions. 

2 Preliminaries 

In this section, the essential definitions involving neutrosophic set, single 
valued neutrosophic sets, trapezoidal neutrosophic numbers and operations on 
trapezoidal neutrosophic numbers are defined.
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2.1 Definition [10] 

Let 𝑋 be a space of points and 𝑥∈𝑋. A neutrosophic set 𝐴 in 𝑋 is definite 

by a truth-membership function  𝑇𝐴 (𝑥), an indeterminacy-membership function

𝐼𝐴 (𝑥) and a falsity-membership function 𝐹𝐴 (𝑥), 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥) are real

standard or real nonstandard subsets of ]-0, 1+[. That is 𝑇𝐴 (𝑥):𝑋→]-0,

1+[,𝐼𝐴 (𝑥):𝑋→]-0, 1+[ and 𝐹𝐴 (𝑥):𝑋→]-0, 1+[. There is no restriction on the sum

of 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥), so 0− ≤ sup (𝑥) + sup 𝑥 + sup 𝑥 ≤3+.

2.2 Definition [10, 11] 

Let 𝑋 be a universe of discourse. A single valued neutrosophic set 𝐴 over 

𝑋 is an object taking the form 𝐴= {〈𝑥, 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥), 𝐹𝐴 (𝑥), 〉:𝑥∈𝑋}, where

𝑇𝐴 (𝑥):𝑋→ [0,1], 𝐼𝐴 (𝑥):𝑋→ [0,1] and 𝐹𝐴 (𝑥):𝑋→[0,1] with 0≤ 𝑇𝐴 (𝑥) + 𝐼𝐴 (𝑥) +

𝐹𝐴 (𝑥) ≤3 for all 𝑥∈𝑋. The intervals 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥) represent the truth-

membership degree, the indeterminacy-membership degree and the falsity 

membership degree of 𝑥 to 𝐴, respectively. For convenience, a SVN number is 

represented by 𝐴= (𝑎, b, c), where 𝑎, 𝑏, 𝑐∈ [0, 1] and 𝑎+𝑏+𝑐≤3. 

2.3 Definition [12] 

Suppose that  𝛼�̃� , 𝜃�̃� , 𝛽�̃� ϵ [0,1] and 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 𝜖 R where 𝑎1 ≤ 𝑎2 ≤

𝑎3 ≤ 𝑎4  . Then a single valued trapezoidal neutrosophic number, 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3
, 𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 is a special neutrosophic set on the real line set R whose truth-

membership, indeterminacy-membership and falsity-membership functions are 

defined as:

𝑇�̃�  (𝑥) =

{

𝛼�̃�  (
𝑥−𝑎1

𝑎2−𝑎1
)  (𝑎1 ≤ 𝑥 ≤  𝑎2) 

 𝛼�̃�  (𝑎2 ≤ 𝑥 ≤  𝑎3)

𝛼�̃�  (
𝑎4−𝑥

𝑎4−𝑎3
)   (𝑎3 ≤ 𝑥 ≤  𝑎4)

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1). 

𝐼�̃�  (𝑥) =

{

(𝑎2−𝑥+𝜃�̃�(𝑥−𝑎1))

(𝑎2−𝑎1)
 (𝑎1 ≤ 𝑥 ≤ 𝑎2) 

     𝛼�̃�        (𝑎2 ≤ 𝑥 ≤  𝑎3)
(𝑥−𝑎3+𝜃�̃�(𝑎4−𝑥))

(𝑎4−𝑎3)
    (𝑎3 ≤ 𝑥 ≤  𝑎4)

  1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       ,

(2). 
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𝐹�̃�  (𝑥) =

{

(𝑎2−𝑥+𝛽�̃�(𝑥−𝑎1))

(𝑎2−𝑎1)
 (𝑎1 ≤ 𝑥 ≤  𝑎2) 

     𝛼�̃�        (𝑎2 ≤ 𝑥 ≤  𝑎3)
(𝑥−𝑎3+𝛽�̃�(𝑎4−𝑥))

(𝑎4−𝑎3)
    (𝑎3 ≤ 𝑥 ≤  𝑎4)

  1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       ,

(3). 

where  𝛼�̃� , 𝜃�̃� and 𝛽�̃�and represent the maximum truth-membership degree,

minimum indeterminacy-membership degree and minimum falsity-membership 

degree respectively. A single valued trapezoidal neutrosophic number 𝑎 ̃=〈(𝑎1 ,

𝑎2 , 𝑎3 , 𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 may express an ill-defined quantity of the range, which

is approximately equal to the interval [𝑎2 , 𝑎3] .

2.4 Definition [11, 10] 

Let 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 and �̃�=〈(𝑏1 , 𝑏2 , 𝑏3 , 𝑏4); 𝛼�̃� , 𝜃�̃� ,

𝛽�̃�〉 be two single valued trapezoidal neutrosophic numbers and ϒ≠ 0  be any real 

number. Then, 

1. Addition of two trapezoidal neutrosophic numbers

𝑎 ̃ + �̃� =〈(𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 +𝑏3, 𝑎4 +𝑏4); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃�, 𝛽�̃� ᴠ 𝛽�̃�〉

2. Subtraction of two trapezoidal neutrosophic numbers

𝑎 ̃ - �̃� =〈(𝑎1 - 𝑏4, 𝑎2 - 𝑏3, 𝑎3 - 𝑏2, 𝑎4 - 𝑏1); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃�, 𝛽�̃� ᴠ 𝛽�̃�〉

3. Inverse of trapezoidal neutrosophic number

ã−1 =〈( 1
𝑎4

  , 1
𝑎3

 ,  1
𝑎2

 , 1
𝑎1

) ; 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉        where (𝑎 ̃ ≠ 0) 

4. Multiplication of trapezoidal neutrosophic number by constant value

ϒ𝑎 ̃ = {
〈(ϒ𝑎1 , ϒ𝑎2 , ϒ𝑎3 , ϒ𝑎4);  𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉      if  (ϒ > 0)

〈(ϒ𝑎4 , ϒ𝑎3 , ϒ𝑎2 , ϒ𝑎1);  𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉      if  (ϒ < 0)

5. Division of two trapezoidal neutrosophic numbers

ã

�̃�
 = 

{

〈(  
𝑎1

𝑏4
,
𝑎2

𝑏3
,
𝑎3

𝑏2
,
𝑎4

𝑏1
 );  𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉    if  (𝑎4 > 0 ,  𝑏4 > 0)

〈(  
𝑎4

𝑏4
,
𝑎3

𝑏3
,
𝑎2

𝑏2
,
𝑎1

𝑏1
 );  𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉    if  (𝑎4 < 0 ,  𝑏4 > 0)

〈(  
𝑎4

𝑏1
,
𝑎3

𝑏2
,
𝑎2

𝑏3
,
𝑎1

𝑏4
 );  𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉    if  (𝑎4 < 0 ,  𝑏4 < 0)

6. Multiplication of trapezoidal neutrosophic numbers

𝑎 ̃�̃� = {
〈(𝑎1𝑏1 , 𝑎2𝑏2 , 𝑎3𝑏3 , 𝑎4𝑏4); 𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉      if  (𝑎4 > 0 ,  𝑏4 > 0)

〈(𝑎1𝑏4 , 𝑎2𝑏3 , 𝑎3𝑏2 , 𝑎4𝑏1); 𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉      if  (𝑎4 < 0 ,  𝑏4 > 0)

〈(𝑎4𝑏4 , 𝑎3𝑏3 , 𝑎2𝑏2 , 𝑎1𝑏1); 𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉      if  (𝑎4 < 0 ,  𝑏4 < 0)
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3 Methodology 

In this paper, we present the steps of the proposed model MOORA-
Neutrosophic, we define the criteria based on the opinions of decision makers 
(DMs) using neutrosophic trapezoidal numbers to make the judgments on criteria 
more accuracy, using a scale from 0 to 1 instead of the scale (1-9) that have many 
drawbacks illustrated by [13]. We present a new scale from 0 to 1 to avoid this 
drawbacks. We use (n-1) judgments to obtain consistent trapezoidal neutrosophic 
preference relations instead of 𝑛 ×(𝑛−1)

2
  to decrease the workload and not tired 

decision makers. (MOORA-Neutrosophic) method is used for ranking and 
selecting the alternatives. To do this, we first present the concept of AHP to 
determine the weight of each criteria based on opinions of decision makers 
(DMs). Then each alternative is evaluated with other criteria and considering the 
effects of relationship among criteria.  

The steps of our model can be introduced as: 
Step - 1. Constructing model and problem structuring. 

a. Constitute a group of decision makers (DMs).

b. Formulate the problem based on the opinions of (DMs).

Step - 2. Making the pairwise comparisons matrix and determining the

weight based on opinions of (DMs). 

a. Identify the criteria and sub criteria C = {C1, C2, C3…Cm}.

b. Making matrix among criteria n × m based on opinions of (DMs).

C1 C2     … Cm

W = 

C1
C2
C3
Cn

[

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)
(𝑙21, 𝑚21𝑙 , 𝑚21𝑢, 𝑢21)

…
(𝑙𝑛1, 𝑚𝑛1𝑙 , 𝑚𝑛1𝑢, 𝑢𝑛1)

  

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)
(𝑙22, 𝑚22𝑙 , 𝑚22𝑢, 𝑢22)

…
(𝑙𝑛2, 𝑚𝑛2𝑙 , 𝑚𝑛2𝑢, 𝑢𝑛2)

   

…
…
…
…

    

(𝑙1𝑛 ,𝑚1𝑛𝑙 , 𝑚1𝑛𝑢, 𝑢1𝑛)
(𝑙2𝑛 ,𝑚2𝑛𝑙 , 𝑚2𝑛𝑢, 𝑢2𝑛)

…
(𝑙𝑛𝑛, 𝑚𝑛𝑛𝑙 , 𝑚𝑛𝑛𝑢, 𝑢𝑛𝑛)

]     (4)

 Decision makers (DMs) make pairwise comparisons matrix between 

criteria compared to each criterion focuses only on (n-1) consensus 

judgments instead of using 𝑛 ×(𝑛−1)

2
that make more workload and 

Difficult. 

c. According to, the opinion of (DMs) should be among from 0 to 1 not

negative. Then, we transform neutrosophic matrix to pairwise

comparisons deterministic matrix by adding (α, θ, β) and using the

following equation to calculate the accuracy and score.
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S (ã𝑖𝑗) = 
1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã -βã ) (5) 

and 

A (ã𝑖𝑗) = 
1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã +βã ) (6) 

d. We obtain the deterministic matrix by using S (ã𝑖𝑗).

e. From the deterministic matrix we obtain the weighting matrix by dividing

each entry on the sum of the column.

Step - 3. Determine the decision-making matrix (DMM). The method 

begin with define the available alternatives and criteria 

C1 C2    …         Cm

R = 

A1
A2
A3
An

[

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢 , 𝑢11)
(𝑙21, 𝑚21𝑙 , 𝑚21𝑢 , 𝑢21)

…
(𝑙𝑛1, 𝑚𝑛1𝑙 , 𝑚𝑛1𝑢, 𝑢𝑛1)

  

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢 , 𝑢11)
(𝑙22, 𝑚22𝑙 , 𝑚22𝑢 , 𝑢22)

…
(𝑙𝑛2, 𝑚𝑛2𝑙 , 𝑚𝑛2𝑢, 𝑢𝑛2)

   

…
…
…
…

    

(𝑙1𝑛 ,𝑚1𝑛𝑙 , 𝑚1𝑛𝑢, 𝑢1𝑛)
(𝑙2𝑛 , 𝑚2𝑛𝑙 , 𝑚2𝑛𝑢, 𝑢2𝑛)

…
(𝑙𝑛𝑛 ,𝑚𝑛𝑛𝑙 , 𝑚𝑛𝑛𝑢, 𝑢𝑛𝑛)

]   (7)

where Ai represents the available alternatives where i = 1… n and the

Cj represents criteria

a. Decision makers (DMs) make pairwise comparisons matrix between

criteria compared to each criterion focuses only on (n-1) consensus

judgments instead of using   𝑛 ×(𝑛−1)
2

 that make more workload and 

Difficult.

b. According to, the opinion of (DMs) should be among from 0 to 1 not

negative. Then, we transform neutrosophic matrix to pairwise

comparisons deterministic matrix by using equations 5 &6 to calculate

the accuracy and score.

c. We obtain the deterministic matrix by using S (ã𝑖𝑗).

Step - 4. Calculate the normalized decision-making matrix from previous

matrix (DMM). 

a. Thereby, normalization is carried out [14]. Where the Euclidean norm is

obtained according to eq. (8) to the criterion𝐸𝑗.

i. |𝐸𝑦𝑗|  = √∑ 𝐸𝑖
2𝑛

1 (8)
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The normalization of each entry is undertaken according to eq. (9) 

ii. 𝑁𝐸𝑖𝑗 =
𝐸𝑖𝑗

|𝐸𝑗|  
(9) 

Step - 5. Compute the aggregated weighted neutrosophic decision matrix 

(AWNDM) as the following:  

i. �́� =R×W                                                 (10) 

Step - 6. Compute the contribution of each alternative 𝑁𝑦𝑖 the contribution

of each alternative 

i. 𝑁𝑦𝑖 = ∑ 𝑁𝑦𝑖
𝑔
𝑖=1 - ∑ 𝑁𝑥𝑗  

𝑚
𝑗=𝑔+1 (11) 

Step - 7. Rank the alternatives. 

Figure 2 Schematic diagram of MOORA with neutrosophic. 
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4 Implementation of Neutrosophic – MOORA Technique 

In this section, to illustrate the concept of MOORA with Neutrosophic we 
present an example. An accumulation company dedicated to the production of the 
computers machines has to aggregate several components in its production line. 
When failure occurred from suppliers (alternatives), a company ordered from 
another alternative based on the four criteria  𝐶𝑗 (j = 1, 2, 3, and 4), the four criteria
are as follows: 𝐶1 for Total Cost,  𝐶2 for Quality, 𝐶3 for Service, 𝐶4 for On-time
delivery. The criteria to be considered is the supplier selections are determined 
by the DMs from a decision group. The team is broken into four groups, 
namely𝐷𝑀1,𝐷𝑀2,𝐷𝑀3 and 𝐷𝑀4, formed to select the most suitable alternatives.
This example is that the selecting the best alternative from five alternative. 𝐴𝑖 (i
= 1, 2, 3, 4 and 5). Representing of criteria evaluation: 

 Cost (𝐶1) Minimum values are desired.
 Quality (𝐶2) Maximum evaluations.
 Service (C3) maximum evaluation.
 On-time delivery (𝐶4)  maximum evaluation.

Step - 1.  Constitute a group of decision makers (DMs) that consist of four

(DM). 

Step - 2. We determine the importance of each criteria based on opinion of 

decision makers (DMs). 

𝐶1 𝐶2 𝐶3 𝐶4
𝑊  =

C1
C2
C3
C4

[ 

(0.5 , 0.5,0.5,0.5)
(0.6 , 0.3,0.4,0.7)
(0.3 , 0.5,0.2,0.5)
(0.4 , 0.3,0.1,0.6)

(0.6, 0.7,0.9,0.1)
(0.5 , 0.5,0.5,0.5)
(0.3 , 0.7,0.4,0.3)
(0.1 , 0.4,0.2,0.8)

(0.7 , 0.2,0.4,0.6)
(0.6 , 0.7,0.8,0.9)
(0.5 , 0.5,0.5,0.5)
(0.5 , 0.3,0.2,0.4)

(0.3 , 0.6,0.4,0.7)
(0.3 , 0.5,0.2,0.5)
(0.2 , 0.5,0.6,0.8)
(0.5 , 0.5,0.5,0.5)

] 

Then the last matrix appears consistent according to definition 6. And then 
by ensuring consistency of trapezoidal neutrosophic additive reciprocal 
preference relations, decision makers (DMs) should determine the maximum 
truth-membership degree (α), minimum indeterminacy-membership degree (θ) 
and minimum falsity-membership degree (β) of single valued neutrosophic 
numbers. 

  𝐶1 𝐶2 𝐶3 𝐶4
𝑊 =  

C1
C2
C3
C4

[

(0.5 , 0.5,0.5,0.5)
(0.6,0.3,0.4,0.7; 0.2,0.5,0.8)
(0.3,0.5,0.2,0.5; 0.4,0.5,0.7)
(0.4,0.3,0.1,0.6; 0.2,0.3,0.5)

(0.6,0.7,0.9,0.1; 0.4,0.3,0.5)
(0.5 , 0.5,0.5,0.5)

(0.3,0.7,0.4,0.3; 0.2,0.5,0.9)
(0.1,0.4,0.2,0.8; 0.7,0.3,0.6)

(0.7,0.2,0.4,0.6; 0.8,0.4,0.2)
(0.6,0.7,0.8,0.9; 0.2,0.5,0.7)

(0.5 , 0.5,0.5,0.5)
(0.5,0.3,0.2,0.4; 0.3,0.4,0.7)

(0.3,0.6,0.4,0.7; 0.4,0.5,0.6)
(0.3,0.5,0.2,0.5; 0.5,0.7,0.8)
(0.2,0.5,0.6,0.8; 0.4,0.3,0.8)

(0.5 , 0.5,0.5,0.5)

 ]
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From previous matrix we can determine the weight of each criteria by using the 
following equation of S (ã𝑖𝑗)

S (ã𝑖𝑗) = 
1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã -βã )

and 
A (ã𝑖𝑗) = 

1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã +βã )

The deterministic matrix can obtain by S (ã𝑖𝑗) equation in the following step:
 𝐶1        𝐶2        𝐶3       𝐶4

𝑊  = 
C1
C2
C3
C4

 [

0.5
0.113
0.113
0.123

0.23
0.5
0.085
0.169

0.261
0.188
0.5
0.105

0.163
0.10
 0.17
0.5

]

From this matrix we can obtain the weight criteria by dividing each entry by the 
sum of each column.  

 𝐶1        𝐶2        𝐶3       𝐶4

𝑊  = 
C1
C2
C3
C4

 [

0.588
0.133
0.133
0.145

0.234
0.508
0.086
0.172

0.237
0.171
0.455
0.095

0.175
0.107
 0.182
0.536

]

Step - 3. Construct the (ANDM) matrix that representing the ratings given 
by every DM between the Criteria and Alternatives. 

 𝐶1  𝐶2  𝐶3  𝐶4 
�̃� = 
A1
A2
A3
A4
A5 [

(0.5, 0.3,0.2,0.4)

(0.0, 0.1, 0.3, 0.4)
(0.4, 0.2,0.1,0.3)
(0.7, 0.3, 0.3, 0.6)
(0.5, 0.4,0.2,0.6)

  

(0.6, 0.7,0.9,0.1)
(0.7, 0.6,0.8,0.3)
(0.3,0.0 ,0.5,0.8)
(0.6, 0.1, 0.7, 1.0)
(0.4, 0.6,0.1,0.2)

  

(0.7, 0.9,1.0,1.0)
(0.6 , 0.7,0.8,0.9)
(0.4, 0.2,0.1,0.3)
(0.2, 0.4, 0.5, 0.8)
(0.6, 0.1,0.3,0.5)

  

(0.4, 0.7,1.0,1.0)
(0.3, 0.5,0.9,1.0)
(0.2, 0.5,0.6,0.8)
(0.3, 0.4,0.2,0.5)
(0.7, 0.1,0.3,0.2)]

Then the last matrix appears consistent according to definition 6. And then by 
ensuring consistency of trapezoidal neutrosophic additive reciprocal preference 
relations, decision makers (DMs) should determine the maximum truth-
membership degree (α), minimum indeterminacy-membership degree (θ) and 
minimum falsity-membership degree (β) of single valued neutrosophic numbers. 

 𝐶1        𝐶2         𝐶3            𝐶4

𝑅=       
A1
A2
A3
A4
A5 [

(0.5,0.3,0.2,0.4;0.3,0.4,0.6)
(0.0, 0.1, 0.3,0.4; 0.6,0.1,0.4)
(0.4,0.2,0.1,0.3;0.3,0.5,0.2)
(0.7, 0.3, 0.3,0.6; 0.5,0.3,0.1)
(0.5,0.4,0.2,0.6;0.9,0.4,0.6)

    

(0.6, 0.7,0.9,0.1; 0.3,0.4,0.5)
(0.7, 0.6,0.8,0.3; 0.4,0.8,0.1)
(0.3,0.0 ,0.5,0.8;0.5,0.7,0.2)
(0.6,0.1, 0.7, 1.0;0.2,0.6,0.3)
(0.4, 0.6,0.1,0.2; 0.1,0.5,0.4)

    

(0.7,0.9,1.0,1.0;0.2,0.5,0.3)
(0.6 , 0.7,0.8,0.9; 0.2,0.3,0.5)
(0.4,0.2,0.1,0.3;0.5,0.7,0.5)
(0.2, 0.4,0.5, 0.8; 0.1,0.4,0.8)
(0.6,0.1,0.3,0.5;0.8,0.6,0.2)

    

(0.4,0.7,1.0,1.0; 0.1,0.3,0.4)
(0.3,0.5,0.9,1.0; 0.2,0.4,0.6)
(0.2,0.5,0.6,0.8; 0.1,0.2,0.5)
(0.3,0.4,0.2,0.5; 0.3,0.8,0.7)
(0.7,0.1,0.3,0.2; 0.3,0.9,0.6)]
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From previous matrix we can determine the weight of each criteria by using the 
following equation of S (ã𝑖𝑗)
S (ã𝑖𝑗) = 

1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã -βã )

and 
A (ã𝑖𝑗) = 

1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã +βã )

The deterministic matrix can obtain by S (ã𝑖𝑗) equation in the following step:

 𝐶1 𝐶2 𝐶3 𝐶4

𝑅  = 

A1
A2
A3
A4
A5 [

0.11
0.11
0.10
0.25
0.20

  

0.20
0.23
0.16
0.19
0.09

  

0.32
0.26
0.08
0.11
0.19

  

0.27
0.20
0.18
0.07
0.07]

Step - 4. Calculate the normalized decision-making matrix from previous 
matrix. 

By this equation = |𝑋𝑗|  = √∑ 𝑥𝑖
2𝑛

1    ,

𝑁𝑋𝑖𝑗 =
𝑋𝑖𝑗

|𝑋𝑗|  

a. Sum of squares and their square roots

 𝐶1 𝐶2 𝐶3 𝐶4
A1
A2
A3
A4
A5

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒
𝑆𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 [

0.11
0.11
0.10
0.25
0.20
0.14
0.37

  

0.20
0.23
0.16
0.19
0.09
0.16
0.40

  

0.32
0.26
0.08
0.11
0.19
0.22
0.47

  

0.27
0.20
0.18
0.07
0.07
0.16
0.40]

b. Objectives divided by their square roots and MOORA

 𝐶1 𝐶2 𝐶3 𝐶4

 R =   

A1
A2
A3
A4
A5 [

0.30
0.30
0.27
0.68
0.54

  

0.50
0.58
0.40
0.48
0.23

  

0.68
0.55
0.17
0.23
0.40

  

0.67
0.50
0.45
0.18
0.18]
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Step - 5. Compute the aggregated weighted neutrosophic decision matrix 
(AWNDM) as the following: 

�́�  =  R ×  W 

= 

[

0.30
0.30
0.27
0.68
0.54

    

0.50
0.58
0.40
0.48
0.23

    

0.68
0.55
0.17
0.23
0.40

   

0.67
0.50
0.45
0.18
0.18]

  × [

0.588
0.133
0.133
0.145

0.234
0.508
0.086
0.172

0.237
0.171
0.455
0.095

0.175
0.107
 0.182
0.536

]     = 

=  

[

0.43
0.40
0.29
0.52
0.42

    

0.20
0.49
0.59
0.45
0.31

    

0.49
0.47
0.25
0.36
0.37

    

0.59
0.48
0.36
0.31
0.29]

Step - 6. Compute the contribution of each alternative 𝑁𝑦𝑖 the contribution
of each alternative 

𝑁𝑦𝑖 = ∑ 𝑁𝑦𝑖  
𝑔
𝑖=1 - ∑ 𝑁𝑥𝑗  

𝑚
𝑗=𝑔+1

 𝐶1 𝐶2 𝐶3 𝐶4 𝑌𝑖       Rank 

A1
A2
A3
A4
A5 [

0.43
0.40
0.29
0.52
0.42

  

0.20
0.49
0.59
0.45
0.31

  

0.49
0.47
0.25
0.36
0.37

  

0.59
0.48
0.36
0.31
0.29

  

0,85
0.99
0.91
0.60
0.55

  

3
1
2
4
5]

Step - 7. Rank the alternatives. The alternatives are ranked according the 
min cost for alternative as alternative A2 > A3 > A1 > A4  > A5

Figure 3. The MOORA- Neutrosophic ranking of alternatives. 
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5 Conclusion 

This research presents a hybrid of the (MOORA) method with 
Neutrosophic for supplier selection. We presented the steps of the method in 
seven steps and a numerical case was presented to illustrate it. The proposed 
methodology provides a good hybrid technique that can facilitate the selecting of 
the best alternative by decision makers. Then neutrosophic provide better 
flexibility and the capability of handling subjective information to solve problems 
in the decision making. As future work, it would be interesting to apply MOORA-
Neutrosophic technique in different areas as that is considered one of the decision 
making for selection of the best alternatives. For example, project selection, 
production selection, etc. The case study we presented is an example about 
selecting the alternative that the decision makers (DMs) specify the criteria and 
how select the best alternatives. 
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Abstract 

In this chapter, we introduce a new algorithm for finding a minimum 
spanning tree (MST) of an undirected neutrosophic weighted 
connected graph whose edge weights are represented by an interval 
valued neutrosophic number. In addition, we compute the cost of 
MST and compare the de-neutrosophied value with an equivalent 
MST having the detereministic weights. Finally, a numerical 
example is provided. 

Keywords 

Interval valued Neutrosophic Graph, Score function, Minimum 
Spanning Tree (MST). 

1 Introduction 

In order to express the inconsistency and indeterminacy that exist in real-
life problems reasonably, Smarandache [3] proposed the concept of neutrosophic 
sets (NSs) from a philosophical standpoint, which is characterized by three totally 
independent functions, i.e., a truth-function, an indeterminacy function and a 
falsity function that are inside the real standard or non-standard unit interval ]-0, 
1+[. Hence, neutrosophic sets can be regarded as many extended forms of 
classical fuzzy sets [8] such as intuitionistic fuzzy sets [6], interval-valued 
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intuitionistic fuzzy sets [7] etc. Moreover, for the sake of applying neutrosophic 
sets in real-world problems efficiently, Smarandache [9] put forward the notion 
of single valued neutrosophic sets (SVNSs for short) firstly, and then various 
theoretical operators of single valued neutrosophic sets were defined by Wang et 
al. [4]. Based on single valued neutrosophic sets, Wang et al. [5] further 
developed the notion of interval valued neutrosophic sets (IVNSs for short), some 
of their properties were also explored. Since then, studies of neutrosophic sets 
and their hybrid extensions have been paid great attention by numerous scholars 
[19]. Many researchers have proposed a frutiful results on interval valued 
neutrosophic sets [12,14,16,17,18,20,21-31]  

MST is most fundamental and well-known optimization problem used in 
networks in graph theory. The objective of this MST is to find the minimum 
weighted spanning tree of a weighted connected graph. It has many real time 
applications, which includes communication system, transportation problems, 
image processing, logistics, wireless networks, cluster analysis and so on. The 
classical problems related to MST [1], the arc lengths are taken and it is fixed so 
that the decision maker use the crisp data to represent the arc lengths of a 
connected weighted graph. But in the real world scenarios the arch length 
represents a parameter which may not have a precise value. For example, the 
demand and supply, cost problems, time constraints, traffic frequencies, 
capacities etc., For the road networks, even though the geometric distance is 
fixed, arc length represents the vehicle travel time which fluctuates due to 
different weather conditions, traffic flow and some other unexpected factors. 
There are several algorithms for finding the MST in classical graph theory. These 
are based on most well-known algorithms such as Prims and Kruskals algorithms. 
Nevertheless, these algorithms cannot handle the cases when the arc length is 
fuzzy which are taken into consideration [2]. 

More recently, some scholars have used neutrosophic methods to find 
minimum spanning tree in neutrosophic environment. Ye [8] defined a method to 
find minimum spanning tree of a graph where nodes (samples) are represented in 
the form of NSs and distance between two nodes represents the dissimilarity 
between the corresponding samples. Mandal and Basu [9] defined a new 
approach of optimum spanning tree problems considering the inconsistency, 
incompleteness and indeterminacy of the information. They considered a network 
problem with multiple criteria represented by weight of each edge in neutrosophic 
sets. Kandasamy [11] proposed a double-valued Neutrosophic Minimum 
Spanning Tree (DVN-MST) clustering algorithm to cluster the data represented 
by double-valued neutrosophic information. Mullai [15] discussed the MST 
problem on a graph in which a bipolar neutrosophic number is associated to each 
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edge as its edge length, and illustrated it by a numerical example. To the end, no 
research dealt with the cases of interval valued neutrosophic arc lengths. 

The main objective of this work is to find the minimum spanning tree of 
undirected neutrosophic graphs using the proposed matrix algorithm. It would be 
very much useful and easy to handle the considered problem of interval valued 
neutrosophic arc lengths using this algorithm. 

The rest of the paper is organized as follows. Section 2 briefly introduces 
the concepts of neutrosophic sets, single valued neutrosophic sets, interval valued 
neutrosophic sets and the score function of interval valued neutrosophic number. 
Section 3 proposes a novel approach for finding the minimum spanning tree of 
interval valued neutrosophic undirected graph. In Section 4, two illustrative 
examples are presented to illustrate the proposed method. Finally, Section 5 
contains conclusions and future work. 

2 Preliminaries 

Definition 2.1 [3] Le   be an universal set. The neutrosophic set A on the 
universal set  categorized in to three membership functions called the true  

( )AT x , indeterminate ( )AI x and false ( )AF x contained in real standard or non-
standard subset of  ]-0, 1+[  respectively.

−0 sup ( )AT x + sup ( )AI x  + sup ( )AI x 3+   (1)

Definition 2.2 [4] Let    be a universal set. The single valued neutrosophic
sets (SVNs) A on the universal    is denoted as following 

A = {<x: ( )AT x , ( )AI x , ( )AF x > x   }    (2) 

The functions ( )AT x   [0. 1], ( )AI x  [0. 1] and ( )AF x   [0. 1] are named 
degree of truth, indeterminacy and falsity membership of x in A, satisfy the 
following condition: 

0 ( )AT x + ( )AI x + ( )AT x  3 (3) 

Definition 2.3 [5]. An interval valued neutrosophic set A in X is defined 
as an object of the form 

 XxfitxA  :~,~,~,~
, 

where  U
A

L
A TTt ~~ ,~

 ,  U
A

L
A IIi ~~ ,~

  ,  U
A

L
A FFf ~~ ,~

  , 
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and L
AT~ , U

AT~
L
AI ~ , U

AI ~ , L
AF~ , U

AF~ :X [0, 1].The interval membership 

degree where L
AT~ , U

AT~
L
AI ~ , U

AI ~ , L
AF~ , U

AF~ denotes the lower and upper truth 

membership, lower and upper indeterminate membership and lower and upper 
false membership of an element   X corresponding to an interval valued 
neutrosophic set A  where    30  p

M
p
M

p
M FIT  

In order to rank the IVNS, TAN [18] defined the following score function. 

Definition 2.4 [18]. Let  fitA ~,~,~~
be an interval valued 

neutrosophic number , where  U
A

L
A TTt ~~ ,~

 ,  U
A

L
A IIi ~~ ,~

  ,  U
A

L
A FFf ~~ ,~

  ,Then, 

the score function ( )s A , accuracy function ( )a A and certainty function ( )c A of 
an IVNN can be represented  as follows:  

(i) 
6

)2()2(
)~(

~~~~~~
U
A

U
A

U
A

L
A

L
A

L
A

TAN

FITFIT
AS


  , 

 1,0)~( AS (4) 

(ii) 
2

)()(
)~(

~~~~
U
A

U
A

L
A

L
A

TAN

FTFT
Aa


      1,1)~( Aa  (5) 

TAN [18] gave an order relation between two IVNNs, which is defined as 
follows

Let  1111
~,~,~~ fitA and  2222

~,~,~~ fitA be two interval valued 
neutrosophic numbers then 

i. If 1 2( ) ( )s A s A , then 1A is greater than 2A , that is, 1A is superior to 2A , 
denoted by 1 2A A  

ii. If  1 2( ) ( )s A s A ,and  1 2( ) ( )a A a A then 1A  is greater than 2A , that is, 1A

is superior to 2A , denoted by 1 2A A  
iii. If  1 2( ) ( )s A s A , 1 2( ) ( )a A a A , then 1A  is equal to 2A , that is, 1A is

indifferent to 2A , denoted by 1 2A A

Definition 2.5  [17]: Let  , , , , ,L U L U L U
A A A A A AA T T I I F F             be an IVNN, the score 

function S of A  is defined as follows

       
1 2 2 2 , 1,1 .
4

L U L U L L
RIDVAN A A A A A AS A T T I I F F S A         (6)
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Definition 2.6 [17]: Let  , , , , ,L U L U L U
A A A A A AA T T I I F F            be an 

IVNN, the accuracy function H  of A  is defined as follows 

     
21 , 1,1 .

2 (1 ) (1 ) (1 ) (1 )

L U
A A

RIDVAN U U L L U L L U
A A A A A A A A

T T
H A H A

I T I T F I F I

  
           

    (7)  

To rank any two IVNNs , , , , ,L U L U L U
A A A A A AA T T I I F F            and

, , , , ,L U L U L U
B B B B B BB T T I I F F            , 

Ridvan [17] introduced the following method. 

Definition 2.7 [17]:  Let A  and B be two IVNNs,  S A and  S B  be

scores of A  and B respectively, and  H A and  H B  be accuracy values of

A and B respectively, then 

i. If ( ) ( )S A S B  then A  is larger than B , denoted A B . 
ii. If ( ) ( )S A S B  then we check their accuracy values and decide as

follows:
(a) If ( ) ( )H A H B , then .A B

(b) However, if ( ) ( )H A H B , then A  is larger than B , denoted A B . 

Definition 2.8 [12]: Let  , , , , ,L U L U L U
A A A A A AA T T I I F F            be an 

IVNN, the score function S of A  is defined as follows 

 
  

   
4 2 2 4

, 0,1 .
8

L U L U L L L U L L
A A A A A A A A A A

NANCY

T T I I F F T T F F
S A S A

         
 

Remark 2.9: In neutrosophic mathematics, the zero sets are represented by the 

following form 0𝑁={<x, [0, 0], [1, 1], [1,1])> :x∈ X}.

3 The proposed algorithm 

The following algorithm is a new concept of finding the MST of undirected 
interval valued neutrosophic graph using the matrix approach. 

Algorithm: 

Input: the weight matrix M = ij n n
W


   for the undirected weighted interval

valued neutrosophic graph G. 

Output: Minimum cost Spanning tree T of G. 
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Step 1: Input interval  valued neutrosophic adjacency matrix A. 

Step 2: Convert the interval valued neutrosophic matrix into a score matrix 

ij n n
S


   using the score function.

Step 3: Iterate step 4 and step 5 until all (n-1) entries matrix of S are either 

marked or set to zero or other words all the nonzero elements are marked. 

Step 4: Find the weight matrix M either columns-wise or row-wise to 

determine the unmarked minimum entries ijS which is the weight of the 

corresponding edge ije in M. 

Step 5: If the corresponding edge ije of selected ijS produces a cycle with the 

previous marked entries of the score  matrix S then set ijS = 0 else mark ijS . 

Step 6: Construct the graph T including only the marked entries from the score 

matrix S which shall be desired minimum cost spanning tree of G. 

4 Practical example 

4.1 Example 1 

In this section,  a numerical example of  IVNMST is used to demonstrate 
of the proposed algorithm. Consider the following graph G= (V, E) shown Figure 
1, with fives nodes and seven edges. Various steps involved in the construction

of the minimum cost spanning tree are described as follow – 

Fig.1. Undirected interval valued neutrosophic graphs 
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Table 1. 

ije Edge length 

12e <[.3, .4], [.1, .2], <[.2, .4]> 

13e <[.4, .5], [.2, .6], <[.4, .6]> 

14e <[.1, .3], [.6, .8], <[.8, .9]> 

24e <[.4, .5], [.8, .9], <[.3, .4]> 

34e <[.2, .4], [.3, .4], <[.7, .8]> 

35e <[.4, .5], [.6, .7], <[.5, .6]> 

45e <[.5, .6], [.4, .5], <[.3, .4] 

The interval valued neutrosophic adjacency matrix A is computed below: 

A=    

[

0 𝒆𝟏𝟐 𝒆𝟏𝟑 𝒆𝟏𝟒 0
𝒆𝟏𝟐 0 0 𝒆𝟐𝟒 0
𝒆𝟏𝟑 0 0 𝒆𝟑𝟒 𝒆𝟑𝟓

𝒆𝟏𝟒 𝒆𝟐𝟒 𝒆𝟑𝟒 0 𝒆𝟒𝟓

0 0 𝒆𝟑𝟓 𝒆𝟒𝟓 0 ]

Applying the score function proposed by Tan [18], we get the score matrix: 

S= 

[

0 0.633 0.517 0.217 0
0.633 0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583 0 ]

In this matrix, the minimum entries 0.217 is selected and the corresponding 

edge (1, 4) is marked by the green color. Repeat the procedure until termination 

(Figure 2).  
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Fig.2. Marked interval valued neutrosophic graphs 

The next non-zero minimum entries 0.4 is marked and corresponding edges (3, 

5) are also colored (Figure 3).

S =

[

0 0.633 0.517 0.217 0
0.633 0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583 0 ]

Fig. 3. Marked interval valued neutrosophic graphs in next iteration 

S =

[

0 0.633 0.517 0.217 0
0.633 0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583 0 ]

The next non-zero minimum entries 0.45 is marked. The corresponding 

marked edges are portrayed in Figure 4. 

Florentin Smarandache (author and editor) Collected Papers, VIII

451



Fig. 4. Marked interval valued neutrosophic graphs in next iteration 

S=

[

0 0.633 0.517 0.217 0
0.633 0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583 0 ]

The next non-zero minimum entries 0. 5 is marked. The corresponding marked 

edges are portrayed in Figure 5. 

Fig. 5. Marked interval valued neutrosophic graphs in next iteration 

S= 

[

0 0.633 0.517  0 0.217 0
0.633 0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583 0 ]
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The next minimum non-zero element 0.517 is marked. However, while 
drawing the edges, it produces the cycle so we delete and mark it as 0 instead of 
0.517 (Figure 6).  

Fig. 6. Cycle {1, 3, 4}

S=

[

0 0.633 0.517  0 0.217 0
0.633 0 0 0.5 0
0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 0 ]

The next minimum non-zero element 0.583 is marked. However, while 
drawing the edges, it produces the cycle so we delete and mark it as 0 instead of 
0.583 (Figure 7).  

Fig. 7. Cycle {3, 4, 5}

S=

[

0 0.633 0.517  0 0.217 0
0.633  0 0 0 0.5 0

0.517 0 0 0.45 0.4
0.217 0.5 0.45 0 0.583

0 0 0.4 0.583  0 0 ]
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The next minimum non-zero element 0.633 is marked. However, while 

drawing the edges, it produces the cycle so we delete and mark it as 0 instead of 

0.633 (Figure 8).  

Fig. 8. Marked edges in the next round 

Finally, we get the final path of minimum cost of spanning tree of G is 

portrayed in Figure 9. 

Fig. 9. Final path of minimum cost of spanning tree of the graph 

And thus, the crisp minimum cost spanning tree is 1.567 and the final path of 

minimum cost of spanning tree is{2, 4},{4, 1},{4, 3},{3, 5}. The procedure is 

termination. 

4.2 Example 2 

The score function is used in machine learning involved in manipulating 

probabilities. Here the score functions in the proposed algorithm plays a vital role 

in identifying the minimum spanning tree of undirected interval valued 

neutrosophic graphs. Also based on the order of polynomial time computation the 

score function used are approaching towards different MST for an Neutrosophic 

graph. We compare our proposed method with these scoring methods used by 

different researchers and hence compute the MST of undirected interval valued 

neutrosophic graphs.  
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5 Comparative study 

In what follows we compare the proposed method presented in section 4 with 
other existing methods including the algorithm proposed by Mullai et al [15] as 
follow   

Iteration 1:  

Let 1C = {1} and 1C ={2, 3, 4 ,5} 

Iteration 2: 

Let 2C ={1, 4} and  2C ={2, 3 ,5} 

Iteration 3: 

Let 3C ={1, 4, 3} and  3C ={2, 5} 

Iteration 4: 

Let 4C ={1,3, 4, 5} and  4C ={2} 

Finally, the interval valued neutrosophic minimal spanning tree is 

Fig .10. IVN minimal spanning tree obtained by Mullai’s algorithm. 

So, it can be seen that the interval valued neutrosophic minimal spanning 
tree {2, 4},{4, 1},{4, 3},{3, 5}.obtained by Mullai’s algorithm, After 
deneutrosophication of edges’weight using the score function, is the same as the 
path obtained by proposed algorithm. The difference between the proposed 
algorithm and Mullai’s algorithm is that our approach is based on Matrix approch, 
which can be easily implemented in Matlab, whereas the Mullai’s algorithm is 
based on the comparison of edges in each iteration of the algorithm and this leads 
to high computation. 
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7 Conclusions and Future Work 

This article analyse about the minimum spanning tree problem where the 
edges weights are represented by interval valued neutrosophic numbers. In the 
proposed algorithm, many examples were investigated on MST. The main 
objective of this study is to focus on algorithmic approach of MST in uncertain 
environment by using neutrosophic numbers as arc lengths. In addition, the 
algorithm we use is simple enough and more effective for real time environment. 
This work could be extended to the case of directed neutrosophic graphs and other 
kinds of neutrosophic graphs such as bipolar and interval valued bipolar 
neutrosophic graphs. In future, the proposed algorithm could be implemented to 
the real time scenarios in transportation and supply chain management in the field 
of operations research. On the other hand, graph interpretations (decision trees) 
of syllogistic logics and bezier curves in neutrosophic world could be considered 
and implemented as the real-life applications of natural logics and geometries of 
data [31-36].  
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Abstract

The most widely used technique for solving and optimizing

a real-life problem is linear programming (LP), due to its
simplicity and efficiency. However, in order to handle the
impreciseness in the data, the neutrosophic set theory plays a
vital role which makes a simulation of the decision-making

process of humans by considering all aspects of decision
(i.e., agree, not sure and disagree). By keeping the

advantages of it, in the present work, we have introduced the
neutrosophic LP models where their parameters are

represented with a trapezoidal neutrosophic numbers and
presented a technique for solving them. The presented
approach has been illustrated with some numerical examples

and shows their superiority with the state of the art by
comparison. Finally, we conclude that proposed approach is
simpler, efficient and capable of solving the LP models as
compared to other methods.

Keywords Trapezoidal neutrosophic number · Linear programming · Neutrosophic set · Ranking function

1 Introduction
One of the most extremely used OR methods in real-life

problems according to empirical surveys is linear pro-

gramming [1–4]. It is a mathematical programming which

contains a linear objective function and a group of linear

equalities and inequalities constraints. The petroleum

manufacture was the first and most productive application

of linear programming. Well-defined data which contain a

greater cost of information are required for LP problems.

But in real-life problems, the precision of data is

overwhelmingly deceitful and this affects optimal solution

of LP problems. Probability distributions failed to transact

with inaccurate and unclear information. Also fuzzy sets

were introduced by Zadeh [5] to handle vague and

imprecise information. But also fuzzy set does not repre-

sent vague and imprecise information efficiently, because it

considers only the truthiness function. After then, Ata-

nassove [6] introduced the concept of intuitionistic fuzzy

set to handle vague and imprecise information, by con-

sidering both the truth and falsity function. But also intu-

itionistic fuzzy set does not simulate human decision-

making process. Because the proper decision is funda-

mentally a problem of arranging and explicate facts the

concept of neutrosophic set theory was presented by

Smarandache, to handle vague, imprecise and inconsistent

information [7–10]. Neutrosophic set theory simulates

decision-making process of humans, by considering all

aspects of decision-making process. Neutrosophic set is a

popularization of fuzzy and intuitionistic fuzzy sets; each

element of set had a truth, indeterminacy and falsity

membership function. So, neutrosophic set can assimilate

inaccurate, vague and maladjusted information efficiently

and effectively [11, 12]. We now can say that NLP problem

is a problem in which at least one coefficient is represented

by a neutrosophic number due to vague, inconsistent and

uncertain information. The NLP problems are more useful
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than crisp LP problems because decision maker in his/her

formulation of the problem is not forced to make a delicate

formulation. The use of NLP problems is recommended to

avert unrealistic modeling. In this research, it is the first

time to present LP problems in a neutrosophic environment

with trapezoidal neutrosophic numbers. Two ranking

functions are introduced according to the problem type, for

converting NLP problem to crisp problem. The proposed

model was applied to both maximization and minimization

problems.

The remaining part of this research is marshaled as

follows: We survey the pertinent fuzzy and intuitionistic

FLP problems literature review in Sect. 2. The important

concepts of neutrosophic set arithmetic are presented in

Sect. 3. The formularization of NLP models is presented in

Sect. 4. The proposed method for solving NLP problems is

presented in Sect. 5. Numerical examples are disbanded

with the suggested method, a comparison of results with

different researchers is illustrated and the drawbacks of

existing methods are listed in Sect. 6. Finally, conclusions

and future trends are clarified in Sect. 7.

2 Literature review

Linear programming problems in the fuzzy environment

have classified into two groups which are, symmetric and

non-symmetric problems according to Zimmermann [13].

Objectives and constraints weight are equally significant in

symmetric FLP problems, but non-symmetric problem

weights of objectives and constraints are not equal [14].

Another classification of FLP problems was introduced by

Leung [15]: (1) problems with crisp values of objective and

fuzzy values of constraints; (2) problems with crisp values

of constraints and fuzzy values of objectives; (3) problems

with fuzzy objectives and fuzzy constraints; and finally (4)

robust programming problems. Three types of fuzzy linear

programming models were proposed by Luhandjula [16],

which are flexible, mathematical and fuzzy stochastic

programming models. Another six models of FLP prob-

lems was introduced by Lnuiguchi et al. [17], which are as

follows: flexible, possibility programming, possibility LP

by using fuzzy max, possibility linear programming with

fuzzy preference relations, possibility linear programming

with fuzzy objectives and robust programming. An FLP

problem with equality and inequality constraints are

introduced by Kumar et al. [18]. Various approaches for

disbanding FLP with inequality constraints were proposed

by several authors [19–21], by firstly converting FLP

problems to its equivalent crisp model and then get the

optimal fuzzy solution of the original case. A large number

of authors have deliberated different properties of FLP

problems and suggested various models for finding

solutions. The first introduction of fuzzy programming

theory was suggested by Tanaka et al. [22]. The first for-

mulation and solving of FLP problems are presented by

Zimmerman [23]. Tanaka and Asai [24] suggested an

approach for getting the fuzzy optimal solution of FLP

problems. Verdegay solved FLP problems by depending on

fuzzification principle of objective [25]. The fuzzified

version of mathematical problems was examined by Her-

rera et al. [26]. An FLP problem with fuzzy values of

objective function coefficients were proposed by Zhang

et al. [27]. They converted FLP problems into multi-ob-

jective problems. Another model of FLP problems with

fuzzy values of objective function coefficients and con-

straints was introduced by Stanciulescu et al. [28]. An FLP

model with symmetric trapezoidal fuzzy numbers was

presented by Ganesan and Veeramani [29]. They obtained

the optimal solution of a problem without converting it to

the crisp form. A revised version of Ganesan and Veera-

mani method was proposed by Ebrahimnejad [30]. A

ranking function for arranging trapezoidal fuzzy numbers

of FLP problems was introduced by Mahdavi and Naasseri

[31]. The idealistic stipulation for FLP problems was

derived by Wu [32], by presenting the concept of a non-

dominated solution of multi-objective programming. By

utilizing a defuzzification function, Wu [33] converted the

problem into optimization problems. The full FLP prob-

lems were introduced by Lotfi et al. [34]. Some researchers

have proposed a ranking function for converting FLP

problems into its tantamount crisp LP model and then

solving it by standard methods. The primal simplex method

was extended by Maleki et al. [35], for solving FLP

problems. Tavana and Ebrahimnejad introduced a new

approach for solving FLP problems with symmetric

trapezoidal fuzzy numbers [36]. The fully intuitionistic

FLP problems introduced by Bharati and Singh [37]

depend on sign distance between triangular intuitionistic

fuzzy numbers. A ranking function was used by Sidhu and

Kumar [38] for solving intuitionistic FLP problems.

Nagoorgani and Ponnalagu [39] introduced an accuracy

function to defuzzify triangular intuitionistic fuzzy number.

The previous researches motivated us to propose a study

for solving NLP problems. There does not exist any

researches which solve neutrosophic linear programming

problems with trapezoidal neutrosophic numbers [40–45].

3 Preliminaries

A review of important concepts and definitions of neutro-

sophic set is presented in this section.

Definition 1 [43] A single-valued neutrosophic set N

through X taking the form N={〈x, TN(x), IN xð Þ, FN xð Þ〉:
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x∈X}, where X be a universe of discourse, TN(x): X→[0,

1], IN xð Þ: X→[0, 1] and FN xð Þ: X→[0, 1] with 0≤TN(x)
+IN xð Þ+FN xð Þ≤3 for all x∈X. TN(x), IN xð Þ and FN xð Þ
represent truth membership, indeterminacy membership

and falsity membership degrees of x to N.

Definition 2 [43] The trapezoidal neutrosophic number ~A

is a neutrosophic set in R with the following truth, inde-

terminacy and falsity membership functions:

T ~A xð Þ ¼
a ~A

x� a1

a2 � a1

� �
a1 � x� a2ð Þ

a ~A a2 � x� a3ð Þ
a ~A a2 � x� a3ð Þ
0 otherwise

8>>>><
>>>>:

; ð1Þ

I ~A xð Þ ¼

a2 � xþ h ~A x� a01
� �� �

a2 � a01
� � a01 � x� a2

� �
h ~A a2 � x� a3ð Þ
x� a3 þ h ~A a04 � x

� �� �
a04 � a3
� � a3\x� a04

� �
1 otherwise

8>>>>>>><
>>>>>>>:

ð2Þ

F ~A xð Þ ¼

a2 � xþ b ~A x� a001
� �� �

a2 � a001
� � a001 � x� a2

� �
b ~A a2 � x� a3ð Þ
x� a3 þ b ~A a004 � x

� �� �
a004 � a3
� � a3\x� a004

� �
1 otherwise

8>>>>>>><
>>>>>>>:

ð3Þ

where a ~A, h ~A and b ~A represent the maximum degree of

truthiness, minimum degree of indeterminacy, minimum

degree of falsity, respectively, a ~A, h ~A and b ~A 2 0; 1½ �:
Also a001 � a1 � a01 � a2 � a3 � a04 � a4 � a004.
The membership functions of trapezoidal neutrosophic

number are presented in Fig. 1.

Definition 3 [43] The mathematical operations on two

trapezoidal neutrosophic numbers ~A ¼

a1; a2; a3; a4ð Þ; a ~A; h ~A; b ~A

� �
and ~B ¼

b1; b2; b3; b4ð Þ; a ~B; h ~B; b ~B

� �
are as follows:

~Aþ ~B ¼ a1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4ð Þ; a ~A ^ a ~B; h ~A _ h ~B; b ~A _ b ~B

� �
~A� ~B ¼ a1 � b4; a2 � b3; a3 � b2; a4 � b1ð Þ; a ~A ^ a ~B; h ~A _ h ~B; b ~A _ b ~B

� �
~A�1 ¼ 1

a4
;
1

a3
;
1

a2
;
1

a1

� �
; a ~A; h ~A; b ~A

� 	
; where ~A 6¼ 0

� �

c~A ¼ ca1; ca2; ca3; ca4ð Þ; a ~A; h ~A; b ~A

� �
if ðc[ 0Þ

ca4; ca3; ca2; ca1ð Þ; a ~A; h ~A; b ~A

� �
if c\0ð Þ

(

~A
~B
¼

a1

b4
;
a2

b3
;
a3

b2
;
a4

b1

� �
; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� 	
if a4 [ 0; b4[ 0ð Þ

a4

b4
;
a3

b3
;
a2

b2
;
a1

b1

� �
; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� 	
if a4 0; b4h i0ð Þ

a4

b1
;
a3

b2
;
a2

b3
;
a1

b4

� �
; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� 	
if a4\0; b4\0ð Þ

8>>>>>>><
>>>>>>>:

~A~B ¼
a1b1; a2b2; a3b3; a4b4ð Þ; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� �
if a4 [ 0; b4 [ 0ð Þ

a1b4; a2b3; a3b2; a4b1ð Þ; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� �
if a4 0; b4h i0ð Þ

a4b4; a3b3; a2b2; a1b1ð Þ; a ~A ^ a ~B; h ~A _ h ~B;b ~A _ b ~B

� �
if a4\0; b4\0ð Þ

8><
>:

Definition 4 A ranking function of neutrosophic numbers

is a function Ɍ: N Rð Þ ! R, where N Rð Þ is a set of neu-

trosophic numbers defined on set of real numbers, which

convert each neutrosophic number into the real line.

Let ~A ¼ a1; a2; a3; a4ð Þ; a ~A; h ~A; b ~A

� �
and ~B ¼

b1; b2; b3; b4ð Þ; a ~B; h ~B; b ~B

� �
are two trapezoidal neutro-

sophic numbers, then

1. If Ɍ(~A)[R ~B
� �

then ~A[ ~B;

2. If Ɍ(~A)\R ~B
� �

then ~A\~B;

3. If Ɍ(~A)=R ~B
� �

then ~A ¼ ~B:

4 Neutrosophic linear programming
problem (NLP)

In this section, various types of NLP problems are

presented.

Fig. 1 Truth membership, indeterminacy and falsity membership functions of trapezoidal neutrosophic number
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The first type of NLP problem is the problem in which

coefficients of objective function variables are represented

by trapezoidal neutrosophic numbers, but all other

parameters are represented by real numbers.

Maximize/minimize ~Z �
Xn
j¼1

~cjxj

Subject toXn
j¼1

aijxj � ;¼; � bi; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n; xj � 0:

ð4Þ

In this type of problem, ~cj is a trapezoidal neutrosophic

number.

The second type of NLP problem is the problem in

which objective function variables and coefficients are

exemplified by real values but coefficients of constraints

variables and right-hand side are represented by trapezoidal

neutrosophic numbers.

Maximize/minimize Z ¼
Xn
j¼1

cjxj

Subject toXn
j¼1

~aijxj ~� ;�; ~� ~bi; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; xj � 0:

ð5Þ
Here, both ~aij and ~bi are trapezoidal neutrosophic numbers.

The third type of NLP problem is the problem in which

all parameters are represented by trapezoidal neutrosophic

numbers, except variables are exemplified only by real

values.

Maximize / minimize ~Z �
Xn
j¼1

~cjxj

Subject toXn
j¼1

~aijxj ~� ;�; ~� ~bi; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n; xj � 0:

ð6Þ

Here, ~cj; ~aij and ~bi are trapezoidal neutrosophic numbers.

The NLP problem may also be a problem with neutro-

sophic values for variables, coefficients in goal function

and right-hand side of constraints.

Maximize/minimize ~Z �
Xn
j¼1

~cj~xj

Subject toXn
j¼1

aij~xj ~� ;�; ~� ~bi; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n; xj � 0:

ð7Þ

Here, ~cj; ~xj and ~bi are trapezoidal neutrosophic numbers.

Here, ~xj is defined as trapezoidal neutrosophic numbers, if

authors want to obtain results in the form of neutrosophic

numbers. But in reality, any manager or decision maker

want to obtain the crisp optimal solution of problem,

through considering vague, imprecise and inconsistent

information when defining the problem. So, if we obtain

the crisp value of decision variables, this problem can be

considered as another formulation of NLP (6).

5 Proposed NLP method

A new approach suggested to find the neutrosophic optimal

solution of NLP problems is introduced in this section.

Step 1 Let decision makers insert their NLP problem

with trapezoidal neutrosophic numbers. Because we always

want to maximize truth degree, minimize indeterminacy

and falsity degree of information, and then inform decision

makers to apply this concept when entering trapezoidal

neutrosophic numbers of NLP model.

Step 2 Regarding to definition 4, we propose a ranking

function for trapezoidal neutrosophic numbers.

Step 3 Let (~a ¼ al; am1; am2; au; ; T~a; I~a;F~aÞ be a trape-

zoidal neutrosophic number, where al; am1; am2; au; are

lower bound, first, second median value and upper bound

for trapezoidal neutrosophic number, respectively. Also

T~a; I~a;F~a are the truth, indeterminacy and falsity degree of

trapezoidal number. If NLP problem is a maximization

problem, then:

Ranking function for this trapezoidal neutrosophic

number is as follows:

Ɍ ~að Þ ¼ alþauþ2 am1þam2ð Þ
2

� �
+confirmation degree.

Mathematically, this function can be written as follows:

R ~að Þ ¼ al þ au þ 2 am1 þ am2ð Þ
2

� �
þ T~a � I~a � F~að Þ ð8Þ

If NLP problem is a minimization problem, then:

Ranking function for this trapezoidal neutrosophic

number is as follows:

Ɍ ~að Þ ¼ alþau�3 am1þam2ð Þ
2

� �
+confirmation degree.

Mathematically, this function can be written as follows:
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R ~að Þ ¼ al þ au � 3 am1 þ am2ð Þ
2

� �
þ T~a � I~a � F~að Þ: ð9Þ

Step 4 According to the type of NLP problem, apply the

suitable ranking function to convert each trapezoidal neu-

trosophic number to its equivalent crisp value. This lead to

convert NLP problem to its crisp model.

Step 5 Solve the crisp model using the standard method

and obtain the optimal solution of problem.

6 Numerical examples

In this section, to prove the applicability and advantages of

our proposed model of NLP problems, we solved the same

problem which introduced by Ganesan and Veeramani [29]

and Ebrahimnejad and Tavana [36].

The difference between fuzzy set and neutrosophic set is

that fuzzy set takes into consideration the truth degree only.

But neutrosophic set takes into consideration the truth,

indeterminacy and falsity degree. The decision makers and

problem solver always seek to maximize the truth degree,

minimize indeterminacy and falsity degree. Then, in the

following example, we consider truth degree (T)=1, inde-

terminacy (I) and falsity (F) degree=0, as follows 1; 0; 0ð Þ
for each trapezoidal neutrosophic number and this called

the confirmation degree of each trapezoidal neutrosophic

number. We should also note that, according to Ganesan,

Veeramani and Ebrahimnejad, Tavana each trapezoidal

number is symmetric with the following form:

~a ¼ al; au; a; a
� �

;

where al; au; a; a represented the lower, upper bound and

first, second median value of trapezoidal number, respec-

tively. The median values of trapezoidal numbers accord-

ing to Ganesan, Veeramani and by Ebrahimnejad, Tavana

are with equal vales (α). Now let us apply our proposed

method on the same problem.

6.1 Example 1

Maximize ~Z � 13; 15; 2; 2ð Þx1 þ 12; 14; 3; 3ð Þx2 þ 15; 17; 2; 2ð Þx3
Subject to

12x1 þ 13x2 þ 12x3 ~� 475; 505; 6; 6ð Þ;
14x1 þ 13x3 ~� 460; 480; 8; 8ð Þ;
12x1 þ 15x2 ~� 465; 495; 5; 5ð Þ;
x1; x2; x3 ~� ~0:

ð10Þ
Because this NLP problem is a maximization problem, then

by using Eq. (8) each trapezoidal number will convert to its

equivalent crisp number. Remember that confirmation

degree of each trapezoidal number is (1, 0, 0) according to

decision maker opinion as we illustrated previously at the

beginning of example. Then, the crisp model of previous

problem will be as follows:

Maximize Z ¼ 19x1 þ 20x2 þ 21x3

Subject to

12x1 þ 13x2 þ 12x3 � 503;

14x1 þ 13x3 � 487;

12x1 þ 15x2 � 491

x1; x2; x3 � 0:

ð11Þ

We can structure the standard form of previous problem

(11) as follows:

Maximize Z ¼ 19x1 þ 20x2 þ 21x3

Subject to

12x1 þ 13x2 þ 12x3 þ s4 ¼ 503;

14x1 þ 13x3 þ s5 ¼ 487;

12x1 þ 15x2 þ s6 ¼ 491;

x1; x2; x3; s4; s5; s6 � 0:

ð12Þ

where s4; s5; s6 are slack variables.

The previous standard form can be solved by the sim-

plex approach. The initial tableau of simplex is presented

in Table 1.

The coming variable in Table 2 is x3 and departing

variable is s5.

The entering variable is x2 and leaving variable is s4 as

shown in Table 3.

Table 1 Initial simplex form

Basic variables x1 x2 x3 s4 s5 s6 RHS

s4 12 13 12 1 0 0 503

s5 14 0 13 0 1 0 487

s6 12 15 0 0 0 1 491

Z 19 20 21 0 0 0 0

Table 2 First simplex form

Basic variables x1 x2 x3 s4 s5 s6 RHS

s4 − 12/13 13 0 1 − 12/13 0 695/13

x3 14/13 0 1 0 1/13 0 487/13

s6 12 15 0 0 0 1 491

Z − 47/13 20 0 0 − 21/13 0 10,227/13
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6.2 Comparisons between our proposed model
and other existing models

By comparing proposed model results with Ebrahimnejad

and Tavana [36] results of the same problem, we noted

that:

1. Our proposed model results are better than Ebrahim-

nejad and Tavana results. Let us look at the optimal

tableau of our proposed model as shown in Table 3, it

is obvious that the objective function value equal 869

but in Ebrahimnejad and Tavana, the objective func-

tion equal 635 by knowing that, the problem is a

maximization problem. To make this more obvious, let

us introduce the optimal tableau of Ebrahimnejad and

Tavana model as presented in Table 4.

2. Ebrahimnejad and Tavana proposed their model to

solve only symmetric trapezoidal numbers. But our

model can solve symmetric and non-symmetric

numbers.

3. When entering symmetric trapezoidal numbers of

Ebrahimnejad and Tavana, it take the following form:

~a ¼ al; au; a; a
� �

, and they did not utilize the value of a
in their calculations of ranking function for obtaining the

equivalent crisp value, so let us ask ourselves a question

“what is the rule of a?”. But in our proposed model, we

take all values into considerations. Our ranking function

has not any missing values of trapezoidal numbers, and

then it is very accurate and comprehensive.

4. As we know,al; au; a; a represented the lower, upper

bound, first and second median value of trapezoidal

number, respectively. Because two values of a are

equals, then the triangular numbers will be more

logical than trapezoidal numbers.

5. To solve a problem with not symmetric trapezoidal

numbers using Ebrahimnejad and Tavana method, we

need to approximate all not symmetric trapezoidal

numbers into the closest symmetric numbers. This

approximation will make obtained results which are

not delicate.

6. The big drawback of Ebrahimnejad and Tavana fuzzy

model is the taking of truthiness function only. But in

real life, the decision-making process takes the

following form “agree, not sure and disagree.” We

treated this drawback in our model by using neutro-

sophic. Since, beside the truth function, we take into

account the indeterminacy and falsity function.

Also by comparing our model with Ganesan and

Veeramani at the same problem, we also noted that:

1. Our model is more simple and efficient than Ganesan

and Veeramani model.

2. Since obtained results of Ebrahimnejad, Tavana and

Ganesan and Veeramani are equals then, our results are

also better than Ganesan and Veeramani model.

3. Our model represents reality efficiently than Ganesan

and Veeramani model, because we consider all aspects

of decision-making process in our calculations (i.e., the

truthiness, indeterminacy and falsity degree).

4. Ganesan and Veeramani model represented to solve

only the symmetric trapezoidal numbers. Our model

can solve both the symmetric and non-symmetric.

Also, by comparing our model with Kumar et al. [18] for

solving the same problem we founded that:

1. In their model, they convert the FLP problem to its

tantamount crisp model. But their model has more

variables and constraints.

2. Their models increase the complexity of solving linear

programming problem by simplex algorithm.

3. Our model reduces complexity of problem, by reduc-

ing the number of constraints and variables.

4. Their model is a time-consuming and complex, but our

model is not.

5. Also our model represents reality efficiently and better

than their model.

By solving the previous example according to Saati

et al. [44] proposed method, then the model will be as

follows:

Table 3 Optimal form
Basic variables x1 x2 x3 s4 s5 s6 RHS

x2 − 12/169 1 0 1/13 − 12/169 0 695/169

x3 14/13 0 1 0 1/13 0 487/13

s6 2208/169 0 0 − 15/13 180/169 1 429

Z − 371/169 0 0 − 20/13 − 33/169 0 869

Table 4 Ebrahimnejad and Tavana optimal tableau

Basis x1 x2 x3 s4 s5 s6 RHS

x2 − 12/169 1 0 1/13 − 12/169 0 730/169

x3 14/13 0 1 0 1/13 0 470/169

s6 1848/169 0 0 − 15/13 180/169 1 70,170/169

Z 42/13 0 0 1 52/169 0 634.6
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Maximize Z ¼ 13x1 þ 12x2 þ 15x3

Subject to

12xl1 þ 13xl2 þ 12xl3 � 475;

12xu1 þ 13xu2 þ 12xu3 � 505;

12xm11 þ 13xm12 þ 12xm13 � 6;

12xm21 þ 13xm22 þ 12xm23 � 6;

14xl1 þ 13xl3 � 460;

14xu1 þ 13xu3 � 480;

14xm11 þ 13xm13 � 8;

14xm21 þ 13xm23 � 8;

12xl1 þ 15xl2 � 465;

12xu1 þ 15xu2 � 495;

12xm11 þ 15xm12 � 5;

12xm21 þ 15xm22 � 5;

xl1 þ xu1 � 0;

xl2 þ xu2 � 0;

xl3 þ xu3 � 0;

xm11 þ xm21 � 0;

xm12 þ xm22 � 0;

xm13 þ xm23 � 0:

ð13Þ

As an effect, the numbers of constraints and variables are

increased, and this lead to increase complexity of problem,

increase the space of recording binary bits and also

increase computational time when solving it by simplex

method. If the numbers of constraints of the original

problem are increased, then the solution will become very

difficult to apply. But our proposed method solves the same

problem with less variables and constraints, and then, with

less complexity and also less computational time when

solving by simplex method.

6.3 Example 2

In this example, we solve a NLP problem with trapezoidal

neutrosophic numbers. The order of element for trapezoidal

neutrosophic numbers is as follows: lower, first median

value, second median value and finally the upper bound.

The decision makers’ confirmation degree about each value

of trapezoidal neutrosophic number is (0.9, 0.1, 0.1). This

example belongs to the second classification of NLP

problems as listed in Sect. 4.

Maximize Z ¼ 25x1 þ 48x2

Subject to

14; 15; 17; 18ð Þx1 þ 25; 30; 34; 38ð Þx2
~� 44; 980; 45; 000; 45; 030; 45; 070ð Þ

21; 24; 26; 33ð Þx1 þ 4; 6; 8; 11ð Þx2
~� 23; 980; 24; 000; 24; 050; 24; 060ð Þ

17; 21; 22; 26ð Þx1 þ 12; 14; 19; 22ð Þx2
~� 27; 990; 28; 000; 28; 030; 28; 040ð Þ

~x1; ~x2 ~� ~0:

ð14Þ

By using Eq. (8), each trapezoidal number will convert to

its equivalent crisp number. Then, the crisp model of pre-

vious problem will be as follows:

Maximize Z ¼ 25x1 þ 48x2

Subject to

33x1 þ 64x2 � 90; 041;

53x1 þ 15x2 � 48; 046;

44x1 þ 34x2 � 56; 031;

x1; x2 � 0:

ð15Þ

We can structure the standard form of previous problem

(15) as follows:

Maximize Z ¼ 25x1 þ 48x2

Subject to

33x1 þ 64x2 þ s3 ¼ 90; 041

53x1 þ 15x2 þ s4 ¼ 48; 046

44x1 þ 34x2 þ s5 ¼ 56; 031

x1; x2; s3; s4; s5 � 0:

ð16Þ

where s3; s4; s5 are slack variables.

The previous standard form can be solved by the sim-

plex approach. The initial tableau of simplex is presented

in Table 5. The entering variable in Table 6 is x2 and

leaving variable is s3.

The coming variable is x1 and departing variable is s5 as

in Table 7.

Table 5 Initial simplex form

Basic variables x1 x2 s3 s4 s5 RHS

s3 33 46 1 0 0 90,041

s4 53 15 0 1 0 48,046

s5 44 34 0 0 1 56,031

Z 25 48 0 0 0 0
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6.4 Example 3

Let us introduce another type of problems in this example

and making a comparison with other research at the same

example.

By solving the same problem which introduced by Saati

et al. [44]:

Minimize Z ¼ 6x1 þ 10x2

Subject to

2x1 þ 5x2 ~� 5; 8; 3; 13ð Þ;
3x1 þ 4x2 ~� 6; 0; 4; 16ð Þ;
x1; x2 ~� ~0:

ð17Þ

Let confirmation degree is (1, 0, 0) according to our

assumptions and note that, here the order of trapezoidal

neutrosophic number is as follows: lower bound, first,

second median value and finally the upper bound, respec-

tively. Let us use Eq. (9) for transforming the previous

model to its crisp model as follows:

Minimize Z ¼ 6x1 þ 10x2

Subject to

2x1 þ 5x2 � � 6;

3x1 þ 4x2 � 6;

x1; x2 � 0:

: ð18Þ

The previous problem can be solved by the simplex

approach. The optimal tableau of simplex method is pre-

sented in Table 8.

From the previous table, the value of objective function

=12, x1 ¼ 2 and x2 ¼ 0:

When Saati et al. [35] solved the previous example, the

results are nearly equal with our result. Since the value of Z

according to their model is equal to 12.857, the value of

x1 ¼ 1:429 and x2 ¼ 0:429. It is obvious that two approach

results are nearly equal, but our proposed method has

several advantages over their method:

1. We obtain the results which also obtained by Saati

et al. [44] but with easy and simple method.

2. Number of constraints in our model is the same of the

original model, but when Saati solved their model, the

number of variables and constraints is significantly

increased. Since in Saati et al. [44] model, number of

constraints of the previous problem becomes 20

constraints when they trying to solve the previous

problem.

3. Due to the big increase in number of variables and

constraints of Saati model, the complexity of solving

the problem by simplex will increase and computa-

tional time will increase sure.

4. Their proposed approach is difficult to apply in large

scale of problems.

5. Also their approach does not represent vague, incon-

sistent information efficiently.

6.5 Case study

A company for electronic industries manufactures four

technical products for aerospace companies that conclude

NASA contracts. The outputs must get through four parts

before they are shipped. These departments are: Wiring,

Drilling, Assembly and finally Inspection. The required

time for each unit manufactured and its profit is presented

in Table 9. The minimum production quantity for fulfilling

contracts monthly is presented in Table 10. The objective

of company is to produce products in such quantities for

maximizing the total profits.

Table 6 First simplex form

Basic variables x1 x2 s3 s4 s5 RHS

x2 33/64 1 1/64 0 0 1406.89

s4 2897/64 0 − 15/64 1 0 26,942.6

s5 847/32 0 − 17/32 0 1 8196.72

Z 0.25 0 − 0.75 0 0 67,530.8

Table 7 Optimal form

Basic variables x1 x2 s3 s4 s5 RHS

x2 0 1 2/77 0 − 3/154 1247.21

s4 0 0 571/847 1 − 1.71015 12,925

x1 1 0 − 17/847 0 32/847 23,845/77

Z 0 0 − 631/847 0 − 8/847 67,608.2

Table 8 Optimal simplex form

Basis x1 x2 s3 s4 RHS

s3 0 − 7/3 1 − 2/3 10

x1 1 4/3 0 − 1/3 2

Z 0 2 0 2 12

Table 9 Departments

Products Wiring Drilling Assembly Inspection Unit profit

P1 0.5 3 2 0.5 ~9$

P2 1.5 1 4 1 f12$
P3 1.5 2 1 0.5 f15$
P4 1 3 2 0.5 f11$
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The confirmation degree of previous information

according to decision makers’ opinions is (0.9, 0.1, 0.1).

Let number of units of p1 produced=x1,

Let number of units of p2 produced=x2,

Let number of units of p3 produced=x3,

Let number of units of p4 produced=x4.

The formulation of previous problem is as follows:

Maximize ~Z � ~9x1 þ f12x2 þ f15x3 þ f11x4
Subject to

0:5x1 þ 1:5x2 þ 1:5x3 þ x4 � g1500;
3x1 þ x2 þ 2x3 þ 3x4 � g2350;
2x1 þ 4x2 þ x3 þ 2x4 � g2600;
0:5x1 þ x2 þ 0:5x3 þ 0:5x4 � g1200;
x1 �g150;
x2 �g100;
x3 �g300;
x4 �g400:
x1; x2; x3; x4 � ~0:

ð19Þ

Note that the values of each neutrosophic number repre-

sented by a trapezoidal neutrosophic number as follows:

~9 ¼ 6; 8; 9; 12ð Þ;f12 ¼ 9; 10; 12; 14ð Þ;f15 ¼ 12; 13; 15; 17ð Þ;f11 ¼ 8; 9; 11; 13ð Þ;g150 ¼ 120; 130; 150; 170ð Þ;g100 ¼ 70; 80; 100; 120ð Þ;g300 ¼ 270; 280; 300; 320ð Þ; g400 ¼ 370; 380; 400; 420ð Þ;g1500 ¼ 1200; 1300; 1500; 1700ð Þ;g2350 ¼ 2200; 2250; 2350; 2400ð Þg2600 ¼ 2200; 2400; 2600; 2800ð Þ;g1200 ¼ 1000; 1100; 1200; 1300ð Þ:

By using Eq. (8), the previous problem transform to the

following crisp model as follows:

Maximize Z ¼ 27x1 þ 34x2 þ 43x3 þ 31x4

Subject to

0:5x1 þ 1:5x2 þ 1:5x3 þ x4 � 4251;

3x1 þ x2 þ 2x3 þ 3x4 � 6901;

2x1 þ 4x2 þ x3 þ 2x4 � 7501;

0:5x1 þ x2 þ 0:5x3 þ 0:5x4 � 3451;

x1 � 426;

x2 � 276;

x3 � 876;

x4 � 1176:

x1; x2; x3; x4 � 0:

ð20Þ

By solving the previous model using simplex approach, the

results are as follows:

x1 ¼ 426;

x2 ¼ 343;

x3 ¼ 876;

x4 ¼ 1176;

Z ¼ 97; 288:

7 Conclusions and research directions

By applying the neutrosophic set concept to the linear

programming problems, we treated imprecise, vague and

inconsistent information efficiently. We also have a better

representation of reality through considering all aspects of

the decision-making process. We proposed two ranking

functions for converting trapezoidal neutrosophic numbers

to its equivalent crisp values. The first ranking function is

for maximization problems and the second-ranking func-

tion is for minimization problems. After using the suit-

able ranking function and transforming the problem to its

equivalent crisp model, then we solve the problem using

the standard methods. By comparing our proposed model

with other existing fuzzy models, we concluded that our

proposed model is simpler, efficient and achieve better

results than other researchers. It is also revealed that pro-

posed method is equivalently applied for solving with the

symmetric and non-symmetric trapezoidal numbers.

Table 10 Time capacity and

minimum production level
Departments Capacity (in hours) Products Minimum production level

Wiring g1500 P1 g150
Drilling g2350 P2 g100
Assembly g2600 P3 g300
Inspection g1200 P4 g400
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Abstract For any organization, the selection of suppliers is a very important step to 
increase productivity and profitability. Any organization or company seeks to use the best 
methodology and the appropriate technology to achieve its strategies and objectives. The 
present study employs the neutrosophic set for decision making and evaluation method 
(DEMATEL) to analyze and determine the factors influencing the selection of SCM 
suppliers. DEMATEL is considered a proactive approach to improve performance and 
achieve competitive advantages. This study applies the neutrosophic set Theory to adjust 
general judgment, using a new scale to present each value. A case study implementing the 
proposed methodology is presented (i.e. selecting the best supplier for a distribution 
company). This research was designed by neutrosophic DEMATEL data collection survey 
of experts, interviewing professionals in management, procurement and production. The 
results analyzed in our research prove that quality is the most influential criterion in the 
selection of suppliers.

Keywords Supply chain management (SCM) · Supplier selection · Neutrosophic set · 
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1 Introduction

It cannot be denied that the success or the failure of any organization depend on how it chooses
the appropriate supply chain management system and suppliers. Many organizations are cur-
rently seeking to contract many suppliers from around the world to create a collaborative
commerce, and to increase trade, profitability and productivity. Experts are interested in
purchasing and holding contracts with major suppliers, since the supplier selection is one
of the most important functions of saving raw materials cost, of procurement management,
and of increasing competitive advantage. The supply chain is an integral part of the new
business management in the design of services from suppliers to customers. Supply chain
management enables business participants to effectively combine products and services for
a long-term relationship [1]. The effective coordination on information flows between enter-
prises, material, delivery, product, payment and trading partners can be defined extensively as
supply chain management [2]. The economic environment forces organizations and collec-
tive institutions to seek competitive alternatives to meet the needs of customers and market.
Organizations must have better production technology for internal and external competitive-
ness. Companies are an important part of the process of increasing the supply chain. Projects
seeking to increase the production and compete in the international market must manage the
supply chain in a highly effective way, and the suppliers selection is considered a key point of
the process [3]. The process of integrating all activities in order to create satisfied customers
is called supply chain management, and it is applied by the best companies around the world
to control the flow of information, services and materials [4]. Supply chain management
improves the competitive position of a company. Companies are always striving to maintain
their competitiveness by developing issues such as improved model analysis, road planning,
pregnancy planning, or supply chain management. Usually, the managers focus on organizing
processes within the company to maximize profits, but the supply chain management seeks
to link internal processes and decisions with external enterprise partners to improve and cre-
ate competitiveness [5]. In recent years, supply chain management has attracted increasing
awareness in academic publications. Supply chain management has been used to promote
efficiency of the value chain on a wide range of products, services and other manufactured
materials. Disagreement may occur in the process of selecting criteria. Many studies have
tried to help managers and decision makers in any organization to take a relevant decision in
selecting the best criterion suiting their organizations.

The process of supplier evaluation, appraisal, evaluation and contracting is called supplier
selection [6]. There are some distinguishing features among suppliers, such as manufacturing
procedures, technology, geographical location and larger processes that adopt better suppliers
in pursuit of competitiveness [7]. Many researchers are tempted in displaying performance
to make the supply chain more and more efficient [8], and consequently an intuitionistic
fuzzy sets DEMATEL method was proposed to analyze the influential criteria practices,
suggesting that empirical studies should be conducted as future research [9]. DEMATEL, an
extended technique for formulating and analyzing influential relationships among difficult
criteria, has been extensively used to extract the texture of a complex problem. The current
literature review indicates that most papers used traditional intuitionistic fuzzy set to level
the ambiguity of experts judgments and opinions (Fig. 1).

Fuzzy set focuses only on membership function and it does not take into account the
non-membership and indeterminacy, so it fails to deal with uncertainty and indeterminacy
existing in the real world. To overcome the drawbacks of fuzzy set, we integrated DEMATEL
method in neutrosophic environment. The neutrosophic set is an extent or generalization of
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Truth membership 

  Function 

Xi

Indeterminacy 

 Membership 

Function

Xi  

Falsity membership 

  Function 

X1     xi   

Fig. 1 Neutrosophication process [16]

Fig. 2 From classical sets to neutrosophic sets

the intuitionistic fuzzy set. It represents real world problems effectively and efficiently by
considering all aspects of a decision situations (i.e. truthiness, indeterminacy and falsity) [10,
11], as shown in Fig. 2.
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Neutrosophy was introduced by Smarandache [12, 13] as a branch of philosophy that
studies the origin and scope of neutralities. Neutrosophy has been used in various applications
to solve various problems as a critical path problem [14], obtaining PERT three times in
project management [15]. Normally, the criteria have a degree of interactivity and related
relationships. In such cases, it is very difficult for decision makers and experts to avoid
interference between criteria and to obtain a specific goal. The main contributions of this
research are:

• It introduces a new methodology by aggregating the neutrosophic set and DEMATEL
method.

• It presents a case study showing how an organization increases its practices and activities
according to specific criteria.

In this research, the DEMATEL method is used to develop mutual relationships and interde-
pendencies. We present a causal diagram to describe relationships and their influence degrees
on criteria.

It is important to evaluate the weakness and the strength of each criterion against another.
One advantage of this method is showing the relationships and interdependence between fea-
tures. Neutrosophic set theory is used in this research to express decision maker’s preferences
[17]. Neutrosophic sets (NSs) are an extension of the intuitionistic fuzzy sets (IFs), presenting
more accurately the opinions and better interpreting the ambiguity, where the membership
of a value or an element is defined as a number between 0 and 1, by resorting on a hesitation
degree in IFs, whilst in NSs on an indeterminacy degree. Neutrosophic Set moves one step
further by examining the membership of truth, the membership of indeterminacy and the
non-membership of a member of a given set. Also, it is necessary to acquire experts opinions
to evaluate influences. Neutrosophic Set has the following benefits:

• It introduces the indeterminacy degree that helps experts to express their opinions more
accurately.

• It represents the extent of decision makers disagreements.

The proposed model also combines different interests of decision makers in one opinion in
order to eliminate inconsistencies or to address the inconsistencies of expert judgments and
improve consistency. A case study is solved to explain the model’s suitability.

This research is organized as follows: Sect. 2 is a literature review that presents papers
about DEMATEL for supplier selection. Section 3 illustrates the basic definitions of neutro-
sophic sets. Section 4 presents a methodology of the proposed model. Section 5 validates the
model by solving a case study. Section 6 concludes the research and determines the future
directions of the work.

2 The related work

In this section, we present some supplier selection related work. The two important stages
in supply chain management, which considers all the activities from the purchasing of raw
material to the final delivery of the product, are the supplier’s selection and the evaluation.
The supplier selection problem requires high accuracy methods of multiple criteria decision
making for solving it. According to the literature reviews, many researchers proposed meth-
ods based on DEMATEL. Chang et al. [18] applied DEMATEL with fuzzy to evaluate and
select the best supplier and to improve performance with respect to organizational factors
and strategic performances, which included ten evaluating criteria. Dey et al. [19] applied
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DEMATEL to establish a long-term relationship with a company and its suppliers, with
respect to their criteria. Hsu et al. [20] explored and used DEMATEL for decision making
within the green supply chain, and focused on the components of green supply chain manage-
ment and how they serve as a foundation for the decision framework and for recognizing the
influential criterion of carbon footprint in environment. Lin [21] used DEMATEL to enhance
environment performance, which is shaped by criteria as green purchasing, green design and
product recovery practices. Dalalah et al. [22] employed DEMATEL for a supplier selection
problem, implementing and applying it on an industrial case for the selection of cans suppliers
at a factory in Amman, with respect to various supplier evaluation criteria. Govindan et al.
[23] developed and used intuitionistic fuzzy with DEMATEL for decision making within the
green supply chain, and focused on the components of green supply chain management to
handle the causal relationships between GSCM practices and performances.

In this study, we aim to select the best supplier with respect to the various criteria using
DEMATEL in neutrosophic environment. The selection of supplier problem is still challeng-
ing, and selecting the right supplier becomes a critical activity within a company, consequently
affecting its efficiency and profitability. Due to its strategic importance, important research
is being done to cope with the supplier evaluation and selection problem.

3 Neutrosophic sets

In this section, we give definitions involving neutrosophic sets, single valued neutrosophic
sets, trapezoidal neutrosophic numbers, and operations on trapezoidal neutrosophic numbers.

Definition 1 [24] Let X be a space of points and x ∈ X . A neutrosophic set in X is defined by a
truth-membership function TA(x), an indeterminacy-membership function IA(x) and a falsity-
membership function FA(x), TA(x), IA(x) and FA(x) are real standard or real nonstandard
subsets of ]−0, 1+[. That is TA(x):X → ]−0, 1+[, IA(x):X → ]−0, 1+[ and FA(x):X → ]−0,
1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0−≤ sup (x)+ sup x
+sup x ≤3+.

Definition 2 [16, 24–26] Let X be an universe of discourse. A single valued neutrosophic
set over X is an object taking the form ={〈x, TA(x), IA(x), FA(x),〉:x ∈ X}, where TA(x):X
→ [0, 1], IA(x):X → [0, 1] and FA(x):X → [0, 1] with 0≤TA(x)+ IA(x)+ FA(x)≤3 for
all x ∈ X . The intervals TA(x), IA(x) and FA(x) represent the truth-membership degree, the
indeterminacy-membership degree and the falsity membership degree of x to , respectively.
For convenience, a SVN number is represented by = (a, b, c), where a, b, c ∈ [0, 1] and a +b
+c ≤3.

Definition 3 [27, 28] Suppose αã , θ̃a , βã ε [0,1] and a1, a2, a3, a4 ε R, where a1 ≤a2 ≤a3

≤a4. Then, a single valued trapezoidal neutrosophic number ã = 〈(a1, a2, a3, a4); αã , θ̃a , βã〉
is a special neutrosophic set on the real line set R, whose truth-membership, indeterminacy-
membership and falsity-membership functions are defined as:

T̃a �

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

αã

(

x−a1
a2−a1

)

(a1 ≤ x ≤ a2)

αã (a2 ≤ x ≤ a3)

αã

(

a4−x
a4−a3

)

(a3 ≤ x ≤ a4)

0 otherwise

(1)
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Ĩa(x) �

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(a2−x+θ̃a(x−a1))
(a2−a1)

(a1 ≤ x ≤ a2)
αã (a2 ≤ x ≤ a3)
(x−a3+θ̃a(a4−x))

(a4−a3)
(a3 ≤ x ≤ a4)

1 otherwise

(2)

F̃a(x) �

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(a2−x+βã(x−a1))
(a2−a1)

(a1 ≤ x ≤ a2)
αã (a2 ≤ x ≤ a3)
(x−a3+βã(a4−x))

(a4−a3)
(a3 ≤ x ≤ a4)

1 otherwise

, (3)

where αã , θ̃a and βã typify the maximum truth-membership degree, the minimum
indeterminacy-membership degree and the minimum falsity-membership degree, respec-
tively. A single valued trapezoidal neutrosophic number ã = 〈(a1, a2, a3, a4); αã , θ̃a , βã〉 may
express an ill-defined quantity of the range, which is approximately equal to the interval [a2,
a3].

Definition 4 [16, 28] Let ã = 〈(a1, a2, a3, a4); αã , θ̃a , βã〉 and ˜b = 〈(b1, b2, b3, b4); αã , θ̃a ,
βã〉 be two single valued trapezoidal neutrosophic numbers, and U ��0 be any real number.
Then:

1. Addition of two trapezoidal neutrosophic numbers:

ã + ˜b � 〈

(a1 + b1, a2 + b2, a3 + b3, a4 + b4) ; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

2. Subtraction of two trapezoidal neutrosophic numbers:

ã −˜b � 〈

(a1 − b4, a2 − b3, a3 − b2, a4 − b1) ; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

3. Inverse of trapezoidal neutrosophic numbers:

ã−1 �
((

1

a4
,

1

a3
,

1

a2
,

1

a1

)

; αã, θ̃a, βã

〉

where (̃a �� 0)

4. Multiplication of trapezoidal neutrosophic numbers by constant value:

ϒ ã �
{ 〈(ϒa1, ϒa2, ϒa3, ϒa4) ; αã, θ̃a, βã〉 if (ϒ > 0)

〈(ϒa4, ϒa3, ϒa2, ϒa1) ; αã, θ̃a, βã〉 if (ϒ < 0)

5. Division of two trapezoidal neutrosophic numbers:

ã
˜b

�

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

〈(

a1
b4

, a2
b3

, a3
b2

, a4
b1

)

; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

if (a4 > 0, b4 > 0)
〈(

a4
b4

, a3
b3

, a2
b2

, a1
b1

)

; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

if (a4 < 0, b4 > 0)
〈(

a4
b1

, a3
b2

, a2
b3

, a1
b4

)

; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

if (a4 < 0, b4 < 0)

6. Multiplication of trapezoidal neutrosophic numbers:

ã˜b �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈

(a1b1, a2b2, a3b3, a4b4) ; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

if (a4 > 0, b4 > 0)
〈

(a1b4, a2b3, a3b2, a4b1) ; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

if (a4 < 0, b4 > 0)
〈

(a4b4, a3b3, a2b2, a1b1) ; αã ∧ α
˜b, θ̃a ∨ θ

˜b, βã ∨ β
˜b

〉

if (a4 < 0, b4 < 0)
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Fig. 3 The general neutrosophic DEMATEL framework

4 Neutrosophic DEMATEL approach

Atanassov [29] developed the intuitionistic fuzzy set theory. To overcome some of its limits,
Smarandache [17] proposed the neutrosophic set theory. Neutrosophy handles vagueness and
uncertainty, and attend the indeterminacy of values. Neutrosophy has some of advantage with
DEMATEL:

• Neutrosophy provides the ability to present unknown information in our model using the
indeterminacy degree, so the experts can present opinions about the unsure preferences.

• Neutrosophy depicts the disagreement of decision makers and experts.
• Neutrosophy heeds all aspects of decision making situations by considering truthiness,

indeterminacy and falsity altogether.

DEMATEL is used to solve some complex and interrelated problems. In DEMATEL all
criteria or factors fall into two categories: cause and effect.

In this section, we present the steps of the proposed model based on the neutrosophic
DEMATEL analysis as shown in Fig. 3.

The procedures are explained as follows:

Step 1. Identifying decision goals: collecting relevant information presenting the problem.

1. Selection of experts and decision makers that have experience in the field.
2. Identifying the relevant criteria to the problem.

Step 2. Pairwise comparison matrices between relevant criteria.

1. Identify the criteria, Criteria= (F1, F2, F3… Fm).
2. Experts make pairwise comparisons matrices between criteria.

a. Interpret each value for each criterion compared to other in a trapezoidal neutro-
sophic number (lnm, mnml , mnm, unm).

b. Make comparisons between criteria by each expert as shown in Table 1.
c. Focuses only on (n−1) consensus judgments using a scale from 0 to 1 [30, 31].

3. Experts should determine the maximum truth-membership degree (α), the minimum
indeterminacy-membership degree (β) and the minimum falsity membership degree
(θ) of single valued neutrosophic numbers as shown in Table 2.

4. Determine the crisp value of each opinion as shown in Table 3, using the following
equations:
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Table 1 The pairwise comparison matrix between criteria

Criteria F1 F2 … Fn

F1 (l11, m11l , m11u , u11) (l11, m11l , m11u , u11) … (l1n , m1nl , m1nu , u1n )

F2 (l21, m21l , m21u , u21) (l22, m22l , m22u , u22) … (l2n , m2nl , m2nu , u2n)

… … … … …

Fn (ln1, mn1l , mn1u , un1) (ln2, mn2l , mn2u , un2) … (lnn , mnnl , mnnu , unn)

Table 2 The pairwise comparison matrix between criteria with the α, β and θ degree

C F1 F2 … Fn

F1 (l11, m11l , m11u , u11; α, β, θ) (l11, m11l , m11u , u11; α, β, θ) … (l1n , m1nl , m1nu , u1n ; α, β, θ)

F2 (l21, m21l , m21u , u21; α, β, θ) (l22, m22l , m22u , u22; α, β, θ) … (l2n , m2nl , m2nu , u2n ; α, β, θ)

… … … … …

Fn (ln1, mn1l , mn1u , un1; α, β, θ) (ln2, mn2l , mn2u , un2; α, β, θ) … (lnn , mnnl , mnnu , unn ; α, β, θ)

Table 3 The crisp values of
comparison matrix

C F1 F2 … Fn

F1 CV11 CV21 … CVm1

F2 CV12 CV22 … CVm2

… … … … …

Fn CV1n CV2n … CVmn

Table 4 Integration of the
average opinions of all experts

C F1 F2 … Fn

F1 CV11 CV21 … CVm1

F2 CV12 CV22 … CVm2

… … … … …

Fn CV1n CV2n … CVmn

S (̃ai j ) � 1

16
[a1 + b1 + c1 + d1] × (2 + αã − θ̃a − βã) (4)

A (̃ai j ) � 1

16
[a1 + b1 + c1 + d1] × (2 + αã − θ̃a − βã) (5)

Step 3. Integration of matrices.
All opinions of experts need to be integrated into one matrix presenting the average opinions
of all experts about each criterion, as shown in Table 4.

CV11 � CV11n1 + CV11n2 + CV11nm

n
(6)

where n, number of experts. We obtain the average for all values as in the following matrix.

Step 4. Generating the direct relation matrix.
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This matrix is obtained from previous step (3), i.e. the integrating of all averaged opinions
of experts. An initial direct relation matrix A is a n×n matrix obtained by pairwise compar-
isons, S � [

si j
]

n×n . Si j denotes the degree to which the criterion i affects the criterion j.

Step 5. Normalizing the direct relation matrix.
The normalized direct relation matrix can be obtained using the equation:

K � 1

Max1≤i≤n
∑n

j�1 ai j
(7)

S � K × A (8)

Step 6. Attaining the total relation matrix.
This step requires use of the Matlab software. The total relation matrix is acquired using
the formula (9) from the generalized direct relation matrix S. A total relation matrix (T),
in which (I) denotes the identity matrix, is shown as follows:

T � S × (I − S)−1 (9)

Step 7. Obtaining the sum of rows and columns.
The sum of rows is denoted by (D), and the sum of columns is denoted by (R). Calculate
R+D and R−D.
Calculate T, where T � [ai j ]n×n , i, j =1, 2… n

D �
[

n
∑

i�1

ai j

]

1×n

� [

a j
]

n×1 (10)

R �
⎡

⎣

n
∑

j�1

ai j

⎤

⎦

1×n

� [

a j
]

n×1 (11)

Step 8. Drawing cause and effect diagram
The causal diagram is obtained by the horizontal axes is presented by (D+R) and the
vertical axes (D−R) which is a degree of relation and it depicts the steps of proposed
model in Fig. 4.

5 The proposed methodology in a case study

In this section, we describe the details of the proposed methodology of a hybrid approach
of neutrosophic sets and DEMATEL method for developing supplier selection criteria. This
section is divided into five subsections: (1) the case study, (2) the Neutrosophic DEMATEL
questionnaire design, (3) the calculation process of the Neutrosophic DEMATEL Method,
(4) the analysis of the evaluation criteria shown in Fig. 5.

5.1 Case study

Flopater Trading Company was established in 2003. The company specializes in supplying
plastic pipe fittings, soon becoming one of the largest distributors for large companies in the
production of PVC pipes and joints. The company started importing from abroad and took
large contracts of polypropylene pipes and fittings produced by Cosmo Plast UAE. Cosmo
Plast in the United Arab Emirates is one of the largest factories in the Gulf region, and
the company has started to support this plant in projects and accreditation with consultants.
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Fig. 4 Schematic diagram of DEMATEL in neutrosophic environment
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Fig. 5 Main criteria selected for evaluation

The company also imports chips produced by a major company in Turkey, Zir Kelipas, also
providing full procurement to all contracting companies or contractors in projects, helping
them to deliver all supplies to the place of the project or their stores. The company offers
appropriate ways for payment, committing to always deliver on time. Since it intends to
expand trade and increase the number of contracts with customers, one of the most important
problems facing the company is the selection criteria of suppliers.

5.2 Neutrosophic DEMATEL questionnaire design

In this research, the design of questionnaire is structured as following: In the first part, we
determine the selection criteria. Then, we need to understand each criterion, its definition
and its importance in the evaluation of selecting supplier. We employed seven (7) evaluation
criteria: (1) cost, (2) time delivery, (3) quality, (4) innovation, (5) reputation, (6) response
to customers, (7) location. The influence of every criterion on selecting the best supplier
gets evaluated by Neutrosophic DEMATEL method. In the second part, we perform pairwise
comparisons matrices to evaluate each criterion based on points of views from experts, using
the neutrosophic scale of 0, 1.

5.3 The calculation process of Neutrosophic DEMATEL method

For collecting data, we interviewed three professionals in the management of purchasing and
setup of contracts. The three experts determined the most important evaluation criterion to
be used. The criteria symbols in this research are as follows: Cost (F1), Time delivery (F2),
Quality (F3), Innovation (F4), Reputation (F5), Response to customers (F6), Location (F7).
The data collected from the three experts were analyzed by the Neutrosophic DEMATEL
method. The steps that were conducted are the following:
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Step 1. Choosing the experts team
The first step of Neutrosophic DEMATEL method is selection of the best experts in the
field of management purchasing and setup contracts. We selected three expert, to which
we further refer as the first expert, the second expert, and the third expert.

Step 2. Identification of main criteria and practices
We sorted seven evaluation criteria as selected by the team of experts, namely: Cost (F1),
Time delivery (F2), Quality (F3), Innovation (F4), Reputation (F5), Response to customers
(F6), Location (F7).
Step 3. Performing pairwise comparisons matrices based on trapezoidal neutrosophic
numbers.

1. Pairwise comparisons matrices to evaluate each feature or criterion against each other,
as shown in Tables 5, 6, and 7.

2. Experts should determine the maximum truth membership degree (α), the minimum
indeterminacy membership degree (θ) and the minimum falsity membership degree
(β) of single valued neutrosophic numbers, as shown in Tables 8, 9, 10.

3. Convert the matrices into crisp values, as shown in Tables 11, 12, 13.

Step 4. Integrating the matrices
We process the integration of the three matrices according to formula (6), where a diagonal
is 0.5. The initial direct-relation matrix (S) is shown in Table 14.
Step 5. Normalizing the initial direct relation matrix
We apply the Eq. (7) to obtain the value of K and then the formula (8) to obtain the
generalized direct relation matrix X.
Calculation of each row:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7

1.86
1.76
1.58
1.82
1.78
1.77
1.83

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Max � 1.86 k � 1

1.86

The generalized direct relation matrix X is presented in Table 15.
Step 6. Attaining the total relation matrix
This step is performed using the Matlab software. The total relation matrix is acquired
using the formula (9) from the generalized direct relation matrix X. A total relation matrix
(T) is obtained, where (I) denotes the identity matrix. The total relation matrix is presented
in Table 16.
Step 7. Obtaining the sum of rows and columns
The sum of rows is denoted by (D), and the sum of columns is denoted by (R), using the
formulas (10, 11).

Sum of rows and columns

Col 1
Col 2
Col 3
Col 4
Col 5
Col 6
Col 7

8.2182
8.3654
8.2309
7.3264
6.6465
7.5996
7.3456

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7

8.8362
8.2445
7.2893
7.5221
7.1926
7.1994
7.4485
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Table 11 The crisp values of
comparison matrix

Criteria F1 F2 F3 F4 F5 F6 F7

F1 0.5 0.288 0.428 0.426 0.214 0.270 0.220

F2 0.100 0.5 0.244 0.371 0.273 0.181 0.263

F3 0.113 0.200 0.5 0.263 0.158 0.228 0.130

F4 0.261 0.255 0.226 0.5 0.158 0.169 0.098

F5 0.188 0.169 0.191 0.214 0.5 0.303 0.181

F6 0.289 0.203 0.191 0.234 0.180 0.5 0.250

F7 0.296 0.263 0.270 0.149 0.220 0.195 0.5

Table 12 The crisp values of
comparison matrix

Criteria F1 F2 F3 F4 F5 F6 F7

F1 0.5 0.180 0.203 0.180 0.146 0.141 0.110

F2 0.180 0.5 0.124 0.216 0.184 0.132 0.193

F3 0.170 0.219 0.5 0.169 0.226 0.130 0.150

F4 0.361 0.253 0.181 0.5 0.238 0.138 0.118

F5 0.180 0.213 0.113 0.197 0.5 0.288 0.303

F6 0.178 0.214 0.103 0.158 0.158 0.5 0.300

F7 0.214 0.223 0.144 0.140 0.202 0.263 0.5

Table 13 The crisp values of
comparison matrix

Criteria F1 F2 F3 F4 F5 F6 F7

F1 0.5 0.105 0.275 0.214 0.160 0.236 0.285

F2 0.159 0.5 0.154 0.234 0.281 0.248 0.230

F3 0.191 0.117 0.5 0.195 0.158 0.245 0.181

F4 0.315 0.344 0.210 0.5 0.184 0.202 0.178

F5 0.140 0.230 0.180 0.135 0.5 0.316 0.315

F6 0.255 0.151 0.225 0.195 0.149 0.5 0.317

F7 0.163 0.191 0.245 0.179 0.202 0.131 0.5

Table 14 The integration matrix Criteria F1 F2 F3 F4 F5 F6 F7

F1 0.5 0.191 0.302 0.273 0.173 0.216 0.205

F2 0.146 0.5 0.174 0.274 0.246 0.187 0.229

F3 0.158 0.179 0.5 0.209 0.181 0.201 0.154

F4 0.312 0.284 0.206 0.5 0.193 0.170 0.155

F5 0.169 0.204 0.161 0.182 0.5 0.302 0.266

F6 0.241 0.189 0.173 0.196 0.162 0.5 0.307

F7 0.224 0.226 0.220 0.156 0.208 0.208 0.5
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Table 15 Normalized matrix Criteria F1 F2 F3 F4 F5 F6 F7

F1 0.269 0.103 0.162 0.147 0.093 0.116 0.110

F2 0.079 0.269 0.094 0.147 0.132 0.101 0.123

F3 0.085 0.096 0.269 0.112 0.097 0.108 0.083

F4 0.168 0.153 0.111 0.145 0.104 0.091 0.083

F5 0.091 0.110 0.087 0.098 0.145 0.162 0.143

F6 0.130 0.102 0.093 0.105 0.087 0.147 0.165

F7 0.120 0.122 0.118 0.084 0.112 0.159 0.145

Table 16 The total relation matrix

Criteria F1 F2 F3 F4 F5 F6 F7

F1 1.4895 1.3104 1.3747 1.2188 1.0546 1.2165 1.1717

F2 1.1796 1.4323 1.1966 1.1458 1.0406 1.1287 1.1209

F3 1.0597 1.0920 1.2834 0.9900 0.8920 1.0158 0.9564

F4 1.1941 1.1955 1.1315 1.0582 0.9272 1.0271 0.9885

F5 1.0599 1.0988 1.0526 0.9618 0.9330 1.0672 1.0193

F6 1.1090 1.0905 1.0660 0.9717 0.8729 1.0503 1.0390

F7 1.1264 1.1459 1.1261 0.9801 0.9262 1.0940 1.0498

Row + Column and Row − Column

0
1
2
3
4
5
6
7

Row + Col
17.0544
16.6099
15.5202
14.8485
13.8391
14.799
14.7941

Row − Col
− 0.618
0.1209
0.9416

− 0.1957
− 0.5461
0.4002

− 0.1029

Step 8. Drawing cause and effect diagram
The causal diagram is obtained by the horizontal axes, presented by (D+R), and the vertical
axes (D−R), which is a degree of relation, as depicted in Fig. 6.

5.4 Analyzing the evaluation criteria

The final step is the analysis of collected data according to the causal diagram. This article
integrates several questionnaires from expert interviews to find out the evaluation criteria and
to calculate the average of each criterion. The research results determine the most important
criterion. From this causal chart, according to the Neutrosophic DEMATEL Method, the
importance of all criteria was established. According to experts’ opinions, Quality (F3) had
the greatest impact and Cost (F1) had the lesser impact on the selection of the company
supplier.
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Fig. 6 The causal diagram for evaluation criteria

6 Conclusions and recommendations

This study presents the criteria selected by experts in the field of production and procurement
in collective organizations, affecting the productivity and profitability of any organization.
Potential supply chain management practices have been developed and performed using the
Neutrosophic DEMATEL Method to select the best standards that have a greater impact on
other criteria. The proposed approach succeeded in developing the DEMATEL Method by
applying to it the Neutrosophic Set Theory, using a new scale from 0 to 1 and employing the
maximum truth membership degree (α), the minimum indeterminacy membership degree (θ)
and the minimum falsity membership degree (β) of a single valued neutrosophic number.
The opinions were collected from experts by interviews, and consequently analyzed using
the Neutrosophic DEMATEL Method, by comparisons of each criterion, according to each
individual expert, and their formulation of each value according to a single valued neutro-
sophic number. Finally, we extracted the most important criterion or feature that proved
to be important for any organization in order to effectively choose its suppliers. However,
this research contains some limitations and difficulties due to the fact that the multitude of
standards and features require a large processing team and complex calculation.

References

1. Gharakhani D (2012) The evaluation of supplier selection criteria by fuzzy DEMATEL method. J Basic
Appl Sci Res 2(4):3215–3224

2. Askarany D et al (2010) Supply chain management, activity-based costing and organisational factors. Int
J Prod Econ 127(2):238–248

3. Gunasekaran A et al (2004) A framework for supply chain performance measurement. Int J Prod Econ
87(3):333–347

4. Arndt H (2004) Supply chain management. Springer, Berlin
5. Li X, Wang Q (2007) Coordination mechanisms of supply chain systems. Eur J Oper Res 179(1):1–16
6. Shyur H-J, Shih H-S (2006) A hybrid MCDM model for strategic vendor selection. Math Comput Model

44(7):749–761
7. Chang S-L et al (2007) Applying a direct multi-granularity linguistic and strategy-oriented aggregation

approach on the assessment of supply performance. Eur J Oper Res 177(2):1013–1025
8. Dickson GW (1996) An analysis of vendor selection systems and decisions. J Purch 2(1):5–17
9. Gan J, Luo L (2017) Using DEMATEL and intuitionistic fuzzy sets to identify critical factors influencing

the recycling rate of end-of-life vehicles in China. Sustainability 9(10):1873
10. Chan FT et al (2006) An AHP approach in benchmarking logistics performance of the postal industry.

Benchmark Int J 13(6):636–661

Florentin Smarandache (author and editor) Collected Papers, VIII

490



11. Zhang C et al (2017) Merger and acquisition target selection based on interval neutrosophic multigranu-
lation rough sets over two universes. Symmetry 9(7):126

12. Smarandache F (1999) A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set,
neutrosophic probability. American Research Press, Santa Fe

13. Smarandache F (2005) A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set,
neutrosophic probability: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability.
Infinite study. American Research Press, Santa Fe

14. Abdel-Basset M et al (2018) Future generation computer systems. https://doi.org/10.1016/j.future.2018.
03.014

15. Abdel-Basset M, Mohamed M, Zhou Y, Hezam I (2017) Multi-criteria group decision making based
onneutrosophic analytic hierarchy process. J Intell Fuzzy Syst 33(6):4055–4066

16. Hezam IM, Abdel-Baset M, Smarandache F (2015) Taylor series approximation to solve neutrosophic
multiobjective programming problem. Neutrosophic Sets Syst 10:39–46

17. Smarandache F (2010) Neutrosophic set-a generalization of the intuitionistic fuzzy set. J Defense Resour
Manag 1(1):107

18. Chang B et al (2011) Fuzzy DEMATEL method for developing supplier selection criteria. Expert Syst
Appl 38(3):1850–1858

19. Dey S et al (2012) Supplier selection: integrated theory using DEMATEL and quality function deployment
methodology. Procedia Eng 38:3560–3565

20. Hsu C-W et al (2013) Using DEMATEL to develop a carbon management model of supplier selection in
green supply chain management. J Clean Prod 56:164–172

21. Lin R-J (2013) Using fuzzy DEMATEL to evaluate the green supply chain management practices. J Clean
Prod 40:32–39

22. Dalalah D et al (2011) A fuzzy multi-criteria decision making model for supplier selection. Expert Syst
Appl 38(7):8384–8391

23. Govindan K et al (2015) Intuitionistic fuzzy based DEMATEL method for developing green practices
and performances in a green supply chain. Expert Syst Appl 42(20):7207–7220

24. Florentin S (1998) Neutrosophy. neutrosophic probability, set, and logic. ProQuest information & learn-
ing, Ann Arbor, Michigan, USA. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (online edition).
Accessed 17 Feb 2018

25. El-Hefenawy N, Metwally MA, Ahmed ZM, El-Henawy IM (2016) A review on the applications of
neutrosophic sets. J Comput Theor Nanosci 13(1):936–944

26. Saaty TL, Vargas LG (2006) Decision making with the analytic network process. Springer, Berlin
27. Abdel-Baset M, Hezam IM, Smarandache F (2016) Neutrosophic goal programming. Neutrosophic Sets

Syst 11:112–118
28. Mahdi IM, Riley MJ, Fereig SM, Alex AP (2002) A multi-criteria approach to contractor selection. Eng

Constr Archit Manag 9(1):29–37
29. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
30. Abdel-Basset M et al (2017) A novel group decision-making model based on triangular neutrosophic

numbers. Soft Comput. https://doi.org/10.1007/s00500-017-2758-5
31. Abdel-Basset M et al (2017) Neutrosophic AHP-Delphi Group decision making model based on trape-

zoidal neutrosophic numbers. J Ambient Intell Humaniz Comput 1–17. https://doi.org/10.1007/s12652-
017-0548-7

Florentin Smarandache (author and editor) Collected Papers, VIII

491

https://doi.org/10.1016/j.future.2018.03.014
http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf
https://doi.org/10.1007/s00500-017-2758-5
https://doi.org/10.1007/s12652-017-0548-7


1. Introduction

1.1. Neutrosophy Theory

Neutrosophic set concept, introduced by Smarandache [1,2], is a more universal structure that
extends the concepts of the classic set, fuzzy set [3] and intuitionistic fuzzy set [4]. Unlike intuitionistic
fuzzy sets, the indeterminacy is explicitly defined in neutrosophic sets. A neutrosophic set has three
basic components defined separately: Truth T, indeterminacy I and falsity F, regarding membership.
Neutrosophy was proposed as an ambitious project by Smarandache as a new branch of philosophy
as well, concerning “the origin, nature, and scope of neutralities, as well as their mutual effects with
different intellectual spectra”. The key assumption of neutrosophy is that every idea has not only
a certain degree of truth, as is generally taken in many-valued logic contexts, but also degrees of
falsity and indeterminacy need to be considered independently from each other. Neutrosophy has
settled the baseline for a number of new mathematical theories generalizing both their classical and
fuzzy counterparts, such as neutrosophic set theory, geometry, statistics, topology, analysis, probability,
and logic. The neutrosophic framework has already been applied to practical applications in many
different fields, such as decision-making, semantic web, and data analysis in medicine.

Now, let us look at the concepts of some subfields of neutrosophy. Neutrosophic set has a
formal definition as follows: Let U be a universe of discourse or space, and M be a set in U.
An element x from U is stated related to the set M as x(T, I, F) and belongs to M in the following
way: it is t % true in the set, i % indeterminate in the set, and f % false, where t varies in T, i
varies in I, f varies in F. Statically T, I, F are subsets, but dynamically T, I, F are functions/operators
depending on many known or unknown parameters. Neutrosophic logic is a general framework
for the unification of many existing logics. The main idea of neutrosophic logic is to characterize
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each logical statement in a 3-dimensional neutrosophic space, where each dimension of the space
represents respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the statement
under consideration, where T, I, F are standard or non-standard real subsets of [0−, 1+]. For instance,
a statement can be between [0.21, 0.55] true, 0.23 or between (0.35, 0.45) indeterminate, and either
0.32 or 0.75 false. Neutrosophic statistics is the analysis of events characterized by the neutrosophic
probability. The function that models the neutrosophic probability of a random variable x is called
neutrosophic distribution: NP(x) = (T(x), I(x), F(x)), where T(x) represents the probability that
value x occurs, F(x) represents the probability that value x does not occur, and I(x) represents
the indeterminate/unknown probability of value x. Neutrosophic probability is an extension of the
classical probability and imprecise probability where a case, event or fact A occurs is t % true—where
t varies in the subset T, i % indeterminate—where i varies in the subset I, and f % false—where f
varies in the subset F. In classical probability nsup ≤ 1, while in neutrosophic probability nsup ≤ 3+.
In imprecise probability, the probability of an event is a subset T in [0, 1], not a number p in [0, 1],
the rest was supposed to be the opposite, subset F (also from the unit interval [0, 1]); there is no
indeterminate subset I in imprecise probability.

1.2. Quantum Mechanics and Computing

Quantum mechanics was started with Planck [5] and interpreted as real life problem by Einstein [6].
The mechanics was developed by Bohr, Heisenberg, Broglie, Schrödinger, Born, Dirac, Hilbert,
Sommerfeld, Dyson, Wien, Pauli, Von Neumann and others [7–12] in the first 30 years of the 20th
century. Computers are mechanisms that support transaction information by executing algorithms.
An algorithm is a well-defined process to perform an information processing task. The task can always
be translated into a realization. When creating complicated algorithms for a variety of tasks, working
with some improved computational models is very useful, probably very important. However, when
examining the actual limitations of a computation mechanism, it is key to remember the connection
between computation and realization. Quantum computation explores how efficiently nature allows us
to compute. The standard computational model is based on classical mechanics; the mechanics of the
Turing machine relies on classical mechanics. Quantum information processing changes not only the
physical paradigm used for computing and communication but also the concepts of knowledge and
computation. Quantum computation is not synonymous with quantum effects to make calculations.
Actual computing mechanisms of the quantum are based on a larger physical reality than is represented
by the idealized computational model. Quantum information processing is the result of the use of
the physical reality that quantum theory states to perform tasks that were previously thought to
be infeasible or impossible. The mechanisms that perform quantum information processing are
known as quantum computers. In the last few decades of the twentieth century, researchers tried
to follow two of the most influential and revolutionary theories: information science and quantum
mechanics. Their success provided an unfamiliar computation and information range of vision. This
new insight has significantly changed how the relationship between quantum information theory,
computation, knowledge, and physics is considered and has given rise to new applications and
epoch-making algorithms. The theory of information, which contains the foundations of computer
science and communication, made possible to address the important issues in computer science and
communication. The Turing machine is a classical model that behaves entirely according to classical
mechanical principles. Quantum mechanics has become an increasingly significant line in the progress
of developing more efficient computing mechanisms. Until recently, the effect of quantum mechanics
had been limited to low-level applications and it had no effect on how computation or communication
was carried or worked. At the beginning of the 1980s, a number of scientists found that quantum
mechanics had eye-opening effects that could be used in information processing. Richard Feynman [13],
Yuri Manin [14], and other influential scientists realized that some quantum mechanical phenomena
could not be efficiently simulated by a standard Turing machine. This observation has led to speculation
that perhaps these quantum phenomena could be used to make computations more efficient in general.
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Such programme required re-thinking the underlying theoretical model of informatics and completely
removed it from the classical circle. Quantum computing, a field that includes quantum information,
quantum algorithms, quantum cryptography, quantum communication, and quantum games, explores
the effects of using quantum mechanical phenomena for information modeling and processing instead
of using the rules of classical mechanics in computations.

In the following sections, we will introduce a mathematical framework of the unification of
neutrosophic theory and quantum theory, in a fully computational approach. In this context, we will
reveal how one can have a computational approach to the solution of mathematical and algorithmic
problems of a model that can be encountered in both the neutrosophic and quantum universes.
In this sense, this paper presents a more computational approach to the neutrosophic quantum
concept, i.e., neutrosophic quantum computation, whose groundwork was laid by the work of
Smarandache [15].

2. Neutrosophic Quantum Computing

In this part, we define some fundamental notions of neutrosophic quantum computing.
Some concepts will involve new interpretations and others will be straightforward generalizations.
As also mentioned in Smarandache [15], we should note in the beginning of our paper that the
reversibility condition of quantum computing has some challenging issues in the neutrosophic
counterpart of this ambitious field. It is mainly due to the fact that neutrosophic states involve
indeterminacy, so the inverse function of such states might not always be definable, hence the domain
may not be uniquely recovered from the image. We propose an interesting open problem regarding a
special case of this issue at the end of the paper.

We assume some basic familiarity with linear algebra and complex numbers including their basic
properties like the norm of a complex vector, complex conjugation, complex number multiplication,
etc. The reader may refer to Yanofsky and Mannucci’s [16] or Nielsen and Chuang’s [17] book for a
detailed account on quantum computing and quantum information.

Definition 1. A neutrosophic quantum bit (neutrobit) is a three-dimensional complex vector

|ψ〉 =


α

β

γ

 = α|0〉+ β|1〉+ γ|I〉

such that α, β, γ ∈ C are called coefficients (or amplitudes) and |α|2 + |β|2 + |γ|2 = 1, where we define the
basis vectors |0〉, |1〉, |I〉 in the canonical basis as

|0〉 =


1

0

0

 , |1〉 =


0

1

0

 , |I〉 =


0

0

1

 .

In comparison to classical quantum computation, the reader may have noticed a new basis vector
|I〉 introduced above. We call this vector the indeterminacy basis.

A coherent neutrosophic quantum state |ψ〉 is a linear combination (superposition) of the basis vectors
|0〉, |1〉 and |I〉 which is in the form

|ψ〉 = α|0〉+ β|1〉+ γ|I〉

such that α, β, γ ∈ C and that |α|2 + |β|2 + |γ|2 = 1.
Thus, a coherent neutrosophic quantum state is three-dimensional complex vector, which is of

unit length.

Florentin Smarandache (author and editor) Collected Papers, VIII

494



Quantum systems evolve via special kind of matrix transformations. We define neutrosophic Pauli
gates as given below:

X =


0 1 0

1 0 0

0 0 1

 , Y =


1 0 0

0 i 0

0 0 1

 , Z =


1 0 0

0 −1 0

0 0 −1

 , W =


1√
2

0 0

0 1√
2

0
1√
2

1√
2

1

 .

The matrix X is actually the NOT gate which the reader might be familiar from classical quantum
computation. That is, if k ∈ {0, 1}, then X|k〉 = |1− k〉. Notice that X|I〉 = |I〉. Thus, we define
the negation of the indeterminacy basis as itself. The next two gates are Y-rotation and Z-rotation
(phase change). The new gate here is the W-transformation which can be simply thought of as a
rotation around the |I〉 basis with an equal coefficient distribution of the bases between |I〉 and the
basis on which the rotation is applied. The intuition behind these rotation gates will be understood
better once we give the unit ball representation of neutrobits later on.

An important quantum gate in classical quantum computing is the Hadamard transform, which is
defined as the matrix

H =
1√
2

[
1 1

1 −1

]
=

 1√
2

1√
2

1√
2
− 1√

2

 .

Standard Hadamard transform is defined on a single qubit since it is a 2× 2 matrix. Hadamard
matrix used in classical quantum computing is a unitary matrix. Thus, it is reversible, and is actually its
own inverse. To introduce the neutrosophic counterpart of this transformation, we first need to define
the notion of indeterminate (decoherent) superpositions to make sense of the use of the Hadamard
transform in neutrosophic quantum computing. The terms coherent and decoherent superpositions
of neutrobits were first introduced by Smarandache [15] for denoting quantum states with some
indeterminacy. We modify these notions to make the Hadamard transform work on neutrobits.

Definition 2. The reserved three-dimensional vector

|0I〉 =


1

0

0


I

is called the decoherent state of the |0〉 basis vector. We define |1I〉 similarly. That is,

|1I〉 =


0

1

0


I

is defined to be the decoherent state of |1〉. Any linear combination that includes either of these vectors is called a
decoherent superposition.

The motivation behind this definition is to mix the coherent (stable) basis state |0〉with the intrinsic
property of neutrosophic logic, which is indeterminacy. A quantum system may still have a degree
of indeterminancy even if the system appears to be in a pure basis state. A scalar α for any of these
decoherent vectors is denoted by αI . Thus, when we write αI , for some number α, the reader should
understand that we are refering to the coefficient of a decoherent state. For example, the vector
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|ψ〉 =


(

1√
2

)
I(

1√
2

)
I

0


denotes the decoherent superposition state

1√
2
|0I〉+

1√
2
|1I〉.

We could also define a decoherent state for |I〉, but, since the state |I〉 naturally involves
an indeterminacy regarding which classical bit the state refers to, there is no need to repeat this
decoherence. Thus, we adopt |0I〉 and |1I〉 as reserved basis vectors that will be used in decoherent
superposition states. We should once again emphasize that |0I〉 is different than the coherent basis
state |0〉. It is also different than the coherent superposition state |ψ〉 = 1√

2
|0〉+ 1√

2
|I〉. The latter

says that the system is in a superposition of basis states |0〉 and |I〉, the former says that the system
is in a possibly indetermined state |0〉. If |ψ〉 = |0〉, this tells us that |ψ〉 is for certain in the basis state
|0〉. The state |0I〉+ |I〉 says that the system is in a decoherent superposition of |I〉 and a possibly
indetermined state |0〉. The distinction between coherent and decoherent states should now be clear.
However, another way to imagine |0I〉 as the state |0〉 with a bounded error ε > 0.

Given the information above, we define the neutrosophic Hadamard transform as

HN =


1√
3

1√
3

(
1√
2

)
I

1√
3
− 1√

3

(
1√
2

)
I

1√
3
− 1√

3
0

 .

Then, it is easy to verify that

HN |0〉 = 1√
3
|0〉+ 1√

3
|1〉+ 1√

3
|I〉,

HN |1〉 = 1√
3
|0〉 − 1√

3
|1〉 − 1√

3
|I〉,

HN |I〉 = 1√
2
|0I〉+ 1√

2
|1I〉.

3. Observables and Measurement

In classical mechanics, it is intuitively understood what is meant by an observable. An observable
in classical mechanics is a quantity like velocity, momentum, position, temperature, etc. It is intuitively
clear what these quantities are. In quantum mechanics, one needs to be more specific when talking
about observables.

Definition 3. Let A be an n× n matrix. We say that A is Hermitian if A† A = AA†, where A† is called the
Hermitian conjugate of A and is defined as the transpose of the complex conjugate matrix of A. An n× n matrix
A is called unitary if A† A = AA† = Id, where Id is the identity matrix.

We note that, in classical quantum computing, state evolution is obtained by applying unitary
operators. There are two reasons for this. The first reason is that classical quantum computations
are reversible. The second reason is that unitary transformations preserve inner products, hence
they preserve the norm of the vectors. As we shall discuss later, this requirement is questionable in
neutrosophic quantum computing.
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In classical quantum computing, it is assumed that, for every observable, there corresponds a
Hermitian operator. We use the same postulate for the neutrosophic case.

Measurement postulate. Observables in neutrosophic quantum computing are Hermitian operators.

Measurements are the outcomes of observables applied on the physical system in consideration.
Classical quantum computing usually takes projective measurements in the sense that when we measure
a state, the new state of the system becomes one of the basis states of the system. Thus, after the
measurement, a general superposition state gets projected onto one of the basis vectors. We shall not
adopt this requirement in neutrosophic quantum computing. The reason is the following. If the
outcome were to be projected onto one of the basis states, the logic used here would be no different
than the classical interpretation. Even if the state of the quantum system is projected onto a single
basis state, we would still require a degree of probability of the same basis state being on other basis
states. This is one reason why we should decoherent superposition states into account in neutrosophic
quantum computing. It relies on the very nature of neutrosophic logic. For that matter, observables we
take into consideration are non-projective.

Measuring an observable on a neutrosophic quantum bit yields not a single classical state, but
a probability distribution of the basis states |0〉, |1〉, |I〉. This is perhaps one of the most important
difference between classical quantum computation and neutrosophic quantum computation. Given a
neutrobit |ψ〉 = α|0〉+ β|1〉+ γ|I〉, making a measurement on state |ψ〉 yields a triplet

〈p|0〉, p|1〉, p|I〉〉,

where p|0〉 denoting the probability of |ψ〉 being in state |0〉, p|1〉 denoting the probability of |ψ〉 being
in state |1〉, and p|I〉 denoting the probability of |ψ〉 being in the indetermined basis state |I〉. Thus,
the outcome of observing a neutrobit gives a probability distribution of basis states. In classical
quantum computing, the outcome of measurement on a qubit is a classical bit information.

Let us illustrate this idea. For example, given the neutrobit

|ψ〉 = 1√
3
|0〉+ 1√

3
|1〉+ 1√

3
|I〉,

in a coherent superposition, measuring some observable Ω on the state |ψ〉 should yield a neutrosophic
quantum state |ψ′〉 = α|0〉+ β|1〉+ γ|I〉, of decoherent superposition.

It should be noted that the neutrosophic quantum state should not be confused with an ordinary
superposition state of a classical quantum system. Thus, a pure state in a neutrosophic quantum system
always looks like a superposition. A neutrosophic quantum state is in a coherent superposition of three
basis states |0〉, |1〉, |I〉. However, as soon as we make a measurement on state |ψ〉, it yields a decoherent
superposition, which is merely a triplet containing the information of probability distributions for each
basis states. We state this as a theorem.

Theorem 1. Let |ψ〉 = α|0〉 + β|1〉 + γ|I〉 be a coherent neutrosophic quantum state. The outcome
of a measurement on |ψ〉 is a three-dimensional real vector, particularly a decoherent neutrosophc
quantum superposition.

Proof. Suppose that we are given a coherent state |ψ〉 = α|0〉+ β|1〉+ γ|I〉. Without loss of generality,
we may assume that the state is in a superposition rather than in a single coherent basis. Assume that
we are given a Hermitian operator Ω which is not necessarily unitary and projective. Applying Ω
on |ψ〉, since we assumed that Ω is non-projective, will still yield a linear combination of vectors,
particularly a three-dimensional vector. Since the probability of seeing a single coherent basis state is a
magnitude square of the coefficient corresponding to that basis vector, the probability of observing
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|0〉 is some p|0〉. Similarly, the probability of observing |1〉 is p|1〉 and the probability of seeing |I〉 is
some p|I〉. Since Ω is non-projective, we observe a vector containing these probabilites as elements.
However, since the outcome is decoherent, it should be that each probability value can be taken to be
indetermined. That is, the outcome of the observation will be a vector

(p|0〉)I

(p|1〉)I

(p|I〉)I

 .

Since |I〉I = |I〉, we have 
(p|0〉)I

(p|1〉)I

(p|I〉)

 .

The vector above is a decoherent superposition state with numbers p|0〉, p|1〉, and p|I〉. Since each
number is the magnitude square of the coefficients of the state vector being measured, they cannot be
complex valued. Thus, each of these numbers are real valued.

4. Tensor Products and Entanglement

The usual tensor product of classical qubits generalizes to the neutrosophic case. Given two neutrobits

|ψ〉 =


α1

β1

γ1

 , |φ〉 =


α2

β2

γ2

 ,

the tensor product is defined as

|ψ〉 ⊗ |φ〉 =


α1

β1

γ1

⊗


α2

β2

γ2

 =



α1α2

α1β2

α1γ2

β1α2

β1β2

β1γ2

γ1α2

γ1β2

γ1γ2



.

The tensor product of measurement outcomes can also be defined. Assume that |ψ′〉 = 〈p1
|0〉,

p1
|1〉, p1

|I〉〉 and |φ′〉 = 〈p2
|0〉, p2

|1〉,p
2
|I〉〉 are two probability distributions of two decoherent quantum states.

Then, we define

p1⊗2
|0〉 = p1

|0〉 · p
2
|0〉,

p1⊗2
|1〉 = p1

|1〉 · p
2
|1〉,

p1⊗2
|I〉 = p1

|I〉 · p
2
|I〉.
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Then, we write the tensor product as |ψ′〉 ⊗ |φ′〉 = 〈p1⊗2
|0〉 , p1⊗2

|1〉 , p1⊗2
|I〉 〉.

The tensor product of measurement outcomes provides us with the ability to use compound
outcome information of multiple neutrobit systems. We shall now look at the neutrosophic
entanglement property. In classical quantum computation, a two qubit system is entangled if it
is not the tensor product of two single-qubit systems. We adopt the same definition for neutrosophic
coherent superposition states. However, entanglement is not defined on decoherent states. Suppose
that we are given two neutrobits |ψ〉 = α1|0〉+ β1|1〉+γ1|I〉 and |φ〉 = α2|0〉+ β2|1〉+γ2|I〉, the tensor
product is defined exactly the same as in the classical case. That is,

|ψ〉 ⊗ |φ〉 = α1α2|00〉+ α1β2|01〉+ α1γ2|0I〉+ · · ·+ γ2γ2|I I〉.

This is completely a coherent superposition. If we measure this two-neutrobit system, though,
we get a 9-tuple containing probability distributions where each element of the 9-tuple denotes the
probability of the compound system |ψ〉 ⊗ |φ〉 being in the ith basis state for a two-neutrobit system.
The reader should easily be able to verify that, for an n-neutrobit system, there are 3n basis states.

5. More on Quantum Operators

As noted earlier, most quantum transformations are defined similarly as in the classical case.
For a better understanding though, we shall discuss more about the action of the neutrosophic
Hadamard transform. The neutrosophic Hadamard transform is defined as

HN =


1√
3

1√
3

(
1√
2

)
I

1√
3
− 1√

3

(
1√
2

)
I

1√
3
− 1√

3
0

 .

The indeterminate values 1√
2

in the neutrosophic Hadamard transform denote the indeterminate
decoherent counterpart of the basis states |0〉 and |1〉. Any state which involves any of these decoherent
vectors is also decoherent. Despite that we leave HN |0I〉 and HN |1I〉 undefined, we define the logical
NOT operator over the decoherent states as

NOT|0I〉 = |1I〉,

NOT|1I〉 = |0I〉.

We leave the action of HN on two reserved decoherent vectors |0I〉 and |1I〉 undefined for the
reason that creating a superposition from an already decoherent neutrosophic quantum state might
prevent us to obtain the original input decoherence from the output decoherence. Thus, due to this
reversibility problem, it is better if we leave the mentioned transformations undefined. Since |I〉 is a
legitimate coherent state in neutrosophic quantum computation, we defined

HN |I〉 =
1√
2
|0I〉+

1√
2
|1I〉.

We may imagine a coherent neutrobit as a vector on a three-dimensional unit ball as given in
Figure 1.
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Figure 1. Representation of a neutrobit vector on a unit ball with real coefficients.

Of course, we assume in this image, for simplicity, that the amplitudes are real values. Allowing
complex coefficients would require us to represent a neturobit on a four-dimensional geometry since
an additional imaginary axis would need to be introduced. The basis vectors here are all mutually
orthogonal. That is, the inner product of any of the two basis vectors is 0.

When we make a measurement on the state |ψ〉, we get a triplet 〈p|0〉, p|1〉, p|I〉〉 which was
defined earlier, where p|0〉 = |α|2, p|1〉 = |β|2, p|I〉 = |γ|2. The new state of the system in this case is a
decoherent superposition of |0〉, |1〉 and |I〉 each with a degree of probability p|0〉, p|1〉, p|I〉, respectively.

6. Results

We introduced a refined mathematical framework for neturosophic quantum computing based on
the original work of Smarandache [15] and we gave a few standard transformations and notions that
are to be used in neutrosophic quantum computations. Perhaps the most important difference from
the classical quantum computation is the involvement of the indeterminacy basis and the separation
between coherent and decoherent states. Treating the Hadamard transform as a function creating a
superposition from a coherent state, we introduced the reserved decoherent vectors for this purpose.
The measurement process is also slightly different in this case. The outcome of any measurement on a
neutrobit gives a probability distribution, a decoherent state, of all possible basis states each with a
certain degree of probability determined by the corresponding coefficients.

The computational complexity of the neutrosophic quantum gates, when applied to a quantum
state, would be the same as their classical counterparts since the size of the transformation matrices in
the neutrosophic counterpart does not change asymtotically. That is, for the neutrosophic Hadamard
transform for instance, multiplying a 3× 3 matrix with a three-dimensional vector does not give any
difference in terms of computational complexity compared to its classical counterpart. The same
observation can be easily seen with the other gates. The only complexity difference is with the tensor
product that, since we are not working on a three-dimensional vector space, the size of the vector space
grows by factors of 3 instead of 2 when taking tensor products of n many neutrobits. It should be
noted that this is still a constant difference.

A practical application of neutrosophic quantum computing in the future would be used to
solve hard problems involving indeterminate cases of multiple states when taken as a whole system.
For example, it may not be known which one of the many possible channels that a quantum information
is transferred through quantum communication channels. If we were to study the behavior of the
transferred superposition quantum state, we would have to use neutrosophic quantum computing
notions to describe the state of the transfer process that will involve the probability of the information
being transferred on one particular channel, probability of the information not being transferred on
the same channel, and a degree of indeterminacy of the information being transferred on that channel.
This is required for a single channel. Thus, we would have a superposition of all possible probability

distributions if we consider every channel taken together. The entire distribution will naturally define
a decoherent quantum superposition state.
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As stated in Smarandache [15], satisfying the reversibility condition of quantum computing is
more problematic in the neutrosophic case due to the inclusion of indeterminate states. The first attempt
to settle this problem is to try to make the neutrosophic Hadamard transform unitary, and hence
reversible. We shall give the following open problem, for which we hope to encourage researchers in
neutrosophic computation or quantum computing for finding a possible solution.

Open problem. Define a “reasonable” neutrosophic Hadamard transformation matrix, which
is unitary.

By “reasonable”, we mean preserving the original properties of the standard Hadamard transform
such as creating a superposition of basis states, etc.

Another future work is to find a legitimate protocol for the teleportation of the state of a neutrobit
from one location to another. This particularly has many applications in networks and communication.
A typical quantum teleportation of a standard qubit is performed through classical bit channels.
In order to send the state of a qubit, the first party sends two classical bits and the second part recovers
the state of a qubit from the received classical bits. What kind of channels do we need to transport the
state of a neutrobit? A classical channel may be a solution. A quantum channel, on the other hand,
may not be sufficient to teleport a neutrobit due to the fact that the preservation of indeterminate states
through the teleportation process becomes questionable. One idea is to separate the indeterminate
state from the superposition and treat it as a classical quantum superposition state of all coherent basis
states and then use the classical quantum teleportation protocol on this system.

Neutrosophic quantum computing is at its very early stage of development. We believe that
this new field will attract many researchers in computer science, physics and mathematics for further
advancement along with discovering many useful future applications.
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Abstract.The objective of this work is to validate the implementation of the pedagogical strategy for the development of the
competence to undertake as a contribution to the comprehensive education in senior high students in “10 de Octubre” borough
in Havana, Cuba.The research seeks to increase scientific knowledge; so it is necessary to objectify the requirements of vali
ity and reliability on which it is based. Validity is understood as the consistency and stability
when applying different demonstration methods, based on the assumption that these are conceived and structured with the c
pacity to determine and measure.Reliability allows 
fers to the degree to which the same action submitted to a measurement by the same investigative or different subject produces
similar results. For the authors, investigative
tend not to vary.In order to sustain the derivations of the development of this strategy, a survey instrument was applied to trai
ing and recipients whose results were evaluated through a complex methodology, which integrates the Iadov
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1 Introduction 
The systematization of several definitions led the auth
plex and systemic set of knowledge, abilities,
viable the autonomous and effective performance of the individual, by providing it with tools to create, manage, 
interpret, understand and transform the social environment with a critical, proactive and innovative vision, su
taining a life model, personal development in present and in futu
The formation of competence to undertake
the application of knowledge through the selection of methods, procedures and disjunctive proposals, which m
bilize the cognitive and attitudinal structures deve
bute to the integral development of student
In order to contribute to the development of the comprehensive education of the student of senior high education,
this pedagogical strategy for the development of entrepreneurship competition was conceived and applied. This 
moment is concretized in the strategic performance
the student's identification of possib
ing environment[3]. 
In the provisions of stages and phases
factical schemes, which allows the application, in the social context, of knowledge, skills, attitudes
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similar results. For the authors, investigative reliability constitutes the degree of stability that when applying the validation they

.In order to sustain the derivations of the development of this strategy, a survey instrument was applied to trai
ing and recipients whose results were evaluated through a complex methodology, which integrates the Iadov

transcendences and strategic training repercussions and its consequences on the performers 
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e performance of the individual, by providing it with tools to create, manage, 
interpret, understand and transform the social environment with a critical, proactive and innovative vision, su
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The determination of the actors' assessment of the strategy's impact makes up a significant indicator of the va-
lidity of the strategy. This action needs to validate the results by the investigation and with this purpose, the Ia-
dov technique is applied. Iadov constitutes an indirect way to study of satisfaction, in this case, the actors' devel-
opers and evaluators of the process and the addressees[4]. 
Iadov's technique uses, as suggested by the original method[5], the related criteria of answers to intercalated 
questions whose relationship the subject does not know, at the same time the unrelated or complementary ques-
tions serve as an introduction and support of objectivity to the respondent who uses them to locate and contrast 
the answers.The results of these questions interact through what is called the "Iadov Logical Table"[6, 7]. In this 
paper, the satisfaction of emitting actors (teaching staff and training activity) and those who are beneficiaries of 
the development strategy, the receiving actors are combined.User criterion techniques should be used as a way to 
assess results in those cases in which the evaluators are users of what is proposed, that is, in addition to having 
control over the problem being studied, they are "contextualized", immersed in the context in which is the appli-
cation of the result[7]. 
The degree of satisfaction-dissatisfaction is a psychological state that manifests itself in people as an expression 
of the interaction of a set of affective experiences that move between the positive and negative poles insofar as in 
the activity that the subject develops, the object, responds to their needs and corresponds to their motives and in-
terests[8]. The relationship between indeterminacy and user importance has not yet been clarified and 
include in Iadov.  
Recently a new theory has been introduced in decision making which is known as neutrosophiclogic and set 
developed by Florentin Smarandache in 1995[9]. The term neutrosophy means knowledge of neutral thought and 
thisneutral represents the principal distinction between fuzzy and intuitionistic fuzzy logicand sets [10]. With 
neutrosophy theory, a new logic is introduced in which each proposition is estimated to have a degree of truth 
(T), adegree of indeterminacy (I) and a degree of falsity (F)[11]. Many extensions of classical decision-making 
methods have been proposed for dealing with indeterminacy based on neutrosophy theory like DEMATEL [12]  
AHP [13], VIKOR[14]and TOPSIS [15]. 
The original proposal of the Iadov method does not allow an adequate management of the indetermination nor 
the management of the importance of the users[11].The introduction of the neutrosophic estimation seeks to 
solve the problems of indeterminacy that appear universally in the evaluations of the surveys and other instru-
ments, by taking advantage of not only the opposing positions but also the neutral or ambiguous ones[16]. Under 
the principle that every idea <A> tends to be neutralized, diminished, balanced by other ideas, in clear rupture 
with binary doctrines in the explanation and understanding of phenomena[17]. 
This work continues as follows: Section 2 is about some important concepts about neutrosophy and Iadov . A 
case study is presented and discussed in section 3. The paper ends with conclusions and some recommendation 
for future work. 

2 Materials and methods 
In Iadov technique the questionnaire used to determine the degree of user satisfaction with the proposed system 
of indicators to predict, design and measure the impact of the researcher's strategy has a total of seven questions, 
three of which are closed and four open, whose relationship is ignored by the subject[18].These three closed 
questions are related through the "Iadov logical table", which is presented adapted to the present investigation. 
The resulting number of the interrelation of the three questions indicates the position of each subject in the satis-
faction scale, that is, your individual satisfaction This satisfaction scale is expressed by SVN numbers[19]. The 
original definition of true value in the neutrosophic logic is shown below [20]:  
Be 𝑁 =  {(𝑇, 𝐼, 𝐹) ∶  𝑇, 𝐼, 𝐹 ⊆  [0, 1]}a neutrosophical valuation is a mapping of a group of proportional formu-

las to𝑁, and for each p sentence we have: 

𝑣 (𝑝)  =  (𝑇, 𝐼, 𝐹) (1) 

In order to ease the practical application to a decision making and engineering problems, it was carried out the 
proposal of single valued neutrosophic sets (SVNS ) this allows the use of linguistic variables[21, 22], this in-
crease the interpretation of models of recommendation and the usage of the indetermination.  

Be 𝑋 an universe of discourse. A SVNS 𝐴on 𝑋is an object of the form. 

𝐴 =  {〈𝑥, 𝑢(𝑥), 𝑟(𝑥), 𝑣(𝑥)〉: 𝑥 ∈  𝑋} (2) 

where,𝑢(𝑥): 𝑋 →  [0,1], 𝑟(𝑥), ∶ 𝑋 →  [0,1]and 𝑣(𝑥): 𝑋 →  [0,1] with 0 ≤ 𝑢(𝑥) + 𝑟(𝑥) + 𝑣(𝑥):≤ 3 for all 
𝑥∈𝑋.  The intervals 𝑢(𝑥), 𝑟(𝑥)and 𝑣(𝑥) denote the memberships to true, indeterminate and false of x in A, 
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respectively. For convenience reasons, an SVN number will be expressed as𝐴 = (𝑎, 𝑏, 𝑐), where 𝑎, 𝑏, 𝑐∈ [0, 1], y 
a+ 𝑏 + 𝑐≤ 3.  

In order to analyze the results, it is established a scoring function. To order the alternatives it is used a score 

function[23]adapted :  

𝑠(V) = T − F − I  (3) 

In the event that the assessment corresponds to indeterminacy(not defined) (I) a process of de-neutrosophication 
developed as proposed by Salmerón and Smarandache[24]. In this case, I ∈ [-1,1].Finally, we work with the av-
erage of the extreme values𝐼 ∈ [0,1]to obtain a single one. 

𝜆([𝑎ଵ, 𝑎ଶ]) =
భା మ

ଶ
(4) 

Subsequently, the results are aggregated and the weighted average aggregation operator is used to calculate the 
group satisfaction index (GSI). The weighted average (WA) is one of the most mentioned aggregation operators 
in the literature[25, 26]. A WA operator has associated a vector of weights,𝑉, with𝑣 ∈  [0,1] and∑ 𝑣


ଵ = 1, hav-

ing the following form:  

𝑊𝐴(𝑎ଵ, . . , 𝑎) = ∑ 𝑣𝑎

ଵ    (5) 

Where 𝑣 represented the importance of the source. This proposal allow to fill a gap in the literature of  the Iadov 

techniques extending it to deal with indeterminacy and importance of user due to expertise or any other reason 

[27]. 

3 Survey of teachers and methodologists of senior high education: 
The case study was developed for the validation of a pedagogical strategy for the development of the compe-
tence to undertake as in “10 de Octubre” borough in Havana, CubaA scale with individual satisfaction and its 
corresponding score value was used (Table 1). 

Expression Number SVN Scoring 
Clearly pleased (1, 0, 0) 1 
More pleased than unpleased (1, 0.25, 0.25) 0.5 
Not defined I 0 
More unpleased than pleased (0.25, 0.25, 1) -0.5
Clearly unpleased (0,0,1) -1
Contradictory (1,0,1) 0 

Table 1. Individual satisfaction scale. 
A sample of 21 teachers and methodologists from senior high education were surveyed. The survey was elabo-
rated with 7 questions, three closed questions interspersed in four open questions; of which 1 fulfilled the intro-
ductory function and three functioned as reaffirmation and sustenance of objectivity to the respondent. 

 Would you consider postponing the development of the competence to un-
dertake as a contribution to the comprehensive education of the student of 
senior high education? 

No I don´t know yes 
Do your expectations meet the application 
of the strategy for the development of the 
competence to undertake as a contribution 
to the comprehensive education of the stu-
dent of senior high education? 

If you could choose freely, a strategy for the formation of competencies in 
students of senior high education would you choose one with similar charac-
teristics to the one used for the development of the competence to under-
take? 

yes I don´t 
know 

No yes I don´t 
know 

No yes I don´t 
know 

No 
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Very pleased. 1 

(14) 

2 

(2) 

6 2 2 6 6 6 6 

Parcially pleased. 2 

(2) 

2 

(2) 

3 2 

(1) 

3 3 6 3 6 

It’s all the same to me 3 3 3 3 3 3 3 3 3 

More unpleased than pleased. 6 3 6 3 4 4 3 4 4 

Not pleased 6 6 6 6 4 4 6 4 5 

I don´t know what to say 2 3 6 3 3 3 6 3 4 
Table 2. The logical picture of the Iadov technique for teachers and methodologists from senior high education. 

In this case,the following results are as follows: 

Expression Total % 
Clearly pleased 14 66 
More pleased than unpleased 7 33 
Not defined 0 0 
More unpleased than pleased 0 0 
Clearly unpleased 0 0 
Contradictory 0 0 

Table 3.Results of the application to teachers and methodologists. 

The calculation of the score is carried out and it is determined by I. in this case, it was given the same value to 
each user. The final result of the index of group satisfaction (GSI) that the method portrays, in this case, is: GSI 
=0.82  
This shows a high level of satisfaction according to the satisfaction scale. 
For the students, a survey similar to that of the teachers was prepared, and a total of 101 senior high students 
were interviewed who received the training program with the following results: 

Can you do without undertaking and achieve your professional realization? 

No I don´t know yes 

Are you satisfied with the way in which the 
program was applied to develop your skills 
and knowledge to learn to undertake? 

Would you like to be an entrepreneur and take on the challenges in your fu-
ture personal performance? 

yes I don´t 
know 

No yes I don´t 
know 

No yes I don´t 
know 

No 

Very pleased. 1 
(71) 

2 
(2) 

6 2 2 6 6 6 6 

Parcially pleased. 2 
(23) 

2 
(1) 

3 2 
(1) 

3 3 6 3 
(1) 

6 

Its all the same to me. 3 
(1) 

3 3 3 3 
(1) 

3 3 3 3 

more unpleased than pleased. 6 3 6 3 
(1) 

4 4 3 4 4 

Not pleased 6 6 6 6 4 4 6 4 5 

I don´t know what to say 2 3 6 3 3 3 6 3 4 
Table 4.Logical picture of  Iadov students of senior high education. 

In this case, the following results are obtained: 

Florentin Smarandache (author and editor) Collected Papers, VIII

505



22

Valcárcel Izquierdo, Maikel Leyva
the formation of the competence entrepreneurship in high education through 

Expression 
Clearly pleased 
More pleased than unpleased 
Not defined 
More unpleased than pleased 
Clearly unpleased 
Contradictory 

Table 5.Results of the application of the students in senior high.
The calculation of the score is carried out. In this case, it was given the same value
The final result of the index of group satisfaction (
shows a high level of satisfaction according to the satisfaction scale.
By locating the values reached in the satisfaction scale
- Actors developers: 0.809
- Recipients – actors: 0.837
In both cases, the results are positive, which certifies the effectiveness of the implementation of the strategy, as
shown in the graph.

Figure 1. Scale with group satisfaction index 
The proposal of extending Iadov method wi
application. The inclusions of indeterminacy allow
the classical application of the technique
method including the importanceof 
validates the pedagogical strategy for the formation of the competence entrepreneurship in high
Conclusions 
In this paper, the Iadov method was 
management of the importance of users
applicability and ease of use in a case study
it can incorporate the indetermination and contradiction more naturally. Another advantage is that it allows the
use of aggregation operators which makes it possible to express, in this case, the importance or expertise of users
according to experience or some other crite
The validation process using the neutrosophic
strategy for the formation of the competence entrepreneurship in high education in “10 de Octubre” borough in
Havana, Cuba confirmed its feasibility of use. The results were
faction Index in the two applications presented in the case study. 
Future works will concentrate on the uses of
of different aggregation operator.  The development of a software to
future research. 
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Total 
71 
27 
3 
0 
0 
0 

Table 5.Results of the application of the students in senior high. 
is carried out. In this case, it was given the same value of importance

of the index of group satisfaction (GSI) that the method portrays, in this case,
shows a high level of satisfaction according to the satisfaction scale. 

reached in the satisfaction scale 

the results are positive, which certifies the effectiveness of the implementation of the strategy, as

 
of extending Iadov method with neutrosophyresults to be easy to use and practical

inclusions of indeterminacy allow a more powerful way to represent information
technique. The inclusion of the aggregation operator extend

importanceof information sources[28]. The application in the real
pedagogical strategy for the formation of the competence entrepreneurship in high

was extended allowing an adequate management of the 
of users. Iadov's method with the inclusion of neutrosophic

in a case study. Among the advantages with respect to the original approach
nation and contradiction more naturally. Another advantage is that it allows the

use of aggregation operators which makes it possible to express, in this case, the importance or expertise of users
according to experience or some other criteria. 

neutrosophic Iadov technique in users of the implementation 
strategy for the formation of the competence entrepreneurship in high education in “10 de Octubre” borough in

firmed its feasibility of use. The results were expressed quantitatively in a
tions presented in the case study. 

the uses of the 2-tuplelinguistic model for giving a linguist
. The development of a software tool supporting the proposal is another area of 
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Abstract. 

In order to more accurately situate and fit the neutrosophic logic into the framework of 
nonstandard analysis, we present the neutrosophic inequalities, neutrosophic equality, 
neutrosophic infimum and supremum, neutrosophic standard intervals, including the cases 
when the neutrosophic logic standard and nonstandard components T, I, F get values outside of 
the classical unit interval [0, 1], and a brief evolution of neutrosophic operators. 

The paper intends to answer Imamura’s criticism that we found benefic in better understanding 
the nonstandard neutrosophic logic – although the nonstandard neutrosophic logic was never 
used in practical applications.  

1. Uselessness of Nonstandard Analysis in Neutrosophic Logic, Set, Probability, et al.

Imamura’s discussion [1] on the definition of neutrosphic logic is welcome, but it is useless, 
since from all neutrosophic papers and books published, from all conference presentations, and 
from all MSc and PhD theses defended around the world, etc. (more than one thousand) in the 
last two decades since the first neutrosophic research started (1998-2018), and from hundreds of 
neutrosophic researchers, not even a single one ever used the nonstandard form of neutrosophic 
logic, set, or probability and statistics in no occasion (extended researches or applications).  

All researchers, with no exception, have used the Standard Neutrosophic Set and Logic [so 
no stance whatsoever of Nonstandard Neutrosophic Set and Logic], where the neutrosophic 
components T, I, F are subsets of the standard unit interval [0, 1]. 

 Even more, for simplifying the calculations, the majority of researchers have utilized the 
Single-Valued Neutrosophic Set and Logic {when T, I, F are single numbers from [0, 1]}, on the 
second place was Interval-Valued Neutrosophic Set and Logic {when T, I, F are intervals 
included in [0, 1]}, and on the third one the Hesitant Neutrosophic Set and Logic {when T, I, F 
were discrete finite sets included in [0, 1]}. 

In this direction, there have been published papers on single-valued “neutrosophic standard 
sets” [12, 13, 14], where the neutrosophic components are just standard real numbers, 
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considering the particular case when 0 ≤ T + I + F ≤ 1 (in the most general case 0 ≤ T + I + F ≤ 
3). 

Actually, Imamura himself acknowledges on his paper [1], page 4, that: 

“neutrosophic logic does not depend on transfer, so the use of non-standard analysis is not 
essential for this logic, and can be eliminated from its definition”. 

Entire neutrosophic community has found out about this result and has ignored the non-
standard analysis in the studies and applications of neutrosophic logic for two decades. 

2. Applicability of Neutrosophic Logic et al. vs. Theoretical Nonstandard Analysis

Neutrosophic logic, set, measure, probability, statistics and so on were designed with the 
primordial goal of being applied in practical fields, such as: 

Artificial Intelligence, Information Systems, Computer Science, Cybernetics, Theory 
Methods, Mathematical Algebraic Structures, Applied Mathematics, Automation, Control 
Systems, Big Data, Engineering, Electrical, Electronic, Philosophy, Social Science, Psychology, 
Biology, Biomedical, Engineering, Medical Informatics, Operational Research, Management 
Science, Imaging Science, Photographic Technology, Instruments, Instrumentation, Physics, 
Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear, Medicine, Medical Imaging, 
Interdisciplinary Applications, Multidisciplinary Sciences etc. [2],  

while nonstandard analysis is mostly a pure mathematics. 
Since 1990, when I emigrated from a political refugee camp in Turkey to America, working as a 
software engineer for Honeywell Inc., in Phoenix, Arizona State, I was advised by American co-
workers to do theories that have practical applications, not pure-theories and abstractizations as 
“art pour art”. 

3. Theoretical Reason for the Nonstandard Form of Neutrosophic Logic

The only reason I have added the nonstandard form to neutrosophic logic (and similarly to
neutrosophic set and probability) was in order to make a distinction between Relative Truth 
(which is truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all 
possible Words, according to Leibniz as well) that occur in philosophy.  

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or 
falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 
0.8+), or infinitesimally smaller than 0.8 (or -0.8). But these can easily be overcome by roughly 
using interval neutrosophic values, for example (0.80, 0.81) and (0.79, 0.80) respectively. 

I wanted to get the neutrosophic logic as general as possible [6], extending all previous logics 
(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, dialethism), 
and to have it able to deal with all kind of logical propositions (including paradoxes, nonsensical 
propositions, etc.).  

That’s why in 2013 I extended the Neutrosophic Logic to Refined Neutrosophic Logic [ from 
generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and 
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Lukasiewicz’s and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic to the 
most general n-symbol or n-numerical valued refined neutrosophic logic, for any integer n ≥ 1 ], 
the largest ever so far, when some or all neutrosophic components T, I, F were respectively 
split/refined into neutrosophic subcomponents: T1, T2, …; I1, I2, …; F1, F2, … which were 
deduced from our everyday life [3].  

4. From Paradoxism movement to Neutrosophy branch of philosophy and then to
Neutrosophic Logic
I started first from Paradoxism (that I founded in 1980’s as a movement based on
antitheses, antinomies, paradoxes, contradictions in literature, arts, and sciences), then I
introduced the Neutrosophy (as generalization of Dialectics, neutrosophy is a branch of
philosophy studying the dynamics of triads, inspired from our everyday life, triads that
have the form:
<A>, its opposite <antiA>, and their neutrals <neutA>,                                       (1)
where <A> is any item or entity [4].
(Of course, we take into consideration only those triads that make sense in our real and
scientific world.)
The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth
neutrosophic value was marked as 1+ (a tinny bigger than the Relative Truth’s value): 1+

>N 1, where >N  is a neutrosophic inequality, meaning 1+ is neutrosophically bigger than
1.
Similarly for Relative Falsehood / Indeterminacy (which falsehood / indeterminacy in
some Worlds), and Absolute Falsehood / Indeterminacy (which is falsehood /
indeterminacy in all possible worlds).

5. Introduction to Nonstandard Analysis [15, 16]

An infinitesimal number ( ) is a number   such that | | 1 / n  , for any non-null positive
integer n. An infinitesimal is close to zero, and so small that it cannot be measured.  

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero. 

Infinitesimals are used in calculus. 

An infinite number ( ω ) is a number greater than anything: 

1 + 1 + 1 + … + 1 (for any finite number terms) (2) 

The infinites are reciprocals of infinitesimals. 

The set of hyperreals (non-standard reals), denoted as R*, is the extension of set of the 
real numbers, denoted as R, and it comprises the infinitesimals and the infinites, that may be 
represented on the hyperreal number line  

1/ε = ω/1.    (3)
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The set of hyperreals satisfies the transfer principle, which states that the statements of 
first order in R are valid in R* as well. 

A monad (halo) of an element a ∊ R*, denoted by μ(a), is a subset of numbers 
infinitesimally close to a. 

Let’s denote by R+* the set of positive nonzero hyperreal numbers. 

We consider the left monad and right monad, and we have introduced the binad [5]: 

Left Monad { that we denote, for simplicity, by (-a) or only –a } is defined as: 

μ(-a) = (-a) = –a = {a - x, x ∊ R+* | x is infinitesimal}. (4) 

Right Monad { that we denote, for simplicity, by (a+) or only by a+ } is defined as: 

μ(a+) = (a+) = a+ = {a + x, x ∊ R+* | x is infinitesimal}.    (5) 

Bimonad { that we denote, for simplicity, by (-a+) or only –a+ } is defined as: 

μ(-a+) = (-a+) = -a+

= {a - x, x ∊ R+* | x is infinitesimal} {a + x, x ∊ R+* | x is infinitesimal} 

= { a x , x ∊ R+* | x is infinitesimal}.       (6) 

The left monad, right monad, and the bimonad are subsets of R*. 

6. Neutrosophic Strict Inequalities

We recall the neutrosophic inequality which is needed for the inequalities of nonstandard 
numbers. 

Let α, β be elements in a partially ordered set M. 

We have defined the neutrosophic strict inequality 

α >N β        (7) 

and read as 

“α is neutrosophically greater than β”         (8) 

if  

α in general is greater than β,  

or α is approximately greater than β, 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and 

β) or subject to some contradiction (situation when α is smaller than or equal to β) α is 

greater than β. 
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It means that in most of the cases, on the set M, α is greater than β. 

And similarly for the opposite neutrosophic strict inequality α <N β. 

7. Neutrosophic Equality

We have defined the neutrosophic inequality

α =N β                    (9) 

and read as 

“α is neutrosophically equal to β”           (10) 

if  

α in general is equal to β,  

or α is approximately equal to β,  

or subject to some indeterminacy (unknown or unclear ordering relationship between α and 

β) or subject to some contradiction (situation when α is not equal to β) α is equal to β. 

It means that in most of the cases, on the set M, α is equal to β. 

8. Neutrosophic (Non-Strict) Inequalities

Combining the neutrosophic strict inequalities with neutrosophic equality, we get

the ≥N and ≤N neutrosophic inequalities. 

Let α, β be elements in a partially ordered set M. 

The neutrosophic (non-strict) inequality 

α ≥N β           (11) 

and read as 

“α is neutrosophically greater than or equal to β”        (12) 

if  

α in general is greater than or equal to β, 

or α is approximately greater than or equal to β, 

or subject to some indeterminacy (unknown or unclear ordering relationship between α and 

β) or subject to some contradiction (situation when α is smaller than β) α is greater than or 

equal to β. 
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It means that in most of the cases, on the set M, α is greater than or equal to β. 

And similarly for the opposite neutrosophic (non-strict) inequality α ≤N β. 

9. Neutrosophically Ordered Set

Let M be a set. (M, <N) is called a neutrosophically ordered set if: 

 α, β ∊ M, one has: either α <N β, or α =N β, or α >N β.             (13) 

10. Neutrosophic Nonstandard Inequalities

Let P(R*) be the power-set of R*. Let’s endow (P(R*), <N) with a neutrosophic inequality

Let ,a b R , where R is the set of (standard) real numbers. 

And let (-a), (a+), (-a+)   P(R*), and (-b), (b+), (-b+)   P(R*), be the left monads, right monads,
and the bimonads of the elements (standard real numbers) a and b respectively. Since all monads 
are subsets, we may treat the single real numbers a = [a, a] and b = [b, b] as subsets too. 

P(R*) is a set of subsets, and thus we deal with neutrosophic inequalities between subsets.

i) If the subset α has many of its elements above all elements of the subset β,
then α >N β (partially).

ii) If the subset α has many of its elements below all elements of the subset β,
then α <N β (partially).

iii) If the subset α has many of its elements equal with elements of the subset β,
then α =N β (partially).

If the subset α verifies i) and iii) with respect to subset β, then α ≥N β.

If the subset α verifies ii) and iii) with respect to subset β, then α ≤N β.

If the subset α verifies i) and ii) with respect to subset β, then there is no neutrosophic order 
(inequality) between α  and β.

{ For example, between (-a+) and a there is no neutrosophic order. }

Similarly, if the subset α verifies i), ii) and iii) with respect to subset β, then there is no 
neutrosophic order (inequality) between α and β.

11. Open Neutrosophic Research

The quantity or measure of “many of its elements” of the above i), ii), and iii) conditions 

depends on each neutrosophic application and on its neutrosophic experts.
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For the neutrosophic nonstandard inequalities, we propose based on the above three 
conditions the following: 

 (-a)  <N  a  <N  (a+)       (14) 

because *,x R a x a a x      , where x is of course a (nonzero) positive infinitesimal (the 
above double neutrosophic inequality actually becomes a double classical standard real 
inequality for each fixed positive infinitesimal).  

(-a)  ≤N  (-a+)  ≤N  (a+)    (15) 

This double neutrosophic inequality may be justified due to (-a+)  = (-a) (a+), so: 

  (-a)  ≤N  (-a) (a+) ≤N  (a+) (16) 

whence the left side of the inequality middle term coincides with the inequality first term, while 
the right side of the inequality middle term coincides with the third inequality term. 

If a > b, which is a (standard) classical real inequality, then we have the following 
neutrosophic nonstandard inequalities:  

a >N (-b),   a >N (b+),   a >N (-b+);      (17) 

(-a) >N b, (-a) >N (-b), (-a) >N (b+),   (-a) >N (-b+); (18) 

(a+) >N b,  (a+) >N (-b),   (a+) >N (b+),   (a+) >N (-b+); (19) 

(-a+) >N b,  (-a+) >N (-b),   (-a+) >N (b+),   (-a+) >N (-b+).           (20) 

If a ≥ b, which is a (standard) classical real inequality, then we have the following neutrosophic 
nonstandard inequalities:  

  a ≥N (-b); (21) 

 (-a) ≥N (-b); (22) 

(a+) ≥N (-b),   (a+) ≥N b,   (a+) ≥N (b+),   (a+) ≥N (-b+);         (23) 

 (-a+) ≥N (-b),   (-a+) ≥N (-b+).              (24) 

And similarly for <N and ≤N neutrosophic nonstandard inequalities. 

12. Neutrosophic Nonstandard Equalities

Let a, b be standard real numbers; if a = b that is a (classical) standard equality, then: 

(-a) =N (-b),  (a+) =N (b+),  (-a+) =N (-b+). (25)

Florentin Smarandache (author and editor) Collected Papers, VIII

515



“Let T, I, F be standard or non-standard real subsets of ]-0, 1+[, 
with sup T = t_sup, inf T = t_inf, 
sup I = i_sup, inf I = i_inf, 
sup F = f_sup, inf F = f_inf, 
and n_sup = t_sup+i_sup+f_sup, 
n_inf = t_inf+i_inf+f_inf.” 

Imamura argues (page 3) that: 

“Subsets of R∗, even bounded, may have neither infima nor suprema, because the 
transfer principle ensures the existences of infima and suprema only for internal 
sets.” 

This is true from a classical point of view, yet according to the definitions of the neutrosophic 
inequalities, the neutrosophic infimum and supremum do exist for the nonstandard intervals, for 
example: 

infN ( ]-a, b+[ ) = -a, and supN ( ]-a, b+[ ) = b+.     (26) 

Indeed, into my definition above I had to clearly mention that we talk neutrosophically [mea 
culpa] by inserting an “N” standing for neutrosophic (infN and supN): 

Let T, I, F be standard or non-standard real subsets of ]-0, 1+[, 
with supN T = t_sup, infN T = t_inf, 
supN I = i_sup, infN I = i_inf, 
supN F = f_sup, infN F = f_inf, 
and n_sup = t_sup+i_sup+f_sup, 
n_inf = t_inf+i_inf+f_inf. 

13. Neutrosophic Infimum and Neutrosophic Supremum

As an extension of the classical infimum and classical supremum, and using the neutrosophic 
inequalities and neutrosophic equalities, we define the neutrosophic infimum ( denoted as infN ) 
and the neutrosophic supremum (denoted as supN ). 

Neutrosophic Infimum. 
Let (S, <N) be a set that is neutrosophically partially ordered, and M a subset of S. 

The neutrosophic infimum of M, denoted as infN(M) is the neutrosophically greatest element in S 
that is neutrosophically less than or equal to all elements of M: 

Neutrosophic Supremum. 
Let (S, <N) be a set that is neutrosophically partially ordered, and M a subset of S. 

The neutrosophic supremum of M, denoted as supN(M) is the neutrosophically smallest element 
in S that is neutrosophically greater than or equal to all elements of M. 

14. Classical Infimum and Supremum vs. Neutrosophic Infimum and Supremum.

Giving the definitions of neutrosophic components from my book [5]: 
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I was more prudent when I presented the sum of single valued standard neutrosophic 
components, saying: 

Let T, I, F be single valued numbers, T, I, F ∊ [0, 1], such that 0 ≤ T + I + F ≤  3. 

A friend alerted me: “If T, I, F are numbers in [0, 1], of course their sum is between 0 and 3.” 
“Yes, I responded, I afford this tautology, because if I did not mention that the sum is up to 3, 
readers would take for granted that the sum T + I + F is bounded by 1, since that is in all logics 
and in probability!” 

15. Notations

Imamura is right when criticizing my confusion of notations between hyperreals (numbers) 
and monads (subsets). I was rather informal than formal at the beginning. 
By –a and b+ most of times I wanted to mean the subsets of left monad and right monad 
respectively. Taking an arbitrary positive infinitesimal ε, and writing –a = a-ε and b+ = b+ε
was actually picking up a representative from each class (monad). 
Similarly, representations of the monads by intervals were not quite accurate from a 
classical point of view: 
(-a) = (a-ε, a),       (27) 
(b+) = (b, b+ε),      (28) 
(-a+) = (a-ε, a) (b, b+ε), (29)
but they were rather neutrosophic equalities (approximations): 
(-a) =N (a-ε, a),      (30) 
(b+) =N (b, b+ε), (31) 
(-a+)=N (a-ε, a) (b, b+ε). (32)

16. Nonarchimedean Ordered Field.
At pages 5-6 of note [1], Imamura proposed the following Nonarchimedean Ordered Field K: 

“Let x, y ∊ K. x and y are said to be infinitely close (denoted by a b ) if a - b is 
infinitesimal. We say that x is roughly smaller than y (and write x y

 ) if x < y or x  y.”

An ordered field is called nonarchimedian field, if it has non-null infinitesimals. 
While it is a beautiful definition to consider that x and y are infinitely close (denoted by a b ) if 
a - b is infinitesimal, it produces confusions into the nonstandard neutrosophic logic. Why? 
Because one cannot distinguish any-longer between –a, a, and a+ (which is essential in and the 
flavor of nonstandard neutrosophic logic, in order to differentiate the relative 
truth/indeterminacy/falsehood from absolute truth/indeterminacy/falsehood respectively), since 
one gets that: 

(-a) a  (a+)    (33) 
or with the simplest notations: 
-a a a+. (34) 

Proof: 
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*, ( )x R a a x x     = infinitesimal, whence a (-a) (35) 

and * , ( )x R a x a x     = infinitesimal, whence a+a. (36) 

For the definition of nonstandard interval ]-a, b+[, Imamura proposes at page 6: 

“For a, b ∊ K the set ]-a, b+[K is defined as follows: 

]-a, b+[K= { | }x K a x b 

  .” 

In nonstandard neutrosophic logic and set, we may have not only ]-a, b+[, but various 
forms of nonstandard intervals:  

1 2

] , [
m m

a b     (37)

where m1 and m2 stand for: left monads (-), right monads (+), or bimonads (- +), in  all possible 
combinations (in total 3 3 = 9 possibilities). 

Yet, Imamura’s definition cannot be adjusted for all above nonstandard intervals, for example 
the nonstandard intervals of the form ]a+, -b[, because if one writes:  

]a+, b-[K = { | }x K a x b 

      (38)

one arrives at proving that

]-a, b+[K   ]a+, b-[K (39) 

which is obviously false, since: –a is below a and hence below a+, and in the same way b+ is 
above b and hence above –b  {one gets a bigger nonstandard interval included in or equal to a 
smaller nonstandard interval}. This occurs because –a   a+ and b+  b- (in Imamura’s notation). 

17. Nonstandard Unit Interval.

Imamura cites my work: 

“by “−a” one signifies a monad, i.e., a set of hyper-real 
numbers in non-standard analysis: 
(−a) = { a − x ∈ R∗ | x is infinitesimal } , 
and similarly “b+” is a hyper monad: 
(b+) = { b + x ∈ R∗ | x is infinitesimal } . 
([5] p. 141; [6] p. 9)” 

But these are inaccurate, because my exact definitions of monads, since my 1998 first world 
neutrosophic publication {see [5], page 9; and [6], pages 385 - 386}, were: 

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal }, 
and similarly “b+” is a hyper monad: 
(b+) = { b + x: x ∈ R+∗

 | x is infinitesimal }” 
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Imamura says that: 

“The correct definitions are the following: 
(−a) = { a − x ∈ R∗ | x is positive infinitesimal }, 
(b+) = { b + x ∈ R∗ | x is positive infinitesimal }.” 

I did not have a chance to see how my article was printed in Proceedings of the 3rd Conference 
of the European Society for Fuzzy Logic and Technology [7], that Imamura talks about, maybe 
there were some typos, but Imamura can check the Multiple Valued Logic / An International 
Journal [6], published in England in 2002 (ahead of the European Conference from 2003, that 
Imamura cites) by the prestigious Taylor & Francis Group Publishers, and clearly one sees that it 
is: R+

* (so, x is a positive infinitesimal into the above formulas), therefore there is no error. 

Then Imamura continues: 

“Ambiguity of the definition of the nonstandard unit interval. Smaran- 
dache did not give any explicit definition of the notation ]−0, 1+[ in [5] (or the 
notation ⫦−0, 1+⫣ in [6]). He only said: 
Then, we call ] −0, 1+ [ a non-standard unit interval. Obviously, 0 
and 1, and analogously non-standard numbers infinitely small but 
less than 0 or infinitely small but greater than 1, belong to the 
non-standard unit interval. ([5] p. 141; [6] p. 9).” 

Concerning the notations I used for the nonstandard intervals as ⫦ ⫣ or ] [, it was 
imperative to employ notations different from the classical [ ] or ( ) intervals, since the extremes 
of the nonstandard unit interval were unclear, vague. 
I thought it was easily understood that:  

]−0, 1+[  = (-0)  [0, 1]   (1+). (40) 

Or, using the previous neutrosophic inequalities, we may write: 

]−0, 1+[  = {x ∊ R*, -0 ≤N x ≤N 1+}.     (41) 

Imamura says that: 

“Here −0 and 1+ are particular real numbers defined in the previous paragraph: 
−0 = 0−ε and 1+  = 1+ ε, where ε is a fixed non-negative infinitesimal.”

