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Preface

As a powerful tool, also a useful language, mathematics has become a scientific
foundation for realizing or finding new laws in the natural world. This characteristic
implies that a more important task for mathematics is to bring benefit to mankind
by applying mathematics to or establishing new mathematical systems for solving
various mathematical problems in sciences or the natural world.

Solving problems by applying the mathematical method is the center of math-
ematics. As we known, these 23 problems asked by Hilbert in the beginning of
the 20th century have produced more power for the development of mathematics
in last century, and the unified filed theory initiated by Einstein in his later years
advanced the theoretical physics and helped to bring about the string/M-theory in
80s of the 20th century, which increases the ability of human beings to comprehend
the universe.

Sciences are developing, also advancing. A true conclusion in one time maybe a
falsehood in another time. Whence, that thinking sciences is an absolutely truth is
not right, which includes the mathematics. Modern sciences are so advanced getting
into the 21st century that to find a universal genus in the society of sciences is nearly
impossible. Thereby a mathematician can only give his or her contribution in one
or several mathematical fields. The frequent crossing and combination of different
subjects of sciences have become a main trend in realizing our natural world because
our natural world itself is overlapping and combinatorial. In this situation, to make
the combination of different branches of the classical mathematics so that it can
bring benefit to mankind and scientific research is a burning issue of the moment.

What is the mathematics of the 21st century? The mathematics of the 21st

century is the combinatorization with its generalization for classical mathematics,
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also the result for mathematics consistency with the scientific research in the 21st
century. In the mathematics of 21st century, we can encounter some incorrect con-
clusions in classical mathematics maybe true in this time, and even a claim with its

non-claim are true simultaneously in a new mathematical system.

For introducing the combinatorization for classical mathematics, this collection
contains 10 papers finished by the author or the author with other mathematicians.
All these papers have been published in an e-print form on the internet unless two
papers, one reported at “The Symposia of 2004 Postdoctoral Forum on Frontal &
Interdisciplinary Sciences of Chinese Academy of Sciences, Dec. 2004, Beijing” ,
another reported at “The 2005 International Conference on Graph Theory and
Combinatorics of China, June, 2005, Zejiang” .

Now we outline contents in each paper.

The <“Combinatorial speculations and the combinatorial conjecture
for mathematics” is a survey paper submitted to “The 2th Conference on Graph
Theory and Combinatorics of China”. This paper introduces the idea of combinato-
rial conjecture for mathematics and the contributions of combinatorial speculations
to mathematics such as those of algebra and geometries and to combinatorial cos-
moses, particularly for 5 or 6-dimensional cosmos based on the materials in my two
monographs published recently, i.e., Automorphism groups of maps, surfaces
and Smarandache geometries (American Research Press, 2005) and Smaran-

dache multi-space theory (Hexis, America, 2006).

“The mathematics of 21st century aroused by theoretical physics-
Smarandache multi-space theory” is a paper for introducing the background,
approaches and results appeared in mathematics of the 21st century, such as those
of Big Bang in cosmological physics, Smarandache multi-spaces, Smarandache ge-
ometries, maps, map geometries and pseudo-metric space geometries, also includes
discussion for some open problems in theoretical physics. This paper is reported to
teachers and students of Wanyuan School in Mar. 2006, also a paper submitted to
“The 2th Conference on Graph Theory and Combinatorics of China” .

“A new view of combinatorial maps by Smarandache’s notion” is a
speculation paper for combinatorial maps by applying that of Smarandache’s no-
tion, reported at the Chinese Academy of Mathematics and System Science and the
Department of Applied Mathematics of Beijing Jiaotong University in May, 2005.
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This paper firstly introduces the conception of map geometries, which are generaliza-
tion of these 2-dimensional Smarandache manifolds defined by Dr.Iseri, also includes
some elementary properties and classification for map geometries. Open problems
for the combinatorization of some results in classical mathematics are also given in
the final section of this paper, which are benefit for mathematicians researching or

wish researching the combinatorization problem for classical mathematics.

“An introduction to Smarandache geometries on maps” is a survey
paper reported at “The 2005 International Conference on Graph Theory and Com-
binatorics of China”. This paper introduces maps, map geometries, particularly the
necessary and sufficient conditions for parallel bundles in planar map geometries,

which are generalized works for the 5th postulate in Euclid plane geometry.

“A multi-space model for Chinese bid evaluation with analyzing” and
“A mathematical model for Chinese bid evaluation with its solution ana-
lyzing”are two papers coped with the suggestion of Dr.Perze, the editor of American
Research Press after I published a Chinese book Chinese Construction Project
Bidding Technique & Cases Analyzing-Smarandache Multi-Space Model
of Bidding in Xiquan Publishing House (2006). These papers firstly constructed
a mathematical model for bids evaluation system, pointed out that it is a decision
problem for finite multiple objectives under the law and regulations system for ten-
dering, also gave a graphical method for analyzing the order of bids. Some open
problems for weighted Smarandache multi-spaces and suggestions for solving prob-
lems existed in current bids evaluation system in China are presented in the final

section.

“The number of complete maps on surfaces” and “On automorphisms
and enumeration of maps of Cayley graphs of a finite group” are two
papers finished in May, 2004 and Nov. 2001. Applying the group action idea, these
papers enumerate the unrooted complete maps and non-equivalent maps underlying
a Cayley graph of a finite group on orientable and non-orientable surfaces, which
generalize a scheme for enumerating non-equivalent embeddings of a graph presented
by White et.al. They are applications of classical mathematics to combinatorics.

“A combinatorial refinement of Hurwitz theorem on Riemann Sur-
faces” is a paper by applying combinatorial maps to determine automorphisms of

Riemann surfaces and getting combinatorial refinement for some classical results.
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This paper is submitted to “The Symposia of 2004 Postdoctoral Forum on Frontal
€ Interdisciplinary Sciences of Chinese Academy of Sciences” . 1t is the applications
of combinatorics to classical mathematics. It is due to this paper that I presented the
combinatorial conjecture for mathematics and open combinatorial problems for Rie-
mann surfaces, Riemann geometry, differential geometry and Riemann manifolds in
my monograph Automorphism groups of maps, surfaces and Smarandache
geometries.

“The mathematical steps of mine” is a paper for encouraging young teach-
ers and students, reported at my old school Sichuan Wanyuan school in Mar. 2006.
This paper historically recalls each step that I passed from a scaffold erector to a
mathematician, including the period in Wanyuan school, in a construction company;,
in Northern Jiaotong University, in Chinese Academy of Sciences and in Guozin
Tendering Co.LTD. The social contact of mine with some mathematicians and the
process for raising the combinatorial conjecture for mathematics is also called to
mind.

Certainly, there are rights and obligations for a scientist such as those of

the choice of research theme and research methods is freedom without limitation;
all scientists are equal before research themes regardless their position in our society;
to participate and publish scientific results is freedom, can not be rejected if the
results disagrees with or contradicts preferred theory or not favor with the editors,
the referees, or other expert censors; every scientist bears a moral responsibility in

her or his research, can not allow her/his research work injurious to mankind.

Recently, Prof. Dimtri Rabounski, the chief editor of “Progress in Physics”,
issued an open letter Declaration of academic freedom: scientific human
rights in Vol. 1,2006, to clarify those opinions for scientific research. This is a
precondition for sciences in the 21st century and the harmonizing development of
the human society with the natural world, also an indispensable path for developing
mathematics of 21st century and bringing benefit to mankind by mathematics.

The “Mathematics of 21st Century—A Collection of Selected Papers”is

a serial collections in publication. Papers on the following 6 fields are welcome.

(1) Metrization of graphs and combinatorics, or the combinatorization for clas-

sical mathematics;
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(2) Multi-spaces, including algebraic multi-spaces, multi-metric spaces, non-
Fuclid geometry, modern differential geometry;

(3) Topological graphs and combinatorial maps with applications in mathematics
and physics;

(4) General relativity theory with its applications to cosmological physics;

(5) Mathematics theory in string/M-theory;

(6) Other new models for the universe and its mathematical theory.

All these submitted papers can be directly sent to me by email or by post. My
email address is: “maolinfan@163.com” and my post address is “Academy of Math-

ematics and Systems, Chinese Academy of Sciences, Beijing 100080, P.R.China” .

L.F.Mao

Aug. 2006 in Beijing
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Combinatorial Speculations and

the Combinatorial Conjecture for Mathematics*

Linfan Mao

(Chinese Academy of Mathematics and System Sciences, Beijing 100080)

maolinfan@163.com

Abstract: Combinatorics is a powerful tool for dealing with relations among
objectives mushroomed in the past century. However, an even more impor-
tant work for mathematician is to apply combinatorics to other mathematics
and other sciences beside just to find combinatorial behavior for objectives.
In the past few years, works of this kind frequently appeared on journals for
mathematics and theoretical physics for cosmos. The main purpose of this
paper is to survey these thinking and ideas for mathematics and cosmological
physics, such as those of multi-spaces, map geometries and combinatorial cos-
moses, also the combinatorial conjecture for mathematics proposed by myself
in 2005. Some open problems are included for the advance of 21st mathematics

by a combinatorial speculation.

HERBREFHESMHIFR

e FAXBEERZAHEIRANARTIE, AoRFE-THALH
BT RWEH R, EXRFLEERIL, —REEEZHTHTHL
aRFENFTE R FER LR ETARRERT ZIAEAEZE 8

'Reported at the 2th Conference on Combinatorics and Graph Theory of China, Aug. 16-

19, 2006, Tianjing, P.R.China
Ze-print: arXiv: math.GM/0606702 and Sciencepaper Online:200607-128
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Key words: combinatorial speculation, combinatorial conjecture for math-

ematics, Smarandache multi-space, M-theory, combinatorial cosmos.

Classification: AMS(2000) 03C05,05C15,51D20,51H20,51P05,83C05,83E50.

1. The role of classical combinatorics in mathematics

Modern science has so advanced that to find a universal genus in the society of
sciences is nearly impossible. Thereby a scientist can only give his or her contribution
in one or several fields. The same thing also happens for researchers in combinatorics.

Generally, combinatorics deals with twofold:

Question 1.1. to determine or find structures or properties of configurations,
such as those structure results appeared in graph theory, combinatorial maps and

design theory,..., etc..

Question 1.2. to enumerate configurations, such as those appeared in the enu-
meration of graphs, labelled graphs, rooted maps, unrooted maps and combinatorial

designs,...,etc..

Consider the contribution of a question to science. We can separate mathemat-

ical questions into three ranks:

Rank 1 they contribute to all sciences.
Rank 2 they contribute to all or several branches of mathematics.
Rank 3 they contribute only to one branch of mathematics, for instance, just

to the graph theory or combinatorial theory.