This is untrue, I never said that “ε is a fixed non-negative infinitesimal”, ε was not fixed, I 
said that for any real numbers a and b {see again [5], page 9; and [6], pages 385 - 386}: 

“(−a) = { a – x: x ∈ R+∗ | x is infinitesimal }, 
 (b+) = { b + x: x ∈ R+∗

 | x is infinitesimal }”. 

Therefore, once we replace a = 0 and b = 1 we get: 

 (−0) = { 0 – x: x ∈ R+∗ | x is infinitesimal }, 
 (1+) = { 1 + x: x ∈ R+∗

 | x is infinitesimal }. 
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Thinking out of box, inspired from the real world, was the first intent, i.e. allowing 
neutrosophic components (truth / indeterminacy / falsehood) values be outside of the classical 
(standard) unit real interval [0, 1] used in all previous (Boolean, multi-valued etc.) logics if 
needed in applications, so neutrosophic component values < 0 and > 1 had to occurs due to the 
Relative / Absolute stuff, with: 

-0 <N 0   and   1+ >N 1. (42) 

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic 
Logic and Set (therefore, not using the Nonstandard Neutrosophic Logic and Set), and it was 
thus possible the extension of the neutrosophic set to Neutrosophic Overset (when some 
neutrosophic component is > 1), and to Neutrosophic Underset (when some neutrosophic 
component is < 0), and to Neutrosophic Offset (when some neutrosophic components are off the 
interval [0, 1], i.e. some neutrosophic component > 1 and some neutrosophic component < 
0).  Then, similar extensions to respectively Neutrosophic Over/Under/Off Logic, Measure, 
Probability, Statistics etc. [8, 17, 18, 19], extending the unit interval [0, 1] to 

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω, (43) 

where Ψ, Ω are standard real numbers. 

Imamura says, regarding the definition of neutrosophic logic that: 

“In this logic, each proposition takes a value of the form (T, I, F), where T, I, F are subsets of the 
nonstandard unit interval ]−0, 1+[ and represent all possible values of Truthness, Indeterminacy and 
Falsity of the proposition, respectively.” 

Unfortunately, this is not exactly how I defined it. 

In my first book {see [5], p. 12; or [6] pp. 386 – 387} it is stated: 

“Let T, I, F be real standard or non-standard subsets of ]-0, 1+[“ 

meaning that T, I, F may also be “real standard” not only real non-standard. 

In The Free Online Dictionary of Computing, 1999-07-29, edited by Denis Howe from 
England, it is written: 

Neutrosophic Logic: 
<logic> (Or "Smarandache logic") A generalization of fuzzy logic based on 
Neutrosophy. A proposition is t true, i indeterminate, and f false, where t, i, and f 
are real values from the ranges T, I, F, with no restriction on T, I, F, or the sum 
n=t+i+f. Neutrosophic logic thus generalizes: 
- intuitionistic logic, which supports incomplete theories (for 0<n<100,
0<=t,i,f<=100);
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- fuzzy logic (for n=100 and i=0, and 0<=t,i,f<=100);
- Boolean logic (for n=100 and i=0, with t,f either 0 or 100);
- multi-valued logic (for 0<=t,i,f<=100);
- paraconsistent logic (for n>100, with both t,f<100);
- dialetheism, which says that some contradictions are true (for t=f=100 and i=0;
some paradoxes can be denoted this way).
Compared with all other logics, neutrosophic logic introduces a percentage of
"indeterminacy" - due to unexpected parameters hidden in some propositions. It
also allows each component t,i,f to "boil over" 100 or "freeze" under 0. For
example, in some tautologies t>100, called "overtrue".
Home.
["Neutrosophy / Neutrosophic probability, set, and logic", F. Smarandache,
American Research Press,
1998].

As Denis Howe said in 1999, the neutrosophic components t, i, f are “real values from the ranges 
T, I, F”, not nonstandard values or nonstandard intervals. And this was because nonstandard ones 
were not important for the neutrosophic logic (the Relative/Absolute plaid no role in 
technological and scientific applications and future theories). 

18. The Logical Connectives ∧, ∨, →

Imamura’s critics of my first definition of the neutrosophic operators is history for long ago. 

All fuzzy, intuitionistic fuzzy, and neutrosophic logic operators are inferential approximations, 
not written in stone. They are improved from application to application. 

Let’s denote: 

∧F, ∧N, ∧P  representing respectively the fuzzy conjunction, neutrosophic conjunction, and 
plithogenic conjunction; 

similarly 

∨F, ∨N, ∨P  representing respectively the fuzzy disjunction, neutrosophic disjunction, and 
plithogenic disjunction, 

and 

→F, →N, →P representing respectively the fuzzy implication, neutrosophic implication, and
plithogenic implication.

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the 
same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others 
developed later by the neutrosophic community researchers. This was pointed out since 2002 by 
Ashbacher [9] and confirmed in 2008 by Rivieccio [10]. They observed that if on T1 and T2 one 
applies a fuzzy t-norm, on their opposites F1 and F2 one needs to apply the fuzzy t-conorm (the 
opposite of fuzzy t-norm), and reciprocally. 
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About inferring I1 and I2, some researchers combined them in the same directions as T1 and T2. 

Then: 

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2),           (44) 
 (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2),         (45) 
(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2);    (46) 

others combined I1 and I2 in the same direction as F1 and F2 (since both I and F are negatively 
qualitative neutrosophic components), the most used one: 

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2),           (47) 
 (T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2),         (48) 
(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2).         (49) 

Now, applying the neutrosophic conjunction suggested by Imamura: 

“This causes some counterintuitive phenomena. Let A be a (true) proposition
with value ({ 1 } , { 0 } , { 0 }) and let B be a (false) proposition with value
({ 0 } , { 0 } , { 1 }).
Usually we expect that the falsity of the conjunction A ∧ B is { 1 }. However, its
actual falsity is { 0 }.” 

we get: 
(1, 0, 0) ∧N (0, 0, 1) = (0, 0, 1),  (50) 

which is correct (so the falsity is 1). 

Even more, recently, in an extension of neutrosophic set to plithogenic set [11] (which is a set 
whose each element is characterized by many attribute values), the degrees of contradiction c( , ) 
between the neutrosophic components T, I, F have been defined (in order to facilitate the design 
of the aggregation operators), as follows: 
c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) = c(F, I) = 0.5 (or 50%, because 
they are only half opposite), then: 

(T1, I1, F1) ∧P (T2, I2, F2) = (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2), (51) 
(T1, I1, F1) ∨P (T2, I2, F2) = (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2). (52) 
(T1, I1, F1) →N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) 

 = (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), T1 ∧ F F2). (53) 

Conclusion. 

We thank very much Dr. Takura Imamura for his interest and critics of Nonstandard 
Neutrosophic Logic, which eventually helped in improving it. {In the history of mathematics, 
critics on nonstandard analysis, in general, have been made by Paul Halmos, Errett Bishop, Alain 
Connes and others.} We hope we’ll have more dialogues on the subject in the future. 
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Abstract: In this paper, we apply the notion of soft rough neutrosophic sets to graph theory.
We develop certain new concepts, including soft rough neutrosophic graphs, soft rough neutrosophic
influence graphs, soft rough neutrosophic influence cycles and soft rough neutrosophic influence
trees. We illustrate these concepts with examples, and investigate some of their properties. We solve
the decision-making problem by using our proposed algorithm.

Keywords: soft rough neutrosophic graphs; soft rough neutrosophic influence graphs; soft rough
neutrosophic influence cycles; soft rough neutrosophic influence trees

1. Introduction

Smarandache [1] introduced neutrosophic sets as a generalization of fuzzy sets and intuitionistic
fuzzy sets. A neutrosophic set has three constituents: truth-membership, indeterminacy-membership
and falsity-membership, in which each membership value is a real standard or non-standard subset of
the unit interval

]0−, 1+[. In real-life problems, neutrosophic sets can be applied more appropriately by using
the single-valued neutrosophic sets defined by Smarandache [1] and Wang et al. [2]. Ye [3,4] and
Peng et al. [5] further extended the study of neutrosophic sets. Soft set theory [6] was proposed by
Molodtsov in 1999 to deal with uncertainty in a parametric manner. Babitha and Sunil discussed the
concept of soft set relation [7]. On the other hand, Pawlak [8] proposed the notion of rough sets. It is a
rigid appearance of modeling and processing partial information. It has been effectively connected
to decision analysis, machine learning, inductive reasoning, intelligent systems, pattern recognition,
signal analysis, expert systems, knowledge discovery, image processing, and many other fields [9–12].
In literature, rough theory has been applied in different field of mathematics [13–16]. Dubois and
Prade [17] developed two concepts called rough fuzzy sets and fuzzy rough sets and concluded that
these two theories are different approaches to handle vagueness. Feng et al. [18] combined soft sets
with fuzzy sets and rough sets. Meng et al. [19] dealt with soft rough fuzzy sets and soft fuzzy rough
sets. Broumi et al. [20] studied rough neutrosophic sets. Yang et al. [21] proposed single-valued
neutrosophic rough sets, and established an algorithm for decision-making problem based on single-
valued neutrosophic rough sets on two universes.

A graph is a convenient way of representing information involving relationship between objects.
The objects are represented by vertices and relations by edges. When there is vagueness in the
description of the objects or in its relationships or in both, it is natural that we need to design a fuzzy
graph model. Fuzzy models has vital role as their aspiration in decreasing the irregularity between the
traditional numerical models used in engineering and sciences and the symbolic models used in expert

Soft Rough Neutrosophic Influence Graphs with Application 

Hafsa Masood Malik, Muhammad Akram, Florentin Smarandache 

Hafsa Masood Malik, Muhammad Akram, Florentin Smarandache (2018). Soft Rough Neutrosophic 
Influence Graphs with Application. Mathematics 6, 125; DOI: 10.3390/math6070125 

Florentin Smarandache (author and editor) Collected Papers, VIII

525

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math6070125
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/6/7/125?type=check_update&version=1


systems. The fuzzy graph theory as a generalization of Euler’s graph theory was first introduced by
Kaufmann [22]. Later, Rosenfeld [23] considered fuzzy graphs and obtained analogs of several graph
theoretical concepts. Mordeson and Peng [24] defined some operations on fuzzy graphs. Mathew
and Sunitha [25,26] presented some new concepts on fuzzy graphs. Gani et al. [27–30] discussed
several concepts, including size, order, degree, regularity and edge regularity in fuzzy graphs and
intuitionistic fuzzy graphs. Parvathi and Karunambigai [31] described some operation on intuitionistic
fuzzy graph. Recently, Akram et al. [32–36] has introduced several extensions of fuzzy graphs with
applications. Denish [37] considered the idea of fuzzy incidence graph. Fuzzy incidence graphs were
further studied in [38,39]. Due to the limitation of humans knowledge to understand the complex
problems, it is very difficult to apply only a single type of uncertainty method to deal with such
problems. Therefore, it is necessary to develop hybrid models by incorporating the advantages of
many other different mathematical models dealing uncertainty. Recently, new hybrid models, including
rough fuzzy graphs [40,41], fuzzy rough graphs [42], intuitionistic fuzzy rough graphs [43,44], rough
neutrosophic graphs [45] and neutrosophic soft rough graphs [46] are constructed. For other notations
and definitions, the readers are refereed to [47–51]. In this paper, we apply the notion of soft rough
neutrosophic sets to graph theory. We develop certain new concepts, including soft rough neutrosophic
graphs, soft rough neutrosophic influence graphs, soft rough neutrosophic influence cycles and soft
rough neutrosophic influence trees. We illustrate these concepts with examples, and investigate some
of their properties. We solve decision-making problem by using our proposed algorithm.

This paper is organized as follows. In Section 2, some definitions and some properties of soft
rough neutrosophic graphs are given. In Section 3, soft rough neutrosophic influence graphs, soft rough
neutrosophic influence cycles and soft rough neutrosophic influence trees are discussed. In Section 4,
an application is presented. Finally, we conclude our contribution with a summary in Section 5 and an
outlook for the further research.

2. Soft Rough Neutrosophic Graphs

Definition 1. Let B be Boolean set and A a set of attributes. For an arbitrary full soft set S over B such
that Ss(a)⊂B, for some a∈A, where Ss:A→P(B) is a set-valued function defined as Ss(a)={b∈B|(a,b)∈S},
for all a∈A. Let (B,S) be a full soft approximation space. For any neutrosophic set N={(b,TN(b),IN(b),FN(b))|
b∈B}∈ N (B), where N (B) is neutrosophic power set of set B. The upper and lower soft rough neutrosophic
approximations of N w.r.t (B,S), denoted by S(N) and S(N), respectively, are defined as follows:

S(N)={(b, TS(N)(b), IS(N)(b), FS(N)(b)) | b ∈B} ,

S(N)={(b, TS(N)(b), IS(N)(b), FS(N)(b)) | b ∈B},

where

TS(N)(b)=
∧

b∈Ss(a)

∨

t∈Ss(a)

TN(t), TS(N)(b) =
∨

b∈Ss(a)

∧

t∈Ss(a)

TN(t),

IS(N)(b) =
∨

b∈Ss(a)

∧

t∈Ss(a)

IN(t) , IS(N)(b) =
∧

b∈Ss(a)

∨

t∈Ss(a)

IN(t), (1)

FS(N)(b)=
∨

b∈Ss(a)

∧

t∈Ss(a)

FN(t) , FS(N)(b) =
∧

b∈Ss(a)

∨

t∈Ss(a)

FN(t).

In other words,

TS(N)(b) =
∧

a∈A

(
(1− S(a, b)) ∨

( ∨

t∈B

(
S(a, t) ∧ TN(t)

)))
,

TS(N)(b) =
∨

a∈A

(
S(a, b) ∧

( ∧

t∈B

(
(1− S(a, t)) ∨ TN(t)

)))
,
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IS(N) (b) =
∨

a∈A

(
S(a, b) ∧

( ∧

t∈B

(
(1− S(a, t)) ∨ IN(t)

)))
,

IS(N) (b) =
∧

a∈A

(
(1− S(a, b)) ∨

( ∨

t∈B

(
S(a, t) ∧ IN(t)

)))
,

FS(N) (b) =
∨

a∈A

(
S(a, b) ∧

( ∧

t∈B

(
(1− S(a, t)) ∨ FN(t)

)))
,

FS(N) (b) =
∧

a∈A

(
(1− S(a, b)) ∨

( ∨

t∈B

(
S(a, t) ∧ FN(t)

)))
.

The pair (S(N),S(N)) is called soft rough neutrosophic set (SRNS) of N w.r.t (B,S).

Example 1. Suppose N={(b1,0.8,0.3,0.16),(b2,0.85,0.24,0.2),(b3,0.79,0.2,0.2),(b4,0.85,0.36,0.25),(b5,0.82,0.25,0.25)}
is a neutrosophic set on the universal set B={b1,b2,b3,b4,b5} under consideration. Let A={a1,a2,a3} be a set of
parameter on B. A full soft set over B, denoted by S, is defined in Table 1.

Table 1. Full soft set S.

S b1 b2 b3 b4 b5

a1 0 0 1 0 1
a2 1 0 1 0 0
a3 0 1 1 1 1

A set-valued function Ss:A→P(B) is defined as Ss(a1)={b3,b5},Ss(a2)={b1,b3},Ss(a3)={b2,b3,b4,b5}.
From Equation (1) of Definition 1, we have

TS(A) (b1) =
∨

y∈Ss(a2)

N(y)=∨{0.8, 0.79}=0.80,

IS(N) (b1) =
∧

y∈Ss(a2)

N(y)=∧{0.3, 0.2} =0.20,

FS(N) (b1) =
∧

y∈Ss(a2)

N(y)=∧{0.16, 0.2}=0.16;

TS(N)(b1) =
∧

y∈Ss(a2)

N(y)=∧{0.8, 0.79}=0.79,

IS(N) (b1) =
∨

y∈Ss(a2)

N(y)=∨{0.3, 0.2} =0.30,

FS(N) (b1) =
∨

y∈Ss(a2)

N(y)=∨{0.16, 0.2}=0.20.

Similarly,
TS(N)(b2) = 0.85, IS(N)(b2) = 0.20, FS(N)(b2) = 0.20,

TS(N)(b3) = 0.80, IS(N)(b3) = 0.20, FS(N)(b3) = 0.20,

TS(N)(b4) = 0.85, IS(N)(b4) = 0.20, FS(N)(b4) = 0.20,

TS(N)(b5) = 0.82, IS(N)(b5) = 0.20, FS(N)(b5) = 0.20;

TS(N)(b2) = 0.79, IS(N)(b2) = 0.36, FS(N)(b2) = 0.25,

TS(N)(b3) = 0.79, IS(N)(b3) = 0.25, FS(N)(b3) = 0.20,

TS(N)(b4) = 0.79, IS(N)(b4) = 0.36, FS(N)(b4) = 0.25,
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TS(N)(b5) = 0.79, IS(N)(b5) = 0.25, FS(N)(b5) = 0.25.

Thus, we obtain

S(N)={(b1, 0.80, 0.20, 0.16), (b2, 0.85, 0.20, 0.20), (b3, 0.80, 0.20, 0.20),

(b4, 0.85, 0.20, 0.20), (b5, 0.82, 0.20, 0.20)},
S(N)={(b1, 0.79, 0.30, 0.20), (b2, 0.79, 0.36, 0.25), (b3, 0.79, 0.25, 0.20),

(b4, 0.79, 0.36, 0.25), (b5, 0.79, 0.25, 0.25)}.

Definition 2. A soft rough neutrosophic relation(SRNR) (R(M),R(M)) on B̃=B×B is a soft rough
neutrosophic set, R:Ã(A×A)→P(B̃) is a full soft set on B̃ and defined by

R(akl , bij) ≤ min{S(ak, bi), S(al , bj)},

for all (akl ,bij)∈R, such that Rs(akl)⊂B̃ for some akl∈Ã, where Rs:Ã→P(B̃) is a set-valued function, for all
akl∈Ã, defined by

Rs(akl) = {bij ∈ B̃ | (akl , bij) ∈ R}, bij ∈ B̃.

For any neutrosophic set M∈N (B̃), the upper and lower soft rough neutrosophic approximation of M
w.r.t (B̃,R) are defined as follows:

R(M)={(bij, TR(M)(bij), IR(M)(bij), FR(M)(bij)) | bij ∈B̃} ,

R(M)={(bij, TR(M)(bij), IR(M)(bij), FR(M)(bij)) | bij ∈B̃},

where

TR(M)(bij)=
∧

bij∈Rs(akl)

∨

tij∈Rs(akl)

TM(tij), TR(M)(bij) =
∨

bij∈Rs(akl)

∧

tij∈Rs(akl)

TM(tij),

IR(M)(bij) =
∨

bij∈Rs(akl)

∧

tij∈Rs(akl)

IM(tij) , IR(M)(bij) =
∧

bij∈Rs(akl)

∨

tij∈Rs(akl)

IM(tij), (2)

FR(M)(bij)=
∨

bij∈Rs(akl)

∧

tij∈Rs(akl)

FM(tij) , FR(M)(bij) =
∧

bij∈Rs(akl)

∨

tij∈Rs(akl)

FM(tij).

In other words,

TR(M)(bij) =
∧

akl∈A

(
(1− R(akl , bij)) ∨

( ∨

tij∈B

(
R(akl , tij) ∧ TM(tij)

)))
,

TR(M)(bij) =
∨

akl∈A

(
R(akl , bij) ∧

( ∧

tij∈B

(
(1− R(akl , tij)) ∨ TM(tij)

)))
,

IR(M) (bij) =
∨

akl∈A

(
R(akl , bij) ∧

( ∧

tij∈B

(
(1− R(akl , tij)) ∨ IM(tij)

)))
,

IR(M) (bij) =
∧

akl∈A

(
(1− R(akl , bij)) ∨

( ∨

tij∈B

(
R(akl , tij) ∧ IM(tij)

)))
,

FR(M) (bij) =
∨

akl∈A

(
R(akl , bij) ∧

( ∧

tij∈B

(
(1− R(akl , tij)) ∨ FM(tij)

)))
,

FR(M) (bij) =
∧

akl∈A

(
(1− R(akl , bij)) ∨

( ∨

tij∈B

(
R(akl , tij) ∧ FM(tij)

)))
.
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If R(M)=R(M), then it is called induced soft rough neutrosophic relation on soft rough neutrosophic set,
otherwise, soft rough neutrosophic relation.

Remark 1. For a neutrosophic set M on B̃ and a neutrosophic set N on B, we have neutrosophic relation
as follow

TM(bij) ≤min
i
{TN(bi)}, IM(bij)≤ min

i
{IN(bi)}, FM(bij)≤ min

i
{FN(bi)}.

From Definition 2, it follows that:

TR(M)(bij) ≤min{TS(N)(bi), TS(N)(bj)}, TR(M)(bij) ≤min{TS(N)(bi), TS(N)(bj)},
IR(M) (bij) ≤max{IS(N)(bi), IS(N)(bj)}, IR(M) (bij) ≤max{IS(N)(bi), IS(N)(bj)},
FR(M) (bij) ≤max{FS(N)(bi), FS(N)(bj)}, FR(M) (bij) ≤max{FS(N)(bi), FS(N)(bj)}.

Definition 3. In Definition 2 bij is called effective, if

TR(M)(bij)=TS(N)(bi) ∧ TSN(bj), TR(M)(bij)=TS(N)(bi) ∧ TSN(bj),

IR(M)(bij) =IS(N)(bi) ∨ ISN(bj), IR(M)(bij) =IS(N)(bi) ∨ ISN(bj),

FR(M)(bij)=FS(N)(bi) ∨ FSN(bj), FR(M)(bij)=FS(N)(bi) ∨ FSN(bj).

Definition 4. A soft rough neutrosophic influence (SRNI) is a relation from soft rough neutrosophic set to soft
rough neutrosophic relation, denoted by (X(Q),X(Q)) on B̂=B×B̃, where X:Â(A×Ã)→P(B̂) is a full soft
set on B̂ defined by

X(alamn, bibjk) ≤ S(al , bi) ∧ R(amn, bjk),

for all (alamn,bibjk)∈X and for some i 6=j 6=k and l 6=m 6=n. Let Xs:Â→P(B̂) be a set-valued function defined by

Xs(alamn) = {bibjk ∈ B̂|(alamn, (bi, , bjk)) ∈ X}, ∀(a,lamn) ∈ Â,

For any Q∈N (B̂), the upper and lower soft rough neutrosophic approximation of Q w.r.t (B̂,X), for all
bibjk∈B̂, are defined as follows:

X(Q)={(bibjk, TX(Q)(bibjk), IX(Q)(bibjk), FX(Q)(bibjk))},
X(Q)={(bibjk, TX(Q)(bibjk), IX(Q)(bibjk), FX(Q)(bibjk))},

where

TX(Q)(bibjk)=
∧

bibjk∈Xs(al amn)

∨

titjk∈Xs(al amn)

TQ(titjk) ,

TX(Q)(bibjk)=
∨

bibjk∈Xs(al amn)

∧

titjk∈Xs(al amn)

TQ(titjk) ,

IX(Q)(bibjk) =
∨

bibjk∈Xs(al amn)

∧

titjk∈Xs(al amn)

IQ(titjk),

IX(Q)(bibjk) =
∧

bibjk∈Xs(al amn)

∨

titjk∈Xs(al amn)

IQ(titjk) , (3)

FX(Q)(bibjk)=
∨

bibjk∈Xs(al amn)

∧

titjk∈Xs(al amn)

FQ(titjk),
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FX(Q)(bibjk)=
∧

bibjk∈Xs(al amn)

∨

titjk∈Xs(al amn)

FQ(titjk) .

In other words,

TX(Q)(bibjk) =
∧

al amn∈A

(
(1− X(al amn, bibjk)) ∨

( ∨

titjk∈B

(
X(al amn, titjk) ∧ TQ(titjk)

)))
,

TX(Q)(bibjk) =
∨

al amn∈A

(
X(al amn, bibjk) ∧

( ∧

titjk∈B

(
(1− X(al amn, titjk)) ∨ TQ(titjk)

)))
,

IX(Q) (bibjk) =
∨

al amn∈A

(
X(al amn, bibjk) ∧

( ∧

titjk∈B

(
(1− X(al amn, titjk)) ∨ IQ(titjk)

)))
,

IX(Q) (bibjk) =
∧

al amn∈A

(
(1− X(al amn, bibjk)) ∨

( ∨

titjk∈B

(
X(al amn, titjk) ∧ IQ(titjk)

)))
,

FX(Q) (bibjk) =
∨

al amn∈A

(
X(al amn, bibjk) ∧

( ∧

titjk∈B

(
(1− X(al amn, titjk)) ∨ FQ(titjk)

)))
,

FX(Q) (bibjk) =
∧

al amn∈A

(
(1− X(al amn, bibjk)) ∨

( ∨

titjk∈B

(
X(al amn, titjk) ∧ FQ(titjk)

)))
.

Remark 2. For a neutrosophic set Q on B̂ and a neutrosophic set N and M on B and B̃, respectively, we have
neutrosophic relation as follow

TQ(bibjk) ≤min
jk
{TM(bjk)}, IQ(bibjk) ≤min

jk
{IM(bjk)}, FQ(bibjk) ≤min

jk
{FM(bjk)}.

From Definition 4, we have

TX(Q)(bibjk) ≤min{TS(N)(bi), TR(M)(bjk)}, TX(Q)(bibjk)≤min{TS(N)(bi), TR(M)(bjk)},
IX(Q) (bibjk) ≤max{IS(N)(bi), IR(M)(bjk)}, IX(Q)(bibjk)≤max{IS(N)(bi), IR(M)(bjk)},
FX(Q) (bibjk) ≤max{FS(N)(bi), FR(M)(bjk)}, FX(Q)(bibjk)≤max{FS(N)(bi), FR(M)(bjk)}.

Definition 5. In Definition 4 bibjk is called influence effective, if

TX(Q)(bibjk)=TS(N)(bi) ∧ TRM(bij), TX(Q)(bibjk)=TS(N)(bi) ∧ TRM(bij),

IX(Q)(bibjk) =IS(N)(bi) ∨ IRM(bij), IX(Q)(bibjk) =IS(N)(bi) ∨ IRM(bij),

FX(Q)(bibjk)=FS(N)(bi) ∨ FRM(bij), FX(Q)(bibjk)=FS(N)(bi) ∨ FRM(bij).

Example 2. Let a full soft set S on an universal set B={b1,b2,b3,b4} with A={a1,a2,a3} a set of parameters
can be defined in tabular form as Table 2 as follows:

Table 2. Full soft set S.

S b1 b2 b3 b4

a1 1 1 0 1
a2 0 0 1 1
a3 1 1 1 1

Now, we can define set-valued function Ss such that

Ss(a1) = {b1, b2, b4}, Ss(a2) = {b3, b4}, Ss(a3) = {b1, b2, b3, b4}.
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Let N= {(b1,1.0,0.0,0.0),(b2,0.8,0.0,0.1),(b3,0.5,0.5,0.5),(b4,0.4,0.7,0.3)} be a neutrosophic set on B,
then by using Equation (1) of Definition 1, we have

S(N) = {(b1, 1.0, 0.0, 0.0), (b2, 1.0, 0.0, 0.0), (b3, 0.5, 0.5, 0.3), (b4, 0.5, 0.5, 0.3)},

S(N) = {(b1, 0.4, 0.7, 0.3), (b2, 0.4, 0.7, 0.3), (b3, 0.4, 0.7, 0.5), (b4, 0.4, 0.7, 0.3)}.

Hence (S(N), S(N)) is soft rough neutrosophic set. Let a full soft set R on C={b12,b22,b23, b32,b42}⊆B̃
with L={a13,a21,a32}⊆Ã can be defined in Table 3 (from L to C) as follows:

Table 3. Full soft set R.

R b12 b22 b23 b32 b42

a13 1 1 1 0 1
a21 0 0 0 1 0
a32 0 0 1 0 0

Now, we can define set-valued function Rs such that

Rs(a13) = {b12, b22, b23, b42}, Rs(a21) = {b32}, Rs(a32) = {b23}.

and M= {(b12,0.4,0.0,0.0),(b22,0.4,0.0,0.0),(b23,0.4,0.0,0.0),(b32,0.4,0.0,0.0),(b42,0.4,0.0,0.0)} a neutrosophic
relation on B, then by using Equation (2) of Definition 2, we get

R(M)={(b12, 0.4, 0.0, 0.0),(b22, 0.4, 0.0, 0.0),(b23, 0.4, 0.0, 0.0),(b32, 0.4, 0.0, 0.0),(b42, 0.4, 0.0, 0.0)},
R(M)={(b12, 0.4, 0.0, 0.0),(b22, 0.4, 0.0, 0.0),(b23, 0.4, 0.0, 0.0),(b32, 0.4, 0.0, 0.0),(b42, 0.4, 0.0, 0.0)}.

Hence (R(M), R(M)) is an induced soft rough neutrosophic relation. Let a full soft set X on
D={b1b22,b1b23,b1b32,b1b42,b3b12,b3b22,b3b42,b4b12,b4b22,b4b23,b4b32}⊆B̂ with P={a13,a21,a32}⊆Â can be
defined in Table 4 (from P to D) as follows:

Table 4. Full soft set X.

X b1b22 b1b23 b1b32 b1b42 b3b12 b3b22 b3b42 b4b12 b4b22 b4b23 b4b32

a1a32 0 1 0 0 0 0 0 0 0 1 0
a2a13 0 0 0 0 0 1 1 1 1 1 1
a3a21 0 1 0 0 0 0 0 0 0 0 1

Since X is not full soft set on D, therefore, soft rough neutrosophic influence cannot be defined on D.

Definition 6. A soft rough neutrosophic graph on a nonempty V is a 5-ordered tuple G=(A,S,SN,R,RM)

such that

(i) A is a set of attributes,
(ii) S is an arbitrary full soft set over V,

(iii) R is an arbitrary full soft set over E ⊆ Ṽ,
(vi) SN=(S(N),S(N)) is a soft rough neutrosophic set of V,
(v) RM=(R(M),R(M)) is a soft rough neutrosophic set on E ⊂ Ṽ,

In other words G=(G,G)=(SN,RM) is a soft rough neutrosophic graph(SRNG), where
G=(S(N),R(M)) and G=(S(N),R(M)) are lower soft rough neutrosophic approximate graphs (LSRNAGs)
and upper soft rough neutrosophic approximate graphs (USRNAGs), respectively, of G=(SN,RM).
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Example 3. Let V={v1,v2,v3,v4,v5,v6} be a vertex set and A={a1,a2,a3} a set of parameters. A full soft set
S from A on V can be defined in tabular form in Table 5 as follows:

Table 5. Full soft set S.

S v1 v2 v3 v4 v5 v6

a1 1 1 1 1 1 0
a2 0 0 1 1 1 1
a3 1 1 0 0 1 1

Let N={(v1,0.8,0.6,0.4),(v2,0.9,0.4,0.45),(v3,0.7,0.4,0.35),(v4,0.6,0.3,0.5),(v5,0.4,0.7,0.6),(v6,0.5,0.5,0.5)}
be a neutrosophic set on V. Then from Equation (1) of Definition 1, we have

S(N)={(v1, 0.9, 0.4, 0.4),(v2, 0.9, 0.4, 0.4),(v3, 0.7, 0.3, 0.5),(v4, 0.7, 0.3, 0.5),(v5, 0.7, 0.4, 0.5),

(v6, 0.7, 0.4, 0.5)},
S(N)={(v1, 0.4, 0.7, 0.6),(v2, 0.4, 0.7, 0.6),(v3, 0.4, 0.7, 1.0),(v4, 0.4, 0.7, 1.0),(v5, 0.4, 0.7, 0.6),

(v6, 0.4, 0.7, 0.6)}.

Hence, SN=(S(N),S(N)) is a soft rough neutrosophic set on V. Let E={v11,v15,v16,v23,v25,v34,v41,v43,
v56,v62,v63}⊆Ṽ and L={a12,a13,a21,a23,a31}⊆Ã. Then a full soft set R on E (from L to E) can be defined in
Table 6 as follows:

Table 6. Full soft set R.

R v11 v15 v16 v23 v25 v34 v41 v43 v56 v62 v63

a12 0 1 1 1 1 1 0 1 1 0 0
a13 1 1 1 0 1 0 1 0 1 0 0
a21 0 0 0 0 0 1 1 1 0 1 1
a23 0 0 0 0 0 0 1 0 1 1 0
a31 1 1 0 1 1 0 0 0 0 1 0

Let M={(v11,0.4,0.3,0.35),(v15,0.3,0.3,0.2),(v16,0.3,0.2,0.25),(v23,0.4,0.1,0.1),(v25,0.4,0.2,0.0),(v34,0.3,
0.1,0.3),(v41,0.2,0.1,0.2),(v43,0.4,0.28,0.2),(v56,0.4,0.3,0.3),(v62,0.35,0.25,0.32),(v63,0.4,0.12,0.34)} be a
neutrosophic set on E. Then from Equation (2) of Definition 2, we have

R(M)={(v11, 0.4, 0.1, 0.00), (v15, 0.4, 0.10, 0.00), (v16, 0.4, 0.10, 0.00), (v23, 0.4, 0.10, 0.00),

(v25, 0.4, 0.1, 0.00), (v34, 0.4, 0.10, 0.20), (v41, 0.4, 0.10, 0.30), (v43, 0.4, 0.10, 0.20),

(v56, 0.4, 0.1, 0.30), (v62, 0.4, 0.10, 0.30), (v63, 0.4, 0.10, 0.20)},
R(M)={(v11, 0.3, 0.3, 0.35), (v15, 0.3, 0.30, 0.35), (v16, 0.3, 0.30, 1.00), (v23, 0.3, 0.30, 0.35),

(v25, 0.3, 0.3, 0.35), (v34, 0.3, 0.28, 0.34), (v41, 0.2, 0.28, 0.32), (v43, 0.3, 0.28, 0.34),

(v56, 0.3, 0.3, 0.32), (v62, 0.3, 0.28, 0.32), (v63, 0.2, 0.28, 0.34)}.

Hence, RM=(R(M),R(M)) is soft rough neutrosophic set on E. Thus, G=(S(N),R(M)) and
G=(S(N),R(M)) are LSRNAG and USRNAG, respectively, as shown in Figure 1.
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Definition 9. A strength of soft rough neutrosophic graph, denoted by stren, is defined as

stren=
(
(
∧

vjk∈E∗
TR(M)(vjk)) ∧ (

∧

vjk∈E∗
TR(M)(vjk)), (

∨

vjk∈E∗
IR(M)(vjk))∨

(
∨

vjk∈E∗
IR(M)(vjk)), (

∨

vjk∈E∗
FR(M)(vjk)) ∨ (

∨

vjk∈E∗
FR(M)(vjk))

)
.

Definition 10. A strongest path joining any two vertices vi and vk is the soft rough neutrosophic path which has
maximum strength from vi and vk, denoted by CONNG(vi, vk) or E∞(vi, vk), is called strength of connectedness
from vi and vk.

Definition 11. A soft rough neutrosophic graph is a cycle if and only if the underlying graphs of each
approximation is a cycle. A soft rough neutrosophic cycle is a soft rough neutrosophic graph if and only
if the supporting graph of each approximation graph is a cycle and there exist vlm,vij∈E∗,vlm,vij∈E∗ and
vlm 6=vij such that

R(M)(vij) =
∧

vlm∈E∗−vij

R(M)(vlm), R(M)(vij) =
∧

vlm∈E∗−vij

R(M)(vlm).

Equivalently, each approximation graph is a cycle such that

R(M)(vij)=
( ∧

vlm∈E∗−vij

TR(M)(vlm),
∨

vlm∈E∗−vij

IR(M)(vlm),
∨

vlm∈E∗−vij

FR(M)(vlm)
)

,

R(M)(vij)=
( ∧

vlm∈E∗−vij

TR(M)(vlm),
∨

vlm∈E∗−vij

IR(M)(vlm),
∨

vlm∈E∗−vij

FR(M)(vlm)
)

.

Example 4. Let V={v1,v2,v3,v4} be a vertex set and A={a1,a2,a3,a4} a set of parameters. A relation S over
A×V can be defined in tabular form in Table 7 as follows:

Table 7. Full soft set S.

S v1 v2 v3 v4

a1 1 1 1 1
a2 0 1 0 1
a3 1 0 1 1
a4 1 0 1 0

Let N={(v1,0.3,0.4,0.6),(v2,0.4,0.5,0.1),(v3,0.9,0.6,0.4),(v4,1.0,0.2,0.1)} be a neutrosophic set on V.
Then from Equation (1) of Definition 1, we have

S(N) = {(v1, 0.9, 0.4, 0.4), (v2, 1.0, 0.2, 0.1), (v3, 0.9, 0.4, 0.4), (v4, 1.0, 0.2, 0.1)},
S(N) = {(v1, 0.3, 0.6, 0.6), (v2, 0.4, 0.5, 0.1), (v3, 0.3, 0.6, 0.6), (v4, 0.4, 0.5, 0.1)}.

Hence, SN = (S(N), S(N)) is soft rough neutrosophic set on V. Let E={v13,v32,v24,v41}⊆Ṽ and
L={a13,a32,a43}⊆Ã. Then a full soft set R on E (from L to E) can be defined in Table 8 as follows:
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Definition 13. A H=(SN2,RM2) is called soft rough neutrosophic spanning subgraph of a soft rough
neutrosophic graph G=(SN1,RM1), if H is a soft rough neutrosophic subgraph such that

TS(N2)
(v)=TS(N1)

(v), IS(N2)
(v)=IS(N1)

(v), FS(N2)
(v)=FS(N1)

(v),

TS(N2)
(v)=TS(N1)

(v), IS(N2)
(v)=IS(N1)

(v), FS(N2)
(v)=FS(N1)

(v).

Definition 14. A soft rough neutrosophic graph is a forest if and only if each supporting approximation graph is
a forest. A soft rough neutrosophic graph G=(SN1,RM1) is a soft rough neutrosophic forest if and only if there
exist a soft rough neutrosophic spanning subgraph H=(SN1,RM2) is a forest such that vij∈G−H

TR(M1)
(vij)<TCONNH (vi, vj), IR(M1)

(vij)>ICONNH (vi, vj), FR(M1)
(vij) >FCONNH (vi, vj),

TR(M1)
(vij)<TCONNH

(vi, vj), IR(M1)
(vij)>ICONNH

(vi, vj), FR(M1)
(vij) >FCONNH

(vi, vj).

A soft rough neutrosophic graph is a tree if and only if each supporting approximation graph is a tree.
A soft rough neutrosophic graph G=(SN1,RM1) is a soft rough neutrosophic tree if and only if there exist a soft
rough neutrosophic spanning subgraph H=(SN1,RM2) is a tree such that vij∈G−H

TR(M1)
(vij)<TCONNH (vi, vj), IR(M1)

(vij)>ICONNH (vi, vj), FR(M1)
(vij) >FCONNH (vi, vj),

TR(M1)
(vij)<TCONNH

(vi, vj), IR(M1)
(vij)>ICONNH

(vi, vj), FR(M1)
(vij) >FCONNH

(vi, vj).

Definition 15. Let G=(SN,RM) be a soft rough neutrosophic graph, an edge vij is a bridge if the edge vij is a
bridge in both supporting graph of G and G, that is the removal of vij disconnects both the G and G. An edge vij
is a soft rough neutrosophic bridge in a soft rough neutrosophic graph G=(SN,RM), if vlm∈G

TCONNG−vij(vl , vm)<TCONNG (vl , vm), TCONNG−vij(vl , vm)<TCONNG
(vl , vm),

ICONNG−vij(vl , vm) >ICONNG(vl , vm), ICONNG−vij(vl , vm) >ICONNG(vl , vm),

FCONNG−vij(vl , vm)>FCONNG (vl , vm), FCONNG−vij
(vl , vm)>FCONNG

(vl , vm).

Definition 16. Let G=(SN1,RM1) be a soft rough neutrosophic graph then a vertex vi in G is a
cutnode(cutvertex) if it is a cutnode in each supporting graph of G and G. That is, the deletion of vi from the
supporting graphs of G and G increase the components in the supporting graphs. A vertex vi is called soft rough
neutrosophic cutnode(cutvertex) in a soft rough neutrosophic graph if the removal of vi reduces the strength of
the connectedness from nodes vjtovk∈V∗,V∗

TCONNG−vi
(vj, vk)<TCONNG (vj, vk), TCONNG−vi

(vj, vk)<TCONNG
(vj, vk),

ICONNG−vi
(vj, vk)>ICONNG (vj, vk), ICONNG−vi

(vj, vk)>ICONNG
(vj, vk),

FCONNG−vi
(vj, vk)>FCONNG (vj, vk), FCONNG−vi

(vj, vk)>FCONNG
(vj, vk).

Definition 17. An edge vij in soft rough neutrosophic graph G is called strong soft rough neutrosophic edge if

TR(M)(vij)≥TCONNG−vij
(vi, vj), TR(M)(vij) ≥TCONNG−vij

(vi, vj),

IR(M)(vij)≤ICONNG−vij
(vi, vj) , IR(M)(vij) ≤ ICONNG−vij

(vi, vj),

FR(M)(vij)≤FCONNG−vij
(vi, vj) , FR(M)(vij) ≤FCONNG−vij

(vi, vj).
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Definition 18. An edge vij in soft rough neutrosophic graph G is called α−strong soft rough neutrosophic
edge if

TR(M)(vij)>TCONNG−vij
(vi, vj), TR(M)(vij) >TCONNG−vij

(vi, vj),

IR(M)(vij)<ICONNG−vij
(vi, vj) , IR(M)(vij) < ICONNG−vij

(vi, vj),

FR(M)(vij)<FCONNG−vij
(vi, vj) , FR(M)(vij) <FCONNG−vij

(vi, vj).

Definition 19. An edge vij in soft rough neutrosophic graph G is called β−strong soft rough neutrosophic
edge if

TR(M)(vij)=TCONNG−vij
(vi, vj), TR(M)(vij) =TCONNG−vij

(vi, vj),

IR(M)(vij) =ICONNG−vij
(vi, vj) , IR(M)(vij) = ICONNG−vij

(vi, vj),

FR(M)(vij)=FCONNG−vij
(vi, vj) , FR(M)(vij) =FCONNG−vij

(vi, vj).

Definition 20. An edge vij in soft rough neutrosophic graph G is called δ−strong soft rough neutrosophic
edge if

TR(M)(vij)<TCONNG−vij
(vi, vj), TR(M)(vij) <TCONNG−vij

(vi, vj),

IR(M)(vij)>ICONNG−vij
(vi, vj) , IR(M)(vij) > ICONNG−vij

(vi, vj),

FR(M)(vij)>FCONNG−vij
(vi, vj) , FR(M)(vij) >FCONNG−vij

(vi, vj).

Example 5. Let V={v1,v2,v3,v4} be a vertex set and A={a1,a2,a3,a4} a set of parameters. A relation S over
A×V can be defined in tabular form in Table 9 as follows:

Table 9. Full soft set S.

S v1 v2 v3 v4

a1 1 1 1 1
a2 0 1 0 1
a3 1 0 1 1
a4 1 0 1 0

Let N={(v1,0.3,0.4,0.6),(v2,0.4,0.5,0.1),(v3,0.9,0.6,0.4),(v4,1.0,0.2,0.1)} be a neutrosophic set on V.
Then from Equation (1) of Definition 1, we have

S(N) = {(v1, 0.9, 0.4, 0.4), (v2, 1.0, 0.2, 0.1), (v3, 0.9, 0.4, 0.4), (v4, 1.0, 0.2, 0.1)},
S(N) = {(v1, 0.3, 0.6, 0.6), (v2, 0.4, 0.5, 0.1), (v3, 0.3, 0.6, 0.6), (v4, 0.4, 0.5, 0.1)}.

Hence, SN=(S(N),S(N)) is soft rough neutrosophic set on V. Let E={v13,v32,v43}⊆Ṽ and
L={a12,a24,a34}⊆Ã. Then a full soft set R on E (from L to E) can be defined in Table 10 as follows:

Table 10. Full soft set R.

R v13 v32 v43

a12 0 1 0
a24 1 0 1
a34 0 0 1
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Example 6. Let V={v1,v2,v3,v4,v5,v6} be a vertex set and A={a1,a2,a3,a4} a set of parameters. A full soft
set S over A × V can be defined in tabular form in Table 11 as follows:

Table 11. Full soft set S.

S v1 v2 v3 v4 v5 v6

a1 1 1 1 0 0 1
a2 0 1 0 0 1 1
a3 1 0 1 1 1 1
a4 1 1 1 1 1 1

Let N={(v1,1.0,0.4,0.7),(v2,0.9,0.6,0.55),(v3,0.7,0.9,0.5),(v4,0.6,0.5,0.6), (v5,0.65,0.8,0.65),(v6,0.8,0.7,0.8)}
be a neutrosophic set on V. Then from Equation (1) of Definition 1, we have

S(N)={(v1, 1.0, 0.4, 0.50), (v2, 0.9, 0.6, 0.55), (v3, 1.0, 0.4, 0.5), (v4, 1.0, 0.4, 0.5), (v5, 0.9, 0.6, 0.55),

(v6, 0.9, 0.6, 0.55)},
S(N)={ (v1, 0.7, 0.9, 0.80), (v2, 0.7, 0.8, 0.80), (v3, 0.7, 0.9, 0.8), (v4, 0.6, 0.9, 0.8), (v5, 0.65, 0.8, 0.8)

(v6, 0.7, 0.8, 0.8)} .

Hence, SN=(S(N),S(N)) is soft rough neutrosophic set on V. Let E={v12,v24,v32,v42,v52,v62,}⊆Ṽ and
L={a13,a24,a34,a41}⊆Ã. Then a full soft set R on E (from L to E) can be defined in Table 12 as follows:

Table 12. Full soft set R.

R v12 v24 v32 v42 v52 v62

a13 0 1 0 0 0 1
a24 0 1 0 0 1 1
a34 1 0 1 1 1 1
a41 1 1 1 1 1 1

Let M={(v12,0.6,0.3,0.4),(v24,0.58,0.38,0.46),(v32,0.56,0.37,0.47),(v42,0.54,0.34,0.38), (v52,0.52,0.32,0.5),(v62,0.5,0.4,0.45)}
be a neutrosophic set on E. Then from Equation (2) of Definition 2, we have

R(M)={(v12, 0.60, 0.30, 0.38), (v24, 0.58, 0.38, 0.45), (v32, 0.60, 0.30, 0.38), (v42, 0.60, 0.30, 0.38),

(v52, 0.58, 0.32, 0.45), (v62, 0.58, 0.38, 0.45)},
R(M)={(v12, 0.50, 0.40, 0.50), (v24, 0.50, 0.40, 0.46), (v32, 0.50, 0.40, 0.50), (v42, 0.50, 0.40, 0.50),

(v52, 0.50, 0.40, 0.50), (v62, 0.50, 0.40, 0.46)}.

Hence, RM=(R(M),R(M)) is soft rough neutrosophic set on E. Thus, G=(S(N),R(M))

and G=(S(N),R(M)) are LSRNAG and USRNAG, respectively, as shown in
Figure 4. Hence, G=(G,G) is SRNG. Let I={v1v24,v1v32,v1v42,v1v52,v1v62,v3v12,v3v24,
v3v42,v3v52,v3v62,v4v12,v4v32,v4v52,v4v62,v5v12, v5v24,v5v32,v5v42,v5v62,v6v12,v6v24,v6v32,v6v42,v6v52}
⊆V × E and P={a1a24,a1a34,a2a13,a2a34,a2a41,a3a24,a3a41,a4a13}⊆Â. Then and Q a neutrosophic set on I
and a full soft set X on I (from P to I) can be defined in Table 13, respectively as follows:
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b

b

b

b

b

b
(v1, 0.7, 0.9, 0.8)

(v2, 0.7, 0.8, 0.8)

(v3, 0.7, 0.9, 0.8)

(v4, 0.6, 0.9, 0.8)

(v6, 0.7, 0.8, 0.8)

(v5, 0.65, 0.8, 0.8)

(0.50, 0.40, 0.50) (0.
50,

0.4
0, 0

.46
)

(0
.5
0,
0.
40
, 0
.5
0)

(0.50, 0.40, 0.50)

(0
.5
0
,0
.4
0
,0
.5
0
)

(0
.5
0
, 0
.4
0
, 0
.4
6
)

G = (S(N), R(M))

b

b

b

b

b

b
(v1, 1.0, 0.4, 0.5)

(v2, 0.9, 0.6, 0.55)

(v3, 1.0, 0.4, 0.5)

(v4, 1.0, 0.4, 0.5)

(v6, 0.9, 0.6, 0.55)

(v5, 0.9, 0.6, 0.55)

(0.60, 0.30, 0.38) (0.
58,

0.3
8, 0

.45
)

(0
.5
8,
0.
32
, 0
.4
5)

(0.60, 0.30, 0.38) (0
.6
0
,0
.3
0
,0
.3
8
)

(0
.5
8
, 0
.3
8
, 0
.4
5
)

G = (S(N), R(M))

0.26, 0.33), (v6v52, 0.49, 0.26, 0.32)};

15
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Q={(v1v24, 0.42, 0.3, 0.38), (v1v32, 0.43, 0.28, 0.37), (v1v42, 0.49, 0.26, 0.33), (v1v52, 0.47, 0.29, 0.32),

(v1v62, 0.46, 0.28, 0.36), (v3v12, 0.4, 0.29, 0.37), (v3v24, 0.45, 0.24, 0.36), (v3v42, 0.48, 0.29, 0.35),

(v3v52, 0.41, 0.24, 0.36), (v3v62, 0.42, 0.26, 0.34), (v4v12, 0.5, 0.25, 0.3), (v4v32, 0.44, 0.27, 0.32),

(v4v52, 0.45, 0.23, 0.31), (v4v62, 0.48, 0.23, 0.38), (v5v12, 0.46, 0.24, 0.3), (v5v24, 0.47, 0.26, 0.34),

(v5v32, 0.4, 0.3, 0.36), (v5v42, 0.48, 0.29, 0.38), (v5v62, 0.49, 0.3, 0.37), (v6v12, 0.49, 0.3, 0.37),

(v6v24, 0.4, 0.28, 0.35), (v6v32, 0.47, 0.27, 0.34), (v6v42, 0.46, 0.29, 0.33), (v6v52, 0.49, 0.3, 0.32)}

Then the lower and upper soft rough neutrosophic approximation is directly calculated using Equation (3) of
Definition 4, we have

X(Q)={(v1v24, 0.49, 0.26, 0.32), (v1v32, 0.49, 0.26, 0.32), (v1v42, 0.49, 0.26, 0.32), (v1v52, 0.49, 0.26,

0.32), (v1v62, 0.49, 0.26, 0.34), (v3v12, 0.5, 0.23, 0.3), (v3v24, 0.49, 0.23, 0.34), (v3v42, 0.5,

0.23, 0.3), (v3v52, 0.5, 0.23, 0.3), (v3v62, 0.49, 0.23, 0.3), (v4v12, 0.5, 0.23, 0.38), (v4v32,

0.5, 0.23, 0.3), (v4v52, 0.49, 0.23, 0.31), (v4v62, 0.49, 0.23, 0.34), (v5v12, 0.49, 0.24, 0.3),

(v5v24, 0.49, 0.26, 0.34), (v5v32, 0.49, 0.24, 0.3), (v5v42, 0.49, 0.24, 0.3), (v5v62, 0.49, 0.26,

0.34), (v6v12, 0.49, 0.26, 0.32), (v6v24, 0.49, 0.26, 0.34), (v6v32, 0.49, 0.24, 0.3), (v6v42, 0.49,

0.26, 0.33), (v6v52, 0.49, 0.26, 0.32)};
X(Q)={(v1v24, 0.4, 0.3, 0.38), (v1v32, 0.4, 0.3, 0.38), (v1v42, 0.46, 0.3, 0.37), (v1v52, 0.46, 0.3, 0.37),

(v1v62, 0.46, 0.3, 0.37), (v3v12, 0.4, 0.3, 0.38), (v3v24, 0.4, 0.3, 0.38), (v3v42, 0.4, 0.3, 0.38),

(v3v52, 0.4, 0.3, 0.38), (v3v62, 0.4, 0.3, 0.38), (v4v12, 0.4, 0.3, 0.38), (v4v32, 0.4, 0.3, 0.38),

(v4v52, 0.4, 0.3, 0.38), (v4v62, 0.4, 0.3, 0.38), (v5v12, 0.4, 0.3, 0.38), (v5v24, 0.4, 0.3, 0.37),

(v5v32, 0.4, 0.3, 0.38), (v5v42, 0.4, 0.3, 0.38), (v5v62, 0.4, 0.3, 0.37), (v6v12, 0.46, 0.3, 0.37),

(v6v24, 0.4, 0.3, 0.37), (v6v32, 0.4, 0.3, 0.38), (v6v42, 0.46, 0.3, 0.37), (v6v52, 0.46, 0.3, 0.37)}.

Thus, G=(S(N),R(M),X(Q)) and G=(S(N),R(M),X(Q)) are LSRNIAG and USRNIAG, respectively,
as shown in Figures 5 and 6. Hence, G=(G,G) is SRNIG.

b

b

b

b

b

b
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stren=

(
(

∧

vjk∈E∗
TR(M)(vjk)) ∧ (

∧

vjk∈E
∗
TR(M)(vjk)), (

∨

vjk∈E∗
IR(M)(vjk))∨

(
∨

vjk∈E
∗
IR(M)(vjk)), (

∨

vjk∈E∗
FR(M)(vjk)) ∨ (

∨

vjk∈E
∗
FR(M)(vjk))

)
.

An influence strength of soft rough neutrosophic influence graph, denoted by In stren, is defined as

In stren=

(
(

∧

vivjk∈I∗
TX(Q)(vivjk) ∧

∧

vivjk∈I
∗
TX(Q)(vivjk)), (

∨

(vivjk)∈I∗

IR(M)(vivjk)∨

17
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where ik=(vkuv), ek=uv, i′k=(vwvk+1) and ∀k=0,1,2,· · · ,n−1. If v0 = vn, then it is called closed. If the
pairs are distinct, then it is called a soft rough neutrosophic influence trail (SRNI trail). If the edges are distinct,
then it is called a soft rough neutrosophic trail (SRN trail). If the vertices are distinct in SRN trail, then it is
called a soft rough neutrosophic path (SRN path). If the vertices, edge and pairs are distinct in a walk of SRNIG,
then it is called a soft rough neutrosophic influence path (SRNI path). A path is a trail and an influence trail.
If a path in a soft rough neutrosophic influence graph is closed, then it is called a cycle.

Definition 25. A strength of soft rough neutrosophic influence graph, denoted by stren, is defined as

stren=
(
(
∧

vjk∈E∗
TR(M)(vjk)) ∧ (

∧

vjk∈E∗
TR(M)(vjk)), (

∨

vjk∈E∗
IR(M)(vjk))∨

(
∨

vjk∈E∗
IR(M)(vjk)), (

∨

vjk∈E∗
FR(M)(vjk)) ∨ (

∨

vjk∈E∗
FR(M)(vjk))

)
.

An influence strength of soft rough neutrosophic influence graph, denoted by In stren, is defined as

In stren=
(
(
∧

vivjk∈I∗
TX(Q)(vivjk) ∧

∧

vivjk∈I∗
TX(Q)(vivjk)), (

∨

(vivjk)∈I∗
IR(M)(vivjk)∨

∨

vivjk∈I∗
IR(M)(vivjk)), (

∨

vivjk∈I∗
FR(M)(vivjk) ∨

∨

vivjk∈E∗
FR(M)(vivjk))

)
.

Definition 26. In a soft rough neutrosophic influence graph G, if in each approximation graph

CONNG(vi, vk) = E∞(vi, vk) = ∨α{Eα(vi, vk)}, CONNG(vi, vk) = E∞
(vi, vk) = ∨α{Eα

(vi, vk)}.

where
Eα(vi, vk) = (Eα−1 ◦ E)(vi, vk), Eα

(vi, vk) = (Eα−1 ◦ E)(vi, vk),

(E ◦ E)(vi, vk)=
( ∨

vj∈V∗
(TR(M)(vij) ∧ TR(M)(vjk)),

∧

vj∈V∗
(IR(M)(vij) ∨ IR(M)(vjk)),

∧

vj∈V∗
(FR(M)(vij) ∨ FR(M)(vjk))

)
,

(E ◦ E)(vi, vk)=
( ∨

vj∈V∗
(TR(M)(vij) ∧ TR(M)(vjk)),

∧

vj∈V∗
(IR(M)(vij) ∨ IR(M)(vjk)),

∧

vj∈V∗
(FR(M)(vij) ∨ FR(M)(vjk))

)
.

Thus it is the strength of strongest path from vi to vk in G.
In a soft rough neutrosophic influence graph G, if in each approximation graph

ICONNG(vi, vk) = I∞(vi, vk) = ∨α{Iα(vi, vk)}, ICONNG(vi, vk) = I∞
(vi, vk) = ∨α{Iα

(vi, vk)}.

where
Iα(vi, vk) = (Iα−1 ◦ I)(vi, vk), Iα

(vi, vk) = (Iα−1 ◦ I)(vi, vk),
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and

(I ◦ I)(vi, vk)=
( ∨

vm∈V∗
(TX(Q)(vivlm) ∧ TX(Q)(vmvpk)),

∧

vm∈V∗
(IX(Q)(vivlm) ∨ IX(Q)(vmvpk)),

∧

vm∈V∗
(FX(Q)(vivlm) ∨ FX(Q)(vmvpk))

)
,

(I ◦ I)(vi, vk)=
( ∨

vm∈V∗
(TX(Q)(vivlm) ∧ TX(Q)(vmvpk)),

∧

vm∈V∗
(IX(Q)(vivlm) ∨ IX(Q)(vmvpk)),

∧

vm∈V∗
(FX(Q)(vivlm) ∨ FX(Q)(vmvpk))

)
.

Thus it is the strength of strongest path from vi to vk in G.

Definition 27. A SRNIG is called connected if each two vertex vj and vk are joined by a SRN (SRNI) path.
Maximal connected partial subgraphs in each approximation subgraph are called component.

Definition 28. A soft rough neutrosophic influence graph is a cycle if and only if the underlying graphs of each
approximation is a cycle. A soft rough neutrosophic influence graph is a soft rough neutrosophic cycle if and only
if the underlying graphs of each approximations is a cycle and there exist vlm,vij∈E∗,vlm,vij∈E∗ and vlm 6=vij,
such that

R(M)(vij)=
( ∧

vlm∈E∗−vij

TR(M)(vlm),
∨

vlm∈E∗−vij

IR(M)(vlm),
∨

vlm∈E∗−vij

FR(M)(vlm)
)

,

R(M)(vij)=
( ∧

vlm∈E∗−vij

TR(M)(vlm),
∨

vlm∈E∗−vij

IR(M)(vlm),
∨

vlm∈E∗−vij

FR(M)(vlm)
)

.

A soft rough neutrosophic influence graph is a soft rough neutrosophic influence cycle if and only if
the graphs is soft rough neutrosophic cycle and there exist vlvmn,vivjk∈I∗,vlvmn,vivjk∈I∗ and vlvmn 6=vivjk,
such that

X(Q)(vivjk)=
( ∧

vl vmn∈I∗−vivjk

TX(Q)(vlvmn),
∨

vlvmn∈I∗−vivjk

IX(Q)(vlvmn),
∨

vl vmn∈I∗−vivjk

FX(Q)(vlvmn)
)

,

X(Q)(vivjk)=
( ∧

vl vmn∈I∗−vivjk

TX(Q)(vlvmn),
∨

vlvmn∈I∗−vivjk

IX(Q)(vlvmn),
∨

vl vmn∈I∗−vivjk

FX(Q)(vlvmn)
)

.

Example 7. Considering Example 4. Let I={v1v32,v1v24,v2v13,v3v24,v3v41,v4v13,v4v32} ⊆V̂ and
P={a1a32,a2a43,a4a13}⊆Â. Then a full soft set X on I (from P to I) can be defined in Table 14 as follows:

Table 14. Full soft set X.

X v1v32 v1v24 v2v13 v3v24 v3v41 v4v13 v4v32

a1a32 1 0 0 0 0 0 1
a2a43 0 0 1 0 0 1 0
a4a13 0 1 0 1 1 0 0
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TX(Q2)
(vivjk)≤TX(Q1)

(vivjk), IX(Q2)
(vivjk)≥IX(Q1)

(vivjk), FX(Q2)
(vij)≥FX(Q1)

(vivjk).

Definition 30. A H=(SN2,RM2,XQ2) is called soft rough neutrosophic influence spanning subgraph of a soft
rough neutrosophic influence graph G=(SN1,RM1,XQ1), if H is a soft rough neutrosophic influence subgraph
such that

TS(N2)
(v)=TS(N1)

(v), IS(N2)
(v)=IS(N1)

(v), FS(N2)
(v)=FS(N1)

(v),

TS(N2)
(v)=TS(N1)

(v), IS(N2)
(v)=IS(N1)

(v), FS(N2)
(v)=FS(N1)

(v).

Definition 31. A soft rough neutrosophic influence graph is a forest if and only if each supporting approximation
graph is a forest. A soft rough neutrosophic influence graph G=(SN1,RM1,XQ1) is a soft rough neutrosophic
forest if and only if there exist a soft rough neutrosophic spanning subgraph H=(SN1,RM2,XQ2) is a forest
such that vij∈G−H

TR(M1)
(vij)<TCONNH(vi, vj), IR(M1)

(vij)>ICONNH(vi, vj), FR(M1)
(vij) >FCONNH(vi, vj),

TR(M1)
(vij)<TCONNH

(vi, vj), IR(M1)
(vij)>ICONNH

(vi, vj), FR(M1)
(vij) >FCONNH

(vi, vj).

A soft rough neutrosophic influence graph G=(SN1,RM1,XQ1) is a soft rough neutrosophic influence
forest if and only if there exist a soft rough neutrosophic spanning subgraph H=(SN1,RM1,XQ2) is a forest
such that vivjk∈G−H

TX(Q1)
(vivjk)<TICONNH(vi, vk), TX(Q1)

(vivjk)<TICONNH
(vi, vk),

IX(Q1)
(vivjk)>IICONNH(vi, vk), IX(Q1)

(vivjk)>IICONNH
(vi, vk),

FX(Q1)
(vivjk)>FICONNH(vi, vk), FX(Q1)

(vivjk)>FICONNH
(vi, vk).

Definition 32. A soft rough neutrosophic influence graph is a tree if and only if each supporting approximation
graph is a tree. A soft rough neutrosophic influence graph G=(SN1,RM1,XQ1) is a soft rough neutrosophic tree
if and only if there exist a soft rough neutrosophic spanning subgraph H=(SN1,RM2,XQ2) is a tree such that
vij∈G−H

TR(M1)
(vij)<TCONNH(vi, vj), IR(M1)

(vij)>ICONNH(vi, vj), FR(M1)
(vij) >FCONNH(vi, vj),

TR(M1)
(vij)<TCONNH

(vi, vj), IR(M1)
(vij)>ICONNH

(vi, vj), FR(M1)
(vij) >FCONNH

(vi, vj).

A soft rough neutrosophic influence graph G=(SN1,RM1,XQ1) is a soft rough neutrosophic influence tree
if and only if there exist a soft rough neutrosophic spanning subgraph H=(SN1,RM1,XQ2) is a tree such that
vivjk∈G−H

TX(Q1)
(vivjk)<TICONNH(vi, vk), TX(Q1)

(vivjk)<TICONNH
(vi, vk),

IX(Q1)
(vivjk)>IICONNH(vi, vk), IX(Q1)

(vivjk)>IICONNH
(vi, vk),

FX(Q1)
(vivjk)>FICONNH(vi, vk), FX(Q1)

(vivjk)>FICONNH
(vi, vk).

Definition 33. Let G=(SN,RM,XQ) be a soft rough neutrosophic influence graph, an edge vij is a bridge if
edge vij is a bridge in both underlying graphs of G and G. Let G=(SN,RM,XQ) be a soft rough neutrosophic
influence graph, an edge vij is a soft rough neutrosophic bridge if vlm∈G
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TCONNG−vij
(vl , vm)<TCONNG(vl , vm), TCONNG−vij

(vl , vm)<TCONNG
(vl , vm),

ICONNG−vij
(vl , vm)>ICONNG(vl , vm), ICONNG−vij

(vl , vm)>ICONNG
(vl , vm),

FCONNG−vij
(vl , vm)>FCONNG(vl , vm), FCONNG−vij

(vl , vm)>FCONNG
(vl , vm),

Let G=(SN,RM,XQ) be a soft rough neutrosophic influence graph, an edge vij is an soft rough
neutrosophic influence bridge if vlm∈G

TICONNG−vij
(vl , vm)<TICONNG(vl , vm), TICONNG−vij

(vl , vm)<TICONNG
(vl , vm),

IICONNG−vij
(vl , vm)>IICONNG(vl , vm), ;IICONNG−vij

(vl , vm)>IICONNG
(vl , vm),

FICONNG−vij
(vl , vm)>FICONNG(vl , vm), FICONNG−vij

(vl , vm)>FICONNG
(vl , vm),

Definition 34. Let G=(SN,RM,XQ) be a soft rough neutrosophic influence graph, a vertex is a cutnode if a
vertex vi is a cutnode in underlying graphs of G and G. Let G=(SN,RM,XQ) be a soft rough neutrosophic
influence graph then a vertex vi in G is a soft rough neutrosophic cutnode if the deletion of vi from G reduces the
strength of the connectedness from nodes vj→vk∈V∗,V∗

TCONNG−vi
(vj, vk)<TCONNG(vj, vk), TCONNG−vi

(vj, vk)<TCONNG
(vj, vk),

ICONNG−vi
(vj, vk)>ICONNG(vj, vk), ICONNG−vi

(vj, vk)>ICONNG
(vj, vk),

FCONNG−vi
(vj, vk)>FCONNG(vj, vk), FCONNG−vi

(vj, vk)>FCONNG
(vj, vk).

Let G=(SN,RM,XQ) be a soft rough neutrosophic influence graph then a vertex vi in G is an neutrosophic
influence cutnode if the deletion of vi from G reduces the influence strength of the connectedness from
vj→vk∈V∗,V∗

TICONNG−vi
(vj, vk)<TICONNG(vj, vk), TICONNG−vi

(vj, vk)<TICONNG
(vj, vk),

IICONNG−vi
(vj, vk)>IICONNG(vj, vk), IICONNG−vi

(vj, vk)>IICONNG
(vj, vk),

FICONNG−vi
(vj, vk)>FICONNG(vj, vk), FICONNG−vi

(vj, vk)>FICONNG
(vj, vk),

Definition 35. Let G=(SN,RM,XQ) be a soft rough neutrosophic influence graph. A pair vivjk is called a
cutpair if and only if vivjk is a cutpair in both supporting influence graph of G and G. That is after removing the
pair vivjk there is no path from vi to vk in both supporting influence graph of G and G. Let G=(SN,RM,XQ)

be a soft rough neutrosophic influence graph. A pair vivjk is called a soft rough neutrosophic cutpair if and
only if if deleting the pair vivjk reduces the connectedness from vi to vk in both graph G and G. That is,

TCONNG−vivjk
(vi, vk)<TCONNG(vi, vk), TICONNG−vivjk

(vi, vk)<TICONNG
(vi, vk),

ICONNG−vivjk
(vi, vk)>ICONNG(vi, vk), IICONNG−vivjk

(vi, vk)>IICONNG
(vi, vk),

FCONNG−vivjk
(vi, vk)>FCONNG(vi, vk), FICONNG−vivjk

(vi, vk)>FICONNG
(vi, vk),
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A soft rough neutrosophic influence cutpair vivjk is a pair in a soft rough neutrosophic influence graph
G=(SN,RM,XQ) if there is spanning influence subgraph H = G− vivjk reduces the strength of the influence
connectedness from vi to vk. That is,

TICONNG−vivjk
(vi, vk)<TICONNG(vi, vk), TICONNG−vivjk

(vi, vk)<TICONNG
(vi, vk),

IICONNG−vivjk
(vi, vk)>IICONNG(vi, vk), IICONNG−vivjk

(vi, vk)>IICONNG
(vi, vk),

FICONNG−vivjk
(vi, vk)>FICONNG(vi, vk), FICONNG−vivjk

(vi, vk)>FICONNG
(vi, vk),

Definition 36. An edge vij in soft rough neutrosophic influence graph G is called strong soft rough neutrosophic
edge if

TR(M)(vij)≥TCONNG−vij
(vi, vj), TR(M)(vij) ≥TCONNG−vij

(vi, vj),

IR(M)(vij)≤ICONNG−vij
(vi, vj) , IR(M)(vij) ≤ ICONNG−vij

(vi, vj),

FR(M)(vij)≤FCONNG−vij
(vi, vj) , FR(M)(vij) ≤FCONNG−vij

(vi, vj).

A pair vivjk in soft rough neutrosophic influence graph G is called strong pair if

TX(Q)(vivjk)≥TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) ≥TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)≤IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) ≤ IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)≤FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) ≤FICONNG−vivjk

(vi, vk).

Definition 37. An edge vij in soft rough neutrosophic influence graph G is called α−strong soft rough
neutrosophic edge if

TR(M)(vij)>TCONNG−vij
(vi, vj), TR(M)(vij) >TCONNG−vij

(vi, vj),

IR(M)(vij)<ICONNG−vij
(vi, vj) , IR(M)(vij) < ICONNG−vij

(vi, vj),

FR(M)(vij)<FCONNG−vij
(vi, vj) , FR(M)(vij) <FCONNG−vij

(vi, vj).

A pair vivjk in soft rough neutrosophic influence graph G is called α−strong pair if

TX(Q)(vivjk)>TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) >TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)<IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) < IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)<FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) <FICONNG−vivjk

(vi, vk).

Definition 38. An edge vij in soft rough neutrosophic influence graph G is called β−strong soft rough
neutrosophic edge if

TR(M)(vij)=TCONNG−vij
(vi, vj), TR(M)(vij) =TCONNG−vij

(vi, vj),

IR(M)(vij) =ICONNG−vij
(vi, vj) , IR(M)(vij) = ICONNG−vij

(vi, vj),

FR(M)(vij)=FCONNG−vij
(vi, vj) , FR(M)(vij) =FCONNG−vij

(vi, vj).
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A pair vivjk in soft rough neutrosophic influence graph G is called β−strong pair if

TX(Q)(vivjk)=TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) =TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk) =IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) = IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)=FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) =FICONNG−vivjk

(vi, vk).

Definition 39. An edge vij in soft rough neutrosophic influence graph G is called δ−strong soft rough
neutrosophic edge if

TR(M)(vij)<TCONNG−vij
(vi, vj), TR(M)(vij) <TCONNG−vij

(vi, vj),

IR(M)(vij)>ICONNG−vij
(vi, vj) , IR(M)(vij) > ICONNG−vij

(vi, vj),

FR(M)(vij)>FCONNG−vij
(vi, vj) , FR(M)(vij) >FCONNG−vij

(vi, vj).

A pair vivjk in soft rough neutrosophic influence graph G is called δ−strong pair if

TX(Q)(vivjk)<TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) <TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)>IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) > IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)>FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) >FICONNG−vivjk

(vi, vk).

Definition 40. A δ−strong soft rough neutrosophic edge vij is called a δ∗−strong soft rough neutrosophic
edge if

TR(M)(vij)>
∧

vlm∈E∗
TR(M)(vlm), TR(M)(vij)>

∧

vlm∈E∗
TR(M)(vlm),

IR(M)(vij)<
∧

vlm∈E∗
IR(M)(vlm), IR(M)(vij)<

∧

vlm∈E∗
IR(M)(vlm),

FR(M)(vij)<
∧

vlm∈E∗
FR(M)(vlm), FR(M)(vij)<

∧

vlm∈E∗
FR(M)(vlm).

A δ−strong pair vivjk is called a δ∗−strong pair if

TR(M)(vij)>
∧

vlm∈E∗
TR(M)(vlm), TR(M)(vij)>

∧

vlm∈E∗
TR(M)(vlm),

IR(M)(vij)<
∧

vlm∈E∗
IR(M)(vlm), IR(M)(vij)<

∧

vlm∈E∗
IR(M)(vlm),

FR(M)(vij)<
∧

vlm∈E∗
FR(M)(vlm), FR(M)(vij)<

∧

vlm∈E∗
FR(M)(vlm).

A δ−strong pair vivjk is called a δ∗−strong pair if vivjk 6=vlvmn

TX(Q)(vivjk)>
∧

vl vmn∈I∗
TX(Q)(vlvmn), TX(Q)(vivjk)>

∧

vlvmn∈I∗
TX(Q)(vlvmn),

IX(Q)(vivjk)<
∧

vl vmn∈I∗
IX(Q)(vlvmn), IX(Q)(vivjk)<

∧

vlvmn∈I∗
IX(Q)(vlvmn),

FX(Q)(vivjk)<
∧

vl vmn∈I∗
FX(Q)(vlvmn), FX(Q)(vivjk)<

∧

vlvmn∈I∗
FX(Q)(vlvmn).
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Theorem 4. G is a soft rough neutrosophic influence forest if and only if in any cycle of G, there is a pair vivjk
such that

TX(Q)(vivjk)<TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) <TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)>IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) > IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)>FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) >FICONNG−vivjk

(vi, vk).

Proof. The proof is obvious.

Theorem 5. A soft rough neutrosophic graph G is a soft rough neutrosophic influence forest if there is at most
one path with the most influence strength.

Proof. Let G be not a soft rough neutrosophic influence forest. Then by Theorem 4, there exist a cycle
C in G such that

TX(Q)(vivjk)≥TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) ≥TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)≤IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) ≤ IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)≤FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) ≤FICONNG−vivjk

(vi, vk),

for every pair vivjk of C.
Therefore, vivjk is the path within the most influence strength from vi to vk. Let vivjk be a pair

such that

TX(Q)(vivjk)>
∧

vl vmn∈I∗
TX(Q)(vlvmn), TX(Q)(vivjk)>

∧

vlvmn∈I∗
TX(Q)(vlvmn),

IX(Q)(vivjk)<
∧

vl vmn∈I∗
IX(Q)(vlvmn), IX(Q)(vivjk)<

∧

vlvmn∈I∗
IX(Q)(vlvmn),

FX(Q)(vivjk)<
∧

vl vmn∈I∗
FX(Q)(vlvmn), FX(Q)(vivjk)<

∧

vlvmn∈I∗
FX(Q)(vlvmn),

in C. Then remaining part of C is a path with the most influence strength from vi to vjk. This is a
contradiction to the the fact there is at most one path with the most influence strength. Hence, G is a
soft rough neutrosophic influence forest.

Theorem 6. Assume that G is a cycle. Then G is not a soft rough neutrosophic influence tree if and only if
G is a soft rough neutrosophic influence cycle.

Proof. Let G=(SN,RM,XQ1) be a soft rough neutrosophic influence cycle. Then there exist at least
two distinct edge and two distinct pair such that
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R(M)(vij) =
( ∧

vlm∈E∗−vij

TR(M)(vlm),
∨

vlm∈E∗−vij

IR(M)(vlm),
∨

vlm∈E∗−vij

FR(M)(vlm)
)

,

R(M)(vij) =
( ∧

vlm∈E∗−vij

TR(M)(vlm),
∨

vlm∈E∗−vij

IR(M)(vlm),
∨

vlm∈E∗−vij

FR(M)(vlm)
)

,

X(Q)(vivjk)=
( ∧

vlvmn∈I∗−vivjk

TX(Q)(vlvmn),
∨

vlvmn∈I∗−vivjk

IX(Q)(vlvmn),
∨

vl vmn∈I∗−vivjk

FX(Q)(vlvmn)
)

,

X(Q)(vivjk)=
( ∧

vlvmn∈I∗−vivjk

TX(Q)(vlvmn),
∨

vlvmn∈I∗−vivjk

IX(Q)(vlvmn),
∨

vl vmn∈I∗−vivjk

FX(Q)(vlvmn)
)

.

Let H=(SN,RM,XQ2) be a spanning soft rough neutrosophic influence tree in G. Then there
exists a path from vi to vk not involving vivjk such that E∗1−E∗2={(vivjk)}. Hence there does not exist a
path in H from vi to vk such that

TX(Q2)
(vivjk)≤TICONNG(vi, vk), TX(Q2)

(vivjk) ≤TICONNG
(vi, vk),

IX(Q2)
(vivjk)≥IICONNG(vi, vk) , IX(Q2)

(vivjk) ≥ IICONNG
(vi, vk),

FX(Q2)
(vivjk)≥FICONNG(vi, vk) , FX(Q2)

(vivjk) ≥FICONNG
(vi, vk).

Thus G is not a soft rough neutrosophic influence tree.
Conversely, suppose that G is not a soft rough neutrosophic influence tree. Since, G is a soft

rough neutrosophic influence cycle. So for all vivjk∈I∗ and vivjk∈I∗, we have a soft rough neutrosophic
spanning influence subrgraph H=(SN,RM,XQ2) which is tree and X(Q2)(vivjk)=0, X(Q2)(vivjk)=0
such that ∀vivlm 6= vlvmn

TX(Q2)
(vivjk)≤TICONNH(vi, vk), TX(Q2)

(vivjk) ≤TICONNG
(vi, vk),

IX(Q2)
(vivjk)≥IICONNG(vi, vk) , IX(Q2)

(vivjk) ≥ IICONNG
(vi, vk),

FX(Q2)
(vivjk)≥FICONNG(vi, vk) , FX(Q2)

(vivjk) ≥FICONNG
(vi, vk),

∀vlvmn ∈ I∗ − vivjk and vlvmn ∈ I∗ − vivjk

TX(Q2)
(vivjk)=

∧

vl vmn∈I∗
TX(Q1)

(vlvmn), TX(Q2)
(vivjk)=

∧

vlvmn∈I∗
TX(Q1)

(vlvmn),

IX(Q2)
(vivjk) =

∧

vl vmn∈I∗
IX(Q1)

(vlvmn), IX(Q2)
(vivjk) =

∧

vlvmn∈I∗
IX(Q1)

(vlvmn),

FX(Q2)
(vivjk)=

∧

vl vmn∈I∗
FX(Q1)

(vlvmn), FX(Q2)
(vivjk)=

∧

vlvmn∈I∗
FX(Q1)

(vlvmn).

Therefore,

X(Q)(vivjk)=
( ∧

vl vmn∈I∗−vivjk

TX(Q)(vlvmn),
∨

vlvmn∈I∗−vivjk

IX(Q)(vlvmn),
∨

vl vmn∈I∗−vivjk

FX(Q)(vlvmn)
)

,

X(Q)(vivjk)=
( ∧

vl vmn∈I∗−vivjk

TX(Q)(vlvmn),
∨

vlvmn∈I∗−vivjk

IX(Q)(vlvmn),
∨

vl vmn∈I∗−vivjk

FX(Q)(vlvmn)
)

.

where vivjk 6= vlvmn not uniquely. Therefore G is a soft rough neutrosophic influence cycle.
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Theorem 7. If

TX(Q)(vivjk)>TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) >TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)<IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) < IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)<FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) <FICONNG−vivjk

(vi, vk),

in a soft rough neutrosophic graph. Then vivjk is a cutpair in soft rough neutrosophic influence graph G.

Proof. Suppose vivjk is not a cutapir in soft rough neutrosophic influence graph, then

TICONNG−vi ,vk
(vi, vk)=TICONNG(vi, vk), TICONNG−vi ,vk

(vi, vk)=TICONNG
(vlvmn),

IICONNG−vi ,vk
(vi, vk) =IICONNG(vi, vk), IICONNG−vi ,vk

(vi, vk) =IICONNG
(vlvmn),

FICONNG−vi ,vk
(vi, vk)=FICONNG(vi, vk), FICONNG−vi ,vk

(vi, vk)=FICONNG
(vlvmn).

Since,

TX(Q)(vi, vk)≤TICONNG(vi, vk), TX(Q)(vi, vk)≤TICONNG
(vlvmn),

IX(Q)(vi, vk)≥IICONNG(vi, vk), IX(Q)(vi, vk)≥IICONNG
(vlvmn),

FX(Q)(vi, vk)≥FICONNG(vi, vk), FX(Q)(vi, vk)≥FICONNG
(vlvmn).

Therefore,

TICONNG−vi ,vk
(vi, vk)≥TX(Q)(vi, vk), TICONNG−vi ,vk

(vi, vk)≥TX(Q)((vi, vk)),

IICONNG−vi ,vk
(vi, vk)≤IX(Q)(vi, vk), IICONNG−vi ,vk

(vi, vk)≤IX(Q)((vi, vk)),

FICONNG−vi ,vk
(vi, vk)≤FX(Q)(vi, vk), FICONNG−vi ,vk

(vi, vk)≤FX(Q)((vi, vk)),

which is a contradiction. Hence, it is proved.

Theorem 8. If

TX(Q)(vivjk)>TX(Q)(vlvmn), TX(Q)(vivjk) >TX(Q)(vlvmn),

IX(Q)(vivjk)<IX(Q)(vlvmn) , IX(Q)(vivjk) < IX(Q)(vlvmn),

FX(Q)(vivjk)<FX(Q)(vlvmn) , FX(Q)(vivjk) <FX(Q)(vlvmn),

for some vivjk among all cycles in soft rough neutrosophic influence graph G. Then

TX(Q)(vivjk)>TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) >TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)<IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) < IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)<FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) <FICONNG−vivjk

(vi, vk).
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Proof. Since

TICONNG−vivjk
(vivjk)≥TICONNG(vivjk), TICONNG−vivjk

(vivjk)≥TICONNG
((vivjk)),

IICONNG−vivjk
(vivjk)≤IICONNG(vivjk), IICONNG−vivjk

(vivjk)≤IICONNG
((vivjk)),

FICONNG−vivjk
(vivjk)≤FICONNG(vivjk), FICONNG−vivjk

(vivjk)≤FICONNG
((vivjk)).

Therefore, there exists a path from vi to vk not involving (vivjk) such that

TICONNG−vivjk
(vivjk)≥TX(Q)(vivjk), TICONNG−vivjk

(vivjk)≥TX(Q)((vivjk)),

IICONNG−vivjk
(vivjk)≤IX(Q)(vivjk), IICONNG−vivjk

(vivjk)≤IX(Q)((vivjk)),

FICONNG−vivjk
(vivjk)≤FX(Q)(vivjk), FICONNG−vivjk

(vivjk)≤FX(Q)((vivjk)),

This along with vivjk is a cycle and vivjk is least value.

Theorem 9. If vivjk is a soft rough neutrosophic influence cutpair in soft rough neutrosophic influence
graph G. Then

TX(Q)(vivjk)>TX(Q)(vlvmn), TX(Q)(vivjk) >TX(Q)(vlvmn),

IX(Q)(vivjk)<IX(Q)(vlvmn) , IX(Q)(vivjk) < IX(Q)(vlvmn),

FX(Q)(vivjk)<FX(Q)(vlvmn) , FX(Q)(vivjk) <FX(Q)(vlvmn),

for some vivjk among all cycles of G.

Proof. Suppose on contrary in a cycle, we

TX(Q)(vivjk)>TX(Q)(vlvmn), TX(Q)(vivjk) >TX(Q)(vlvmn),

IX(Q)(vivjk)<IX(Q)(vlvmn) , IX(Q)(vivjk) < IX(Q)(vlvmn),

FX(Q)(vivjk)<FX(Q)(vlvmn) , FX(Q)(vivjk) <FX(Q)(vlvmn).

Then any path involving it can be converted into a path not involving it with influence strength
greater than and equal to the value of XQ for previously deleted pairs. So vivjk is not a cutpair. This is a
contradiction to our assumption. Hence vivjk is not a pair with the least value among all cycle.

Theorem 10. If G=(SN1,RM1,XQ1) is a soft rough neutrosophic forest, then the pairs of neutrosophic
spanning subgraph H=(SN1,RM1,XQ2) such that

TX(Q1)
(vivjk)<TICONNH(vi, vk), TX(Q1)

(vivjk)<TICONNH
(vi, vk),

IX(Q1)
(vivjk)>IICONNH(vi, vk), IX(Q1)

(vivjk)>IICONNH
(vi, vk),

FX(Q1)
(vivjk)>FICONNH(vi, vk), FX(Q1)

(vivjk)>FICONNH
(vi, vk),

are exactly the cutpairs of G.

Theorem 11. A soft rough neutrosophic influence graph G is a cycle. Then an edge vjk is a soft rough
neutrosophic influence bridge if and only if it is an edge common to atmost two cutpair.

Theorem 12. Let G be a soft rough neutrosophic influence graph. Then the following conditions are equivalent.
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1. For a pair vivjk∈I∗ ∩ I∗

TX(Q)(vivjk)>TICONNG−vivjk
(vi, vk), TX(Q)(vivjk) >TICONNG−vivjk

(vi, vk),

IX(Q)(vivjk)<IICONNG−vivjk
(vi, vk) , IX(Q)(vivjk) < IICONNG−vivjk

(vi, vk),

FX(Q)(vivjk)<FICONNG−vivjk
(vi, vk) , FX(Q)(vivjk) <FICONNG−vivjk

(vi, vk).

2. vivjk is an influence cutpair

4. Application to Decision-Making

Decision making is a process that plays an important role in our daily lives. Decision making
process can help us make more purposeful, thoughtful decisions by systemizing relevant information
step by step. The process of decision making involves making a choice among different alternatives,
it starts when we do not know what to do.

The selection of the right path for transferring goods from one state to another states illegally.
Every state has different polices within or out side the state, there are several factors to take into
consideration for selecting the right path. Whether the economy of a country is good, having job
opportunity or a safety.

Suppose a trader wants to extend his business to the countries C1,C2,C3,C4,C5 and C6. Initially,
he takes C1 and extends his business one by one. Assume A is set of the parameters, consisting of
element a1 = job, a2 = economy above average, a3 = safety, a4 = other.

Let S be a full soft set from A to parameter set V, as shown in Table 16.

Table 16. Soft Neutrosophic Set S.

S C1 C2 C3 C4 C5 C6

a1 1 1 1 0 1 1
a2 0 0 1 1 1 1
a3 1 1 1 0 0 1
a3 1 1 1 1 1 1

Suppose N={(C1,0.8,0.6, 0.7),(C2,0.9,0.5,0.65),(C3,0.75,0.6,0.65),(C4,1.0,0.55,0.85),(C5,0.95,0.63,0.8),
(C6,0.85,0.65,0.95)} is most favorable object describes membership of suitable countries foreign polices
corresponding to the boolean set V, which is a neutrosophic set on the set V under consideration.

SN = (S(N), S(N)) is a full soft rough set in full soft approximation space (V, S) where

S(N)={(C1, 0.90, 0.50, 0.65), (C2, 0.90, 0.50, 0.65), (C3, 0.90, 0.55, 0.65), (C4, 1.00, 0.55, 0.65),

(C5, 0.95, 0.55, 0.65), (C6, 0.9, 0.55, 0.65)},
S(N)={(C1, 0.75, 0.65, 0.95), (C2, 0.75, 0.65, 0.95), (C3, 0.75, 0.65, 0.95), (C4, 0.75, 0.65, 0.95),

(C5, 0.75, 0.65, 0.95), (C6, 0.75, 0.65, 0.95)} .

Let E={C12,C14,C15,C23,C26,C34,C35,C45,C46,C56}⊆Ṽ = V ×V and L={a14, a21, a34, a42}⊆Ã = A× A.
A full soft relation R on E (from L to E) can be defined as shown in Table 17.

Table 17. Full soft set R.

R C12 C14 C15 C23 C26 C34 C35 C45 C46 C56

a14 1 1 1 1 1 1 1 0 0 1
a21 0 0 0 0 0 0 1 1 1 1
a34 1 1 1 1 1 1 1 0 0 0
a42 0 1 1 1 1 1 1 1 1 1
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Let M={(C12,0.74,0.5,0.62),(C14,0.75,0.45,0.63),(C15,0.74,0.54,0.61),(C23,0.72,0.48,0.65),(C26,0.71,
0.49,0.64),(C34,0.72,0.53,0.64),(C35,0.73,0.52,0.63),(C45,0.7,0.51,0.61),(C46,0.74,0.55,0.6),(C56,0.73,0.47,
0.64)} be most favorable object describes membership of countries foreign polices toward
others countries corresponding to the boolean set E, which is a neutrosophic set on the set V
under consideration.

RM = (RM, RM) is a soft neutrosophic rough relation, where

RM={(C12, 0.75, 0.45, 0.61), (C14, 0.75, 0.45, 0.61), (C15, 0.75, 0.45, 0.61), (C23, 0.75, 0.45, 0.61),

(C26, 0.75, 0.45, 0.61), (C34, 0.75, 0.45, 0.61), (C35, 0.74, 0.47, 0.61), (C45, 0.74, 0.47, 0.6),

(C46, 0.74, 0.47, 0.6), (C56, 0.74, 0.47, 0.61)},
RM={(C12, 0.71, 0.54, 0.65), (C14, 0.71, 0.54, 0.65), (C15, 0.71, 0.54, 0.65), (C23, 0.71, 0.54, 0.65),

(C26, 0.71, 0.54, 0.65), (C34, 0.71, 0.54, 0.65), (C35, 0.71, 0.54, 0.64), (C45, 0.70, 0.55, 0.64),

(C46, 0.70, 0.55, 0.64), (C56, 0.71, 0.54, 0.64)}.

Let I={C1C15,C1C23,C1C35,C2C34,C3C14,C3C26,C3C45,C4C23,C4C45,C4C46,C5C23,C5C34, C5C46,
C6C12,C6C15}⊆V̂ = V × E and F={a1a42,a2a14,a3a34,a4a21,a4a42}⊆Â = A× L.

A full soft relation X on I (from F to I) can be defined in Table 18 as follows:

Table 18. Full soft set X.

X C1C15 C1C23 C1C35 C2C34 C3C14 C3C26 C3C45, C4C23
C4C45 C4C46 C5C23 C5C34 C5C46 C6C12 C6C15

e1e42
1 1 1 1 1 1 1 0
0 0 1 1 1 0 1

e2e14
0 0 0 0 1 1 0 0
0 0 1 1 0 1 1

e2e34
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0

e3e34
1 1 1 1 1 1 0 0
0 0 0 0 0 1 1

e4e21
0 0 1 0 0 0 1 0
1 1 0 0 1 0 0

e4e42
1 1 1 1 1 1 1 0
1 1 1 1 1 0 1

Let Q = {(C1C15, 0.7, 0.43, 0.58), (C1C23, 0.65, 0.39, 0.54), (C1C35, 0.66, 0.37, 0.56), (C2C34, 0.68, 0.38,
0.59), (C3C14, 0.6, 0.4, 0.6), (C3C26, 0.62, 0.42, 0.58), (C3C45, 0.64, 0.45, 0.54), (C4C23, 0.7, 0.45, 0.60), (C4C45,
0.7, 0.36, 0.48), (C4C46, 0.68, 0.35, 0.5), (C5C23, 0.69, 0.45, 0.54), (C5C34, 0.65, 0.42, 0.58), (C5C46, 0.64, 0.41,
0.59), (C6C12, 0.63, 0.4, 0.6), (C6C15, 0.62, 0.39, 0.5)} be most favorable object describes membership of
countries impact toward others countries regarding trade corresponding to the boolean set I, which is
a neutrosophic set on the set I under consideration.

XQ = (XQ, XQ) is a soft neutrosophic rough influence, where
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XQ={(C1C15, 0.70, 0.37, 0.50), (C1C23, 0.70, 0.37, 0.50), (C1C35, 0.70, 0.37, 0.50), (C2C34, 0.70, 0.37, 0.50),

(C3C14, 0.69, 0.39, 0.50), (C3C26, 0.69, 0.39, 0.50), (C3C45, 0.70, 0.37, 0.50), (C4C23, 0.7, 0.45, 0.60),

(C4C45, 0.70, 0.35, 0.48), (C4C46, 0.70, 0.35, 0.48), (C5C23, 0.69, 0.39, 0.50), (C5C34, 0.69, 0.39, 0.50),

(C5C46, 0.70, 0.37, 0.50), (C6C12, 0.69, 0.39, 0.50), (C6C15, 0.69, 0.39, 0.50)},
XQ={(C1C15, 0.60, 0.43, 0.60), (C1C23, 0.60, 0.43, 0.60), (C1C35, 0.64, 0.43, 0.59), (C2C34, 0.60, 0.43, 0.60),

(C3C14, 0.60, 0.43, 0.60), (C3C26, 0.60, 0.43, 0.60), (C3C45, 0.64, 0.45, 0.59), (C4C23, 0.7, 0.45, 0.60),

(C4C45, 0.64, 0.45, 0.59), (C4C46, 0.64, 0.45, 0.59), (C5C23, 0.60, 0.45, 0.60), (C5C34, 0.60, 0.45, 0.60),

(C5C46, 0.64, 0.45, 0.59), (C6C12, 0.60, 0.43, 0.60), (C6C15, 0.60, 0.43, 0.60)}.

Thus, G = (G, G) is a soft neutrosophic rough influence graph as shown in Figure 9. He finds the
strength of each path from C1 to C6. The paths are

P1 : C1, C5, C2, C3, C6,

P2 : C1, C4, C5, C6,

P3 : C1, C3, C5, C2, C6

with their influence strength as (0.6,0.45,0.5), respectively.
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)
.

For each Ci, the score values of Ci is calculated directly and as shown in Table 19 So, he chooses the path
P3:C1,C3,C5,C2,C6. The Algorithm 1 of the application is also be given in Table 20. The flow chart is
given in the Figure 10.
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Since, there is more than one path, therefore, the trader calculates the score function which is
formulated in Equation (4):

Score Function(Ci)=

(
TS(N)(Ci) + TS(N)(Ci) + TR(M)(Cij) + TR(M)(Cij) + TX(Q)(CiCjk)+

TX(Q)(CiCjk), IS(N)(Ci)IS(N)(Ci) + IR(M)(Cij)IR(M)(Cij)+ (4)

IX(Q)(CiCjk)IX(Q)(CiCjk), FS(N)(Ci)FS(N)(Ci)+

FR(M)(Cij)FR(M)(Cij) + FX(Q)(CiCjk)FX(Q)(CiCjk)

)
.

For each Ci, the score values of Ci is calculated directly and as shown in Table 19.

Table 19. Score Function.

V Score Values

C1 (9.97,1.054,2.702)
C2 (5.87,1.2979,1.7105)
C3 (8.48,1.3562,2.2994)
C4 (6.73,1.392,2.3119)
C5 (7.07,1.3673,1.9029)
C6 (4.23,0.6929,1.2175)

So, he chooses the path P3:C1,C3,C5,C2,C6. The Algorithm 1 of the application is also be given in
Algorithm 1. The flow chart is given in Figure 10.

Algorithm 1: Influence strength of each path in rough neutrosophic influence graph

1. Input the universal sets C and P.
2. Input the full soft set S and neutrosophic set N on V.
3. Calculate the Soft rough neutrosophic sets on V.
4. Input the universal sets E and L.
5. Input the full soft set R and neutrosophic set M on E.
6. Calculate the Soft rough neutrosophic sets on E.
7. Input the universal sets I and F.
8. Input the full soft set X and neutrosophic set Q on I.
9. Calculate the Soft rough neutrosophic sets on I.
10. Find the number of path and calculate their influence strength of

each path from C1 to Cn.
11. Choose that path which has maximum membership, minimum

indeterminacy and falsity value. If i > 1, than calculate the
score values of each Ci, choose that Ci which has maximum
membership and come immediately after C1 in one of the paths.

5. Conclusions

Graph theory has been applied widely in various areas of engineering, computer science, database
theory, expert systems, neural networks, artificial intelligence, signal processing, pattern recognition,
robotics, computer networks, and medical diagnosis. Present research has shown that two or more
theories can be combined into a more flexible and expressive framework for modeling and processing
incomplete information in information systems. Various mathematical models that combine rough sets,
soft sets and neutrosophic sets have been introduced. A soft rough neutrosophic set is a hybrid tool for
handling indeterminate, inconsistent and uncertain information that exist in real life. We have applied
this concept to graph theory. We have presented certain concepts, including soft rough neutrosophic
graphs, soft rough neutrosophic influence graphs, soft rough neutrosophic influence cycles, soft rough
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neutrosophic influence trees. We also have considered an application of soft rough neutrosophic
influence graph in decision-making to illustrate the best path in the business. In the future, we
will study, (1) Neutrosophic rough hypergraphs, (2) Bipolar neutrosophic rough hypergraphs, (3)
Neutrosophic soft rough hypergraphs, (4) Decision support systems based on soft rough neutrosophic
information.
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Figure 10: The flow chart of the application
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a∈X

Abstract: This article is based on new developments on a neutrosophic triplet group (NTG) and 
applications earlier introduced in 2016 by Smarandache and Ali. NTG sprang up from neutrosophic 
triplet set X: a collection of triplets (b, neut(b), anti(b)) for an b ∈ X that obeys certain axioms 
(existence of neutral(s) and opposite(s)). Some results that are true in classical groups were 
investigated in NTG and were shown to be either universally true in NTG or true in some peculiar 
types of NTG. Distinguishing features between an NTG and some other algebraic structures such as: 
generalized group (GG), quasigroup, loop and group were investigated. Some neutrosophic triplet 
subgroups (NTSGs) of a neutrosophic triplet group were studied. In particular, for any arbitrarily 
fixed a ∈ X, the subsets Xa = {b ∈ X : neut(b) = neut(a)} and ker fa = {b ∈ X| f (b) = neut( f (a))} of X, 
where f : X → Y is a neutrosophic triplet group homomorphism, were shown to be NTSG and normal 
NTSG, respectively. Both Xa and ker fa were shown to be a-normal NTSGs and found to

partition X. Consequently, a Lagrange-like formula was found for a finite NTG X; |X| = ∑ [Xa :∣ ∼=ker fa]| ker fa| based on the fact that | ker fa|∣|Xa|. The first isomorphism theorem X/ ker f  I m f 
was established for NTGs. Using an arbitrary non-abelian NTG X and its NTSG Xa, a Bol structure 
was constructed. Applications of the neutrosophic triplet set, and our results on NTG in relation to 
management and sports, are highlighted and discussed.

Keywords: generalized group; neutrosophic triplet set; neutrosophic triplet group; group

1. Introduction

1.1. Generalized Group

Unified gauge theory has the algebraic structure of a generalized group abstrusely, in its physical
background. It has been a challenge for physicists and mathematicians to find a desirable unified
theory for twistor theory, isotopies theory, and so on. Generalized groups are instruments for
constructions in unified geometric theory and electroweak theory. Completely simple semigroups
are precisely generalized groups (Araujo et al. [1]). As recorded in Adeniran et al. [2], studies on
the properties and structures of generalized groups have been carried out in the past, and these have
been extended to smooth generalized groups and smooth generalized subgroups by Agboola [3,4],
topological generalized groups by Molaei [5], Molaei and Tahmoresi [6], and quotient space of
generalized groups by Maleki and Molaei [7].
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Definition 1 (Generalized Group(GG)). A generalized group X is a non-void set with a binary operation
called multiplication obeying the set of rules given below.

(i) (ab)c = a(bc) for all a, b, c ∈ X.
(ii) For each a ∈ X there is a unique e(a) ∈ X such that ae(a) = e(a)a = a (existence and uniqueness of

identity element).
(iii) For each a ∈ X, there is a−1 ∈ X such that aa−1 = a−1a = e(a) (existence of inverse element).

Definition 2. Let X be a non-void set. Let (·) be a binary operation on X. Whenever a · b ∈ X for all a, b ∈ X,
then (X, ·) is called a groupoid.

Whenever the equation c · x = d (or y · c = d) have unique solution with respect to x (or y) i.e., satisfies
the left (or right) cancellation law, then (X, ·) is called a left (or right) quasigroup. If a groupoid (X, ·) is both
a left quasigroup and right quasigroup, then it is called a quasigroup. If there is an element e ∈ X called the
identity element such that for all a ∈ X, a · e = e · a = a, then a quasigroup (X, ·) is called a loop.

Definition 3. A loop is called a Bol loop whenever it satisfies the identity

((ab)c)b = a((bc)b).

Remark 1. One of the most studied classes of loops is the Bol loop.

For more on quasigroups and loops, interested readers can check [8–15].
A generalized group X has the following properties:

(i) For each a ∈ X, there is a unique a−1 ∈ X.
(ii) e(e(a)) = e(a) and e(a−1) = e(a) if a ∈ X.

(iii) If X is commutative, then X is a group.

1.2. Neutrosophic Triplet Group

Neutrosophy is a novel subdivision of philosophy that studies the nature, origination, and ambit of
neutralities, including their interaction with ideational spectra. Florentin Smarandache [16] introduced
the notion of neutrosophic logic and neutrosophic sets for the first time in 1995. As a matter of fact,
the neutrosophic set is the generalization of classical sets [17], fuzzy sets [18], intuitionistic fuzzy
sets [17,19], and interval valued fuzzy sets [17], to cite a few. The growth process of neutrosophic
sets, fuzzy sets, and intuitionistic fuzzy sets are still evolving, with diverse applications. Some recent
research findings in these directions are [20–27].

Smarandache and Ali [28] were the first to introduce the notion of the neutrosophic triplet, which
they had earlier talked about at a conference. These neutrosophic triplets were used by them to
introduce the neutrosophic triplet group, which differs from the classical group both in fundamental
and structural properties. The distinction and comparison of the neutrosophic triplet group with the
classical generalized group were given. They also drew a brief outline of the potential applications
of the neutrosophic triplet group in other research fields. For discussions of results on neutrosophic
triplet groups, neutrosophic quadruples, and neutrosophic duplets of algebraic structures, as well as
new applications of neutrosophy, see Jaiyéo. lá and Smarandache [29]. Jaiyéo. lá and Smarandache [29]
were the first to introduce and study inverse property neutrosophic triplet loops with applications to
cryptography for the first time.
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Definition 4 (Neutrosophic Triplet Set-NTS). Let X be a non-void set together with a binary operation ?

defined on it. Then X is called a neutrosophic triplet set if, for any a ∈ X, there is a neutral of ‘a’ denoted by
neut(a) (not necessarily the identity element) and an opposite of ‘a’ denoted by anti(a), with neut(a), anti(a) ∈
X such that

a ? neut(a) = neut(a) ? a = a and a ? anti(a) = anti(a) ? a = neut(a).

The elements a, neut(a) and anti(a) are together called neutrosophic triplet, and represented by
(a, neut(a), anti(a)).

Remark 2. For an a ∈ X, each of neut(a) and anti(a) may not be unique. In a neutrosophic triplet set (X, ?),
an element b (or c) is the second (or third) component of a neutrosophic triplet if a, c ∈ X (a, b ∈ X) such that
a ? b = b ? a = a and a ? c = c ? a = b. Thus, (a, b, c) is a neutrosophic triplet.

Example 1 (Smarandache and Ali [28]). Consider (Z6,×6) such that Z6 = {0, 1, 2, 3, 4, 5} and ×6 is
multiplication in modulo 6. (2, 4, 2), (4, 4, 4), and (0, 0, 0) are neutrosophic triplets, but 3 will not give rise to a
neutrosophic triplet.

Definition 5 (Neutrosophic Triplet Group—NTG). Let (X, ?) be a neutrosophic triplet set. Then (X, ?) is
referred to as a neutrosophic triplet group if (X, ?) is a semigroup. Furthermore, if (X, ?) obeys the commutativity
law, then (X, ?) is referred to as a commutative neutrosophic triplet group.

Let (X, ?) be a neutrosophic triplet group. Whenever neut(ab) = neut(a)neut(b) for all a, b ∈ X,
then X is referred to as a normal neutrosophic triplet group.

Let (X, ?) be a neutrosophic triplet group and let H ⊆ X. H is referred to as a neutrosophic triplet
subgroup (NTSG) of X if (H, ?) is a neutrosophic triplet group. Whence, for any fixed a ∈ X, H is called
a-normal NTSG of X, written H

a
/ X if ay anti(a) ∈ H for all y ∈ H.

Remark 3. An NTG is not necessarily a group. However, a group is an NTG where neut(a) = e, the general
identity element for all a ∈ X, and anti(a) is unique for each a ∈ X.

Example 2 (Smarandache and Ali [28]). Consider (Z10,⊗) such that c⊗ d = 3cd mod 10. (Z10,⊗) is a
commutative NTG but neither a GG nor a classical group.

Example 3 (Smarandache and Ali [28]). Consider (Z10, ?) such that c ? d = 5c + d mod 10. (Z10, ?) is a
non-commutative NTG but not a classical group.

Definition 6 (Neutrosophic Triplet Group Homomorphism). Let f : X → Y be a mapping such that X
and Y are two neutrosophic triplet groups. Then f is referred to as a neutrosophic triplet group homomorphism
if f (cd) = f (c) f (d) for all c, d ∈ X. The kernel of f at a ∈ X is defined by

ker fa = {x ∈ X : f (x) = neut( f (a))}.

The Kernel of f is defined by
ker f =

⋃
a∈X

ker fa

such that fa = f |Xa , where Xa = {x ∈ X : neut(x) = neut(a)}.

Remark 4. The definition of neutrosophic triplet group homomorphism above is more general than that
in Smarandache and Ali [28]. In Theorem 5, it is shown that, for an NTG homomorphism f : X → Y,
f (neut(a)) = neut( f (a)) and f (anti(a)) = anti( f (a)) for all a ∈ X.
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The present work is a continuation of the study of a neutrosophic triplet group (NTG) and its
applications, which was introduced by Smarandache and Ali [28]. Some results that are true in classical
groups were investigated in NTG and will be proved to be either generally true in NTG or true in
some classes of NTG. Some applications of the neutrosophic triplet set, and our results on NTG in
relation to management and sports will be discussed.

The first section introduces GG and NTG and highlights existing results that are relevant to
the present study. Section 2 establishes new results on algebraic properties of NTGs and NTG
homomorphisms, among which are Lagrange’s Theorem and the first isomorphism theorem,
and presents a method of the construction of Bol algebraic structures using an NTG. The third section
describes applications of NTGs to human management and sports.

2. Main Results

We shall first establish the relationship among generalized groups, quasigroups, and loops with
a neutrosophic triplet group assumed.

Lemma 1. Let X be a neutrosophic triplet group.

1. X is a generalized group if it satisfies the left (or right) cancellation law or X is a left (or right) quasigroup.
2. X is a generalized group if and only if each element x ∈ X has a unique neut(x) ∈ X.
3. Whenever X has the cancellation laws (or is a quasigroup), then X is a loop and group.

Proof. 1. Let x have at least two neutral elements, say neut(x), neut(x)′ ∈ X. Then xx = xx ⇒
xx anti(x) = xx anti(x)⇒ x neut(x) = x neut(x)′

left quasigroup
=⇒

left cancellation law
neut(x) = neut(x)′. Therefore,

X is a generalized group. Similarly, X is a generalized group if it is has the right cancellation law
or if it is a right quasigroup.

2. This follows by definition.
3. This is straightforward because every associative quasigroup is a loop and group.

2.1. Algebraic Properties of Neutrosophic Triplet Group

We now establish some new algebraic properties of NTGs.

Theorem 1. Let X be a neutrosophic triplet group. For any a ∈ X, anti
(
anti(a)

)
= a.

Proof. anti
(
anti(a)

)
anti(a) = neut

(
anti(a)

)
= neut(a) by Theorem 1 ([29]). After multiplying by a,

we obtain [
anti

(
anti(a)

)
anti(a)

]
a = neut(a)a = a. (1)

LHS = anti
(
anti(a)

)(
anti(a)a

)
= anti

(
anti(a)

)
neut(a)

= anti
(
anti(a)

)
neut

(
anti(a)

)
= anti

(
anti(a)

)
neut

(
anti

(
anti(a)

))
= anti

(
anti(a)

)
.

(2)

Hence, based on Equations (1) and (2), anti
(
anti(a)

)
= a.

Theorem 2. Let X be a neutrosophic triplet group such that the left cancellation law is satisfied,
and neut(a) = neut

(
a anti(b)

)
if and only if a anti(b) = a. Then X is an idempotent neutrosophic triplet

group if and only if neut(a)anti(b) = anti(b)neut(a) ∀ a, b ∈ X.

Proof. neut(a)anti(b) = anti(b)neut(a) ⇔ (a neut(a))anti(b) = a anti(b)neut(a) ⇔ a anti(b) =

a anti(b)neut(a) ⇔ neut(a) = neut
(
a anti(b)

)
⇔ a anti(b) = a ⇔ a anti(b)b = ab ⇔ a neut(b) =

ab⇔ anti(a)a neut(b) = anti(a)ab⇔ neut(a)neut(b) = neut(a)b⇔ neut(b) = b⇔ b = bb.
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Theorem 3. Let X be a normal neutrosophic triplet group in which neut(a)anti(b) = anti(b)neut(a) ∀ a, b ∈ X.
Then, anti(ab) = anti(b)anti(a) ∀ a, b ∈ X.

Proof. Since anti(ab)(ab) = neut(ab), then by multiplying both sides of the equation on the right by
anti(b)anti(a), we obtain[

anti(ab)ab
]
anti(b)anti(a) = neut(ab)anti(b)anti(a). (3)

Going by Theorem 1([29]),[
anti(ab)ab

]
anti(b)anti(a) = anti(ab)a

(
b anti(b)

)
anti(a) = anti(ab)a(neut(b)anti(a))

= anti(ab)(a anti(a))neut(b) = anti(ab)
(
neut(a)neut(b)

)
= anti(ab)neut(ab) = anti(ab)neut

(
anti(ab)) = anti(ab).

(4)

Using Equations (3) and (4), we obtain[
anti(ab)ab

]
anti(b)anti(a) = anti(ab)⇒

neut(ab)
(
anti(b)anti(a)

)
= anti(ab)⇒ anti(ab) = anti(b)anti(a).

It is worth characterizing the neutrosophic triplet subgroup of a given neutrosophic triplet group
to see how a new NTG can be obtained from existing NTGs.

Lemma 2. Let H be a non-void subset of a neutrosophic triplet group X. The following are equivalent.

(i) H is a neutrosophic triplet subgroup of X.
(ii) For all a, b ∈ H, a anti(b) ∈ H.

(iii) For all a, b ∈ H, ab ∈ H, and anti(a) ∈ H.

Proof. (i)⇒ (ii) If H is an NTSG of X and a, b ∈ H, then anti(b) ∈ H. Therefore, by closure property,
a anti(b) ∈ H ∀ a, b ∈ H.

(ii)⇒ (iii) If H 6= ∅, and a, b ∈ H, then we have b anti(b) = neut(b) ∈ H, neut(b)anti(b) = anti(b) ∈ H,
and ab = a anti(anti(b)) ∈ H, i.e., ab ∈ H.

(iii)⇒ (i) H ⊆ X, so H is associative since X is associative. Obviously, for any a ∈ H, anti(a) ∈ H.
Let a ∈ H, then anti(a) ∈ H. Therefore, a anti(a) = anti(a)a = neut(a) ∈ H. Thus, H is an
NTSG of X.

Theorem 4. Let G and H be neutrosophic triplet groups. The direct product of G and H defined by

G× H = {(g, h) : g ∈ G and h ∈ H}

is a neutrosophic triplet group under the binary operation ◦ defined by

(g1, h1) ◦ (g2, h2) = (g1g2, h1h2).

Proof. This is simply done by checking the axioms of neutrosophic triplet group for the pair (G×H, ◦),
in which case neut(g, h) =

(
neut(g), neut(h)

)
and anti(g, h) =

(
anti(g), anti(h)

)
.

Lemma 3. Let H = {Hi}i∈Ω be a family of neutrosophic triplet subgroups of a neutrosophic triplet group
X such that

⋂
i∈Ω

Hi 6= ∅. Then
⋂

i∈Ω

Hi is a neutrosophic triplet subgroup of X.
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Proof. This is a routine verification using Lemma 2.

2.2. Neutrosophic Triplet Group Homomorphism

Let us now establish results on NTG homomorphisms, its kernels, and images, as well as
a Lagrange-like formula and the First Isomorphism Theorem for NTGs.

Theorem 5. Let f : X → Y be a homomorphism where X and Y are two neutrosophic triplet groups.

1. f (neut(a)) = neut( f (a)) for all a ∈ X.
2. f (anti(a)) = anti( f (a)) for all a ∈ X.
3. If H is a neutrosophic triplet subgroup of X, then f (H) is a neutrosophic triplet subgroup of Y.
4. If K is a neutrosophic triplet subgroup of Y, then ∅ 6= f−1(K) is a neutrosophic triplet subgroup of X.
5. If X is a normal neutrosophic triplet group and the set X f = {(neut(a), f (a)) : a ∈ X} with the product

(neut(a), f (a))(neut(b), f (b)) := (neut(ab), f (ab)), then

X f is a neutrosophic triplet group.

Proof. Since f is an homomorphism, f (ab) = f (a) f (b) for all a, b ∈ X.

1. Place b = neut(a) in f (ab) = f (a) f (b) to obtain f
(
a neut(a)

)
= f (a) f (neut(a)) ⇒ f (a) =

f (a) f (neut(a)). Additionally, place b = neut(a) in f (ba) = f (b) f (a) to obtain f
(
neut(a)a

)
=

f (neut(a)) f (a)⇒ f (a) = f (neut(a)) f (a). Thus, f (neut(a)) = neut( f (a)) for all a ∈ X.
2. Place b = anti(a) in f (ab) = f (a) f (b) to obtain f

(
a anti(a)

)
= f (a) f (anti(a)) ⇒

f (neut(a)) = f (a) f (anti(a)) ⇒ neut( f (a)) = f (a) f (anti(a)). Additionally, place b = anti(a)
in f (ba) = f (b) f (a) to obtain f

(
anti(a)a

)
= f (anti(a)) f (a) ⇒ f (neut(a)) = f (a) f (anti(a)) ⇒

neut( f (a)) = f (anti(a)) f (a). Thus, f (anti(a)) = anti( f (a)) for all a ∈ X.
3. If H is an NTSG of G, then f (H) = { f (h) ∈ Y : h ∈ H}. We shall prove that f (H) is an NTSG of

Y by Lemma 2.
Since f (neut(a)) = neut( f (a)) ∈ f (H) for a ∈ H, f (H) 6= ∅. Let a′, b′ ∈ f (H). Then a′ = f (a)
and b′ = f (b). Thus, a′ anti(b′) = f (a)anti( f (b)) = f (a) f (anti(b)) = f (a anti(b)) ∈ f (H).
Therefore, f (H) is an NTSG of Y.

4. If K is a neutrosophic triplet subgroup of Y, then ∅ 6= f−1(K) = {a ∈ X : f (a) ∈ K}. We shall
prove that f (H) is an NTSG of Y by Lemma 2.
Let a, b ∈ f−1(K). Then a′, b′ ∈ K such that a′ = f (a) and b′ = f (b). Thus, a′ anti(b′) =

f (a)anti( f (b)) = f (a) f (anti(b)) = f (a anti(b)) ∈ K ⇒ a anti(b) ∈ f−1(K). Therefore, f−1(K) is
an NTSG of X.

5. Given the neutrosophic triplet group X and the set X f = {(neut(a), f (a)) : a ∈ X} with the
product (neut(a), f (a))(neut(b), f (b)) := (neut(ab), f (ab)). X f is a groupoid.
(neut(a), f (a))(neut(b), f (b)) · (neut(z), f (z)) = (neut(ab), f (ab))(neut(z), f (z)) =

(neut(abz), f (abz))
= (neut(a), f (a))(neut(bz), f (bz)) = (neut(a), f (a)) · (neut(b), f (b))(neut(z), f (z)).
Therefore, X f is a semigroup.
For (neut(a), f (a)) ∈ X f , let neut(neut(a), f (a)) =

(
neut(neut(a)), neut( f (a))

)
. Then

neut(neut(a), f (a)) =
(
neut(a), ( f (neut(a))

)
∈ X f . Additionally, let anti(neut(a), f (a)) =(

anti(neut(a)), anti( f (a))
)
. Then anti(neut(a), f (a)) =

(
neut(a), f (anti(a))

)
∈ X f .

Thus, (neut(a), f (a))neut(neut(a), f (a)) = (neut(a), f (a))
(
neut(a), ( f (neut(a))

)
=

(neut(a), f (a))
(
neut(anti(a)), ( f (neut(a))

)
=

(
neut(a anti(a)), f (a neut(a))

)
=(

neut(neut(a)), f (a neut(a))
)

= (neut(a), f (a)) ⇒ (neut(a), f (a))neut(neut(a), f (a)) =

(neut(a), f (a)) and similarly, neut(neut(a), f (a))(neut(a), f (a)) = (neut(a), f (a)).
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On the other hand, (neut(a), f (a))anti(neut(a), f (a)) = (neut(a), f (a)) ·
(
neut(a), f (anti(a))

)
=

(neut(a), f (a))
(
neut(anti(a)), ( f (anti(a))

)
=

(
neut(a anti(a)), f (a anti(a))

)
=(

neut(neut(a)), f (neut(a))
)
=
(
neut(a), ( f (neut(a))

)
= neut(neut(a), f (a)) ⇒ (neut(a), f (a)) ·

anti(neut(a), f (a)) = neut(neut(a), f (a)) and similarly, anti(neut(a), f (a)) · (neut(a), f (a)) =

neut(neut(a), f (a)).

Therefore, X f is a neutrosophic triplet group.

Theorem 6. Let f : X → Y be a neutrosophic triplet group homomorphism.

1. ker fa
a
/ X.

2. Xa
a
/ X.

3. Xa is a normal neutrosophic triplet group.
4. anti(cd) = anti(d)anti(c) ∀ c, d ∈ Xa.
5. Xa =

⋃
c∈Xa

c ker fa for all a ∈ X.

6. If X is finite, |Xa| = ∑c∈Xa |c ker fa| = [Xa : ker fa]| ker fa| for all a ∈ X where [Xa : ker fa] is the
index of ker fa in Xa, i.e., the number of distinct left cosets of ker fa in Xa.

7. X =
⋃

a∈X
Xa.

8. If X is finite, |X| = ∑
a∈X

[Xa : ker fa]| ker fa|.

Proof. 1. f (neut(a)) = neut( f (a)) = neut(neut( f (a))) = neut( f (neut(a))) ⇒ neut(a) ∈ ker fa ⇒
ker fa 6= ∅. Let c, d ∈ ker fa, then f (c) = f (d) = neut( f (a)). We shall use Lemma 2.
f (c anti(d)) = f (c) f (anti(d)) = f (c)anti( f (d)) = neut( f (a))anti(neut( f (a))) =

neut( f (a))neut( f (a)) = neut( f (a))⇒ c anti(d) ∈ ker fa.
Thus, ker fa is a neutrosophic triplet subgroup of X. For the a-normality, let d ∈
ker fa, then f (d) = neut( f (a)). Therefore, f (ad anti(a)) = f (a) f (d) f (anti(a)) =

f (a)neut( f (a))anti( f (a)) = f (a)anti( f (a)) = neut( f (a))⇒ ad anti(a) ∈ ker fa for all d ∈ ker fa.
Therefore, ker fa

a
/ X.

2. Xa = {c ∈ X : neut(c) = neut(a)}. neut(neut(a)) = neut(a)⇒ neut(a) ∈ Xa. Therefore, Xa 6= ∅.
Let c, d ∈ Xa. Then neut(c) = neut(a) = neut(d). (cd)neut(a) = c(d neut(a)) = c(d neut(d)) =
cd, and neut(a)(cd) = (neut(a)c)d = (neut(c)c)d = cd. Therefore, neut(cd) = neut(a).
neut(anti(c)) = anti(neut(c)) = anti(neut(a)) = neut(a) ⇒ anti(c) ∈ Xa. Thus, Xa is
a neutrosophic triplet subgroup of X.
neut(anti(a)) = neut(a) ⇒ anti(a) ∈ Xa. Therefore, (ac anti(a))neut(a) =

(ac)
(
anti(a)neut(a)

)
= ac anti(a), and neut(a)(ac anti(a)) = neut(a)a(c anti(a)) = ac anti(a).

Thus, neut(ac anti(a)) = neut(a)⇒ ac anti(a) ∈ Xa. Therefore, Xa
a
/ X.

3. Let c, d ∈ Xa. Then neut(c) = neut(a) = neut(d). Therefore, neut(cd) = neut(a) =

neut(a)neut(a) = neut(c)neut(d). Thus, Xa is a normal NTG.
4. For all c, d ∈ Xa, neut(c)anti(d) = neut(a)anti(d) = neut(d)anti(d) = anti(d) =

anti(d)neut(d) = anti(d)neut(a) = anti(d). Therefore, based on Point 3 and Theorem 3,
anti(cd) = anti(d)anti(c) ∀ c, d ∈ Xa.

5. Define a relation � on Xa as follows: c � d if anti(c)d ∈ ker fa for all c, d ∈ Xa. anti(c)c =

neut(c) = neut(a)⇒ anti(c)c ∈ ker fa ⇒ c � c. Therefore, � is reflexive.

c � d ⇒ anti(c)d ∈ ker fa
by 4.⇒ anti(anti(c)d) ∈ ker fa ⇒ anti(d)c ∈ ker fa ⇒ d � c. Therefore,

� is symmetric.
c � d, d � z ⇒ anti(c)d, anti(d)z ∈ ker fa ⇒ anti(c)d anti(d)z = anti(c)neut(d)z =

anti(c)neut(a)z = anti(c)z ∈ ker fa ⇒ c � z. Therefore, � is transitive and � is an
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equivalence relation.
The equivalence class [c] fa = {d : anti(c)d ∈ ker fa} = {d : c anti(c)d ∈ c ker fa} = {d :
neut(c)d ∈ c ker fa} = {d : neut(a)d ∈ c ker fa} = {d : d ∈ c ker fa} = c ker fa. Therefore,
Xa/ �= {[c] fa}c∈Xa = {c ker fa}c∈Xa .
Thus, Xa =

⋃
c∈Xa

c ker fa for all a ∈ X.

6. If X is finite, then | ker fa| = |c ker fa| for all c ∈ Xa. Thus, |Xa| = ∑c∈Xa |c ker fa| = [Xa :
ker fa]| ker fa| for all a ∈ X where [Xa : ker fa] is the index of ker fa in Xa, i.e., the number of
distinct left cosets of ker fa in Xa.

7. Define a relation ∼ on X: c ∼ d if neut(c) = neut(d). ∼ is an equivalence relation on X, so
X/ ∼= {Xc}c∈X and, therefore, X =

⋃
a∈X

Xa.

8. Hence, based on Point 7, if X is finite, then |X| = ∑
a∈X
|Xa| = ∑

a∈X
[Xa : ker fa]| ker fa|.

Theorem 7. Let a ∈ X and f : X → Y be a neutrosophic triplet group homomorphism. Then

1. f is a monomorphism if and only if ker fa = {neut(a)} for all a ∈ X;
2. the factor set X/ ker f =

⋃
a∈X

Xa/ ker fa is a neutrosophic triplet group (neutrosophic triplet factor group)

under the operation defined by
c ker fa · d ker fb = (cd) ker fab.

Proof. 1. Let ker fa = {neut(a)} and let c, d ∈ X. If f (c) = f (d), this implies that f (c anti(d)) =
f (d)anti( f (d)) = f (d anti( f (d)))⇒ f (c anti(d)) = neut( f (d))⇒ c anti(d) ∈ ker fd ⇒

c anti(d) = neut(d) = neut(anti(d)). (5)

Similarly, f (anti(d)c) = neut( f (d))⇒ anti(d)c ∈ ker fd ⇒

anti(d)c = neut(anti(d)). (6)

Using Equations (5) and (6), c = anti(anti(d)) = d. Therefore, f is a monomorphism.

Conversely, if f is mono, then f (d) = f (c) ⇒ d = c. Let k ∈ ker fa, a ∈ X.
Then f (k) = neut( f (a)) = f (neut(a))⇒ k = neut(a). Therefore, ker fa = {neut(a)} for all
a ∈ X.

2. Let c ker fa, d ker fb, z ker fc ∈ X/ ker f =
⋃

a∈X Xa/ ker fa.

Groupoid: Based on the multiplication c ker fa · d ker fb = (cd) ker fab, the factor set X/ ker f is
a groupoid.

Semigroup:
(
c ker fa · d ker fb

)
· z ker fc = (cdz) ker fabc = c ker fa

(
d ker fb · z ker fc

)
.

Neutrality: Let neut(c ker fa) = neut(c) ker fneut(a). Then c ker fa · neut(c ker fa) = c ker fa ·
neut(c) ker fneut(a) = (c neut(c)) ker fa neut(a) = c ker fa and similarly, neut(c ker fa) ·
c ker fa = c ker fa.

Opposite: Let anti(c ker fa) = anti(c) ker fanti(a). Then c ker fa · anti(c ker fa) = c ker fa ·
anti(c) ker fanti(a) = (c anti(c)) ker fa anti(a) = neut(c) ker fneut(a). Similarly,
anti(c ker fa)) · c ker fa = neut(c) ker fneut(a).

∴
(
X/ ker f , ·

)
is an NTG.
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Theorem 8. Let φ : X → Y be a neutrosophic triplet group homomorphism. Then X/ ker φ ∼= Im φ.

Proof. Based on Theorem 6(7), X =
⋃

a∈X
Xa. Similarly, define a relation≈ on φ(X) = Im φ: φ(c) ≈ φ(d)

if neut(φ(c)) = neut(φ(d)). ≈ is an equivalence relation on φ(X), so φ(X)/ ≈= {φ(Xc)}c∈X and

Im φ =
⋃

c∈X
φ(Xc). It should be noted that Xa

a
/ X in Theorem 6(2).

Let φ̄a : Xa/ ker φa → φ(Xa) given by φ̄a(c ker φa) = φ(c). It should be noted that, by Theorem 6(1),

ker φa
a
/ X. Therefore, c ker φa = d ker φa ⇒ anti(d)c ker φa = anti(d)d ker φa = neut(d) ker φa =

ker φa ⇒ anti(d)c ker φa = ker φa ⇒ φ(anti(d)c) = neut(φ(a)) ⇒ anti(φ(d))φ(c) = neut(φ(a)) ⇒
φ(d)anti(φ(d))φ(c) = φ(d)neut(φ(a)) ⇒ neut(φ(d))φ(c) = φ(d)neut(φ(a)) ⇒ φ(neut(d))φ(c) =

φ(d)φ(neut(a)) ⇒ φ(neut(d) c)) = φ(d neut(a)) ⇒ φ(neut(a) c)) = φ(d neut(a)) ⇒ φ(neut(c) c)) =
φ(d neut(c))⇒ φ(c) = φ(d)⇒ φ̄a(c ker φa) = φ̄a(d ker φa). Thus, φ̄a is well defined.

φ̄a(c ker φa) = φ̄a(d ker φa)⇒ φ(c) = φ(d)⇒ anti(φ(d))φ(c) = anti(φ(d))φ(d) = neut(φ(d))⇒
φ(anti(d))φ(c) = neut(φ(d)) = φ(neut(d)) = φ(neut(a)) = neut(φ(a)) ⇒ φ(anti(d) c) =

neut(φ(a)) ⇒ anti(d) c ∈ ker φa ⇒ d anti(d) c ∈ d ker φa ⇒ neut(d) c ∈ d ker φa ⇒ neut(a) c ∈
d ker φa ⇒ c ∈ d ker φa

Theorem 6(1)
=⇒ c ker φa = d ker φa. This means that φ̄a is 1-1. φ̄a is obviously onto.

Thus, φ̄a is bijective.
Now, based on the above and Theorem 7(2), we have a bijection

Φ =
⋃

a∈X
φ̄a : X/ ker φ =

⋃
a∈X

Xa/ ker φa → Im φ = φ(X) =
⋃

a∈X
φ(Xa)

defined by Φ(c ker φa) = φ(c). Thus, if c ker φa, d ker φb ∈ X/ ker φ, then

Φ
(

c ker φa · d ker φb

)
= Φ

(
cd ker φab

)
= φ(cd) = φ(c)φ(d) = Φ

(
c ker φa

)
Φ
(
d ker φb

)
.

∴ X/ ker φ ∼= Im φ.

2.3. Construction of Bol Algebraic Structures

We now present a method of constructing Bol algebraic structures using an NTG.

Theorem 9. Let X be a non-abelian neutrosophic triplet group and let A = Xa × X for any fixed a ∈ X.
For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. Let a, b, c ∈ A. By checking, it is true that a ◦ (b ◦ c) 6= (a ◦ b) ◦ c. Therefore, (A, ◦) is
non-associative. Xa is a normal neutrosophic triplet group by Theorem 6(3). A is a groupoid.

Let us now verify the Bol identity:

((a ◦ b) ◦ c) ◦ b = a ◦ ((b ◦ c) ◦ b)

LHS = ((a ◦ b) ◦ c) ◦ b =
(

h1h2h3h2, h2h3h2g1 anti(h2)g2 anti(h3)g3 anti(h2)g2

)
.
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Following Theorem 6(4),

RHS = a ◦ ((b ◦ c) ◦ b) =(
h1h2h3h2, h2h3h2g1 anti

(
h2h3h2

)
h2h3g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) anti(h2)h2h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) neut(h2)h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)
(
anti(h3) neut(a)h3

)
g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)anti(h3)h3g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)neut(h3)g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)neut(a)g2 anti(h3)g3 anti(h2)g2

)
=(

h1h2h3h2, h2h3h2g1 anti(h2)g2 anti(h3)g3 anti(h2)g2

)
.

Therefore, LHS = RHS. Hence, (A, ◦) is a Bol groupoid.

Corollary 1. Let H be a subgroup of a non-abelian neutrosophic triplet group X, and let A = H × X.
For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. A subgroup H is a normal neutrosophic triplet group. The rest of the claim follows from
Theorem 9.

Corollary 2. Let H be a neutrosophic triplet subgroup (which obeys the cancellation law) of a non-abelian
neutrosophic triplet group X, and let A = H × X. For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol groupoid.

Proof. By Theorem 1(3), H is a subgroup of X. Hence, following Corollary 1, (A,◦) is a Bol groupoid.

Corollary 3. Let H be a neutrosophic triplet subgroup of a non-abelian neutrosophic triplet group X that has
the cancellation law and let A = H × X. For (h1, g1), (h2, g2) ∈ A, define ◦ on A as follows:

(h1, g1) ◦ (h2, g2) = (h1h2, h2g1 anti(h2)g2).

Then (A, ◦) is a Bol loop.

Proof. By Theorem 1(3), X is a non-abelian group and H is a subgroup of X. Hence, (A, ◦) is a loop
and a Bol loop by Theorem 9.
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3. Applications in Management and Sports

3.1. One-Way Management and Division of Labor

Consider a company or work place consisting of a set of people X with |X| number of people.
A working unit or subgroup with a leader ‘a’ is denoted by Xa.

neut(x) for any x ∈ X represents a co-worker (or co-workers) who has (have) a good (non-critical)
working relationship with x, while anti(x) represents a co-worker (or co-workers) whom x considers
as his/her personal critic(s) at work.

Hence, Xa can be said to include both critics and non-critics of each worker x. It should be
noted that in Xa, neut(a) = neut(x) for all x ∈ Xa. This means that every worker in Xa has a good
relationship with the leader ‘a’.

Thus, by Theorem 6(7)—X =
⋃

a∈X
Xa and |X| = Σa∈X |Xa|—the company or work place X can be

said to have a good division of labor for effective performance and maximum output based on the
composition of its various units (Xa). See Figure 1.

X (company)

Xa1

Working Unit Working Unit

Xa2

a2

Leader

neut(x) x anti(x) . . .

Xa3 . . .

Working Unit

Figure 1. One-way management and division of labor.

3.2. Two-Way Management Division of Labor

Consider a company or work place consisting of a set of people X with |X| number of people at
a location A and another company or work place consisting of people Y with |Y| number of people at
another location B. Assume that both companies are owned by the same person f . Hence, f : X → Y
can be considered as a movement (transfer) or working interaction between workers at A and at B.
The fact that f is a neutrosophic triplet group homomorphism indicates that the working interaction
between X and Y is preserved.

Let ‘a’ be a unit leader at A whose work correlates to another leader f (a) at B.
Then Ker fa represents the set of workers x in a unit at A under the leadership of ‘a’ such that there are
other, corresponding workers f (x) at B under the leadership of f (a). Here, f (x) = neut( f (a)) means
that workers f (x) at B under the leadership of f (a) are loyal and in a good working relationship.
The mapping fa shows that the operation of a subgroup leader (the operation is denoted by ‘a’) is
subject to the modus operandi of the owner of the two companies, where the owner is denoted by f .

The final formula |X| = ∑
x∈X

[Xa : ker fa]|ker fa| in Theorem 6(8) shows that the overall performance

of the set of people X is determined by how the unit leaders ‘a’ at A properly harmonize with the unit
leaders at B in the effective administration of ker fa and Xa (Figure 2).
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X (Company)

Xa1

Working Unit

ker f

ker fa1 ker fa2

a2

Leader

neut(x) x anti(x) . . .

ker fa3 . . .

Xa2 . . .

Location A

Location B

Company Owner f

Y (Company)

Im f

f (x) f (a1)

Leader

f (a2) . . .

Figure 2. Two-way management division of labor.

3.3. Sports

In the composition of a team, a coach can take Xa as the set of players who play in a particular
department (e.g., forward, middle field, or defence), where a is the leader of that department.
Let neut(x) represent player(s) whose performance is the same as that of player x, and let anti(x)
represent player(s) that can perform better than player x. It should be noted that the condition
neut(x) = neut(a) for all x ∈ Xa means that the department Xa has player(s) who are equal in
performance; i.e., those whose performance are equal to that of the departmental leader a. Hence,
a neutrosophic triplet (x, neut(x), anti(x)) is a triple from which a coach can make a choice of his/her
starting player and make a substitution. The neutrosophic triplet can also help a coach to make
the best alternative choice when injuries arise. For instance, in the goal keeping department (for
soccer/football), three goal keepers often make up the team for any international competition. Imagine
an incomplete triplet (x, neut(x), ?), i.e., no player is found to be better than x, which reduces to
a duplet.

Xa can also be used for grouping teams in competitions in the preliminaries. If x = team,
then anti(x) = teams that can beat x and neut(x) = teams that can play draw with x. Therefore,
neutrosophic triplet (x, neut(x), anti(x)) is a triplet with which competition organizers can draw teams
into groups for a balanced competition. The Fédération Internationale de Football Association (FIFA)
often uses this template in drawing national teams into groups for its competitions. Club teams from
various national leagues, to qualify for continental competitions (e.g., Union of European Football
Associations (UEFA) Champions League and Confederation of African Football (CAF) Champions
League), have to be among the five. This implies the application of duplets, triplets, quadruples,
etc. (Figure 3).
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x neut(x)

anti(x)

Figure 3. Sports.
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duplet and the quadruple in the applications of neutrosophic triplet set.
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Abstract: In many real-life situations, it is often observed that the degree of indeterminacy (neutrality) plays an important role along with the 
satisfaction and dissatisfaction levels of the decision maker(s) (DM(s)) in any decision making process. Due to some doubt or hesitation, it 
may necessary for DM(s) to take opinions from experts which leads towards a set of conflicting values regarding satisfaction, indeterminacy 
and dis-satisfaction level of DM(s). In order to highlight the above-mentioned insight, we have developed an effective framework which 
reflects the reality involved in any decision-making process. In this study, a multiobjective nonlinear programming problem (MO-NLPP) 
has been formulated in the manufacturing system. A new algorithm, neutrosophic hesitant fuzzy programming approach (NHFPA), based 
on single-valued neutrosophic hesitant fuzzy decision set has been proposed which contains the concept of indeterminacy hesitant degree along 
with truth and falsity hesitant degrees of different objectives. In order to show the validity and applicability of the proposed approach, a 
numerical example has been presented. The superiority of the proposed approach has been shown by comparing with other existing 
approaches. Based on the present work, conclusions and future scope have been presented.

Keywords: Indeterminacy hesitant membership function, Neutrosophic hesitant fuzzy programming, Multiobjective nonlinear programming problem.

1 Introduction
Many decision-making processes inherently involved different conflicting objectives which are to be optimized (maximize/minimize) under given circumstances.
In the present competitive era, it is indispensable for decision maker(s) (DM(s)) to obtain better possible outcomes/results when dealing with multiple objectives
at a time. Although, it is quite difficult to have an optimal solution which satisfies all the objectives efficiently a compromise solution is possible which is
accepted by DM(s) up to some extent. Literature reveals various approaches for multiobjective optimization problem and continuous effort have been made to
obtain the best compromise solution. It is often observed that the modeling and formulation of the problem arising in agriculture production planning, man-
ufacturing system etc. takes the form of nonlinear programming problem with multiple objective which is realistic in nature. Thus, multiobjective nonlinear
programming problem (MO-NLPP) is also a challenging problem due to its local and global optimal concept, unlike multiobjective linear programming problem.

Bellman and Zadeh [5] introduced fuzzy set (FS) and based on that set Zimmermann [27] proposed fuzzy programming approach (FPA) for multiobjective
optimization problems. The FPA deals only degree of belongingness but sometimes it may necessary to deal with non-membership function (non-belongingness)
in order to obtain the results in the more realistic way. To overcome the above fact, Atanassov [4] introduced the intuitionistic fuzzy set (IFS) which is the ex-
tension of the FS. The IFS is based on more intuition as compared to FS because it also deals with the non-membership function (non-belongingness) of the
element in the set. Based on IFS, intuitionistic fuzzy programming approach (IFPA) gained its own popularity among the existing multiobjective optimization
techniques. Angelov [3] first used the optimization technique under intuitionistic fuzzy environment. Mahmoodirad et al. [15] proposed a new approach for the
balanced transportation problem by considering all parameters and variables are of triangular intuitionistic fuzzy values and pointed out some shortcomings of
existing approaches. Singh and Yadav [19] discussed multiobjective nonlinear programming problem in the manufacturing system and solved by using three
approaches namely; Zimmerman’s technique, γ- operator and Min. bounded sum operator with intuitionistic fuzzy parameters. Bharati and Singh [6] also
proposed a new computational algorithm for multiobjective linear programming problem in the interval-valued intuitionistic fuzzy environment.

In recent years, the extensions or generalizations of FS and IFS have been presented with the fact that indeterminacy degree exists in real life and as a
result, a set named neutrosophic set came in existence. Smarandache [20] introduced the concept of the neutrosophic set (NS). The term neutrosophic is the
combination of two words, neutre from French meaning, neutral, and sophia from Greek meaning, skill/wisdom. Thus neutrosophic literally means knowledge
of neutral thoughts which well enough differentiate it from FS and IFS. The neutrosophic set involves three membership functions, namely; maximization of
truth (belongingness), indeterminacy (belongingness to some extent) and minimization of falsity (non-belongingness) in an efficient manner. Based on NS,
neutrosophic programming approach (NPA) came into existence and extensively used in real life applications. Abdel-Basset et al. [1] proposed a novel ap-
proach to solving fully neutrosophic linear programming problem and applied to production planning problem. Rizk-Allah et al. [16] solved the MO-TPs under
neutrosophic environment and compared the obtained results with the existing approach by measuring the ranking degree using TOPSIS approach. Ye et al.
[23] formulated neutrosophic number nonlinear programming problem (NN-NPP) and proposed an effective method to solve the problem under neutrosophic
number environments. Liu and You [12] extended Muirhead mean to interval neutrosophic set and developed some new operator named as interval neutrosophic
Muirhead mean operators which have been further applied to multi-attribute decision making (MADM) problem. Liu et al. [14] have combined the power
average operator with Herorian mean operator which results in linguistic neutrosophic power Herorian aggregation operator and extended them for neutrosophic

Single Valued Neutrosophic Hesitant Fuzzy Computational 

Algorithm for Multiobjective Nonlinear Optimization Problem 

Firoz Ahmad, Ahmad Yusuf Adhami, Florentin Smarandache 

Firoz Ahmad, Ahmad Yusuf Adhami, Florentin Smarandache (2018). Single Valued Neutrosophic 
Hesitant Fuzzy Computational Algorithm for Multiobjective Nonlinear Optimization Problem. 
Neutrosophic Sets and Systems 22: 76-86 

Florentin Smarandache (author and editor) Collected Papers, VIII

570



information process. Ahmad and Adhami [2] have also solved the nonlinear transportation problem with fuzzy parameters using neutrosophic programming
approach and compared the solution results with other existing approaches. Liu and Shi [10] have introduced the valued neutrosophic uncertain linguistic set and
developed some operators which have been further used to multi-attribute group decision making (MAGDM) problem. Liu and Teng [11] have proposed some
normal neutrosophic operator based on normal neutrosophic numbers and developed an MADM method based on neutrosophic number generalized weighted
power averaging operator. Zhang et al. [25] have proposed some new MAGDM methods in which the attributes are interactive in the form of the interval-valued
hesitant uncertain linguistic number. Liu and Zhang [13] have extended the Maclaurian symmetric mean operator to single-valued trapezoidal neutrosophic
numbers and developed a method to deal with MAGDM problem based on single-valued trapezoidal neutrosophic weighted Maclaurian symmetric mean oper-
ator.

Sometimes, the DM(s) is(are) not sure about the single specific value of the parameters in the set due to doubt or incomplete information but a set of
different conflicting values may possible to represent the membership degree for any element to the set. In order to deal with the above fact, Torra and Narukawa
[21] introduced the concept of the hesitant fuzzy set (HFS). The HFS is the generalization of fuzzy set and is very useful tools by ensuring the active involve-
ment of different experts’ opinions in the decision-making process. Based on HFS, hesitant fuzzy programming approach (HFPA) has been developed which
incontinently allows the DM(s) to collaborate with experts in order to collect their incompatible opinions. Bharati [7] developed the hesitant computational
algorithm for multiobjective linear programming problem and applied to production planning problem. Zhang et al. [24] developed a hesitant fuzzy program-
ming technique to deal with multi-criteria decision-making problems within the hesitant fuzzy elements environment. Zhou and Xu [26] proposed new portfolio
selection and risk investment approaches under hesitant fuzzy environment. All the above-discussed sets have its own limitations regarding the existence of each
element in the set. In brief, FS deals only the membership degree of the element in the set whereas IFS considers both membership and non-membership degree
of the element in the set simultaneously. NS is the generalization of FS and IFS because it allows the DM(s) to implement the thoughts of neutrality which
gives the indeterminacy membership degree for an element to the set. Furthermore, HFS is also an extension of FS as its membership is represented by a set of
different conflicting values in the set. Based on the above-mentioned sets, various optimization techniques such as fuzzy optimization techniques, intuitionistic
fuzzy optimization techniques, neutrosophic optimization techniques, and hesitant fuzzy optimization techniques have been developed and widely used to solve
multiobjective optimization problem which usually exists in real life.

In real life, hesitancy is the most trivial issue in the decision-making process. To deal with it, HFS may be used as an appropriate tool by assigning a set of
different membership degree for an element in the set. The limitation of HFS is that it only represents the truth hesitant membership degree and does not deals
with indeterminacy hesitant membership degree and falsity hesitant membership degree for an element in the set which arises due to inconsistent, imprecise,
inappropriate and incomplete information. On the other hand, a single-valued neutrosophic set (SVNS) is a special case of NS which provides an additional
opportunity to the DM(s) by incorporating the thoughts of neutrality. It is only confined to the truth, indeterminacy and a falsity membership degree for an
element to the set. It can not ensure the interference of a set of membership values due to doubt and consequently the involvement of different experts’ opinions
in the decision-making process. The crucial situation arises when the two aspects namely; hesitations and neutral thoughts exist simultaneously in the decision-
making process. In this case, HFS and SVNS may not be an appropriate tool to represent the situation in an efficient and effective manner. Thus, this kind of
situations are beyond the scope of FS, IFS, SVNS, and HFS and consequently beyond the scope of FPA, IFPA, NPA, and HFPA to decision making process
respectively. Therefore, truth, indeterminacy and the falsity situations under hesitant uncertainty is more practical terminology in real life optimization problems.

To get rid of the above limitations, Ye [22] investigated a new set named single-valued neutrosophic hesitant fuzzy set (SVNHFS) which is the combination
of HFS and SVNS respectively. The SVNHFS contemplate over truth hesitant fuzzy membership, indeterminacy hesitant fuzzy membership and the falsity
hesitant fuzzy membership degrees for an element to the set. Biswas et al. [8] discussed multi-attribute decision-making problems in which the rating values
are expressed with single-valued neutrosophic hesitant fuzzy set information and proposed grey relational analysis method for multi-attribute decision making.
Şahin and Liu [17] investigated correlation and correlation coefficient of SVNHFSs and discussed its applications in the decision-making process. Biswas et al.
[9] proposed a variety of distance measures for single-valued neutrosophic sets and applied these measures to multi-attribute decision-making problems. In
this present study, a new computational method, neutrosophic hesitant fuzzy programming approach (NHFPA) has been proposed to obtain the best possible
solution of MO-NLPP which is based on SVNHFS. The proposed NHFPA involves the three membership function, namely; maximization of truth hesitant fuzzy
(belongingness), indeterminacy hesitant fuzzy (belongingness to some extent) and minimization of falsity hesitant fuzzy (non-belongingness) in an emphatic
manner.

To best of our knowledge, no such method has been proposed in the literature to solve the MO-NLPP. The proposed method covers different aspects of
impreciseness, vagueness, inaccuracy, the incompleteness that are often encountered in real life optimization problems and provides flexibility in the decision-
making process. The remarkable point is that the proposed approach actively seeks opinions from different experts under the neutrosophic environment which
is more practical in real life situations and strongly concerned with the involvement of distinguished experts in order to make the fruitful decision. The neu-
tral/indeterminacy hesitant fuzzy concept involved in single-valued neutrosophic hesitant fuzzy set leads towards the future research scope in this domain.

The rest of the paper has been summarized as follows:
In section 2, the preliminaries regarding neutrosophic set, hesitant fuzzy set, and single-valued neutrosophic hesitant fuzzy set have been discussed while section
3 represents the problem formulation and development of the proposed neutrosophic hesitant fuzzy programming approach (NHFPA). In section 4, a numerical
study has been presented in order to show the applicability and validity of the proposed approach. A comparative study has also done with other existing
approaches. Finally, conclusions and future scope have been discussed based on the present work in section 5.

2 Preliminaries
2.1 Neutrosophic Set (NS)
Definition 2.1.1: [20] Let X be a universe discourse such that x ∈ X, then a neutrosophic set A in X is defined by three membership functions namely, truth
TA(x), indeterminacy IA(x) and a falsity FA(x) and is denoted by the following form:

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X} (1)

where TA(x), IA(x) andFA(x) are real standard or non-standard subsets belong to ]0−, 1+[, also given as, TA(x) : X → ]0−, 1+[, IA(x) : X → ]0−, 1+[,
and FA(x) : X → ]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x), so we have,

0− ≤ sup TA(x) + IA(x) + sup FA(x) ≤ 3+ (2)
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Definition 2.1.2: [20] A single valued neutrosophic set A over universe of discourse X is defined as

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X} (3)

where TA(x), IA(x) and FA(x) ∈ [0, 1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for each x ∈ X .

2.2 Hesitant Fuzzy Set (HFS)
Definition 2.2.1: [21] Let there be a fixed set X; a hesitant fuzzy set A on X is defined in terms of a function hA(x) that when applied to X returns a finite
subset of [0,1] and mathematically can be represented as follows:

A = {< x, hA(x) > |x ∈ X} (4)

where hA(x) is a set of some different values in [0,1], denoting the possible membership degrees of the element x ∈ X to A. Also, we call hA(x) a hesitant
fuzzy element.

Definition 2.2.2: [21] For a given hesitant fuzzy element h, its lower and upper bounds are defined as h−(x) = min h(x) and h+(x) = max h(x),
respectively.

2.3 Single Valued Neutrosophic Hesitant Fuzzy Set (SVNHFS)
Definition 2.3.1: [22] Let there be a fixed set X; an SVNHFS on X is defined as follows:

Nh = {< x, Th(x), Ih(x), Fh(x) > |x ∈ X} (5)

where Th(x), Ih(x) and Fh(x) are three sets of some values in [0,1], denoting the possible truth hesitant membership degree, indeterminacy hesitant mem-
bership degree and the falsity hesitant membership degree of the element x ∈ X to the set Nh, respectively, with the conditions 0 ≤ α, β, γ ≤ 1 and
0 ≤ α+, β+, γ+ ≤ 3, where α ∈ Th(x), β ∈ Ih(x), γ ∈ Fh(x) with α+ ∈ T+

h (x) = ∪α∈Th(x)max{α}, β+ ∈ I+h (x) = ∪β∈Ih(x)max{β} and
γ+ ∈ F+

h (x) = ∪γ∈Fh(x)max{γ} for all x ∈ X .
For simplicity, the three-tuple Nh(x) = {Th(x), Ih(x), Fh(x)} is called a single-valued neutrosophic hesitant fuzzy element (SVNHFE) or triple hesitant
fuzzy element.

From Definition 2.3.1, it is clear that the SVNHFS comprises three different kinds of membership functions, namely; truth hesitant membership function,
indeterminacy hesitant membership function and the falsity hesitant membership function, which consequently results in a more reliable framework and pro-
vides pliable access to assign values for each element in the domain, and can deal with three kind of hesitancy in this situation at a time. Thus, classical sets,
including fuzzy sets, intuitionistic fuzzy sets, single-valued neutrosophic sets, hesitant fuzzy sets, can be considered as special cases of SVNHFSs (see [22]).
Fig. 1 shows the graphical representation of classical sets to SVNHFSs.

Figure 1: Diagrammatic coverage of classical sets to SVNHFSs.

Definition 2.3.2: [22] Let Nh1
and Nh2

be two SVNHFSs in a fixed set X; then their union can be defined as follows:

Nh1
∪Nh2

={Th ∈ (Th1
∪ Th2

)|Th ≥ max (min {Th1
∪ Th2

}),
Ih ∈ (Ih1

∪ Ih2
)|Ih ≤ min (max {Ih1

∪ Ih2
}),

Fh ∈ (Fh1
∪ Fh2

)|Fh ≤ min (max {Fh1
∪ Fh2

})}

Definition 2.3.3: [22] Let Nh1
and Nh2

be two SVNHFSs in a fixed set X; then their intersection can be defined as follows:

Nh1
∩Nh2

={Th ∈ (Th1
∩ Th2

)|Th ≤ min (max {Th1
∩ Th2

}),
Ih ∈ (Ih1

∩ Ih2
)|Ih ≥ max (min {Ih1

∩ Ih2}),
Fh ∈ (Fh1

∩ Fh2
)|Fh ≥ max (min {Fh1

∩ Fh2
})}

3 Problem formulation and solution algorithm
3.1 General mathematical model of multiobjective nonlinear programming problem (MO-NLPP)
Generally, a mathematical programming problem is said to be nonlinear programming problem (NLPP) if either objective function, constraints or both are real-
valued nonlinear functions. The objective function(s) is (are) to be optimized (minimize or maximize) under the given constraints. The classical multiobjective
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nonlinear programming problem (MO-NLPP) is represented in M1.

M1 : Optimize Zk(x), k = 1, 2, ...,K,

s.t gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0.

where, either Zk, (k = 1, 2, ...,K), gj , (j = 1, 2, ...,m) or both may be real valued nonlinear functions. x = (x1, x2, ..., xq) is a set of decision variables.

3.2 Development of proposed neutrosophic hesitant fuzzy programming approach (NHFPA)
In this study, a new approach based on single-valued neutrosophic hesitant fuzzy set to solve MO-NLPP has been investigated. The proposed approach is based
on the hybrid combination of the two sets, namely; neutrosophic set (Smarandache [20]) and hesitant fuzzy set (Torra and Narukawa [21]) respectively. The
proposed neutrosophic hesitant fuzzy programming approach (NHFPA) introduces more realistic aspects in dealing with the indeterminacy hesitation present
in the decision-making problem. The interesting point is that the proposed NHFPA also considers the conflicting opinions of different experts regarding some
parameters in real life problem which enables the DM(s) to obtain the adequate results under neutrosophic environment.
According to Bellman and Zadeh [5], the fuzzy set includes three concepts, namely; fuzzy decision (D), fuzzy goal (G) and fuzzy constraints (C) and incorporated
these concepts in many real-life applications of decision-making under fuzzy environment. So, the fuzzy decision set is defined as follows:

D = G ∩ C (6)

Consequently, the neutrosophic hesitant fuzzy decision set DNh , with neutrosophic hesitant objectives and constraints, is defined as follows:

DNh = G ∩ C = (∩Kk=1Dk)(∩
m
i=1Ci)

= {x, TD(x), ID(x), FD(x)}
= {TD ∈ (TGh

∩ TCh
) | TD ≤ min (max {TGh

∩ TCh
}),

ID ∈ (IGh
∩ ICh

) | ID ≥ max (min {IGh
∩ ICh

}),
FD ∈ (FGh

∩ FCh
) | FD ≥ max (min {FGh

∩ FCh
})}

Where, TD(x), ID(x) and FD(x) are a set of degree of acceptance of neutrosophic hesitant fuzzy decision solution under single-valued neutrosophic hesitant
fuzzy decision set. Fig.2 shows the neutrosophic hesitant fuzzy membership degree for the objective function.
On solving each objective function individually, we have k solutions set, X1, X2, ..., Xk , after that the obtained solutions are substituted in each objective
function to determine the lower and upper bound for each objective as given below:

Uk = max[Zk(X
k)] and Lk = min[Zk(X

k)] ∀ k = 1, 2, 3, ...,K. (7)

Now, we can define the different hesitant membership function more elaborately under neutrosophic hesitant fuzzy environment as follows:

Figure 2: Graphical representation of neutrosophic hesitant fuzzy membership of objective function.

Case− I : For maximization type objective function.
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The truth hesitant-membership functions:

TE1

h+ (Zk(x)) =


0 if Zk(x) < Lk

α1
(Zk(x))

t−(Lk)
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
1 if Zk(x) > Uk

(8)

TE2

h+ (Zk(x)) =


0 if Zk(x) < Lk

α2
(Zk(x))

t−(Lk)
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
1 if Zk(x) > Uk

(9)

. ...

. ...

. ...

TEn

h+ (Zk(x)) =


0 if Zk(x) < Lk

αn
(Zk(x))

t−(Lk)
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
1 if Zk(x) > Uk

(10)

The indeterminacy hesitant-membership functions:

IE1

h+ (Zk(x)) =


0 if Zk(x) < Lk

β1
(Zk(x))

t−(Lk)
t

(sk)
t if Lk ≤ Z1(x) ≤ Lk + sk

1 if Zk(x) > Lk + sk

(11)

IE2

h+ (Zk(x)) =


0 if Zk(x) < Lk

β2
(Zk(x))

t−(Lk)
t

(sk)
t if Lk ≤ Zk(x) ≤ Lk + sk

1 if Zk(x) > Lk + sk

(12)

. ...

. ...

. ...

IEn

h+ (Zk(x)) =


0 if Zk(x) < Lk

βn
(Zk(x))

t−(Lk)
t

(sk)
t if Lk ≤ Zk(x) ≤ Lk + sk

1 if Zk(x) > Lk + sk

(13)

The falsity hesitant-membership functions:

FE1

h+ (Zk(x)) =


1 if Zk(x) < Lk + tk

γ1
(Uk)

t−(Zk(x))
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(14)

FE2

h+ (Zk(x)) =


1 if Zk(x) < Lk + tk

γ2
(Uk)

t−(Zk(x))
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(15)

. .. .

. .. .

. .. .

FEn

h+ (Zk(x)) =


1 if Zk(x) < Lk + tk

γn
(Uk)

t−(Zk(x))
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(16)

where parameter t > 0 and sk, tk ∈ (0, 1) ∀k, are indeterminacy and falsity tolerance values, which is assigned by DM(s) and h+ represents the maximization
type hesitant objective function.
TE1

h+ (Zk(x)), I
E1

h+ (Zk(x)), F
E1

h+ (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 1st expert.

TE2

h+ (Zk(x)), I
E2

h+ (Zk(x)), F
E2

h+ (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 2nd expert.
......
......
TEn

h+ (Zk(x)), I
En

h+ (Zk(x)), F
En

h+ (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by nth expert.

Case− II : For minimization type objective function.
The truth hesitant-membership functions:

TE1

h− (Zk(x)) =


1 if Zk(x) < Lk

α1
(Uk)

t−(Zk(x))
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
0 if Zk(x) > Uk

(17)

TE2

h− (Zk(x)) =


1 if Zk(x) < Lk

α2
(Uk)

t−(Zk(x))
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
0 if Zk(x) > Uk

(18)
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. .. .

. .. .

. .. .

TEn

h− (Zk(x)) =


1 if Zk(x) < Lk

αn
(Uk)

t−(Zk(x))
t

(Uk)
t−(Lk)

t if Lk ≤ Zk(x) ≤ Uk
0 if Zk(x) > Uk

(19)

The indeterminacy hesitant-membership functions:

IE1

h− (Zk(x)) =


1 if Zk(x) < Uk − sk
β1

(Uk)
t−(Zk(x))

t

(sk)
t if Uk − sk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(20)

IE2

h− (Zk(x)) =


1 if Zk(x) < Uk − sk
β2

(Uk)
t−(Zk(x))

t

(sk)
t if Uk − sk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(21)

. ...

. ...

. ...

IEn

h− (Zk(x)) =


1 if Zk(x) < Uk − sk
βn

(Uk)
t−(Zk(x))

t

(sk)
t if Uk − sk ≤ Zk(x) ≤ Uk

0 if Zk(x) > Uk

(22)

The falsity hesitant-membership functions:

FE1

h− (Zk(x)) =


0 if Zk(x) < Lk + tk

γ1
(Zk(x))

t−(Lk)
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

1 if Zk(x) > Uk

(23)

FE2

h− (Zk(x)) =


0 if Zk(x) < Lk + tk

γ2
(Zk(x))

t−(Lk)
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

1 if Zk(x) > Uk

(24)

. ...

. ...

. ...

FEn

h− (Zk(x)) =


0 if Zk(x) < Lk + tk

γn
(Zk(x))

t−(Lk)
t−(tk)

t

(Uk)
t−(Lk)

t−(tk)
t if Lk + tk ≤ Zk(x) ≤ Uk

1 if Zk(x) > Uk

(25)

where parameter t > 0 and sk, tk ∈ (0, 1) ∀k, are indeterminacy and falsity tolerance values, which is assigned by DM(s) and h− represents the minimization
type hesitant objective function.
TE1

h− (Zk(x)), I
E1

h− (Zk(x)), F
E1

h− (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 1st expert.

TE2

h− (Zk(x)), I
E2

h− (Zk(x)), F
E2

h− (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by 2nd expert.
......
......
TEn

h− (Zk(x)), I
En

h− (Zk(x)), F
En

h− (Zk(x)) are truth, indeterminacy and the falsity-hesitant-membership degrees assigned by nth expert.

Let TEn
h = min (TEn

h+ , TEn

h− ), IEn
h = min (IEn

h+ , I
En

h− ) and FEn
h = max (FEn

h+ , FEn

h−
) ∀ k = 1, 2, ...,K. Now, the motive is to determine the

highest degree of satisfaction for DM(s) by establishing a balance between objectives and constraints.
The neutrosophic hesitant fuzzy model for MO-NLPP (M1) can be represented as follows:

M2 :Max mink=1,2,3,...,K TEn
h (Zk(x))

Max mink=1,2,3,...,K IEn
h (Zk(x))

Min maxk=1,2,3,...,K FEn
h (Zk(x))

s.t gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0.
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With the help of auxiliary parameters, model M2 can be transformed into the following form M3.

M3 :Max

∑
αn

n

Max

∑
βn

n

Min

∑
γn

n

s.t. TEn

h+ (Zk(x)) ≥ αn, IEn

h+ (Zk(x)) ≥ βn, FEn

h+ (Zk(x)) ≤ γn

TEn

h− (Zk(x)) ≥ αn, IEn

h− (Zk(x)) ≥ βn, FEn

h− (Zk(x)) ≤ γn
gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0, αn, βn, γn ∈ (0, 1)

αn + βn + γn ≤ 3, αn ≥ βn, αn ≥ γn, ∀ n.

Using linear membership function, model M3 can be written as in M4.

M4 :Max χ =
α1 + α2 + ...+ αn

n
+
β1 + β2 + ...+ βn

n
−
γ1 + γ2 + ...+ γn

n

s.t. TE1

h+
(Zk(x)) ≥ α1, T

E2

h+ (Zk(x)) ≥ α2, ..., T
En

h+ (Zk(x)) ≥ αn

IE1

h+ (Zk(x)) ≥ β1, IE2

h+ (Zk(x)) ≥ β2, ..., IEn

h+ (Zk(x)) ≥ βn

FE1

h+ (Zk(x)) ≤ γ1, FE2

h+ (Zk(x)) ≤ γ2, ..., FEn

h+ (Zk(x)) ≤ γn

TE1

h− (Zk(x)) ≥ α1, T
E2

h− (Zk(x)) ≥ α2, ..., T
En

h− (Zk(x)) ≥ αn

IE1

h− (Zk(x)) ≥ β1, IE2

h− (Zk(x)) ≥ β2, ..., IEn

h− (Zk(x)) ≥ βn

FE1

h− (Zk(x)) ≤ γ1, FE2

h− (Zk(x)) ≤ γ2, ..., FEn

h− (Zk(x)) ≤ γn
gj(x) ≤ dj , j = 1, 2, ...,m1,

gj(x) ≥ dj , j = m1 + 1,m1 + 2, ...,m2,

gj(x) = dj , j = m2 + 1,m2 + 2, ...,m,

x ≥ 0, 0 ≤ α1, α2, ..., αn ≤ 1, 0 ≤ β1, β2, ..., βn ≤ 1

0 ≤ γ1, γ2, ..., γn ≤ 1, αn ≥ βn, αn ≥ γn,
αn + βn + γn ≤ 3, ∀ n.

Finally, model M4 gives the compromise solution to MO-NLPP.

3.3 Proposed NHFPA algorithm for MO-NLPP
The whole procedure from problem formulation to final solvable model M4 discussed in section 3 is summarized as step-wise algorithm.
Step-1. Formulate the multiobjective nonlinear programing problems as in M1.
Step-2. Determine the bounds Uk and Lk , for each objective by using equation (7).
Step-3. By using Uk and Lk , define the upper and lower bound for truth hesitant, indeterminacy hesitant and falsity hesitant membership functions as given in
equation (8)-(25).
Step-4. Ask for the truth hesitant, indeterminacy hesitant and the falsity hesitant membership degrees from different experts or DM(s).
Step-5. Formulate MO-NLPP under neutrosophic hesitant fuzzy environment defined in M4.
Step-6. Solve the multiobjective nonlinear programing problem in order to obtain the compromise solution using suitable techniques or some optimizing
software packages.

4 Experimental study
In order to show the efficiency and validity of the proposed method, we adopted the numerical example of the manufacturing system discussed by Singh and
Yadav [19]. The DM(s) of the company intends to maximize the total profit incurred over products and minimize the total time required for each product.
Also, assumed that the DM(s) seeks three experts’ opinion in the decision-making process. Therefore, the crisp multiobjective non-linear programming problem
formulation [19] is given as follows:

M1 : Max Z1(x) = 99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3

Min Z2(x) = 3.875x1 + 5.125x2 + 5.9375x3

s.t 2.0625x1 + 3.875x2 + 2.9375x3 ≤ 333.125

3.875x1 + 2.0625x2 + 2.0625x3 ≤ 365.625

2.9375x1 + 2.0625x2 + 2.9375x3 ≥ 360

x1, x2, x3 ≥ 0.

On solving each objective function individually given in (M1), we get the following individual best solution, lower and upper bound for each objective.
X1 = (57.82, 13.09, 55.53), X2 = (62.26, 0, 60.28) along with L1 = 180.72, U1 = 516.70, L2 = 599.23 and U2 = 620.84.
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Since, the first objective Z1(x) is of maximization type and the satisfaction level of Experts or DMs increases if the values of objective function tends towards
its upper bound. Therefore the truth hesitant membership, indeterminacy hesitant membership and falsity hesitant membership functions of upper bound can be
represented as follows:

For Z1: The upper and lower bound for first objective and its membership functions.

TE1

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.98
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(516.70)t−(180.72)t
if 180.72 ≤ Z1(x) ≤ 516.70

1 if Z1(x) > 516.70

(26)

TE2

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.99
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(516.70)t−(180.72)t
if 180.72 ≤ Z1(x) ≤ 516.70

1 if Z1(x) > 516.70

(27)

TE3

h+ (Z1(x)) =


0 if Z1(x) < 180.72

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(516.70)t−(180.72)t
if 180.72 ≤ Z1(x) ≤ 516.70

1 if Z1(x) > 516.70

(28)

IE1

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.98
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(s1)t
if 180.72 ≤ Z1(x) ≤ 180.72 + s1

1 if Z1(x) > 180.72 + s1

(29)

IE2

h+ (Z1(x)) =


0 if Z1(x) < 180.72

0.99
(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(s1)t
if 180.72 ≤ Z1(x) ≤ 180.72 + s1

1 if Z1(x) > 180.72 + s1

(30)

IE3

h+
(Z1(x)) =


0 if Z1(x) < 180.72

(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t−(180.72)t

(s1)t
if 180.72 ≤ Z1(x) ≤ 180.72 + s1

1 if Z1(x) > 180.72 + s1

(31)

FE1

h+ (Z1(x)) =


1 if Z1(x) < 180.72

0.98
(516.70)t−(t1)

t−(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t

(516.70)t−(180.72)t−(t1)t
if 180.72 ≤ Z1(x) ≤ 516.70− t1

0 if Z1(x) > 516.70− t1

(32)

FE2

h+
(Z1(x)) =


1 if Z1(x) > 516.70

0.99
(516.70)t−(t1)

t−(99.875x
1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t

(516.70)t−(180.72)t−(t1)t
if 180.72 + t1 ≤ Z1(x) ≤ 516.70

0 if Z1(x) < 180.72 + t1

(33)

FE3

h+ (Z1(x)) =


1 if Z1(x) > 516.70

(516.70)t−(t1)
t−(99.875x

1
2
1 −8x1+119.875x

1
2
2 −10.125x2+95.125x

1
3
3 −8x3)

t

(516.70)t−(180.72)t−(t1)t
if 180.72 + t1 ≤ Z1(x) ≤ 516.70

0 if Z1(x) < 180.72 + t1

(34)

Similarly, the second objective Z2(x) is of minimization type and the satisfaction level of Experts or DMs increases if the values of objective function tends
towards its lower bound. Thus the truth hesitant membership, indeterminacy hesitant membership and falsity hesitant membership functions of lower bound can
be represented as follows:

For Z2: The upper and lower bound for second objective and its membership functions.

TE1

h− (Z2(x)) =


1 if Z2(x) < 599.23

0.98
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(620.84)t−(599.23)t
if 599.23 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(35)

TE2

h− (Z2(x)) =


1 if Z2(x) < 599.23

0.99
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(620.84)t−(599.23)t
if 599.23 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(36)

TE3

h− (Z2(x)) =


1 if Z2(x) < 599.23
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(620.84)t−(599.23)t
if 599.23 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(37)

IE1

h−
(Z2(x)) =


1 if Z2(x) < 620.84− s2
0.98

(620.84)t−(3.875x1+5.125x2+5.9375x3)
t

(s2)t
if 620.84− s2 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(38)

IE2

h− (Z2(x)) =


1 if Z2(x) < 620.84− s2
0.99

(620.84)t−(3.875x1+5.125x2+5.9375x3)
t

(s2)t
if 620.84− s2 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(39)
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IE3

h− (Z2(x)) =


1 if Z2(x) < 620.84− s2
(620.84)t−(3.875x1+5.125x2+5.9375x3)

t

(s2)t
if 620.84− s2 ≤ Z2(x) ≤ 620.84

0 if Z2(x) > 620.84

(40)

FE1

h−
(Z2(x)) =


0 if Z2(x) < 599.23 + t2

0.98
(3.875x1+5.125x2+5.9375x3)

t−(599.23)t−(t2)
t

(620.84)t−(599.23)t−(t2)t
if 599.23 + t2 ≤ Z2(x) ≤ 620.84

1 if Z2(x) > 620.84

(41)

FE2

h− (Z2(x)) =


0 if Z2(x) < 599.23 + t2

0.99
(3.875x1+5.125x2+5.9375x3)

t−(599.23)t−(t2)
t

(620.84)t−(599.23)t−(t2)t
if 599.23 + t2 ≤ Z2(x) ≤ 620.84

1 if Z2(x) > 620.84

(42)

FE3

h− (Z2(x)) =


0 if Z2(x) < 599.23 + t2
(3.875x1+5.125x2+5.9375x3)

t−(599.23)t−(t2)
t

(620.84)t−(599.23)t−(t2)t
if 599.23 + t2 ≤ Z2(x) ≤ 620.84

1 if Z2(x) > 620.84

(43)

The final solution model is given as follows:

M4 :Max χ =
α1 + α2 + α3

3
+
β1 + β2 + β3

3
−
γ1 + γ2 + γ3

3

s.t. 0.98
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(516.70)t − (180.72)t
≥ α1

0.99
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(516.70)t − (180.72)t
≥ α2

(99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(516.70)t − (180.72)t
≥ α3

0.98
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(s1)t
≥ β1

0.99
(99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(s1)t
≥ β2

(99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t − (180.72)t

(s1)t
≥ β3

0.98
(516.70)t − (t1)t − (99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t

(516.70)t − (180.72)t − (t1)t
≤ γ1

0.99
(516.70)t − (t1)t − (99.875x

1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t

(516.70)t − (180.72)t − (t1)t
≤ γ2

(516.70)t − (t1)t − (99.875x
1
2
1 − 8x1 + 119.875x

1
2
2 − 10.125x2 + 95.125x

1
3
3 − 8x3)t

(516.70)t − (180.72)t − (t1)t
≤ γ3

0.98
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(620.84)t − (599.23)t
≥ α1

0.99
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(620.84)t − (599.23)t
≥ α2

(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(620.84)t − (599.23)t
≥ α3

0.98
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(s2)t
≥ β1

0.99
(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(s2)t
≥ β2

(620.84)t − (3.875x1 + 5.125x2 + 5.9375x3)t

(s2)t
≥ β3

0.98
(3.875x1 + 5.125x2 + 5.9375x3)t − (599.23)t − (t2)t

(620.84)t − (599.23)t − (t2)t
≤ γ1

0.99
(3.875x1 + 5.125x2 + 5.9375x3)t − (599.23)t − (t2)t

(620.84)t − (599.23)t − (t2)t
≤ γ2

(3.875x1 + 5.125x2 + 5.9375x3)t − (599.23)t − (t2)t

(620.84)t − (599.23)t − (t2)t
≤ γ3

2.0625x1 + 3.875x2 + 2.9375x3 ≤ 333.125

3.875x1 + 2.0625x2 + 2.0625x3 ≤ 365.625

2.9375x1 + 2.0625x2 + 2.9375x3 ≥ 360
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x1, x2, x3 ≥ 0, 0 ≤ α1, α2, α3 ≤ 1, 0 ≤ β1, β2, β3 ≤ 1,

0 ≤ γ1, γ2, γ3 ≤ 1, 0 ≤ s1, t1 ≤ 1, 0 ≤ s2, t2 ≤ 1,

αn ≥ βn, αn ≥ γn, αn + βn + γn ≤ 3, ∀ n = 1, 2, 3.