Classical combinatorics is just a rank 3 mathematics by this view. This conclu-
sion is despair for researchers in combinatorics, also for me 4 years ago. Whether
can combinatorics be applied to other mathematics or other sciences? Whether can

it contribute to human’s lives, not just in games?
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Although become a universal genus in science is nearly impossible, our world
is a combinatorial world. A combinatorician should stand on all mathematics and
all sciences, not just on classical combinatorics and with a real combinatorial no-
tion, i.e., combining different fields into a unifying field ([25]-[28]), such as combine
different or even anti branches in mathematics or science into a unifying science for
its freedom of research ([24]). This notion requires us answering three questions for
solving a combinatorial question before. What is this question working for? What
is its objective? What is its contribution to science or human’s society? After these
works be well done, modern combinatorics can applied to all sciences and all sciences

are combinatorization.

2. The combinatorics metrization and mathematics combinatorization

There is a prerequisite for the application of combinatorics to other mathematics
and other sciences, i.e, to introduce various metrics into combinatorics, ignored by
the classical combinatorics since they are the fundamental of scientific realization
for our world. This speculation is firstly appeared in the beginning of Chapter 5 of
my book [16]:

- our world is full of measures. For applying combinatorics to other branch
of mathematics, a good idea is pullback measures on combinatorial objects again,
1gnored by the classical combinatorics and reconstructed or make combinatorial gen-
eralization for the classical mathematics, such as those of algebra, differential geome-
try, Riemann geometry, Smarandache geometries, - - - and the mechanics, theoretical

physics, - -

The combinatorial conjecture for mathematics, abbreviated to CCM is stated

in the following.

Conjecture 2.1(CCM Conjecture) Mathematics can be reconstructed from or made

by combinatorization.
Remark 2.1 We need some further clarifications for this conjecture.

(1) This conjecture assumes that one can select finite combinatorial rulers and

axioms to reconstruct or make generalization for classical mathematics.
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(17) Classical mathematics is a particular case in the combinatorization of
mathematics, i.e., the later is a combinatorial generalization of the former.
(7i7) We can make one combinatorization of different branches in mathematics

and find new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been com-
binatorization and all mathematics can not be ended if its combinatorization has
not completed. There is an assumption in one’s realization of our world, i.e., every
science can be made mathematization. Whence, we similarly get the combinatorial

conjecture for science.

Conjecture 2.2(CCS Conjecture) Science can be reconstructed from or made by

combinatorization.

A typical example for the combinatorization of classical mathematics is the
combinatorial map theory, i.e., a combinatorial theory for surfaces([14]-[15]). Com-
binatorially, a surface is topological equivalent to a polygon with even number of
edges by identifying each pairs of edges along a given direction on it. If label each
pair of edges by a letter e, e € £, a surface S is also identifying to a cyclic permuta-
tion such that each edge e, e € £ just appears two times in S, one is e and another is
e . Let a,b,c,--- denote the letters in £ and A, B, C, - - - the sections of successive
letters in a linear order on a surface S (or a string of letters on S). Then, a surface

can be represented as follows:

SI("'7A7a7B7a_1707'”>7

where, a € £,A, B,C denote a string of letters. Define three elementary transfor-

mations as follows:

(Ol) (A,CL, a_laB) A (A> B)7

(02) (i) (Aa,0,B,b7"a™") & (Ae,B,ch);
(ZZ) (A7 a7 b’ B7 a/7 b) @ (A7 C7 B7 C);

(Os) (i) (Aa,B,C.a',D) & (B,a,A,D,a™",C);
(it) (A,a,B,C,a,D) < (B,a,A,C~ ' a,D71).

If a surface S can be obtained from Sy by these elementary transformations
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0:1-0O3, we say that S is elementary equivalent with Sy, denoted by S ~g; Sy. Then

we can get the classification theorem of compact surface as follows([29]):

Any compact surface is homeomorphic to one of the following standard surfaces:
(Py) the sphere: aa™;

(P,) the connected sum of n,n > 1 tori:

~1p-1 —1p-1 ~1p-1.
arbyay by “agbeas by - - apbyan b

(@) the connected sum of n,n > 1 projective planes:

a1a1a2a2 * + * Ap Q.

A map M is a connected topological graph cellularly embedded in a surface S.
In 1973, Tutte suggested an algebraic representation for an embedding graph on a
locally orientable surface ([16]):

A combinatorial map M = (X, 3, P) is defined to be a basic permutation P,
i.e, for any x € X, 3, no integer k exists such that Pz = az, acting on X, 5, the
disjoint union of quadricells Kx of x € X (the base set), where K = {1, «, 3, a5} is

the Klein group satisfying the following two conditions:
(i) aP =P la;
(17) the group ¥; =< a, 3, P > is transitive on X, g.

For a given map M = (X, 3, P), it can be shown that M* = (X3 ,, Paf) is also
a map, call it the dual of the map M. The vertices of M are defined as the pairs
of conjugatcy orbits of P action on X, 3 by the condition (z) and edges the orbits
of K on X, 3, for example, for Vo € X, 5, {z,az, Bz, afz} is an edge of the map
M. Define the faces of M to be the vertices in the dual map M*. Then the Euler
characteristic x(M) of the map M is

X(M) = v(M) —e(M) + (M)

where,v(M),e(M), p(M) are the number of vertices, edges and faces of the map M,
respectively. For each vertex of a map M, its valency is defined to be the length of

the orbits of P action on a quadricell incident with w.
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For example, the graph K, on the tours with one face length 4 and another 8

shown in Fig.2.1

==—-—

Fig.1. the graph K, on the tours

can be algebraically represented by (X, 3, P) with X, s = {z,v, 2, u, v, w, ax, ay, az,
au?av?aw?ﬁx7/8y’/62:’/Bu7/61)7/6w7aﬁx7aﬁy’aﬂz’aﬁu7aﬁv7aﬁw} a’nd

P = (x,y,2)(afz,u,w)(afz, afu,v)(afy, afv, afw)
X (ax, az,ay) Bz, aw, au)(Bz, av, fu)(Ly, fw, Bv)

with 4 vertices, 6 edges and 2 faces on an orientable surface of genus 1.

By the view of combinatorial maps, these standard surfaces Py, P,, @, forn > 1
is nothing but the bouquet B, on a locally orientable surface with just one face.
Therefore, combinatorial maps are the combinatorization of surfaces.

Many open problems are motivated by the CCM Conjecture. For example, a

Gauss mapping among surfaces is defined as follows.

Let S C R? be a surface with an orientation N. The mapping N :S — R? takes

its value in the unit sphere

S?={(z,y,2) € R*|2* +y* +* =1}

along the orientation N. The map N :S — S2, thus defined, is called the Gauss
mapping.
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we know that for a point P € S such that the Gaussian curvature K(P) # 0
and V' a connected neighborhood of P with K does not change sign,
. N(A)
K(P) = im0
where A is the area of a region B C V and N(A) is the area of the image of B by
the Gauss mapping N : S — S?([2],[4]). Now the questions are

(1) what is its combinatorial meaning of the Gauss mapping? How to realizes it
by combinatorial maps?
(71) how can we define various curvatures for maps and rebuilt the results in the

classical differential geometry?

Let S be a compact orientable surface. Then the Gauss-Bonnet theorem asserts
that

//S Kdo =27mx(S),

where K is the Gaussian curvature of S.

By the CCM Conjecture, the following questions should be considered.

(1) How can we define various metrics for combinatorial maps, such as those of
length, distance, angle, area, curvature,---?
(17) Can we rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or

higher dimensional compact manifolds without boundary?

One can see references [15] and [16] for more open problems for the classical
mathematics motivated by this CCM Conjecture, also raise new open problems for

his or her research works.

3. The contribution of combinatorial speculation to mathematics

3.1. The combinatorization of algebra

By the view of combinatorics, algebra can be seen as a combinatorial mathematics
itself. The combinatorial speculation can generalize it by the means of combinator-
ization. For this objective, a Smarandache multi-algebraic system is combinatorially

defined in the following definition.
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Definition 3.1([17],[18]) For any integers n,n > 1 and i,1 <i <mn, let A; be a set
with an operation set O(A;) such that (A;; O(4;)) is a complete algebraic system.

Then the union

s

(4i, O(4Ay))

=1

1s called an n multi-algebra system.

An example of multi-algebra system is constructed by a finite additive group.
Now let n be an integer, Z; = ({0,1,2,---,n—1},+) an additive group (modn) and
P =1(0,1,2,---,n — 1) a permutation. For any integer i,0 < i <n — 1, define

Zi-l—l = Pi(Zl)

satisfying that if ¥ + 1 = m in Zy, then P(k) +; P¥(l) = PY(m) in Z;;,, where +;
denotes the binary operation +; : (P(k), P{(l)) — P*(m). Then we know that

is an n multi-algebra system .

The conception of multi-algebra systems can be extensively used for general-
izing conceptions and results in the algebraic structure, such as those of groups,
rings, bodies, fields and vector spaces, - - -, etc.. Some of them are explained in the
following.

Definition 3.2 Let G = U G; be a complete multi-algebra system with a binary
i=1

operation set O(G) = {x;,1 < i < n}. If for any integer i,1 < i <n, (Gy; x;) is a

group and for ¥Nx,y,z € G and any two binary operations “X” and “o” , X # o,

there is one operation, for example the operation X satisfying the distribution law

«©
o

to the operation provided their operation results exist , i.e.,

T X (yoz)=(rxy)o(xrxz),

(yoz)xx=(yxx)o(zxux),

then G is called a multi-group.
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For a multi-group (G,0(G)), G, € G and O(G,) c O(G), call (G1,0(G,))
a sub-multi-group of (G,0(@)) if Gy is also a multi-group under the operations in
O(C:Tl), denoted by G; < G. For two sets A and B, if AN B = 0, we denote the
union AUB by A@ B. Then we get a generalization of the Lagrange theorem of
finite group.

Theorem 3.1([18]) For any sub-multi-group H of a finite multi-group G, there is
a representation set T, T C G, such that

G = @ .

zeT

For a sub-multi-group H of G, x € O(ﬁ) and Vg € G(x), if for Vh € H,

gxhxg_leﬁ,

then call H a normal sub-multi-group of G. An order of operations in O(é) is said
an oriented operation sequence, denoted by 8(@) We get a generalization of the

Jordan-Hélder theorem for finite multi-groups.