The multiobjective nonlinear programming problem M4 has been written in AMPL language and solved using solvers available on NEOS server online
facility provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison for solving Optimization problems, see (Server [18]).
At t = 2, the optimal solution of the multiobjective nonlinear programming problem by using the proposed neutrosophic hesitant fuzzy programming approach
(NHFPA) is x = (60.48, 5.26, 58.37), Z1 = 416.58, Z2 = 607.88 with the degree of satisfaction χ = 1.20 respectively.

4.1 Comparative study
The multiobjective nonlinear programming problem of manufacturing system with conflicting objectives have been solved by using proposed neutrosophic
hesitant fuzzy programming approach (NHFPA). The solution results obtained by proposed method and with other existing approaches discussed in [19] have
been summarized in Table-1. From the table, it is clear that the minimum deviation from ideal solution of each objective function is 100.12 and 0.41 by using
proposed NHFPA and γ- operator respectively. Furthermore, the highest satisfaction level has been attained by proposed approach i.e; χ=1.20, which reveals
the superiority of proposed NHFPA over other existing approaches in terms of satisfactory degree of DM(s). Fig-3 shows the graphical representation of the
objective functions and satisfaction level obtained by different approaches.

Table 1: Comparison of results with existing methods.

Solution method Objective values Deviations from ideal solutions Satisfaction level
Max. Z1 Min. Z2 (U1 − Z1) (Z2 − L2)

Zimmerman’s technique [19] 409.70 607.28 107 8.05 λ= 0.62
γ- operator [19] 288.86 599.64 227.84 0.41(min.) φ(x)= 0.96

Min. bounded sum operator [19] 416.58 607.88 100.12 8.65 ψ(x)= 0.99
Proposed NHFPA 416.58 607.88 100.12(min.) 8.65 χ= 1.20 (max.)

(a) Objective functions obtained by different approaches. (b) Satisfaction level achieved by different approaches.

Figure 3: Comparison of results with proposed NHFPA and different existing approaches.

5 Conclusions
In this study, a new approach has been suggested to solve the multiobjective nonlinear programming problem in the neutrosophic hesitant fuzzy environment.
The proposed neutrosophic hesitant fuzzy programming approach (NHFPA) comprises three different membership functions, namely; truth hesitant, indetermi-
nacy hesitant and a falsity hesitant membership function which contains a set of different values between 0 and 1. The proposed approach provides the more
realistic framework and considers various aspects of the DM’s neutral thoughts with hesitations in the decision-making process. The main contribution by
introducing the proposed approach is that it allows the DM(s) to express his/her(their) degree of hesitation and neutral thoughts according to the need of adverse
situations in a convenient manner. In order to show the superiority of proposed NHFPA, it is applied to solve multiobjective nonlinear programming problem in
the manufacturing system. To best of our knowledge, no such approach is suggested in the literature to solve MO-NLPP in such an efficient and effective manner.

Therefore, the proposed NHFPA will be very helpful in such a typical situation when the DM(s) have some neutral thoughts and also with a set some
hesitation values in the decision-making process. In future, the proposed approach may be applied to the multiobjective fractional programming problem,
bi-level nonlinear programming problem, multilevel fractional programming problem etc.
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[17] R. Şahin and P. Liu. Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its applications in decision making. Neural Computing
and Applications, 28(6):1387–1395, 2017.

[18] N. Server. State-of-the-Art Solvers for Numerical Optimization, 2016.

[19] S. K. Singh and S. P. Yadav. Modeling and optimization of multi objective non-linear programming problem in intuitionistic fuzzy en-
vironment. Applied Mathematical Modelling, 39(16):4617–4629, 2015. ISSN 0307904X. doi: 10.1016/j.apm.2015.03.064. URL
http://dx.doi.org/10.1016/j.apm.2015.03.064.

[20] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. 1999. ISBN 978-1-59973-080-6. doi: 10.5281/zenodo.49174. URL
http://cogprints.org/1919/.

[21] V. Torra and Y. Narukawa. On hesitant fuzzy sets and decision. IEEE International Conference on Fuzzy Systems, pages 1378–1382, 2009. ISSN
10987584. doi: 10.1109/FUZZY.2009.5276884.

[22] J. Ye. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. Journal of Intelligent Systems, 24(1):
23–36, 2015. ISSN 03341860. doi: 10.1515/jisys-2014-0001.

[23] J. Ye, W. Cui, and Z. Lu. Neutrosophic number nonlinear programming problems and their general solution methods under neutrosophic number environ-
ments. Axioms, 7(1):13, 2018.

[24] X. Zhang, Z. Xu, and X. Xing. Hesitant fuzzy programming technique for multidimensional analysis of hesitant fuzzy preferences. OR Spectrum, 38(3):
789–817, 2016. ISSN 14366304. doi: 10.1007/s00291-015-0420-0.

[25] X. Zhang, P. Liu, and G. Tang. Some interval-valued hesitant uncertain linguistic Bonferroni mean operators and their application in multiple attribute
group decision making. Journal of Intelligent & Fuzzy Systems, 33(6):3419–3432, 2017.

[26] W. Zhou and Z. Xu. Portfolio selection and risk investment under the hesitant fuzzy environment. Knowledge-Based Systems, 144:21–31, 2018. ISSN
09507051. doi: 10.1016/j.knosys.2017.12.020. URL https://doi.org/10.1016/j.knosys.2017.12.020.

[27] H. J. Zimmermann. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1):45–55, 1978. ISSN
01650114. doi: 10.1016/0165-0114(78)90031-3. 

Florentin Smarandache (author and editor) Collected Papers, VIII

580



Abstract. This paper introduces a single valued (2n as well as 2n+1) sided polygonal neutrosophic numbers 
in continuation with other defined single valued neutrosophic numbers. The paper provides basic algebra like 
addi-tion, subtraction and multiplication of a single valued (2n as well as 2n+1) sided polygonal neutrosophic 
numbers with examples. In addition, the paper introduces matrix for single valued (2n as well as 2n+1) sided 
polygonal neutrosophic matrix and its properties. 

Keywords: Fuzzy numbers, Intuitionistic fuzzy numbers, Single valued trapezoidal neutrosophic numbers, Single 
valued triangular neutrosophic numbers, Neutrosophic matrix.

1 Introduction 

In the real world problems, uncertainty occurs in many situations which cannot be handled precisely via crisp set 
theory. To approximate those uncertainties exists in the given linguistics words the fuzzy set theory is introduced 
by Zadeh [10]. After that, Dubois and Prade [2] defined the fuzzy number as a generalization of real number.  In 
continuation, many authors [5-8, 11-23] introduced various types of fuzzy numbers such as triangular, trapezoi-
dal, pentagonal, hexagonal fuzzy numbers etc. with their membership functions. Atanassov [1] introduced the 
concept of intuitionistic fuzzy sets that provides precise solutions to the problems in uncertain situations than 
fuzzy sets with membership and non-membership functions. After developing intuitionistic fuzzy sets, authors in 
[4, 6, 10, 19] defined various types of intuitionistic fuzzy numbers and different types of operations on intuition-
istic fuzzy sets are also established by suitable examples. Smarandache [9] introduced the generalization of both 
fuzzy and intuitionistic fuzzy sets and named it as neutrosophic set. The Single valued neutrosophic number and 
its applications are described in [3]. The results of the problems using neutrosophic sets are more accurate than 
the results given by fuzzy and intuitionistic fuzzy sets [11-20]. Due to which it is applied in various fields for 
multi-decision tasks [20-32]. The applications of n-valued neutrosophic set [24-26] in data analytics research 
fields given a thrust to study the neutrosophic numbers. This paper focuses on introducing mathematical opera-
tion of 2n and 2n+1 sided polygonal neutrosophic numbers and its matrices with examples.   

  The rest of the paper is organized as follows: The section 2 contains preliminaries. Section 3 explains single 
valued 2n+1 polygonal neutrosophic numbers whereas the Section 4 demonstrates Single valued 2n side polygo-
nal neutrosophic numbers. Section 5 provides conclusions followed by acknowledgements and references.  

Single Valued (2n+1) Sided Polygonal Neutrosophic Numbers and 

Single Valued (2n) Sided Polygonal Neutrosophic Numbers 

Said Broumi, Mullai Murugappan, Mohamed Talea, Assia Bakali, Florentin Smarandache, 

Prem Kumar Singh, Arindam Dey 

Said Broumi, Mullai Murugappan, Mohamed Talea, Assia Bakali, Florentin Smarandache, Prem 
Kumar Singh, Arindam Dey (2018). Single Valued (2n+1) Sided Polygonal Neutrosophic Numbers 
and Single Valued (2n) Sided Polygonal Neutrosophic Numbers. Neutrosophic Sets and Systems 25: 
54-65
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2. Preliminaries

Definition 1 (Fuzzy Number)[4]: A fuzzy number is nothing but  an extension of a regular number in the sense 
that  it  does  not  refer  to  one  single  value  but  rather  to  a  connected  set  of  possible  values,  where  each 
of the possible value has its own weight between 0 and 1. This weight is called the membership function. The 
complex fuzzy set for a given fuzzy number  �̃�  can be defined as 𝝁�̃�(𝒙) is non-decreasing for 𝑥 ≤ 𝒙𝟎 and non-
increasing for ≥ 𝒙𝟎 . Similarly other properties can be defined.

Definition 2 (Triangular fuzzy number [4]): A fuzzy number �̃�= {a, b, c } is  said  to  be  a triangular  fuzzy 
number  if  its  membership  function  is  given  by ,  where 𝑎 ≤ 𝑏 ≤ 𝑐 

𝝁�̃�(𝒙)=

{

(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

(𝒄−𝒙)

(𝒄−𝒃)
𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

Definition 3 (Trapezoidal fuzzy number [4]) 
 A Trapezoidal fuzzy number (TrFN) denoted by �̃�𝑃  is defined as (a, b, c, d), where the membership function 

𝝁�̃�𝑷(𝒙)=

{
 

 

𝟎 𝑓𝑜𝑟 𝑥 ≤ 𝑎
(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝟏 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐
(𝒅−𝒙)

(𝒅−𝒄)
𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟎 𝒇𝒐𝒓 𝒙 ≥ 𝒅

 

Or, 𝝁�̃�𝑷(𝒙)= max ( min ((𝒙−𝒂)
(𝒃−𝒂)

, 1, (𝒅−𝒙)
(𝒅−𝒄)

 ) ,0) 

Definition 4 (Generalized Trapezoidal Fuzzy Number) (GTrFNs) 
A Generalized Fuzzy Number (a, b, c, d, w), is called a Generalized Trapezoidal Fuzzy Number “x” if its mem-
bership function is given by 

(𝒙)=

{
 

 

𝟎 𝑓𝑜𝑟 𝑥 ≤ 𝑎
(𝒙−𝒂)

(𝒃−𝒂)
𝒘 𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝒘 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐
(𝒅−𝒙)

(𝒅−𝒄)
𝒘 𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟎 𝒇𝒐𝒓 𝒙 ≥ 𝒅

 

Or, 𝝁�̃�𝑷(𝒙)= max ( min (w (𝒙−𝒂)
(𝒃−𝒂)

,  w,𝒘 (𝒅−𝒙)
(𝒅−𝒄)

) ,0) 
Definition 5 (Pentagonal fuzzy number [4]) 
A pentagonal fuzzy number (PFN) of a fuzzy set �̃�𝑃= {a, b, c, d, e} and its membership function is given by, 

𝝁�̃�𝑷(𝒙)=

{
 
 
 
 

𝟎 𝑓𝑜𝑟 𝑥 < 𝑎
(𝒙−𝒂)

(𝒃−𝒂)
𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

(𝒙−𝒃)

(𝒄−𝒃)
𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟏 𝒙 = 𝒄
(𝒅−𝒙)

(𝒅−𝒄)
𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

(𝒆−𝒙)

(𝒆−𝒅)
𝑓𝑜𝑟  𝑑 ≤ 𝑥 ≤ 𝑒

𝟎 𝒇𝒐𝒓 𝒙 > 𝒅
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Definition 6 (Hexagonal fuzzy number [4]) 
 A Hexagonal fuzzy number (HFN) of a fuzzy set �̃�𝑃= {a, b, c, d, e, f} and its membership function is given by, 

𝝁�̃�𝑷(𝒙)=

{

𝟎 𝑓𝑜𝑟 𝑥 < 𝑎
𝟏

𝟐
(
𝒙−𝒂

𝒃−𝒂
) 𝑓𝑜𝑟  𝑎 ≤ 𝑥 ≤ 𝑏

𝟏

𝟐
+

𝟏

𝟐
(
𝒙−𝒃

𝒄−𝒃
) 𝑓𝑜𝑟  𝑏 ≤ 𝑥 ≤ 𝑐

𝟏 𝑐 ≤ 𝑥 ≤ 𝑑

𝟏 −
𝟏

𝟐
(
𝒙−𝒅

𝒆−𝒅
) 𝑓𝑜𝑟  𝑐 ≤ 𝑥 ≤ 𝑑

𝟏

𝟐
(
𝒇−𝒙

𝒇−𝒆
) 𝑓𝑜𝑟  𝑑 ≤ 𝑥 ≤ 𝑒

𝟎 𝒇𝒐𝒓 𝒙 > 𝑑

 

Definition 7 (Octagonal fuzzy number [4]) 
 A Octagonal fuzzy number (OFN) of a fuzzy set �̃�𝑃= { 87654321 ,,,,,,, aaaaaaaa } and its membership 
function is given by, 

,
12

1

aa
axk



  21 axa 

,k   32 axa 

,)1(
34

3

aa
ax

kk



   43 axa 

PA~ =  ,1   54 axa 

,)1(
56

6

aa
xa

kk



   65 axa 

,k   76 axa 

,
78

8

aa
xa

k



  87 axa 

0,   Otherwise 

Where k= max{ 87654321 ,,,,,,, aaaaaaaa } 

Definition 8 (A triangular intuitionistic fuzzy number)[4] 
A triangular intuitionistic fuzzy number a~ is denoted as (( , , ), ( , , )),a a b c a b c    where 'a a b b c c     

with the following membership function )(~ xa  and non-membership function )(~ xa

,
ab
ax




  ba   

)(~ xa ,
bc
xc




  cb 

0, otherwise

,
ab
xb



  ba   

)(~ xa ,
bc
bx




  cb 

1, otherwise 
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Definition 9 (Trapezoidal Intuitionistic fuzzy number) 

𝝁�̃�(𝒙)=

{

0 x ≤ 0
(x−a)

(b−a)
for  a < 𝑥 < 𝑏

w for  b ≤ x ≤ c
(d−x)

(d−c)
for  c < x < 𝑑

0 otherwise

 , 𝝂�̃�(𝒙)=

{

1 x ≤ 0
(b−x+ 𝑢�̃�(x−a))

(b−a)
for  a < 𝑥 < 𝑏

𝑢�̃� for  b ≤ x ≤ c
(x−c+ 𝑢�̃�(d−x))

(d−c)
for  c < 𝑥 < 𝑑

1 otherwise

 

Definition 10 (Single valued triangular neutrosophic number [3]): 
A triangular neutrosophic number �̃�=< (𝑎, 𝑏,𝑐) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>  is a special neutrosophic set on the real number set
R, whose truth-membership, indeterminacy– membership and falsity-membership functions are defined as fol-
lows: 

𝝁�̃�(𝒙)=

{

(x−a)

(b−a)
wã for  a ≤ x ≤ b

wã for  x = b
(c−x)

(c−b)
wã for  b ≤ x ≤ c

0 otherwise

, 𝝂�̃�(𝒙)=

{

(b−x+ 𝑢�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑢�̃� for  x = b
(x−b+ 𝑢�̃�(c−x))

(c−b)
for  b ≤ x ≤ c

1 otherwise

𝝀�̃�(𝒙)=

{

(b−x+ 𝑦�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑦�̃� for  x = b
(x−b+ 𝑦�̃�(c−x))

(c−b)
for  b ≤ x ≤ c

1 otherwise
A triangular neutrosophic number �̃� =< (𝑎, 𝑏,𝑐) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>  may express an ill-known quantity about  b which
is approximately equal to b. 
Definition 11 (Single valued trapezoidal neutrosophic number [3]): 
A triangular neutrosophic number �̃�=< (𝑎, 𝑏,𝑐, d) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>  is a special neutrosophic set on the real number
set R, whose truth-membership, indeterminacy– membership and falsity-membership function are defined as fol-
lows: 

𝝁�̃�(𝒙)=

{

(x−a)

(b−a)
wã for  a ≤ x ≤ b

wã for  b ≤ x ≤ c
(d−x)

(d−c)
wã for  c ≤ x ≤ d

0 otherwise

, 𝝂�̃�(𝒙)=

{

(b−x+ 𝑢�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑢�̃� for  b ≤ x ≤ c
(x−c+ 𝑢�̃�(d−x))

(d−c)
for  c ≤ x ≤ d

1 otherwise

𝝀�̃�(𝒙)=

{

(b−x+ 𝑦�̃�(x−a))

(b−a)
for  a ≤ x ≤ b

𝑦�̃� for  b ≤ x ≤ c
(x−c+ 𝑦�̃�(d−x))

(d−c)
for  c ≤ x ≤ d

1 otherwise
The single valued trapezoidal neutrosophic numbers are a generalization of the intuitionistic trapezoidal fuzzy 
numbers, Thus,  the neutrosophic number may express more uncertainty than the intuitionstic fuzzy number. 

3. Single valued 2n+1 polygonal neutrosophic numbers

Definition 12 (Single valued 2n+1 polygonal neutrosophic number): 
A single valued 2n+1 sided polygonal neutrosophic number �̃�=< (𝑎1,𝑎2 ,….,𝑎𝑛,…,𝑎2𝑛,𝑎2𝑛+1) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�> is a
special neutrosophic set on the real number set R, whose truth-membership, indeterminacy– membership and 
falsity-membership functions are defined as follows: 
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Example:1 If  𝑤�̃� = 0.2  ,𝑢�̃� = 0.4 𝑦�̃� = 0.3  and n= 4 , then we have an nanogonal neutrosophic number �̃� and it
is taken as �̃� =< (3,6,8,10,11,21,43,44,56) >. Figure 1 demonstrates the Example 1. 

 Figure: 1 
Example: 2 
If  𝑤�̃� = 0.2  ,𝑢�̃� = 0.4 𝑦�̃� = 0.3  and n= 4 , then we have an nanogonal neutrosophic number �̃� and it is taken as
�̃� =< (3,6,8,10,1,2,4,7,5) >. Figure 2 demonstrates the Example 2 and its neutrosophic membership. 

 Figure: 2 

Note 
The single valued triangular neutrosophic number can be generalized to a single valued 2n+1 polygonal neutro-
sophic number, where n=1,2,3,…,n 

�̃�=< (𝑎1,𝑎2 ,….,𝑎𝑛,…,𝑎2𝑛,𝑎2𝑛+1) ;𝑤�̃�, 𝑢�̃�,𝑦�̃�>, where�̃� may express an ill –known quantity about  𝑎𝑛 which is
gradually equal to 𝑎𝑛.
We mean that 𝑎2approximates𝑎𝑛, 𝑎3approximates𝑎𝑛 a littel better than𝑎2,………………. 𝑎𝑛−1approximates𝑎𝑛 a
litte better than all previous 𝑎1, 𝑎2,…𝑎𝑛,
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Remark 
If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1, 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤1, 𝑦�̃�= 0  and the single valued 2n+1 sided polygonal neutrosophic num-
ber reduced to the case single valued 2n+1 sided polygonal fuzzy number. 

3.1. Operations of single valued 2n+1 sided polygonal neutrosophic numbers 

Following are the three operations that can be performed on single valued 2n+1 polygonal neutrosophic numbers 
suppose 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐 ,….,𝒂𝒏,…,𝒂𝟐𝒏 ,𝒂𝟐𝒏+𝟏); 𝒘�̃�, 𝒖�̃�,𝒚�̃�> and 𝑩𝑷𝑵𝑵=< (𝒃𝟏,𝒃𝟐 ,….,𝒃𝒏 ,…,𝒃𝟐𝒏 ,𝒃𝟐𝒏+𝟏) ;𝒘�̃�,
𝒖�̃�,𝒚�̃� >are two single valued 2n+1 polygonal neutrosophic numbers then 

(i) Addition:
𝑨𝑷𝑵𝑵 + 𝑩𝑷𝑵𝑵= < (𝒂𝟏+𝒃𝟏 , 𝒂𝟐+𝒃𝟐, …, 𝒂𝒏+𝒃𝒏 , …, 𝒂𝟐𝒏+𝒃𝟐𝒏 , 𝒂𝟐𝒏+𝟏+𝒃𝟐𝒏+𝟏); 𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃�  , 𝒖�̃� ∙

𝒖�̃�,𝒚�̃� ∙ 𝒚�̃�>

(ii) Subtraction:
𝑨𝑷𝑵𝑵 - 𝑩𝑷𝑵𝑵  = < (𝒂𝟏-𝒃𝟏 , 𝒂𝟐-𝒃𝟐 , …, 𝒂𝒏-𝒃𝒏 , …, 𝒂𝟐𝒏 -𝒃𝟐𝒏 , 𝒂𝟐𝒏+𝟏-𝒃𝟐𝒏+𝟏);   𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃�  , 𝒖�̃� ∙

𝒖�̃�,𝒚�̃� ∙ 𝒚�̃� >
Multiplication: 
𝑨𝑷𝑵𝑵*𝑩𝑷𝑵𝑵 = < (𝒂𝟏 ∙ 𝒃𝟏 ,𝒂𝟐 ∙ 𝒃𝟐  ,….,𝒂𝒏 ∙ 𝒃𝒏 ,…,𝒂𝟐𝒏 ∙ 𝒃𝟐𝒏 ,𝒂𝟐𝒏+𝟏 ∙ 𝒃𝟐𝒏+𝟏 ) ;𝒘�̃� ∙ 𝒘�̃�  ,𝒖�̃� + 𝒖�̃� - 𝒖�̃� ∙ 𝒖�̃� ,𝒚�̃� +
𝒚�̃� − 𝒚�̃� ∙ 𝒚�̃�>

Remark 
If 𝑤�̃� = 1  ,𝑢�̃� = 0 𝑦�̃� = 0   then  single valued 2n+1 sided polygonal neutrosophic number 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐
,….,𝒂𝒏,…,𝒂𝟐𝒏,𝒂𝟐𝒏+𝟏) ;𝒘�̃�, 𝒖�̃�,𝒚�̃�> reduced to the case of single valued 2n+1 sided polygonal fuzzy num-
ber𝑨𝑷𝑭𝑵=< (𝒂𝟏,𝒂𝟐 ,….,𝒂𝒏,…,𝒂𝟐𝒏,𝒂𝟐𝒏+𝟏)>, n=1,2,3,…,n.

Remark 
If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1 , 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤3,  and n=1, the single valued 2n+1 -sided polygonal neutrosophic num-
ber reduced to the case of the single valued triangular neutrosophic number𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐,𝒂𝟑);𝒘�̃�, 𝒖�̃�,𝒚𝒂  ̃>[3].

Example 3: Let 𝑤�̃� = 1, 𝑢�̃� = 0, 𝑦�̃� = 0 and n= 1

If  𝑤�̃� = 1, 𝑢�̃� = 0, 𝑦�̃� = 0 and n= 2, then we have an Pentagonal fuzzy number [5]:

Let  A=( 1, 2, 3 , 4, 5)  and B=(2, 3,4,5,6) be two Pentagonal fuzzy numbers, then  

i. A + B = (3, 5, 7, 9,11)

ii. A – B = (-1,-1, -1,-1,-1)

iii. 2A = (2, 4, 6, 8, 10)

iv. A.B = ( 2, 6, 12, 20, 30)
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Figure: 3 

Figure 3 demonstrates operation given in Example 3.  The single valued 2n+1 polygonal neutrosophic number 
are generalization of the Pentagonal fuzzy number numbers [5] , and single valued triangular neutrosophic num-
ber [3] 

4. Single valued 2n-sided polygonal neutrosophic numbers

Definition  13: The single valued trapezoidal neutrosophic number can be extended to a single valued 2n sided 
polygonal neutrosophic number �̃�=< (𝑎1 ,𝑎2  ,….,𝑎𝑛 ,𝑎𝑛+1 ,  …,𝑎2𝑛−1 ,𝑎2𝑛); 𝒘�̃� , 𝒖�̃� ,𝒚�̃�> where n=1,2,3,…,n,
whose truth-membership, indeterminacy– membership and falsity-membership functions are defined as follows: 
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     1,   Otherwise 
where �̃� may represent an ill–known quantity of range,  which is gradually approximately equal to the interval 
[𝑎𝑛, 𝑎𝑛+1].
We mean that (𝑎2, 𝑎2𝑛−1 ) approximates [𝑎𝑛, 𝑎𝑛+1],
(𝑎, 𝑎2𝑛−2 )  approximates [𝑎𝑛, 𝑎𝑛+1] a little better than (𝑎2, 𝑎2𝑛−1 ),  …………………(an, an+1 )  approximates
[an, an+1] a little  better than all previous  intervals.
Remark 
If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1, 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤1, 𝑦�̃� = 0  and the single valued 2n -sided polygonal neutrosophic number
reduced to the case of single valued 2n-sided polygonal fuzzy number. 

4.1 Single valued 2n-sided polygonal neutrosophic number 

Following are the three operations that can be performed on single valued 2n-sided  polygonal neutrosophic 
numbers suppose 𝑨𝑷𝑵𝑵=< (𝑎1 ,𝑎2  ,….,𝑎𝑛 ,𝑎𝑛+1,  …,𝑎2𝑛−1 ,𝑎2𝑛);𝒘�̃�, 𝒖�̃� ,𝒚�̃�> and 𝑩𝑷𝑵𝑵=<(𝑏1 ,𝑏2 ,….,𝑏𝑛,𝑏𝑛+1 ,
…,𝑏2𝑛−1,𝑏2𝑛);𝒘�̃�, 𝒖�̃�,𝒚�̃�>are two2n-sided polygonal neutrosophic number.

(i) Addition: 𝑨𝑷𝑵𝑵+𝑩𝑷𝑵𝑵=(𝑎1 + 𝑏1,𝑎2 + 𝑏2,….,𝑎𝑛 + 𝑏𝑛,𝑎𝑛+1 + 𝑏𝑛+1,…,𝑎2𝑛−1 + 𝑏2𝑛−1,𝑎2𝑛 +
𝑏2𝑛);𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃� , 𝒖�̃� ∙ 𝒖�̃�,𝒚�̃� ∙ 𝒚�̃�>

(ii) Subtraction:𝑨𝑷𝑵𝑵-𝑩𝑷𝑵𝑵=<(𝑎1 − 𝑏2𝑛,𝑎2 − 𝑏2𝑛−1,….,𝑎𝑛 − 𝑏𝑛,𝑎𝑛+1 − 𝑏𝑛−1,…,𝑎2𝑛−1 − 𝑏2,𝑎2𝑛 −
𝑏1);𝒘�̃�+𝒘�̃�-𝒘�̃� ∙ 𝒘�̃� , 𝒖�̃� ∙ 𝒖�̃�,𝒚�̃� ∙ 𝒚�̃�>

(iii) Multiplication:𝑨𝑷𝑵𝑵*𝑩𝑷𝑵𝑵 =<(𝑎1 ∙ 𝑏1,𝑎2 ∙ 𝑏2,….,𝑎𝑛 ∙ 𝑏𝑛,𝑎𝑛+1 ∙ 𝑏𝑛+1,  …,𝑎2𝑛−1 ∙ 𝑏2𝑛−1,𝑎2𝑛 ∙
𝑏2𝑛);𝒘�̃� ∙ 𝒘�̃� ,𝒖�̃� +𝒖�̃�- 𝒖�̃� ∙ 𝒖�̃�,𝒚�̃� + 𝒚�̃� − 𝒚�̃� ∙ 𝒚�̃�>

Remark 
If 𝑤�̃�  = 1  ,𝑢�̃�  = 0 𝑦�̃�  = 0 then  single valued 2nsidedpolygonal neutrosophic number 𝑨𝑷𝑵𝑵=<(𝑎1 ,𝑎2
,….,𝑎𝑛,𝑎𝑛+1,  …,𝑎2𝑛−1,𝑎2𝑛);𝒘�̃�, 𝒖�̃�,𝒚�̃�> reduced to the case of single valued 2n- sided polygonal fuzzy
number𝑨𝑷𝑭𝑵=<(𝑎1,𝑎2 ,….,𝑎𝑛,𝑎𝑛+1,  …,𝑎2𝑛−1,𝑎2𝑛) for  n=1,2,3,…,n.
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Remark 
If 0≤ 𝑤�̃�, 𝑢�̃�,𝑦�̃� ≤1 , 0≤ 𝑤�̃�+ 𝑢�̃�+𝑦�̃� ≤3,  and n=2, the single valued 2n-sided polygonal neutrosophic number
reduced to the case of single valued trapezoidal neutrosophic number 𝑨𝑷𝑵𝑵=< (𝒂𝟏,𝒂𝟐,𝒂𝟑 , 𝒂𝟒);𝒘�̃�, 𝒖�̃�,𝒚�̃�>[x].

Example 4:  if 𝑤�̃� = 1  ,𝑢�̃� = 0 𝑦�̃� = 0  and n= 3 then we have an Hexagonal fuzzy number [7-8]:
Let  A=( 1, 2, 3 ,5 ,6)  and B=(2, 4,6,8,10,12) be two Hexagonal fuzzy numbers then  
A+ B= (3, 6,9, 13,16,19) 

Figure: 4 
Figure 4 demonstrates operation given in Example 4. 
 The single valued 2n-sided polygonal neutrosophic number are generalization of the hexagonal fuzzy numbers 
[8] ,intuitionistic trapezoidal fuzzy numbers[x] and single valued trapezoidal neutrosophic number [3] with its
application [12-23] for multi-decision process [24-26].

5. Conclusion:
This paper introduces single valued (2n and 2n+1) sided polygonal neutrosophic numbers its addition, subtrac-
tion, multiplication as well as polygonal neutrosophic matrix with an illustrative example. In near future our fo-
cus will be on applications of single-valued 2n sided polygonal neutrosophic numbers and its other mathematical
algebra.

Acknowledgement:  
Authors thank the reviewer for their useful comments and suggestions. 
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Abstract 

In this research, the main objectives are to study the Analytic 
Network Process (ANP) technique in neutrosophic environment, to 
develop a new method for formulating the problem of Multi-Criteria 
Decision-Making (MCDM) in network structure, and to present a 
way of checking and calculating consistency consensus degree of 
decision makers. We have used neutrosophic set theory in ANP to 
overcome the situation when the decision makers might have 
restricted knowledge or different opinions, and to specify 
deterministic valuation values to comparison judgments. We 
formulated each pairwise comparison judgment as a trapezoidal 
neutrosophic number. The decision makers specify the weight 
criteria in the problem and compare between each criteria the effect 
of each criteria against other criteria. In decision-making process, 
each decision maker should make 𝑛 ×(𝑛−1)

2
relations for n 

alternatives to obtain a consistent trapezoidal neutrosophic 
preference relation. In this research, decision makers use   judgments 
to enhance the performance of ANP. We introduced a real life 
example: how to select personal cars according to opinions of 
decision makers. Through solution of a numerical example, we 
formulate an ANP problem in neutrosophic environment. 

Keywords 

Analytic Network Process, Neutrosophic Set, Multi-Criteria 
Decision Analysis (MCDM). 
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1 Introduction 

The Analytic Network Process (ANP) is a new theory that extends the 
Analytic Hierarchy Process (AHP) to cases of dependency and feedback, and 
generalizes the supermatrix approach introduced by Saaty (1980) for the AHP 
[1]. This research focuses on ANP method, which is a generalization of AHP. 
Analytical Hierarchy Process (AHP) [2] is a multi-criteria decision making 
method where, given the criteria and alternative solutions of a specific model, a 
graph structure is created, and the decision maker is asked to pair-wisely compare 
the components, in order to determine their priorities. On the other hand, ANP 
supports feedback and interaction by having inner and outer dependencies among 
the models’ components [2]. We deal with the problem, analyze it, and specify 
alternatives and the critical factors that change the decision.  ANP is considered 
one of the most adequate technique for dealing with multi criteria decision-
making using network hierarchy [19]. We present a comparison of ANP vs. AHP 
in Table 1: how each technique deals with a problem, the results of each 
technique, advantages and disadvantages. 

Table1. Comparison of ANP vs. AHP. 

Property 
ANP 

(Analytic Network 
Process) 

AHP 

(Analytic Hierarch 
Process) 

Structure 

 

Network 

  

 

Hierarchy 

Goal 

Criteria 

Alternative
s

Criteria 

Goal 

Alternative 
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Why are the 
results 

different? 

The user learns through 
feedback comparisons that 
his/her priority for cost is not 
nearly as high as originally 
thought when asked the 
question abstractly, while 
prestige gets more weight. 

The user going top down 
makes comparisons, when 
asked, without referring to 
actual alternatives, and 
overestimates the impor-
tance of cost. 

Advantages 

a) Using feedback and
interdependence
between criteria.

b) Deal with complex
problem without
structure.

a) Straightforward and
convenient.

b) Simplicity by using
pairwise comparisons.

Disadvantages 

a) Conflict between
decision makers.

b) Inconsistencies.
c) Hole of large scale 1

to 9.
d) Large comparisons

matrix.

a) Decision maker’s
capacity.

b) Inconsistencies.
c) Hole of large scale 1

to 9.
d) Large comparisons

matrix.

Analytic network process (ANP) consists of criteria and alternatives by 
decomposing them into sub-problems, specifying the weight of each criterion and 
comparing each criterion against other criterion, in a range between 0 and 1. We 
employ ANP in decision problems, and we make pairwise comparison matrices 
between alternatives and criteria. In any traditional methods, decision makers 
face a difficult problem to make 𝑛 ×(𝑛−1)

2
  consistent judgments for each 

alternative.  

In this article, we deal with this problem by making decision maker using 
(n-1) judgments. The analysis of ANP requires applying a scale system for 
pairwise comparisons matrix, and this scale plays an important role in 
transforming qualitative analysis to quantitative analysis [4].  

Most of previous researchers use the scale 1-9 of analytic network process 
and hierarchy. In this research, we introduced a new scale from 0 to 1, instead of 
the scale 1-9. This scale 1-9 creates large hole between ranking results, and we 
overcome this drawback by using the scale [0, 1] [5], determined by some serious 
mathematical shortages of Saaty’s scale, such as:  

 Large hole between ranking results and human judgments;
 Conflicting between ruling matrix and human intellect.
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The neutrosophic set is a generalization of the intuitionistic fuzzy set. 
While fuzzy sets use true and false for express relationship, neutrosophic sets use 
true membership, false membership and indeterminacy membership [6]. ANP 
employs network structure, dependence and feedback [7]. MCDM is a formal and 
structured decision making methodology for dealing with complex problems [8]. 
ANP was also integrated as a SWOT method [9]. An overview of integrated ANP 
with intuitionistic fuzzy can be found in Rouyendegh, [10]. 

Our research is organized as it follows: Section 2 gives an insight towards 
some basic definitions of neutrosophic sets and ANP. Section 3 explains the 
proposed methodology of neutrosophic ANP group decision making model. 
Section 4 introduces a numerical example. 

2 Preliminaries 

In this section, we give definitions involving neutrosophic set, single 

valued neutrosophic sets, trapezoidal neutrosophic numbers, and operations on 

trapezoidal neutrosophic numbers.

2.1 Definition [26-27] 

Let 𝑋 be a space of points and 𝑥∈𝑋. A neutrosophic set 𝐴 in 𝑋 is defined 

by a truth-membership function  𝑇𝐴 (𝑥), an indeterminacy-membership function

𝐼𝐴 (𝑥) and a falsity-membership function 𝐹𝐴 (𝑥), 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥) are real 

standard or real nonstandard subsets of ]-0, 1+[. That is 𝑇𝐴 (𝑥):𝑋→]-0,

1+[,𝐼𝐴 (𝑥):𝑋→]-0, 1+[ and 𝐹𝐴 (𝑥):𝑋→]-0, 1+[. There is no restriction on the sum

of 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥), so 0− ≤ sup (𝑥) + sup 𝑥 + sup 𝑥 ≤3+.

2.2 Definition  [13, 14, 26] 

Let 𝑋 be a universe of discourse. A single valued neutrosophic set 𝐴 over 

𝑋 is an object taking the form 𝐴= {〈𝑥, 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥), 𝐹𝐴 (𝑥), 〉:𝑥∈𝑋}, where

𝑇𝐴 (𝑥):𝑋→ [0,1], 𝐼𝐴 (𝑥):𝑋→ [0,1] and 𝐹𝐴 (𝑥):𝑋→[0,1] with 0≤ 𝑇𝐴 (𝑥) + 𝐼𝐴 (𝑥) +

𝐹𝐴 (𝑥) ≤3 for all 𝑥∈𝑋. The intervals 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥) represent the truth-

membership degree, the indeterminacy-membership degree and the falsity 

membership degree of 𝑥 to 𝐴, respectively. For convenience, a SVN number is 

represented by 𝐴= (𝑎, b, c), where 𝑎, 𝑏, 𝑐∈ [0, 1] and 𝑎+𝑏+𝑐≤3. 
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2.3 Definition [14, 15, 16] 

Suppose 𝛼�̃� , 𝜃�̃� , 𝛽�̃� ϵ [0,1] and 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 𝜖 R, where 𝑎1 ≤ 𝑎2 ≤ 𝑎3
≤ 𝑎4. Then, a single valued trapezoidal neutrosophic number 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3 ,

𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 is a special neutrosophic set on the real line set R, whose truth-

membership, indeterminacy-membership and falsity-membership functions are 

defined as: 

𝑇�̃�  (𝑥) = 

{

𝛼�̃�  (
𝑥−𝑎1

𝑎2−𝑎1
)   (𝑎1 ≤ 𝑥 ≤  𝑎2) 

  𝛼�̃�   (𝑎2 ≤ 𝑥 ≤  𝑎3)

𝛼�̃�  (
𝑎4−𝑥

𝑎4−𝑎3
)    (𝑎3 ≤ 𝑥 ≤  𝑎4)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

𝐼�̃�  (𝑥) = 

{

(𝑎2−𝑥+𝜃�̃�(𝑥−𝑎1))

(𝑎2−𝑎1)
  (𝑎1 ≤ 𝑥 ≤  𝑎2) 

  𝛼�̃�   (𝑎2 ≤ 𝑥 ≤  𝑎3)
(𝑥−𝑎3+𝜃�̃�(𝑎4−𝑥))

(𝑎4−𝑎3)
  (𝑎3 ≤ 𝑥 ≤  𝑎4)

    1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ,

(2) 

𝐹�̃�  (𝑥) = 

{

(𝑎2−𝑥+𝛽�̃�(𝑥−𝑎1))

(𝑎2−𝑎1)
  (𝑎1 ≤ 𝑥 ≤  𝑎2) 

  𝛼�̃�   (𝑎2 ≤ 𝑥 ≤  𝑎3)
(𝑥−𝑎3+𝛽�̃�(𝑎4−𝑥))

(𝑎4−𝑎3)
  (𝑎3 ≤ 𝑥 ≤  𝑎4)

    1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ,

(3) 

where  𝛼�̃� , 𝜃�̃� and 𝛽�̃� represent the maximum truth-membership degree, the

minimum indeterminacy-membership degree and the minimum falsity-

membership degree, respectively. A single valued trapezoidal neutrosophic 

number 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 may express an ill-defined quantity

of the range, which is approximately equal to the interval [𝑎2 , 𝑎3] .

2.4 Definition [15, 14] 

Let 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 and �̃�=〈(𝑏1 , 𝑏2 , 𝑏3 , 𝑏4); 𝛼�̃� , 𝜃�̃� ,

𝛽�̃�〉 be two single valued trapezoidal neutrosophic numbers, and ϒ≠ 0  be any real 

number. Then: 

- Addition of two trapezoidal neutrosophic numbers:

𝑎 ̃ + �̃� =〈(𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 +𝑏3, 𝑎4 +𝑏4); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃�, 𝛽�̃� ᴠ 𝛽�̃�〉 

- Subtraction of two trapezoidal neutrosophic numbers:

𝑎 ̃ - �̃� =〈(𝑎1 - 𝑏4, 𝑎2 - 𝑏3, 𝑎3 - 𝑏2, 𝑎4 - 𝑏1); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃�, 𝛽�̃� ᴠ 𝛽�̃�〉 
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- Inverse of trapezoidal neutrosophic number:

ã−1 =〈( 1
𝑎4

  , 1

𝑎3
, 1

𝑎2
, 1

𝑎1
 ) ; 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉          where (𝑎 ̃ ≠ 0) 

- Multiplication of trapezoidal neutrosophic number by constant value:

ϒ𝑎 ̃ = {〈(ϒ𝑎1 , ϒ𝑎2 , ϒ𝑎3 , ϒ𝑎4); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉      if  (ϒ > 0)

〈(ϒ𝑎4 , ϒ𝑎3 , ϒ𝑎2 , ϒ𝑎1); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉      if  (ϒ < 0)

- Division of two trapezoidal neutrosophic numbers:

ã

�̃�
 = 

{

〈(  
𝑎1

𝑏4
,
𝑎2

𝑏3
,
𝑎3

𝑏2
,
𝑎4

𝑏1
 );  𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉    if  (𝑎4 > 0 ,  𝑏4 > 0)

〈(  
𝑎4

𝑏4
,
𝑎3

𝑏3
,
𝑎2

𝑏2
,
𝑎1

𝑏1
 );  𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉    if  (𝑎4 < 0 ,  𝑏4 > 0)

〈(  
𝑎4

𝑏1
,
𝑎3

𝑏2
,
𝑎2

𝑏3
,
𝑎1

𝑏4
 );  𝛼�̃� ᴧ 𝛼�̃� , 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉    if  (𝑎4 < 0 ,  𝑏4 < 0)

- Multiplication of trapezoidal neutrosophic numbers:

𝑎 ̃�̃� = {
〈(𝑎1𝑏1 , 𝑎2𝑏2 , 𝑎3𝑏3 , 𝑎4𝑏4); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉      if  (𝑎4 > 0 ,  𝑏4 > 0)
〈(𝑎1𝑏4 , 𝑎2𝑏3 , 𝑎3𝑏2 , 𝑎4𝑏1); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉      if  (𝑎4 < 0 ,  𝑏4 > 0)
〈(𝑎4𝑏4 , 𝑎3𝑏3 , 𝑎2𝑏2 , 𝑎1𝑏1); 𝛼�̃� ᴧ 𝛼�̃�, 𝜃�̃� ᴠ 𝜃�̃� , 𝛽�̃� ᴠ 𝛽�̃�〉      if  (𝑎4 < 0 ,  𝑏4 < 0)

3 Methodology 

In this study, we present the steps of the proposed model, we identify 
criteria, evaluate them, and decision makers also evaluate their judgments using 
neutrosophic trapezoidal numbers.  

In previous articles, we noticed that the scale (1-9) has many drawbacks 
illustrated by [5]. We present a new scale from 0 to 1 to avoid this drawbacks. 
We use (n-1) judgments to obtain consistent trapezoidal neutrosophic preference 
relations instead of  𝑛 ×(𝑛−1)

2
 , in order to decrease the workload. ANP is used for 

ranking and selecting the alternatives. 

The model of ANP in neutrosophic environment quantifies four criteria to 
combine them for decision making into one global variable. To do this, we first 
present the concept of ANP and determine the weight of each criterion based on 
opinions of decision makers.  

Then, each alternative is evaluated with other criteria, considering the 
effects of relationships among criteria. The ANP technique is composed of four 
steps in the traditional way [17].  

The steps of our ANP neutrosophic model can be introduced as: 
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Step - 1   constructing the model and problem structuring:  

1. Selection of decision makers (DMs).

Form the problem in a network; the first level represents the goal and the 
second level represents criteria and sub-criteria and interdependence and 
feedback between criteria, and the third level represents the alternatives. An 
example of a network structure: 

Figure 1. ANP model. 

Another example of a network ANP structure [17]: 

Fig. 2.  A Network Structure. 

2. Prepare the consensus degree as it follows:

CD = 𝑁𝐸
𝑁

 × 100%, where NE is the number of decision makers that

have the same opinion and N is the total numbers of experts.

Consensus degree should be greater than 50% [16].
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Step - 2   Pairwise comparison matrices to determine weighting 

1. Identify the alternatives of a problem A = {A1, A2, A3, …, Am}.

2. Identify the criteria and sub-criteria, and the interdependency

between them:

C = {C1, C2, C3, …, Cm}.

3. Determine the weighting matrix of criteria that is defined by decision

makers (DMs) for each criterion (W1).

4. Determine the relationship interdependencies among the criteria and

the weights, the effect of each criterion against another in the range

from 0 to 1.

5. Determine the interdependency matrix from multiplication of

weighting matrix in step 3 and interdependency matrix in step 4.

6. Decision makers make pairwise comparisons matrix between

alternatives compared to each criterion, and focus only on (n-1)

consensus judgments instead of using   𝑛 ×(𝑛−1)
2

  [16].

�̃�= [

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢 , 𝑢11)
(𝑙21, 𝑚21𝑙 , 𝑚21𝑢, 𝑢21)

…
(𝑙𝑛1, 𝑚𝑛1𝑙 , 𝑚𝑛1𝑢 , 𝑢𝑛1)

  

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)
(𝑙22, 𝑚22𝑙 , 𝑚22𝑢, 𝑢22)

…
(𝑙𝑛2, 𝑚𝑛2𝑙 , 𝑚𝑛2𝑢, 𝑢𝑛2)

  

…
…
…
…

    

(𝑙1𝑛, 𝑚1𝑛𝑙 , 𝑚1𝑛𝑢, 𝑢1𝑛)
(𝑙2𝑛 , 𝑚2𝑛𝑙 , 𝑚2𝑛𝑢, 𝑢2𝑛)

…
(𝑙𝑛𝑛, 𝑚𝑛𝑛𝑙 , 𝑚𝑛𝑛𝑢, 𝑢𝑛𝑛)

]

To make the comparisons matrix accepted, we should check the 

consistency of the matrix. 

Definition 5 The consistency of a trapezoidal neutrosophic reciprocal 

preference relations �̃� = (�̌�𝑖𝑗) n × n can be expressed as:

�̌�𝑖𝑗 = �̌�𝑖𝑘 + �̌�𝑘𝑗 – (0.5, 0.5, 0.5, 0.5) where i, j, k = 1, 2 … n. can also be 

written as 𝑙𝑖𝑗 = 𝑙𝑖𝑘 + 𝑙𝑘𝑗 – (0.5, 0.5, 0.5, 0.5), 𝑚𝑖𝑗𝑙 = 𝑚𝑖𝑘𝑙 + 𝑚𝑚𝑗𝑙  – (0.5, 0.5, 0.5, 

0.5),  𝑚𝑖𝑗𝑢 = 𝑚𝑖𝑘𝑢 + 𝑚𝑘𝑗𝑢 - (0.5, 0.5, 0.5, 0.5), 𝑢𝑖𝑗 = 𝑚𝑖𝑘 + 𝑚𝑘𝑗  – (0.5, 0.5, 0.5, 

0.5) , where i, j, k = 1, 2 … n and for �̌�𝑖𝑘 = 1- �̌�𝑘𝑗 {Abdel-Basset, 2017 [16]}.

Definition 6 In order to check whether a trapezoidal neutrosophic 

reciprocal preference relation �̃� is additive approximation - consistency or not 

[16]. 
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�̌�𝑖𝑗 = 
�̌�𝑖𝑗+𝑐𝑥

1+2𝑐𝑥
(5) 

�̌�𝑖𝑗 = 
−�̌�𝑖𝑗+𝑐𝑥

1+2𝑐𝑥
(6) 

𝑢𝑖𝑗 - 𝑚𝑖𝑗 = Δ (7)

We transform the neutrosophic matrix to pairwise comparison 

deterministic matrix by adding (α, θ, β), and we use the following equation to 

calculate the accuracy and score  

S (ã𝑖𝑗) = 1
16

 [𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã -βã )         (8)

and 

A (ã𝑖𝑗) = 1
16

 [𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã +βã )          (9)

We obtain the deterministic matrix by using S (ã𝑖𝑗).

From the deterministic matrix, we obtain the weighting matrix by dividing 

each entry by the sum of the column. 

Step - 3 Formulation of supermatrix 

   The supermatrix concept is similar to the Markov chain process [18]. 

1. Determine scale and weighting data for the n alternatives against n

criteria w21, w22, w23, … ,w2n.

2. Determine the interdependence weighting matrix of criteria

comparing it against another criteria in range from 0 to 1, defined as:

 C1 C2     C3 Cn

𝑊3    = 
C1
C2
C3
Cn

[

(0 − 1)
…
…
…

 

…
…
…
…

  

…
…
…
…

 

…
…
…

(0 − 1)

]  (10) 

3. We obtain the weighting criteria  𝑊𝑐 = 𝑊3 × 𝑊1.

4. Determine the interdependence matrix �̃�𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 among the 

alternatives with respect to each criterion.
�̃�𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

[

(0.5, 0.5,0.5,0.5)
(𝑙21, 𝑚21𝑙 , 𝑚21𝑢, 𝑢21)

…
(𝑙𝑛1, 𝑚𝑛1𝑙 , 𝑚𝑛1𝑢 , 𝑢𝑛1)

 

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢 , 𝑢11)
(0.5, 0.5,0.5,0.5)

…
(𝑙𝑛2, 𝑚𝑛2𝑙 , 𝑚𝑛2𝑢 , 𝑢𝑛2)

  

…
…

(0.5, 0.5,0.5,0.5)
…

    

(𝑙1𝑛, 𝑚1𝑛𝑙 , 𝑚1𝑛𝑢, 𝑢1𝑛)
(𝑙2𝑛 , 𝑚2𝑛𝑙 , 𝑚2𝑛𝑢, 𝑢2𝑛)

…
(0.5, 0.5,0.5,0.5)

]
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Step - 4 Selection of the best alternatives 

1. Determine the priorities matrix of the alternatives with respect to each

of the n criteria 𝑊𝐴𝑛 where n is the number of criteria.

Then, 𝑊𝐴1 = 𝑊�̃�𝐶1
  ×   𝑊21

𝑊𝐴2 = 𝑊�̃�𝐶1
  × 𝑊22 

𝑊𝐴3 = 𝑊�̃�𝐶1
  × 𝑊23

𝑊𝐴𝑛 = 𝑊�̃�𝐶𝑛
  × 𝑊2𝑛

Then, 𝑊𝐴  = [ 𝑊𝐴1,𝑊𝐴2,𝑊𝐴3, … ,𝑊𝐴𝑛].

2. In the last we rank the priorities of criteria and obtain the best

alternatives by multiplication of the 𝑊𝐴  matrix by the Weighting

criteria matrix 𝑊𝑐, i.e.

𝑊𝐴  × 𝑊𝑐
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Figure 3. Schematic diagram of ANP with neutrosophic. 

4 Numerical Example 

In this section, we present an example to illustrate the ANP in neutrosophic 
environment - selecting the best personal car from four alternatives: Crossover is 
alternative A1, Sedan is alternative A2, Diesel is alternative A3, Nissan is 
alternative A4. We have four criteria  𝐶𝑗 (j = 1, 2, 3, and 4), as follows: 𝐶1 for
price,  𝐶2 for speed, 𝐶3 for color, 𝐶4 for model. The criteria to be considered is
the supplier selections, which are determined by the DMs from a decision group. 
The team is split into four groups, namely 𝐷𝑀1, 𝐷𝑀2, 𝐷𝑀3 and 𝐷𝑀4, formed to
select the most suitable alternatives. The criteria to be considered in the supplier’s 
selection are determined by the DMs team from the expert’s procurement office. 

Figure 4.  Network structure of the illustrative example. 
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In this example, we seek to illustrate the improvement and efficiency of 

ANP, the interdependency among criteria and feedback, and how a new scale 

from 0 to 1 improves and facilitates the solution and the ranking of the 

alternatives.  

Step - 1: In order to compare the criteria, the decision makers assume that there 

is no interdependency among criteria. This data reflects relative weighting 

without considering interdependency among criteria. The weighting matrix of 

criteria that is defined by decision makers is 𝑊1= (P, S, C, M) = (0.33, 0.40, 0.22,

0.05). 

Step - 2: Assuming that there is no interdependency among the four alternatives, 

(𝐴1 𝐴2, 𝐴3, 𝐴4), they are compared against each criterion. Decision makers

determine the relationships between each criterion and alternative, establishing 

the neutrosophic decision matrix between four alternatives (𝐴1, 𝐴2,𝐴3, 𝐴4) and

four criteria (𝐶1, 𝐶2 , 𝐶3 , 𝐶4):

𝐶1 𝐶2 𝐶3 𝐶4

 𝑅  = 
𝐴1
𝐴2
𝐴3
𝐴4

[ 

(0.3 , 0.5,0.2,0.5)
(0.6 , 0.3,0.4,0.7)
(0.3 , 0.5,0.2,0.5)
(0.4 , 0.3,0.1,0.6)

(0.6, 0.7,0.9,0.1)
(0.2 ,0.3,0.6,0.9)
(0.3 , 0.7,0.4,0.3)
(0.1 , 0.4,0.2,0.8)

(0.7 , 0.2,0.4,0.6)
(0.6 , 0.7,0.8,0.9)
(0.8 , 0.2,0.4,0.6)
(0.5 , 0.3,0.2,0.4)

(0.3 , 0.6,0.4,0.7)
(0.3 , 0.5,0.2,0.5)
(0.2 , 0.5,0.6,0.8)
(0.6 , 0.2,0.3,0.4)

]

The last matrix appears consistent to definition 6 (5, 6, 7). Then, by ensuring 

consistency of trapezoidal neutrosophic additive reciprocal preference relations, 

decision makers (DMs) should determine the maximum truth-membership degree 

(α), minimum indeterminacy-membership degree (θ), and minimum falsity-

membership degree (β) of single valued neutrosophic numbers, as in definition 6 

(c). Therefore: 

  𝐶1   𝐶2    𝐶3  𝐶4  

𝑅  = 
𝐴1
𝐴2
𝐴3
𝐴3

[

(0.3,0.5,0.2,0.5; 0.3,0.4,0.6)  (0.6,0.7,0.9,0.1; 0.4,0.3,0.5) (0.7,0.2,0.4,0.6; 0.8,0.4,0.2) (0.3,0.6,0.4,0.7; 0.4,0.5,0.6)
(0.6,0.3,0.4,0.7; 0.2,0.5,0.8)  (0.2,0.3,0.6,0.9; 0.6,0.2,0.5)  (0.6,0.7,0.8,0.9; 0.2,0.5,0.7)  (0.3,0.5,0.2,0.5; 0.5,0.7,0.8)
(0.3,0.5,0.2,0.5; 0.4,0.5,0.7)   (0.3,0.7,0.4,0.3; 0.2,0.5,0.9)   (0.8,0.2,0.4,0.6; 0.4,0.6,0.5)  (0.2,0.5,0.6,0.8; 0.4,0.3,0.8)
(0.4,0.3,0.1,0.6; 0.2,0.3,0.5)   (0.1,0.4,0.2,0.8; 0.7,0.3,0.6)   (0.5,0.3,0.2,0.4; 0.3,0.4,0.7)  (0.6,0.2,0.3,0.4; 0.6,0.3,0.4)

]
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S (ã𝑖𝑗) = 1
16

[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã - βã )
And 
A (ã𝑖𝑗) = 1

16
[𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã + βã )

The deterministic matrix can be obtained by S (ã𝑖𝑗) equation in the following
step: 

 𝐶1 𝐶2 𝐶3 𝐶4

𝑅  = 
𝐴1
𝐴2
𝐴3
𝐴3

[

0.122
0.113
0.113
0.123

0.23
0.238
0.085
0.169

0.261
0.188
0.163
0.105

0.163
0.10
 0.17
0.178

]

Scale and weighting data for four alternatives against four criteria is derived by 
dividing each element by the sum of each column. The comparison matrix of four 
alternatives and four criteria is the following:  

 𝐶1 𝐶2 𝐶3 𝐶4

𝐴1
𝐴2
𝐴3
𝐴3

[

0.259
0.240
0.240
0.261

0.319
0.329
0.118
0.234

0.364
0.262
0.227
0.146

0.268
0.164
 0.278
0.291

]

 w21   w22      w23   w24    

Step - 3: Decision makers take into consideration the interdependency 
among criteria. When one alternative is selected, more than one criterion should 
be considered. Therefore, the impact of all the criteria needs to be examined by 
using pairwise comparisons. By decision makers’ group interviews, four sets of 
weightings have been obtained. The data that the decision makers prepare for the 
relationships between criteria reflect the relative impact degree of the four criteria 
with respect to each of four criteria. We make a graph to show the relationship 
between the interdependency among four criteria, and the mutual effect. 

Figure 5.  Interdependence among the criteria. 
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The interdependency weighting matrix of criteria is defined as: 

  𝐶1    𝐶2 𝐶3 𝐶4

w3 = 
𝐶1
𝐶2
𝐶3
𝐶4

[

1
0
0
0

0.8
0.2
0
0

0.4
0.5
0.1
0

0
0.6
0.3
0.1

]

wc =   w3 × w1  = [

1
0
0
0

0.8
0.2
0
0

0.4
0.5
0.1
0

0
0.6
0.3
0.1

] × [

0.33
0.40
0.22
0.05

] = [

0.738
0.220
0.037
0.005

]

Thus, it is derived that wc= (𝐶1,𝐶2 ,𝐶3 ,𝐶4) = (0.738, 0.220, 0.037, 0.005).

Step - 4: The interdependency among alternatives with respect to each 
criterion is calculated by respect of consistency ratio that the decision makers 
determined. In order to satisfy the criteria 1 (𝐶1), which alternative contributes
more to the action of alternative 1 against criteria 1 and how much more? We 
defined the project interdependency weighting matrix for criteria 𝐶1 as:

a. First criteria (𝐶1)
DMs compare criteria with other criteria, and determine the weighting of every 
criteria:  

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶1  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
𝑦
𝑦
𝑦

(0.3, 0.2,0.4,0.5)
(0.5 , 0.5,0.5,0.5)

𝑦
𝑦

  

𝑦
(0.1 , 0.2,0.4,0.8)
(0.5 , 0.5,0.5,0.5)

𝑦

    

𝑦
𝑦

(0.2 , 0.3,0.4,0.7)
(0.5 , 0.5,0.5,0.5)

]

where y indicates preference values that are not determined by decision makers. 
Then, we can calculate these values and make them consistent with their 
judgments. Let us complete the previous matrix according to definition 5 as 
follows: 
R̃13 = r̃12 + r̃23  - (0.5 , 0.5,0.5,0.5) = (−0.1, −0.1,0.3,0.8)

R̃31 = 1 - R̃13 = 1 -  (−0.1, −0.1,0.3,0.8) = (0.2, 0.7,1.1,1.1)

R̃32 = r̃31 + r̃12  - (0.5 , 0.5,0.5,0.5) = (0.0,0.4 ,1.0,1.1)

R̃21 = 1 - R̃12 = 1 – (0.3, 0.2,0.4,0.5)  = (0.5, 0.6, 0.8, 0.7)

R̃14 = r̃13 + r̃34  - (0.5 , 0.5,0.5,0.5) = (−0.1, −0.3,0.2,1.1)

R̃24 = r̃21 + r̃14  - (0.5 , 0.5,0.5,0.5) = (−0.1, −0.2,0.5,1.2)

R̃41 = 1 - R̃14 = 1 – (−0.1,−0.3,0.2,1.0)  = (1.0, 0.8, 1.3, 1.1)

R̃42 = 1 - R̃24 = 1 – (−0.1, −0.2,0.5,1.2)  = (0.2, 0.5, 1.2, 1.1)

R̃43 = 1 - R̃34 = 1 – (0.2, 0.3,0.4,0.7)  = (0.3, 0.6, 0.7, 0.8)
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The comparison matrix will be as follows: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶1  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.5, 0.6, 0.8, 0.7)
(0.2, 0.7,1.1,1.1)
(1.0, 0.8, 1.3, 1.1)

(0.3, 0.2,0.4,0.5)
(0.5 , 0.5,0.5,0.5)
(0.0,0.4 ,1.0,1.1)
(0.2, 0.5, 1.2, 1.1)

(−0.1, −0.1,0.3,0.8)
(0.1 , 0.2,0.4,0.8)
(0.5 , 0.5,0.5,0.5)
(0.3, 0.6, 0.7, 0.8)

(−0.1, −0.3,0.2,1.1)
(−0.1, −0.2,0.5,1.2)
(0.2 , 0.3,0.4,0.7)
(0.5 , 0.5,0.5,0.5)

]

According to definition 6, one can see that this relation is not a trapezoidal 
neutrosophic additive reciprocal preference relation. By using Eq. 5, Eq. 6 and 
Eq. 7 in definition 6, we obtain the following: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶1  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.5, 0.6, 0.8, 0.7)
(0.2, 0.7,1.0,1.0)
(1.0, 0.8, 1.0, 1.0)

(0.3, 0.2,0.4,0.5)
(0.5 , 0.5,0.5,0.5)
(0.0,0.4 ,1.0,1.0)
(0.2, 0.5, 1.0, 1.0)

(0.1, 0.1,0.3,0.8)
(0.1 , 0.2,0.4,0.8)
(0.5 , 0.5,0.5,0.5)
(0.3, 0.6, 0.7, 0.8)

(0.1, 0.3,0.2,1.0)
(0.1, 0.2,0.5,1.0)
(0.2 , 0.3,0.4,0.7)
(0.5 , 0.5,0.5,0.5)

]

We check if the matrix is consistent according to definition 6. By ensuring 
consistency of trapezoidal neutrosophic additive reciprocal preference relations, 
decision makers (DMs) should determine the maximum truth-membership degree 
(α), the minimum indeterminacy-membership degree (θ) and the minimum 
falsity-membership degree (β) of single valued neutrosophic numbers as in 
definition 6. 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶1  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.5, 0.6, 0.8, 0.7; 0.7 ,0.2, 0.5)

(0.2, 0.7,1.0,1.0; 0.8, 0.2 ,0.1)
(1.0, 0.8, 1.0, 1.0; 0.6,0.2,0.3)

(0.3, 0.2,0.4,0.5; 0.7 ,0.2, 0.5)
(0.5 , 0.5,0.5,0.5)

(0.0,0.4 ,1.0,1.0; 0.3, 0.1, 0.5)
(0.2, 0.5, 1.0, 1.0; 0.6,0.2,0.3)

(0.1, 0.1,0.3,0.8; 0.5 , 0.2,0.1)
(0.1 , 0.2,0.4,0.8; 0.4, 0.5, 0.6)

(0.5 , 0.5,0.5,0.5)
(0.3, 0.6, 0.7, 0.8; 0.9,0.4,0.6)

(0.1, 0.3,0.2,1.0; 0.5,0.2,0.1)
(0.1, 0.2,0.5,1.0; 0.5,0.1,0.2)
(0.2 , 0.3,0.4,0.7; 0.7, 0.2, 0.5)

(0.5 , 0.5,0.5,0.5)

] 

We make sure the matrix is deterministic, or we transform the previous matrix to 
be a deterministic pairwise comparison matrix, to calculate the weight of each 
criterion using equation (8, 9) in definition 6. 

The deterministic matrix can be obtained by S (ã𝑖𝑗) equation in the following

step: 

�̃�𝐶1 = [

0.5
0.325
0.453
0.38

0.175
0.5
0.265
0.354

0.179
0.122
0.5
0.285

0.22
0.25
0.2
0.5

]
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We present the weight of each alternatives according to each criteria from the 
deterministic matrix easily by dividing each entry by the sum of the column; we 
obtain the following matrix as:  

�̃�𝐶1 = [

0.30
0.196
0.273
0.229

0.135
0.386
0.198
0.274

0.165
0.112
0.460
0.262

0.188
0.214
0.171
0.427

]

b. Second criteria (𝐶2)

DMs compare criteria with other criteria, and determine the weighting of every 

criteria: 
  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶2  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
𝑦
𝑦
𝑦

(0.3, 0.6,0.4,0.5)
(0.5 , 0.5,0.5,0.5)

𝑦
𝑦

  

𝑦
(0.5 , 0.2,0.4,0.9)
(0.5 , 0.5,0.5,0.5)

𝑦

    

𝑦
𝑦

(0.5 , 0.3,0.4,0.7)
(0.5 , 0.5,0.5,0.5)

]

where y indicates preference values that are not determined by decision makers, 
then we can calculate these values and make them consistent with their 
judgments. 
We complete the previous matrix according to definition 5 as follows: 

The comparison matrix will be as follows: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶2  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.5, 0.6, 0.4, 0.7)
(0.1, 0.7,0.7,0.7)
(1.0, 0.8, 0.9, 0.7)

(0.3, 0.6,0.4,0.5)
(0.5 , 0.5,0.5,0.5)
(−0.1,0.8 ,0.3,0.5)
(0.3, 0.9, 0.8, 0.7)

(0.3, 0.3,0.3,0.9)
(0.5 , 0.2,0.4,0.9)
(0.5 , 0.5,0.5,0.5)
(0.3, 0.6, 0.7, 0.5)

(0.3, 0.1,0.2,1.1)
(0.3, 0.2,0.1,1.3)
(0.5 , 0.3,0.4,0.7)
(0.5 , 0.5,0.5,0.5)

]

According to definition 6, one can see that this relation is not a trapezoidal 
neutrosophic additive reciprocal preference relation. By using Eq. 5, Eq. 6 and 
Eq. 7 in definition 6, we obtain the following: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶2  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.5, 0.6, 0.4, 0.7)
(0.1, 0.7,0.7,0.7)
(1.0, 0.8, 0.9, 0.7)

(0.3, 0.6,0.4,0.5)
(0.5 , 0.5,0.5,0.5)
(0.1,0.8 ,0.3,0.5)
(0.3, 0.9, 0.8, 0.7)

(0.3, 0.3,0.3,0.9)
(0.5 , 0.2,0.4,0.9)
(0.5 , 0.5,0.5,0.5)
(0.3, 0.6, 0.7, 0.5)

(0.3, 0.1,0.2,1.0)
(0.3, 0.2,0.1,1.0)
(0.5 , 0.3,0.4,0.7)
(0.5 , 0.5,0.5,0.5)

]

Let us check that the matrix is consistent according to definition 6. Then, by 
ensuring consistency of trapezoidal neutrosophic additive reciprocal preference 
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relations, decision makers (DMs) should determine the maximum truth-
membership degree (α), the minimum indeterminacy-membership degree (θ) and 
the minimum falsity-membership degree (β) of single valued neutrosophic 
numbers, as in definition 6. Then: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶2  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.5, 0.6, 0.4, 0.7; 0.7 ,0.3, 0.5)

(0.1, 0.7,0.7,0.7; 0.8, 0.2 ,0.3)
(1.0, 0.8, 0.9, 0.7; 0.6,0.4,0.3)

(0.3, 0.6,0.4,0.5 ; 0.7 ,0.3, 0.5)
(0.5 , 0.5,0.5,0.5)

(0.1,0.8 ,0.3,0.5; 0.4, 0.2, 0.5)
(0.3, 0.9, 0.8, 0.7; 0.6,0.2,0.3)

(0.3, 0.3,0.3,0.9 ; 0.5,0.2,0.1)
(0.5 , 0.2,0.4,0.9; 0.4, 0.5, 0.6)

(0.5 , 0.5,0.5,0.5)
(0.3, 0.6, 0.7, 0.5; 0.9,0.4,0.5)

(0.3, 0.1,0.2,1.0; 0.5,0.2,0.1)
(0.3, 0.2,0.1,1.0; 0.5,0.1,0.4)
(0.5 , 0.3,0.4,0.7; 0.6, 0.2, 0.5)

(0.5 , 0.5,0.5,0.5)

]

Let us be sure the matrix is deterministic, or transform the previous matrix to be 
deterministic pairwise comparison matrix, to calculate the weight of each criteria 
using equation (8, 9) in definition 6. 

The deterministic matrix can be obtained by S (ã𝑖𝑗) equation in the following
step: 

�̃�𝐶2 = [

0.5
0.216
0.316
0.404

0.214
0.5
0.181
0.354

0.247
0.163
0.5
0.3

0.22
0.20
0.226
0.5

]

We present the weight of each alternatives according to each criteria from the 
deterministic matrix by dividing each entry by the sum of the column; we obtain 
the following matrix: 

�̃�𝐶2 = [

0.50
0.216
0.273
0.229

0.215
0.503
0.182
0.356

0.244
0.161
0.495
0.259

0.192
0.175
0.197
0.436

]

c. Third criteria (𝐶3)
DMs compare criteria with other criteria, and determine the weight of every 
criteria. 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶3  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
𝑦
𝑦
𝑦

(0.6, 0.7,0.9,0.1)
(0.5 , 0.5,0.5,0.5)

𝑦
𝑦

  

𝑦
(0.6 , 0.7,0.8,0.9)
(0.5 , 0.5,0.5,0.5)

𝑦

    

𝑦
𝑦

(0.2 , 0.5,0.6,0.8)
(0.5 , 0.5,0.5,0.5)

]

where y indicates preference values that are not determined by decision makers; 
then, we can calculate these values and make them consistent with their 
judgments. 

Florentin Smarandache (author and editor) Collected Papers, VIII

609



We complete the previous matrix according to definition 5 as follows: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶3  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.0, 0.1, 0.3, 0.4)

(−0.4, − 0.2,0.1,0.3)
(−0.7, −0.3, 0.3, 0.6)

(0.6, 0.7,0.9,0.1)
(0.5 , 0.5,0.5,0.5)
(−0.3,0.0 ,0.5,0.8)
(−0.6, −0.1, 0.7, 1.1)

(0.7, 0.9,1.2,1.4)
(0.6 , 0.7,0.8,0.9)
(0.5 , 0.5,0.5,0.5)
(0.2, 0.4, 0.5, 0.8)

(0.4, 0.7,1.3,1.7)
(0.3, 0.5,0.9,1.2)
(0.2 , 0.5,0.6,0.8)
(0.5 , 0.5,0.5,0.5)

]

According to definition 6, one can see that the relation is not a trapezoidal 
neutrosophic additive reciprocal preference relation. By using Eq. 5, Eq. 6 and 
Eq. 7 in definition 6, we obtain the following: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶3  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.0, 0.1, 0.3, 0.4)
(0.4, 0.2,0.1,0.3)
(0.7, 0.3, 0.3, 0.6)

(0.6, 0.7,0.9,0.1)
(0.5 , 0.5,0.5,0.5)
(0.3,0.0 ,0.5,0.8)
(0.6, 0.1, 0.7, 1.0)

(0.7, 0.9,1.0,1.0)
(0.6 , 0.7,0.8,0.9)
(0.5 , 0.5,0.5,0.5)
(0.2, 0.4, 0.5, 0.8)

(0.4, 0.7,1.0,1.0)
(0.3, 0.5,0.9,1.0)
(0.2 , 0.5,0.6,0.8)
(0.5 , 0.5,0.5,0.5)

]

Then, let us check that the matrix is consistent according to definition 6. Then, by 
ensuring consistency of trapezoidal neutrosophic additive reciprocal preference 
relations, decision makers (DMs) should determine the maximum truth-membership 
degree (α), the minimum indeterminacy-membership degree (θ) and the minimum 
falsity-membership degree (β) of the single valued neutrosophic numbers as in 
definition 6. Then: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶3  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.0, 0.1, 0.3, 0.4; 0.8 ,0.2, 0.6)

(0.4, 0.2,0.1,0.3; 0.5, 0.3 ,0.4)
(0.7, 0.3, 0.3, 0.6; 0.5,0.2,0.1)

(0.6, 0.7,0.9,0.1; 0.7 ,0.2, 0.5)
(0.5 , 0.5,0.5,0.5)

(0.3,0.0 ,0.5,0.8; 0.8, 0.5, 0.3)
(0.6, 0.1, 0.7, 1.0; 0.3,0.1,0.5)

(0.7, 0.9,1.0,1.0; 0.5 , 0.2,0.1)
(0.6 , 0.7,0.8,0.9; 0.5, 0.2, 0.1)

(0.5 , 0.5,0.5,0.5)
(0.2, 0.4, 0.5, 0.8; 0.3,0.1,0.5)

(0.4, 0.7,1.0,1.0; 0.5,0.2,0.3)
(0.3, 0.5,0.9,1.0; 0.5,0.1,0.2)
(0.2 , 0.5,0.6,0.8; 0.6, 0.4, 0.2)

(0.5 , 0.5,0.5,0.5)

]

Let us be sure the matrix is deterministic, or transform the previous matrix to be 
deterministic pairwise comparison matrix, to calculate the weight of each criteria 
using equation (8, 9) in definition 6. 

The deterministic matrix can be obtained by S (ã𝑖𝑗) equation in the following
step: 

�̃�𝐶3 = [

0.5
0.1
0.18
0.38

0.4
0.5
0.24
0.30

0.49
0.41
0.5
0.20

0.41
0.37
0.56
0.5

]
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We present the weight of each alternatives according to each criteria from the 
deterministic matrix by dividing each entry by the sum of the column; we obtain 
the following matrix:  

�̃�𝐶3 = [

0.43
0.08
0.15
0.33

0.27
0.35
0.16
0.21

0.30
0.26
0.31
0.12

0.22
0.20
0.30
0.27

]

d. Four criteria (𝐶4)
DMs compare criteria with other criteria, and determine the weighting of every: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶4  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
𝑦
𝑦
𝑦

(0.4, 0.5,0.3,0.7)
(0.5 , 0.5,0.5,0.5)

𝑦
𝑦

  

𝑦
(0.4 , 0.2,0.7,0.5)
(0.5 , 0.5,0.5,0.5)

𝑦

    

𝑦
𝑦

(0.4, 0.6,0.5,0.8)
(0.5 , 0.5,0.5,0.5)

]

Where y indicates the preference values that are not determined by decision 
makers; then, we can calculate these values and make them consistent with their 
judgments. 
We complete the previous matrix according to definition 5 as follows: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶4  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.3, 0.7, 0.5, 0.6)
(0.3, 0.7, 0.5, 0.6)
(0.3, 0.7, 0.5, 0.6)

(0.4, 0.5,0.3,0.7)
(0.5 , 0.5,0.5,0.5)
(0.2,0.5 ,0.6,0.9)
 (−0.1, 0.5, 0.5, 1.0)

(0.3, 0.2,0.5,0.7)
(0.4 , 0.2,0.7,0.5)
(0.5 , 0.5,0.5,0.5)
(0.2, 0.5, 0.4, 0.6)

(0.2, 0.3,0.5,1.0)
(0.0, 0.5,0.5,1.1)
(0.4, 0.6,0.5,0.8)
(0.5 , 0.5,0.5,0.5)

]

According to definition 6, one can see that this relation is not a trapezoidal 
neutrosophic additive reciprocal preference relation. By using Eq. 5, Eq. 6 and Eq. 7 
in definition 6, we obtain the following: 

  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶4  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.3, 0.7, 0.5, 0.6)
(0.3, 0.7, 0.5, 0.6)
(0.3, 0.7, 0.5, 0.6)

(0.4, 0.5,0.3,0.7)
(0.5 , 0.5,0.5,0.5)
(0.2,0.5 ,0.6,0.9)
 (0.1, 0.5, 0.5, 1.0)

(0.3, 0.2,0.5,0.7)
(0.4 , 0.2,0.7,0.5)
(0.5 , 0.5,0.5,0.5)
(0.2, 0.5, 0.4, 0.6)

(0.2, 0.3,0.5,1.0)
(0.0, 0.5,0.5,1.0)
(0.4, 0.6,0.5,0.8)
(0.5 , 0.5,0.5,0.5)

]

Then, we check that the matrix is consistent according to definition 6. By ensuring 
consistency of trapezoidal neutrosophic additive reciprocal preference relations, 
decision makers (DMs) should determine the maximum truth-membership degree 
(α), the minimum indeterminacy-membership degree (θ) and the minimum 
falsity-membership degree (β) of the single valued neutrosophic numbers, as in 
definition 6. 
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  𝐴1   𝐴2   𝐴3   𝐴4 

�̃�𝐶4  = 
𝐴1
𝐴2
𝐴3
𝐴4

[

(0.5 , 0.5,0.5,0.5)
(0.3, 0.7, 0.5, 0.6; 0.7 ,0.4, 0.5)
(0.3, 0.5,0.8,0.7; 0.7 ,0.4, 0.5)
(0.0, 0.5, 0.7, 0.8; 0.5,0.2,0.4)

(0.4, 0.5,0.3,0.7 ; 0.4 ,0.3, 0.6)
(0.5 , 0.5,0.5,0.5)

(0.2,0.5 ,0.6,0.9; 0.7, 0.4, 0.3)
 (0.1, 0.5, 0.5, 1.0; 0.5,0.3,0.6)

(0.3, 0.2,0.5,0.7 ; 0.2 , 0.3,0.5)
(0.4 , 0.2,0.7,0.5; 0.3, 0.5, 0.6)

(0.5 , 0.5,0.5,0.5)
(0.2, 0.5, 0.4, 0.6; 0.4,0.6,0.2)

(0.2, 0.3,0.5,1.0; 0.3,0.1,0.8)
(0.0, 0.5,0.5,1.0; 0.4,0.3,0.2)
(0.4, 0.6,0.5,0.8; 0.7, 0.3, 0.5)

(0.5 , 0.5,0.5,0.5)

]

Let us be sure the matrix is deterministic, or transform the previous matrix to be 
deterministic pairwise comparison matrix, to calculate the weight of each criteria 
using equation (8, 9) in definition 6. 

The deterministic matrix can be obtained by S (ã𝑖𝑗) equation in the following
step: 

�̃�𝐶4 = [

0.5
0.24
0.29
0.23

0.18
0.5
0.27
0.21

0.15
0.13
0.5
0.17

0.17
0.23
0.27
0.5

]

We present the weight of each alternative according to each criteria from the 
deterministic matrix by dividing each entry by the sum of the column; we obtain 
the following matrix:  

�̃�𝐶4 = [

0.40
0.19
0.23
0.18

0.16
0.43
0.23
0.18

0.16
0.14
0.5
0.18

0.15
0.19
0.23
0.42

]

Step 4: The priorities of the alternative 𝑊𝐴 with respect to each of the four
criteria are given by synthesizing the results from Steps 2 and 4 as follows: 

𝑊𝐴1 = 𝑊�̃�𝐶1   ×   𝑊21  =    [

0.199
0.172
0.273
0.299

]

𝑊𝐴2 = 𝑊�̃�𝐶2   ×  𝑊22  =    [

0.303
0.294
0.251
0.347

]

𝑊𝐴3 = 𝑊�̃�𝐶3   ×  𝑊23  =    [

0.327
0.209
0.210
0.241

]

𝑊𝐴4 = 𝑊�̃�𝐶4   ×  𝑊24  =    [

0.222
0.216
0.305
0.250

]

The matrix 𝑊𝐴  is defined by grouping together the above four columns:

𝑊𝐴  =[ 𝑊𝐴1,𝑊𝐴2,𝑊𝐴3,𝑊𝐴4] 
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Step 5: The overall priorities for the candidate alternatives are finally 
calculated by multiplying 𝑊𝐴 and 𝑊𝑐:

  𝑊𝐴1  𝑊𝐴2   𝑊𝐴3   𝑊𝐴4 

= 𝑊𝐴   ×  𝑊𝑐   = [

0.199
0.172
0.273
0.299

0.303
0.294
0.251
0.347

0.327
0.209
0.210
0.241

0.222
0.216
0.305
0.250

]  × [

0.738
0.220
0.037
0.005

]  =   [

0.226
0.200
0.265
0.307

]

The final results in the ANP Neutrosophic Phase are (A1, A2, A3, A4) = (0.226, 
0.200, 0.265, 0.307). These ANP Neutrosophic results are interpreted as follows. 
The highest weighting of criteria in this problem selection example is A4. Next 
is A1. These weightings are used as priorities in selecting the best personnel car. 

Then, it is obvious that the four alternative has the highest rank, meaning that 
Nissan is the best car according to this criteria, followed by Crossover, Diesel 
and, finally, Sedan. 

Table 2.   Ranking of alternatives. 

Car Name Priority 

Crossover 0.22 

Diesel 0.20 

Nissan 0.26 

Sedan 0.30 

Figure 6.  ANP ranking of alternatives. 

5 Conclusion 

This research employed the ANP technique in neutrosophic environment 
for solving complex problems, showing the interdependence among criteria, the 
feedback and the relative weight of decision makers (DMs). We analyzed how to 
determine the weight for each criterion, and the interdependence among criteria, 

0

0,1

0,2

0,3

0,4

CrossOver Sedan Diesel Nissan

Mean_priority
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calculating the weighting of each criterion to each alternative. The proposed 
model of ANP in neutrosophic environment is based on using of (𝑛 − 1) consensus 
judgments instead of 𝑛 ×(𝑛−1)

2
ones, in order to decrease the workload. We used a 

new scale from 0 to 1 instead of that from 1 to 9. We also presented a real life 
example as a case study. In the future, we plan to apply ANP in neutrosophic 
environment by integrating it with other techniques, such as TOPSIS. 
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Abstract. In the last decade, characterizing the energy in MANET based on its acceptation, rejection and 
uncer-tain part is addressed as one of the major issues by the researchers. An efficient energy routing protocol for 
MA-NET is another issue. To resolve these issues current paper focuses on utilizing the properties of 
neutrosophic technique. The essential idea of the protocol is to choose an energy efficient route with respect 
to neutrosophic technique. In this neutrosophic set, we have three components such as (T, I, F). Each 
parameter such as energy and distance is taken from these neutrosophic sets to determine the efficient energy 
route in MANET. After taking a brief survey about energy efficient routing for MANET using various methods, 
we are trying to implement the neutrosophic set technique to find the efficient energy route for MANET which 
provides the better energy route in uncertain situations. The comparative analysis between vague set MANET and 
neutrosophic MANET for the val-ues of energy functions and distance functions is done by using Matlab and the 
result is discussed graphically  

1  Introduction 

Wireless networking technologies play a vital role for giving rise to many new applications in internet world. 
Mobile ad-hoc network (MANET) is one of the most leading fields for research and development of 
wireless network. Now a days, wireless ad-hoc network has become one of the most vibrant and active field of 
communi-cation and networks due to the popularity of mobile devices. Also, mobile or wireless network has 
become one of the indeed requirement for the users around the world. In this network, there are no groundwork 
stations or mobile switching centres and other structures of these types. The topology of Mobile ad-hoc network 
(MANET) changes dynamically. Each node is within others node’s radio range via wireless networks. In the 
present era, nearly everyone has a mobile phone and most of it are smart phones. These devices are very 
cheaper and more powerful which make Mobile ad-hoc network (MANET) as the speed-growing network [1, 26, 
36, 37]. Because of frequent braking of communication links, the nodes in mobile ad-hoc networks are free to 
move to anywhere. Also, a node in Mobile ad-hoc network (MANET) performs complete access to send data 
from one node to the other very fast and provides accurate services. Mobile ad-hoc network (MANET) is user 
friendly network which is easy to add or remove from the network. In this, each node contains some energy with 
limited battery capacity. The energy has been lost very speed in ad-hoc networks by transforming the data from 
one node to another node and also over all network’s lifetime. Therefore the energy efficient routing indicates 
that the selecting route re-quires high energy and shortest distance. In this regard recently one of the authors 
has utilized implications of weighted concept lattice [31] and its implications using three-way neutrosophic 
environment [32-33] at different threshold [25] beyond the fuzzy logic [40]. It is shown that the computing 
paradigm of neutrosophic logic pro-vides an authorization to deal with indeterminacy in the given network when 
compared to any other approaches available in fuzzy logic. Hence the current paper focused on introducing 
the concept of neutrosophic logic for analyzing the energy efficient routing protocol in Mobile ad-hoc network 
(MANET).  

A Neutrosophic Technique Based Efficient Routing Protocol 

for MANET Based on Its Energy and Distance 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache, Prem Kumar Singh, 

Mullai Murugappan, V. Venkateswara Rao 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache, Prem Kumar Singh, Mullai 
Murugappan, V. Venkateswara Rao (2019). A Neutrosophic Technique Based Efficient Routing 
Protocol for MANET Based on Its Energy and Distance. Neutrosophic Sets and Systems 24: 61-69 
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Neutrosophic set was in-troduced by Florentin Smarandache [34] in 1995. Neutrosophic set is the 
generalization of fuzzy set, intuition-istic set fuzzy set, classical set and paraconsistent set etc. In 
intuitionistic fuzzy sets[2], the uncertainty is de-pendent on the degree of belongingness and degree of non-
belongingness. In case of neutrosophy theory, the in-determinacy factor is independent of truth and falsity 
membership-values. Also neutrosophic sets are more gen-eral than IFS, because there are no conditions between 
the degree of truth, degree of indeterminacy and degree of falsity. In 2005, Wang et.al [38] introduced single 
valued neutrosophic sets which can be used in real world ap-plications. In this case, a problem is addressed 
while dealing with efficient route in routing protocol based on its distance or energy. To shoot this problem, the 
current paper introduces a method to characterize the energy effi-cient route in Mobile ad-hoc network 
(MANET) based on its acceptation, rejection and uncertain part.  In the same time the analysis of the 
proposed method is compared with one of the existing methods to validate the re-sults. The motivation is to 
discover the precise and efficient path based on its maximal acceptance, minimum re-jection, and minimal 
indeterminacy. The objective is to provide an optimal routing in Mobile ad-hoc network (MANET) in 
minimal energy utilization when compared to vague set [18]. One of the significant outputs of the proposed 
method is that it deals with uncertainty independent from truth and false membership-values.  

The remaining part of the paper is organized as follows: Section 2 provides preliminaries about each of the 
set theories. Section 3 provides proposed method with its comparative analysis in Section 4. Section 5 provides 
conclusions and future research. 

2 Overview of Mobile ad-hoc networks[28] 

Mobile Ad Hoc networking (MANET) can be classified into first, second and third generations. The first genera-
tion of mobile ad-hoc network came up with “packet radio” networks ( PRNET) in 1970s and it has evolved to 
be a robust, reliable, operational experimental network. The PRNET used a combination of ALOHA and channel 
access approaches CSMA for medium access, and a distance-vector routing to give packet-switched networking 
to mobile field elements in an infrastructure less, remote environment. The second generation evolved in early 
1980’s when SURAN (Survivable Adaptive Radio Networks) significantly improved upon the radios, scalability 
of algorithms, and resilience to electronic attacks. During this period include GloMo (Global Mobile Information 
System) and NTDR (Near Term Digital Radio)were developed. The aim of GloMo was to give office-
environment Ethernet-type multimedia connectivity anytime, anywhere, in handheld devices. Channel access 
approaches were in the CSMA/CA and TDMA molds, and several novel routing and topology control schemes 
were developed. The NTDR used clustering and link- state routing, and self-organized into a two-tier ad hoc 
network. Now used by the US Army, NTDR is the only “real” (non-prototypical) ad hoc network in use today. 
The third generation evolved in 1990’s also termed as commercial network with the advent of Notebooks com-
puters, open source software and equipments based on RF and infrared. IEEE 802.11 subcommittee adopted the 
term “ad hoc networks.” The development of routing within the Mobile ad-hoc networking (MANET) working 
group and the larger community forked into reactive (routes on- demand) and proactive (routes ready-to-use) 
routing protocols 141. The 802.1 1 subcommittee standardized a medium access protocol that was based on col-
lision avoidance and tolerated hidden terminals, making it usable, if not optimal, for building mobile ad hoc net-
work prototypes out of notebooks and 802.11 PCMCIA cards. HIPERLAN and Bluetooth were some other 
standards that addressed and benefited ad hoc networking. With the increase of portable devices with wireless 
communication, ad-hoc networking plays an important role in many applications such as commercial, military 
and sensor networks, data networks etc., Mobile ad-hoc networks allow users to access and exchange infor-
mation regardless of their geographic position or proximity to infrastructure. Since Mobile ad-hoc networking 
(MANET) has no static infrastructure, it offers an advantageous decentralized character to the network. Decen-
tralization makes the networks more flexible and more robust. 

3 Preliminaries 

Definition of Fuzzy Set: 
Fuzzy set was introduced by Zadeh in 1965 [40] and it gives new trend in application of mathematics. Every 

value of the fuzzy set consisting of order pair one is true membership and another one is false membership which 
lies between 0 and 1. Several authors [30, 39, 21-23, 27, 29] used fuzzy set theory in ad-hoc network and wire-
less sensor network to solve routing problems. The logic in fuzzy set theory is vastly used in all fields of mathe-
matics like networks, graphs, topological space …etc.  

Definition:[9]Intuitionistic Fuzzy Set: 

Intuitionistic Fuzzy Sets are the extension of usual fuzzy sets. All outcomes which are applicable for fuzzy sets 
can be derived here also. Almost all the research works for fuzzy sets can be used to draw information of IFSs. 
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Further, there have been defined over IFSs not only operations similar to those of ordinary fuzzy sets, but also 
operators that cannot be defined in the case of ordinary fuzzy sets. 

Definition:[17,24] Adroit System: 

Adroit system [17, 24] is a computer program that efforts to act like a human effect in a particular subject area to 
give the solution to the particular unpredictable problem. Sometimes, adroit systems are used instead of human 
minds. Its main parts are knowledge based system and inference engine. In that the software is the knowledge 
based system which can be solved by artificial intelligence technique to find efficient route. The second part is 
inference engine which processes data by using rule based knowledge. 

Definition:[34] Neutrosophic Set: 
A neutrosophic set is a triplet which contains a truth membership function, a false membership function 

and indeterminacy function. Many authors extended this neutrosophic theory in different fields of mathematics 
such as decision making, optimization, graph theory etc.,[3-16, 42-52]. In particular, with the best knowledge, 
this is the first time to calculate efficient energy protocol for MANET based on the neutrosophic technique. 

Let U be the universe. The neutrosophic set A in U is characterized by a truth-membership function TA, a inde-
terminacy-membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real stand-
ard elements of [0,1]. It can be written as     

 
 

There is no restriction on the sum of TA(x) , IA(x) and F (x).   So 0-≤ TA(x)+IA(x)+FA(x) ≤ 3+. 

Definition:[35] Let U be a universe of discourse and A the neutrosophic set A   U. Let 
)(),(),( xFxIxT AAA be the functions that describe the degree of membership, indeterminate membership and 

non-membership respectively of a generic element x   U with respect to the neutrosophic set A. A single valued 
neutrosophic overset (SVNOV) A on the universe of discourse U is defined as: 

 
 

where  )(),(),( xFxIxT AAA : U   ,0 , 0<1<  and    is called overlimit. Then there exists at least one
element in A such that it has at least one neutrosophic component >1and no element has neutrosophic component 
<0  
Definition:[35]Let U be a universe of discourse and the neutrosophic set A  U. Let )(),(),( xFxIxT AAA be 
the functions that describe the degree of membership, indeterminate membership and non-membership respec-
tively of a generic element x   U with respect to the neutrosophic set A. A single valued neutrosophic underset 
(SVNU) A on the universe of discourse U is defined as: 

 

where )(),(),( xFxIxT AAA : U  1, ,  <0<1 and   is called lowerlimit.Then there exists at least one
element in A such that it has at least one neutrosophic  component<0 and no element has neutrosophic compo-
nent >1 

Definition:[35] Let U be a universe of discourse and the neutrosophic set A  U. Let )(),(),( xFxIxT AAA  be 
the functions that describe the degree of membership, indeterminate membership and non-membership respec-
tively of a generic element x   U with respect to the neutrosophic set A. A single valued neutrosophic offset 
(SVNOF) A on the universe of discourse U is defined as: 

 

where )(),(),( xFxIxT AAA : U  1, ,  <0<1<  and   is called underlimit while   is called over-
limit. Then there exist some elements in A such that at least one neutrosophic component >1, and at least another 
neutrosophic component < 0 
Example 1: Let A={( 1x ,<1.2, 0.4,0.1>),( 2x ,<0.2, 0.3,-0.7>)},since  1xT =1.2 >1 ,  2xF = - 0.7 <0 
Definition:[35]The complement of a single valued neutrosophic overset/ underset/offset A is denoted by C(A) 

   )3(1,)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAASVNU

   )4(,)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAASVNOF

   )2(,0)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAASVNOV

   )1(,1,0)(),(),(,,)(),(),(  xFxIxTUxxFxIxTA AAAAAANS
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Table 3. A neutrosophic set based representation of distance function 

and is defined by 
 C(A) ={(x, UxxTxIxF AAA  ,)(),(),( }  (5)

Definition:[35]The intersection  of two single valued neutrosophic overset/ underset/offset A and B  is a single 
valued neutrosophic overset/ underset/offset denoted C and is denoted by  C= A  B and is defined by 

 C= A  B ={(x,< ))(),(min( xTxT BA , ))(),(max( xIxI BA , ))(),(max( xFxF BA ), x  U}  (6) 
Definition:[35]The union  of two single valued neutrosophic overset/ underset/offset A and B  is a single valued 
neutrosophic overset/ underset/offset denoted C and is denoted by  C= A  B and is defined by 

 C= A  B ={(x,<

 

))(),(max( xTxT BA , ))(),(min( xIxI BA , ))(),(min( xFxF BA ), x  U} (7) 

The following table 1, describe the neutrosophic oversets, neutrosophic undersets, neutrosophic offsets and Sin-
gle valued neutrosophic sets 

Types of neutrosophic sets  (under limit)  (overlimit)
neutrosophic oversets 0 1<

neutrosophic undersets  <0 1 
neutrosophic offsets  <0 1<

Single valued neutrosophic sets 0 1 
Table 1. Some type of neutrosophic sets 

It can be observed that, the algebra of neutrosophic set provides an independent way to deal with indeterminacy 
beyond the truth and false membership-values of a vague set. However characterizing the distance of routing 
protocol in MANET based on its truth, falsity and indeterminacy membership-values is complex problem. To 
deal with this problem, one of the algorithms is proposed in the next section with an illustrative example.  

4 PROPOSED PROTOCOL 
In this section, a method is proposed to characterize the efficient routing path in MANET based on the neu-

trosophic technique using energy and distance. In this proposed protocol, energy function may be low, medium 
and high and also in a similar way distance may be short, medium and long. To represent these levels a neutro-
sophic set based membership function  , Indeterminacy and non-membership  is defined in this paper.  

All these energy membership functions HML EandEE , and distance membership func-
tions LMS DandDD ,  are given in Table 2 and Table3. 

Linguistic value Notation Neutrosophic range Basic value 
Low EL (EL

+,EL
0,EL

-) (0,0.9,1.8) 
Medium EM (EM

+,EM
0,EM

-) (1.8,2.7,3.5) 
High EH (EH

+,EH
0,EH

-) (3.5,4.4,5) 

Table 2. A neutrosophic set based representation of energy function 

Linguistic value Notation Neutrosophic range Basic value 

Short Ds (DL+,DL0,DL-) ( 0,9,17) 

Medium DM (DM+,DM0,DM-) (17,26,34) 

Large DL (DH+,DH0,DH-) (34,42,50) 
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The a single valued neutrosophic overset/ underset/offset are characterized by three memberships, the 

truth-membership, indeterminacy-membership and false membership functions  as described in definitions 

above. 

It gives an interpretation of membership grades. Low, medium and high of the energy and distance functions 
are written as follows: 

 Neutrosophic Energy function values: 

)( LE = (0.3, 0.7, 1.2), )( ME = (1.4, 2.3, 3), )( HE = (3.2, 4, 4.8)

)( LE = (0.4, 0.9, 1.4), )( ME = (1.3, 2.6, 3.2), )( HE = (3.4, 3.8, 4.6)

)( LE = (0.2, 0.6, 1.4),  )( ME = (1.2, 2.5, 3.4),  )( HE = (3, 4.2, 4.5)

Neutrosophic Distance function values: 

)( sD = (0.2, 4, 10), )( MD = (12, 20, 32),  = (30, 38, 44)

)( sD = (0.5, 5, 12), )( MD = (10, 23, 30), )( LD = (29, 41, 49)

)( sD = (0.3, 6, 8),  )( MD = (14, 21, 28),  )( LD = (32, 40, 47)

Recently, several authors tried to deduce the neutrosophic values in various fields [40]. The current paper 
tried most suitable and ideal solution deduced by considering true members function   for the better solution. 
These neutrosophic values are used for efficient route selection in MANET which is given below in table 3. By 
comparing different routes of the MANET, rating of the route is calculated by the Eq. 8 as given below: 

)8()(
)(

,
i

i
ji Dmeanof

EmeanofNR



  

From the rating of different route given in Table 4, each value of jiNR , is a neutrosophic route having differ-
ent values which determine the nature of the route in MANET.  

S.No  Neutrosophic possible route 
1 If  Energy is )( LE and (Distance is )( sD ,then the route is  R1.

2 If  Energy is )( LE and (Distance is )( MD , then the route is R2.

3 If Energy is )( LE and (Distance is )( LD ,then the route is  R3.

4 If Energy is )( ME and (Distance is )( sD ,then the route is  R4.

5 If Energy is )( ME and (Distance is )( MD ,then the route is  R5.

6 If Energy is )( ME and (Distance is )( LD ,then the route is  R6.

7 If Energy is )( HE and (Distance is )( sD ,then the route is  R7.

8 If  Energy is )( HE and (Distance is )( MD ,then the route is  R8.

9 If  Energy is )( HE and (Distance is )( LD ,then the route is  R9.

Table 4. A neutrosophic technique based efficient route selection 
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Table 5. Enlightenment of rating of different routes in Neutrosophic Technique 

Hence, each neutrosophic route has a specific rating in MANET. Table 4 provides a way to defined different 
neutrosophic routes by considering various energy functions and as well as distance functions. Following that the 
sequences of different routes based on their rating is given in Table 5. The decreasing order according to rating 
on the routes is R3 < R2< R5 < R9 < R1 <R8 < R4 < R7.Table 5 represents that based on neutrosophic ordering 
defined by the proposed method route R7 is one of the best energy efficient route among them for the given 
MANET. 

5 Comparative Analysis 
While comparing vague set and neutrosophic set, vague set is equivalent to intuitionistic fuzzy set because 

both of them having only truth and false membership functions. Also neutrosophic set is the generalization of 
fuzzy and intuitionistic fuzzy sets. Hence the results obtained by using neutrosophic set is better than the results 
obtained by using vague set. In this section, the comparative analysis among neutrosophic and vague set based 
routing protocol is discussed. The membership values of energy and distance functions of vague set Manet and 
neutrosophic set Manet are given in Table 6. Comparison between Vague set rating of route (VSR) and Neutro-
sophic rating of route (NRR) are given in Table 7. 

Table 6. Membership values of energy and distance function 

Notation 

Base Value of  Energy function 

Notation 

Base Value of  Distance function 
VM NM VM NM 

EL (0,1.8) (0,0.9,1.8) Ds (0, 17) ( 0,9,17) 
EM (1.8, 3.5) (1.8,2.7,3.5) DM (17, 34) (17,26,34) 
EH (3.5, 5) (3.5,4.4,5) DL (34, 50) (34,42,50) 

Table 7. Comparison between Vague Set Rating of route(VSR) and Neutrosophic Rating of route (NRR): 

Route 
number 

Vague Set Rating 
of route(VSR) 

Neutrosophic Rating of 
route (NRR) 

Enlightenment of Rating 

VSR NRR 

R1 0.011842 0.154929 Very Bad Good 

R2 0.021176 0.034375 Bad Bad 

R3 0.105882 0.019642 Satisfactory Very Bad 

R4 0.059211 0.471830 Medium Excellent 

R5 0.105882 0.104687 Less Good Poor 

R6 0.529412 0.059821 Good Very poor 

Route num-
ber 

Neutrosophic Rating of route Enlightenment of Rating 

R1 0.154929 Good 
R2 0.034375 Bad 
R3 0.019642 Very Bad 
R4 0.471830 Excellent 
R5 0.104687 Poor 
R6 0.059821 Very poor 
R7 0.873239 Very excellent 
R8 0.19375 Very good 
R9 0.110714 Medium 
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R7 0.1 0.873239 Very good Very excellent 

R8 0.178824 0.19375 Excellent Very good 

R9 0.894118 0.110714 Very excellent Medium 

Figure. 1: The comparison of energy efficient MANET using neutrosophic and vague set 
The graph for rating of routes of MANET using neutrosophic set and vague set techniques are plotted in Fig-

ure 1 for the values of energy functions and distance functions by using Table 6 and Table 7 with the help of 
Matlab software. It provides an information that, the efficient energy routing of mobile ad-hoc network using 
neutrosophic set technique(NM) is much better than the efficient energy routing of MANET using vague set 
technique(VM) in uncertain environment. However, the proposed method is focused on static environment in 
case the node and data set changes at each interval of time then the proposed unable to represent the case precise-
ly. To deal with dynamic environment author will focus in near future to introduce the extensive properties of 
neutrosophic set and its applications to wireless ad-hoc network(WANET), flying ad-hoc network(FANET) and 
vehicular ad-hoc network(VANET). 

Conclusion and future work 

This paper utilizes properties of single valued neutrosophic for finding an efficient routing protocol for MANET 
based on distance and energy. In this regard, several algorithms are proposed to characterize it based on truth and 
falsity membership-values of a defined vague set. However the current paper aimed at dealing with uncertainty 
in routing protocol of MANET based on its truth, falsity and indeterminacy membership-values, indeterminacy. 
It is shown that the proposed method provides a precise representation and selection of energy efficient routing 
protocol when compared to vague sets as shown in Table 6 and 7. In future, the authors will focuses on investi-
gating the energy efficient routes for WANET, FANET, VANET for dynamic environment 
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Abstract: In this short communication, we review seven applications of NFL that we have explored
in a number of papers: (1) Background: the purpose of this study is to review how neutrosophic logic
can be found useful in a number of diverse areas of interest; (2) Methods: we use logical analysis
based on NL; (3) Results: some fields of study may be found elevated after analyzed by NL theory;
and (4) Conclusions: we can expect NL theory to be applied in many areas of research too, in applied
mathematics, economics, and physics. Hopefully the readers will find a continuing line of thoughts
in our research from the last few years.

Keywords: neutrosophic logic; cultural psychology; economics; conflict resolution; philosophy of
science; cosmology

1. Introduction

First, let us discuss a commonly asked question: what is Neutrosophic Logic? Here, we offer a
short answer.

Vern Poythress argues that sometimes we need a modification of the basic philosophy of
mathematics, in order to re-define and redeem mathematics [1]. In this context, allow us to argue in
favor of Neutrosophic logic as a starting point, in lieu of the Aristotelian logic that creates so many
problems in real world.

In Neutrosophy, we can connect an idea with its opposite and with its neutral and get common
parts, i.e. <A> ∧ <non-A> = nonempty set. This constitutes the common part of the uncommon
things! It is true/real—paradox. From neutrosophy, it all began: neutrosophic logic, neutrosophic
set, neutrosophic probability, neutrosophic statistics, neutrosophic measures, neutrosophic physics,
and neutrosophic algebraic structures [2].

It is true in a restricted case, i.e. Hegelian dialectics considers only the dynamics of opposites
(<A> and <anti-A>), but in our everyday life, not only the opposites interact, but the neutrals < neut-A
> between them too. For example, if you fight with a man (so you both are the opposites to each
other), but neutral people around both of you (especially the police) interfere to reconcile both of you.
Neutrosophy considers the dynamics of opposites and their neutrals.

So, neutrosophy means that: <A>, <anti-A> (the opposite of <A>), and < neut-A > (the neutrals
between <A> and <anti-A>) interact among themselves. A neutrosophic set is characterized by a
truth-membership function (T), an indeterminacy-membership function (I), and a falsity-membership
function (F), where T, I, F are subsets of the unit interval [0, 1].

As particular cases we have a single-valued neutrosophic set {when T, I, F are crisp numbers in
[0, 1]}, and an interval-valued neutrosophic set {when T, I, F are intervals included in [0, 1]}.
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From a different perspective, we can also say that neutrosophic logic is (or “Smarandache logic”) a
generalization of fuzzy logic based on Neutrosophy (http://fs.unm.edu/NeutLog.txt). A proposition
is t true, i indeterminate, and f false, where t, i, and f are real values from the ranges T, I, F, with no
restriction on T, I, F, or the sum n = t + i + f. Neutrosophic logic thus generalizes:

- Intuitionistic logic, which supports incomplete theories (for 0 < n < 100 and i = 0, 0 < = t, i,
f < = 100);

- Fuzzy logic (for n = 100 and i = 0, and 0 < = t, i, f < = 100);
- Boolean logic (for n = 100 and i = 0, with t, f either 0 or 100);
- Multi-valued logic (for 0 < = t, i, f < = 100);
- Paraconsistent logic (for n > 100 and i = 0, with both t, f < 100);
- Dialetheism, which says that some contradictions are true (for t = f = 100 and i = 0; some paradoxes

can be denoted this way).

Compared with all other logics, neutrosophic logic introduces a percentage of
“indeterminacy”—due to unexpected parameters hidden in some propositions. It also allows
each component t, i, f to “boil over” 100 or “freeze” under 0. For example, in some tautologies t > 100,
called “overtrue.” Neutrosophic Set is a powerful structure in expressing indeterminate, vague,
incomplete and inconsistent information.

In this short review article, we will review seven applications of NL theory in diverse fields
of science.

We introduce a number of key terms here. For example, from a NL perspective, we can find a
reconciliation between “push” and “pull” type of gravitation, by considering both forces are in place.
To speak more plainly, pull force takes place on an astronomical scale, while push force takes place at
geological scale, and this effect can be found for instance: a. the fact that the Moon is receding from
Earth (around 4 cm/yr), b. the fact that the Earth is expanding caused by dissipative geodynamics
process, and c. the Pangea hypothesis.

In the context of cosmology, we argue that neutrosophic logic is in agreement with Kant and
Vaas’s position, it offers a resolution to the long standing disputes between beginning and eternity
of the Universe. In other words, in this respect we agree with Vaas: “how a conceptual and perhaps
physical solution of the temporal aspect of Immanuel Kant’s “first antinomy of pure reason” is possible,
i.e. how our universe in some respect could have both a beginning and an eternal existence. Therefore,
paradoxically, there might have been a time before time or a beginning of time in time.”

2. Seven Applications of Neutrosophic Logic in Diverse Fields of Science

2.1. Cultural Psychology

Culture is a shared meaning system, found among those who speak a particular language dialect,
during a specific historic period, and in a definable geographic region. Collectivism is a cultural
pattern found in most traditional societies, especially in Asia, Latin America, and Africa. It contrasts
with individualism, which is a cultural pattern found mostly in America and Europe.

This theme was explored by Prof. Harry Triandis (https://www.researchgate.net/profile/Harry_
Triandis). Triandis was born in Greece in 1926. During the Second World War, he learned four foreign
languages and developed his curiosity about the differences that exist between cultures. His time
getting to know people across various European nations inspired him to research cultural disparities
in the way people think. This issue can be reconciled with the help of NL theory, which may be
appropriate for socio-economics theorizing, as we will discuss in the next subsection.

2.2. Socio-Economics Theorizing [3]

In a series of papers, we outlined a more general approach to reconcile classical tensions between
individualism and collectivism, between cooperation and competition, and so on. In our opinion,
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our tendency to cooperate or compete is partly influenced by the culture that we inherit from our
ancestors. One of us (VC) once lived for a while in Russia, and he found that many people there
are rather cold and distant (of course not all of them, some are warm and friendly). He learned that
such a trait may be found as quite common in many countries in Europe. They tend to be individual
and keep certain distance from each other. In physics term, they are like fermions. Our proposed
simplistic analogy of human behaviour, i.e. individualism and collectivism, is not uncommon. (Indeed
such cultural psychology research has been reported since Harry C. Triandis et al. See, for example,
(a) The Self and Social Behaviour in Differing Cultural Contexts, Psychological Review, vol. 96, no. 3;
(b) Harry C. Triandis and Eunkook M. Suh, Cultural Influences on Personality, Annu. Rev. Psychol.
2002. 53:133–60; (c) J. Allik and A. Realo, Individualism-collectivism and social capital, J. Cross-Cultural
Psychology, Vol. 35 No. 1, January 2004, 29–49. This last mentioned paper includes a quote from Emile
Durkheim: “The question that has been the starting point for our study has been that of the connection
between the individual personality and social solidarity. How does it come about that the individual,
whilst becoming more autonomous, depends ever more closely upon society? How can he become at
the same time more of an individual and yet more linked to society?”)

There is a developmental psychology hypothesis suggesting that perhaps such a trait co-relates
to the fact that many children in Europe lack nurturing and human touch from their parents in their
childhood, which possibly make them rather cold and individual. Of course, whether this is true, is yet
to be verified.

On the contrary, most people in Asia and Africa are gregariously groupie (except perhaps in large
metropolitan areas). They tend to spend much time with family and friends, just like many Italians do.
They attend religious rituals regularly or watch music festival together, and so on. In physics term,
they are bosons. Of course, such a sweeping generalization may be oversimplifying. (After writing
up this article, we found that Sergey Rashkovskiy also wrote on a quite similar theme, albeit with
statistical mechanics in mind. The title of his recent paper is: “‘Bosons’ and ‘fermions’ in social and
economic systems.” Here is abstract from his paper: “We analyze social and economic systems with
a hierarchical structure and show that for such systems, it is possible to construct thermostatistics,
based on the intermediate Gentile statistics. We show that in social and economic hierarchical systems
there are elements that obey the Fermi-Dirac statistics and can be called fermions, as well as elements
that are approximately subject to Bose-Einstein statistics and can be called bosons. We derive the first
and second laws of thermodynamics for the considered economic system and show that such concepts
as temperature, pressure and financial potential (which is an analogue of the chemical potential in
thermodynamics) that characterize the state of the economic system as a whole, can be introduced for
economic systems.” Url: https://arxiv.org/ftp/arxiv/papers/1805/1805.05327.pdf)

Therefore, it seems quite natural to us, that Adam Smith wrote a book on philosophy suggesting
that individual achievement is the key to national welfare (because he was British and thus emphasized
individualism). If only Adam Smith had been born in Bangkok or Manila, he would have probably
written this book in a different way.

It was more than a hundred years before mathematicians like John F. Nash, Jr. figured out that
individual pursuit towards one’s own goals does not lead to achieve a common goal as a society.
(For example, let us imagine 10 players of a football team try simultaneously to score a goal against
the opposite team, will they succeed? Of course no, they should arrange according to their coach’s
instruction: 1-4-4-2, or some other type of arrangement.)

At this point, some readers may ask: which is better, to be like fermions or bosons? Our opinion
is as follows: just like in particle physics, both fermions and bosons are required. In the same way,
fermion behavior and boson behavior are both needed to advance quality of life. Fermion people tend
to strive toward human progress, while boson people are those who enrich our life.

This issue again can be reconciled with the help of NL theory, i.e. such a human tension is
always there, but there does not need to be conflicts. Similarly, from such a fermion-boson perspective
(which we propose a new term: ferson), a classic tension between capitalism (emphasizing individual
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achievements) and socialism can be reconciled, for example by considering a range of possibilities,
including a new term (possibly): capicialism. (This is reminiscent of a term introduced by Alvin Toffler
in 70 s, in which he predicted as culture shock, that describes the combined behavior of consumerism
and producers: prosumerism.)

2.3. Conflict Resolution [4]

Binary choices are another source of problems. As a one-liner joke says:

There are two kinds of people in the world: Those who think there are two kinds of people in the world
and those who don’t. (Plus some others who aren’t sure.)

—(http://philippe.ameline.free.fr/humor/TwoKindOfPeople.htm)

A funnier joke on binary logic:

There are 10 kinds of people in the world: Those who understand binary and those who don’t.

—(http://philippe.ameline.free.fr/humor/TwoKindOfPeople.htm)

As Phillipe Schweizer remarked:

“These two possibilities, these alternatives, are the basis of cognition, and allow choice and
therefore action through the fact that a preference becomes possible: either I prefer there
is X, or I prefer there is no X. Then autonomy appears. And indeed the valuation or affect
too: “I like” or “I don’t like”, and it goes with it together. The stages described here are
not as distinct as those of Piaget, they overlap, include and extend. The “there is no” is
opposed to the “there is” forming the opposite. Thus the binary appears and the logic of
the same name also: either “there is”, or “there is not”: X or non-X, one and the other being
mutually exclusive.

. . . There is this and that and that again: a perception of the environment, a representation
of a situation as a collection of objects. Our other most frequent and fundamental conception
is opposition: there is or there is not. What also gives one thing and its opposite: day and
night, hot and cold, big and small . . . The importance of this simplifying binary conception
of two situations sliced diametrically away in opposite is the most prominent form of mental
life. It is the emblematic form of a choice.”

(Quote from Phillipe Schweizer. Thinking on Thinking: The Elementary forms of Mental Life
Neutrosophical representation as enabling cognitive heuristics. Submitted for review.)

In this regards, one of us (FS) recently published a new book, with the following title:
Neutropsychic Personality [5]. In this book, FS described possible extension of Freudian mental
model: id-ego-superego, using his neutrosophic logic theory. His definition of Neutropsychic is
as follows:

“Neutropsyche is the psychological theory that studies the soul or spirit using the
neutrosophy and neutrosophic theories. It is based on triadic neutrosophic psychological
concepts, procedures, ideas, and theories of the form (<A>,< neut-A >,<anti-A>), such as
(positive, neutral, negative), (good behavior, ignorant behavior, bad behavior), (taking the
decision to act, pending, taking the decision not to act), (sensitive, moderate, insensitive),
(under-reacting, normally reacting, over-reacting), (under-thinking, normal thinking,
over-thinking), and so on, and their refinements as (< Aj >,< neut-Aj >,< anti-Aj >).” ([5], p.29)

Perhaps it is necessary to develop an improved model of the neutropsychic basis of 
decision making.
Another possible way to resolve this fundamental problem of human societies, is to accept 
otherness (cf. Milad Hanna, [6]), without being absorbed by the otherness. 
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Such a logical analysis derived from Kolmogorov’s principle of contradiction eventually remind 
us of the following:

(a) To keep humble mind before Nature (God’s creation), and perhaps we should not rely too 
much on our logic system and mathematical prowess;

(b) In developing a theory one should keep complications and abstractions to a minimum;
(c) To build theory in the nearest correspondence to the facts; it is the best if each parameter can

be mapped to a measurable quantity.
We hope the above three criteria can be a useful set of practical guidelines for building

mathematical models in theoretical physics or cosmology.

2.5. Cosmology [11]

Questions regarding the formation of the Universe and what was there before the existence of the
Early Universe have been of great interest to mankind at all times. In recent decades, the Big Bang as
described by the Lambda CDM-Standard Model Cosmology has become widely accepted by majority
of physics and cosmology communities. Among other things, we can cite A.A. Grib and Pavlov who
pointed out possible heavy particles creation out of vacuum and also other proposals such as Creatio
Ex-Nihilo theory (CET).

However, philosophical problems remain, as Vaas pointed out: Did the universe have a beginning
or does it exist forever, i.e. is it eternal at least in relation to the past? This fundamental question was
the main topic in ancient philosophy of nature and the Middle Ages. Philosophically it was more
or less banished then by Immanuel Kant’s Critique of Pure Reason. However, it has been revived in
modern physical cosmology both in the controversy between the big bang and steady state models
some decades ago and in the contemporary attempts to explain the big bang within a quantum
cosmological framework.

Interestingly, Vaas also noted that Immanuel Kant, in his Critique of Pure Reason (1781/1787),
argued that it is possible to prove both that the world has a beginning and that it is
eternal (first antinomy of pure reason, A426f/B454f). As Kant believed he could overcome this
“self-contradiction of reason” (“Widerspruch der Vernunft mit ihr selbst”, A740) by what he called
“transcendental idealism”, the question whether the cosmos exists forever or not has almost vanished in
philosophical discussions.

In a paper accepted recently by Asia Mathematika J., we take a closer look at Genesis 1:2 to see
whether the widely-accepted notion of creatio ex-nihilo is supported by Hebrew Bible or not [11].

It turns out that neutrosophic logic is in agreement with Kant and Vaas’s position, it offers a
resolution to the long standing disputes between beginning and eternity of the Universe. In other
words, in this respect we agree with Vaas: “how a conceptual and perhaps physical solution of the
temporal aspect of Immanuel Kant’s “first antinomy of pure reason” is possible, i.e. how our universe in
some respect could have both a beginning and an eternal existence. Therefore, paradoxically, there might
have been a time before time or a beginning of time in time.”

Summarizing, neutrosophic logic studies the dynamics of opposites and neutralities; from this
viewpoint, we can understand that it is indeed a real possibility that the Universe had both initial start
but with eternal background (that may be called “primordial fluid”). This is exactly the picture we got
after our closer look at Gen. 1:1-2.

2.6. American Football Game

(This section is after discussion with Robert Neil Boyd.)
Let us look at a situation in a football game (American style football).
The offense and the defense are lined up. The offense is in range to try kick a field goal to score

3 points. When the ball is passed from the center to the holder, so that the kicker may try to kick it
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through the upright poles that are the goal posts, many different things may happen. This is not a
simple situation of the ball going between the uprights or not. The defense may be able to get a man in
position to block the kick.

If the kick is blocked, according to the rules, the defense may pick up the ball and carry it
towards their side of the field. If the man who picked up the ball and ran with it, is not tackled to
the ground before he crosses the goal line, the play results in a touchdown, a 6 point score for the
defending players.

Or the player who picked up the ball after the kick attempt was blocked runs several yards
towards his goal line, where he is tackled by one of the members of the kicking team, which causes
him to lose the ball he was carrying. The kicking team recovers the fumble and the play is over.

Or the holder fails to catch the pass from the center, or the holder may drop the pass from center
and either pick it up and run with it, or drops it to the ground before he can do anything, or the pass
may sail over the head of everyone (whereupon, many things are possible), or the holder may fail to
place the ball properly for the kicker, resulting in a failed attempt.

Or the defense may commit one of several possible rule infractions before, or during the kick,
so that the result of the play is a penalty against the defending team. If the penalty is large enough,
it can result in a new set of downs for the kicking team, so the place-kicker leaves the field so that the
normal offense players can take 4 more tries to gain 10 yards.

Or there can be a penalty against the kicking team that may result in the kicking team being
forced out of range to try the kick. So the kicker leaves the field without attempting to kick a field goal.

Or the offensive team has the ball lined up to try and score. When the ball is passed to the holder,
it is a fake kick and the holder runs for a first down or a touch down or passes the ball to an offensive
player for a first down or passes the ball and it is not caught, which means the defense obtains the ball
at the spot where the ball was placed before the kick attempt.

Or the kicker attempts to kick the ball through the uprights and succeeds, scoring 3 points for
his team.

The kicker can get the snap directly from the center and try to make a pass completion, or he
can run while carrying the ball, which can result in interception or fumbling or touchdown or first
down, or the kicker being tackled before he reaches the line. Or he completes a pass and the receiver
makes a first down or a touch down or get tackled to the ground before the line to gain, or the receiver
fumbles the ball as he is tackled, leading to a potential touchdown for the other team. Many additional
possibilities exist, but most of them are very rare.

During any play in a football game, it is possible for any player on either team to score a
touchdown for and gain 6 points for their team. This is possible because human beings are interacting
in a game played with goals and goal lines and an oddly shaped biconvex bi-conical ball inflated
with high pressure air that is surrounded by a rubber sack that is surrounded by a leather case which
is held in place with stitches and laces. The shape of the ball causes it to bounce in unpredictable
ways when it is dropped or kicked or thrown. In addition, hot temperatures make the ball softer and
cold temperatures make the ball harder. Both of the factors cause the ball to behave in different ways.
When the ball is harder, it is like kicking a rock. When the ball is harder, it becomes more slippery so it
is harder to throw and harder to catch, and it hits you harder when you catch it.

So a field goal attempt does not merely involve two possibilities, but an almost infinite variety of
events may happen, before the attempt, during the attempt, or after the attempt.

Neutrosophic logic may be expanded to more than three possible states, since in an infinite
universe, an infinite number of things may happen. I understand the tri-state basis of it as being
valuable in many circumstances. There should be ways to extend the logic into larger numbers of
choices, so that there is a range of yesses, to 1000 kinds of maybes or almosts, or something elses,
or something unexpected that was outside the starting point of the data set, and so on, to the No of the
equation. The null-A of non-Aristotelian logic, which is what Neutrosophic logic is, can involve much
more than just the simplistic null set.
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Question: How to extend the center, null-A state, to provide for abnormalities or exigencies?
Right now, the easiest thing to do seems to be to widen the null state to include all the possibilities

that are additional to, or contingent on one or more rules, internal to the null state. So now the null
state becomes much broader, and able to handle much more complicated situations, such as a field
goal attempt during an American football game.

It seems that the “expanded middle” would be a good option for problem structure
in Neutrosophy.

2.7. Gravitation

Despite majority of physical theories of gravitation assuming it is a pull force, a number of
researchers have begun to work out a push gravity, which is known as Le Sage/Laplace gravitation
theory. An interesting remark on impetus to Le Sage gravitation theory can be found in article by the
late Prof. Halton Arp on his work with Narlikar:

“Nevertheless the ball had started rolling down hill so to speak and in 1991, with Narlikar’s help,
I outlined in Apeiron the way in which particle masses growing with time would account for the array
of accumulated extragalactic paradoxes. Later Narlikar and Arp (1993) published in the Astrophysical
Journal Narlikar’s original, 1977 solution of the basic dynamical equations along with the Apeiron
applications to the quasar/galaxy observations.

. . .

The first insight came when I realized that the Friedmann solution of 1922 was based on the assumption
that the masses of elementary particles were always and forever constant, m = const. He had made
an approximation in a differential equation and then solved it. This is an error in mathematical
procedure. What Narlikar had done was solve the equations for m = f(x, t). This a more general
solution, what Tom Phipps calls a covering theory.

. . .

But Narlikar had overwhelmed me with the beauty of the variable mass solution by showing how the
local dynamics could be recovered by the simple conformal transformation from t time (universal)
to what we called τ time (our galaxy) time. The advertisement here was that our solution inherited
all the physics triumphs much heralded in general relativity but also accounted for the non-local
phenomena like quasar and extragalactic redshifts.” [12]

Therefore, there are many reasons to support Le Sage gravity, despite majority of physicists
preferring Einsteinian view. Summarizing, there should be a hidden dynamical matter creation
process, suggesting that Newton second law was actually not just F = ma, but it should be written in
complete form: F = d[mv]/dt = m[dv/dt] + v[dm/dt], therefore there is matter creation term. (In fact,
it is known that Newton’s second law was written originally as the momentum change over time,
that is Fg = dp/dt.) All physics of Earth etc. assumes the Earth is static, but actually it is increasing in
size and mass. This approach has been explored by both of us and also Robert Neil Boyd in a number
of papers, see for instance [13,14].

Moreover, from a NL perspective, we can find a reconciliation between “push” and “pull” type of
gravitation, by considering both forces are in place. To speak more plainly, pull force takes place at
astronomical scale, while push force takes place at geological scale, and this effect can be found for
instance: a. the fact that the Moon is receding from Earth (at a constant rate of around 4 cm/yr), b. the
fact that the Earth is expanding, caused by dissipative geodynamics process, c. Pangea hypothesis.
We will present our result in a paper to be presented in forthcoming 5th EuroSciCon 2019.

Allow us to introduce another new term in order to reconcile push and pull gravitational force,
pullsh force. Such an idea is presently under investigation.
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3. Results

Some fields of science are improved by being analyzed by NL theory; therefore we can expect
NL theory will be applied in many areas of research too, in applied mathematics, economics, and also
physics. For example, we also explored on how NL theory may be used to reconcile the “push”
and “pull” gravitation theories. This is still a preliminary exploration, so we include this topic in
discussion section.

In the context of cosmology, we argued that neutrosophic logic is in agreement with Kant and
Vaas’s position, it offers a resolution to the long standing disputes between beginning and eternity
of the Universe. In other words, in this respect we agree with Vaas: “how a conceptual and perhaps
physical solution of the temporal aspect of Immanuel Kant’s “first antinomy of pure reason” is possible,
i.e. how our universe in some respect could have both a beginning and an eternal existence. Therefore,
paradoxically, there might have been a time before time or a beginning of time in time.”

4. Discussion

We have discussed among other things, a few applications of NL theory in a number of fields,
such as cultural psychology and economics theory. The essence of our discussion is that NL allows
one to study the dynamics of opposites and neutralities. It is a generalization of dialectics.

Moreover, from a NL perspective, we can find a reconciliation between “push” and “pull” type of
gravitation, by considering both forces are in place. To speak more plainly, pull force takes place at
astronomical scale, while push force takes place at geological scale, and this effect can be found for
instance: a. the fact that the Moon is receding from Earth (at a constant rate of around 4 cm/yr), b. the
fact that the Earth is expanding, caused by dissipative geodynamics process, c. Pangea hypothesis.
We will present our result in a paper to be presented in forthcoming 5th EuroSciCon 2019. Such an idea
will be investigated later on.

We hope these discussions will be found useful in other areas as well; for instance in international
relations and peace keeping efforts.

5. Conclusions

In this short article, we review seven applications of NFL that we have explored in a number of
papers. Hopefully the readers will find a continuing line of thoughts in our research in the last few
years, emphasizing our improved understanding of various branches of human knowledge. All of
these branches have been enhanced and elevated to a higher level through applications of NL theory.

To summarize our results: we introduced a number of key terms here. For example, from a
NL perspective, we can find a reconciliation between “push” and “pull” types of gravitation,
by considering both forces. To speak more plainly, pull force takes place at astronomical scale,
while push force takes place at geological scale, and this effect can be found for instance: a. the fact
that the Moon is receding from Earth (at a constant rate of around 4 cm/yr), b. the fact that the Earth is
expanding, caused by dissipative geodynamics process, c. Pangea hypothesis.

In the context of cosmology, we argue that neutrosophic logic is in agreement with Kant and
Vaas’s position; it offers a resolution to long-standing dispute between the beginning and the eternity
of the Universe. In other words, in this respect we agree with Vaas: “how a conceptual and perhaps
physical solution of the temporal aspect of Immanuel Kant’s “first antinomy of pure reason” is possible,
i.e. how our universe in some respect could have both a beginning and an eternal existence. Therefore,
paradoxically, there might have been a time before time or a beginning of time in time.”
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ABSTRACT As an expansion of 2-tuple linguistic intuitionistic fuzzy set, the newly developed 2-tuple 
linguistic neutrosophic set (2-TLNS) is more satisfactory to define decision maker’s assessment 
information in decision making problems. 2-TLN aggregation operators are of great significance in multiple 
attribute group decision making (MAGDM) problems with a 2-tuple linguistic environment. Therefore, in 
this article our main contribution is to develop novel 2-TLN power Heronian aggregation (2-TLNPHM) 
operators. Firstly, we develop new operational laws established on Dombi T-norm (DTN) and Dombi T-
conorm (DTCN). Secondly, Taking full advantages of the power average (PA) operator and Heronian mean 
(HM) operator, we develop some new novel power Heronian mean operator and discuss its related 
properties and special cases. The main advantages of developed aggregation operators are that not only 
remove the effect of awkward data which may be too high or too low, but also have a good capacity to 
model the extensive correlation between attributes, making them more worthy for successfully solving 
more and more complicated MAGDM problems. Thus, we develop a new algorithm to handle MAGDM 
based on the developed aggregation operators. Lastly, we apply the proposed method and algorithm to risk 
assessment for construction of engineering projects to show the efficiency of the developed method and 
algorithm. The dominant novelties of this contribution are triplex. Firstly, new operational laws are 
proposed for 2-TLNNs. Secondly, novel 2-TLNPHM operators are developed. Thirdly, a new approach for 
2-tuple linguistic neutrosophic MAGDM is developed.

INDEX TERMS 2-TLNS, Dombi T-norm, Dombi T-conorm, PA operator, Heronian mean, MAGDM. 

I. INTRODUCTION
In actual life, multiple attribute group decision making

(MAGDM) problems are the vital part of decision theory in 
which we select the optimal one from the group of finite 
alternatives based on the overall information. 
Conventionally, it has been accepted that the information 
concerning acquiring the alternatives is taken in the form of 
real number. But in our daily life, it is hard for a decision 
maker to give his evaluations regarding the object in crisp 
values due to vagueness and insufficient information. 
Rather, it has been enhance acceptable that these 
evaluations are given by fuzzy set (FS) or its extended form. 
Intuitionistic fuzzy set (IFS) [1] is the vigorous 

augmentation of FS [2] to deal with vagueness by including 
an identical falsity-membership into the analysis. A lot of 
studies by different researchers were conducted on IFS in 
different fields. IFSs have good capability to explain and 
articulate decision maker’s (DMs) fuzzy decision 
information in MAGDM problems. However, IFS still have 
shortcomings and there exist relatively a few situations in 
which it is inappropriate to employ IFS to articulate DMs 
preference information. The key motive is that the 
hesitancy/indeterminacy degree is dependent of 
membership degree and non-membership degree in IFSs, 
for example when a DM utilizes an IFN (0.6, 0.2) to 
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represent his/her assessment on a certain attribute. Then, 
the indeterminacy/hesitancy degree of the DM is 1 − 0.6 − 
0.2 = 0.2. In simple words, once the truth-membership and 
falsity-membership degrees are determined, the degree of 
indeterminacy is determined automatically. Some other 
generalizations FS are proposed by some scholars such as 
Pythagorean fuzzy sets [3], hesitant Pythagorean fuzzy sets 
[4].  However, these are rather different from real MAGDM 
problems. In real MAGDM, the indeterminacy/hesitancy 
degrees should not be determined automatically and should 
be provided by DMs. For example, if a DM thinks the 
membership degree is 0.6, the membership degree is 0.4, 
and the degree that he/she is not sure about the result is 0.2, 
then the DMs evaluation value can be denoted as (0.6, 0.4, 
0.2), which cannot be represented by IFSs. In order to deal 
with this case, Smarandache [5, 6] initially developed the 
concept of neutrosophic set (NS), which has the capacity of 
dealing inconsistent and indeterminate information. In the 
NS, its degree of membership ( )ATR a , degree of 
indeterminacy ( )AIN a and degree of falsity ( )AFL a are 
expressed independently, which lie real standard or non-
standard subsets of 0 ,1 ,− +    that is ( ) : 0 ,1 ,ATR a U − + →  

( ) : 0 ,1AIN a U − + →   and ( ) : 0 ,1AFL a U − + →   , such that 

0 ( ) ( ) ( ) 3 .A AATR a IN a FL a− +≤ + + ≤  Thus, the use of nonstandard 
interval 0 ,1− +   may verdict some difficulty in real 
applications. To utilize NS easily in real application Wang 
et al. [7] proposed the concept of single valued 
neutrosophic set (SVNS) by changing the non-standard unit 
interval into the standard unit interval [ ]0,1 . Further, Wang 
et al. [8] proposed the concept of interval neutrosophic set 
(INS). Ye [9] developed simplified neutrosophic set (SNS), 
which consist of both concepts of SVNS and INS. Some 
researcher developed improved operational laws for these 
sets [10,11].  
In recent time, information aggregation operators [12-15] 
have enticed comprehensive recognitions of researchers and 
have become a vital part of MAAGDM. Generally, for 
aggregating a group of data, it is mandatory to assess the 
functions and the operations of aggregation operators. For 
the functions, the conventional aggregation operator 
developed Xu, Xu and Yager [16, 17] only can aggregate a 
group of real values into a single real value. In the past few 
years, some expanded aggregation operators have been 
developed by different researchers. For example, Sun et al. 
[18] developed some Choquet integral operator for INS. Liu
and Tang, Peng et al. [19, 20] extended the power average
(PA) operator developed by Yager [21] to interval
neutrosophic and multi-valued neutrosophic environment,
which has the capacity of removing the bad impact of
awkward data. Wu et al [22] developed cross entropy and
prioritized aggregation operators for SNNs, which take the
priorities of criterion by priority weights. Besides, some
aggregation operators can consider interrelationship among
aggregated arguments. That is Bonferroni mean (BM)

operator developed by Bonferroni [23], Heronian mean 
(HM) operator developed by Sykora [24].  
All the above aggregation operators are capable to deal with 
information available in the form of real numbers. However, 
in various actual situations, mostly for various actual 
MAGDM problems, the assessment information associated 
with every alternatives are normally unpredictable or vague, 
due to the increasing complexity such as lack of time, lack 
of knowledge and various other limitations. Therefore, it is 
often hard for DMs to represent the assessment information 
about alternatives in the form of numeric values. Hence, to 
deal with such type of situations, Zadeh [25] initially 
proposed the concept of linguistic variable. It has also been 
generalized to various linguistic environments such as 2-
tuple linguistic representation model [26-30], intuitionistic 
2-tuple linguistic model [31] and so on [32, 33].  These
developed concepts have also the same limitations to that of
FS and IFS have. To overcome these limitations,   Wang et
al. [34] developed the concept of 2-tuple linguistic
neutrosophic set (2-TLNS) based on the SVNS and 2-tuple
linguistic information model , which is the generalization of
several concepts such as 2-tuple linguistic set, 2-tuple
linguistic fuzzy set and 2-tuple linguistic intuitionistic fuzzy
set [35]. They described some operational laws for 2-tuple
linguistic neutrosophic number (2-TLNN) , proposed some
aggregation operators and apply these aggregation
operators to solve MADM problems. Wang et al. [36, 37]
further developed MAGDM method based TODIM and
Muirhead mean operators to deal with 2-tuple linguistic
environment. Wu et al. [38] proposed some 2-tuple
linguistic neutrosophic Hamy mean (2-TLNHM) operators.
Wu et al. [39] proposed the idea of SVN 2-tuple linguistic
set (SVN2TLS), SVN 2 tuple linguistic number (SVN2TN),
basic operational laws based on Hamacher triangular norm
and conorm. Then based on these operational laws propose
some aggregation operators and apply these aggregation
operator to deal with MAGDM problem under SVN2TL
information.
The Dombi t-norm (DTN) and Dombi t-conorm (DTCN)
proposed by Dombi [40] have general parameter, which
makes the information aggregation process more flexible.
In the past few years, some researchers proposed Dombi
operational laws for various sets and based on these Dombi
operational laws they developed different aggregation
operators [41-56].
Due to the increasing complexity in real decision making
problems day by day, we have to look at the following
questions, when selecting the best alternative. (1) In various
situations, the assessment values of the attributes presented
by the DMs may be too high or too low, have a negative
effect on the final ranking results. The PA operator is a
useful aggregation operator that authorizes the assessed
values to equally supported and improved. Therefore, we
may utilize the PA operator to vanish such bad effect by
choosing different weights constructed by the support
measure. (2) In various practical decision making problems
the assessment values of attribute are dependent. Therefore,
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the interrelationship among the values of the attributes 
should be scrutinized. The HM operator can gain this 
function. However, HM operator has some advantages over 
BM. From the existing literature, we can notice that there is 
a need to combine PA operator with HM operator to deal 
with 2-TLN environment and achieved the above 
advantages.  
Therefore, the main aim of this article is to propose some 
Dombi operational laws for 2-TLNNs, combine PA 
operator with HM operator, and extend the idea to 2-TLN 
environment, and develop some new aggregation operators 
such as 2-TLN power HM (2-TLNHM) operator, its 
weighted form, 2-LN power geometric HM (2-TLNHM) 
operator, its weighted form and discussed some special 
cases of the developed aggregation operator and apply them 
to MAGDM to achieve the two requirements discussed 
above.  

To do so, the rest of the article is organized as follows. 
In section 1, some basic definitions about SVNS, 2-TLNS, 

PA operator, HM operator and related properties are 
discussed. In section 3, we developed some operational laws 
for 2-TLNNs. In section 4, based on these operational laws 
we developed some 2-tuple linguistic Dombi power 
Heronian mean operators, related properties and special cases 
are discussed. In section 5, MAGDM method is developed 
based on these newly developed aggregation operators and a 
numerical example is given to show the effectiveness of the 
proposed MAGDM approach. In section 6, comparison of 
the developed approach and some existing approaches are 
given. At the end Conclusion, future work and references are 
given.  
II. Preliminaries
In this part, we gave some basic definitions and results 
about 2-TLNSs, PA operator and HM operator. 

A. 2-TLNS and their operations

Definition 1[7]. Let Θ  be a space of points (objects), with 
a common component in Θ  denoted by .η  A SVNS SN  in 
Θ  is expressed by, 





( )


( )


( ){ }, , , |SN SN SNSN η ξ η ψ η ζ η η= ∈Θ  (1) 

Where 


( )


( ),SN SNξ η ψ η  and 


( )SNζ η respectively denote the 

TMD, IMD and FMD of the element η ∈Θ  to the set .SN  
For each point η ∈Θ , we have



( )


( )


( ) [ ], , 0,1SN SN SNξ η ψ η ζ η ∈ , 
and 



( )


( )


( )0 3.SN SN SNξ η ψ η ζ η≤ + + ≤  

Definition 2 [34]. Suppose that { }1 2, ,...., pΓ = Γ Γ Γ  is a 2-TLSs 
with 1p +  cardinality. That is the order of 2-TLSs is odd. If 

( ) ( ) ( ), , , , ,t i fs s sΓ = Ξ Ψ ϒ is described for ( ) ( ) ( ), , , , ,t i fs s sΞ Ψ ϒ ∈Γ

and [ ], , , ,o pΞ Ψ ϒ ∈  where ( ) ( ), , ,t is sΞ Ψ and ( ),fs ϒ

respectively, represents the truth-membership degree, 
indeterminacy-membership degree and falsity-membership 

degree by 2-TLNSs, then the 2-TLNSs is described as 
follows: 

( ) ( ) ( ){ }, , , , ,
g g gg t g i g f gs s sΓ = Ξ Ψ ϒ  (2) 

where, ( ) ( ) ( )1 1 10 , ,0 , ,0 ,
g g gt i fs p s p s p− − −≤ ∆ Ξ ≤ ≤ ∆ Ψ ≤ ≤ ∆ ϒ ≤  such 

that ( ) ( ) ( )1 1 10 , , , 3 .
g g gt i fs s s p− − −≤ ∆ Ξ + ∆ Ψ + ∆ ϒ ≤

Definition 3 [34]. Let ( ) ( ) ( ), , , , ,t i fs s sΓ = Ξ Ψ ϒ be a 2-

TLNN. Then, the score and accuracy functions are 
described as follows: 

( )
( ) ( ) ( ) ( ) [ ]

1 1 12 , , ,
, 0,1 ;

3
t i fp s s s

SR SR
p

− − − + ∆ Ξ − ∆ Ψ − ∆ ϒ Γ = ∆ Γ ∈ 
  

(3) 

( ) ( ) ( ){ } ( ) [ ]1 1, , , , .t fAC s s AC p p− −Γ = ∆ ∆ Ξ − ∆ ϒ Γ ∈ −  (4) 

Definition 4 [34]. Let ( ) ( ) ( )1 1 11 1 1 1, , , , ,t i fs s sΓ = Ξ Ψ ϒ  and 

( ) ( ) ( )2 2 22 2 2 2, , , , ,t i fs s sΓ = Ξ Ψ ϒ be any two arbitrary 2-TLNNs. 
Then, the comparison rules are described as follows: 

(1) If ( ) ( )1 2SR SRΓ > Γ , then 1 2Γ > Γ ; 

(2) If ( ) ( )1 2SR SRΓ = Γ , then 

i. If ( ) ( )1 2AC ACΓ > Γ , then 1 2Γ > Γ ; 

ii. If ( ) ( )1 2AC ACΓ = Γ , then 1 2Γ = Γ . 

Definition 5 [36]. Let ( ) ( ) ( )1 1 11 1 1 1, , , , ,t i fs s sΓ = Ξ Ψ ϒ  and 

( ) ( ) ( )2 2 22 2 2 2, , , , ,t i fs s sΓ = Ξ Ψ ϒ be any two arbitrary 2-TLNNs. 
Then, the normalized Hamming distance is described as 
follows: 

( )

( ) ( ) ( ) ( )
( ) ( )

1 2 1 2

1 2

1 2

1 1 1 1
1 2 1 2

1 1
1 2

,

, , , ,1
3 , ,

H

t t i i

f f

D

s s s s

p s s

− − − −

− −

Γ Γ

 ∆ Ξ − ∆ Ξ + ∆ Ψ − ∆ Ψ + =  
∆ ϒ − ∆ ϒ  

 (5)  

B. The PA operator

Yager [21] was the first one who presented the concept of 
the PA which is one of the important aggregation operators. 
The PA operator diminishes some negative effects of 
unnecessarily high or unnecessarily low arguments given 
by experts. The conventional PA operator can only deal 
with crisp numbers, and is defined as follows. 
Definition 6 [21]. Let ( 1,2,..., )ib i m= be a group of non-
negative crisp numbers, the PA is a function defined by 

( )
( )( )

( )( )
1

1 2

1

1
, ,....,

1

m

i i
i

m m

i
i

T b b
PA b b b

T b
=

=

+
=

+

∑

∑
 (6) 

Where ( )
1

( , )
m

i i j
j
j i

T b Sup b b
=
≠

= ∑ and ( ),Sup b c is the support 

degree for b from ,c which satisfies some axioms. 1) 
( ) [ ], 0,1Sup b c ∈ ; 2) ( ) ( ), ,Sup b c Sup c b= ; 3) 

( ) ( ), , ,Sup b c Sup d e≥ if .b c d e− < −  
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C. HM operator

HM [24] is also an important tool, which can represent the 
interrelationships of the input values, and it is defined as 
follows: 
Definition 7 [24]. Let [ ] ,0,1 , , 0, : ,x y mI x y H I I= ≥ → if ,x yH

satisfies; 

( )
1

,
1 2 2

1

2, ,...,
m m x yx y x y

m i j
i j i

H b b b b b
m m

+

= =

 =  + 
∑ ∑  (7) 

Then the mapping ,x yH  is said to be HM operator with 
parameters. The HM satisfies the properties of idem 
potency, boundedness and monotonicity. 

III. Dombi operational laws for 2-TLNNs

A. Dombi TN and TCN

Dombi operations consist of the Dombi sum and Dombi 
product. 
Definition 8 [40]. Let α and β  be any two real number. 
Then, the DTN and DTCN among α and β are explain as 
follows: 

1
1( , ) ;

1 11

DT α β

α β
α β

ℑℑ ℑ

=
  − −  + +   
     

  (8) 

*
1

1( , ) 1 .

1
1 1

DT α β

α β
α β

ℑℑ ℑ

= −
    + +   − −     

  (9) 

Where 1,ℑ ≥ and ( ) [ ] [ ], 0,1 0,1 .α β ∈ ×

According to the DTN and DTCN, we develop few 
operational rules for 2-TLNNs. 

Definition 9. Let ( ) ( ) ( )1 1 11 1 1 1, , , , ,t i fs s sΓ = Ξ Ψ ϒ  and 

( ) ( ) ( )2 2 22 2 2 2, , , , ,t i fs s sΓ = Ξ Ψ ϒ be an arbitrary 2-TLNNs 

and 0,ℑ >  for simplicity, we assume that 
( ) ( ) ( )1 1 1, , ,

, ,g g gt g i g f g
g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = =  for 

1,2g =  . Then, the operational laws can be described as 
follows: 

1 2 1

1 2

1 2

1

1 2 1

1 2 1

1(1) ,

1 11

1 11 , 1

1 1
1 1 1

h

t t
t t

h h

i i f
i i f

ℑ ℑ ℑ

ℑ ℑ ℑ

  
  
  
  

Γ ⊗ Γ = ∆  
      − −      + +              

  
  
  
  

∆ − ∆ −  
             + + +       − − −        

1

2

21
f

f

ℑ ℑ ℑ

  
  
  
  
  
           +       −      

(10) 

1 2 1

1 2

1 2

1

1 2 1

1 2 1

1(2) 1 ,

1
1 1

1 1,

1 1 11 1

h

t t
t t

h h

i i f
i i f

ℑ ℑ ℑ

ℑ ℑ ℑ

  
  
  
  

Γ ⊗ Γ = ∆ −  
            + +      − −       

  
  
  
  

∆ ∆  
       − − −       + + +                

1

2

2

;

1 f
f

ℑ ℑ ℑ

  
  
  
  
  
     −     +            

(11) 

1 1 1

1 1

1 1

1

1

1

1 1(3) 1 , ,

11 1
1

1

11

h h

t i
t i

h

f
f

ξ

ξ ξ

ξ

ℑ ℑℑ ℑ

ℑ ℑ

      
      
      
      

Γ = ∆ − ∆      
            −            + +               −               

 
 
 
 

∆  
   −   +       

, 0;ξ

 
 
 
 
  >
 
 
  
 

(12) 

1 1 1

1 1

1 1

1

1

1

1 1(4) , 1 ,

11 1
1

11

1
1

h h

t i
t i

h

f
f

ξ

ξ ξ

ξ

ℑ ℑℑ ℑ

ℑ ℑ

      
      
      
      

Γ = ∆ ∆ −      
            −            + +               −               

 
 
 


∆ −
      +    −   

, 0.ξ

 
 
 
 
  >
 
 
  
 

(13) 

IV. The 2-tuple linguistic neutrosophic Dombi Heronian
aggregation operators

In this part, based on the Dombi operational laws for 2-
TLNNs, we combine PA operator and HM operator to 
propose 2-TLNDPHM operator, 2-TLNDWPHM operator, 
2-TLNDPGHM operator, 2-TLNDWPGHM operator and
discuss some related properties. 

A. The 2-LNDPHM and 2-LNDWPHM operators

Definition 10. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 
, 0.x y ≥  Then, the 2-TLNNDPHM operator is described as 

follows: 
( )

( )( )
( )( )

( )( )
( )( )

,
1 2

1

2
1

1 1

2 , ,...,

1 12 .
1 1

x y
p

x y x y

p p
g q

g D qp p
g q g

r r
r r

TLNDPHM

p T p T

p p T T

+

= =

= =

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

∑∑
∑ ∑

(14)
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Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the 
following conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the 
distance measure between 2-TLNNs gΓ  and qΓ

defined in Definition (5).  

In order, to represent Equation (14) in a simple form, we 
assume that 

( )( )
( )( )

1

1

1

g
g p

r
r

T

T
=

+ Γ
ℵ =

+ Γ∑
 (15) 

Therefore, Equation (14) takes the form 
( )

( ) ( )

,
1 2

1

2
1

2 , ,...,

2 .

x y
p

p p x yx y

g g D q q
g q g

TLNDPHM

p
p p

+

= =

− Γ Γ Γ

 
= ℵ Γ ⊗ ℵ Γ 

+ 
∑∑

 (16) 

Theorem 1. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let 
( ) ( ) ( )1 1 1, , ,

, ,g g gt g i g f g
g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, 

the aggregated value utilizing Equation (14), is still a 2-
TLNN, and 

( )1 2

1

2

1,

2 , ,...,

1 1 1 1 ,
2( )

1 1

p

p

g g qq q
g q

g q

TLNPHM

p p x yh
x y t tp p

t t

h

ℑ

ℑ ℑ
=
=

− Γ Γ Γ =

   
      
      
      +      ∆ + × +
   +                ℵ ℵ         − −            

∆

∑

1

2

1

2

1 1 1 1 1 ,
2( ) 1 1

1 1 1 1 1
2( )

p

g g qq g
g q

g q

g

p p x y
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=

   
      
      
      +      − + × +
   +       − −         ℵ ℵ                     

+
∆ − + ×

+
ℵ

∑

1

1
.

1 1

p

g
q g g q

q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +          − −         ℵ                          

∑

(17) 

Proof.  According to operational laws, we have 
1

11

1 1 1 ,
1

111 1 , 1 1 ,

g
g g g

g

g g
g g

g g

tp h p
t

fih p h p
i f

ℑ ℑ

ℑℑ ℑℑ

  
        ℵ Γ = ∆ − + ℵ     −      

               −−          ∆ + ℵ ∆ + ℵ                          

and 
1

11

1 1 1 ,
1

111 1 , 1 1 .

q
q q q

q

q q
q q

q q

tp h p
t

fih p h p
i f

ℑ ℑ

ℑℑ ℑℑ

  
        ℵ Γ = ∆ − + ℵ     −      

               −−          ∆ + ℵ ∆ + ℵ                          

Let 1 11 1, , , , , .
1 1

g q g q g q
g q g q g q

g q g q g q

f ft t i ia a b b c c
t t i i f f

− −− −
= = = = = =

− −

Then, we can obtain 

( )

( ) ( )

1

1 1

1 1 1 ,

1 1 , 1 1 ,

gg g g

g gg g

p h p a

h p b h p c

ℑ

ℑ ℑ

  
ℵ Γ = ∆ − + ℵ     

      
∆ + ℵ ∆ + ℵ               

( )

( ) ( )

1

1 1

1 1 1 ,

1 1 , 1 1 ,

qq q q

q qq q

p h p a

h p b h p c

ℑ

ℑ ℑ

  
ℵ Γ = ∆ − + ℵ     

      
∆ + ℵ ∆ + ℵ               

and 

( ) ( )

( ) ( )

1 1

1 11 1

1 1 ,

1 1 1 , 1 1 1 ,

x
gg g g

g gg g

p h x p a

h x p b h x p c

ℑ ℑ

ℑ ℑℑ ℑ

  
ℵ Γ = ∆ + ℵ      

      
∆ − + ℵ ∆ − + ℵ                  

( ) ( )

( ) ( )

1 1

1 11 1

1 1 ,

1 1 1 , 1 1 1 .

y
qq q q

q qq q

p h y p a

h y p b h y p c

ℑ ℑ

ℑ ℑℑ ℑ

  
ℵ Γ = ∆ + ℵ      

      
∆ − + ℵ ∆ − + ℵ                  

Furthermore, we can have 

( ) ( )
1

1 1

1 1 ,

1 1 1 , 1 1 1 ,

x y

g g D q q
g qg q

g q g qg q g q

yxp p h
p a p a

y yx xh h
p b p b p c p c

ℑ

ℑ ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ

  
   
  ℵ Γ ⊗ ℵ Γ = ∆ + + 
   ℵ ℵ     

      
         
      ∆ − + + ∆ − + +   
         ℵ ℵ ℵ ℵ               

and 
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( ) ( )
1,

1

1 1
1,

1 11 1 1 1

1 1

p x y

g g D q q
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g
q g

g q g qg q g q
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h

y yx x
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=
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                              ∆ + − + −                 + + + +            ℵ ℵ ℵ ℵ         



∑

1 1
1,

,

1 11 1 1 1 1

1 1
g

g q g qg q g q

h

y yx x
p c p c p c p c

ℑ

= ℑ ℑ

ℑ ℑ ℑ ℑ

  
  
  
  
  
  
   
   
   
   
      

    
    
    
    
    ∆ + − + −
    

          + + + +           ℵ ℵ ℵ ℵ       

1

,
p

q g

ℑ

=

   
    
    
    
    
    
    
    
    
             

∑

1

1,

1

1,

1 1 1 1 ,

1 1 1 ,

1 1 1

p

g g qg qq g

p

g g qg qq g

g qg q

x yh
p a p a

x yh
p b p b

x yh
p c p c

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

ℑ ℑ

   
     
     = ∆ − + +      ℵ ℵ     

   

   
     
     ∆ + +      ℵ ℵ     

   


∆ + +

ℵ ℵ

∑

∑

1

1,
.

p

g
q g

ℑ

=
=

   
    
     
          

   

∑

So, we can have 

( ) ( )2
1,

2 p x y

g g D q q
g
q g

p p
p p =

=

ℵ Γ ⊗ ℵ Γ
+ ∑

1

1 1

2
1, 1,

21 1 1 1 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p a p a p a p a

ℑ ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

 
                                 = ∆ − + − + + − + + +             +       ℵ ℵ ℵ ℵ                     

 

∑ ∑

1 1

2
1, 1,

,

21 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p b p b p b p b

ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

  
  
  
  
  
  
      

      
           
           ∆ + − + + + +           +       ℵ ℵ ℵ ℵ           

     

∑ ∑

1

1

2
1, 1,

,

21 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p c p c p c p c

ℑ

ℑ

ℑ ℑ ℑ ℑ
= =
= =

   
   

    
    
    
             

  
        
        ∆ + − + + + +        +      ℵ ℵ ℵ ℵ        

  

∑ ∑

1

1

,

ℑ ℑ

ℑ

   
                                          

1

2
1,

1

2
1,

2

21 1 1 1 ,

21 1 1 ,

21 1

p

g g qg qq g

p

g g qg qq g

x yh
p p p a p a

x yh
p p p b p b

h
p

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     
     = ∆ − + +     +   ℵ ℵ     

   

   
     
     ∆ + +     +   ℵ ℵ     

   

∆ +
+

∑

∑

1

1,
1 .

p

g g qg qq g

x y
p p c p c

ℑ

ℑ ℑ
=
=

   
     
     +       ℵ ℵ     

   

∑

 Then 

( ) ( )

1

2
1,

2
x y

p x y

g g D q q
g
q g

p p
p p

+

=
=

 
 ℵ Γ ⊗ ℵ Γ + 
 

∑

( )

( )

1

2

1,

1

2

1,

1 1 1 ,
2

1 1 1 1 ,
2

1 1 1

p

g g qg qq g

p

g g qg qq g

p p x yh
x y p a p a

p p x yh
x y p b p b

h

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     +     = ∆ + +    +  ℵ ℵ     

   

   
     +     ∆ − + +    +  ℵ ℵ     

   

∆ − +

∑

∑

( )

1

2

1,
1 .

2

p

g g qg qq g

p p x y
x y p c p c

ℑ

ℑ ℑ
=
=

   
     +     +    +  ℵ ℵ     

   

∑

(18) 

Now put 
1 11 1, , , , ,

1 1
g q g q g q

g q g q g q
g q g q g q

f ft t i ia a b b c c
t t i i f f

− −− −
= = = = = =

− −
in 

Equation (18), we can have 

( )

( )

1

2

1,

2

1 1 1 ,
2

1 1

1 1 1 1
2 1 1

p

g g qq g
g q

g q

g
g q

g

p p x yh
x y t tp p

t t

p p x yh
x y ip p

i

ℑ

ℑ ℑ
=
=

ℑ

   
     
     
     +    = ∆ + + 
 +        
       ℵ ℵ         − −           

+
∆ − + +

+  − − ℵ ℵ 
 

∑

( )

1

1,

2

1,

,

1 1 1 1
2 1 1

p

g qq g

q

p

g
q g g g

g q

g g

i
i

p p x yh
x y f f

p p
f f

ℑ

ℑ
=
=

ℑ ℑ
=
=

   
     
     
     
     
      
                     

  
 
 

+  ∆ − + + +    − −    ℵ ℵ         

∑

∑

1

.

ℑ
   

   
    
    
    
    
    
             

This completes the proof of Theorem (1). 
Theorem 2 (Idempotency). Let ( 1,2,..., )g g pΓ =  be a group 
of 2-TLNNs, if all ( 1,2,..., )g g pΓ = are same, that is 
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( ) ( ) ( ) ( ), , , , , 1, 2,...,g t i fs s s g pΓ = Γ = Ξ Ψ ϒ = . Assume that 

( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = , then 

( )1 22 , ,..., .pTLNPHM− Γ Γ Γ = Γ  (19) 

Proof. Since all ( ) ( ) ( ) ( ), , , , , 1, 2,..., ,g t i fs s s g pΓ = Γ = Ξ Ψ ϒ = so 

we can have ( ), 1,g qSup Γ Γ =  for all , 1, 2,..., ,g q p=  so 
1 ,g p

ℵ =  for all 1,2,..., .g p=  Then 

( ) ( ), ,
1 22 , ,..., 2 , ,...,x y x y

pTLNPHM TLNPHM− Γ Γ Γ = − Γ Γ Γ

( )

( )

1

2

1,

2

1 1 1 ,
2 1 1

1 1

1 1 1 1
2 1 1 1 1

p

g
q g

p p x yh
x y t tp p

p pt t

p p x yh
x y i ip p

p pi i

ℑ

ℑ ℑ
=
=

ℑ

   
     
     
     +    = ∆ + + 
 +        
                − −           

+
∆ − + +

+   − −  
  
  

∑

( )

1

1,

2

1,

,

1 1 1 1
2 1 1 1 1

p

g
q g

p

g
q g

p p x yh
x y f fp p

p pf f

ℑ

ℑ
=
=

ℑ ℑ
=
=

   
     
     
     
     
     
                  

  
  
  +  ∆ − + +
 +     − −     

          

∑

∑

1

,

ℑ
   
   
   
   
   
   
   

         

( )

( )

1

2

1,

2

1,

1 1 1 ,
2

1

1 1 1 1
2 1

p

g
q g

p

g
q g

p p x yh
x y t

t

p p x yh
x y i

i

ℑ

ℑ
=
=

ℑ
=
=

   
     
     
     + +   = ∆ +  
 +      
           −           

  
  
  + +  ∆ − +
 +   −        

∑

∑

( )

1

1

2

1,

,

1 1 1 1
2 1

p

g
q g

p p x yh
x y f

f

ℑ

ℑ

ℑ
=
=

   
   
   
   
   
   
   
         

   
     
     
     + +  ∆ − +  
 +      −                     

∑ ,







( )

( )

1

1

11 1 1 ,

1

11 1 1 1
1

x yh
x y t

t

x yh
x y i

i

ℑ

ℑ

ℑ

ℑ

   
     
     
     +  = ∆ + ×   +      
         −           

 
   
   
   +  ∆ − + × +    −           

 

( )

1

,

11 1 1 1 ,
1

x yh
x y f

f

ℑ

ℑ

  
  
  
  
  
  
  
      

   
     
     
     +  ∆ − + ×   +      −                    

( ) ( ) ( ), , , , ,t i fs s s= Ξ Ψ ϒ = Γ

Theorem 3 (Boundedness). Let ( 1,2,..., )g g pΓ =  be a group 

of 2-TLNNs. If ( ) ( ) ( )min , , max , , max ,
g g gg t g g i g g f gm s s s

−
= Ξ Ψ ϒ

and ( ) ( ) ( )max , ,min , ,min ,
g g gg t g g i g g f gm s s s

+
= Ξ Ψ ϒ , then

( ),
1 22 , ,...,x y

pm TLNPHM m
− +

≤ − Γ Γ Γ ≤  (20) 
Proof. To prove this let us assume that, 

( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = , 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

, , ,
, , ,

, , ,
, , .

g g g

g g g

g g gt i f
g g g

g g gt i f
g g g

s s s
t i f

h h h

s s s
t i f

h h h

− − −

+ + +

− − − − − −
− − −

− + − + − +
+ + +

∆ Ξ ∆ Ψ ∆ ϒ
= = =

∆ Ξ ∆ Ψ ∆ ϒ
= = =

Since ( ) ( ) ( )max , ,min , ,min ,
g g gg t g g i g g f gm s s s

+
= Ξ Ψ ϒ , 

( ) ( ) ( )min , ,max , ,max ,
g g gg t g g i g g f gm s s s

−
= Ξ Ψ ϒ . Then, there are 

( ) ( ) ( ), ,g g gt t t i i i f f f
− + − + − +

≤ Γ ≤ ≤ Γ ≤ ≤ Γ ≤ for all 
1,2,...., .g p=  So, we have 
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( ) ( )

( )

1

2

1,

2

1 1 1
2

1 1

1 1 1
2

1

p

g
g g qq g

g q
g q

g
g q

g

p p x yt h
x y t tp p

t t

p p x yh
x y t tp p

t

ℑ

ℑ ℑ
=
=

ℑ−

−

   
     
     
     +  Γ = ∆ + +   +        
 ℵ ℵ            − −             

+
≥ ∆ + +

+  
 ℵ ℵ
 − 

∑

1

1,
,

1

p

g
qq g

q

t

t

ℑ

−

ℑ−
=
=

−

   
     
     
     
      =                    −          

∑

( ) ( )

( )

1

2

1,

2

1 1 1 1
2 1 1

1 1 1 1
2

1

p

g
g g qq g

g q
g q

g
g

g

p p x yi h
x y i ip p

i i

p p xh
x y

ip
i

ℑ

ℑ ℑ
=
=

ℑ+

+

   
     
     
     +    Γ = ∆ − + + 
 +        − −       ℵ ℵ                    

+
≤ ∆ − +

+  − ℵ
 
 

∑

1

1,
,

1

p

g
qq g

q

q

y i
ip

i

ℑ

+

ℑ+=
=

+

   
     
     
     
     + =          −  ℵ                   

∑

( ) ( )

( )

1

2

1,

2

1 1 1 1
2 1 1

1 1 1 1
2

1

p

g
g
q g g q

g q

g q

g
g

g

p p x yf h
x y f f

p p
f f

p p xh
x y

f
p

f

ℑ

ℑ ℑ
=
=

+

+

   
     
     
     +     Γ = ∆ − + +     +    − −        ℵ ℵ                      

+
≤ ∆ − +

+  −ℵ



∑

1

1,
.

1

p

g
q g q

q

q

y f
f

p
f

ℑ

+

ℑ ℑ+=
=

+

   
     
     
     
     

+ =     
       −       ℵ                    

   

∑

Then, there is the following comparison: 
(1) For the expected value:

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

1 1 1

1 1 1

1 1

2 , , ,
3

2 , , ,

3

, , , .

t i f

t i f

t i f

h s s s
SR

h

h s s s

h

SR s s s

− + +

− − −

− − −

− − − + − +

− −

 + ∆ Ξ − ∆ Ψ − ∆ ϒ Γ = ∆  
  

 + ∆ Ξ − ∆ Ψ − ∆ ϒ ≥ ∆  
  

= Ξ − ∆ Ψ − ∆ ϒ

If ( ) ( ) ( ) ( )( )1 1, , ,
t i f

SR SR s s s− − −
− −Γ > Ξ − ∆ Ψ − ∆ ϒ , 

then 
( ) ( ) ( ) ( )1 1 ,

1 2, , , 2 , ,..., ,x y
pt i f

s s s TLNPHM− − −
− −Ξ − ∆ Ψ − ∆ ϒ < − Γ Γ Γ  

Else ( ) ( ) ( ) ( )( )1 1, , ,
t i f

SR SR s s s− − −
− −Γ = Ξ − ∆ Ψ − ∆ ϒ , 

then we have the score function 

(2) 
( ) ( ) ( ){ } ( ) ( ){ }

( ) ( ) ( )( )
1 1 1 1

1 1

, , , ,

, , , .

t f t f

t i f

AC s s s s

AC s s s

− +

− − −

− − − − − +

− −

Γ = ∆ ∆ Ξ − ∆ ϒ ≥ ∆ ∆ Ξ − ∆ ϒ

= Ξ − ∆ Ψ − ∆ ϒ

 If ( ) ( ) ( ) ( )( )1 1, , ,
t i f

AC AC s s s− − −
− −Γ > Ξ − ∆ Ψ − ∆ ϒ , 

then 
( ) ( ) ( ) ( )1 1 ,

1 2, , , 2 , ,..., ,x y
pt i f

s s s TLNPHM− − −
− −Ξ − ∆ Ψ − ∆ ϒ < − Γ Γ Γ  

Else 
( ) ( ) ( ) ( )( )

( )

1 1

,
1 2

, , ,

2 , ,...,

t i f

x y
p

AC AC s s s

TLNPHM

− − −
− −Γ = Ξ − ∆ Ψ − ∆ ϒ

= − Γ Γ Γ
, 

So, we have 
( ),

1 22 , ,..., .x y
pm TLNPHM

−
≤ − Γ Γ Γ  

In a similar way, we can show that 
( ),

1 22 , ,...,x y
pTLNPHM m

+
− Γ Γ Γ ≤ . 

Hence we have 
( ),

1 22 , ,...,x y
pm TLNPHM m

− +
≤ − Γ Γ Γ ≤ . 

In the following, we shall discuss some special cases with 
respect to the parameter parameters .x and y  

(1) When 0, 0,y → ℑ >  we can have

( )

( )( )
( )( )

( )( )
( )( )

( )
( )( )
( )( )

,0
1 2

1

2
1

1 1

1

2
1

1

2 , ,...,

1 12

1 1

12 1 .
1

x
p

x y x y

p p
g q

g qp p
g q g

r r
r r

x x

p
g

gp
g

r
r

TLNDPHM

p T p T

p p T T

p T
p g

p p T

+

= =

= =

=

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

      + Γ   = + − Γ  +  + Γ        

∑∑
∑ ∑

∑
∑

 

That is, the 2-TLDPHM operator degenerates into the 2-
tuple linguistic neutrosophic descending Dombi power 
average operator. 

(2) When 0, 0,x → ℑ >  we can have

( )

( )( )
( )( )

( )( )
( )( )

( )
( )( )
( )( )

,
1 2

1

2
1

1 1

1

2
1

1

2 , ,...,

1 12

1 1

12 .
1

o y
p

x y x y

p p
g q

g qp p
g q g

r r
r r

y y

p
g

gp
g

r
r

TLNDPHM

p T p T

p p T T

p T
g

p p T

+

= =

= =

=

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

      + Γ   = Γ  +  + Γ        

∑∑
∑ ∑

∑
∑

That is, the 2-TLDPHM operator degenerates into 
the 2-tuple linguistic neutrosophic ascending 
Dombi power average operator. 
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(3) When 0, 0,y → ℑ > and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for 

all ,g q≠  then, we can have 

( )

( )( )
( )( )

( )( )
( )( )

( )( )( )

,0
1 2

1

2
1

1 1

1

2
1

2 , ,...,

1 12

1 1

2 1 .

x
p

x y x y

p p
g q

g qp p
g q g

r r
r r

p xx

g
g

TLNDPHM

p T p T

p p T T

p g
p p

+

= =

= =

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

 
= + − Γ 

+ 

∑∑
∑ ∑

∑

That is, the 2-TLDPHM operator degenerates into 
the 2-tuple linguistic neutrosophic linear 
descending Dombi weighted average operator. 
Certainly, the weight vector of x

gΓ  is ( ), 1,....,1 .p p −  

(4) When 0, 0,x → ℑ > and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for 

all ,g q≠  then, we can have 

( )

( )( )
( )( )

( )( )
( )( )

( )( )( )

0,
1 2

1

2
1

1 1

1

2
1

2 , ,...,

1 12

1 1

2 .

y
p

x y x y

p p
g q

g qp p
g q g

r r
r r

p yy

g
g

TLNDPHM

p T p T

p p T T

g
p p

+

= =

= =

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

 
= Γ 

+ 

∑∑
∑ ∑

∑

That is, the 2-TLDPHM operator degenerates into 
the 2-tuple linguistic neutrosophic linear 
descending Dombi weighted average operator.  

(5) When 1, 0,x y= = ℑ > and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for 

all ,g q≠  then, we can have 

( ) ( ) ( )( )
1
2

0,
1 2 2

1

22 , ,..., .
p p

y
p g q

g q g
TLNDPHM

p p = =

 
− Γ Γ Γ = Γ ⊗ Γ 

+ 
∑∑

That is, the 2-TLDPHM operator degenerates into the 2-
tuple linguistic neutrosophic linear Dombi Heronian mean 
operator.  
In the above developed 2-TLNDPHM operator, only power 
weight vector and the correlation between input arguments 
are taken under consideration and are not to consider the 
weight vector of the input arguments. Therefore, to remove 
this deficiency, we will propose it weighted form, that is 2-
TPLNDWPHM operator. 