Theorem 3.2([18]) For a finite multi-group G = 6 G,; and an oriented opera-

=1
tion sequence 6(G), the length of maximal series of normal sub-multi-groups is a

constant, only dependent on G itself.

In Definition 2.2, choose n = 2,G; = Gy = G. Then G is a body. If (G1; X1)
and (Gy; X2) both are commutative groups, then G is a field. For multi-algebra
system with two or more operations on one set, we introduce the conception of
multi-rings and multi-vector spaces in the following.

Definition 3.3 Let R = Gl R; be a complete multi-algebra system with double binary
operation set O(R) = {(%:, x;),1 <i < m}. If for any integers i, j, i # j,1 < 1,5 <
m, (Ri;+;, %) is a ring and for Vz,y,z € R,

(x+iy)+jz=x+; (y+;2), (xx;y)%x;z=1ax;(yX;z)

and
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TX (Y+j2) =X y+;x X2, (Y+;2) X =yX;T+;2X; @

provided all their operation results exist, then R is called a multi-ring. If for any
integer 1 < i < m, (R;+i, x;) is a filed, then R is called a multi-filed.

- k
Definition 3.4 Let V = U V; be a complete multi-algebra system with binary
=1

operation set O(f/) = {(44-) | 1 <i < m} and F = 'LleF,- a multi-filed with
double binary operation set O(F) = {(44,%;) | 1 < i < Z/’;} If for any integers
0,5, 1<i,j <k andVa,b,c €V, ki, ks € F,

(i) (Vi; +i, ) is a vector space on F; with vector additive +; and scalar multi-
plication -;;

(ii) (a+ib)+;c = a+;(b+,c);

(ii7) (k1 +i ko) -ja= ki +; (ko - a);
provided all those operation results exist, then V is called a multi-vector space on
the multi-filed F with a binary operation set O(V), denoted by (V; F).

Similar to multi-groups, we can also obtain results for multi-rings and multi-
vector spaces to generalize classical results in rings or linear spaces. Certainly, results

can be also found in the references [17] and [18].

3.2. The combinatorization of geometries

First, we generalize classical metric spaces by the combinatorial speculation.

Definition 3.5 A multi-metric space is a union M = U M; such that each M; is a
i=1

space with metric p; for Vi,1 <i < m.
We generalized two well-known results in metric spaces.

Theorem 3.3([19]) Let M = U M; be a completed multi-metric space. For an e-
disk sequence {B(€e,, Tn)}, whe;“zlen >0 forn=1,2,3,---, the following conditions
hold:

(1) B(er,x1) D Bleg,x2) D Bles,x3) D+ D Bley, z,) D+ 1

(17) lim €, =0.

n—-+00
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+o00
Then (N B(én,x,) only has one point.
1

n=

Theorem 3.4([19]) Let M = (nj M; be a completed multi-metric space and T a
i=1

contraction on M. Then
1 <* &(T) <m.

Particularly, let m = 1. We get the Banach fized-point theorem again.

Corollary 3.1(Banach) Let M be a metric space and T a contraction on M. Then
T has just one fixed point.

Smarandache geometries were proposed by Smarandache in [25] which are gen-
eralization of classical geometries, i.e., these Fuclid, Lobachevshy-Bolyai-Gauss and
Riemann geometries may be united altogether in a same space, by some Smaran-
dache geometries under the combinatorial speculation. These geometries can be
either partially Euclidean and partially Non-Euclidean, or Non-Euclidean. In gen-

eral, Smarandache geometries are defined in the next.

Definition 3.6 An axiom is said to be Smarandachely denied if the axiom behaves
in at least two different ways within the same space, i.e., validated and invalided, or
only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely
denied aziom(1969).

For example, let us consider an euclidean plane R? and three non-collinear
points A, B and C. Define s-points as all usual euclidean points on R? and s-
lines as any euclidean line that passes through one and only one of points A, B
and C'. Then this geometry is a Smarandache geometry because two axioms are
Smarandachely denied comparing with an Euclid geometry:

(1) The axiom (A5) that through a point exterior to a given line there is only
one parallel passing through it is now replaced by two statements: one parallel and
no parallel. Let L be an s-line passing through C and is parallel in the euclidean
sense to AB. Notice that through any s-point not lying on AB there is one s-line
parallel to L and through any other s-point lying on AB there is no s-lines parallel
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to L such as those shown in Fig.3.1(a).

C
L o
Ia/
4
L. . E
/E
1z

{al (b}

Fig.2. an example of Smarandache geometry

(17) The axiom that through any two distinct points there exists one line
passing through them is now replaced by; one s-line and no s-line. Notice that
through any two distinct s-points D, E collinear with one of A, B and C', there is
one s-line passing through them and through any two distinct s-points F, G lying
on AB or non-collinear with one of A, B and C, there is no s-line passing through

them such as those shown in Fig.3.1(b).

A Smarandache n-manifold is an n-dimensional manifold that support a Smaran-
dache geometry. Now there are many approaches to construct Smarandache mani-
folds for n = 2. A general way is by the so called map geometries without or with
boundary underlying orientable or non-orientable maps proposed in references [14]
and [15] firstly.

Definition 3.7 For a combinatorial map M with each vertex valency> 3, associates

a real number p(u),0 < p(u) < p%?u)’ to each vertex u,u € V(M). Call (M, u) a
map geometry without boundary, u(u) an angle factor of the vertex u and orientablle

or non-orientable if M is orientable or not.

Definition 3.8 For a map geometry (M, u) without boundary and faces fi, fo, -+, fi
€ FIM),1 <1 < ¢o(M)—1, if S(IM) \ {f1, fo,--, fi} is connected, then call

(M, )=t = (S(M)\{frs fa, -+, fihs 1) a map geometry with boundary fi, fo, -+, fi,
where S(M) denotes the locally orientable surface underlying map M.

The realization for vertices u,v,w € V(M) in a space R? is shown in Fig.3.2,
where py(u)p(u) < 27 for the vertex u, py(v)u(v) = 27 for the vertex v and

pu(w)p(w) > 27 for the vertex w, are called to be elliptic, euclidean or hyperbolic,
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respectively.

pu(w)p(u) = 2w pu(wp(u) > 27

Fig.4. a straight line passes through an elliptic or hyperbolic point

Theorem 3.5([17]) There are Smarandache geometries, including paradozist ge-
ometries, non-geometries and anti-geometries in map geometries without or with

boundary.

Generally, we can ever generalize the ideas in Definitions 3.7 and 3.8 to a metric

space and find new geometries.

Definition 3.9 Let U and W be two metric spaces with metric p, W C U. For
Yu € U, if there is a continuous mapping w : u — w(u), where w(u) € R™ for an
integer n,n > 1 such that for any number € > 0, there exists a number 6 > 0 and a
point v € W, p(u —v) < 0 such that p(w(u) —w(v)) < €, then U is called a metric
pseudo-space if U = W or a bounded metric pseudo-space if there is a number N > 0
such that Yw € W, p(w) < N, denoted by (U,w) or (U~ ,w), respectively.

For the case n = 1, we can also explain w(u) being an angle function with
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0 < w(u) <47 as in the case of map geometries without or with boundary, i.e.,

w(u) = w(u)(moddr), if ue W,
| on fueU\W (%)

and get some interesting metric pseudo-space geometries. For example, let U =
W = Euclid plane = ), then we obtained some interesting results for pseudo-plane

geometries (3, w) as shown in the following([17]).

Theorem 3.6 In a pseudo-plane (3,w), if there are no euclidean points, then all

points of (3,w) is either elliptic or hyperbolic.

Theorem 3.7 There are no saddle points and stable knots in a pseudo-plane plane

(2, w).

Theorem 3.8 For two constants pg, 6y, po > 0 and 0y # 0, there is a pseudo-plane
(>, w) with

Po Po
w(p,0) =2(mr——) or w(p,l) =2(r + —
(0.0) =2~ %) or wlp.6) = 2(r + 1)

such that

is a limiting ring in (3, w).

Now for an m-manifold M™ and Yu € M™, choose U = W = M™ in Definition
3.9 for n = 1 and w(u) a smooth function. We get a pseudo-manifold geometry
(M™ w) on M™. By definitions in the reference (2], a Minkowski norm on M™ is a
function F': M™ — [0, 400) such that

(1) F issmooth on M™\ {0};
(12) F is 1-homogeneous, i.e., F(\u) = AF(u) for w € M™ and A > 0;
(17i) for Vy € M™\ {0}, the symmetric bilinear form g, : M™ x M™ — R with

_ . 19*F*(y + su+tv)
gy(“v U) = 5 st |t:s:O

is positive definite and a Finsler manifold is a manifold M™ endowed with a function
F:TM™ — [0,+00) such that
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(i) F is smooth on TM™\ {0} = U{TxzM™ \ {0} : T € M™};

(it) F|rpm — [0,+00) is a Minkowski norm for Vz € M™.

As a special case, we choose w(T) = F(T) for T € M™, then (M™,w) is a Finsler
manifold. Particularly, if w(T) = gz(y,y) = F?(x,y), then (M™,w) is a Riemann
manifold. Therefore, we get a relation for Smarandache geometries with Finsler or

Riemann geometry.

Theorem 3.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler

and Riemann geometries as shown in the following:

{Smarandache geometries} O {pseudo—manifold geometries}
D {Finsler geometry}

O {Riemann geometry}.

4. The contribution of combinatorial speculation to theoretical physics

The progress of theoretical physics in last twenty years of the 20th century enables
human beings to probe the mystic cosmos: where are we came from? where are we
going to?. Today, these problems still confuse eyes of human beings. Accompanying
with research in cosmos, new puzzling problems also arose: Whether are there finite
or infinite cosmoses? Is just one? What is the dimension of our cosmos? We do not
even know what the right degree of freedom in the universe is, as Witten said([3]).
We are used to the idea that our living space has three dimensions: length,
breadth and height, with time providing the fourth dimension of spacetime by Ein-
stein. Applying his principle of general relativity, i.e. all the laws of physics take
the same form in any reference system and equivalence principle, i.e., there are no
difference for physical effects of the inertial force and the gravitation in a field small

enough., Einstein got the equation of gravitational field

1
R, — §Rg“,, + NG = —87GT),.
where R, = R,, = R},

piv)

o ariﬂ ariﬂf 4T Fz re Fz
puiv T ax,/ aZL’Z ui av purs and
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ry = lgpq(agmp + 9gnp _ 8gmn)
2 ou™  OJum™  OuP
and R = g"*R,,,.
Combining the Einstein’s equation of gravitational field with the cosmological
principle, i.e., there are no difference at different points and different orientations
at a point of a cosmos on the metric 10*1.y. , Friedmann got a standard model of

cosmos. The metrics of the standard cosmos are

dr?