Definition 11. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 

( )1 2, 0, , ,....,
T

px y W w w w≥ = be the weight vector such that 

[ ]0,1gw ∈  and 
1

1.
p

g
g

w
=

=∑ Then, the 2-TLNNDWPHM 

operator is described as follows: 
( )

( )( )
( )( )

( )( )
( )( )

,
1 2

1

2
1

1 1

2 , ,...,

1 12 .
1 1

x y
p

x y x y

p p g qg q
g qp p

g q g
t tr r

r r

TLNDWPHM

pw T pw T

p p w T w T

+

= =

= =

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ    + + Γ + Γ         

∑∑
∑ ∑

 (21) 

Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the following 
conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the distance 
measure between 2-TLNNs gΓ  and qΓ  defined in 
Definition (5). 
In order, to represent Equation (21) in a simple form, we 
assume that 

( )( )
( )( )

1

1

1

g g
g p

r r
r

w T

w T
=

+ Γ
Θ =

+ Γ∑
 (22) 

Therefore, Equation (21) takes the form 
( )

( ) ( )

,
1 2

1

2
1

2 , ,...,

2 .

x y
p

p p x yx y

g g q q
g q g

TLNDWPHM

p
p p

+

= =

− Γ Γ Γ

 
= Θ Γ ⊗ Θ Γ 

+ 
∑∑

 (23) 

Theorem 4. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let ( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, the 

aggregated value utilizing Equation (21), is still a 2-TLNN, 
and 

( )1 2

1

2

1,

2 , ,...,

1 1 1 1 ,
2( )

1 1

p

p

g g qq q
g q

g q

TLNDWPHM

p p x yh
x y t tp p

t t

ℑ

ℑ ℑ
=
=

− Γ Γ Γ

   
      
      
      +      = ∆ + × +
   +                Θ Θ         − −            

∑

1

2

1

2

1 1 1 1 1 ,
2( ) 1 1

1 1 1 1 1
2( )

p

g g qq g
g q

g q

p p x yh
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=

   
      
      
      +      ∆ − + × +
   +       − −         Θ Θ                     

+
∆ − + ×

+

∑

1

1
.

1 1

p

g
q g g q

g q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +          − −         Θ Θ                          

∑

(24)
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Proof. Same is Theorem 1. 
It is worthy to note that the 2-TLNDWPHM operator has 
only the property of boundedness and does not have the 
properties of idempotency and monotonicity. 

B. The 2-TLNDPGHM Operator and 2-TLNDWPGHM
operator

Definition 12. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 
, 0.x y ≥  Then, the 2-TLNNDPGHM operator is described as 

follows: 
( )

( )

( )( )
( )( )

( )

( )( )
( )( )

21 1

1 1
1 1

,
1 2

2

1

2 , ,...,

1 .

p T p Tg q
p p

T Tr r
r r

x y
p

p p

p p

g q
g q g

TLNDPGHM

x y
x y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

∏∏
 (25) 

Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the following 
conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the distance 
measure between 2-TLNNs gΓ  and qΓ  defined in 
Definition (5). 
In order, to represent Equation (25) in a simple form, we 
assume that 

( )( )
( )( )

1

1

1

g
g p

r
r

T

T
=

+ Γ
ℵ =

+ Γ∑
 (26) 

Therefore, Equation (25) takes the form 
( )

( ) ( )( )
2

,
1 2

2

1

2 , ,...,

1 .g q

x y
p

p p p pp p

g q
g q g

TLNDPGHM

x y
x y

+ℵ ℵ

= =

− Γ Γ Γ

 
= Γ ⊕ Γ  +  

∏∏
 (27) 

Theorem 5. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let ( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, the 

aggregated value utilizing Equation (25), is still a 2-TLNN, 
and 

( )1 2

1

2

1

2 , ,...,

1 1 1 1 1
2( ) 1 1

p

p

g g qq g
g q

g q

TLNDWPGHM

p p x yh
x y t tp p

t t

ℑ

ℑ ℑ
=
=

− Γ Γ Γ

   
      
      
      +      = ∆ − + × +
   +       − −         ℵ ℵ                     

∑

1

2

1,

2

,

1 1 1 1 ,
2( )

1 1

1 1 1 1
2( )

p

g g qq q
g q

g q

p p x yh
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=



   
      
      
      +      ∆ + × +
   +                ℵ ℵ         − −            

+
∆ + ×

+
ℵ

∑

1

1,
.

1 1

p

g
q q g q

g q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +                  ℵ            − −              

∑

 (28) 
Proof.  According to operational laws, we have 

1

11

11 1 ,

1 1 1 , 1 1 1 ,
1 1

g gp
g g

g

g g
g g

g g

th p
t

fih p h p
i f

ℑ ℑ
ℵ

ℑℑ ℑℑ

  
    −    Γ = ∆ + ℵ           

                        ∆ − + ℵ ∆ − + ℵ         − −                

and 
1

11

11 1 ,

1 1 1 , 1 1 1 ,
1 1

q qp
q q

q

q q
q q

q q

th p
t

fih p h p
i f

ℑ ℑ
ℵ

ℑℑ ℑℑ

  
    −    Γ = ∆ + ℵ           

                        ∆ − + ℵ ∆ − + ℵ         − −                

Let 
1 1, , , , , .

1 1 1 1
g q g q g q

g q g q g q
g q g q g q

f ft t i ia a b b c c
t t i i f f
− −

= = = = = =
− − − −

Then, we can obtain 

( )

( ) ( )

1

1 1

1 1 ,

1 1 1 , 1 1 1 ,

gp
gg g

g gg g

h p a

h p b h p c

ℵ ℑ

ℑ ℑ

  
Γ = ∆ + ℵ     

      
∆ − + ℵ ∆ − + ℵ               

( )

( ) ( )

1

1 1

1 1 ,

1 1 1 , 1 1 1 ,

qp
qq q

q qq q

h p a

h p b h p c

ℵ ℑ

ℑ ℑ

  
Γ = ∆ + ℵ     

      
∆ − + ℵ ∆ − + ℵ               

and 

( )

( ) ( )

1 1

1 11 1

1 1 1 ,

1 1 , 1 1 ,

gp
gg g

g gg g

x h x p a

h x p b h x p c

ℵ ℑ ℑ

ℑ ℑℑ ℑ

  
Γ = ∆ − + ℵ      

      
∆ + ℵ ∆ + ℵ                  
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( )

( ) ( )

1 1

1 11 1

1 1 1 ,

1 1 , 1 1 ,

qp
qq q

q qq q

y h y p a

h y p b h y p c

ℵ ℑ ℑ

ℑ ℑℑ ℑ

  
Γ = ∆ − + ℵ     

      
∆ + ℵ ∆ + ℵ               

Furthermore, we can have 
1

1

1

1 1 1 ,

1 1 ,

1 1 ,

g qp p
g D q

g qg q

g qg q

g qg q

yxx x h
p a p a

yxh
p b p b

yxh
p c p c

ℑ
ℵ ℵ

ℑ ℑ

ℑ

ℑ ℑ

ℑ

ℑ ℑ

  
   
 Γ ⊕ Γ = ∆ − + +  
  ℵ ℵ      

  
   
 ∆ + +  
  ℵ ℵ      

  
   
 ∆ + +  
  ℵ ℵ      

and 

1,

g q
p

p p
g D q

g
q g

x yℵ ℵ

=
=

Γ ⊕ Γ∏

1

1 1
1,

1 11 1 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p a p a p a p a

ℑ ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

  
                                   = ∆ + − + −                      + + + +                ℵ ℵ ℵ ℵ           

  

∑

1

1 1
1,

,

1 11 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p b p b p b p b

ℑ ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

 
 
 
 
 
 
 
 
 
 
  
 


                           ∆ − + −                 + + + +            ℵ ℵ ℵ ℵ         



∑

1 1
1,

,

1 11 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p c p c p c p c

ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

 
 
 
  
  
  
  
  
  
  
  

 

                         ∆ − + −                 + + + +            ℵ ℵ ℵ ℵ         

∑

1

,

ℑ
  
  
  
  
  
  
  
  
  

    
  

1

1,

1

1,

1 1 1 ,

1 1 1 1 ,

1 1 1 1

p

g g qg qq g

p

g g qg qq g

g qg q

x yh
p a p a

x yh
p b p b

x yh
p c p c

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

ℑ ℑ

   
     
     = ∆ + +      ℵ ℵ     

   

   
     
     ∆ − + +      ℵ ℵ     

   

∆ − + +
ℵ ℵ

∑

∑

1

1,
.

p

g
q g

ℑ

=
=

   
     
     
           

   

∑

So, we can have 

2
2

1,

g q

p p
p

p p
g D q

g
q g

x y
+

ℵ ℵ

=
=

 
 Γ ⊕ Γ  
 
∏

1

1 1

2
1, 1,

21 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p a p a p a p a

ℑ ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

 
                                 = ∆ + − + + + +             +        ℵ ℵ ℵ ℵ                       

 

∑ ∑

1 1

2
1, 1,

,

21 1 1 1 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p b p b p b p b

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

  
  
  
  
  
  
  

    

    
           
          ∆ − + − + + − + + +          +       ℵ ℵ ℵ ℵ                

∑ ∑

1

1

2
1,

,

21 1 1 1 1 1 1 1 1 1 1 1
p

g g q g qg q g qq g

x y x yh
p p p c p c p c p c

ℑ ℑ

ℑ

ℑ ℑ ℑ ℑ
=
=

   
        
    
    
               

  
      
      ∆ − + − + + − + + +     +    ℵ ℵ ℵ ℵ         

∑

1

1

1,
,

p

g
q g

ℑ ℑ

ℑ

=
=

   
                                                 

∑

1

2
1,

1

2
1,

2

21 1 1 ,

21 1 1 1 ,

21 1 1 1

p

g g qg qq g

p

g g qg qq g

x yh
p p p a p a

x yh
p p p b p b

h
p p

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     
     = ∆ + +    +  ℵ ℵ     

   

   
     
     ∆ − + +    +  ℵ ℵ     

   

∆ − +
+

∑

∑

1

1,
.

p

g g qg qq g

x y

p c p c

ℑ

ℑ ℑ
=
=

   
     
     +      ℵ ℵ     

   

∑

 Then 
2
2

1,

1 g q

p p
p

p p
g D q

g
q g

x y
x y

+

ℵ ℵ

=
=

 
 Γ ⊕ Γ +  
 
∏

( )

( )

1

2

1,

1

2

1,

2

1 1 1 1 ,
2

1 1 1 ,
2

1 1

p

g g qg qq g

p

g g qg qq g

p p x yh
x y p a p a

p p x yh
x y p b p b

ph

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     +     = ∆ − + +    +  ℵ ℵ     

   

   
     +     ∆ + +    +  ℵ ℵ     

   

∆ +

∑

∑

( )

1

1,
1 .

2

p

g g qg qq g

p x y
x y p c p c

ℑ

ℑ ℑ
=
=

   
     +     +    +  ℵ ℵ     

   

∑

(29) 

Now put 
1 1, , , , ,

1 1 1 1
g q g q g q

g q g q g q
g q g q g q

f ft t i ia a b b c c
t t i i f f
− −

= = = = = =
− − − −

in Equation (29), we can have 
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( )

( )

1

2

1,

2

1 1 1 1 ,
2 1 1

1 1 1
2

1 1

p

g g qq g
g q

g q

g q
g q

g

p p x yh
x y t tp p

t t

p p x yh
x y i ip p

i

ℑ

ℑ ℑ
=
=

ℑ

   
     
     
     +  = ∆ − + +   +        − − ℵ ℵ                         

+
∆ + +

+  
ℵ ℵ  − − 

∑

( )

1

1,

2

1,

,

1 1 1
2

1 1

p

g
q g

q

p

g
g qq g

g q
g q

i

p p x yh
x y f f

p p
f f

ℑ

ℑ
=
=

ℑ ℑ
=
=

   
     
     
     
     
      
                    

  
  
  

+  ∆ + +  +         ℵ ℵ      − −    

∑

∑

1

.

ℑ
   

   
   
   
   
   
   
   
      

This completes the proof of Theorem. 

Theorem 6 (Idempotency). Let ( 1,2,..., )g g pΓ =  be a group 
of 2-TLNNs, if all ( 1,2,..., )g g pΓ = are same, that is 

( ) ( ) ( ) ( ), , , , , 1, 2,...,g t i fs s s g pΓ = Γ = Ξ Ψ ϒ = . Assume that 

( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = , 

then 
( )1 22 , ,..., .pTLNPGHM− Γ Γ Γ = Γ  (30) 

Theorem 7 (Boundedness). Let ( 1,2,..., )g g pΓ =  be a group 

of 2-TLNNs. If ( ) ( ) ( )min , ,max , ,max ,
g g gg t g g i g g f gm s s s

−
= Ξ Ψ ϒ

and ( ) ( ) ( )max , ,min , ,min ,
g g gg t g g i g g f gm s s s

+
= Ξ Ψ ϒ , then

( ),
1 22 , ,..., .x y

pm TLNPHM m
− +

≤ − Γ Γ Γ ≤   (31) 
By specifying different values to the parameters x  and y , 
some particular cases of the 2-TLNDPGHM operator are 
described below: 

(1) If 0, 0y → ℑ > , then we can have

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

21 1

1 1
1 1

2
1

1
1

,0
1 2

2

1

2
1

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

p T g
p

T r
r

x
p

p p

p p

g q
g q g

p g p p

p

g
g

TLNDPGHM

x y
x y

x
x

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+ Γ

+ Γ∑
=

+

= =

+ − +

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

    
  = Γ  
     

∏∏

∏

That is, the 2-TLNDPGHM operator degenerates into the 2-
tuple linguistic neutrosophic Dombi descending power 
geometric average operator. 

(2) If 0, 0x → ℑ > , then we can have

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

21 1

1 1
1 1

2
1

1
1

0,
1 2

2

1

2

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

p T g
p

T r
r

y
p

p p

p p

g q
g q g

g p p

p

g
g

TLNDPGHM

x y
x y

y
y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+ Γ

+ Γ∑
=

+

= =

+

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

    
  = Γ  
     

∏∏

∏

That is, the 2-TLNDPGHM operator degenerates into the 2-
tuple linguistic neutrosophic Dombi descending power 
geometric average operator. 

(3) If 0, 0,y → ℑ >  and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for all 

.g q≠  Then, we can have 

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )( )

21 1

1 1
1 1

2

,0
1 2

2

1

2

1

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

x
p

p p

p p

g q
g q g

p p pp g

g
g

TLNDPGHM

x y
x y

x
x

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

++ −

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

 
= Γ  

 

∏∏

∏

That is, the 2-TLNDPGHM operator degenerates into 2-
tuple linguistic neutrosophic Dombi descending geometric 
average operator. 

(4) If 0, 0,x → ℑ >  and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for all 

.g q≠  Then, we can have 
( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )( )

21 1

1 1
1 1

2

,0
1 2

2

1

2

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

x
p

p p

p p

g q
g q g

p p pg

g
g

TLNDPGHM

x y
x y

y
y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

+

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

 
= Γ  

 

∏∏

∏

That is, the 2-TLNDPGHM operator degenerates into 2-
tuple linguistic neutrosophic Dombi ascending geometric 
average operator. 

Similar to 2-TLNDPHM operator, the 2-TLNDPGHM 
operator have only power weight vector and the correlation 
between input arguments are taken under consideration and 
are not to consider the weight vector of the input arguments. 
Therefore, to remove this deficiency, we will propose its 
weighted form, that is 2-TPLNDWPGHM operator.  
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Definition 13. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 
, 0.x y ≥  Then, the 2-TLNNDWPGHM operator is described 

as follows: 
( )

( )

( )( )
( )( )

( )

( )( )
( )( )

21 1

1 1
1 1

,
1 2

2

1

2 , ,...,

1 .

p w T p w Tg gg q
p p

w T w Tr rr r
r r

x y
p

p p

p p

g q
g q g

TLNDWPGHM

x y
x y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
      

∏∏
 (32) 

Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the following 
conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the distance 
measure between 2-TLNNs gΓ  and qΓ  defined in 
Definition (5). 
In order, to represent Equation (32) in a simple form, we 
assume that 

( )( )
( )( )

1

1

1

g g
g p

r r
r

w T

w T
=

+ Γ
Θ =

+ Γ∑
 (33) 

Therefore, Equation (32) takes the form 
( )

( ) ( )( )
2

,
1 2

2

1

2 , ,...,

1 .g q

x y
p

p p p pp p

g q
g q g

TLNDWPGHM

x y
x y

+Θ Θ

= =

− Γ Γ Γ

 
= Γ ⊕ Γ  +  

∏∏
 (34) 

Theorem 8. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let ( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, the 

aggregated value utilizing Equation (32), is still a 2-TLNN, 
and 

( )1 2

1

2

1

2 , ,...,

1 1 1 1 1
2( ) 1 1

p

p

g g qq g
g q

g q

TLNDWPGHM

p p x yh
x y t tp p

t t

ℑ

ℑ ℑ
=
=

− Γ Γ Γ =

   
      
      
      +      ∆ − + × +
   +       − −         Θ Θ                     

∑

1

2

1,

2

,

1 1 1 1 ,
2( )

1 1

1 1 1 1
2( )

p

g g qq q
g q

g q

p p x yh
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=



   
      
      
      +      ∆ + × +
   +                Θ Θ         − −            

+
∆ + ×

+
Θ

∑

1

1,
.

1 1

p

g
q q g q

g q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +                  Θ            − −              

∑

 (35) 

Similar to 2-TLNDWPHM, the 2-TLNDWPGHM operator 
has only the property of boundedness and does not have the 
properties of idempotency and monotonicity. 

V. An application of 2-TLNDWPHM and 2-TLNDWPGHM
operator to group decision making
In this section, we pertains the afore-presented Dombi 
power Heronian aggregation operators to establish 
constructive approach for MAGDM under 2-TLNN 
environments. Let { }1 2, ,..., mAT AT AT AT=  be the set of 

discrete alternatives, the set of attributes is expressed by 

{ }1 2, ,..., nCT CT CT CT= , the weight vector of the attributes 

is represented by ( )1 2, ,...,
T

nW w w w=  such that 

[ ]
1

0,1 , 1,
n

e e
e

w w
=

∈ =∑ and ( )1 2, ,..., aDE de de de=  denote the set 

of a  decision makers, with weight vector expressed by 

( )1 2, ,..., T
aϖ ϖ ϖ ϖ=  such that [ ]

1
0,1 , 1.

a

b b
b

ϖ ϖ
=

∈ =∑ Assume

that ( )
b

b
ce m n

DT
×

= Γ  is the decision matrix, where 

( ) ( ) ( ), , , , ,b b b
ce ce ce

b b b b
ce ce ce cet i f

s s sΓ = Ξ Ψ ϒ  takes the form of 2-

TLNN, given by decision maker bde  for alternative cAT

with respect to the attribute eCT . 
Then, depending on real decision situations where the 
weight vector of both attributes and decision makers are 
completely known in advance. Therefore, in the following 
we present a MAGDM approach based on the developed 2-
TLNDWPHM and 2-TLNDWPGHM operators. To do so, 
just follow the step below: 
Step 1. Calculate the support degrees by the following 
formula: 

( ) ( ) ( ), 1 , , , 1,2,..., ; 1,2,..., ; 1,2,..., .b l b l
Hce ce ce ceSup D b l a c m e nΓ Γ = − Γ Γ = = =

 (36) 
Which satisfy the axioms for support functions, ( ),b l

H ce ceD Γ Γ

is the distance measure given in Definition (5). 
Step 2. Determine the support degree ( )b

ceT Γ  that IFN b
ceΓ

receives from other 2-TLNNs ( )1,2,..., ; ,l
ce l a l bΓ = ≠ where 

( ) ( )
1,

sup , .
a

b b l
ce ce ce

l l b
T

= ≠

Γ = Γ Γ∑   (37) 

Step 3. Utilize weights ( )1,2,....,b b aϖ =  for decision 

makers bde  to determine weights b
ceℵ  associated with the 2-

TLNN ,b
ceΓ  

( )( )
( )( )

1

1
,( 1,2,..., ).

1

b
b ceb

ce a
b

b ce
b

T
b a

T

ϖ

ϖ
=

+ Γ
ℵ = =

+ Γ∑
 (38)
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Where 0b
ceℵ ≥ and 

1
1.

a
b
ce

b=

ℵ =∑  

Step 4. Aggregate all the individual decision matrices 

( ) ( 1,2,..., )
b

b
ce m n

DT b a
×

= Γ = into group decision matrix 
 ( )ce m n
DT

×
= Γ  by utilizing 2-TLNDWPHM or 2-

TLNDWPGHM operators, where 
( )1 22 , ,...,b a

ce ce ce ceTLNDWPHMΓ = − Γ Γ Γ  (39) 
Or 

( )1 22 , ,...,b a
ce ce ce ceTLNDWPGHMΓ = − Γ Γ Γ         (40) 

Step 5. Determine support degrees ( ),ce cxSup Γ Γ by the 
following formula; 

( ) ( ), 1 , ;
( 1,2,..., , 1,2,..., , )

Hce cx ce cxSup D
c m e n e x

Γ Γ = − Γ Γ

= = ≠
  (41) 

where ( ),H ce cxD Γ Γ is distance measure given in 
Definition(5). 
Step 6. Determine the support degree ( )ceT Γ that 2-TLNNs 

ceΓ collects from other 2-TLNNs ( 1,2,..., ; )cx x n e xΓ = ≠ , 
where 

 ( ) ( )
1,

, .
n

xce ce cx
x x e

T w Sup
= ≠

Γ = Γ Γ∑   (42) 

Step 7. Determine weighting vector 
( 1,2,...., , 1,2,..., )ce c m e nΦ = = associated with ceΓ  , 

 
( )( )

( )( )
1

1
.

1

e ce
ce n

e ce
e

w T

w T
=

+ Γ
Φ =

+ Γ∑
  (43) 

Step 8. Utilize 2-TLNDWPHM or 2-TLNNDWPGHM 
operators to aggregate all assessment values 

( 1,2,...., , 1,2,..., )ce c m e nΓ = = into overall assessment value 
( 1,2,...., )c c mΓ = corresponding to the alternatives 

( 1,2,..., ) :cAL c m=  
( )1 22 , ,...,c c c cnTLNDWPHMΓ = − Γ Γ Γ  (44) 

Or 
( )1 22 , ,...,c c c cnTLNDWPGHMΓ = − Γ Γ Γ  (45) 

Step 9. Determine the scores ( )dSC if  for the overall IFN 

of the alternatives ( 1,2,..., )dAL d g=  by utilizing Definition 
(3). 
Step 10. Rank all alternatives ( 1,2,..., )dAL d g= and select 
the optimal one (s) with the ranking order ( 1,2,..., )d d gΓ = . 

A. Numerical Examples and Comparative analysis
The following example is adapted from [38], to show the
validity and practicality of the developed aggregation
operators.
Example 1. Let us assume that there are five potential
construction engineering projects (alternatives)

( )1,2,...,5bAL b =  to be assess. These five potential 
alternatives are assessed by decision makers with respect to 

the following four attributes (1) the construction work 
environment denoted by 1CT  ;  
(2) the construction site safety protection measure denoted
by 2;CT (3) The safety management ability of the

engineering projects management denoted by 3CT and (4)
the safety production responsibility system denoted by 4CT ,
with weight vector ( )0.5,0.3,0.1,0.1 T  and expert weight

vector is ( )0.2,0.5,0.3 T  . The experts provide information in 
the form of 2-TLNNs, which are listed in Tables 1-3.  

Table.1 The 2-TLN decision matrix 
1

DT

1CT  2CT 3CT 4CT

1AL ( ) ( )
( )

4 3

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

5 3

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 3

2

,0 , ,0

, ,0

s s

s

2AL ( ) ( )
( )

3 2

4

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 3

3

,0 , ,0

, ,0

s s

s

3AL ( ) ( )
( )

5 4

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 4

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 2

2

,0 , ,0

, ,0

s s

s

4AL ( ) ( )
( )

2 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

5 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 3

5

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 1

1

,0 , ,0

, ,0

s s

s

5AL ( ) ( )
( )

4 3

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

5 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s

Table.2 The 2-TLN decision matrix 
2

DT

1CT  2CT 3CT 4CT

1AL ( ) ( )
( )

3 2

3

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

3 3

2

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

3 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 1

3

,0 , ,0

, ,0

s s

s

2AL ( ) ( )
( )

2 3

4

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 3

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 4

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 4

4

,0 , ,0

, ,0

s s

s

3AL ( ) ( )
( )

2 3

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 3

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

4

,0 , ,0

, ,0

s s

s

4AL ( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 2

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 4

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 1

2

,0 , ,0

, ,0

s s

s

5AL ( ) ( )
( )

3 2

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 4

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 1

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 3

2

,0 , ,0

, ,0

s s

s

 Table.3 The 2-TLN decision matrix 
3

DT

1CT  2CT 3CT 4CT
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1AL ( ) ( )
( )

3 3

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 2

1

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 4

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 1

3

,0 , ,0

, ,0

s s

s

2AL ( ) ( )
( )

2 3

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

4 4

4

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 4

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 3

4

,0 , ,0

, ,0

s s

s

3AL ( ) ( )
( )

2 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 4

5

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 4

4

,0 , ,0

, ,0

s s

s

4AL ( ) ( )
( )

3 1

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

2 3

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 4

5

,0 , ,0

, ,0

s s

s
( ) ( )
( )

5 3

2

,0 , ,0

, ,0

s s

s

5AL ( ) ( )
( )

3 3

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s
( ) ( )
( )

3 2

3

,0 , ,0

, ,0

s s

s
( ) ( )
( )

5 3

4

,0 , ,0

, ,0

s s

s

Step 1. Calculate the support degrees by utilizing formula 
(36). For simplicity we shall denote  

( ) ( ), , , 1,2,3; 1,...,5; 1,...,4 .b l bl
ce ce ceSup S b l c eΓ Γ = = = =

12 21 13 31 23 23
11 11 11 11 11 11
12 21 13 31 23 32
12 12 12 12 12 12
12 21 13 31 23 32
13 13 13 13 13 13
12 21 13 3
14 14 14 14

0.8333, 0.8889, 0.8333,
0.8333, 0.8889, 0.8333;
0.9444, 0.7778, 0.7222,

0.7222,

S S S S S S
S S S S S S
S S S S S S

S S S S

= = = = = =

= = = = = =

= = = = = =

= = = 1 23 32
14 14

12 21 13 31 23 32
21 21 21 21 21 21
12 21 13 31 23 32
22 22 22 22 22 22
12 21 13 31 23 32
23 23 23 23 23 23

2

0.7222, 1.000;
0.8889, 0.8333, 0.9444,
0.8333, 0.7778, 0.8333;
0.8333, 0.7778, 0.9444,

S S
S S S S S S
S S S S S S
S S S S S S

S

= = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 23 32
4 24 24 24 24 24

12 21 13 31 23 23
31 31 31 31 31 31
12 21 13 31 23 32
32 32 32 32 32 32
12 21 13
33 33 33 33

0.7778, 0.8333, 0.9444;
0.777778, 0.6111, 0.8333,

0.7778, 0.7778, .000;

0.833333,

1

S S S S S
S S S S S S

S S S S S S

S S S S

= = = = = =

= = = = = =

= = = = = =

= = = 31 23 32
33 33

12 21 13 31 23 32
34 34 34 34 34 34
12 21 13 31 23 32
41 41 41 41 41 41
12 21 13 31 23 32
42 42 42 42 42 42

0.6111, 0.6667,

0.8333, 0.6667, 0.8333;

0.8889, 0.9444, 0.9444,
0.722222, 0.7222, 0.888

S S

S S S S S S

S S S S S S
S S S S S S

= = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 23 32
43 43 43 43 43 43
12 21 13 31 23 32
44 44 44 44 44 44
12 21 13 31 23 32
51 51 51 51 51 51
12 21 13
52 52 52

9;
0.7222, 0.8889, 0.8333,

0.9444, 0.7222, 0.7778;
0.8889, 0.8889, 0.8889,

0.722222,

S S S S S S

S S S S S S
S S S S S S

S S S

= = = = = =

= = = = = =

= = = = = =

= = = 31 23 32
52 52 52

12 21 13 31 23 32
53 53 53 53 53 53
12 21 13 31 23 32
54 54 54 54 54 54

0.8889, 0.8333;

0.8889, 0.8889, 0.7778,

0.8889, 0.7222, 0.7222;

S S S

S S S S S S

S S S S S S

= = =

= = = = = =

= = = = = =

Step 2. Determine the support degree ( )b
ceT Γ by utilizing 

formula (37). For simplicity, we shall denote ( )b
ceT Γ by 

( )1,2,3; 1,...,5; 1,...,4b
ceT b c e= = = . 

1 2 3 1 2 3
11 11 11 12 12 12
1 2 3 1 2 3

13 13 13 14 14 14
1 2 3 1 2

21 21 21 22 22

1.7222, 1.6667, 1.7222, 1.7222, 1.6667, 1.7222;
1.7222, 1.6667, 1.5000, 1.4444, 1.7222, 1.7222;

1.7222, 1.8333, 1.7778, 1.6111, 1.6

T T T T T T
T T T T T T

T T T T T

= = = = = =

= = = = = =

= = = = = 3
22

1 2 3 1 2 3
23 23 23 24 24 24
1 2 3 1 2 3

31 31 31 32 32 32
1 2 3

33 33 33 3

667, 1.6111;
1.6111, 1.7778, 1.7222, 1.6111, 1.7222, 1.7222;

1.3889, 1.6111, 1.4444, 1.5556, 1.7778, 1.7778;

1.444444, 1.5000, 1.2778,

T
T T T T T T

T T T T T T

T T T T

=

= = = = = =

= = = = = =

= = = 1 2 3
4 34 34

1 2 3 1 2 3
41 41 41 42 42 42
1 2 3 1 2 3

43 43 43 44 44 44
1 2

51 51

1.5000, 1.6667, 1.6667;

1.8333, 1.8333, 1.8889, 1.4444, 1.6111, 1.6111;
1.6111, 1.5556, 1.7222, 1.6667, 1.7222, 1.7222;

1.7778, 1.777

T T

T T T T T T
T T T T T T

T T

= = =

= = = = = =

= = = = = =

= = 3 1 2 3
51 52 52 52

1 2 3 1 2 3
53 53 53 54 54 54

8, 1.7778, 1.6111, 1.5556, 1.7222;

1.7778, 1.6667, 1.6667, 1.6111, 1.6111, 1.6111;

T T T T

T T T T T T

= = = =

= = = = = =

Step 3. Utilize weights ( )1,2,....,b b aϖ =  for decision 

makers bde  to determine weights b
ceℵ utilizing formula (38), 

we have 
1 2 3 1
11 11 11 12
2 3 1 2
12 12 13 13
3 1 2 3
13 14 14 14
1 2 3 1
21 21 21 22
2
22

0.2021, 0.4949, 0.3031, 0.2021,
0.4949, 0.3031; 0.2072, 0.5074,

0.2854, 0.1833, 0.5104, 0.3063;

0.1948, 0.5070, 0.2982, 0.1979,
0.5

= = = =

= = = =

= =

ℵ ℵ ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ ℵ = =ℵ ℵ

ℵ ℵ ℵ ℵ= = =

=ℵ

=
3 1 2
22 23 23

3 1 2 3
23 24 24 24
1 2 3 1
31 31 31 32
2 3 1 2
32 32 33 33
3 1
33 34

053, 0.2968; 0.1915, 0.5092,

0.2994, 0.1934, 0.5041, 0.3025;

0.1898, 0.5188, 0.2914, 0.1870,

0.5081, 0.3049; 0.2018, 0.5161,

0.2821,

ℵ ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ ℵ

= = =

= = = =

= = = =

= = = =

=

ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ ℵ 2 3
34 34

1 2 3 1
41 41 41 42
2 3 1 2
42 42 43 43
3 1 2 3
43 44 44 44
1 2
51 51

0.1899, 0.5063, 0.3038;

0.1988, 0.4971, 0.3041, 0.1897,
0.5065, 0.3039; 0.1996, 0.4883,

0.3121, 0.1967, 0.5020, 0.3012;

0.2000, 0.5000,

ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ

= = =

= = = =

= ℵ ℵ ℵ

ℵ ℵ

= = =

= ℵ ℵ= =

ℵ

=

ℵ= = 3 1
51 52

2 3 1 2
52 52 53 53
3 1 2 3
53 54 54 54

0.3000, 0.1996,

0.4883, 0.3121; 0.2066, 0.4959,

0.2975, .2000, .5000, .3000.0 0 0

ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ

= =

= = = =

= = =ℵ =ℵ ℵ

Step 4. Aggregate all the individual decision matrices 

( ) ( 1,2,3; 1,...,5; 1,2....,4)
b

b
ce m n

DT b c e
×

= Γ = = = into group 

decision matrix  ( )ce m n
DT

×
= Γ  by utilizing formula (39) or 

(40), we have (assume 1, 2x y= = ℑ =  ) 

Table 4. Overall decision matrix utilizing 2-TLNDWPHM 
operator 

1CT  2CT

1AL  ( ) ( )
( )

3 3

2

,0.3121 , , 0.4416

, , 0.2546

s s

s

−

−

( ) ( )
( )

4 3

1

,0.1659 , , 0.3613 ,

,0.2902

s s

s

−

2AL  ( ) ( )
( )

2 3

4

,0.2801 , , 0.3045 ,

, 0.3296

s s

s

−

−

( ) ( )
( )

4 3

3

, 0.3597 , , 0.0893 ,

, 0.0893

s s

s

− −

−

3AL ( ) ( )
( )

4 2

3

, 0.2651 , , 0.0778 ,

, 0.3501

s s

s

− −

−

( ) ( )
( )

3 2

2

,0.2982 , ,0.3239 ,

,0.2406

s s

s

4AL  ( ) ( )
( )

2 1

2

, 0.2647 , ,0.3901 ,

,0.0337

s s

s

− ( ) ( )
( )

4 2

2

, 0.2654 , , 0.2069 ,

,0.3631

s s

s

− −

5AL ( ) ( )
( )

3 3

1

,0.3096 , , 0.4428 ,

,0.2318

s s

s

− ( ) ( )
( )

4 3

2

, 0.0301 , , 0.4330 ,

,0.3512

s s

s

− −
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Table 4. Overall decision matrix utilizing 2-TLNDWPHM 
operator 

3CT 4CT

1AL  ( ) ( )
( )

4 1

2

, 0.3581 , ,0.3112 ,

,0.2905

s s

s

− ( ) ( )
( )

4 1

3

, 0.3215 , ,0.2170 ,

, 0.2948

s s

s

−

−

2AL  ( ) ( )
( )

3 2

3

, 0.3265 , ,0.2579 ,

, 0.3015

s s

s

−

−

( ) ( )
( )

3 3

4

, 0.2540 , ,0.3221 ,

, 0.3122

s s

s

−

−

3AL ( ) ( )
( )

2 2

2

,0.3217 , ,0.1066 ,

, 0.4061

s s

s −

( ) ( )
( )

3 2

3

,0.0781 , ,0.4413 ,

,0.2604

s s

s

4AL  ( ) ( )
( )

3 4

3

,0.3115 , , 0.2868 ,

, 0.0090

s s

s

−

−

( ) ( )
( )

4 1

2

,0.1354 , ,0.3029 ,

, 0.3720

s s

s −

5AL ( ) ( )
( )

3 1

3

,0.4424 , ,0.4666 ,

,0.2970

s s

s
( ) ( )
( )

4 3

2

,0.0490 , , 0.3096 ,

,0.4329

s s

s

−

Table 5. Overall decision matrix utilizing 2-
TLNDWPGHM operator 

1CT  2CT

1AL  ( ) ( )
( )

3 3

2

,0.2654 , , 0.3807 ,

,0.2226

s s

s

− ( ) ( )
( )

3 3

1

,0.3613 , , 0.3211 ,

,0.4161

s s

s

−

2AL  ( ) ( )
( )

2 3

4

,0.2434 , , 0.2657 ,

, 0.2991

s s

s

−

−

( ) ( )
( )

4 3

3

, 0.4152 , ,0.2068 ,

,0.2068

s s

s

−

3AL ( ) ( )
( )

2 3

3

,0.3580 , , 0.0182 ,

, 0.3261

s s

s

−

−

( ) ( )
( )

3 3

2

,0.2628 , , 0.2657 ,

,0.2741

s s

s

−

4AL  ( ) ( )
( )

3 1

2

, 0.2587 , ,0.4168 ,

, 0.0334

s s

s

−

−

( ) ( )
( )

2 2

2

,0.3539 , ,0.1742 ,

,0.4146

s s

s

5AL ( ) ( )
( )

3 3

1

,0.2659 , , 0.3839 ,

,0.3244

s s

s

− ( ) ( )
( )

3 3

2

,0.3685 , ,0.1333 ,

,0.4107

s s

s

Table 5. Overall decision matrix utilizing 2-TLNDWPHM 
operator 

3CT 4CT

1AL  ( ) ( )
( )

4 3

2

, 0.4167 , , 0.3578 ,

,0.3254

s s

s

− − ( ) ( )
( )

3 1

3

,0.2725 , ,0.6568 ,

, 0.2619

s s

s −

2AL  ( ) ( )
( )

3 4

3

, 0.3557 , , 0.3280 ,

, 0.2649

s s

s

− −

−

( ) ( )
( )

2 3

4

, 0.3282 , ,0.4432 ,

, 0.2421

s s

s

−

−

3AL ( ) ( )
( )

2 3

4

,0.2928 , ,0.1344 ,

, 0.0620

s s

s −

( ) ( )
( )

3 3

4

, 0.2141 , ,0.0877 ,

, 0.3258

s s

s

−

−

4AL  ( ) ( )
( )

3 4

5

,0.2627 , , 0.2405 ,

, 0.4560

s s

s

−

−

( ) ( )
( )

3 2

2

,0.4863 , ,0.1564 ,

, 0.2633

s s

s −

5AL ( ) ( )
( )

3 2

2

,0.3799 , , 0.3948 ,

, 0.1612

s s

s

−

−

( ) ( )
( )

3 3

3

, 0.2028 , , 0.2659 ,

,0.0921

s s

s

− −

Step 5. Calculate the support degrees of Table4, by 
utilizing formula (41). For simplicity we shall denote  

( ) ( ), , 1,...,5; 1,...,4 .ce
ce ce cSup S c eΓ Γ = = =  

12 21 13 31 14 41
1 1 1 1 1 1
23 32 24 42 34 43

1 1 1 1 1 1
12 21 13 31 14 41
2 2 2 2 2 2
23 32 24 42 34 43
2 2 2 2 2 2

0.9228, 0.8821, 0.8518,
0.8416, 0.8153, 0.9697;
0.8703, 0.8929, 0.9383,
0.9152, 0.8843, 0.9

S S S S S S
S S S S S S
S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = = = 374;

12 21 13 31 14 41
3 3 3 3 3 3
23 32 24 42 34 43
3 3 3 3 3 3
12 21 13 31 14 41
4 4 4 4 4 4
23 32 24 42 34 43
4 4 4 4 4 4

0.9307, 0.8526, 0.9008,

0.8977, 0.9246, 0.8468;

0.9038, 0.7857, 0.8948,
0.8349, 0.9097, 0.7

S S S S S S

S S S S S S

S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 14 41
5 5 5 5 5 5
23 32 24 42 34 43
5 5 5 5 5 5

446;
0.9006, 0.9284, 0.8848,

0.8510, 0.9842, 0.8352;

S S S S S S

S S S S S S

= = = = = =

= = = = = =

or 
Calculate the support degrees of Table 5, by utilizing 
formula (41). For simplicity we shall denote  

12 21 13 31 14 41
1 1 1 1 1 1
23 32 24 42 34 43

1 1 1 1 1 1
12 21 13 31 14 41
2 2 2 2 2 2
23 32 24 42 34 43
2 2 2 2 2 2

0.9261, 0.9754, 0.9175,
0.9393, 0.8444, 0.9051;
0.8718, 0.8720, 0.9527,
0.8957, 0.8864, 0.9

S S S S S S
S S S S S S
S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 14 41
3 3 3 3 3 3
23 32 24 42 34 43
3 3 3 3 3 3
12 21 13 31 14 41
4 4 4 4 4 4
23 32 24 42 34 43
4 4 4 4 4 4

129;
0.9138, 0.9177, 0.9168,

0.8314, 0.8858, 0.9456;

0.9115, 0.6977, 0.9221,
0.7431, 0.8811,

S S S S S S

S S S S S S

S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = =
12 21 13 31 14 41
5 5 5 5 5 5
23 32 24 42 34 43
5 5 5 5 5 5

0.7252;
0.9052, 0.9089, 0.8794,

0.8827, 0.9185, 0.8455;

S S S S S S

S S S S S S

=

= = = = = =

= = = = = =

Step 6. Determine the support degree ( )ceT Γ by utilizing 
formula (42) 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

2.6567, 2.5797, 2.6934, 2.6368, 2.7015,
2.6698, 2.7456, 2.7601; 2.6840, 2.7530,
2.5971, 2.6721, 2.5844, 2.6484, 2.3653,
2.5491; 2.7138, 2.7358,

T T T T T
T T T T T
T T T T T
T T T T

= = = = =
= = = = =
= = = = =
= = = 3 542.6146, 2.7042.T= =

Or 
Determine the support degree ( )ceT Γ by utilizing formula 
(42) 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

2.8189, 2.7097, 2.8197, 2.6669, 2.6965,
2.6539, 2.6806, 2.7521; 2.7482, 2.6311,
2.6947, 2.7482, 2.5313, 2.5357, 2.1660,
2.5284; 2.6936, 2.7064,

T T T T T
T T T T T
T T T T T
T T T T

= = = = =
= = = = =
= = = = =
= = = 3 542.6372, 2.6434.T= =

Step 7. Determine weighting vector ceΦ by utilizing 
formula (43), 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

0.5029, 0.2954, 0.1016, 0.1000, 0.4999,
0.2974, 0.1012, 0.1016; 0.4985, 0.3047,
0.0974, 0.0994, 0.5009, 0.3059, 0.0941,
0.0992; 0.5006, 0.3021,

Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ 3 540.0974, 0.0999.= Φ =

Or  
Determine weighting vector ceΦ by utilizing formula (43), 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

0.5063, 0.2951, 0.1013, 0.0972, 0.5012,
0.2973, 0.0998, 0.1017; 0.5055, 0.2938,
0.0996, 0.1011, 0.1430, 0.3034, 0.0906,
0.1009; 0.5009, 0.3016,

Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ 3 540.0987, 0.0988.= Φ =

Step 8. Utilize 2-TLNDWPHM or 2-TLNNDWPGHM 
operators given in formula (44) or formula (45) to 
aggregate all assessment values (assume 1, 2x y= = ℑ =  ) 

( ) ( ) ( )1 4 2 2, 0.3978 , ,0.0053 , , 0.1452 ;AL s s s= − −

( ) ( ) ( )2 3 3 3, 0.2250 , ,0.0835 , ,0.3512 ;AL s s s= −
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( ) ( ) ( )3 3 2 2,0.1907 , ,0.2747 , ,0.4501 ;AL s s s=

( ) ( ) ( )4 3 2 2,0.3506 , , 0.2546 , ,0.2681 ;AL s s s= −

( ) ( ) ( )5 4 2 2, 0.4224 , ,0.4077 , , 0.2722 .AL s s s= − −  
or 

( ) ( ) ( )1 4 2 2, 0.4206 , ,0.3839 , ,0.0258 ;AL s s s= −

( ) ( ) ( )2 3 3 3, 0.2382 , ,0.0972 , ,0.3152 ;AL s s s= −

( ) ( ) ( )3 3 3 3, 0.2307 , , 0.1970 , , 0.0111 ;AL s s s= − − −

( ) ( ) ( )4 3 2 3,0.2394 , ,0.0406 , , 0.3743 ;AL s s s= −

( ) ( ) ( )5 3 3 2,0.3430 , , 0.4474 , , 0.0295 .AL s s s= − −  
Step 9. Calculate the score values utilizing Definition (3), 
we have 

( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.6523, 0.4634 0.5814, ,

, .0.6298 0.6357

SR AL SR AL SR AL

SR AL SR AL

= = =

= =

Calculate the score values utilizing Definition (3), we have 
( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.6205, 0.4639 0.4987, ,

, .0.5874 0.6011

SR AL SR AL SR AL

SR AL SR AL

= = =

= =

Step 10. Rank all the alternatives and select the best one 
according to their score values. 

1 5 4 3 3.AL AL AL AL AL> > > >  
or 

1 5 4 3 3.AL AL AL AL AL> > > >  

1AL  is the best one while the worst one is 3.AL  

VI. Discussion
In the following, we will further analyze the effect of the 
parameters ,x y  and ℑ on the final ranking result of
Example 1. Then we can adopt the different values of x 
and y in step 4 and step 8, while the value ℑ is fix. The 
results are given in Table 6 and Table 7. Moreover, the 
effect of general parameter ℑ , is shown in Table 8 and 
Table 9, while the parameters ,x y  are fix.
From Table 6 and Table 7, we can notice that the ranking 
orders are different for different values of the parameters
,x y . However, the best alternative AL1 or AL5. From Table
6 and Table 7, we can also notice that, when the values of 
the parameter x or y increases, the score values increases 
utilizing 2-TLNDWPHM operator, while the score values 
decreases utilizing2-TLNDWPGHM operator. Generally, 
for computational simplicity one may select 
1

=x y = 1, or =x y = according to the actual need of
2

decision making problems. 

Table 6. Effect of parameter x and y on ranking result utilizing
2-TLNDWPHM operator

Parameter 
values 

Score values Ranking 
orders 

1, 2,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6537, 0.4574

0.5764

,

, ,

.

0.6273

0.6325

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

3, 5,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6530, 0.4585

0.5772

,

, ,

.

0.6275

0.6328

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2, 7,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6570, 0.4560

0.5757

,

, ,

.

0.6284

0.6332

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

6, 19,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6563, 0.4561

0.5756

,

, ,

.

0.6280

0.6329

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

14, 30,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6540, 0.4571

0.5761

,

, ,

.

0.6273

0.6324

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2, 100,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6754, 0.4631

0.5926

,

, ,

.

0.6476

0.6526

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

50, 2,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6897, 0.5290

0.6451

,

, ,

.

0.6745

0.6976

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

35, 6,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6685, 0.4998

0.6142

,

, ,

.

0.6526

0.6669

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

80,
4,
2

x
y

=
=

ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6869, 0.5256

0.6409

,

, ,

.

0.6713

0.6937

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

Table 7. Effect of parameter x  and y  on decision result
utilizing 2-TLNDWPGHM operator 
Parameter 
values 

Score values Ranking 
orders 

1, 2,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6252, 0.4663

0.5037

,

, ,

.

0.5810

0.5998

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >
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3, 5,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6245, 0.4662

0.5029

,

, ,

.

0.5832

0.6006

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2, 7,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6251, 0.4643

0.5042

,

, ,

.

0.5718

0.5951

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

6, 19,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6254, 0.4649

0.5043

,

, ,

.

0.5737

0.5961

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

14, 30,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6253, 0.4662

0.5039

,

, ,

.

0.5800

0.5994

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2, 100,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6082, 0.4388

0.4828

,

, ,

.

0.5177

0.5575

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

50, 2,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5583, 0.4136

0.4440

,

, ,

.

0.5533

0.5620

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

35, 6,
2

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5868, 0.4367

0.4683

,

, ,

.

0.5771

0.5835

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

80, 4,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5618, 0.4163

0.4470

,

, ,

.

0.5569

0.5650

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

Table 8. Effect of parameter ℑ  on decision result 2-
TLNDWPHM operator 
Parameter 
values 

Score values Ranking 
orders 

1, 2,
3

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6855, 0.4851

0.6316

,

, ,

.

0.6667

0.6713

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
5

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.7326, 0.5291

0.7017

,

, ,

.

0.7181

0.7226

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
9

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.7795, 0.5840

0.7632

,

, ,

.

0.7668

0.7734

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
15

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8025, 0.6176

0.7934

,

, ,

.

0.7954

0.7991

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
30

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8184, 0.6425

0.8142

,

, ,

.

0.8152

0.8169

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
100

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8290, 0.6595

0.8278

,

, ,

.

0.8281

0.8285

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
200

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8312, 0.6631

0.8306

,

, ,

.

0.8307

0.8310

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

Table 9. Effect of parameter ℑ  on decision result 2-
TLNDWPGHM operator 
Parameter 
values 

Score values Ranking 
orders 

1, 2,
3

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5940, 0.4411

0.4610

,

, ,

.

0.5084

0.5644

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

1, 2,
5

x y= =
ℑ =

( ) ( )
( )
( ) ( )

1 2

3

4 5

0.5531, 0.4105

0.4008

,

,

, .0.4233 0.5123

SR AL SR AL

SR AL

SR AL SR AL

= =

=

= =

1 5 4

2 3.

AL AL AL

AL AL

> >

> >

1, 2,
9

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5146, 0.3794

0.3443

,

, ,

.

0.3570

0.4478

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 2

4 3.

AL AL AL

AL AL

> >

> >

1, 2,
15

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4875, 0.3609

0.3163

,

, ,

.

0.3240

0.4019

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 2

4 3.

AL AL AL

AL AL

> >

> >

1, 2,
30

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4656, 0.3470

0.2964

,

, ,

.

0.3003

0.3670

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 2

4 3.

AL AL AL

AL AL

> >

> >

1, 2,
100

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4507, 0.3374

0.2833

,

, ,

.

0.2844

0.3433

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 2

4 3.

AL AL AL

AL AL

> >

> >
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1, 2,
200

x y= =
ℑ =

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4476, 0.3354

0.2805

,

, ,

.

0.2811

0.3383

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 2

4 3.

AL AL AL

AL AL

> >

> >

From Table 8 and Table 9, we can notice that the ranking 
orders are different for different values of the parameters ℑ . 
However, the best alternative 1AL  or 5.AL  From Table 8 and 
Table 9, we can also notice that, when the values of the 
parameter ℑ  increases, the score values increases utilizing 
2-TLNDWPHM operator, while the score values decreases
utilizing2-TLNDWPGHM operator. So, one may select the
parameter value according to the actual need of decision
making problem.
A. Compare with existing methods
In order to confirm the efficacy of the developed approach 
and describe its advantages, we can compare our developed 
method with some existing methods.  
B. Validity of the developed method
In order to confirm the validity of the developed approach, 
we can utilize some existing methods to solve the same 
example. Since the developed approach is based on the 
combination of PA, HM operators and Dombi operations. 
So, we can utilize the methods in which the 
interrelationships between two input arguments are 
considered. Therefore, the reference methods of 
comparison are 2-TLNNWBM, 2-TLNNWGBM operators 
and 2-TLNHM, 2-TLNDHM operators. The score values 
and ranking orders of the above example by solving these 
two methods and the developed method as given in Table 
10. From Table 10, we can notice that the ranking order
obtained by the existing methods is the same as that
obtained from the proposed approach. This shows the
developed approach is valid.
Table 10. The score values and ranking orders obtained
from different methods
Approach Score values Ranking order 
2-TLNNWBM
[34] ( 1p q= = )

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6298, 0.4648

0.5642

,

, ,

.

0.6145

0.6243

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2-TLNNWGBM
[34] ( 1p q= = )

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6259, 0.4606

0.5622

,

, ,

.

0.6080

0.6198

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2-TLNWHM[42]
( 2k = )

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.9013, 0.8395

0.8751

,

, ,

.

0.8895

0.8962

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

2-
TLNWDHM[42] 
( 2k = ) 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.2062, 0.1327

0.1718

,

, ,

.

0.1946

0.2005

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

Proposed 2-
TLNDWPHM 
operator 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6523, 0.4634

0.5814

,

, ,

.

0.6298

0.6357

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

Proposed 2-
TLNDW 
PGHM 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6205, 0.4639

0.4987

,

, ,

.

0.5874

0.6011

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

From Table 10, we can see that the ranking order obtained 
from the proposed method based on developed aggregation 
operator and the methods developed Wang et al. [34], Wu 
et al. [38] are same. This shows the validity of the proposed 
method. Yet, it cannot manifest the advantages of the 
developed method due to same ranking results. 
Further, in the following we will show the advantages of 
the developed method.  
C. The advantages of the developed method
(1) The developed method is based on the 2-TLNDWPHM
operator and the method presented by Wei [34] is based on
2-TLNNWBM operator. Both the methods have the
characteristics of considering interrelationship among two
input arguments and the only difference between them is
that the developed aggregation operators also remove the
effect of awkward data which may be too low or too high.
In order to show this advantage, we give the following
example.
Example 2. We can only change some data in the Example
1. We slightly change the value of alternative 1AL  with
respect to the attribute 4CT . That is the value

( ) ( ) ( )4 1 3,0 , ,0 , ,0s s s  is changed to ( ) ( ) ( )3 2 4,0 , ,0 , ,0s s s and 
the score values and ranking order are given in Table 11. 
Table 11. The score values and ranking orders obtained 
from different methods 
Approach Score values Ranking 

order 
2-LNNWBM
[34]

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6215, 0.4648

0.5642

,

, ,

.

0.6145

0.6243

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 4 4

3 2.

AL AL AL

AL AL

> >

> >

2-
TLNNWGBM 
[34] 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6178, 0.4606

0.5622

,

, ,

.

0.6080

0.6198

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

Proposed 
Method 2-
TLNDWPHM 
operator 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6392, 0.4629

0.5814

,

, ,

.

0.6298

0.6357

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >
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Proposed 
Method 
2-
TLNDWPGH
M 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6056, 0.4639

0.4987

,

, ,

.

0.5874

0.6011

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

From Table 11, we can notice that when we slightly change 
the value of the alternative  1AL  with respect to the attribute

4CT  in Table 2, then the ranking order obtained from the 
proposed method remain the same, while that acquired from 
the method developed by Wang et al.[34] is totally different. 
The best alternative remains the same in the proposed 
approach while utilizing the Wang et el. [34] approach 
based on 2-TLNNWBM and 2-TLNNWGBM, the best 
alternative is 5AL .  The main reason behind these different 
ranking orders is that, the aggregation operators developed 
by Wang et al. [34] just only consider the interrelationship 
among input arguments and does not have the capacity of 
removing the bad impact of awkward data on final ranking 
result. While, the proposed approach is based on the 
proposed aggregation operators have the property of 
removing the effect of awkward data and consider the 
interrelationship among input arguments. The proposed 
aggregation operators are based on Dombi operational laws 
which have a general parameter, that makes the decision 
process more flexible. So the developed aggregation 
operator in this article is more general and practical to be 
used in solving MAGDM problems. 
(2) Compare with the approach based on
Hamy mean operator
To compare the developed approach with that of Hamy 
mean operator proposed by Wu et al. [38], we take another 
Example adapted from [12]. The Hamy mean operator 
proposed by Wu et al. [38] can also consider the 
interrelationship among input arguments. 
Example 3. Let there is an investment company who 
wants to invest some money in the available four 
companies as a group of alternatives ( )1,2,...,4bAL b = . 
These four companies are respectively, a car company 
denoted by 1AL , a food company denoted by 2,AL , a 

computer company denoted by 3AL and an arm company 
denoted by 4.AL  These four potential alternatives are 
assessed by decision makers with respect to the following 
three attributes (1) the risk denoted by 1CT ; (2) the growth 
denoted by 2;CT and (3) The environmental impact denoted 

by 3CT  with weight vector ( )0.4,0.2,0.4 T . The assessment 
information is provided in the form of 2-TLNNs and is 
given in Table 12. 
Table.12. The 2-TLN decision matrix  

1CT 2CT 3CT

1AL ( ) ( )
( )

2 4

4

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

4 1

3

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

2 4

4

,0 , ,0 ,

,0

s s

s

2AL ( ) ( )
( )

4 3

3

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

2 3

2

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

4 1

2

,0 , ,0 ,

,0

s s

s

3AL ( ) ( )
( )

5 1

3

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

3 2

2

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

2 4

2

,0 , ,0 ,

,0

s s

s

4AL ( ) ( )
( )

3 5

1

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

3 1

2

,0 , ,0 ,

,0

s s

s
( ) ( )
( )

3 1

2

,0 , ,0 ,

,0

s s

s

The score values and ranking results obtained by the 
proposed aggregation operators and the 2-TLNWHM 
operator, 2-TLNWDHM operator are given in Table 13. 
From Table 13, one can notice that the ranking order 
obtained from the developed aggregation operators and that 
of obtained by 2-TLNWHM operator, and 2-TLNWDHM 
operator are totally different. From the proposed 
aggregation operator the best alternative is 3AL , while the 
worst one is 1,AL and from the 2-TLNWHM operator or 2-
TLNWDHM operator proposed in Wu et al. [38], the best 
alternative is 4AL , while the worst one remain the same. 
The main reason behind different ranking order is that the 
both the aggregation operators can consider the 
interrelationship between input arguments, but the 
developed aggregation operator have two more 
characteristics. It can remove the effect of awkward data 
and proposed aggregation operators are based on Dombi 
operational laws, which have a general parameter that 
makes the information aggregation process more flexible. 
Therefore the developed aggregation operators are more 
flexible and general to be used in solving MAGDM 
problems. 
Table 13. The score values and ranking orders obtained 
from different methods 
Approach Score values Ranking 

order 
2-LNNWHM
[38]

( ) ( )
( ) ( )

1 2

3 4

0.7337, 0.7917

0.8367 0.840

,

, 6.

SR AL SR AL

SR AL SR AL

= =

= =

4 3

2 1.

AL AL

AL AL

> >

>
 

2-TLNNWDHM
[38]

( ) ( )
( ) ( )

1 2

3 4

0.1691, 0.2082

0.2695 0.286

,

, 8.

SR AL SR AL

SR AL SR AL

= =

= =

4 3

2 1.

AL AL

AL AL

> >

>
 

Proposed 
Method 2-
TLNDWPHM 
operator 

( ) ( )
( ) ( )

1 2

3 4

0.5228, 0.5246

0.7052 0.690

,

, 2.

SR AL SR AL

SR AL SR AL

= =

= =

3 4

2 1.

AL AL

AL AL

> >

>

Proposed 
Method 
2-
TLNDWPGHM 

( ) ( )
( ) ( )

1 2

3 4

0.3678, 0.4755

0.4998 0.492

,

, 1.

SR AL SR AL

SR AL SR AL

= =

= =

3 4

2 1.

AL AL

AL AL

> >

>
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In this article firstly, we proposed some new operational 
laws for 2-TLNNs based on Dombi T-norm and Dombi T-
conorm. Secondly, we proposed some new aggregation 
operators on these operational laws such as 2-tuple 
linguistic neutrosophic Dombi power Heronian mean 
operator, 2-tuple linguistic neutrosophic Dombi weighted 
power Heronian mean operator, 2-tuple linguistic 
neutrosophic Dombi power geometric Heronian mean 
operator and 2-tuple linguistic neutrosophic Dombi 
weighted power geometric Heronian mean operator. We 
also discussed it properties and few special cases with 
respect to parameters. Furthermore, we developed an 
algorithm for solving MAGDM problems under 2-tuple 
linguistic neutrosophic environment. We also show the 
advantages of the developed MAGDM approaches by 
comparing with some existing MAGDM approaches. The 
main advantages of the developed aggregation operators are 
The developed aggregation operators are based on Dombi 
operational laws, which consists of general parameter, that 
makes the information aggregation process more flexible. 
The developed aggregation operators have two 
characteristics at a time, firstly, it can vanish the effect of 
awkward data by taking the advantage of PA operator, 
Secondly, it can consider the interrelationship among the 
input arguments by taking the advantages of HM operator. 
For these reasons the developed MAGDM method based on 
these developed aggregation operator is more general and 
reasonable. 
In future research, we will extend power Heronian mean 
operators to some new extension such as 2-tuple linguistic 
cubic neutrosophic, 2-tuple linguistic Double valued 
neutrosophic and so on. At the same time, we also research 
on some applications in energy and supply chain 
management. 
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Abstract
In this paper, inspired by the concept of generalized single-valued neutrosophic 

graphs(GSVNG) of the first type, we define yet another generalization of neutrosophic graph 
called the generalized interval- valued neutrosophic graph of 1 type (GIVNG1) in addition 
to our previous work on complex neutrosophic graph (CNG1) in [47]. We will also show a 
matrix representation for this new generalization. Many of the fundamental properties and 
characteristics of this new concept is also studied. Like the concept CNG1 in [47], the concept 
of GIVNG1 is another extension of generalized fuzzy graphs 1 (GFG1) and GSVNG1.

1. Introduction

In order to efficiently handle real life scenarios that conatins uncertain 
information,neutrosophic set(NS) theory, established by Smarandache 
[32], is put forward from the perspective of philosophical standpoints 
through regarding the degree of indeterminacy or neutrality as an 
independent element. As a result, many extended forms of fuzzy sets such 
as classical fuzzy sets [45], intuitionistic fuzzy sets [3-4], interval-valued 
fuzzy sets [40] and interval-valued intuitionistic fuzzy sets [5] could be 
seen as reduced forms of NS theory. In a NS, a true membership degree 
T, an indeterminacy membership degree I and a falsity membership 
degree F constitute the whole independent membership degrees owned 
by each element. However, it is noticed that the range of T , I and F falls 
within a real standard or nonstandard unit interval]−0, 1+[, hence it is 
difficult in applying NSs to many kinds of real world situations due to 
the limitation of T , I and F . Therefore, an updated form called single 
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valued neutrosophic sets (SVNSs) was designed by Smarandache firstly 
[32]. Then, several properties in terms of SVNSs were further explored by 
Wang et al. [43]. In addition, it is relatively tough for experts to provide 
the three membership degrees with exact values, sometimes the form of 
interval numbers outperform the exact values in many practical situations. 
Inspired by this issue, Wang et al. [43] constructed interval neutrosophic 
sets concept (INSs) that performs better in precision and flexibility. Thus, 
INSs could be regarded as an extension of SVNSs. Moreover, some recent 
works about NSs, INSs and SVNSs along with their applications could be 
found in [13-15, 22,35, 53-59].

To studying the relationship between objects or events, the concept 
of Graph is thus created. In classical crisp graph theory, each of the two 
vertices (representing object or event) can assign two crisp value, 0 (not 
related/connected) or 1 (related/connected). The approach of fuzzy 
graph is a generalization the classical graph by allowing the degree of 
relationship (i.e. the membership value) to be anywhere in [0,1] for the 
edges, and it also assign membership values for the vertices. In the context 
of fuzzy graph, there is a rule that must be satisfied by all the edges and 
vertices, as follows:

the membership value of an edge must always be less than or equal to both the 
membership values of its two adjacent vertices. (*)

In over one hundred research papers, the further generalization of 
fuzzy graphs were studied, such as intuitionistic graphs, interval valued 
fuzzy graphs [7, 25, 28, 29]and interval-valued intuitionistic fuzzy graphs 
[24].However, such generalization still preserve (*) that was established 
since the period of fuzzy graphs.

As a result, Samanta et al. [39]analysed the concept of generalized 
fuzzy graphs (GFG), which was derived from the concept of fuzzy graph 
while removing the confinement of (*) . He had also studied some major 
advantages of GFG, such as completeness and regularity, by some proven 
facts. These authors had further developed GFG into two types, namely: 
generalized fuzzy graphs of first type (GFG1), generalized fuzzy graphs 
based on second type (GFG2). Each type of GFG can likewise be created 
by matrices just as in the case of some fuzzy graphs. The authors had 
also justified that the concept of fuzzy graphs on previous literatures 
are limited to representing some very particular systems such as social 
network, and therefore GFG is claimed to be capable to put to use on a 
much wider range of different scenario.

On the other hand, when the description of an object or a relation 
is both indeterminate and uncertain, it may be handled by fuzzy[23], 
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intuitionistic fuzzy, interval-valued fuzzy, interval-valued intuitionistic 
fuzzy graphs and Set-valued graphs [2]. So, for this purpose, another 
new concept: neutrosophic graphs based on literal indeterminacy (I),were 
proposed by Smarandache [34]to deal with such situations. Such concept 
was published in a book by the same author collaborating with Vasantha et 
al.[42]. Later on, Smarandache[30-31] further introduced yet a new concept 
for neutrosophic graph theory, this time using the neutrosophic truth-
values (T,I,F). He also gave various characterization on neutrosophicgraph, 
such as theneutrosophic edge graphs, neutrosophic vertex graphs and 
neutrosophic vertex-edge graphs. Later on[33], Smarandache himself 
further generalized the concept of neutrosophic graphs, and yield even 
more new structures such as neutrosophic offgraph, neutrosophic bipolar 
graphs, neutrosophic tripolar graphs and neutrosophic multipolar graphs. 
After which, the study of neutrosophic vertex-edge graphs has captured 
the attention of most researchers, and thus having more generalizations 
derived from it.

In 2016, using the concepts of SVNSs, Broumi et al.[8] investigated 
on the concept of single-valued neutrosophic graphs, and formulated 
certain types of single-valued neutrosophic graphs (SVNGs). After that, 
Broumi et al.introduced in [9,10,16,17,36]: the necessity of neighbourhood 
degree of a vertices and closed neighborhood degree of vertices in single-
valued neutrosophic graph, isolated-SVNGs, Bipolar-SVNGs, complete 
bipolar-SVNGs, regular bipolar-SVNGs, uniform-SVNGs. In[11-12,18], 
also they studied the concept of interval-valued neutrosophic graphs 
and the importance of strong interval-valued neutrosophic graph, where 
different methods such as union, join, intersection and complement have 
been further investigated. In [35], Broumi et al. proposed some computing 
procedure in Matlab for neutrosophic operational matrices. Broumi et 
al.[37] developed a Matlab toolbox for interval valued neutrosophic 
matrices for computer applications. Akram and Shahzadi [6] introduced a 
new version of SVNGs that are different from those proposed in [8,36],and 
studied some of their properties. Ridvan[20] presented a new approach to 
neutrosophic graph theory with applications. Malarvizhi and Divya[38] 
presented the the ideas of antipodal single valued neutrosophic graph. 
Karaaslan and Davvaz[21] explore some interesting properties of single-
valued neutrosophic graphs.Krishnarajet al.[1] introduced the concept of 
perfect and status in single valued neutrosophic graphs and investigated 
some of their properties.

Krishnaraj et al. [26] also analysed the concepts self-centered single 
valued neutrosophic graphs and discussed the properties of this concept 
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with various examples, while Mohmed Ali et al.[41]extended it further 
to interval valued neutrosophic graphs[11].Kalyan and Majumdar [27]
introduce the concept of single valued neutrosophic digraphs and 
implemented it in solving a multicriterion decision making problems.

The interval-valued neutrosophic graphs studied in the literature 
[11, 12], like the concept of fuzzy graph, is nonetheless bounded with the 
following condition familiar to (*): 

The edge membership value is lessser than the minimum of its end vertex 
values, whereas the edge indeterminacy-membership value is lesser than the 
maximum of its end vertex values or greater than the maximum of its end vertex 
values. Also the edge non-membership value is lesser than the minimum of its end 
vertex values or is greater than the maximum of its end vertex values. (**)

Broumi et al.[19]had thus followed the approach of Samanta et al. [39], 
by suggesting the removal of (**) and presented the logic of generalized 
single-valued neutrosophic graph of type1 (GSVNG1). This is also a 
generalization from generalized fuzzy graph of type1 [39].

The main goal of this work is to further generalize the method of 
GSVNG1 to interval-valued neutrosophic graphs of first type (GIVNG1), 
for which all the true, indeterminacy, and false membership values, are 
inconsistent. Similarly, the appropriate matrix representation of GIVNG1 
will also be given.

The results in this article is further derived from a conference paper 
[46] that we have published one year ago in IEEE. On the other hand, we
have just published a paper on complex neutrosophic graph (CNG1),
which is another extension of GFG1 and GSVNG1 in [47]. The approach
ofGIVNG1 and CNG1, however, are distint from one another. This is
becausethe concept of CNG1 extends the existing theory by generalizing
real numbers into complex numbers, while all the entries remain single
valued; whereas in this paper,the concept of GIVNG1 extends the
existing theory by generalizing the single valued entriesinto inter-valued
entries,while all those inter-valued entries remains as real numbers

Thus, following the format of our recent conference paper [46], this 
paper has been aligned likewise: In Section 2, the concept on neutrosophic 
sets, single- valued neutrosophic sets, interval valued neutrosophic graph 
and generalized single-valued neutrosophic graphs of type 1are described 
in detail, which serves as cornerstones for all the contents in later parts of 
the article. In Section 3, we present the ideas of GIVNG1 illustrated with 
an example. Section 4 gives the appropriate way to represent the matrix 
of GIVNG1.

Florentin Smarandache (author and editor) Collected Papers, VIII

659



2. Some preliminary results

In this part, we briefly include some basic definitions in [19, 32, 43,47]
related to NS, SVNSs, interval- valued neutrosophic graphs(IVNG) and 
generalized single-valued neutrosophic graphs of type 1(GSNG1).

Definition 2.1 [32]. Let X be a series of points with basic elements in X 
presented by x; then the neutrosophic set(NS) A (is an object in the form 
A = {< x: TA(x), IA(x), FA(x) >, x ŒX}, defines the functions T, I, F: X → 
]−0,1+[denoted by the truth-membership, indeterminacy-membership, and 
falsity-membership of the element x X to the set A showing the condition:

–0 ( ) ( ) ( )3 . (1)A A AT x I x F x +≤ + +

The functions ( ), ( ) and ( )A A AT x I x F x  are absolute standard or non-
standard subsets of ]−0,1+[.

As it is very complex i applying NSs to real issues, Smarandache [32] 
developed the notion of a SVNS, which is an occurrence of a NS and can 
be employed in practical scientific and engineering applications.

Definition 2.2 [43]. Let X be a series of points (objects) with basic elements 
in X presented by x. A single valued neutrosophic set A (SVNS A) is 
characterized by truth-membership TA(x), an indeterminacy-membership 
IA(x), and a falsity-membership FA(x) .∀x ŒX , TA(x), IA(x), FA(x) Œ[0, 1]. A 
SVNS A can be rewritten as

{  :  ( ),  ( ),  ( ) ,  } (2)A A AA x T x I x F x x X= < > ∈

Definition 2.3 [19] Suppose the following conditions are expected:
a)  V is a null-void set.
b)  ,  ,  : V [0,1]T I Fρ ρ ρ →

c)  E = {(rT(u),rT(v)) | u, v ŒV},
 F = {(rI(u),rI(v)) | u, v ŒV},
 G = {(rF(u),rF(v)) | u, v ŒV}.

d)  a : E Æ [0, 1] , b : F Æ [0, 1], d : G Æ [0, 1] are three functions.
e)  r = ( rT, rI, rF) ; and

 w = ( wT, wI, wF) with
 wT (u, v) =  a ((rT(x), rT(v))),
 wI (u, v) =  b ((rI(x), rI(v))),
wF (u, v) =  d ((rF(x), rF(v))), ∀ u, v ŒV.
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Then:
i)  The structure x = < V, r, w > is considered to a GSVNG1.

 Remark: r which depends on rT , rI , rF. And w which depends on a,
b. Hence there are 7 mutually alone parameters in total which make
up a CNG1: V, rT , rI , rF, a, b, d.

ii)  ∀ ŒV, x is considered to bea vertex of x. The whole set V is termed as
the vertex set of x.

iii)  ∀ u, v ŒV, (u, v) is considered to be a directed edge of x .
In special, (u, v) is considered to be a loop of x.

iv)  For all vertex : rT(v), rI(v), rF(v) are considered to be the T, I, and F
membership value, respectively of that vertex v . Moreover, if rT(v) =
rI(v) = rF(v) = 0, then v is supposed to be a null vertex.

v)  Correspondingly, for all edge (u, v) : wT(u, v), wI(u, v), wF(u, v)
considered to have T, I, and F respectively membership value, of that
directed edge (u, v). In addition, if wT(u, v) = wI(u, v) = wF(u, v) =
0,then (u, v) is considered to be a null directed edge.

Remark : It obeys that: V×V→[0,1].

3.  Concepts related to Generalized Interval Valued Neutrosophic
Graph of First Type

In the modelling of real life scenarios with neutrosophic system (i.e. 
neutrosophic sets, neutrosophic graphs, etc), the truth-membership value, 
indeterminate-membership value, and false-membership value are often 
taken to mean the ratio out of a population who find reasons to “agree”, “be 
neutral” and “disagree”. It can also by any 3 analogous descriptions, such 
as “seek excitement” “loft around” and “relax”. However, there are real 
life situations where even such ratio out of the population are subject to 
conditions. One typical example will be having the highest and the lowest 
value. For example “It is expected that 20% to 30% of the population of 
country X will disagree with the Prime Minister’s decision”.

To model such an event, therefore, we generalize Definition 2.3 so 
that the truth-membership value, indeterminate-membership value, and 
false-membership value can be any closed subinterval of [0,1], instead of a 
single number from [0,1].Such generalization is further derived from [46], 
which is a conference paper that we have just published on this topic.

Note: For all the other parts of this work, we will define:
D1 = {[x, y]: 0 ≤ x ≤ y ≤ 1} 
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Definition 3.1 [46]. Let the statements below holds good:
a)  V is considered as a non-empty set.
b)  ρT, ρ I, ρF are three functions, eachfrom V to D1.
c)  E  = {(ρT(u), ρT(v)) | u, v ŒV},

 F  = {(ρ I(u), ρ I(v)) | u, v ŒV},
 G = {(ρF(u), ρF(v)) | u, v ŒV}.

d)  a : E Æ D1 , b : F Æ D1, d : G Æ D1 are three functions.
e)  ρ  = ( ρT, ρ I, ρF) ; and

 ω  = ( ω T, ω I, ω F) with
 ω T(u, v) = a ((ρT(x), ρT(v))),
 ω I (u, v) = a ((ρ I(x), ρ I(v))),,
ω F(u, v) = a ((ρF(x), ρF(v))),,
for every u, v ŒV.

Then:
i)  The structure x = <V, ρ , ω>is said to be a generalized interval-valued

neutrosophic graph of type 1 (GIVNG1) .
ii)  For each ŒV , x is termed to be a vertex of x. The spanned set V is

named the vertex set of x.
iii)  ∀ u, v ŒV, (u, v) is termed to be a directed edge of x In particular, (u, v)

is said to be a loop of x .
iv)  ∀ vertex : ρT(v), ρ I(v), ρF(v) are said to be the truth-membership

value, indeterminate-membership value, and false-membership value,
respectively, of that vertex v. Moreover, if ρT(v) = ρ I(v) = ρF(v) = [0,0],
then v is deemed as void vertex.

v)  Similarly, for each edge (u, v) : ω T(u, v), ω I(u, v), ω F(u, v) are said to
be the T, I, and F membership value respectively of that directed edge
(u, v). Moreover, if ω T(u, v) = ω I(u, v) = ω F(u, v) = [0,0],then (u, v) is
said to be a void directed edge.

Remark : It follows that : V × V Æ D1.
Note that every vertex v in a GIVNG1 have a single, undirected 

loop, whether void or not. Also each of the distinct vertices u, v in a 
GIVNG1possses two directed edges, resulting from (u, v) and (v, u), 
whether void or not. 
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We study that in classical graph theory, we handle ordinary (or 
undirected) graphs, and also some simple graphs. Further we relate our 
GIVNG1 with it, we now give the below definition.

Definition 3.2. [46] Given x = <V, ρ , ω> be a GIVNG1.
a)  If ( , ) ( , ), ( , ) , and ( , )) ,( ( , )T T I I F Fa b b a a b b a a b b aω ω ω ω ω ω= = =      then

 {a, b} = {(a, b), (b, a)} is said to be an (ordinary) edge of x. Moreover, {a, b} 
is said to be a void (ordinary) edge if both (a, b) and (b, a) are void.

b)  If ( , ) ( , ), ( , ) ( , ) and ( , ) ( , )T T I I F Fu v v u u v v u u v v uω ω ω ω ω ω= = =       holds 
good for all v ŒV, then x is considered to be ordinary (or undirected), 
else it is considered to be directed. 

c)  When all the loops of x are becoming void, then x is considered to be
simple.

In the following section, we discuss a real life scenario, for which
GSVNG1 is insufficient to model it - it can only be done by using GIVNG1. 

Example 3.3. Part 3.3.1 The scenario

Country X has 4 cities {a, b, c, d}. The cities are connected with each 
other by some roads, there are villages along the four roads (all of them are 
two way) {a, b}, {c, b}, {a, c} and {d, b}. As for the other roads, such as {c, b}, 
they are either non-exitsant, or there are no population living along them 
(e.g. industrial area, national park, or simply forest).The legal driving age 
of Country X is 18.The prime minister of Country X would like to suggest 
an amendment of the legal driving age from 18 to 16. Before conducting a 
countrywide survey involving all the citizens, the prime minister discuss 
with all members of the parliament about the expected outcomes.

The culture and living standard of all the cities and villages differ 
from one another. In particular:

The public transport in c is so developed that few will have to drive. 
The people are rich enough to buy even air tickets. People in d tend to be 
more open minded in culture. Moreover, sports car exhibitions and shows 
are commonly held there. A fatal road accident just happened along 
{c,b}, claiming the lives of five unlicensed teenagers racing at 200km/h. 
{a, c} is governed by an opposition leader who is notorious for being very 
uncooperative in all parliament affairs.

Eventually the parliament meeting was concluded with the following 
predictions:
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Expected percentage of citizens that will -
support be neutral Against

at least at most at least at most at least at most

C
ities

a 0.1 0.4 0.2 0.6 0.3 0.7
b 0.3 0.5 0.2 0.5 0.2 0.5
c 0.1 0.2 0.0 0.3 0.1 0.2
d 0.5 0.7 0.2 0.4 0.1 0.2

V
illages 

along the 
roads

{a,b} 0.2 0.3 0.1 0.4 0.4 0.7
{c,b} 0.1 0.2 0.1 0.2 0.5 0.8
{a,c} 0.1 0.7 0.1 0.8 0.1 0.7
{d,b} 0.2 0.3 0.3 0.6 0.2 0.5

Without loss of generality: It is either {c, d} does not exist, or there are 
no people living there, so all the six values – support (least, most), neutral 
(least, most), against(least, most), are all zero.

Part 3.3.2 Representing with GIVNG1

When we start from step a to e in def. 3.1 , to illustrate the schema with 
a special GIVNG1
a)  TakeV0 = {a, b, c, d}
b)  In line with the scenario, present the three functions

 ρT, ρ I, ρF, as illustrated in the following table.
a b c d

 ρ T [0.1,0.4] [0.3,0.5] [0.1,0.2] [0.5,0.7]
 ρ I [0.2,0.6] [0.2,0.5] [0.0,0.3] [0.2,0.4]
 ρ F [0.3,0.7] [0.2,0.5] [0.1,0.2] [0.1,0.2]

c)  By statement c) from Definition 3.1: Let
 E0 = {(ρT(u), ρT(v)) | u, v Œ{a, b, c, d}}
 F0 = {(ρ I(u), ρ I(v))|u, v Œ{a, b, c, d}}
 G0 = {(ρF(u), ρF(v))|u, v Œ{a, b, c, d}}

d)  In accordance with the scenario, define
 a : E0 Æ D1, b : F0 Æ D1, d : G0 Æ D1,
 as illustrated in the following tables.
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  a ((ρT(u), ρT(v))) :
v
u

a b c d

a 0 [0.2,0.3] [0.1,0.7] 0
b [0.2,0.3] 0 [0.1,0.2] [0.2,0.3]
c [0.1,0.7] [0.1,0.2] 0 0
d 0 [0.2,0.3] 0 0

a ((ρ I(u), ρ I(v))) :
v
u

a b c d

a 0 [0.1,0.4] [0.1,0.8] 0
b [0.1,0.4] 0 [0.1,0.2] [0.3,0.6]
c [0.1,0.8] [0.1,0.2] 0 0
d 0 [0.3,0.6] 0 0

a ((ρF(u), ρF(v))) :
v
u

a b c d

a 0 [0.4,0.7] [0.1,0.7] 0
b [0.4,0.7] 0 [0.5,0.8] [0.2,0.5]
c [0.1,0.7] [0.5,0.8] 0 0
d 0 [0.2,0.5] 0 0

Figure 1
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e)  By statement e) from Definition 3.1, let
ρ 0 = (ρT, ρ I, ρF) ; and
ω 0=(ω T, ω I, ω F) with
ω T(u, v) = a ((ρT(u), ρT(v))),
ω T(u, v) = b ((ρ I(u), ρ I(v))),
ω T(u, v) = d ((ρF(u), ρF(v))),

for all u, v ŒV0 . We now have formed <V0, ρ 0, ω 0> , which is a GIVNG1.
The way of showing the concepts of <V0, ρ 0, ω 0> is by exerting a 

diagram that is similar with graphs as in classical graph theory, as given 
in the figure 1 below

That is to say, only the non-void edges (whether directed or ordinary) 
and vertices been drawn in the picture shown above.

Also, understanding the fact that, in classical graph theory GT, a 
graph isdenoted by adjacency matrix, for which the entries are either a 
positive integer (connected) or 0 (which is not connected).

This motivates us to present a GIVNG1, by a matrix as well. However, 
instead of a single value which defines the value that is either 0 or 1, there 
are three values to handle: ω T, ω I, ω F, with each of them being elements of 
D1. Moreover, each of the vertices themselves also contains ρT, ρ I, ρF, which 
should be taken into account as well.

4. Illustration of GIVNG1by virtue adjacency matrix

Section 4.1 Algorithms representing GIVNG1
In light of two ways that are similar to other counterparts, the focal 

point of interest in the following part is to express the notion of GIVNG1.
Suppose x = <V, ρ , ω> is a GIVNG1 where V={v1, v2,…, vn} denotes the 

vertex set (i.e. GIVNG1 has finite vertices). Remember that GIVNG1has 
its edge membership values (T,I,F) depending on the membership values 
(T,I,F) of adjacent vertices, in accordance with the functions a, b, d. 

Furthermore:
ω T(u, v) = a ((ρT(u), ρT(v))) for all v ŒV, where
a : E Æ D1, and E = {(ρT(u), ρT(v)) |u, v ŒV}, 
ω I(u, v) = b ((ρ I(u), ρ I(v))) for all u, v ŒV, where
b : F Æ D1, and F = {(ρ I(u), ρ I(v)) |u, v ŒV}, 
ω F(u, v) = d ((ρF(u), ρF(v))) for all u, v ŒV, where
d : G Æ D1, and G = {(ρF(u), ρF(v)) |u, v ŒV}. 
First we will form an n × n matrix as presented
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a a a
a a a

S a

a a a

For each i, j,
,  ( ( , ), ( , ), ( , ))i j T i j I i j F i jv v v v v vω ω ω=   a  

That is to say, for an element of the matrix S, different from taking 
numbers 0 or 1 according to classical literatures, we usually take the 
element as an ordered set involving 3 closed subintervals of [0,1].

Remark : Due to the fact that x could only have undirected loops, the 
dominating diagonal elements of S is not multiplied by 2, which is shown 
as adjacency matrices from classical literatures. It is noted that 0 represents 
void, 1 for directed ones and 2 for undirected ones.

At the same time, considering ρT, ρ I, ρF is included in x, which also 
deserves to be considered.

Therefore another matrix R is given in the following part.

1

2
,1

,i n

n

 
 
  = =   
  
 







 



r
r

R R

r

Where

( )
( ( ) ( ) ( ))

( ) ( ) [
 , ,

[ , ( ) (], , ,[ , ]  .)] ( ) ( )
i T i I i F i

L U L U L U
T i T i I i I i F i F i

v v v
v v v v v v

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

=

= ∀

   r

In order to complete the task of describing the whole x in our way, the 
matrix R is augmented with S. Then [ R| S] is represented as an adjacency 
matrix of GIVNG, which is presented below.

1 1,1 1,2 1,

2 2,1 2,2 2,

,1 ,2 ,

[ | ] ,

n

n

n n n n n

 
 
 
 =  
 
 
 
 





   

   

  









r a a a
r a a a

R S
r a a a

where ,  ( ( , ), ( , ), ( , )),i j T i j I i j F i jv v v v v vω ω ω=   a

and [ ] ( ( ), ( ) ,[ ( ), ( )],[ ( ), ( )]), and .L U L U L U
i T i T i I i I i F i F iv v v v v v i jρ ρ ρ ρ ρ ρ= ∀r
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It is worth noticing [ R| S] is not a square matrix (n × (n + 1)matrix), 
thus this kind of representation will aid us to save another divided ordered 
set to denote the values of vertices as ρT, ρ I, ρF.

For both edges and vertices, it is imperative to separately handle each 
of three kinds of membership values in several situations. Consequently, 
by means of three n× (n+1) matrices, we aim to give a brand-new way for 
expressing the whole x, denoted as [ R| S]T, [ R| S]I and [ R| S]F,each of them 
is resulted from [ R| S] through taking a single kind of membership values 
from the corresponding elements.

1 1 1 1 2 1

2 2 1 2 2 2

1 2

( ) ( , ) ( , ) ( , )
( ) ( , ) ( , ) ( , )

[ | ] [ | ] ,

( ) ( , ) ( , ) ( , )

T T T T n

T T T T n
T T T

T n T n T n T n n

v v v v v v v
v v v v v v v

v v v v v v v

ρ ω ω ω
ρ ω ω ω

ρ ω ω ω

 
 
 = =  
  
 

   

   

  



 


 



 

R S R S
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ρ ω ω ω
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[ | ] [ | ] .

( ) ( , ) ( , ) ( , )
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F F F F n
F F F
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v v v v v v v
v v v v v v v

v v v v v v v
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ρ ω ω ω

ρ ω ω ω

 
 
 = =  
  
 

   

   

  



 


 



 

R S R S

 [ R| S]T, [ R| S]I and [ R| S]F should be stated respectively with the 
true adjacency matrix, the indeterminate adjacency matrix, and false adjacency 
matrix of x .

Remark 1 : If [ R| S]I = [ R| S]F = [[0, 0]]n, n+1 , RT = [[1, 1]]n,1, all the entries of  
ST are either [1, 1] or [0, 0] , then x is reduced to a graph in classical literature. 
Moreover, if that ST is symmetric and the main diagonal elements are being 
0, we have x is further condensed to a simple ordinary graph in literature.

Remark 2 : If [ R| S]I = [ R| S]F = [[0, 0]]n, n+1, and all the entries of [ R| S]T = 
[[ai,j, ai,j]]n, n+1, then x is reduced to a generalized fuzzy graph type 1 (GFG1).

Remark 3 : If [ R| S]T = [[ai,j, ai,j]]n, n+1, [ R| S]T = [[bi,j, bi,j]]n, n+1, [ R| S]T = [[ci,j, ci,j]]
n, n+1, then x is thus reduced to GSVNG1.
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Section 4.2 : Case study to illustrate our example in this paper
For our example in the set-up by the last way i.e. with three matrices: 

[ R| S]T, [ R| S]I and [ R| S]F :

[0.1,0.4] [0,0] [0.2,0.3] [0.1,0.7] [0,0]
[0.3,0.5] [0.2,0.3] [0,0] [0.1,0.2] [0.2,0.3]

[ | ]
0.1,0.2 [0.1,0.7] [0.1,0.2] [0,0] [0,0]

[0.1,0.7] [0,0] [0.2,0.3] [0,0] [0,0]
[0.2,0.6] [0,0] [0.1,0.4] [

[ |

[ ]

]

T

I

R S

R S

 
 
 =  
  
 

=

0.1,0.8] [0,0]
[0.2,0.5] [0.1,0.4] [0,0] [0.1,0.2] [0.3,0.6]
[0.0,0.3] [0.1,0.8] [0.1,0.2] [0,0] [0,0]
0.2,0.4 [0,0] [0.3,0.6] [0,0] [0,0]

[0.3,0.7] [0,0] [0.4,0.7] [0.1,0.7] [
[

0,0]
[0.2,0.5] [0.4,0.7]

[ |

]

]FR S

 
 
 
 
  
 

=
[0,0] [0.5,0.8] [0.2,0.5]

[0.1,0.2] [0.1,0.7] [0.5,0.8] [0,0] [0,0]
[0.1,0.2] [0,0] [0.2,0.5] [0,0] [0,0]

 
 
 
 
  
 

 

5. Postulated results on ordinary GIVNG1

We now illustrate some theoretical results that are derived from the
definition of ordinary GIVNG1, as well as its indication with adjacency 
matrix. Since we focus on the basic GIVNG1, all the edges which we will 
be referring to are termed as ordinary edges.

Definition 5.1 The addition operation + is defined on D1 as follows: [x , y] 
+ [z , t] = [ x + y , z + t] for all x, y, z, t Œ[0,1].

Definition 5.2 Let x = <V, ρ , ω> be an ordinary GIVNG1. Let V = {v1, v2,…, 
vn} to be the vertex set of x. Then, ∀ i, the degree of vi , symbolised as D (vi), 
is well-defined to be the ordered set

( ( ), ( ), ( )),T i I i F iD v D v D v  

for which, D T(vi) represents the degree of vi and 

1 1

1 1

1 1

) ( ) ( , ) ( , ), ( , ) ( , )

) ( ) ( , ) ( , ), ( , ) ( , )

) ( ) ( , ) ( , ), ( , ) 

n n
L L U U

T i T i r T i i T i r T i i
r r

n n
L L U U

I i I i r I i i I i r I i i
r r

n n
L L U U

F i F i r F i i F i r F
r r

a D v v v v v v v v v

b D v v v v v v v v v

c D v v v v v v v

ω ω ω ω

ω ω ω ω

ω ω ω ω

= =

= =

= =

 
= + + 

 
 

= + + 
 

= + +

∑ ∑

∑ ∑

∑ ∑





 ( , )i iv v
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Remark 1 : In resemblance to classical graph theory, each undirected loop 
has both its ends connected to the similar vertex and so is counted twice.

Remark 2 : Every value of D T(vi), D I(vi) and D F(vi) are elements of D1 instead 
of a single number.

Definition 5.3 : Given x = <V, ρ , ω> and V = {v1, v2,…, vn} are respectively 
an ordinary GIVNG1 and the vertex set of x . Then, the quantity of edges in 
x, represented as Ex and we describe the ordered set (ET, E I, EF) for which

{ , } {1,2, , } { , } {1,2, , }

{ , } {1,2, , } { , } {1,2, , }

{ , } {1,2, , } { , } {1,2, , }

) ( , ) , ( , )

) ( , ) , ( , )

) ( , ) , ( , )

L U
Ti T r s T r s

r s n r s n

L U
I I r s I r s

r s n r s n

L U
F F r s F r s

r s n r s n

a E v v v v

b E v v v v

c E v v v v

ω ω

ω ω

ω ω

⊆ … ⊆ …

⊆ … ⊆ …

⊆ … ⊆ …

 
=  

  
 

=  
  


= 


∑ ∑

∑ ∑

∑ ∑










 

Remark 1: We count each edge only once in classical graph theory, as 
given by { , } {1,2, , }.r s n⊆ …

For instance, if ( , )T a bv vω  is added, we will not add ω T (vb, va) again 
since {a,  b} = {b, a} .

Remark 2 : Each values of ET, E I and EF are elements of D1 instead of a 
single number, and need not be 0 or 1 as in classical graph literature. 
Consequently, it is called “amount” of edges, instead of the “number” of 
edges as in the classical reference.

 ET, E I, EF are closed subintervals of [0,1], and D T(vi), D I(vi), D F(vi) are 
also closed subintervals of [0,1] for each vertex vi. These give rise to the 
following lemmas

Lemma 5.4 : Let x = <V, ρ , ω> be an ordinary GIVNG1. Let V = {v1, v2,…, vn} 
to be the vertex set of x . Denote

,( , ) ,( , )

,( , ) ,( , )

,( , ) ,( , )

) ( , ) [ , ]
) ( , ) [ , ]
) ( , ) [ , ], ,

T i j T i j T i j

I i j I i j I i j

F i j F i j F i j

a v v
b v v
c v v i j

ω φ ψ

ω φ ψ

ω φ ψ

=

=

= ∀
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For each i we have:
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,( , ) ,( , ) ,( , ), ,
1 1
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Furthermore:
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Proof : We can proof it directly by applying Def.5.1, Def. 5.2 and Def. 5.3.  
In the following two theorems, we introduce two theorems which both as 
a modified version of the well-known theorem in classical graph theory.

“We know that the sum of the degree of invariably its vertices is twice 
the number of its edges for any classical graph.”

Theorem 5.5 : Let x = <V, ρ , ω> bean ordinary GIVNG1. Then

1

( )  2
n

r
r

D v Eξ
=

=∑  

Proof : As ( ) ( ( ), ( ), ( ))i T i I i F iD v D v D v D v=     for all i , and ,( ), .T I FE E E Eξ =     It 
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 Since {r, s} = {s, r} for all s and r ,

{ , } {1,2, , } 1

{ , } {1,2, , } 1
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T n
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This finishes the proof. 

Florentin Smarandache (author and editor) Collected Papers, VIII

672



6. Conclusion

The idea of GSVNG1 was extended to introduce the concept of
generalized interval-valued neutrosophic graph of type 1(GIVNG1). The 
matrix representation of GIVNG1 was also introduced. The future direction 
of this research includes the study of completeness, regularity of GIVNG1, 
and also denote the notion of generalized interval-valued neutrosophic 
graphs of type 2.As GIVNG1 (in this paper) and CNG1 (from [47]) are 
both extensions of the existing concepts of CFG1 and GSVNG1, but in 
two entirely different directions, the future direction of this research also 
includes further extensions from GIVNG1 and CNG1, that incorporates 
both the inter-valued entries (as in GIVNG1) and complexity of numbers 
(as in CNG1), and the study of scenarios that necessitate such extensions 
[48-52].
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ABSTRACT. This manuscript is devoted to study a new concept of intuitionistic bipolar 
neutrosophic set with the operations like union, intersection and complement. Also, an application to 
intuitionistic bipolar neutrosophic graph with examples are developed. Fur-
ther, we presented the Cartesian product, cross product, lexicographic product and strong
product with suitable examples.

1. INTRODUCTION

The neutrosophic set has three independent parts, namely truth-membership degree, 
indeterminacy-membership degree and falsity-membership degree provided the sum of 
these values lies between 0 and 3; therefore, it is applied to many different areas, such as 
algebra [21, 22] and decision-making problems (see [26] and references therein). Au-thor 
Smarandache [25] remarks the difference between neutrosophic set and logic, and 
intuitionistic fuzzy set and logic. Interval neutrosophic sets with applications in BCK/BCI-
algebra and KU-algebras are developed in [1, 2, 18, 22, 24]. Single valued neutrosophic 
graphs with their degree, order and size are established in [12, 13]. Intuitionistic fuzzy set 
is initiated by Atanassov as a significant generalization of fuzzy set. Intuitionistic fuzzy 
sets are very useful while representing a problem by a linguistic variable, given in terms of 
a membership function only, seems too complicated. Recently intuitionistic fuzzy sets 
have been applied to many fields such as logic programming, medical diagnosis, decision 
mak-ing problems etc. On the other hand, bipolar fuzzy sets are extension of fuzzy sets 
whose membership degree ranges from [−1, 1]. The membership degree (0, 1] represents 
that an object satisfies a certain property whereas the membership degree [−1, 0) 
represents that the element satisfies the implicit counter-property. The positive information 
indicates that the consideration to be possible and negative information indicates that the 
consideration is granted to be impossible. Application to decision making of bipolar 
neutrosophic sets and bipolar neutrosophic graph structures are studied in [3, 4], 
respectively. Neutrosophic bipolar vague sets and its application to graph theory are 
analysed in [19, 20]. Similarity

Intuitionistic Bipolar Neutrosophic Set and Its Application 

to Intuitionistic Bipolar Neutrosophic Graphs 
S. Satham Hussain, Said Broumi, Young Bae Jun, Durga Nagarajan

S. Satham Hussain, Said Broumi, Young Bae Jun, Durga Nagarajan (2019). Intuitionistic Bipolar
Neutrosophic Set and Its Application to Intuitionistic Bipolar Neutrosophic Graphs. Annals of
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measures of bipolar neutrosophic sets and its application to decision making are estab-
lished in [26]. In [10, 15], intuitionistic neutrosophic sets and its relations are discussed.
Furthermore, intuitionistic neutrosophic graph structures are extensively studied in [6, 7].
Motivated by these works, we established intuitionistic bipolar neutrosophic set and its
application to intuitionistic bipolar neutrosophic graphs.

The major contribution of this work as follows:

• Newly introduced intuitionistic bipolar neutrosophic set with the operations like
union, intersection and complement.
• Its application to Intuitionistic Bipolar Neutrosophic Graph (IBNG) with exam-

ple are developed. Also neutrosophic bipolar vague subgraph, induced subgraph,
strong and complete IBNG are established.
• Further we presented the Cartesian product, cross product, lexicographic product

and strong product with suitable examples. The obtained results give the general-
ization of above mentioned works.

2. PRELIMINARIES

Definition 2.1. [12] Let X be a space of points (objects), with a generic element in X
denoted by x. A Single Valued Neutrosophic Set (SVNS) A in X is characterized by
truth-membership function TA(x), indeterminacy-membership function IA(x) and falsity-
membership-function FA(x). For each point x in X , TA(x), FA(x), IA(x) ∈ [0, 1],

A = {〈x, TA(x), FA(x), IA(x)〉, x ∈ X} and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.2. [13] A neutrosophic graph is defined as a pair G∗ = (V,E) where (i)
V = {v1, v2, .., vn} such that T1 : V → [0, 1], I1 : V → [0, 1] and F1 : V → [0, 1] denote
the degree of truth-membership function, indeterminacy function and falsity-membership
function, respectively and

0 ≤ TA(u) + IA(u) + FA(u) ≤ 3, for u ∈ V.

(ii) E ⊆ V × V where T2 : E → [0, 1], I2 : E → [0, 1] and F2 : E → [0, 1] are such that

T2(uv) ≤ min{T1(u), T1(v)}, I2(uv) ≤ min{I1(u), I1(v)},
F2(uv) ≤ max{F1(u), F1(v)} and 0 ≤ T2(uv) + I2(uv) + F2(uv) ≤ 3, ∀uv ∈ E.

Definition 2.3. [16] A bipolar neutrosophic set A in X is defined as an object of the form

A = {〈x, TP (x), IP (x), FP (x), TN (x), IN (x), FN (x)〉, x ∈ X},
where TP , IP , FP : X → [0, 1] and TN , IN , FN : X → [−1, 0]. The Positive member-
ship degree TP (x), IP (x), FP (x) denote the truth membership, indeterminate member-
ship and false membership of an element x ∈ X corresponding to a bipolar neutrosophic
set A and the negative membership degree TN (x), IN (x), FN (x) denotes the truth mem-
bership, indeterminate membership and false membership of an element x ∈ X to some
implicit counter-property corresponding to a bipolar neutrosophic set A.

Definition 2.4. [16] Let X be a non-empty set. Then we call

A = {〈x, TP (x), IP (x), FP (x), TN (x), IN (x), FN (x)〉, x ∈ X}
a bipolar single valued neutrosophic relation on X such that TP

A (x, y) ∈ [0, 1], IPA (x, y) ∈
[0, 1], FP

A (x, y) ∈ [0, 1] and TN
A (x, y) ∈ [−1, 0], INA (x, y) ∈ [−1, 0], FN

A (x, y) ∈ [−1, 0].

Definition 2.5. [3, 4] Let A = (TP
A , IPA , FP

A , TN
A , INA , FN

A ) and B = (TP
B , IPB , FP

B , TN
B , INB , FN

B )
be bipolar single valued neutrosophic set on X . If B = (TP

B , IPB , FP
B , TN

B , INB , FN
B ) is a
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bipolar single valued neutrosophic relation on A = (TP
A , IPA , FP

A , TN
A , INA , FN

A ) then

TP
B (xy) ≤ min(TP

A (x), TP
A (y)), TN

B (xy) ≥ max(TN
A (x), TN

A (y)),

IPB (xy) ≥ max(IPA (x), IPA (y)), INB (xy) ≤ min(INA (x), INA (y)),

FP
B (xy) ≥ max(FP

A (x), FP
A (y)), FN

B (xy) ≤ min(FN
A (x), FN

A (y)).

A bipolar single valued neutrosophic relation B on X is called symmetric if TP
B (xy) =

TP
B (yx), IPB (xy) = IPB (yx), FP

B (xy) = FP
B (yx) and TN

B (xy) = TN
B (yx), INB (xy) =

INB (yx), FN
B (xy) = FN

B (yx) for all xy ∈ X.

Definition 2.6. [3, 4] A bipolar single-valued neutrosophic graph on a nonempty set X is
a pair G = (C,D), where C is a bipolar single-valued neutrosophic set on X and D is a
bipolar single-valued neutrosophic relation in X such that

(i) TP
D (xy) ≤ min(TP

C (x), TP
C (y)), IPD(xy) ≤ min(IPC (x), IPC (y)),

FP
D (xy) ≤ max(FP

C (x), FP
C (y)),

(ii) TN
D (xy) ≥ max(TN

C (x), TP
C (y)), IND (xy) ≥ max(INC (x), IPC (y)),

FN
D (xy) ≥ min(FN

C (x), FP
C (y)),

for all x, y ∈ X.

Definition 2.7. [10, 15] An element x of X is called significant with respect to neutro-
sophic set A of X if the degree of truth-membership or indeterminacy-membership or
falsity membership value, i.e TA(x) or IA(x) or FA(x) ≥ 0.5. Otherwise, we call it in-
significant. Also, for neutrosophic set the truth-membership, indeterminacy-membership
and falsity- membership all can not be significant.
we define an intuitionistic neutrosophic set by A = 〈x, TA(x), IA(x), FA(x)〉, where
min{TA(x), FA(x)} ≤ 0.5,min{TA(x), IA(x)} ≤ 0.5, & min{IA(x), FA(x)} ≤ 0.5,
for all x ∈ X with the condition 0 ≤ {TA(x) + IA(x) + FA(x)} ≤ 2

Definition 2.8. [10, 15] A INS Relation (INSR) is defined as a intuitionistic subset of
X × Y , having the form

R = {< (x, y), TR(x, y), IR(x, y), FR(x, y) >: x ∈ X, y ∈ Y }
where,

TR : X × Y → [0, 1], IR : X × Y → [0, 1], FR : X × Y → [0, 1]

satisfies the conditions
(i) at least one of this TR(x, y), IR(x, y) and FR(x, y) is ≥ 0.5 and
(ii) 0 ≤ {TA(x)+ IA(x)+FA(x)} ≤ 2. The colllection of all INSR on X ×Y is denoted
as GR(X × Y.)

Definition 2.9. [6, 7] An intuitionistic neutrosophic graph is a pair G = (A,B) with un-
derlying set V , where TA, FA, IA : V → [0, 1] denote the truth, falsity and indeterminacy
membership values of the vertices in V and TB , FB , IB : E ⊆ V × V → [0, 1] denote the
truth, falsity and indeterminacy membership values of the edges kl ∈ E such that

(i)TB(kl) ≤ TA(k) ∧ TA(l), IB(kl) ≤ IA(k) ∧ IA(l), FB(kl) ≥ FA(k) ∧ FA(l)

(ii)TB(kl) ∧ IB(kl) ≤ 0.5, TB(kl) ∧ FB(kl) ≤ 0.5, IB(kl) ∧ FB(kl) ≤ 0.5,

(iii)0 ≤ TB(kl) + IB(kl) + FB(kl) ≤ 2 ∀k, l ∈ V.
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3. INTUITIONISTIC BIPOLAR NEUTROSOPHIC SET

Definition 3.1. An element x of X is called significant with respect to neutrosophic set
A of X if the degree of truth-membership or indeterminacy-membership or falsity mem-
bership value, i.e TA(x) or IA(x) or FA(x) ≥ 0.5. Otherwise, we call it insignificant.
Also, for neutrosophic set the truth-membership, indeterminacy-membership and falsity-
membership all can not be significant. we define an intuitionistic bipolar neutrosophic set
by

A = 〈x, TP
A (x), IPA (x), FP

A (x), TN
A (x), INA (x), FN

A (x)〉
where

min{TP
A , FP

A } ≤ 0.5,max{TN
A , FN

A } ≥ −0.5,min{TP
A , IPA} ≤ 0.5,

max{TN
A , INA } ≥ −0.5,min{FP

A , IPA} ≤ 0.5,max{FN
A , INA } ≥ −0.5

TP
A : X → [0, 1], TN

A : X → [−1, 0], IPA : X → [0, 1],
INA : X → [−1, 0], FP

A : X → [0, 1], FN
A : X → [−1, 0], with the conditions

0 ≤ TP
A (x) + IPA (x) + FP

A (x) ≤ 2,−2 ≥ TP
A (x) + IPA (x) + FP

A (x) ≥ 0.

Definition 3.2. A IBNS relation (IBNSR) is defined as a intuitionistic bipolar subset of
X × Y , having the form

R = {< (x, y), TP
R (x, y), IPR (x, y), FP

R (x, y), TN
R (x, y), INR (x, y), FN

R (x, y) >: x ∈ X, y ∈ Y }
where,

TP
R : X × Y → [0, 1], IPR : X × Y → [0, 1], FP

R : X × Y → [0, 1]

TN
R : X × Y → [−1, 0], INR : X × Y → [−1, 0], FN

R : X × Y → [−1, 0]
satisfy the conditions (i) at least one of this TP

R (x, y), IPR (x, y) and FP
R (x, y) is ≥ 0.5 at

least one of this TN
R (x, y), INR (x, y) and FN

R (x, y) is ≤ −0.5 and
(ii) 0 ≤ TP

A (x) + IPA (x) + FP
A (x) ≤ 2, −2 ≥ TP

A (x) + IPA (x) + FP
A (x) ≥ 0.

Definition 3.3. Let A1 =< x, TP
A1

(x), IPA1
(x), FP

A1
(x), TN

A1
(x), INA1

(x), FN
A1

(x) > and
A2 =< x, TP

A2
(x), IPA2

(x), FP
A2

(x), TN
A2

(x), INA2
(x), FN

A2
(x) > be two IBNSs. then A1 ⊂

A2 if any only if

TP
A1

(x) ≤ TP
A2

(x), TN
A1

(x) ≥ TN
A2

(x).

IPA1
(x) ≤ IPA2

(x), INA1
(x) ≥ INA2

(x).

FP
A1

(x) ≥ FP
A2

(x), FN
A1

(x) ≤ FN
A2

(x).∀x ∈ X.

Definition 3.4. The union of two IBNSs A and B is also IBNS, whose truth membership,
intermediate membership and false membership functions are,

TP
(A∪B)(x) = max{TP

A (x), TP
B (x)}

IP(A∪B)(x) = min{IPA (x), IPB (x)}

FP
(A∪B)(x) = min{FP

A (x), FP
B (x)},

and

TN
(A∪B)(x) = min{TN

A (x), TN
B (x)}

TN
(A∪B)(x) = max{TN

A (x), TN
B (x)}

TN
(A∪B)(x) = max{TN

A (x), TN
B (x)},

for all x ∈ X.
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Example 3.5. Let A = {((x1, 0.7, 0.3, 0.4)
P (−0.6,−0.4,−0.3)N ), ((x2, 0.5, 0.5, 0.8)

P

(−0.6,−0.5,−0.4)N )} and B = {((x1, 0.4, 0.7, 0.4)
P (−0.4,−0.7,−0.3)N ), ((x2, 0.4, 0.3, 0.9)

P

(−0.5,−0.6,−0.2)N )} be two IBNSs of X . Then by definition of union we get,

A∪B = {((x1, 0.7, 0.3, 0.3)
P (−0.6,−0.7,−0.3)N ), ((x2, 0.5, 0.3, 0.8)

P (−0.6,−0.5,−0.2)N )}

Definition 3.6. The intersection of two IBNSs A and B is also IBNS, whose truth-membership,
indeterminacy-membership and falsity-membership functions are,

TP
(A∩B)(x) = min{TP

A (x), TP
B (x)}

IP(A∩B)(x) = max{IPA (x), IPB (x)}

FP
(A∩B)(x) = max{FP

A (x), FP
B (x)},

and

TN
(A∩B)(x) = max{TN

A (x), TN
B (x)}

TN
(A∩B)(x) = min{TN

A (x), TN
B (x)}

TN
(A∩B)(x) = min{TN

A (x), TN
B (x)},

for all x ∈ X.

Example 3.7. For above example, then by definition of intersection, we obtain

A∩B = {((x1, 0.4, 0.3, 0.4)
P (−0.4,−0.4,−0.3)N ), ((x2, 0.4, 0.3, 0.9)

P (−0.5,−0.5,−0.4)N )}

Definition 3.8. The complement of IBNSs
A =< x, TP

A (x), IPA (x), FP
A (x), TN

A (x), INA (x), FN
A (x) > for all x ∈ X, is defined as

(TP (x))C = FP (x), (IP (x))C = 1− IP (x), (FP (x))C = TP (x),

and

(TN (x))C = FN (x), (IN (x))C = −1− IN (x), (FN (x))C = TN (x),

for all x ∈ X.

4. INTUITIONISTIC BIPOLAR NEUTROSOPHIC GRAPHS

Definition 4.1. An Intuitionistic Bipolar Neutrosophic Graph (IBNG) is defined as a pair
G = (R,S), R = (AP , AN ) and S = (BP , BN ) where

(i) R = {r1, r2, ..., rn} such that, TP
A : R → [0, 1], IPA : R → [0, 1], FP

A : R →
[0, 1], TN

A : R → [−1, 0], INA : R → [−1, 0], and FN
A : R → [−1, 0] denote the

degree of truth-membership, indeterminacy-membership and falsity-membership
functions, respectively,

(ii) S ⊆ R × R where TP
B : R × R → [0, 1], IPB : R × R → [0, 1], FP

B : R × R →
[0, 1], TN

B : R×R→ [−1, 0], INB : R×R→ [−1, 0], and FN
B : R×R→ [−1, 0]

(iii) TP
B (rs) ≤ min(TP

A (r), TP
A (s)), IPB (rs) ≤ min(IPA (r), IPA (s)),

FP
B (rs) ≤ max(FP

A (r), FP
A (s)),

(iv) TP
B (rs) ∧ IPB (rs) ≤ 0.5, TP

B (rs) ∧ FP
B (rs) ≤ 0.5, IPB (rs) ∧ FP

B (rs) ≤ 0.5.
(v) 0 ≤ TP

B (rs) + IPB (rs) + FP
B (rs) ≤ 2.

(vi) TN
B (rs) ≥ max(TN

A (r), TN
A (s)), INB (rs) ≥ max(INA (r), INA (s)),

FN
B (rs) ≥ min(FN

A (r), FN
A (s)),

(vii) TN
B (rs)∨INB (rs) ≥ −0.5, TN

B (rs)∨FN
B (rs) ≥ −0.5, INB (rs)∨FN

B (rs) ≥ −0.5
(viii) 0 ≥ TN

B (rs) + INB (rs) + FN
B (rs) ≥ −2.
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Example 4.2. Consider a IBNGs such that A = {a, b, c, d}, B = {ab, bc, cd} by routine 

condition we have,

Figure 1: INTUITIONISTIC BIPOLAR NEUTROSOPHIC GRAPH

Definition 4.3. [3] A graph G
′
= (R

′
, S

′
) is said to be subgraph of G = (R,S) if

(T
′

A)
P (r) ≤ TP

A (r), (I
′

A)
P (r) ≤ IPA (r), (F

′

A)
P (r) ≥ FP

A (r)

(T
′

A)
N (r) ≥ TN

A (r), (I
′

A)
N (r) ≥ TN

A (r), (F
′

A)
N (r) ≤ FN

A (r),

for all r ∈ R and

(T
′

B)
P (rs) ≤ TP

B (rs), (I
′

A)
P (rs) ≤ IPB (rs), (F

′

B)
P (rs) ≥ FP

B (rs)

(T
′

B)
N (rs) ≥ TN

B (rs), (I
′

B)
N (rs) ≥ TN

B (rs), (F
′

B)
N (rs) ≤ FN

B (rs),

for all rs ∈ S

Example 4.4. An IBNG subgraph is represented as Figure 2

Figure 2: INTUITIONISTIC BIPOLAR NEUTROSOPHIC SUBGRAPH

Definition 4.5. A graph G
′
= (R′, S′) is said to be induced subgraph of G = (R,S) if

(T
′

A)
P (r) = TP

A (r), (I
′

A)
P (r) = IPA (r), (F

′

A)
P (r) = FP

A (r)

(T
′

A)
N (r) = TN

A (r), (I
′

A)
N (r) = TN

A (r), (F
′

A)
N (r) = FN

A (r),
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for all r ∈ R and

(T
′

B)
P (rs) = TP

B (rs), (I
′

A)
P (rs) = IPB (rs), (F

′

B)
P (rs) = FP

B (rs)

(T
′

B)
N (rs) = TN

B (rs), (I
′

B)
N (rs) = TN

B (rs), (F
′

B)
N (rs) = FN

B (rs),

for rs ∈ S

Example 4.6. An IBNG induced subgraph is represented as Figure 3.

Figure 3: INTUITIONISTIC BIPOLAR NEUTROSOPHIC INDUCED SUBGRAPH

Definition 4.7. A graph G
′
= (R′, S′) is said to be spanning subgraph of G = (R,S) if

(T
′

B)
P (rs) ≤ TP

B (rs), (I
′

A)
P (rs) ≤ IPB (rs), (F

′

B)
P (rs) ≥ FP

B (rs)

(T
′

B)
N (rs) ≥ TN

B (rs), (I
′

B)
N (rs) ≥ TN

B (rs), (F
′

B)
N (rs) ≤ FN

B (rs),

for all rs ∈ S

Definition 4.8. An IBNG G = (R,S) is called strong IBNG if

(T
′

B)
P (rs) = TP

B (rs), (I
′

A)
P (rs) = IPB (rs), (F

′

B)
P (rs) = FP

B (rs)

(T
′

B)
N (rs) = TN

B (rs), (I
′

B)
N (rs) = TN

B (rs), (F
′

B)
N (rs) = FN

B (rs),

for all rs ∈ S. S is the set of edges.

Definition 4.9. An IBNG G = (R,S) is called complete IBNG if

(T
′

B)
P (rs) = TP

B (rs), (I
′

A)
P (rs) = IPB (rs), (F

′

B)
P (rs) = FP

B (rs)

(T
′

B)
N (rs) = TN

B (rs), (I
′

B)
N (rs) = TN

B (rs), (F
′

B)
N (rs) = FN

B (rs),

for all rs ∈ S. R is the set of nodes.
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Definition 4.10. The Cartesian product of two IBNGs G1 and G2 is denoted by the pair
G1 ×G2 = (R1 ×R2, S1 × S2) and defined as

TP
A1×A2

(kl) = TP
A1

(k) ∧ TP
A2

(l)

IPA1×A2
(kl) = IPA1

(k) ∧ IPA2
(l)

FP
A1×A2

(kl) = FP
A1

(k) ∨ FP
A2

(l)

TN
A1×A2

(kl) = TN
A1

(k) ∨ TN
A2

(l)

INA1×A2
(kl) = INA1

(k) ∨ INA2
(l)

FN
A1×A2

(kl) = FN
A1

(k) ∧ FN
A2

(l),

for all kl ∈ R1×R2. The membership value of the edges in G1×G2 can be calculated as,

(1)TP
B1×B2

(k, l1)(k, l2) = TP
A1

(k) ∧ TP
B2

(l1l2)

TN
B1×B2

(k, l1)(k, l2) = TN
A1

(k) ∨ TN
B2

(l1l2),

(2)IPB1×B2
(k, l1)(k, l2) = IPA1

(k) ∧ IPB2
(l1l2)

INB1×B2
(k, l1)(k, l2) = INA1

(k) ∨ INB2
(l1l2),

(3)FP
B1×B2

(k, l1)(k, l2) = FP
A1

(k) ∨ FP
B2

(l1l2)

FN
B1×B2

(k, l1)(k, l2) = FN
A1

(k) ∧ FN
B2

(l1l2),

for all k ∈ R1, l1l2 ∈ S2.

(4)TP
B1×B2

(k1, l)(k2, l) = TP
A2

(l) ∧ TP
B2

(k1k2)

TN
B1×B2

(k1, l)(k2, l) = TN
A2

(l) ∨ TN
B2

(k1k2),

(5)IPB1×B2
(k1, l)(k2, l) = IPA2

(l) ∧ IPB2
(k1k2)

INB1×B2
(k1, l)(k2, l) = INA2

(l) ∨ INB2
(k1k2),

(6)FP
B1×B2

(k1, l)(k2, l) = FP
A2

(l) ∨ FP
B2

(k1k2)

FN
B1×B2

(k1, l)(k2, l) = FN
A2

(l) ∧ FN
B2

(k1k2),

for all k1k2 ∈ S1, l ∈ R2.

Example 4.11. Consider G1 = (R1, S1) and G2 = (R2, S2) are two IBNG of G = (R,S)
respectively, as represented in Figure 4, now we get G1 ×G2 as follows Figure 5

Theorem 4.1. The Cartesian product G1 ×G2 = (R1 × R2, S1 × S2) of IBNG of IBNG
G1 and G2 is an IBNG of G1 ×G2.

Proof. We consider:
Case 1: for k ∈ R1, l1l2 ∈ S2

TP
(B1×B2)

((kl1)(kl2)) = TP
A1

(k) ∧ TP
B2

(l1l2)

≤ TP
A1

(k) ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k) ∧ TP
A2

(l1)] ∧ [TP
A1

(k) ∧ TP
A2

(l2)]

= TP
(A1×A2)

(k, l1) ∧ TP
(A1×A2)

(k, l2)

Florentin Smarandache (author and editor) Collected Papers, VIII

686



G1 G2

Figure 4

G1 ×G2

Figure 5: Cartesian product of IBNG

IP(B1×B2)
((kl1)(kl2)) = IPA1

(k) ∧ IPB2
(l1l2)

≤ IPA1
(k) ∧ [IPA2

(l1) ∧ IPA2
(l2)]

= [IPA1
(k) ∧ IPA2

(l1)] ∧ [IPA1
(k) ∧ IPA2

(l2)]

= IP(A1×A2)
(k, l1) ∧ IP(A1×A2)

(k, l2)

FP
(B1×B2)

((kl1)(kl2)) = FP
A1

(k) ∨ FP
B2

(l1l2)

≤ FP
A1

(k) ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k) ∨ FP
A2

(l1)] ∨ [FP
A1

(k) ∨ FP
A2

(l2)]

= FP
(A1×A2)

(k, l1) ∨ FP
(A1×A2)

(k, l2)
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for all kl1, kl2 ∈ G1 ×G2.
Case 2: for k ∈ R2, l1l2 ∈ S1

TP
(B1×B2)

((l1k)(l2k)) = TP
A2

(k) ∧ TP
B1

(l1l2)

≤ TP
A2

(k) ∧ [TP
A1

(l1) ∧ TP
A1

(l2)]

= [TP
A2

(k) ∧ TP
A1

(l1)] ∧ [TP
A2

(k) ∧ TP
A1

(l2)]

= TP
(A1×A2)

(l1, k) ∧ TP
(A1×A2)

(l2, k)

IP(B1×B2)
((l1k)(l2k)) = IPA2

(k) ∧ IPB1
(l1l2)

≤ IPA2
(k) ∧ [IPA1

(l1) ∧ IPA1
(l2)]

= [IPA2
(k) ∧ IPA1

(l1)] ∧ [IPA2
(k) ∧ IPA1

(l2)]

= IP(A1×A2)
(l1, k) ∧ IP(A1×A2)

(l2, k)

FP
(B1×B2)

((l1k)(l2k)) = FP
A2

(k) ∨ FP
B1

(l1l2)

≤ FP
A2

(k) ∨ [FP
A1

(l1) ∨ FP
A1

(l2)]

= [FP
A2

(k) ∨ FP
A1

(l1)] ∨ [FP
A2

(k) ∨ FP
A1

(l2)]

= FP
(A1×A2)

(l1, k) ∨ FP
(A1×A2)

(l2, k),

for all l1k, l2k ∈ G1 ×G2.
Similarly, one can prove the result for negative part also. �

Definition 4.12. The Cross product of two IBNGs G1 and G2 is denoted by the pair G1×
G2 = (R1 ×R2, S1 × S2) and defined as

(i)TP
A1×A2

(kl) = TP
A1

(k) ∧ TP
A2

(l)

IPA1×A2
(kl) = IPA1

(k) ∧ IPA2
(l)

FP
A1×A2

(kl) = FP
A1

(k) ∨ FP
A2

(l)

TN
A1×A2

(kl) = TN
A1

(k) ∨ TN
A2

(l)

INA1×A2
(kl) = INA1

(k) ∨ INA2
(l)

FN
A1×A2

(kl) = FN
A1

(k) ∧ FN
A2

(l),

for all k, l ∈ R1 ×R2.

(ii)TP
(B1×B2)

(k1l1)(k2l2) = TP
B1

(k1k2) ∧ TP
B2

(l1l2)

IP(B1×B2)
(k1l1)(k2l2) = IPB1

(k1k2) ∧ IPB2
(l1l2)

FP
(B1×B2)

(k1l1)(k2l2) = FP
B1

(k1k2) ∨ FP
B2

(l1l2)

(iii)TN
(B1×B2)

(k1l1)(k2l2) = TN
B1

(k1k2) ∨ TN
B2

(l1l2)

IN(B1×B2)
(k1l1)(k2l2) = INB1

(k1k2) ∨ INB2
(l1l2)

FN
(B1×B2)

(k1l1)(k2l2) = FN
B1

(k1k2) ∧ FN
B2

(l1l2),

for all k1k2 ∈ S1, l1l2 ∈ S2.

Example 4.13. Consider G1 = (R1, S1) and G2 = (R2, S2) are two IBNG of G = (R,S)
respectively, as represented in Figure 4. Now, we get cross product G1 × G2 as follows
Figure 6.

Florentin Smarandache (author and editor) Collected Papers, VIII

688



G1 ×G2

Figure 6: CROSS PRODUCT OF INTUITIONISTIC BIPOLAR NEUTROSOPHIC
GRAPH

Theorem 4.2. Cross product G1 ×G2 = (R1 ×R2, S1 × S2) of two IBNG of G1 and G2

is an IBNG of G1 ×G2.

Proof. For all k1l1, k2l2 ∈ G1 ×G2

TP
(B1×B2)

((k1l1)(k2l2)) = TP
B1

(k1k2) ∧ TP
B2

(l1l2)

≤ [TP
A1

(k1) ∧ TP
A1

(k2)] ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k1) ∧ TP
A2

(l1)] ∧ [TP
A1

(k2) ∧ TP
A2

(l2)]

= TP
(A1×A2)

(k1l1) ∧ TP
(A1×A2)

(k2, l2),

IP(B1×B2)
((k1l1)(k2l2)) = IPB1

(k1k2) ∧ IPB2
(l1l2)

≤ [IPA1
(k1) ∧ IPA1

(k2)] ∧ [IPA2
(l1) ∧ IPA2

(l2)]

= [IPA1
(k1) ∧ IPA2

(l1)] ∧ [IPA1
(k2) ∧ IPA2

(l2)]

= IP(A1×A2)
(k1l1) ∧ IP(A1×A2)

(k2, l2),

FP
(B1×B2)

((k1l1)(k2l2)) = FP
B1

(k1k2) ∨ FP
B2

(l1l2)

≤ [FP
A1

(k1) ∨ FP
A1

(k2)] ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k1) ∨ FP
A2

(l1)] ∨ [FP
A1

(k2) ∨ FP
A2

(l2)]

= FP
(A1×A2)

(k1l1) ∨ FP
(A1×A2)

(k2, l2)

Similarly, we can prove the result for negative part also. �
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Definition 4.14. The lexicographic product of two IBNGs G1 and G2 is denoted by the
pair G1 •G2 = (R1 •R2, S1 • S2) and defined as

(i)TP
(A1•A2)

(kl) = TP
A1

(k) ∧ TP
A2

(l)

IP(A1•A2)
(kl) = IPA1

(k) ∧ IPA2
(l)

FP
(A1•A2)

(kl) = FP
A1

(k) ∨ FP
A2

(l)

TN
(A1•A2)

(kl) = TN
A1

(k) ∨ TN
A2

(l)

IN(A1•A2)
(kl) = INA1

(k) ∨ INA2
(l)

FN
(A1•A2)

(kl) = FN
A1

(k) ∧ FN
A2

(l),

for all k, l ∈ R1 ×R2

(ii)TP
(B1•B2)

(kl1)(kl2) = TP
A1

(k) ∧ TP
B2

(l1l2)

IP(B1•B2)
(kl1)(kl2) = IPA1

(k) ∧ IPB2
(l1l2)

FP
(B1•B2)

(kl1)(kl2) = FP
A1

(k) ∨ FP
B2

(l1l2)

TN
(B1•B2)

(kl1)(kl2) = TN
A1

(k) ∨ TN
B2

(l1l2)

IN(B1•B2)
(kl1)(kl2) = INA1

(k) ∨ INB2
(l1l2)

FN
(B1•B2)

(kl1)(kl2) = FN
A1

(k) ∧ FN
B2

(l1l2),

for all k ∈ R1, l1l2 ∈ S2.

(iii)TP
(B1•B2)

(k1l1)(k2l2) = TP
B1

(k1k2) ∧ TP
B2

(l1l2)

IP(B1•B2)
(k1l1)(k2l2) = IPB1

(k1k2) ∧ IPB2
(l1l2)

FP
(B1•B2)

(k1l1)(k2l2) = FP
B1

(k1k2) ∨ FP
B2

(l1l2)

TN
(B1•B2)

(k1l1)(k2l2) = TN
B1

(k1k2) ∨ TN
B2

(l1l2)

IN(B1•B2)
(k1l1)(k2l2) = INB1

(k1k2) ∨ INB2
(l1l2)

FN
(B1•B2)

(k1l1)(k2l2) = FN
B1

(k1k2) ∧ FN
B2

(l1l2),

for all k1k2 ∈ S1, l1l2 ∈ S2.

Example 4.15. Lexicographic product of IBNG G1 = (R1, S1) and G2 = (R2, S2) shown
in Figure 2 are defined as G1 •G2 = (R1 •R2, S1 • S2) and is represented in Figure 7.

Theorem 4.3. Lexicographic product G1 • G2 = (R1 • R2, S1 • S2) of two IBNG of G1

and G2 is an IBNG of G1 •G2.

Proof. We consider two cases:
Case 1: for k ∈ R1, l1l2 ∈ S2

TP
(B1•B2)

((kl1)(kl2)) = TP
A1

(k) ∧ TP
B2

(l1l2)

≤ TP
A1

(k) ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k) ∧ TP
A2

(l1)] ∧ [TP
A1

(k) ∧ TP
A2

(l2)]

= TP
(A1•A2)

(k, l1) ∧ TP
(A1•A2)

(k, l2)
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G1 •G2

Figure 7: LEXICOGRAPHIC PRODUCT INTUITIONISTIC BIPOLAR
NEUTROSOPHIC GRAPH

IP(B1•B2)
((kl1)(kl2)) = IPA1

(k) ∧ IPB2
(l1l2)

≤ IPA1
(k) ∧ [IPA2

(l1) ∧ IPA2
(l2)]

= [IPA1
(k) ∧ IPA2

(l1)] ∧ [IPA1
(k) ∧ IPA2

(l2)]

= IP(A1•A2)
(k, l1) ∧ IP(A1•A2)

(k, l2)

FP
(B1•B2)

((kl1)(kl2)) = FP
A1

(k) ∨ FP
B2

(l1l2)

≤ FP
A1

(k) ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k) ∨ FP
A2

(l1)] ∨ [FP
A1

(k) ∨ FP
A2

(l2)]

= FP
(A1•A2)

(k, l1) ∨ FP
(A1•A2)

(k, l2)

for all kl1, kl2 ∈ S1 × S2.
Case 2: For all k1k2 ∈ S1, l1l2 ∈ S2

TP
(B1•B2)

((k1l1)(k2l2)) = TP
B1

(k1k2) ∧ TP
B2

(l1l2)

≤ [TP
A1

(k1) ∧ TP
A1

(k2)] ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k1) ∧ TP
A2

(l1)] ∧ [TP
A1

(k2) ∧ TP
A2

(l2)]

= TP
(A1•A2)

(k1, l1) ∧ TP
(A1•A2)

(k2, l2)

IP(B1•B2)
((k1l1)(k2l2)) = IPB1

(k1k2) ∧ IPB2
(l1l2)

≤ [IPA1
(k1) ∧ IPA1

(k2)] ∧ [IPA2
(l1) ∧ IPA2

(l2)]

= [IPA1
(k1) ∧ IPA2

(l1)] ∧ [IPA1
(k2) ∧ IPA2

(l2)]

= IP(A1•A2)
(k1, l1) ∧ IP(A1•A2)

(k2, l2)

FP
(B1×B2)

((k1l1)(k2l2)) = FP
B1

(k1k2) ∨ FP
B2

(l1l2)

≤ [FP
A1

(k1) ∨ FP
A1

(k2)] ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k1) ∨ FP
A2

(l1)] ∨ [FP
A1

(k2) ∨ FP
A2

(l2)]

= FP
(A1•A2)

(k1, l1) ∨ FP
(A1•A2)

(k2, l2)

for all k1l1, k2l2 ∈ R1 •R2. Similarly, we can prove the result for negative part also. �
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Definition 4.16. The strong product of two IBNGs G1 and G2 is denoted by the pair
G1 �G2 = (R1 �R2, S1 � S2) and defined as

(i)TP
(A1�A2)

(kl) = TP
A1

(k) ∧ TP
A2

(l),

IP(A1�A2)
(kl) = IPA1

(k) ∧ IPA2
(l),

FP
(A1�A2)

(kl) = FP
A1

(k) ∨ FP
A2

(l),

TN
(A1�A2)

(kl) = TN
A1

(k) ∨ TN
A2

(l),

IN(A1�A2)
(kl) = INA1

(k) ∨ INA2
(l),

FN
(A1�A2)

(kl) = FN
A1

(k) ∧ FN
A2

(l),

for all k, l ∈ R1 �R2

(ii)TP
(B1�B2)

(kl1)(kl2) = TP
A1

(k) ∧ TP
B2

(l1l2),

IP(B1�B2)
(kl1)(kl2) = IPA1

(k) ∧ IPB2
(l1l2),

FP
(B1�B2)

(kl1)(kl2) = FP
A1

(k) ∨ FP
B2

(l1l2),

TN
(B1�B2)

(kl1)(kl2) = TN
A1

(k) ∨ TN
B2

(l1l2),

IN(B1�B2)
(kl1)(kl2) = INA1

(k) ∨ INB2
(l1l2),

FN
(B1�B2)

(kl1)(kl2) = FN
A1

(k) ∧ FN
B2

(l1l2),

for all k ∈ R1, l1l2 ∈ S2.

(iii)TP
B1�B2

(k1, l)(k2, l) = TP
A2

(l) ∧ TP
B2

(k1k2),

IPB1�B2
(k1, l)(k2, l) = IPA2

(l) ∧ IPB2
(k1k2),

FP
B1�B2

(k1, l)(k2, l) = FP
A2

(l) ∨ FP
B2

(k1k2),

TN
B1�B2

(k1, l)(k2, l) = TN
A2

(l) ∨ TN
B2

(k1k2),

INB1�B2
(k1, l)(k2, l) = INA2

(l) ∨ INB2
(k1k2),

FN
B1�B2

(k1, l)(k2, l) = FN
A2

(l) ∧ FN
B2

(k1k2),

for all k1k2 ∈ S1, l ∈ R2.

(iv)TP
(B1�B2)

(k1l1)(k2l2) = TP
B1

(k1k2) ∧ TP
B2

(l1l2)

IP(B1�B2)
(k1l1)(k2l2) = IPB1

(k1k2) ∧ IPB2
(l1l2)

FP
(B1�B2)

(k1l1)(k2l2) = FP
B1

(k1k2) ∨ FP
B2

(l1l2)

TN
(B1�B2)

(k1l1)(k2l2) = TN
B1

(k1k2) ∨ TN
B2

(l1l2)

IN(B1�B2)
(k1l1)(k2l2) = INB1

(k1k2) ∨ INB2
(l1l2)

FN
(B1�B2)

(k1l1)(k2l2) = FN
B1

(k1k2) ∧ FN
B2

(l1l2)

for all k1k2 ∈ S1, l1l2 ∈ S2.

Example 4.17. Strong product of IBNG G1 = (R1, S1) and G2 = (R2, S2) shown in
Figure 2 is defined as G1 �G2 = (R1 �R2, S1 � S2) and is represented in Figure 8.

Theorem 4.4. Strong product G1�G2 = (R1�R2, S1�S2) of two IBNG of G1 and G2

is an IBNG of G1 �G2.
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G1 �G2

Figure 8: STRONG PRODUCT INTUITIONISTIC BIPOLAR NEUTROSOPHIC
GRAPH

Proof. There are three cases:
Case 1: for k ∈ R1, l1l2 ∈ S2

TP
(B1�B2)

((kl1)(kl2)) = TP
A1

(k) ∧ TP
B2

(l1l2)

≤ TP
A1

(k) ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k) ∧ TP
A2

(l1)] ∧ [TP
A1

(k) ∧ TP
A2

(l2)]

= TP
(A1�A2)

(k, l1) ∧ TP
(A1�A2)

(k, l2)

IP(B1�B2)
((kl1)(kl2)) = IPA1

(k) ∧ IPB2
(l1l2)

≤ IPA1
(k) ∧ [IPA2

(l1) ∧ IPA2
(l2)]

= [IPA1
(k) ∧ IPA2

(l1)] ∧ [IPA1
(k) ∧ IPA2

(l2)]

= IP(A1�A2)
(k, l1) ∧ IP(A1�A2)

(k, l2)

FP
(B1�B2)

((kl1)(kl2)) = FP
A1

(k) ∨ FP
B2

(l1l2)

≤ FP
A1

(k) ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k) ∨ FP
A2

(l1)] ∨ [FP
A1

(k) ∨ FP
A2

(l2)]

= FP
(A1�A2)

(k, l1) ∨ FP
(A1�A2)

(k, l2)

for all kl1, kl2 ∈ R1 �R2.
Case 2: for k ∈ R2, l1l2 ∈ S1

TP
(B1�B2)

((l1k)(l2k)) = TP
A2

(k) ∧ TP
B1

(l1l2)

≤ TP
A2

(k) ∧ [TP
A1

(l1) ∧ TP
A1

(l2)]

= [TP
A2

(k) ∧ TP
A1

(l1)] ∧ [TP
A2

(k) ∧ TP
A1

(l2)]

= TP
(A1�A2)

(l1, k) ∧ TP
(A1�A2)

(l2, k)
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IP(B1�B2)
((l1k)(l2k)) = IPA2

(k) ∧ IPB1
(l1l2)

≤ IPA2
(k) ∧ [IPA1

(l1) ∧ IPA1
(l2)]

= [IPA2
(k) ∧ IPA1

(l1)] ∧ [IPA2
(k) ∧ IPA1

(l2)]

= IP(A1�A2)
(l1, k) ∧ IP(A1�A2)

(l2, k)

FP
(B1�B2)

((l1k)(l2k)) = FP
A2

(k) ∨ FP
B1

(l1l2)

≤ FP
A2

(k) ∨ [FP
A1

(l1) ∨ FP
A1

(l2)]

= [FP
A2

(k) ∨ FP
A1

(l1)] ∨ [FP
A2

(k) ∨ FP
A1

(l2)]

= FP
(A1�A2)

(l1, k) ∨ FP
(A1�A2)

(l2, k)

for all l1k, l2k ∈ R1 �R2. �

Case 3: For all k1k2 ∈ S1,l1l2 ∈ S2,

TP
(B1�B2)

((k1l1)(k2l2)) = TP
B1

(k1k2) ∧ TP
B2

(l1l2)

≤ [TP
A1

(k1) ∧ TP
A1

(k2)] ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k1) ∧ TP
A2

(l1)] ∧ [TP
A1

(k2) ∧ TP
A2

(l2)]

= TP
(A1�A2)

(k1, l1) ∧ TP
(A1�A2)

(k2, l2)

IP(B1�B2)
((k1l1)(k2l2)) = IPB1

(k1k2) ∧ IPB2
(l1l2)

≤ [IPA1
(k1) ∧ IPA1

(k2)] ∧ [IPA2
(l1) ∧ IPA2

(l2)]

= [IPA1
(k1) ∧ IPA2

(l1)] ∧ [IPA1
(k2) ∧ IPA2

(l2)]

= IP(A1�A2)
(k1, l1) ∧ IP(A1�A2)

(k2, l2)

FP
(B1�B2)

((k1l1)(k2l2)) = FP
B1

(k1k2) ∨ FP
B2

(l1l2)

≤ [FP
A1

(k1) ∨ FP
A1

(k2)] ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k1) ∨ FP
A2

(l1)] ∨ [FP
A1

(k2) ∨ FP
A2

(l2)]

= FP
(A1�A2)

(k1, l1) ∨ FP
(A1�A2)

(k2, l2)

for all k1l1, k2l2 ∈ R1 �R2. Similarly, we can prove the result for negative part also.

Definition 4.18. The composition of two IBNGs G1 and G2 is denoted by the pair G1 ◦
G2 = (R1 ◦R2, S1 ◦ S2) and defined as

(i)TP
(A1◦A2)

(kl) = TP
A1

(k) ∧ TP
A2

(l)

IP(A1◦A2)
(kl) = IPA1

(k) ∧ IPA2
(l)

FP
(A1◦A2)

(kl) = FP
A1

(k) ∨ FP
A2

(l)

TN
(A1◦A2)

(kl) = TN
A1

(k) ∨ TN
A2

(l)

IN(A1◦A2)
(kl) = INA1

(k) ∨ INA2
(l)

FN
(A1◦A2)

(kl) = FN
A1

(k) ∧ FN
A2

(l),
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for all k, l ∈ R1 ◦R2

(ii)TP
(B1◦B2)

(kl1)(kl2) = TP
A1

(k) ∧ TP
B2

(l1l2)

IP(B1◦B2)
(kl1)(kl2) = IPA1

(k) ∧ IPB2
(l1l2)

FP
(B1◦B2)

(kl1)(kl2) = FP
A1

(k) ∨ FP
B2

(l1l2)

TN
(B1◦B2)

(kl1)(kl2) = TN
A1

(k) ∨ TN
B2

(l1l2)

IN(B1◦B2)
(kl1)(kl2) = INA1

(k) ∨ INB2
(l1l2)

FN
(B1◦B2)

(kl1)(kl2) = FN
A1

(k) ∧ FN
B2

(l1l2),

for all k ∈ R1, l1l2 ∈ S2.

(iii)TP
B1◦B2

(k1l)(k2l) = TP
A2

(l) ∧ TP
B2

(k1k2)

IPB1◦B2
(k1l)(k2l) = IPA2

(l) ∧ IPB2
(k1k2)

FP
B1◦B2

(k1l)(k2l) = FP
A2

(l) ∨ FP
B2

(k1k2)

TN
B1◦B2

(k1l)(k2l) = TN
A2

(l) ∨ TN
B2

(k1k2)

INB1◦B2
(k1l)(k2l) = INA2

(l) ∨ INB2
(k1k2)

FN
B1◦B2

(k1l)(k2l) = FN
A2

(l) ∧ FN
B2

(k1k2),

for all k1k2 ∈ S1, l ∈ R2.

(iv)TP
(B1◦B2)

(k1l1)(k2l2) = TP
B1

(k1k2) ∧ TP
A2

(l1) ∧ TP
A2

(l2)

IP(B1◦B2)
(k1l1)(k2l2) = IPB1

(k1k2) ∧ IPA2
(l1) ∧ IPA2

(l2)

FP
(B1◦B2)

(k1l1)(k2l2) = FP
B1

(k1k2) ∨ FP
A2

(l1) ∨ FP
A2

(l2)

TN
(B1◦B2)

(k1l1)(k2l2) = TN
B1

(k1k2) ∨ TN
A2

(l1) ∨ TN
A2

(l2)

IN(B1◦B2)
(k1l1)(k2l2) = INB1

(k1k2) ∨ INA2
(l1) ∨ INA2

(l2)

FN
(B1◦B2)

(k1l1)(k2l2) = FN
B1

(k1k2) ∧ FN
A2

(l1) ∧ FN
A2

(l2),

for all k1k2 ∈ S1, l1l2 ∈ S2 such that l1 6= l2

Example 4.19. Composition of IBNG G1 = (R1, S1) and G2 = (R2, S2) shown in Figure
2 is defined as G1 ◦G2 = (R1 ◦R2, S1 ◦ S2) and is represented in Figure 9.

Theorem 4.5. Composition G1 ◦G2 = (R1 ◦ R2, S1 ◦ S2) of two IBNG of G1 and G2 is
an IBNG of G1 ◦G2.

Proof. There are three cases:
Case 1: for k ∈ R1, l1l2 ∈ S2

TP
(B1◦B2)

((kl1)(kl2)) = TP
A1

(k) ∧ TP
B2

(l1l2)

≤ TP
A1

(k) ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k) ∧ TP
A2

(l1)] ∧ [TP
A1

(k) ∧ TP
A2

(l2)]

= TP
(A1◦A2)

(k, l1) ∧ TP
(A1◦A2)

(k, l2)

Florentin Smarandache (author and editor) Collected Papers, VIII

695



G1 ◦G2

Figure 9: COMPOSITION INTUITIONISTIC BIPOLAR NEUTROSOPHIC GRAPH

IP(B1◦B2)
((kl1)(kl2)) = IPA1

(k) ∧ IPB2
(l1l2)

≤ IPA1
(k) ∧ [IPA2

(l1) ∧ IPA2
(l2)]

= [IPA1
(k) ∧ IPA2

(l1)] ∧ [IPA1
(k) ∧ IPA2

(l2)]

= IP(A1◦A2)
(k, l1) ∧ IP(A1◦A2)

(k, l2)

FP
(B1◦B2)

((kl1)(kl2)) = FP
A1

(k) ∨ FP
B2

(l1l2)

≤ FP
A1

(k) ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k) ∨ FP
A2

(l1)] ∨ [FP
A1

(k) ∨ FP
A2

(l2)]

= FP
(A1◦A2)

(k, l1) ∨ FP
(A1◦A2)

(k, l2)

for all kl1, kl2 ∈ R1 ◦R2.
Case 2: for k ∈ R2, l1l2 ∈ S1

TP
(B1◦B2)

((l1k)(l2k)) = TP
A2

(k) ∧ TP
B1

(l1l2)

≤ TP
A2

(k) ∧ [TP
A1

(l1) ∧ TP
A1

(l2)]

= [TP
A2

(k) ∧ TP
A1

(l1)] ∧ [TP
A2

(k) ∧ TP
A1

(l2)]

= TP
(A1◦A2)

(l1, k) ∧ TP
(A1◦A2)

(l2, k)

IP(B1◦B2)
((l1k)(l2k)) = IPA2

(k) ∧ IPB1
(l1l2)

≤ IPA2
(k) ∧ [IPA1

(l1) ∧ IPA1
(l2)]

= [IPA2
(k) ∧ IPA1

(l1)] ∧ [IPA2
(k) ∧ IPA1

(l2)]

= IP(A1◦A2)
(l1, k) ∧ IP(A1◦A2)

(l2, k)

FP
(B1◦B2)

((l1k)(l2k)) = FP
A2

(k) ∨ FP
B1

(l1l2)

≤ FP
A2

(k) ∨ [FP
A1

(l1) ∨ FP
A1

(l2)]

= [FP
A2

(k) ∨ FP
A1

(l1)] ∨ [FP
A2

(k) ∨ FP
A1

(l2)]

= FP
(A1◦A2)

(l1, k) ∨ FP
(A1◦A2)

(l2, k)
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for all l1k, l2k ∈ R1 ◦R2.
Case 3: For k1k2 ∈ S1, l1, l2 ∈ R2 such that l1 6= l2

TP
(B1◦B2)

((k1l1)(k2l2)) = TP
B1

(k1, k2) ∧ TP
A2

(l1) ∧ TP
A2

(l2)

≤ [TP
A1

(k1) ∧ TP
A1

(k2)] ∧ [TP
A2

(l1) ∧ TP
A2

(l2)]

= [TP
A1

(k1) ∧ TP
A2

(l1)] ∧ [TP
A1

(k2) ∧ TP
A2

(l2)]

= TP
(A1◦A2)

(k1l1) ∧ TP
(A1◦A2)

(k2l2)

IP(B1◦B2)
((k1, l1)(k2, l2)) = IPB1

(k1, k2) ∧ IPA2
(l1) ∧ IPA2

(l2)

≤ [IPA1
(k1) ∧ IPA1

(k2)] ∧ [IPA2
(l1) ∧ IPA2

(l2)]

= [IPA1
(k1) ∧ IPA2

(l1)] ∧ [IPA1
(k2) ∧ IPA2

(l2)]

= IP(A1◦A2)
(k1l1) ∧ IP(A1◦A2)

(k2l2)

FP
(B1◦B2)

((k1, l1)(k2, l2)) = FP
B1

(k1, k2) ∨ FP
A2

(l1) ∨ FP
A2

(l2)

≤ [FP
A1

(k1) ∨ FP
A1

(k2)] ∨ [FP
A2

(l1) ∨ FP
A2

(l2)]

= [FP
A1

(k1) ∨ FP
A2

(l1)] ∨ [FP
A1

(k2) ∨ FP
A2

(l2)]

= FP
(A1◦A2)

(k1l1) ∨ FP
(A1◦A2)

(k2l2)

for all k1l1, k2l2 ∈ R1 ◦R2. Similarly, we can prove the result for negative part also. �

5. CONCLUSIONS

In this work, a new concept of intuitionistic bipolar neutrosophic set with the opera-
tions like union, intersection and complement have been developed. Also, an application
to intuitionistic bipolar neutrosophic graph with examples have established. Further, we
presented the Cartesian product, cross product, lexicographic product and strong product
with suitable examples. In future, isomorphic properties will be investigated.
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Abst ract

This paper introduces the concept of n-refined neutrosophic vector spaces as a generalization of neutrosophic 
vector spaces, and it studies elementary properties of them. Also, this work discusses some corresponding concepts 
such as weak/strong n-refined neutrosophic vector spaces, and n-refined neutrosophic homomorphisms. 

Keywords: n-Refined weak neutrosophic vector space, n-Refined strong neutrosophic vector space, n-Refined 
neutrosophic homomorphism. 

1.Int roduct ion
Neutrosophy as a part of philosophy founded by F. Smarandache to study origin, nature, and indeterminacies
became a strong tool in studying algebraic concepts. Neutrosophic algebraic structures were defined and studied 

such as neutrosophic modules,and neutrosopohic vector spaces, etc.See [1,2,3,4,5,6,7,8,9]. In 2013 

Smarandacheintroduceda perfect idea, when he extended the neutrosophic set to refined [n-valued] neutrosophic 

set, i.e. the truth value T is refined/split into types of sub-truths such as (T1, T2, …,)  similarly indeterminacy I is 

refined/split into types of sub-indeterminacies (I1, I2, …,) and the falsehood F is refined/split into sub-falsehood (F1, 

F2,..,) [10,11]. Refined neutrosophic algebraic structures were studied such as refined neutrosophic rings, refined 

neutrosophic modules, and n-refined neutrosophic rings [4,12]. 

In this article authors try to define n-refined neutrosophic vector spaces, subspaces, and homomorphisms and to 
present some of their elementary properties. 

For our purpose we use multiplication operation (defined in [12]) between indeterminacies ��, ��, …  , �� as follows: 

��  �� =  �� ��	(�  ,�). 

This work is a continuation of the study on the n-refined neutrosophic structures that began in [12]. 

n-Refined Neutrosophic Vector Spaces

Florentin Smarandache, Mohammad Abobala

Florentin Smarandache, Mohammad Abobala (2020). n-Refined Neutrosophic Vector Spaces. 
International Journal of Neutrosophic Science 7(1): 47-54; DOI: 10.5281/zenodo.3876216 
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Definition 2.1: [12] 

Let (R,+, ) be a ring and ��;1 ≤ � ≤ � be n indeterminacies. We define ��(I)={�� + ��� + ⋯ + ����	;	�� ∈ �} to 
be an n-refined neutrosophic ring. 

Definition 4.3: [12] 

(a) Let ��(I) be an n-refined neutrosophic ring and P = ∑ ����
�
��� = {�� + ��� + ⋯ + ����:	�� ∈ ��}, where �� is a

subset of R, we define P to be an AH-subring if �� is a subring of R for all . AHS-subring is defined by the condition 
�� = �� for all �	, �. 

(b) P is an AH-ideal if��aretwo-side ideals of R for all �, the AHS-ideal is defined by the condition �� = �� for all
�	, �.

(c) The AH-ideal P is said to be null if �� = ����� = {0} for all�.

Definition 2.3 :[5] 

Let ( V , + , ∙  ) be a vector space over the field K; then ( V(I) , + , ∙ ) is called a weak neutrosophic vector space over 
the field K, and it is called a strong neutrosophic vector space if it is a vector space over the neutrosophic field K(I). 

Definition 2.4 : [5] 

Let V(I) be a strong neutrosophic vector space over the neutrosophic field K(I) and W(I) be a non empty set of V(I) 
then W(I) is called a strong neutrosophic subspace if W(I) is itself a strong neutrosophic vector space. 

Definition 2.6 :[5] 

Let U(I) , W(I) be twostrong neutrosophic subspaces of V(I)and let �:�(�)→ �(�) , we say that f is a neutrosophic 
vector space homomorphism if  

(a) f(I)=I,

(b) f is a vector space homomorphism.

We define the kernel of f by Ker(f) = { x∈ �(�); f(x) = 0� (�)}. 

Definition 2.7 :[5] 

Let ��, ��..�� ∈ �(�)and� ∈ �(�); we say that x is a linear combination of { ��;�= 1, .., �} if 

x = ���� + ⋯ + ���� suchthat�� ∈ �(�). 

The set{ ��;�= �, .., �}is called linearly independent if ���� + ⋯ + ���� = �	implies	�� = �for all i.  

3. Main concept s and res ults

Definition 3.1:

Let (K,+,∙) be a field, we say that ��(�)= � + ��� + ⋯ + ��� = {�� + ���� + ⋯ + ����;�� ∈ �} is an n-refined 
neutrosophic field. 

It is clear that ��(�) is an n-refined neutrosophic field, but not a field in the classical meaning. 

2. Preliminaries
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Example 3.2 : 

Let � = �be the field of rationals. The corresponding 3-refined neutrosophic field is 

��(�)= {� + ��� + ��� + ���;�, �, �, � ∈ �}. 

Definition 3.3 : 

Let (V,+,∙) be a vector space over the field K. Then we say that ��(�)= � + ��� + ⋯ + ��� = {�� + ���� + ⋯ +
����;	�� ∈ �} is a weak n-refined neutrosophic vector space over the field K. Elements of  ��(�)are called n-refined 
neutrosophic vectors, elements of K are called scalars. 

If we take scalars from the n-refined neutrosophicfield ��(�), we say that  ��(�) is a strong n-refined neutrosophic 
vector space over the n-refined neutrosophic field ��(�). Elements of ��(�) are called n-refined neutrosophic 
scalars. 

Remark 3.4: 

If we take n=1 we get the classical neutrosophic vector space. 

Addition on ��(�)is defined as: 

�����

�

���

+ �����

�

���

= �(��+ ��)��

�

���

. 

Multiplication by a scalar � ∈ �is defined as: 

� ∙ ∑ ����
�
��� = ∑ (�.��)��

�
��� .

Multiplication by an n-refined neutrosophic scalar � = ∑ ����
�
��� ∈ ��(�)is defined as: 

(∑ ����)
�
��� ∙ (∑ ����)

�
��� = ∑ (��.��)����

�
�,��� , 

where �� ∈ �,�� ∈ �, ���� = ����	(�,�). 

Theorem 3.5 : 

Let (V,+,∙) be a vector space over the field K. Then a weak n-refined neutrosophic vector space ��(�) is a vector 
space over the field K. A strong n-refined neutrosophic vector space is not a vector space but a module over the n-
refinedneutrosophic field ��(I). 

Proof: 

It is similar to that of Theorem 2.3 in [5]. 

Example 3.6: 

Let � = �� be the finite vector space of integers modulo 2 over itself: 

(a) The corresponding weak 2-refined neutrosophic vector space over the field �� is

��(�)=  {0,1, ��, ��, �� +  ��, 1 +  �� +  ��, 1 +  ��, 1 +  ��}. 
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Definition 3.7: 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K; a nonempty subset ��(�) is called a weak 
n-refined neutrosophic subspace of ��(�) if ��(�) is a subspace of	��(�) itself.

Definition 3.8: 

Let ��(�) be a strong n-refined neutrosophic vector space over the n-refined neutrosophic field��(�); a nonempty 
subset ��(�) is called a strong n-refined neutrosophic subspace of ��(�) if ��(�) is a submodule of��(�) itself. 

Theorem 3.9: 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K, ��(�) be a nonempty subset of ��(�). 
Then ��(�) is a weak n-refined neutrosophic subspace if and only if: 

� + � ∈ ��(�),� ∙ � ∈ ��(�)for all �, � ∈ ��(�),� ∈ �. 

Proof: 

It holds directly from the condition of subspace. 

Theorem 3.10: 

Let ��(�) be a strong n-refined neutrosophic vector space over an n-refined neutrosophic field ��(�), ��(�) be a 
nonempty subset of ��(�). Then ��(�) is a strong n-refined neutrosophic subspace if and only if: 

� + � ∈ ��(�),� ∙ � ∈ ��(�)for all �, � ∈ ��(�),� ∈ ��(�). 

Proof: 

It holds directly from the condition of submodule. 

Example 3.11: 

Let � = ��	be a vector space over the field R, � =	< (0,1)> is a subspace of V, ���(�)= {(�, �)+ (�, �)�� +
(�, �)��;�, �,�, �, �, � ∈ �} is the corresponding weak/strong 2-refined neutrosophic vector space. 

��(�)= {�� + ���� + ����}= {(0, �)+ (0, �)�� + (0, �)��;�, �, � ∈ �}is a weak 2-refined neutrosophic subspace 
of the weak 2-refined neutrosophic vector space ���(�) over the field R. 

��(�)= {�� + ���� + ����}= {(0, �)+ (0, �)�� + (0, �)��;�, �, � ∈ �}is a strong 2-refined neutrosophic subspace 
of the strong 2-refined neutrosophic vector space ���(�) over the n-refined neutrosophic field ��(�). 

Definition 3.12: 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K, � be an arbitrary element of ��(�), we say 
that x is a linear combination of {��, ��, … , �� }		��(�), or� = ���� + ���� + ⋯ + �� �� : �� ∈ �, �� ∈ ��(�). 

Example 3.13: 

Consider the weak 2-refined neutrosophic vector space in Example 3.11, 
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� = (0,2)+ (1,3)� ∈ ��
�(�), � = 2(0,1)+ 1(1,0)�� + 3(0,1)��, i.e � is a linear combination of the set 

{(0,1), (1,0)��, (0,1)��} over the field R. 

Definition 3.14: 

Let ��(�) be a strong n-refined neutrosophic vector space over an n-refined neutrosophic field ��(�), � be an 
arbitrary element of ��(�), we say that x is a linear combination of {��, ��, … , �� }��(�) is � = ���� + ���� +
⋯ + �� �� : �� ∈ ��(�), �� ∈ ��(�). 

Example 3.15: 

Consider the strong 2-refined neutrosophic vector space ���(�)= {(�, �)+ (�, �)�� + (�, �)��;�, �,�, �, �, � ∈ �} 
over the 2-refined neutrosophic field ��(�), 

� = (0,2)+ (3,3)�� + (−1,0)�� = (2 + ��)∙ (0,1)+ (1 + ��)∙ (1,1)�� + (�� − ��)∙ (1,0)��, hence x is a linear 
combination of the set {(0,1), (1,1)��, (1,0)��} over the 2-refined neutrosophic field ��(�). 

Definition 3.16: 

Let � = {��, … , �� } be a subset of a weak n-refined neutrosophic vector space ��(I) over the field K, X is a weak 
linearly independent set if ∑ ���� = 0	��������� = 0;	�� ∈ �

�
��� . 

Definition 3.17: 

Let � = {��, … , �� } be a subset of a strong n-refined neutrosophic vector space ��(I) over the n-refined 
neutrosophic field ��(�), X is a weak linearly independent set if ∑ ���� = 0	��������� = 0;	�� ∈ ��(�)

�
��� . 

Definition 3.18: 

Let ��(�),��(�) be two strong n-refined neutrosophic vector space over the n-refined neutrosophic field ��(�), let 
�:��(�)→ ��(�) be a well defined map. It is called a strong n-refined neutrosophic homomorphism if: 

�(�.� + �.�)= �.�(�)+ �.�(�)for all �, � ∈ ��(�), �, � ∈ ��(�). 

A weak n-refined neutrosophic homomorphism can be defined as the same. 

We can understand the strong n-refined homomorphism as a module homomorphism, weak n-refined neutrosophic 
homomorphism can be understood as a vector space homomorphism. 

Remark: 

The previous definition of n-refined homomorphism between two strong/weak n-refined vector spaces is a classical 
homomorphism between two modules/spaces. We can not add a similar condition to the concept of neutrosophic 
homomorphism (�(��)= ��), since �� is not supposed to be an element of ��(�)if V has more than one dimension for 
example. According to our definition,Ker(f) will be a subspace (which is different from classical neutrosophic vector 
space case) sicne� was defined as a classical homomorphism without any additional condition. 

Definition 3.19: 

Let �:��(�)→ ��(�) be a weak/strong n-refined neutrosophic homomorphism, we define: 

(a) ���(�)= {� ∈ ��(�);�(�)= 0}.
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(b) ��(�)= {� ∈ ��(�);	∃� ∈ ��(�)and� = �(�)}.

Theorem 3.20: 

Let �:��(�)→ ��(�) be a weak n-refined neutrosophic homomorphism. Then 

(a) ���(�)is a weak n-refined neutrosophic subspace of ��(I).

(b) ��(�)is a weak n-refined neutrosophic subspace of ��(�).

Proof: 

(a) �is a vector space homomorphism since ��(�),��(�) are vector spaces, hence ���(�) is a subspace of the vector
space ��(�), thus ���(�) is a weak n-refined neutrosophic subspace of ��(�).

(b) It holds by similar argument.

Theorem 3.21: 

Let �:��(�)→ ��(�) be a strong n-refined neutrosophic homomorphism. Then 

(a) ���(�)is a strong n-refined neutrosophic subspace of ��(I).

(b) ��(�)is a strong n-refined neutrosophic subspace of ��(�).

Proof: 

(a) �is a module homomorphism since ��(�), ��(�) are modules over the n-refined neutrosophic field ��(�), hence
���(�) is a submodule of the vector space ��(�), thus ���(�) is a strong n-refined neutrosophic subspace of ��(�).

(b) Holds by similar argument.

Example 3.22: 

Let ���(�)= {�� + ���� + ����;	��, ��, �� ∈ ��}, ���(�)= {�� + ���� + ����;	��, ��, �� ∈ ��} be two weak 2-
refined neutrosophic vector space over the field R. Consider �:���(�)→ ��

�(�), where 

�[(�, �)+ (�, �)�� + (�, �)��] = (�, 0, 0)+ (�, 0, 0)�� + (�, 0, 0)��, � is a weak 2-refined neutrosophic 
homomorphism over the field R.

���(�)= {(0, �)+ (0, �)�� + (0, �)��;�, �, � ∈ �}. 

��(�)= {(�, 0,0)+ (�, 0,0)�� + (�, 0,0)��;�,�, � ∈ �}. 

Example 3.23: 

Let ��(�)= 	< (0,0,1)�� >	= {�.(0,0, �)��;� ∈ �, � ∈ ��(�)}, ��(�)= 	< (0,1,0)�� >	= {�.(0, �, 0)��;� ∈ �;� ∈
��(�)} be two strong 2-refined neutrosophic subspaces of the strong 2-refined neutrosophic vector space ���(�) over 

.� ∈ ��(�); �:��(�)→ ��(�);�[�(0,0, �)��] = �(0, �, 0)��(I). Define��refined neutrosophic field -2

�is a strong 2-refinedneutrosophic homomorphism: 

Let � = ��(0,0, �)��, � = ��(0,0, �)�� ∈ ��(�);	��, �� ∈ ��(�), we have 
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� + � = (�� + ��)(0,0, � + �)��, �(� + �)= (�� + ��).(0, � + �, 0)�� = �(�)+ �(�). 

Let � = � + ��� + ��� ∈ ��(�) be a 2-refined neutrosophic scalar, we have 

� ∙ � = � ∙ ��(0,0, �)�� + � ∙ ��(0,0, �)���� + � ∙ ��(0,0, �)���� = ��(0,0, �.� + �.� + �.�)��, 

�(�.�)= ��(0, �.� + �.� + �.�, 0)�� = � ∙ �(�), hence � is a strong 2-refined neutrosophic homomorphism. 

���(�)= (0,0,0)+ (0,0,0)�� + (0,0,0)��. 

��(�)= ��(�).

Remark 3.24: 

A union of two n-refined neutrosophic vector spaces ��(�)and��(�) is not supposed to be an n-refined neutrosophic 
vector space, since the addition operation can not be defined. For example consider � = ��,� = ��, � = 2. 

5. Conclusion

In this paper we have introducedthe concept of weak/strong n-refined neutrosophic vector space. Also, some related 
concepts such as weak/strong n-refined neutrosophic subspace, weak/strong n-refined neutrosophic homomorphism 
have been presented and studied. 
Future research  
Authors hope that some corresponding notions will be studied in future such as weak/strong n-refined neutrosophic 
basis, and AH-subspaces. 
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1. Introduction

Needs for commodities or products for human life explored and enhanced a revolution
in industrial sectors. An initially integrated mechanism for production to consumption

of commodities was only the goals of any firm. Decision policies concerning the pro-
duction and use of products were the prime concern. Therefore, systematic and
business-oriented managerial practices were designed for the flow of products, termed

as supply chain management (SCM). SCM is the procedure of procurement,

processing, distribution, and consumption of finished products in a clear planning
timescale. The general structural domain of SCM includes a raw material supplier
point, a manufacturing plant, a distribution center, and the end-users or customers.

These echelons are interconnected or interlocked to each other for the movement

of different materials and products. The organizational and managerial perspective
of SCM terminates at the end-users of finished products and terminates from ulti-
mately the next stages related to the three R’s (reduce, reuse, and recycle). End-of-
use and end-of-life products create various environmental issues due to improper man-

agement of used products. Consequently, harmful impacts due to landfills, contami-

nation of freshwater resources, and toxic air pollution generated on a large scale
influenced human life drastically. These issues could not be compensated at any cost.
To ensure that environmental questions and social concerns arise during supply chain
design, a government has taken the initiative and established laws that include whole-
some supply chain practices, termed as the closed loop supply chain (CLSC) network.
The CLSC design helps in strengthening the ecofriendly practices with end-of-use
products and reduces environmental impacts. Therefore, to reveal pervasiveness in
SCM, extension of echelons has been located. Hence the concept of the reverse chain
has been identified to execute backward processes for used products. Generally, the
reverse chain consists of different echelons, such as the collection center, recycling
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point, and disposal sites. The CLSC design contemplates the flow of different mate-

rials, products, and parts of the used commodity in a well-defined interconnected path.

Various facility centers in the reverse chain reduce the environmental impacts and

substantiates ecofriendly production-consumption planning scenarios. For successful

completion of sustainable trade practices, the significant role of the CLSC design net-

work would be crucial or at least prominent. Ultimate destinations for end-of-use and

end-of-life products would be more rigorously depicted in CLSC design. Refurbishing

and recycling centers inevitably provide services to the used products and parts to

transform into their useful life. The marginal reduction in different kinds of costs

and a significant increase in revenues are the counterpart for enhancement in net profit

throughout the CLSC planning network.

Consumerism has been a considerable part of the sustainability problem for years

by imposing a burden with harmful waste through flooding and landfill issues. The

CLSC business model implements highly efficient management of materials and

waste minimization strategies that lead to zero-waste generation. The CLSC manage-

ment network includes either putting all outputs back into the system or incineration.

A combination of forwarding and reverse material flows to reuse and recycle all

metals and transform waste into energy. The CLSC can enable manufacturers to take

a proactive stance toward and ensure easy compliance with electronic waste regula-

tions. Environmental value is the ease of agreement to be more conscious about the

environment. A CLSC can allow the business to respond to ecological concerns by

saving energy and decreasing the input of new materials. Consumer value can be

achieved by a well-organized customer product returns system that can help ensure

hassle-free warranties and improve customer loyalty. Improved parts management

helps the business deliver extended warranties and service agreements that can boost

customer satisfaction. The acquisition process in CLSC management provides valu-

able data on common production issues, supply defects, failure rates, product life-

cycle, consumer complaints, and consumer usage patterns. This information can be

used to improve product design and development. Minimize wastewater and indus-

trial sludge production by reducing the amount of water needed for the manufacturing

process. Procure raw material in bulk (where possible) to reduce the amount of pack-

aging material that enters the waste stream. Assure precautions to avoid the process

that causes hazardous waste to be mixed with nonhazardous waste, minimizing the

amount of dangerous waste that must be stored, treated, and disposed of. Practice

quality control strategies like ISI 14001 and Six Sigma to help minimize product

defects.

The implicitness of uncertainty is trivial in real-life scenarios. Inconsistent, incom-

plete, inappropriate, inexact, and improper information about various input parame-

ters such as costs, capacity, and demand in the CLSC design network lead to the

existence of uncertainty theory. Several aspects inherently affect the modeling and

optimizing procedure of real-life optimization problem. Abrupt changes in the prices

of raw materials, hike in fuel rates, increases in required facility locations, behavior of

fluctuating markets, competition among different companies’ policies for customer

satisfaction, environmental conditions, failing in timely shipment of ordered products,
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political and governmental policies regarding various taxes over procurement, pro-
duction, distribution, and management of end-of-use products are the most dominat-

ing factors for causing uncertainty in modeling approaches. Impreciseness may be
represented in different forms. The difficulty involved in parameters due to vague
information can be dealt with by different fuzzy techniques. Fuzziness among param-

eters most frequently encounters and results in uncertainty modeling. To reflect the
most common aspect of uncertainty, we have assumed that all the input parameters

are a triangular and trapezoidal fuzzy number rather than stochastic random vari-
ables. Defuzzification or the ranking function executes the process of obtaining
the crisp or deterministic version of a fuzzy number. A robust technique has been
used, which covers an extensive range of feasibility degrees. Most of the conven-
tional methods are limited to fuzzy-based solution schemes by defining the mar-

ginal evaluation of each objective using the membership function. Apart from
metaheuristic techniques, a tremendous number of research papers have investi-
gated and implemented the different fuzzy optimization techniques to obtain the
global compromise solution of the CLSC planning problems. A detailed list of such
fuzzy approaches can be found in Govindan et al. [1] and Govindan and Bouzon [2].
Here in this study, a neutrosophic fuzzy programming approach (NFPA) based on
the neutrosophic decision has been suggested to solve the proposed CLSC design
problem. Intuitionistic fuzzy imprecise preference relations among different objec-
tives have also been investigated and successfully incorporated with an NFPA
which is together termed as modified NFPA with intuitionistic fuzzy importance

relations.

The rest part of this chapter is as follows: In Section 15.2, a literature review related
to the CLSC network is presented whereas Section 15.3 highlights the significant
research contribution. Section 15.4 discusses the modeling CLSC design network
under uncertainty while Section 15.5 represents the solution methodology to solve
the final model. A real-life case study based on a laptop manufacturing firm is exam-

ined in Section 15.6, which shows the applicability and validity of the proposed
approach efficiently. Finally, conclusions are highlighted based on the present work
in Section 15.7.
2. Literature review

The CLSC planning problem has rapidly gained popularity among many researchers.
The complex and challenging situation during the flow of goods and products from
different sources to destination points has immensely attracted attention toward
emerging research scope for the optimal policy implementation or decision-making

processes to CLSC planning problems. Consequently, different approaches to solve
the CLSC planning model have been introduced, along with their promising features
in the context of optimality and applicability under different environments. Thus, here
we review some existing CLSC models under different uncertainty and discuss the
approaches adopted to solve them.
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A well-defined set of the interconnected network for the flow of multiple products

has also created a very complex configuration of multiechelon CLSC design. Most of

the existing studies have been presented on multiproduct and multiechelon CLSC

planning problems. Gupta and Evans [3] have addressed multiple-echelon CLSC

frameworks for electrical and electronic gadget scrap products. They designed a

weighted nonprimitive goal programming model for the CLSC model and solved

the proposed model with the aid of a discrete weighting scheme to the corresponding

goal preference. Pishvaee et al. [4] designed a robust optimization model for CLSC

configuration under randomly distributed parameters. The developed modeling

approach then turned into the deterministic mixed-integer linear programming model

and they solved this using a robust optimization technique. €Ozceylan and Paksoy [5]

also presented amixed-integer fuzzy mathematical model for CLSC under uncertainty

with multiparts and multiperiods. The fuzzy solution approach has been applied for

both fuzzy objectives and parameters with the help of a linear membership function.
€Ozkır and Başlıgil [6] developed amultiobjective CLSCmodel with particular empha-

sis on the satisfaction level of trade, customer, and net profit incurred over the current

product’s lifetime in the supply chain network. They adopted a fuzzy set (FS) theory-

based solution method to deal with the proposed CLSC model. Yin and Nishi [7] also

discussed an SCM problem with a quantity discount and uncertain demand at each

echelon. The constructed SCM model resulted in the form of a mixed-integer

nonlinear programming problem (MINLPP) with integral functions. An outer-

approximation method has been suggested to solve the MINLPP. An improvement

in efficiency performance has been achieved by reconstructing the MINLPP model

into a stochastic programming model with the replacement of integral functions by

incorporating the normalization method. €Ozceylan and Paksoy [8] addressed the

CLSC planning model under tactical and strategic decision scenarios. The developed

CLSC planning model has emerged as an MINLPP. They applied a fuzzy interactive

solution approach to solve the propounded CLSC network design. Garg et al. [9] also

designed a sustainable CLSC network with the core emphasis on environmental issues

raised after the end of use and end of life of the used products. They formulated a bio-

bjective integer nonlinear programming problem for the proposed CLSC network. The

solution scheme has been adopted and applied by balancing the trade-off between

socioeconomic and environmental aspects. The interactive multiobjective program-

ming approach has been used to obtain the optimal allocation of different products.