2_ 23,2, 2
ds® = —c°dt +a(t)[1—Kr2

+ r2(d6? + sin? Odp?)]
and

R2(t
Ju = ]_, Grr = —1_7;{)712’9@15 — —T2R2(t) Sin2 0.

The standard model of cosmos enables the birth of big bang model of our cosmos
in thirties of the 20th century. The following diagram describes the developing

process of our cosmos in different periods after the big bang.

L
Flemg SR
i e OE]

Fig.5. the evolution of our cosmos
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4.1. The M-theory

The M-theory was established by Witten in 1995 for the unity of those five already
known string theories and superstring theories, which postulates that all matter
and energy can be reduced to branes of energy vibrating in an 11 dimensional space,
then in a higher dimensional space solve the Einstein’s equation of gravitational
field under some physical conditions ([1],[3],[22]-[23]). Here, a brane is an object or
subspace which can have various spatial dimensions. For any integer p > 0, a p-
brane has length in p dimensions. For example, a 0-brane is just a point or particle;
a 1-brane is a string and a 2-brane is a surface or membrane, - - -.

We mainly discuss line elements in differential forms in Riemann geometry. By
a geometrical view, these p-branes in M-theory can be seen as volume elements
in spaces. Whence, we can construct a graph model for p-branes in a space and

combinatorially research graphs in spaces.

Definition 4.1 For each m-brane B of a space R™, let (n1(B),na(B),---,n,(B))
be its unit vibrating normal vector along these p directions and ¢ : R™ — R* a

continuous mapping. Now construct a graph phase (G,w,\) by

V(G) = {p — branes q(B)},

E(G) = {(q(By), q(Bs))|there is an action between By and By},

and

A(q(B1),q(Bs)) = forces between By and Ba.

Then we get a graph phase (G, w, A) in RY. Similarly, if m = 11, it is a graph phase
for the M-theory.

As an example for applying M-theory to find an accelerating expansion cosmos
of 4-dimensional cosmos from supergravity compactification on hyperbolic spaces is

the Townsend-Wohlfarth type metric in which the line element is
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ds® = e~ (=S84t + S%dald) + rge**Wdsy, |

where

m m+2 Aot

¢(t) = 1(1n K(t) - 3)\0t), S2 = Kmfl e_ m—1

and

)‘0 Crc

lﬂﬂ:(m_lhmp&u+hH

with ¢ = /3 + 6/m. This solution is obtainable from space-like brane solution and
if the proper time ¢ is defined by ds = S3(¢)dt, then the conditions for expansion
and acceleration are % > (0 and % > (. For example, the expansion factor is 3.04
if m =7, i.e., areally expanding cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect
11 dimensional space. However, this 11 dimensional space was unstable. The original
11 dimensional space finally cracked into two pieces, a 4 and a 7 dimensional cosmos.
The cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing the

remaining 4 dimensional cosmos to inflate at enormous rates.

4.2. The combinatorial cosmos

The combinatorial speculation made the following combinatorial cosmos([17]).

Definition 4.2 A combinatorial cosmos is constructed by a triple (2, A, T), where

o= A=Uo

i>0 i>0
and T = {t;;i > 0} are respectively called the cosmos, the operation or the time set

with the following conditions hold.

1) (2,A) is a Smarandache multi-space dependent on T, i.e., the cosmos
(Q, 0;) is dependent on time parameter t; for any integer i,i > 0.

(2) For any integer i,i > 0, there is a sub-cosmos sequence

(S): i D---DQ D Qo
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in the cosmos (8, 0;) and for two sub-cosmoses (€25, 0;) and (i, O;), if Qij O Qu,

then there is a homomorphism pa,; q, : (S, O;) — (Qu, O;) such that

(Z) fOT V(Qil,Oi), (QZQ,OZ)(QZ?,,OZ) - (S), Zf Qil D) QZ’Q D) Qig, then

Pt Qs = P, Q2 © PQu, Qs

«© %
O

where denotes the composition operation on homomorphisms.

(17) forVg,h €y, if for any integer i, paqa,(9) = paq,(h), then g = h.
(1ii) for Vi, if there is an f; € ; with

Pa; (N9 (fi) = Pa;.0:N 9 (f5)

for integers i, 7, ;N # 0, then there exists an f € Q such that poq,(f) = fi for

any integer t.

By this definition, there is just one cosmos {2 and the sub-cosmos sequence is

R'DR’DR?’DR'DR°={P} DR, D>---DR; DRy ={0Q}.

in the string/M-theory. In Fig.4.1, we have shown the idea of the combinatorial

COSIMOS.

Fig.6. an example of combinatorial cosmoses

For 5 or 6 dimensional spaces, it has been established a dynamical theory by

this combinatorial speculation([20][21]). In this dynamics, we look for a solution in
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the Einstein equation of gravitational field in 6-dimensional spacetime with a metric

of the form

2
ds* = —n?(t,y, 2)dt* + a*(t,y, z)dz +b2(t,y, 2)dy* + d*(t,y, 2)d2?
k

where d Y7 represents the 3-dimensional spatial sections metric with & = —1,0, 1 re-
spective corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional
spacetime, deletes the undefinite z in this metric form. Now consider a 4-brane

moving in a 6-dimensional Schwarzschild-ADS spacetime, the metric can be written

as
2 2
ds* = —h(z)dt* + z?dz +h™(2)d2?,
k
where
2 dr? 2 192 2\ 72
dZ: 1—]{}7”2 +r dQ@) +(1—]€7’ )dy
k
and
2 M
h(Z) = ]{7 + l_2 — ;

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is

R R ’i46 ’i46 K 5
ot g2 _ 3706 2 7O . g M 2
rT3R 61’ T8 PTR TP

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the

case of a(z) # b(z), the equations of motion of the brane are

0t P 1 9 2 ' ) 4

V1+ d2R2 n d
a25\/1 T
a

4
Vi = "0 50— p)),

="

)

*|
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where the energy-momentum tensor on the brane is

- 1
ij = hl,aT; - Z

with T = diag(—p, p,p, p, p) and the Darmois-Israel conditions

Thy,

~

(K] = _ﬁ?b‘) Ty

where K, is the extrinsic curvature tensor.
The combinatorial cosmos also presents new questions to combinatorics, such

as:

(i) to embed a graph into spaces with dimensional> 4;
(74) to research the phase space of a graph embedded in a space;

(7ii) to establish graph dynamics in a space with dimensional> 4, - - -, etc..

For example, we have gotten the following result for graphs in spaces in [17].

Theorem 4.1 A graph G has a nontrivial including multi-embedding on spheres
P, D P, D - D P if and only if there is a block decomposition G = Lij G; of G
such that for any integer i,1 < i < s, =
(i) Gy is planar;
(i) forWv € V(Gy), Na(x) C (‘lewaj)).
i
Further research of the combinatorial cosmos will richen the knowledge of com-

binatorics and cosmology, also get the combinatorization for cosmology.
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The Mathematics of 21st Century Aroused by
Theoretical Physics
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establish a unified field theory for physics, i.e., the Theory of Everything. The
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aim is near in 1980s while the String/M-theory has been established. They
also realize the bottleneck for developing the String/M-theory is there are no
applicable mathematical theory for their research works. “the Problem is
that 21st-century mathematics has not been invented yet” , They said. In fact,
mathematician has established a new theory, i.e., the Smarandache multi-space
theory applicable for their needing while the the String/M-theory was estab-
lished. The purpose of this paper is to survey its historical background, main
thoughts, research problems, approaches and some results based on the mono-
graph [16] of mine. We can find the central role of combinatorial speculation

in this process.
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1. What is a combinatorial map

A graph T is a 2-tuple (V, E) consists of a finite non-empty set V' of vertices together
with a set F of unordered pairs of vertices, i.e., E C V x V. Often denoted by V (I'),
E(T") the vertex set and edge set of a graph I'([9]).

For example, the graph in the Fig.1 is a complete graph K, with vertex set
V ={1,2,3,4} and edge set £ = {12,13,14,23,24,34}.

Fig.1

A map is a connected topological graph cellularly embedded in a surface. In
1973, Tutte gave an algebraic representation for embedding a graph on locally ori-
entable surface ([18]), which transfer a geometrical partition of a surface to a kind
of permutation in algebra as follows([7][8]).

A combinatorial map M = (X, 3, P) is defined to be a basic permutation P,
i.e, for any x € X, 5, no integer k exists such that P*x = ax, acting on X, 5, the
disjoint union of quadricells Kz of x € X (the base set), where K = {1, a, 8, a3} is
the Klein group, with the following two conditions holding:

(i) aP =P la;
(17) the group V¥ ; =< a, 3, P > is transitive on X, g.

For a given map M = (X, 3, P), it can be shown that M* = (X3 ,, Paf) is also
a map, call it the dual of the map M. The vertices of M are defined as the pairs
of conjugatcy orbits of P action on &, g by the condition (C7) and edges the orbits
of K on X, 3, for example, for Vo € X, 5, {z,az, Sz, afz} is an edge of the map
M. Define the faces of M to be the vertices in the dual map M*. Then the Euler
characteristic x(M) of the map M is
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X(M) = v(M) —e(M) + (M)

where, v(M),e(M), p(M) are the number of vertices, edges and faces of the map
M, respectively. For each vertex of a map M, its valency is defined to be the length

of the orbits of P action on a quadricell incident with .

Fig.2

For example, the graph K, on the tours with one face length 4 and another 8 |

shown in the Fig.2, can be algebraically represented as follows.

A map (X, 5, P) with X, 5 = {x,y, 2, u, v, w, az, ay, az, au, av, aw, fz, By, 5z,
Bu, B, Bw, afz, aBy, afz, afu, afv, afw} and

P = (2,9,2)(afz,u,w)(abz, afu,v)(afy, afv, afw)
X (ax, az,ay) Bz, aw, au)(Bz, av, fu)(Ly, fw, Bu)

The four vertices of this map are {(x, y, 2), (ax, az, ay)}, {(afz, u, w), (Bz, aw, au)},
{(aBz, afu,v), (Bz, av, fu)} and {(aBy, afv, afw), (By, fw, fv)} and six edges are
{e, ae, fe,afe}, where, e € {z,y,z,u,v,w}. The Euler characteristic x(M) is
X(M)=4—6+2=0.

Geometrically, an embedding M of a graph I" on a surface is a map and has an
algebraic representation. The graph I' is said the underlying graph of the map M
and denoted by I' = I'(M). For determining a given map (X, g, P) is orientable or

not, the following condition is needed.
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111) If the group Wi = (a3, P) is transitive on X, g, then M is non-orientable.
( ) g p ) 7,67

Otherwise, orientable.

It can be shown that the number of orbits of the group ¥; = (af,P) in
the Fig.2 action on X,3 = {z,v,2,u,v,w, az,ay, az,ou, av, aw, Bz, By, Bz, Bu,
Bo, bw, afx, afy, afz, afu, afv, afw} is 2. Whence, it is an orientable map and
the genus of the surface is 1. Therefore, the algebraic representation is correspondent

with its geometrical meaning.

2. What are lost in combinatorial maps

As we known, mathematics is a powerful tool of sciences for its unity and neatness,
without any shade of mankind. On the other hand, it is also a kind of aesthetics
deep down in one’s mind. There is a famous proverb says that only the beautiful
things can be handed down to today, which is also true for the mathematics.

Here, the term unity and neatness is relative and local, also have various con-
ditions. For acquiring the target, many unimportant matters are abandoned in the
process. Whether are those matters in this time still unimportant in another time?
It is not true. That is why we need to think the question: what are lost in the
classical mathematics?

For example, a compact surface is topological equivalent to a polygon with even
number of edges by identifying each pairs of edges along a given direction on it([17]).
If label each pair of edges by a letter e,e € &, a surface S is also identifying to a
cyclic permutation such that each edge e,e € £ just appears two times in S, one
is e and another is e~!. Let a,b,c,--- denote the letters in €& and A, B,C, - - the
sections of successive letters in linear order on a surface S (or a string of letters on

S). Then, a surface can be represented as follows:

S:("'aAaaaBaa_laCa'”)7

where, a € £ andA, B, C denote a string of letters. Define three elementary trans-

formations by
(Ol) (A,CL, a_lvB) < (Av B)7
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(ZZ) (A7 a7 b’ ‘B7a/7 b) <:> (A7C7 B7 C);

(03) (i) (A,a,B,C,a™', D)< (B,a, A, D,a!,C);
(i1) (A,a,B,C,a,D) < (B,a,A,C ' a,D71).

If a surface Sy can be obtained by the elementary transformations O;-O3 from a
surface S, it is said that S is elementary equivalent with Sy, denoted by S ~g; Sp.
We have known the following formula in [8]:
(i) (A,a,B,b,C,a™', D07 E) ~g (A, D,C,B,E,a,b,a™!,b71);
(it) (A,c,B,c) ~g (A, B7Y,C, ¢, c);
(iti) (A, c,c,a,b,a7 ' 071 ~p (A, e,c,a,a,b,b).

Then we can get the classification theorem of compact surfaces as follows([14]):
Any compact surface is homeomorphic to one of the following standard surfaces:
(Py) the sphere: aa™!;
(P,) the connected sum of n,n > 1, tori:

—1p-1 —1p-1 11,
arbyay by “agbeay by - - anbyan b,

(Q,) the connected sum of n,n > 1, projective planes:

a1a1a2a9 * + * Ap Q.

Generally, a combinatorial map is a kind of decomposition of a surface. Notice
that all the standard surfaces are just one face map underlying an one vertex graph.
By a geometrical view, a combinatorial map is also a surface. But this assertion
need more clarifying. For example, see the left graph Il in the Fig. 3, which is just
the tetrahedron.

TN,
i YoMy
; | | q |
/| =
o4 3 — ] B
L - 1 L.
i — 1 F,
g 3 .'\""\-\_ —
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Whether can we say it is the sphere? Certainly NOT. Since any point w on a
sphere has a neighborhood N(u) homeomorphic to the open disc, therefore, all
angles incident with the point 1 must all be 120° degree on a sphere. But in I,
they are all 60° degree. For making them topologically same, i.e., homeomorphism,
we must blow up the Il to a sphere, as shown in the Fig.3. Whence, for getting the
classification theorem of compact surfaces, we lose the angle,area, volume, distance,
curvature,- - -, etc, which are also lost in the combinatorial maps.

Klein Erlanger Program says that any geometry is finding invariant prop-
erties under a transformation group of this geometry. This is essentially the group
action idea and widely used in mathematics today. In combinatorial maps, we know

the following problems are applications of the Klein Erlanger Program:

i)to determine isomorphism maps or rooted maps;
ii)to determine equivalent embeddings of a graph;
iti)to determine an embedding whether exists;
iv)to enumerate maps or rooted maps on a surface;

Jto enumerate embeddings of a graph on a surface;
) ceee

All the problems are extensively investigated by researches in the last century

(
(
(
(i
(v
(v

and papers related those problems are still appearing frequently on journals to-
day. Then, what are their importance to classical mathematics? and what are their

contributions to sciences? These are the central topics of this paper.

3. The Smarandache geometries

The Smarandache geometries is proposed by Smarandache in 1969 ([16]), which is
a generalization of the classical geometries, i.e., the Euclid, Lobachevshy-Bolyai-
Gauss and Riemannian geometries may be united altogether in a same space, by
some Smarandache geometries. These last geometries can be either partially Eu-
clidean and partially Non-Euclidean, or Non-Euclidean. It seems that the Smaran-
dache geometries are connected with the Relativity Theory (because they include
the Riemann geometry in a subspace) and with the Parallel Universes (because
they combine separate spaces into one space) too([5]). For a detail illustration, we

need to consider the classical geometries.
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The axioms system of Fuclid geometry are the following:

(Al)there is a straight line between any two points.
(A2)a finite straight line can produce a infinite straight line continuously.
(A3)any point and a distance can describe a circle.
(Ad)all right angles are equal to one another.
(AB)if a straight line falling on two straight lines make the interior angles on
the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.
The axiom (A5) can be also replaced by:

(A5")given a line | and a point u exterior this line, there is one line passing

through w parallel to the line [.

The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a
geometry with axioms (A1) — (A4) and the following axiom (L5):

(L5) there are infinitely many line parallels to a given line passing through an

exterior point.

The Riemann geometry, also called elliptic geometry, is a geometry with axioms
(A1) — (A4) and the following axiom (R5):

there are no parallel to a given line passing through an exterior point.

By the thought of Anti-Mathematics: not in a nihilistic way, but in a positive
one, i.e., banish the old concepts by some new ones: their opposites, Smarandache
introduced the paradoxist geometry, non-geometry, counter-projective geometry and
anti-geometry in [16] by contradicts the axioms (Al) — (A5) in Euclid geometry,

generalized the classical geometries.

Paradoxist geometries

In these geometries, their axioms are (A1) — (A4) and with one of the following

as the axiom (P5):

(1)there are at least a straight line and a point exterior to it in this space for
which any line that passes through the point and intersect the initial line.

(ii)there are at least a straight line and a point exterior to it in this space for
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which only one line passes through the point and does not intersect the initial line.

(7i1)there are at least a straight line and a point exterior to it in this space for
which only a finite number of lines ly,ly, - -+, lp, k > 2 pass through the point and do
not intersect the initial line.

(tv)there are at least a straight line and a point exterior to it in this space for
which an infinite number of lines pass through the point (but not all of them) and
do not intersect the initial line.

(v)there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and does not intersect the initial line.

Non-Geometries

These non-geometries are geometries by denial some axioms of (A1) — (A5),

such as:

(A17)it is not always possible to draw a line from an arbitrary point to another
arbitrary point.

(A27)it is not always possible to extend by continuity a finite line to an infinite
line.

(A37)it is not always possible to draw a circle from an arbitrary point and of
an arbitrary interval.

(A47)not all the right angles are congruent.

(A57)if a line, cutting two other lines, forms the interior angles of the same
side of it strictly less than two right angle, then not always the two lines extended
towards infinite cut each other in the side where the angles are strictly less than two

right angle.

Counter-Projective geometries

Denoted by P the point set, L the line set and R a relation included in P x L.

A counter-projective geometry is a geometry with the following counter-axioms:

(C1)there exist: either at least two lines, or no line, that contains two given
distinct points.
(C2)let p1,p2,p3 be three non-collinear points, and qi,qs two distinct points.

Suppose that {p1.q1, p3} and {pa, g2, ps} are collinear triples. Then the line contain-
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ng p1, pe and the line containing qi,qs do not intersect.

(C3)every line contains at most two distinct points.

Anti-Geometries

These geometries are constructed by denial some axioms of the Hilbert’s 21
axioms of Euclidean geometry. As shown in [5], there are at least 22! — 1 anti-
geometries.

The Smarandache geometries are defined as follows.

Definition 3.1 An aziom is said Smarandachely denied if the axiom behaves in at
least two different ways within the same space, i.e., validated and invalided, or only
invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely
denied axiom(1969).

A nice model for Smarandache geometries, called s-manifolds, is found by Iseri
in [3] and [4], which is defined as follows:

An s-manifold is any collection C(T,n) of these equilateral triangular disks
T;, 1 <1 <n satisfying the following conditions:

(i) each edge e is the identification of at most two edges e;, e; in two distinct
triangular disks T;,T;,1 < i,j <n and 1 # j;

(ii) each vertex v is the identification of one vertex in each of five, six or seven
distinct triangular disks.

These vertices are classified by the number of the disks around them. A vertex
around five, six or seven triangular disks is called an elliptic vertex, an Fuclid vertex
or a hyperbolic vertex, respectively.

An s-manifold is called closed if each edge is shared by exactly two triangular
disks. An elementary classification for closed s-manifolds by triangulation are made
in the reference [11]. These closed s-manifolds are classified into 7 classes in [11], as

follows:

Classical Type:
(1) Ay = {5 — regular triangular maps} (elliptic);
(2) Ay = {6 — regular triangular maps}(euclidean);

(3) Az = {7 — regular triangular maps}(hyperbolic).
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Smarandache Type:

4) Ay = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

6

7) A7 = {triangular maps with vertex valency 5,6 and 7} (mized).

(4)

(5) Ay = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);
(6) Ag = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);
(7)

It is proved in [11] that |A;| =2, |As| > 2 and |A,|,i = 2,3,4,6, 7 are infinite.
Isier proposed a question in [3]: do the other closed 2-manifolds correspond to s-

manifolds with only hyperbolic vertices?. Since there are infinite Hurwitz maps, i.e.,

|Asz] is infinite, the answer is affirmative.

4. Map geometries

Combinatorial maps can be used to construct new geometries, which are nice models
for the Smarandache geometries, also a generalization of Isier’s model and Poincaré’s

model for the hyperbolic geometry.

4.1 Map geometries without boundary

For a given map on a surface, the map geometries without boundary are defined as

follows.