Alshamsi and Diabat [10] presented the reverse logistic (RL) system in the CLSC

design network. The proposed RL texture initiates at the customer level and terminates

at remanufacturing facilities in the reverse supply chain. The presented study was

found to be limited to the RLs system. They modeled the deterministic mixed-integer

linear programming problem with a single objective. A sustainable supply chain net-

work has been designed by Arampantzi and Minis [11] and incorporates various fac-

tors, such as social, capital investment, environmental, political, etc., that affect the

supply chain network directly and indirectly. They formulated a multiobjective

mixed-integer linear programming problem and solved it by using two different con-

ventional techniques: the goal programming method and the E-constrained method.
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Ma and Li [12] discussed a CLSCmodel for hazardous products under different uncer-

tain parameters. The motive was to determine the optimal quantity of a shipment

under a probabilistic environment. To address the scenario efficiently, the proposed

model has been reformulated as a two-stage stochastic programmingmodel along with

risk and reward constraints. The two solution approaches, the Parallel Enumeration

Method and the Genetic Algorithm (GA), have been applied to solve the designed

CLSC model.

Fard and Hajaghaei-Keshteli [13] also addressed a tri-level location-allocation

planning problem for a CLSC network. The modeling study undertaken comprises

three echelons: distribution center, customer zone, and recovery facility. The prop-

ounded tri-level CLSC planning model has been solved by using a Variable Neigh-

borhood Search, Tabu Search (TS), and Particle Swarm Optimization in addition to

these approaches; Fard and Hajaghaei-Keshteli further applied two recent meta-

heuristic algorithms, the Keshtel Algorithm and Water Wave Optimization, to obtain

a feasible solution to the location-allocation problem. Zhen et al. [14] also designed a

CLSC model with the capacitated allocation of products under uncertain demand for

new and returned merchandise. The proposed decision-making model turned into a

two-stage stochastic mixed-integer nonlinear programming problem (SMINLPP).

Thus, the transformed model resulted in the deterministic demand and capacities

parameters involved in the designed CLSC model. They also implemented the TS

algorithm to solve the SMINLPP. Tsao et al. [15] formulated a sustainable supply

chain design under economic and environmental objectives. The proposed supply

chain model has taken the form of a multiobjective mathematical programming prob-

lem under stochastic demand and fuzzy costs. An interactive two-phase fuzzy prob-

abilistic multiobjective programming problem has been introduced to deal with both

sorts of uncertainty. Hasanov et al. [16] addressed the optimal quantity of products

under four-level CLSC with a hybrid remanufacturing facility. The reverse chain

includes the recovered process, which ensures the reuse of used products at a different

level. The mathematical modeling framework has been carried out with a particular

emphasis on remanufactured or returned products, or both. The developed modeling

approach is aiming to minimize the overall cost incurred over the policies

implemented during a single time horizon. Fakhrzad et al. [17] presented multiple

products, periods, levels, and indices in the green CLSC planning model under uncer-

tainty. The propounded model was then transformed into the multiobjective mixed-

integer linear programming problem. Since the proposed model was NP-hard, to deal

with it Nondominated Sorting Genetic Algorithm-II (NSGA-II) has been adopted to

solve the proposed green CLSC network. Singh and Goh [18] also discussed the mul-

tiobjective mixed-integer linear programming problem under intuitionistic fuzzy

parameters. Further, they transformed the multiobjective optimization problem into

a single objective to solve the model. To achieve an acceptable satisfaction degree,

different scalarization techniques such as the γ-connective approach and minimum

sum bounded operator have been used. The proposed solution scheme has also been

implemented to solve the pharmaceutical SCM model. Fathollahi-Fard et al. [19]

designed a multiobjective stochastic CLSC model with an exclusive focus on the
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social issues associated with individual requirement and responsibility (such as job
opportunity). The addressed stochastic CLSC model has been solved by using a couple
of different nature-inspired algorithms and hybridized into the benefits of both, that is,
social and environmental domains. Liao [20] presented a reverse logistics network
design (RLND) for product recovery and remanufacturing processes. The proposed
model emerged into a conventional mixed-integer nonlinear programming model

for RLND under multiple echelons. The GA has been adopted as the solution method

of the proposed RLND model. The formulated modeling structure has been validated
and implemented with the help of the recycling bulk waste example in Taiwan.
Zarbakhshnia et al. [21] have also discussed the green closed loop logistics network
model as the mixed-integer linear programming problem. The undertaken study has
mainly been concerned with the multiple stages, products, and objectives in the pro-
posed model. A solution scheme, the E-constraint method, has been chosen to solve 
numerous targets. Dominguez et al. [22] also investigated the role of manufactured

and remanufactured products in the CLSC with capacitated constraints. The research
background explicitly reveals the four relevant uncertain factors to determine the effi-
ciency of executed policies in the system. A managerial insight has been propounded
that could contribute to understanding decision-making processes. Eskandarpour et al.
[23] presented a study on the literature review of approximately 80 research papers in
the field of CLSC planning problems. The chosen study area has been classified
based on four questions: (i) What kind of socioeconomic and environmental issues
have been included? (ii) How the problems related to the matters discussed have been
unified or integrated in the supply chain model? (iii) What sort of solution schemes

have been applied to solve the modeling problem? and (iv) Which numerical illus-
trations or computational studies have been taken from real-life applications? Fur-
thermore, the shortcomings and drawbacks of different models have been pointed
out, and consequently, the scope for future research has also been intimated. The
interested reader may refer to the recent publications by Govindan et al. [1] and
Govindan and Bouzon [2], based on reviewed work in the  reverse logistic  barrier
and drivers.
3. Research contribution

A tremendous amount of work has been developed and applied successfully on the
CLSC network in the last few decades. Only a few research works are available that
have included the testing center as a facility location for the dissembled parts/compo-

nents [3, 9]. Therefore, this chapter has put more emphasis on the reverse chain and is
mainly concerned with end-of-use products and end-of-life. The modified

neutrosophic fuzzy optimization techniques have been used for the first time in the
field of SCM.

The following are the significant and remarkable contributions to this presented
research work.
l The proposed CLSC planning model has been designed for multidimensional echelons, in

which five multiple echelons have been included in the forwarding chain, whereas six
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various echelons have been integrated into the reverse chain which shows the great concern

or influence regarding the end-of-use and end-of-life products. The different facility centers

in the reverse chain ensure that the CLSC planningmodel is socioeconomic and environmen-

tally friendly.
l The different objective functions have been presented to analyze the shares in total capital

investment over the raw materials and products in the forward and reverse chain individu-

ally. A new preference scheme has been investigated to achieve better outcomes for the

preferred objective functions.
l The uncertainty among parameters has been represented with fuzzy numbers and dealt with

the expected interval and expected values of the involved parameters. Three constraints have

been depicted with fuzzy equality in restrictions, which reveals the reality more closely. The

fuzzy equality constraints are then efficiently transformed into two subconstraints.
l The NFPA has been developed to solve the proposed CLSC designed model. The proposed

solution approach has been inspired by the indeterminacy degree that emerged in decision-

making processes. Indeterminacy/neutral thoughts are the region of negligence for proposi-

tions’ values, between the degree of acceptance and rejection. It is the first time that the

NFPA has been applied to solve the CLSC planning model.
l A novel intuitionistic fuzzy linguistic preference scheme has been investigated to assign

weight/preference to the most preferred objective functions. The intuitionistic fuzzy linguis-

tic preference relations have been efficiently integrated with an NFPA and termed as a

modified NFPA.
l The proposed CLSC designed model has been implemented on real case study data to show

the validity and applicability of the proposed solution methods. A variety of different

solutions sets has been generated and summarized under the optimal choices of quantity

allocation.
l The sensitivity analysis has also been performed on the obtained solution results based on the

feasibility degree β and crisp weight parameter α by tuning them at different values between

0 and 1.
l The significance of the obtained results has been analyzed along with the remarkable find-

ings. Conclusions and future research scope have been set out based on the present study.
4. Description of CLSC network

A well-organized systematic and interconnected network for the flow of materials,

products, and parts is much needed to survive in the competitive market. Production
processes explicitly adhere to the different perspectives of the finished products.
The conventional supply chain design initiates with the availability of raw resources
to finished goods and terminates at the consumption points. The globalization of mar-

kets, governmental legislation, and environmental practices creates many concerns for
the used products and leads to the existence of a CLSC that inherently ensures the best
management of end-of-use and end-of-life products. The efficiently expanded texture
of the supply chain network designed has been widely adopted by the decision maker(s)

with the inclusion of the reverse chain. Therefore, the CLSC network consists of two
phases: forward chain and reverse chain for the flow of material, products, and used
parts. In this study, a CLSC design is presented, which consists of five echelons in
the forward chain and six echelons in the reverse chain, which is shown in Fig. 15.1.
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The initialization of production processes starts with the procurement of raw mate-

rials from the storage center to the supplier point, which in turn supplies the relevant

raw materials to the manufacturing plant for the production of new products. After-

ward, the finished products are delivered to the distribution center to fulfill the demand

of customers or markets. Unlike the forward logistics flow, the reverse logistics flow

consists of a fewmore steps. The first step involves collecting defective products from

customers at the collection center. The end-of-use products are outsourced from dif-

ferent customers, either directly or via markets. Collection of used products initiates

the sustainable reverse chain, and collecting the used products maintains the flow

cycle of products into a different facility phase. The collection center is responsible

for the optimal distribution of used products for further required services. In most

cases, returns processors collect fewer defective products, undertake repairs at

refurbishing centers, and return them to the buyers. At this point, it is worth noting

that returns processors may remanufacture defective products and ship them back

to retailers and distributors, who in turn sell them to end users. Alternatively, returns

processors may recycle defective products to extract materials and parts that can be

reused in the production process by sending them to a disassembling center. Further,

the parts and materials are taken to a testing point for the inspection of their further

utility, and from there the elements that can be used to make new goods are sent back

to the hybrid manufacturing plant. On the other hand, only the parts that are recyclable

are shipped to the recycling point, and move forward through the supply chain until

they reach the end users. The final step involves any materials or parts that are not

utilized throughout the steps discussed earlier, which reach the disposal center for

incineration or dumping purposes.
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To and fro movement of materials, products, and parts throughout the CLSC net-

work contemplates over multifarious objectives associated with the entire phenome-

non. Procurement, processing, distribution, and transportation processes turn into a

significant investment in costs which should be optimized under optimal allocation

of the commodity. The cost of purchasing raw materials and used products is also

a measure of great concern. Delivery time of the finished products to the customers

must be reduced to overcome cancelations of ordered products. Revenues from sales

of new products and recyclable parts encourage the enhancement of shares in the net

profit. Hence the proposed CLSC model comprises multiple conflicting objectives

such as minimization of processing, purchasing, and transportation costs, minimiza-

tion of expected product delivery time, and maximization revenue from the selling of

the products.

The propounded CLSC planning network configuration is based on the following

postulated assumptions:

l The propounded CLSC network has been designed for multiple raw materials/parts multi-

products, and multiechelons along with single time horizons. Each facility location is well

established and functional for the associated services over the stipulated period.
l Movement of new products initiates frommanufacturing plants to customers, and the flow of

used products starts from customers to the disassembling center. Meanwhile, the recovered

products are also shipped after renovation to the distribution center. Therefore, the demand

for new and refurbished products is met through the distribution center only.
l Set-up costs associated with different echelons are assumed to be included in the processing

costs. Revenues are only derived from the selling prices of new products and recyclable

products, which turn into a contribution to the net profit.
l The disposal facility is the only route to remove the scrap parts/components from the

proposed CLSC planning model. The rest of the quantity is assumed to remain in its

useful life.
l Uncertainty among different parameters has been considered as fuzzy numbers. The fuzzy

linguistic term has assigned the preference among different objective functions.
Indices
 Descriptions
a
 The number of raw materials/parts/components storage points (a ¼ 1, 2,

…, A)

b
 The number of supplier points (b ¼ 1, 2, …, B)

c
 The number of manufacturing/remanufacturing plants (c ¼ 1, 2, …, C)

d
 The number of distribution center (d ¼ 1, 2, …, D)

e
 The number of customers/markets (e ¼ 1, 2, …, E)

f
 The number of collection center ( f ¼ 1, 2, …, F)

g
 The number of refurbishing/repairing center (g ¼ 1, 2, …, G)

h
 The number of disassembling center (h ¼ 1, 2, …, H)

i
 The number of raw materials/parts/components testing points

(i ¼ 1, 2, …, I)

j
 The number of recycling points ( j ¼ 1, 2, …, J)

k
 The number of disposal centers (k ¼ 1, 2, …, K)

l
 The number of different products (l ¼ 1, 2, …, L)
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m
 The number of raw materials/parts/components storage points

(m ¼ 1, 2, …, M)
Decision

variables
Descriptions
X1m,a,b
 The quantity of rawmaterialm shipped from rawmaterial storage point a to
supplier point b
X2m,b,c
 The quantity of raw material m shipped from supplier point b to

manufacturing plant c

X3l,c,d
 The quantity of different products l shipped from manufacturing plant c to

different distribution center d

X4l,d,e
 The quantity of different products l shipped from different distribution

center d to different customers/markets e

X5l,e, f
 The quantity of different used products l shipped from different customers/

markets e to collection center f

X6l, f,g
 The quantity of different repairable products l shipped from collection

center f to refurbishing center g

X7l,g,d
 The quantity of different recovered products l shipped from refurbishing

center g to different distribution center d

X8l, f,h
 The quantity of different unrepairable products l shipped from collection

center f to disassembling center h

X9m,h,i
 The quantity of parts/componentsm shipped from disassembling center h to

testing point i

X10m,i,c
 The quantity of raw material m shipped from testing point i to

manufacturing plant c

X11m,i, j
 The quantity of recyclable parts/componentsm shipped from testing point i

to recycling point j

X12m,i,k
 The quantity of scrap parts/components m shipped from testing point i to

disposal center k

X13m, j,a
 The quantity of recovered parts/components m shipped from recycling

point j to raw materials storage point a

Parameters
 Descriptions
rfl
 Recovery rate of used products l at refurbishing center
rcl,e
 Collection rate of used products l from customer or market e

rtm
 Testing rate of different parts/components m at testing center
rmm
 Reuse rate of different tested parts/components m at manufacturing plant
rrm
 Recycling rate of different recyclable parts/components m at recycling

center
rdm
 Disposal rate of raw materials/parts/components m at disposal center
Parameters
 Descriptions
PC1m,a
 Unit storage cost incurred over rawmaterialm at rawmaterial storage center a

PC2m,b
 Unit safety cost incurred over raw material m at supplier point b

PC3l,c
 Unit production cost levied over product l at manufacturing plant c

PC4l,d
 Unit inventory holding cost levied over product l at distribution center d

PC5l, f
 Unit collection facility cost levied over product l at collection center f

PC6l,g
 Unit refurbishing cost levied over product l at refurbishing center g

PC7l,h
 Unit disassembling cost levied over product l at disassembling center h

PC8m,i
 Unit testing cost levied over each component m at testing center i
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PC9m, j
 Unit recycling cost levied over raw material m at recycling point j

PC10m,k
 Unit disposal cost levied over each component m at disposal center k

TC1m,a,b
 Unit transportation cost of raw material m shipped from raw material storage

point a to supplier point b

TC2m,b,c
 Unit transportation cost of raw material m shipped from supplier point b to

manufacturing plant c

TC3l,c,d
 Unit transportation cost of different products l shipped from manufacturing

plant c to different distribution center d

TC4l,d,e
 Unit transportation cost of different products l shipped from different

distribution center d to different customer/market e

TC5l,e, f
 Unit transportation cost of different used products l shipped from different

customers/markets e to collection center f

TC6l, f,g
 Unit transportation cost of different repairable products l shipped from

collection center f to refurbishing center g

TC7l,g,d
 Unit transportation cost of different recovered products l shipped from

refurbishing center g to different distribution center d

TC8l, f,h
 Unit transportation cost of different unrepairable products l shipped from

collection center f to disassembling center h

TC9m,h,i
 Unit transportation cost of parts/components m shipped from disassembling

center h to testing point i

TC10m,i,c
 Unit transportation cost of parts/componentsm shipped from testing point i to

manufacturing plant c

TC11m,i, j
 Unit transportation cost of different recyclable parts/components m shipped

from testing point i to recycling point j

TC12m,i,k
 Unit transportation cost of disposable parts/components m shipped from

testing point i to disposal center k

TC13m, j,a
 Unit transportation cost of recovered parts/components m shipped from

recycling point j to raw materials storage point a

Tl,d,e
 Unit transportation time required to ship different products l from distribution

center d to different customers/markets e

PU1m
 Unit purchasing cost of raw materials/parts/components m

PU2l
 Unit purchasing cost of different used products l

SP1m
 Unit selling price of different recyclable parts/components m

SP2l
 Unit selling price of different new products l

MC1m,a
 Maximum available quantity of raw material m at raw material storage

center a

MC2m,b
 Maximum available quantity of raw material m at supplier b

MC3m,c
 Minimum required quantity of raw material m at manufacturing plant c

MC4l,d
 Maximum available quantity of new products l at distribution center d

MC5l,e
 Minimum demand quantity of different new products l by customers or at

markets e

MC6l, f
 Maximum collection capacity of different used products l at collection

center f

MC7l,g
 Maximum refurbishing capacity of different repairable products l at

refurbishing center g

MC8m,h
 Maximum disassembling capacity of different parts/components m at

disassembling center h
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MC9m,i
 Maximum testing capacity different scrap parts/components m at testing

point i

MC10m, j
 Maximum capacity of recyclable parts/components m at recycling point j

MC11m,k
 Maximum disposal capacity of disposable parts/components m at disposal

center k
4.1 Multiple objective function

The typical and efficient CLSC model always comprises multiple conflicting objec-
tives for both forward and reverse chains, which are to be attained simultaneously.

Here, we highlight the different costs associated with ahead and change strings sep-
arately to analyze the echelon-wise effects in terms of expenditure on the overall
CLSC planning problem.

Objective 1: Total processing costs. Initially, the raw materials have been stored at
a raw material storage center to ensure the smooth running of the CLSC design. The
processing cost indicates the different sort of value at each echelon such as storage
cost at the raw material storage center, safety cost at the supplier point, production
cost at the manufacturing center and inventory or distribution cost at the distribution
center, levied on the unit raw material or new products. The significant reduction in
these processing costs automatically results in the maximum margin of profit. The
reverse chain also contains multiple echelons with different processing costs associ-
ated with them. Here, the processing cost refers to the value of the collection at the
collection center, the cost of disassembly at the disassembling center, the refurbishing
cost at the refurbishing center, the cost of testing at the testing center, the cost of
recycling at the recycling center, and the disposal cost at the disposal point, respec-
tively. The designed network facility executed by each echelon ensures that the com-

monly used products in the reverse supply chain survive at their end-of-life use or
disposable condition. Thus the first objective function ensures the minimization of
the processing costs at different echelon in the forward chain under the optimal quan-
tity allocation.
Minimize Z1 ¼
XM
m¼1

XA
a¼1

PC1m,aX1m,a,b +
XM
m¼1

XB
b¼1

PC2m,bX2m,b,c

+
XL
l¼1

XC
c¼1

PC3l,cX3l,c,d +
XL
l¼1

XD
d¼1

PC4l,dX4l,d,e

+
XL
l¼1

XF
f¼1

PC5l, f X5l,e, f +
XL
l¼1

XG
g¼1

PC6l,gX6l, f ,g

+
XL
l¼1

XH
h¼1

PC7l,hX8l, f ,h +
XM
i¼1

XI
i¼1

PC8m, iX10m, i,c

+
XM
m¼1

XJ
j¼1

PC9m, jX11m, i, j +
XM
m¼1

XK
k¼1

PC10m,kX12m, i,k 8 c, f ,g,h,a,b,c,d,e, i:
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Objective 2: Total transportation costs.
The transportation cost is one of the well-known objective functions under CLSC

design. Typical and interconnected transportation networks within each echelon in

CLSC design yield high transportation costs. In the forward chain, the shipment of

raw material from the raw material storage point to the supplier point and from the

supplier point to the manufacturing plant integrates the marginal shares in the total

transportation cost. The delivery of new products from the manufacturing plant to

the distribution center and from the distribution center to customers also has a signif-

icant role in attaining the gross profit in the proposed CLSC network. The propounded

CLSC network has put more emphasis on the reverse chain by including more facility

locations compared to the forward chain. The to and fro shipment of used products and

raw parts/components results in high transportation costs. The reverse chain network

allows the recovered products and tested parts/components to enter into the forward

chain directly from the refurbishing center to the distribution center and from the test-

ing point to the manufacturing plant without touching the recycling facility. Hence to

and fro shipment of products and parts/components frommultiple different echelons is

turned into high transportation costs. Therefore, the second objective function results

in the minimization of to and fro transportation costs to varying echelons in the for-

ward chain for the maximum shipment quantity of products under the optimal alloca-

tion policy.
Minimize Z2 ¼
XM
m¼1

XA
a¼1

XB
b¼1

TC1m,a,bX1m,a,b +
XM
m¼1

XB
b¼1

XC
c¼1

TC2m,b,cX2m,b,c

+
XL
l¼1

XC
c¼1

XD
d¼1

TC3l,c,dX3l,c,d +
XL
l¼1

XD
d¼1

XE
e¼1

TC4l,d,eX4l,d,e

+
XL
l¼1

XE
e¼1

XF
f¼1

TC5l,e, f X5l,e, f +
XL
l¼1

XF
f¼1

XG
g¼1

TC6l, f ,gX6l, f ,g

+
XL
l¼1

XG
g¼1

XD
d¼1

TC7l,g,dX7l,g,d

+
XL
l¼1

XF
f¼1

XH
h¼1

TC8l, f ,hX8l, f ,h +
XM
m¼1

XI

i¼1

XH
h¼1

TC9m,h, iX9m,h, i

+
XM
m¼1

XI

i¼1

XC
c¼1

TC10m, i,cX10m, i,c

+
XM
m¼1

XI

i¼1

XJ
j¼1

TC11m, i, jX11m, i, j +
XM
m¼1

XI

i¼1

XK
k¼1

TC12m, i,kX12m, i,k

+
XM
m¼1

XJ
j¼1

XA
a¼1

TC13m, j,aX13m, j,a:
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Objective 3: Total purchasing cost of used products and raw materials.
In this proposed CLSC design, the purchasing of raw material and used products at

two echelons has been allowed. The purchasing cost of rawmaterials from the supplier

point and the purchasing cost of used products from customers yields the total pur-

chasing cost. However, these costs leave a significant margin among the new out-

sourced products by contributing less operational costs on the recovered products.

Therefore, the third objective function ensures the minimization of the total purchas-

ing cost of raw materials and different used products from suppliers and customers to

maintain the efficiency of the manufacturing plant.
Minimize Z3 ¼
XM
m¼1

PU1mX2m,b,c +
XL
l¼1

PU2lX5l,e, f 8 b,c,e, f :

ctive 4: Products delivery time.
Obje
The most critical issue in CLSC design is to determine the optimal time policy during

the whole process. Notably, the shipment time of new products from the distribution

center to different customers must be attained under the stipulated delivery period at

the time of the ordered quantity. The goodwill and reputation of the company are

strongly connected with delivery time. The latter also reduces the loss of any perish-

able products that happens due to delay. Moreover, cancelation from the customers’

side would be almost negligible with the timely transshipment of the products. Hence-

forth, the fourth objective dynamically ensures the minimization of the total shipment

time of different new products from the distributor to customers to maintain the rep-

utation and reliability of the company.
Minimize Z4 ¼
XL
l¼1

XD
d¼1

XE
e¼1

Tl,d,eX4l,d,e 8 d,e:

ctive 5: Revenues from the sale of new products and recyclable parts/
Obje
components.
By the significant increase in the sales ratio of new products and recyclable parts/

components, a marginal profit could be extracted. Selling of new products at higher

quantities covers the maximum part of the capital investment during the production

and distribution processes—recyclable parts/components are also a reliable source

of profit from its sales. The selling price of the new products has a significant contri-

bution toward the net profit and simultaneously yields in the contribution to gross

profit. Thus the fifth or last objective function ensures the maximization of new prod-

ucts selling to survive in the competitive market with the maximum turnover of the

new products under the optimal production policy.
Maximize Z5 ¼
XM
m¼1

SP1mX11m, i, j +
XL
l¼1

SP2lX4l,d,e 8 i, j,d,e:
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4.2 Constraints

The following are the relevant constraints or restrictions under which the objective
functions are to be optimized by yielding the most promising and systematic strategies
for allocating different raw materials or parts/components and various products
among multiple echelons in the proposed CLSC designed model. For the sake of con-
venience, we have categorized all the constraints under six different groups, and these
can be summarized as follows.
4.2.1 Constraints related to the capacity of different
echelons in the CLSC network

The procurement of raw materials initiates from the raw material storage center where

the abundance or stock of raw materials has been kept to fulfill the demand from

suppliers. Therefore, the total shipment quantity of different raw materials from the

raw materials storage center to the supplier must not exceed its capacities and can

be represented by Eq. (15.1). Supplier points also have a limited ability for the flow

of different raw materials to maintain the intake and outsourced ratio. It is essential for

the supplier to hold some raw materials for distribution at times of scarcity, when raw

material storage functioning is interrupted over a stipulated time. Hence the con-

straints imposed over the number of raw materials shipped from the supplier point

to a different manufacturing plant must less than or equal to the capacity of suppliers

and can be presented by Eq. (15.2). The collection of used products from different

customers starts the key functioning role of the reverse chain. It is the very first stage

at which the end-of-use products are collected by the collection center. It must be

assured that the accumulation quantity of used products from different customers must

be less than or equal to the capacity of various collection centers and can be represen-

ted by Eq. (15.3). A well-organized system of collection centers provides frequent ser-

vices to the used products so that all the end-of-use products are refurbished and can be

used further without significantly affecting the demand. After ensuring the required

services for used products, it has been allowed to ship the used merchandise from

the collection center to the refurbishing center for renovating processes. Hence the

total quantity of used products must not exceed the capacity of the refurbishing center

and can be given in Eq. (15.4). The number of used products that need testing services

for their further utilization has been shipped to the disassembling facility to disassem-

ble the used products into different components or parts. To ensure that the number of

used products which have been sent for dismantling purpose must be less than or equal

to its capacity and can be represented by Eq. (15.5). After completing the required test

for the parts/components, the recyclable quantity of parts/components has been sent to

the recycling facility, which denotes the last echelon of the CLSC network. To ensure

the number of recyclable parts/components received from different testing points must

not exceed the maximum capacity of the recycling center and can be stated in Eq.

(15.6). After testing procedures, end-of-life parts or components are declared as dis-

posable parts/components and shipped to the disposal center in good time to reduce

environmental issues. Hence to avoid the burden on landfills and underground
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disposal, the number of disposable parts/components must not exceed the maximum

disposal capacity at the disposal center and this can be represented by Eq. (15.7). After

recycling processes, the parts/components are transformed into new rawmaterials and

ready the shipment to the raw material storage center. To fulfill the stock capacity of a

natural material storage center, the number of raw materials must be greater than or

equal to its minimum storage capacity for the smooth running of the production

system, and this can be represented by Eq. (15.8).
XB
b¼1

X1m,a,b �MC1m,a 8 m,a, (15.1)
XC

c¼1

X2m,b,c �MC2m,b 8 m,b, (15.2)
XE

e¼1

rcl,eX5l,e, f �MC6l, f 8 l, f , (15.3)
XG

g¼1

X6l, f ,g �MC7l,g 8 l,g, (15.4)
XH

h¼1

X8l, f ,h �MC8l,h 8 l,h, (15.5)
XI
i¼1

rrmX11m, i, j �MC10m, j 8 m, j, (15.6)
XI
i¼1

rdmX12m, i,k �MC11m,k 8 m,k, (15.7)
XJ

j¼1

X13m, j,a �MC1m,a 8 m,a: (15.8)
4.2.2 Constraints related to production requirement

An efficient production system is an integral part of the CLSC network. Hybrid
manufacturing/remanufacturing plants play a vital role in the optimal production of
new products. Therefore, particular minimum requirements must be met to start the
production processes. To ascertain the minimum condition of raw materials from
two sources, the supplier point and testing center, the number of raw materials from
two references must be greater than or equal to their production capacity at different
manufacturing plants, and this can represented by Eq. (15.9).
XB
b¼1

X2m,b,c +
XI

i¼1

rmmX10m, i,c �MC3m,c 8 m,c: (15.9)

722



Florentin Smarandache (author and editor) Collected Papers, VIII
4.2.3 Constraints related to maximum inventory at the
distribution center

The distribution center is responsible for the shipment of products to different cus-

tomers/markets. The demand for a new product is uncertain and only can be predicted

based on previous information. Thus, to avoid the inventory cost and ascertain the

maximum capacity restriction at the distribution center, the incoming products from

manufacturing plants as well as refurbishing centers must be less than or equal to the

maximum capacity of inventory at the distribution center, and this can be achieved by

Eq. (15.10).
XC
c¼1

X3l,c,d +
XG
g¼1

rflX7l,g,d �MC4l,d 8 l,d: (15.10)
4.2.4 Constraints related to demand of new and refurbished
products

The most important and critical aspect of integrated CLSC is to fulfill the demand of

customers or markets. The need for products is seldom stable. However, it can be

predicted through prior information from the demand pattern. The only distribution

center is responsible for the delivery of new products to the customers in this proposed

CLSC network. To ensure this, the number of shipped products from the distribution

center to different markets must be higher than its tentative demand over the stipulated

ordered period, and this can be represented by Eq. (15.11).
XE
e¼1

X4l,d,e �MC5l,e 8 l,e: (15.11)
4.2.5 Constraints related to the testing capacity at testing
facility centers

The testing facility has been designed for taking the final decision over the parts or

components regarding at which echelon they are to be transported. From a testing

point, there are three facility options for the processing of tested parts/components.

The manufacturing plant, recycling center, and disposal center have been structured

for the final termination of the reverse supply chain. Hence the total sum of the number

of parts/components that are transported from the testing plant to different facility

locations must be less than or equal to the maximum capacity of the testing point,

and this can be represented by Eq. (15.12).
XC
c¼1

rtmX10m, i,c +
XJ
j¼1

rtmX11m, i, j +
XK
k¼1

rtmX12m, i,k �MC9m, i 8 m, i: (15.12)
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4.3 Proposed CLSC model formulation under uncertainty

The formulation of different conflicting objective functions and with some dynamic

constraints under the proposed CLSC network has been presented in previous sec-
tions. Usually, the modeling texture of the CLSC network has been regarded as deter-
ministic, which means that all the introduced parameters and constraints are known
and predetermined well in advance. However, it is often observed that a deterministic

modeling approach under CLSC design may not be an appropriate framework in
decision-making processes. The typical multiechelon interconnected CLSC design
model inherently yields some uncertainty. Impreciseness, vagueness, ambiguousness,

randomness, incompleteness, etc., are the most common and frequent issues in the
CLSC model. Different factors are responsible for the creation of uncertainty in
the modeling of the CLSC network. Random fluctuation in the demand quantity, com-

petitive market scenario, natural tragedy, variation in different kinds of costs, etc., laid
down the base of uncertainty. In various adverse circumstances, the complete infor-
mation about different parameters is not predetermined, but some inconsistent,
improper, and incomplete information may be available to determine the deterministic

value of the parameters. Uncertainty may exist in different forms, such as fuzzy, sto-
chastic, and other types of risk. Vagueness or ambiguousness is responsible for fuzzy
parameters which can be dealt with using the fuzzy techniques, whereas randomness

gives birth to the stochastic parameters and can be quickly sorted out by using stochas-
tic programming techniques with known means and variances of the parameters.

Therefore, to highlight the most critical insight of the uncertainty, we have incorpo-
rated fuzzy parameters and few fuzzy equality constraints in the proposed CLSC
designed network. Various cost parameters, such as processing costs, transportation
costs, purchasing cost, selling prices, and time, have been taken as fuzzy parameters.

The capacities or volumes of different echelons are also considered as fuzzy numbers.

Inequality restrictions imposed over different constraints may avoid some aspects of
getting better results from the CLSC planning model. Flexibility, among some

preferred limitations, has been postulated to reveal reality more clearly. Hence we
have developed a couple of fuzzy equality constraints (¼e) which means 
“essentially equal to” which signifies that the restrictions should more or less be sat-
isfied and are more flexible than inequality constraints (Eqs. 15.22–15.24). The cus-
tomer demand constraint has been assured with fuzzy equality constraints due to the
change in utility or satisfaction behavior of the customers. The disposal facility is a
single way for the removal of scrap parts/components out of the CLSC network.
The testing facility plays a vital role in inspecting different parts/components. The
optimum allocation of used parts/products has been decided at the testing facility
point. Three various service destinations have been designed for the parts/components

according to their potential utility after inspection. Therefore, more or less shipment

quantity of parts/components is justifiable to ensure the optimum allocation to differ-
ent facility centers. Hence, the proposed model with multiple objective functions and
various constraints under uncertainty has been presented in model M1.
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XM XA XM XB

M1 :
 Minimize Z1 ¼

m¼1 a¼1

gPC1m,aX1m,a,b +
m¼1 b¼1

gPC2m,bX2m,b,c
+
XL
l¼1

XC
c¼1

gPC3l,cX3l,c,d +XL
l¼1

XD
d¼1

gPC4l,dX4l,d,e
+
XL
l¼1

XF
f¼1

gPC5l, f X5l,e, f +XL
l¼1

XG
g¼1

gPC6l,gX6l, f ,g
+
XL
l¼1

XH
h¼1

gPC7l,hX8l, f ,h +XM
i¼1

XI

i¼1

gPC8m, iX10m, i,c
+
XM
m¼1

XJ
j¼1

gPC9m, jX11m, i, j +XM
m¼1

XK
k¼1

gPC10m,kX12m, i,k
Minimize Z2 ¼

XM
m¼1

XA
a¼1

XB
b¼1

gTC1m,a,bX1m,a,b +XM
m¼1

XB
b¼1

XC
c¼1

gTC2m,b,cX2m,b,c
+
XL
l¼1

XC
c¼1

XD
d¼1

gTC3l,c,dX3l,c,d +XL
l¼1

XD
d¼1

XE
e¼1

gTC4l,d,eX4l,d,e
+
XL
l¼1

XE
e¼1

XF
f¼1

gTC5l,e, f X5l,e, f +XL
l¼1

XF
f¼1

XG
g¼1

gTC6l, f ,gX6l, f ,g
+
XL
l¼1

XG
g¼1

XD
d¼1

gTC7l,g,dX7l,g,d
+
XL
l¼1

XF
f¼1

XH
h¼1

gTC8l, f ,hX8l, f ,h +XM
m¼1

XI

i¼1

XH
h¼1

gTC9m,h, iX9m,h, i
+
XM
m¼1

XI

i¼1

XC
c¼1

gTC10m, i,cX10m, i,c +XM
m¼1

XI

i¼1

XJ
j¼1

gTC11m, i, jX11m, i, j
+
XM
m¼1

XI

i¼1

XK
k¼1

gTC12m, i,kX12m, i,k +XM
m¼1

XJ
j¼1

XA
a¼1

gTC13m, j,aX13m, j,a
Minimize Z3 ¼

XM
m¼1

gPU1mX2m,b,c +
XL
l¼1

gPU2lX5l,e, f

Minimize Z4 ¼
XL
l¼1

XD
d¼1

XE
e¼1

eTl,d,eX4l,d,e

Maximize Z5 ¼
XM
m¼1

gSP1mX2m,b,c +XL
l¼1

gSP2lX5l,e, f
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subject to
XB
b¼1

X1m,a,b � gMC1m,a, (15.13)
XC

c¼1

X2m,b,c � gMC2m,b, (15.14)
XB XI
b¼1

X2m,b,c +
i¼1

rmmX10m, i,c � gMC3m,c, (15.15)
XC XG

c¼1

X3l,c,d +
g¼1

rflX7l,g,d � gMC4l,d, (15.16)
XE

e¼1

rcl,eX5l,e, f � gMC6l, f , (15.17)
XG

g¼1

X6l, f ,g � gMC7l,g, (15.18)
XH

h¼1

X8l, f ,h � gMC8l,h, (15.19)
XI
i¼1

rrmX11m, i, j � gMC10m, j, (15.20)
XJ

j¼1

X13m, j,a � gMC1m,a, (15.21)
XE

e¼1

X4l,d,e e¼ gMC5l,e, (15.22)
XI
i¼1

rdmX12m, i,k e¼ gMC11m,k, (15.23)
XC XJ XK

c¼1

rtmX10m, i,c +
j¼1

rtmX11m, i, j +
k¼1

rtmX12m, i,k e¼ gMC9m, i: (15.24)

re notations (e:) over different parameters represent the triangular/trapezoidal
Whe

fuzzy number for all indices’ sets, the fuzzy crisp inequality constraint has been

described by (�, �). The fuzzy equality constraints indicate that more or less attain-

ment has been represented by ( e¼) for the given indices’ sets.
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5. Solution methodology

5.1 Treating fuzzy parameters and constraints

The addressed CLSC mathematical model inherently involves some vagueness and
ambiguousness in the value of different parameters such as costs, capacity, revenues,
etc. Defuzzification and the ranking function are the processes to obtain crisp versions
of the fuzzified parameters based on the upper and lower magnitude of the vague
parameters. On the other hand, the vagueness or uncertainty present in the equality
or inequality constraints also needs to be defuzzified, and then converted into the strict
crisp equality or inequality form of the constraints. To deal with vague or fuzzy
parameters and constraints, different defuzzification techniques have been used in
the literature. Among all the defuzzification approaches for uncertain parameters

and constraints, Jim�enez [24] and Jim�enez et al. [25] discussed the combo
defuzzification or ranking approach, which deals efficiently with the vague parame-

ters as well as vague constraints. They also elaborately discussed the strong justifica-
tion for ranking approaches with the help of different properties such as robustness,
distinguishability, fuzzy or linguistic notations, and rationality. Later on, it has been
extensively used by many researchers (see [25–27]). Without more justification on the
ranking function, this chapter has adopted the defuzzification or ranking function for
both vague parameters and constraints based on the Jim�enez [24] approaches.

Definition 15.1. Jim�enez et al. [25]
An FS defined over any universe of discourse is said to be a fuzzy number if the mem-

bership function is increasing semicontinuously in the upper interval and decreasing
semicontinuously in the lower range, respectively. Therefore, the membership func-
tion of a fuzzy number along with fϕ(x) and gϕ(x), which are the left- and right-hand
sides of the membership function, can be given as follows:
μϕðxÞ¼

0 if x�ϕ1 or x�ϕ4

fϕðxÞ if ϕ1 � x�ϕ2

gϕðxÞ if ϕ3 � x�ϕ4

1 if ϕ2 � x�ϕ3

,

8>>>><
>>>>:

(15.25)

e
where ϕ¼ðϕ1,ϕ2,ϕ3,ϕ4;1Þ represents a fuzzy number. A fuzzy numbereϕ¼ðϕ1,ϕ2,ϕ3,ϕ4Þ is said to be trapezoidal if fϕ(x) and gϕ(x) exist. Also, if ϕ2 ¼
ϕ3, then one can obtain a triangular fuzzy number.

Definition 15.2. Jim�enez et al. [25]

The representation of an expected interval for the fuzzy number eϕ can be provided as

follows:
EIðeϕÞ¼ ½Eϕ
1 ,E

ϕ
2 � ¼

Z 1

0

f�1
ϕ ðxÞdx,

Z 1

0

f�1
ϕ ðxÞdx

� �
: (15.26)
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The half point of the expected interval of the fuzzy number eϕ is termed as its expected

value and can be shown as follows:
EVðeϕÞ¼ Eϕ
1 +E

ϕ
2

2

" #
: (15.27)

ce the expected interval and expected value for a trapezoidal fuzzy number
Heneϕ¼ðϕ1,ϕ2,ϕ3,ϕ4Þ can be obtained as follows:
EIðϕÞ ¼ ϕ1 +ϕ2

2
,
ϕ3 +ϕ4

2

� �
, (15.28)

� �

EVðϕÞ ¼ ϕ1 +ϕ2 +ϕ3 +ϕ4

4
: (15.29)

e
For any trapezoidal fuzzy number ϕ¼ðϕ1,ϕ2,ϕ3,ϕ4Þ, if ϕ2 ¼ ϕ3 (say ϕ) then it

reduces into a triangular fuzzy number eϕ¼ðϕ1,ϕ,ϕ4Þ and; its expected interval

and expected value can be derived as follows:
EIðϕÞ ¼ ϕ1 +ϕ

2
,
ϕ+ϕ4

2

� �
, (15.30)
EVðϕÞ ¼ ϕ1 + 2ϕ +ϕ4

4

� �
: (15.31)
Definition 15.3. Jim�enez et al. [25]

Suppose that there are two fuzzy eϕ and eψ such that both have semicontinuous increas-

ing and decreasing membership functions for upper and lower intervals, then the

degree in which eϕ is greater than eψ can be easily pointed out by constructing the

following membership function:
δVðeϕ,eψ Þ¼
0 if Eϕ

2 �Eψ
1 < 0

Eϕ
2 �Eψ

1

Eϕ
2 �Eψ

1 �ðEϕ
1 �Eψ

2 Þ
if 02 ½Eϕ

1 �Eψ
2 ,E

ϕ
2 �Eψ

1 �

1 if Eϕ
2 �Eψ

1 > 0

,

8>>><
>>>: (15.32)

ϕ ϕ ψ ψ e
where [E1, E2] and [E1 , E2 ] represent the expected intervals of ϕ and eψ . If

δVðeϕ,eψ Þ¼ 0:5, then one can say that both eϕ and eψ are indifferent.

Consequently, if δVðeϕ,eψ Þ� β, then one can say that eϕ is greater than or equal to eψ ,
at least in a degree β, and can be mathematically represented as eϕi�βeψ i.
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Definition 15.4. Jim�enez et al. [25]

Introducing a decision vector X such that x2Rn, then we can assign a feasibility degree

β if for at least
min
i2V

½δVðeϕiX,eψ iÞ� ¼ β, (15.33)

e e e e
where ϕi ¼ðϕi1,ϕi2,…,ϕivÞ.
Intuitionally, in another sense, it can be written as
eϕiX�βeψ i 8 i¼ 1,2,…,v: (15.34)

rporating the concept of (Jim�enez et al. [25]) in the above inequality, equivalently
Inco

we have
E
ϕiX
2 �E

ψ i

1

E
ϕiX
2 �E

ψ i

1 �ðEϕiX
1 �E

ψ i

2 Þ
� β 8 i¼ 1,2,…,v: (15.35)

implifying the above inequality equation, the equivalent inequality relations with
On s

feasibility degree β have been derived as follows:
ðð1�βÞEϕi

2 + βEϕi

1 ÞX�ðβEψ i

2 + ð1�βÞEψ i

1 Þ: (15.36)

hermore, it can be concluded that the β-feasible fuzzy equalities, such as
Furt
eϕiX e¼β eψ i 8 i¼ v+ 1,v+ 2,…,V, (15.37)

lso be defuzzified in a similar fashion to the ranking function approach for fuzzy
can a

inequalities and can be given as follows:� �� � � �� �

1�β

2
E
ϕi

2 +
β

2
E
ϕi

1 X� β

2
E
ψ i

2 + 1�β

2
E
ψ i

1 , (15.38)

� �� � � �� �

β

2
E
ϕi

2 + 1�β

2
E
ϕi

1 X� 1�β

2
E
ψ i

2 +
β

2
E
ψ i

1 : (15.39)

efore, the fuzzy equality constraints result in the doubly crisp auxiliary inequality
Ther

constraints for representing the restrictions with half of the β-feasibility degree by

balancing an equilibrium state for the fuzzy equality constraints.

In order to obtain the crisp version of the proposed CLSC model, we have used the

expected values [25] of the triangular fuzzy parameters present in the objective func-

tions such as transportation cost, processing cost, purchasing cost, time, and revenues,

whereas the trapezoidal fuzzy parameters such as different capacities involved in the

constraints have been defuzzified by using the concept of the expected interval [25] of

the parameters. Based on the above-discussed defuzzification approaches, the fuzzy
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parameters and constraints have been converted into their crisp versions, which has

been also shown in Table 15.1.
M2 : Minimize Z1¼
XM
m¼1

XA
a¼1

EVðgPC1Þm,aX1m,a,b +
XM
m¼1

XB
b¼1

EVðgPC2Þm,bX2m,b,c

+
XL
l¼1

XC
c¼1

EVðgPC3Þl,cX3l,c,d +XL
l¼1

XD
d¼1

EVðgPC4Þl,dX4l,d,e
+
XL
l¼1

XF
f¼1

EVðgPC5Þl, f X5l,e, f +XL
l¼1

XG
g¼1

EVðgPC6Þl,gX6l, f ,g

+
XL
l¼1

XH
h¼1

EVðgPC7Þl,hX8l, f ,h +XM
i¼1

XI
i¼1

EVðgPC8Þm, iX10m, i,c

+
XM
m¼1

XJ
j¼1

EVðgPC9Þm, jX11m, i, j +
XM
m¼1

XK
k¼1

EVð gPC10Þm,kX12m, i,k

Minimize Z2¼
XM
m¼1

XA
a¼1

XB
b¼1

EVðgTC1Þm,a,bX1m,a,b +
XM
m¼1

XB
b¼1

XC
c¼1

EVðgTC2Þm,b,cX2m,b,c

+
XL
l¼1

XC
c¼1

XD
d¼1

EVðgTC3Þl,c,dX3l,c,d +XL
l¼1

XD
d¼1

XE
e¼1

EVðgTC4Þl,d,eX4l,d,e
+
XL
l¼1

XE
e¼1

XF
f¼1

EVðgTC5Þl,e, f X5l,e, f +XL
l¼1

XF
f¼1

XG
g¼1

EVðgTC6Þl, f ,gX6l, f ,g

+
XL
l¼1

XG
g¼1

XD
d¼1

EVðgTC7Þl,g,dX7l,g,d +XL
l¼1

XF
f¼1

XH
h¼1

EVðgTC8Þl, f ,hX8l, f ,h

+
XM
m¼1

XI
i¼1

XH
h¼1

EVðgTC9Þm,h, iX9m,h, i +
XM
m¼1

XI
i¼1

XC
c¼1

EVð gTC10Þm, i,cX10m, i,c

+
XM
m¼1

XI
i¼1

XJ
j¼1

EVð gTC11Þm, i, jX11m, i, j +
XM
m¼1

XI
i¼1

XK
k¼1

EVð gTC12Þm, i,kX12m, i,k

+
XM
m¼1

XJ
j¼1

XA
a¼1

EVð gTC13Þm, j,aX13m, j,a

Minimize Z3¼
XM
m¼1

EVðgPU1ÞmX2m,b,c +
XL
l¼1

EVðgPU2ÞlX5l,e, f

Minimize Z4¼
XL
l¼1

XD
d¼1

XE
e¼1

EVðeTÞl,d,eX4l,d,e
Maximize Z5¼

XM
m¼1

EVðgSP1ÞmX2m,b,c +
XL
l¼1

EVðgSP2ÞlX5l,e, f
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Table 15.1 Information regarding triangular/trapezoidal fuzzy parameters.

Fuzzy parameter Triangular/trapezoidal fuzzy number EI(:)¼ [E
(:)
1 ,E

(:)
2 ] EV(.)

gPC��,� ðPC�ð1Þ�,� ,PC�ð2Þ�,� ,PC�ð3Þ�,�Þ PC�ð1Þ�,� +PC�
ð2Þ
�,�

2
,
PC�ð2Þ�,� +PC�

ð3Þ
�,�

2

� �
PC�ð1Þ�,� + 2PC�

ð2Þ
�,� +PC�

ð3Þ
�,�

4

gTC��,�,� ðTC�ð1Þ�,�,� ,TC�ð2Þ�,�,� ,TC�ð3Þ�,�,�Þ TC�ð1Þ�,�,� + TC�
ð2Þ
�,�,�

2
,
TC�ð2Þ�,�,� + TC�

ð3Þ
�,�,�

2

� �
TC�ð1Þ�,�,� + 2TC�

ð2Þ
�,�,� +TC�

ð3Þ
�,�,�

4

eT �,�,� ðTð1Þ
�,�,�,T

ð2Þ
�,�,�,T

ð3Þ
�,�,�Þ T

ð1Þ
�,�,� + T

ð2Þ
�,�,�

2
,
T
ð2Þ
�,�,� + T

ð3Þ
�,�,�

2

� �
T
ð1Þ
�,�,� + 2T

ð2Þ
�,�,� + T

ð3Þ
�,�,�

4

gPU��,� ðPU �ð1Þ�,� ,PU �ð2Þ�,� ,PU�ð3Þ�,�Þ PU�ð1Þ�,� +PU�ð2Þ�,�
2

,
PU�ð2Þ�,� +PU�ð3Þ�,�

2

� �
PU�ð1Þ�,� + 2PU�ð2Þ�,� +PU�ð3Þ�,�

4

gSP��,� ðSP�ð1Þ�,� ,SP�ð2Þ�,� ,SP�ð3Þ�,�Þ SP�ð1Þ�,� + SP�
ð2Þ
�,�

2
,
SP�ð2Þ�,� + SP�

ð3Þ
�,�

2

� �
SP�ð1Þ�,� + 2SP�

ð2Þ
�,� + SP�

ð3Þ
�,�

4

gMC��,� ðMC�ð1Þ�,� ,MC�ð2Þ�,� ,MC�ð3Þ�,� ,MC�ð4Þ�,�Þ MC�ð1Þ�,� +MC�ð2Þ�,�
2

,
MC�ð3Þ�,� +MC�ð4Þ�,�

2

� �
MC�ð1Þ�,� +MC�ð2Þ�,� +MC�ð3Þ�,� +MC�ð4Þ�,�

4

Notes: ∗ represents the different numbers 1, 2, 3, … used in parameters.
(∗, ∗) and (∗, ∗, ∗) in suffixes represent the different indices set.
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subject to
XB
b¼1

X1m,a,b �ð1�βÞE
gMC1m,a
2 + βE

gMC1m,a
1 , (15.40)
XC g

c¼1

X2m,b,c �ð1�βÞE
fMC2m,b
2 + βE

MC2m,b
1 , (15.41)
XB XI g g

b¼1

X2m,b,c +
i¼1

rmmX10m, i,c � βE
MC3m,c
2 + ð1�βÞEMC3m,c

1 , (15.42)
XC XG g g

c¼1

X3l,c,d +
g¼1

rflX7l,g,d �ð1�βÞEMC4 l,d
2 + βE

MC4 l,d
1 , (15.43)
XE g g

e¼1

rcl,eX5l,e, f �ð1�βÞEMC6 l, f
2 + βE

MC6 l, f
1 , (15.44)
XG g g

g¼1

X6l, f ,g �ð1�βÞEMC7 l,g
2 + βE

MC7 l,g
1 , (15.45)
XH g g

h¼1

X8l, f ,h �ð1�βÞEMC8 l,h
2 + βE

MC8 l,h
1 , (15.46)
XI g g

i¼1

rrmX11m, i, j �ð1�βÞEMC10m, j
2 + βE

MC10m, j
1 , (15.47)
XJ g g

j¼1

X13m, j,a � βEMC1m,a
2 + ð1�βÞEMC1m,a

1 , (15.48)
XI g � � g

i¼1

rdmX12m, i,k �
β

2
E
MC11m,k
2 + 1�β

2
E
MC11m,k
1 , (15.49)
XI � � g g

i¼1

rdmX12m, i,k � 1�β

2
E
MC11m,k
2 +

β

2
E
MC11m,k
1 , (15.50)
XE g � � g

e¼1

X4l,d,e �
β

2
E
MC5 l,e
2 + 1�β

2
E
MC5 l,e
1 , (15.51)
XE � � g g

e¼1

X4l,d,e � 1�β

2
E
MC5 l,e
2 +

β

2
E
MC5 l,e
1 , (15.52)
XC XJ XK g � � g

c¼1

rtmX10m, i,c +
j¼1

rtmX11m, i, j +
k¼1

rtmX12m, i,k �
β

2
E
MC9m, i
2 + 1�β

2
E
MC9m, i
1 ,

(15.53)
XC XJ XK � � g g

c¼1

rtmX10m, i,c +
j¼1

rtmX11m, i, j +
k¼1

rtmX12m, i,k � 1�β

2
E
MC9m, i
2 +

β

2
E
MC9m, i
1 :

(15.54)
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5.2 Neutrosophic fuzzy programming approach

The multiobjective optimization problems are prevalent in real-life scenarios. Due to
the existence of complex and conflicting multiple goals or objectives, the task of
obtaining optimal solutions is a vital issue. The different conventional optimization

techniques for obtaining the compromise solution of multiobjective programming

problems are based on the marginal evaluation (degree of validity) for each objective
(say Zo) in the feasible solution set. By marginal evaluation, we mean a transformation 
function (say μ(Zo) ! [0, 1]jα 2[0, 1]) that assigned the values between 0 and 1 to each
objective function which shows that the decision makers’ preferences have been ful-
filled up to α level of satisfaction. Therefore, the quantification of marginal evaluation
is based on the different decision set theory. Initially, Zadeh [28] proposed the FS the-
ory, which explicitly contains the membership function (degree of belongingness) of
the element into the feasible solution set. Later on, Zimmermann [29] introduced the
fuzzy programming approach to solve multiobjective optimization problems. In a
fuzzy programming approach, the quantification of marginal evaluation is represented
by a membership function, which only maximizes the degree of belongingness under
the fuzzy decision set. The extended version of the fuzzy optimization technique has
been applied in a wide range of real-life applications. Furthermore, the generalizations
or extensions of the FS were initially proposed by Atanassov [30] and named the
intuitionistic fuzzy set (IFS). The analytical coverage spectrum of IFS is versatile
and flexible compared to FS as it deals with the membership (degree of belonging-
ness) as well as nonmembership (degree of nonbelongingness) functions of the ele-
ment into the feasible set. Based on IFS, first Angelov [31] proposed the
intuitionistic fuzzy programming approach to obtain the compromise solution of
the multiobjective optimization problems. The quantification of marginal evaluation
of each objective function under the IF decision set depends on the membership and
nonmembership functions, which are to be achieved by maximizing the membership

function and minimizing the nonmembership functions simultaneously. The

intuitionistic fuzzy programming approach has been extensively studied with various
real-life problems.

In the past few decades, it has been observed that the situation may arise in real-life
decision-making problems where the indeterminacy or neutral thoughts about an ele-
ment into the feasible set exists. Indeterminacy/neutral is the region of the negligence
of a proposition’s value and lies between a truth and falsity degree. Therefore, the fur-
ther generalization of FS and IFS has been presented by introducing a new member

into the feasible decision set. First, Smarandache [32] investigated the neutrosophic
set (NS) which comprises three membership functions: truth (degree of belonging-
ness), indeterminacy (degree of belongingness up to some extent), and falsity (degree
of nonbelongingness) functions of the element into the NS. The word neutrosophic is
the hybrid mixture of two different words, neutre, taken from the French, meaning

neutral, and sophia, derived from the Greek, meaning skill/wisdom, which literally
gives the meaning knowledge of neutral thoughts (see [32]). The independent indeter-
minacy degree is sufficient to differentiate itself from FS and IFS. Recent literature on
the NS reveals that many researchers have taken an interest in the neutrosophic
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domain (see [33–36]) and this is likely to be a prominent emerging research area in the

future. This study has also taken advantage of the versatile and effective texture of a

neutrosophic fuzzy decision set to develop the NFPA. The NFPA has been designed to

solve the proposed CLSC model with multiple objectives under the set of constraints.

The NFPA quantifies the marginal evaluation of each objective function under three

different membership functions: truth, indeterminacy, and falsity membership func-

tions. Thus the NFPA optimization techniques for the multiobjective optimization

problem has a significant role in the implementation and execution of the neutral

thoughts in decision-making processes.

Definition 15.5. Neutrosophic set [32]

Let there be a universe discourse Y such that y 2Y, then an NS W in Y is defined by

three membership functions, truth pW(y), indeterminacy qW(y), and falsity rW(y), and
denoted by the following form:
W¼fhy,pWðyÞ,qWðyÞ,rWðyÞijy2Yg ,

rep (y),q (y), and r (y) are real standard or nonstandard subsets belonging to ]0�,
whe W W W

1+[, also given as pW(y) : y! ]0�, q+[, rW(y) : Y! ]0�, 1+[, and rW(y) : Y! ]0�, 1+[.

There is no restriction on the sum of pW(y), qW(y), and rW(y), so we have
0� � sup pWðyÞ+ qWðyÞ+ sup rWðyÞ� 3+:
Definition 15.6. Smarandache [32]

Let there be two single-valued NSs A and B, then C¼ðA[BÞ with truth pC(y), inde-
terminacy qC(y), and falsity rC(y) membership functions are given by

pCðyÞ¼ max ðpAðyÞ,pBðyÞÞ,
qCðyÞ¼ min ðqAðyÞ,qBðyÞÞ, and
rCðyÞ¼ min ðrAðyÞ,rBðyÞÞ for each y 2Y.

Definition 15.7. Smarandache [32]

Let there be two single-valued NSs A and B, then C¼ðA\BÞ with truth pC(y), inde-
terminacy qC(y), and falsity rC(y) membership functions are given by

pCðyÞ¼ min ðpAðyÞ,pBðyÞÞ,
qCðyÞ¼ max ðqAðyÞ,qBðyÞÞ, and
rCðyÞ¼ max ðrAðyÞ,rBðyÞÞ for each y 2Y.

First, Bellman and Zadeh [37] introduced the idea of the fuzzy decision set (D)
which contains a set of fuzzy goals (G) and fuzzy constraints (C). Later on, it was
widely used in many real-life decision-making problems. Thus, a fuzzy decision

set (D) can be stated as follows:
D¼G\C:
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Equivalently, the neutrosophic decision set DNeutrosophic, with a set of neutrosophic

goals and constraints, can be given as follows:
DNeutrosophic ¼ \O
o¼1Go

� �
\N
n¼1Cn

� �
¼ðy, pDðyÞ,qDðyÞ,rDðyÞÞ ,

re
whe
pDðyÞ ¼ min

pG1
ðyÞ,pG2

ðyÞ,…,pGO
ðyÞ

pC1
ðyÞ,pC2

ðyÞ,…,pCN
ðyÞ

8><
>:

9>=
>; 8 y2 Y,

qDðyÞ ¼ max

qG1
ðyÞ,qG2

ðyÞ,…,qGO
ðyÞ

qC1
ðyÞ,qC2

ðyÞ,…,qCN
ðyÞ

8><
>:

9>=
>; 8 y2 Y,

rDðyÞ ¼ max

rG1
ðyÞ,rG2

ðyÞ,…,rGO
ðyÞ

rC1
ðyÞ,rC2

ðyÞ,…,rCN
ðyÞ

8><
>:

9>=
>; 8 y2 Y,

re the truth, indeterminacy, and falsity membership functions have been represen-
whe

ted by pW(y), qW(y), and rW(y) under neutrosophic decision set DNeutrosophic,

respectively.

The marginal evaluation for each objective function by using the transformation

functions of truth pW(y), indeterminacy qW(y), and falsity rW(y) membership functions

can be derived with the help of the upper and lower bounds of each objective function.

The solution of each single objective under the given set of constraints provides the

upper and lower bounds for each objective function and can be denoted as Uo and Lo
with a set of decision variables X1, X2, …, Xo, respectively.

Mathematically, it can be shown as follows:
Uo ¼max ½ZoðXoÞ� and Lo ¼min ½ZoðXoÞ� 8 o¼ 1,2,3,…,O: (15.55)

upper and lower bounds for o objective function under the neutrosophic environ-
The

ment can be obtained as follows:
Up
o ¼Uo, L

p
o ¼ Lo for truth membership,

Uq
o ¼ Lpo + so, L

q
o ¼ Lpo for indeterminacy membership,

Ur
o ¼Up

o , L
r
o ¼ Lpo + to for falsity membership,

re s and t 2 (0, 1) are predetermined real numbers assigned by the decision
whe o o

maker(s). With the help of upper and lower bounds for each of the three membership
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functions, we have presented the linear membership function under a neutrosophic

decision-making framework.
Fig.

repre

indet

mem

objec
poðZoðxÞÞ ¼
1 if ZoðxÞ< Lpo
Up

o �ZoðxÞ
Up

o �Lpo
if Lpo � ZoðxÞ�Up

o

0 if ZoðxÞ>Up
o

,

8><
>: (15.56)
1 if ZoðxÞ< Lq
8

qoðZoðxÞÞ ¼
o

Uq
o �ZoðxÞ
Uq

o �Lqo
if Lqo � ZoðxÞ�Uq

o

0 if ZoðxÞ>Uq
o

,

><
>: (15.57)
1 if Z ðxÞ>Ur
8>
roðZoðxÞÞ ¼
o o

ZoðxÞ�Lro
Ur

o�Lro
if Lro � ZoðxÞ�Ur

o

0 if ZoðxÞ< Lro

:

><
>>: (15.58)

ð:Þ ð:Þ

In the above-discussed membership functions, Lo 6¼Uo for all o objective func-

tions. The value of these membership will be equal to 1, if for any membership

L
ð:Þ
o ¼U

ð:Þ
o . The diagrammatic representation of the objective function with different

components of membership functions under a neutrosophic decision set is shown in

Fig. 15.2.
0
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bership degrees for the
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Logically, the aim of developing the different achievement function is to achieve

the maximum satisfaction degree or level according to the preference of the decision

maker(s). Therefore, here also we have defined the individual achievement variables

for each membership function, such as by maximization of truth membership, max-

imization of indeterminacy degree, and minimization of a falsity degree of each objec-

tive function efficiently. With the aid of linear truth, indeterminacy, and falsity

membership functions under a neutrosophic environment, the neutrosophic fuzzy

mathematical programming model can be presented as follows:
M3 : Max mino¼1,2,3,…,O poðZoðxÞÞ

Max mino¼1,2,3,…,O qoðZoðxÞÞ

Min maxo¼1,2,3,…,O roðZoðxÞÞ

subject to

poðZoðxÞÞ� qoðZoðxÞÞ, poðZoðxÞÞ� roðZoðxÞÞ

0� poðZoðxÞÞ + qoðZoðxÞÞ + roðZoðxÞÞ� 3:

Eqs: ð15:40Þ � ð15:54Þ

the help of auxiliary parameters, modelM can be transformed into the following
With 3

form M4.
M4 : Max λo
Max θo
Min ηo
subject to

poðZoðxÞÞ� λo
qoðZoðxÞÞ� θo
roðZoðxÞÞ� ηo
λo � θo, λo � ηo, 0� λo + θo + ηo � 3

λo,θo,ηo 2 ð0,1Þ:
Eqs: ð15:40Þ � ð15:54Þ

out loss of generality, the model M can be rewritten as in M .
With 4 5
M5 : Max
XO
o¼1

ðλo + θo�ηoÞ

subject to

ZoðxÞ+ ðUp
o �LpoÞλo �Up

o

ZoðxÞ+ ðUq
o �LqoÞθo �Uq

o

ZoðxÞ�ðUr
o�LroÞηo � Lro

λo � θo, λo � ηo, 0� λo + θo + ηo � 3

λo,θo,ηo 2 ð0,1Þ,
Eqs: ð15:40Þ � ð15:54Þ 737
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where λo, θo, and ηo are auxiliary achievement variables for truth, indeterminacy, and 
falsity membership functions, respectively. Therefore, the proposed NFPA is a con-
venient conventional optimization technique that is only preferred over others due to
the existence of its independent indeterminacy degree.
5.3 Modified neutrosophic fuzzy programming with
intuitionistic fuzzy preference relations

The effective modeling and optimization framework of multiobjective optimization

problems explicitly results in the best possible compromise solution under adverse

circumstances, since, while dealing with multiple objectives or goals, most often,

DM(s) intends to provide priorities among the different objectives over each other.

Generally, the preferences among the objective function have been defined by assig-

ning the maximum crisp weight parameter (say wo ¼ 0:1,0:2,…,1j
PO

o wo ¼ 1) to the

preferred objective function. In the past few decades, Ak€oz and Petrovic [38] proposed
a new methodology to assign the preference among different objectives or goals based

on the linguistic importance relation and investigated three different fuzzy linguistic

importance relationship such as slightly more important than,moderately more impor-
tant than, and significantly more important than for different conflicting objectives.

These linguistic terms have taken the advantages of membership functions associated

with corresponding objectives or goals between which the important relation has been

defined. Later on, this linguistic preference scheme was adopted by several

researchers (see [27, 39–46]) in various real-life applications and decision-making

processes. The appropriate selection of membership functions is always a crucial task

for decision makers. Since the quantification of preference, the membership function

has been done for the three linguistic fuzzy preference relations, but it would be more

convenient and realistic to consider the nonmembership function as well as the similar

linguistic fuzzy preference relations.

Therefore, to incorporate the membership and nonmembership function for lin-

guistic preference relations among the objective, we have designed the structure of

our proposed linguistic preference relations among different objectives or goals.

Again, we have developed the linear membership and nonmembership function for

each linguistic preference relation among the different objectives in the intuitionistic

fuzzy environment. The transformation function has been defined with the help of

truth membership functions of each objective. The information regarding linguistic

preference relations under the intuitionistic fuzzy environment is shown in

Table 15.2. The membership and nonmembership function for intuitionistic fuzzy lin-

guistic preference relations is shown in Fig. 15.3.

The linear membership function for each linguistic preference relation can be

defined as follows and achieved by maximizing it [38].
μeR1ðo,uÞ
¼ ðpo�pu + 1Þ if�1� po�pu � 0

1 if 0� po�pu � 1
,

�
(15.59)
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Table 15.2 Linguistic relative preferences of objective o over u.

Linguistic term

Intuitionistic

fuzzy relation

Membership and

nonmembership

functions

Transform

function

Slightly more

important than

eR1
μ eR1

and ν eR1

Moderately more

important than

eR2
μ eR2

and ν eR2
po(X)�pu(X) 8
o, u 2 (1… O)

Significantly more

important than

eR3
μ eR3

and ν eR3
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po�pu + 1
� ��
μ eR2ðo,uÞ ¼
2

if�1� po�pu � 1, (15.60)
0 if�1� p �p � 0
�

μ eR3ðo,uÞ ¼ o u

ðpo�puÞ if 0� po�pu � 1
: (15.61)

linear nonmembership function for the linguistic preference relations can be
The

given as follows and achieved by minimizing it.
ν eR1ðo,uÞ ¼ �ðpo�puÞ if�1� po�pu � 0

0 if 0� po�pu � 1
:

�
(15.62)
1�ðp �p Þ
�

ν eR2ðo,uÞ ¼ o u

2
if�1� po�pu � 1, (15.63)
1 if�1� po�pu � 0
�

ν eR3ðo,uÞ ¼
1�ðpo�puÞ if 0� po�pu � 1

, (15.64)

e e e
where R1, R2, and R3 are the importance relations defined by the linguistic term

slightly more important than,moderately more important than, and significantly more
important than, respectively.

The new achievement function for satisfaction degrees of the imprecise linguistic

importance relations can be defined with the aid of the membership and non-

membership function for intuitionistic fuzzy linguistic preference relations. We have

defined a score function S eRðo,uÞ ¼ðμ eRðo,uÞ� ν eRðo,uÞÞ, which has been used to express

the satisfactory degree of decision makers’ linguistic importance relations. Let us

define a binary variable BI(o, u); o, u ¼ 1, 2, …, O, where o 6¼u such that
BIo,u¼
1 if a linguistic preference relation is defined between the objective Zo and Zu
0 otherwise

:

�
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Fig. 15.3 Linear membership and nonmembership functions for intuitionistic fuzzy linguistic

preference relations. (A) R1ðo,uÞ¼ eR1. (B) R2ðo,uÞ¼ eR2. (C) R3ðo,uÞ¼ eR3.
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The modified NFPA with intuitionistic fuzzy linguistic preference relations has been

designed with the hybrid integration of the achievement function under the NFPA

model and score functions for the satisfaction degree of decision makers. The achieve-

ment function for the modified NFPA can be defined as the convex combination of the

sum of individual truth membership, indeterminacy function, and falsity membership

function of each objective or goals and the sum of score functions of the imprecise

linguistic importance relations. Thus the proposed modified NFPA can be given as

follows:
M6 : Max α
XO
o¼1

ðλo + θo�ηoÞ+ ð1�αÞ
XO
o¼1

XO
u¼1

BIo,uSeRðo,uÞ
subject to

ZoðxÞ+ ðUp
o �LpoÞλo �Up

o

ZoðxÞ+ ðUq
o �LqoÞθo �Uq

o

ZoðxÞ�ðUr
o�LroÞηo � Lro

ðpo�pu + 1Þ� μeR1ðo,uÞ
po�pu + 1

2

� �
� μeR2ðo,uÞ

ðpo�puÞ� μeR3ðo,uÞ
�ðpo�puÞ� νeR1ðo,uÞ
1�ðpo�puÞ

2
� νeR2ðo,uÞ

1�ðpo�puÞ� νeR3ðo,uÞ
SeRðo,uÞ ¼ ðμeRðo,uÞ �νeRðo,uÞÞ
μeRðo,uÞ � νeRðo,uÞ
0 � μeRðo,uÞ + νeRðo,uÞ � 1

0 � μeRðo,uÞ, νeRðo,uÞ � 1 8 BIo,u ¼ 1

λo � θo, λo � ηo, 0� λo + θo + ηo � 3

λo, θo, ηo 2 ð0,1Þ,
Eqs: ð15:40Þ � ð15:54Þ

re α is a nonzero parameter taking values between 0 and 1 and can be assigned by
whe

tuning it for either the membership function of objectives or linguistic preference

relations.

The proposed modified NFPA modeling approach considers the degree of belong-

ingness and nonbelongingness simultaneously, which is a better representation of

uncertain importance relations among objectives because it enhances the membership

degree as well as efficiently reducing the nonmembership degree. In spite of all this,

while dealing with a large number of goals at a time, assigning the different crisp

weight to all objectives according to the decision-makers’ priority level is not feasible,

because it may be time-consuming. To avoid the weight assignment complexity, it

would be the best technique to assign linguistic priorities among different objectives.
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5.3.1 Stepwise solution algorithm

The stepwise solution procedures for the proposed modified NFPA with intuitionistic
fuzzy preference relations can be represented as follows:

Step 1. Design the proposed CLSC planning problem under uncertainty as given in model

M1.

Step 2. Convert each fuzzy parameter involved in modelM1 into its crisp form by using the

expected intervals and values method as given in Eqs. (15.28)–(15.31) or presented in

Table 15.1. Transform fuzzy constraints into their crisp versions by using Eqs. (15.38)–
(15.39).

Step 3.Modify modelM1 intoM2 and solve for each objective function individually in order

to obtain the best and worst solution set.

Step 4. Determine the upper and lower bounds for each objective function by using Eq.

(15.55). With the aid of Uo and Lo, define the upper and lower bounds for truth, indetermi-

nacy, and falsity memberships as given in Eqs. (15.56)–(15.58).
Step 5. Develop the neutrosophic optimization modelM5 with the aid of auxiliary variables.

Step 6. Assign linguistic importance relations among different objectives under an

intuitionistic fuzzy environment (see Eqs. 15.59–15.64). Integrate the preference relation

into model M5 and transform into model M6, which includes constraints of CLSC given

in Eqs. (15.40)–(15.54).
Step 7. Model M6 represents the modified neutrosophic fuzzy optimization model with

intuitionistic fuzzy importance relations. Solve the model in order to obtain the compromise

solution using suitable techniques or some optimizing software packages.
6. Computational study

The city of Nizam (Deccan), currently known as Hyderabad, is one of the leading IT
hubs of India. It is well known for its IT hub service-oriented firms. A Hyderabad-
based ABC (name changed) reputed multinational laptop manufacturing company

has intended to model the production, transportation, distribution, and collection prob-
lems, due to the existence of a testing center facility in the proposed CLSC designed
network. The prominent features of the CLSC design made it possible for the model-

ing and optimization approach under uncertainty. Regardless, unique, potentially
functional components of the proposed CLSC design model have attracted the atten-
tion of decision makers. Less opportunity for the disposal of scrap parts/components is
also a leading factor to adopt the model which ensures less accountability toward gov-
ernmental managerial laws. The ecofriendly environmental nature of the modeling

approach is a beneficial factor and guarantees freedom from the different governmen-

tal legislative traps. The interference of uncertainty among the various parameters

reveals the realistic modeling approach. Ample scope for generating different solu-
tions set by tuning the weight parameter and feasibility degree is the crucial promising

factor for modeling choice by decision makers. To maintain sustainability in the com-

petitive market, it would be more effective and efficient to develop the proposed
CLSC design network.

The company has a fully functional multiechelon facility location and a well-
organized decision policy scheme. In the forward chain, five multiechelon facilities
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are the main constituent part of the forward process. Three raw material storage cen-

ters, three supplier points, three hybrid manufacturing/remanufacturing plants, three

distribution centers, and six customer/market zones explicitly represent the forward

flow chain. In the reverse flow chain, six multiechelon facilities are taken into con-

sideration, which signifies more emphasis on the opposite chain. The reverse flow

chain consists of three collection centers of used laptops, three refurbishing or repair

centers, three disassembling centers, three testing points, three recycling centers, and

three disposal sites at which the end-of-life parts/components are removed from the

designed CLSC network.

Every new and refurbished laptop is a hybrid combination of three different types

of raw materials and parts/components. Refurbished laptops are also usable and

acceptable in the market. Manufacturing plants provide a new laptop whereas the

refurbishing center is responsible for renovated or refurbished laptops. The forward

chain starts from the shipment of raw parts from the raw materials storage center

to three supplier points. All three suppliers are responsible for the delivery of raw

materials to hybrid manufacturing plants. Afterward, the newly manufactured laptops

are shipped to three distribution centers. The demand quantity of the laptops must be

fulfilled by the distribution center only. There is no scope for direct shipment from the

manufacturing plant to the hybrid facility center. The collection center is accountable

for the accumulation of end-of-use products from customers/market zones. The used

products are disassembled into three parts or components. The testing facility care-

fully inspects the various parts/components and decides to implement a particular ser-

vice to make it usable. From the testing center, three different destinations—the

manufacturing plant, recycling point, and disposal center—have been postulated.

Recyclable products are sent to the recycling center, whereas scrap or end-of-life

parts/components are dumped at the disposal center. Parts/components that can con-

stitute raw materials are entered into the forward chain through manufacturing plants.

The recycling process turns the pieces into new raw materials, which ensures the pro-

curement of raw materials and initiates the forward chain. Hence to implement the

proposed CLSC model efficiently, the triangular fuzzy input data for transportation

cost, purchasing cost, revenues, and time have been summarized in Table 15.3. Var-

ious capacities at each echelon in the CLSC chain network have been represented by

trapezoidal fuzzy data, whereas processing cost parameters have been considered as

triangular fuzzy input data. Since numerous objective functions have been developed

in the proposed CLSC model, the following preference relations have been decided

among different objective functions. However, the preference scheme has been ran-

domly assigned, and there are no hard and fast rules. It solely depends upon the deci-

sion maker’s choices. The type of preference relations between the objectives have

been defined as follows:

l Objective Z2 is moderately more important than objective Z1 (i.e., eR2ð2,1Þ).
l Objective Z4 is slightly more important than objective Z3 (i.e., eR1ð4,3Þ).
l Objective Z3 is significantly more important than objective Z5 (i.e., eR3ð3,5Þ).
l Objective Z4 is slightly more important than objective Z5 (i.e., eR1ð4,5Þ).
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Table 15.3 Input fuzzy data for the parameters.

Transportation cost from sources

to destinations (*, *)

Types of raw materials (m) or products (l)

1 2 3

gTC1m,a,b (14, 24, 34) (22, 32, 44) (34, 36, 38)

gTC2m,b,c (30, 32, 34) (34, 36, 38) (38, 40, 42)

gTC3l,c,d (52, 56, 60) (60, 63, 66) (66, 67, 68)

gTC4l,d,e (60, 65, 70) (66, 69, 72) (71, 74, 77)

gTC5l,e, f (28, 29, 30) (35, 37, 39) (42, 44, 46)

gTC6l, f ,g (32, 34, 36) (35, 39, 43) (41, 42, 43)

gTC7l,g,d (40, 42, 44) (45, 48, 51) (50, 55, 60)

gTC8l, f ,h (44, 48, 52) (50, 53, 56) (55, 59, 63)

gTC9m,h, i (50, 51, 52) (50, 55, 60) (60, 63, 66)

gTC10m, i,c (25, 27, 29) (30, 32, 34) (35, 39, 41)

gTC11m, i, j (55, 60, 65) (65, 67, 69) (71, 73, 75)

gTC12m, i,k (33, 36, 39) (40, 43, 46) (44, 49, 54)

gTC13m, j,a (68, 71, 74) (73, 75, 77) (60, 62, 64)

Time

eTl,d,e
(05, 07, 09) (04, 06, 08) (01, 03, 06)

Purchasing cost

gPU1m (36, 38, 40) (45, 47, 49) (24, 26, 28)

gPU2l (25, 27, 29) (15, 17, 19) (15, 17, 19)

Selling price

gSP1m (42, 46, 50) (40, 45, 50) (21, 23, 26)

gSP2l (36, 38, 40) (42, 45, 48) (24, 26, 28)

rfl 0.71 0.53 0.58

rcl,e 0.82 0.76 0.38

rtm 0.23 0.49 0.73

rmm 0.81 0.67 0.35

rrm 0.32 0.43 0.61

rdm 0.12 0.19 0.23

Processing cost at each echelon

gPC1m,a (14, 24, 34) (22, 32, 44) (34, 36, 38)

gPC2m,b (30, 32, 34) (34, 36, 38) (38, 40, 42)gPC3l,c (52, 56, 60) (60, 63, 66) (66, 67, 68)gPC4l,d (60, 65, 70) (66, 69, 72) (71, 74, 77)

gPC5l, f (28, 29, 30) (35, 37, 39) (42, 44, 46)

gPC6l,g (32, 34, 36) (35, 39, 43) (41, 42, 43)
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Table 15.3 Continued

Transportation cost from sources

to destinations (*, *)

Types of raw materials (m) or products (l)

1 2 3

gPC7l,h (40, 42, 44) (45, 48, 51) (50, 55, 60)

gPC8m, i (44, 48, 52) (50, 53, 56) (55, 59, 63)

gPC9m, j (50, 51, 52) (50, 55, 60) (60, 63, 66)

gPC10m,k (25, 27, 29) (30, 32, 34) (35, 39, 41)

Capacity/demand at each echelon

gMC1m,a (512, 514,

516, 518)

(622, 624,

626, 628)

(718, 724,

726, 728)gMC2m,b (613, 614,

615, 616)

(514, 516,

518, 520)

(512, 514,

516, 518)gMC3m,c (724, 725,

726, 727)

(812, 813,

814, 815)

(914, 916,

918, 920)gMC4l,d (212, 214,

216, 218)

(221, 222,

223, 224)

(217, 218,

219, 220)gMC5l,e (314, 318,

322, 326)

(312, 314,

316, 318)

(329, 339,

349, 359)gMC6l, f (115, 116,

117, 118)

(119, 120,

121, 122)

(114, 116,

118, 120)gMC7l,g (124, 125,

126, 127)

(113, 114,

115, 116)

(117, 119,

121, 123)gMC8m,h (110, 111,

112, 113)

(114, 116,

118, 120)

(119, 120,

121, 122)gMC9m, i (224, 225,

226, 227)

(212, 214,

216, 218)

(314, 316,

318, 320)gMC10m, j (324, 325,

326, 327)

(212, 213,

214, 215)

(214, 216,

218, 220)gMC11m,k (212, 214,

216, 218)

(221, 222,

223, 224)

(317, 318,

319, 320)
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6.1 Results and discussions

The modified neutrosophic fuzzy optimization model for the proposed CLSC network
has been written in AMPL language and solved using the solver Kintro 10.3.0 through
the NEOS server version 5.0 online facility provided by Wisconsin Institutes for Dis-
covery at the University of Wisconsin in Madison for solving optimization problems;

see Refs. [47,48]. The characteristic description of the problem is presented as fol-
lows: The final multiobjective optimization model along with a set of well-defined
multiple objectives comprises 459 variables including 42 binary variables and 417 lin-
ear variables, 530 constraints including 498 linear one-sided inequalities constraints
and 32 linear equality constraints, respectively. The total computational time for
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obtaining the final solution was 0.113 seconds (CPU time). Due to space limitations,

only the final solution results of all decision variables obtained at a feasibility degree

(β¼ 0.5) with weight parameter (α¼ 0.5) have been discussed in detail. The optimum

allocation of rawmaterials, new products, and used parts/components among different

echelons has been depicted in Tables 15.4 and 15.5. In the forward chain, procurement

of raw materials initiates from a raw material storage center (RMS) to a supplier point

(SP). The total allocation of raw materials from RMS 1 to all three SPs is found to be

504.17, 592.38, and 681.51, whereas from RMS 2 and 3 to all three SPs have been

obtained as 572.14, 553.84, and 703.15, and 497.57, 457.32, and 646.87, respectively.

The maximum shipment quantity has been observed from RMS 2 to SP 3 due to the

lowest transportation and processing cost incurred over the raw materials. Suppliers

are responsible for fulfilling the requirement for starting the manufacturing processes

at the hybrid manufacturing plant (MP). The optimum shipment quantity from SP 1 to

all threeMPs is 706.25, 630.15, and 625.18, respectively. Similarly, from SP 2 and 3 to

all three MPs have been obtained as 630.25, 630.21, and 656.51, and 563.70, 498.34,

and 533.18, respectively. The highest shipment amount of rawmaterials has been allo-

cated to MP 1 whereas the least amount of raw materials has been delivered to MP 2

bearing in mind the fact that the outbound capacity of manufacturing plant receives the

maximum raw materials and parts from the SPs and testing points (TPs). SP 3 also

provides the maximum amount of raw materials to all three MPs and are obtained

as 563.7, 488.34, and 533.18 bearing in mind the fact that outbound restrictions on

manufacturing plants have been satisfied, and tested and approved parts/components

are sent back to the manufacturing plant for further utilization. Newly built products

are transferred to the distribution center (DC) so that the demand from customers (Cs)

could be met. The optimal distribution scheme among different customers has been

obtained. From DC 1 to all six Cs, the total shipment of products is found to be

332.23, 400.85, 350.61, 297.21, 274.95, and 266.61, respectively. However, DC 1

has a negligible contribution to meet the demand of C 2, 3, 4, and 5, with other types

of products to avoid the maximum transportation cost and late expected delivery time.

Similarly, the total quantities of each product distributed from DC 2 and 3 to all six Cs

have been depicted, which ensures the minimum transportation costs along with the

timely shipment of products. It has been observed that no product has been shipped

from DC 2 to C 1, 2, and 3 due to the maximum chances for late delivery of the prod-

ucts. Hence a minimum transportation cost and shipment time have been achieved

without significantly affecting the demand constraint. Overall, DC 2 outsourced

the maximum shipment of products to all six Cs and revealed a significant contribu-

tion to fulfilling the demand. Since refurbished products are also acceptable in the

market, approximately 13.32% of total used products are renovated and shipped to

DCs for the fulfillment of further needs.

The significant role of the collection center (CC) starts when end-of-use and end-

of-life products come into existence. The potential accumulation framework for used

products from the customer zone is much needed. The designed CLSC model inher-

ently involves the CC, which is the first echelon of the reverse supply chain network.

The exclusive collection of the end-of-use product from customers is found to be a

significant percentage, that is, approximately 91.34% of the total fulfilled demand,
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Table 15.4 Optimal quantities of rawmaterials and products shipped from different sources to

various destinations.

Raw material storage

center (a) Supplier point (b)

Types of raw material (m)

1 2 3

Storage center 1 1 127.83 232.78 143.56

Storage center 1 2 248.23 151.62 192.53

Storage center 1 3 201.32 312.28 167.91

Storage center 2 1 164.21 264.67 143.26

Storage center 2 2 321.34 109.23 123.27

Storage center 2 3 221.63 368.83 112.69

Storage center 3 1 116.94 219.43 161.20

Storage center 3 2 213.52 142.20 101.60

Storage center 3 3 329.53 127.64 189.70

Supplier point (b)

Manufacturing

plant (c)

Types of raw materials (m)

1 2 3

Supplier point 1 1 261.24 243.12 201.89

Supplier point 1 2 291.64 124.15 214.36

Supplier point 1 3 236.39 213.56 175.23

Supplier point 2 1 218.95 189.67 221.63

Supplier point 2 2 253.68 128.63 247.90

Supplier point 2 3 287.25 112.46 256.80

Supplier point 3 1 212.54 187.62 163.54

Supplier point 3 2 202.35 142.37 143.62

Supplier point 3 3 298.34 116.52 118.32

Manufacturing plant (c)

Distribution

center (d)

Types of products (l)

1 2 3

Manufacturing plant 1 1 127.83 132.78 143.56

Manufacturing plant 1 2 148.23 151.62 192.53

Manufacturing plant 1 3 121.32 112.28 67.91

Manufacturing plant 2 1 164.21 64.67 163.26

Manufacturing plant 2 2 171.34 119.23 143.27

Manufacturing plant 2 3 181.63 68.83 152.69

Manufacturing plant 3 1 196.94 89.43 61.20

Manufacturing plant 3 2 113.52 42.20 101.60

Manufacturing plant 3 3 129.53 127.64 189.70

Distribution center (d) Customers (e)

Types of products (l)

1 2 3

Distribution center 1 1 112.34 145.26 74.63

Distribution center 1 2 85.26 163.23 152.36

Distribution center 1 3 152.36 – 198.35

Distribution center 1 4 163.98 – 115.23

Continued

Florentin Smarandache (author and editor) Collected Papers, VIII

747



Table 15.4 Continued

Distribution center (d) Customers (e)

Types of products (l)

1 2 3

Distribution center 1 5 165.32 – 109.63

Distribution center 1 6 154.23 – 112.38

Distribution center 2 1 198.43 167.23 –
Distribution center 2 2 165.24 144.23 –
Distribution center 2 3 180.50 143.20 –
Distribution center 2 4 155.96 124.27 127.52

Distribution center 2 5 169.58 153.65 65.87

Distribution center 2 6 187.65 84.59 154.23

Distribution center 3 1 169.75 – 159.86

Distribution center 3 2 – 173.89 168.27

Distribution center 3 3 – 196.43 149.26

Distribution center 3 4 – 142.35 149.37

Distribution center 3 5 184.26 73.68 163.87

Distribution center 3 6 179.35 97.36 135.98

Customers (e) Collection center (f)

Types of products (l)

1 2 3

Customer 1 1 61.32 53.68 94.38

Customer 1 2 85.23 78.56 145.80

Customer 1 3 84.32 58.50 145.23

Customer 2 1 52.31 16.78 61.83

Customer 2 2 47.50 51.32 134.62

Customer 2 3 79.68 45.23 84.23

Customer 3 1 52.63 89.45 79.56

Customer 3 2 74.96 98.74 112.34

Customer 3 3 47.89 114.90 78.46

Customer 4 1 89.56 89.45 74.68

Customer 4 2 76.34 94.68 52.60

Customer 4 3 58.35 78.89 53.46

Customer 5 1 61.23 106.83 45.3

Customer 5 2 63.85 117.40 47.6

Customer 5 3 86.34 127.63 76.85

Customer 6 1 74.68 121.69 44.62

Customer 6 2 85.90 153.45 57.67

Customer 6 3 84.32 173.65 79.85

Collection center (f)

Refurbishing

center (g)

Types of products (l)

1 2 3

Collection center 1 1 36.24 45.32 32.65

Collection center 1 2 41.58 31.25 21.32

Collection center 1 3 16.23 74.32 24.12

Collection center 2 1 14.23 61.32 42.37
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Table 15.5 Optimal quantities of used products and parts shipped from different

sources to various destinations.

Refurbishing plant (g) Distribution center ( d)

Types of products (l)

1 2 3

Refurbishing plant 1 1 34.28 24.89 52.37

Refurbishing plant 1 2 25.36 41.98 56.35

Refurbishing plant 1 3 27.85 39.38 49.35

Refurbishing plant 2 1 23.89 54.23 63.45

Refurbishing plant 2 2 31.45 47.68 54.38

Refurbishing plant 2 3 43.56 42.89 47.86

Refurbishing plant 3 1 44.87 57.98 53.78

Refurbishing plant 3 2 38.45 47.56 63.45

Refurbishing plant 3 3 37.84 49.63 57.68

Collection center (f ) Disassembling center (h)

Types of products (l)

1 2 3

Collection center 1 1 146.23 98.29 154.78

Collection center 1 2 131.26 157.23 74.39

Collection center 1 3 157.89 158.96 84.97

Collection center 2 1 98.46 143.69 87.56

Collection center 2 2 87.60 89.63 178.87

Collection center 2 3 89.68 63.84 187.20

Collection center 3 1 107.35 84.96 172.86

Collection center 3 2 118.35 97.63 166.34

Collection center 3 3 112.57 98.68 136.94

Disassembling

center (h) Testing center (i)

Types of products (m)

1 2 3

Disassembling center 1 1 98.86 47.52 112.36

Disassembling center 1 2 187.34 145.26 75.40

Disassembling center 1 3 85.32 143.26 146.37

Continued

Table 15.4 Continued

Collection center (f)

Refurbishing

center (g)

Types of products (l)

1 2 3

Collection center 2 2 71.20 41.23 54.64

Collection center 2 3 24.53 85.93 27.65

Collection center 3 1 34.53 22.38 68.53

Collection center 3 2 74.30 72.30 23.60

Collection center 3 3 25.90 33.56 67.84
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Table 15.5 Continued

Disassembling

center (h) Testing center (i)

Types of products (m)

1 2 3

Disassembling center 2 1 55.85 121.35 141.23

Disassembling center 2 2 65.36 185.98 124.36

Disassembling center 2 3 80.45 178.90 142.58

Disassembling center 3 1 60.85 42.38 173.45

Disassembling center 3 2 75.03 63.57 156.89

Disassembling center 3 3 86.08 53.76 154.36

Recycling center ( j)

Raw material storage

facility (a)

Types of parts (m)

1 2 3

Recycling center 1 1 24.23 227.35 16.35

Recycling center 1 2 12.54 14.80 22.35

Recycling center 1 3 28.34 14.25 25.36

Recycling center 2 1 21.50 22.24 16.80

Recycling center 2 2 17.35 12.36 13.52

Recycling center 2 3 18.53 11.98 16.39

Recycling center 3 1 24.37 22.35 14.35

Recycling center 3 2 17.98 27.85 17.68

Recycling center 3 3 19.63 14.32 13.84

Testing center (i) Manufacturing plant (c)

Types of tested parts (m)

1 2 3

Testing center 1 1 42.35 17.43 11.75

Testing center 1 2 13.40 16.98 27.06

Testing center 1 3 17.31 12.37 18.08

Testing center 2 1 08.32 29.56 21.07

Testing center 2 2 21.43 39.75 19.01

Testing center 2 3 17.35 18.56 12.89

Testing center 3 1 38.96 21.29 28.34

Testing center 3 2 17.51 10.37 12.34

Testing center 3 3 21.27 03.78 22.48

Testing center (i) Recycling facility ( j)

Types of recyclable parts (m)

1 2 3

Testing center 1 1 34.53 45.05 48.35

Testing center 1 2 54.27 35.64 53.42

Testing center 1 3 58.34 56.34 24.35

Testing center 2 1 62.78 49.64 31.70

Testing center 2 2 28.34 51.46 41.32

Testing center 2 3 25.32 47.86 105.06
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Table 15.5 Continued

Testing center (i) Recycling facility ( j)

Types of recyclable parts (m)

1 2 3

Testing center 3 1 78.35 48.36 62.37

Testing center 3 2 48.32 42.36 56.28

Testing center 3 3 51.43 118.36 29.23

Testing center (i) Disposal facility (k)

Types of scrap parts (m)

1 2 3

Testing center 1 1 14.25 – 16.52

Testing center 1 2 17.24 – 13.25

Testing center 1 3 – – 11.24

Testing center 2 1 – 21.85 18.54

Testing center 2 2 – 19.65 –
Testing center 2 3 16.35 12.35 19.32

Testing center 3 1 12.89 14.22 –
Testing center 3 2 15.45 – 19.34

Testing center 3 3 17.40 – 21.30
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which indicates the vast need for the reverse supply chain to tackle used products. The

required service at different echelons in the reverse chain has been designed especially

for socioenvironmental concerns. An optimal amount of used products has been col-

lected by all three CCs from all six customer zones. The maximum amount of used

products has been received by CC 3 from C 6 which is 337.82, and the least quantity

190.70 by CC 3 from C 4 to ensure the least collection and transportation costs levied

over each type of product. At CCs, complete inspection of the collected, used products

has been performed and a decision taken to ship either to the disassembling center

(DS) or refurbishing center (RC) to initiate the required services. The total amounts

of used products transported from CC 1 to all three RCs are obtained as 114.21, 94.15,

and 114.67, whereas the total shipment quantities from CC 2 and 3 to all three RCs

have been allocated as 117.92, 167.07, and 138.11, and 125.44, 170.20, and 127.30,

respectively. The maximum quantity of used products has been transported from CC 3

to RC 2 whereas the minimum shipment quantity is found to be shipped from CC 1 to

RC 2 because of the lowest transportation cost and availability of the required service

for particular types of products. The quantity of used products is approximately

88.21% of the total capacity of the RC, which ensures the significant need for such

a functional echelon in CLSC. The disassembling center (DS) only receives those

end-of-use products that require reliability tests of each part/component. At the
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DS, used products are disassembled into different parts/components for the testing

process where all necessary measures would be taken regarding the useful life of parts.

From CC 1 to all three DSs, the total shipment amounts of used products have been

obtained as 399.30, 362.88, and 401.82, which shows approximately 31.98% of the

entire collection of used products. Likewise, the net amount of used products trans-

ported from CC 2 and 3 to all three DSs are 329.71, 356.10, and 340.72, and

365.17, 382.32, and 348.19, respectively. The shipment of end-of-use products at

DS 2 and 3 are found to be 14.29% and 39.47% of the net used products collected

at all three CCs, which shows that approximately 94% of the total raised used products

have been completely dealt with at the CC and signify that the design of the reverse

chain is much needed to avoid environmental issues. The total disassembled parts that

have been shipped from DS 1 to all three TPs are found to be 258.74, 408, and 374.95,

which comprise 31.35% of the disassembled parts/components and ensures that trans-

portation and inspection costs incurred over these parts would be minimal. Similarly,

fromDS 2 and 3 to all TPs the optimal amounts of pieces have been shipped, which are

found to be 33.84%, and 29.27% of the total disassembled parts at DSs tominimize the

total cost of inspection by ensuring the capacity restrictions at TPs, respectively.

The testing point (TP) inevitably inspects the reliability or usefulness of parts/ com-

ponents and provides the best decision to deal with tested parts. TPs are interconnected

with three echelons: manufacturing plants, recycling centers, and disposal sites. The

TP is also a promising source for the procurement of raw materials to hybrid

manufacturing/remanufacturing plants. Approximately 9.84% of the total require-

ment for raw materials has been met by different TPs with the aid of dissembled parts

of used products. However, the recycling point (RP) receives a significant amount of

tested parts that ensures green practice with recyclable components. The net quantity

of recyclable parts that have been transported from all three TPs to RP 1 is found to be

127.93, 143.33, and 139.03, which is 93.66% of the total recyclable capacity of tested

parts at RP 1. The maximum quantity of recyclable parts has been received by RP 3

whereas the least amount of certified parts has been shipped to RP 2 bearing in mind

the fact that transportation and recycling costs levied over each component are min-

imal at these facilities. Finished recycled products have been sent back to rawmaterial

storage centers and recycled for the smooth running of the production processes. After

the inspection procedure, the declared disposable parts have been shipped for disposal.

The optimal quantity of disposable parts has been obtained with the satisfaction of

disposal capacity constraints of each disposal facility center (DF). The obtained

results showing that at some DFs, there is no amount of tested parts for disposal. How-

ever, the total shipped amounts from all three TPs to DF 1 are found to be 30.77, 40.39,

and 27.11, which is 47.32% of the full capacity of DF 1. Moreover, from all three TPs

to DF 2 and 3, the net amounts of disposable parts that have been transported are found

to be 30.49, 19.65, and 34.79, and 11.24, 48.02, and 38.70, respectively. At these DFs,

approximately 53.57% and 69.38% shares of the total disposal capacity have been

disposed of, which strictly ensures that there is still an abundant opportunity for

incineration.

Multiechelon CLSC design networks require potential capital investment to the

flow of products throughout the supply chain processes. Processing cost,
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transportation cost, and purchasing cost have been depicted as different objectives that
inherently require capital. The obtained results of these three objectives show a
remarkable contribution to the total capital investment. At each feasibility degree β
and weight parameter α, the average share of processing cost has been obtained as
approximately 83.39%, the total ordinary dividends of the transportation cost is found
to be approximately 14.78% and that of the average purchasing cost is approximately

1.83% of the total investment in the proposed CLSC network. The maximum shares
have been exhausted by the processing charge with the fact that multiple different ech-
elons have been associated with specific functional services to raw materials, new
products, and used parts in the proposed CLSC network. Transportation costs hold
a slightly smaller portion of the total investment, which shows the reduced to and
fro movement of products among different echelons. Due to the interconnected sys-
tematic facility centers, the optimal shipment strategy turns into fewer transportation
costs. The purchasing of raw materials in bulk from raw material storage centers and
used products from customers has comparatively very low in the total capital invest-
ment. The expected whole delivery time and revenues from sales have also been
included as conflicting potential objectives in the proposed CLSC model, which suf-
ficiently reflects the effective exogenous solution results. The flow of new products in
the forward chain and end-of-use products in reverse chain much depends on keen
managerial insight and decision-making strategy. The potential performances of each
echelon would be recognized in the context of allocation and required service to the
different products and parts. The solution results have been presented only for α ¼ 0.5 
and β ¼ 0.5, but more information could be extracted by obtaining the solution results 
at different values of α and β regarding the optimum allocation of products and parts,
respectively.
6.2 Sensitivity analyses

Sensitivity analyses have been performed for all the objective functions by tuning the
feasibility degree (β) and weight parameter (α) simultaneously. The feasibility degree
(β) referred to the preference or acceptance level of decision makers. The higher value
of (β) ensures the maximum satisfaction level of decision makers. The feasibility
degree among parameters reflects the satisfaction level by offering different choices.
Hence more substantial feasibility degree generally gives the worse solution of objec-
tives. The weight parameter (α) provides the weight to either the membership function
of all the objectives or the score functions of the intuitionistic fuzzy preference rela-
tions among different objectives. Therefore, a higher value of (α) signifies a higher
weight to either the corresponding membership functions or the score function of lin-
guistic preference relations. The priority structure has been designed as the convex
combination between the membership function of the objectives and the score func-
tion of the linguistic preference relations. The weight parameter (α) is directly
assigned to the membership functions of each goal whereas (1 �α) has been assigned 
to the score function of linguistic preference relations. The solution results of all the
objective functions and preference relations are shown in Fig. 15.4.
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Fig. 15.4 Graphical representation of obtained results. (A) First objective (Z1). (B) Second
objective (Z2). (C) Third objective (Z3). (D) Fourth objective (Z4). (E) Fifth objective (Z5).
(F) Membership degree. (G) Nonmembership degree. (H) Score function.
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6.2.1 Sensitivity analyses of objective functions

The first objective (Z1) is to minimize the total processing cost (TPC) supply chain.
At β ¼ 0.1 and α ¼ 0.9, the minimum (best) value of (Z1) has been attained, which is
$39,387,662. As (α) decreases, the values of (Z1) either increase or remain the same

for some (α). With an increase in the feasibility degree (β), a significant increment
in the objective function (Z1) has been observed. The maximum (worst) value of
objective (Z1) has been obtained as $39,388,338 at β ¼ 0.9 and α ¼ 0.1. Hence it 
has been concluded that with the increase in feasibility degree (β) and the decrease
in weight parameter (α), the value of objective (Z1) reaches its worst values. The 
different solution results of (Z1) ranging between $39,387,662 and $39,388,338 
are summarized in Table 15.6, and Fig. 15.4A shows the trending behavior of
(Z1) at different feasibility degree (β) and weight parameters (α), respectively. Fur-
thermore, the effects of feasibility degrees (β) are severe, as the marginal increment
in the value of (Z1) rapidly approaches the worst solutions, whereas the effect of
the weight parameter (α) on the objective (Z1) is almost negligible. The TPC has 
been obtained that solely occurred over four echelons in the forwarding chain.
Hence, the obtained results for TPC are due to the high processing cost at the

raw material storage center, supplier point, and manufacturing plants. Inbound
capacity restrictions at these echelons are also a key factor for increment in TPC.
The maximum numbers of raw materials and new products require different
processing costs, which turn into more capital investment in the material and product
processing purposes.

The minimization of total transportation costs in the CLSC has been represented by
the second objective (Z2). At β ¼ 0.1 and α ¼ 0.9, the minimum (best) value of trans-
portation cost is $396,534. As a feasibility degree (β) increases, there is a significant 
marginal increment in the objective (Z2) that has been found. The values of (Z2) either
increase or remain stable for different values of (α) with the decrease in the weight
parameter (α). The maximum (worst) value of (Z2) has been attained as $396,879 
at β ¼ 0.9 and α ¼ 0.1, respectively. Thus it has emerged that with the increase in 
the feasibility degree (β) and the decrease in the weight parameter (α), the value of
the objective (Z2) approaches its worst outcomes. The different solution results of
(Z2) have been generated, which lie between $396,534 and $396,879, and are pres-
ented in Table 15.7. The fluctuating behavior of (Z2) has also been shown in Fig.
15.4B at a different feasibility degree (β) and weight parameter (α). The utmost

influencing capability of the feasibility degree (β) has been reflected by the significant
increase in the objective (Z2) and which lead (Z2) toward its worst values. The weight
parameter (α) has fewer effects on the objective (Z2) compared to the feasibility degree 
(β) among all the solution choices. Due to the low processing charges at each echelon
in the reverse chain, the total TPC has been obtained much less compared to TPC in
the forwarding chain. Each echelon in the reverse chain dealt with either end-of-use
products or end-of-life products. To perform the different required services on such
products would not necessarily result in higher costs, because of less complexity in
dealing with used and returned products compared to the manufacturing of new parts
and products.
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Table 15.6 Total processing costs (Z1) at different feasibility degrees (β) and weight parameters (α).

Weight parameter (α)

Feasibility

degree (β) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.1 39,387,662 39,387,664 39,387,666 39,387,668 39,387,670 39,387,672 39,387,674 39,387,676 39,387,678

0.2 39,387,768 39,387,769 39,387,771 39,387,773 39,387,774 39,387,774 39,387,776 39,387,778 39,387,779

0.3 39,387,834 39,387,834 39,387,835 39,387,836 39,387,836 39,387,836 39,387,838 39,387,838 39,387,839

0.4 39,387,914 39,387,916 39,387,916 39,387,916 39,387,918 39,387,918 39,387,921 39,387,921 39,387,922

0.5 39,387,994 39,387,996 39,387,996 39,387,996 39,387,997 39,387,997 39,387,998 39,387,998 39,387,999

0.6 39,388,194 39,388,194 39,388,194 39,388,196 39,388,196 39,388,197 39,388,197 39,388,197 39,388,198

0.7 39,388,234 39,388,234 39,388,236 39,388,238 39,388,239 39,388,241 39,388,241 39,388,243 39,388,244

0.8 39,388,282 39,388,283 39,388,285 39,388,285 39,388,285 39,388,286 39,388,286 39,388,288 39,388,288

0.9 39,388,331 39,388,331 39,388,334 39,388,336 39,388,336 39,388,336 39,388,337 39,388,338 39,388,338
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Table 15.7 Total transportation costs (Z2) at different feasibility degrees (β) and weight parameters (α).

Weight parameter (α)

Feasibility degree (β) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.1 396,534 396,535 396,535 396,534 396,535 396,537 396,538 396,538 396,539

0.2 396,593 396,593 396,593 396,595 396,595 396,596 396,598 396,599 396,599

0.3 396,642 396,642 396,642 396,643 396,644 396,644 396,646 396,648 396,649

0.4 396,686 396,686 396,687 396,687 396,687 396,688 396,688 396,689 396,689

0.5 396,723 396,724 396,724 396,724 396,725 396,725 396,725 396,726 396,728

0.6 396,767 396,767 396,768 396,768 396,768 396,769 396,769 396,769 396,770

0.7 396,798 396,798 396,798 396,799 396,799 396,802 396,802 396,805 396,805

0.8 396,837 396,837 396,838 396,838 396,838 396,839 396,839 396,839 396,840

0.9 396,873 396,874 396,874 396,874 396,875 396,876 396,876 396,877 396,879
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The minimization of the total purchasing cost has been represented by the third

objective (Z3). The minimum (best) value of the objective (Z3) has been obtained as
$6,887,719 at β ¼ 0.1 and α ¼ 0.9. At β ¼ 0.9 and α ¼ 0.1, the maximum (worst)

value of the total purchasing cost has been obtained, which is $6,887,980. As (α)
decreases, the values of (Z3) either increase or remain inert for some (α). With an

increase in the feasibility degree (β), the significant increment in the objective

function (Z3) has been noticed. Thus it has emerged that with the increase in

the feasibility degree (β) and the decrease in the weight parameter (α), the value

of the objective (Z3) approaches its worst outcomes. The different solution results

of (Z3) have been generated, which lie between $6,887,719 and $6,887,980 and are

represented in Table 15.8. The declining performance of (Z3) has also been shown

in Fig. 15.4C at different feasibility degrees (β) and weight parameters (α).
Furthermore, the effect of the feasibility degree (β) is more influential, as the sig-

nificant increase in the value of (Z3) rapidly approaches the worst solutions

whereas the effect of the weight parameter (α) on the objective (Z3) is almost

negligible.

The fourth objective (Z4) is the minimization of total product delivery time to

different customers/market zones. At β¼ 0.1 and α¼ 0.9, the minimum (best) value

of the total products delivery time is 13,610,103 hours. As the feasibility degree (β)
increases, a significant marginal increment in the objective (Z4) is observed. The
values of (Z4) either increase or remain inactive for different values of (α) with
the decrease in the weight parameter (α). The maximum (worst) value of (Z4) has
been attained as 13,610,429 hours at β ¼ 0.9 and α ¼ 0.1, respectively. Thus it

has been concluded that with the increase in the feasibility degree (β) and the

decrease in the relative weight parameter (α), the value of the objective (Z4)
approaches its worst results. The various solution outcomes of (Z4) have been gen-

erated, which lie between 13,610,103 and 13,610,429 hours, and are presented in

Table 15.9. The trending feature of (Z4) is also shown in Fig. 15.4D at different fea-

sibility degrees (β) and weight parameters (α). The powerful performance of the

feasibility degree (β) has been observed by the significant increase in the objective

(Z4) and which leads (Z4) toward its worst values. The weight parameter (α) has
fewer effects on the objective (Z4) compared to the feasibility degree (β) among

all the solution sets.

The maximization of revenues earned from the selling of new products has been

represented by the fifth objective (Z5). The maximum (best) value of the objective

(Z5) has been obtained as $11,179,402 at β ¼ 0.1 and α ¼ 0.9. At β ¼ 0.9 and α ¼
0.1, the minimum (worst) value of revenues has been obtained, which is

$11,179,140. As (α) decreases, the values of (Z5) either decrease or remain stable

for some (α). With an increase in the feasibility degree (β), the significant decrease

in the objective function (Z5) has been found. Thus it has been elicited that with

the increase in the feasibility degree (β) and the decrease in the weight parameter

(α), the value of the objective (Z5) approaches its worst outcomes. The different solu-

tion results of (Z5) ranging between $6,887,719 and $6,887,980, and are summarized
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Table 15.8 Total purchasing costs (Z3) at different feasibility degrees (β) and weight parameters (α).

Weight parameter (α)

Feasibility

degree (β) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.1 6,887,719 6,887,721 6,887,723 6,887,723 6,887,724 6,887,724 6,887,725 6,887,725 6,887,727

0.2 6,887,743 6,887,743 6,887,743 6,887,744 6,887,744 6,887,745 6,887,745 6,887,747 6,887,748

0.3 6,887,795 6,887,796 6,887,797 6,887,797 6,887,797 6,887,798 6,887,798 6,887,799 6,887,799

0.4 6,887,823 6,887,823 6,887,823 6,887,825 6,887,826 6,887,827 6,887,827 6,887,828 6,887,829

0.5 6,887,847 6,887,847 6,887,848 6,887,848 6,887,848 6,887,848 6,887,849 6,887,849 6,887,851

0.6 6,887,881 6,887,881 6,887,883 6,887,883 6,887,884 6,887,884 6,887,885 6,887,886 6,887,887

0.7 6,887,916 6,887,917 6,887,917 6,887,918 6,887,918 6,887,919 6,887,921 6,887,921 6,887,923

0.8 6,887,949 6,887,951 6,887,951 6,887,952 6,887,954 6,887,954 6,887,955 6,887,955 6,887,956

0.9 6,887,976 6,887,976 6,887,976 6,887,977 6,887,978 6,887,978 6,887,978 6,887,979 6,887,980
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Table 15.9 Total expected product delivery times (Z4) at different feasibility degrees (β) and weight parameters (α).

Weight parameter (α)

Feasibility degree (β) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.1 13,610,103 13,610,103 13,610,103 13,610,106 13,610,106 13,610,106 13,610,107 13,610,108 13,610,108

0.2 13,610,162 13,610,163 13,610,163 13,610,163 13,610,165 13,610,166 13,610,166 13,610,167 13,610,168

0.3 13,610,213 13,610,213 13,610,213 13,610,215 13,610,215 13,610,216 13,610,216 13,610,216 13,610,218

0.4 13,610,237 13,610,237 13,610,238 13,610,238 13,610,238 13,610,239 13,610,239 13,610,239 13,610,241

0.5 13,610,279 13,610,279 13,610,279 13,610,279 13,610,280 13,610,281 13,610,283 13,610,283 13,610,285

0.6 13,610,308 13,610,308 13,610,309 13,610,311 13,610,311 13,610,311 13,610,312 13,610,313 13,610,314

0.7 13,610,342 13,610,342 13,610,342 13,610,342 13,610,345 13,610,345 13,610,346 13,610,346 13,610,348

0.8 13,610,381 13,610,383 13,610,385 13,610,385 13,610,385 13,610,386 13,610,386 13,610,388 13,610,388

0.9 13,610,422 13,610,422 13,610,423 13,610,424 13,610,424 13,610,425 13,610,425 13,610,428 13,610,429
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Table 15.10 Total revenues (Z5) at different feasibility degrees (β) and weight parameters (α).

Weight parameter (α)

Feasibility

degree (β) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.1 11,179,402 11,179,402 11,179,401 11,179,400 11,179,398 11,179,398 11,179,397 11,179,396 11,179,395

0.2 11,179,383 11,179,383 11,179,383 11,179,383 11,179,381 11,179,381 11,179,380 11,179,380 11,179,379

0.3 11,179,351 11,179,351 11,179,349 11,179,348 11,179,347 11,179,346 11,179,346 11,179,346 11,179,345

0.4 11,179,316 11,179,316 11,179,316 11,179,314 11,179,313 11,179,313 11,179,311 11,179,310 11,179,309

0.5 11,179,281 11,179,281 11,179,281 11,179,280 11,179,278 11,179,278 11,179,275 11,179,275 11,179,274

0.6 11,179,243 11,179,243 11,179,243 11,179,241 11,179,241 11,179,240 11,179,239 11,179,237 11,179,236

0.7 11,179,209 11,179,209 11,179,209 11,179,208 11,179,206 11,179,206 11,179,206 11,179,205 11,179,203

0.8 11,179,168 11,179,168 11,179,167 11,179,165 11,179,165 11,179,165 11,179,163 11,179,162 11,179,161

0.9 11,179,143 11,179,143 11,179,143 11,179,142 11,179,142 11,179,141 11,179,140 11,179,140 11,179,140
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in Table 15.10, and Fig. 15.4E shows the inclining behavior of (Z5) at different fea-
sibility degrees (β) and weight parameters (α), respectively. Furthermore, the effect of
the feasibility degree (β) is more influential, as the significant increase in the value of
(Z5) rapidly approaches the worst solutions whereas the weight parameter (α) affects 
the objective (Z5) almost trivially.
6.2.2 Sensitivity analyses of intuitionistic fuzzy linguistic
preference relations

Imprecise importance relations have been represented by an intuitionistic fuzzy

preference hierarchy for three different linguistic terms. The membership functions

for importance relations eR2ð2,1Þ, eR1ð4,3Þ, eR3ð3,5Þ, and eR1ð4,5Þ have been

obtained and shown in Table 15.11 and Fig. 15.4F. With the increase in the fea-

sibility degree (β) and the weight parameter (α), the preference membership func-

tion for eR2ð2,1Þ also increases and reaches its maximum, that is, 0.71 at β ¼ 0.9

and α ¼ 0.9. Similarly, the preference membership functions for eR1ð4,3Þ, eR3ð3, 5Þ,
and eR1ð4,5Þ also reveal increasing behavior with the increase in the feasibility

degree (β) and the weight parameter (α), and reaches their maximum attainment,

that is, 0.64, 0.68, and 0.77 at β ¼ 0.9 and α ¼ 0.9, respectively. Moreover, the

nonmembership functions for different linguistic preferences are summarized in

Table 15.11 and are shown in Fig. 15.4G. The motive is to minimize the non-

membership functions of each linguistic preference relation. Hence the minimum

attainment degrees of nonmembership functions for eR2ð2,1Þ, eR1ð4,3Þ, eR3ð3,5Þ, andeR1ð4,5Þ have been obtained as 0.29, 0.34, 0.26, and 0.21 at β ¼ 0.9 and α ¼ 0.9,

respectively. The overall satisfaction degree of linguistic preference relations

has been represented by the score function. The maximization of the score function

ensures the maximum satisfaction degree for the intended preferences among

different objectives and is shown in Fig. 15.4H. In Table 15.11, with the increase

in value of β and α, the score function shows the enhancing trend. At β ¼ 0.9 and α
¼ 0.9, it approaches the maximum satisfactory degree, that is, 0.4256, 0.3557,

0.4253, and 0.5637 for eR2ð2,1Þ, eR1ð4,3Þ, eR3ð3,5Þ, and eR1ð4,5Þ, respectively. By
tuning the parameters β and α, various sets of score functions for satisfaction

level could be obtained effectively. Hence, intuitionistic fuzzy linguistic prefer-

ence relations would be a good representative of priority structure among objec-

tives according to the interest of decision maker(s). They would also be an

effective and promising tool for assigning the preference when large numbers of

objectives and goals have been dealt with simultaneously. The assignment of

crisp weight (such as wo ¼ 0:1,0:2,…,1j
PO

o wo ¼ 1) to significant number objec-

tives might be time-consuming and would involve more complexity to search

for the best combination of crisp weight among different objectives or goals.

Hence it would be tricky to assign the linguistic preferences among different objec-

tives, which reduced the time and exempted from the best combination of crisp

weight.
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Table 15.11 Achievement degree of intuitionistic fuzzy linguistic preference relations at different feasibility degrees (β) and weight parameters (α).

Intuitionistic fuzzy preference relations

Feasibility

degree

Weight

parameter Membership functions Nonmembership functions

Score function achieved for

intuitionistic fuzzy preference relations

(β) (1 2 α) μeR2ð2, 1Þ
μeR1ð4, 3Þ

μeR3ð3, 5Þ
μeR1ð4, 5Þ

νeR2ð2, 1Þ
νeR1ð4, 3Þ

νeR3ð3, 5Þ
νeR1ð4, 5Þ

SeR2ð2, 1Þ
SeR1ð4, 3Þ

SeR3ð3, 5Þ
SeR1ð4, 5Þ

0.1 0.1 0.63 0.56 0.63 0.71 0.37 0.37 0.33 0.27 0.2634 0.1924 0.3091 0.4453

0.2 0.2 0.63 0.56 0.63 0.71 0.37 0.37 0.33 0.27 0.2637 0.1938 0.3037 0.4467

0.3 0.3 0.64 0.56 0.63 0.72 0.37 0.37 0.33 0.27 0.2721 0.1957 0.3052 0.4531

0.4 0.4 0.64 0.56 0.63 0.72 0.35 0.36 0.32 0.27 0.2932 0.2122 0.3127 0.4567

0.5 0.5 0.64 0.56 0.63 0.72 0.35 0.36 0.32 0.27 0.2981 0.2143 0.3149 0.4579

0.6 0.6 0.65 0.58 0.65 0.74 0.32 0.35 0.32 0.23 0.3381 0.2311 0.3351 0.5133

0.7 0.7 0.65 0.58 0.65 0.74 0.32 0.35 0.29 0.23 0.3393 0.2341 0.3691 0.5148

0.8 0.8 0.67 0.61 0.66 0.74 0.32 0.35 0.29 0.21 0.3547 0.2934 0.3712 0.5321

0.9 0.9 0.71 0.64 0.68 0.77 0.29 0.34 0.26 0.21 0.4256 0.3557 0.4253 0.5637
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7. Conclusions

In this study, an effective modeling and optimization framework for the CLSC design
has been formulated as a mixed-integer neutrosophic fuzzy programming problem
under uncertainty. The proposed CLSC designed model comprises multiproduct,

multiechelon, and multiobjective scenarios for the optimum allocation of new and
end-of-use products. In the forward chain, five functional echelons have been
designed, whereas the reverse chain consists of six potential echelons to deal with
end-of-use and end-of-life products. The testing center has been depicted in the CLSC
model, which ensures the promising useful life of the product. Multiple-conflicting

objectives with a well-defined set of constraints reveal typical complexity under a
fuzzy environment. To deal with fuzzy parameters and constraints, a fuzzy robust
ranking function technique depending on a feasibility degree has been suggested.
Fuzzy inequality constraints have been converted into their crisp forms by using
the ranking function, whereas fuzzy equality constraints have been transformed into
two equivalent auxiliary crisp inequalities. Then the obtained fresh model has been
solved by using a modified NFPA which consists of independent indeterminacy

thoughts in decision-making processes. A novel linguistic importance scheme named

intuitionistic fuzzy preference relations among different objectives has been investi-
gated. With the aid of the linear preference membership and nonmembership function,
the marginal achievement of each linguistic preference has been attained. The overall
satisfaction level has been represented by the convex combination of membership

functions of each objective and score function of intuitionistic fuzzy preference rela-
tions. By tuning the feasibility degree and weight parameter, a different set of optimal

solution results has been generated. A sensitivity analysis of the obtained results has
been performed. Therefore, the presented CLSC modeling study under uncertainty
may be helpful for practitioners and decision makers who are actively dedicated in
the decision-making process of procurement, production, distribution, transportation,
and management of end-of-use and end-of-life products in the CLSC network.

The propounded CLSC study has some limitations that can be addressed in future
research. The CLSC network has been designed for a single period, but modeling with
multiple periods is much needed in real-life scenarios. Incorporation of the triple bot-
tom lines concept, which means sustainable development of the CLSC model com-

prising economic policies, environmental issues, and social concerns, would be a
remarkable extension of the proposed model. Uncertainty among parameters due to
randomness or other uncertain forms would be a significant enhancement of the dis-
cussed CLSC model. Various metaheuristic approaches may be applied to solve the
proposed model as a future research scope.
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Abstract
The notion of fuzzy sets initiated to overcome the uncertainty of an object. Fuzzy topological space, in-
tuitionistic fuzzy sets in topological structure space, vagueness in topological structure space, rough sets in 
topological space, theory of hesitancy and neutrosophic topological space, etc. are the extension of fuzzy sets. 
Soft set is a family of parameters which is also a set. Fuzzy soft topological space, intuitionistic fuzzy soft and 
neutrosophic soft topological space are obtained by incorporating soft sets with various topological structures. 
This motivates to write a review and study on various soft set concepts. This paper shows the detailed review 
of soft topological spaces in various sets like fuzzy, Intuitionistic fuzzy set and neutrosophy. Eventually, 
we compared some of the existing tools in the literature for easy understanding and exhibited their advantages 
and limitations.
Keywords: Soft sets, fuzzy soft topological space, intuitionistic fuzzy soft topological space, neutrosophic 
soft topological space.

1 Introduction
In the year 1999, Molodtsov47 proposed the concept of soft sets (SS). This concept developed to overcome 
the difficulty to fix membership for each case. SS is a family of parameterization of the universe of discourse. 
Parameters may be numbers, meaningful words, sentences, etc. Anyone could define the parameterization for 
their convenient. This technique is very useful to model the uncertainties. Also, Molodtsov defined some basic 
operations and presented some uses of SS, such as stability and operations research, etc.

The first definition of soft spaces was introduced by the authors Shabir and Naz70 and it is defined on the 
universe of discourse with a fixed set of parameters. Also they proved that a soft topological space provides 
a parameterized family of topological spaces. The researchers14, 21, 52, 74 are developed the concept of soft set 
theory.

Fuzzy set (FS) was introduced by Zadeh81 in the year 1965, every element ‘a’ in A has a membership 
value, where A is mapped from the universe of discourse to [0, 1]. Later Chang24 introduced the concept 
fuzzy topology in the literature, which satisfies the three axioms of topology and also Chang used the same 
notation in fuzzy topology as Zadeh used for FS. After few years, Lowen39 defined fuzzy topology which is 
different from definition by Chang. Maji et al.42 proposed the concept of fuzzy soft set (FSS) and defined 
some basic operations. Later, Tanay et al.72 introduced fuzzy soft topological space (FSTS)and established 
the basic definitions of FSTS by incorporating the fuzzy topology and soft set. FSTS was applied in various 
ways say, game theory, analysis, etc. Fuzzy soft set in topological space further studied by Roy.61, 63 The 
authors10, 22, 30, 36, 45, 50, 54 are successfully applied FSTS in real life.

FS failed to address the rejection of an object in the set. So Atanassov12 proposed the theory where 
every object in a set has both acceptance and rejection with subject to the constraint that sum of acceptance 
and rejection should not exceed 1 and non-negative and that theory is called Intuitionistic fuzzy set theory. 
Intuitionistic fuzzy set A(a) is an generalization of fuzzy set where every element a in A is a subset of universal 
set have degree of membership and degree of non- membership and each function map from the universe of
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discourse to the interval [0, 1]. Researchers developed the theory by generalising it and got new result through
extension.6, 15, 16, 57–59 Later, Maji et al.43 introduced the notion of intuitionistic fuzzy soft set (IFSS). D.
Coker27 initiated the concept of IFSTS and followed by34, 53, 76 developed the concept in decision making.

Atanassov failed to address the problem when indeterminacy occurs in the object. To address the difficulty,
Smarandache67, 68 originated the concept called neutrosophic set. Every element in the neutrosophic set has
truth, indeterminacy and falsity values respectively and which are maps from universe of discourse to [0, 1]
with the constraint that truth, indeterminacy and falsity values should not exceed 3 and not less than zero
under addition. Many complex problems in statistics, in graph theory when relationship between the object
have acceptance, rejection and also indeterminacy, physics, image processing, networking and in decision
making which can’t be solved by existing classical methods. The generalisation of this notion also exist in the
literature, namely neutrosophic soft topology, neutrosophic nano topology, neutrosophic nano ideals topology,
neutrosophic support soft set,56 neutrosophic soft supra topological spaces in various sets, etc. Maji et al.41

presented the concepts of neutrosophic soft set. Maji44 successfully applied the concept of neutrosophic soft
sets (NSS) in pattern recognition, reasoning etc. Thereafter, Bera18, 19 initiated the concept of neutrosophic
soft topological space (NSTS). The following authors7, 8, 19, 28, 66 are developed NSTS. In this work, soft sets in
various topological spaces are studied in detail. Advantages and limitations of different soft topological spaces
are presented. Eventually comparison table of classical soft topological space, FSTS, IFSTS, NSTS are also
presented.

2 Preliminaries
This section is a collection of definitions initiated by12, 18, 27, 40–43, 64, 67, 72, 81 for the development of soft sets in
various uncertainty sets.

Definition 2.1. Fuzzy set A(a) of universal set X is defined byA = {(a, µA(a)) : a ∈ X}, where µA represent
the degree of membership and it is mapped from the universal set X to the unit interval [0, 1].

Definition 2.2. The pair (F,A) is called a FSS over X, where the mapping F : A→ F (U), F(U) is the set of
all fuzzy subsets of non-empty set X and A is a subset of the set of parameters E.

Definition 2.3. Let the pair (X, τ) be a FSTS and τ be a family of FSS over X 6= ∅. The pair (X, τ) is said
to be a FSTS if it satisfying the following conditions: (i) 0E , 1E ∈ τ. (ii) If fA1 , fA2 in τ , then fA1 ∧ fA2 in
τ . (ii) If (fA)i in τ , for all i in J, then union of (fA)i in τ . Then τ is called a topology of fuzzy soft sets on X.

Definition 2.4. Let (X, τ) be FSTS and fA ∈ F (X,E). The closure of fuzzy soft set fA is intersection of all
fuzzy soft closed supersets of fA.

Definition 2.5. Let (X, τ) be FSTS and fA ∈ F (X,E). The interior of fuzzy soft set fA is union of all fuzzy
soft open subsets of fA.

Definition 2.6. Intuitionistic fuzzy set A(a) on the non-empty set X is defined by A = {(a, µA(a), νA(a)) :
a ∈ X}, where µA denotes truth value and νA denote the falsehood and the map of truth value and falsehood
from the universal set X to the interval [0, 1] and satisfying the constraint that sum of truth and falsehood value
is lies between 0 and 1, for each a ∈ X .

Definition 2.7. Let X and E be the initial universe and set of all parameters respectively and A is a subset of
the parameter set E. Let IF(U) be the set of all power set of X. If the mapping F from the set A to IF(U), then
the pair (F,A) is said to be intuitionistic soft set over X.

Definition 2.8. Neutrosophic set A (a) on the non-empty set X is defined by A = {(a, µA(a), σA(a), νA(a)) :
a ∈ X}, where µA represent the degree of membership, σA represent the degree of indeterminacy and νA
represent the degree of non-membership and the map of membership , indeterminacy and non-membership
from the universal set X to the interval [0, 1] and with the constraint 0 ≤ µA(a) + σA(a) + νA(a) ≤ 3, for
each a ∈ X .

Definition 2.9. Let X be a non-empty set and the parameters set be E. The power set of X is denoted by P(X)
and is defined as the collection of all neutrosophic set. The pair (F, I) is called the NSS over X, where I is a
subset of X and the map F from I to P(X).

Definition 2.10. Let X and E are the non-empty set and set of parameters respectively and NSTS (X, τ) is a
subset of NSS (X, E) satisfying the following:

(1) Null and universal soft set are the members of τ . (2) Finite intersection of member of any finite sub
collection of τ also in τ . (3) Arbitrary union of member of any sub collection of τ also a member of τ .
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3 Soft Topological Spaces in Various Sets

3.1 Fuzzy soft set
In 2008, Yao78 presented the concept of soft fuzzy set and this concept tested for the significance of existing
soft fuzzy set. Lastly, FSS relations and soft fuzzy set relations are compared with some example. Cagman23

modified the definition of FSS and studied the concept with some of its properties. Finally, fuzzy soft aggre-
gation operator is defined for effective construction of decision process.

Generalized FSS introduced by Majumdar46 in 2010. Some properties of generalized FSS and its applica-
tions are presented by Manjumdar. Tanay72 first introduced the concept of FSTS to the literature. The authors
also defined the notion of neighbourhood, family of neighborhood, interior and closure of FSS, Basis for FSTS
and finally subspace of FSTS along with the some properties. Gunduz. C31 defined interior, closure of FSTS.
Further, Gunduz introduced open and closed sets in respect of FSS and continuous mapping in FSS, homeo-
morphism of FSTS. Characteristics of fuzzy soft topological structure also discussed. In 2011, Zhi Kong et
al.82 discussed FSS to present a real life problem with grey relation analysis theory. The result is verified with
some cases. Mahanta48 introduced and studied fuzzy soft point and its neighbourhood in a FSTS. Closure and
interior of FSS are studied and investigated separation axioms and connectedness of FSTS. Abd El – Latif4

developed and studied the concept of pre-connected, pre-separated, pre-soft subspace of FSTS. Generally, Pre
- disconnectedness of FSTS is not traditional property proved by Abd El – Latif.4 In 2012, Varol73 brought
the notion of fuzzy soft continuity and projection mapping of FSTS. Simsekler67 defined fuzzy soft open sets
and fuzzy soft closed sets in FSTS and also fuzzy Q-neighbourhood of fuzzy soft points are defined. Roy
et al.61, 63 defined the concept of accumulation point using Q-neighbourhood and also proved that separation
axioms exists using Q-neighbourhood in FSS.

Yang et al.77 combined the concept of multi-fuzzy set and soft set to produce a new result called multi-
fuzzy soft set. Also defined some theoretic operations say, union, intersection and complementary. Yang et
al.77 developed an algorithm using multi-fuzzy soft set. Eventually using the proposed algorithm, decision
making problem is analysed. Roy and Maji62 analysed the decision making problems using fuzzy soft sets.
They construct an algorithm for selecting object from universe of discourse by considering maximum value
among the score using score function. Cetkin25 established the concept of continuous mappings in FSTS and
presented the idea of anti-chain and isomorphism to FSTS.

In 2015, Kandil37 introduced the concept of semi connected set, semi s-connected set, semi separated set in
FSTS. Sabir Hussain64 defined the soft pre-open set, soft alpha-open set in FSS and studied soft neighbourhood
at fuzzy soft points. Also introduced soft regular open set and studied further. Finally, the relationships
between the above proposed concepts are presented. Pre-open, pre-closed set of FSTS introduced by Abd El-
Latif1, 3 and studied some properties of pre-regular, pre-normal space of FSTS. Fuzzy α-connected set, fuzzy
α-separated set, fuzzy α-S-connected set in FSTS established by A.M. Abd El-Latif.2

A. Kandil et al.36 defined fuzzy soft point based on equivalence classes in the year 2015 and described
that Universal fuzzy soft set can be written as the union of disjoint connected component. G. Kalpana et al.35

introduced fuzzy soft r-open and fuzzy soft r-closed mappings, fuzzy soft r-closure, fuzzy soft r-interior, fuzzy
soft r-continuous mapping through fuzzy soft set. Abd El-Latif3 initiated the notion of β-open soft sets and
β-separation axioms in FSTS and established the properties of β-closure and β – regular, β-normal space in
FSTS.

3.2 Intuitionistic Fuzzy Soft Set
Here, we present the initialization, extensions and generalization of intuitionistic fuzzy soft set in topological
structure. Yang76 originated the concept of interval - valued IFSS, defined the set theoretic operations and
finally decision making problem solved by adopting existing algorithm. Mukherjee49 proposed and studied a
new type of sequence of intuitionistic fuzzy soft multi sets and some of its properties are investigated. Also
the increasing, decreasing and convergent sequences of intuitionistic fuzzy soft multi- topological spaces are
introduced by Mukherjee.49 Finally, cluster intuitionistic fuzzy soft multi topological space and their properties
are studied. In 2010, Xu74 presented the concept of IFSS by merging K.Atanassov intuitionistic fuzzy set and
soft set. Developed some basic operations and applying this tool to target the type recognition problem. Jiang et
al.33 combined the two classical methods viz. soft set and interval-valued intuitionistic fuzzy set and produced
a new result called interval-valued IFSS. Union, intersection and complement of interval-valued IFSS defined
and established some basic properties.

In 2012 Yin et al.79 introduced further the concept of IFSS. In particular, theoretical operations such
as union, intersection and complement, etc. are introduced. Mapping on IFSS introduced and their basic 
properties also presented. Li et al.40 proposed the novel notion called IFSTS in the year 2013. The author
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also defined the interior, closure, base, relative complement and absolute IFSS and IFSTS. Some properties of
IFSTS also presented.

In 2013, Agarwal et al.5 developed the concept of generalized IFSS and this developed a generalized pa-
rameter to pool the intuitionistic fuzzy numbers. The author has developed three different algorithms mainly
for decision making. One is for in medical diagnosis to compare the intuitionistic fuzzy numbers and remain-
ing for measure the similarity, if any in selecting the supplier. Kumud Borgohain38 studied IFSTS and defined
intuitionistic fuzzy soft separation axioms, normal space and finally completely normal space of IFSTS. Os-
manoglu et al.55 introduced intuitionistic fuzzy soft finer and coarser topological space, Intuitionistic fuzzy
soft discrete topology and intuitionistic fuzzy soft indiscrete topology. Further, soft points and complement of
intuitionistic fuzzy soft points and separation axioms of the same introduced and their properties also studied.
Cetkin26 introduced the definition of closure intuitionistic supra fuzzy soft topological space.

In 2014, Bayramov. S13 introduced the basic definitions of IFSTS namely, null and absolute IFSTS, interior
and closure, associated closure of IFSTS. Some basic properties also investigated. Mukherjee51 established
the notion of intuitionistic fuzzy soft multi topological space for the parameterized family and also established
the basic structure of intuitionistic fuzzy soft multi topological structure.

Shuker Mahmood71 studied and established soft b-closed, soft b-continuous mapping, soft b- closed dis-
connectedness of IFSTS. In 2017, Yogalakshmi80 initiated the concept of various compactness of IFSTS,
namely almost compact, nearly compact, etc and also studied intuitionistic soft fuzzy filter and intuitionistic
soft fuzzy prime filter of IFSTS.

3.3 Neutrosophic soft set
This section contains the overview of various studies on NSS. In 2012, Maji41 defined the concept of NSS
by combining soft set and neutrosophic set. Some basic operations of NSS, such as union, intersection and
complement are defined and developed some properties of NSS. In the year 2013, Said Broumi20 presented
the concept of generalized NSS with basic definitions and properties of generalized NSS. Deli29 defined the
notion of relation on NSS. The composition of NSS is used to compose two different NSS. Deli29 examined the
following concepts, namely equivalence relation, equivalence class and quotient of NSS. Deli also analyzed
the decision making problem using NSS relation. Arockiarani9 defined a distance measure and score function
to present a decision making problem using the existing tool called NSS.

In 2017, Al-Quran11 introduced the notion of neutrosophic vague soft set which is an extended concept of
classical soft set. Some basic operations and properties are defined and studied and at the end of the work,
presented the decision making problem using the proposed concept to show the effectiveness. Parimala et al.56

introduced an algorithm to analyze the medical diagnosis problem using interval-valued FSTS. In their work,
some basic theoretic operations are also investigated.

Bera18 introduced the concept of NSTS. In the introduction paper, the authors are also defined interior,
closure, base for NSTS, subspace of NSTS and regular NSTS. Finally some properties of NSTS and separation
axioms with different characteristics are studied and investigated.

In 2018 Bera17 introduced neutrosophic soft connected and compact topological space along with some
properties. Finally the concept of continuous mapping on NSTS introduced and studied. Gunduz Aras et al.32

established the definition of NSS and introduced the neutrosophic soft point. Finally separation axioms and
subspace of NSTS are studied in detail. Parimala et al.60 proposed a new concept by incorporating NSS with
hesitancy degree, which is exclusively for finding the residual of NSS.

4 Advantages and Limitations
Advantages and limitation of classical topological space and other topological spaces, such as FSTS, IFSTS,
NSTS are presented here.
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Types Advantages Limitations
General topology It’s a classical method and it is basic for

all other topological space.
We could not apply the classical
approach for uncertainties and for
many real life fields.

Fuzzy topology In fuzzy topology, every element has
membership grade which lies between [0,
1].

Rejection part of membership does
not exist in the fuzzy topology.

Intuitionistic fuzzy
topology

Every element in the set has truth and
falsehood value.

It’s difficult to apply when some ele-
ment have indeterminacy or indeter-
minate form.

Neutrosophic topol-
ogy

Every element in the non-empty set has
acceptance, rejection and indeterminacy
value. So all variables in the universe of
discourse have value between [0,1].

Residual part may lead to some ob-
vious errors in the solution.

Fuzzy soft topology A non-empty set can be written as disjoint
union of parameters set. One can sepa-
rate the characteristic from the universal
set and investigate according to the need
of problem.

Non-acceptance of an element in the
parameter does not consider.

Intuitionistic fuzzy
soft topology

Every element in the parameterization has
possibility of acceptance and possibility
of non-acceptance value.

Omitting the possibility of neutral-
ity.

Neutrosophic soft
topology

Here we consider acceptance rate, non-
acceptance rate and neutrality rate of all
elements in the parameter.

Accuracy may affect if the residual
rate is high.

The following table emphasize the comparison of various tools which we discussed in this overview.

Sets Image Pre-Image Uncertainty Truth
Value of
Parame-
ter

False
value of
Parame-
ter

Indeterminacy
of parameter.

Classical sets Universal
set

Integer Set. - - - -

Soft Topology Initial
Universe

Power set whose
ranges from
closed interval 0
to 1

- - - -

Fuzzy Soft
Topology

Initial
Universe

Power set whose
ranges from
closed interval 0
to 1

Present Present - -

Intuitionistic
Soft Topolog-
ical Space

Initial
Universe

Power set whose
ranges from
closed interval 0
to 1

Present Present Present -

Neutrosophic
soft topologi-
cal space

Initial
Universe

Power set whose
ranges from
closed interval 0
to 1

Present Present Present present

5 Conclusions
Topological space has several applications in mathematics and in other fields like operations research, physics,
data science, etc. But sometimes applying the concept of topology for real life application is difficult, because
of uncertainties, inconsistent, incomplete information of the element. Fuzzy soft topological space introduced
to overcome the difficulty in classical set which deals uncertainty of the object and intuitionistic fuzzy soft
topological space established to solve some problem which encounter in fuzzy soft topology. Some cases,

Florentin Smarandache (author and editor) Collected Papers, VIII

772



object has indeterminacy value, for those cases the previous tools can’t be used. So Neutrosophic set has been
introduced to deal the uncertainty, incomplete and inconsistent. This paper is thorough study of all these tools.
Advantages and limitations of all existing tools are discussed.
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Abstract 

In a previous paper in this journal (IJNS), it is mentioned about a possible approach of “curemony” as a middle way 
in order to reconcile Eastern and Western’s paradigms of medicine [1]. Although it is known in literature that there 
are some attempts to reconcile between Eastern and Western medicine paradigms, known as “integrative medicine,” 
here a new viewpoint is submitted, i.e. Bong Han duct system (PVS), which is a proof of Meridian system, can be a 
bridge between those two medicine paradigms in neutrosophic sense. This can be considered as a Neutrosophic 
Logic way to bridge or reconcile the age-old debates over the Western and Eastern approach to medicine. It is also 
hoped that there will be further research in this direction, especially to clarify the distinction between Pasteur’s germ 
theory and Bechamp’s microzyma theory. More research is obviously recommended. Motivation of this paper:  to 
prove that Neutrosophic Logic offers a reconciliation towards better dialogue between Western and Eastern medicine 
systems. Novelty aspect:  it is discussed here how Bong Han Duct system offers a proven and observable way to 
Meridian system, which in turn it can be a good start to begin meaningful dialogue between Western and Eastern 
systems. 

Keywords : Pasteur, microzyma, Bechamp theory, meridian system, Bong Han Kim, Bong Han duct system, 

neutrosophic logic 

1.Introduction

In the light of recent advancements on the use of Neutrosophic Logic in various branches of science and mathematics, 

this paper discuss possible application in medicine philosophy. See for instance [13-19]. 

This paper is inspired partly by the movie, Jewel in the Palace  (Dae Jang Geum). One of these authors (VC) has a 

younger brother who likes to watch that movie. He already completed watching the entire series (more than 70 

episodes) more than three times. According to a good documentary on that movie [11]: 

A short remark on Bong Han duct system (PVS) as a Neutrosophic 

bridge between Eastern and Western Medicine paradigms 
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A history book courageous woman is reawakened in a hit TV dramatization. In 1392, the Joseon Dynasty 
appeared. The rulers of Joseon would lead the Korean landmass until the administration fell, to be supplanted 
by a Japanese provincial system, in 1910. All things considered, Joseon's heritage suffers: It was one of the 
world's longest-running imperial administrations. In the "Joseon-Wangjo-Sillok" - "The Annals of the Joseon 
Dynasty;" the official record of the realm - a lady named "Daejanggeum" is referenced. She lived during the 
rule of King Jungjong (1506~1544), and the archives disclose to us that she had been a low-positioning court 
woman who picked up the ruler's trust and was elevated to the most noteworthy positioned woman in the 
kitchen, and furthermore to regal doctor. In one notice in the archives, the ruler states, "I have nearly 
recuperated from the sickness of a couple of months. So I should offer honors to the individuals who put forth 
bunches of attempts to fix me. Give the imperial doctors and euinyeo (female associate) Daejanggeum 
blessings." 

Figure 1. Jang Geum name was recorded in the "Joseon-Wangjo-Sillok" - "The Annals of the Joseon 

Dynasty.” After Kang Min Su [11] 

What is more interesting to these authors, is not only the depiction of royal palace at the time, but also the use of royal 

cuisine as medication, beside the use of acupuncture methods.[11] 

Now it seems obvious for Western scholars to pause at this point and ask: “What? Acupuncture?  Are you joking?”  

This short review paper is discussing that approach: whether it is possible to reconcile both Eastern and Western 

medicine paradigms from the view point of Bong Han Kim’s duct system (PVS) and its relation to Bechamp’s 

microzyma.  
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As it is brought up in [1], it is notable by most medication experts, that Western way to deal with medication depends 

on "assaulting" an infection, individually. This is called germ hypothesis: one remedy for one ailment (Pasteur). On 

the contrary side, Eastern medication is situated specifically on old knowledge of restoring the parity (harmonious 

functions) of the body, at the end of the day: to blend our body and our live with nature. In spite of the fact that those 

two methodologies in medication and social insurance have caused such a large number of contentions and false 

impressions, really it is conceivable to do an exchange between them. From Neutrosophic Logic’s point of view, a 

goal to the above clashing ideal models can be found in creating novel methodologies which acknowledge the two 

conventions in medication, or it is conceivable to call such a methodology: "curemony," for example by 

simultaneously relieving an infection and reestablishing harmony and returning concordance in one's body-mind-soul 

all in all. 

Now it is known that one of the objections by Western scholars about the Eastern medicine (based on meridian points) 

is the unobservability of meridian vascular/duct system. This makes meridian system neglected in almost all textbooks 

taught in Western medicine schools. Therefore, here a new viewpoint is submitted, i.e. Bong Han duct system (PVS), 

which is a proof of Meridian  system, can be a bridge between those two medicine paradigms in neutrosophic sense. 

This can be considered as a Neutrosophic Logic way to bridge or reconcile the age old debates over the Western and 

Eastern approach to medicine. 

It would be a lot easier to merge both the eastern (ancient) and the modern western curative system in terms of 

neutrosophy.These neutrosophic intermediates will help further to boost dialogues between those Western and Eastern 

system and their useful information. This neutrosophic intermediator is actually dealing with conscious of both non-

matter and matter in terms of ancients and modern techniques. 

2. Intro duction to Bong Han duct system

Nonetheless, in literature it is recorded that Bong Han Kim is a Professor in Biology in Korea. Around 1950-1960 he 

found the vessel which is a "duct" to known Eastern Meridian system, which is already known in acupuncture medicine 

system. Therefore it seems like a bridge between Western and Eastern medicine paradigms. As it is  mentioned in 

previous paper [1], this paper will discuss how those paradigms can be reconciled in Neutrosophic Logic, using a 

degree of Western medicine and a degree of Eastern medicine, as the neutral part of neutrosophy. To us, Bong Han 

duct system is a good way to start a healthy and meaningful dialogue between those two paradigms in medicine. 

As Vitaly Vodanoy wrote, which can be rephrased as follows: 

“In the 1960's Bong Han Kim found and described another vascular framework. He had the option to separate 
it unmistakably from vascular blood and lymph frameworks by the utilization of an assortment of techniques, 
which were accessible to him in the mid-twentieth century. He gave nitty gritty portrayal of the framework 
and made thorough graphs and photos in his distributions. He showed that this framework is made out of 
hubs and vessels, and it was answerable for tissue recovery. In any case, he didn't reveal in subtleties his 
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techniques. Thus, his outcomes are moderately dark from the vantage purpose of contemporary researchers. 
The stains that Kim utilized had been idealized and being used for over 100 years. In this manner, the names 
of the stains coordinated to the unequivocal conventions for the use with the specific cells or particles. 
Generally, it was not typically important to portray the strategy utilized except if it is altogether strayed from 
the first technique.”[9] 

Although his method was almost forgotten until recently, it has been recovered again in the past decade. It is clear 

therefore, that Bonghan Kim’s work, who essentially (and without being aware of the work previously done by 

Bechamp) discovered that what we call the 'Meridian System' (known as the Kyungrak System in the Korean tongue) 

which exists in the body as an actual third anatomical vascular system, comprised of ducts, ductules, corpuscles, and 

a unique type of fluid, the contents of which tie directly back to Bechamp's own discoveries (work is still being done 

today on the mapping out of this anatomical system, as it is far more extensive than the old Oriental texts gave it 

credit.) See [4]. 

Remark on terminology: 

“In a matter of seconds before the primary International Symposium on Primo Vascular System, which was 
held in Jecheon, Korea during September 17–18, 2010, Dr. Kwang-Sup Soh, recommended that it is critical 
to concur upon a solitary phrasing for the Bonghan framework. It was concurred that following terms would 
be embraced: Bong-Han System (BHS) - Primo Vascular System (PVS); Bonghan Duct (BHD)- Primo 
Vessel (PV); Bonghan Corpuscle (BHC)- Primo Node (PN); Bonghan Ductule - P-Subvessel; Bonghan 
Liquor-Primo Fluid (P-liquid); Sanalp-Microcell”[9]. 

Now in the next section, it will be discussed virus research, especially at their beginning. 

Hidden the introduction of virology is a conviction that infections are monomorphism, they are fixed species, 

unchangeable; that each neurotic kind produces (typically) just a single explicit illness; that microforms never emerge 

endogenously, i.e., have supreme source with the host. Thus the worldview prompts conviction called "germ 

hypothesis" of Pasteur: for example one remedy for one disease.[6-7] 

Bechamp recorded standard as the premise of another hypothesis about "infections." Briefly, this guideline holds that 

in every single living life form are organically indestructible anatomical components, which he called microzymas. 

They are freely living sorted out matures, equipped for creating compounds and fit for advancement into increasingly 

complex microforms, for example, microbes. Bechamp's proposition is that infection is a state of one's interior 

condition (landscape); that ailment (and its indications) are "conceived of us and in us"; and that malady isn't created 

by an assault of microentities yet considers forward their endogenous cause. [8]  

All things considered, it is realized that Pasteur duplicated whatever he discovered Bechamp thoughts would fit in his 

own hypothesis. Consequently, Bechamp was unmistakably increasingly unique researcher contrasted with Pasteur. 
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3. A re-interp reta tion of diseases and v iru s from Bechamp’s theo ry

This section begin by citing [4], which can be paraphrased as follows: 

“Through a cautious perception of the wonders of the thickening of the blood just as the procedure of 
maturation; and as a methods for all the more accurately deciphering the basic idea of these marvels; 
Bechamp straightforwardly saw that there exist a layers of subcellular, miniaturized scale natural living 
structures known as 'microzymas', a word which when interpreted signifies 'minor ages'. These structures 
were alluded to without anyone else and by other people (who came later, and mentioned a similar objective 
facts) as some type of 'atomic granulations' (more on this beneath). These microzyma are littler in size than 
some other known types of small scale natural life, and fill in as the base establishment for the development 
of every other type of such life.” 

Moreover, on a more recent setting, see Andrew Kaufmann’s report on WHO’s early  investigation of the corona 

virus, before it was declared globally as an epidemic.1 

According to Dr. Andrew Kaufman's report, a “virus” as observed is actually an exosome. That is not impossible. 

Even if you want to be more assertive. It's not just the PCR test that is inaccurate. So the so-called virus is indeed 

questionable. Because it relates to the germ theory of Pasteur, meaning each disease will need one type of medicine 

[1][2]. 

That's not right. Pasteur's theory draws a lot from the real expert at the time: Bechamp.[4] 

In essence, according to Bechamp, the source of the disease is most likely to be endogenous. Meaning from within 

the body when adjusting itself to the environment. 

What is interesting to ask here is what kind of the changes in the environment that triggers the emergence of 

symptoms such as excessive thirs? Actually, it is known as one of the symptoms known for electromagnetic 

radiation. Therefore, it is no surprise that there are some allegations by experts: severe radiation disturbances arise in 

Wuhan and Italy and also the USA because of they are the locations where the massive 5G network has begun to be 

installed (see also Firstenberg’s report [5]).  

But this short paper is not intended to discuss more detailed about relation between 5G and covid-19, so this problem 

will be left to others to take up this matter and investigate further. 

4. Concluding rema rks

This paper continued our previous article, where possible approach of “curemony” is discussed as a middle 

Neutrosophic way in order to reconcile Eastern and Western’s paradigms of medicine [1]. Although it is known in 

literature, that there are some attempts to reconcile between Eastern and Western medicine paradigms, known as 
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“integrat ive medicine,” here it is submitted a viewpoint that Bong Han duct system (PVS) which is a proof of meridian 

system, can be a neutrosophic bridge between those two medicine paradigms. 

Here a new viewpoint is submitted, i.e. Bong Han duct system (PVS), which is a proof of Meridian system, can be a 

bridge between those two medicine paradigms in neutrosophic sense. This can be considered as a Neutrosophic Logic 

way to bridge or reconcile the age old debates over the Western and Eastern approach to medicine. 

It would be a lot easier to merge both the eastern (ancient) and the modern western curative system in terms of 

neutrosophy.These neutrosophic intermediates will help further to boost dialogues between those Western and Eastern 

system and their useful information. This neutrosophic intermediator is actually dealing with conscious of both non-

matter and matter in terms of ancients and modern techniques. 

As mentioned in our previous paper [1], it is also discussed how those paradigms can be reconciled in Neutrosophic 

Logic. To us, Bong Han duct system (PVS) is a good way to start a healthy and meaningful dialogue between those 

two paradigms in medicine. 
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ABSTRACT We present a novel social choice theory based multi-criteria decision making method under
neutrosophic environment and a new form of truth representation of neutrosophic theory called Distributed
Indeterminacy Form (DIF). Our hybrid method consists of classical methods and an aggregation operator
used in social choice theory. In addition to this, we also use DIF function to provide a more sensitive
indeterminacy approach towards accuracy functions.We also consider reciprocal property for all individuals.
This provides, as in intuitionistic fuzzy decision making theory, a consistent decision making for each
individual. The solution approach presented in this paper in group decision making is treated under
neutrosophic individual preference relations. These new approaches seem to be more consistent with natural
human behaviour, hence should be more plausible and feasible. Moreover, the use of a similar approach to
develop some deeper soft degrees of consensus is outlined. Finally, we give a Python implementation of our
work in the Appendix section.

INDEX TERMS Neutrosophic logic, group decision making, neutrosophic preference relations, distributed
indeterminacy form, social choice theory, neutrosophic social choice theory.

I. INTRODUCTION
In most cases, it is intricate for decision-makers to accurately
reveal a preference when solving multi-criteria decision-
making (MCDM) problems with imprecise, vague or incom-
plete information. Under these conditions, fuzzy sets (fs) [1],
where the membership degree is represented by a real num-
ber in [0, 1], are viewed as a strong mechanism method for
solving MCDM problems [2], as well as reasoning approxi-
mation and pattern recognition problems. However, fs cannot
cope with particular situations where it is not easy to define
the membership degree using a specific value. In order
to obviate the absence of knowledge of non-membership
degrees, Atanassov [3] introduced intuitionistic fuzzy sets
(IFS), an extension of fs. IFS have been widely used in
the solution of some significant MCDM problems [4]–[6],

including multigranulation [7]–[12], neural networks [13],
[14], andmedical diagnosis problems [15]. Smarandache [16]
introduced neutrosophic logic and neutrosophic sets (NS)
and Rivieccio [17] later raised concern about that an NS is
a set where each element of the universe has a degree of
truth, indeterminacy and falsity and it lies within ]−0, 1+[,
i.e. the non-standard unit interval. Clearly this is an extension
of the standard interval [0, 1]. Furthermore, the uncertainty
presented here, i.e. the indeterminacy factor, is dependent
on the truth and falsity values, whereas the incorporated
uncertainty is dependent on the degrees of belongingness and
non-belongingness of IFS [18]. Recent studies show that
neutrosophy can in fact be used in many applications.
Ye [21]–[34], Lui and Wang [35], Lui et al. [36], Liu
and Li [37], Liu and Shi [38], [39], Liu and Tang [40],
Şahin and Liu [41], Chi and Liu [41], Biswas et al. [41],
Biswas et al. [44]–[49], Monda and Pramanik [50]–[54],
Peng et al. [55], Zhang et al. [56], [57], Peng et al. [58],

A New Group Decision Making Method with Distributed 

Indeterminacy Form Under Neutrosophic Environment: 

An Introduction to Neutrosophic Social Choice Theory 

Selçuk Topal, Ahmet Çevik, Florentin Smarandache 

Selçuk Topal, Ahmet Çevik, Florentin Smarandache (2020). A New Group Decision Making Method 
with Distributed Indeterminacy Form Under Neutrosophic Environment: An Introduction to 
Neutrosophic Social Choice Theory. IEEE Access 8: 42000-42009, 2020, DOI: 
10.1109/ACCESS.2020.2976872 

Florentin Smarandache (author and editor) Collected Papers, VIII

784

https://orcid.org/0000-0001-7074-2569
https://orcid.org/0000-0002-5196-8148


Zhang et al. [59], [60], Tian et al. [61], [62], Ji et al. [63]–[65],
Peng and Dai [66], Peng et al. [67], Peng and Liu [68], Peng
and Dai [69], and Blin and Whinston [70] are some of the
significant works on and introduced innovative methods on
decision making under fuzzy and neutrosophic environments.

In this study, we propose to distribute the indeterminacy
on truth and falsity to be aligned with real life applications
and to take into consideration such situations in which uncer-
tainty in social choices have an effective role in truth and
falsity. We determine a rational social choice solely by the
preferences of individuals in a society. A rational choice is
possible only if every individual in the society is rational.
Social choice theory investigates solutions to the problem of
making a collective decision on a fair and democratic ground.
The main purpose and subject area of social choice theory
is to study the decision making problem for collectives to
make a collective decision in a democratic manner. Of course
our main concern will be to devise a method to make a
cumulative decision rather than judging how fair the decisions
of individuals are. The collective decision will manifest itself
in neutrosophic values that the individuals give assignments
to the preferences. Every individual is assumed to be able
to assign to every preference some neutrosophic compari-
son value as pairs. We benefit from fuzzy and intuitionistic
fuzzy social choice in solving the decision problems concern-
ing neutrosophic social choice. Some well known works in
fuzzy social choice and fuzzy decision making can be found
in [70]–[75]. As for the intuitionistic fuzzy choice, we refer
the reader to [76]–[78]. The advantage of our method is that
we take care of Indeterminacy aswell into neutrosophic social
choice, while the previous methods involving fuzzy and intu-
itionistic fuzzy into social choice ignored the indeterminacy ?
which is not accurate. This paper is about not only a classical
decision making paper but also has a paper that considers
decision making, truth maker theory and a new accuracy
function interpretation (DIF). Addition to these, on the other
hand, social choice theory under neutrosophic environment
is studied for the first time, so we cannot compare other
existing methods to the method in our paper. The comparison
method is to cite some papers related to decision making.
Many of the computational social choice theories that have
been studied are based on rational individuals and their con-
sistent preferences. Knowing the fact that the consistency
of these pairwise comparisons forms the main theme, such
theories devise appropriate methods based on the winner of
the consensus of the group or based on an ordering of the
preferences with respect to a priority as a result of voting of
each individual. In any social choice, the consensus winner
is defined as the choice of the dominant individual or the
collective decision of rational individuals. The goal is to
determine the best preference picked by the group. For the
fuzzy solutions of finding a consensus, we refer the reader
to Kacprzyk et al. [79]. We introduce a mathematical model
for determining a consensus winner as a result of a collective
decision, and in case of otherwise, we present a model which
orders the preferences with respect to their weights. We also

give an example in the last part of the paper to explain
the model better. Compared with fuzzy and intuitionistic
social choice theories, our model extends the social choice
theory to neutrosophic based social choice theory in solving
practical decision problems and present a richer language
discourse.

II. FUNDAMENTAL DEFINITIONS
In classical set (cs) theory, an element either belongs to a
set or not. The membership of elements in a set is interpreted
in binary terms according to a divalent case. In fuzzy set
theory, introduced by Zadeh [1], a gradual assessment of the
membership of elements in a set is permitted by a member-
ship functionwhich takes values in the real unit interval [0, 1].
In fuzzy set theory, classical divalent sets are usually called
crisp sets. Fuzzy set theory is a generalization of the classical
set theory. IFS are sets whose elements have degrees of
membership and non-membership. IFS have been introduced
by Atanassov [3] as an extension of the notion of fuzzy set,
which itself extends the classical notion of a set. Neutrosophic
set theory is a generalization of IFS, CS, FS, paraconsistent
set, dialetheist set, paradoxist set, tautological set based on
Neutrosophy [16]. An element x(T , I ,F) belongs to the set
in the following way: it is true in the set with a degree of
t ∈ [0, 1], indeterminate with a degree of i ∈ [0, 1], and it is
false with a degree of f ∈ [0, 1].

We will now give some definitions of the fundamental
concepts related to our study.
Definition 1 [1]: Given a universal set U and a generic

element, denoted by x, a fuzzy set X in U is a set of ordered
pairs defined as
X = {(x, µX (x))|x ∈ U}, where µX : U 7−→ [0, 1] is

called the membership function of A and µX (x) is the degree
of membership of the element x in X .
Definition 2 [3]: An intuitionistic fuzzy set X over a uni-

verse of discourse U is represented as
X = {(x, µX (x), νX (x))|x ∈ U}, where µX : U 7−→ [0, 1]

and νX : U 7−→ [0, 1] are called respectively themembership
function of A and the non-membership function of A for x in
X . The degree of non-membership of the element x in X is
defined as µX (x) = 1− νX (x).
Definition 3 [16], [19]: Let U be a universe of discourse.

A neutrosophic set is defined as
N = {(x,T (x), I (x),F(x)) : x ∈ U},

which is identified by a truth-membership function TN :
U 7−→]0−, 1+[, indeterminacy-membership function IN :
U 7−→]0−, 1+[ and falsity-membership function FN :

U 7−→]0−, 1+[.
Definition 4 [16], [19]: Let U be a universe of discourse.

A single valued neutrosophic set is defined as
N = {(x,T (x), I (x),F(x)) : x ∈ U},

which is identified by a truth-membership function TN :
U 7−→ [0, 1], indeterminacy-membership function IN :
U 7−→ [0, 1] and falsity-membership function FN : U 7−→
[0, 1] with 0 ≤ TN (x)+ IN (x)+ FN (x) ≤ 3. A single-valued
neutrosophic number (SVNN) is denoted by a = (T , I ,F).
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Definition 5 [20]: Let a be a single-valued neutrosophic
number. An accuracy function H of a single-valued neutro-
sophic number is represented as follows.

H (a) =
1+ Ta − Ia(1− Ta)− Fa(1− Ia))

2
, (1)

where for all a, H (a) ∈ [0, 1]. H is an order relation which
gives an accuracy score of information of a. If H (a1) =
H (a2), then a1 = a2, that is, they have the same information.
If H (a1) < H (a2), then a2 is larger than a1.

III. ACCURACY FUNCTION AND DISTRIBUTED
INDETERMINACY FORM
For a neutrosophic value, the accuracy function H is cal-
culated by the values T , I and F . However, in the process
of making a decision, such independent values may not
yield results consistent with the decision-making process on
objects. Suppose, one has truth, falsity and indeterminacy
values applied on a concept. We cannot speak about truth by
ignoring indeterminacy. The reason is that wemake a decision
on the basis of including indeterminacy and the truth-maker
gives the values by taking into account the indeterminacy.
Sorensen [80]–[82] who published many papers on truth-
maker theory, buries the theory of indeterminacy in the truth-
maker theory. By a similar approach, we desire to calculate
the the accuracy function dependent on T and F , taking
the indeterminacy into consideration. The direct application
of this idea to neutrosophic decision making helps us to
approximate the outcomeswith a better precision by distribut-
ing the indeterminacy on neutrosophic values. Let H be an
accuracy function. This time we reflect the indeterminacy
value on the truth and falsity values in the following way:
Let a = (Ta, Ia,Fa) be a single valued neutrosophic number
with truth value Ta, indeterminacy value Ia, and falsity value
Fa. Distributed Indeterminacy Form (DIF) of a is defined
as aDIF = (Ta − TaIa, 0,Fa − FaIa). Here, we distribute
indeterminacy effect on truth and falsity. In other words,
we decrease the power of truth and falsity in proportion to
the magnitude of indeterminacy. Our aim here is to determine
how the value of truth and falsity is affected by the degree
of growth of indeterminacy. Consider the following case for
the accuracy function H . Despite that H (0.5, 0.5, 0.6) =
0.475, we have that H (0.5, 0.6, 0.6) = 0.48. In other words,
even though the precision should have been decreased when
the indeterminacy increases, we observe the opposite here.
This, at first might, may seem contradictory but the case will
become clear in a moment. So DIF gives us a method to keep
a neutrosophic number as small as possible in the ordering
of the preferences in proportional to the increment of the
indeterminacy value, provided that the truth or falsity values
are fixed.

A. SELF COMPARISON
All comparisons on the same alternative should be assigned
a balanced value by rational individuals. The values 0.5,
(0.5, 0.5), and (0.5, 0.5, 0.5) are assigned respectively for

self-comparison by individuals in fuzzy set, intuitionistic
fuzzy set and neutrosophic set. Assigned self comparison of
a neutrosophic value a is (0.5, 0.5, 0.5) and outcome of this
number under H function is naturally H (a) = 0.5. The DIF
of this value is aDIF = (0.25, 0, 0.25) andH (0.25, 0, 0.25) =
0.375. This in turn gives us a result quite different from
self-comparison. One of the most important reasons that we
introduce the distributed indeterminacy concept is the effect
of indeterminacy over the other two values, i.e truth and
falsity. Moreover, we would like to see this effect as a rational
assignment in the self-comparison process, so we would like
to use the triplet (0.5, 0, 0.5) instead of (0, 5, 0.5, 0.5). As it
can be seen, we pull the indeterminacy factor down to zero.
Moreover, the DIF of (0.5, 0, 0.5) is equal to itself, that is
(0.5, 0, 0.5). Furthermore, the image of (0.5, 0, 0.5) under the
function H takes the value 0.5, which is just the appropriate
value for the self-comparison process.

IV. RECIPROCAL PROPERTY AND HESITATION FUNCTION
In this section, we will the define reciprocal property and
hesitation function for neutrosophy theory by reviewing
the properties and the functions in fuzzy and intuitionistic
theories.

A. RECIPROCAL PROPERTY IN FUZZY THEORY
Reference [83] A fuzzy preference relation R = (rij) on a
finite set of alternatives X is a relation in X×X which is char-
acterised by the membership functionµR : X×X 7−→ [0, 1].
Pairwise comparisons concentrate on two alternatives at a
time which enable individuals when giving their preferences.
If an individual prefers an alternative xi to another alternative
xj, then she/he should not simultaneously prefers xj to xi.
Then, the numerical representation of the comparison of two
alternatives is denoted by a reciprocal preference relation R
as follows:

rij = 1 ⇔ xi � xj
rij = 0 ⇔ xj � xi
rij = 0.5 ⇔ xj ∼ xi

In fuzzy social choice theory, we also see binary crisp prefer-
ence relations or [0, 1]-valued (fuzzy) preference relations.
xij = 1 shows the absolute degree of preference for xi over
xj. A definite preference for xi over xj is rij ∈ (0.5, 1).
Indifference between xi and xj is rij = 0.5. Reciprocal
[0, 1]-valued relations (R = (rij; ∀i, j : 0 ≤ rij ≤ 1, rij +
rji = 1) are widely used in fuzzy set theory for representing
preferences.

B. RECIPROCAL PROPERTY AND HESITATION FUNCTION
IN INTUITIONISTIC FUZZY THEORY
[76] An intuitionistic fuzzy preference relation P on a finite
set of alternatives X = {x1, . . . , xn} is characterised by
a membership function µP : X × X −→ [0, 1] and
a non-membership function νP : X × X −→ such that
0 ≤ µP(xi, xj) + νP(xi, xj) ≤ 1, ∀(xi, xj) ∈ X × X . As in
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the case for fuzzy preference relation, an intuitionistic fuzzy
preference relation is represented by the matrix P = (pij)
with pij =< µij, νij >,∀i, j = 1, 2, . . . , n. Obviously, when
the hesitancy function is the null function we have that µij +
νij = 1 (∀i, j), and the intuitionistic fuzzy preference relation
P = (pij) is mathematically equivalent to the reciprocal fuzzy
preference relation R = (rij), with rij = µij. An intuitionistic
fuzzy preference relation is referred to as reciprocalwhen the
following additional conditions are imposed:

(i) µii = νii = 0.5, ∀i ∈ {1, . . . , n}

(ii) µij = νji, ∀i, j ∈ {1, . . . , n}.

In intuitionistic fuzzy studies, the relations do not need to
have reciprocity but must satisfy rij ≤ 1− rji due to intuition-
istic index. In other words, for an IFS A, πA(x) is determined
by the following expression: πA(x) = 1 − µA(x) − νA(x) is
called the hesitancy degree of the element x ∈ X to the set A,
and πA(x) ∈ [0, 1], ∀x ∈ X .

C. RECIPROCAL PROPERTY AND HESITATION FUNCTION
IN NEUTROSOPHY THEORY
Let S = {s1, s2, s3, . . . , sn} be a set of alternatives (or
options) and m be a set of individuals. Each individual
declares his or her own preferences over S which are repre-
sented by an individual neutrosophic preference relation Rk
such that

NRk : S × S 7−→ [0, 1]× [0, 1]× [0, 1]

which is traditionally represented by a matrix Rk = [rkij =
NRk (r

k
i , r

k
j )], i, j = 1, 2, 3, .., n; k = 1, 2, 3, . . . ,m.

Rk =



(0.5, 0.5, 0.5) rk12 rk13 rk14

rk21 (0.5, 0.5, 0.5) rk23 rk24

rk31 rk32 (0.5, 0.5, 0.5) rk33

rk41 rk42 rk43 (0.5, 0.5, 0.5)



So, we have the following matrix:

Rk =



(0.5, 0, 0.5) rk12 rk13 rk14

rk21 (0.5, 0, 0.5) rk23 rk24

rk31 rk32 (0.5, 0, 0.5) rk33

rk41 rk42 rk43 (0.5, 0, 0.5)


The function H (called neutrosophic index or neutrosophic
hesitation function) assigns each aij neutrosophic value to a
number in [0, 1].
We have that

H (aij) =
1+ T (aij)− I (aij)(1− T (aij))− F(aij)(1− I (aij))

2
(2)

Now, we have a newmatrix RHk = [H (rkij ) = H k (NRk (si, sj))],
where i, j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . ,m. More
explicitly,

RHk =


H ((0.5, 0, 0.5)) H (rk12) H (rk13) H (rk14)

H (rk21) H ((0.5, 0, 0.5)) H (rk23) H (rk24)

H (rk31) H (rk32) H ((0.5, 0, 0.5)) H (rk34)

H (rk41) H (rk42) H (rk43) H ((0.5, 0, 0.5))


We find it more appropriate to use the notion of hesi-

tation in order to have consistency between the choosers
(individuals) and their preference. Here, we benefit from
the IFS. In utilizing IFS, we provide a hybrid account of
the neutrosophic accuracy function by hesitation. We adopt
intuitionistic index in our study since we use the function
H as a solid index throughout the paper. Not every H k (rij)
needs to be reciprocal, i.e. H k (rij) 6= 1 − H k (rji) but should
be quasi-reciprocal. That is, H (rkij ) ≤ 1 − H (rkji ), for each
i, j = 1, . . . , n. If k is not quasi-reciprocal, we call k an
irrational individual. If i = j, then we just take NRk (ai, aj) =
(0.5, 0.5, 0.5) since H ((0.5, 0.5, 0.5)) = 0.5 irrespective
of DIF. Furthermore, when we consider DIF, the neutro-
sophic value of the assignment made by a rational individual
on the same preference is (0.5, 0, 0.5) from now on, and
H ((0.5, 0, 0.5)) = 0.5 as desired.