Definition 4.1 For a combinatorial map M with each vertex valency> 3, endows
a real number p(u),0 < wp(u) < 7, with each vertex u,u € V(M). Call (M, )
a map geometry with out boundary, u(u) the angle factor of the vertex u and to be

orientablle or non-orientable if M is orientable or not.

The realization of each vertex u,u € V(M) in R? space is shown in the Fig.4

for each case of p(u)u(u) > 2w, =27 or < 2.

A

p(u)pu(u) = 2w wlu) > 27

Fig.4

As pointed out in Section 2, this kind of realization is not a surface, but it is
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homeomorphic to a surface. We classify points in a map geometry (M, p) without

boundary as follows.

Definition 4.2 A point u in a map geometry (M, ) is called elliptic, euclidean or
hyperbolic if p(u)pu(u) < 27, p(u)p(u) =27 or p(u)u(u) > 2.

Then we have the following results.

Proposition 4.1 Let M be a map with¥u € V(M), p(u) > 3. Then forVu € V(M),
there is a map geometries (M, p) without boundary such that u is elliptic, euclidean

or hyperbolic in this geometry.

Proof Since p(u) > 3, we can choose the angle factor p(u) such that p(u)p(u) <
27, p(u)p(u) = 27 or p(u)p(u) > 2m. Notice that

Whence, we can also choose p(u) satisfying that 0 < u(u) < h

Proposition 4.2 Let M be a map of order> 3 and Yu € V (M), p(u) > 3. Then
there exists a map geometry (M, ) without boundary, in which all points are one of

the elliptic vertices, euclidean vertices and hyperbolic vertices or their mized.

Proof According to the Proposition 4.1, we can choose an angle factor u such
that a vertex u,u € V(M) to be elliptic, or euclidean, or hyperbolic. Since |V (M)| >
3, we can also choose the angle factor p such that any two vertices v, w € V(M)\{u}
to be elliptic, or euclidean, or hyperbolic as we wish. Then the map geometry (M, 1)

makes the assertion holding. il

A geodesic in a manifold is a curve as straight as possible. Similarly, in a map

geometry, its m-lines and m-points are defined as follows.

Definition 4.3 Let (M, u) be a map geometry without boundary. An m-line in

(M, i) is a curve with a constant curvature and points in it are called m-points.

Examples for an m-line on the torus and Klein bottle are shown in Fig.5.
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Fig.5
If an m-line pass through an elliptic point or a hyperbolic point u, it must has
the angle % with the entering line, not 180°, which are explained in Fig.6.
a a
u u
9 — u(u)zp(U) < 7 g5 = M(U)2p(u) >
Fig.6

The following proposition asserts that map geometries without boundary are

Smarandache geometries.

Proposition 4.3 For a map M on a locally orientable surface with order> 3 and
vertex valency> 3, there is an angle factor p such that (M, p) is a Smarandache
geometry by denial the aziom (A5) with the axioms (A5),(L5) and (R5).
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Proof According to Proposition 4.1, we know that there exist an angle factor
i such that there are elliptic vertices, euclidean vertices and hyperbolic vertices in

(M, p) simultaneously. The proof is divided into three cases.

Case 1. M is a planar map

Notice that for a given line L not pass through the vertices in the map M and
a point w in (M, u), if u is an euclidean point, then there is one and only one line
passing through u not intersecting with L, and if u is an elliptic point, then there
are infinite lines passing through u not intersecting with L, but if u is a hyperbolic
point, then each line passing through u will intersect with L, see also the Fig.7,
in where, the planar graph is the complete graph K, and the points 1,2 is elliptic
vertices, the point 3 is euclidean and the point 4 hyperbolic. Then all m-lines in
the filed A do not intersect with L and each m-line passing through the point 4 will
intersect with the line L. Therefore, (M, ) is a Smarandache geometry by denial
the axiom (A5) with the axioms (A5). (L5) and (R5).

Fig.7

Case 2. M is an orientable map

According to the classification theorem of compact surfaces, We only need to
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prove this result for the torus. Notice that on the torus, an m-line has the following

properties ([15]):

If the slope < of m-line L s a rational number, then L is a closed line on the
torus. Otherwise, L is infinite, and moreover L passes arbitrarily close to every

point of the torus.

Whence, if L; is an m-line on the torus, not passes through an elliptic or
hyperbolic point, then for any point u exterior L;, we know that if u is an euclidean
point, then there is only one m-line passing through u not intersecting with L;, and
if u is elliptic or hyperbolic, then any m-line passing through u will intersect with
L.

Now let Ly be an m-line passes through an elliptic or hyperbolic point, such as

the m-line in Fig.8 and v an euclidean point.

Fig.8
Then any m-line L in the shade filed passing through the point v will not intersect

with Ly. Therefore, (M, u) is a Smarandache geometry by denial the axiom (A5)
with the axioms (A5),(L5) and (R5).

Case 3. M is a non-orientable map

Similar to the Case 2, by the classification theorem of the compact surfaces, we
only need to prove this result for the projective plane. An m-line in a projective
plane is shown in the Fig.9, in where, case (a) is an m-line passes through euclidean

points, (b) passes through an elliptic point and (c) passes through a hyperbolic
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point.

(a)

Fig.9
Now let the m-line passes through the center in the circle. Then if u is an euclidean
point, there is only one m-line passing through u, see (a) in the Fig.10. If v is an
elliptic point and there is an m-line passes through it and intersect with L, see (b)
in Fig.10, assume the point 1 is a point such that the m-line 1v passes through 0,

then any m-line in the shade of (b) passing through the point v will intersect with
L.

1 L1
(a) (b)

Fig.10
If w is a hyperbolic point and there is an m-line passing through it and does not
intersect with L, see Fig.10(c), then any m-line in the shade of (c) passing through
the point w will not intersect with L. Since the position of vertices of the map M

on the projective plane can be choose as we wish, the proof is complete. .

4.2 Map geometries with boundary

The Poincaré’s model for the hyperbolic geometry hints us to introduce the map

geometries with boundary, which are defined as follows.
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Definition 4.4 For a map geometry (M, u) without boundary and faces f1, fo, -, fi €
F(M),1 <1< o(M)=1, if (M, )\{f1, f2,-- -, fi} is connected, then call (M, )" =
(M, )\ A{fr, fo, -, fi} a map geometry with boundary fi, fa,---, fi and orientable

or not if (M, ) is orientable or not.

A connected curve with constant curvature in (M, p)~" is called an m~-line and

points m~ -points.

Two m™-lines on the torus and projective plane are shown in Fig.11 and Fig.12.

2
L
2 A A
1 1
1 1
2 3
Fig.11
! 1
SR YY 7/
g /D
2
1 1
Fig.12

The map geometries with boundary also are Smarandache geometries, which is

convince by the following result.
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Proposition 4.4 For a map M on a locally orientable surface with order> 3, vertex
valency> 3 and a face f € F(M), there is an angle factor u such that (M, p)~" is
a Smarandache geometry by denial the axiom (A5) with the axioms (A5),(L5) and
(R5).

Proof Similar to the proof of Proposition 4.3, consider the map M being a
planar map, an orientable map on a torus or a non-orientable map on a projective
plane, respectively. We get the assertion. il

Notice that for an one face map geometry (M, )~

with boundary, if we choose
all points being euclidean, then (M, p)~! is just the Poincaré’s model for the hyper-

bolic geometry.

4.3 Classification of map geometries
For the classification of map geometries, we introduce the following definition.

Definition 4.5 Two map geometries (M, j11), (Ma, 1) or (My, )=, (Mo, p2) ™" are
called to be equivalent if there is a bijection 0 : My — My such that for Yu € V (M),

O(u) is euclidean, elliptic or hyperbolic iff u is euclidean, elliptic or hyperbolic.

The relation of the numbers of unrooted maps with the map geometries is in

the following.

Proposition 4.5 If M is a set of non-isomorphisc maps with order n and m faces,
then the number of map geometries without boundary is 3"|M| and the number of

map geometries with one face being its boundary is 3"m|M]|.

Proof By the definition, for a map M € M, there are 3" map geometries
without boundary and 3"m map geometries with one face being its boundary by
Proposition 4.3. Whence, we get 3"| M| map geometries without boundary and
3"m| M| map geometries with one face being its boundary from M. .

We have the following enumeration result for non-equivalent map geometries

without boundary.

Proposition 4.6 The numbers n®(T', g), n™ (I, g) of non-equivalent orientable, non-

ortentable map geometries without boundary underlying a simple graph I' by denial
the axiom (A5) by (A5), (L5) or (R5) are
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3T T (p(v) = 1)!

veV(I)

O
T.g) =

and

(20— )3T (p(v) = 1)

veV(I)
2|Autl| ’
where B(I') = e(I") — v(I") + 1 is the Betti number of the graph I.

(T, g) =

Proof Denote by M(T") the set of all non-isomorphic maps underlying the graph
I" on locally orientable surfaces and by £(I") the set of all embeddings of the graph I
on locally orientable surfaces. For a map M, M € M(T'), there are % different
map geometries without boundary by choosing the angle factor u on a vertex u such

that wu is euclidean, elliptic or hyperbolic. From permutation groups, we know that

[AWtT x () | = |(AutT) || MASTX | = At || MAVT*(@))

Therefore, we get that

3lM|
MEM(D) |AutM |
3IT |[Autl’ x () |

—JAutD x (o) | Mg/r:(r) |Aut M|

- - Z ‘MAutFX(t)c)‘

n(T,g) =

Similarly, we get that

T
(T, g) ’ 1)

|[Autl’ x ()
X0 13T T (o) = 1)

veV(T)

2|Autl’|
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This completes the proof. b
For the classification of map geometries with boundary, we have the following

result.

Proposition 4.7 The numbers n°(I', —g), n™ (', —g) of non-equivalent orientable,
non-orientable map geometries with one face being its boundary and underlying a
simple graph T by denial the axiom (A5) by (A5), (L5) or (R5) are respective

Tl x
00 = g0+ ) T ote) = 1= 20Dy
and
BI) _ 1)3ITl x
(0 —g) = EE T m v ) T (o) - - 20

veV(T)

where g[['|(x) is the genus polynomial of the graph T' ( see [12]), i.e., g[T'](x) =
¥m (I)

> gu[[)2* with gi|T] being the number of embeddings of T' on the orientable sur-
k=(T)
face of genus k.

Proof Notice that v(M) —e(M)+ ¢(M) = 2—2g(M) for an orientable map M
by the Euler characteristic. Similar to the proof of Proposition 4.6 with the notation
M(T"), by Proposition 4.5 we know that

M)3M|
O g =y DT
MEM(T) |AutM |

- 5

MeM(T)

(2+e(I) = w(I) — 29(M))3"™
|Aut M|

_ oy (2+¢e(l) —p(T))3M 2g(M)31M]
MEM(D) |Aut M | MEM(T) |Aut M|

(2 +(T) — p(I))3IMl |[Autl’ x (o) |
|Autl’ x () | MEM(T) |Aut M|

2 x 3l g(M)|Autl x (a) |

|Autl x () | MEM(T) |Aut M|
— (ﬁ(r) + 1>3|M‘ Z (F)‘MAutFX<a>|
|[Autl’ x (@) | ichg
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— 3|F| AutI'x (a)
At 2, SOOI
_(B) +1)3/"! airl (D)
C 2Awl] vewr)(p(v) ~ - |Autl'| k:z»y(:m !t
_ 2d(g[T)())
= A PO+ I (o) = D= =272 o)

veV(T)

Notice that nZ(T", —g) = n®(I", —g)+n™ (", —g) and the number of re-embeddings

of an orientable map M on surfaces is 2°") (see also [13]). We have that

9B(M) 3|M\¢(M)
MEM(T) |Aut M |

= 20O, —g).

nL(F’ _g) =

Whence, we get that

nN(Fa _g) = (26(M) - l)no(ra _g)
(200M) _ 1)3T] 2d(g[l'](z))

= oawr PHFY UEI;I(F)(p(v) — D= =

This completes the proof. il

4.4 Polygons in a map geometry

A k-polygon in a map geometry is a k-polygon with each line segment being m-lines
or m~-lines. For the sum of the internal angles in a k-polygon, we have the following

result.

Proposition 4.8 Let P be a k-polygon in a map geometry with each line segment
passing through at most one elliptic or hyperbolic point. If H s the set of elliptic
points and hyperbolic points on the line segment of P, then the sum of the internal

angles in P 1is

1

(k+\H|—2)7T—2

> plu)p(u).

ueH
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Proof Denote by U,V the sets of elliptic points and hyperbolic points in H and
|U| = p,|V| = q. If an m-line segment passes through an elliptic point u, add an

auxiliary line segment in the plane as shown in Fig.13(1). Then we get that

p(u)p(u)
5 .
If an m-line passes through an hyperbolic point v, also add an auxiliary line

angle a = anglel 4 angle2 =7 —

segment in the plane as shown in Fig.13(2). Then we get that

angle b = angle3 + angle4 = PURY) _ .

(1) (2)

Fig.13
Since the sum of the internal angles of a k-polygon in the plane is (k — 2)7, we

know that the sum of the internal angles in P is

o ¥ A o)

uelU veV

= (tpta-2m— 5 Y plu)u(w)
= (B IH] - 2m— 5 Y plui).

This completes the proof. b
As a corollary, we get the sum of the internal angles of a triangle in a map

geometry as follows, which is consistent with the classical results.
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Corollary 4.1 Let A\ be a triangle in a map geometry. Then
(i) if A\ is euclidean, then then the sum of its internal angles is equal to ;
(it) if A\ is elliptic, then the sum of its internal angles is less than 7;

(iii) if A\ is hyperbolic, then the sum of its internal angles is more than .

5. Open problems for applying maps to classical geometries

Here is a collection of open problems concerned combinatorial maps with these
Riemann geometry and Smarandache geometries. Although they are called open
problems; in fact, any solution for one of these problems needs to establish a new

mathematical system first.

5.1 The uniformization theorem for simple connected Riemann surfaces

The uniformization theorem for simple connected Riemann surfaces is one of those

beautiful results in the Riemann surface theory, which is stated as follows([2]).

If § is a simple connected Riemann surface, then S is conformally equivalent
to one and only one of the following three:

(a) CUoo;

(b) C;

(¢c) A={zelllz] <1}.

We have proved in [11] that any automorphism of a map is conformal. Therefore, we
can also introduced the conformal mapping between maps. Then, how can we define
the conformal equivalence for maps enabling us to get the uniformization theorem of
maps? What is the correspondent map classes with the three type (a) — (c¢) Riemann

surfaces?

5.2 Combinatorial construction of an algebraic curve of genus

A complex plane algebraic curve C; is a homogeneous equation f(x,y,z) = 0in P,C =
(C?\ (0,0,0))/ ~, where f(x,y,z2) is a polynomial in x,y and z with coefficients in
C. The degree of f(z,y, 2) is said the degree of the curve C;. For a Riemann surface
S, a well-known result is ([2])there is a holomorphic mapping ¢ : S — PyC such that

©(S) is a complex plane algebraic curve and
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o(8) = (de(S5)) - 1)2(d(s0(5)) ~2)

By map theory, we know a combinatorial map also is on a surface with genus.
Then whether can we get an algebraic curve by all edges in a map or by make
operations on the vertices or edges of the map to get plane algebraic curve with

given k-multiple points? and how do we find the equation f(x,y,z) = 0%

5.3 Classification of s-manifolds by maps

We present an elementary classification for the closed s-manifolds in the Section 3.
For the general s-manifolds, their correspondent combinatorial model is the maps
on surfaces with boundary, founded by Bryant and Singerman in 1985 ([1]). The
later are also related to the modular groups of spaces and need to investigate further

themselves. The questions are

(1) how can we combinatorially classify the general s-manifolds by maps with

boundary?
(73) how can we find the automorphism group of an s-manifold?

(7ii) how can we know the numbers of non-isomorphic s-manifolds, with or

without root?

(1) find rulers for drawing an s-manifold on a surface, such as, the torus, the

projective plane or Klein bottle, not only the plane.

These s-manifolds only using triangulations of surfaces with vertex valency in
{5,6,7}. Then what are the geometrical meaning of the other maps, such as, the
4-reqular maps on surfaces. It is already known that the later is related to the Gauss

cross problem of curves([9]).

5.4 Map geometries

As we have seen in the previous section, map geometries are nice models of the

Smarandache geometries. More works should be dong for them.

(1) For a given graph G, determine properties of map geometries underlying G.

(ii) For a given locally orientable surface S, determine the properties of map
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geometries on S.
(7ii) Classify map geometries on a locally orientable surface.

(1v) Enumerate non-equivalent map geometries underlying a graph or on a lo-

cally orientable surface.

(v) Establish the surface geometry by map geometries.

5.5 Gauss mapping among surfaces

In the classical differential geometry, a Gauss mapping among surfaces is defined as
follows([10]):

Let 8 C R3 be a surface with an orientation N. The mapping N : S — R3

takes its value in the unit sphere

S? ={(z,y,2) € R*|2* +y* +2° =1}
along the orientation N. The map N : S — S?%, thus defined, is called the Gauss
mapping.
We know that for a point P € S such that the Gaussian curvature K(P) # 0

and V' a connected neighborhood of P with K does not change sign,

where A is the area of a region B C V and N(A) is the area of the image of B by
the Gauss mapping N : S — S2. The questions are

(1) what is its combinatorial meaning of the Gauss mapping? How to realizes

it by maps?

(17) how can we define various curvatures for maps and rebuilt the results in

the classical differential geometry?

5.6 The Gauss-Bonnet theorem

Let § be a compact orientable surface. Then

//S Kdo = 2mx(S),
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where K s the Gaussian curvature on S.
This is the famous Gauss-Bonnet theorem for compact surface ([2],[6]). The

questions are

(1) what is its combinatorial meaning of the Gauss curvature?
(7i) how can we define the angle, area, volume, curvature, ---, of a map?

(iti) can we rebuilt the Gauss-Bonnet theorem by maps? or can we get a gen-

eralization of the classical Gauss-Bonnet theorem by maps?

5.7 Riemann manifolds

A Riemann surface is just a Riemann 2-manifold, which has become a source of the
mathematical creative power. A Riemann n-manifold (M, g) is a n-manifold M with
a Riemann metric g. Many important results in Riemann surfaces are generalized to
Riemann manifolds with a higher dimension ([6]). For example, let M be a complete,
simple-connected Riemann n-manifold with constant sectional curvature ¢, then we
know that M is isometric to one of the model spaces R"™, Sgn or Hrn. Whether can
we systematically rebuilt the Riemann manifold theory by combinatorial maps? or
can we make a combinatorial generalization of results in the Riemann geometry, for

example, the Chern-Gauss-Bonnet theorem ([6])?
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Abstract: A map is a connected topological graph cellularly embedded in a
surface. On the past century, works on maps are concentrated on its combi-
natorial counterpart without metrics, such as, the embedding of graphs and
the enumeration of maps. For returning to its original face, the conception
of map geometries is introduced, which are nice models of the Smarandache
geometries, also a new kind of intrinsic geometry of surfaces. Some properties
of parallel bundles in planar map geometries are obtained in this paper. Open
problems related combinatorial maps with the differential geometry, Riemann
geometry and Smarandache geometries are also presented for further applica-

tions of combinatorial maps to classical mathematics.
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1. Questions for a combinatorial problem
When we research a mathematical problem, the following four questions should

be asked firstly by ourself, which is the same for a combinatorial problem.

o What is its contribution to combinatorics?
o What is its contribution to mathematics?
o What is its contribution to sciences?

e [s its contribution local or global?

The topic introduced in this report has stood a trial by the four questions.

2. What are Smarandache geometries?

Definition 2.1 An axiom is said Smarandachely denied if the axiom behaves in at
least two different ways within the same space, i.e., validated and invalided, or only
invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely
denied axziom (1969).

F. Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000.
L.F.Mao, Automorphism groups of maps, surfaces and Smarandache geometries, American
Research Press, Rehoboth, NM,2005. Also see the web page: www. gallup. unm. edu/

smarandache/Linfan.pdf

e Applications to classical geometries
The axioms system of Fuclid geometry is in the following:
(Al)there is a straight line between any two points.
(A2)a finite straight line can produce a infinite straight line continuously.
(A3)any point and a distance can describe a circle.
(Ad)all right angles are equal to one another.
(AB)if a straight line falling on two straight lines make the interior angles on

the same side less than two right angles, then the two straight lines, if produced
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indefinitely, meet on that side on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:

(A5)given a line and a point exterior this line, there is one line parallel to this
line.

The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry, is a
geometry with axioms (A1) — (A4) and the following axiom (L5):

(L5) there are infinitely many line parallels to a given line passing through an
exterior point.