DIF(Rk ) =


(0.5, 0, 0.5) DIF(rk12) DIF(rk13) DIF(rk14)

DIF(rk21) (0.5, 0, 0.5) DIF(rk23) DIF(rk24)

DIF(rk31) DIF(rk32) (0.5, 0, 0.5) DIF(rk33)

DIF(rk41) DIF(rk42) DIF(rk43) (0.5, 0, 0.5)


Ri : preference matrix of the ith individual,
DIF(Ri) : DIF of preference matrix of the ith individual,
RHi : range of preference matrix of the ith individual under

H function,
rHk (ij) : represents the element at the row i and column j

of RHi for individual k ,
hk (ij) : distribution of the kth individual’s votes for

each pairwise comparison of alternative’s value is determined
through 0.5 derived from RHi ,

The matrix above shows that neutrosophic preferences of an
individual k are among s1, s2, s3, s4. Also that NRk (s1, s1) = 
NRk (s2, s2) = NRk (s3, s3) = NRk (s4, s4) = (0.5, 0.5, 0.5),
NRk (s1, s2) = rk12, NRk (s3, s4) = rk34, etc. We require that 
there is no larger outcome when an alternative is compared to 
itself. Almost all studies in the literature on decision making 
assign no value or assign zero degree to their underlying 
discourse for self-comparisons. We follow a entirely compu-
tational approach here. On the other hand though, zeros given 
in other previous studies may lead us have a false perception 
to compare any si. For a neutrosophic preference function 
mu, if mu(si, sj) = 0, then si is definitely larger than sj. 
If we had a rational individual, mu(si, si) would have been 
0.5, since if we do self-comparison, an alternative can not 
have any advantage over itself. We use the H function in 
Definition 2.5 for preciseness and to act as a neutrosophic
index of SVNNs. If i = j, then we take NRk (si, sj) to 
be (0.5, 0.5, 0.5) without DIF, and (0.5, 0, 0.5) with DIF.
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[[hk ]] : the matrix obtained by each element of hk (ij),
[[Hij]] : matrix of the group vote,
Ak : the degree for preference k assigned by the group,
akij : majority determination value for preference k of the

group (the element at the row i and column j of [[hk ]]),
H k
ij : majority determination value for preference k of the

group under H function,

hk (ij) =

{
1, rHk (ij) > 0.5
0, otherwise

Hπij : average majority determination value of the group
under H function,
Hπ : consensus winner determination matrix,
C(si) : social aggregation function for the alternative

(preference) si,
Example 6: Suppose that there are three experts m1, m2,

m3 and four facilities s1, s2, s3, s4 in the same business
industry. We assume that all experts are rational and so
we assume all neutrosophic values satisfy quasi-reciprocal
property. We also take the self-comparison value to be
(0.5, 0, 0.5). Each expert assigns some neutrosophic opinion
value by comparing the facilities in pairs as follows:
Rmi is the set of assigned values (preferences) bymi to pairs

in the facilities where 1 ≤ i ≤ 3.

Rm1

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.45, 0.24, 0.27),

(s1, s3) = (0.31, 0.14, 0.66), (s1, s4) = (0.8, 0.3, 0),

(s2, s1) = (0.1, 0.45, 0.52), (s2, s2) = (0.5, 0, 0.5),

(s2, s3) = (0.48, 0.26, 0.37), (s2, s4) = (0.2, 0.7, 0.8),

(s3, s1) = (0.61, 0.43, 0.71), (s3, s2) = (0.31, 0, 0.71),

(s3, s3) = (0.5, 0, 0.5), (s3, s4) = (0.76, 0.23, 0.27),

(s4, s1) = (0.1, 0.6, 0.9), (s4, s2) = (0.81, 0.55, 0.33),

(s4, s3) = (0.11, 0.32, 0.59), (s4, s4) = (0.5, 0, 0.5)}

Rm2

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.2, 0.4, 0.7),

(s1, s3) = (0.21, 0.55, 0.95), (s1, s4) = (0.4, 0.5, 0.3),

(s2, s1) = (0.29, 0.53, 0.38), (0.29, 0.53, 0.38),

(s2, s2) = (0.5, 0, 0.5), (s2, s3) = (0.62, 0.45, 0.16),

(s2, s4) = (0.2, 0.7, 0.8), (s3, s1) = (0.72, 0.15, 0.18),

(s3, s2) = (0.11, 0.13, 0.79), (s3, s3) = (0.5, 0, 0.5),

(s3, s4) = (0.51, 0.45, 0.53), (s4, s1)= (0.15, 0.35, 0.23),

(s4, s2) = (0.81, 0.55, 0.33), (s4, s3)= (0.17, 0.57, 0.36),

(s4, s4) = (0.5, 0, 0.5)}

Rm3

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.3, 0.45, 0.7),

(s1, s3) = (0.1, 0.85, 0.78), (s1, s4) = (0.4, 0.5, 0.3),

(s2, s1) = (0.36, 0.51, 0.39), (s2, s2) = (0.5, 0, 0.5),

(s2, s3) = (0.62, 0.45, 0.16), (s2, s4) = (0.1, 0.8, 0.21),

(s3, s1) = (0.92, 0.1, 0.16), (s3, s2) = (0.11, 0.13, 0.79),

(s3, s3) = (0.5, 0, 0.5), (s3, s4) = (0.23, 0.45, 0.74),

(s4, s1) = (0.15, 0.35, 0.23), (s4, s2) = (0.6, 0.2, 0.1),

(s4, s3) = (0.57, 0.57, 0.36), (s4, s4) = (0.5, 0, 0.5)}

Rm4

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.2, 0.4, 0.7),

(s1, s3) = (0.25, 0.87, 0.38), (s1, s4) = (0.4, 0.5, 0.3),

(s2, s1) = (0.29, 0.53, 0.38), (s2, s2) = (0.5, 0, 0.5),

(s2, s3) = (0.62, 0.45, 0.16), (s2, s4)= (0.34, 0.66, 0.21),

(s3, s1) = (0.73, 0.87, 0.56), (s3, s2)= (0.14, 0.19, 0.79),

(s3, s3) = (0.5, 0, 0.5), (s3, s4) = (0.21, 0.45, 0.66),

(s4, s1) = (0.16, 0.35, 0.23), (s4, s2) = (0.6, 0.4, 0.8),

(s4, s3) = (0.68, 0.57, 0.36), (s4, s4) = (0.5, 0, 0.5)}

We now represent each Rmi in matrix form and then calculate
their distributed indeterminacy forms DIF(Rmi ).

Rm1 =

 (0.5, 0, 0.5) (0.45, 0.24, 0.27) (0.31, 0.14, 0.66) (0.8, 0.3, 0)
(0.1, 0.45, 0.52) (0.5, 0, 0.5) (0.48, 0.26, 0.37) (0.2, 0.7, 0.8)
(0.61, 0.43, 0.71) (0.31, 0, 0.71) (0.5, 0, 0.5) (0.76, 0.23, 0.27)
(0.1, 0.6, 0.9) (0.81, 0.55, 0.33) (0.11, 0.32, 0.59) (0.5, 0, 0.5)


DIF(Rm1 ) =

 (0.5, 0.5, 0.5) (0.342, 0, 0.2052) (0.2666, 0, 0.5676) (0.56, 0, 0)
(0.055, 0, 0.286) (0.5, 0, 0.5) (0.3552, 0, 0.2738) (0.06, 0, 0.24)

(0.3477, 0, 0.4047) (0.31, 0, 0.71) (0.5, 0, 0.5) (0.5852, 0, 0.2079)
(0.04, 0, 0.36) (0.3645, 0, 0.1485) (0.0748, 0, 0.4012) (0.5, 0, 0.5)


Rm2 =

 (0.5, 0, 0.5) (0.2, 0.4, 0.7) (0.21, 0.55, 0.95) (0.4, 0.5, 0.3)
(0.29, 0.53, 0.38) (0.5, 0, 0.5) (0.62, 0.45, 0.16) (0.2, 0.7, 0.8)
(0.72, 0.15, 0.18) (0.11, 0.13, 0.79) (0.5, 0, 0.5) (0.51, 0.45, 0.53)
(0.15, 0.35, 0.23) (0.81, 0.55, 0.33) (0.17, 0.57, 0.36) (0.5, 0, 0.5)


DIF(Rm2 ) =

 (0.5, 0.5, 0.5) (0.12, 0, 0.42) (0.0945, 0, 0.4275) (0.2, 0, 0.15)
(0.1363, 0, 0.1786) (0.5, 0, 0.5) (0.341, 0, 0.088) (0.06, 0, 0.24)
(0.612, 0, 0.153) (0.0957, 0, 0.6873) (0.5, 0, 0.5) (0.2805, 0, 0.2915)

(0.0975, 0, 0.1495) (0.3645, 0, 0.1485) (0.0731, 0, 0.1548) (0.5, 0, 0.5)


Rm3 =

 (0.5, 0, 0.5), (0.3, 0.45, 0.7), (0.76, 0.35, 0.38), (0.4, 0.5, 0.3)
(0.36, 0.51, 0.39), (0.5, 0, 0.5), (0.62, 0.45, 0.16), (0.46, 0.46, 0.21)
(0.92, 0.86, 0.35), (0.11, 0.13, 0.79), (0.5, 0, 0.5), (0.23, 0.45, 0.74)
(0.15, 0.35, 0.23), (0.6, 0.4, 0.8), (0.57, 0.57, 0.36), (0.5, 0, 0.5)


DIF(Rm3 ) =

 (0.5, 0, 0.5) (0.165, 0, 0.385) (0.494, 0, 0.247) (0.2, 0, 0.15)
(0.1764, 0, 0.1911) (0.5, 0, 0.5) (0.341, 0, 0.088) (0.2484, 0, 0.1134)
(0.1288, 0, 0.049) (0.0957, 0, 0.6873) (0.5, 0, 0.5) (0.1265, 0, 0.407)
(0.0975, 0, 0.1495) (0.36, 0, 0.48) (0.2451, 0, 0.1548) (0.5, 0, 0.5)


Rm4 =

 (0.5, 0, 0.5), (0.2, 0.4, 0.7), (0.51, 0.35, 0.38), (0.4, 0.5, 0.3)
(0.29, 0.53, 0.38), (0.5, 0, 0.5), (0.62, 0.45, 0.16), (0.34, 0.66, 0.21)
(0.73, 0.87, 0.56), (0.14, 0.19, 0.79), (0.5, 0, 0.5), (0.21, 0.45, 0.66)
(0.16, 0.35, 0.23), (0.6, 0.4, 0.8), (0.68, 0.57, 0.36), (0.5, 0, 0.5)


DIF(Rm4 ) =

 (0.5, 0, 0.5) (0.12, 0, 0.42) (0.3315, 0, 0.247) (0.2, 0, 0.15)
(0.1363, 0, 0.1786) (0.5, 0, 0.5) (0.341, 0, 0.088) (0.1156, 0, 0.0714)
(0.0949, 0, 0.0728) (0.1134, 0, 0.6399) (0.5, 0, 0.5) (0.1155, 0, 0.363)
(0.104, 0, 0.1495) (0.36, 0, 0.48) (0.2924, 0, 0.1548) (0.5, 0, 0.5)



Nowwe apply theH function toDIF(Ri) and then obtain RHi .

RHm1
=


0.5 0.5684 0.3495 0.78

0.3844 0.5 0.5407 0.41
0.4715 0.3 0.5 0.6886
0.34 0.608 0.3368 0.5


hm1 (ij) =

{
1, rHm1

(ij) > 0.5
0, otherwise

[[hm1 ]] =


0 1 0 1
0 0 1 0
0 0 0 1
0 1 0 0



RHm2
=


0.5 0.35 0.3335 0.525

0.4788 0.5 0.6265 0.41
0.7295 0.2041 0.5 0.4945
0.474 0.474 0.4591 0.5
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hm2 (ij) =

{
1, rHm2

(ij) > 0.5
0, otherwise

[[hm2 ]] =


0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 0


RHm3
=


0.5 0.39 0.6234 0.525

0.4926 0.5 0.6265 0.5675
0.5399 0.2041 0.5 0.35975
0.474 0.4399 0.54515 0.5


hm3 (ij) =

{
1, rHm3

(ij) > 0.5
0, otherwise

[[hm3 ]] =


0 0 1 1
0 0 1 1
1 0 0 0
0 0 1 0


RHm4
=


0.5 0.35 0.5422 0.525

0.4788 0.5 0.6265 0.5221
0.511 0.2367 0.5 0.3762
0.477 0.439 0.5688 0.5


hm4 (ij) =

{
1, rHm4

(ij) > 0.5
0, otherwise

[[hm4 ]] =


0 0 1 1
0 0 1 1
1 0 0 0
0 0 1 0


The next step is to collect and compare the preferences.

To do this, we add the columns of [[Hij]] and divide it to
number of the alternatives.

Ak =
1
m

∑
[[Hik ]]

such that 1 ≤ k ≤ m

Hπij =


1
m

∑m

k=1
akij, i 6= j

0, i = j

such that i, j = 1, 2, . . . n and k = 1, 2, . . . ,m.

Hπ12 =
am1
12 + a

m2
12 + a

m3
12 + a

m4
12

4
=

1+ 0+ 0+ 0
4

=
1
4
,

Hπ13 =
1
2
, Hπ14 = 1, Hπ21 = 0,Hπ23 = 1,Hπ24 =

1
2
,

Hπ31 =
3
4
, Hπ32 = 0, Hπ34 =

1
4
,Hπ41 = 0,Hπ42 =

1
4
,

Hπ43 =
1
2

Hπ =



−
1
4

1
2

1

0 − 1
1
2

3
4

0 −
1
2

0
1
4

1
2
−



Definition 7 [74]: si ∈ W is called a consensus winner if
and only if ∀sj 6= si : rij > 0.5, where rij ∈ Hπ .
In our example above, there is no winner because there
are multiple numbers greater than 0.5. If there is a con-
sensus winner, it must be unique and the set W must
be a singleton since the reciprocal property must hold.
Of course, it is easy to define that α-consensus winner
for different α-values. So we define a social aggrega-
tion average function C to calculate the order of si in
the group to the extent that individuals are not against
option si.

C(si) =
1

m− 1

∑
i6=j

rij, (3)

where i, j = 1, 2, . . . ,m.

C(s1) =
7
12
, C(s2) =

6
12
, C(s3) =

5
12
,C(s4) =

3
12
.

So, C(s1) > C(s2) > C(s3) > C(s4).

V. CONCLUSION
The main aim of this paper is to bring into attention the
interplay between neutrosophy and social choice theory.
Within the framework of this intention, we have taken inher-
itance from studies on fuzzy and intuitionistic fuzzy social
choice theory and developed the neutrosophic based social
choice theory. First we defined the DIF , which was used in
Sorensen’s truth-maker theory to distribute the indeterminacy
on truth and falsity values for certain neutrosophic calcula-
tions. We believe that the notion of DIF gives a new insight,
breath and different perspectives for neutrosophic studies.
Through DIF , we emphasize hesitation and reciprocal char-
acteristics in self-comparisons and other pairwise compar-
isons to define a consistent decision maker. We determine a
consensus winner if exists. In case of otherwise, we obtain
orders of the given alternatives by defining a social aggre-
gation average function. Finally we give in the Appendix,
a Python implementation of an algorithm computing the
output in the order of

n
11

seconds, where n is the input
size (the number of matrices), when executed in a mid-end
computer.

A. FURTHER RESEARCH DIRECTIONS
Some future researches to extend and diversify this work may
include the following ideas:
• studying the quantifiers most, at most, etc [86],
• considering interval valued neutrosophic sets [87],
• considering bipolar valued neutrosophic sets [88],
• introducing different forms of DIF depending on under-

lying models,
• presenting several forms of aggregation operators [89],
• applications on plithogenic sets [90].
• applications on Maclaurin symmetric mean, q-rung

orthopair 2-tuple linguistic aggregation and continuous
interval-valued Pythagorean operators [91]- [93].We now define the notion of a consensus winner.
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APPENDIX
A Python implementation [84], [85] of the group decision 
making method with distributed indeterminacy form under 
neutrosophic environment is as follows:
from __future__ import division

from collections import defaultdict

import math

import sys

R1=[ [ (0.5,0,0.5),(0.45,0.24,0.27), (0.31,0.14,0.66) , (0.8,0.3,0)],

[(0.1,0.45,0.52) , (0.5,0,0.5), (0.48,0.26,0.37) , (0.2,0.7,0.8)],

[(0.61,0.43,0.71) , (0.31,0,0.71) , (0.5,0,0.5) , (0.76,0.23,0.27)],

[(0.1,0.6,0.9) , (0.81,0.55,0.33) , (0.11,0.32,0.59) , (0.5,0,0.5)]]

R2=[ [ (0.5,0,0.5),(0.2,0.4,0.7), (0.21,0.55,0.95) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.2,0.7,0.8)],

[(0.72,0.15,0.18) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.51,0.45,0.53)],

[(0.15,0.35,0.23) , (0.81,0.55,0.33) , (0.17,0.57,0.36) , (0.5,0,0.5)] ]

R3=[ [ (0.5,0,0.5),(0.3,0.45,0.7), (0.1,0.85,0.78) , (0.4,0.5,0.3)],

[(0.36,0.51,0.39) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.1,0.8,0.21)],

[(0.92,0.1,0.16) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.23,0.45,0.74)],

[(0.15,0.35,0.23) , (0.6,0.2,0.1) , (0.57,0.57,0.36) , (0.5,0,0.5)] ]

R4=[ [ (0.5,0,0.5),(0.2,0.4,0.7), (0.25,0.87,0.38) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.34,0.66,0.21)],

[(0.73,0.87,0.56) , (0.14,0.19,0.79) , (0.5,0,0.5) , (0.21,0.45,0.66)],

[(0.16,0.35,0.23) , (0.6,0.4,0.8) , (0.68,0.57,0.36) , (0.5,0,0.5)] ]

AllTogether= {’R1’: [[ (0.5,0,0.5),(0.45,0.24,0.27), (0.31,0.14,0.66) , (0.8,0.3,0)],

[(0.1,0.45,0.52) , (0.5,0,0.5), (0.48,0.26,0.37), (0.2,0.7,0.8)],

[(0.61,0.43,0.71) , (0.31,0,0.71) , (0.5,0,0.5) , (0.76,0.23,0.27)],

[(0.1,0.6,0.9) , (0.81,0.55,0.33) , (0.21,0.32,0.59) , (0.5,0,0.5)]],

’R2’: [[ (0.5,0,0.5),(0.2,0.4,0.7), (0.21,0.55,0.95) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.83,0.46,0.21)],

[(0.72,0.15,0.18) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.51,0.45,0.53)],

[(0.15,0.35,0.23) , (0.6,0.4,0.8) , (0.47,0.57,0.36) , (0.5,0,0.5)]],

’R3’: [[ (0.5,0,0.5),(0.3,0.45,0.7), (0.76,0.35,0.38) , (0.4,0.5,0.3)],

[(0.36,0.51,0.39) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.46,0.46,0.21)],

[(0.92,0.86,0.35) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.23,0.45,0.74)],

[(0.15,0.35,0.23) , (0.6,0.4,0.8) , (0.57,0.57,0.36) , (0.5,0,0.5)]],

’R4’: [[ (0.5,0,0.5),(0.2,0.4,0.7), (0.51,0.35,0.38) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.34,0.66,0.21)],

[(0.73,0.87,0.56) , (0.14,0.19,0.79) , (0.5,0,0.5) , (0.21,0.45,0.66)],

[(0.16,0.35,0.23) , (0.6,0.4,0.8) , (0.68,0.57,0.36) , (0.5,0,0.5)]]}

def AccuracyFunction(T,I,F):

HV= (1+ T - I*(1-T)-F*(1-I))/2

return HV

def DIF(T,I,F):

T1=math.fabs(T-I*T)

F1=math.fabs(F-I*F)

DIFi=’(’+str(T1)+’,’+str(0)+’,’+str(F1)+’)’

return DIFi

def AccuracyIntedeteminacyDistubition(T,I,F):

T1=math.fabs(T-I*T)

F1=math.fabs(F-I*F)

ID=AccuracyFunction(T1,I,F1)

return ID

def RationalityChecker(R):

columnR=len(R)

idn=0

rowR=len(R[0])

for i in range(0,rowR-1):

if R[i][i] != (0.5, 0, 0.5):

print ’(,’,i,i,") is not (0.5, 0, 0.5), so, s ",i, ’ is not rational agent’

idn=1

for i in range(0,rowR):

for j in range(0,rowR):

if i !=j:

t1=R[i][j][0]

i1=R[i][j][1]

f1=R[i][j][2]

A1=AccuracyIntedeteminacyDistubition(t1,i1,f1)

t2=R[j][i][0]

i2=R[j][i][1]

f2=R[j][i][2]

A2=AccuracyIntedeteminacyDistubition(t2,i2,f2)

if A1 > 1-A2 : # A1~must be less than~or~equal to 1-A2

idn=1

print R[i][j], ’ and ’, R[j][i], ’ does not satisfy hesitation

property’

return idn

def RHcreation(K):

global RHtogether

RHtogether= defaultdict()

for i in K.keys():

columnAll=len(K[i])

rowAll1=len(K[i][0])

rowAll2=len(K[i][0])

for j in range(0,rowAll1):

for k in range(0,rowAll2):

t1=K[i][j][k][0]

i1=K[i][j][k][1]

f1=K[i][j][k][2]

A=AccuracyIntedeteminacyDistubition(t1,i1,f1)

if i not in RHtogether.keys():

RHtogether[i]=[A]

else:

RHtogether[i].extend([A])

number= int(math.sqrt(len(RHtogether[i])))

m=0

new_list=[]

while m<len(RHtogether[i]):

new_list.append( RHtogether[i][m:m + number])

m+= number

RHtogether[i]=new_list

return RHtogether

def OneZero(K):

global H

H=defaultdict()

for i in K.keys():

columnAllin=len(K[i])

rowAl1=len(K[i][0])

for j in range(0,columnAllin):
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for k in range(0,rowAl1):

if K[i][j][k]>0.5:

if i not in H:

H[i]=[1]

else:

H[i].append(1)

else:

if i not in H:

H[i]=[0]

else:

H[i].append(0)

number= int(math.sqrt(len(H[i])))

m=0

new_list=[]

while m<len(H[i]):

new_list.append( H[i][m:m + number])

m+= number

H[i]=new_list

return H

def H_pi_ij(K):

global Hpij

Hpij= defaultdict()

columnAllin112=len(H)

for i in range(0,columnAllin112):

Topij=0

for j in range(0,columnAllin112):

Topij=0

for k in H.keys():

if i != j:

Topij = Topij + H[k][i][j]

else:

Topij=0

aij=str(i+1)+str(j+1)

TopijAvarage= Topij/len(H)

if aij not in Hpij.keys():

TopijAvarage= Topij/len(H)

Hpij[aij]=TopijAvarage

else:

Hpij[aij]=TopijAvarage

return Hpij

def Alternative_Ordinary(Hpij):

global ORD

ORD= defaultdict()

Number_Of_Alternatives=int(math.sqrt(len(Hpij)))

for i in range(1,Number_Of_Alternatives+1):

istr=str(i)

Top=0

for k in Hpij.keys():

if istr==k[1]:

Top=Top+Hpij[k]

TopJavarage= Top/Number_Of_Alternatives

if istr not in ORD.keys():

istA=’Alternative ’+istr

ORD[istA]=TopJavarage

else:

ORD[istA]=TopJavarage

return ORD

def GroupDecisionWithID(m):

for i in AllTogether.keys():

if RationalityChecker(AllTogether[i])==1:

print ’inconsistent agent’

Step1=RHcreation(m)

Step2=OneZero(Step1)

Step3=H_pi_ij(Step2)

Step4=Alternative_Ordinary(Step3)

return Step4
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ABSTRACT

Presently, interval-valued neutrosophic set theory has become an important 
research topic. It is widely used in various pure as well as applied fields. This 
chapter will provide some essential scopes to study interval-valued 
neutrosophic subgroup. Here the notion of interval-valued triple T-norm has 
been introduced, and based on that, interval-valued neutrosophic subgroup has 
been defined. Furthermore, some homomorphic characteristics of this notion 
have been studied. Additionally, based on interval-valued triple T-norm, 
interval-valued neutrosophic normal subgroup has been introduced and 
some of its homomorphic characteristics have been analyzed.
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1. INTRODUCTION

In our real physical world, many uncertainties are involved. To tackle these 
ambiguities, crisp set (CS) theory is not always enough. As a result, researchers 
needed more capable set theories. Consequently, different set theories have emerged, 
for instance, fuzzy set (FS) (Zadeh, Fuzzy sets, 1965), intuitionistic fuzzy set (IFS) 
(Atanassov, 1986), neutrosophic set (NS) (Smarandache, 1999), plithogenic set (PS) 
(Smarandache, 2018), etc. FS theory is capable of handling real-life uncertainties 
very well. Still, in some ambiguous situations, researchers need sets that are more 
general i.e. IFSs or sometimes even more general sets like NSs or PSs, etc. Presently, 
NS theory has grabbed quite lot attentions of different researchers from various 
fields. Presently, NS theory has become an important and fruitful research field. 
Furthermore, Smarandache has also developed neutrosophic measure and probability 
(Smarandache, 2013), calculus (Smarandache & Khalid, 2015), psychology 
(Smarandache, 2018), etc. At present, NS theory is used in different applied fields, 
for instance, in pattern recognition problem (Vlachos & Sergiadis, 2007), image 
segmentation (Guo & Cheng, 2009), decision making problem (Majumdar, 2015; 

Table 1. Some applications of IVNS in various fields

Author & Year Applications of IVNS in various fields

(Broumi et. al., 2015) Introduced the concept of n-valued IVNS and mentioned how it can be applied in 
medical diagnosing.

(Broumi et. al., 2014) Presented the definition of parameterized soft set in IVNS environment and its 
application in DMPs.

(Ye, 2014) Defined Hamming and Euclidean distances between two IVNSs and introduced 
similarity measures in IVNSs with an application in DMP.

(Ye, 2014)
Introduced a correlation coefficient (improved) of single-valued NSs and extended 
it to a correlation coefficient between IVNSs. Further, applied it in multiple 
attribute DMPs.

(Zhang et. al., 2014) Proposed a technique based on IVNS to solve multi-criteria DMPs.

(Aiwu et. al., 2015) Proposed an aggregation operation rules (improved) for IVNS and extended the 
generalized weighted aggregation operator.

(Zhang et. al., 2016) Illustrated a novel outranking method for multi-criteria DMPs with IVNSs.

(Broumi et. al., 2016) Extended the notion of neutrosophic graph-based multi-criteria decision-making 
approach in interval-valued neutrosophic graph theory.

(Deli, 2017) Proposed the concept of the soft IVNS and investigated its application in DMP.

(Yuan et. al., 2019) Applied IVNSs in image segmentation.

(Thong et. al., 2019) Proposed dynamic IVNS for dynamic DMP.
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Abdel-Basset et. al., 2017; Abdel-Basset et. al., 2019), mobile-edge computing 
(Abdel-Basset et. al., 2019), neutrosophic forecasting (Abdel-Basset et. al., 2019), 
supply chain management (Abdel-Basset et. al., 2019; Abdel-Basset et. al., 2019), 
supplier selection problems (Abdel-Basset et. al., 2018; Abdel-Basset et. al., 2018), 
goal programming problem (Abdel-Basset et. al., 2016), multi-objective programming 
problem (Hezam et. al., 2015), medical diagnosis (Kumar et. al., 2015; Deli et. 
al., 2015), shortest path problem (Kumar, et al., 2019; Kumar et. al., 2018; Kumar 
et. al., 2020), transportation problem (Kumar et. al., 2019) etc. Again, gradually 
some other set theories, like, interval-valued FS (IVFS) (Zadeh, 1975), interval-
valued IFS (IVIFS) (Atanassov, 1999) and interval-valued NS (IVNS) (Wang et. 
al., 2005), etc. have evolved. These notions are generalizations of CS, FS, IFS, and 
NSs. Presently; these set theories are extensively applied in different fields, mainly 
in decision-making problems (DMP). In the following Table 1 some applications 
of IVNSs have been discussed.

Based on FS, Rosenfeld introduced the notion of fuzzy subgroup (FSG) 
(Rosenfeld, 1971). Gradually, various mathematicians have developed intuitionistic 
fuzzy subgroup (IFSG) (Biswas, 1989), neutrosophic subgroup (NSG) (Çetkin 
& Aygün, 2015), etc. Furthermore, they have studied effects of homomorphism 
on them. Some researchers have analyzed their normal forms also. Furthermore, 
the notions of interval-valued fuzzy subgroup (IVFSG) (Biswas, 1994), interval-
valued intuitionistic fuzzy subgroup (IVIFSG) (Aygünoğlu et. al., 2012), etc. have 
been defined. In addition, different researchers have studied their normal forms, 
homomorphic image, homomorphic pre-image, etc. Still, the concept of the interval-
valued neutrosophic subgroup is undefined. Also, different algebraic aspects of 
IVNSGs are needed to be studied.

This Chapter has been arranged as follows: In Segment 2, literature surveys of 
FS, IFS, INS, FSG, IFSG, and NSG are given. In Segment 3, the notions of IVFS, 
IVIFS, IVFSG, IVIFSG, etc. have been mentioned. In Segment 4, interval-valued 
triple T-norm (IVTTN), IVNSG, normal form of IVNSG, etc. are introduced and 
the effects of homomorphism on these notions are mentioned. Finally, in segment 
5, the conclusion has been provided and some scopes of future researches are 
given.

2. LITERATURE  SURVEY

In this segment, some essential notions, like, FS, IFS, NS, FSG, IFSG, NSG, 
level set, level subgroup, etc., are discussed and also, some of their basic 
fundamental properties are given. All these notions play vital roles in the 
development of IVNSG.
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Definition 2.1 (Zadeh, 1965) Let J=[0,1]. A FS σ of a CS M is a mapping from M 
to J i.e σ: M→J.

Definition 2.2 (Atanassov, 1986) A IFS 𝛄 of a CS M is denoted as γ= {(k,tγ(k), 
f𝛄 (k)): k ∈ M}, where both tγ and fγ are FSs of R and ∀k ∈ M tγ and fγ satisfy 
the criteria 1 ≥ tγ(k) + fγ(k) ≥ 0.

Definition 2.3 (Smarandache, 1999) A NS η of a CS M is denoted as η= 
{(s,tη(s),iη(s),fη(s)); s ∈ M}, where fη,iη,tη: M→]-0,1+[are the respective degree 
of falsity, indeterminacy, and truth and of any element k ∈ R. Here ∀s ∈ M, 
fη, iη and tη satisfy the criteria 3+ ≥ fη(s) + iη(s) + tη(s) ≥ -0.

Definition 2.4 (Zadeh, 1965) Let α be a FS of M. Then ∀t ∈ J the sets αt= {k ∈ M: 
α(k) ≥ t} are called level subsets of α.

2.1. Fuzzy Subgroup, Intuitionistic Fuzzy 
Subgroup and Neutrosophic Subgroup

Definition 2.5 (Rosenfeld, 1971) A FS α of a crisp group M is called a FSG of R 
iff ∀k,s∈M, conditions given below are fulfilled:

1. α(ks) ≥ min{α(k),α(s)}
2. α(s-1) ≥ α(s).

Here α(s-1) = α(s) and α(s) ≤ α(e) (e is the neutral element of M). Also, in the above 
definition if only condition (i) is satisfied by α then we call it a fuzzy subgroupoid.

Theorem 2.1 (Rosenfeld, 1971) α is a FSG of M iff ∀k, s ∈ R 𝛂(ks-1) ≥ min{α(k),α(s)}.
Definition 2.6 (Das, 1981) Suppose α is a FSG of a group M. Then ∀t ∈ J the level 

subgroups of α are αt, where α(e) ≥ t.
Definition 2.7 (Biswas, 1989)An IFS 𝛄 = {(k,tγ(k),fγ(k)): k ∈ M} of a crisp set M 

is called an IFSG of M iff ∀k, s ∈ M
1. tγ(ks-1) ≥ min{tγ(k), tγ(s)}
2. fγ(ks-1) ≤ max{fγ(k), fγ(s)}

The collection of all IFSG of M will be denoted as IFSG(M).

Definition 2.8 (Çetkin & Aygün, 2015) Let M be a group and δ be a NS of M. δ is 
called a NSG of M iff the conditions given below are fulfilled:
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1. δ(k∙s) ≥ min{δ(k),δ(s)}, i.e. tδ(k∙s) ≥ min{tδ(k),tδ(s)}, iδ(k∙s) ≥
min{iδ(k),iδ(s)} and fδ(k∙s) ≤ max{fδ(k),fδ(s)}

2. δ(s-1) ≥ δ(s) i.e. tδ(s
-1) ≥ tδ(s), iδ(s

-1) ≥ iδ(s) and fδ(s
-1) ≤ fδ(s)

The collection of all NSG will be denoted as NSG(R). Here notice that tδ and iδ 
are following Definition 2.5 i.e. both of them are actually FSGs of R.

Example 2.1 (Çetkin & Aygün, 2015) Suppose M={1, -1, i, -i} and δ is a NS of M, 
where δ= {(1, 0.6, 0.5, 0.4), (-1, 0.7, 0.4, 0.3), (i, 0.8, 0.4, 0.2), (-i, 0.8, 0.4, 
0.2)}. Notice that δ ∈ NSG(M).

Theorem 2.2 (Çetkin & Aygün, 2015) Let M be a group and δ be a NS of M. Then 
δ ∈ NSG(M) iff ∀k, s∈M δ(k∙s-1) ≥ min{δ(k), δ(s)}.

Theorem 2.3 (Çetkin & Aygün, 2015) δ ∈ NSG(M) iff ∀p ∈ [0,1] the p-level sets 
(tδ)p, (iδ)p and p-lower-level set ( )f pδ  are CSGs of M.

Definition 2.9 (Çetkin & Aygün, 2015) Let M be a group and δ be a NS of M. Here 
δ is called a neutrosophic normal subgroup (NNSG) of M iff ∀k,s∈M δ(k∙s∙k-1) 
≤ δ(s) i.e. tδ(k∙s∙k-1) ≤ tδ(s), iδ(k∙s∙k-1) ≤ iδ(s) and fδ(k∙s∙k-1) ≥ fδ(s).

The collection of all NNSGs of M will be denoted as NNSG(M).

Definition 2.10 (Anthony & Sherwood, 1979) A FS α of M is said to have supremum 
property if for any � °� �  � ° �k0 �  such that � �

�
( ) sup ( )k k

k
0 °

� �
.

Theorem 2.4 (Anthony & Sherwood, 1979) Suppose α is a fuzzy subgroupoid of M 
based on a continuous TN T and l be a homomorphism on M, then the image 
(supremum image) of α is a fuzzy subgroupoid on l(M) based on T.

Theorem 2.5 (Rosenfeld, 1971) Homomorphic image or pre-image of any FSG 
having supremum property is a FSG.

Theorem 2.6 (Sharma, 2011) Let M1 and M2 are two crisp groups. Also, suppose l 
is a homomorphism of M1 into M2 then preimage of an IFSG γ of M2 i.e. l-1(γ) 
is an IFSG of M1.

Theorem 2.7 (Sharma, 2011) Let l be a surjective homomorphism of a group M1 to 
another group M2, then the image of an IFSG γ of M1 i.e. l(γ) is an IFSG of M2.

Theorem 2.8 (Çetkin & Aygün, 2015) Homomorphic image or pre-image of any 
NSG is a NSG.

Theorem 2.9 (Çetkin & Aygün, 2015) Let δ ∈ NNSG(M) and l be a homomorphism 
on M. Then the homomorphic pre-image of δ i.e. l-1(δ) ∈ NNSG(M).

Theorem 2.10 (Çetkin & Aygün, 2015) Let δ ∈ NNSG(M) and l be a surjective 
homomorphism on M. Then the homomorphic image of δ i.e. l(δ)∈NNSG(M).
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In the following Table 2, some sources have been mentioned which have some 
major contributions in the fields of FSG, IFSG, and NSG.

2.2. A List of Abbreviations

CS signifies “crisp set”.
FS signifies “fuzzy set”.
IFS signifies “intuitionistic fuzzy set”.
NS signifies “neutrosophic set”.
FSG signifies “fuzzy subgroup”.
IFSG signifies “intuitionistic fuzzy subgroup”.
NSG signifies “neutrosophic subgroup”.
TN signifies “T-norm”.
TC signifies “T-conorm”.
IVTN signifies “interval-valued T-norm”.
IVTC signifies “interval-valued T-conorm”.
IVDTN signifies “interval-valued double T-norm”.
IVTTN signifies “interval-valued triple T-norm”.
IVFS signifies “interval-valued fuzzy set”.
IVIFS signifies “interval-valued intuitionistic fuzzy set”.
IVNS signifies “interval-valued neutrosophic set”.

Table 2. Significance and influences of some authors in FSG, IFSG, and NSG

Author and Year Different contributions in FSG, IFSG, and NSG

(Rosenfeld, 1971) Introduced FSG.

(Das, 1981) Introduced level subgroup.

(Anthony & Sherwood, 1979) Introduced FSG using general T-norm.

(Anthony & Sherwood, 1982) Introduced subgroup generated and function generated FSG.

(Sherwood, 1983) Studied product of FSGs.

(Mukherjee & Bhattacharya, 
1984) Introduced fuzzy normal subgroups and cosets.

(Biswas, 1989) Introduced IFSG.

(Eroǧlu, 1989) Studied homomorphic image of FSG.

(Hur et. al., 2003) Investigated some properties of IFSGs and inutionistic fuzzy subrings.

(Hur et. al., 2004) Defined normal version of IFSG and intuitionistic fuzzy cosets.

(Sharma, 2011) Studied homomorphism of IFSG.

(Çetkin & Aygün, 2015) Introduced NSG and NNSG and studied some of their fundamental 
properties by introducing homomorphism.
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221

IVFSG signifies “interval-valued fuzzy subgroup”.
IVIFSG signifies “interval-valued intuitionistic fuzzy subgroup”.
IVNSG signifies “interval-valued neutrosophic subgroup”.
IVIFNSG signifies “interval-valued intuitionistic fuzzy normal subgroup”. 
IVNNSG signifies “interval-valued neutrosophic normal subgroup”.

2.3.  Motivation of the Work

So far, IVFSG and IVIFSG have grabbed a lot of attention and hence, as a result, 
as a result, it has yielded a lot of promising research fields. Some researchers have 
introduced functions in the environments of IVFSG and IVIFSG. Furthermore, they 
have introduced homomorphism in IVFSG and IVIFSG environments and studied 
some of their fundamental algebraic properties. IVNSG is relatively new and may 
become fruitful research field in near future. Also, the notion of IVNNSG is needed 
to be introduced. Furthermore, functions are needed to be introduced in the interval-
valued neutrosophic environment and some homomorphic characteristics of IVNSG 
and IVNNSG are needed to be introduced. In this chapter, the subsequent research 
gaps are discussed:

• Still, the notion of IVNSG is undefined.
• Homomorphic image and preimage of IVNSG are needed to be studied.
• Still, the notion of IVNNSG is undefined.
• Also, some homomorphic characteristics of IVNNSG are needed to be analyzed.

Therefore, this inspires us to introduce and develop these notions of IVNSG and
IVNNSG and analyze some of their algebraic characteristics.

2.4. Contribution of the Work

On the basis of the above gaps, the purpose of this chapter is to give some important 
definitions, examples and, theories in the field of IVNSG. Also, function has been 
introduced in interval-valued neutrosophic environment and some homomorphic 
properties of IVNSG and IVNNSG are discussed properly. The following are some 
goals that are planned and accomplished during this research work:

• To define IVNSG and study its algebraic properties.
• To define IVNNSG and study its algebraic properties.
• To introduce a function in interval-valued neutrosophic environment.
• To study some properties of homomorphic images and preimages of IVNSG

and IVNNSG.
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3. DESCRIPTION OF THE WORK

3.1. Research Problem

Until now, several researchers have studied different fundamental properties and 
algebraic structures of FSG, IFSG, as well as NSG. Again, some researchers have 
introduced IVFSG, IVIFSG and analyzed their fundamental properties. It is known 
that homomorphism preserves algebraic structures of any entity. Therefore, it is 
an essential tool to study some fundamental algebraic properties. Hence, several 
researchers have introduced and studied homomorphism in the environments 
of FSG, IFSG, NSG, IVFSG, IVIFSG, etc. In addition, some researchers have 
introduced the normal forms of FSG, IFSG, NSG, IVFSG, IVIFSG and studied 
their homomorphic properties. Until now, the notion of IVNSG is undefined and 
unexplored. Also, the normal form of IVNSG is undefined. Hence, these notions are 
yet to be introduced. Furthermore, the effects of homomorphism on these notions 
i.e. fundamental properties of homomorphic images and preimages of these notions
are needed to be analyzed.

In this chapter, these essential notions of IVNSG and its normal form have been 
introduced and analyzed with proper examples. In the following subsection, some 
important notions have been discussed, which were introduced earlier.

3.1.1. Preliminaries

In this segment, the notions of interval number, IVFS, IVIFS, IVFSG, IVDTN, 
IVIFSG, IVTTN, etc. have been discussed. These notions are essential for introducing 
IVNSG.

Definition 3.1 Let J=[0,1]. An interval number of J is denoted as g g g� ° �[ , ],
where 0 1� � �° �g g .

The set of all the interval numbers of J will be denoted as ρ(J) where 
�( ) { [ , ] : , , }.J g g g g g g g J° ° � �� � � � � �  
Again, ∀g ∈ J, g=[g, g] ∈ ρ(J) i.e. interval numbers are more general than 
ordinary numbers.
Let ∀ i, u u u Ji i i� °� �[ , ] .  Then supremum and infimum of ui  are defined as: 

sup( ) [ , ] inf( ) [ , ].u u u u u ui i i i i i� �° ° � �� � � � and  

Also, let 
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g g g J u u u J� ° � °� � � �[ , ] ( ) [ , ] ( ),� � and

then the subsequent are true:
1. g u≤  iff g- ≤ u- and g+ ≤ u+.
2. g u=  iff g-=u-and g+=u+.
3. g u<  iff g- ≤ u-and g+1u+.

Definition 3.2 (Zadeh, 1975) Let M be crisp set, then the mapping � °: ( )M J�
is called an IVFS of M.
A set of all IVFS of M is denoted as IVFS(M). For each � ° IVFS( ),M  
� �° ��( ) ( )k k  for all k∈M. Here, � ° ( )k  and � ° ( )k  are fuzzy sets of µ.  Also, 
Let ( , ) ( ) ( ),g u J Ji � °� �  where g g gi i i� ° �[ , ]  and u u ui i i� ° �[ , ]  with g ui i

� �� ° 1,
for all i. Then supremum and infimum ( , )g ui i  are defined as:
(1.)  � � ° � � ° °

� � � �

�

�

�

�

�� �
i i i i i i i i i i i i i i

g u g u g g u
� � � � � �
( , ) , , ,( ) ([ ],[

��

�

�
ui ])

(2.)  � � ° � � °
� � � �

�

�

�

�

�� �
i i i i ii i ii i i i i i ig u g u g g u
� � � � � �
( , ) , , ,( ) ([ ],[ °°

�

�

i iu
�

])
Again, for all 

( , ), ( , ) ( ) ( ),g u g u J J1 1 2 2 � °� �

with 

( , ) [ , ],[ , ] ( , ) [ , ],[ , ]( ), (g u g g u u g u g g u u1 1 1 1 1 1 2 2 2 2 2 2� �° � ° � ° � ° � )),

the subsequent are true:
1. ( , ) ( , )g u g u g g u u1 1 2 2 1 2 1 2� � °iff and ,
2. ( , ) ( , )g u g u g g u u1 1 2 2 1 2 1 2= = =iff and ,
3. ( , ) ( , ) , , .g u g u g g u u g g u u1 1 2 2 1 2 1 2 1 2 1 2� ° � � �iff  and 

Definition 3.3 (Atanassov, 1999) Let M be a crisp set, then a mapping 
� ° °: ( ) ( )M J J� �  defined as 



� �( ) ( ( ),k t k° f k
γ ( )),  with t k f k

 � �
° °° �( ) ( ) ,1  for 

all k∈M is called an IVIFS of M.
In the above definition, both t k

γ ( )  and f k
γ ( )  are IVFSs of M. A set of all 

IVIFSs of M will be denoted as IVFS(M).
Definition 3.4 (Mondal & Samanta, 2001) Suppose M1 and M2 are two crisp sets 

and l: M1→M2 be a function. Let �1 1° IVIFS( )M  and � 2 2° IVIFS( ).M  Then 
∀k∈M1 the image of γ1  i.e. l( )γ1  is denoted as l s l t s l f s( )( ) ( )( ), ( )( )( )

 

� � �1 1 1
°  and 

∀s∈M2 the preimage of γ 2  i.e. l�1
2( )°  is denoted as l k l k� °1

2 2( )( ) ( ( )). � �  where
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l s t k f k

l t
k l s k l s

( )( ) ( )( ), ( )( )

[ (

[ ]
[

( ) ( )


 



� � �

�

1 1 1 1 1

1

°

°

� �
� �� �

�� � � �)( ), ( )( )],[ ( )( ), ( )( )]]s l t s l f s l f s
  � � �1 1 1

and

l k l t k l t k l f k� � � � ° � ��1
2

1 1 1
2 2 2

( )( ) [ ( )( ), ( )( )],[ ( )( ),[

  

� � � � ll f k

t l k t l k f l k f

� °

� ° ��

1
2

2 2 2

( )( )]

[ ( ( )), ( ( ))],[ ( ( )),

]
[



  

�

� � � � 2

° ( ( ))]]l k

Definition 3.5 (Gupta & Qi, 1991) A function T: J→J is called a TN iff ∀k,s,t∈J, 
conditions given below are fulfilled:
(1.)  T(k, 1) = k
(2.)  T(k, s) = T(s, k)
(3.)  T(k, s) ≤ T(t, s) if k ≤ t
(4.)  T(k, T(s, t)) = T(T(k, s), t)
Notice that, T is an idempotent TN iff T is minimum TN or T = ˄.

Definition 3.6 (Klement et. al., 2013) Suppose T is a TN, then the function 
T J J J: ( ) ( ) ( )� � �° �  defined as T g u T g u T g u( , ) [ ( , ), ( , )]� ° ° � �  is called an 
IVTN.
Notice that, T  is idempotent if T is idempotent.

Definition 3.7 (Gupta & Qi, 1991) A function S: J→J is called a TC iff ∀k,s,t ∈ J, 
subsequent conditions are fulfilled:
(1.)  S(k,0)=k
(2.)  S(k,s)=S(s,k)
(3.)  S(k,s) ≤ S(t,s) if k ≤ t
(4.)  S(k,S(s,t))=S(S(k,s),t)
Note that, S is an idempotent TC iff S is maximum TC or S=∨.

Definition 3.8 (Klement et. al., 2013) Let S be a TC, then the mapping 
S J J J: ( ) ( ) ( )� � �° �  defined as S g u S g u S g u( , ) [ ( , ), ( , )]� ° ° � �  is called an 
IVTC.
Note that, S  is idempotent if S is idempotent.

Definition 3.9 (Aygünoğlu et. al., 2012) Suppose T  is an IVTN and S  is an IVTC. 
T h e n  a  m a p p i n g  T J J J J: ( ( ) ( )) ( ) ( )� � � �° � °2  d e n o t e d  a s 
T g u g u T g g S u u(( , ), ( , )) ( ( , ), ( , ))1 1 2 2 1 2 1 2=  is called an IVDTN.

Note that, T  is idempotent if both T  and S  are idempotent.
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Definition 3.10 (Aygünoğlu et. al., 2012) Let M be a crisp group. An IVIFS 


 

� � �° �{( , ( ), ( )) : }s t s f s s M  of M is called an IVIFSG of M with respect to 
IVDTN T  if the conditions given below are fullfilled:
1. 



 � � �( ) ( ( ), ( )), , ,k s T k s k s M° � � �
2.  � �( ) ( ), .s s s M° � � �1

Where condition (1.) implies that, 

t k s T t k t s f k s S f k f s
     � � � � � �( ) ( ( ), ( )), ( ) ( ( ), ( ))° � ° �  

and condition (2.) implies that, t s t s
 � �( ) ( ),° �1 f s f s

 � �( ) ( )° �1 .
The set of all IVIFSG of a group M based on IVDTN T  will be mentioned as 
IVIFSG ( , ).M T

Theorem 3.1 (Aygünoğlu et. al., 2012) Suppose M is a group and � ° IVIFS( )M . 
Then  � ° IVIFSG ( , )M T  iff ∀k,s ∈ M.  

 � � �( ) ( ( ), ( )).k s T k s° ��1

Theorem 3.2 (Aygünoğlu et. al., 2012) Let M1 and M2 be two crisp groups with l: 
M1→M2 be a homomorphism and T  be a continuous IVDTN. If 


� ° IVIFSG ( , )M T1 , then l M T( ) ( , )

� ° IVIFSG 2 .
Theorem 3.3 (Aygünoğlu et. al., 2012) Suppose M1 and M2 are two crisp groups 

and l be a homomorphism from M1 into M2. If  �°� IVIFSG ( , )M T2 , then 
l M T� °1

1( ) ( , ).

� IVIFSG
Definition 3.11 (Aygünoğlu et. al., 2012) Let M be a crisp group and  � ° IVIFSG ( , )M T . 

Then γ  is called an IVIFNSG of M with respect to IVDTN T  if ∀k,s∈M, 
 � �( ) ( )k s s k° � ° .

The set of all IVIFNSG of a crisp group M with respect to T  will be denoted 
as IVIFNSG ( , ).M T

Theorem 3.4 (Aygünoğlu et. al., 2012) Suppose M1 and M2 are two crisp groups 
and l be a homomorphism from M1 into M2. If  �°� IVIFNSG ( , )M T2 , then 
l M T� ° �1

1( ) ( , ).

� IVIFNSG
Theorem 3.5 (Aygünoğlu et. al., 2012) Let M1 and M2 be two crisp groups and l be 

a surjective homomorphism from M1 into M2. If  � ° IVIFNSG ( , )M T1 , then
l M T( ) ( , ).

� ° IVIFNSG 1

In the following Table 3, some sources have been mentioned which have some 
major contributions in the fields of IVFS, IVIFS, IVFSG and IVIFSG.
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In the following section, the notion of IVNSG has been defined, which is based 
on IVTTN. Also, some essential homomorphic properties of IVNSG has been 
investigated. Furthermore, the normal form of IVNSG has been defined and its 
homomorphic characteristics have been studied.

4. PROPOSED NOTION OF INTERVAL-
VALUED NEUTROSOPHIC SUBGROUP

Definition 4.1 Suppose T  and I  are two IVTNs and F  be an IVTC. The function



T J J J J J J: ( ( ) ( ) ( )) ( ) ( ) ( )� � � � � �° ° � ° °2

denoted as 



T g u t g u t T g g I u u F t t(( , , ), ( , , ) ( ( , ), ( , ), ( , ))1 1 1 2 2 2 1 2 1 2 1 2=  

is called an IVTTN.

Table 3. Some important contributions in the fields of IVFS, IVIFS,IVFSG, and IVIFSG

Author and Year Different contributions in IVFS, IVIFS, IVFSG and IVIFSG

(Zadeh, 1975) Introduced IVFS

(Biswas, 1994) Defined IVFSG which is of Rosenfeld’s nature.

(Guijun & Xiaoping, 1996) Introduced IVSGs induced by triangular norms.

(Atanassov, 1999) Introduced IVIFS.

(Mondal & Samanta, 1999) Defined topology of IVFSs is and studied some of its properties.

(Davvaz, Interval-valued 
fuzzy subhypergroups, 1999)

Introduced the concepts of interval-valued fuzzy subhypergroup of a 
hypergroup.

(Li & Wang, 2000) Introduced the notion of SH-IVFSG.

(Mondal & Samanta, 2001) Defined topology of IVIFSs is and studied some of its properties.

(Davvaz, 2001) Extended the notion of fuzzy ideal of a near-ring by introducing interval-
valued L-fuzzy ideal of a near-ring.

(Jun & Kim, 2002) Introduced interval-valued fuzzy R-subgroups in near rings.

(Aygünoğlu et. al., 2012) Defined IVDTN and using that introduced IVIFSG.
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� � �° �{( , ( ), ( ), ( )) : }s t s i s f s s M  
of M is called an IVNSG of M with respect to IVTTN 

Definition 4.2 Suppose M is a crisp group. An IVNS �




T  if the conditions
given below are fulfilled:
1.  

   

� � �( ) ( ( ), ( )), , ,k s T k s k s M° � � �
2.  

 

� �( ) ( ), .s s s M° � � �1

Now, by condition (1.) 

t k s T t k t s i k s I i k i s f k      

� � � � � � �( ) ( ( ), ( )), ( ) ( ( ), ( )), (° � ° � °ss F f k f s) ( ( ), ( ))�  

� �

and by condition (2.) t s t s i s i s   

� � � �( ) ( ), ( ) ( )° °� �1 1  and f s f s 

� �( ) ( )° �1 .
The set of all IVNSG of a group M with respect to an IVTTN 



T  will be denoted
as IVNSG ( , ).M T



Example 4.1 Let R={e,k,s,ks} be the Klein’s four group. Let



� ° {( ,[ . , . ],[ . , . ],[ . , . ]), ( ,[ . , . ],[ . , .e k0 1 0 3 0 2 0 4 0 1 0 4 0 1 0 3 0 2 0 33 0 2 0 4

0 1 0 2 0 2 0 4 0 2 0 5

],[ . , . ]),

( ,[ . , . ],[ . , . ],[ . , . ]), (s kks,[ . , . ],[ . , . ],[ . , . ])}0 1 0 2 0 2 0 3 0 2 0 5

be a IVNS of M. Also, let in IVTTN 


T ,  the corresponding IVTNs T  and I
consist of minimum TN and corresponding IVTC F  consists of maximum
TC. In Table 4 all possible compositions of elements in



δ and their corresponding
interval-valued memberships are mentioned.
Clearly, from Table 4, 



δ  satisfies condition (i) of Definition 4.2. Again, each
element belonging to 



δ  is its own inverse. Hence, 


δ satisfies condition (ii) of
Definition 4.2. So, 

 

� ° IVNSG ( , ).M T
Theorem 4.1 Let M be a group and 

 

� ° IVNSG( , ).M T  Then ∀s ∈ M
1. 

 

� �( ) ( )s s° �1  and
2. 

 

� �( ) ( ),e s° where e is the neutral element of M.
Proof:

1. From Definition 4.2, we have 
 

� �( ) ( ), .s s s M° � � �1  Again, for any s ∈
M, 

  

� � �( ) (( ) ) ( )s s s° �� � �1 1 1 . So, 
 

� �( ) ( )s s° �1 .
2. For any k ∈ R,

        

� � � � � � �( ) ( ) ( ( ), ( )) ( ( ), ( )) ( )e s s T s s T s s s° � ° � �� �1 1 .
Theorem 4.2 Suppose M is a crisp group and 



� ° IVNS(M). Then 
 

� ° IVNSG( , )M T
iff ∀k,s ∈ M, 

   

� � �( ) ( ( ), ( ))k s T k s° ��1 .
Theorem 4.3 Suppose M is a crisp group and 

  

� �1 2, ( , )° IVNSG M T . Then 
  

� �1 2° � IVNSG( , )M T .
Proof: Let 

 

� �1 2, ° IVNSG ( , )M T


. To prove 
 

� �1 2° � IVNSG ( , ) ,M T


it is needed to 
show that 

Florentin Smarandache (author and editor) Collected Papers, VIII

806



Table 4. All possible compositions of elements in 


δ  and their interval-valued 
memberships

e∙e
t e e t e T t e t e

i e e i e I i e

   

  

� � � �

� � �

( ) ( ) ( ( ), ( )),

( ) ( ) ( ( ),

° � �

° � � ii e f e e f e F f e f e    

� � � � �( )), ( ) ( ) ( ( ), ( )) ° � �

e∙k
t e k t k T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ])° � � � �0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 ��

° � � � �

T t e t k

i e k i k I

( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ] ([

 

 

� �

� � 0 2 0 3 0 2 0 3 00 2 0 4 0 2 0 3

0 2

. , . ],[ . , . ]) ( ( ), ( )),

( ) ( ) [ .

�

° � �

I i e i k

f e k f k

 

 

� �

� � ,, . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ), ( ))0 4 0 2 0 4 0 1 0 4 0 2 0 4� � �F F f e f k 

� �

e∙s
t e s t s T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ])° � � � �0 1 0 2 0 1 0 2 0 1 0 3 0 1 0 2 ��

° � � � �

T t e t s

i e s i s I

( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ] ([

 

 

� �

� � 0 2 0 4 0 2 0 4 00 2 0 4 0 2 0 4

0 2

. , . ],[ . , . ]) ( ( ), ( )),

( ) ( ) [ .

�

° � �

I i e i s

f e s f s

 

 

� �

� � ,, . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ), ( ))0 5 0 2 0 5 0 1 0 4 0 2 0 5� � �F F f e f s 

� �

e∙ks
t e ks t ks T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , .° � � � �0 1 0 2 0 1 0 2 0 1 0 3 0 1 0 2]]) ( ( ), ( )),

( ) ( ) [ . , . ] [ . , .

�

° � � �

T t e t ks

i e ks i ks

 

 

� �

� � 0 2 0 3 0 2 0 3]] ([ . , . ],[ . , . ]) ( ( ), ( )),

( ) (

� �

° �

I I i e i ks

f e ks f

0 2 0 4 0 2 0 3  

 

� �

� � kks F F f e f) [ . , . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ),� � � �0 2 0 5 0 2 0 5 0 1 0 4 0 2 0 5 

�


� ( ))ks

a∙a=e

t a a t e T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ])° � � � �0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 ��

° � � � �

T t a t a

i a a i e I

( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ] ([

 

 

� �

� � 0 2 0 4 0 2 0 3 00 2 0 3 0 2 0 3

0 1

. , . ],[ . , . ]) ( ( ), ( )),

( ) ( ) [ .

�

° � �

I i a i a

f a a f e

 

 

� �

� � ,, . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ), ( ))0 4 0 2 0 4 0 1 0 4 0 2 0 4� � �F F f a f a 

� �

a∙b=b∙a
t a b t b a T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , .° � ° � � �0 1 0 2 0 1 0 2 0 1 0 3 0 1 0 2]]) ( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ]

�

° � ° � �

T t a t b

i a b i b a

 

 

� �

� � 0 2 0 4 0 2 0 3 �� �

° � °

I I i a i b

f a b f b a

([ . , . ],[ . , . ]) ( ( ), ( )),

( ) (

0 2 0 3 0 2 0 3  

 

� �

� � )) [ . , . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ),� � � �0 1 0 4 0 2 0 4 0 1 0 4 0 2 0 4F F f a f 

� � (( ))b

a∙ab=ab∙a=b
t a ab t b T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ]° � � � �0 1 0 2 0 1 0 2 0 1 0 3 0 1 0 2 )) ( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ]

�

° � � � �

T t a t ab

i a ab i b

 

 

� �

� � 0 2 0 4 0 2 0 3 II I i a i ab

f a ab f b

([ . , . ],[ . , . ]) ( ( ), ( )),

( ) ( )

0 2 0 3 0 2 0 3 �

° �

 

 

� �

� � �� � � �[ . , . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ), (0 2 0 5 0 2 0 5 0 2 0 4 0 2 0 5F F f a f 

� � aab))

b∙b=e

t b b t e T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ])° � � � �0 1 0 3 0 1 0 2 0 1 0 2 0 1 0 2 ��

° � � � �

T t b t b

i b b i e I

( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ] ([

 

 

� �

� � 0 2 0 4 0 2 0 4 00 2 0 4 0 2 0 4

0 1

. , . ],[ . , . ]) ( ( ), ( )),

( ) ( ) [ .

�

° � �

I i b i b

f b b f e

 

 

� �

� � ,, . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ), ( ))0 4 0 2 0 5 0 2 0 5 0 2 0 5� � �F F f b f b 

� �

b∙ab=ab∙b=a
t b ab t a T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ]° � � � �0 1 0 3 0 1 0 2 0 1 0 2 0 1 0 2 )) ( ( ), ( )),

( ) ( ) [ . , . ] [ . , . ]

�

° � � � �

T t b t ab

i b ab i a

 

 

� �

� � 0 2 0 3 0 2 0 3 II I i b i ab

f b ab f a

([ . , . ],[ . , . ]) ( ( ), ( )),

( ) ( )

0 2 0 4 0 2 0 3 �

° �

 

 

� �

� � �� � � �[ . , . ] [ . , . ] ([ . , . ],[ . , . ]) ( ( ), (0 2 0 4 0 2 0 5 0 2 0 5 0 2 0 5F F f b f 

� � aab))

ab∙ab=e
t ab ab t e T 

� �( ) ( ) [ . , . ] [ . , . ] ([ . , . ],[ . , .° � � � �0 1 0 3 0 1 0 3 0 1 0 2 0 1 0 2]]) ( ( ), ( )),

( ) ( ) [ . , . ] [ . , .

�

° � � �

T t ab t ab

i ab ab i e

 

 

� �

� � 0 2 0 4 0 2 0 33 0 2 0 3 0 2 0 3] ([ . , . ],[ . , . ]) ( ( ), ( )),

( )

� �

° �

I I i ab i ab

f ab ab f

 



� �

�
 

� �( ) [ . , . ] [ . , . ] ([ . , . ],[ . , . ]) ( (e F F f ab� � � �0 1 0 4 0 2 0 5 0 2 0 5 0 2 0 5 )), ( ))f ab

�

Florentin Smarandache (author and editor) Collected Papers, VIII

807



( )( ) (( )( ), ( )( )), (t t k s T t t k t t s i      

� � � � � � �1 2 1 2 1 2 1

1° � � ° ° °� ii k q I i i k i i q    

� � � � �2 1 2 1 2

1)( ) (( )( ), ( )( ))� � ° °�

and

( )( ) (( )( ), ( )( )).f f k s F f f k f f s     

� � � � � �1 2 1 2 1 2

1° � � ° °�  

As 
 

� �1 2, ° IVNSG ( , ),M T


by Theorem 4.2, 

   

� � �1
1

1 1( ) ( ( ), ( ))k s T k s° �� and 
   

� � �2
1

2 2( ) ( ( ), ( ))k s T k s° �� . 

Which implies, 

t k s T t k t s i k s I i k i     

� � � � � �1 1 1 1 1 1

1 1( ) ( ( ), ( )), ( ) ( ( ), (° � ° �� � ss f k s F f k f s)), ( ) ( ( ), ( ))  

� � �1 1 1

1° ��

and 

t k s T t k t s i k s I i k i     

� � � � � �2 2 2 2 2 2

1 1( ) ( ( ), ( )), ( ) ( ( ), (° � ° �� � ss f k s F f k f s)), ( ) ( ( ), ( ))  

� � �2 2 2

1° �� . 

So, 

t k s t k s T t k t s T t k t     

� � � � � �1 2 1 1 2 2

1 1( ) ( ) ( ( ), ( )) ( ( ), (° � ° � �� � ss t t k s T t t k t t s)) ( )( ) (( )( ), ( )( )).� � ° � � ��
     

� � � � � �1 2 1 2 1 2

1

Similarly, the following can be proved: 

( )( ) (( )( ), ( )( ))i i k s I i i k i i s     

� � � � � �1 2 1 2 1 2

1° � � ° °�

and

( )( ) (( )( ), ( )( ))f f k s F f f k f f s     

� � � � � �1 2 1 2 1 2

1° � � ° °� . 

Hence, 
 

� �1 2° � IVNSG ( , )M T


.

Theorem 4.4 Suppose M be a group and 


� ° IVNS(M). Then 
 

� ° IVNSG( , )M T  iff
for every [g1,u1], [g2,u2] and [g3,u3] ∈ ρ(J) with u1+u2+u3 ≤ 1, 
( )([ , ], [ , ],[ , ])



� °g u g u g u1 1 2 2 3 3
�  



δ ([ , ], [ , ],[ , ])g u g u g u1 1 2 2 3 3
 is a crisp subgroup of M.
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Proof: Suppose 
 

� ° IVNSG( , )M T  and k s g u g u g u, ([ , ], [ , ],[ , ])�


°
1 1 2 2 3 3

, for arbitrary [g1,u1], 
[g2,u2] and [g3, u3] ∈ ρ(J) with u1+u2+u3 ≤ 1. Then we have

t k g u i k g u f k g u t s g   

� � � �( ) [ , ], ( ) [ , ], ( ) [ , ] ( ) [° ° � °1 1 2 2 3 3  and 11 1 2 2 3 3, ], ( ) [ , ], ( ) [ , ]u i s g u f s g u 

� �° � .

Now, by Theorem 4.2, we have

   



� � �

� � � � �

( ) ( ( ), ( ))
(( ( ), ( ), ( )), ( ( ),

k s T k s
T t k i k f k t s i

° �

�

�1

(( ), ( )))

( ( ( ), ( )), ( ( ), ( )), ( ( ), (

s f s

T t k t s I i k i s F f k f s
�

� � � � � ��   ))))

( ([ , ],[ , ]), ([ , ],[ , ]), ([ , ],[ ,� T g u g u I g u g u F g u g1 1 1 1 2 2 2 2 3 3 3 uu
g u g u g u

3

1 1 2 2 3 3

]))
([ , ], [ , ],[ , ])�

So, from k s g u g u g u� °�1
1 1 2 2 3 3



� ([ , ], [ , ],[ , ]) . Hence, 


δ ([ , ], [ , ],[ , ])g u g u g u1 1 2 2 3 3
 is a crisp subgroup of

M. 
Conversely,  let  � °k s M0 0, such that  

   

� � �( ) ( ( ), ( ))k s T k s0 0
1

0 0° �  i .e
t k s T t k t s  

� � �( ) ( ( ), ( ))0 0
1

0 0° �  o r i k s I i k i s  

� � �( ) ( ( ), ( ))0 0
1

0 0° �  o r
f k s F f k f s  

� � �( ) ( ( ), ( ))0 0
1

0 0° �  .
Without losing any generality, let t k s T t k t s  

� � �( ) ( ( ), ( )),0 0
1

0 0° �   then

t k s T t k t s  

� � �
° ° ° °� �( ) ( ( ), ( ))0 0

1
0 0 or t k s T t k t s  

� � �
° � ° °� �( ) ( ( ), ( ))0 0

1
0 0 . 

Let us assume t k s T t k t s  

� � �
° ° ° °� �( ) ( ( ), ( ))0 0

1
0 0 .

Again, let t k n t t s n t 

� �( ) [ , ], ( ) [ , ]0 1 1 0 2 2° ° .  If [ , ] ([ , ],[ , ]),g u T n t n t1 1 1 1 2 2= then 
k s g u g u g u0 0

1
1 1 2 2 3 3

� °�


� ([ , ], [ , ],[ , ])  for any [g2, u2], [g3, u3] ∈ ρ(J). Again,

t k n t T n t n t g u t k n 

� �( ) [ , ] ([ , ],[ , ]) [ , ] ( ) [0 1 1 1 1 2 2 1 1 0 2° � ° ° and ,, ] ([ , ],[ , ]) [ , ]t T n t n t g u2 1 1 2 2 1 1� ° .

Now, by choosing [g2, u2] and [g3, u3], satisfying the conditions

i k g u i k g u f k g u f k   

� � � �( ) [ , ], ( ) [ , ], ( ) [ , ] (0 2 2 0 2 2 0 3 3 0° ° �  and )) [ , ],� g u3 3  

it can be proved that, k s g u g u g u0 0
1

1 1 2 2 3 3
, ([ , ], [ , ],[ , ])

� °


� , which contradicts the fact that 


δ ([ , ], [ , ],[ , ])g u g u g u1 1 2 2 3 3
 is a crisp subgroup of M.

Similarly, for the cases of i k s I i k i s  

� � �( ) ( ( ), ( ))0 0
1

0 0° �   or f k s F f k f s  

� � �( ) ( ( ), ( ))0 0
1

0 0° � 

the same conclusion as above can be drawn.
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1

4.1.  Homomorphism on Interval-valued Neutrosophic Subgroup

In Definition 3.4, image and inverse image of IVNSs under any function has been 
introduced. Extending Definition 3.4 in neutrosophic environment, the following 
Definition 4.3 can be given:

Definition 4.3 Suppose M and M2 are two crisp sets and l: M1→M2 be a function. 
Let 



�1 1° IVNS( )M and 


�2 2° IVIFS( ).M Then ∀k∈M1 and ∀s∈M2, the image 
of 



δ1 i.e. l( )


δ1 is denoted as l s l t s l f s( )( ) ( )( ), ( )( )( )


 � � �1 1 1
°  and the preimage of 



δ2 i.e. l�1
2( )


°  is denoted as l k l k� °1
2 2( )( ) ( ( )) ,
 

� �  where

l s t k i k
k l s k l s k l s

( )( ) ( )( ), ( )( ),[
( ) ( ) ( )



 � � �1 1 1 1 1 1
° � � �

� � �� � �
(( )( )

[ ( )( ), ( )( )], [ ( )( ), (

]
[

f k

l t s l t s l i s l i



   

�

� � � �

1

1 1 1 1
° � � � �� � �)( )], [ ( )( ), ( )( )]]s l f s l f s 

� �1 1

and

l k l t k l t k l i k� � � � ° � ��1
2

1 1 1
2 2 2

( )( ) [ ( )( ), ( )( )], [ ( )( ),[

  � � � � ll i k l f k l f k

t l k

� ° � � � °

��

1 1 1
2 2 2

2

( )( )], [ ( )( ), ( )( )]

[ ( (

]
[

  



� � �

� ))), ( ( ))], [ ( ( )), ( ( ))], [ ( ( )),t l k i l k i l k f l k f    

� � � �2 2 2 2

° � ° �
��2

° ( ( ))]]l k

Theorem 4.5 Let M1 and M2 be two crisp groups with l: M1→M2 be a homomorphism
and 



T  be a continuous IVTTN. If 
 

� ° IVNSG ( , )M T1 , then l M T( ) ( , )
 

� ° IVNSG 2 .
Proof: Let for some k1,k2∈M1, l(k1)=s1 and l(k2)=s2. Then

l s s s s i s s f sl t l l( )( ) ( )( ), ( )( ), ( )((


  � � � �1 2
1

1 2
1

1 2
1

1° � ° ° °� � � ss

p i p
l p s s l p s s l p s

t
2

1

1 2
1

1 2
1

1

�

� ° � ° � °
� � � �

� �

)

( ), ( ),

)
(

( ) ( ) ( )
 

� � ss
f p

k k i k k f k kt
2

1

1 2
1

1 2
1

1 2
1

�

� ° ° °� � �



  

�

� � �

( )

( ), ( ), ( )

)

( )

Here,

t k k T t k t k i k k I i k i     

� � � � � �( ) ( ( ), ( )), ( ) ( ( ),1 2
1

1 2 1 2
1

1° � ° �� � (( )), ( ) ( ( ), ( )).k f k k F f k f k2 1 2
1

1 2  

� � �° ��  

Again, for each k1,k2∈M1 with l(k1)=s1 and l(k2)=s2, the following can be obtained:

l t t t l ts s T p p T
l p s l p s

( )( ) ( ), ( ) ( )(( ) (
( ) ( )

   

� � � �1 2
1

1 2

° ��

� �
� � � ss sl t1 2), ( )( ))

� , 
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l li s s I i p i p I i
l p s l p s

( )( ) ( ), ( ) ( )(( ) (
( ) ( )

   

� � � �1 2
1

1 2

° ��

� �
� � � ss i sl1 2), ( )( ))

�

and

l lf s s F f p f p F f
l p s l p s

( )( ) ( ), ( ) ( )(( ) (
( ) ( )

   

� � � �1 2
1

1 2

° ��

� �
� � � ss f sl1 2), ( )( )).

�

Hence, l s s T l s l s( )( ) ( )( ), ( )( )( ).
   

� � �1 2
1

1 2° ��

Theorem 4.6 Suppose M1 and M2 are two crisp groups and l be a homomorphism 
from M1 into M2. If 

 

�°� IVSNG( , )M T2 , then l M T� ° �1
1( ) ( , ).

 

� IVNSG
Proof: Let 

 

�°� IVNSG ( , )M T2  and k,s∈M1. Then

l t k s t l k s

t l k l s T t l

�
°

�
°

�

°
�

°

� � �

� � �

1 1 1

1

( )( ) ( ( ))

( ( ) ( ) ) ( (

 

 

� �

� � (( )), ( ( )))

( ( ( )), ( ( )))

k t l s

T l t k l t s



 

°

�
°

�
°�

�

� �
1 1

In a similar way, the followings can be proven:

l i k s I l i k l i s l f�
°

� �
°

�
°

�
°� �1 1 1 1 1( )( ) ( ( ( )), ( ( ))) (   

� � � � and ))( ) ( ( ( )), ( ( )))k s F l f k l f s� �� �
°

�
°

1 1 1
 

� � . 

So, l k s T l k l s� � � �° � � ° °1 1 1 1( )( ) ( ( )( ), ( )( ))
   

� � � .

Corollary 4.1 Suppose M1 and M2 are two crisp groups and l: M1→M2 be an 
isomorphism. If 

 

� ° IVNSG ( , )M T1 , then l l� °1( ( )) .
 

� �
Corollary 4.2 Let M be a crisp group and l: M→M be an isomorphism. If

 

� ° IVNSG ( , )M T , then l( )
 

� �° iff l� °1( ) .
 

� �

4.2. Interval-Valued Neutrosophic Normal Subgroup

Definition 4.3 Let M be a crisp group and 
 

� ° IVNSG ( , )M T . Then 


δ  is called an
IVNNSG of M with respect to IVTTN 



T  if ∀k,s ∈ M, 
 

� �( ) ( )k s s k° � ° .
The set of all IVNNSG of a crisp group U with respect to 



T  will be denoted
as IVNNSG ( , )U T



.
Theorem 4.7  Let M  be a group and 

  

� �1 2, ( , )° IVNNSG M T .  Then 
  

� �1 2° �IVNNSG ( , )M T .
Proof: Let 

  

� �1 2, ( , )° IVNNSG M T . Then ∀k, s∈M, 
 

� �1 1( ) ( )k s s k° � °  and 
 

� �2 2( ) ( )k s s k° � ° . So,
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� � �1 1 1 1 1 1
t  (k °s) � t� (s °k), i (k °s) � i� (s °k), f  (k °s) � f� (s °k ))

and 

t k s t s k i k s i s k f k s f s k     

� � � � � �2 2 2 2 2 2
( ) ( ), ( ) ( ), ( ) (° � ° ° � ° ° � ° )).

Hence,

( )( ) ( ( ), ( ), (
 

     � � � � � � � �1 2 1 21 1 21 1 21
° � � � � �° ° °k s t k s i k s f k ss

t k s t k s i k s i k s f k s f

))

( ( ) ( ), ( ) ( ) , ( )� � � � � � � � �     

� � � � �1 2 1 2 1 ��

� � � � �

2

1 2 1 2 1

( ))

( ( ) ( ), ( ) ( ) , (

k s

t s k t s k i s k i s k f s

�

� � � � � � � �     kk f s k

t s k i s k f s

) ( ))

( ( ), ( ), (

� �

� � � �° ° °



     

�

� � � � � �

2

1 21 1 21 1 21
kk s k)) ( )( )� ° �

 

� �1 2

So, 
  

� �1 2° �IVNNSG ( , )M T .
Proposition 4.1 Suppose M is a crisp group and

 

� ° IVNSG ( , ).M T  Then ∀k,s ∈ M,
the subsequent conditions are identical:
1.  

 

� �( ) ( )s k s k° ° ��1

2.  
 

� �( ) ( )s k s k° ° ��1

3.  
 

� ° IVNNSG ( , )M T
Proof: (1) ⇒ (2): Let k,s ∈ M. As 

 

� �( ) ( ),s k s k° ° ��1  it can be shown that

t s k s t k i s k s i k   

� � � �( ) ( ), ( ) ( )° ° � ° ° �� �1 1 and f s k s f k 

� �( ) ( )° ° ��1 .

Now, replacing s with s-1, t s k s t s k s t k  

� � �( ) ( ( ) ) ( ).° ° ° °� � � � � �1 1 1 1

So, t k t s s k s s t s k s t k   

� � � �( ) ( ( ) ) ( ) ( )° � � � � � � � �� � �1 1 1  i.e. t s k s t k 

� �( ) ( )° ° ��1 .
In a similar way, i s k s i k 

� �( ) ( )° ° ��1  and f s k s f k 

� �( ) ( )° ° ��1 . So, ∀k,s ∈ M,
 

� �( ) ( ).s k s k° ° ��1

(2) ⇒ (3): In (2), replacing k with k∙s (3) can be obtained easily.
(3) ⇒ (1): Let k,s ∈ M. As, 

 

� ° IVNNSG ( , )M T ,
 

� �( ) ( )k s s k° � ° . Replacing
k with k∙s-1 the following can be obtained:

   

� � � �( ) ( ) ( ) ( ).s k s k s s k k° ° � ° ° � �� �1 1

Theorem 4.8 Let M be a group and 


� ° IVNS(M). Then 
 

� ° IVNNSG ( , )M T  iff for
every [g1,u1], [g2,u2] and [g3,u3]∈ρ(J) with u1+u2+u3 ≤ 1, ( )([ , ], [ , ],[ , ])



� °g u g u g u1 1 2 2 3 3
�



δ ([ , ], [ , ],[ , ])g u g u g u1 1 2 2 3 3
 is a crisp normal subgroup of M.

Proof: This can be proved using Theorem 4.4.
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Theorem 4.9 Let M be a group and 
 

� ° IVNNSG ( , )M T  with respect to an idempotent
IVTTN 



T .  Let M k M k e| { : ( ) ( )},

 

� � �° � °  (e is the neutral element of M). 
Then the crisp set M | δ  is a normal subgroup of M.

Proof: Let 
 

� ° IVNNSG ( , )M T  and k s M, |� 

° . So,
  

� � �( ) ( ) ( ).k e s° °

Now, 
       

� � � � � �( ) ( ( ), ( )) ( ( ), ( )) ( )k s T k s T e e e° � � ��1 . Again, 
 

� �( ) ( )e k s° � �1  and
hence 

 

� �( ) ( ).k s e° ��1  So, k s M� °�1 | �  i.e. M | δ  is a subgroup of M.
Again, let k M� | ° and s∈M. Since, 

 

� ° IVNNSG ( , )M T  it can be shown that
  

� � �( ) ( ) ( ).s k s k e° ° � ��1  Hence, s k s M� � °�1 | �  i.e. M | δ  is a normal subgroup
of M.
Note that, Theorem 4.9 is true only when 



T  is an idempotent IVTTN. The
following (Example 4.2) is a counterexample which will justify current claim.

Example 4.2 Let M={1,i,-1,-i}be a cyclic group and 



� ° �{( ,[ . , . ],[ . , . ],[ . , . ]), ( ,[ . , . ],[ . ,1 0 8 0 8 0 5 0 5 0 2 0 2 1 0 7 0 7 0 5 0.. ],[ . , . ]),

( ,[ . , . ],[ . , . ],[ . , . ]), (

5 0 3 0 3

0 8 0 8 0 5 0 5 0 2 0 2i ��i,[ . , . ],[ . , . ],[ . , . ])}.0 8 0 8 0 5 0 5 0 2 0 2

Also, let the corresponding IVTTN


T is formed by product TNs i.e. T(k,s)=
k∙s, I(k,s)= k∙s and product TC i.e. F(k,s)= k+s-k∙s. Then, 



� ° IVNNSG ( , )M T


.
However, M i i| { , , }

� ° �1  is not a subgroup of M and hence M | δ  is not a normal 
subgroup of M. 

4.2.1. Homomorphism on Interval-Valued 
Neutrosophic Normal Subgroup

Theorem 4.10 Let M1 and M2 be two crisp groups and l be a homomorphism from 
M1 into M2. If 

 

�°� IVNNSG( , )M T2 , then l M T� ° �1
1( ) ( , )

 

� IVNNSG .
Proof: Let 

 

�°� IVNNSG( , )M T2 , then 
 

�°� IVNSG( , )M T2  and hence from Theorem 
4.6, l M T� ° �1

1( ) ( , )
 

� IVNSG . So, only the normality of 


�° is needed to be proved.
Let k,s∈M1, then

l k s l k s l k l s

l s l k

� ° � � ° � � ° �

� ° �

1( )( ) ( ( )) ( ( ) ( ))

( ( ) ( ))[

  



� � �

� AS  IVNNSG
 

 

°�

� ° � � ° ��

�

� �

( , )]

( ( )) ( )( )

M T

l s k l s k
2

1
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So, l M T� ° �1
1( ) ( , )

 

� IVNNSG .
Theorem 4.11 Suppose M1 and M2 be two crisp groups and l be a surjective

homomorphism from M 1 into M 2.  If  
 

� ° IVNNSG( , )M T1 ,  then
l M T( ) ( , )
 

� ° IVNNSG 2 .
Proof: Let 

 

� ° IVNNSG( , )M T1 , then 
 

� ° IVNSG( , )M T1  and hence by Theorem 4.5, 
l M T( ) ( , )
 

� ° IVNSG 2 . So, only the normality of 


�° is needed to be proved.
Now, ∀k,s ∈ M2, as l is a surjective homomorphism, l-1(k)1 ϕ, l-1(s)1ϕ and 
l -1(k∙s ∙k -1) 1ϕ.  So,  ∀k ,s  ∈ M 2,  l t k s k t r

r l k s k
( )( ) ( ( ))

( )
 

� �° ° ��

� ° °
�

� �

1
1 1

and 

l t s t r
r l s

( )( ) ( ( ))
( )

 

� �° �
� �1

.

Let n ∈ l-1(k), q ∈ l-1(s) and n-1 ∈ l-1(k-1). Now as 
 

� ° IVNNSG( , )M T1 , the 
followings can be drawn:

t n q n t q i n q n i q f n q n f    

� � � � �( ) ( ), ( ) ( ) ( )° ° � ° ° � ° ° �� � �1 1 1 and 

� ( )q . 

Since, l is a homomorphism, l(n∙q∙n-1) = l(n)∙l(q)∙l(n-1) = k∙s∙k-1 and hence, 
n∙q∙n-1 ∈ l-1(k∙s∙k-1). So,

l t k s k t r
r l k s k

n l k q l s

( )( ) ( ( ))
( )

( ), ( )

 

� �° ° �

�

�

� ° °

� �

�
�

� �

� �

1
1 1

1 1 ,, ( )

( )

( ( ))

( ( )) ( )( )
n l k

q l s

t n q n

t q l t s

� � �

�

�

�

�

° °

� ��
1 1 1

1

1


 

�

� �

Hence, ∀k,s ∈ M2, l t k s k l t s( )( ) ( )( ) 

� �° ° ��1  and similarly,

l i k s k l i s l f k s k l f s( )( ) ( )( ), ( )( ) ( )( )   

� � � �° ° � ° ° �� �1 1 . 

So, l k s k l s( )( ) ( )( )
 

� �° ° ��1  and hence, by Proposition 4.1, l M T( ) ( , )
 

� ° IVNNSG 2 .

Corollary 4.3 Let M1 and M2 be two crisp groups and l: M1→M2 be an isomorphism.
If 
 

� ° IVNNSG( , )M T1 , then l l� °1( ( )) .
 

� �
Corollary 4.4 Let M be a crisp group and l: M→M be an isomorphism on M. If

 

� ° IVNNSG( , )M T1 , then l( )
 

� �°  iff l� °1( ) .
 

� �
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5. CONCLUSION

The notion of an IVNSG is nothing but generalization of FSG, IFSG, NSG, IVFSG 
and IVIFSG. It is known that, to study some fundamental algebraic characteristics 
of any entity one needs to understand functions, which preserve their algebraic 
characteristics i.e. one needs to study the effects of homomorphism on them. 
Hence, in this chapter, IVTTN has been introduced and based on that IVNSG has 
been introduced. Also, some effects of homomorphism on it have been studied. 
Furthermore, based on IVTTN, IVNNSG has been defined and some of its 
homomorphic characteristics have been studied. In future, one can introduce soft 
set theory in IVNSG and further generalize it.
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1. Introduction

*e concept of fuzzy sets was introduced by Zadeh [1]. *e
study of fuzzy topological spaces was initiated by Chang
[2]. *e notion of intuitionistic fuzzy sets was introduced
by Atanassov [3]. *e notion of intuitionistic L-topological
spaces was introduced by Atanassov and Stoeva [4] by
extending L-topology to intuitionistic L-fuzzy setting. *e
notion of the intuitionistic fuzzy topological space was
introduced by Çoker [5]. *e concept of generalized fuzzy
closed set was presented by Balasubramanian and Sun-
daram [6]. Smarandache extended the intuitionistic fuzzy
sets to neutrosophic sets [7]. After the introduction of the
neutrosophic set concept [8, 9] in 2019 by Smarandache
and Shumrani on the nonstandard analysis, the nonstan-
dard neutrosophic topology was developed. In recent years,
neutrosophic algebraic structures have been investigated.
Neutrosophy has laid the foundation for a whole family of
newmathematical theories, generalizing both their classical
and fuzzy counterparts, such as a neutrosophic theory in
any field, see [10, 11]. Recently, there were introduced
neutrosophic mapping and neutrosophic connectedness.
*e concept of the neutrosophic metric space presented by
[12] Al-Omeri et al. is a generalization of the intuitionistic

fuzzy metric space due to Veeramani and George [13]. In
2019 and 2020, Smarandache generalized the classical
Algebraic Structures to NeutroAlgebraic Structures (or
NeutroAlgebras) whose operations and axioms are partially
true, partially indeterminate, and partially false as exten-
sions of Partial Algebra and to AntiAlgebraic Structures (or
AntiAlgebras) whose operations and axioms are totally
false. And in general, he extended any classical structure, in
no matter what field of knowledge, to a NeutroStructure
and an AntiStructure, see [14, 15]. In 2007, Huang and
Zhang [16] introduced the concept of cone metric space
and proved some fixed point theorems for contractive
mappings. Recently, Öner et al. [17] introduced the concept
of the fuzzy cone metric space that generalized the cor-
responding notions of the fuzzy metric space by George
and Veeramani [13] and proved the fuzzy cone Banach
contraction theorem. In 2010, Vetro et al. [18] extended the
notion of (Φ,Ψ)-weak contraction to fuzzy metric spaces
and proved some common fixed point theorems for four
mappings in fuzzy metric spaces by using the idea of an
altering distance function. Gupta et al. and Wasfi et al.
[19, 20] introduced the notions of E. A and common E. A
on the modified intuitionistic generalized fuzzy metric
space. *ey extended the notions of the common limit
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Fixed Point Theorems 
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range property and E. A property for coupled maps on
modified intuitionistic fuzzy metric spaces. *is paper is
devoted to the study of extending and generalizing the
(Φ,Ψ)-weak contraction to the neutrosophic cone metric
space and prove some results. In Section 2, we will recall
some materials which will be used throughout this paper.
In Section 3, we give definitions and present the cone
neutrosophic metric space and explain a number of
properties. In Section 4, the results obtained from theorems
and theoretical application of the neutrosophic fixed point
are also presented.*e last section contains the conclusions
of the paper.

2. Preliminaries

Definition 1 (see [21]). Let Σ be a non-empty fixed set. A
neutrosophic set (briefly, NS) R is an object having the form
R � 〈t, ξR(t), ϱR(t), ηR(t)〉: t ∈ Σ , where ξR(t), ϱR(t), and
ηR(t) which represent the degree of membership function
(namely, ξR(t)), the degree of indeterminacy (namely,
ξR(t)), and the degree of nonmembership (namely, ηR(t)),
respectively, of each element t ∈ Γ to the set R.

A neutrosophic set H � 〈t, ξH(t), ϱH(t), ηH(t)〉: t ∈ Γ 

can be identified to an ordered triple 〈ξH(t), ϱH(t), ηH(t)〉

in ⌊0− , 1+⌋ on Γ.

Remark 1 (see [21]). By using symbol H � t, ξH(t), ϱH(t),

ηH(t)} for the NS, H � 〈t, ξH(t), ϱH(t), ηH(t)〉: t ∈ Γ .

Definition 2 (see [13]). Let H � 〈ξH(t), ϱH(t), ηH(t)〉 be a
NS on Γ. *e complement of H(briefly, C(H)) may be
defined as three kinds of complements:

(1) C(H) � 〈r, 1 − ξH(t), 1 − ηH(t)〉: t ∈ Γ 

(2) C(H) � 〈r, ηH(t), 1 − ϱH(t), ξH(t)〉: t ∈ Γ 

(3) C(H) � 〈r, ηH(t), ϱH(t), ξH(t)〉: t ∈ Γ 

We have the following NSs (see [21]), which will be used
in the sequel:

(1) 1N � 〈t, 1, 0, 0〉: t ∈ Γ{ } or
(2) 1N � 〈t, 1, 0, 1〉: t ∈ Γ{ },
(3) 1N � 〈t, 1, 1, 0〉: t ∈ Γ{ },
(4) 1N � 〈t, 1, 1, 1〉: t ∈ Γ{ }.
(1) 0N � 〈t, 0, 1, 1〉: t ∈ Γ{ } or
(2) 0N � 〈t, 0, 0, 1〉: t ∈ Γ{ },
(3) 0N � 〈t, 0, 0, 0〉: t ∈ Γ{ },
(4) 0N � 〈t, 0, 1, 0〉: t ∈ Γ{ }.

Definition 3 (see [21]). Let Hj: j ∈ J  be an arbitrary family
of NSs in Γ. *en,

(1) ∩Hi may be defined as follows:

(i) ∩Hi � 〈t, ∧
i∈∧

ξHi(t), ∧
i∈∧
ϱHi(t), ∨

i∈∧
ηHi(t)〉

(ii) ∩Hi � 〈t, ∧
i∈∧

ξHi(t), ∨
i∈∧
ϱHi(t), ∨

i∈∧
ηHi(t)〉

(2) ∪Hi may be defined as follows:

(i) ∪Hi � 〈t, ∨
i∈∧

ξHi(t), ∨
i∈∧
ϱHi(t), ∧

i∈∧
ηHi(t)〉

(ii) ∪Hi � 〈t, ∨
i∈∧

ξHi(t), ∧
i∈∧
ϱHi(t), ∧

i∈∧
ηHi(t)〉

Definition 4 (see [21]). For any r≠∅, let neutrosophic sets R

and Γ be in the form R � r, ξR(r), ϱR(r), ηR(r)  and
Γ � r, ξΓ(r), ϱΓ(r), ηΓ(r) . *e two possible definitions of
R⊆Γare as follows:

(1) R⊆ Γ⟺ ξR(r)≤ ξΓ(r), ϱR(r)≥ ϱΓ(r), and ηR(r)

≤ ηΓ(r)

(2) R⊆ Γ⟺ ξR(r)≤ ξΓ(r), ϱR(r)≥ ϱΓ(r), and ηR(r)

≥ ηΓ(r)

Definition 5 (see [22]). A neutrosophic topology (NT for
short) and a nonempty set Γ is a family Ξ of neutrosophic
subsets in Γ satisfying the following axioms:

(1) 0N, 1N ∈ Ξ
(2) B1 ∩B2 ∈ Ξ for any B1, B2 ∈ Ξ
(3) ∪Bi ∈ Ξ, ∀ Bi | i ∈ I ⊆Ξ

*e elements of Ξ are called open neutrosophic sets. *e
pair (Γ,Ξ) is called a neutrosophic topological space, and
any neutrosophic set in Ξ is known as the neutrosophic open
set (NOS) in Γ. A neutrosophic set B is closed if its com-
plement is neutrosophic-open, denoted by C(B).
*roughout this paper, we suppose that all conemetrics have
nonempty interior.

For any NTSR in (Γ,Ξ) [23], we have
Cl(Rc) � [Int(R)]c and Int(Rc) � [Cl(R)]c.

Definition 6. A subset μ of Σ is said to be a cone in the
following cases:

(1) If both s ∈ μ and −s ∈ μ, then s � ϕ
(2) If s, r ∈ S, s, r≥ 0, and u, v ∈ μ, then su + rv ∈ μ
(3) μ is closed, nonempty, and μ≠ ϕ 

For a given cone, partial ordering (≼) on Σ via μ is
defined by u≼ v iff v − u ∈ μ. u≺ v will stand for u≼v and
u≪ v, while u≠ v will stand for v − u ∈ Int(μ).

If ∃ a constant K> 0 such that for all ∅≼ u≼ v, u, v ∈ Σ
implies ‖u‖≤K‖v‖, and the least positive number K satis-
fying this property is called the normal constant of P, where
P is the normal.

Definition 7. Let Γ be a nonempty set and s≥ 1 be a given
real number. A function d: Γ × Γ↦Σ is said to be a cone
metric on Γ if the following conditions hold:

(1) d(m1, m2) � d(m2, m1) for all m1, m2 ∈ Γ
(2) 0≼ d(m1, m2) for all m1, m2 ∈ Γ
(3)
d(m1, m3)≼s(d(m1, m2) + d(m2, m3))∀m1, m2, m3 ∈ Γ
(4) d(m1, m2) � 0 iff m1 � m2

*e pair (Γ, d) is called a cone metric space (shortly,
CMS).
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(1) ⋇ is continuous
(2) ⋇ is commutative and associative
(3) n1⋇n2 ≤ n3⋇n4 whenever n1 ≤ n3 and n2 ≤ n4 for all

n1, n2, n3, n4 ∈ [0, 1]

(4) n1⋇1 � n1 for all n1 ∈ [0, 1]

Definition 9. Let (Γ, d) be a CMS. *en, for any d1≫ 0 and
d2≫ 0, d1, d2 ∈ Σ, ∃d≫ 0, and d ∈ Σ such that d≪d1 and
d≪ d2.

Example 1. n1⋇n2 � max n1, n2  and n1⋇n2 � n1n2.

Example 2. n1◇n2 � max n1, n2  and m1◇n2 � min n1+

n2, 1}.

Definition 10. A t-conorm of a binary operation ◇: [0, 1] ×

[0, 1]⟶ [0, 1] is continuous if ◇ verifies the following
statements:

(1) ◇ is continuous
(2) ◇ is associative and commutative
(3) q1◇q2 ≤ q3◇q4 whenever q1 ≤ q3 and q2 ≤ q4 for all

q1, q2, q3, q4 ∈ [0, 1]

(4) q1◇1 � q1 for all q1 ∈ [0, 1]

Definition 11 (see [12]). (Γ,ψ,ϕ,⋇,◇) is said to be a neu-
trosophic cone metric space if μ is NCMS of Σ, Γ is an
arbitrary set, ◇ is a N-continuous t-conorm, ⋇ is a
N-continuous t-norm, and ψ, ϕ are neutrosophic sets on
Γ3 × Int(μ), which satisfy the following statements:
∀ε1, ε2, ε3 ∈ Γ and n, m ∈ Int(μ) (that is, n≫ 0ϕ and m≫ 0ϕ):

(1) ψ(ε1, ε2, ε3, m)> 0ϕ∀ε1, ε2, ε3 ∈ Γ
(2) ψ(ε1, ε2, ε3, m) � 1 iff ε1 � ε2 � ε3
(3) ψ(ε1, ε2, ε3, m) � ψ(p ε1, ε2, ε3 , m), where p is

permutation
(4) ψ(ε1, ε2, ε3, m)⋇ψ(ε2, ε3, n)≤ψ(ε1, ε3, m + n)

(5) ψ(ε1, ε2, ε3, .): Int(μ)⟶ ⌋0−, 1+⌊ is neutrosophic-
continuous

Definition 12 (see [12]). Let (Γ,ψ,ϕ,⋇,◇) be a NCMS. For
m≫ 0ϕ, the open ball Γ(x, s, m) with center ε1 and radius
s ∈ (0, 1) is defined by (ε1, s, m) � ε2 ∈ Γ: ψ(ε1, ε2, m)

> 1 − m, ϕ(ε1, ε2, m)< s}.

Example 3. Let Σ � R+. *en, μ � (p1, p2, p3):

p1, p2, p3 ≥ 0}⊆Σ is a normal cone, and P � 1 is a normal
constant. Let s⋇t � st, Γ � R, and ψ: Γ3 × int(μ)⟶ [0, 1],
defined by ψ(ε1, ε2, ε3, t) � (1/e(|ε1− ε2|+|ε2− ε3|+|ε3− ε1|/‖t‖))

∀ε1, ε2, ε3 ∈ Γ and t≫∅.

(1) ψ(ε1, ε2, ε3, m) � 1 iff ε1 � ε2 � ε3
(2) ψ(ε1, ε2, ε3, m)⋇ψ(ε2, ε3, n)≤ψ(ε1, ε3, n + m)

(3) ψ(ε1, ε2, ε3, m) � ψ(p ε1, ε2, ε3 , m), where p is
permutation

(4) ψ(ε1, ε2, ε3, m) + ϕ(ε1, ε2, ε3)≤ 1ϕ
(5) ψ(ε1, ε2, ε3, .): Int(μ)⟶ ⌋0−, 1+⌊ is neutrosophic-

continuous
(6) ϕ(ε1, ε2, ε3, m)◇ϕ(ε2, ε3, n)≥ϕ(ε1, ε3, m + n)

(7) ϕ(ε1, ε2, ε3, .): Int(μ)◇ ⌋0−, 1+⌊ is neutrosophic-
continuous

(8) ϕ(ε1, ε2, ε3, m)< 0ϕ
(9) ϕ(ε1, ε2, ε3, m) � 0ϕ if and only if ε1 � ε2 � ε3
(10) ϕ(ε1, ε2, ε3, m)> 0ϕ∀ε1, ε2, ε3 ∈ Γ
(11) ϕ(ε1, ε2, ε3, m) � ϕ(p ε1, ε2, ε3 , m), where p is

permutation

*en, (ψ, ϕ) is called a neutrosophic cone metric on Γ.
*e functions ψ(ε1, ε2, m) and ϕ(ε1, ε2, m) are defined by

the degree of non-nearness between ε1 and ε2 with respect to
m, respectively.

Definition 15 (see [12]). Let (Γ,ψ, ϕ,⋇,◇) be a NCMS,
ε1 ∈ Γ, and ε1n  be a sequence in Γ. *en, ε1n  is said to be
convergent to ε1 if for all m≫ 0ϕ and all s ∈ (0, 1), there
exists n0 ∈ N such that ψ(ε1n, ε1, m)> 1 − s,ϕ(ε1n, ε1, m)≤ s

for any n≥ n0. We defined that limn⟶∞ε1n � ε1 or
ε1n⟶ ε1 as n⟶∞.

Definition 16. A function Φ: [0,∞)⟶ [0,∞) is an al-
tering distance if Φ(n) is monotone increasing and con-
tinuous, and Φ(n) � 0 iff n � ∅.

Definition 17. Let (Γ, d) be a metric space and let Σ � R+.
Defined μ1◇μ2 � min μ1 + μ2, 1  and μ1 ⋇ μ1 � μ1μ2 for any
μ1, μ2 ∈ [0, 1], and let Γ and ψ be fuzzy sets on Γ3 × int(μ)

represented by ψ(ε1, ε2, ε3, μ) � (ktn/ktn + LD∗(ε1, ε2, ε3))
and ϕ(ε1, ε2, ε3, μ) � (D∗(ε1, ε2, ε3)/mtn + LD∗(ε1, ε2,
ε3)).

3. Main Result

Definition 18. Let (Γ,ψ, ϕ,⋇,◇) be a neutrosophic cone
metric space (CMS) and T,H: Γ⟶ Γ be two mappings.
Mapping H is said to be neutrosophic (Φ,Ψ)-weak con-
traction if there exists a function Ψ: [0,∞)⟶ [0,∞) with

Definition 8. A t-norm is continuous for any binary oper-
ation ⋇: [0, 1] × [0, 1] ⟶ [0, 1] if ⋇ verifies t he following 
statements:

Definition 13 (see [12]). An (Γ, ψ, ϕ, ⋇, ◇) neutrosophic 
cone metric is called complete neutrosophic if any sequence 
which is Cauchy in NCMS(Γ, ψ, ϕ) is convergent.

Definition 14 (see [12]). (Γ, ψ, ϕ, ⋇, ◇) is said to be a neu-
trosophic CMS if μ is a neutrosophic cone metric (shortly, 
NCMS) of Σ, where Γ is an arbitrary set, ⋇ is a neutrosophic 
continuous t-norm, ◇ is a neutrosophic continuous t-
conorm, and ψ, ϕ are neutrosophic sets on Γ3 × Int(μ), 
which satisfy the following statements: ∀ε1, ε2, ε3 ∈ Γ and 
m, n ∈ Int(μ) (that is, n ≫ 0ϕ and m ≫ 0ϕ):
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Ψ(s)> 0 and Ψ(s) � 0 for s> 0 and an alternating distance
function Φ such that

Φ
1

ψ H ε1( ,H ε2( ,H ε3( , m( 
− 1ϕ ≤Φ

1
ψ T ε1( ,T ε2( ,T ε3( , m( 

− 1ϕ  − Ψ
1

ψ T ε1( ,T ε2( ,T ε3( , m( 
− 1ϕ ,

Φ ϕ H ε1( ,H ε2( ,H ε3( , m( ( ≤Φ ϕ T ε1( ,T ε2( ,T ε3( , m( (  − Ψ ϕ T ε1( ,T ε2( ,T ε3( , m( ( .

(1)

hold for all ε1, ε2, ε3 ∈ ψ and each m≫ 0ϕ. IfT is the identity
map, then H is called a neutrosophic (Φ,Ψ)-weak con-
traction mapping.

Definition 19. Let (Γ,ψ,ϕ,⋇,◇) be a neutrosophic cone
metric space andT,H: Γ⟶ Γ be two mappings. Point v is
said to be a coincidence point in ψ of T and H if
ε3 � T(v) � H(v).

Definition 20. Let Ti  and Hi  be two finite families of
self-mappings on ψ. *ey are called pairwise commuting if

(1) TiTj � TjTi, where i, j ∈ 1, 2, . . . , n{ }

(2) HiHj � HjHi, where i, j ∈ 1, 2, . . . , m{ }

(3) TiHj � HjTi, where i ∈ 1, 2, . . . , n{ } and
j ∈ 1, 2, . . . , m{ }

Theorem 1. Let (Γ,ψ, ϕ,⋇,◇) be a neutrosophic cone metric
space and H: Γ⟶ Γ be a neutrosophic (Φ,Ψ)-weak con-
traction with respect to T: Γ⟶ Γ. If H(ψ)⊆T(ψ) and
T(ψ) orH(ψ) is a complete subset of ψ, thenT andH have
a unique common fixed point in ψ provided that Ψ is a
continuous function.

Proof. Let t0 ∈ ψ be an arbitrary point. Let point t1 ∈ ψ such
that H(t0) � T(t1). *is can be done since H(ψ)⊆T(ψ).
Continuing this process, we obtain a sequence tn  ∈ ψ such
that sn � H(tn) � T(tn+1). We assume that sn ≠ sn+1 for all
n ∈ N; otherwise, T and H have a coincidence point. Now,
we get

Φ
1

ψ sn, sn, sn+1, m( 
− 1ϕ  � Φ

1
ψ H tn( ,H tn( ,H tn+1( , m( 

− 1ϕ 

≤Φ
1

ψ T tn( ,T tn( ,T tn+1( , m( 
− 1ϕ 

− Ψ
1

ψ T tn( ,T tn( ,T tn+1( , m( 
− 1ϕ 

≤Φ
1

ψ sn−1, sn−1, sn, m( 
− 1ϕ 

− Ψ
1

ψ sn−1, sn−1, sn, m( 
− 1ϕ 

≤Φ
1

ψ sn−1, sn−1, sn, m( 
− 1ϕ ,

(2)

which suppose that T mapping is nondecreasing; hence,
ψ(sn, sn, sn+1, m)>ψ(sn−1, sn−1, sn, m)∀n ∈ N. Hence,
ψ(sn−1, sn−1, sn, m) is an increasing sequence of positive real
numbers in (0, 1]. Let V(m) � limn⟶∞ψ(sn−1, sn−1, sn, m).
We prove that V(m) � 1∀m≫ 0ϕ. If not, there exists m≫ 0ϕ
such that V(m)< 1ϕ. *en, from the above inequality on
taking n⟶∞, we obtain

Φ
1

V(m)
− 1ϕ ≤Φ

1
V(m)

− 1ϕ  − Ψ
1

V(m)
− 1ϕ ,

(3)

which is a contradiction. *erefore, ψ(sn, sn, sn+1, m)⟶ 1
as n⟶∞. Now, for each k≥ 0, by Definition 18, we get

Florentin Smarandache (author and editor) Collected Papers, VIII

825



ψ sn, sn, sn+k, m( ≥ψ sn, sn, sn+1,
m

k
 ∗ψ sn+1, sn+1, sn+2,

m

k
 

∗ · · ·∗ψ sn+k−1, sn+k−1, sn+k,
m

k
 .

(4)

It follows that limn⟶∞ψ(sn, sn, sn+k, m)≥ 1∗1∗ · · ·∗1
� 1. At the same time, we have

Φ ϕ sn, sn, sn+1, m( (  � Φ ϕ H tn( ,H tn( ,H tn+1( , m( ( 

≤Φ ϕ T tn( ,T tn( ,T tn+1( , m( ( 

− Ψ ϕ T tn( ,T tn( ,T tn+1( , m( ( 

≤Φ ϕ sn−1, sn−1, sn, m( ( 

− Ψ ϕ sn−1, sn−1, sn, m( ( 

<Φ ϕ sn−1, sn−1, sn, m( ( .

(5)

in which considering that the T mapping is nondecreasing,
then ϕ(sn, sn, sn+1, m)<ϕ(sn−1, sn−1, sn, m)∀n ∈ N. *us,
ϕ(sn−1, sn−1, sn, m) is a decreasing sequence of positive real
numbers in [0, 1). Let U(m) � limn⟶∞ϕ(sn−1, sn−1, sn, m).
We show that U(m) � 0ϕ for all m≫ 0ϕ. If this is not the
case, there exists m≫ 0ϕ such that U(m)> 0ϕ. *en, it
follows from (5), by taking n⟶∞, that
Φ(U(m)) ≤Φ(U(m)) − Ψ(U(m)), which is a contraction.
*erefore, ϕ(sn, sn, sn+1, m)⟶ 0ϕ as n⟶∞. Now, for
each k≥ 0, by Definition 14 (9), we have

ψ sn, sn, sn+k, m(  + ϕ sn, sn, sn+k, m( ≤ 1ϕ,

lim
n⟶∞

ψ sn, sn, sn+k, m(  + ϕ sn, sn, sn+k, m(  ≤ 1ϕ.
(6)

It follows that limn⟶∞ϕ(sn, sn, sn+k, m) � 0ϕ. Hence, sn

is a Cauchy sequence. IfT(ψ) is complete, then there exists
k ∈ T(ψ) such that sn⟶ k as n⟶∞. *e same holds if
H(ψ) is complete with k ∈H(ψ). Let k ∈ ψ and T(k) � p.
Now, we shall show that k is a coincidence point of T and
H. In fact, we have taken

Φ
1

ψ H(k),H(k),T tn+1( , m( 
− 1ϕ  � Φ

1
ψ H(k),H(k),H tn( , m( 

− 1ϕ 

≤Φ
1

ψ T(k),T(k),T tn( , m( 
− 1ϕ 

− Ψ
1

ψ T(k),T(k),T tn( , m( 
− 1ϕ ,

(7)

for every m≫ 0ϕ, in which by letting n⟶∞,
limn⟶∞ψ H(k),H(k),T tn+1( , m( 

� limn⟶∞ψ H(k),H(k),H tn( , m( 

� ψ(H(k),H(k),T(k), m)

� 1.

(8)

*erefore, T(k) � H(k) � p. Now, we shall prove that
T(p) � p. If it is not so, then we have

Φ
1

ψ(T(p),T(p),T(p), m)
− 1ϕ  � Φ

1
ψ(H(p),H(p),H(k), m)

− 1ϕ 

≤Φ
1

ψ(T(p),T(p),T(k), m)
− 1ϕ 

− Ψ
1

ψ(T(p),T(p),T(k), m)
− 1ϕ 

≤Φ
1

ψ(T(p),T(p), p, m)
− 1ϕ 

− Ψ
1

ψ(T(p),T(p), p, m)
− 1ϕ ,

(9)
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which is a contradiction. By inequalities (4) and (5) we prove
the uniqueness. *e desired equality is obtained. □

Example 4. Let (Γ,ψ, ϕ,⋇,◇) be a complete neutrosophic
cone metric space, Γ � (1/n): n ∈ N{ }∪0ϕ, ◇ be a maxi-
mum norm, and ⋇ be a minimum norm. Let ψ,ϕ be
defined by

ψ ε1, ε2, ε3, m(  �

m

m +(|t + s| +|s + r| +|r + t|)
, if m> 0ϕ,

0, if m � 0ϕ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ ε1, ε2, ε3, m(  �

|t + s| +|s + r| +|r + t|

m +(|t + s| +|s + r| +|r + t|)
, if m> 0ϕ,

0, if m � 0ϕ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

Also, define (Φ,Ψ): [0,∞)⟶ [0,∞) by
Φ(m) � (m/2) and Ψ(m) � (m/8), for all m≫p,

T(t) � (t/2), and H(t) � (t/4). Obviously, H(Γ)⊆T(Γ),
and Ψ is a continuous function. *en, we have

Φ
1

ψ(T(t),T(s),T(r), m)
− 1ϕ  − Ψ

1
ψ(T(t),T(s),T(r), m)

− 1ϕ 

�
3(|t + s| +|s + r| +|r + t|)

16m

≥
2(|t + s| +|s + r| +|r + t|)

16m

� Φ
1

ψ(H(t),H(s),H(r), m)
− 1ϕ .

(11)

From the above inequality and the fact that ϕ � 1ϕ − ψ,
we conclude that the conditions (1) and (2) in Definition 2.18
are satisfied. *us, H is a neutrosophic (Φ − Ψ)-weak
contraction with respect to T.

Corollary 1. Let (Γ,ψ, ϕ,⋇,◇) be a neutrosophic cone metric
space and H: Γ⟶ Γ be a neutrosophic (Φ,Ψ)-weak con-
traction. If Ψ is continuous, thenH has a unique fixed point.

Corollary 2. Let (Γ,ψ, ϕ,⋇,◇) be a neutrosophic cone metric
space. @en, H: Γ◇Γ is a mapping satisfying

Φ
1

ψ(H(t),H(s),H(r), m)
− 1ϕ ≤pΦ

1
ψ(t, s, r, m)

− 1ϕ ,

Φ(ϕ(H(t),H(s),H(r), m))≤pΦ(ϕ(t, s, r, m)).

(12)

for each t, s, r ∈ Γ, m≫ 0ϕ, and p ∈ (0, 1).

Theorem 2. Let (Γ,ψ, ϕ,⋇,◇) be a neutrosophic cone metric
space and Tj,Hi be two finite self-mappings on Γ with T �

T1.T2 . . .Tm and H � H1.H2 . . .Hn such that
i ∈ 1, 2, . . . , n{ } and j ∈ 1, 2, . . . , m{ }. Suppose H be a

generalized neutrosophic (Φ,Ψ)-weak contraction which is
given with respect toT. IfT(Γ) andH(Γ)⊆T(Γ) orH(Γ)

is a complete subset of Γ, then Hi,Tj have a common fixed
point in which Γ is unique, provided a description of Ψ is a
continuous function and the families Tj,Hi commute
pairwise.

Proof. By *eorem 1, we obtain that T and H have a
common fixed point that is unique, say p. In order to prove
that p remains as a fixed point of all self-mappings, let

HHj(p) � H1H2 . . .Hn( Hj(p)

� H1H2 . . .Hn−1( HnHj(p)

� H1H2 . . .Hn−1( HjHn(p)

� . . .

� H1Hj H2H3 . . .Hn( (p)

� HjH1 H2H3 . . .Hn( (p)

� HjH(p)

� Hj(p).

(13)
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Φ � Ψ: [0,∞)⟶ [0,∞) by Φ(m) � (m/2),Ψ(m) �

(m/4), for all m≫ ϕ and two families of self mappings Tj

and Hi where i, j ∈ 1, 2, . . . , n{ } by

Tj(x) �

0, if m � 0ϕ,

1

x
��
[n]

√
6
, if m> 0ϕ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Hi(x) �

0, if m> 0ϕ,

1

x
��
[n]

√
2
, if m � 0ϕ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

*en, we have

Φ
1

ψ(T(t),T(s),T(r), m)
− 1ϕ 

− Ψ
1

ψ(T(t),T(s),T(r), m)
− 1ϕ 

�
3 z6 t6 + s6


 + t6 s6 + r6


 + s6 r6 + t6


 

2mt6s6r6

≥
z2 t2 + s2


 + t2 s2 + r2


 + s2 r2 + t2




2mt2s2r2

� Φ
1

ψ(H(t),H(s),H(r), m)
− 1ϕ .

(15)

From the above and the idea of ϕ � 1 − ψ, we get that 
statements (i) and (ii) hold. All statements of *eorem 2 
hold; therefore, Tj and Hi have uniqueness.

4. Conclusion

In this paper, the definition of the neutrosophic cone metric 
space is introduced and studied. Based on this definition, we 
also stated and proved some fixed p oint t heorems o n the 
neutrosophic CMS. We provided a description of the ex-
ample and investigated some properties in Section 3. We 
established and extended the definition of the (Φ, Ψ)-weak 
contraction in the intuitionistic generalized fuzzy cone 
metric space.
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Abstract: Raw data are classified using clustering techniques in a reasonable manner to 
create disjoint clusters. A lot of clustering algorithms based on specific parameters have 
been proposed to access a high volume of datasets. This paper focuses on cluster analysis 
based on neutrosophic set implication, i.e., a k-means algorithm with a threshold-
based clustering technique. This algorithm addresses the shortcomings of the k-means 
clustering algorithm by overcoming the limitations of the threshold-based clustering 
algorithm. To evaluate the validity of the proposed method, several validity measures and 
validity indices are applied to the Iris dataset (from the University of California, Irvine, 
Machine Learning Repository) along with k-means and threshold-based clustering 
algorithms. The proposed method results in more segregated datasets with compacted 
clusters, thus achieving higher validity indices. The method also eliminates the 
limitations of threshold-based clustering algorithm and validates measures and respective 
indices along with k-means and threshold-based clustering algorithms. 

Keywords: Data clustering, data mining, neutrosophic set, k-means, validity measures, 
cluster-based classification, hierarchical clustering. 

1 Introduction 
Today, data repositories have become the most favored systems. To name a few, we have 
relational databases, data mining, and temporal and transactional databases. However, 
due to the high volume of data in these repositories, the prediction level at the same time 
has become too complex and tough. Today’s scenarios also indicate the diversity of these 
data (for example, from scientific to medical, geographic to demographic, and 
financials to marketing). Therefore, the diversity of the data and the extensive volume 
of those data resulted in the emergence of the field of data mining in recent 
years [Hautamäki, Cherednichenko and Kärkkäinen et al. (2005)]. Secondly, grouping 
data objects and converting them into unknown classes (called clustering) has become a 
strong tool and a favorite choice in recent years. In clustering, similar data objects are 
grouped together, and dissimilar data objects are put into other groups. These are called 
unsupervised classification. In unsupervised classification, analysis is done on dissimilar 
data objects or raw information, and then, the relationships among them are discovered 
without any external interference. 

A Direct Data-Cluster Analysis Method Based on Neutrosophic Set 

Implication 
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Several clustering methods exist in the literature, and they are broadly classified into 
hierarchical-based clustering algorithms and partitioning-based clustering algorithms 
[Reddy and Vinzamuri (2019); Rodriguez, Comin, Casanova et al. (2019)]. Some other 
types of clustering (probabilistic clustering, fuzzy-based clustering, density- and grid-
based clustering) are also found in the literature [Aggarwal (2019); Nerurkar, Shirke, 
Chandane et al. (2018); Sánchez-Rebollo, Puente, Palacios et al. (2019); Zhang, He, Jin et 
al. (2020)]. 
In this work, we discuss a method geared towards the threshold value concept in a cluster-
analysis method based on neutrosophic set implication (NSI). Although the use of this 
method is still in its infancy, we feature the advantages of the proposed method over a k-
means algorithm. Neutrosophic systems use confidence, dependency, and falsehood (c, d, 
f) to make uncertainty more certain; in other words, it decreases complexity. A
neutrosophic system is a paraconsistency approach because (per the falsehood theory of
neutrosophic sets) no event, task, or signal can be perfectly consistent until the job is
done [Jha, Son, Kumar et al. (2019)]. We intend to enhance the neutrosophic set in a
detailed paraconsistent plan to apply to clustering in various algorithms. Our contribution
is to make this approach result-oriented via correlating neutrosophic sets, i.e.,
confidence and dependency, justifying falsehood.
The rest of the paper is organized as follows. Section 2 presents related work and the 
advantages of NSI over a k-means algorithm. Section 3 discusses basic theory and 
definitions. Applications of two neutrosophic products (the neutrosophic triangle 
product and the neutrosophic square product) are described in Section 4. Section 5 
discusses the direct neutrosophic cluster analysis method. The performance evaluation of 
the threshold and k-means–based methods are presented in Section 6. Finally, Section 7 
concludes the paper. 

2 Related work 
Supervised and unsupervised learning are two fundamental categories of data analysis 
techniques. A supervised data analysis method includes training in the patterns for inferring 
a function from labeled training data; an unsupervised data analysis method includes 
unlabeled data. The unsupervised data analysis method uses an object function to optimize 
the maximum and minimum similarity among similar and dissimilar objects, 
respectively. The biggest challenge observed in previous work shows that data 
clustering is more complicated and challenging than data classification, because it falls 
under unsupervised learning. The main goal of data clustering is to group similar objects 
into one group.  
Recent works published in data clustering indicates that most of the researchers use k-
means clustering, hierarchical clustering, and similar techniques. Specially, Hu et al. [Hu, 
Nurbol, Liu et al. (2010); Sánchez-Rebollo, Puente, Palacios et al. (2019)] have published 
work in which it can be clearly seen that clustering is difficult because it itself is an 
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unsupervised learning problem. Most of the times, we use a dataset and are asked to infer 
structure within it, in this case, the latent clusters or categories in the data. The problem is 
the classification problems. Though, deep artificial neural networks are very good at 
classification, but clustering is still a very open problem. For clustering, we lack this critical 
information. This is why data clustering is more complicated and challenging when 
unsupervised learning is considered. Authors believe that the best example to illustrate this 
is to predict whether or not a patient has a common disease based on a list of symptoms. 
Many researchers Boley et al. [Boley, Gini, Gross et al. (1999); Arthur and Vassilvitskii 
(2007); Cheung (2003); Fahim, Salem, Torkey et al. (2006); Khan and Ahmad (2017)] 
proposed partitioning-based methodologies, such as k-means, edge-based strategies and 
variants. The k-means strategy is perhaps the most widely used clustering algorithm, being 
an iterative process that divides a given dataset into k disjoint groups. Jain [Jain (2010)]  
presented a study that indicated the importance of the widely accepted k-means technique. 
Many researchers have proposed variations of partitioning algorithms to improve the 
efficiency of clustering algorithms [Celebi, Kingravi and Vela (2013); Erisoglu, Calis and 
Sakallioglu (2011); Reddy and Jana (2012)]. Finding the optimal solution from a k-means 
algorithm is NP-hard, even when the number of clusters is small [Aloise, Deshpande, 
Hansen et al. (2009)]. Therefore, a k-means algorithm finds the local minimum as 
approximate optimal solutions.  
Nayini et al. [Nayini, Geravand and Maroosi (2018)] overcame k-means weaknesses by 
using a threshold-based clustering method. This work also proposed a partitioning-based 
method to automatically generate clusters by accepting a constant threshold value as an 
input. Authors used similarity and threshold measures for clustering to help users to 
identify the number of clusters. They identified outlier data, and decreased the negative 
impact on clustering. The time complexity of this algorithm is O(nk), which is better than 
k–means [Mittal, Sharma and Singh (2014)]. In this algorithm, instead of providing initial 
centroids, only one centroid is taken, which is one of the data objects. Afterwards, the 
formation of a new cluster depends upon the distance between the existing centroid and the 
next randomly selected data objects.  
Even in the same dataset, clustering algorithms’ results can differ from one another, 
particularly the results from the k-means and edge-based system techniques. Halkidi et al. 
[Halkidi, Batistakis and Vazirgiannis (2000)] proposed quality scheme assessment  and 
clustering validation techniques [ Halkidi, Batistakis and Vazirgiannis (2001)]. Clustering 
algorithms produce different partitions for different values of the input parameters. The 
scheme selects best clustering schemes to find the best number of clusters for a specific 
dataset based on the defined quality index. The quality index validates and assures good 
candidate estimation based on separation and compactness, two components contained in 
a quality index.  
An index called the Davies–Bouldin index (DBI) was proposed [Davies and Bouldin 
(1979)] for cluster validation. This validity index is, in fact, a ratio of separation to 
compactness. In this internal evaluation scheme, the validation is done by evaluating 
quantities and features inherent in the dataset. 
Yeoh et al. [Yeoh, Caraffini and Homapour (2019)] proposed a unique optimized stream 
(OpStream) clustering algorithm using three variants of OpStream. These variants were 
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taken from different optimization algorithms, and the best variant was chosen to analyze 
robustness and resiliency. Uluçay et al. [Uluçay and Şahin (2019)] proposed an algebraic 
structure of neutrosophic multisets that allows membership sequences. These sequences 
have a set of real values between 0 and 1. Their proposed neutrosophic multigroup works 
with the neutrosophic multiset theory, set theory, and group theory. Various methods and 
applications of a k means algorithm for clustering have been worked out recently. Wang et 
al. [Wang, Gittens and Mahoney (2019)] identifies and extracts a varied collection of 
cluster structures than the linear k-means clustering algorithm. However, kernel k-means 
clustering is computationally expensive when the non-linear feature map is high-
dimensional and there are many input points. On the other hand, Jha  et al. [ Jha, Kumar, 
Son et al. (2019)] uses a different clustering technique to resolve stock market prediction. 
They have used a rigorous machine learning approaches in hand to hand with clustering of 
the high volume of data. 
This paper studied the applications of hierarchical (ward, single, average, centroid and 
complete linkages) and k-means clustering techniques in air pollution studies of almost 40 
years data. 

3 Neutrosophic basics and definitions 
In this section, we proceed with fundamental definitions of neutrosophic theory that include 
truth (T), indeterminacy (I) and falsehood (F). The degree of T, I, and F are evaluated with 
their respective membership functions. The respective derivations are explained below.    

3.1 Definitions in the neutrosophic set 
Let S  be a space for objects with generic elements, s S∈ . A neutrosophic set (NS), N  in 
S , is characterized by a truth membership function, 

NQ , an indeterminacy membership 

function, 
NI , and a falsehood membership function, 

NF . Here ( )NQ s , ( )NQ s , and 

( )NQ s  are real standard or non-standard subsets of [0-,1+] such that QN, IN, FN : S → 
[0-,1+]. Tab. 1 shows the acronyms and nomenclatures used in the definitions. 

Table 1: Nomenclatures and acronyms 
Nomenclature/ 
acronyms 

Definition Nomenclature/ 
acronyms 

Definition 

S Space of objects OpStream Optimized Stream 
clustering 

N Neutrosophic set T Truth 

NQ Truth membership function I Indeterminacy 

NI Indeterminacy membership 
function 

F Falsehood 

NF Falsehood membership 
function 

NS Neutrosophic sets 
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Nomenclature/ 
acronyms 

Definition Nomenclature/ 
acronyms 

Definition 

( )NQ s Singleton subinterval or subsets 
of S


 Square product 

( )NQ s Singleton subinterval or subsets 
of S



Triangular product 

( )NF s Singleton subinterval or subsets 
of S

Φ Lukasiewicz 
implication operator 

NSI Neutrosophic set implication CIN Intuitionistic 
neutrosophic 
implication 

CNR Complex neutrosophic 
Relations  

CNS Complex neutrosophic 
sets 

A singleton set, which is also called as a unit set, contains exactly one element. For example, 
the set {null} is a singleton containing the element null. The term is also used for a 1-tuple, 
a sequence with one member. A singleton interval is an interval of one such elements. 
Assume that functions ( )NQ s , ( )NQ s , and ( )NF s  are singleton subintervals or 
subsets of the real standard, such that with 

( ) [ ] ( ) [ ] ( ) [ ]: 0,1 , I : 0,1 , : 0,1N N NQ s S s S F s S→ → →∈ . Then, a simplification of 
neutrosophic set N  is denoted by 

( ) ( ) ( )( ){ }, , , :N N NN s Q s I s F s s S= ∈

with ( ) ( ) ( )0 3N N NQ s I s F s≤ + + ≤ . It is a simplified neutrosophic set, i.e., a subclass 
of the neutrosophic set. This subclass of the neutrosophic set covers the notions of the 
interval neutrosophic set and the single-valued neutrosophic set [Haibin, Florentin, 
Yanqing et al. (2010); Ye (2014)]. 

3.2 Operations in the neutrosophic set 
Assume that S1 and S2 are two neutrosophic sets, where 

( ) ( ) ( )1 1 1 1{ ; ; ; | }N s Q s I s F s s S= ∈  and ( ) ( ) ( )2 2 2 2N { ; ; ; | }s Q s I s F s s S= ∈ .

Then 

a. 
1 2N N⊆  if and only if ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2; ;Q s Q s I s I s F s F s≤ ≥ ≥ , 

b. ( ) ( ) ( )1 1 1 1{ ; ; ; | }cN s F s I s Q s s S= ∈ , 

c. ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2{ ;min{ ( ); };max{ ; };max{ ( ); } | }N N x T x Q x I s I s F s F s s S∩ = ∈ , 

d. ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2{ ;max{ ( ); };min{ ; };min{ ( ); } | }N N s Q s Q s I s I s F s F s s S∪ = ∈  
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3.3 Definition of states of a set 
Former and latter 
Let us assume that ( )1,2iV i =  are two ordinary subsets with an ordinary relation: 

1 2 R V V⊆ × . Then, for any 2,  q f V∈ , { }|Rf q qRf=  is called a former set, and { }|qR q qRf=
is called the latter set. 

3.4 Definition of neutrosophic algebraic products 
Triangle product and square product 
Let us assume that ( )1,2,3jV j =  are ordinary subsets 1 1 2 R V V⊆ ×  and 2 2 3 ,R V V⊆ ×  such that 

triangle product 1 2 1 3R R V V⊂ ×  of 1V  and 3V  can be defined as follows: 

1 2 1 2 ,eV V g eV V g⇔ ⊂  for any ( ) 1 2,e g V V∈ × (1) 

Correspondingly, 
1 2  R R , a square product, can be defined as follows:

1 2 1 2  ,eV V g eV V g⇔ = for any ( ) 1 2,e g V V∈ × (2) 

where 1 2eV V g⊂  if and only if 1 2eV V g⊂  and 1 2 .eV V g⊃  

3.5 Definition of neutrosophic implication operators 
If α  is a binary operation on [ ]0,  1 , and if ( ) ( ) ( )0,  0,  0 0,  0, 1 0,  1,  1α α α= =  

( ) ( ) ( )1,  1,  0 1,  0,  1 1,  1,  1 1α α α= = = =  and ( )1,  0,  0 0α =

In this case, L  is called a neutrosophic implication operator. 
For any [ ], , 0,  1a b c ∈ , ( ),  ,  a b cα  is a neutrosophic implication operator. If we extend the 
Lukasiewicz implication operator to the neutrosophic implication operator, then 

( ) ( ),  ,  min 1 ,  1,  1a b c a b cΦ = − + + .

3.6 Definition of generalized neutrosophic products 
Let us extend the Lukasiewicz implication operator to a neutrosophic valued environment. 
If we consider membership degrees Qµ  and Qν  of µ  and ν  only, for any two 

neutrosophic valued environments, ( ),  I ,  FQµ µ µµ = and ( ),  I ,  FQν ν νν = , then 

{ }min 1 ,  1,  1Q Qµ ν− +  is unable to reflect the dominance of the neutrosophic environment, 

and therefore, we consider the indeterminacy and non-membership ,I Iµ ν and ,F Fµ ν
 as 

well. Now, we define neutrosophic Lukasiewicz implication operator ( ),  µ νΦ  based on the 
neutrosophic valued environmental components and the Lukasiewicz implication operator. 
The membership degree, the degree of indeterminacy, and the non-membership degree of 

( ),  µ νΦ  are expressed as follows: 
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{ }{ }
{ }

min 1,  min 1- ,  1- ,  1-

min 1,  1- ,  1- ,  1-

Q Q I I F F

Q Q I I F F

µ ν µ ν µ ν

µ ν ν µ ν µ

+ + +

= + + +

and 

( ) ( ) ( ){ }{ }
{ }{ }

max 0,  min 1 1 ,1 1 ,1 1

max 0,  min , ,

Q Q I I F F

Q Q I I F F

µ ν ν µ ν µ

µ ν ν µ ν µ

− − + − − + − − +

= − − −
(3) 

respectively; i.e., 

( )
{ }

{ }{ }
min 1,  1 ,  1 ,  1 ,  

,  
max 0,  min , ,

T T I I F F

Q Q I I F F

µ ν ν µ ν µ

µ ν ν µ ν µ

µ ν
 − + − + − +
 Φ =
 − − − 

 (4) 

Let us prove that the value of ( ),  µ νΦ  satisfies the conditions of the neutrosophic valued 
environment. In fact, from Eq. (4), we have  

{ }min 1,  1 ,  1 ,  1 0Q Q I I F Fµ ν ν µ ν µ− + − + − + ≥

{ }{ }max 0,  min , , 0Q Q I I F Fµ ν ν µ ν µ− − − ≥ (5) 

and since 

{ }{ }
{ }{ }

max 0,  min , ,

1 min 1,  max 1 ,1 ,1

Q Q I I F F

Q Q I I F F

µ ν ν µ ν µ

µ ν ν µ ν µ

− − − =

− − + − + − +
 (6) 

and 

{ }{ }
{ }

min 1,  max 1 ,1 ,1

min 1,  1 ,  1 ,  1

Q Q I I F F

Q Q I I F F

µ ν ν µ ν µ

µ ν ν µ ν µ

− + − + − +

≥ − + − + − +
 (7) 

then 

{ }{ }
{ }

1 min 1,  max 1 ,1 ,1

min 1,1 ,1 ,1 3

Q Q I I F F

Q Q I I F F

µ ν ν µ ν µ

µ ν ν µ ν µ

− − + − + − +

+ − + − + − + ≤
(8) 

This shows that the value of ( ),  µ νΦ  derived through Eq. (6) is a neutrosophic environment. 

Along with the neutrosophic Lukasiewicz implication, the square product, and the 
traditional triangle product, we introduce the neutrosophic triangle product and the 
neutrosophic square product as follows.  

3.7 Definitions of neutrosophic relations 
Neutrosophic relations are based on the conventional arithmetic, algebraic and geometric 
theories which are used in dealing various real time engineering problems. Neutrosophic 
relations also relate various neutrosophic sets. 
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Triangle product 

Let { } { }1 2 1 2, ,..., ,  , ,...,p qµ µ µ µ ν ν ν ν= = , and { }1 2, ,..., rω ω ω ω= be three

neutrosophic valued sets. ( )1S N µ ν∈ ×  and ( )2S N ν ω∈ ×  are two neutrosophic relations, 

and then, a neutrosophic triangle product, ( )1 2   S S N µ ν∈ ×  of 1S  and 2S , can be
expressed as follows: 

( )( )

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

, , 
1

1 2 , , 
1

, , 
1

1 ,

1,  ,

1

i k k j

i k k j

i k k j

q

X x
k

q

i j X x
k

q

X x
k

Q
q

S S I
q

Q
q

µ ω ω ν

µ ω ω ν

µ ω ω ν

µ ν

→
=

→
=

→
=

 
 
 
 

=  
 
 
  
 

∑

∑

∑

 (9) 

for any ( ) ( ),  ,  , 1, 2,..., ,  1, 2,...,i j i p j rµ ν µ ν∈ = = , where →  represents the 

neutrosophic Lukasiewicz implication. 
Square product 
Similarly, we define the neutrosophic square product, ( ) ( )1 2   S S N µ ν∈ ×

 of 1S  and 2X , 
as follows:  

( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 2 1

1 2 2 1

1 2 2 1

min , , , , , ,

1 2 min , , , , , ,1

min , , , , , ,

,  min  I
i k k j k j i k

i k k j k j i k

i k k j k j i k

S S S S

i j S S S Sk q

S S S S

Q

S S

F

µ ω ω ν ω ν µ ω

µ ω ω ν ω ν µ ω

µ ω ω ν ω ν µ ω

µ ν
→ →

→ →≤ ≤

→ →

 
 
 

=  
 
 
 

  (10) 

for any ( ) ( ),  ,  , 1, 2,..., ,  1, 2,...,i j i p j rµ ν µ ν∈ = = . 

Denote x ik  as ( ),  i kS µ ω  for short, similar to the others, for convenience. Subsequently, we 
can simplify Eq. (9) and Eq. (10) as follows: 

( )( )
1

1 2
1

1

1 ,

1,  ,

1

ik kj

ik kj

ik kj

q

S S
j

q

i j S S
k

q

S S
k

Q
q

S S I
q

F
q

µ ν

→
=

→
=

→
=

 
 
 
 

=  
 
 
  
 

∑

∑

∑


 (11)

Florentin Smarandache (author and editor) Collected Papers, VIII

837



( )( )
( )

( )

( )

min , ,

1 2 min , ,1

min ,

 

,  min I
ik kj kj ik

ik kj kj ik

ik kj kj ik

S S S S

i j S S S Sk q

S S S S

Q

S S

F

µ ν
→ →

→ →≤ ≤

→ →

 
 
 =  
  
 

  (12) 

Indeed, the neutrosophic triangle product and the neutrosophic square product are firmly 
related to each other. That is, the neutrosophic triangle product is the basis of the 
neutrosophic square product, and because of that, ( )( )1 2 ,  i jS S µ ν

 is directly derived from

( )( )1 2 ,  i jS S µ ν

and ( )( )2 1 ,  i jS S µ ν

. 

4 Applications of the two neutrosophic products 
In this subsection, we use the neutrosophic triangle product to compare multi-attribute 
decision making with neutrosophic information. Subsequently, we use the neutrosophic 
square product for constructing an anneutrosophic similarity matrix. This anneutrosophic 
similarity matrix is used for analyzing the neutrosophic clustering method.  

Assume a multiple attribute decision making issue. Let 1 2{ , ,..., }pW w w w=  and

1 2{ , ,......, }qN n n n=  define sets of p alternatives and q attributes, respectively. The

attribute values (also called a characteristic) of each alternative iw  under all the attributes

( )1,2,...,jN j m=  represent the neutrosophic set. We make a decision based on the 
multiple attributes: 

( ) ( ) ( ){ },  ,  , ,  1, 2,..,    1, 2,...,
i i ii j w j w j w j jw N Q N I N F N N N i n and j m= ∈ = = (13) 

where ( )
iw jQ N  denotes the degree of membership, ( )

iw jI N  denotes the degree of 

indeterminacy, and ( )
iw jF N  denotes the degree of non-membership of iw  to jN . 

Apparently, the degree of uncertainty of iw  to jN  is 

( ) ( ) ( ) ( )3
i i i iw j w j w j w jN Q N I N F NΨ = − − − . 

Let ( ) ( ) ( ) ( )( ),  ,  ,  ,  ij ij ij ij wi j wi j wi js Q I F Q N I N F N= = be a neutrosophic value. An n m×

neutrosophic decision matrix, ( )ij n m
S s

×
= , can be constructed based on the neutrosophic 

valued set ( )1,2,..., ;  1, 2,...,mijs i n j= = . 
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4.1 Neutrosophic triangle product’s application 

The characteristic vectors of two alternatives for the issues described above, say iS  and 
jS , 

can be expressed as ( )1 2, ,...,i i i imS s s s=  and ( )1 2, ,...,j j j jmS s s s= , respectively. The 

neutrosophic triangle product can be calculated as follows: 

( )
1

1

1

1

1 ,

1 ,

1 

ik jk

ik jk

ik jk

m

s s
k

m

i j s sij
k
m

x x
k

Q
m

S S I
m

F
m

→
=

−
→

=

→
=

 
 
 
 

=  
 
 
 
 

∑

∑

∑



 (14) 

This shows the degree of the alternative, 
jw , for preferred alternative iw , where 1

jS −  is 

the inverse of 
jS  and can be defined as ( ) ( )1 ,  ,  

ik jk ik jkj j jk s s s skjkj
S S s Q I−

→ →= =  and

ik jks sF → .

Similarly, we can calculate 

( )
1

1

1

1

1 ,  

1 ,  

1

jk ik

jk ik

jk ik

m

s s
k
m

j i s sji
k
m

s s
k

Q
m

S S I
m

F
m

→
=

−
→

=

→
=

 
 
 
 

=  
 
 
 
 

∑

∑

∑



 (15) 

This shows that degree alternative iw  is preferred to alternative jw . The alternatives 

ordering iw  and 
jw  can be obtained from Eqs. (14) and (15). In fact, 

a. if ( ) ( )1 1
i j j iij ji

S S S S− −>  , alternative 
jw  is preferred to iw ;

b. if ( ) ( )1 1
i j j iij ji

S S S S− −=  , there is similarity between iw  and jw ;

c. if ( ) ( )1 1
i j j iij ji

S S S S− −<  , then iw  is preferred to jw . 

4.2 Neutrosophic square product’s application 
As we know from Eq. (10), mathematically, neutrosophic square product (S1×S2)ij can be 
deciphered as follows: (S1×S2)ij measures the degree of similarities of the ith row of 

Florentin Smarandache (author and editor) Collected Papers, VIII

839



neutrosophic matrix 1S  and the jth row of neutrosophic matrix 
2S . Therefore, considering 

the issue expressed at the start of Section 4, (Si × Sj-1)ij expresses the similarity of 
alternatives iw  and jw . The following formula can be used for constructing a 

neutrosophic similarity matrix for ( )1,2,..., .iw i n= =

( ) ( )
( )

( )

( )

min ,

1
min ,1

min ,

,  

,  min ,
ik jk jk ik

ik jk jk ik

ik jk jk ik

s s s s

i j i j s s s sij k n

s s s s

Q

sim w w S S I

F

→

→

→

→

−
→≤ ≤

→

 
 
 = =  
  
 

 (16) 

Eq. (16) has the following desirable properties: 

1. ( ),  i jsim w w is the neutrosophic value.

2. ( ) ( ),  (1,  0) 1, 2,..., .i isim w w i n= =

3. ( ) ( ) ( ),  ,   1, 2,..., .i j j isim w w sim w w i n= =

Proof for property 1 

We can prove that ( ),  i jsim w w  is the neutrosophic value.

Since the results ik jks s→  and jk iks s→  are all neutrosophic valued sets as

proven previously, then 

( )

( )

( )

min ,

min ,

min ,

,

 ,
ik jk jk ik

ik jk jk ik

ik jk jk ik

s s s s

s s s s

s s s s

Q

I

F

→

→

→

→

→

→

 
 
 
 
  
 

 is the neutrosophic value for any k . 

Proof for property 2 
Since 

( ) ( )
( )

( )

( )

min ,

1
min ,1

min ,

,

,  min ,
ik ik ik ik

ik ik ik ik

ik ik ik ik

s s s s

i i i i s s s sii k n

s s s s

Q

sim w w S S I

F

→

→

→

→

−
→≤ ≤

→

 
 
 = =
 
 
 



we know from definition (10) that ( ),  (1,  0).i isim w w =

Proof for property 3 
Since  
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( ) ( )
( )

( )

( )

min ,

1
min ,1

min ,

,

,  min  ,

 

ik jk jk ik

ik jk jk ik

ik jk jk ik

s s s s

i j i j s s s sij k n

s s s s

Q

sim w w S S I

F

→

→

→

→

−
→≤ ≤

→

 
 
 = =  
  
 

  

( )

( )

( )

( ) ( )

min ,

min ,1

min ,

,

min  ,  

,  

jk ik ik jk

jk ik ik jk

jk ik ik jk

s s s s

s s s sk m

s s s s

j i j i

Q

I

F

X X sim w w

→

→

→

→

→≤ ≤

→

 
 
 =  
  
 

= =

then, ( ) ( ) ( ),  ,   , 1, 2,..., .i j j isim w w sim w w i j n= =

At that point, from the above analyses, we can determine that Eq. (16) satisfies the 
neutrosophic similarity relation conditions. Thus, this can be used to construct a 
neutrosophic similarity matrix.  

5 Direct neutrosophic cluster analysis method 
After constructing a neutrosophic similarity matrix with the abovementioned method, the 
equivalent matrix is not required before cluster analysis. The required cluster analysis 
results can be obtained with the neutrosophic equivalent matrix, starting with the 
neutrosophic similarity matrix. In fact, Luo [Luo (1989)] proposed a direct method for 
clustering fuzzy sets. This method considers only membership degrees of fuzzy sets. Our 
proposed direct neutrosophic cluster analysis technique considers the enrollment degrees, 
indeterminacy degrees, and non-participation degrees of the neutrosophic esteemed set 
under the neutrosophic conditions presented below. The proposed method is based on Luo’s 
method, which includes following stages. 

Stage A. Let ( )ij n n
S s

×
=  be the neutrosophic similarity matrix, where 

( ) ( ),  ,   , 1, 2,...,ij ij ij ijs Q I F i j n= =  is a neutrosophic valued set for determining the 

confidence level, 1λ . Select one of the elements, S , which obeys the following principles. 

a. Rank the degrees of membership of ( ) , 1, 2,...,ijs i j n=  in descending order. Take 

( ) ( )1 1 1 1 1 1 1 1 11 ,  ,  ,  ,  ,i j i j i jQ I F Q I Fλ λ λλ = = where { }
1 1 ,

max .i j iji j
Q Q=
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b. If there exist two neutrosophic valued sets, ( )1 1 1 1 1 1
,  ,  i j i j i jQ I F  and ( )1 1 1 11 1

,  ,  i j i ji jQ I F

in (1), such that 1 11 1
i ji jI I≠  and 1 11 1

i ji jF F≠  (without loss of generality, let 

1 11 1
i ji jI I< and 1 11 1

i ji jF F< ), then we choose the first one as 1λ , i.e., 

( )1 1 1 1 1 11 ,  ,  .i j i j i jQ I Fλ =  

Then, for each alternative iw , let

[ ]( ) { }1
1i j ijS

w w s λ= = (17) 

Here, iw and all alternatives in [ ]( )1
i S

w  are clustered into one category, and other
alternatives are clustered into another category. 
Stage B. Select the confidence level, ( ) ( )2 2 2 2 2 2 2 2 22 ,  ,  ,  ,  ,i j i j i jQ I F Q I Fλ λ λλ = = with 

( ) ( )
{ }

2 2
1 1, ,

maxi j iji j i j
Q Q

≠
= , specifically if there exist at least two neutrosophic esteemed sets 

where the membership degrees have the same value as 
2 2i jQ . At that point, we can follow 

strategy (b) in Stage A. Now, let alternatives [ ]( )2
i S

w  be { }2 ,j ijw s λ= and then, iw  and all

the alternatives are clustered into one type. Let the merger of [ ]( )1
i S

w  and [ ]( )2
i S

w  be [ ]( )1,2
i S

w .

Then, the merged alternatives [ ]( ) { }{ }1,2
1 2, ,i j ijS

w w s λ λ= ∈  and therefore, iw  and all

alternatives in [ ]( )1,2
i S

w  are clustered into one set. The other alternatives remain unaltered. 

Stage C. In this stage, we take other confidence levels and analyze clusters according to 
the procedure in Stage B. The procedure is carried out until all alternatives are clustered 
into one category. One of the significant advantages of the proposed direct neutrosophic 
cluster analysis method is that cluster analysis can be acknowledged by simply depending 
on the subscripts of the alternatives. We observed from the process described above that, 
in this method, getting even an λ-cutting matrix is not necessary.  
In real-world application scenarios, we simply need to affirm their areas in the neutrosophic 
similarity matrix after choosing some appropriate confidence levels, and afterward, we can 
get the kinds of considered objects on the basis of their area subscripts.  

6 Performance evaluation 
For the performance evaluation, a k-means algorithm and a threshold-based algorithm were 
used on the Iris dataset from the University of California, Irvine (UCI) Machine Learning 
Repository. A variable number of clusters (from 2 to 10) were generated for the 
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experiments. For the k-means and threshold-based algorithms, cluster number is the input 
parameter. The k data objects were selected randomly in the k-means algorithm (k was also 
taken as an initial centroid of the clusters). On the other hand, only one object was selected 
randomly in the threshold-based method. The selected object was assigned as the initial 
centroid of the cluster, and was a member of the first cluster. We observed that this method 
generates more segregated and compact clusters. Finally, we observed that there was 
significant enhancement in the indices of validity. The following mathematical analysis 
proves the above statements. 
For any cluster-based intuitionistic neutrosophic implication, let X(Ti, Fa) → Y(Tj, Fb), 
where T and F depict truthfulness and falsehood. 
Then, we can define various classes of cluster-based neutrosophic set (CNSS) implications, 
as expressed below:  
CNSS=([(1−Ti) f ∨ Tj] F ∧ [(1 − 𝑓𝑓b)f ∨𝑓𝑓X ], 𝑓𝑓Yf ∧ (1−Ti))  (18) 
The proposed new cluster-based intuitionistic neutrosophic (CIN) implication is now 
extended with X(Ti, 𝑖𝑖a, 𝑓𝑓X ) 𝑁𝑁 → Y(Tj, 𝑖𝑖Y, 𝑓𝑓Y), as follows:  
CI𝑁𝑁1 (Ti f/𝐼𝐼f → Tj, 𝑖𝑖Xf 𝑖𝑖Y ∧, 𝑓𝑓Xf 𝑓𝑓Y ∧ ) 
where Ti f/𝐼𝐼f → Tj is any cluster of intuitionistic neutrosophic implications, while f is any 
∧ neutrosophic conjunction:  
CIN2 (Ti f/𝐼𝐼f → Tj, 𝑖𝑖Xf 𝑖𝑖Y  ∨, 𝑓𝑓Xf 𝑓𝑓Y ∧ ), where f is any ∨ fuzzy disjunction: 
CI𝑁𝑁3 (Ti f /𝐼𝐼f → Tj, 𝑖𝑖X+𝑖𝑖Y 2 , 𝑓𝑓Xf 𝑓𝑓Y ∧ ) 
CI𝑁𝑁4 (Ti f/𝐼𝐼f → Tj, 𝑖𝑖X+𝑖𝑖Y 2 , 𝑓𝑓X+𝑓𝑓Y 2 ) 
Referring to the definition proposed by Broumi et al. [Broumi, Smarandache and Dhar 
(2014)], the classical logical equivalence and predicate relationship now becomes  
(X → Y) ↔ (¬X ∨ Y), where, (X 𝑁𝑁 → Y) 𝑁𝑁 ↔ (𝑁𝑁X ¬ 𝑁𝑁 Y ∨ ) 
The above class of neutrosophic implications can now be depicted with the operators (𝑁𝑁X 
¬ 𝑁𝑁 Y ∨ ). Let us have two cluster-based neutrosophic propositions: X〈0.3, 0.4, 0.2〉 and 
Y〈0.7, 0.1, 0.4〉.  
Then, X 𝑁𝑁 → Y has the neutrosophic truth value of X Y𝑁𝑁 ∨ 𝑁𝑁 ¬ , i.e., 〈0.2, 0.4, 0.3〉 〈 𝑁𝑁 
0.7, 0.1, 0.4〉 ∨ , or 〈max{0.2, 0.7}, min{0.4, 0.1}, min{0.3, 0.4}〉, or 〈0.7, 0.1, 0.3〉.  
Therefore,  
𝑁𝑁〈𝑡𝑡, 𝑖𝑖, 𝑓𝑓〉 = 〈𝑓𝑓, 𝑖𝑖, 𝑡𝑡〉 ¬ for neutrosophic negation 
and  
〈𝑡𝑡1, 𝑖𝑖1, 𝑓𝑓1 〉 〈𝑡𝑡2, 𝑖𝑖2, 𝑓𝑓2 𝑁𝑁 〉 ∨ = 〈max {𝑡𝑡1, 𝑡𝑡2}, min{𝑖𝑖1, 𝑖𝑖2 }, min{𝑓𝑓1, 𝑓𝑓2 }〉 for the neutrosophic 
disjunction.  
The dataset that we referred to from Stappers et al. [Stappers, Cooper, Brooke et al. (2016)] 
and [Systems (2020)] contains 16,259 spurious examples caused by radio frequency 
interference (RFI)/noise, and 1,639 real pulsar examples with each candidate having eight 
continuous variables. The first four variables are obtained from the integrated pulse profile. 
This is an array of continuous variables that describe a longitude-resolved version of the 
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signal. The remaining four variables were similarly obtained from the dispersion measure 
(DM)-SNR curve. These are summarized in Tab. 2. 
Tab. 2 shows a dataset describing a sample of pulsar candidates collected during the high 
time–resolution universe survey. The first column is the mean of the integrated profile. 
Mean1 is the mean of the DM-SNR curve, and SD1 is the standard deviation of the DM-
SNR curve. Finally, ET1 is the excess kurtosis of the DM-SNR curve, and Skewness1 is 
the skewness of the DM-SNR curve. 

Table 2: Pulsar candidate samples collected during the high time–resolution universe survey 
Mean SD ET Skewness Mean1 SD1 ET1 Skewness1 T/F 
140.5625 55.68378 -0.23457 -0.69965 3.199833 19.11043 7.975532 74.24222 0 
102.5078 58.88243 0.465318 -0.51509 1.677258 14.86015 10.57649 127.3936 0 
103.0156 39.34165 0.323328 1.051164 3.121237 21.74467 7.735822 63.17191 0 
136.7500 57.17845 -0.06841 -0.63624 3.642977 20.95928 6.896499 53.59366 0 
88.72656 40.67223 0.600866 1.123492 1.17893 11.46872 14.26957 252.5673 0 
93.57031 46.69811 0.531905 0.416721 1.636288 14.54507 10.62175 131.3940 0 
119.4844 48.76506 0.03146 -0.11217 0.999164 9.279612 19.20623 479.7566 0 
130.3828 39.84406 -0.15832 0.38954 1.220736 14.37894 13.53946 198.2365 0 
107.2500 52.62708 0.452688 0.170347 2.33194 14.48685 9.001004 107.9725 0 
107.2578 39.49649 0.465882 1.162877 4.079431 24.98042 7.397080 57.78474 0 
142.0781 45.28807 -0.32033 0.283953 5.376254 29.0099 6.076266 37.83139 0 
133.2578 44.05824 -0.08106 0.115362 1.632107 12.00781 11.97207 195.5434 0 
134.9609 49.55433 -0.1353 -0.08047 10.69649 41.34204 3.893934 14.13121 0 
117.9453 45.50658 0.325438 0.661459 2.83612 23.11835 8.943212 82.47559 0 
138.1797 51.52448 -0.03185 0.046797 6.330268 31.57635 5.155940 26.14331 0 
114.3672 51.94572 -0.0945 -0.28798 2.738294 17.19189 9.050612 96.6119 0 
109.6406 49.01765 0.137636 -0.25670 1.508361 12.0729 13.36793 223.4384 0 
100.8516 51.74352 0.393837 -0.01124 2.841137 21.63578 8.302242 71.58437 0 
136.0938 51.691 -0.04591 -0.27182 9.342809 38.0964 4.345438 18.67365 0 
99.36719 41.5722 1.547197 4.154106 27.55518 61.71902 2.208808 3.66268 1 
100.8906 51.89039 0.627487 -0.02650 3.883779 23.04527 6.953168 52.27944 0 
105.4453 41.13997 0.142654 0.320420 3.551839 20.75502 7.739552 68.51977 0 
95.86719 42.05992 0.326387 0.803502 1.832776 12.24897 11.24933 177.2308 0 

In Tab. 2, the mean of the integrated profile is compared with pulsar candidates that vary 
significantly with Mean1. Here, Mean1 is the mean of popular candidates at high time 
resolution. The dataset that we have referred from Stappers et al. [Stappers, Cooper, Brooke 
et al. (2016)] and [Systems (2020)] that contains 16,259 spurious examples caused by radio-
frequency interference (RFI) or noise, and 1,639 real pulsar examples with each candidate 
having 8 continuous variables. The first four variables are obtained from the integrated 
pulse profile. This is an array of continuous variables that describe a longitude-resolved 
version of the signal. The remaining 4 variables are similarly obtained from the dispersion 
measure (DM)-SNR curve. These are summarized in Tab. 2. 

Florentin Smarandache (author and editor) Collected Papers, VIII

844



7 Conclusions and future work 
One of the major issues in data clustering is the selection of the right candidates. In addition, 
the appropriate algorithm to choose the right candidates has been a challenging issue in 
cluster analysis, especially for an efficient approach that best fits the right sets of data. In 
this paper, a cluster analysis method based on neutrosophic set implication generates the 
clusters automatically and overcomes the limitation of the k-means algorithm. Our 
proposed method generates more segregated and compact clusters and achieves higher 
validity indices, in comparison to the mentioned algorithms. The experimentation carried 
out in this work focused on cluster analysis based on NSI through a k-means algorithm 
along with a threshold-based clustering technique. We found that the proposed algorithm 
eliminates the limitations of the threshold-based clustering algorithm. The validity 
measures and respective indices applied to the Iris dataset along with k-means and 
threshold-based clustering algorithms prove the effectiveness of our method. 
Future work will handle data clustering in various dynamic domains using neutrosophic 
theory. We also intend to apply a periodic search routine by using propagations between 
datasets of various domains. The data clustering used by our proposed algorithms was 
found to be workable in a low computational configuration. In the future, we will also use 
more datasets. 
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Abstract
Likert scale is the most widely used psychometric scale for obtaining feedback. The major disadvantage of Likert scale is 
information distortion and information loss problem that arise due to its ordinal nature and closed format. Real-world responses 
are mostly inconsistent, imprecise and indeterminate depending on the customers’ emotions. To capture the responses real-
istically, the concept of neutrosophy (study of neutralities and indeterminacy) is used. Indeterminate Likert scale based on 
neutrosophy is introduced in this paper. Clustering according to customer feedback is an effective way of classifying customers 
and targeting them accordingly. Clustering algorithm for feedback obtained using indeterminate Likert scaling is proposed in 
this paper. While dealing real-world scenarios, indeterminate Likert scaling is better in capturing the responses accurately.

1 Introduction

Likert scaling introduced by Likert (1932) is the most com-
monly used psychometric scale for collecting responses from
the user/customer in terms of level of agreement. It has been
used in several surveys like organizational behaviour in learn-
ing institutes (Kiedrowski 2006; Rus et al. 2014), music
education (Orr and Ohlsson 2005), prioritization of routine
in dental care (Postma 2007), sports for athlete character-
istics and outcome (Brown et al. 2007), etc. Likert scaling
suffers from several drawbacks like information distortion
and information lost problem due to its ordinal nature and
closed format (Li 2013).

Zadeh’s (1965) fuzzy set theory functions as an important
constructive tool that enables soft division of sets. It gives an
extension to fuzzy set as intuitionistic fuzzy set (A-IFS) by
Atanassov (1986) where each element is given a membership
and a non-membership degree in Atanassov (1986). A fuzzy
Likert scale was introduced by Li in Li (2013).

To represent inconsistent, imprecise and uncertain infor-
mation from the real world, indeterminacy membership
is represented independently along with truth and falsity
membership in neutrosophic set (Smarandache 2000). It gen-
eralizes the concept of several sets like classic set, fuzzy set
and paradoxist set, and TA(x), IA(x) and FA(x) are mem-
bership function which can be real standard or nonstandard
subsets.

In this form, it was not possible to apply it in real-world
problems of the scientific and engineering areas. Wang et al.
(2010) proposed a single-valued neutrosophic set (SVNS),
to overcome this. Neutrosophy has found applications in
many real-world practical problems like decision-making
problems (Liu and Wang 2014; Liu and Shi 2015; Liu and
Teng 2017; Liu and Li 2017; Ye 2013, 2014a, b, c), image
processing (Sengur and Guo 2011; Cheng and Guo 2008;
Zhang et al. 2010), analysis of social network (Salama et al.
2014) and socio-economic and political problems (Vasantha
and Smarandache 2003, 2004), etc.

Indeterminate Likert Scale: Feedback Based on Neutrosophy, 
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To offer better accuracy and give expression to impre-
cision in the indeterminacy, the indeterminacy membership
existing in the neutrosophic set is categorized as indetermi-
nacy leaning towards truth and towards false memberships.
This makes the indeterminacy in the scenario to be more
accurate and less imprecise. This was defined as double-
valued neutrosophic set (DVNS) by Kandasamy (2018a,
2016a). Distance measure, cross-entropy measure and clus-
tering algorithm of DVNS were introduced in Kandasamy
(2018a). Dice measures on DVNS were proposed in Khan
et al. (2018).

To improve the precision and accuracy of the data analysis
and to fit in the Likert’s scale that is most frequently used psy-
chometric scale, the indeterminacy concept was subdivided
into three: indeterminacy leaning towards truth, indetermi-
nacy and false memberships. This refined neutrosophic set
is known as the triple refined indeterminate neutrosophic
set (TRINS). TRINS was used recently for personality test
and classification based on personality (Kandasamy and
Smarandache 2016b). TRINS is redefined here as positive
membership, positive indeterminate membership, indetermi-
nate membership, negative indeterminate membership and
negative membership, to give the best possible mapping of
Likert Scaling.

To conceptualize a real-world example of TRINS, con-
sider the scenario where a customer orders four different food
items from the restaurant’s menu. He might have immensely
enjoyed two of the dishes, regretted ordering a particular dish
and be unsure about the other dish thinking it might have been
better if it was prepared in a different way. If he is asked to
provide feedback using Likert scale, he will obviously give
an average/neutral score.

Let TRINS A under consideration be represented by
PA(x), IP A(x), IA(x), IN A(x), NA(x), where PA(x) denotes
positive membership, IP A(x) is positive indeterminate mem-
bership, IA(x) is indeterminate, IN A(x) is negative indeter-
minate and NA(x) is negative. The scenario is represented as
〈0.5, 0.25, 0, 0, 0.25〉 that is giving a value of 0.5 for the two
dishes that he enjoyed immensely, 0.25 to the dish he regret-
ted and 0.25 to the dish he was unsure about. The scenario
can be captured accurately with needed precision which is
vital to the result obtained. All the various choices are cap-
tured, thereby evading the preferential choice that is selected
in the conventional method of Likert scaling.

In this paper, a clustering algorithm is introduced to handle
feedback obtained using indeterminate Likert scaling.

Section one is introductory in nature, and section two
recalls some basic concepts about Likert scaling/star rat-
ing and neutrosophy. Section three discusses the limitation
and problems with Likert scaling and provides justification
for using indeterminacy. Indeterminate Likert scaling which
maps every degree of agreement individually is introduced
in section four. Indeterminacy-based minimum spanning tree
(MST) clustering algorithm is proposed in the next section,
and an illustrative real-world example is provided. Com-
parison of indeterminate Likert scaling with existing rating
scheme and Likert scaling is carried out in section six. Sec-
tion seven provides the conclusions and future study.

2 Preliminaries

2.1 Likert scaling

Likert scale is the most often used psychometric scale to
collect responses from people in a survey. A typical Lik-
ert scale survey does not let its respondents simply select
from “yes/no”; it provides specific choices that are degrees
of “agreeing” or “disagreeing”. The most basic Likert scaling
format is a 5-column answer, with choices like: strongly dis-
agree, disagree, neither agree nor disagree (do not know),
agree and strongly agree. The neutral option is generally
opted by the person who is unsure. A study in Armstrong
(1987) found negligible differences between the use of
“undecided” and “neutral” as a middle option in a 5-point
Likert scale.

A sample of Likert scaling for a simple question “How
satisfied are you with our services?” is given in Fig. 1.

The star rating scheme is almost similar to Likert scale. 1
star is taken to be equivalent to the lowest rating while the 5
star is considered as the maximum rating. Stars are used as
a common experimental or heuristic element for evaluating
quality. A sample questionnaire used to elicit responses from
the customers of a restaurant using 5 star rating is given in
Table 1. Similarly, a questionnaire that uses Likert scale is
given in Table 2. The analysis of Likert scale responses is
generally carried out using bar charts to show results, mode
in the case of the most common response and range and inter-
quartile ranges in the case of analysing variability.

2.2 Neutrosophy and refined neutrosophic set

Neutrosophy, familiarized by Smarandache (2000), studies a
perception or event or entity, “A” in relation to its opposite,
“Anti-A” and not A, “Non-A”, and as neither “A” nor “Anti-
A”, denoted by “Neut-A”.

Clustering analysis basically exploits the notion of dis-
tance measures between any two entities, and based on this 
clusters are formed. This plays a significant role in research 
fields in the form of data mining, social networking, pattern 
recognition and machine learning. Traditionally, clustering 
analysis has been a hard one, which assigns an item to a par-
ticular cluster. Since elements in the given scenario do not 
have rigid restrictions, it is essential to fragment them softly.
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Fig. 1 Sample Likert scale

Table 1 Sample questionnaire using five-star rating scheme for restau-
rant

Let X be a space of points (objects) with elementary ele-
ments in X represented by x . A single-valued neutrosophic
set (SVNS) A in X is characterized by truth TA(x), indeter-
minacy IA(x) and falsity FA(x) membership functions. For
each point x in X , there are TA(x), IA(x), FA(x) ∈ [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. A is denoted by A = {〈x ,
TA(x), IA(x), FA(x)〉 | x ∈ X}. The refined neutrosophic
logic defined by Smarandache (2013) is as follows:

Definition 1 The truth T is divided into several types of
truths: T1, T2, . . . , Tp, and I into various indeterminacies:
I1, I2, . . . , Ir , and F into various falsities: F1, F2, . . . , Fs,

where all p, r , s ≥ 1 are integers, and p + r + s = n.

Triple refined indeterminate neutrosophic sets have the
indeterminacy concept divided into three memberships: inde-
terminacy favouring positive opinion, indeterminacy favour-
ing negative opinion and indeterminacy. This division helps

in improving the accuracy and precision and fits the Lik-
ert scale. TRINS (Kandasamy and Smarandache 2016b) has
been used to classify personality. In double-valued neutro-
sophic set (DVNS), the indeterminacy concept is divided into
two.

Definition 2 A triple refined indeterminate neutrosophic set
(TRINS) A in X as given above is characterized by posi-
tive PA(x), indeterminacy IA(x), negative NA(x), positive
indeterminacy IP A(x) and negative indeterminacy IN A(x)

membership functions. Each has a weight wm ∈ [0, 5] asso-
ciated with it. For each x ∈ X , there are

PA(x), IP A(x), IA(x), IN A(x), NA(x) ∈ [0, 1],
wm

P (PA(x)), wm
IP

(IP A(x)), wm
I (IA(x)),

wm
IN

(IN A(x)), wm
N (NA(x)) ∈ [0, 5]

and 0 ≤ PA(x) + IP A(x) + IA(x) + IN A(x) + NA(x) ≤ 5.
Therefore, a TRINS A can be represented by

A = {〈x, PA(x), IP A(x), IA(x), IN A(x), NA(x)〉 | x ∈ X}.

Consider Q = [q1, q2] where q1 is question 1 (quality)
and q2 is question 2 (service) from Table 2. The values of
q1 and q2 are in [0, 1], and the weight of the membership is
applied the values are in [0, 5]. Take the same scenario where
a customer orders 4 different items from the menu. He might
have immensely enjoyed two of the dishes, regretted ordering
a particular dish and may be undecided about the other dish
being good. If he is asked to provide feedback using Likert

Table 2 Sample questionnaire
using Likert scaling for
restaurant

Question Terrible Bad Average Good Excellent

Quality of food � � � �� �
Service � � � �� �
Hygiene � � �� � �
Value for money � �� � � �
Ambience � � �� � �
Overall experience � � �� � �
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scale, he will obviously give a average/neutral score. This is
mapped to TRINS as follows:

Option for “quality” would be a degree of excellent food
that is the dishes he enjoyed immensely, a degree of indeter-
minacy choice towards “good food” will be the dish he was
undecided about but thought it was a little good but is unsure,
a degree of uncertain and indeterminate combination of good
food and not so good food, a degree of indeterminate choice
bordering close to bad food and a degree of poor quality food
which will be the food that he regretted ordering, instead of
a forced single choice. Similarly, the service will vary and
can be marked accordingly to different degrees.

This can be represented by TRINS A of X as

A = 〈0.5, 0.25, 0, 0, 0.25〉/x1 + 〈0.5, 0.1, 0.1, 0.1, 0.2〉/x2.

Operators related to set theory like associativity, dis-
tributivity, commutativity, idempotency, absorption and the
DeMorgan’s laws were defined over TRINS (Kandasamy and
Smarandache 2016b).

3 Justification for applying
indeterminacy-based scaling

Generally in Likert scaling, the user is forced to select the
most dominant choice. For example, the normal five-level
Likert item would be

– Strongly disagree
– Disagree
– Neither agree or disagree
– Agree
– Strongly agree

dominant than the other choice; thereby, the degree of the
memberships with other choices is completely lost.

Only a measure of coarse ordinal scale with closed format
is used by Likert method. It fails in approximating interval
data, and a substantial amount of information is gone and
distorted due to the built-in limitations of Likert scaling as
said by Russell and Bobko (1992).

A person who opts for “strongly agree” option might not
be 100% agree with the statement. There might have been
some amount of disagreement which the user was forced to
override or only a small difference in mind between any two
of the 5 attributes. To exactly capture the various degrees of
membership TRINS is used to represent the choices. Using
of TRINS and creating a Likert type scale for questionnaire
will result in capturing the uncertainty, incomplete and inde-
terminate nature of the persons opinion in the collected data.

Every option will be given a degree of membership, and
the person need not be forced to go with the dominant choice.
The various degrees and choices will be captured more accu-
rately with good precision, in fact in a sensitive, accurate and
realistic way and not in an approximate way. This will even-
tually aid in better understanding of the customers and their
needs; thereby, better marketing can be carried out.

Generally, the Likert scale is a bipolar scaling tech-
nique, determining either positive or negative response to
a statement, whereas the TRINS- or DVNS-based Lik-
ert type scaling will be measuring both/all responses to a
statement, thereby collecting the indeterminate/incomplete
details about the options of the persons. This will provide a
clear and more detailed view of the various degrees of mem-
bership. In the Likert scale, sometimes even point scale is
used, where the middle option of “neither agree nor disagree”
is removed. This is known as the forced choice method. This
can be appropriately represented by DVNS. However, the
neutral option is generally opted by the person who is unsure.
A study in Armstrong (1987) found insignificant differences
between the usage of “undecided” and “neutral” as a central
option in a 5-point Likert scale.

There is actually a lot of difference between someone who
is undecided and someone who is neutral; in a TRINS-based
Likert scale, there can be a separate option for undecided,
since equal amount of agreement and disagreement can be
represented in degree of weak agreement and degree of weak
disagreement, individually.

Indeterminate Likert scaling will remove the necessity
to go with the dominant choice or a forced option which
cannot always be true if it is varying from the other option
only be a small or a shade of difference. The users exact
feelings/thinking/option cannot be captured very realistically
by Likert scaling, but certainly indeterminate Likert scaling
based on TRINS can do this very accurately.

Any user will have feelings/options which actually vary 
from strongly agree to strongly disagree and which are not 
definite; they are always a mixture of feelings. A small 
amount of disagreement might bring down the option from 
“strongly agree” to “agree”, whereas a different person might 
choose to go with the dominant choice of “strongly agree” 
ignoring the small/meagre amount of disagreement. Some 
other person might mark the option “neither agree nor dis-
agree” due to the same negative experience. However, it is 
very obvious and clear that people react differently to the 
same experience while answering the same question in the 
questionnaire. The questionnaire using a Likert scale will 
fail to capture the feelings/exact degree of strong agreement, 
degrees of weak agreement, degrees of neither agreement nor 
disagreement, degrees of weak disagreement and the degree 
of strong disagreement. The respondent/person is generally 
forced to go with the dominant choice or the choice which 
he feels at that time or the choice which may be only a shade
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4 Indeterminate Likert scale

The normal five-level Likert scale items are

– Strongly disagree
– Disagree
– Neither agree or disagree
– Agree
– Strongly agree

They will get mapped in indeterminate Likert scale as
follows:

– Negative membership
– Indeterminacy leaning towards negative membership
– Indeterminate membership
– Indeterminacy leaning towards positive membership
– Positive membership

While using a five-star rating, this will be mapped from
one star to five stars. An indeterminacy-based Likert scale
will have a negative membership which will capture the
degree of strongly disagree of usual Likert scaling and
degree of one-star rating in the star rating scheme. Similarly,
the membership of indeterminacy leaning towards negative
will capture the degree of disagree or two-star rating. Neu-
ral/degree of neither agree not disagree/do not know of the
usual Likert scale or the three-star rating will be captured
by the indeterminacy membership. Similarly, for degree of
agree and degree of strongly agree will be mapped to inde-
terminacy or neutrality leaning towards positive membership
and positive membership, respectively.

An indeterminate Likert scale will be given a representa-
tion as shown in Fig. 2: very unsatisfied, unsatisfied, neutral,
satisfied, very satisfied with individual scales for grading.

A five-star rating will be like the one represented in Fig.
3. If a user is asked to rate the service provided in the restau-
rant, the user might have several different types of emotions
about the service. The service of the waiters might have been
excellent; he will give a 0.5 to “very satisfied”. He might
have waited for a long time for the food he ordered to arrive,
hence a 0.25 to very unsatisfied. Regarding the politeness of
the waiters/staff he might not be in a position to make up his
mind, he might nevertheless be unable to map it as good or
bad, hence a 0.25 for the indeterminate/neural options.

Such a case is given as example in Fig. 2. The user basi-
cally has option to slide using the slider provided in each
level of agreement. Similarly, in a five-star rating scheme
the user can fill the star to provide the degree of member-
ship for each level as shown in Fig. 3. This can be easily
implemented in mobile applications. As soon as a negative
feedback is obtained, the user can be asked to provide more
details by asking particular questions and making the feed-
back interactive. Due to the nature of indeterminate Likert
scale, identifying and isolating a negative experience of the
customer become easy. Table 3 gives the input received from
the user using a indeterminate Likert scaling-based question-
naire.

This indeterminate Likert scale can be extended to 7-point
Likert scale, or any multipoint Likert scale. In fact, it can
be altered to the needs of researchers. Truth, indeterminate
and Falsity memberships can be divided according to the
researchers. These are known as multipoint indeterminate
Likert scale. Studies in this direction is left open.

Fig. 2 Indeterminate Likert scale

Fig. 3 Indeterminate rating scale
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Table 3 Sample questionnaire using indeterminate Likert scaling for
restaurant

Question P(A) IP(A) I(A) IN(A) N(A)

Quality of food 0.9 0.03 0.05 0.02 0

Service 0.8 0.05 0.05 0.1 0

Hygiene 0.7 0 0.1 0.1 0.1

Value for money 0.8 0.1 0 0 0.1

Ambience 0.7 0.1 0.1 0.05 0.05

Overall experience 0.75 0 0.05 0.1 0

5 Indeterminate MST clustering algorithm
using distancemeasures

5.1 Distancemeasures of TRINS

The distance measures and its related algorithm of TRINS
are defined in the following:

Consider two TRINS A and B in a universe of discourse,
X = xl , x2, . . . , xn , which are denoted by

A = {〈xi , PA(xi ), IP A(xi ), IA(xi ), IN A(xi ), NA(xi )〉
| xi ∈ X}, and B = {〈xi , PB(xi ), IP B(xi ),

IB(xi ), IN B(xi ), NB(xi )〉 | xi ∈ X},

where PA(xi ), IP A(xi ), IA(xi ), IN A(xi ), NA(xi ), PB(xi ),
IP B(xi ), IB(xi ), IN B(xi ), NB(xi ) ∈ [0, 5] for every xi ∈ X .

Let wi (i = 1, 2, . . . , n) be the weight of an element
xi (i = 1, 2, . . . , n), with wi ≥ 0; (i = 1, 2, . . . , n) and∑n

i=1wi = 1.

Then, the generalized TRINS weighted distance is as fol-
lows:

dλ(A, B) =
{

1

5

n∑

i=1

wi [| PA(xi ) − PB(xi ) |λ

+ | IP A(xi ) − IP B(xi ) |λ
+ | IA(xi ) − IB(xi ) |λ + | IN A(xi ) − IN B(xi ) |λ

+ | NA(xi ) − NB(xi ) |λ]
}1/λ

(1)

Input: TVNS A1, ... . . . , Am,

Output: Distance matrix D with elements di j

begin
for i ← 1, m do

for j ← 1, m do
if i = j then

di j ← 0
else

di j ← {dλ (Ai , A j )}
// Using Equation 3

Algorithm 1: TRINS weighted distance matrix D

dλ(A, B) =
{

1

5

n∑

i=1

wi [| PA(xi ) − PB(xi ) |2

+ | IP A(xi ) − IP B(xi ) |2
+ | IA(xi ) − IB(xi ) |2 + | IN A(xi ) − IN B(xi ) |2

+ | NA(xi ) − NB(xi ) |2]
}1/2

(2)

where λ = 2 in Eq. 1.
The TRINS distance matrix D is as follows:

Definition 3 Let A j ( j = 1, 2, . . . , m) be a collection of m
TRINS, then we define the TRINS distance matrix D =
(di j )m×m , where di j = dλ(Ai , A j ) is the generalized TRINS
distance between Ai and A j and satisfies the following:

1. di j ∈ [0, 5], ∀i, j = 1, 2, . . . , m;
2. di j = 0 if and only if Ai = A j ;
3. di j = d ji for all i, j = 1, 2, . . . , m.

The algorithm to calculate the TRINS weighted distance
matrix D is given in Algorithm 1.

5.2 Indeterminate MST clustering algorithm

Indeterminate minimum spanning tree (MST) clustering
algorithm is proposed as a generalization of the IFMST,
SVN-MST and DVN-MST clustering algorithms here.

Consider X = {x1, x2, . . . , xn} to be an attribution space
and the weight vector of an element xi (i = 1, 2, . . . , n) be
w = {w1, w2, . . . , wn}, where wi ≥ 0(i = 1, 2, . . . , n)

and
∑n

i=1 wi = 1. Let the m samples that need to be
clustered be represented as Fj ( j = 1, 2, . . . , m), a col-
lection of m TRINSs. It is Fj = {〈x j , PFj (x j ), IP Fj (x j ),

IFj (x j ), IN Fj (x j ), NFj (x j )〉 | x j ∈ X}.
The triple refined indeterminate neutrosophic minimum

spanning tree (TRIN-MST) clustering algorithm is provided
in Algorithm 2. The description of the algorithm is done along
with an example.

where λ >  0.

When λ = 1, Eq. 1 reduces to TRINS weighted Ham-
ming distance; when λ = 2, it reduces to TRINS weighted 
Euclidean distance and is given as
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Input: D = (di j )m×m

Output: Minimum Spanning Tree S and Clusters
begin

Step 1: Calculate D distance matrix (F1, . . . , Fm)

// Using Algo 2
Step 2: Create TRINS graph G(V , E)

for i ← 1, m do
for j ← 1, m do

if i != j then
Insert edge from Fi to Fj with di j

Step 3: Compute MST of G: // by use of
Kruskal’s algorithm

Sort the edges in order (increasing) of weight in E .
while No. of edges in subgraph S of G < (V − 1) do

Select edge (vi , v j ) with minimum weight.
Delete (vi , v j ) from E
if (vi , v j ) creates a cycle in S then

Discard edge vi , v j

else
Include the edge vi , v j in S

S is the MST of G(V , E).
Step 4: Clustering S with threshold r
for i ← 1, m do

for j ← 1, m do
if di j ≥ r then

Remove edge
Clusters are created automatically

Algorithm 2: Indeterminate Minimum Spanning Tree
(MST) Clustering algorithm

5.3 Illustrative examples

To demonstrate the effectiveness of the proposed TRIN-MST
clustering algorithm in the real-world applications, a descrip-
tive example is presented. The results of the indeterminate
feedback of ten different people which are represented by
TRINS are clustered using the indeterminate MST cluster-
ing algorithm.

Example 1 The real-world problem of feedback given by cus-
tomers of a restaurant (restaurant name is kept anonymous)
was taken. The six evaluation questions based on Table 2
were considered and transformed to indeterminate question-
naire as given in Table 3. The answers of the indeterminate
feedback of ten different people Fj ( j = 1, 2, . . . , 10) are
taken for clustering. The questionnaire has been changed
accordingly so as to ensure the use of distance measures. The
responses collected from 10 people are given in Kandasamy
(2018b).

The weight vector wi = 0.167 is taken uniformly for
the attribute xi (i = 1, 2, . . . , 6). The TRIN-MST clustering

algorithm provided in Algorithm 2 is used to group the ten
people of Fj ( j = 1, 2, . . . , 10) into clusters.

The stepwise working of the TRINS-MST clustering algo-
rithm is as follows:

Step 1 The distance matrix D = di j = dλ(Fi , Fj ) is cal-
culated by using Algorithm 1 (taking λ = 2). D = (di j )m×m

is obtained as given in Fig. 4:
Step 2 Based on D the TRINS graph G(V , E) is con-

structed where every edge between Fi and Fj (i, j =
1, 2, . . . , 10) is assigned the TRINS weighted distance di j

that represents the degree of dissimilarity between the ele-
ments Fi and Fj .

Step 3 Construction of the MST of the TRINS graph
G(V , E) is done as follows:

1. The distances of edges of G sorted in increasing order
by weights.

2. A subgraph (empty) S of G is taken and the edge e with
minimum weight is added to S, if the end points of e are
not connected in S. Here the smallest edge is between
F1 and F4; d14 = 0.08456 is added to S and removed
from the sorted list.

3. The next minimum weight edge is selected from G; if
no cycle is created in S, it is deleted from the list and
added to S.

4. Process (3) is repeated until the obtained subgraph S
spans all the ten nodes.

The MST S of the TRINS graph so obtained is illustrated in
Fig. 5.

Step 4 A threshold r is selected, and all the edges with
weights more than r are disconnected to get the subtrees
(clusters), as listed in Table 4.

The clusters that are formed when the threshold value
r is taken as 0.2928 are given in Fig. 6. It can be clearly
seen that there are three different clusters grouped based on
their feedback as satisfied customers (F2, F5, F7), unsatisfied
customers (F1, F4, F3, F8, F9) and indeterminate customers
(F6, F10). Based on the clusters, targeted and interactive
marketing can be carried out. This type of clustering is not
possible with Likert scaling.

Clustering of customer feedback can be carried only on
the basis of particular questions, and from these clusters and
other information several insights can be gained.

6 Comparison and discussions

6.1 Comparison with Likert scale

It is known that Likert scaling has drawbacks like information
distortion and information loss. These problems are over-
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Fig. 4 Distance matrix

Fig. 5 MST of the TRIN

Table 4 Clustering results using
TRIN-MST clustering algorithm Threshold r Corresponding clustering result

r = d68 = 0.3155 {F1, F3, F4, F6, F8, F9, F10}, {F2, F5, F7}
r = d56 = 0.2928 {F1, F3, F4, F8, F9}, {F6, F10}, {F2, F5, F7}

come when TRINS is used for collecting feedback from the
user. It captures the feedback in a sensitive, accurate and real-
istic way as it deals with incomplete, imprecision, uncertain
and indeterminate information. It is clearly seen that inde-
terminate Likert scale when compared to Likert scale gives
more option to the customer to express themselves. In Likert
scale, only the dominant choice is selected and vital infor-
mation is lost.

6.2 Comparison with fuzzy Likert scale

Neutrosophic set is generalized as TRINS, intuitionistic
fuzzy information is generalized as neutrosophic informa-
tion/SVNS sets, and fuzzy information is generalized as
intuitionistic fuzzy information. Thus, TRINS has the capac-
ity to provide better precision and accuracy to represent the

Fig. 6 Clusters of customers
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existing uncertain, indeterminate, vague, imperfect and unre-
liable information.

It has the supplementary ability to designate with more
sensitivity the indeterminate and unreliable information.
Whereas the SVNS can deal indeterminate and unreliable
information, it cannot designate with accuracy the existing
indeterminacy. It is acknowledged that neither fuzzy theory
nor IFS can deal with information that is indeterminate and
inconsistent in nature; however, IFS has provisions to deal
and describe with incomplete information. In SVNS, truth,
indeterminacy and falsity membership are characterized indi-
vidualistically, and they can also be defined with respect to
any of them (no restriction). This enables SVNS to be pre-
pared to deal with indeterminate information better than IFS,
whereas in TRINS, more scope is given to deal with the pre-
vailing indeterminate and unreliable information because the
indeterminacy concept is sub-classified as three distinct val-
ues. This provides more accurateness and exactness to the
indeterminacy present in the data in TRINS than in SVNS.

TRINS deals particularly with the indeterminacy leaning
towards (favouring) positive (truth), the indeterminacy lean-
ing towards negative (false) and indeterminacy itself which
other methods are incapable of doing it. It is acknowledged
that when fuzzy set membership is defined with respect to
truth T, the information related to indeterminacy and non-
membership is missing. In IFS, memberships are defined
in terms of truth and false only; here the indeterminacy is
taken as what is left after the truth and false membership.
The IFS cannot represent the indeterminate and inconsis-
tent information, but it has provisions to describe and work
with incomplete information. In SVNS, truth, indeterminacy
and falsity membership are represented individualistically,
and they can also be defined with respect to any of them
(no restriction). This makes SVNS better at dealing informa-
tion than IFS. TRINS when compared to SVNS/DVNS has
better scope to describe and deal with the existing indetermi-
nacy and inconsistent information because the indeterminacy
concept is classified as three different values. This provides
more accuracy and precision to indeterminacy in TRINS,
than in SVNS. However, TRINS is better equipped to deal
with indeterminacy than Fuzzy theory. Fuzzy Likert scale
cannot capture indeterminate, imprecise and incomplete data.
TRINS-based indeterminate Likert scale captures data in a
more precise, accurate and realistic way than fuzzy Likert
scale.

6.3 Further study

Multipoint indeterminate Likert scale which functions on
7 points or 10 points will be taken up for further studies.
These multipoint Likert scales can be used to study a variety
of sociological, economical and psychological problems. As
future research, we also propose to map the middle 3 terms

of TRINS to neutrosophic triplets (Vasantha et al. 2018b) 
and then they can be automatically mapped to neutrosophic 
duplets (Vasantha et al. 2018a, c) in the case that indetermi-
nacy leaning towards false is zero.

7 Conclusions

In this paper, indeterminate Likert scaling based on TRINS 
was introduced; it is equipped to deal with inconsistent, 
uncertain, imprecise and indeterminate information which 
Likert scale is incapable of. Generally feedback from the 
customer depends on the human emotions which are mostly 
uncertain, inconsistent, imprecise or indeterminate in nature. 
Hence, indeterminate Likert scale is more apt to use for 
feedback than Likert scale. Indeterminate Likert scale can 
be easily implemented and used in mobile apps for collect-
ing feedback. Indeterminate MST clustering algorithm was 
introduced to cluster the feedback obtained using distance 
matrices as a main measurement. Results from the clustering 
can be used for targeted and interactive marketing separately 
for each cluster.
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Abst ract

In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for 
all elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-example 
where the statement is false. 

Therefore, the classical sciences do not leave room for partial  truth of a theorem (or a statement). But, in our 
world and in our everyday life, we have many more examples of statements that are only partially true, than statements 
that are totally true. 

The NeutroTheorem and AntiTheorem are generalizations and alternatives of the classical Theorem in any 
science. 

More general, by the process of NeutroSophication, we have extended any classical Structure, in no matter 
what field of knowledge, to some NeutroStructure, and by the process of AntiSophication to some AntiStructure. 

Keywords : Structure, NeutroStructure, and AntiStructure 

1. The Neutro sophic Tri plet (<A>, <neutA>, <ant iA>)

Let S be a given non-empty space (or set) from a universe of discourse U.
In neutrosophy, the general neutrosophic triplet (<A>,<neu tA>,<an tiA>), sometimes using the notation 

<neutroA>  for the middle term, can be written as: 
(〈�(1, 0, 0)〉, 〈�(�, �, �)〉, 〈�(0, 0, 1)〉), where (�, �, �) ∉ {(1,0,0), (0,0,1)}; 
i.e. �(1, 0, 0) means that <A> is 100% true (T = 1), 0% indeterminate (I = 0), and 0% false (F = 0);
�(�, �, �) means that <A> is T% true, I% indeterminate, and F% false, where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)};
and	�(0, 0, 1) means that <A> is 0% true (T = 0), 0% indeterminate (I = 0), and 100% false (F = 1),

respectively. 

2. Example of Neutrosophic Tr iplet when <A> = Opera tion

In the case when <A> is an Operation (or Operator, Function, Law), on the given space S, then <A(T, I, F)>
means: 

Operation <A> is T% well-defined (or inner-defined, inside of S), 
        I% indeterminate-defined (undefined, unknown), 
 and F% outer-defined (outside of S). 

3. Neutro sophic Tr iplet Concepts

We have the following particular neutrosophic triplets of notions defined on �:

Structure, NeutroStructure, and AntiStructure in Science 

Florentin Smarandache 
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(< Theorem>, < NeutroTheorem>,  < AntiTheorem>), 
(< Lemma>, <NeutroLemma>, <AntiLemma> ), 
(< Consequence> , < NeutroConsequence>,  < AntiConsequence> ), 
(< Proposition> , <NeutroPr oposition>, <AntiProposition>),  
(< Definition>,  < NeutroDefinition>,  <AntiDefinition>),  
(< Property> , < NeutroProperty>,  < AntiProperty>), 
(< Function>,  < NeutroFunction>, <AntiFunction>) , 
(< Operation>, < NeutroOperati on>, < AntiOperation> ), 
(< Axiom> , <NeutroAxiom>, <AntiAxiom>), etc. 

These neutrosophic triplets are referred to any field of knowledge, not only to mathematics. 

4. Theorem,  Neutro Theor em, Anti Theo rem

Let’s take the first neutrosophic triplet:
(< Theorem>, < NeutroTheorem>,  < AntiTheorem>). 
For the other neutrosophic triplets, it will be similar. 
Let �, �, � ∈ [0, 1] be single-valued numbers representing respectively the degree of truth (T), degree of 

indeterminacy (I), and degree of falsehood (F). 

(i) A classical Theorem is a statement that is true (T) for all elements of the space S. Therefore, (T, I,
F) = (1, 0, 0).

(ii) A NeutroTheorem is a statement that is partially (T), partially indeterminate (I), and partially false
(F), where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)};

(iii) An AntiTheorem is a statement that is false (F) for all elements of the space S. Therefore, (T, I, F) =
(0, 0, 1).

We can rewrite this neutrosophic triplet as: 
(〈�ℎ�����(1, 0, 0)〉, 〈�ℎ�����(�, �, �)〉, 〈�ℎ�����(0, 0, 1)〉), 
where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 

Let T, I, F be intervals (and in general any subsets) from [0, 1]. 
If a Theorem is, let’s say, between 90%-100% true, i.e. Theorem([0.9, 1], 0, 0), it does not satisfy the classical 

Theorem(1, 0, 0), since there is some uncertainty (unclearness) with respect to its degree of truth [0.9, 1] ≠ 1. So, this 
case goes under NeutroTheorem. 

If the Theorem is, let’s say again, between 99%-100% false, i.e. Theorem(0, 0, [0.99, 1]), it does not satisfy 
the AntiTheorem, since similarly there is some uncertainty (unclearness) with respect to its degree of falsehood [0.99, 
1] ≠ 1. This case goes also under NeutroTheorem.

In conclusion, no matter if T, I, F are single-valued numbers, intervals, and in general any subsets of [0, 1], 
the neutrosophic triplet of each concept is the same. 

Classical Theorem = <Theorem(1, 0, 0)>  
NeutroTheorem = < Theorem(T, I, F)> , with (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}; 
AntiTheorem = < Theorem(0, 0, 1)> . 

5. Remark

Let �, �, � ∈ [0,1] and an axiom 〈�(�, �, �)〉, which means that the axiom has the neutrosophic degree of
truth T, the neutrosophic degree of indeterminacy I, and the neutrosophic degree of falsehood F. 

If � > 0 or 0 < � < 1, the 〈�〉 is a NeutroAxiom. 

Proof: 
If � > 0, then (�, �, �) ∉ {(1, 0, 0), (0, 0, 1)}, because the last two neutrosophic triplets have both � = 0. 
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If 0 < � < 1, then again (�, �, �) ∉ {(1, 0, 0), (0, 0, 1)} because the last two neutrosophic triplets have � =
0 and respectively � = 1. 

6. Elementary Exampl es of Neutro Concepts  and Anti Concepts

6.1. NeutroOperation

Let � be the set of integers, and � the set of rational numbers that is considered the universal set, with � ⊂ �.
Let’s define the operation of division:

÷ :	� × � ⟶ �.
This is a NeutroDivision because:
(i) There exist the integers 15, 5 ∈ ℤ such that 15 ÷ 5 = 3 ∈ �; this is degree of well-defined (inner-defined);
(ii) There exist the integers 7, 0 ∈ ℤ such that 7 ÷ 0 = undefined; this is degree of indeterminacy;
(iii) There exist the integers 11, 2 ∈ ℤ such that 11 ÷ 2 = 5.5 ∉ � or 5.5 ∈ � ∖ ℤ; this is degree of outer-

defined. 

6.2. AntiOpera tion 
Let �� = {−1,−2,−3,… ,−∞} the set of negative integers,  
ℂ = �� + ��; �, � ∈ ℝ, � = √−1� the set of complex numbers that acts as the universal set of ��. 
Let’s define the operation of square root (√): 
√: �� ⟶ ��. 
For any negative integer – �, where � > 0 is a positive integer,  
√−� = �√� ∉ ℤ�, or √−� 	∊ � − Z-. 
Therefore the operation √ is totally outer-defined. 

6.3. NeutroFunct ion 
On the set of integers ℤ and its universe of discourse �, which is the set of rational numbers, we define the 

function: 
�: ℤ ⟶ ℤ, �(�) = ��

�
. 

(i) There exists the integer, for example � = 6, such that:
�(6) =

��

�
= 2 ∈ ℤ;

this is degree of well-defined.

(ii) There exists the integer 0 ∈ ℤ, such that:
�(0) =

��

�
= ���������;

this is degree of indeterminacy.

(iii) There exists the integer, for example 5 ∈ ℤ, such that:
�(5) =

��

�
= 2.4 ∉ ℤ; or 2.4 ∈ � ∖ ℤ;

this is degree of outer-defined.

6.4. NeutroTheorem  
Let �� = {1, 2, 3, … ,+∞} be the set of positive integers. 
We consider the following: 
Statement 
If � and � ∈ ℤ�, then �� is a perfect square.  

In classical algebraic structures this statement is considered false, because it is not 100% true, and to prove 
it, it is sufficient to get a single particular counter-example. For example, if � = 2 and � = 3, then 2� = 8 which is 
not a perfect square. 

The classical algebraic structures do not leave room for par tial truth of a theorem. But, in our world and in 
our everyday life, we have many more examples of statements that are only partially true, than statements that are 
totally true. 

The NeutroTheorem and AntiTheorem are generalizations and alternatives of the classical Theorem. 
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In the above statement, we have: 
(i) Degree of truth, when � = �� or � = 2�, where �, � ∈ ℤ�. Since we get �� = (��)� = (��)� and

respectively �� = ��� = (��)�.
Therefore we have two double-infinity many cases when the statement is true. 
� = �� means that � can be written as a perfect square. For example, if � = 3� we can re-write it as � =

(3�)� = 81�. 
And � = 2� means � is an even number. 
(ii) Degree of indeterminacy is zero, since �� is always well-defined for non-zero �, � ∈ ℤ�.
(iii) Degree of falsehood, as shown above, for example when � = 2 and � = 3.
Herein we also have infinitely many cases when the statement is false (for example when � ≠ �� and � ≠

2�). 

7. Stru cture,  NeutroStru cture,  AntiStruc ture i n any field of knowledge

    In general, by NeutroSophication [1, 2, 3, 4], we have extended any classical Structur e, in no matter what field of 
knowledge, to NeutroStructure, and by AntiSophication to AntiStructure. 
    A classical Structure, in any field of knowledge, is composed of: a non-empty space, populated by some elements, 
and both (the space and all elements) are characterized by some relations among themselves (such as: laws, operations, 
operators, axioms, properties, functions, theorems, lemmas, consequences, algorithms, charts, hierarchies, equations, 
inequalities, etc.), and their attributes (size, weight, color, shape, location, etc.). 

8. Relation, NeutroRelation, AntiRelation

(i) A classical Relation on a given set is a relation that is true for all elements of the set (degree of truth T = 1).
Neutrosophically we write Relation(1,0,0). 

(ii) A Neutro Relat ion is a relation that is true for some of the elements (degree of truth T), indeterminate for other
elements (degree of indeterminacy I), and false for the other elements (degree of falsehood F). Neutrosophically we 
write Relation(T,I,F), where (T,I,F) is different from (1,0,0) and from (0,0,1). 

(iii) An AntiRelat ion is a relation that is false for all elements (degree of falsehood F = 1). Neutrosophically we
write Relation(0,0,1). 

9. Att r ibute, Neutro Attr ibute,  Ant iAttr ibute

(i) A classical Attr ibute  of the elements of a given set is an attribute that is true for all elements of the set (degree
of truth T = 1). Neutrosophically we write Attribute(1,0,0). 

(ii) A NeutroAttr ibute is an attribute that is true for some of the elements (degree of truth T), indeterminate for
other elements (degree of indeterminacy I), and false for the other elements (degree of falsehood F). Neutrosophically 
we write Attribute(T,I,F), where (T,I,F) is different from (1,0,0) and (0,0,1). 

(iii) An AntiAttr ibute  is an attribute that is false for all elements (degree of falsehood F = 1). Neutrosophically
we write Attribute(0,0,1). 

10. Definitions of Struc ture, Neutro Struc ture, AntiSt ructure

(i) A classical Struc ture  is a structure whose all elements are characterized by the same given Relationships and
Attributes. 
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(ii) A NeutroSt ru cture  is a structure that has at least one NeutroRelation or one NeutroAttribute, and no
AntiRelation nor AntiAttribute. 

(iii) An AntiStruc ture  is a structure that has at least one AntiRelation or one AntiAttribute.

11. Exampl e of Neutro Structure

In the Christian society the marriage is defined as the union between a male and a female (degree of truth). 
But, in the last decades, this law has become less than 100% true, since persons of the same sex were allowed 

to marry as well (degree of falsehood). 
On the other hand, there are transgender people (whose sex is not well-determined, or whose sex is 

undetermined), and people who have changed the sex by surgical procedures, and these people (and their marriage) 
cannot be included in the first two categories (degree of indeterminacy). 

Therefore, since we have a NeutroLaw (with respect to the Law of Marriage) we have a Christian 
NeutroStructure. 

Conclusion 

A classical Structure, in any field of knowledge, is composed of: a non-empty space, populated by some 
elements, and both (the space and all elements) are characterized by some relations among themselves, and by some 
attributes. Classical Structures are mostly in theoretical, abstract, imaginary spaces.   

Of course, when analysing a structure, it counts with respect to what relations and attributes we analyse it. 
In our everyday life almost all structures are NeutroStructures, since they are neither perfect nor uniform, and 

not all elements of the structure’s space have the same relations and same attributes in the same degree (not all elements 
behave in the same way). 
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Abstract. Decision making by the business managerial on framing strate-
gies to foster customer acquisition is a challenging task. The aim of this paper 
is to introduce a new method of Multi-Strategy Decision-Making (MSDM) 
integrated with neutrosophic soft relational maps to determine the significant 
and feasible strategies of customer acquisition and their inter impacts. The
proposed method comprises of two-stage processes and it is validated with
twenty strategies, five factors associated with customer acquisition and expert
’s opinion based on multivalued neutrosophic soft sets.
Keywords: Multi-Strategy, Decision-Making, Neutrosophic soft sets,
Relational maps.

1. Introduction

Decision theory is characterized by various Multi-Criteria Decision making (MCDM)
(otherwise called as Multi-Objective or Multi-Attribute or Multi-Dimension
Decision-Making) methods such as Analytical Hierarchy Process, ELECTRE, CO-
PRAS, PROMTHEE, TOPSIS, SAW. MCDM methods are used in selection of
alternatives subjected to criteria satisfaction. MCDM methods are extended to
Fuzzy MCDM to handle uncertainty in decision making. The criterion – alter-
native association is represented as fuzzy values in fuzzy MCDM. Wang et al.
developed Fuzzy MCDM method for sustainable supplier selection and evaluation.
Peng et al. [10], Saini et al. [12] developed intuitionistic MCDM (IFMCDM)
approaches with intuitionistic representation comprising of membership and non-
membership values. Neutrosophic sets introduced by Smarandache [13] comprises
of truth , indeterminacy and falsity values and it has been extensively used in
MCDM. Athar [5], Abdel-Basset [1, 2], Nada et al. [9], Garg et al. [6] devel-
oped neutrosophic MCDM models with neutrosophic representations of criterion
alternative association. Another kind of sets that also play a key role in decision
making is Soft sets introduced by Molodtsov [8], which was later extended to fuzzy
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soft sets by Maji [7]. Dey et al. [3] presented the applications of multi-fuzzy soft
sets in decision-making. Tripathy et al. [14] described the key role of intuitionistic
fuzzy soft sets in group decision making. Faruk Karaaslan [4] elicited the implica-
tions of neutrosophic soft sets in decision making. Abu and Omar [11] extended
neutrosophic soft sets to Q-neutrosophic soft sets and these sets are applied in
comprehensive decision-making. In these neutrosophic soft MCDM models, the
optimal ranking of the alternatives are determined. But these model do not cater
to determine the impact of exercising the alternatives.

In this paper the new decision making approach based on MCDM is developed
with the replacement of alternatives by strategies to make decisions and the crite-
ria by the objectives to be fulfilled. The proposed method comprises of two-stage
processes. The first stage ranks the proposed alternatives based on criteria sat-
isfaction rate with the representation of neutrosophic soft sets and in the second
stage the chosen alternatives are associated with the principles of decision making
using neutrosophic soft relational maps. The integration of soft sets in relational
maps is an innovative initiative of this research work. The proposed two-stage
decision making process is a ground-breaking endeavor and it is validated by ap-
plying to decision making on customer acquisition strategies. Though researchers
have explored strategically decision- making in various perspectives, the mathe-
matical approach of strategy selection has not been explored so far to the best of
our knowledge and this research work is an opening to it. The content of the paper
is organized as follows: the methodology is presented in Section 2, the application
of the proposed approach is validated in Section 3, the results are discussed in
Section 4, the last section concludes the work.

2. Materials and Methods

This section presents the significance and need of MSDM and the algorithmic
approach of determining optimal solution.

2.1. Multi-Strategy Decision-Making. In the approach of MSDM, the
primary aim is to rank the strategies. In general, all the productions sectors
construct their goals and work towards accomplishing the same. The managerial
formulate strategies to achieve the goals, but the major challenge is selection and
implementation of feasible strategies to yield optimum benefits. The decision-
making environment does not involve only selection of alternatives with respect to
criteria satisfaction, rather it involves the other dimension of choosing the right
optimizing strategies. Strategical decision making is another dominating phenom-
enon and it has to be focused and this is how the approach of MSDM has evolved.
In this new approach the method of finding the optimal strategy is a two-step
process. The first step ranks the strategies and the second step associates their
inter relationship with the principles of decision making. The steps are as follows:

Characterization of decision-making problem

Selection of objectives of the firm
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Formulation of strategies from expert’s outlook

Construction of initial decision-making soft matrix

Computation of the cumulative satisfaction score

Ranking of the strategies

Relational map modeling of the strategies with the core domain of
decision-making

Determination of inter relational impacts

3. Application of the Proposed MSDM Approach

This section applies the proposed two stage processes of MSDM to the decision
making on customer acquisition strategies based on expert’s opinion presented as
below.

S1 Selection of Advertising medium to propagate the product,
S2 Designing user friendly products,
S3 Customizing the product’s utility to the needs of the buyers,
S4 Attending to the diverse needs of the customers,
S5 Developing multi-faceted products reflecting the ethos of the customers,
S6 Scaling the cost of the product to customer’s budget,
S7 Periodic Propagation of the attributes of the product,
S8 Product outlook modification,
S9 Creating smart products,
S10 Developing innovative kind of products suiting the dynamic needs of

the consumers,
S11 Create an ambiance to purchase product by providing offers,
S12 Communicating the attributes of the product to the customers,
S13 On line engagement with the customers,
S14 Establishing Trade mark of the product,
S15 Provision of various kinds of payment portals,
S16 Enrichment of the quality of the product using modern technology,
S17 Strengthening the consistency and reliability of the product,
S18 Designing products with values adding to consumer’s image,
S19 Periodical review of product sales and marketing,
S20 Integrating eco-friendly characteristics with the products.

In the perspective of soft sets, let U = {S1, S2, . . . , S20} andA = {A1, A2, . . . , A5}
be the set of purchasing behavior influencing factors, where A1 = Psychological,
A2 = Personal, A3 = Product, A4 = Social and A5 = Cultural.
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A multivalued neutrosophic soft mapping G : A −→ P (U) is represented as
follows:

G(A1) = {
〈(0.9, 0.1, 0.2), (0.8, 0.3, 0.2), (0.9, 0.1, 0.2)〉

S1

,
〈(0.6, 0.3, 0.3), (0.6, 0.1, 0.3), (0.6, 0.3, 0.3)〉

S2

,

〈(0.8, 0.3, 0.5), (0.9, 0.3, 0.5), (0.8, 0.3, 0.5)〉

S3

,
〈(0.6, 0.2, 0.3), (0.6, 0.2, 0.3), (0.6, 0.2, 0.3)〉

S4

,

〈(0.7, 0.5, 0.2), (0.6, 0.4, 0.2), (.07, 0.5, 0.2)〉

S5

,
〈(0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1)〉

S6

,

〈(0.8, 0.3, 0.5), (0.8, 0.2, 0.5), (0.8, 0.3, 0.5)〉

S7
,
〈(0.6, 0.4, 0.4), (0.6, 0.4, 0.3), (0.6, 0.4, 0.4)〉

S8

,

〈(0.7, 0.5, 0.2), (0.6, 0.1, 0.2), (0.7, 0.5, 0.2)〉

S9

,
〈(0.6, 0.4, 0.3), (0.6, 0.4, 0.3), (0.6, 0.4, 0.3)〉

S10

,

〈(0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1)〉

S11

,
〈(0.9, 0.1, 0.2), (0.9, 0.1, 0.1), (0.9, 0.1, 0.2)〉

S12

,

〈(0.8, 0.3, 0.5), (0.8, 0.3, 0.5), (0.8, 0.3, 0.5)〉

S13

,
〈(0.9, 0.1, 0.2), (0.9, 0.1, 0.2), (0.9, 0.1, 0.2)〉

S14

,

〈(0.8, 0.3, 0.5), (0.8, 0.2, 0.4), (0.8, 0.3, 0.5)〉

S15

,
〈(0.6, 0.4, 0.3), (0.6, 0.5, 0.3), (0.6, 0.4, 0.3)〉

S16

,

〈(0.8, 0.3, 0.5), (0.8, 0.2, 0.5), (0.8, 0.3, 0.5)〉

S17

,
〈(0.8, 0.3, 0.5), (0.8, 0.2, 0.5), (0.8, 0.3, 0.5)〉

S18

,

〈(0.6, 0.4, 0.3), (0.6, 0.4, 0.4), (0.6, 0.4, .3)〉

S19

,
〈(0.7, 0.5, 0.2), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)〉

S20

},

G(A2) = {
〈(0.7, 0.5, 0.2), (0.6, 0.4, 0.2)), (0.7, 0.5, 0.2)〉

S1

,
〈(0.7, 0.5, 0.2), (0.9, 0.1, 0.3), (0.9, 0.1, 0.2)〉

S2

,

〈(0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.8, 0.2, 0.4)〉

S3

,
〈(0.9, 0.1, 0.2), (0.9, 0.3, 0.2), (0.9, 0.1, 0.2)〉

S4

,

〈(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S5

,
〈(0.6, 0.4, 0.3), (0.6, 0.4, 0.4), (0.6, 0.4, 0.3)〉

S6

,

〈(0.6, 0.4, 0.3), (0.6, 0.3, 0.3), (0.6, 0.4, 0.3)〉

S7
,
〈(0.6, 0.4, 0.3), (0.6, 0.2, 0.3), (0.6, 0.4, 0.3)〉

S8

,

〈(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S9

,
〈(0.9, 0.2, 0.3), (0.9, 0.2, 0.3), (0.9, 0.2, 0.3)〉

S10

,

〈(0.8, 0.2, 0.4), (0.8, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S11

,
〈(0.6, 0.4, 0.3), (0.6, 0.4, 0.3), (0.6, 0.4, 0.3)〉

S12

,

〈(0.9, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.1, 0.1)〉

S13

,
〈(08, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S14

,

〈(0.9, 0.1, 0.2), (0.8, 0.1, 0.2)(0.9, 0.1, 0.2)〉

S15

,
〈(0.9, 0.1, 0.1), (0.9, 0.1, 0.2), (0.9, 0.1, 0.1)〉

S16

,

〈(0.6, 0.4, 0.3), (0.6, 0.4, 0.2), (0.6, 0.4, 0.3)〉

S17

,
〈(0.9, 0.1, 0.1), (0.9, 0.1, 0.3), (0.9, 0.1, 0.1)〉

S18

,

〈(0.9, 0.1, 0.1), (0.9, 0.1, 0.1)〉, (0.9, 0.1, 0.1)〉

S19

,
〈(0.8, 0.2, 0.4), (0.8, 0.1, 0.3), (0.8, 0.2, 0.4)〉

S20

},

G(A3) = {
〈(0.8, 0.3, 0.5), (0.8, 0.1, 0.3), (0.8, 0.3, 0.5)〉

S1

,
〈(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S2

,

〈(0.5, 0.4, 0.6), (0.6, 0.4, 0.3), (0.5, 0.4, 0.6)〉

S3

,
〈(0.8, 0.2, 0.4), (0.7, 0.5, 0.3), (0.8, 0.2, 0.4)〉

S4

,

〈(0.9, 0.2, 0.3), (0.7, 0.5, 0.3), (0.9, 0.2, 0.3)〉

S5

,
〈(0.7, 0.5, 0.2), (0.9, 0.3, 0.2), (0.7, 0.5, 0.2)〉

S6

,

〈(0.6, 0.4, 0.3), (0.6, 0.3, 0.3), (0.6, 0.4, 0.3)〉

S7
,
〈(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S8

,

〈(0.9, 0.2, 0.3), (0.8, 0.1, 0.4), (0.9, 0.2, 0.3)〉

S9

,
〈(0.8, 0.2, 0.4), (0.7, 0.3, 0.2), (0.8, 0.2, 0.4)〉

S10

,

〈(0.8, 0.2, 0.4), (0.8, 0.5, 0.2), (0.8, 0.2, 0.4)〉

S11

,
〈(0.6, 0.4, 0.3), (0.4, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S12

,
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〈(0.9, 0.1, 0.2), (0.9, 0.1, 0.3), (0.7, 0.5, 0.2)〉

S13

,
〈(0.9, 0.1, 0.2), (0.9, 0.1, 0.3), (0.7, 0.5, 0.2)〉

S14

,

〈(0.6, 0.4, 0.3), (0.6, 0.4, 0.3), (0.7, 0.5, 0.2)〉

S15

,
〈(0.9, 0.2, 0.3), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)〉

S16

,

〈(0.9, 0.1, 0.2), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)〉

S17

,
〈(0.6, 0.4, 0.3), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)〉

S18

,

〈(0.7, 0.5, 0.2), (0.9, 0.2, 0.2), (0.9, 0.2, 0.3)〉

S19

,
〈(0.9, 0.1, 0.1), (0.6, 0.4, 0.4), (0.6, 0.4, 0.3)〉

S20

},

G(A4) = {
〈(0.6, 0.4, 0.3), (0.5, 0.2, 0.3), (0.6, 0.4, 0.3)〉

S1

,
〈(0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1)〉

S2

,

〈(0.7, 0.5, 0.2), (0.7, 0.4, 0.2), (0.7, 0.5, 0.2)〉

S3

,
〈(0.7, 0.5, 0.2), (0.7, 0.5, 0.3), (0.7, 0.5, 0.2)〉

S4

,

〈(0.7, 0.5, 0.2), (0.7, 0.5, 0.3), (0.7, 0.5, 0.2)〉

S5

,
〈(0.9, 0.1, 0.2), (0.9, 0.3, 0.2), (0.9, 0.1, 0.2)〉

S6

,

〈(0.5, 0.4, 0.6), (0.5, 0.4, 0.7), (0.5, 0.4, 0.6)〉

S7

,
〈(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S8

,

〈(0.8, 0.2, 0.4), (0.8, 0.1, 0.4), (0.8, 0.2, 0.4)〉

S9

,
〈(0.7, 0.5, 0.2), (0.7, 0.3, 0.2), (0.7, 0.5, 0.2)〉

S10

,

〈(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S11

,
〈(0.7, 0.5, 0.2), (0.4, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S12

,

〈(0.9, 0.1, 0.2), (0.9, 0.1, 0.3), (0.9, 0.1, 0.2)〉

S13

,
〈(0.9, 0.4, 0.3), (0.7, 0.2, 0.3), (0.6, 0.4, 0.3)〉

S14

,

〈(0.7, 0.5, 0.2), (0.6, 0.4, 0.3), (0.7, 0.5, 0.2)〉

S15

,
〈(0.7, 0.5, 0.2), (0.7, 0.5, 0.1), (0.9, 0.2, 0.3)〉

S16

,

〈(0.7, 0.5, 0.2), (0.7, 0.5, 0.1), (0.9, 0.1, 0.2)〉

S17

,
〈(0.7, 0.5, 0.2), (0.7, 0.5, 0.4), (0.6, 0.4, 0.3)〉

S18

,

〈(0.9, 0.2, 0.3), (0.9, 0.2, 0.2), (0.9, 0.2, 0.3)〉

S19

,
〈(0.6, 0.2, 0.3), (0.9, 0.2, 0.1), (0.9, 0.2, 0.3)〉

S20

}

and

G(A5) = {
〈(0.9, 0.2, 0.3), (0.9, 0.1, 0.2), (0.9, 0.2, 0.3)〉

S1

,
〈(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S2

,

〈(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S3

,
〈(0.9, 0.2, 0.3), (0.9, 0.2, 0.4), (0.9, 0.2, 0.3)〉

S4

,

〈(0.8, 0.2, 0.4), (0.8, 0.2, 0.5), (0.8, 0.2, 0.4)〉

S5

,
〈(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)〉

S6

,

〈(0.9, 0.2, 0.3), (0.9, 0.2, 0.1), (0.9, 0.2, 0.3)〉

S7

,
〈(0.8, 0.2, 0.4), (0.8, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S8

,

〈(0.9, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.1, 0.1)〉

S9

,
〈(0.9, 0.2, 0.3), (0.8, 0.2, 0.3), (0.9, 0.2, 0.3)〉

S10

,

〈(0.8, 0.2, 0.4), (0.8, 02, 0.4), (0.8, 0.2, 0.4)〉

S11

,
〈(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)〉

S12

,

〈(0.7, 0.5, 0.2), (0.8, 0.3, 0.2), (0.7, 0.5, 0.2)〉

S13

,
〈(0.9, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.1, 0.1)〉

S14

,

〈(0.7, 0.5, 0.2), (0.7, 0.4, 0.2), (0.7, 0.5, 0.2)〉

S15

,
〈(0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.8, 0.2, 0.4)〉

S16

,

〈(0.9, 0.2, 0.3), (0.8, 0.2, 0.3), (0.9, 0.2, 0.3)〉

S17

,
〈(0.9, 0.2, 0.3), (0.9, 0.2, 0.2), (0.9, 0.2, 0.3)〉

S18

,

〈(0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.8, 0.2, 0.4)〉

S19

,
〈(0.9, 0.2, 0.3), (0.8, 0.1, 0.3), (0.9, 0.2, 0.3)〉

S20

}.

The score values of each of the strategies with respect to the respective asso-
ciation with the factors are determined by using the algorithm was discussed in
[5] (See Figure 1). The following factors are considered as the core factors for the
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Figure 1. Ranking of the Factors.

next step.
CS1 Developing multi-faceted products reflecting the ethos of the customers,
CS2 Scaling the cost of the product to customer’s budget,
CS3 Enrichment of the quality of the product using modern technology,
CS4 Strengthening the consistency and reliability of the product,
CS5 Designing products with values adding to consumer’s image,
CS6 Periodical review of product sales and marketing.

These factors are related to the various management systems of the business.
The relational impacts are represented linguistic neutrosophic sets and are quan-
tified using neutrosophic triangular fuzzy number as presented in Table 1.

Table 1. Quantification of Linguistic Variable.

Linguistic Variable Neutrosophic Triangular Number Crisp Value

Very Low (VL) ((0,0.10,0.15,0.20),0.6,0.2,0.3) 0.06

Low (L) ((0.15,0.2,0.25,0.3),0.6,0.1,0.1) 0.14

Medium (M) ((0.3,0.35,0.4,0.5),0.7,0.1,0.2) 0.23

High (H) ((0.5,0.6,0.7,0.8),0.8,0.2,0.1) 0.41

Very High (VH) ((0.8,0.9,0.95,1),0.9,0.1,0.1) 0.62

Let U = {CS1, CS2, . . . , CS6} and M = {M1,M2,M3,M4} be the set of
management systems of business, where

M1 = Product Quality Management,

M2 = Customer Loyalty Management,

M3 = Customer Relationship Management,

M4 = Marketing Management.

A single valued neutrosophic soft mapping H : M −→ P (U) is represented as
follows:

H(M1) = {
V H

CS1
,

L

CS2
,
V H

CS3
,

H

CS4
,
M

CS5
,

H

CS6
},
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Table 2. Fixed points of the vectors.

Initial Vector Fixed Point

X = (100000) X
∗

M = (0.620.410.410.14)(1110) := X1
X1∗MT = (1.440.691.441.651.470.87) = (100110) := Y

Y
∗

M = (1.261.651.650.78)(1110) := X2
X2∗MT = (1.440.691.441.651.470.87) = (100110) := Y 1
(1110)(100110)

X = (010000) X
∗

M = (0.140.140.410.23)(0011) := X1

X1∗MT = (0.550.640.641.030.850.85) = (010111) := Y

Y
∗

M = (1.191.611.881.49)(0110) := X2

X
∗

2MT = (0.820.550.821.241.240.46) = (111110) := Y1

Y
∗

1 M = (2.022.22.471.24)(0110) := X3
X

∗

3MT = (0.820.550.821.241.240.46) = (111110) := Y2

(0110)(111110)

X = (001000) X
∗

M = (0.620.410.410.23)(1110) := X1

X
∗

1MT = (1.440.691.441.651.470.87) = (100110) := Y

Y
∗

M = (1.261.651.650.78)(1110) := X2

X
∗

2MT = (1.440.691.441.651.470.87) = (100110) := Y 1
(1110)(100110)

X = (000100) X
∗

M = (0.410.620.620.41)(1111) := X1

X
∗

1MT = (1.580.921.672.061.71.49) = (000110) := Y

Y
∗

M = (0.641.241.240.64)(1111) := X2

X
∗

2MT = (1.580.921.672.061.71.49) = (000110) := Y1

(1111)(000110)

X = (000010) X
∗

M = (0.230.620.620.23)(1111) := X1

X
∗

1MT = (1.580.921.672.061.71.49) = (000110) := Y

Y
∗

M = (0.641.241.240.64)(1111) := X2

X
∗

2MT = (1.580.921.672.061.71.49) = (000110) := Y1

(1111)(000110)

X = (000001) X
∗

M = (0.410.230.230.62)(1001) := X1

X
∗

1MT = (0.760.370.850.820.461.03) = (001001) := Y

Y
∗

M = (1.030.640.640.85)(1001) := X2

X
∗

2MT = (0.760.370.850.820.461.03) = (001001) := Y1

(1001)(001001)

H(M2) = {
H

CS1
,

L

CS2
,

H

CS3
,
V H

CS4
,
V H

CS5
,
M

CS6
},

H(M3) = {
H

CS1
,

H

CS2
,

H

CS3
,
V H

CS4
,
V H

CS5
,
M

CS6
},

H(M4) = {
L

CS1
,
M

CS2
,
M

CS3
,

H

CS4
,
M

CS5
,
V H

CS6
}.

The relational impacts are determined by using the procedure discussed in
[15] (See Table 2).

4. Results and Discussions

The multivalued neutrosophic soft representation takes in the opinion of three ex-
perts into consideration. The twenty strategies taken for study are confined to six
strategies based on the final scores of the association rate with the factors.
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The six core factors are related with the principles of business management in 
various dimensions. Each of the core factors is kept in on position. The associational
impacts are analyzed and the fixed points are determined. If the core factor CS1 
is kept in on position, the limit point (1110)(100110) is obtained. The factor CS1 
is highly associated with CS4, CS5 and M1, M2, M3. By repeating the same mech-
anism, the associational impacts between the other core factors are determined.
This approach of Multi-Strategy Decision-Making with neutrosophic soft sets rep-
resentations facilitate the decision-making process and it eases the procedure of
minimizing the number of strategies. The decision makers evolve many strategies,
but implementing all the strategies is not possible, it is quite mandatory to explore
the core strategies and to detect its relation with other decision-making principles.
To make the process much comprehensive, MSDM approach is constructed in this
research work.

5. Conclusion

This paper introduces the approach of Multi-Strategy Decision-Making with two
stage process of decision-making. The proposed approach is validated with the
decision-making environment of enhancing the customer acquisition strategies.
The multivalued neutrosophic soft set representations in the first stage results
in confining the number of strategies and the neutrosophic soft relational maps
in the second stage is used to determine the relational impacts. This approach
can be extended with other kinds of representation. This MSDM approach can be
applied to any kind of decision-making environment.
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Abstract: In this paper, we built bitopological space on the concept of neutrosophic soft set, we defined the 

basic topological concepts of this spaces which are N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-neutrosophic 
soft interior, (bi)*-neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft 

exterior and we introduced their properties. In addition, we investigated the relations of these basic 

topological concepts with their counterparts in neutrosophic soft topological spaces and we introduced 

many examples.  

Keywords": Neutrosophic soft bitopological spaces, Star bineutrosophic soft open set, star bi neutrosophic 

soft closed set, fuzzy set.  

1. Introduction-
The concept of soft set is defined by Molodtsov [1] as follows: Let M be an initial universe set and E be a 
set of parameters. Let P(M) denotes the set of all the subsets-of-M. Consider B≠ ∅‚ B ⊆E. The collecti-
on (β‚B) is termed to be the soft set, where β is a mapping by β:B→P(M), and later this concept has been 
redefined by Naim Cagman [20]. Smarandache [2] introduced neutrosophic set as a generalization of fuzzy 
set [3] and intuitionistic fuzzy set [4]. P. K. Maji [5] defended the concept of neutrosophic soft set by 
combining the concept of neutrosophic set and soft set. This the concept is defined as follows: let M be an 
initial universe set and E be a set of parameters. Let P(M) denote the set of all the neutrosohpic sets of M. 
Consider B≠ ∅‚ B ⊆E. The collection (β‚B) is termed to be the soft neutrosophic set, where β is a mapping 
by β:B→P(M). This concept has been modified by [6,7].The concept of neutrosohpic soft topological space 
was introduced by Bera [8]. Taha et al.[9] redefined the neutrosop-hic soft topological spaces differently 
from the study [8]. Other theoretical studies on these concepts were presented by a number of researchers, 
for example, Narmada, Georgiou, Cageman, Al-Nafee, Evanzalin and Salama, (see [10, 11, 22, 13, 14, 15, 16, 
17, 18, 19, 20]).

"Kelly, [21] introduced the concept of bitopological space. This concept is introduced as an extension of 
topological space. This concept has been introduced with interest in fuzzy set, soft set and neutrosophic set 
(see [22, 23, 24, 25]). Therefore, we find it important and necessary to build a bitopological spaces on the 
concept of neutrosophic soft set. In this paper, bitopological space on the concept of neutrosophic soft set 
is built, the basic topological concepts of this spaces which are N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-
neutrosophic soft interior, (bi)*-neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutros-
ophic soft exterior are defined, the relations of these basic topological concepts with their counterparts in 
neutrosophic soft topological spaces are investigated and many examples on this concepts are given. 

Neutrosophic Soft Bitopological Spaces 

Ahmed B. Al-Nafee, Said Broumi, Florentin Smarandache 

Ahmed B. Al-Nafee, Said Broumi, Florentin Smarandache (2021). Neutrosophic Soft Bitopological 
Spaces. International Journal of Neutrosophic Science 14(1): 47-56 
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2. Preliminary

In this section, we will refer to the basic definitions required in our work.

2.1. Definition [26]

The neutrosohpic set N over M is defined as follows: "

        "   N={< m‚H(m)‚G(m)‚J(m) >) ∶ m ∈ M}. " 

where, the functions H,G,J : M→] − 0,+1[ and " - 0 ≤ H(m) + G(m) + J(m) ≤ +3. 

From philosophical point of view the neutrosophic set takes the value from real standard or non-standard 
subsets of ] − 0,+1["."But in real life application in scientific and engineering problems it is difficult to use 
a neutrosophic set with value from real standard or non-standard subset of ] − 0,+1["."Hence we consider 
the neutrosophic set which takes the value from the subset of [0, 1]". 

   Firstly, neutrosophic set defined by Maji,[5],and later this concept and its operations have been redefined by [7]. 
Our work in this research is based on the definition below: 

2.2. Definintion [7] 

  Let M be an initial universe set and B be a set of parameters. Let P(M) denote the set of all the neutron-
sohpic sets of M. Then, a neutrosophic soft set β over M is a set defined by a set valued function β repre-
senting a mapping from B to P(M), where e β is called approximate function of the neutrosophic soft set 
β. 
 In other words, β is a parameterized family of,some elements of the set P(M) and therefore it can be 
written as a set of ordered pairs, 

β = {൫r‚{< m(ୌಊ(౨)(୫)‚ୋಊ(౨)(୫)‚ಊ(౨)(୫)) > ∶ m ∈ M}൯‚ r ∈ B}. 
Where, 

Hஒ(୰)(m)‚ Gஒ(୰)(m)‚ Jஒ(୰)(m) ∈ [0,1], respectively called the truth-membership, 
indeterminacymembership,falsity-membership function of β(r). Since supremum of each H, G, J is 1 so 
the inequality, 
 0  ≤ Hஒ(୰)(m) +  Gஒ(୰)(m) + Jஒ(୰)(m) ≤  3 is obvious. 
 From now on, the set of all neutrosohpic sets over M is denoted by N3(M). 

2.3. Definition [9,5] 

  Let: β and µ ∈ N3(M) such that;  

β = {൫r‚{< m(ୌಊ(౨)(୫)‚ୋಊ(౨)(୫)‚ಊ(౨)(୫)) > ∶ m ∈ M}൯‚ r ∈ B}.     

μ = {൫r‚{< m(ୌಔ(౨)(୫)‚ୋಔ(౨)(୫)‚ಔ(౨)(୫)) > ∶ m ∈ M}൯‚ r ∈ B}.Then: 

 M෩  = {൫r‚{< m(ଵ‚ଵ‚) > ∶ m ∈ M}൯‚ r ∈ B} ["Absolute neutrosohpic soft set"]. 

 ∅෩ = {൫r‚{< m(‚‚ଵ) > ∶ m ∈ M}൯‚ r ∈ B} ["Null neutrosohpic soft set"].  
 "β ⊑ µ ↔ {൫r‚{< m(ୌಊ(౨)(୫)ஸୌಔ(౨)(୫)‚ୋಊ(౨)(୫)ஸୋಔ(౨)(୫)‚ಊ(౨)(୫)ஹಔ(౨)(୫)) > ∶ m ∈ M}൯‚ r ∈ B}.

 "β ⊔ µ = {൫r‚{< m(ୌಊ(౨)(୫)⋁ୌಔ(౨)(୫)‚ୋಊ(౨)(୫)⋁ୋಔ(౨)(୫)‚ಊ(౨)(୫)⋀ಔ(౨)(୫)) >൯ ∶ m ∈ M}‚ r ∈ B}.

 "β ⊓ µ = {൫r‚{< m(ୌಊ(౨)(୫)⋀ୌಔ(౨)(୫)‚ୋಊ(౨)(୫)⋀ୋಔ(౨)(୫)‚ಊ(౨)(୫)⋁ಔ(౨)(୫)) > ∶ m ∈ M}൯‚ r ∈ B}.

2.4. Definition

Let: β ∈ N3(M), The complement of β  is denoted by (β)େ and is definded as:

(β)େ = ൫r‚{< m(ଵିୌಊ(౨)(୫)‚ଵିୋಊ(౨)(୫)‚ଵିಊ(౨)(୫)) > ∶ m ∈ M}൯‚ r ∈ B}. 
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2.5. Definition [9] 

  Let T ⊆ (N3(M)). The collection T is called"a neutrosophic soft topology"on M, if the following conditions 
are true: 

1) M෩ , ∅෩ belong to T. 
2) If β୨

∈ T ; j ∈ J, then ⊔୨∈ β୨
∈ T ∀ j ∈ J.

3) If β‚ µ ∈ T, then β ⊓ µ ∈ T.
Then the triplet (M,B,T) is a neutrosophic soft topological space or (N3-Top for short).

Members of T are called"a neutrosohpic soft open sets"(N3-T-open for short) and their complements are"a
neutrosohpic soft open sets"(N3-T-closed for short).
"The neutrosophic soft interior of β ∈ N3(M) ((β)0 for short)"is defended as: ,

(β)0 = ⊔{(ω): ω is a N3-T-open set, ω⊑ β}. 

 "The neutrosophic soft closure of β ∈ N3(M) ((β) for short)"is defended as: , 

" (β) = ⊓{(ω): ω is a N3-T-closed set, β⊑ ω}. 

2.6. Example 
 Let M = {mଵ‚ mଶ‚ mଷ}, B = {r} and β‚ µ‚ γ ∈ N3(M). 

Such that 

β = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(0, 0, 1) >})}, 

μ = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(1, 1, 0) >})}, 

γ = {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) >‚ < m3(1, 1, 0) >})}. 

Then, T2 = {∅෩‚ M෩ ‚ β‚ µ} is a neutrosohpic soft topology on M. 

2.7. Example 
 Let M = {mଵ‚ mଶ‚ mଷ}, B = {r} and β‚ µ‚ γ‚ δ ∈ N3(M). Such that 

β = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(0, 0, 1) >})}. 

μ = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(1, 1, 0) >})}. 

γ = {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) >‚ < m3(0, 0, 1) >})}.  

δ = {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚ < m3(1, 1, 0) >})}. 

Then, T2 = {∅෩‚ M෩ ‚ β‚ µ‚ γ} is a neutrosohpic soft topology on M. 

3."Neutrosophic soft bitopological space" 

  In this section, we defined the neutrosophic soft bitopological space or (N3-Bi-Top for short) on the concept 

of neutrosophic soft set and the basic topological concepts of this spaces which are N3-biopen and N3-

biclosed.  
3.1. Definition 

 Let (M,B,T1) and (M,B,T2) be two N3-Top spaces defined on M. Then (M,B,T1,T2) is called a neutrosophic 

soft bitopological space or (N3-Bi-Top for short). 
3.2. Example  

 Let M = {mଵ‚mଶ}, B = {r} and β‚ µ ∈ N3(M) such that 
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β = {(r, {< m1(0.6, 0.2, 0.5) >, < m2(0.5, 0.4, 0.9) >})}, µ = {(r, {< m1(0.6, 0.2, 0.4) >, < m2(0.6, 0.4, 0.7) >})}. 

Then, T1 = {∅෩‚ M෩ ‚ β} is an N3-Top on M and T2 = {∅෩‚ M෩ ‚ µ} is an N3-Top on M. 

Therefore, (M,B,T1,T2) is an N3-Bi-Top space. 

3.3. Definition 

 Let (M,B,T1,T2) be an N3-Bi-Top space. The members of (M,B,T1,T2) are called"bineutrosohpic soft open 

sets"(N3-biopen for short) and their complements are"bineutrosohpic soft closed sets"(N3-biclosed for 

short). 

3.4. Remark  

a) Every neutrosophic soft open (closed) set in (M,B,T1) or (M,B,T2) is an N3-biopen (N3-biclosed) set.

b) Every N3-Bi-Top space (M,B,T1,T2) induces two N3-Top spaces as (M,B,T1) and (M,B,T2).

c) If (M,B,T1) is an N3-Top space then (M,B,T1,T1) is an N3-Bi-Top space.

3.5. Theorem

If (M,B,T1,T2) is an N3-Bi-Top space, then (M,B,T1∩T2) is an N3-Top space.

Proof

Let (M,B,T1,T2) be an N3-Bi-Top space.

(1) Clearly that ∅෩‚ M෩  ∈ (T1∩T2 ). 

(2) Let β‚ µ ∈ (T1∩T2 ), then β‚ µ ∈ T1 and β‚ µ ∈ T2. This implies that, β ⊓ µ ∈ T1 and β ⊓ µ ∈T1.

Therefore, β ⊓ µ ∈ (T1∩T2 ).
(3) Let β୨

∈ (T1∩T2 ); j ∈ J. Then β୨
∈ T1 and β୨

∈ T2 ; j ∈ J. Therefore ⊔୨∈ β୨
∈ T1 and ⊔୨∈ β୨

∈ T2  ∀ j ∈ J.

Thus, we have ⊔୨∈ β୨
∈ (T1∩T2 ).

Hence, (M,B,T1∩T2) is an N3-Top space.
3.6. Remark 
 If we take the operation of union instead of the operation of intersection, then the above theorem is not 
generally correct. 

3.7. Example 

 Let M = {mଵ‚mଶ}, B = {r} and β‚ µ ∈ N3(M) such that 

β = {(r, {< m1(0.3, 0.5, 0.7) >, < m2(0.2, 0.4, 0.6) >})}, µ = {(r, {< m1(0.5, 0.7, 0.8) >, < m2(0.3, 0.6, 0.8) >})}. 

Then, T1 = {∅෩‚ M෩ ‚ µ} is an N3-Top on M and T2 = {∅෩‚ M෩ ‚ β} is an N3-Top on M. Thus, (M,B,T1‚T2) is an 
N3-Bi-Top space. But, (M,B,T1∪T2) is not an N3-Top space. Because, β ⊔ µ does not belong to (T1∪T2).  

4." N3-(bi)*-open set in neutrosophic soft bitopological space" 

  In this section, N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-neutrosophic soft interior, (bi)*-neutrosophic soft 

closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft exterior are defined based on the idea of 

δ-open set which was defined in [27].  

4.1. Definition  

A subset β ∈ N3(M) of an N3-Bi-Top space (M,B,T1,T2) is called star bineutrosophic soft open (N3-(bi)*-open,

for short ) in (M,B,T1,T2) if and only if β ⊑ (β)୭
(ଵ)୭ଶ

and their complement is an N3-(bi)*-closed set. The 
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set of all N3-(bi)*-open [N3-(bi)*-closed] sets in (M,B,T1,T2) is denoted by M(୧)∗ି [M(୧)∗ିୗେ] respectively. 
4.2. Example 

 Let M = {mଵ‚mଶ‚mଷ}, B = {r} and β‚ µ ∈ N3(M) such that 

β = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) > ‚< m3(0, 0, 1) >})}, 

µ = {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) >‚< m3(0, 0, 1) >})}. 

T1 = {∅෩‚ M෩ } is an N3-Top on M and T2 = {∅෩‚ M෩ ‚ β‚ µ} is an N3-Top on M. Thus, (M, B,T1,T2) is an N3-Bi-
Top space.  

Note that: 

β = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) > ‚< m3(0, 0, 1) >})} ⊑ (β)୭ଶ
(ଵ)୭ଶ

= {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) > ‚< m3(1, 1, 0) >})}. 

∴  β ⊑ (β)୭
(ଵ)୭ଶ

. 

µ = {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) > ‚< m3(0, 0, 1) >})} ⊑ (µ)୭ଶ
(ଵ)୭ଶ

= {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) > ‚< m3(1, 1, 0) >})}. 

∴ µ ⊑ (µ)୭ଶ
(ଵ)୭ଶ

. 

γ = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚< m3(1, 1, 0) >})}. 

{(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚< m3(1, 1, 0) >})} ⊑ (γ)୭ଶ
(ଵ)୭ଶ

= {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) > ‚< m3(1, 1, 0) >})}. 

∴ γ ⊑ (γ)୭ଶ
(ଵ)୭ଶ

. 

δ = {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚< m3(1, 1, 0) >})}. 

{(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚< m3(1, 1, 0) >})} ⋢ (δ)୭ଶ
(ଵ)୭ଶ

= {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) > ‚< m3(0, 0, 1) >})}. 

∴ δ ⋢ (δ)୭ଶ
(ଵ)୭ଶ

. 

ε = {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚< m3(1, 1, 0) >})}. 

{(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚< m3(1, 0, 0) >})} ⋢ (ε)୭ଶ
(ଵ)୭ଶ

= {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) > ‚< m3(0, 0, 1) >})}. 

∴ ε ⋢ (ε)୭ଶ
(ଵ)୭ଶ

. 

ϑ = {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) >‚< m3(1, 1, 0) >})}. 

{(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) >‚< m3(1, 1, 0) >})} ⋢ (ϑ)୭
(ଵ)୭ଶ

= {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) > ‚< m3(0, 0, 1) >})}. 

∴ ϑ ⋢ (ϑ)୭
(ଵ)୭ଶ

. 

In general in any N3-Bi-Top space, ∅෩‚ M෩  are clearly N3-(bi)*-open sets. 

Hence: 

 M(୧)∗ିୗ = {∅෩‚ M෩ ‚ β‚ µ‚ γ}. 

 M(୧)∗ିୗେ = { {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚< m3(1, 1, 0) >})}, 

 {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) >‚< m3(1, 1, 0) >})}, 

 {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚< m3(0, 0, 1) >})}, 

∅෩‚ 
M෩  }. 
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4.3. Remark 

 Let β and µ be an N3-(bi)*-open sets, then β ⊓ µ is not necessary an N3-(bi)*-open set. 
4.4. Example 

 Let M = {mଵ‚ mଶ‚ mଷ‚ mସ‚ mହ}, B = {r} and β‚ µ‚ γ‚ ε‚ ϑ‚ α ∈ N3(M). 

Such that 

β = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(0, 0, 1) >‚ < m4(0, 0, 1) >})}. 

μ = {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) >‚ < m3(0, 0, 1) >‚ < m4(1, 1, 0) >})}. 

γ = {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(0, 0, 1) >‚ < m4(1, 1, 0) >})}. 

ε = {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚ < m3(1, 1, 0) >‚ < m4(0, 0, 1) >})}. 

ϑ = {(r, {< m1(1, 1, 0) >, < m2(1, 1, 0) >‚ < m3(1, 1, 0) >‚ < m4(0, 0, 1) >})}. 

α = {(r, {< m1(0, 0, 1) >, < m2(1, 1, 0) >‚ < m3(1, 1, 0) >‚ < m4(1, 1, 0) >})}. 

T1 = {∅෩‚ M෩ ‚ β‚ µ‚ γ} is an N3-Top on M and T2 = {∅෩‚ M෩ ‚ β‚ µ‚ γ‚ ε‚ ϑ‚ α} is an N3-Top on M. Thus, 
(M,B,T1,T2) is an N3-Bi-Top space. Then 

 ε and {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ < m3(1, 1, 0) >‚ < m4(0, 0, 1) >})} are an N3-(bi)*-open sets, but the intersection of 
them {(r, {< m1(0, 0, 1) >, < m2(0, 0, 1) >‚ < m3(1, 1, 0) >‚ < m4(0, 0, 1) >})} is not an N3-(bi)*-open set.  

4.5. Theorem 

 Let (M,B,T1,T2) be an N3-Bi-Top space, then every neutrosophic soft open set in (M,B,T2) is an N3-(bi)*-open 

set in (M,B,T1,T2). 

Proof 

 Let β be a neutrosophic soft open set in (M,B,T2). Then (β)୭ଶ = β. Since β ⊑  (β)
ଵ

, 

β ⊑ (β)୭ଶ
ଵ

, (β)୭ ⊑ (β)୭
ଵ୭ଶ

 . Thererfor  β ⊑ (β)୭
ଵ୭ଶ

 and thus  β is an N3-(bi)*-open set in

(M,B,T1,T2). 

4.6. Remark  

"The converse of above remark is not true in general. In Example 3.4 note that, {(r, {< m1(1, 1, 0) >, < m2(0, 0, 1) >‚ 

< m3(1, 1, 0) >‚ < m4(0, 0, 1) >})} is an N3-(bi)*-open set in (M,B,T1,T2), but not a neutrosophic soft open set in (M,B,T2). 

4.7. Definition  

 If (M,B,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M), then the largest N3-(bi)*-open set contained in β is 

called (bi)*-neutrosophic soft interior of β‚ ((β)(ୠ୧)∗ for short ). i.e.  

        (β)(ୠ୧)∗ = ⊔{(ω): ω is a N3-(bi)*-open set, ω⊑ β}. 

4.8. Theorem  

 Let (M,B,T1,T2) be an N3-(Bi)*-Top space and β ∈ N3(M). Then β is an N3-(bi)*-open set if and only if β =

(β)(ୠ୧)∗. 
Proof 

 Let β be an N3-(bi)*-open set. Then β is itself an N3-(bi)*-open set which contains β. Therefore, β is the 

largest N3-(bi)*-open set contained in β and β = (β)(ୠ୧)∗. Conversely, suppose that β = (β)(ୠ୧)∗,then 

β is the largest N3-(bi)*-open set contained in β. Thus, β is an N3-(bi)*-open set.     
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4.9. Theorem 
 Let β‚ µ ∈ N3(M). 

a) (β)(ୠ୧)∗⊑β.

b) ((β)(ୠ୧)∗)(ୠ୧)∗ = (β)(ୠ୧)∗.

c) (β)(ୠ୧)∗⊑(µ)(ୠ୧)∗; whenever β ⊑ µ.

d) (β ⊓ µ)(ୠ୧)∗ = (β)(ୠ୧)∗⊓(µ)(ୠ୧)∗.

e) (β ⊔ µ)(ୠ୧)∗⊒(β)(ୠ୧)∗⊔(µ)(ୠ୧)∗.

f) (M෩ )(ୠ୧)∗=M෩ . 

g) (∅෩)(ୠ୧)∗=∅෩.

Proof  

(a), (f), ( g), (c) (Straightforward). 

(b) Let µ = (β)(ୠ୧)∗. Then µ = (µ)(ୠ୧)∗(from Theorem 4.8). Thus((β)(ୠ୧)∗)(ୠ୧)∗ = (β)(ୠ୧)∗.

(d) Since, (β ⊓ µ)(ୠ୧)∗⊑(β)(ୠ୧)∗ and (β ⊓ µ)(ୠ୧)∗⊑(µ)(ୠ୧)∗. Then, (β ⊓ µ)(ୠ୧)∗ ⊑ (β)(ୠ୧)∗⊓

(µ)(ୠ୧)∗...(1.

Since, (β)(ୠ୧)∗⊑β and (µ)(ୠ୧)∗⊑µ, then (β)(ୠ୧)∗⊓(µ)(ୠ୧)∗ ⊑ β ⊓ µ. But (β)(ୠ୧)∗⊓ (µ)(ୠ୧)∗ is a N3-

(bi)*-open subset of β ⊓ µ. Therefore, from the detention, we have that (β ⊓ µ)(ୠ୧)∗⊒(β)(ୠ୧)∗ ⊓

(µ)(ୠ୧)∗…(2.

Hence, (β ⊓ µ)(ୠ୧)∗ = (β)(ୠ୧)∗⊓(µ)(ୠ୧)∗.

(e) Since, β ⊑ (β ⊔ µ) and µ ⊑ (β ⊔ µ)‚ therefore (β ⊔ µ)(ୠ୧)∗ ⊒ (β)(ୠ୧)∗and (β ⊔ µ)(ୠ୧)∗ ⊒

(µ)(ୠ୧)∗. So, (β ⊔ µ)(ୠ୧)∗⊒(β)(ୠ୧)∗⊔(µ)(ୠ୧)∗. 
4.10. Example  

  Let us consider β‚ µ‚ γ ∈ N3(M) in Example 2.6. Such that, T2 = {∅෩‚ M෩ ‚ β‚ µ} is an N3-Top on M and 
T1 = {∅෩‚ M෩ ‚ β } is an N3-Top on M. Thus, (M,B,T1,T2) is an N3-Bi-Top space.  

Note that:  1)  (β ⊔ γ)(ୠ୧)∗ ⋢ (β)(ୠ୧)∗⊔(γ)(ୠ୧)∗.        2)   γ ⋢ (γ)(ୠ୧)∗. 

4.11. Definition  

  If (M,B,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M), then the intersection of all N3-(bi)*-closed sets 

containing β is called a (bi)*-neutrosophic soft closure of β‚ ((β)
(ୠ୧)∗

for short). i.e. 

 "(β)
(ୠ୧)∗

= ⊓{(ω): ω is an N3-(bi)*-closed set, β⊑ ω}. 

4.12. Theorem 
 Let β‚ µ ∈ N3(M). 

a) β⊑(β)
(ୠ୧)∗

. 

b) ((β)
(ୠ୧)∗

)

(ୠ୧)∗

= (β)
(ୠ୧)∗

. 

c) (β)
(ୠ୧)∗

⊑(µ)
(ୠ୧)∗

; whenever β ⊑ µ. 

d) (β ⊓ µ)
(ୠ୧)∗

⊑(β)
(ୠ୧)∗

⊓ (µ)
(ୠ୧)∗

. 

e) (β ⊔ µ)
(ୠ୧)∗

=(β)
(ୠ୧)∗

⊔ (µ)
(ୠ୧)∗

.
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f) (M෩ )
(ୠ୧)∗

=M෩ . 

g) (∅෩)
(ୠ୧)∗

=∅෩. 

Proof "Straightforward." 

4.13. Remark 
 In above theorem, it is not necessary the converse of (a) and (d) be true. 

4.14. Example 

 Let us take, β‚ µ‚ γ‚ δ ∈ N3(M) in Example 2.7. 

T2 = {∅෩‚ M෩ ‚ β‚ µ‚ γ} is an N3-Top on M and T1 = {∅෩‚ M෩ } is an N3-Top on M. Thus, (M,B,T1,T2) is an N3-
Bi-Top space.  

Note that: 

1) (β ⊔ γ)(ୠ୧)∗ ⋢ (β)(ୠ୧)∗⊔(γ)(ୠ୧)∗.   2)   γ ⋢ (γ)(ୠ୧)∗.

4.15. Theorem

Let (M,B,T1,T2) be an N3-(Bi)*-Top space and β ∈ N3(M).

a) ((β)େ)(ୠ୧)∗ = ቀ(β)
(ୠ୧)∗

ቁ
େ

. 

b) (β)େ
(ୠ୧)∗

= ൫(β)(ୠ୧)∗൯
େ. 

Proof 

(a) We know that, (β)
(ୠ୧)∗

= ⊓{ω : (ω)େ is a N3-(bi)*-open set, β ⊑ ω}. So, we have that,

ቀ(β)
(ୠ୧)∗

ቁ
େ

= ⊔{(ω)େ: (ω)େ is an N3-(bi)*- open set, (ω)େ⊑(β)େ } = ((β)େ)(ୠ୧)∗. Thus, (൫β
B
൯

C
)

0(bi)∗

=

ቀ(β
B

)
(bi)∗

ቁ
C

. 
(b) If we take, (β)େ instead of β in (a), we get that,

ቀ((β)ୡ)
(ୠ୧)∗

ቁ
େ

= (((β)େ)େ)(ୠ୧)∗ =  ((β))(ୠ୧)∗. So, (β)େ
(ୠ୧)∗

= ൫(β)(ୠ୧)∗൯
େ.

4.16. Theorem 
 If (M,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M), then β is an N3-(bi)*-closed set if and only if β = 

(β)
(ୠ୧)∗

. 
Proof 
 Let β be an N3-(bi)*-closed set, then β is itself an N3-(bi)*-closed set which contains β. Therefore, β is 

the intersection of all N3-(bi)*-closed sets containing β and β = (β)
(ୠ୧)∗

. 

 Conversely, suppose that β = (β)
(ୠ୧)∗

, then β is the intersection of all N3-(bi)*-closed sets containing β. 
Thus, β is an N3-(bi)*-closed set. 
4.17. Definition  

 If (M,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M), then the (bi)*-neutrosophic soft exterior of β‚ (bi)*-

ext(β) for short) is defined as, (bi)*-ext(β) = ((β)େ)(ୠ୧)∗. 
4.18. Definition  

 If (M,B,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M), then the (bi)*-neutrosophic soft boundary of β‚ ((bi)*-

br(β) for short) is defined as, (bi)*-br(β) = (β)େ
(ୠ୧)∗

⊓ (β)
(ୠ୧)∗

.
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4.19. Theorem  

Assume that (M,B,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M). 

 (bi)*-br ((β)େ) = (bi)*-ext(β) ⊔ (β)(ୠ୧)∗.

 (β)
(ୠ୧)∗

= (bi)*-br (β) ⊔ (β)(ୠ୧)∗. 

 (bi)*-br (β) ⊓ (β)(ୠ୧)∗=∅෩.

 (bi)*-br (β)(ୠ୧)∗⊑ (bi)*-br (β).

Proof "Straightforward. 

4.20. Theorem  

 Assume that (M,B,T1,T2) is an N3-(Bi)*-Top space and β ∈ N3(M). 

 β ∈ M(୧)∗ିୗ if and only if (bi)*-br (β) ⊓ β = ∅෩ .

 β ∈ M(୧)∗ିୗେ if and only if (bi)*-br (β) ⊑ β.
Proof "Straightforward. 
" 
Conclusion"" 

""In this research, bitopological-space on the concept of neutrosophic soft set is built", the basic topological 

concepts of this spaces which are N3-(bi)*-open set, N3-(bi)*-closed set, (bi)*-neutrosophic soft interior, (bi)*-

neutrosophic soft closure, (bi)*-neutrosophic soft boundary, (bi)*-neutrosophic soft exterior are defined and 

many examples on this concepts are given. 

"This paper is just a beginning of a new structure and we have studied a few ideas only", "it will be necessary to carry 

out more theoretical research to establish a general framework for the practical application". 
"we hope that the findings in this paper will help researchers enhance and promote the further study on 

neutrosophic soft bitopological-space"."   
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Abst ract

Reliability is one of the most important indicators of the quality of any system or product, ranging from the 
simplest machines as a product in any factory to the most complex system, such as phone or aircraft or missile 
engines, etc. The accuracy of these products indicates their high reliability, and therefore the customer or business 
owner will have confidence in products and will request more quantity. To reach the highest level of accuracy for 
the reliability of any system, the corresponding data must be very accurate. For this purpose, we proposed to add 
accuracy to reliability by adding data that contains more pieces of information about a  specific product or 
problem. We introduced a new logic (Neutrosophic logic) of data instead of classical logic which gives us more 
accuracy of data that contain indeterminacy such as extremist, vague, and unclear data. We defined the 
neutrosophic reliability according to the modern neutrosophic logic by constructing a neutrosophic reliability 
function. We have used the type of series as an application of neutrosophic reliability and introduced some 
examples. Neutrosophic reliability theory can be applied in computer science and decision support systems.  

Keywords:  Neutrosophic probability, Neutrosophic Set, Neutrosophic reliability, Neutrosophic random variable, 
classical reliability, neutrosophic series reliability. 

1.Introduction

In a world full of indeterminacy and therefore the traditional set with its boundaries of truth and false has not infused 
itself with the ability to reflect reality. For this reason, neutrosophic found its place in contemporary research as an 
alternative representation of the real world. Established by Florentin Smarandache [1, 2, 10, 11, 12], neutrosophy 
was presented as the study of "the origin, nature, and scope of neutralities, as well as their interactions with different 
identical spectra". Salama et al. introduced the neutrosophic crisp set theory and many applications in computer 
science and information system in [3-6] and [18-26]. The theory of reliability is considered as a collection of 
measures, mathematical systems, improving methods used to obtain solutions to some problems of prediction, 
estimation, optimal survival probabilities, expected life, or the life distributions of elements of the system. In (2020) 

Introduction to Neutrosophic Reliability Theory 

Kawther F. Alhasan, A.A. Salama, Florentin Smarandache 

Kawther F. Alhasan, A.A. Salama, Florentin Smarandache (2021). Introduction to Neutrosophic 
Reliability Theory. International Journal of Neutrosophic Science 15(1): 52-61 
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Smarandache et al. introduced an approach for the reliability of data contained in a single-valued neutrosophic 
number and its application [32,33]. 

  Reliability theory also considers some of the problems related to calculating the actual probability of providing 
some systems at ( a certain time or at an optional time, or through a portion of the time during) which some systems 
are operating efficiently and accurately. that is, reliability of the system is a measure of a system's ability to operate 
successfully under conditions and for a specific period with the recent development in production systems, products 
have become more complex in their manufacture (a collection of components that work as an integrated system), 
which increases the probability that they will collapse if one component fails in them. One of the most important 
things in maintaining the system's reliability is the use of highly reliable components. In the classic procedure, we 
have encountered many problems in determining the reliability of any electrical system, device, product, etc. For 
example, some data are lost or the value of one of the vehicles is unclear or the basic component on which the 
system works are not identified (indeterminacy), or one of the paths of an electrical or electronic loop may be 
unclear or not specified, however, we need the reliability to be more exact and clear. In this case, we use the modern 
procedure to redefine the reliability according to neutrosophic logic introduced by Smarandache in 1995 [9], as 
neutrosophic logic allows dealing with all previous cases and others with high flexibility. Neutrosophic logic is 
considered as a generalization for the fuzzy logic and intuitionistic fuzzy logic [9, 10], and the fundamental concepts 
of neutrosophic set and Neutrosophic set introduced by Smarandache in [8, 9, 10]. Smarandache extended the fuzzy 
set to the neutrosophic set [10, 11, 12], introducing the neutrosophic components T, I, F, which represent the 
membership, indeterminacy, and non-membership values respectively, where] -0, 1+ [is the non-standard unit 
interval. In this paper, we presented the concept of reliability according to neutrosophic logic and called it 
neutrosophic reliability. Neutrosophic reliability is a new tool and one of the most important indicators in measuring 
the quality and reliability of systems in all fields. 

2. Fundament als

Neutrosophy theory is applied in different aspects of life to solve problems related to indeterminacy, such as 
mathematical, engineering, geography, medicine, psychology [9]. 

Definition 1  [10] 

 Neutrosophy is a generalization of dialectics (that depended on <A> and <anti- A> only), however in neutrosophic 
theory considered every entity <A> tends to be neutralized and balanced by < anti-A> and < non-A> entities - as a 
state of equilibrium. In a classical way <A>, <neut- A>, < anti-A> are disjoint two by two. But, since in many cases 
the borders between notions are vague, imprecise,  <A>, <neut- A>, <anti- A>  and <non- A>  may have common 
parts two by two, or even all three of them as well. 

Definition 2  [8,9] 

 Let U be a universe of discourse; then the neutrosophic set  A is an object having  the form  

  A = {< x: TA (x), IA (x), FA (x) >, x ∈ U}.                              (1) 

Where the functions  T, I, F: U → ]−0,1+[   define respectively the degree of membership, the degree of 
indeterminacy, and the degree of non-membership of the element x ∈ U to the set A with the condition: - 0 ≤ TA 
(x)+IA (x)+FA (x) ≤ 3+. 
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Definition 3  [7,8] 

Let X be a space of points (objects) with generic elements in X denoted by x. An interval neutrosophic set A in X is 
characterized by truth-membership function, indeterminacy-membership function, and falsity-membership function. 
For each point x in X, we have that   TA (x), IA (x), FA (x) subset  [ 0 ,1]. 

Defina tion 4 [12] 

Neutrosophic random variable is a random variable with some indeterminate if suppose Ω is  a sample 
space of neutrosophic random experiment such as � is function define on Ω, such that the domain or 
codomain  or the relationship between them may contain some indeterminacy,  

       �: Ω → ℛ ∪ �    (2)  

Definition 5 [12,14] 

Neutrosophic probability (or likelihood) is a particular case of the neutrosophic measure. It is an estimation of an 
event (different from indeterminacy) to occur, together with an estimation that some indeterminacy may occur, and 
the estimation that the event does not occur. 

��(E) = ( chance that event E occurs, indeterminate chance that E occurs or not, a chance that event does not occur) 

��(E) =(ch(E), ch( neut A) ,ch( anti A)) = (T ,I ,F )                             (3)  

3. Classical Reliability

Reliability function

Let �denote the lifetime of a system, the reliability of that system at the point in time �, that

�(�) = �(� > �), it is called the reliability at the time �, and we can define it as the probability that the time at
which the system could fail is greater than �.

We can find the reliability by cumulative distribution function for a random variable �as:

�(�) =  ∫ �(�)
�

�
 �� = 1 −  �(� > �) = 1 − �(�). [15,30]                          (4) 

Example (1)  Suppose that the company offers a two-year guarantee of its product. So the probability of this product 
operates as expected during the guarantee should be large. As a measure of reliability, probability can be used to 
indicate the life of that product (not failed). Let � is denoted the time of life product will not fail during this period, 
for example, if  R= P(� > 720 days), that is: This standard is a useful indicator for measuring how this product does 
its intended function. 

If R= 0.999, this means that one in a thousand units can fail for two years. 

Example (2) What is the probability of mission success, if seven helicopters are sent on a mission and five must 
succeed for a mission to be successful? Bearing in mind that the probability of a certain type of helicopter surviving 
a mission is 0.9 [15]. 

Solution:-  

If the number of successes is 5 or more, this indicates to the mission will be a success. Hence, the probability of 
mission success or  mission reliability is: 
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��(�) = � �
�

�
� ��

�

���

���� = � �
7

�
� ��

�

���

���� 

=��
�
�0.91�(0.09)� + ��

�
�0.91�(0.09)� + ��

�
�0.91�(0.09)� = 0.9806. 

4. Modern   Reliability (Neutro sophic Reliability)

Let � be a Neutrosophic random variable representing the time of the system failure, and t be the 
interval of the operation of this system. We defined the reliability according to Neutrosophic probability 
as follow:  

��(�) = ∫ ��(�)��
�

�
= ��(� > �), where � can be an interval or set or neutrosophic number maybe 

contain some indeterminacy, and ��(�) is the neutrosophic probability distribution. 

Then,  ��(�) is the neutrosophic reliability with respect to a neutrosophic probability distribution. 

Example (3) Neutrosophic Weibull Distribution [7] 

Alhasan, Florentin (2019), define Weibull distribution according to neutrosophic logic as: 

��(�) =
��

��
��  

��� ����(� ��⁄ )� �  ,� > 0

And the  reliability of neutrosophic Weibull as: 

��(�) = � ��(�)��
�

�

= ��(� > �) = ��(� ��⁄ )� �

Such that, the parameters of Weibull distribution as a  number neutrosophic. that is, it may be a set or interval. 

To  find the neutrosophic reliability, we take the following  example: 

Suppose the product be an electric generator produced with a high capacity of the trademark that has a Weibull 
distribution with parameter α=1, β=[1.5,2].  
Estimate the reliability of the electric generator after the expiration of a five years warranty operation. 
The neutrosophic reliability is: 

��(�) = ��(� ��⁄ )� �  

Since the shape parameter is determined β=[1.5,2]. 

When β= 1.5 and α=1   
Then, ��(5) = ��(� �⁄ )�.�

= 14 × 10�� 

And, 
  when β= 2 and α=1 
��(5) = ��(� �⁄ )�

= 10�� 
 Thus, the reliability of the electric machine operation after 5 years  has the range between [14 × 10��, 10��]. 
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5. System  Neut rosophi c Reliabili ty Modeling

The reliability of the system is depended on the reliability of its components 
and therefore all its subsystems and components have to be studied to design 
and analyze the reliability of a system. This can be done through the 
formulation based on a logical and mathematical model of the system that 
shows the structure function. 
If we take any system that contains vertices and edges, some of them work, 
others fail, and others are indeterminacy. Each component of the system is 
identified as passing from one vertice to another.  

   Figure(1): the system contains indeterminacy 

In figure(1), the graph of the system is a neutrosophic graph since it contains the edge < 5,4> is indeterminacy edge. 

The device is considered successful if there is a successful path from the source to the sink. The device will be 

considered as indeterminacy if at least one path is indeterminacy (unclear) from the source to sink in this case the 

device is unsuccessful. We define the neutrosophic reliability according to modern logic (neutrosophic logic) as 

follow:  

5.1 Stru cture -Functi on of Neutro sophic Reliability 

       The reliability for any system at the time t  is denoted by R(t ), where t < T can be defined as the probability of 
the operation of the system within the interval [0, t]. 

 Let's define the structure-function of neutrosophy reliability based on the classical reliability after adding the new 
component which is the indeterminacy component to truth and falsity components.  

In classical reliability, the structure-function of reliability of a device is: [35] 

 Let  �� ,�� ,… ,   �� ,… ,��  are components of  a system (device), and 

� (�� ,��,… … ,��  ) =  � (�),   

� ∶ {0,1}� →  {0,1} is structure- function defined as: 

 � (�) =  �
1  ������ ��   ������� ��  [0,�]

0 ������ �� ����� ��  [0,�]
� 

The neutrosophic reliability  is a triple function (truth, indeterminacy, falsehood) that indicates the status of the 
device (works, indeterminacy, not work) given the status of each component as in the following: 

� �(�� ,��,… … ,��  ) =  � �(�),  is the neutrosophic structure-function of reliability device. 

 � � ∶ {0,1,�}� →  {0,1,�} 

Such that,  
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 �� = �

1   �� ��������� � ������� ������ ���� [0,�]
�  ��  ��������� � ������������ ������ [0,�]

0  �� ��������� � ����� ������ ���� [0,�]
�  (5) 

The performance of the device is measured by the triple random variables, that is  

 � �(�) =  �

1         ������ ��   ������� ��  [0,�]
�  ������ ��  ����������� ��  [0,�]

0         ������ �� ����� ��  [0,�]
�   (6) 

The reliability of a component ��  is the probability that the component � is working correctly. The component  �  of 
the device is indeterminacy  probability denoted by  ��, and the component failure probability, �� , is the probability 
that the component has failed (not working). And we can denote the triple components as follow: 

  �� = ��{�� = 1} ,   

 �� = ��{�� = 0}   and 

       �� = ��{�� = �}                                                                                 (7) 

 Such that, NP the Neutrosophic Probability [14,12] that an event A occurs is 

        ��(�) = {�ℎ(�),�ℎ(�����),�ℎ(�����)}= (�,�,�),         
where T, I, F  are standard or nonstandard subsets of the nonstandard unitary interval ]-0, 1+[, and T is the chance 
that X occurs, denoted ch(X);  I is the indeterminate chance related to X, ch(neut  X ); and F is the chance that  X 
does not occur,  ant(X).  
Using the reliability neutrosophic to improve system reliability, such as series, parallel, composed series-parallel, or 
mixed.     

5-2 Neutros ophic Reliability Of Seri es System

When we configured the reliability of the system, for example, type series: that is in a series system, a failure of any 
component in the series system, implies failure for the whole system.  

If we have � of the components, which contains some indeterminacy components implies the system is a failure. 
That is if at least one of the components that are indeterminacy is a failure. 

Let  �� ,�� ,… ,   �� ,… ,��  are components of the system (device),  if consider ��  that component is indeterminacy 
maybe more one, and  �=1,2,…, i,..,n. 

The neutrosophic structure-function of  a series system with � components is  

 � �(�) = �� �� … ��. . ��

 ��    Indictor to the indeterminacy component  

Such that    � �(�)  = �� �� … ��. . ��  = (��,��,��), � =  1,2,… ,�       (8) 

If the series system is successful, the structure-function must be equal to (1,1,1), otherwise, it's a failure. To find the 
reliability neutrosophic series its equal to the neutrosophic probability that all the components in the series system 
are true. 
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   If the components N are independent, 

Then    �� = ��� … … . ��� = ��� … … . ��� .    (9) 

  Exampl e (4) 

Suppose a device is series types  contains 4 components and the components have exponential lifetimes and give 
constant failure rate of each component, 0.3, 0.2, 0.1, 0.4 respectively per 20 days,  

In classical reliability,  �(�) = ����     

If we suppose the 1st  component is A, then   �� (�) = ���.�� = 0.00247 

,  the 2nd component is B, then    �� (�) = ���.�� = 0.0183 

 ,  the third  component is C, then    ��(�) = ���.��= 0.1353 

And   the fourth component is D, then    ��(�) = ���.��  

Hence    �(� = 20) = ���.��. ���.��. ���.��. ���.�� = ���.�� = �(��)(��) = 2.06115 × 10�� 

Now, if these components have the neutrosophic exponential distribution and neutrosophic time series [13, 14], in 
this case, we can consider the constant failure rate is an undetermined number or set or internal which forms the 
number Neutrosophic, if the constant failure rate in each component as [0.28,0.32], [0.17, 0.28],[0.09, 0.17], [0.32, 
0.42] respectively per 20 days.  

Therefore, to find  the Neutrosophic reliability of the above components, A, B, C, and D as follow: 

��� (�) = ��[�.��,�.��]�    , if  �� = 0.28  implies that  ��� (�) = �� �.� = 0.00369 

 if  �� = 0.32  implies that  ��� (�) = �� �.� = 0.00166 

��� (�) = ��[�.��,�.��]� , if  �� = 0.17 implies that ��� (�) = �� �.� = 0.03337 

    if  �� = 0.28 implies that ��� (�) = �� �.� = 0.00369 

���(�) = ��[�.��,�.��]� , if  �� = 0.09 implies that ���(�) = �� �.� = 0.16529 

    if  �� = 0.17 implies that ���(�) = �� �.� = 0.03337 

���(�) = ��[�.��,�.��]� , if  �� = 0.32 implies that ���(�) = �� �.� = 0.00166 

        if  �� = 0.41 implies that ���(�) = �� �.� = 2.746 ×  10�� 

hence, ��(� = 20) = [3.38949 ×  10��,5.6318 ×  10���]. 

Similarly, give an example of the neutrosophic reliability of neutrosophic Weibull, see[7]. 
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6. Some Applications

1- In the design of an electric cable Extension, the Direct Current which
contains three, L, N, and E, is the earth, when the Loop Electric Circuit for
work,  we need to only L and N without E, in this case, we consider E is
indeterminacy line.

2- In any neutrosophic graph, see [16,27,28,29,31,33,34] of the network of
any system which contains some indeterminacy edge or indeterminacy
vertices. Then in any graph system which contains some indeterminacy
edge and indeterminacy vertices, this implies reliability Neutrosophic.

3- In an electrical circulation, we notice some time in the power of the
electric current that the electric current does not reach 220 volts, or
very invalid that maybe half the power or the power is excessive, and this means that nothing works in
electronic systems, such as TV, freeze, Air conditioner,.., etc.

4- To ensure that the vehicle engine works at full capacity and gives the required services, there are three
essential factors that we need to consider which are the production of sparks, fuel circulation, and flow of
air. in any one of them does not good work, there is indeterminacy hence reliability Neutrosophic.

5- In the field of medicine, to know to measure the quality of a drug for any disease, we need here very high
and accurate reliability of a drug to ensure people's lives.

6- In psychology,[2] we need high reliability to measure the balance in a personality(Neutrosophic
personality), or in measuring the level of intelligence of children, whenever all the data, including extreme
or abnormal ones, are taken into account, the more accurate the data will be.

7- Reliability In Neutrosophic correlation,  whenever reliability is a measure of data quality and then give a
good Neutrosophic correlation, see [3,4,5]

8- S., H., A.Salama (2016) [6] defined in a neutrosophic graph,  every path from a node to other nodes
(vertices) contains three functions (every component has weight), maybe this weight is value or area or
time and distance.

9- The use of Neutrosophic reliability in knowing the reliability of the devices used for early detection of the
Corona COVID 19 virus, as well as the devices for examination (such as a swab, oximeter, laser, or
thermal devices for measuring temperature), as well as the reliability of data in modeling Scientific
mathematical to study the type of virus or study the virus series.

10- In communications, we need high reliability for quality image compression or message encryption.

Example (5) 

To ensure that the vehicle engine works at full capacity and gives the required services, there are three essential 
factors that we need to consider which are the production of sparks, fuel circulation, and flow of air.   

Production of spark. The spark plugs generate the sparks inside the engine. The engine needs to have an efficient 
quantity of sparks to ensure that the engine works efficiently reliability. If any of the plugs work inefficiently, it will 
negatively impact the overall performance of the engine.  
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Fuel circulation. If there are any issues with fuel intake as a result of a blockage in the fuel injections or 
malfunctioning of any of the injections or shortage in fuel pumping as a result of issues with the fuel pump, it would 
impact the overall performance of the engine as this will impact the quantity of fuel inside the engine.  

6. Conclusions

To obtain a high level of reliability of any product such as the system of machine or medicine, engineering, 
psychology, a measure of statistic or mathematic, etc. we need accurate and whole data. In this paper, we proposed a 
new concept whith neutrosophic reliability that depends on classical data and indeterminacy data together. This 
means that we need to study all data including vague, unclear data.  We defined the structure-function for reliability 
according to the modern logic duch as "neutrosophic logic" that depends on triplet functions (truth, falsehood, 
indeterminacy) and it’s using neutrosophic probability. The series of  neutrosophic reliability was also discussed in 
this paper and some examples were illustrated. 

 For future work, we’ll apply the neutrosophic reliability to improving many methods of reliability in networks, 
(series or parallel or compound ) systems, and many other fields that require high accuracy (high reliability ) in its 
systems. And we can find the neutrosophic reliability for any distribution (Expositional, Gamma, Normal, etc.) and 
any probability function. 
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Scale development is an important part of computational social science research, especially 

for quantitative research. Therefore, this research mostly relies on psychometric research. 

Usually, psychometricians assess human differences by administering test batteries that have been 

found to have accurate measuring properties. Effects from these tests are then evaluated by factor 

analysis and multidimensional scaling to classify latent variables or factors responsible for 

similar trends of correlations. Specific differences for aimed cognitive skills are generally 

represented in terms of factors in those studies [1]. The main objective of those who support the 

psychometric strategy is to allow for the assessment to be made objective. From this standpoint, 

assessment should be based on objective determinations. For this reason, the psychometric 

approach emphasizes scales based on statistical methods such as factor analysis, item analysis, and 
test analysis, and tests its validity and reliability with scientific methods [2]. 

Abstract 

The main concept of neutrosophy is that any idea has not only a certain degree of truth but also a degree of falsity and 

indeterminacy in its own right. Although there are many applications of neutrosophy in different disciplines, the incorporation of 

its logic in education and psychology is rather scarce compared to other fields. In this study, the Satisfaction with Life Scale 

was converted into the neutrosophic form and the results were compared in terms of confirmatory analysis by convolutional 

neural networks. To sum up, two different formulas are proposed at the end of the study to determine the validity of any scale in 

terms of neutrosophy. While the Lawshe methodology concentrates on the dominating opinions of experts limited by a one-

dimensional data space analysis, it should be advocated that the options can be placed in three-dimensional data space in the 

neutrosophic analysis. The effect may be negligible for a small number of items and participants, but it may create enormous 

changes for a large number of items and participants. Secondly, the degree of freedom of Lawshe technique is only 1 in 3D 

space, whereas the degree of freedom of neutrosophical scale is 3, so researchers have to employ three separate parameters of 3D 

space in neutrosophical scale while a resarcher is restricted in a 1D space in Lawshe technique in 3D space. The third distinction 

relates to the analysis of statistics. The Lawhe technical approach focuses on the experts' ratio of choices, whereas the importance 

and correlation level of each item for the analysis in neutrosophical logic are analysed. The fourth relates to the opinion of 

experts. The Lawshe technique is focused on expert opinions, yet in many ways the word expert is not defined. In a 

neutrosophical scale, however, researchers primarily address actual participants in order to understand whether the item is 

comprehended or opposed to or is imprecise. In this research, an alternative technique is presented to construct a valid scale in 

which the scale first is transformed into a neutrosophical one before being compared using neural networks. It may be concluded 

that each measuring scale is used for the desired aim to evaluate how suitable and representative the measurements obtained are so 

that it's content validity can be evaluated. 

1 | Introduction 

An Application of Neutrosophic Logic in the Confirmatory Data 

Analysis of the Satisfaction with Life Scale 

Volkan Duran, Selçuk Topal, Florentin Smarandache 

Volkan Duran, Selçuk Topal, Florentin Smarandache (2021). An Application of Neutrosophic Logic 
in the Confirmatory Data Analysis of the Satisfaction with Life Scale. Journal of Fuzzy Extension and 
Applications 2(3): 262-282 
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Neutrosophical set is a potent field of study that has shown its efficiency and strength in 

various applications. In the meantime, most contributions were theoretical and only validated using 

mathematical examples or limited data sets and did not use other applications in general [37]. When 

the literature is reviewed, although it has many applications in natural sciences, recent works focus on 

the applications of the neutrosophic logic in social sciences [38]. Neutrosophic sets are even more 

suitable than fuzzy sets to represent the possible responses to questionnaires. The former enables 

the individual polled to communicate their genuine ideas and emotions even more precisely, thanks to 

the indeterminacy function of their membership. The benefit of the neutrosophical method is that 

responders may describe their ideas and emotions more correctly, since both indeterminacy and an 

independent membership function of falsehood are taken into account [39], [40]. In this respect, this 

research aims to use the application of the neutrosophic philosophy in social sciences especially in 

education and assessment and evaluation methods of scale development.  

2| Preliminaries 

The numerical properties obtained depending on the group to which a test is applied are generally called 

test statistics. Some of the test statistics can be calculated based on item statistics. In general, the 

test statistics like the average of the test, the average difficulty of the test, the variance of the test, and 

other test statistics are highly useful [3]. Researchers want to show whether there is harmony in an 

instrument's responses. Factor analysis is one of the multivariate approaches that social scientists 

use to validate psychological aspects. When several independent variables are grouped in a single study, 

statistical analysis can become rather challenging. It is often advantageous to group together those 

variables that are correlated with one another. Factor analysis is a technique that allows researchers 

to see whether many variables can be portrayed as a few factors [4]. Factor analysis seeks to identify 

some new specific factors by putting together a small number of factors that aren't connected (a p-

dimensional space) [5]. It is recommended that the scale of the explanatory factor analysis 

process should be tested through confirmatory factor analysis [6]. Confirmatory factor analysis 

could be considered as a way to verify the validity of factor structures. Using this method, it is 

attempted to prove that the observed variables are connected with the hidden variables and hidden 

variables are connected. To investigate these relationships, measurement models were built [7]. 

There are three types of factors for developing a more grounded scale: (i) reliability; (ii) validity; and (iii) 

sensitivity. Reliability refers to the extent to which a measurement of a phenomenon produces consistent 

results as given in Fig. 1 [8]. Therefore, reliability means consistency or stability. Consistency of 

any measurement scale is important for objective scientific research and this concept is related to 

‘agreement’, ‘reproducibility’, and ‘repeatability’ of any measurement. The agreement is the 

closeness of two measurements made on the same subject as opposed to one another.  Reliability 

includes repeatability. Repeatability means measuring accurately the same variable again and again for 

the same circumstances [9]. A test or measure is said to be reliable if there are always identical 

results using the same testing procedure [10]. This means that regardless of how many times the 

measurement has been taken or by whom it has been performed, you will always obtain the same 

value. This means two things: first of all, you should get the same result each time you use the measure, 

and secondly, you should use the measure as many times as possible. This can be an issue in data 

collection when several people are involved [11]. Reproducibility referred to variations in test results 

while tests were performed on subjects on different occasions. The changed circumstances may be 

due to the use of various methods of measurement or instruments, measurement by several observers 

or raters, or measurements during a period in which the variable's error-free level may undergo a non-

negligible change [9]. 

Reliability is, therefore, the level of error-free. As the amount of error decreases as a result of 

measurement, reliability increases, and as the number of errors increases, reliability decreases. 
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Reliability levels of measurement tools are determined by reliability analysis. Reliability is best 

expressed with the reliability coefficient (r) ranging from 0.00 to +1.00. The closer the reliability 

coefficient of the measurement tool is to 1, the higher the reliability, the closer to 0, the lower the 

reliability [12]. 

Fig. 1. Reliability and its components. 

Validity simply means “measure what is intended to be measured” [13]. There are different types of 

validity in social sciences (Fig. 2). Face validity is a subjective judgment on the operationalization of a 

construct whether it is appropriate, unambiguous, simple, and proper [14]. Content validity refers to 

how appropriate and representative the measurements collected are for the desired assessment purpose. 

The representativeness criterion may have two definitions. Quantifying the extent of sampling is one of 

them. The second is the extent to which items reflect the structures of the whole scale [15]. Construct 

is a pattern formed by certain elements that are thought to be related to each other or by the relationships 

between them. The construct validity measurement tool shows to what extent it can accurately measure 

the structure and concept that it claims to measure [12]. Construct validity refers to how well you 

translated or transformed a concept, idea, or behavior that is a construct into a functioning and operating 

reality, the operationalization [14]. Construct validity is used when trying to quantify a hypothetical 

construct, like fear. Convergent and discriminant validity should be used to determine the validity of a 

construct by suggesting that the new measurements are correlated with other measurements of that 

construct and that the dimensions proposed are inappropriate to the construct unrelated, respectively 

[16]. Discriminant validity is the extent to which latent variable a discriminates from other latent 

variables. The Convergent Validity is the degree to which two measurements of a construct are 

connected theoretically [14]. The validity of the criterion is also divided into concurrent and predictive 

validity, where the validity of the criterion deals with the correlation between the current measurement 

and the criterion measurement (such as the gold standard) [16]. Content and construct validity in social 

sciences are defined as credibility/internal validity. Internal validity is related to the question of whether 

the research findings fit with reality in the external world. Internal validity is determined by 

experimenting with specific characteristics and no specific biases. For example, the question of "can we 

recognize people by looking at their faces?" can be examined. This question is answered by asking two 

more questions. First, is the independent variable the cause of the dependent variable? Second, can other 

possible explanations for the relationship between independent variable and dependent be logically 

eliminated? If the answer to these questions is yes, the researchers can claim that the experiment has 

internal validity [17]. Criterion validity is the degree to which it is empirically relevant to the outcome. 

This is something that calculates how well one measure predicts another measure. There are three types 

of criterion validity namely; concurrent validity, predictive and postdictive validity [14]. 

RELIABILITY

CONSISTENCY

AGREEMENT REPRODUCIBILITY REPEATABILITY
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Fig. 2. Subtypes of various forms of validity tests. 

Fig. 3. illustrates how reliability and validity are related. In the first target, the shots reached the same spot, 

but none were effective in reaching the same point. The second target can be regarded as valid but not 

reliable since the points are expanding over the entire place. The third target did not present reliability or 

validity, since they hit spread points. The fourth target stands as an indicator of reliability and validity; the 

shots landed right in the target center and were consistent, right in the target center [18]. 

 Fig. 3. Possible combinations of validity and reliability of measurement instruments [18]. 

Sensitivity is defined as the consensus closeness between randomly selected individual measurements or 

results. It is therefore concerned with the variance of repeated measurements. A measurement tool with 

low variance is more sensitive than those with a higher variance. For example, as a researcher, one wants 

to know what is the smallest sample you can use that will take into consideration the variability in the 

dependent measure and yet be sensitive enough to notice a statistically meaningful difference, whether 

there is one. Our capacity to distinguish significant differences between groups is defined in part by the 

variability of individuals in our sample and how much variability occurs among them. Therefore, less 

variability may contribute to greater sensitivity, and more variability results in less sensitivity [19]. 

As mentioned above, the key aim of developing questionnaires or scales is to collect correct and 

appropriate data. The reliability and validity of scale or questionnaire formats is an important feature of 

testing methodology [14]. The reliable and accurate measurement may, in the simplest intuitive terms, 

indicate that the current measurement is equal with, or follows, the truth. However, it is often impractical 

to require the new measurement to be identical to the truth, either because 1) we accept the measurement 

of a tolerable (or acceptable) error or 2) the truth is simply impossible for us (either because it is not 
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measurable or because it is only measurable with some degree of error) [16]. In this regard, data space 

and data range are the important dimensions of developing scales because it also changes the data type, 

the logical space of the analysis, methodology, and validity and reliability of the results (Fig. 4). 

Fig. 4. Data space and data range determines the validity and reliability of any scale. 

Data space in measurement tools like scale refers to the set of independent options regarding the 

particular item of the scale. For example, on any Likert-type scale, the participant can express only one 

option, so the data space is 1d, whereas on the neutrosophic scale, there are three independent 

dimensions regarding any item as undecided, agree, and disagree.As it can be seen, data space is 1d in 

any Likert-type  scale and 3d in neutrosophic space and if our measurement tools become more 

qualitative, like having items requiring free opinions in a paragraph like choices, it has more dimensions, 

even in ideal cases it has infinite dimensions. However, although n-dimensional space is more 

appropriate for better valid and reliable results, less dimensional spaces have less vagueness in terms of 

the interpretation of the data and they can be more easily statistically handled. Additionally, as the 

dimension of space increases, the objectivity of the measurement tool in terms of measuring common 

characteristics decreases. The advantage of the 3-dimensional neutrosophic scale is that it both seeks 

the agreement, disagreement, and confusion levels of the participants. In daily life, many items are 

encountered to give an opinion about them and we are not restricted within a 1-dimensional space where 

we can only choose one answer regarding whether we agree, disagree or express uncertainly about a 

particular case. However, in the three-dimensional neutrosophic space, participants express both their 

agreement and disagreement level as well as the uncertainty in the items or dimensions of the scale. 

People sometimes think that they understand a statement, but one word in the statement makes us 

uncertain whether it is the "right meaning" intended by the source. Similarly, people sometimes agree 

on some propositions, but just because of the source of the message itself, they also disagree with the 

item. Therefore, the neutrosophic scale is different from the classical Likert-type scales in terms of data 

space (Fig. 5). 

The second important point that distinguishes any measurement tool from each other is the data range. 

The range of a set of data is the difference between the highest and lowest values in the set. Likert-type 

scales are commonly arranged in terms of data, ranging from 3 point Likert-type scales to 10 point 

Likert-type  scales. However, the range of the neutrosophic scale is broader than the Likert-type scales. 

It includes any rational number in a range between 0 and 100. As a result, neutrosophic scales have 

continuous variable types, whereas Likert-type scales have discrete value types in terms of rational 

numbers, so data analysis may differ as a result. This can contribute to increasing the sensitivity of the 

measurement tool in this respect.  This is actually what is called as neutrosophic data in some recent 

researches is the piece of information that contains some indeterminacy. Similar to the classical statistics, 

it can be classified as [39]: 

Validity and Reliability

Analysis

Methodology 

Logic Space

Data Type

Data range

Data space
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 Discrete neutrosophic data, if the values are isolated points. 

 Continuous neutrosophic data, if the values form one or more intervals. 

 Quantitative (numerical) neutrosophic data; for example: a number in the interval [2, 5] (we do not know exactly), 

47, 52, 67 or 69 (we do not know exactly). 

 Qualitative (categorical) neutrosophic data; for example: blue or red (we do not know exactly), white, black or green 

or yellow (not knowing exactly). 

 The univariate neutrosophic data is a neutrosophic data that consists of observations on a neutrosophic single 

attribute. 

Fig. 5. Data space of classical Likert-type scale, neutrosophic scale. 

The third important point of any measurement tool is its logic space. Logic space is important because “in 

any field of knowledge, each structure is composed from two parts: a space, and a set of axioms (or laws) 

acting (governing) on it. If the space, or at least one of its axioms (laws), has some indeterminacy of the 

form (t, i, f) ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic Structure” [41]. Therefore the logic which 

is in our focus, Neutrosophic Logic, is an emerging field where each proposition is reckoned to have the 

proportion (percentage) of truth in a subset T, the proportion of indeterminacy in a subset I, and the 

proportion of falsity in a subset F. A subset of truth (or falsity or indeterminacy) here is considered, rather 

than just a number, since in many situations can not be precisely determined the proportions of truth and 

falsity but we can only approach them. For example, suppose that a statement (or proposition) is between 

32% and 48% true and 59% to 73% false; worse: 32% to 39% or 41 to 52% true (according to various 

observers) and 57% or 62% to 71% false. Subsets are not basic intervals but are any set (open or closed or 

semi-open/semi-closed intervals, discrete, continuous, intersections or unions of previous sets, etc.) 

following the given proposition. The adventure of gaining meaning and mathematical results from 

situations of uncertainty was initiated by Zadeh [20]. Fuzzy sets added a new wrinkle to the concept of 

classical set theory. Elements of the sets have degrees of belongingness (in other words, membership) 

according to the underlying sets. Atanassov defined intuitionistic fuzzy sets including belongingness and 

non-belongingness degrees [21], [32]-[34]. Smarandache suggested neutrosophy as a computational 

solution to the idea of neutrality [22]. Neutrosophic sets consider belongingness, non-belongingness, and 

indeterminacy degrees. Intuitionistic fuzzy sets are defined by the degree of belongingness and non-

belongingness and uncertainty degrees by the 1-(membership degree plus non-membership degree), while 

the degree of uncertainty is assessed independently of the degree of belongingness and non-belongingness 

in neutrosophic sets. Here, belongingness, non-belongingness, and degree of uncertainty (uncertainty), 

like degrees of truth and falsity, can be assessed according to the interpretation of the places to be 

utilized. 
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This indicates a difference between the neutrosophic set and the intuitionistic fuzzy set. The definition 
of neutrosophy is, in this sense, a potential solution and representation of problems in different fields. 
Twodetailed and mathematical fundamental differences between relative truth (IFL) and absolute truth

(NL) are as follows:   

I. NL can distinguish absolute truth (truth in all possible worlds, according to Leibniz) from the relative

truth (truth in at least one world) because NL (absolute truth) = 1+ while IFL (relative truth) = 1. This

has been practiced in philosophy and linguistics (see the Neutrosophy). The standard interval [0, 1] used

in IFL has been extended to the unitary non-standard interval ]− 0, 1+ [ in NL. Parallel distinctiveness

for absolute or relative falsehood and absolute or relative indeterminacy are allowed to consider in NL.

II. There do not exist any limits on T, I, F apart from they are subsets of ]− 0, 1+ [, thus: −0 ≤ inf T + inf I 

+ inf F ≤ sup T + sup I + sup F ≤ 3 + in NL. This permission allows dialetheist, paraconsistent, and

incomplete information to be identified in NL, while these situations impossible to be identified in IFL

since F (falsehood), T (truth), I (indeterminacy) are restricted either to t + i + f = 1 or to t2 + f2 ≤ 1, if T, I, F are

all reduced to the points t, i, f respectively, or to sup T + sup I + sup F = 1 if T, I, F are subsets of [0, 1] in IFL.

Although there are usually three options in Likert-type scales: agreement, disagreement, and vagueness, 

its logic is based on one valued option located on the opposite sides of true and false values. However, 

the neutrosophic set has three independent components, giving more freedom for analysis so that it 

brings different logical operations as well. Therefore, the methodology of the analysis of the data should 

be changed based on the logical structure of the scale. For instance, while factor analysis is used for 

classical Likert-type scales, neural networks are more appropriate for the analysis of the data of the 

neutrosophic scales. Nevertheless, it should be noted that classical analysis and methods can indeed be 

used for neutrosophic scales based on different analysis procedures. To sum up, “a space with an item, 

it means an opinion, another element induces another opinion, another element in turn induces another 

opinion, and so on. The opinion of each element of the structure must be respected. In this way it 

builds a neutrosophic social structure. The result is a very large socio-neutrosophic structure that is 

intended to be filtered, evaluated, analyzed by scientific algorithms” [42]. Hence, we can conclude that 

the validity and reliability of the measurement tools can change based on the logical structure of the 

scale. As a result, in this study, we take The Satisfaction with Life Scale developed by Diener et al. [23] 

and adapted in Turkish by Dağlı and ve Baysal [24] and convert it into neutrosophic form, compare the 

results, and use this analysis to propose new type confirmatory analysis procedures and develop 

neutrosophic scales. There are many ways to evaluate and interpret data. Some recent studies reveal 

important developments based on the interpretation and effective use of data [42]-[44]. 

2.1| The Difference between Lawshe Technique and Neutrosophic 

Scale 

Some argue that the well-known Lawshe technique is very similar to neutrosophic analysis and propose 

what is the reason behind the logic of neutrosophic forms. Initially suggested in a seminal 1975 paper 

in Lawshe [25], the method of Lawshe was common in various areas including health care, education, 

organizational development, personnel psychology, and market research for determining and 

quantifying content validity [26], [27]. 

Lawshe [25] has proposed a quantitative measure to evaluate validity of the content termed as 

the Content Validity Ratio (CVR). The validity ratio of content provides information about validity of 

items. The approach includes the use of an expert panel to evaluate items based on their relevance to 

the scale domain. Each item on a scale is classified as a three-point rating system (1) point is irrelevant, 

2) item is important, but not essential, and 3) item is essential). The percent of experts considering

items significant or essential for the substantive content of the scale is calculated for every element

of a CVR. Also a overall measurement of the validity of the content of the scale may be created. The

index is calculated as a mean of the CVR scores for items [36].
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A quantitative criteria is necessary in the Lawshe approach for determining the validity of content. The 
Content Validity Index and CVR are the criterion for validity used by experts. In order for each item to 
be included in the Scale, the content validity ratio is an internationally accepted standard. For all finished 

items, the Content Validity Index is the average CVR. The CVR should assess whether or not each item 

is essential, and the Content Validity Index should identify the relationships between the scale items and 

scale . The Content Validity Index is calculated by using the degree of agreement of the experts on the 

relevance and clarity of the items. According to CVR values,  

− If all the experts in the panel answered "not necessary" for any item, that item is completely unnecessary. 

− If all of the experts on the panel gave the answer "useful but not necessary" for any item, that item is 

significantly necessary. 

− If the number of experts who give the answer "required" for any item is more than half, it can be commented 

that the item has a certain validity value, and the validity value of the item will increase as the number of experts 

who give the answer "required" increases [35]. 

First of all, the main difference between those two techniques is in their data space. Although there 

are three choices in the Lawshe technique for each item as an a-Essential? b-Useful but not essential? 

Why? c-Not necessary? Why, while membership in neutrosophic logic is very similar to Truth T, 

indeterminacy I, and falsity F, their dimensions are different from each other because there is only one 

option regarding each item, which corresponds to one-dimensional data space, but there are three 

independent data spaces in the neutrosophic form where each data represents a different. According to 

this, whether all participants agree that the information or ability that has been tested is necessary, or 

whether none says it is relevant, we are sure that the component has been added or omitted. If there is 

no majority, the dilemma emerges. There are two hypotheses, both compatible with existing 

psychophysical principles [28]. 

− Every item for which more than half of the experts consider any item to be "essential" has content validity. 

− The wider the extent or degree of its validity is the more experts (above 50 percent) who view an item as 

"essential." 

Therefore, the Lawshe technique focuses on the dominant opinions of the experts which are restricted 

by one-dimensional data space so that it might hide their indeterminacy or disagreement because they 

are weak compared to the other options. It should be pointed out that altough Lawshe technique is not 

strictly restricted by the one dimensional options for experts because it also take their suggestions, in the 

statistical analysis process it focuses on only one options. For a small number of items, the effect of 

this can be negligible, but for a huge number of items, it can make huge differences.  

There is one parameter in the Lawshe technique. Researcher can only choose one option among 

agreement, disagreement, and indeterminacy based on his/her dominant view.  Hence it is actually a 1d 

dimensional function in a 3-dimensional space. There are three parameters in the Neutrosophic scale. A 

researcher must choose three options among agreement, disagreement, and indeterminacy.  Hence it 

is actually a 3d dimensional function in a 3-dimensional space. Therefore, the degree of freedom of the 

Lawshe technique is 1 in 3-d space whereas the degree of freedom of the neutrosophic scale is 3, 

that is, a researcher is restricted in 1-d space in 3d space of possibilities in Lawshe technique whereas 

researchers must use three independent parameters of 3d space in neutrosophic scale (Fig. 6). 
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 Fig. 6. The difference between the space and parameters of the Lawshe technique with neutrosophic 

scale. 

a) There is one parameter in the Lawshe technique. The analysis focus on one option among agreement,

disagreement and indeterminacy based on the dominant view. Hence it is actually a 1d function in 3d

space b) there are three parameters in the Neutrosophic scale. The analysis focuses on three options

among agreement, disagreement and indeterminacy. Therefore, it is a 3D function in the 3D space.

Therefore, for the participation of a huge number of researchers, the dominant view of the researcher 

restricted within 1d space in the Lawshe technique may dismiss the other two parameters that cannot 

be ignored in the actual case.  These hidden variables can lead to huge differences especially in the case 

of the analysis of the options of a huge number of participants and even this cannot be realized. 

However, in neutrosophic logic, it is impossible to dismiss three parameters since the researchers must 

give their opinions on them (Fig. 7). 

The second difference is related to the data range. The Lawshe technique is limited by discrete data that 

can be manipulated with qualitative comments. Although qualitative comments make the item better, in 

terms of generalizability we may not be confident that the item is suitable for its content. Opinions of 

the experts may indicate different content, but the understanding of common participants may indicate 

different content in this respect. 

The third difference is related to statistical analysis. In the Lawshe technique, it is focused on the ratio 

of decisions of the experts, whereas in the neutrosophic logic we focus on the importance and 

correlation level of each item for the analysis. In the Lawshe technique, there is no distinction between 

the importance level and correlation, so it means that the item that is seen as important by experts might 

not be correlated with the content in the actual applications (Fig. 8). In daily life, we wonder about 

particular features and we seek them in particular sets, but the items of the set can be seen as important 

but are not relevant to what we want to seek. For example, we may meet a close relative whom we have 

not seen in a long time and look for him/her in a specific location, and the individuals resembling our 

relative are important to us, but the importance is diminished when we discover that there is no 

correlation between the actual close relative and the similar person resembling him/her. 
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 Fig. 7. There is no hidden variable in the neutrosophic technique but there are hidden variables in 

the Lawshe technique. 

Actually Sartre's vivid description [29] regarding his hypothetical appointment with Pierre can be given as 

a more explicit example for the importance and correlation as follows:  

I have an appointment with Pierre at four o'clock. I arrive at the cafe a quarter of an hour late. Pierre is 

always punctual. Will he have waited for me? I look at the room, the patrons, and I say, "he is not here." 

Is there an intuition of Pierre's absence, or does negation indeed enter in only with judgment? At first sight 

it seems absurd to speak here of intuition since to be exact there could not be an intuition of nothing and 

since the absence of Pierre is this nothing….. 

Similarly Pierre's actual presence in a place which I do not know is also a plenitude of being. We seem to 

have found fullness everywhere. But we must observe that in perception there is always the construction 

of a figure on a ground. No one object, no group of objects is especially designed to be organized as 

specifically either ground or figure; all depends on the direction of my attention. When i enter this cafe to 

search for PIerre, there is formed a synthetic organization of all the objects in the cafe, on the ground of 

which Pierre is given as about to appear. This organization of the cafe as the ground is an original nihilation. 

Each element of the setting, a person, a table, a chair, attempts to isolate itself, to lift itself upon the ground 

constituted by the totality of the other objects, only to fall back once more into the undifferentiation of 

this ground; it melts into the ground. For the ground is that which is seen only in addition, that which is 

the object of a purely marginal attention. Thus the original nihilation of all the figures which appear and 

are swallowed up in the total neutrality of a ground is the necessary condition for the appearance of the 

principle figure, which is here the person of Pierre.  
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This nihilation is given to my intuition; i am witness to the successive disappearance of all the objects 
which i look at-in particular of the faces, which detain me for an instant (could this be Pierre?) and 
which as quickly decompose precisely because they "are not" theface of Pierre. Nevertheless, if i 

should finally discover Pierre, my intuition would be filled by a solid element, i should be suddenly 

arrested by his face and the whole cafe would organize itself around him as a discrete presence. 

 Fig. 8. There is a distinction between the concept of importance and correlation in neutrosophic logic. 

Therefore, when experts make a decision, there is no clear distinction between their decision-making 

process in terms of importance or correlation. 

The fourth one is related to expert opinion. Lawshe technique focuses on expert opinion, but the term 

expert is not clear in many respects. For example, if somebody studies a novel concept that has not been 

studied previously, how an expert decides whether the item is suitable or not besides deciding on its 

grammar or meaning. Furthermore, we need different experts for decision-making about the suitability 

of the item, but the ratio of those experts shouldn’t be equal in the proportion of the decision-making 

process. For example, on some scales, the opinion of a psychologist might be more important than the 

other experts and their contribution should vary by this. However, in the neutrosophic scales, we mainly 

aim at the real participants so that we can understand to the extent whether the item is understood or 

objected or vague. 

3| Methodology 

In the methodology, first, the items of the Satisfaction with Life Scale were converted into the 

neutrosophic form where each item has three independent components referring to the agreement, 

disagreement, and indeterminacy. However, to compare the neutrosophic scale, the classical scale were 

also used as well. Secondly, each item of neutrosophic scale were analyzed in terms of classical scale in 

terms of neural networks and Spearman correlation constant. In the second part of the study, the 

Neutrosophic Life Satisfaction Scale were analyzed in terms of whole structure for confirmatory factor 

analysis. Finally, the decision-making formula were created to decide to remove or keep the items on 

the neutrosophic scale (Fig. 9). 

In this analysis var1 refers to the variable number and a (such as var1a) stands for agreement b stands 

for indeterminacy and c refers to disagreement. In the neural network analysis for the study, for the level 

of the analysis of each item, the input variables are three sub-items of each item on the neutrosophic 

scale and the output variable is each classical scale. Similarly, for the whole structure for confirmatory 

factor analysis, the input variables are all the items on the neutrosophic scale and output variables are 

the classical items of the classical scale. The activation function both for the hidden and output layer 

was chosen as the sigmoid function. The number of hidden layers in each analysis was chosen to be two 

(Fig. 10). Criteria training=batch optimization=gradientdescent was chosen as the criterion. In the 

analysis of the data, independent variable importance analysis was used. 
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Fig. 9. The procedure for the development of neutrosophic scale. 

Fig. 10. The general structure of the Convolutional Neural Network (CNN) we used in this study is a 

three-layer neural network with three input neurons, two hidden layers of four neurons each, and one 

output layer [30]. 

Independent variable importance analysis performs a sensitivity analysis, which computes the importance 

of each predictor in determining the neural network. The importance of an independent variable is a 

measure of how much the network’s model-predicted value varies with different values of the independent 

variable. Normalized importance is just the importance values that are grouped by and represented as 

percentages of importance values. In another words, the importance of an independent variable is a 

measure of how much the network's model-predicted value changes for different values of the independent 

variable. Normalized importance is simply the importance values divided by the largest importance values 

and expressed as percentages. However, it should be underlined that you cannot tell is the “direction” of 

the relationship between these variables and the predicted probability of default” [31], [41]. The importance 

chart is simply a bar chart of the values in the importance table, sorted in descending value of importance. 

It allows to guess that a larger amount of debt indicates a greater likelihood of default, but to be sure, you 

would need to use a model with more easily interpretable parameters [41]. Therefore, the spearman 

correlations between the variables are examined to see the direction and relationship of the items to decide 

whether they are suitable or not. 

3.1| Measurement Tools 

In this study, the satisfaction with Life Scale adapted into Turkish by Dağlı and ve Baysal [24] which was 

developed by Diener et al. [23] was converted into the neutrosophic form and the results were compared 

in terms of confirmatory analysis by convolutional neural networks. One might ask why an adapted version 

of a scale was chosen rather than adapting or developing a new scale in the neutrosophic form. The first 

reason for this is that the method based on neutrosophic logic is a very new one so that in more grounded 
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levels it must be tested rather than directly using it to assess and develop scales. Secondly, the 

neutrosophic form could be compared with the classical one and infer the advantageous and 

disadvantageous sides of the neutrosophic scale in terms of its different aspects. Thirdly, this study is 

aimed at conducting confirmatory analysis so that a particular measurement tool must be used to assess 

whether the neutrosophic form can be used for the analysis. In classical confirmatory analysis, similar 

measurement tools can be used to analyze this, but in this article, the main aim is to use the neutrosophic 

form to conduct confirmatory analysis.  

4| Findings 

In this section, we give our findings. 

4.1| Analysis of Neutrosophic Life Satisfaction Scale in terms of Reliability 

Before using the neutrosophic scale it can be wondered about its reliability before comparing it with the 

classical one. Cronbach's Alpha constant can be used for the neutrosophic scale. However, it should be 

noted that Cronbach's Alpha constant should be used three times for three independent factors as given 

in Table 1 below. 

Table 1. Cronbach's Alpha constant for three dimensions. 

Results show that our neutrosophic scale is also reliable which also supports the reliability of the classical 

scale because Cronbach's Alpha constant is an acceptable level for three dimensions. 

4.2| Analysis of Neutrosophic Life Satisfaction Scale in terms of Items of Validity 

According to Spearman’s rho correlation coefficient, classical variable 1 has a high positive significant 

correlation with var1a which is related to the agreeing level of the participants and it has an average level 

negative significant level of correlation variable 1c which is related to the disagreeing level of the 

participants. Both correlations can be related to the points of a participant who has either a high level 

of life satisfaction or not. Besides, no correlation between vagueness and classical items shows that there 

is no indeterminacy about this item. 

Table 2. Correlation among neutrosophic item 1 and classical item 1. 

Neural network analysis of the items reveals that participants with positive life satisfaction for item 1a 

contribute 100% to classical variable 1 and participants with negative life satisfaction for item 1c 

contribute 26.4% to classical variable 1. This might be related to the differentiation of the number of 

participants having high-level life satisfaction and a low level of life satisfaction. However, it should be 

noted that the vagueness of this item is 57.5% implies that there is a moderate level of confusion about 

this article either because of meaning or the usage of the words or some unknown parameters, although 

there is no correlation between var1b and classical variable. 

Cronbach's Alpha Constant Variables 

0.863   VAR1a VAR2a VAR3a VAR4a VAR5a 
0.777 VAR1b VAR2b VAR3b VAR4b VAR5b 
0.792  VAR1c VAR2c VAR3c VAR4c VAR5c 

VAR1a VAR1b VAR1c 

 VAR1 Correlation Coefficient 0.678** -0.022 -0.417**

Sig. (2-tailed) 0.000 0.768 0.000 

N 189 189 189 
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Table 3. Independent variable ımportance for classical item 1 in terms of neutrosophic items. 

According to Spearman's rho correlation coefficient, classical variable 2a has a significant positive 

correlation with var2a, which is related to the participants' agreeing level, and variable 2c has a negative 

significant low level of correlation, which is related to the participants' disagreeing level. Both correlations 

can be related to the points of participants who have either a high level of life satisfaction or not. Besides, 

no correlation between vagueness and classical items shows that there is no indeterminacy about this item. 

Table 4. Correlation among neutrosophic item 2 and classical item 2. 

Neural network analysis of the items reveals that participants with positive life satisfaction for item 2a 

contribute 100% to classical variable 2 and participants with negative life satisfaction for item 2c contribute 

26.6% to classical variable 2. This might be related to the differentiation of the number of participants 

having high-level life satisfaction and a low level of life satisfaction. However, it should be noted that the 

vagueness of this item is 31.7% implies that there is a weak level of confusion about this article either 

because of meaning or the usage of the words or some unknown parameters, although there is no 

correlation between var1b and classical variable. 

 Table 5. Independent variable importance for classical item 2 in terms of neutrosophic items. 

According to Spearman’s rho correlation coefficient classical variable 3 has a moderate positive significant 

correlation with var3a which is related to the agreeing level of the participants and it has a negative 

significant moderate level of correlation which is related to the disagreeing level of the participants. Both 

correlations can be related to the points of participants who have either a high level of life satisfaction or 

not. However, the weak level of significant correlation between vagueness and classical item shows that 

there is an indeterminacy about this item. 

Independent Variable Importance 

Importance Normalized Importance 

VAR1a 0.544 100,0% 

VAR1b 0.313 57,5% 

VAR1c 0.143 26,4% 

VAR2a VAR2b VAR2c 

 VAR2 Correlation Coefficient 0.732** 0.120 -0.277**

Sig. (2-tailed) 0.000 0.099 0.000 

N 189 189 189 

Independent Variable Importance 

Importance Normalized Importance 

VAR2a 0.632 100,0% 

VAR2b 0.200 31,7% 

VAR2c 0.168 26,6% 
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Table 6. Correlation among neutrosophic item 3 and classical item 3.

According to the results of the neural network analysis for the items, participants with positive life 

satisfaction for item 3a have a 100% contribution to classical variable 3, while participants with negative 

life satisfaction for item 3c have a 38, 0% contribution to classical variable 3. This might be related to 

the differentiation of the number of participants having high-level life satisfaction and a low level of life 

satisfaction. However, it should be noted that the vagueness of this item 3c, which is 21,7%, implies that 

there is a weak level of confusion about this article either because of meaning or the usage of the words 

or some unknown parameters. It should be noted that there is also a weak level significant correlation 

between item 3b and item 3. 

 Table 7. Independent variable importance for classical item 3 in terms of neutrosophic items.

According to Spearman’s rho correlation coefficient classical variable 4 has a high-level significant 

correlation with var4a which is related to agreeing on the level of the participants and it has a negative 

moderate level significant correlation which is related to the disagreeing level of the participants. Both 

correlations can be related to the points of participants who have either a high level of life satisfaction 

or not. Besides, no correlation between vagueness and classical items shows that there is no 

indeterminacy about this item (Table 8). 

Table 8. Correlation among neutrosophic item 4 and classical item 4. 

Neural network analysis of the items reveals that participants with positive life satisfaction for item 4a 

contribute 95.8% to classical variable 4 and participants with negative life satisfaction for item 4c 

contribute 100.0% to classical variable 4. This might be related to the differentiation of the number of 

participants having high-level life satisfaction and a low level of life satisfaction. However, it should be 

noted that the vagueness of this item 4c is 27,0%, implies that there is a weak level of confusion about 

this article either because of meaning or the usage of the words or some unknown parameters, although 

there is no correlation between variable 4b and classical variable (Table 9). 

VAR3a VAR3b VAR3c 

 VAR3 Correlation Coefficient 0.474** -0.178* -0.430** 

Sig. (2-tailed) 0.000 0.014 0.000 

N 189 189 189 

Independent Variable Importance 

Importance Normalized Importance 

VAR3a 0.626 100,0% 

VAR3b 0.136 21,7% 

VAR3c 0.238 38,0% 

VAR4a VAR4b VAR4c 

 VAR4 Correlation Coefficient 0.715** -0.115 -0.475**

Sig. (2-tailed) 0.000 0.115 0.000 

N 189 189 189 
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Table 9. Independent variable importance for classical item 4 in terms of neutrosophic items. 

According to Spearman’s rho correlation coefficient classical variable 5 has a high level of positive 

significant correlation with var5a which is related to the agreeing level of the participants and it has a weak 

level of negative significant correlation which is related to the disagreeing level of the participants. Both 

correlations can be related to the points of participants who have either a high level of life satisfaction or 

not. Besides, there is a weak level significant correlation between variable 5 and variable 5b. Therefore, the 

weak level significant correlation between vagueness and classical item shows that there is an indeterminacy 

about this item (Table 10). 

Table 10. Correlation among neutrosophic item 5 and classical item 5. 

The results of the neural network analysis for the items show that participants with positive life satisfaction 

for item 5a have a 100% contribution to the classical variable 4 and participants with negative life 

satisfaction for item 5c have an 84.2% contribution to the classical variable 4. This might be related to the 

differentiation of the number of participants having high-level life satisfaction and a low level of life 

satisfaction. However, it should be noted that the vagueness of this item 4c is 39,6%, implies that there is 

a weak level of confusion about this article either because of the meaning of the usage of the words or 

some unknown parameters (Table 11). 

Table 11. Correlation among neutrosophic item 5 and classical item 5. 

4.3| Analysis of Neutrosophic Life Satisfaction Scale in terms of whole Structure 

for Confirmatory Factor Analysis 

Neural network analysis results for two scales can be given as follows. It seems that variable 2 and variable 

5 might be problematic when considering the overall contribution of the items for the whole scale since 

variable …b items are related to the vagueness of the participants. (Table 12). 

Independent Variable Importance 

Importance Normalized Importance 

VAR4a 0.430 95,8% 

VAR4b 0.121 27,0% 

VAR4c 0.449 100,0% 

VAR5a VAR5b VAR5c 

 VAR5 Correlation Coefficient 0.706** 0.149* -0.347** 

Sig. (2-tailed) 0.000 0.040 0.000 

N 189 189 189 

Independent Variable Importance 

Importance Normalized Importance 

VAR5a 0.447 100,0% 

VAR5b 0.177 39,6% 

VAR5c 0.376 84,2% 
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Table 12. Independent variable importance for the whole scales. 

5| Discussion and Conclusion 

Content validity refers to how appropriate and representative the measurements collected are for the 

desired assessment purpose. Content validity refers to how appropriate and representative the 

measurements obtained are for the desired assessment purpose. The representativeness criterion may 

have two definitions. Quantifying the extent of sampling is one of them. The second is the extent to 

which items reflect the structures of the whole scale [15]. In this regard, the most obviating factor in 

determining whether an item should be removed or not is to use the participants' vagueness choices for 

each item. In this respect, we have two kinds of variables to formalize our decision-making as correlation 

constant and importance level. If the decision function is labelled as d where r stands for correlation 

constant and I stands for importance level, the function for decision making can be written as like this: 

The interpretation of this formula can be given in Table 1. It should be noted that the correlation constant 

is the absolute value of r as |𝑅|. 

Table 13. The interpretation of the formula D=R*I. 

Independent Variable Importance 

Importance Normalized Importance 

VAR5c 0.162 100.00% 

VAR2a 0.133 82.30% 

VAR5a 0.121 74.70% 

VAR3a 0.1 61.50% 

VAR1c 0.096 59.30% 

VAR2b 0.09 55.70% 

VAR5b 0.083 51.10% 

VAR4a 0.075 46.60% 

VAR3c 0.035 21.50% 

VAR1a 0.032 20.00% 

VAR2c 0.022 13.30% 

VAR4b 0.018 11.20% 

VAR4c 0.015 9.00% 

VAR1b 0.013 7.80% 

VAR3b 0.005 2.90% 

D=R*I. (1) 

The Interpretation of 
The Correlation 
Coefficient (r) 

The Interpretation of 
The Importance Level 

Decision Criteria for Accepting or Rejecting 
The Item where 0<cc<1 

Decision=[correlation coefficient for vagueness 
(r)]*[Importance level for vagueness]  

Very weak correlation or 
no correlation if r <0.2 

Very weak importance level 
if <20% 

if    0≤cc≤20, item acceptable 

Weak correlation between 
0.2-0.4 

Weak importance level 
20%-40% 

if    20<cc≤40, item acceptable 

A moderate correlation 
between 0.4-0.6 

Moderate importance level 
40%-60% 

if    40<cc≤60, the item should be modified or 
removed 

The high correlation 
between 0.6-0.8 

High importance level 
60%-80% 

if    60<cc≤80, the item should be modified or 
removed 

If r>0.8, it is interpreted 
that there is a very high 
correlation 

If 80%>, it is interpreted 
that there is a very high 
importance level 

if    80<cc≤100, the item should be removed 
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The formula 5.1 can be applied  for the findings of the items of the neutrosophic Life Satisfaction Scale 

for confirmatory analysis. Let’s look at our findings based on item levels with the Eq. (1) as given in Table 

14. The results show that this scale is valid because all the items are at an acceptable level.

Table 14. Application of the Eq. (1) for each item. 

In Table 11, independent variable importance for the whole scale shows that variable 2 and variable 5 might 

be problematic when considering the overall contribution of the items for the whole scale since variable 

…b items are related to the vagueness of the participants. However, formula 4.1 shows that although the 

importance level is high, it is not significant, so that all the items on the scale are valid. Finally, one might 

ask that if the item related to vagueness is only focused on, why do we need the other two items regarding 

agreement and disagreement ? Although on this scale such a conflict is not seen, this data can be used to 

evaluate the validity and reliability of the scale. For instance, if both agreement and disagreement items 

have a similar sign to the target item, it can be concluded that this item is also problematic because it 

reflects both agreement and disagreement at the same time, implying that there is confusion about it for 

determining the aimed question. Let label that the correlation of agreement item is α and the correlation 

of disagreement item is β since these items are opposite to each other their correlation should naturally be 

opposite to each other so that α*β=-1. If α*β=+1 it can be concluded that there is a contradiction in this 

item. If the Eq. (1) is modified for these values where i1 is the importance level of the first item and i2 is 

the importance level of the second item as follows: 

Because we don't want to deal with huge numbers in all the importance levels 100 and correlations 1 or-1, 

the multiplication is divided by 100 simply by scaling the value into a more simple form.Let apply the rule 

of our correlation constants in the finding section for each item in Table 3. An opposite sign indicates that 

our data is consistent. Otherwise, the effect of the correlations can be examined and evaluated to be 

whether the item should be removed or not just as in the classification given in Table 13. 

Table 15. Decision matrix evaluating the consistency of the items in 

terms of agreement and disagreement items of the neutrosophic scale. 

5.1| Future Directions 

A neutrosophic scale can be used to confirm the reliability of the classical one because the neutrosophic 

scale is just an extended form of the classical one. The results show that our neutrosophic scale is also 

reliable, which also supports the reliability of the classical scale because Cronbach's Alpha constant is an 

acceptable level for three dimensions. In this respect, it can be understood the Agreement dimension of 

reliability because the classical scale can be extended into the neutrosophic one and assess the closeness of 

Importance Level (i) Correlation Constant (r) Decision Result (d=i*r) 

Var1 57.5 0.22 12.65 Acceptable 

Var2 31.7 0.12 3.804 Acceptable 

Var3 21.7 0.178 3.8626 Acceptable 

Var4 27 0.115 3.105 Acceptable 

Var5 39 0.149 5.811 Acceptable 

i1 *α* i2* β)/100= d. (2) 

i1 Α i2 β i1 *α* i2* β Decision 

Variable 1 100 0.678 26.4 -0.417 -7.4639664 Acceptable 

Variable 2 100 0.732 26.6 -0.277 -5.3935224 Acceptable 
Variable 3 100 0.474 38 -0.430 -7.74516 Acceptable 
Variable 4 95.8 0.715 100 -0.475 -32.536075 Acceptable 
Variable 5 100 0.706 84.2 -0.347 -20.6274844 Acceptable
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two measurements made on the same subject as opposed to one another. The repeatability of the scale 

can be also assessed because the same variable can be measured again and again for the same 

circumstances [9]. The reproducibility of the scale can be also tested because the variations in test results 

can also be tested while tests are performed on subjects on different occasions. 

Validity simply means "measure what is intended to be measured" [13]. To decide whether a scale is 

valid or not, its validity can be compared by comparing similar scales or decisions based on expert 

opinion can be made. In this study, it is offered an alternative method for developing a valid scale where 

first the scale is converted into a neutrosophic one and then they are compared through neural networks. 

It can be inferred that any scale to assess how appropriate and representative the measurements collected 

are for the desired assessment purpose so that its content validity can be evaluated. It can bee can 

understood how well  a concept, idea, or behavior is translated or transformed that is a construct into a 

functioning and operating reality, the operationalization [14] on any scale so that its construct validity 

can be understood. This method can also be used for criterion validity because how well one measure 

predicts another measure can also be calculated. 

This research is limited by Three-Valued Logic but it can be extended higher n-valued logics as well. It 

is limited by classical statistics such as correlation or neural networks but neutrosophic statistics can be 

also used or the whole data. It is limited by investigating the validity in terms of neutrosophy but this 

research can be extended into more broader concepts in education. Additionally, more sophisticated 

formulas can be also developed for subsequent analysis. 

References 

Eliot. J. (1987). The Psychometric Approach. In: Models of Psychological Space. Springer, New York, NY. 

https://doi.org/10.1007/978-1-4612-4788-3_3 

Özgüven, İ. E. (2011). Psychological tests. Ankara: Pdrem Yayınları. (In Torkish). 

https://www.nobelyayin.com/kitap_bilgileri/dosyalar/psiko_test_jen_133413.pdf 

Atılgan, H. (2009). Measurement and evaluation in education. Ankara: Anı Yayıncılık. (In Torkish). 

Fraenkel, J. R. Wallen,  N. E. & Hyun, H. H. (2012). How to design and evaluate research in education. USA: 

The McGraw-Hill Companies. 

Tavşancıl, E. (2010). Measuring attitudes and data analysis with SPSS. Ankara: Nobel Yayıncılık. (In 

Torkish). https://www.nobelyayin.com/kitap_bilgileri/dosyalar/tutum_olclmesi_jen_171512.pdf 

Hinkin, T. (1995). A review of scale development practices in the study of organizations. Journal of 

management, 21(5), 967-988. 

Şencan, H. (2005). Reliability and validity. Ankara: Seçkin Yayıncılık. (In Torkish). 

  Carmines, E. G. & Zeller, R. A. (1979). Reliability and validity assessment. Newbury Park, Ca, Sage. 

 Bartlett, J. W., & Frost, C. (2008). Reliability, repeatability and reproducibility: analysis of measurement 

errors in continuous variables. Ultrasound in obstetrics and gynecology: the official journal of the international 

society of ultrasound in obstetrics and gynecology, 31(4), 466-475.  

 Moser, C. A. & Kalton, G. (1989). Survey methods ın social ınvestigation, Aldershot, Gower. 

 Rosen, A. M. (2019). Effective research methods for any project. USA: Teaching Company. 

Hergüner, S. (2010). Basic concepts of the use of measurement tools. Türkiye Çocuk ve Genç Psikiyatrisi 

Derneği, İstanbul. (In Torkish).  

https://books.google.com/books?id=_AdLDwAAQBAJ&lpg=PA288&ots=ULVqWcWYjr&dq=Sosyal%20v

e%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve

%20Ge%C3%A7erlilik&lr&pg=PA288#v=onepage&q=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%

C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&f=false  

https://www.researchgate.net/profile/Sabri-Herguener-

2/publication/281107511_OLCME_ARACLARININ_KULLANIMI_ILE_ILGILI_TEMEL_KAVRAMLAR/li

nks/55d5ca9508aec156b9a51e75/OeLCME-ARACLARININ-KULLANIMI-ILE-ILGILI-TEMEL-

KAVRAMLAR.pdf 

Florentin Smarandache (author and editor) Collected Papers, VIII

911

https://doi.org/10.1007/978-1-4612-4788-3_3
https://www.nobelyayin.com/kitap_bilgileri/dosyalar/psiko_test_jen_133413.pdf
https://www.nobelyayin.com/kitap_bilgileri/dosyalar/tutum_olclmesi_jen_171512.pdf


 Field, A. P. (2005). Discovering statistics using SPSS. Sage Publications Inc. 

 Taherdoost, H. (2016). Validity and reliability of the research instrument; how to test the validation of 

a questionnaire/survey in a research. How to test the validation of a questionnaire/survey in a research. 

https://ssrn.com/abstract=3205040 

 Slavec, A., & Drnovšek, M. (2012). A perspective on scale development in entrepreneurship 

research. Economic and business review, 14(1). 

 Barnhart, H. X., Haber, M. J., & Lin, L. I. (2007). An overview on assessing agreement with continuous 

measurements. Journal of biopharmaceutical statistics, 17(4), 529-569.  

 Vanderstoep, S. W., & Johnson, D. D. (2008). Research methods for everyday life: Blending qualitative and 

quantitative approaches (Vol. 32). John Wiley & Sons.  

Souza, A. C. D., Alexandre, N. M. C., & Guirardello, E. D. B. (2017). Psychometric properties in 

instruments evaluation of reliability and validity. Epidemiologia e serviços de saúde, 26, 649-659.  

Mertens, D. M.(2010). Research and evaluation in education and psychology: integrating diversity with 

quantitative, qualitative, and mixed methods. USA: Sage. 

Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8, 338–353. 

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96. 

Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic : analytic synthesis & synthetic 

analysis. American Research Press. 

Diener, E. D., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The satisfaction with life scale. Journal 

of personality assessment, 49(1), 71-75.  

Dağlı, A. ve Baysal, N. (2016). Adaptation of satisfaction with life scale into turkish: validity and 

reliability study. Elektronik sosyal bilimler dergisi , 15(59), 1250-1262. 

Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel psychology, 28(4), 563-575.  

Wilson, F. R., Pan, W., & Schumsky, D. A. (2012). Recalculation of the critical values for Lawshe’s 

content validity ratio. Measurement and evaluation in counseling and development, 45(3), 197-210.  

Ayre, C., & Scally, A. J. (2014). Critical values for Lawshe’s content validity ratio: revisiting the original 

methods of calculation. Measurement and evaluation in counseling and development, 47(1), 79-86. 

Gilbert, G. & Prion, S. (2016). Making sense of methods and measurement: Lawshe's content validity 

ındex. Clinical simulation in nursing, 12(12), 530-531. https://doi.org/10.1016/j.ecns.2016.08.002 

Sartre, J. P. (2015). Being and nothingness. Central works of philosophy: the twentieth century: Moore to 

popper, 4, 155.  

Nait Aicha, A., Englebienne, G., Van Schooten, K. S., Pijnappels, M., & Kröse, B. (2018). Deep learning 

to predict falls in older adults based on daily-life trunk accelerometry. Sensors, 18(5), 1654. 

https://doi.org/10.3390/s18051654 

Florentin Smarandache (author and editor) Collected Papers, VIII

912

https://ssrn.com/abstract=3205040
https://doi.org/10.1016/j.ecns.2016.08.002
https://doi.org/10.3390/s18051654
https://books.google.com/books?id=_AdLDwAAQBAJ&lpg=PA288&ots=ULVqWcWYjr&dq=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&lr&pg=PA288%23v=onepage&q=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&f=false
https://books.google.com/books?id=_AdLDwAAQBAJ&lpg=PA288&ots=ULVqWcWYjr&dq=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&lr&pg=PA288%23v=onepage&q=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&f=false
https://books.google.com/books?id=_AdLDwAAQBAJ&lpg=PA288&ots=ULVqWcWYjr&dq=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&lr&pg=PA288%23v=onepage&q=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&f=false
https://books.google.com/books?id=_AdLDwAAQBAJ&lpg=PA288&ots=ULVqWcWYjr&dq=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&lr&pg=PA288%23v=onepage&q=Sosyal%20ve%20Davran%C4%B1%C5%9Fsal%20%C3%96l%C3%A7%C3%BCmlerde%20G%C3%BCvenilirlik%20ve%20Ge%C3%A7erlilik&f=false
https://www.researchgate.net/profile/Sabri-Herguener-2/publication/281107511_OLCME_ARACLARININ_KULLANIMI_ILE_ILGILI_TEMEL_KAVRAMLAR/links/55d5ca9508aec156b9a51e75/OeLCME-ARACLARININ-KULLANIMI-ILE-ILGILI-TEMEL-KAVRAMLAR.pdf
https://www.researchgate.net/profile/Sabri-Herguener-2/publication/281107511_OLCME_ARACLARININ_KULLANIMI_ILE_ILGILI_TEMEL_KAVRAMLAR/links/55d5ca9508aec156b9a51e75/OeLCME-ARACLARININ-KULLANIMI-ILE-ILGILI-TEMEL-KAVRAMLAR.pdf
https://www.researchgate.net/profile/Sabri-Herguener-2/publication/281107511_OLCME_ARACLARININ_KULLANIMI_ILE_ILGILI_TEMEL_KAVRAMLAR/links/55d5ca9508aec156b9a51e75/OeLCME-ARACLARININ-KULLANIMI-ILE-ILGILI-TEMEL-KAVRAMLAR.pdf
https://www.researchgate.net/profile/Sabri-Herguener-2/publication/281107511_OLCME_ARACLARININ_KULLANIMI_ILE_ILGILI_TEMEL_KAVRAMLAR/links/55d5ca9508aec156b9a51e75/OeLCME-ARACLARININ-KULLANIMI-ILE-ILGILI-TEMEL-KAVRAMLAR.pdf


IBM SPSS Neural Networks 21. (2011). IBM SPSS neural networks 21 manual, USA: IBM. 

http://www.sussex.ac.uk/its/pdfs/SPSS_Neural_Network_21 

Çevik, A., Topal, S., & Smarandache, F. (2018). Neutrosophic logic based quantum 

computing. Symmetry, 10(11), 656.  

Smarandache, F. (2005). A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, 

neutrosophic probability: neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. Infinite 

Study.  

Taş, F., Topal, S., & Smarandache, F. (2018). Clustering neutrosophic data sets and neutrosophic 

valued metric spaces. Symmetry, 10(10), 430.  

Doğan, İ. Doğan, N. (2019). An Overview evaluation of the content validity used in scale 

development studies. Turkiye Klinikleri J Biostat, 11(2), 143-51. DOI: 10.5336/biostatic.2019-65953 

Bertea, E., & Zaiţ, P. A. (2013). Scale validity in exploratory stages of research. Management and 

marketing journal, 11(1), 38-46.  

AboElHamd, E., Shamma, H. M., Saleh, M., & El-Khodary, I. (2021). Neutrosophic logic theory and 

applications. Neutrosophic sets and systems, 41, 30-51.  

Smarandache, F. (2019). Introduction to neutrosophic sociology (neutrosociology). Infinite Study.  

Martínez, C. R., Hidalgo, G. A., Matos, M. A., & Smarandache, F. (2020). Neutrosophy for survey 

analysis in social sciences (Vol. 37). Infinite Study. 

 Leyva-Vázquez, M. (2018). Neutrosophy: New advances in the treatment of uncertainty. (In Spanish). 

Pons Publishing House / Pons asbl.  

https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=overtraining-independent-variable-

importance  

Smarandache, F. (2015). Neutrosophic social structures specificities. Social sciences and education 

research review, 2(1), 3-10.  

Khan, Z., Gulistan, M., Kadry, S., Chu, Y., & Lane-Krebs, K. (2020). On scale parameter monitoring 

of the Rayleigh distributed data using a new design. IEEE access, 8, 188390-188400.  

Khan, Z., Gulistan, M., Hashim, R., Yaqoob, N., & Chammam, W. (2020). Design of S-control chart 

for neutrosophic data: An application to manufacturing industry. Journal of intelligent & fuzzy 

systems, 38(4), 4743-4751.  

Khan, Z., Gulistan, M., Chammam, W., Kadry, S., & Nam, Y. (2020). A new dispersion control chart 

for handling the neutrosophic data. IEEE access, 8, 96006-96015. 

Florentin Smarandache (author and editor) Collected Papers, VIII

913

http://www.sussex.ac.uk/its/pdfs/SPSS_Neural_Network_21
file:///C:/Users/jpour/Dropbox/ARTICLES/JFEA/2021/2(3)/10.5336/biostatic.2019-65953
https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=overtraining-independent-variable-importance
https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=overtraining-independent-variable-importance
https://www.researchgate.net/publication/352401174


Abstract: In this paper, we introduced the concept of the dynamic set according to modern logic, is 

neutrosophic logic. We study the neutrosophic dynamic set according to time and random variable 

depended on dynamic set. Neutrosophic dynamic is a dynamic analysis of a sequence of data 

through of time. It used in many problems in life such as a mathematical statistic, philosophy, 

medicine, engineering. Some examples and notes are presented. 

Keywords: Neutrosophic Dynamic Set, Neutrosophic, Crisp Set, Dynamic Set 

1. Introduction

Usually, the neutrosophic set used in available to us information has some indeterminacy [1] and for 

this, its extensions have become widely applied in almost areas, such as decision-making [6,4], 

clustering analysis[2], image processing [5], etc. However, in some complex problems in real- life, 

data may be collected from a different time that needs dynamic decision making for such situations. 

The term ‘dynamic’ can be is a series of decisions required to reach a target or the condition that 

dependent taking of decision and the state of problems. In this paper, we consider dynamic 

Neutrosophic according to time. The time of the employees ’arrival to their place of work, the follow-

up of the students’ arrival at their universities Patient care, and record the development of all health 

changes within a specified time.  

Neutrosophic set [1] 

The part function (indeterminacy function) that Smarandache (1999) added to intuitionistic fuzzy sets 

and it is called Neutrosophic Sets. This theory is a robust generalization of the classic set theory, fuzzy 

set theory by Zadeh, 1965,  intuitionistic fuzzy set theory by Atanassov, 1986.  Neutrosophic sets 

present a new part called  “indeterminacy” differently from other fuzzy sets, and this part makes 

meaning more information than other approaches (Wen & Cheng, 2013).[9]   

Neutrosophic Dynamic Set 

A.A. Salama, K.F. Alhasan, H. A. Elagamy, Florentin Smarandache 

A.A. Salama, K.F. Alhasan, H. A. Elagamy, Florentin Smarandache (2021). Neutrosophic Dynamic 
Set. Neutrosophic Knowledge 3, 5 
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A neutrosophic set contains three parameters (parts), which are: truthiness (T), indeterminacy (I), and 

falsity (F). Truthiness and falsity correspond to membership (𝜇) and non-membership (𝜇~) in 

intuitionistic fuzzy sets. Indeterminacy means that decision-makers assess for a decided indicating 

neutral idea [3].   

Concepts of Neutrosophic sets 

2. Neutrosophy set

Let   A be a set in universal set   U,  represent  A  by 𝜇 A(𝑥), a truth membership function, 𝜇 A(𝑥): 𝑋→ ]

0-, 1+ [,  IA(𝑥), an indetermanced  membership function,  IA(𝑥): 𝑋→ ] 0-, 1+ [  and 𝜇𝐴
~ (𝑥) a falls

membership function, 𝜇𝐴
~ A(𝑥) : 𝑋→ ] 0-,  1+ [ ,   all these functions are real standard or nonstandard

subsets of  ] 0-, 1+[ , where X is non empty set [1, 10] . 

Let Ω is a neutrosophic sample space that contains some or all of the data that are indeterminacy for 

the neutrosophic experiment. Then we can define Neutrosophic random variable X is a function 

defined on Ω. 

This function may contain the undetermined in a domain or codomain of function, denoted by 

 X: Ω → any values ( can be real or indeterminate values), that is, if  𝑢 ∈  Ω then X(u) is equal to me 

or real number. 

3. Dynamic Neutrosophic set

Let 0 ≠T,  A is neutrosophic set , we will define A  with respect to time  t , such that t belong to T, T > 

0 as follows: 

𝐷𝐴𝑡 = {𝜇𝐴 (𝑡), 𝐼𝐴 (𝑡), 𝜇𝐴
~(𝑡); 𝑡 ∈ 𝑇}, this  𝐷𝐴𝑡,  is called dynamic neutrosophic set according to time t.

In the field of technolog  

The dynamic neutrosophic class can be defined as 

Dynamic neutrosophic data sets are a way of narrowing the number of choices with three degress a 

user can make on a form field. By narrowing a user’s choices, they can enter data faster and more 

efficiently. You can also use dynamic neutrosophic data sets as a way of eliminating fields that are 

not necessary for specific situations. 

Dynamic neutrosophic data sets are governed by a master element that dictates what some fields in 

the set will show and how others will behave. Data sets are considered “dynamic” because the values 

of the elements in the set change, depending on what the user chooses in the master element field. 

Dynamic data sets work with pull-down lists and radio buttons.  

4. Dynamic Neutrosophic random variable

Consider Ω is neutrosophic sample space as T, such that T= (t1, t2, .., tn ), where ti  is equal to interval 

or real number  or set or indeterminacy. 

Define the Neutrosophic random variable 𝑋 with respect to t, 𝑋(t), such that 𝑋: Ω → ] 0-,  1+ [  or  I . 
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Some examples of dynamic Neutrosophic 

Example 1:-   

If the time to arrival students to university   between [7:30 -8:30], we can represent the interval of 

time according to time dynamically as follow: 

Computed numbers of the students who arrive at this time [7:30 - 8:30]  surly, 

computed  numbers of  the students who  not the arrival  at this time [7:30 - 8:30] and 

computed numbers of the students whose time arrivals are not determined at this time [7:30 - 8:30]. 

In other words, we can represent the students which arrival at this time [7:30 - 8:30] surly by 𝑋(t); 

   Represented the students who not the arrival at this time [7:30 -  8:30] by 𝑌(t); 

   Represent of the students who time arrivals are not determined at [7:30 - 8:30] by 𝑍(t). 

Now, if suppose the number of  students who came through this time is 50%, the number of students 

who did not arrive at this time 30%, and the number of students who arrive not determined at [7:30 

- 8:30] are 20%. Thus, we can study define dynamical of arrival students according to this time as:

𝐷𝐴𝑡 = {𝑋𝐴 (𝑡), 𝑍𝐴 (𝑡), 𝑌𝐴 (𝑡), ; 𝑡 ∈ 𝑇}, = {50%, 20%, 30%} Such that A represent the arrival students. 

Remark 

In the above example, if to need to study according to t more precisely, where t = [7:30 - 8:30], in this 

case using the exponential distribution for all cases, that is study 𝑋(t)  by exponential distribution 

and  for 𝑌(t), and 𝑍(t), too . 

Example:-2  

Assuming we have a set of people, we want to know whether they have had a virus COVID-19 test 

during a specific time for three months since we can identify people who have an infection or 

immunity to this virus. 

In this case, we consider the set of people as follow:  

Let 𝐴  is the neutrosophic set, some of the peoples are tested denoted by𝑋𝐴 (𝑡), some peoples are not 

tested, denoted by 𝑌𝐴 (𝑡) and other people are undefined who tested or not tested 𝑍𝐴 (𝑡) (that is: error 

of test, unknown who test or not, data of their not identified). 

Let  𝐷𝐴𝑡 = {𝑋𝐴 (𝑡), 𝑍𝐴 (𝑡), 𝑌𝐴 (𝑡), ; 𝑡 ∈ 𝑇} and T= [0 day - 90 day]  

Such that,   𝑋𝐴 (𝑡) represent the person who tests; 

         𝑌𝐴 (𝑡)  represent the person who not test; 

𝑍𝐴 (𝑡) represent the person who doesn’t know about the test. 

If,   𝑋𝐴 (𝑡) =24%; 

 𝑌𝐴 (𝑡)=55%; 

       𝑍𝐴 (𝑡) =67% 

Then   𝐷𝐴𝑡 = { 24%, 55%, 67% } and T= [0 day - 90 day] 
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In some data, if suppose number the person who tests 30%, if suppose number the person who does 

not test 70%, if suppose number the person who does not know about test 60%. Then  𝐷𝐴𝑡 =

{ 30%, 70%, 60% } and T= [0 day - 20 day]. 

Example:-3  

The following represent the neutrosophic dynamic data structure for Security A=ASL (NDS), B=KCR 

(NDS), C=PKI (NDS) and M=A∨B∨C 

M=A∨B∨C C=PKI(NDS) B=KCR(NDS) A=ASL(NDS) No.Nodes 

<0.95, 0.034, 0.15> <0.15, 0.85, 0.15> <0.95, 0.93, 0.07> <0.026, 0.034, 0.94> 25 

<0.2, 0.036, 0.15> <0.2, 0.85, 0.15> <0.021, 0.036, 0.943> <0.021, 0.036, 0.943> 50 

<0.95, 0.038, 0.15> <0.23, 0.85, 0.15> <0.95, 0.85, 0.15> <0.025, 0.038, 0.937> 75 

<0.96, 0.038, 0.08> <0.26, 0.92, 0.08> <0.96, 0.92, 0.08> <0.022, 0.038, 0.939> 100 

<0.96, 0.004, 0.07> <0.3, 0.93, 0.07> <0.96, 0.93, 0.07> <0.015, 0.004, 0.981> 125 

<0.96, 0.004, 0.06> <0.32, 0.94, 0.06> <0.96, 0.94, 0.06> <0.017, 0.004, 0.979> 150 

<0.95, 0.004, 0.06> <0.36, 0.94, 0.06> <0.96, 0.94, 0.06> <0.014, 0.004, 0.982> 175 

<0.96, 0.004, 0.06> <0.4, 0.94, 0.06> <0.96, 0.94, 0.06> <0.023, 0.004, 0.973> 200 

<0.44, 0.004, 0.06> <0.44, 0.94, 0.06> <0.02, 0.004, 0.976> <0.02, 0.004, 0.976> 225 

<0.96, 0.004, 0.06> <0.45, 0.94, 0.06> <0.96, 0.94, 0.06> <0.015, 0.004, 0.981> 250 

5. Discussion

Neutrosophic dynamic is an important technique of study the problem according to time in topology, 

choice, dynamical for some functions, and particularly in mathematical statistics. Neutrosophic 

dynamic is a dynamic analysis of a sequence of data according to time. Its employment in many 

problems in life such as a mathematical statistic, philosophy, medicine, and engineering. 

In this paper, we defined this technique and it can use in the analysis of many problems by 

exponential distribution and distribution with the prior conjugate. 

6. Conclusion and results

1. In this paper we were able to introduce a new concept of the neutrosophic technique is called

a dynamic neutrosophic set, this concept is  very important to applied in many phenomena in

life .

2. The dynamic neutrosophic set  is used in analysis dynamic according to time

3. Application to explain some problems in statistics, choice, topology.
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ABSTRACT

Fuzzy models are present everywhere from natural to artificial structures, embodying the dynamic processes in
physical, biological, and social systems. As real-life problems are often uncertain on account of inconsistent and
indeterminate information, it seems very demanding for an expert to solve those problems using a fuzzy model.
In this regard, we develop a hybrid new model m-polar Diophantine neutrosophic N-soft set which is based on
neutrosophic set and soft set. Additionally, we define several different sorts of compliments on the proposed set.
A proposed set is a generalized form of fuzzy, soft, Pythagorean fuzzy, Pythagorean fuzzy soft, and Pythagorean
fuzzyN-soft sets. In this manner,m-polar Diophantine neutrosophic N-soft set ismore proficient, a versatile model
to oversee vulnerabilities as it likewise survives the downsides of existing models which are to be summed up.
Furthermore, we give the application of the proposed set in multi-attribute decision-making problems by defining
a new choice-value function.

KEYWORDS

Neutrosophic set; soft set; N-soft set; m-polar diophantine neutrosophic N-soft set; decision making

1 Introduction

The idea of a set and set theory are incredible assets in arithmetic. Shockingly, a non-
condition basic set theory for example that the component can either have a place in a set or
not, is frequently not appropriate in genuine a daily existence where numerous unclear terms
as “enormous benefit,” “high pressing factor,” “moderate temperature,” “dependable instruments,”
“safe conditions,” and so forth are broadly utilized. Tragically, such loose depictions cannot be
sufficiently taken care of by ordinary mathematical tools.

Decision-Making Problems under the Environment of m-Polar 

Diophantine Neutrosophic N-Soft Set 

Shouzhen Zeng, Shahbaz Ali, Muhammad Khalid Mahmood, Florentin Smarandache, 

Daud Ahmad 

Shouzhen Zeng, Shahbaz Ali, Muhammad Khalid Mahmood, Florentin Smarandache, Daud Ahmad 
(2021). Decision-Making Problems under the Environment of m-Polar Diophantine Neutrosophic N-
Soft Set. Computer Modeling in Engineering & Sciences, Special Issue: Advances in Neutrosophic 
and Plithogenic Sets for Engineering and Sciences: Theory, Models, and Applications, 26; DOI: 
10.32604/cmes.2022.017397 
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In fuzzy theory, a recently characterized model by and large beats the downsides of recently
characterized models. Because of uncertainty and weaknesses issues in numerous days by day life
issues, routine math is not continuously accessible. To manage such issues, different methods such
as the theory of possibility, rough set assumption, and fuzzy set theory has been considered as
elective models and to keep away from weaknesses too. Inopportunely, the greater part of the
options such as science have their own disadvantages and downsides. For example, a large portion
of the words like expert, amazing, best, significant is most certainly not quantifiable and uncertain.
The rules for words like superb, best, famous, and so forth, hesitate from individual to person.

To deal with such sort of equivocal and unsure data, Zadeh [1] investigated the idea of fuzzy
set which is mapping from a universal set X to [0, 1]. Atanassov [2] proposed the fortuitous of
intuitionistic fuzzy sets as an expansion of fuzzy sets by presenting the idea of membership and
non-membership grades. Molodtsov [3] began the thought of soft set as a mathematical model
to oversee vulnerabilities. The chance of soft set has another objective for the researchers due to
them utilizes in a wide range of exuberant issues.

Ali et al. [4] presented some new operations on soft set theory. They introduced the ideas
of expanded and restricted union and intersections in detail. In [5–7], Yager introduced and
investigated several relations on Pythagorean fuzzy set. Peng et al. [8] discussed certain results
on Pythagorean fuzzy sets and also defined the Pythagorean fuzzy number in. Peng et al. [9] set
up some Pythagorean fuzzy data measures and their applications. Peng et al. [10] proposed some
new approaches to manage single-regarded neutrosophic MADM reliant on MABAC, TOPSIS,
and new closeness measure with score function. In [11–21], many decision-making problems and
algebraic structures are discussed over different fuzzy environments.

Smarandache’s introduced neutrosophic set and then proposed many operation on it [22–24].
Neutrosophic set (NS) based on three parameters namely, membership, indeterminacy, and non-
membership. Wang et al. [25] propsed the concept of single valued neutrosophic sets. Deli
et al. [26] introduced the idea of bipolar neutrosophic set and their applications in multi-criteria
decision making problems in. Fatimah et al. [22] introduced the notion of an N-soft set which
is an extension of a soft set. Many problems related to decision-making are discussed by using
different kind of environments in [27–30].

There are many problems regarding decision-making that need to improveby investigating
a new set or model. In this regard, we develop a proposed setthat provides a more batter
approximation than existing sets. The proposed work is arranged as follows. In Section 2, some
preliminary concepts are given to understand the proposed work. In Section 3, we define the
notion of m-polar Diophantine neutrosophic N-soft set and then define some operations on it. In
Section 4, we discuss different types of compliments on the proposed set. We give the comparison
table and application in multi-attribute decision-making problems in Section 5.

2 Preliminaries

In this section, we give some preliminary concepts related to previous existing sets.

Definition 2.1. [1] A fuzzy set is a mapping μ from universal set X to [0, 1] such that, μ : X →
[0, 1]. The fuzzy set can be written in the form of

FX = {(x,μF (x)) : x ∈X} .
Definition 2.2. [2] An intuitionistic fuzzy set on universal set X is defined as

IX = {(x,μI (x) , νI (x)) : x ∈ I} ,
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where μI : X → [0, 1] and νI : X → [0, 1] are the membership and non-membership functions,
respectively.

Definition 2.3. [31] The m-polar fuzzy set on a universal set M is a mapping μ : M → [0, 1]m

and m(X) is the collection of all m-polar fuzzy set on M.

Definition 2.4. [3] The soft set is defined by the set valued mapping ϕ : I → 2T , where I
denotes the set of parameters and 2T is the power set of T . The soft set can be written as,

ϕI = (ϕ,I)=
{
(t,ϕ (t)) : t ∈ I,ϕ (t) ∈ 2T

}
.

Definition 2.5. [32,33] A fuzzy soft set is defined as

ΓS = {(t,γS (t)) : t ∈T ,γS ∈F (L)} ,
where γS : T → F (L) and F (L) is the collection of all fuzzy sets on L and T is the set of
parameters with S⊆T .

Definition 2.6. [34] Let X be the crisp set. Intuitionistic fuzzy soft set (IFSS) is interpreted by
multi-valued mapping ψ : B→ IFX , where IFX represents the collection of all IF-subsets defined
over crisp set X (where B⊆X ). Thus the IFSS can be expressed as

�B =
{
(e,ψB (e)) : e ∈X ,ψB ∈ IFX

}
.

Definition 2.7. [5] Let X be the crisp set. A Pythagorean fuzzy set (PFS) can be expressed as

P=
{
<ρ,μP (ρ) , νP (ρ) > : 0≤μ2

P (ρ)+ ν2P (ρ)≤ 1,ρ ∈X
}
,

where μP : X → [0, 1] and νP : X → [0, 1] with the condition that 0≤μ2
P (ρ)+ ν2P (ρ)≤ 1, is known

as the degrees of membership and non-membership of ρ ∈X to the set P.

Definition 2.8. [35] The score function and accuracy function of Pythagorean fuzzy number
α = (μα, να) over X is defined as, S (γ )=μ2

γ − ν2γ and Q (γ )=μ2
γ + ν2γ , with S−1 ≤ γ ≤ 1 and 0

≤Q(γ ) ≤ 1.

Definition 2.9. [36] The ranking function of Pythagorean fuzzy number γ = (μγ , νγ ) over X
is defined as

R (γ )= 1
2
+ rγ

(
1
2
− 2θγ

π

)
,

where rγ =
√
μ2
γ + ν2γ is called commitment strength and θγ is the angle between rγ and μγ . The

direction of commitment dγ is dγ = 1− 2θγ
π

, where μγ = rγ cosθγ , νγ = rγ sinθγ .

Definition 2.10. [37] Let X be a non-empty universal set, S be the set of attributes, and Y ⊆ S.
Let D= {0, 1, 2,. . ., N − 1} be set of grading. The triple (Fp, Y, N) is said to be a Pythagorean

fuzzy N-soft set on X , if Fp is a mapping Fp : Y → 2X×D × PFN, in which F : Y → 2X×D, and
P : Y → PFN, where PFN is Pythagorean fuzzy number. That is μ : Y → [0, 1] and ν : Y → [0, 1]
such that

0≤μ2
y (x)+ ν2y (x)≤ 1, ∀y ∈Y , ∀x ∈X .
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Hence,(
Fp,Y ,N

)= ((x,dy) , (μy (x) , νy (x))) , dy ∈D.
Definition 2.11. [38] A neutrosophic fuzzy set (NS), S over the universal set X is defined as

S= {(ψ ,μS (ψ) ,λS (ψ) , νS (ψ))} ,
where mappings μS, λS, νS stand for degree of truth, degree of indeterminacy, degree of falsity.

μS,λS, νS ∈ [0, 1] , with 0�μS+λS+ νS � 3.

3 m-Polar Diophantine Neutrosophic N-Soft Set

Definition 3.1 Let L= {0, 1, 2,. . ., N − 1} be the set of grades where N ∈ {2, 3, 4, . . .}. If X
is a non-emty set and E is the family of attributes. Let A be a non-empty subset of E. A m-poler

Diophantine neutrosophic N-soft (MPDNNS) set on X is denoted as (�, A, m, N) or �
(m,N)
A , where

� : A→ P
(
PFX ×L

)
is a mapping (where PFX is the aggregate of all Diophantine neutrosophic

subsets over X ). That is

(�,A,m,N)=
{(
e,
{ 〈ρ, le (ρ)〉
(μ1 (ρ) ,μ2 (ρ) , . . . ,μm (ρ) ;λ1 (ρ) ,λ2 (ρ) , . . . ,λm (ρ) ; ν1 (ρ) , ν2 (ρ) , . . . , νm (ρ)

})
|e ∈A,ρ ∈X , le (ρ) ∈L

}
,

where μe : X → [0, 1]m , νe : X → [0, 1]m , and λe : X → [0, 1]m are mappings along with the property,

0≤
m∑
i=1

μmi (ρ)+
m∑
i=1

νmi (ρ)+
m∑
i=1

λmi (ρ)≤ 3m.

In particular, μi(ρ) represents the truth-membership, νi(ρ) denotes degree of falsity-
membership, λi(ρ) is the degree of indeterminacy and le(ρ) denotes the grading value of the
element ρ ∈X corresponding to the attribute e∈A to the set (�, A, m, N). If we write aij =μei(ρj),
bij = νei

(
ρj
)
,dij = λei (ρj), and cij = lej

(
ρj
)
where i runs from 1 to m and j runs from 1 to n then

the MPDNNS set �
(m,N)
A may be represented in tabular form as

�
(m,N)
A e1 e2 · · · em

ρ1 〈c11, (a11,a21, · · · ,am1; 〈c12, (a11,a21, · · · ,am1; 〈c1m, (a11,a21, · · · ,am1;
d11,d21, · · · ,dm1; d11,d21, · · · ,dm1; · · · d11,d21, · · · ,dm1;
b11,b21, · · · ,bm1)〉 b11,b21, · · · ,bm1)〉 · · · b11,b21, · · · ,bm1)〉

ρ2 〈c21, (a12,a22, · · · ,am2; 〈c22, (a12,a22, · · · ,am2; 〈c2m, (a12,a22, · · · ,am2;
d12,d22, · · · ,dm2; b12,b22, · · · ,bm2; · · · b12,b22, · · · ,bm2;
b12,b22, · · · ,bm2)〉 b12,b22, · · · ,bm2)〉 · · · b12,b22, · · · ,bm2)〉

...
...

...
. . .

...

ρn 〈cn1, (a1n,a2n, · · · ,amn; 〈cn2, (a1n,a2n, · · · ,amn; 〈cnm, (a1n,a2n, · · · ,amn;
d1n,d2n, · · · ,dmn; d1n,d2n, · · · ,dmm; · · · d1n,d2n, · · · ,dmn;
b1n,b2n, · · · ,bmn)〉 b1n,b2n, · · · ,bmm)〉 · · · b1n,b2n, · · · ,bmn)〉
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and in matrix form as

(�,A,m,N)

= [〈cij, (aij,dij,bij)〉]n×m

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈c11, (a11,a21, · · · ,am1; 〈c12, (a11,a21, · · · ,am1; 〈c1m, (a11,a21, · · · ,am1;

d11,d21, · · · ,dm1; d11,d21, · · · ,dm1; · · · d11,d21, · · · ,dm1;

b11,b21, · · · ,bm1)〉 b11,b21, · · · ,bm1)〉 · · · b11,b21, · · · ,bm1)〉
〈c21, (a12,a22, · · · ,am2; 〈c22, (a12,a22, · · · ,am2; 〈c2m, (a12,a22, · · · ,am2;

d12,d22, · · · ,dm2; d12,d22, · · · ,dm2 : · · · d12,d22, · · · ,dm2;

b12,b22, · · · ,bm2)〉 b12,b22, · · · ,bm2)〉 · · · b12,b22, · · · ,bm2)〉
...

...
. . .

...

〈cn1, (a1n,a2n, · · · ,amn; 〈cn2, (a1n,a2n, · · · ,amn; 〈cnm, (a1n,a2n, · · · ,amn;
d1n,d2n, · · · ,dmn; d1n,d2n, · · · ,dmm; · · · d1n,d2n, · · · ,dmn;
b1n,b2n, · · · ,bmn)〉 b1n,b2n, · · · ,bmm)〉 · · · b1n,b2n, · · · ,bmn)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This matrix is called m-Polar Diophantine neutrosophic N-Soft matrix or shortly MPDNNS

matrix.

Note: We use the expression xn + yn = zn in Definition 3.1, which is similar to Diophantine
equation. Thats why we call m-polar Diophantine neutrosophic N-soft set instead of m-polar
neutrosophic N-soft set.

Definition 3.2. An MPDNNS set �
(m,N)
A over X is known as null MPDNNS set, symbolized as

�
(m,0)
φ; and defined as

�
(m,0)
φ =

{(
e,
{ 〈ρ, lφ(ρ)〉
(μφ1(ρ),μφ2(ρ), · · · ,μφm(ρ);λφ1(ρ),λφ2(ρ), · · · ,λφm(ρ); νφ1(ρ), νφ2(ρ), · · · , νφm(ρ)

})

|e ∈A,ρ ∈X , lφ(ρ) ∈L

}
,

where, μφi (ρ) = 0, λφi (ρ) = 1, νφi (ρ) = 1, 1 ≤ i≤m, and lφ(ρ) = 0.

Definition 3.3. An MPDNNS set �
(m,N)
A over X is known as absoluteMPDNNS set, symbolized

as �
(m,N−1)
E and defined as

�
(m,N−1)
E =

{(
e,

{
〈ρ, lE (ρ)〉(

μE1 (ρ) ,μE2 (ρ) , · · · ,μEm (ρ) ; νE1 (ρ)
)
, νE2 (ρ) , · · · , νEm (ρ)

})
:

e ∈A,ρ ∈X , lE (ρ) ∈L

}
,

where μEi (ρ) = 1, λEi (ρ) = 0, νEi (ρ) = 0, 1 ≤ i≤m, and lφ(ρ) =N − 1.
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Example 3.1. Let X = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7}, E = {e1, e2, e3} and L = {0, 1, 2,. . ., 5}.
Suppose that A= {e1, e3}. Then

�
(3,6)
A = {(e1, {〈ρ1, 3, (.3, .4, .5; .5, .4, .3; .1, .6, .4)〉 , 〈ρ4, 4, (.4, .3, .1; .4, .4, .2; .3, .4, .5)〉 ,

〈ρ7, 5, (.6, .2, .55; .3, .1, .2; .4, .3, .5)〉}), (e3, {〈ρ2, 2, (.2, .1, .7; .6, .6, .5; .8, .4, .6)〉,
〈ρ3, 1, (.5, .6, .7; .7, .5, .4; .4, .3, .1)〉, 〈ρ5, 2, (.4, .6, .2; .7, .3, .5; .7, .5, .3)〉})}

is a 3PDN6S set over X . The tabular representation of �
(3,6)
A is

�
(3,6)
A e1 e2 e3

ρ1 〈3, (.3, .4, .5; .5, .4, .3; .1, .6, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
ρ2 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈2, (.2, .1, .7; .6, .6, .5; .8, .4, .6)〉
ρ3 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈1, (.5, .6, .7; .7, .5, .4; .4, .3, .1)〉
ρ4 〈4, (.4, .3, .1; .4, .4, .2; .3, .4, 0.5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
ρ5 〈0, (0, 0, 0; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈2, (.4, .6, .2; .7, .3, .5; .7, .5, .3)〉
ρ6 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
ρ7 〈5, (.6, .2, .55; .3, .1, .2; .4, .3, 0.5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

The corresponding 3PDN6S matrix is (�, A, 3, 6) = [aij, dij, bij]7×3

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈3, (.3, .4, .5; .5, .4, .3; .1, .6, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈2, (.2, .1, .7; .6, .6, .5; .8, .4, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈1, (.5, .6, .7; .7, .5, .4; .4, .3, .1)〉
〈4, (.4, .3, .1; .4, .4, .2; .3, .4, 0.5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈2, (.4, .6, .2; .7, .3, .5; .7, .5, .3)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈5, (.6, .2, .55; .3, .1, .2; .4, .3, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Definition 3.4. Let �

(m,N1)
A and �

(m,N2)
B be MPDNNS sets over X . Then �

(m,N1)
A is MPDNNS

subset of �
(m,N2)
B , i.e., �

(m,N1)
A ⊆̃ �

(m,N2)
B , if

• A⊆B,

• N1 ≤N2,

• μi,A(ρ) ≤μi,B(ρ), 1 ≤ i≤m,

• λi,A(ρ) ≥ λi,B(ρ), 1 ≤ i≤m,

• νi,A(ρ) ≥ νi,B(ρ), 1 ≤ i≤m, and

• lA(ρ) ≤ lB(ρ).

It is worth mentioning that �
(m,N1)
A ⊆̃ �

(m,N2)
B it is not necessary each element of �

(m,N1)
A is

also in �B
(m,N2).
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Definition 3.5. Let �
(m,N1)
A and �

(m,N2)
B be MPDNNS sets over X . Then �

(m,N1)
A is MPDNNS

equal of �
(m,N2)
B i.e., �

(m,N1)
A =̃ �

(m,N2)
B , if

• A=B,

• N1 =N2,

• μi,A(ρ) =μi,B(ρ), 1 ≤ i≤m,

• λi,A(ρ) = λi,B(ρ), 1 ≤ i≤m,

• νi,A(ρ) = νi,B(ρ), 1 ≤ i≤m, and

• lA(ρ) = lB(ρ).

Proposition 3.1. If �
(m,N)
A is any MPDNNS set over X , then

(i) �
(m,0)
φ ⊆̃ �

(m,N)
A ,

(ii) �
(m,N)
A ⊆̃ �

(m,N−1)
E .

Proof.

(i) The truth-membership, degree of indeterminacy and degree of falsity always fall in [0, 1]
according to Definition 3.1 of MPDNNS set. So, 0 ≤μi,A(ρ), νi,A(ρ) ≤ 1, λi,A (ρ)≤ 1, and grading
value 0≤ lA (ρ), ∀ρ ∈X and 1 ≤ i≤m.

Thus, it follows from Definitions 3.4 and 3.2 of null MPDNNS set �
(m,0)
φ . Hence,

�
(m,0)
φ ⊆̃ �

(m,N)
A .

(ii) Clearly, μi,A(ρ) ≤ 1, νi,A(ρ) ≥ 0 and νi,A(ρ) ≥ 0 and grading value lA(ρ) ≤N− 1 for all
ρ ∈ X and 1 ≤ i ≤ m. Thus, it follows from Definitions 3.4 and 3.3 of absolute MPDNNS set.

Hence, �
(m,N)
A ⊆̃ �

(m,N−1)
E .

Proposition 3.2. If �
(m,N)
A , �

(m,N)
B and �

(m,N)
C are MPDNNS sets over X , then

(i) �
(m,N)
A ⊆̃ �

(m,N)
A .

(ii) �
(m,N)
A ⊆̃ �

(m,N)
B and �

(m,N)
B ⊆̃ �

(m,N)
C ⇒�

(m,N)
A ⊆̃ �

(m,N)
C .

Definition 3.6. Let �A
(m,N1) and �B

(m,N2) be MPDNNS sets over X . Then their extended union

is defined as �
(m,N)∗
C =�

(m,N1)
A ∪̃E�

(m,N2)
B ,

�
(m,N)∗
C

=
{(

e,
{ 〈ρ, lC(ρ)〉
(μ1,C(ρ),μ2,C(ρ), · · · ,μm,C(ρ);λ1,C(ρ),λ2,C(ρ) · · · ,λm,C(ρ); ν1,C(ρ), ν2,C(ρ) · · · , νm,C(ρ)

})

|e ∈C,ρ ∈X , lC(ρ) ∈L

}
where,

• C =A∪B,
• (m, N)∗ = (m, max{N1, N2}),
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• μC(ρ) = max{μi,A(ρ), μi,B(ρ)}, 1 ≤ i≤m,

• λC(ρ) = min{λi,A(ρ), λi,B(ρ)} 1 ≤ i≤m,

• νC(ρ) = min{νi,A(ρ), νi,B(ρ)} 1 ≤ i≤m, and

• lC(ρ) = max{lA(ρ), lB(ρ)} ∀ e ∈C.
Definition 3.7. Let �

(m,N1)
A and �

(m,N2)
B be MPDNNS sets over X . Then their restricted union

is defined as �
(m,N)
D =�

(m,N1)
A ∪̃R�

(m,N2)
B ,

�
(m,N)
D

=
{(

e,
{ 〈ρ, lD(ρ)〉
(μ1,D(ρ),μ2,D(ρ), · · · ,μm,D(ρ);λ1,D(ρ),λ2,D(ρ) · · · ,λm,D(ρ); ν1,D(ρ), ν2,D(ρ) · · · , νm,D(ρ)

})

|e ∈D,ρ ∈X , lD(ρ) ∈L

}
where,

• D=A∩B,
• (m,N) = (m, max{N1, N2}),

• μD(ρ) = max{μi,A(ρ), μi,B(ρ)}, 1 ≤ i≤m,

• λD(ρ) = min{λi,A(ρ), λi,B(ρ)} 1 ≤ i≤m,

• νD(ρ) = min{νi,A(ρ), νi,B(ρ)} 1 ≤ i≤m, and

• lD(ρ) = max{lA(ρ), lB(ρ)} ∀ e ∈D.
Example 3.2. Let X = {ρi: i = 1, 2,. . ., 8}, E = {ei: i = 1, 2, 3} and L = {0, 1, 2,. . ., 12}.

Assume that A= {e1, e3} ⊆E and B= {e2, e3} ⊆E. Then

�
(3,13)
A = {(e1, {〈ρ2, 11, (.1, .9, .7; .5, .3.2; .4, .6, .8)〉, 〈ρ5, 9, (.2, .1, .2; .3, .4, .5; .6, .7, .8)〉,

〈ρ7, 8, (.3, .4, .5; .6, .7, .6; .5, .4, .3)〉}), (e3, {〈ρ3, 3, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉,
〈ρ4, 6, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉, 〈ρ6, 5, (.6, .5, .6; .7, .8, .9; .8, .7, .6)〉})}

is a 3PDN13S set over X . The corresponding �
(3,13)
A matrix is

�
(3,13)
A = [〈ci, (aij;dij;bij)〉]8×3
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈11, (.1, .9, .7; .5, .3, 0.2; .4, .6, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉
〈9, (.2, .1, .2; .3, .4.5; .6, .7, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.6, .5, .6; .7, .8.9; .8, .7, .6)〉
〈8, (.3, .4, .5; .6, .7, .6; .5, .4, .3)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

�
(3,10)
B = {(e2, {〈ρ1, 9, (.7, .6, .4, : .2, .1, .4; .3, .5, .7)〉, 〈ρ4, 6, (.8, .6, .5; .6, .4, .7; .5.8, .9)〉,

〈ρ8, 8, (.1, .3, .4; .8, .7, .4; .7, .3, .1)〉}), (e3, {〈ρ2, 1, (.2, .1, .3; .6, .7, .9; .7, .3, .6)〉,
〈ρ5, 5, (.1, .2, .4; .8, .7, .1; .8, .3, .7)〉, 〈ρ7, 3, (.2, .3, .6; .9, .8, .7; .8, .7, .5)〉})}

is a 3PDF10S set over X . The corresponding �
(3,10)
B matrix is

�
(3,10)
B = [〈ci, (aij;bij)〉]8×3

�
(3,10)
B

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈9, (.7, .6, .4, : .2, .1, .4; .3, .5, .7)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈1, (.2, .1, .3; .6, .7, .9; .7, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.8, .6, .5; .6, .4, .7; .5, .8, .9)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.1, .2, .4; .8, .7, .1; .8, .3, .7)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.2, .3, .6; .9, .8, .7; .8, .7, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈8, (.1, .3, .4; .8, .7, .4; .7, .3, .1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

Extended union of �
(3,13)
A and �

(3,10)
B is given below in Eq. (3):

�
(3,13)
C =�

(3,13)
A ∪̃E�

(3,10)
B where C = {e1, e2, e3}
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈9, (.7, .6, .4, : .2, .1, .4; .3, .5, .7)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈11, (.1, .9, .7; .5, .3, .2; .4, .6, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈1, (.2, .1, .3; .6, .7, .9; .7, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.8, .6, .5; .6, .4, .7; .5.8, .9)〉 〈6, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉
〈9, (.2, .1, .2; .3, .4.5; .6, .7, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.1, .2, .4; 8, .7, .1; .8, .3, .7)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.6, .5, .6; .7, .8.9; .8, .7, .6)〉
〈8, (.3, .4, .5; .6, .7, .6; .5, .4, .3)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.2, .3, .6; .9, .8, .7; .8, .7, .5〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈8, (.1, .3, .4; .8, .7, .4; .7, .3, .1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

Restricted union of �
(3,13)
A and �

(3,10)
B is given below in Eq. (4)

�
(3,13)
D =�

(3,13)
A ∪̃R�

(3,10)
B where D= {e3}

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈1, (.2, .1, .3; .6, .7, .9; .7, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.1, .2, .4; 8, .7, .1; .8, .3, .7)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.6, .5, .6; .7, .8.9; .8, .7, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.2, .3, .6; .9, .8, .7; .8, .7, .5〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

Definition 3.8. Let �
(m,N1)
A and �

(m,N2)
B be MPDFNS set over X . Then their extended

intersection is defined as

�
(m,N)∗
C =�

(m,N1)
A ∩̃E�

(m,N2)
B ,

�
(m,N)∗
C =

{(
e,
{ 〈ρ, lC(ρ)〉
(μ1,C(ρ),μ2,C(ρ), · · · ,μm,C(ρ); ν1,C(ρ), ν2,C(ρ) · · · , νm,C(ρ)

})
:

e ∈C,ρ ∈X , lC(ρ) ∈L

}
where,

• C =A∪B,
• (m, N)∗ = (m, min{N1, N2}),

• μC(ρ) = min{μi,A(ρ), μi,B(ρ)}, 1 ≤ i≤m,

• νC(ρ) = max{νi,A(ρ), νi,B(ρ)} 1 ≤ i≤m, and

• lC(ρ) = min{lA(ρ), lB(ρ)} ∀ e ∈C.
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Definition 3.9. Let �
(m,N1)
A and �

(m,N2)
B be MPDFNS set over X . Then their restricted intersetion

is defined as

�
(m,N)
D =�

(m,N1)
A ∪̃R�

(m,N2)
B ,

�
(m,N)
D =

{(
e,
{ 〈ρ, lD(ρ)〉
(μ1,D(ρ),μ2,D(ρ), · · · ,μm,D(ρ); ν1,D(ρ), ν2,D(ρ) · · · , νm,D(ρ)

})
:

e ∈D,ρ ∈X , lD(ρ) ∈ L

}
where,

• D=A∩B,
• (m,N) = (m, min{N1, N2}),

• μD(ρ) = min{μi,A(ρ), μi,B(ρ)}, 1 ≤ i≤m,

• νD(ρ) = max{νi,A(ρ), νi,B(ρ)} 1 ≤ i≤m, and

• lD(ρ) = min{lA(ρ), lB(ρ)} ∀ e ∈D.
Example 3.3. Consider �

(3,13)
A and �

(3,10)
B as given in Example 3.2 by Eqs. (1) and (2),

respectively. Extended intersection of �13
A and �10

B is given below in Eq. (5):

�
(3,10)
C =�

(3,13)
A ∩̃E�

(3,10)
B where C = {e1, e2, e3}

�
(3,10)
C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

Restricted intersection of �
(3,13)
A and �

(3,10)
B is given below Eq. (6):

�
(3,10)
D =�

(3,13)
A ∩̃R�

(3,10)
B where D= {e3}
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�
(3,10)
D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

Proposition 3.3. If �
(m,N1)
A , �

(m,N2)
B , �

(m,N3)
C are MPDNFNS set over X , then

(i) �
(m,N1)
A ∩̃E�

(m,N1)
A =�

(m,N1)
A .

(ii) �
(m,N1)
A ∪̃E�

(m,N1)
A =�

(m,N1)
A .

(iii) �
(m,N1)
A ∩̃E�

(m,N2)
B =�

(m,N2)
B ∩̃E�

(m,N1)
A .

(iv) �
(m,N1)
A ∪̃E�

(m,N2)
B =�

(m,N2)
B ∪̃E�

(m,N1)
A .

(v) �
(m,N1)
A ∩̃E

(
�
(m,N2)
B ∩̃E�

(m,N3)
C

)
=
(
�
(m,N1)
A ∩̃E�

(m,N2)
B

)
∩̃�

(m,N3)
C .

(vi) �
(m,N1)
A ∪̃E

(
�
(m,N2)
B ∪̃E�C

)
=
(
�
(m,N1)
A ∪̃E�

(m,N2)
B

)
∪̃E�

(m,N3)
C .

(vii) �
(m,N1)
A ∩̃R�

(m,N1)
A =�

(m,N1)
A .

(viii) �
(m,N1)
A ∪̃R�

(m,N1)
A =�

(m,N1)
A .

(ix) �
(m,N1)
A ∩̃R�

(m,N2)
B =�

(m,N2)
B ∩̃R�

(m,N1)
A .

(x) �
(m,N1)
A ∪̃R�

(m,N2)
B =�

(m,N2)
B ∪̃R�

(m,N1)
A .

(xi) �
(m,N1)
A ∩̃R

(
�
(m,N2)
B ∩̃R�

(m,N3)
C

)
=
(
�
(m,N1)
A ∩̃R�

(m,N2)
B

)
∩̃�

(m,N3)
C .

(xii) �
(m,N1)
A ∪̃R

(
�
(m,N2)
B ∪̃R�C

)
=
(
�
(m,N1)
A ∪̃R�

(m,N2)
B

)
∪̃R�

(m,N3)
C .

Proof. The proof is obvious from Definitions 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9.

Proposition 3.4. If �
(m,N1)
A and �

(m,N2)
B are MPDNFNS sets over X , then

(i)
(
�
(m,N1)
A ∩̃E�

(m,N2)
B

)
⊆̃ �

(m,N1)
A ⊆̃

(
�
(m,N1)
A ∪̃E�

(m,N2)
B

)
.

(ii)
(
�
(m,N1)
A ∩̃E�

(m,N2)
B

)
⊆̃ �

(m,N2)
B ⊆̃

(
�
(m,N1)
A ∪̃E�

(m,N2)
B

)
.

(iii)
(
�
(m,N1)
A ∩̃R�

(m,N2)
B

)
⊆̃ �

(m,N1)
A ⊆̃ �

(m,N1)
A ∪̃E�

(m,N2)
B

)
.

(iv)
(
�
(m,N1)
A ∩̃R�

(m,N2)
B

)
⊆̃ �

(m,N2)
B ⊆̃

(
�
(m,N1)
A ∪̃E�

(m,N2)
B

)
.
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Proof. Proof of this proposition is obvious from Definitions 3.4, 3.6, 3.8 and 3.9.

4 Complements of m-Polar Neutrosophic Diophantine N-Soft Set

Definition 4.1. Let �
(m,N)
A be MPDNNS sets over X . Then their weak complement is represented

as
(
�
(m,N)
A

)wc
and defined by

(
�
(m,N)
A

)wc
=
⎧⎨⎩
⎛⎝e,

⎧⎨⎩
〈
ρ, lwcA (ρ)

〉(
μwc1,A (ρ) ,μ

wc
2,A (ρ) , · · · ,μwcm,A (ρ) ;λ

wc
1,A (ρ) ,λ

wc
2,A (ρ) , · · · ,λwcm,A (ρ) ;ν

wc
1,A (ρ) ,ν

wc
2,A (ρ) · · · ,νwcm,A (ρ)

)
⎫⎬⎭
⎞⎠

|e ∈A,ρ ∈X , lwcA (ρ) ∈L

}
where,

• μwci,A(ρ) = νi,A(ρ), 1 ≤ i≤m,

• λwci,A(ρ) = 1 − λi,A(ρ), 1 ≤ i≤m,

• νwci,A(ρ) =μi,A(ρ), 1 ≤ i≤m, and

• lwcA (ρ) ∩lA(ρ) =∅, ∀ e ∈A.
Example 4.1. Consider �

(3,13)
A and �

(3,10)
B as given in Example 3.2 by Eqs. (1) and (2),

respectively. Weak complement of �
(3,13)
A and �

(3,10)
B are given below in Eqs. (7) and (8):

�
(3,13)wc
A

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈10, (.4, .6, .8; .5, .7, 0.8; .1, .9, .7)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.7, .6, .5; .5, .4, .2; .4, .3, .4)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈8, (.6, .4, .2; .4, .3, .3; .5, .4, .5)〉
〈8, (.6, .7, .8; .7, .6, .5; .2, .1, .2)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈7, (.8, .7, .6; .3, .2.1; .6, .5, .6)〉
〈6, (.5, .4, .3; .4, .3, .4; .3, .4, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)
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�
(3,13)wc
B

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈8, (.3, .5, .7; .8, .9, .6; .7, .6, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈7, (.7, .3, .6; .4, .3, .1; .2, .1, .3)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈4, (.5, .8, .9; .4, .6, .3; .8, .6, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.8, .3, .7; .2, .3, .9; .1, .2, .4)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈2, (.8, .7, .5; .1, .2, .3; .2, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.7, .3, .1; .8, .7, .4; .1, .3, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Remark 4.1 Again taking week complement of
(
�
(3,13)
A

)wc
and

(
�
(3,10)
B

)wc
which given above

in Eqs. (7), (8), respectively. There compliments are given below in Eqs. (9) and (10), respectively.((
�
(3,13)wc
A

)wc)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈6, (.1, .9, .7; .5, .3, 0.2; .4, .6, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈4, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉
〈7, (.2, .1, .2; .3, .4.5; .6, .7, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈7, (.6, .5, .6; .7, .8.9; .8, .7, .6)〉
〈7, (.3, .4, .5; .6, .7, .6; .5, .4, .3)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)((

�
(3,10)wc
A

)wc)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈4, (.7, .6, .4, : .2, .1, .4; .3, .5, .7)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (.2, .1, .3; .6, .7, .9; .7, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈7, (.8, .6, .5; .6, .4, .7; .5, .8, .9)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (.1, .2, .4; .8, .7, .1; .8, .3, .7)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (.2, .3, .6; .9, .8, .7; .8, .7, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈9, (.1, .3, .4; .8, .7, .4; .7, .3, .1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)
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Hence from Eqs. (1), (2), (9) and (10). We conclude that ((�(3,13)A )wc)wc �= �
(3,13)
A and

((�(3,10)B )wc)wc �=�
(3,10)
B .

Since null 3PDN10S set is

�
(3,0)
∅

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

Since absolute 3PDN10S set is

�
(3,10)
E

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈9, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

Weak complement of �
(3,0)
∅ and �

(3,10)
E are given below in Eqs. (13) and (14), respectively.

(�
(3,0)
� )wc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈7, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈6, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈4, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈1, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈8, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈7, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈6, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈7, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈3, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈5, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈2, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈4, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈7, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈8, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈6, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈8, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈7, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈2, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉
〈1, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈6, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉 〈5, (1, 1, 1; 0, 0, 0; 0, 0, 0)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)
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(�
(3,10)
E )wc =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈9, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈1, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈3, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈9, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈8, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈9, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈2, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈7, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈4, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈7, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈4, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈6, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈5, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈1, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈8, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈9, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

From Eqs. (11)–(14), we have
(
�
(3,0)
∅

)wc �= �
(3,10)
E and

(
�
(3,10)
E

)wc �= �
(3,0)
∅ . Hence, we have

following result.

Remark 4.2 Let �
(m,N)
A be MPDNNS sets, �

(m,0)
∅ be null MPDNNS and �

(m,N−1)
E absolute

MPDNNS over X , then following results that hold in crisp set theory but not hold in MPDNNS
set theory

(i) (�(m,0)
∅ )wc �=�

(m,N−1)
E .

(ii) (�(m,N−1)
E )wc �=�

(m,0)
∅ .

(iii) ((�(m,N)
A )wc)wc �=�

(m,N)
A .

Definition 4.2. Let �
(m,N)
A be MPDNNS set over X . Then their top weak complement is

represented as (�(m,N)
A )twc and defined by

(�
(m,N)
A )twc

=
{(
e,

{
〈ρ, ltwcA (ρ)〉

(μtwc1,A(ρ),μ
twc
2,A(ρ), · · · ,μtwcm,A(ρ);λ

twc
1,A(ρ),λ

twc
2,A(ρ), · · · ,λtwcm,A(ρ); ν

twc
1,A(ρ), ν

twc
2,A(ρ) · · · , νtwcm,A(ρ)

})

|e ∈A,ρ ∈X , ltwcA (ρ) ∈L

}
where,

• μtwci,A (ρ) = νi,A(ρ), 1 ≤ i≤m,

• λtwci,A (ρ) = 1 −λi,A(ρ), 1 ≤ i≤m,

• νtwci,A (ρ) =μi,A(ρ), 1 ≤ i≤m, and

• ltwcA (ρ)=
{
N − 1, if lA (ρ) <N− 1,

0, if lA (ρ)=N− 1,∀e∈A.
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The top weak complement of �
(3,13)
A and �

(3,10)
B as given in Example 3.2 by Eqs. (1) and (2)

are given below in Eqs. (15) and (16), respectively.

(�
(3,13)
A )twc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈12, (.4, .6, .8; .5, .7, 0.8; .1, .9, .7)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.7, .6, .5; .5, .4, .2; .4, .3, .4)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.6, .4, .2; .4, .3, .3; .5, .4, .5)〉
〈12, (.6, .7, .8; .7, .6.5; .2, .1, .2)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.8, .7, .6; .3, .2.1; .6, .5, .6)〉
〈12, (.5, .4, .3; .4, .3, .4; .3, .4, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

(�
(3,10)
B )twc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.3, .5, .7; .8, .9, .6; .7, .6, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.7, .3, .6; .4, .3, .1; .2, .1, .3)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.5, .8, .9; .4, .6, .3; .8, .6, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.8, .3, .7; .2, .3, .9; .1, .2, .4)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.8, .7, .5; .1, .2, .3; .2, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.7, .3, .1; .8, .7, .4; .1, .3, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)

Proposition 4.1 Let �
(m,N)
A be MPDNNS set, �

(m,0)
∅ be null MPDNNS and �

(m,N−1)
E absolute

MPDNNS over X , then

(i) (�(m,0)
∅ )twc =�

(m,N−1)
E .

(ii) (�(m,N−1)
E )twc =�

(m,0)
∅ .
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Remark 4.3. Again taking top weak complement of
(
�
(3,13)
A

)twc
given in Eq. (15) we have

Eq. (17)

((�
(3,13)
A )twc)twc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (.1, .9, .7; .5, .3, 0.2; .4, .6, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉
〈0, (.2, .1, .2; .3, .4.5; .6, .7, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.6, .5, .6; .7, .8.9; .8, .7, .6)〉
〈0, (.3, .4, .5; .6, .7, .6; .5, .4, .3)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

Hence from Eqs. (1) and (17) we conclude that
((

�
(3,13)
A

)twc)twc �=�
(3,13)
A . Hence we have the

following result:

Remark 4.4. Let �
(m,N)
A be MPDNNS set, over X , then ((�(m,N)

A )twc)twc �=�
(m,N)
A .

Definition 4.3. Let �
(m,N)
A be MPDNNS set over X . Then their bottom weak complement is

represented as
(
�
(m,N)
A

)bwc
and defined by

(�
(m,N)
A )bwc

=
{(
e,

{
〈ρ, lbwcA (ρ)〉

(μbwc1,A(ρ),μ
bwc
2,A(ρ), · · · ,μbwcm,A(ρ);λ

bwc
1,A(ρ),λ

bwc
2,A(ρ), · · · ,λbwcm,A(ρ); ν

bwc
1,A (ρ), ν

bwc
2,A (ρ) · · · , νbwcm,A(ρ))

})

|e ∈A,ρ ∈X , lbwcA (ρ) ∈L

}
where,

• μbwci,A (ρ) = νi,A(ρ), 1 ≤ i≤m,

• λbwci,A (ρ) = 1 −λi,A(ρ), 1 ≤ i≤m,

• νbwci,A (ρ) =μi,A(ρ), 1 ≤ i≤m, and

• lbwcA (ρ)=
{
N− 1, if lA (ρ)= 0,

0, iflA (ρ) > 0,∀e∈A.

Florentin Smarandache (author and editor) Collected Papers, VIII

936



Example 4.2. Consider �
(3,13)
A and �

(3,10)
B as given in Example 3.2 by Eqs. (1) and (2),

respectively. Bottom weak complement of �
(3,13)
A and �

(3,10)
B are given below in Eqs. (18) and (19):

(�
(3,13)
A )bwc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (.4, .6, .8; .5, .7, 0.8; .1, .9, .7)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.7, .6, .5; .5, .4, .2; .4, .3, .4)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.6, .4, .2; .4, .3, .3; .5, .4, .5)〉
〈0, (.6, .7, .8; .7, .6.5; .2, .1, .2)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.8, .7, .6; .3, .2.1; .6, .5, .6)〉
〈0, (.5, .4, .3; .4, .3, .4; .3, .4, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

(�
(3,13)
B )bwc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.3, .5, .7; .8, .9, .6; .7, .6, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.7, .3, .6; .4, .3, .1; .2, .1, .3)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.5, .8, .9; .4, .6, .3; .8, .6, .5)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.8, .3, .7; .2, .3, .9; .1, .2, .4)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.8, .7, .5; .1, .2, .3; .2, .3, .6)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (.7, .3, .1; .8, .7, .4; .1, .3, .4)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Proposition 4.2. Let �
(m,N)
A be MPDNNS set, �

(m,0)
∅ be null MPDNNS and �

(m,N−1)
E absolute

MPDNNS over X , then

(i) (�(m,0)
∅ )bwc =�

(m,N : amp : minus;1)
E .

(ii) (�(m,N−1)
E )bwc =�

(m,0)
∅ .
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Remark 4.5. Again taking bottom weak complement of (�(3,13)A )bwc as given above in Eq. (18)
we have Eq. (20) given below:

((�
(3,13)
A )bwc)bwc

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈12, (.1, .9, .7; .5, .3, 0.2; .4, .6, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.4, .3, .4; .5, .6, .8; .7, .6, .5)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.5, .4, .5; .6, .7, .7; .6, .4, .2)〉
〈12, (.2, .1, .2; .3, .4.5; .6, .7, .8)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈12, (.6, .5, .6; .7, .8.9; .8, .7, .6)〉
〈12, (.3, .4, .5; .6, .7, .6; .5, .4, .3)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉
〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉 〈0, (0, 0, 0; 1, 1, 1; 1, 1, 1)〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

Hence from Eqs. (1) and (20) we conclude that
((

�
(3,13)
A

)bwc)bwc �=�
(3,13)
A .

5 Relationships with Existing Models and Application in Multi-Attribute Group Decision-Making

The comparison with existing sets is shown in Tab. 1.

The following proposed algorithm for the choice values of MPDNNSs:

An Algorithm for the Choice Values of MPDNNSs

1: S= {ρ1, ρ2,. . ., ρm} is the universal set.

2: T = {e1, e2,. . ., en} set of attributes.

3: Input MPDFNSs ψ(m,n)
A with N = {0, 1, 2,. . ., N − 1}.

4: Calculate Mm
i =

(∑m
j=1 dαij ,

∑m
j=1Raij

)
. Here,

daij = 1− 2θa
π

, Raij =
1
2
+ ra

(
1
2
− 2θa
π

)
,

ra=
(
μ2
1+μ2

2+ · · · +μ2
m+λ21 +λ22+ · · · +λ2m+ ν21 + ν22 + · · · + ν2m

)1/2
,

θa=Tan−1
(
< (λ1,λ2, · · · ,λm) , (ν1, ν2, · · · , νm) >

|| (μ1,μ2, · · · ,μm) ||
)
,

where, <(λ1, λ2,. . ., λm), (ν1, ν2,. . ., νm)> = λ1ν1+λ2ν2 + . . ., λmνm.
5: Calculate Mm

t =max
{
Mm

i

}
with i= 1, 2,. . ., n.

6: Mm
t =max

{
Mm

i

}
can be chosen for any alternative.
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Table 1: Comparison of proposed model with existing models

Sets Truth
membership

Falsity
membership

Indeterminacy Parametrization Non-binary
evaluation

Multi-polarity

Fuzzy set � × × × × ×
Intutionistic
fuzzy set

� � × × × ×

Neutrosopic
set

� � � × × ×

Soft set × × × � × ×
N-soft set × × × � � ×
Fuzzy N-soft
set

� × × � � ×

Intutionistic
N-soft set

� � × � � ×

Neutrosopic
N-soft set

� � � � � ×

m-polar fuzzy
set

� × × × × �

m-polar
diophantine
neutrosopic
N-soft set

� � � � � �

Example 5.1. We assume that there are five candidates which appear in the interview and their
interviews will be completed in three days. There are three judges which are observed to each
candidate separately. The following data are elaborated in Tab. 2, of each candidate ci, i= 1, 2,
3, 4, 5 which are observed by from judges ji, i= 1, 2, 3.

Table 2: Data of interview of each candidates observed by judges

�
(3,11)
C j1 j2 j3

c1 〈4, (.3, .2, .5; .2, .7, .8; .1, .4, .6)〉 〈6, (.5, .4, .7; .6, .5, .4; .3, .6, .5)〉 〈7, (.3, .5, .5; .3, .6, .7; .6, .4, .3)〉
c2 〈6, (.6, .4, .6; .3, .5, .7; .5, .4, .3)〉 〈5, (.2, .5, .6; .4, .6, .9; .1, .2, .3)〉 〈8, (.2, .6, .5;.5, .8, .6; .3, .1, .4 )〉
c3 〈7, (.4, .6, .5; .3, .5, .7; .1, .4, .3)〉 〈2, (.4, .5, .3; .5, .6, .2; .5, .4, .5)〉 〈3, (.5, .3, .5; .4, .3, .7; .4, .3, .6)〉
c4 〈3, (.5, .3, .4; .4, .5, .6; .3, .2, .5)〉 〈8, (.3, .6, .4; .4, .9, .6; .5, .4, .3)〉 〈9, (.5, .4, .5; .3, .7, .6; .4, .3, .2)〉
c5 〈1, (.6, .5, .4; .3, .5, .7; .3, .4, .4)〉 〈4, (.6, .5, .4; .4, .7, .1; .3, .5, .5)〉 〈7, (.4, .3, .5; .2, .5, .7; .4, .6, .4)〉

In Tab. 3, we find the choice values of all candidates by using proposed algorithm.

From Tab. 4, the candidates c5, c2, c2 are leading with respect to days first, second, and third,
respectively.

The working of proposed algorithm is shown in Fig. 1.

Florentin Smarandache (author and editor) Collected Papers, VIII

939



Table 3: Tabular representation of choice value of ψ(3,11)C

�
(3,11)
C j1 j2 j3 M1

i M2
i M3

i

c1 〈4, (.3, .2, .5; .2, .7,
.8; .1, .4, .6)〉

〈6, (.5, .4, .7; .6, .5,
.4; .3, .6, .5)〉

〈7, (.3, .5, .5; .3, .6,
.7; .6, .4, .3)〉

(17, 2.59680) (17, 1.78017) (17, 1.64489)

c2 〈6, (.6, .4, .6; .3, .5,
.7; .5, .4, .3)〉

〈5, (.2, .5, .6; .4, .6,
.9; .1, .2, .3)〉

〈8, (.2, .6, .5;.5, .8,
.6; .3, .1, .4 )〉

(19, 2.30871) (19, 2.36016) (19, 2.24883)

c3 〈7, (.4, .6, .5; .3, .5,
.7; .1, .4, .3)〉

〈2, (.4, .5, .3; .5, .6,
.2; .5, .4, .5)〉

〈3, (.5, .3, .5; .4, .3,
.7; .4, .3, .6)〉

(12, 2.39995) (12, 2.13054) (12, 1.91588)

c4 〈3, (.5, .3, .4; .4, .5,
.6; .3, .2, .5)〉

〈8, (.3, .6, .4; .4, .9,
.6; .5, .4, .3)〉

〈9, (.5, .4, .5; .3, .7,
.6; .4, .3, .2)〉

(20, 2.32576) (20, 2.05034) (20, 1.89522)

c5 〈1, (.6, .5, .4; .3, .5,
.7; .3, .4, .4)〉

〈4, (.6, .5, .4; .4, .7,
.1; .3, .5, .5)〉

〈7, (.4, .3, .5; .2, .5,
.7; .4, .6, .4)〉

(12, 2.65388) (12, 2.08484) (12, 1.94623)

Table 4: Comparison table of MPDFNSs with pervious models

�
(3,11)
C NSS(σi) FNSS(Qi) IFNSS(Si) PFNSS(Hi) M1

i M2
i M3

i

c1 17 (17, 0.89) (17,−0.03) (17, 1.7462) (17, 2.59680) (17, 1.78017) (17, 1.64489)
c2 19 (19, 0.79) (19, 0.09) (19, 1.6368) (19, 2.30871) (19, 2.36016) (19, 2.24883)
c3 12 (12, 0.99) (12, 0.15) (12, 1.8940) (12, 2.39995) (12, 2.13054) (12, 1.91588)
c4 20 (20, 1.09) (20, 0.09) (20, 1.5705) (20, 2.32576) (20, 2.05034) (20, 1.89522)
c5 12 (12, 1.22) (12, 0.54) (12, 1.9097) (12, 2.65388) (12, 2.08484) (12, 1.94623)

5.1 Relationships with Existing Sets
In this subsection, we establish the relationship with existing sets.

Definition 5.1. Let n be a threshold lies between 0 and N for the level, the PFNSS and PFSS

over X associated with �
(m,N)
A and n, symbolized by �

(n,m,N)
A , defined by, for all a ∈ A,

�(n,m,N)
a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈x, (μ (a) , ν (a))〉 , if m= 1,

(x,da) (μ (a) , ν (a)) , if (x,da)∈ F (a) ,andda≥ n,

(0, 0.5) , if da/N ≥ 0.5,

(0, 1) , if da/N < 0.5.

Definition 5.2. Let k be a threshold with k ∈ [−1, 1] for the score function, the N-soft over X

associated with �
(m,N)
A and k, symbolized by �

(k,m,N)
A , defined by, for all a ∈ A,

�(k,m,N)
a =

⎧⎪⎨⎪⎩
(x,da) , if (x,da) ∈ F (a) , and Sa (x)≥ k,m= 1,

1, if Sa (x) > 0,m= 1,

0, if Sa (x)≤ 0,m= 1.
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Figure 1: Flow chart of proposed algorithm

Definition 5.3. Let n be a threshold lies between 0 and N and threshold k with k ∈ [− 1, 1] for

the score function, the soft over X associated with ψ(m,N)
A and (n, k), symbolized by �

((n,k),m,N)
A ,

defined by, for all a ∈ A,
�
((n,k),1,N)
A =

{
x ∈X |S�(n,1,N)

a (x) > k,
}

For soft set associated with ψ(3,6)A and threshold (n, k) = (3, 0.3) is �
((3,0.3),1,6)
A = { }.

From Example 3.1, we have the following outcome which are elaborate in Tab. 5.

Table 5: Pythagorean fuzzy N-soft set associated with �
(3,6)
A and m= 1

�
(1,7)
A e1 e2 e3

ρ1 〈4, (0.3, 0.1)〉 〈0, (0, 1)〉 〈0, (0, 1)〉
ρ2 〈0, (0, 1)〉 〈0, (0, 1)〉 〈3, (0.2, 0.8)〉
ρ3 〈0, (0, 1, )〉 〈0, (0, 1)〉 〈2, (0.5, 0.4)〉
ρ4 〈5, (0.5, 0.3)〉 〈0, (0, 1)〉 〈0, (0, 1)〉
ρ5 〈0, (0, 1)〉 〈0, (0, 1)〉 〈2, (0.4, 0.7)〉
ρ6 〈0, (0, 1)〉 〈0, (0, 1)〉 〈0, (0, 1)〉
ρ7 〈6, (0.6, 0.4)〉 〈0, (0, 1)〉 〈 0, (0, 1)〉
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In Tabs. 6 and 7, we deduce Pythagorean fuzzy soft set and N-soft set from MPDFNSs.

Table 6: Pythagorean fuzzy soft set associated with �
(3,6)
A and threshold n= 3

�
(3,1,6)
A e1 e2 e3

ρ1 (0.3, 0.1) (0, 1) (0, 1)
ρ2 (0, 1) (0, 1) (0.2, 0.8)
ρ3 (0, 1, ) (0, 1) (0, 1)
ρ4 (0.5, 0.3) (0, 1) (0, 1)
ρ5 (0, 1) (0, 1) (0, 1)
ρ6 (0, 1) (0, 1) (0, 1)
ρ7 (0.6, 0.4) (0, 1) (0, 1)

Table 7: N-soft set associated with �
(3,6)
A and threshold k= 0.3

�
(0.3,1,6)
A e1 e2 e3

ρ1 1 0 0
ρ2 0 0 0
ρ3 0 0 1
ρ4 1 0 1
ρ5 0 0 0
ρ6 0 0 0
ρ7 1 0 0

6 Conclusion

In this paper, we investigate a new set namely the m-polar Diophantine neutrosophic N-soft
set which is based on neutrosophic set and soft set. We are discussed different types of compli-
ments on the proposed set and elaborate these compliments with examples. The purposed set is a
generalized form of fuzzy, soft, Pythagorean fuzzy, Pythagorean fuzzy soft, and Pythagorean fuzzy
N-soft sets. Moreover, as an application, we proposed an algorithm for multi-attribute decision-
making problems by defining the new score function. In future work, one can discuss algebraic
structures and topological properties on m-polar Diophantine neutrosophic N-soft set. Moreover,
ones can develop the concept of m-polar Diophantine neutrosophic N-soft graph and then discuss
their properties.
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Abstract 

      The aim of this paper is to introduce the new concept of Quadripartitioned Neutrosophic Pythagorean soft set with 
T, C, U, F as dependent neutrosophic components and have also discussed some of its properties.  

Keywords:  Neutrosophic pythagorean soft set, Quadripartioned Neutrosophic Pythagorean set and Quadripartioned 
Neutrosophic Pythagorean soft set . 

1.Introduction

The fuzzy set was introduced by Zadeh [19] in 1965. The concept of neutrosophic set was introduced by Smarandache 
which is a mathematical tool for handling problems involving imprecise, indeterminancy and inconsistent data. 

     Smarandache introduced neutrosophic sets [14]. In neutrosophic sets, the indeterminacy membership function 
walks along independently of the truth membership or of the falsity membership. Neutrosophic theory has been 
widely explored by researchers for application purpose in handling real life situations involving uncertainty. 
Although the hesitation margin of neutrosophic theory is independent of the truth or falsity membership, looks more 
general than intuitionistic fuzzy sets yet. Recently, in Atanassov et al. [3] studied the relations between inconsistent 
intuitionistic fuzzy sets, picture fuzzy sets, neutrosophic sets and intuitionistic fuzzy sets; however, it remains in 
doubt that whether the indeterminacy associated to a particular element occurs due to the belongingness of the 
element or the non-belongingness. This has been pointed out by Chattejee et al. [4] while introducing a more 
general structure of neutrosophic set viz. quadripartitioned single valued neutrosophic set (QSVNS). The idea of 
QSVNS is actually stretched from Smarandache, s four numerical-valued neutrosophic logic and Belnap, s four 
valued logic, where the indeterminacy is divided into two parts, namely, “unknown” i.e., neither true nor false and 
“contradiction” i.e., both true and false. In the context of neutrosophic study however, the QSVNS looks quite 
logical. Also, in their study, Chatterjee [4] et al. analyzed a real-life example for a better understanding of a QSVNS 
environment and showed that such situations occur very naturally.  

 In 2018 Smarandache [17] generalized the soft set to the hyper soft set by transforming the classical uni-argument 
function F into a multi-argument function. 
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     In 2016, Smarandache [14] introduced for the first time the degree of dependence between the components of fuzzy 
set and neutrosophic sets. The main idea of Neutrosophic sets is to characterize each value statement in a 3D – 
Neutrosophic space, where each dimension of the space represents respectively the truth membership, falsity 
membership and the indeterminacy, when two components T and F are dependent and I is independent then  T+I+F≤ 
2. 

   Radha and Stanis Arul Mary [10] introduced the concept of Quadripartitioned  neutrosophic pythagorean set with 
dependent neutrosophic components. 

    If T and F are dependent neutrosophic pythagorean components then T 2 + F 2 ≤ 1. Similarly, for U and C as 
dependent neutrosophic pythagorean components then C 2 + U 2 ≤ 1. When combining both we get Quadripartitioned 
pythagorean set with dependent components as T 2 + F 2 + C 2 + U 2 ≤ 2 

   Pabitra kumar Maji [9] had combined the neutrosophic set with soft sets and introduced a new mathematical model 
neutrosophic soft set. Arockiarani [1] introduced the new concept of fuzzy neutrosophic soft set. Yager introduced 
pythagorean fuzzy sets. Radha   and tanis Arul Mary [11] introduced neutrosophic pythagorean soft set with T and F 
as neutrosophic dependent components. 

    In this we have to introduce the concept of introduced the concept of quadripartitioned neutrosophic pythagorean 
set with dependent components and establish some of its properties.  

2.Pr elimina ries

Definit ion:2 .1[14] 

Let X be a universe. A neutrosophic set A on X can be defined as follows: 

� = 	 {< �, ��(�), ��(�), ��(�) >: � ∈ �} 

Where ��		, ��, ��: � → [0,1]	��� 0 ≤ ��(�) + ��(�) + ��	(�) ≤ 3 

Here,	��(�) is the degree of membership,  ��(�) is the degree of indeterminancy and ��(�) is the degree of non-
membership. 

��re, ��(�)	and ��(�)are dependent neutrosophic components and ��(�) is an independent component. 

Definit ion:2 .2[2] 

Let U be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let P(U) denote the set 
of all neutrosophic sets of U. The collection (F, A) is termed to be neutrosophic soft set over U, where F is a mapping 
given by F: A	→ P(U). 

Definit ion:2 .3[11] 

Let X be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let P(X) denote the set 
of all neutrosophic pythagorean sets of X. The collection (F, A) is termed to be neutrosophic pythagorean soft set over 
X, where F is a mapping given by F: A	→ P(X). 

Definit ion:2 .4[4] 

Let X be a universe. A Quadripartitioned neutrosophic set A with independent neutrosophic components on X is an 
object of the form  
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� =	 {< �, ��(�), ��(�), ��(�), ��(�) >: � ∈ �} 

��� 0 ≤ ��(�) + ��(�) + ��(�) + ��	(�) ≤ 4 

Here,	��(�) is the truth membership,  ��(�) is contradiction membership,	��(�) is ignorance membership and ��(�) 
is the false membership. 

Definit ion:2 .5[10] 

Let X be a universe. A Quadripartitioned neutrosophic pythagorean set A with dependent neutrosophic components 
A on X is an object of the form  

� =	 {< �, ��(�), ��(�), ��(�), ��(�) >: � ∈ �} 

Where ��		 + �� ≤ 1, 	��		 + �� ≤ 1	��� 0 ≤ (��(�))
� + (��(�))

� + (��(�))
� + (��	(�))

� ≤ 2 

Here,	��(�) is the truth membership,  ��(�) is contradiction membership,	��(�) is ignorance membership and ��(�) 
is the false membership. 

3.Qua dri pa rt itioned Neutro sophic Pythago rea n Soft Set (QNPSS or QNPS Set)

Definit ion:3.1 

Let X be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let P(X) denote the set 
of all Quadripartitioned neutrosophic pythagorean sets of X. The collection (F, A) is termed to be Quadripartitioned 
neutrosophic pythagorean soft set over X, where F is a mapping given by F: A	→ P(X). 

Definit ion:3 .2 

A Quadripartitioned neutrosophic pythagorean soft set A is contained in another Quadripartitioned neutrosophic 
pythagorean soft set B (i.e) A⊆ �	 if  ��(�) ≤ ��(�),	��(�) ≤ ��(�), ��(�) ≥ ��(�) and ��(�) ≥ ��(�) 

Definit ion:3 .3 

The complement of a Quadripartitioned neutrosophic pythagorean soft set (F, A) on X denoted by		(�, �)� and is 
defined   as  

��(x)= {< �, ��(�), ��	(�), ��(�), ��(�) >: � ∈ �} 

Definit ion:3 .4 

Let X be a non-empty set, A = < �, ��(�), ��(�), ��(�), ��(�) > and 

 B = < �, ��(�), ��(�), ��(�), ��(�) > are Quadripartitioned neutrosophic pythagorean soft sets. Then 

A ∪	B = < �,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), �	�(�)),���(��(�), �	�(�)) > 

A ∩	B = < �,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), �	�(�)) > 

Definit ion:3 .5 

A Quadripartitioned neutrosophic pythagorean soft set (F, A) over the universe X is said to be empty neutrosophic 
pythagorean soft set with respect to the parameter A if  
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��(�) = 	0, ��(�) = 	0, ��(�) = 	1, ��(�)=1,∀� ∈ �, ∀� ∈ �. It is denoted by 0 X

Definit ion:3 .6 

A Quadripartitioned neutrosophic pythagorean soft set (F, A) over the universe X is said to be universe neutrosophic 
soft set with respect to the parameter A if  

��(�) = 	1, ��(�) = 	1, 	��(�) = 	0, ��(�)=0,∀� ∈ �, ∀� ∈ �. It is denoted by 1� 

Remark: 0			��  = 1� and 1			��  = 0 X

Definit ion:3 .7 

Let A and B be two Quadripartitioned neutrosophic pythagorean soft sets on X then A\B may be defined as 

A\B = < �,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), �	�(�)) > 

Definit ion:3 .8 

FE is said to be absolute Quadripartitioned neutrosophic pythagorean soft set over X if F(e) = 1�	for any 

 � ∈ �.	We denote it by ��  

Definit ion:3 .9 

	��  is said to be relative null Quadripartitioned neutrosophic pythagorean soft set over X if F(e) = 0�	for any 

 � ∈ �.	We denote it by ∅� 

Obviously ∅�	=  ��
�  and ��  = ∅�

�

Definit ion:3 .10 

The complement of a Quadripartitioned neutrosophic pythagorean soft set (F, A) over X can also be defined as 
	(�, �)�	 = ��\�(�) for all � ∈ �. 

Note: We denote ��  by X in the proofs of proposition. 

Definit ion:3 .11 

If (F, A) and (G, B) be two Quadripartitioned neutrosophic pythagorean soft set then “(F, A) AND (G, B)” is a denoted 
by  

(F, A) ∧(G, B) and is defined by (F, A)∧ (G, B) = (H, A ×B) 

where H (a, b) = F(a) ∩	G(b) ∀� ∈ � and ∀� ∈ �, where ∩ is the operation intersection of Quadripartitioned 
neutrosophic pythagorean soft set. 

Definit ion:3 .12 

If (F, A) and j(G, B) be two Quadripartitioned neutrosophic pythagorean soft set then “(F, A) OR (G, B)” is a denoted 
by (F, A) ∨(G, B) and is defined by (F, A)∨ (G, B) = (K, A ×B) 
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where K (a, b) = F(a) ∪	G(b) ∀� ∈ � and ∀� ∈ �, where	∪ is the operation union of Quadripartitioned neutrosophic 
pythagorean soft set. 

Theorem :3.13 

Let (F, A) and (G, A) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following 
are true. 

(i) (F, A)⊆ (G, A) iff (F, A)	∩ (G, A) = (F, A)
(ii) (F, A)⊆ (G, A) iff (F, A)	∪ (G, A) = (F, A)

Proof: 

(i)Suppose that (F, A)⊆ (G, A), then F(e)	⊆G(e) for all e	∈ A. Let (F, A) ∩		(G, A) = (H, A).

 Since H(e) = F(e)	∩ G(e) =F(e) for all e	∈ A, by definition (H, A) = (F, A). 

Suppose that (F, A) ∩		(G, A) = (F, A). Let (F, A) ∩		(G, A) = (H, A). 

Since H(e) = F(e)	∩ G(e) =F(e) for all e	∈ A, we know that F(e)	⊆ G(e) for all e	∈ A. 

Hence (F, A)⊆ (G, A). 

(ii)The proof is similar to (i).

Theorem :3.14 

Let (F, A), (G, A), (H, A), and (S, A) are Quadripartitioned neutrosophic pythagorean soft set over the universe X. 
Then the following are true. 

(i) If (F, A)	∩ (G, A) =∅� , then (F, A)⊆ (G, A)�

(ii) If (F, A)⊆ (G, A) and (G, A)⊆ (H, A) then (F, A)⊆ (H, A)
(iii) If (F, A)⊆ (G, A) and (H, A)⊆ (S, A) then (F, A)	∩ (H, A) ⊆ (G, A)	∩ (S, A)
(iv) (F, A)	 ⊆ (G, A) iff (G, A)� ⊆	(F, A)�

Proof: 

(i)Suppose that (F, A)	∩ (G, A) =∅�.Then F(e)∩ G(e) = ∅.

 So, F(e)	⊆ U\G(e)=	��(�) for all e	∈ A. 

 Therefore, we have (F, A)⊆ (G, A)� 

Proof of (ii) and (iii) are obvious. 

(iv) (F, A)⊆ (G, A)⟺ F(e)	⊆ G(e) for all e	∈ A.

   ⟺ (G(e))� 	⊆ (F(e)	)� for all e	∈ A.   
   ⟺	��(�) 	⊆ 	��(�)	���	���	�	 ∈ 	�. 
	⟺(G, A)� ⊆	(F, A)� 
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Definit ion:3 .15 

Let I be an arbitrary index {(Fi, A)}�∈�  be a subfamily of Quadripartitioned neutrosophic pythagorean soft set over the 
universe X. 

(i)The union of these Quadripartitioned neutrosophic pythagorean soft set is the Quadripartitioned neutrosophic
pythagorean soft set (H, A) where H(e) = ⋃ ���∈� (�) for each e	∈ �.

��	�����	 ⋃ (���∈� , �)= (H, A) 

(ii)The intersection of these Quadripartitioned neutrosophic pythagorean soft set is the Quadripartitioned neutrosophic
pythagorean soft set (M, A) where M(e) = ⋂ ��(�)�∈�	  for each e	∈ �.

��	�����	 ⋂ (��, �)�∈�	 	= (M, A) 

Theorem: 3.16 

Let I be an arbitrary index set and {(Fi, A)}	�∈�be a subfamily of Quadripartitioned neutrosophic pythagorean soft set 
over the universe X. Then 

(i) (⋃ (���∈� , �))� = ⋂ (��, �)
�

�∈�	

(ii) (⋂ (��, �)�∈�	 )� = ⋃ (���∈� , �)�

Proof: 

(i) (⋃ (���∈� , �))� = (H, A) C, By definition HC(e) =XE\H(e) = XE\⋃ ���∈� (�)=⋂ (��\��(�))�∈�	  for all e	∈ �.
On the other hand,	(⋂ (��, �)�∈�	 )�(K, A).
By definition, K(e)=	⋂ ��

�(�)�∈�	 =⋂ (� − ��(�))�∈�	  for all e	∈ �.
(ii) It is obvious.

Note: We denote ∅�		��	∅ and ��		��	�. 

Theorem: 3.17 

Let (F, A) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following are true. 

(i) (∅,A)� = (X, A)
(ii) (X, A)� = (∅, �)

Proof: 

(i) Let (∅,  A) = (F, A)

Then  ∀e	∈ A, 

F(e) = {< �, ��(�)(�), ��(�)(�), ��(�)(�), ��(�)(�) >: � ∈ �} 

 = {(x,0,0,1,1)∶ � ∈ �} 

(∅,A)� = (�,A)� 

Then  ∀e	∈ A, 
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(F(e)	)� = {< �, ��(�)(�), ��(�)(�), ��(�)(�), ��(�)(�) >: � ∈ �}� 

 = {< �, ��(�)(�), ��(�)(�), ��(�)(�), ��(�)(�) >∶ � ∈ �} 

       ={(x1,1,0,0)∶ � ∈ �} = X 

Thus (∅,A)� = (X, A) 

(ii) Proof is similar to (i)

Theorem: 3.18 

Let (F, A) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following are true. 

(i) (F, A)∪ (∅, A) = (F, A)

(ii) (F, A)∪ (�	,A) = (X, A)

Proof: 

(i) (F, A) = {e, (�, ��(�)(�), ��(�)(�), ��(�)(�), ��(�)(�)): � ∈ �} ∀e	∈ A

(∅, A) = {e, (x,0,0,1,1): �	 ∈ X} ∀e	∈ A

 (F, A)∪ (∅, A) = {e, (�,���(��(�)(�),0), ���(��(�)(�),0),���(��(�)(�),1)���(��(�)(�),1)): � ∈ �} ∀e	∈ A 

  = {e, (�, ��(�)(�), ��(�)(�), ��(�)(�), ��(�)(�)): � ∈ �} ∀e	∈ A 

  = (F, A) 

(ii) Proof is similar to (i).

Theorem: 3.19  

Let (F, A) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following are true. 

(i) (F, A)∩ (∅, A) = (∅, A)

(ii) (F, A)∩ (�, A) = (F, A)

Proof: 

(i) (F, A) = {e, (�, ��(�)(�), ��(�)(�), ��(�)(�), ��(�)(�)): � ∈ �} ∀e	∈ A

(∅, A) = {e, (x,0,0,1,1): �	 ∈ X} ∀e	∈ A

 (F,A)∩(∅,A)={e, (�, ���(��(�)(�),0),���(��(�)(�),0),���(��(�)(�),1)���(��(�)(�),1)): � ∈ �} ∀e∈ A 

 = {e, , (�, 0,0,1,1): � ∈ �} ∀e	∈ A 

 = (∅, A) 

(ii) Proof is similar to (i).
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Note: We denote ��(x),	��(�), ��(�)	���	��(�) by TF ��, �����	�� 

Theorem: 3.20 

Let (F, A) and (G, A) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following 
are true. 

(i) (F, A)∪ (∅, B) = (F, A) iff B⊆A

(ii) (F, A)∪ (�, B) = (X, A) iff A⊆ �

Proof: 

(i) We have for (F, A), F(e) = {(�, ��, ��, ��, ��): � ∈ �} ∀e	∈ A

Also let (∅, B) = (G, B) then

G(e) = {(x,	0,0,1,1): �	 ∈ X} ∀e	∈ B 

Let (F, A)∪ (∅, B) = (F, A)∪ (�, B) = (H, C) where C = � ∪B and for all e	 ∈ � 

H(e) may be defined as 

=	�
{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}	��	e	 ∈ 	A	 − 	B

{(x, 0,0,1,1):	�	 ∈ 	X}	��	e	 ∈ 	B	 − 	A

{(�,���(��(�), 0), ���(C�(�), 0),���(��(�), 1)���(��(�), 1)): � ∈ �}	��	� ∈ � ∩ �

=	�
{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}	��	e	 ∈ 	A	 − 	B

{(x, 0,0,1,1):	�	 ∈ 	X}	��	e	 ∈ 	B	 − 	A

{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}	��	e	 ∈ 	A	 ∩ 	B

Let B⊆A 

Then H (e) = �
{(�, ��(�), ��(�), ��(�), ��(�)(�)): � ∈ �}	��	e	 ∈ 	A	 − 	B

{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}	��	e	 ∈ 	A	 ∩ 	B
 

  = F(e) ∀� ∈ � 

Conversely Let (�, �) ∪ (∅, �) = (�, �) 

Then A = A ∪B⟹ � ⊆ 	� 

(ii) Proof is similar to (i)

Theorem: 3.21 

Let (F, A) and (G, B) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following 
are true. 

(i) (F, A)∩ (∅, B) = (∅, A∩B)

(ii) (F, A)∩ (�, B) = (F, A∩B)
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Proof: 

(i) We have for (F, A)

F(e) = {(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �} ∀e	∈ A 

    Also let (∅, B) = (G, B) then  

G(e) = {(x,	0,0,1,1): �	 ∈ U} ∀e	∈ B  

Let (F, A) ∩ (∅,B) = (F, A) ∩(G, B) = (H, C) where C = A ∩B and ∀e	∈ C 

H(e) = {(�,���(��(�), ��(�)), ���(��(�), ��(�)),���(��(�), ��(�))���(��(�), ��(�))): � ∈ �} 

  =  { (�, ���(��(�), 0), ���(��(�), 0),���(��(�), 1)���(��(�), 1)): � ∈ �} 

  = {(�, 0,0,1,1): � ∈ �} 

         = (G, B) = (∅, B) 

Thus (F, A)∩ (∅, B) = (∅, B) =(∅, A∩B) 

(ii) Proof is similar to (i).

Theorem: 3.22 

Let (F, A) and (G, B) be Quadripartitioned neutrosophic pythagorean soft set over the universe X. Then the following 
are true. 

(i) ((F, A)∪ (�, B)) C ⊆	(F, A) C	∪ (G, B) C

(ii) (F, A) C	∩ (G, B) C ⊆((F, A)∩ (�, B)) C

Proof:  

Let (F, A)∪(G, B) = (H, C) Where C = A∪B and∀ e∈ C 

H(e) may be defined as  

�	

{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}	��	e	 ∈ 	A	 − 	B

{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}		��	e	 ∈ 	B − 	A

{(�,���(��(�), ��(�)),���(��(�), �	�(�)),���(��(�), ��(�)),���(��(�), ��(�))): � ∈ �}	��	� ∈ � ∩ �	

Thus (F,A)∪(G,B))C = (H,C)C Where C = A∪B and∀ e∈ C 

(H(e)) C = �
(�(�))�		��	�	 ∈ 	�	 − 	�

(�(�))�	��	�	 ∈ 	�	 − 	�

(�(�) ∪ �(�))���	� ∈ � ∩ �

 

 =�
{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}	��	�	 ∈ 	�	 − 	�

{(�, ��(�), ��(�), ��(�), ��(�)): � ∈ �}		��	�	 ∈ 	� − 	�

{(�,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), �	�(�)),���(��(�), ��(�)): � ∈ �}	��� ∈ � ∩ �
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Again (F, A) C	∪ (G, B) C = (I, J) say J = A∪B and ∀ e∈ J 

I(e) = �
(�(�))�		��	�	 ∈ 	�	 − 	�

(�(�))�	��	�	 ∈ 	�	 − 	�

(�(�) ∪ �(�))���	� ∈ � ∩ �

 

  =

⎩
⎨

⎧
{��, ��(�), ��(�), ��(�), ��(�)�: � ∈ �}��� ∈ � − �

{��, ��(�), ��(�), ��(�), ��(�)�: � ∈ �}��� ∈ � − �

{��,������(�), ��(�)�,������(�), ��(�)�,������(�), �	�(�)�,������(�), ��(�)�,������(�), ��(�)��

   : � ∈ �} ��	� ∈ � ∩ � 

So, C⊆ J		∀ e∈ J, (H(e))� 	⊆I(e) 

Thus (F, A)∪(G, B)) C  ⊆ (F, A) C	∪ (G, B) C 

(ii) Let (F, A)∩(G, B) = (H, C) Where C = A∩B and∀ e∈ C

H(e) = F(e)∩G(e) 

  ={(�,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�)(�), ��(�)(�)),������(�), ��(�)�} 

 Thus ((F, A)∩(G, B)) C = (H, C)C Where C = A∩B and∀ e∈ C 

(H(e)) C ={(�,���(��(�), ��(�)),���(��(�), ��(�)), ���(��(�), ��(�)),������(�), ��(�)�}
C 

        ={(�,���(��(�), ��(�)),������(�), ��(�)�,���(��(�), ��(�)), ���(��(�), ��(�))} 

Again (F, A) C∩ (G, B) C = (I, J) say where J= A∩ B and ∀ e∈ J 

I(e) = (F(e)) C∩ (G(e)) C 

       ={(�,���(��(�), ��(�)),���(	��(�), ��(�)),���(��(�), ��(�)), ���(��(�), ��(�))} 

We see that C = J and ∀ e∈ J, I(e) ⊆(H(e)) C       

Thus (F, A) C	∩ (G, B) C ⊆((F, A)∩ (�, B)) C 

Theorem :3.23 

Let (F, A) and (G, A) are two Quadripartitioned neutrosophic pythagorean soft sets over the same universe X. We 
have the following 

(i) ((F, A)∪ (�, A)) C = (F, A) C	∩  (G, A) C 

(ii) ((F, A)∩ (�, A)) C = (F, A) C∪ (G, A) C

Proof: 

(i) Let (F, A) ∪ (G, A) = (H, A) ∀ e∈ A

H(e) = F(e)∪G(e) 
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        ={(�,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�))} 

Thus (F, A) ∪ (G, A))C = (H, A)C ∀ e∈ A 

(H(e)) C = (F(e)∪G(e)) C 

 ={(�,���(��(�), ��(�)),���(��(�), ��(�)), ���(��(�), ��(�)),���(��(�), ��(�))}C 

        ={(�,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�))} 

Again (F, A) C∩ (�, A) C = (I, A) where∀	� ∈ 	� 

I(e) = (F(e)) C∩ (G(e)) C 

      ={(x,min(F�(�), F�(�)),min(U�(�), U�(�)),max(C�(�), C�(�)),max(T�(�), T�(�))} 

Thus ((F, A)∪ (�, A)) C   = (F, A) C	∩  (G, A) C 

(ii) Let (F, A) ∩ (G, A) = (H, A) ∀ e∈ A

H(e) = F(e)∩G(e) 

        ={(�,���(��(�), ��(�)),���(��(�), ��(�)),max(U�(�), U�(�))���(��(�), ��(�))}	∀ e∈ A 

Thus (F, A) ∩ (G, A)) C = (H, A) C  

(H(e)) C = (F(e)∩G(e)) C 

  ={(�,���(��(�), ��(�)),���(��(�), ��(�)),max(U�(�), U�(�)),���(��(�), ��(�))}C 

									= {(�, ���(��(�), ��(�)),���(��(�), ��(�))���(��(�)(�), ��(�)(�)),���(��(�)(�), ��(�)(�)) }C     
={(�,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�))}∀	� ∈ 	�

Again (F, A) C∪ (�, A) C = (I, A) where∀	� ∈ 	� 

I(e) = (F(e)) C∪	(G(e)) C 

  ={(�, ���(��(�)(�), ��(�)(�)),���(1 − 	��(�)(�), 1 − 	��(�)(�)),���(��(�)(�), ��(�)(�))}

      ={(�, ���(��(�), ��(�)),1 − ���(��(�), ��(�)),���(��(�), ��(�)) 

Thus ((F, A)∩ (�, A)) C = (F, A) C	∪  (G, A) C 

Theorem: 3.24 

Let (F, A) and (G, A) are two neutrosophic pythagorean soft sets over the same universe X. We have the following 

(i) ((F, A)⋀ (�, A)) C = (F, A) C	⋁  (G, A) C 

(ii) ((F, A)⋁ (�, A)) C = (F, A) C⋀ (G, A) C
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Proof: 

Let (F, A)	⋀ (G, B) = (H, A ×B) where H (a, b) =F(a) ∩G(b) ∀	� ∈ 	� and ∀	� ∈ 	� where ∩ is the operation 
intersection of QNPS. 

Thus H (a, b) = F(a) ∩G(b) 

 = 	{(�,���(��(�), ��(�), ���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�))} 

((F, A)	⋀ (G, B)) C = (H, A ×B) C 	∀(	�, �) ∈ 	� × � 

Thus (H (a, b)) C={(�,���(��(�), ��(�)), ���(��(�), ��(�)),���(��(�), ��(�)), ���(��(�), ��(�))}
C 

 ={(�,���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�)),���(��(�), ��(�))} 

 Let (F, A) C	⋁  (G, A) C = (R, A ×B) where R (a, b) =(F(a)) C ∪ (G(b)) C ∀	� ∈ 	� and ∀	� ∈ 	� where ∪ is the 
operation union of NPSS. 

R (a, b) = {(�,���(��(�), ��(�)),���(��(�), ��(�)), ���(��(�), ��(�)),���(��(�), ��(�))} 

Hence ((F, A)⋀ (�, A)) C = (F, A) C	⋁  (G, A) C. Similarly we can prove (ii). 

5. Conclusion

In this paper, we have introduced the idea of Quadripartitioned neutrosophic pythagorean soft set with dependent
neutrosophic compnents and discussed some of its properties.We have put forward some theorems based on this new 
notion. In future, this paper will leads us to develop QNPS topological space. Further, we can study on QNPSS to 
carry out a general framework for this application in day today life. 
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Abstract: This article focuses on Nm -β -open, β -interior and β -closure operators using neutrosophic minimal struc-

tures. We investigate properties of such concepts and we introduced the concepts of Nm -β -continuous, Nm -β -closed

graph, Nm -β -compact and almost Nm -β -compact. Finally, we introduced the concepts of Nm -regular-open sets and

Nm -π -open sets and investigate some properties.

Key words: Nm -β -continuous, Nm -β -closed graph, Nm -β -compact, almost Nm -β -compact, Nm -regular-open and

Nm -π -open

1. Introduction

Zadeh’s [17] Fuzzy set laid the foundation of many fields such as intuitionistic fuzzy, neutrosophic set, rough

sets. Later, researchers developed K. T. Atanassov’s [4] intuitionistic fuzzy set theory in many fields such

as differential equations, topology, computerscience and so on. F. Smarandache [15, 16] found that some

objects have indeterminacy or neutral other than membership and non-membership. So he coined the notion

of neutrosophy. V. Popa & T. Noiri [12] introduced the notions of minimal structure which is a generalization

of a topology on a given nonempty set. We introduced the concepts of M -continuous maps. M. Karthika

et al [11] studied neutrosophic minimal structure spaces. S. Ganesan and F. Smarandache [9] studied Nm -

semi-open in neutrosophic minimal structure spaces. S. Ganesan et al [10] studied Nm -pre-continuous maps.

This article focuses on Nm -β -open, β -interior and β -closure operators using neutrosophic minimal structures.

We investigate properties of such concepts and we introduced the notions of Nm -β -continuous, Nm -β -closed

graph, Nm -β -compact and almost Nm -β -compact and investigate some properties for such concepts. Finally,

we introduced Nm -regular-open, Nm -π -open sets and investigate fundamental properties.

2. Preliminaries

Definition 2.1. [15, 16] Neutrosophic set (in short ns) K on a set G 6= ∅ is defined by K = {≺ a, PK (a),

QK (a), RK (a) � : a ∈ G}, where PK : G → [0,1], QK : G → [0,1] and RK : G → [0,1] denotes the

membership of an object, indeterminacy and non-membership of an object, for each a on G to K, respectively

and 0 ≤ PK (a) + QK (a) + RK (a) ≤ 3 for each a ∈ G.

Proposition 2.1. [13] For any ns S, then the following conditions are holds:

Some New Classes of Neutrosophic Minimal Open Sets 

Selvaraj Ganesan, Florentin Smarandache 

Selvaraj Ganesan, Florentin Smarandache (2021). Some New Classes of Neutrosophic Minimal Open 
Sets. Asia Mathematika 5(1): 103-112; DOI: 10.5281/zenodo.4724804 
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1. 0∼ ≤ S, 0∼ ≤ 0∼ .

2. S ≤ 1∼ , 1∼ ≤ 1∼ .

Definition 2.2. [13] Let K = {≺ a, PK (a), QK (a), RK (a) � : a ∈ G} be a ns.

1. A ns K is an empty set i.e., K = 0∼ if 0 is membership of an object and 0 is an indeterminacy and 1 is an

non-membership of an object respectively. i.e., 0∼ = {g, (0, 0, 1) : g ∈ G}

2. A ns K is a universal set i.e., K = 1∼ if 1 is membership of an object and 1 is an indeterminacy and 0 is an

non-membership of an object respectively. 1∼ = {g, (1, 1, 0) : g ∈ G}

3. K1 ∪ K2 = {a, max {PK1
(a), PK2

(a)}, max {QK1
(a), QK2

(a)}, min {RK1
(a), RK2

(a)} : a ∈ G}

4. K1 ∩ K2 = {a, min {PK1 (a), PK2 (a)}, min {QK1 (a), QK2 (a)}, max {RK1 (a), RK2 (a)} : a ∈ G}

5. KC
1 = {≺ a, RK (a), 1 − QK (a), P=PK (a) � : a ∈ G}

Definition 2.3. [13] Neutrosophic topology (nt) in Salama’s sense on a nonempty set G is a family τ of ns in

G satisfying three conditions:

1. Empty set (0∼ ) and universal set (1∼ ) are members of τ .

2. K1 ∩ K2 ∈ τ where K1 , K2 ∈ τ .

3. ∪Kδ ∈ τ for every {Kδ : δ ∈ ∆} ≤ τ .

Definition 2.4. [11] The neutrosophic minimal structure space over a universal set G be denoted by Nm . Nm

is said to be neutrosophic minimal structure space (in short, nms) over G if it satisfying following the axiom:

0∼ , 1∼ ∈ Nm . A family of neutrosophic minimal structure space is denoted by (G, NmG ).

Note that neutrosophic empty set and neutrosophic universal set can form a topology and it is known as

neutrosophic minimal structure space.

Remark 2.1. [11] Each ns in nms is neutrosophic minimal open set (in short, nmo).

Complement of nmo is neutrosophic minimal closed set (in short, nmc).

Definition 2.5. [11] A is Nm -closed if and only if Nm cl(A) = A. Similarly, A is a Nm -open if and only if

Nm int(A) = A.

Definition 2.6. [11] Let Nm be any nms and A be any neutrosophic set. Then

1. Every A ∈ Nm is open and its complement is Nm closed.

2. Nm -closure of A = min {F : F is a nmc and F ≥ A} and it is denoted by Nm cl(A).

3. Nm -interior of A = max {F : F is a nmo and F ≤ A} and it is denoted by Nm int(A).

In general Nm int(A) is subset of A and A is a subset of Nm cl(A).

Proposition 2.2. [11] Let R and S are any ns of nms Nm over G. Then

1. NC
m = {0, 1, RCi } where RCi is a complement of ns Ri .
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2. G − Nm int(S) = Nm cl(G − S).

3. G − Nm cl(S) = Nm int(G − S).

4. Nm cl(RC ) = (Nm cl(R))C = Nm int(R).

5. Nm closure of an empty set is an empty set and Nm closure of a universal set is a universal set. Similarly,

Nm interior of an empty set and universal set respectively an empty and a universal set.

6. If S is a subset of R then Nm cl(S) ≤ Nm cl(R) and Nm int(S) ≤ Nm int(R).

7. Nm cl(Nm cl(R)) = Nm cl(R) and Nm int(Nm int(R)) = Nm int(R).

8. Nm cl(R ∨ S) = Nm cl(R) ∨ Nm cl(S).

9. Nm cl(R ∧ S) = Nm cl(R) ∧ Nm cl(S).

Definition 2.7. Let (G, NmG ) be a nms and S ≤ G is said to be

1. Nm -semi-open set ( in short, Nm -so) [9] if S ≤ Nm cl(Nm int(S)).

2. Nm -pre-open set (in short, Nm -po) [10] if S ≤ Nm int(Nm cl(S)).

The complement of above Nm -open set is called an Nm -closed set.

Definition 2.8. [11] Let (G, NmG ) be nms.

1. Arbitrary union of nmo in (G, NmG ) is nmo. (Union Property).

2. Finite intersection of nmo in (G, NmG ) is nmo. (intersection Property).

Definition 2.9. [11] A function f: (G, NmG ) → (H, NmH ) is called neutrosophic minimal continuous map iff

f−1 (V) ∈ NmG whenever V ∈ NmH .

Definition 2.10. [11] let A be a ns in nms (G, NmG ). Then Y is said to be neutrosophic minimal subspace if

(H, NmH ) = {A ∩ U : U ∈ NmH }.

3. Nm -β -open sets

Definition 3.1. (G, NmG ) be a nms & S ≤ G is said to be Nm -β -open set (in short, Nm -β o ) if S ≤
Nm cl(Nm int(Nm cl(S))).

The complement of an Nm -β o is called an Nm -β -closed set(in short, Nm -β c)

Remark 3.1. (G, T ) be a nt & S ≤ G is said to be N -β -open set [3] if S ≤ N cl(N int(N cl(S))). If the

nms NmG is a topology, clearly an Nm -βo is N -β -open.

Above definition of 3.1, trivially the following statement are obtained.

Lemma 3.1. Consider (G, NmG ) be a nms.

1. Every Nm -open is Nm -βo.

2. S is an Nm -βo iff S ≤ Nm cl(Nm int(Nm cl(S))).
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3. Every Nm -closed set is Nm -β -closed.

4. S is an Nm -β -closed set iff Nm int(Nm cl(Nm int(S)) ≤ S.

Theorem 3.1. (G, NmG ) be a nms. Any union of Nm -βo is Nm -βo.

Proof. Suppose Aδ be an Nm -β o for δ ∈ ∆. Above definition 3.1 and Proposition 2.2(6), Aδ ≤ Nm cl(Nm int(Nm cl(Aδ )))

≤ Nm cl(Nm int(Nm cl(
⋃

Aδ ))). This implies
⋃

Aδ ≤ Nm cl(Nm int(Nm cl(
⋃

Aδ ))). Hence
⋃

Aδ is an Nm -

β o.

Remark 3.2. Consider (G, NmG ) be a nms. Intersection of any 2 Nm -βo may not be Nm -βo.

Example 3.1. Consider G = {a} with Nm = {0∼ , P, Q, R, S, 1∼} and NC
m = {1∼ , I, J, K, L, 0∼} where

P = ≺ (0.5, 0.6, 0.6)� ; Q = ≺ (0.4, 0.6, 0.8)�
R = ≺ (0.4, 0.7, 0.9)� ; S = ≺ (0.5, 0.7, 0.6)�
I = ≺ (0.6, 0.4, 0.5)� ; J = ≺ (0.8, 0.4, 0.4)�
K = ≺ (0.9, 0.3, 0.4)� ; L = ≺ (0.6, 0.3, 0.5)�
We know that 0∼ = {≺ g, 0, 0, 1 � : g ∈ G}, 1∼ = {≺ g, 1, 1, 0 � : g ∈ G} and 0C∼ = {≺ g, 1, 1, 0 �
: g ∈ G}, 1C∼ = {≺ g, 0, 0, 1 � : g ∈ G}.
Now we define the two Nm -βos as follows:

A = ≺ (0.6, 0.7, 0.9)� ; B = ≺ (0.5, 0.8, 0.4)�
Here Nm cl(A) = 0C∼ , Nm int(Nm cl(A)) = 1∼ , Nm cl(Nm int(Nm cl(A))) = 0C∼ and

Nm cl(B) = 0C∼ , Nm int(Nm cl(B)) = 1∼ , Nm cl(Nm int(Nm cl(A))) = 0C∼ . But A ∧ B = ≺ (0.5, 0.7, 0.9)�
is not a Nm -βo in G.

Proposition 3.1. Let (G, NmG ) be a nms.

1. If S is a Nm so then it is a Nm -βo.

2. If S is a Nm -po then it is a Nm -βo.

Proof. (1) The proof is straightforward from the definitions.

(2) The proof is straightforward from the definitions.

Definition 3.2. Let (G, NmG ) be a nms.

1. Nm -β -closure of A = min {S : S is Nm -β -closed set and S ≥ A} and it is denoted by Nm -β cl (A).

2. Nm -β -interior of A = max {V : V is Nm -β o and V ≤ A} and it is denoted by Nm -β int(A).

Theorem 3.2. Suppose (G, NmG ) be a nms and R, S ≤ G. Then

1. Nm -β int(0∼ ) = 0∼ .

2. Nm -β int(1∼ ) = 1∼ .

3. Nm -β int(R) ≤ R.

4. If R ≤ S, then Nm -β int(R) ≤ Nm -β int(S).
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5. R is Nm -βo iff Nm -β int(R) = R.

6. Nm -β int(Nm -β int(R)) = Nm -β int(R).

7. Nm -β cl (G − R) = G −Nm -β int(R).

Proof. (1), (2) are Obvious.

(3), (4) are Obvious.

(5) It follows from Theorem 3.1.

(6) It follows condition from (5).

(7) For R ≤ G, G − Nm -β int(R) = G − max {U : U ≤ R, U is Nm -β o} = min { G − U : U ≤ R, U is

Nm -β o} = min {G - U : G - R ≤ G - U}, U is Nm -β o} = Nm -β cl (G − R).

Theorem 3.3. Let (G, NmG ) be a nms and R, S ≤ G. Then

1. Nm -β cl (0∼ ) = 0∼ .

2. Nm -β cl (1∼ ) = 1∼ .

3. R ≤ Nm -β cl (R).

4. If R ≤ S, then Nm -β cl (R) ≤ Nm -β cl (S).

5. R is Nm -β c iff Nm -β cl (R) = R.

6. Nm -β cl (Nm -β cl (R)) = Nm -β cl (R).

7. Nm -β int(G − R) = G −Nm -β cl (R).

Proof. It is similar to the proof of above Theorem 3.2.

Theorem 3.4. Let (G, NmG ) be a nms and S ≤ G. Then

1. g ∈ Nm -β cl (S) iff S ∩ V 6= ∅ for every Nm -βo V containing g.

2. g ∈ Nm -β int(S) iff there exists an Nm -βo U such that U ≤ S.

Proof. (1) Suppose there is an N m - β o V containing g such that S ∩ V = ∅ . Then G − V is an Nm -β c such

that S ≤ G − V, g /∈ G − V. This implies g /∈ Nm -β cl (S).

The reverse relation is obvious.
(2) Obvious.

Lemma 3.2. Let (G, NmG ) be a nms and S ≤ G. Then

1. Nm int(Nm cl(Nm int(S))) ≤ Nm int(Nm cl(Nm int(Nm -β int(S))) ≤ Nm -β int(S).

2. Nm -β cl (S) ≤ Nm cl(Nm int(Nm cl(Nm -β cl(S))) ≤ Nm cl(Nm int(Nm cl(S))).

Proof. (1) For S ≤ G, by Theorem 3.3, Nm -β cl (S) is an Nm -β c set. Hence from Lemma 3.1, we have

Nm int(Nm cl(Nm int(S))) ≤ Nm int(Nm cl(Nm int(Nm -β int(S)))) ≤ Nm -β int(S).

(2) It is similar to the proof of (1).
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4. Nm -β -continuous map

Definition 4.1. Map f : (G, NmG ) → (H, NmH ) is said to be Nm -β -continuous if f−1 (O) is a Nm -β o in G,

for each Nm -open O in H.

Theorem 4.1.1. Every neutrosophic minimal continuous is Nm -β -continuous but not conversely.

2. Every Nm -semi-continuous is Nm -β -continuous but not conversely.

3. Every Nm -pre-continuous is Nm -β -continuous but not conversely.

Proof. (1) The proof follows from [Lemma 3.1 (1)].

(2) The proof follows from [Proposition 3.1 (1)].

(3) The proof follows from [Proposition 3.1 (2)].

Theorem 4.2. Map f : G → H be a function on 2 nms (G, NmG ) and (H, NmH ). Then the following

statements are equivalent:

1. f is Nm -β -continuous.

2. f−1 (O) is an Nm -βo, for each Nm -open set O in H.

3. f−1 (S) is an Nm -β c set, for each Nm -closed S in H.

4. f(Nm -β cl (R)) ≤ Nm cl(f(R)), for R ≤ G.

5. Nm -β cl (f−1 (S)) ≤ f−1 (Nm cl(S)), for S ≤ H.

6. f−1 (Nm int(S)) ≤ Nm -β int(f−1 (S)), for S ≤ H.

Proof. (1) ⇒ (2) Let O be an Nm -open in H and g ∈ f−1 (O). By hypothesis, there exists an Nm -β o Ug

containing g such that f(U) ≤ O. This implies g ∈ Ug ≤ f−1 (O) for all g ∈ f−1 (O). Hence by Theorem 3.1,

f−1 (O) is Nm -β o.

(2) ⇒ (3) Obvious.

(3) ⇒ (4) For R ≤ G, f−1 (Nm cl(f(R))) = f−1 (min {F ≤ H : f(R) ≤ F and F is Nm -closed}) = min {f−1 (F)

≤ G : R ≤ f−1 (F) and F is Nm -β c} ≥ min {K ≤ G : R ≤ K and K is Nm -β c} = Nm -β cl (R). Hence

f(Nm -β cl (R)) ≤ Nm cl(f(R)).

(4) ⇒ (5) For R ≤ G, from (4), it follows f(Nm -β cl (f−1 (R))) ≤ Nm cl(f(f−1 (R))) ≤ Nm cl(R). Hence we get

(5).

(5) ⇒ (6) For S ≤ H, from Nm int(S) = Y − Nm cl(H − S) and (5), it follows: f−1 (Nm int(S)) = f−1 (Y −
Nm cl(H − S)) = G − f−1 (Nm cl(H − S)) ≤ G − Nm -β cl (f−1 (H − S)) = Nm -β int(f−1 (S)). Hence (6) is

obtained.
(6) ⇒ (1) Let g ∈ G and O an Nm -open set containing f(g). Then from (6) and Proposition 2.2, it follows g ∈
f−1 (O) = f−1 (Nm int(O)) ≤ Nm -β int(f−1 (O)). So from Theorem 3.4, we can say that there exists an Nm -β o

U containing g such that g ∈ U ≤ f−1 (O). Hence f is Nm -β -continuous.

Theorem 4.3. Map f : G → H be a function on 2 nms (G, NmG ) and (H, NmH ). Then the following

statements are equivalent:
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1. f is Nm -β -continuous.

2. f−1 (O) ≤ Nm cl(Nm int(f−1 (O))), for each Nm -open O in H.

3. Nm int(Nm cl(f−1 (F))) ≤ f−1 (F), for each Nm -closed set F in H.

4. f(Nm int(Nm cl(R))) ≤ Nm cl(f(R)), for R ≤ G.

5. Nm int(Nm cl(f−1 (S))) ≤ f−1 (Nm cl(S)), for S ≤ H.

6. f−1 (Nm int(S)) ≤ Nm cl(Nm int(f−1 (S))), for S ≤ H.

Proof. (1) ⇔ (2) It follows from Theorem 4.2 and Definition of Nm -β os.

(1) ⇔ (3) It follows from Theorem 4.2 and Lemma 3.1.

(3) ⇒ (4) Let R ≤ X. Then from Theorem 4.2(4) and Lemma 3.2, it follows Nm int(Nm cl(R)) ≤ Nm -β cl (R))

≤ f−1 (Nm cl(f(R))). Hence f(Nm int(Nm cl(R))) ≤ Nm cl(f(R)).

(4) ⇒ (5) Obvious.

(5) ⇒ (6) From (5) and Proposition 2.2, it follows: f−1 (Nm int(S)) = f−1 (H − Nm cl(H − S)) = G

− f−1 (Nm cl(H − S)) ≤ G − Nm int(Nm cl(f−1 (H − S)))

= Nm cl(Nm int(f−1 (S))). Hence, (6) is obtained.

(6) ⇒ (1) Let O be an Nm -open in H. Then by (6) and Proposition 2.2, we have f−1 (O) = f−1 (Nm int(O)) ≤
Nm cl(Nm int(f−1 (O))). This implies f−1 (O) is an Nm -β o. Hence by (2), f is Nm -β -continuous.

Definition 4.2. [10] (G, NmG ) be a nms. Then G is said to be Nm -T2 if for each distinct points g and h of

G, there exist two disjoint Nm -open U, V such that g ∈ U and h ∈ V.

Definition 4.3. (G, NmG ) be a nms. Then G is said to be Nm -β -T2 if for any distinct points g and h of G,

there exist disjoint Nm -β o C, D such that g ∈ C and h ∈ D.

Theorem 4.4. Map f : G → H be a map on two nms (G, NmG ) and (H, NmH ). If f is an injective and

Nm -β continuous map and if H is Nm -T2 , then G is Nm -β -T2 .

Proof. Obvious.

Theorem 4.5. Map f : G → H be a map on two nms (G, NmG ) and (H, NmH ). If f is an injective and

Nm -β continuous map with an Nm -β -closed graph, then G is Nm -β -T2 .

Proof. Suppose g1 and g2 be any distinct points of G. Then f(g1 ) 6= f(g2 ), so (g1 , f(g2 )) ∈ (G × H) − L(f).

Since the graph L(f) is Nm -β c, there exist an Nm -β o containing g1 and D ∈ NmH containing f(g2 ) such that

f(C) ∩ D = ∅ . Since f is Nm -β continuous, f−1 (D ) is an Nm -β o containing g2 such that C ∩ f−1 (D) = ∅ .

Hence G is Nm -β -T2 .

Definition 4.4. [10] (G, NmG ) be a nms and S ≤ G, S is called Nm -compact (respectively, almost Nm -

compact) relative to S if every collection {U i : i ∈ ∆} of Nm -open subsets of G such that S ≤ max {U i :

i ∈ ∆}, there exists a finite subset ∆ 0 of ∆ such that S ≤ max {U j : j ∈ ∆ 0} (respectively, S ≤ max

{Nm cl(U j ) : j ∈ ∆ 0}). (G, NmG ) be a nms and S ≤ G, S is said to be Nm -compact (respectively, almost

Nm -compact) if S is Nm -compact (respectively, almost Nm -compact) as a neutrosophic minimal subspace of

G.
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Definition 4.5. (G, NmG ) be a nms and S ≤ G, S is called Nm -β -compact (respectively, almost Nm -β -

compact) relative to S if every collection {Uδ : δ ∈ ∆} of Nm -β -open subsets of G such that S ≤ max {Uδ

: δ ∈ ∆}, there exists a finite subset Ω of ∆ such that S ≤ max {Uω : ω ∈ Ω} (respectively, S ≤ max

{Nm β cl (Uω ) : ω ∈ Ω}). (G, NmG ) be a nms and S ≤ G, S is said to be Nm -β -compact (respectively, almost

Nm -β -compact) if S is Nm -β -compact (resp. almost Nm -β -compact) as a neutrosophic minimal subspace of

G.

Theorem 4.6. Map f : G → H be a map on 2 nms (G, NmG ) and (H, NmH ). If S is an Nm -β -compact set,

then f(S) is Nm -compact.

Proof. Obvious.

5. Nm -regular open

We introduce following definitions

Definition 5.1. (G, NmG ) be a nms and A ≤ G, A is called Nm -regular open (in short, Nm -ro) if A =

Nm int(Nm cl(A)).

Theorem 5.1. Any Nm -ro is Nm -open.

Proof. If A is Nm -ro in (G, NmG ), A = Nm int(Nm cl(A)). Then Nm int(A) = Nm int(Nm int(Nm cl(A))) =

Nm int(Nm cl(A)) = A. That is, Ais Nm -open in (G, NmG ).

Example 5.1. G = {a} with Nm = {0∼ , P, 1∼ } and NC
m = {1∼ , Q, 0∼} where

P = ≺ (0.5, 0.5, 0.5)� ; Q = ≺ (0.5, 0.5, 0.5)�
Now we define the Nm -ro sets as follows:

A = ≺ (0.5, 0.5, 0.5)�
Here Nm cl(A) = Q, Nm int(Nm cl(A)) = P is a Nm -ro in G.

Definition 5.2. (G, NmG ) be a nms and S ≤ G, S is said to be Nm -π -open set if S is the finite union of

Nm -ro.

Remark 5.1. For a subset of A of an nms (G, NmG ), we have following implications:

Nm -regular open ⇒ Nm -π -open ⇒ Nm -open

Diagram-I

Example 5.2. G = {a} with Nm = {0∼ , P, L, 1∼} and NC
m = {1∼ , M, N, 0∼} where

P = ≺ (0.1, 0.5, 0.1)� ; L = ≺ (0.5, 0.5, 0.5)�
M = ≺ (0.1, 0.5, 0.1)� ; N = ≺ (0.5, 0.5, 0.5)�
Now we define the two Nm -ro sets as follows:

A = ≺ (0.1, 0.5, 0.1)�
B = ≺ (0.5, 0.5, 0.5)�
Here Nm cl(A) = M, Nm int(Nm cl(A)) = P ; Nm cl(B) = N, Nm int(Nm cl(B)) = L is a Nm -ro set in G. Here,

A ∨ B = ≺ (0.5, 0.5, 0.1)� is a Nm -π -open sets but it is not a Nm -ro.
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Example 5.3. G = {a} with Nm = {0∼ , A, 1∼ } and NC
m = {1∼ , B, 0∼ } where

A = ≺ (0.6, 0.7, 0.3)� ; B = ≺ (0.3, 0.3, 0.6)�
Now we define the Nm -ro sets as follows:

R = ≺ (0, 0, 1)� ; S = ≺ (1, 1, 0)�
Here R ∨ S ≺ (1, 1, 0)� is a Nm -π -open set in G. Here, A = ≺ (0.6, 0.7, 0.3)� is Nm -open but it is not

a Nm -π -open.

Conclusion

We presented several definitions, properties, explanations and examples inspired from the concept of Nm -β -
open, Nm -regular-open and Nm -π -open. The results of this study may be help in many reserches.
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1 Introduction

Most often, the mathematical programming problems consist of only one decision 
maker who takes the decisions all alone. Apart from that, many decision-making 
problems involve hierarchical decision structures, each with independent, and most 
often contradictory in nature. Such decision-making scenarios are termed as 
decentralized planning problems. Thus, the hierarchical decision-making texture of 
the problem is formulated as multi-level programming problems (MLPPs). If there 
are only two decision makers, then it becomes bi-level programming problems, tri-
level for three decision makers, and so on. The fundamental concepts behind the 
MLPPs optimization techniques are that the leader-level decision maker defines 
his/her goals/target and then seeks the optimal solution from each subordinate level 
of the organization that has calculated individually. The follower-level decisions 
are then submitted and satisfied by the leader-level in view of overall benefit of the 
organizations. There may be more than one linear objective function that are to be 
optimized by different levels in MLPPs, then such kind of decentralized decision-
making problems are termed as multi-level multiobjective linear programming 
problems (ML-MOLPPs).

There are several research works available in the literature that contribute to 
the domain of multi-level multiobjective linear programming problems. Based 
on fuzzy set theory, [1, 6, 19, 20, 22] presented fuzzy programming and fuzzy 
goal programming approaches to bi-level decision-making problems. Furthermore,
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[8, 10, 12, 14, 15] suggested the fuzzy-based solution procedure for ML-MOLPPs.
Later on, intuitionistic fuzzy set theory [7] is also introduced to solve the ML-
MOLPPs under intuitionistic fuzzy environment. Recently, [9, 21] discussed the
intuitionistic fuzzy techniques to solve the ML-MOLPPs by considering the mem-
bership as well as non-membership functions of all objectives at each level.
Furthermore, the extension and generalization of fuzzy and intuitionistic fuzzy sets
are presented and named as neutrosophic set. First, [18] proposed the neutrosophic
set, and later on it was extensively used in the field of mathematical programming
problems and their optimization techniques. Only few research work is available that
captures the neutrosophic decision set theory in ML-MOLPPs. Only two research
articles are cited below that have contributed to neutrosophic ML-MOLPPs domain.
Maiti et al. [11] investigated neutrosophic goal programming strategy for ML-
MOLPPs with neutrosophic parameters. Pramanik and Dey [13] also suggested a
goal programming technique for neutrosophic ML-MOLPPs where the parameters
have been taken as triangular or trapezoidal neutrosophic numbers. Thus, this
chapter provides more emphasis toward the neutrosophic ML-MOLPPs research
area and laid down a concrete base for neutrosophic ML-MOLPPs optimization
domain.

In this chapter, the neutrosophic fuzzy goal programming (NFGP) algorithm is
introduced to solve the multi-level multiobjective linear programming problems.
Two different NFGP procedures based on neutrosophic fuzzy decision set are
presented for ML-MOLPPs. To formulate any of these two proposed NFGP
models of the ML-MOLPPs, the neutrosophic fuzzy goals of the objectives are
determined by finding individual optimal solutions. Marginal evaluations of each
objective functions are then depicted by the associated membership functions
under neutrosophic environment. These membership functions are converted into
neutrosophic fuzzy flexible membership goals by means of incorporating over- and
under-deviational variables and assigning highest truth membership value (unity),
indeterminacy value (half), and a falsity value (zero) as aspiration levels to each
of them. To determine the membership functions of the decision variable vectors
monitored by any level decision maker, the optimal solution of the corresponding
MOLPP is separately solved. A marginal relaxation of the decisions is prescribed to
avoid decision deadlock.

The first proposed NFGP solution algorithm provides an extension of the work
presented by [1, 8, 16] under neutrosophic environment, which deals with bi-level
linear single-objective programming problems. It also extends the work of [14]
by introducing the NFGP algorithm to multi-level programming problems with a
multiple linear objective at each level. The final fuzzy model groups the membership
functions for the defined neutrosophic fuzzy goals of the objective functions and the
decision variable vectors at all levels, which are determined separately for each level
except the follower level of the multi-level problem.

The second proposed NFFGP algorithm may be seen as a method for solving
multi-level multiobjective programming problems. First, it develops the NFGP
model of the leader-level problem to obtain a satisfactory solution to the leader-
level decision maker’s problem. A marginal relaxation of the leader-level decision
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maker’s decisions is taken into account to avoid a decision deadlock. These
decisions of the leader-level decision makers are depicted by membership functions
of neutrosophic fuzzy set theory and transferred to the second-level DM (SLDM) as
an additional constraint. Then, the SLDM modeled its NFGP model that considers
the neutrosophic fuzzy membership goals of the objectives and decision variable
vectors of the leader-level decision makers. Afterward, the achieved solution is
passed to the third-level DM (TLDM) who seeks the solution in a similar fashion.
The same process is carried out until the follower level reaches. Thus, this procedure
may be assumed as an extension of the fuzzy mathematical programming algorithm
of [16, 17] under the neutrosophic environment.

The remaining part of the chapter is summarized as follows: in Sect. 2, the
preliminaries regarding neutrosophic set have been discussed, while Sect. 3 dis-
cusses the formulations of multi-level multiobjective programming problems. The
proposed neutrosophic fuzzy goal algorithm is developed in Sect. 4, whereas in
Sect. 5, a numerical example is presented to show the applicability and validity of
the proposed approaches. Finally, conclusions and future scope are discussed based
on the present work in Sect. 6.

2 Preliminaries

Some basic preliminaries regarding neutrosophic set are presented in the following
section.

Definition 1 ([4]) Let Y be a universe discourse such that y ∈ Y , then a
neutrosophic set A in Y is defined by three membership functions namely, truth
μA(y), indeterminacy λA(y), and a falsity νA(y) and is denoted by the following
form:

A = {< y, μA(y), λA(y), νA(y) > | y ∈ Y },

where μA(y), λA(y) and νA(y) are real standard or non-standard subsets belong
to ]0−, 1+[, also given as, μA(y) : Y →]0−, 1+[, λA(y) : Y →]0−, 1+[, and
νA(y) : Y →]0−, 1+[. There is no restriction on the sum of μA(y), λA(y) and
νA(y), so we have

0− ≤ sup μA(y)+ λA(y)+ sup νA(y) ≤ 3+.

Definition 2 ([4]) A single-valued neutrosophic set A over universe of discourse Y
is defined as

A = {< y, μA(y), λA(y), νA(y) > | y ∈ Y },
where μA(y), λA(y), and νA(y) ∈ [0, 1] and 0 ≤ μA(y)+ λA(y)+ νA(y) ≤ 3 for
each y ∈ Y .
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Definition 3 ([4]) The complement of a single valued neutrosophic set A is
represented as c(A) and defined by μc(A)(y) = νA(y), λc(A)(y) = 1 − νA(y) and
νc(A)(y) = μA(y), respectively.

Definition 4 ([4]) Let A and B be the two single-valued neutrosophic sets, then the
union of A and B is also a single-valued neutrosophic set C, that is, C = (A ∪ B),
whose truth μC(y), indeterminacy λC(y), and falsity νC(y) membership functions
are given by

μC(y) = max (μA(y), μB(y))
λC(y) = max (λA(y), λB(y))
νC(y) = min (νA(y), νB(y)) for each y ∈ Y .

Definition 5 ([4]) Let A and B be the two single-valued neutrosophic sets, then the
intersection of A and B is also a single-valued neutrosophic set C, that is, C =
(A ∩ B), whose truth μC(y), indeterminacy λC(y), and falsity νC(y) membership
functions are given by

μC(y) = min (μA(y), μB(y))
λC(y) = min (λA(y), λB(y))
νC(y) = max (νA(y), νB(y)) for each y ∈ Y .

Definition 6 A solution set Y ∗ ∈ S is said to be an efficient solution to the
MLMOPPs if and only if there does not exist any other Y ∈ S such that Oij ≥ O∗ij
for all i = 1, 2, . . . , t; j = 1, 2, . . . , mt , respectively.

Definition 7 For any ML-MOPPs, an efficient solution selected by the decision
makers is the best compromise optimal solution which is chosen on the basis of
decision makers’ explicit and implicit criteria.

3 Description of ML-MOLPPs

Assume that a t- level multiobjective programming problem with minimization-type
objective functions at different level. Consider that DMi represents the i-th level
decision maker and controls over the decision variable yi = (yi1, yi2, . . . , yini ) ∈
Rni for all i = 1, 2, . . . , t , where y = (y1, y2, . . . , yt ) ∈ Rn such that n =
n1 +2 + . . .+ nt . Furthermore, we assume that

Oi(y) = Oi(y1, y2, . . . , yt ) : Rn1×Rn2×· · ·×Rnt → Rmi , ∀ i = 1, 2, . . . , t
(1)

represents the vector-set of a well-defined linear objective function to the i-th
decision makers, i = 1, 2, . . . , t . The equivalent mathematical expressions for
the ML-MOLPPS with minimization-type objectives can be stated as follows:
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[1st level]
Min
y1
O1(y) = Min

y1

(
o11(y), o12(y), . . . , o1m1(y)

)

where y2, y3, . . . , yt solves

[2nd level]
Min
y2
O2(y) = Min

y2

(
o21(y), o22(y), . . . , o2m2(y)

)

· · ·
where yt solves

[t-th level]
Min
yt
Ot (y) = Min

yt

(
ot1(y), ot2(y), . . . , otmt (y)

)

(2)

subject to

y ∈ S = {y ∈ Rn|G1y1 +G1y1 + · · · +Gtyt (≤ or = or ≥) q, y ≥ 0,

q ∈ Rm} �= φ, (3)

where

oij (y) =cij1 y1 + cij2 y2 + · · · + cijt yt , i = 1, 2, . . . , t, j = 1, 2, . . . , mi

=cij11y11 + cij12y12 + · · · + cij1n1
y1n1 + cij21y21 + cij22y22 + · · ·

+ cij2n2
y2n2 + · · · cijt1yt1 + cijt2yt2 + · · · + cijtnt ytnt

(4)

such that S is the multi-level convex constraints in feasible decision set under multi-
level multiobjective programming problems. The notation mi, i = 1, 2, . . . , t
denotes the number of objective function under i-th decision maker,m is the number

of constraints, cijk =
(
c
ij

k1, c
ij

k2, · · · , cijknk
)
, k = 1, 2, . . . , t, cijknk are constants,

and the coefficient matrices of sizem×ni are depicted asGi, ∀ i = 1, 2, . . . , t .

4 Proposed Neutrosophic Fuzzy Goal Programming
Techniques

In the past few decades, it has been observed that the situation may arise in
real-life decision-making problems where the indeterminacy or neutral thoughts
about element into the feasible set exist. Indeterminacy/neutral thoughts are the
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region of the negligence of a proposition’s value and lie between truth and a
falsity degree. Therefore, the further generalization of fuzzy set (FS) [20] and
intuitionistic fuzzy set (IFS) [7] is presented by introducing a new member into
the feasible decision set. First, [18] investigated the neutrosophic set (NS) which
comprises three membership functions, namely truth (degree of belongingness),
indeterminacy (degree of belongingness up to some extent), and a falsity (degree
of non-belongingness) functions of the element into the neutrosophic decision set
(see [2, 3, 5]).

In ML-MOLPPs, if an imprecise aspiration level under neutrosophic environ-
ment is assigned to each of the objectives at each level of the ML-MOLPPs,
then such neutrosophic objectives are termed as neutrosophic goals and dealt with
neutrosophic decision-making techniques. Hence, the marginal evaluation of each
neutrosophic goals is characterized through three different membership functions,
namely truth, indeterminacy, and a falsity membership functions by defining the
tolerance limits for attainment of their respective aspiration levels.

4.1 Characterization of Different Membership Functions
Under Neutrosophic Environment

In multi-level decision-making problems, each DM intends to minimize its own
objectives in each level over the same feasible region depicted by the system of
constraints; hence, the individual optimal solutions are obtained by them and can be
regarded as the aspiration levels of their associated neutrosophic goals.

Assume that yij = (yij1 , yij2 , . . . , yijt ) and omin
ij , i = 1, 2, . . . , t, j =

1, 2, . . . , mi be the best individual optimal solutions of each DMs at each level,
respectively. Furthermore, consider that lij ≥ omin

ij denotes the aspiration level
assigned to the ij -th objective oij (y) (where ij means that when i = t for t-
th level decision makers then j = 1, 2, . . . , mi). Moreover, also consider that
yi∗ = (yi∗1 , yi∗2 , . . . , yi∗t ), i = 1, 2, . . . , t − 1, be the optimal solutions for the
t-th level decision makers of ML-MOLPPs. Consequently, the neutrosophic goals of
each objective function at each level and the vector-set of neutrosophic goals for the
decision variables monitored by t-th level decision makers can be stated as follows:

oij (y) <̃ lij , i = 1, 2, . . . , t, j = 1, 2, . . . , mi and

yi =̃ yi∗i , i = 1, 2, . . . , t − 1,

where <̃ and =̃ represent the degree of neutrosophy of the aspiration levels.
One can note that the solutions yij = (yij1 , yij2 , . . . , yijt ); i =

1, 2, . . . , t, j = 1, 2, . . . , mi are probably different due to the conflicting
nature of the objective functions at each level for all the decision makers. Therefore,
it can be obvious to consider that the values of ogm(y

gm

1 , ygm2 , . . . , ygmt ) ≥
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omin
ij , g = 1, 2, . . . , t, m = 1, 2, . . . , mi , and ∀ ij �= gm with all values

greater than ougm = max [ oij (ygm1 , ygm2 , . . . , ygmt ), i = 1, 2, . . . , t, j =
1, 2, . . . , mi and ij �= gm] are absolutely unacceptable to the objective
function ogm(y) = ogm(y1, y2, . . . , yt ). As a result, ogm(y) can be taken as the
upper tolerance limit ugm(y) of the neutrosophic goal to the objective functions.
The upper and lower bounds for ij -th objective function under the neutrosophic
environment can be obtained as follows:

U
μ
ij = uij , L

μ
ij = lij for truth membership

Uλij = Lμij + aij , Lλij = Lμij for indeterminacy membership

Uνij = Uμij , Lνij = Lμij + bij for falsity membership,

where aij and bij ∈ (0, 1) are predetermined real numbers.
Thus, the different membership functions, namely truth μoij (oij (y)), indeter-

minacy λoij (oij (y)), and a falsity νoij (oij (y)) membership functions for the ij -th
neutrosophic goals can be stated as follows:

μoij (oij (y)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if oij (y) ≤ Lμij
1− oij (y)−Lμij

U
μ
ij−Lμij

if Lμij ≤ oij (y) ≤ Uμij
0 if oij (y) ≥ Uμij

(5)

λoij (oij (y)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if oij (y) ≤ Lλij
1− oij (y)−Lλij

Uλij−Lλij
if LIk ≤ oij (y) ≤ Uλij

0 if oij (y) ≥ Uλij
(6)

νoij (oij (y)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if oij (y) ≥ Uνij
1− Uνij−oij (y)

Uνij−Lνij if Lνij ≤ oij (y) ≤ Uνij
0 if oij (y) ≤ Lνij .

(7)

To construct the different membership functions for the decision variables
monitored by i-th decision makers, first, the optimal solution for the t-th level
MOLPPs, yi∗ = (yi∗1 , yi∗2 , . . . , yi∗t ), i = 1, 2, . . . , t − 1, should be carried out
by using any appropriate method for MOLPPs optimization techniques.

Suppose that T iαk and T iβk , i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni be the
maximum negative and positive tolerance limits on the decision variables imposed
by the i-th level decision makers. Usually, the tolerances T −ik and T +ik may not be
equal. The upper and lower bounds for ik-th decision variable vectors under the
neutrosophic environment can be stated as follows:
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μUyik = y∗ik + T iβk , μLyik = y∗ik − T iαk for truth membership

λUyik = μLyik + aik, λLyik = μLyik for indeterminacy membership

νUyik = μUyik , νLyik = μLyik + bik for falsity membership,

where aik and bik ∈ (0, 1) are predetermined real numbers.
For each of the ni components of the decision variable vector y∗ik =

(y∗i1, y∗i2, . . . , y∗ini ) controlled by the leader (t − 1)-th level decision makers,
the different linear membership functions under neutrosophic environment such as
truth μyik (yik), indeterminacy λyik (yik), and a falsity νyik (yik) can be furnished as
follows:

μyik (yik) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yik−μLyik
y∗ik−μLyik

if μLyik ≤ yik ≤ y∗ik
μUyik

−yik
μUyik

−y∗ik if y∗ik ≤ yik ≤ μUyik
0 otherwise.

(8)

λyik (yik) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yik−λLyik
y∗ik−λLyik

if λLyik ≤ yik ≤ y∗ik
λUyik

−yik
λUyik

−y∗ik if y∗ik ≤ yik ≤ λUyik
0 otherwise.

(9)

νyik (yik) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yik−νLyik
y∗ik−νLyik

if νLyik ≤ yik ≤ y∗ik
νUyik

−yik
νUyik

−y∗ik if y∗ik ≤ yik ≤ νUyik
1 otherwise.

(10)

Also, it should be noted that the range of yik may be shifted according to the decision
makers’ choices.

In a neutrosophic decision environment, the neutrosophic goals comprising
the decision makers’ objective functions at different level and the neutrosophic
goals of the decision variable vectors are monitored by leader (t − 1)-th level
decision makers. The attainment degrees to their aspiration levels to the extent
possible are virtually achieved by the possible achievement of their respective
memberships, namely truth, indeterminacy, and a falsity membership functions to
their utmost degrees. Obviously, this aspect of neutrosophic fuzzy programming
approach enables a neutrosophic fuzzy goal programming technique as a justified
approach for solving the leader t-th level MOLPPs and consequently ML-MOLPPs.
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4.2 Neutrosophic Fuzzy Goal Programming Approach

In neutrosophic programming approaches, the neutrosophic membership degrees
can be transformed into neutrosophic membership goals according to their respec-
tive maximum degrees of attainment. The highest degree of truth membership
function that can be achieved is unity (1), the indeterminacy membership function is
neutral and independent with the highest attainment degree half (0.5), and the falsity
membership function can be achieved with the highest attainment degree zero (0).
Now, the transformed membership goals under the neutrosophic environment can
be expressed as follows:

μoij (oij (y))+ d−ijμ − d+ijμ = 1,

λoij (oij (y))+ d−ijλ − d+ijλ = 0.5,

νoij (oij (y))+ d−ijν − d+ijν = 0,

⎫
⎪⎬

⎪⎭
∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi

(11)

μyik (yik)+ d−ikμ − d+ikμ = 1,

λyik (yik)+ d−ikλ − d+ikλ = 0.5,
νyik (yik)+ d−ikν − d+ikν = 0,

⎫
⎪⎬

⎪⎭
∀ i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

(12)

or equivalently represented as follows:

1− oij (y)−Lμij
U
μ
ij−Lμij

+ d−ijμ − d+ijμ = 1,

1− oij (y)−Lλij
Uλij−Lλij

+ d−ijλ − d+ijλ = 0.5,

1− Uνij−oij (y)
Uνij−Lνij + d−ijν − d+ijν = 0,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi

(13)
yik−μLyik
y∗ik−μLyik

+ dα−ikμ − dα+ikμ = 1,

μUyik
−yik

μUyik
−y∗ik + d

β−
ikμ − dβ+ikμ = 1,

yik−λLyik
y∗ik−λLyik

+ dα−ikλ − dα+ikλ = 0.5,

λUyik
−yik

λUyik
−y∗ik + d

β−
ikλ − dβ+ikλ = 0.5,

yik−νLyik
y∗ik−νLyik

+ dα−ikν − dα+ikν = 0,

νUyik
−yik

νUyik
−y∗ik + d

β−
ikν − dβ+ikν = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni,

(14)

where d−ik = (dα−ik , dβ−ik ), d+ik = (dα+ik , dβ+ik ); d−ij ·, d+ij ·, dα−ik , dβ−ik , dα+ik , dβ+ik ≥
0; and dβ−ik × dβ+ik = 0, ∀ i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni are the over
and under deviations for truth, indeterminacy, and a falsity membership goals from
their respective aspiration levels under neutrosophic environment.
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In goal programming strategy, the over- and/or under-deviational variable vectors
are considered in the objective function to minimize them and solely depend on the
nature of objective function that is being optimized. In the proposed neutrosophic
goal programming technique, the over-deviational variables for neutrosophic goals
of each objective function, d+ij · ∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi and
the over and under-deviational variables for the neutrosophic fuzzy goals of the
decision variable vectors, dα+ik , d

α−
ik , d

β+
ik and dβ−ik ∀ i = 1, 2, . . . , (t − 1),

k = 1, 2, . . . , ni are needed to be minimized to attain the neutrosophic fuzzy
goals.

4.3 Neutrosophic Fuzzy Goal Programming Approach
for ML-MOLPPs

The proposed neutrosophic fuzzy goal programming (NFGP) algorithm for solving
the multi-level multiobjective linear programming problems (ML-MOLPPs)
is presented, and the two new algorithms are suggested under neutrosophic
environment.

4.3.1 The First NFGP Algorithm for ML-MOLPPs

First of all, the first NFGP algorithm proposed in this chapter groups over the
different membership functions for the prescribed neutrosophic fuzzy goals of the
objective functions at each levels; it also groups the different membership functions
of the neutrosophic fuzzy goals of the decision variable vector of the t-th leader-level
problems that are optimized individually under neutrosophic environment. Thus, by
assuming the goal attainment problems at the same preference level, the equivalent
proposed neutrosophic fuzzy multi-level multiobjective linear goal programming
model of the ML-MOLPPs under neutrosophic environment can be expressed as
follows:

Min F =
m1∑

j=1

w+1jμd
+
1jμ +

m2∑

j=1

w+2jμd
+
2jμ + · · · +

mt∑

j=1

w+tjμd
+
tjμ

+
m1∑

j=1

w+1jλd
+
1jλ +

m2∑

j=1

w+2jλd
+
2jλ + · · · +

mt∑

j=1

w+tjλd
+
tjλ

−
m1∑

j=1

w+1jνd
−
1jν −

m2∑

j=1

w+2jνd
−
2jν − · · · −

mt∑

j=1

w+tjνd
−
tjν

+
n1∑

k=1

(
wα1k·(d

α−
1k· + dα+1k· )+ wβ1k·(dβ−1k· + dβ+1k· )

)
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+
n2∑

k=1

(
wα2k·(d

α−
2k· + dα+2k· )+ wβ2k·(dβ−2k· + dβ+2k· )

)
· · · · · · · · ·

+
nt−1∑

k=1

(
wαt−1k·(d

α−
t−1k· + dα+t−1k·)+ wβt−1k·(d

β−
t−1k· + dβ+t−1k·)

)

subject to

μo1j (o1j (y))+ d−1jμ − d+1jμ = 1, j = 1, 2, . . . , n1

μo2j (o2j (y))+ d−2jμ − d+2jμ = 1, j = 1, 2, . . . , n2

· · ·
μotj (otj (y))+ d−tjμ − d+tjμ = 1, j = 1, 2, . . . , nt

λo1j (o1j (y))+ d−1jλ − d+1jλ = 0.5, j = 1, 2, . . . , n1

λo2j (o2j (y))+ d−2jλ − d+2jλ = 0.5, j = 1, 2, . . . , n2

· · ·
λotj (otj (y))+ d−tjλ − d+tjλ = 0.5, j = 1, 2, . . . , nt

νo1j (o1j (y))+ d−1jν − d+1jν = 0, j = 1, 2, . . . , n1

νo2j (o2j (y))+ d−2jν − d+2jν = 0, j = 1, 2, . . . , n2

· · ·
νotj (otj (y))+ d−tjν − d+tjν = 0, j = 1, 2, . . . , nt

μy1k (y1k)+ d−1kμ − d+1kμ = 1, k = 1, 2, . . . , n1

μy2k (y2k)+ d−2kμ − d+2kμ = 1, k = 1, 2, . . . , n2

· · ·
μyt−1k (yt−1k)+ d−t−1kμ − d+t−1kμ = 1, k = 1, 2, . . . , nt−1

λy1k (y1k)+ d−1kλ − d+1kλ = 0.5, k = 1, 2, . . . , n1

λy2k (y2k)+ d−2kλ − d+2kλ = 0.5, k = 1, 2, . . . , n2

· · ·
λyt−1k (yt−1k)+ d−t−1kλ − d+t−1kλ = 0.5, k = 1, 2, . . . , nt−1

νy1k (y1k)+ d−1kν − d+1kν = 0, k = 1, 2, . . . , n1

νy2k (y2k)+ d−2kν − d+2kν = 0, k = 1, 2, . . . , n2

· · ·
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νyt−1k (yt−1k)+ d−t−1kν − d+t−1kν = 0, k = 1, 2, . . . , nt−1

G1y1 +G1y1 + · · · +Gtyt (≤ or = or ≥) q, y ≥ 0

d−ij ·, d
+
ij · ≥ 0 and d−ij · × d+ij · = 0, ∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi

d−ik·, d
+
ik· ≥ 0 and d−ik· × d+ik· = 0, ∀ i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

(15)

Now the above model in Eq. (15) can be represented as follows:

Min F =
m1∑

j=1

w+1jμd
+
1jμ +

m2∑

j=1

w+2jμd
+
2jμ + · · · +

mt∑

j=1

w+tjμd
+
tjμ

+
m1∑

j=1

w+1jλd
+
1jλ +

m2∑

j=1

w+2jλd
+
2jλ + · · · +

mt∑

j=1

w+tjλd
+
tjλ

−
m1∑

j=1

w+1jνd
−
1jν −

m2∑

j=1

w+2jνd
−
2jν − · · · −

mt∑

j=1

w+tjνd
−
tjν

+
n1∑

k=1

(
wα1k·(d

α−
1k· + dα+1k· )+ wβ1k·(dβ−1k· + dβ+1k· )

)

+
n2∑

k=1

(
wα2k·(d

α−
2k· + dα+2k· )+ wβ2k·(dβ−2k· + dβ+2k· )

)
· · · · · · · · ·

+
nt−1∑

k=1

(
wαt−1k·(d

α−
t−1k· + dα+t−1k·)+ wβt−1k·(d

β−
t−1k· + dβ+t−1k·)

)

subject to

1− oij (y)− L
μ
ij

U
μ
ij − Lμij

+ d−tjμ − d+tjμ = 1, i = 1, 2, . . . , t, j = 1, 2, . . . , mi

1− oij (y)− L
λ
ij

Uλij − Lλij
+ d−tjλ − d+tjλ = 0.5, i = 1, 2, . . . , t, j = 1, 2, . . . , mi

1− U
ν
ij − oij (y)
Uνij − Lνij

+ d−tjν − d+tjν = 0, i = 1, 2, . . . , t, j = 1, 2, . . . , mi

yik − μLyik
y∗ik − μLyik

+ d−1kμ − d+1kμ = 1, i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni
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μUyik − yik
μUyik − y∗ik

+ d−1kμ − d+1kμ = 1, i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

yik − λLyik
y∗ik − λLyik

+ d−1kλ − d+1kλ = 0.5, i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

λUyik − yik
λUyik − y∗ik

+ d−1kλ − d+1kλ = 0.5, i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

yik − νLyik
y∗ik − νLyik

+ d−1kν − d+1kν = 0, i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

νUyik − yik
νUyik − y∗ik

+ d−1kν − d+1kν = 0, i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni

G1y1 +G1y1 + · · · +Gtyt (≤ or = or ≥) q, y ≥ 0

d−ij ·, d
+
ij · ≥ 0 and d−ij · × d+ij · = 0, ∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi

dα−ik· , d
α+
ik· ≥ 0 and dα−ik· × dα+ik· = 0, ∀ i= 1, 2, . . . , t − 1, k= 1, 2, . . . , ni

d
β−
ik· , d

β+
ik· ≥ 0 and dβ−ik· × dβ+ik· = 0, ∀ i= 1, 2, . . . , t − 1, k= 1, 2, . . . , ni,

(16)

where F represents the neutrosophic achievement function comprising the weighted
over-deviational variables d+ij ·, ∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi of
the neutrosophic goals lij and the under-deviational and over-deviational variables

dα−ik· , d
α+
ik· , d

β−
ik· and dβ+ik· , ∀ i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni for

the neutrosophic goals of all the decision variable vectors for the leader t − 1-th
levels. The corresponding weightsw+ij ·, wαik· andwβik· depict the relative importance
of attaining the aspired levels of the respective neutrosophic goals under the given
constraints in the hierarchical decision-making scenarios.

To assign the different relative importance of the neutrosophic goals adequately,
we have suggested the weighting scheme with the aid of uij and lij . The weighting

scheme to each weight w+ij ·, wαik·, and wβik· has been stated as follows:

w+ij · =
1

uij − lij , ∀ i = 1, 2, . . . , t, j = 1, 2, . . . , mi (17)

wαik· =
1

T iαk

and wβik· =
1

T
iβ
k

, ∀ i = 1, 2, . . . , t − 1, k = 1, 2, . . . , ni .

(18)

The NFGP model (16) gives the most satisfactory solution for the decision makers at
all levels by attaining the aspired level of different neutrosophic membership goals
at utmost possible in neutrosophic decision environment. The solution method is
quite simple and demonstrated with the help of numerical examples in Sect. 5.
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The step-wise solution procedure for the first NFGP algorithm for solving ML-
MOLPPs can be stated as follows:

1. Solve each objectives individually for all levels under given constraints in order
to find the maximum and minimum values of each objectives at all levels.

2. Depict the goals and upper tolerance limits—uij , lij ; ∀ i = 1, 2, . . . , t, j =
1, 2, . . . , mi—for each objectives at all levels.

3. Calculate the weights, w+ij · =
1

uij − lij , ∀ i = 1, 2, . . . , t, j =
1, 2, . . . , mi and set g = 1.

4. Evaluate the different membership functions μogj (ogj (y)), λogj (ogj (y)) and
νogj (ogj (y)), j = 1, 2, . . . , mg for each objective function under neutrosophic
environment.

5. Develop the model given in Eq. (22) for the g-th level MOLPPs.
6. Obtain the value of yg∗ = (yg∗1 , yg∗2 , . . . , yg∗t ) by solving model given in Eq.

(22).
7. Impose the maximum negative and positive tolerance limits on the decision vari-

able vectors yg∗g = (yg∗g1, yg∗g2, . . . , yg∗gng ), T
gα
k and T gβk ; k = 1, 2, . . . , ng .

8. Calculate the weights wαgk· =
1

T
gα
k

and wβgk· =
1

T
gβ
k

, k = 1, 2, . . . , ng .

9. Evaluate the different membership functions μygk (ygk), λygk (ygk) and νygk (ygk)
for the decision variable vectors yg∗g = (yg∗g1, yg∗g2, . . . , yg∗gng ) given in Eq. (12).

10. If g > t − 1, then proceed to step 11, otherwise go to step 4.
11. Depict the different membership functions μotj (otj (y)), λotj (otj (y)) and

νotj (otj (y)), j = 1, 2, . . . , mt for each objective function at the p-th level
under neutrosophic environment.

12. Calculate the weights, w+tj · =
1

utj − ltj , ∀ j = 1, 2, . . . , mt .

13. Formulate the model given in Eq. (16) under neutrosophic environment and
solve it to get the satisfactory solution of the ML-MOLPPs.

4.3.2 The Second NFGP Algorithm for ML-MOLPPs

In the first NFGP algorithm, the final model contains the different membership
functions for the neutrosophic goals of the decision variable vectors monitored
by t − 1 levels, which separately solves for the i-th level MOLPPs. The second
NFGP algorithm solves t MOLPPs that considers the decisions of the leader levels.
After initialization steps 1 to 3 in first algorithm, the solution methods initiate with
MOLPP of the first decision maker obtaining the compromise solution. A marginal
evaluation of the first decision maker’s decisions is taken into account to get rid of
the decision deadlock. Hence, decisions of the first decision maker are depicted by
the different membership functions under neutrosophic environment and sent to the
second decision maker as additional auxiliary constraints. Afterward, the second
decision maker considers the neutrosophic membership goals of the objectives
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as well as decision variable vectors of the first decision maker. After that, the
achieved solution is passed to the third decision maker who tries to find out the
optimal solution in a similar fashion. The processes of finding the optimal solution
are repeated until the follower level is reached and consequently, the process is
terminated.

The step-wise solution procedure for the second NFGP algorithm for solving
ML-MOLPPs can be stated as follows:

1. Follow the same procedure from steps 1 to 9 as discussed in the first NFGP
algorithm.

2. Formulate the model given in Eq. (16) for the ML-MOLPPs with t = g under
neutrosophic environment.

3. Solve the model given in Eq. (16) to get yg∗ = (yg∗1 , yg∗2 , . . . , yg∗t ).
4. Establish g = g + 1.
5. If g > t , then terminating with a satisfactory solution results yg∗ =
(yg∗1 , yg∗2 , . . . , yg∗t ) to the ML-MOLPPs, otherwise proceed to step 7 of
the first NFGP algorithm.

According to the solution priority, the second NFGP algorithm can be used to obtain
the direct solution of the ML-MOLPPs to decisions of the first-level decision maker.
After that, it directs the solutions to the decisions of second-level decision maker by
preserving the solution closer to the decisions of first-level decision maker. Thus,
the process goes on until the last level of the ML-MOLPPs preserving the solution
closer to the decision of the leader levels.

5 Numerical Illustrations

The following numerical example consisting of tri-level multiobjective linear
programming problems is presented to show the validity and applicability of the
proposed NFGP optimization algorithms.

[1st level]
Min
y1
O1(y) = Min

y1
(o11(y) = y1 − y2 − 4y3, o12(y) = −y1 + 3y2 − 4y3) ,

where y2 and y3 solve

[2nd level]
Min
y2
O2(y) = Min

y2
(o21(y) = 2y1 − y2 + 2y3, o22(y) = 2y1 + y2 − 3y3,

o23(y) = 3y1 − y2 + y3) ,

where y3 solves
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Table 1 Individual minimum and maximum values for each objectives

1st level 2nd level 3rd level

o11 o12 o21 o22 o23 o31 o32

minSoij −2.5 −3.5 −1 −1 −1 −0.5 0

maxSoij 1 3 4 2 5 8.5 2

[3rd level]
Min
y3
O3(y) = Min

y3
(o31(y) = 7y1 + 3y2 − 4y3, o32(y) = y1 + y3)

subject to

y1 + y2 + y3 ≤ 3, y1 + y2 − y3 ≤ 1,

y1 + y2 + y3 ≥ 1, − y1 + y2 + y3 ≤ 1,

y3 ≤ 0.5, y1, y2, y3 ≥ 0.

The individual minimum and maximum values of each objective function for all
the three levels of MOLPP under the given constraints S is furnished in Table 1.
To apply the proposed NFGP algorithms, the aspiration levels and leader tolerance
limits to the objective functions may be taken as the minimum and maximum
individual optimal solutions.

The first NFGP algorithm can be elaborated through the solution method of the
second NFGP algorithm. Thus, the following is the proposed first NFGP algorithm
to tri-level multiobjective linear programming problem with the step-wise solution
procedures.

First − level decision maker ′s NFGP model :

Min F1= 0.286d+11μ+ 0.154d+12μ+ 0.286d+11λ+ 0.154d+12λ− 0.286d−11ν − 0.154d−12ν

subject to

− 0.286y1 + 0.286y2 + 1.143y3 + d−11μ − d+11μ = 0.714

− 0.286y1 + 0.286y2 + 1.143y3 + d−11λ − d+11λ = 0.143

− 0.286y1 + 0.286y2 + 1.143y3 + d−11ν − d+11ν = 0.03

0.154y1 − 0.154y2 + 0.62y3 + d−12μ − d+12μ = 0.54

0.154y1 − 0.154y2 + 0.62y3 + d−12λ − d+12λ = 0.21

0.154y1 − 0.154y2 + 0.62y3 + d−12ν − d+12ν = 0.07
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y1 + y2 + y3 ≤ 3, y1 + y2 − y3 ≤ 1,

y1 + y2 + y3 ≥ 1, − y1 + y2 + y3 ≤ 1,

y3 ≤ 0.5, y1, y2, y3 ≥ 0,

d−ij ·, d
+
ij · ≥ 0 and d−ij · × d+ij · = 0, ∀ i = 1, j = 1, 2.

(19)

With the help of optimizing software, the optimal solution of the problem given in
Eq. (19) is y1∗ = (0.5, 0, 0.5). Assume that the first-level decision maker assigns
y1∗

1 = 0.5 along with the negative and positive tolerances T 1α
1 = T 1β

1 = 0.5 and

with the weights wα11· = wβ11· =
1

0.5
= 2, respectively.

Second − level decision maker ′s NFGP model :

Min F1 = 0.286d+11μ + 0.154d+12μ + 0.286d+11λ + 0.154d+12λ − 0.286d−11ν

− 0.154d−12ν + 0.2d+21μ + 0.33d+22μ + 0.167d+23μ + 0.2d+21λ + 0.33d+22λ

+ 0.167d+23λ − 0.2d−21ν − 0.33d−22ν − 0.167d−23ν + 2
[
d−α11· + d+α11· + d−β11· + d+β11·

]

subject to

− 0.4y1 + 0.2y2 − 0.4y3 + d−21μ − d+21μ = 0.2

− 0.4y1 + 0.2y2 − 0.4y3 + d−21λ − d+21λ = 0.13

− 0.4y1 + 0.2y2 − 0.4y3 + d−21ν − d+21ν = 0.04

− 0.667y1 − 0.33y2 + y3 + d−22μ − d+22μ = 0.33

− 0.667y1 − 0.33y2 + y3 + d−22λ − d+22λ = 0.18

− 0.667y1 − 0.33y2 + y3 + d−22ν − d+22ν = 0.02

− 0.5y1 + 0.167y2 − 0.167y3 + d−23μ − d+23μ = 0.17

− 0.5y1 + 0.167y2 − 0.167y3 + d−23λ − d+23λ = 0.09

− 0.5y1 + 0.167y2 − 0.167y3 + d−23ν − d+23ν = 0.01

2y1 + d−α11μ − d+α11μ = 1, 2y1 + d−β11μ − d+β11μ = 1,

2y1 + d−α11λ − d+α11λ = 0.5, 2y1 + d−β11λ − d+β11λ = 0.5,

2y1 + d−α11ν − d+α11ν = 0, 2y1 + d−β11ν − d+β11ν = 0,
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constraints (19)

dα−ik· , d
α+
ik· ≥ 0 and dα−ik· × dα+ik· = 0, ∀ i = 1, 2 k = 1.

d
β−
ik· , d

β+
ik· ≥ 0 and dβ−ik· × dβ+ik· = 0, ∀ i = 1, 2 k = 1.

(20)

The optimal solution for the second-level NFGP model in Eq. (20) is obtained
as y2∗ = (0.5, 0, 0.5), (0.5, 0.998, 0.5), (0.5, 0.5, 0). Suppose that second-level
decision maker finalizes y2∗

1 = 0.998 along with the negative and positive tolerances

T 2α
1 = 0.75, and T 2β

1 = 0.25 and with weights wα21· =
1

0.75
= 1.333, and wβ21· =

1

0.25
= 4, respectively.

T hird − level decision maker ′s NFGP model :

Min F1 = 0.286d+11μ + 0.154d+12μ + 0.286d+11λ + 0.154d+12λ − 0.286d−11ν

− 0.154d−12ν + 0.2d+21μ + 0.33d+22μ + 0.167d+23μ + 0.2d+21λ + 0.33d+22λ

+ 0.167d+23λ − 0.2d−21ν − 0.33d−22ν − 0.167d−23ν + 2
[
d−α11· + d+α11· + d−β11· + d+β11·

]

+ 1.33(d−α21· + d+α21· )+ 4(d−β21· + d+β21· )

subject to

− 0.78y1 + 0.33y2 + 0.44y3 + d−31μ − d+31μ = 0.06

− 0.78y1 + 0.33y2 + 0.44y3 + d−31λ − d+31λ =
− 0.78y1 + 0.33y2 + 0.44y3 + d−31ν − d+31ν =
− 0.5y1 − 0.5y3 + d−32μ − d+32μ = 0

− 0.5y1 − 0.5y3 + d−32λ − d+32λ = 0

− 0.5y1 − 0.5y3 + d−32ν − d+32ν = 0

1.33y2 + d−α21μ − d+α21mu = 1.33, 4y1 + d−β21μ − d+β21μ = 3.99,

1.33y2 + d−α21λ − d+α21λ = 0.94, 4y1 + d−β21λ − d+β21λ = 2.35,

1.33y2 + d−α21ν − d+α21ν = 0.35, 4y1 + d−β21ν − d+β21ν = 1.86,

constraints (20)

dα−ik· , d
α+
ik· ≥ 0 and dα−ik· × dα+ik· = 0, ∀ i = 1, 2, 3 k = 1, 2.

d
β−
ik· , d

β+
ik· ≥ 0 and dβ−ik· × dβ+ik· = 0, ∀ i = 1, 2, 3 k = 1, 2.

(21)
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Table 2 Comparison of optimal solutions and satisfactory degrees of the given example

Proposed NFGP algorithm Baky approach Abo-Sinna approach Shih approach

(o11, μ11) = (−2.499, 0.999) (−2.498, 0.99) (−2.21, 0.92) (−2.21, 0.92)

(o12, μ12) = (0.4941, 0.399) (0.494, 0.39) (−0.569, 0.55) (−0.569, 0.55)

(o21, μ21) = (1.002, 0.59) (1.002, 0.6) (1.88, 0.56) (1.88, 0.56)

(o22, μ22) = (0.498, 0.50) (0.498, 0.5) (−0.09, 0.7) (−0.09, 0.7)

(o23, μ23) = (1.002, 0.67) (1.002, 0.67) (1.09, 0.65) (1.09, 0.65)

(o31, μ31) = (4.491, 0.47) (4.493, 0.45) (2.62, 0.65) (2.62, 0.65)

(o32, μ32) = (1, 0.50) (1, 0.50) (0.899, 0.55) (0.899, 0.55)

y∗ = (0.5, 0.9975, 0.5) (0.5, 0.998, 0.5) (0.339, 0.61, 0.5) (0.339, 0.61, 0.5)

Table 3 Theoretical comparison of proposed NFGP algorithms with others

Proposed NFGP approach Other approaches

Proposed approach considers the indeterminacy
degree in decision-making process.

Abo-Sinna [1], Baky [8], and Shih et al. [16]
cannot deal with indeterminacy in
decision-making processes.

The overall satisfactory degree is achieved by
attaining the neutrosophic fuzzy goals.

In [1, 8, 16] approaches, satisfactory degree is
achieved by attaining the fuzzy goals.

It characterizes neutrosophic membership
functions for both objectives and decision
variables under neutrosophic environment.

Abo-Sinna [1], Baky [8], and Shih et al. [16]
do not cover this aspects.

Additional predetermined parameters in
indeterminacy and falsity degrees make the
decisions more flexible according to decision
makers’ choices.

This facility is not provided in Abo-Sinna [1],
Baky [8], and Shih et al. [16]

The final optimal solution for the ML-MOLPPs given in Eq. (21) is obtained as
y3∗ = (0.5, 0.9975, 0.5) with the different objectives values o11 = −2.499, o12 =
0.4941, o21 = 1.002, o22 = 0.498, o23 = 1.002, o31 = 4.491, and o31 = 1, along
with membership functions μ11 = 0.999, μ12 = 0.399, μ21 = 0.590, μ22 = 0.50,
μ23 = 0.67, μ31 = 0.47, and μ31 = 0.50, respectively. A comparative study is
performed among the proposed NFGP algorithm and presented in the Table 2. Other
approaches reveal that the solution results are very close to [8], whereas [1, 16] give
the same solution results for the presented numerical examples. Furthermore, the
theoretical contributions in the domain of ML-MOLPPs are also summarized in
Table 3.

6 Conclusions

This chapter proposes two different neutrosophic fuzzy goal programming algo-
rithms for the solutions of ML-MOLPPs. The neutrosophic goal programming
model is constructed to minimize the group tolerance of satisfactory degree of all
the decision makers and to attain the highest degree for truth (unity), indeterminacy
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(half), and a falsity (zero) of each kind of the defined membership functions’ goals
to the utmost possible by minimizing their respective deviational variables and so
that obtain the optimal solution for all decision makers. The primary advantages of
the proposed two different neutrosophic fuzzy goal programming algorithms that the
chances of refusing the solution repeatedly by the leader-level decision maker and
reevaluation of the problem again and again by restating the defined membership
functions required to reach the optimal solution would not arise.

The first NFGP algorithm considers the different membership functions for the
defined neutrosophic goals of the objective functions at all levels as well as the
different membership functions for the neutrosophic goals for the decision variable
vectors at each level except the follower level of the ML-MOLPPs. The second
NFGP algorithm solves the MOLPPs of the ML-MOLPPs by taking into account
the decisions of the MOLPPs for the leader level only. A numerical example is
presented to show the validity and applicability of the proposed NFGP algorithms
with the fact that the degree of indeterminacy may arise in the hierarchical decision-
making processes and can be overcome by utilizing the proposed algorithms. In
future, it can be applied to real-life applications such as transportation, assignment,
vendor selection, inventory control, supply chain, etc. and problems in multi-level
decision-making scenarios.

Appendix

The NFGP approach to solve the single-level MOLPPs is presented to facilitate the
achievement function yg∗ = (yg∗1 , yg∗2 , . . . , yg∗t ), g = 1, 2, · · · , t−1. By using
the same notations and symbols of this chapter, the NFGP model can be formulated
for any g-th level MOLPPs and can be stated as follows:

Min F =
mg∑

j=i
w+gjμd

+
gjμ + w+gjλd+gjλ − w+gjνd−gjν

subject to

c
gj

1 y1 + cgj2 y2 + · · · + cgjt yt + d−gjμ − d+gjμ = 1, j = 1, 2, . . . , mg

c
gj

1 y1 + cgj2 y2 + · · · + cgjt yt + d−gjλ − d+gjλ = 0.5, j = 1, 2, . . . , mg

c
gj

1 y1 + cgj2 y2 + · · · + cgjt yt + d−gjν − d+gjν = 0, j = 1, 2, . . . , mg

G1y1 +G1y1 + · · · +Gtyt (≤ or = or ≥) q, y ≥ 0

d−gj ·, d
+
gj · ≥ 0 and d−gj · × d+gj · = 0, j = 1, 2, . . . , mg

(22)
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a) Defining management system governing criteria which are associated with the compulsory decision-
making goals;

b) Establishing the discrete alternative systems to reach the prescribed necessary goals;

c) Performing multicriteria analysis by any MCDM method;

d) Acknowledging one alternative as the best by the ranking results. Therefore, the application
of the MCDM techniques facilitates the decision-makers to choose the best alternative, which
provides a suitable compromise between all possibly conflicting criteria.
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Abstract
Nowadays fuzzy approaches gain popularity to model multi-criteria decision making (MCDM) problems 

emerging in real-life applications. Modern modelling trends in this field include eval-uation of the criteria 
information uncertainty and vagueness. Traditional neutrosophic sets are considered as the effective tool to express 
uncertainty of the information. However, in some cases it cannot cover all recently proposed cases of the fuzzy sets. 

The m-generalized q-neutrosophic sets (mGqNNs) can effectively deal with this situation. The novel 
MCDM methodology CoCoSomGqNN is presented in this paper. An illustrative example presents the analysis of 
the effectiveness of different retrofit strategy selection decisions for the application in the civil engineering 
industry.

Keywords: Multi-criteria decision making, CoCoSo, Neutrosophic sets, retrofit strategy.

1 Introduction
Multi-criteria decision making (MCDM) approaches introduce efficient tools to solve conflict 

situations for the managers. The MCDM process can be distinguished into the following steps:
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Therefore, the application of the MCDM techniques facilitates the decision-makers to embrace
the alternative of the highest quality, which provides a suitable compromise between all possibly
conflicting criteria. During the last decade, MCDM methods have actively been applied for the
solution of the various real-life problems. In [5], the authors point out the following the most popular
MCDM methods, such as SAW, WASPAS, VIKOR, TOPSIS, ELECTRE PROMETHEE methods.
Recently, in [28] was proposed a new MCDM technique, which composes a combined compromise
solution (CoCoSo). This method constructs the compromise solution applying various aggregation
approaches. This method was under intensive research during the last years. In [39], the authors
solved the problem of the ideal sustainable supplier choice by combining two methods: CoCoSo and
the BWM method. In [14] was proposed a hybrid MCDM approach which is constructed by combining
the CoCoSo and CRITIC approaches and applied to evaluate the 5G industries. In [25], the authors
combined SWARA and CoCoSo methods to solve the drug cold chain logistics supplier evaluation and
the location selection for a logistics center problems. This relatively new (CoCoSo) technique was
applied to study the sustainability aspects in the OPEC countries [3]. The extension of the CoCoSo
approach was proposed in [4]. The essence of this extension is the modelling environment in the form
of normalized weighted geometric Bonferroni mean functions. This approach was employed to solve
the supply chain problem. In [11], stochastic multi-criteria acceptability analysis was performed within
the multi-criteria decision-making framework, namely the CoCoSo approach, to handle the problem
of the renewable energy investments with stochastic information. This hybrid approach is based on
the DIBR method, which defines interrelationships between the ranked criteria, and the D’CoCoSo
approach, which is modelled under fuzzy Dombi environment. This technique was applied to solve
prioritizing aspects of the circular economy concepts for urban mobility [12]. The two-stage decision-
making technique, which was realized by the data envelopment analysis (DEA) and the RCoCoSo
method, which was modelled under rough full consistency (R-FUCOM) environment, was discussed
in [30]. The tourism attraction selection problem was utilised by applying the probabilistic linguistic
term set. For the solution, IDOCRIW and CoCoSo approaches are implemented [9]. Different versions
of the hybrid MCDM proposals based on the CoCoSo technique have been presented in [23], [10], [24],
[6].

Modern research in the area of multi-criteria decision-making tries to model the indeterminacy
and inconsistency of the initial decision making information, which prevails in most cases of real-life
applications. Therefore, different fuzzy set variations have been proposed starting width the pioneering
work in [33]. Existing challenges and future development trends of the fuzzy modelling importance in
the decision-making field have been discussed in [27]. During the last years have been proposed the
different extensions of the CoCoSo method applying the environments of the different fuzzy sets.

In [29], the authors modelled the best supplier problem in construction management applying grey
numbers and solving this problem with the DEMATEL, BWM, and CoCoSo methods. In [26] was
considered the problem of the third party logistics service providers applying a hesitant linguistic fuzzy
set environment to construct the extent of the CoCoSo method. In [13], the authors applied a q-rung
orthopair fuzzy set to develop a hybrid MCDM extension including CoCoSo and CRITIC methods
and tested this approach on the financial risk evaluation problem. In [1], the authors suggested a
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novel interval-valued intuitionistic set model for CoCoSo method extension and solved the problem of
the sustainable evolution in the fabrication region by means of green growth indicators. In [17], was
proposed a CoCoSo method extension applying a single-valued neutrosophic set. This technique was
applied to deal with the problem of the equipment selection for the waste management field including
sustainability aspects. Various fuzzy set environments have been implemented to model multi-criteria
decision-making problems [15], [16], [31], [32], [37], [21], [7], [7]. [8], [35], [38].

In 1999, Smarandache [19] proposed the notion of the neutrosophic sets. Neutrosophic sets (NS)
are based on the generalization of the fuzzy logic that takes into account the knowledge of neural
thought. Therefore, the greater amount of uncertainty can be analyzed. Each parameter of the
analyzed problem can be represented by the scope of the truth (T), the scope of the indeterminacy (I)
and the scope of the falsity (F) using the NS logic. In 2019, a notion of neutrosophic sets, which can be
considered as the generalization of the following fuzzy sets: intuitionistic fuzzy (IFS), q-rung orthopair
fuzzy and Pythagorean fuzzy sets was proposed by Smarandache [20]. Based on this concept, the new
extensions of the classical MCDM methods, like MULTIMOORA, WASPAS, PROMETHEE [34], [18],
[2], were developed by applying the environment of the m-generalized q-neutrosophic sets (mGqNSs).

The structure of the paper is established as follows. The second chapter presents the basic foun-
dations of the m-generalised q- neutrosophic sets. The third chapter provides the proposed extension
of the CoCoSo method under the environment m-generalised q- neutrosophic set. The problem for-
mulation together with the solution procedure of the case study are presented in the fourth chapter.
The paper ends with conclusions.

2 Foundations of the m-generalised q-neutrosophic set
First, the m-generalised q-neutrosophic set (mGqNS) prevailing definitions and the algebraic op-

erations are presented. The algebraic operation presentation is constructed by applying m-generalised
q-neutrosophic numbers (mGqNNs). These neutrosophic numbers form the basis of the proposed
CoCoSo method extension, namely CoCoSo-mGqNS.

2.1 Definitions

Definition 1. The modelled objects form the set X, in which every single object is x ∈ X. In the
present research, the objects are represented by a neutrosophic set. Given that X is a set of criteria
modelled under the m-generalised q-neutrosophic environment, x is a single criterion value.

Let q ≥ 1, m = 1 ‖ 3. The three membership functions define m-generalised q-neutrosophic set
Amq:

Tmq, Imq, Fmq : X → [0, r], here (0 ≤ r ≤ 1)

Given Tmq is the m-generalised function representing the scope of the truth, Imq is the m-generalised
indeterminacy membership function and Fmq is the m-generalised falsity membership function. In such
a way, the m-generalised q-neutrosophic set is prescribed by the following expression:

Amq = {〈Tmq(x), Imq(x), Fmq(x)〉 : x ∈ X}

These three membership functions also must comply with the following requirements:

0 ≤ Tmq(x), Imq(x), Fmq(x) ≤ 1, x ∈ X;

0 ≤ (Tmq(x))q + (Imq(x))q + (Fmq(x))q ≤ 3
m
, x ∈ X;

The different m and q values represent different fuzzy sets.

Definition 2. The m-generalised q-neutrosophic number, mGqNN, is represented by the following
expression:

Nmq = 〈t, i, f〉
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Definition 3. The summation of the two mGqNNs, when Nmq1 = 〈t1, i1, f1〉 and Nmq2 = 〈t2, i2, f2〉
are the m-generalised q-neutrosophic numbers, we can designate as follows:

Nmq1 ⊕Nmq2 = 〈(1− (1− tq1)(1− tq2)
1
q , i1i2, f1f2〉 (1)

The multiplication between the two mGqNNs can be performed as follows:

Nmq1 ⊗Nmq2 = 〈t1t2, (1− (1− iq1)(1− iq2))
1
q , (1− (1− f q1 )(1− f q2 ))

1
q 〉 (2)

The multiplication operation of the m-generalised q-neutrosophic number and a real number λ ≥ 0
is performed as follows:

λ ·Nmq1 = 〈(1− (1− tq1)λ)
1
q , iλ1 , f

λ
1 〉 (3)

When λ ≥ 0, the power function of mGqNN can be determined by:

Nλ
mq1 = 〈tλ1 , (1− (1− iq1)λ)

1
q , (1− (1− f q1 )λ)

1
q 〉 (4)

The complementary m-generalised q-neutrosophic numbers is calculated as:

N c
mq = 〈f1, 1− i1, t1〉 (5)

Definition 4. For the deneutrosophication step, the score value S(Nmq) can be calculated as follows:

S(Nmq) = 3 + 3tq − 2iq − f q
6 (6)

In this case, for Nmq1 = 〈t1, i1, f1〉 and Nmq2 = 〈t2, i2, f2〉 the comparison operations will be
completed by the following condition:

If S(Nmq) ≥ S(Nmq) , then Nmq ≥ Nmq

If S(Nmq) = S(Nmq) , then Nmq = Nmq
(7)

3 Combined compromise solution (CoCoSo-mGqNN) method
A new extension of the CoCoSo method under m-generalised q-neutrosophic set environment,

namelly CoCoSo-mGqNN, is designed. The main steps of this approach can be expressed as follows:

(1) Solution procedure of the CoCoSo method starts with the constructed initial decision-making
matrix which can be defined as follows:

xij =


x11 x12 · · · x1l
x21 x22 · · · x2l
...

... . . . ...
xk1 xk,2 · · · xkl

 ; i = 1, 2, . . . , k; j = 1, 2, . . . , l. (8)

(2) The compromise normalization approach is applied to normalize the decision-making matrix
elements [36]:

rij =
xij −min

i
xij

√
k(max

i
xij −min

i
xij)

for maximised criteria, (9)

rij =
max
i
xij − xij

√
k(max

i
xij −min

i
xij)

for minimised criteria. (10)

The standard compromise normalization equation is slightly modified to make it be applicable
for neutrosophic algebra.
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(3) Next, the neutrosophication of the decision matrix should be accomplished. This means that
crisp values rij of the decision matrix elements are replaced by the values (Nmq)ij of m-generalised
truth membership, m-generalised indeterminacy membership and m-generalised falsity member-
ship functions. This action is performed applying the standard crisp-to-neutrosophic mapping.
The novel m-generalised neutrosophic decision matrix is created at this step.

(4) At this step, the weighted comparability series and the power weighted comparability series for
each alternative are constructed. These series are denoted by Ri and Pi, respectively:

Ri =
l∑

j=1
(wj(Nmq)ij) (11)

the Ri series reflect weighted sum model:

Pi =
l∑

j=1
((Nmq)ij)

wj (12)

the Pi series correspond to the WASPAS multiplicative component.

(5) Three score assessment strategies are the basis for the calculations of the relative weights. These
strategies are expressed by the following equations (13)-(15).

kia = S(Pi) + S(Ri)∑k
i=1(S(Pi) + S(Ri))

, (13)

kib = S(Ri)
min
i
S(Ri)

+ S(Pi)
min
i
S(Pi)

, (14)

kic = λS(Ri) + (1− λ)S(Pi)
λmax

i
S(Ri) + (1− λ)max

i
S(Pi)

; 0 ≤ λ ≤ 1. (15)

By equation (13), arithmetic mean values of the weighted sum model (WSM) and weighted
product model (WPM) are calculated. By equation (14), relative scores of WSM and WPM
are determined. These relatives scores are determined with respect to minimum values of S(Pi)
and S(Ri). By equation (15), the balanced compromise scores of WSM and WPM models are
calculated. In our case, value for λ = 0.5 is chosen.

(6) The final ranking function is constructed as follows:

ki = (kiakibkic)
1
3 + 1

3(kia + kib + kic). (16)

4 Case study
A secondary school is the object of the research [22]. The school’s frame is a three-story reinforced

concrete frame (constructed in the eighth decade of the twentieth century). The 2478.60 m2 building
has 240 mm thick aerated concrete slab exterior walls and the 200 mm thick reinforced concrete
block plinth. Under part of the building was a local diesel boiler house. The building has plastered
and painted external and external surfaces. The local municipality decided to renovate the structure
according to the prepared project. They provide the following thermal insulation: 200 mm thick
mineral wool boards for walls and 200 mm thick polystyrene boards for the plinth. The project
envisages the roof insulated with 250 mm thick extruded polystyrene panels and an upper 20 mm
thick mineral wool panels. Besides, old windows and doors need replacement as planned.

The most significant part of construction projects are multifaceted, and decision-makers must
take into account tangible and intangible characteristics of plans, opinions, negotiations and dispute
resolution and projects.
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Decisions in the construction industry need compromise solutions [28], [29], [35]. Project managers
should select among feasible discrete alternatives in a specific construction site and specific objects
taking into account international and local perspectives. Designers presented nine possible project
implementation scenarios. The building renovation process could involve several phases and be selected
from other options with different employees (20, 40 or 60 for retrofitting at different speeds), see Table
1.

The project implementation contractor offered the following project implementation choices:

1. One-phase retrofitting process: The general contractor shall carry out all modernisation
works in one phase:

• Replacement of windows, exterior and interior doors; b) Insulation of basement and external
walls and roof;

• Installation of the roof;
• Renovation of heating, ventilation, air conditioning and electrical systems;
• Installation of a new lighting system.

The modification process may affect the efficiency of the project due to the multi-tasking
of the retrofitting methods.

2. Two-phase retrofitting process: The upgrading process takes place in two phases:

• The first phase includes replacing windows and exterior doors, repairing the roof, and
installing thermal insulation of exterior walls and the basement;

• The second phase includes installing thermal insulation of ground-level floors, updating
heating, ventilation, air conditioning and electric lighting systems.
There is a nine months break between the first and the second phases. The employees work
during the summer seasons (summer holidays).
There is a risk (depending on the number of employees) that contractor not all works will
finish in time, so construction work can adversely affect physical performance.

3. Three-phase retrofitting :

• The first phase includes replacing windows and exterior doors;
• The second phase includes repairing the roof and installing thermal insulation of exterior

walls and the basement;
• The third phase includes installing thermal insulation of ground-level floors, updating heat-

ing, ventilation, air conditioning and electric lighting systems.
The contractor will make a one-year break between the first and the second phases. The
employees work during the summer seasons (summer holidays).
There is a risk (depending on the number of employees) that contractor not all works will
finish in time, so construction work can adversely affect physical performance.

Many of the contradictory features reflect the solution to a complex problem. The authorities
usually determine the winners based on a single indicator, the lowest price at the local level. This
attitude of civil servants incorrectly describes the real economic benefits of renovating buildings and
other features of modernised buildings. After three steps of the Delphi method, the decision-makers
selected five key characteristics that assessed the renovation’s economic benefits and the impact of the
construction process on workers and visitors.

Costs with VAT, [€]: The construction works costs interlinks with the amount of work required to
complete the project, the current price level in the country (salary, prices of materials and equipment),
the number of potentially competitive contractors and their competitive advantages, construction time
and project implementation time. Longer project implementation time and an increasing number of
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Table 1: Initial decision-making matrix

Alternatives Price with
VAT, €

Number of
working days

(8 working
hours per day)

Renovation’s
payback time,

[years]

Energy savings
through ten

years, [MWh]

People’s
satisfaction,

[scores]

A1 1309.50 800 21.86 3656.0 6.66
A2 1309.50 510 21.86 3656.0 11.38
A3 1309.50 320 21.86 3656.0 12.89
A4 1379.0 920 21.86 3524.4 7.46
A5 1379.0 640 22.60 3524.4 12.18
A6 1415.0 440 22.60 3524.4 13.69
A7 1415.0 980 23.18 3188.7 8.27
A8 1415.0 700 23.18 3188.7 12.98
A9 1415.0 500 23.18 3188.7 14.49

Optimality min, ↓ min, ↓ min, ↓ max, ↑ max, ↑

stages of construction processes increase construction costs. Longer-term constructions are expen-
sive because the project requires household and storage facilities to bring and take out bio-toilets,
temporary construction site’s fencing, lighting, and need to implement protection measures.

Duration of project implementation [working days]: depends on the number of outputs (person-
hours) and the number of workers on the construction site. This study examines the project implemen-
tation options (twenty, forty or sixty employees employed on the construction site). The contractors
comply with all the necessary construction technology and safety requirements. They cannot perform
the work faster than the established technological requirements in terms of time. For instance, it
cannot paint the facade until three weeks have elapsed since the end of the plastering. The mineral
plaster is undergoing chemical processes at that time.

Renewal payback period, [years]: The customers calculate this time according to the investment
required for the construction work and the energy savings. They consider the efficiency of the work
performed (such as replacing exterior doors and windows). The fuel’s calorific value, the boiler’s
efficiency, the level of fuel prices and laboratory tests of the research object are the basis for calculating
the economic payback time. Laboratory research shows actual energy savings by implementing specific
design modernisation solutions.

Energy savings over ten years, [MWh], determine the expected economic benefits and return on
investment. Calculating the value of this indicator over a more extended period is very difficult or
even impossible due to the significant change in inflation, the change in energy prices and the price
of energy resources, the changing rate requirements that govern the environmental impact and many
other reasons. The changing climate is also contributing to its contribution. Determining energy
savings by calculating energy consumption [MWh] rather than monetary value [€] partially reduces
this uncertainty.

People Satisfaction, [points]: Survey of members of interest groups (building staff and visitors)
is the basis for calculating this characteristic. Twenty-five stakeholders gave nine points for the best
available option and one for the worst. Decision-makers multiplied the final scores by 100 per cent at
the end. Determining weights of attributes is one of the most important and critically acclaimed issues
in multi-attribute decision-making problems. The decision-makers chose and applied a systematic
procedure for the study: the SWARA (Step-wise Weight Assessment Ratio Analysis) method.

The formulated initial decision-making matrix is presented in Table 1, and the normalized values
of the weights are w=(0.37, 0.12, 0.36, 0.1, 0.05). At the following step the proposed extension
CoCoSo-mGqNN was applied to perform the final ranking of the alternatives. The normalization
of the decision-making matrix was performed applying equations (9-10). The elements of the initial
decision-making matrix after the normalization step are presented in Table 2. The results of the
neutrosophication step are presented in Table 3. The intermediate results of the proposed extension
CoCoSo-mGqNN together with final ranking results are presented in Table 4.
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Table 2: Initial decision-making matrix
Alternatives X1 X2 X3 X4 X5

A1 0.3333 0.0909 0.3333 0.3333 0
A2 0.3333 0.2374 0.3333 0.3333 0.2009
A3 0.3333 0.3333 0.3333 0.3333 0.2652
A4 0.1137 0.0303 0.3333 0.2395 0.0341
A5 0.1137 0.1717 0.1465 0.2395 0.2350
A6 0 0.2727 0.1465 0.2395 0.2993
A7 0 0 0 0 0.0685
A8 0 0.1414 0 0 0.2691
A9 0 0.2424 0 0 0.3333

Optimality min, ↓ min, ↓ min, ↓ max, ↑ max, ↑

Table 3: Neurosophic decision-making matrix
Alternatives X1 X2 X3 X4 X5

A1

(0.3333,
0.7167,
0.6667)

(0.0909,
0.9091,
0.9091)

(0.3333,
0.7167,
0.6667)

(0.3333,
0.7167,
0.6667)

(0.0, 1.0, 1.0)

A2

(0.3333,
0.7167,
0.6667)

(0.2374,
0.8126,
0.7626)

(0.3333,
0.7167,
0.6667)

(0.3333,
0.7167,
0.6667)

(0.2009,
0.8491,
0.7991)

A3

(0.3333,
0.7167,
0.6667)

(0.3333,
0.7167,
0.6667)

(0.3333,
0.7167,
0.6667)

(0.3333,
0.7167,
0.6667)

(0.2652,
0.7848,
0.7348)

A4

(0.1137,
0.8931,
0.8863)

(0.0303,
0.9697,
0.9697)

0.3333,
0.7167,
0.6667)

(0.2395,
0.8105,
0.7605)

(0.0341,
0.9659,
0.9659)

A5

(0.1137,
0.8931,
0.8863)

(0.1717,
0.8641,
0.8283)

(0.1465,
0.8768,
0.8535)

(0.2395,
0.8105,
0.7605)

(0.2350,
0.8150,
0.7650)

A6 (0.0, 1.0, 1.0)
(0.2727,
0.7773,
0.7273)

0.1465,
0.8768,
0.8535)

(0.2395,
0.8105,
0.7605)

(0.2993,
0.7507,
0.7007)

A7 (0.0, 1.0, 1.0) (0.0, 1.0, 1.0) (0.0, 1.0, 1.0) (0.0, 1.0, 1.0)
(0.0685,
0.9315,
0.9315)

A8 (0.0, 1.0, 1.0)
(0.1414,
0.8793,
0.8586)

(0.0, 1.0, 1.0) (0.0, 1.0, 1.0)
(0.2691,
0.7809,
0.7309)

A9 (0.0, 1.0, 1.0)
(0.2424,
0.8076,

0.07576)
(0.0, 1.0, 1.0) (0.0, 1.0, 1.0)

(0.3333,
0.7167,
0.6667)

Optimality min, ↓ min, ↓ min, ↓ max, ↑ max, ↑
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Table 4: Intermediate results of the CoCoSo-mGqNN and the final ranking of the alternatives
Alternatives R P ka kb kc k Rank

A1

(0.3139,
0.7498,
0.7061)

(0.9728,
0.0548,
0.0425)

0.1241 60.8264 0.9529 22.5646 3

A2

(0.3201,
0.7337,
0.6837)

(0.9960,
0.0163,
0.0106)

0.1288 63.7319 0.9895 23.6271 2

A3

(0.3306
0.7199

0.6699)

(0.9973,
0.0123,
0.0080)

0.1302 66.0184 1.0000 24.4313 1

A4

(0.2488,
0.8285,
0.7998)

(0.9786,
0.0485,
0.0404)

0.1168 45.1218 0.8715 17.0566 4

A5

(0.1628,
0.8712,
0.8478)

(0.9914,
0.0342,
0.0255)

0.1135 35.2094 0.8715 13.5805 5

A6

(0.1848,
0.8932,
0.8690)

(0.9937,
0.0364,
0.0270)

0.1115 30.6951 0.8561 11.9850 6

A7

(0.0253,
0.9965,
0.9965)

(0.8746,
0.4295,
0.4295)

0.0778 2.0000 0.5973 1.3446 9

A8

(0.1098,
0.9726,
0.9666)

(0.9689,
0.1596,
0.1405)

0.0969 9.3949 0.7439 4.2899 8

A9

(0.1533,
0.9586,
0.9478)

(0.9793,
0.1249,
0.1048)

0.1006 13.7132 0.7727 5.8837 7

5 Conclusion
Modern modelling trends in this field include evaluation of the uncertainty and vagueness of the

initial information. Traditional neutrosophic sets are considered as the effective tool to express un-
certainty of the information. However, in some cases, it cannot cover all recently proposed cases of
the fuzzy sets. The m-generalized q-neutrosophic sets were recently proposed to deal with this sit-
uation. The m-generalized q-neutrosophic sets can be considered as the generalisation of fuzzy set,
Pythagorean fuzzy set, intuitionistic fuzzy set, q-rung orthopair fuzzy set, single-valued neutrosophic
set, single-valued n-hyperspherical neutrosophic set and single-valued spherical neutrosophic set. In
this paper, the CoCoSo method extension under the environment of the m-generalized q-neutrosophic
numbers (mGqNN) is proposed. This novel extension has been tested for the selection of the best
retrofit strategy. The numerical example also showed that the CoCoSo-mGqNN extension provides
a robust approach that can be applied to deal with different fuzzy sets within the same MCDM
framework.
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