The Riemann geometryis a geometry with axioms (A1) —(A4) and the following
axiom (R5):

there is no parallel to a given line passing through an exterior point.
e Further applications

(1)Relativity Theory (Because they include the Riemann geometry in a sub-
space)

(2)Parallel Universes (Because they combine separate spaces into one space)

L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics
Magazine, Aurora, Ca- nada, Vol.12(2003)

e Iseri’s model for Smarandache geometries

An s-manifold is any collection C(T,n) of these equilateral triangular disks
T;,1 < i <n satisfying the following conditions:

(i) Each edge e is the identification of at most two edges e;, e; in two distinct
triangular disks T;,T;,1 < 4,5 <n and 1 # j;

(ii) Each vertex v is the identification of one vertex in each of five, siz or seven

distinct triangular disks.

H.Iseri, Smarandache manifolds, American Research Press, Rehoboth, NM,2002.

3. What is a map?

A combinatorial map is a connected topological graph cellularly embedded in a

surface.

Definition 3.1: A combinatorial map M = (X, g, P) is defined to be a basic per-
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mutation P, i.e, for any x € X, 5, no integer k exists such that P*x = ax, act-
ing on X, g, the disjoint union of quadricells Kx of x € X (the base set), where
K ={1,a,3,a8} is the Klein group, with the following two conditions holding:

(i) aP =P ta;

(it) the group V; =< «, 3, P > is transitive on X, g.

W.T.Tutte, What is a maps? in New Directions in the Theory of Graphs (ed.by F.Harary),
Academic Press (1973), 309 325.

Y.P.Liu, Advances in Combinatorial Maps(in Chinese), Northern Jiaotong University Pub-
lisher, Beijing (2003).

Y.P.Liu, Enumerative Theory of Maps, Kluwer Academic Publisher, Dordrecht / Boston
/ London (1999).

e Orientation:
If the group ¥; = (af,P) is transitive on X, 3, then M is non-orientable.
Otherwise, orientable.

e An Example of Maps: K, on the torus.

—
2
———
Fig.1
M = (X(X?ﬁ’,])):
Xau@ = {Iayazauavaw,OZSC,Oéy,OéZ,Ozu,om,

aw’ﬂx7/8y76276u7/81)7/8w7a/6‘r7a/6y7
afz, afu, afv, afw}
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P = (x,y,2)(afx,u,w)(afz, afu,v)
(aBy, afv, afw)(az, az, ay)(Br, aw, au)

X

X

Vertices:

vr = {(z,9,2), (ax, az, ay)}

v = {(afz,u,w), (Bz, aw, au)}

v3 = {(afz, abu,v), (Bz, av, fu)}

vg = {(afy, afv, afw), (By, Bw, fv)}
Edges:

{e,ae, fe,afe}, e € {x,y, z,u,v,w}

Faces:
fi = A{(z,u,v, afw, afz,y, afv,afz), (Bx, az, av, By, ax, cw, v, fu)}
fo =A{(z afu,w,aBy), (Bz, oy, fw, au)}

4. Map geometries

Definition 4.1 For a combinatorial map M, endows a real number u(u),0 <
p(u) < m, with each vertex u,u € V(M). Call (M,p) a map geometry without
boundary, u(u) the angle factor of the vertex u and to be orientablle or non-orientable

if M is orientable or not.

L.F.Mao, A new view of combinatorial maps by Smarandache’s notion, arXiv: Math.

GM/0506232.

e A realization of a vertex u,u € V(M) in R? space.

p(u)p(u) = 27 puw)p(u) > 2m

Fig.2
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Theorem 4.1 For a map M on a locally orientable surface with order> 3, there is

an angle factor u such that (M, ) is a Smarandache geometry by denial the aziom
(A5) with the axioms (A5),(L5) and (R5).

Definition 4.2 For a map geometry (M, u) without boundary and faces f1, fo, -, fi €
F(M),1 <1< o(M)=1, if (M, )\{f1, f2,-- -, fi} is connected, then call (M, pn)~" =
(M, )\ { f1, f2, -+, fi} a map geometry with boundary f1, fa, -+, fi and orientable

or not if (M, ) is orientable or not.

e An one face map geometry (M, )=t with boundary is just the Poincaré’s model

for the hyperbolic geometry if we choose all points being euclidean.

Theorem 4.2 For a map M on a locally orientable surface with order> 3 and a face
f € F(M), there is an angle factor p such that (M, 1)~ is a Smarandache geometry
by denial the axiom (A5) with the axioms (A5),(L5) and (R5).

e Map geometries are a generalization of s-manifolds.
¢ Enumeration results for map geometries:

Theorem 4.3 The numbers n°(T', g), n™(I',g) of non-equivalent orientable, non-

orientable map geometries without boundary underlying a simple graph I' by denial
the axiom (A5) by (A5), (L5) or (R5) are

3T (p(v) = 1)!

veV(I)

2|AutT| ’

nf(l,g) =

and

@O 13 T (pfo) 1)
veV(T)

2|Autl| ’
where B(I') = e(T") — v(I") + 1 is the Betti number of the graph I.

Similarly, we can also get enumeration results for map geometries with boundary.

n™(T,g) =

5. Parallel bundles in planar map geometries

Definition 5.1 A family L of infinite lines not intersecting each other in a planar

geometry is called a parallel bundle.
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u u A Al
L, L, L2 [ L2 —
L
L — L [ 4 L
3 \ 3 ““-\-\_\_-
. Cu Oy Cy
(2) {(b) {c) (d)
Fig.3

Theorem 5.1 Let (M, p) be a planar map geometry, C' = {ujvy, ugvs, -+, wu} a
cut of the map M with order uivy, usvs, - - -, wv; from the left to the right, | > 1 and

the angle functions on them are fi, fa,- -, f1, respectively, also see the Fig.4.

1 |
_————_——"
L2 | ——]
L3
o o o

Fig.4

Then a family £ of parallel lines passing through C is a parallel bundle iff for any
x,x >0,

0
f{+(37) + fé+(37) >0
fii(@) + fou(2) + fi.(2) >0

fia(@) + fop @)+ + fiu(a) > 0.

Theorem 5.2 Let (M, u) be a planar map geometry, C' = {uyvy, ugva, - -, wu } a
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cut of the map M with order uivy, usvs, - - -, wv; from the left to the right, | > 1 and
the angle functions on them are fy, fo, -+, fi. Then the parallel lines parallel the
initial parallel lines after them passing through C' iff for Vo > 0,

0
f{+(:€) + fé+(x) >0
fli(@) + fp (@) + f,(x) >0

f{—i-(x) + f£+($) +oet fl/_1+(x) >0

and

fi(2) + folx) + -+ fi(z) = I

e Linear criterion

Theorem 5.3 Let (M, p) be a planar map geometry, C' = {ujvy, ugvs, -+, wu} a
cut of the map M with order ujvy, ugve, - -+, wv; from the left to the right, [ > 1.
Then under the linear assumption, a family L of parallel lines passing through C' is

a parallel bundle iff the angle factor p satisfies the following linear inequality system

p(vr)p(vi) 2> p(ur)p(ur)

p(v)p(v)  pv2)p(ve) > p(u)pu(ur) i p(uz)p(uz)

d(ulvl) d(UQUQ) d(ulvl) d(UQ’UQ)
p(vi)p(v)  pv2)p(ve) p)p(v) _ pui)p(ur) p(u) po(uy)
d(uyvy) d(usvs) A d(ugvy) = d(uy,vy) o d(ug,v;)

Corollary 5.1 Let (M, u) be a planar map geometry with M underlying a reqular

graph, C' = {ujvy, usve, - - -, wv; } a cut of the map M with order u vy, ugva, - - -, wyy
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from the left to the right, | > 1. Then under the linear assumption, a family L of
parallel lines passing through C' is a parallel bundle iff the angle factor p satisfies

the following linear inequality system

p(vr) > pu(ur)

pv1) pi(v2) S p(v) > pus) + piuz)

L ()
d(ulvl) d(UQ’UQ) d(ulvl> i "

d(uivy)  d(ugvy) d(wvy)

and particularly, if assume that all the lengths of edges in C' are the same, then

=
E
_|_
= =
< <
SO
\YAR\Y,
= =
g 5
+
=
<
S

V
=
S
+
=
<
N
+
+
=
£

p(vr) + p(va) + -+ p(v)

Theorem 5.4 Let (M, p) be a planar map geometry, C' = {ujvy, ugvs, -+, wu} a
cut of the map M with order uivy, ugvs, - - -, uvy from the left to the right, | > 1. If

for any integer 1,1 > 1,

(v3)
(ui)’

then under the linear assumption, a family L of parallel lines passing through C' is

=

(u;
p(vi)

)

<

=

a parallel bundle.

e A example of parallel bundle:
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2T

i o 21 ¢
Ly > =
2L ¢ 21

Ly o

Fig.b

More results for parallel bundles can be seen in:

Linfan Mao, Parallel bundles in planar map geometries, e-print: arXiv: math. GM /0506386,
also appearing in Scientia Magna, Vol.1(2005), No.2,120-133.

6. Open Problems

e The uniformization theorem for simple connected Riemann surfaces:

If § is a simple connected Riemann surface, then S is conformally equivalent

to one and only one of the following three:
(@) CUoo;
(b) C;
(¢c) A={zel|lz] <1}

Problem 6.1: How can we define the conformal equivalence for maps enabling us

to get the uniformization theorem of maps?

Problem 6.2 What is the correspondence class maps with the three type (a) — (c)

Riemann surfaces?
e The Gauss-Bonnet Theorem

Let S be a compact orientable surface. Then
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//S Kdo = 2mx(S),

where K is Gaussian curvature on S.

Problem 6.3 What is its combinatorial meaning of the Gauss curvature?
Problem 6.4 How can we define the angle, area, volume, curvature, ---, of a map?
Problem 6.5 Can we rebuilt the Gauss-Bonnet theorem by maps? Or can we get a

generalization of the classical Gauss-Bonnet theorem by maps?

e Map Geometries

Problem 6.6 For a given graph, determine the properties of map geometries under-
lying this graph.

Problem 6.7 For a given locally orientable surface, determine the properties of map
geometries on this surface.

Problem 6.8 Classify map geometries on a given locally orientable surface.
Problem 6.9 Enumerate non-equivalent map geometries underlying a graph or on
a locally orientable surface.

Problem 6.10 Establish the surface geometry by map geometries.
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Abstract. A tendering is a negotiating process for a contract through by
a tenderer issuing an invitation, bidders submitting bidding documents and
the tenderer accepting a bidding by sending out a notification of award. As
a useful way of purchasing, there are many norms and rulers for it in the
purchasing guides of the World Bank, the Asian Development Bank, - - -, also
in contract conditions of various consultant associations. In China, there is
a law and regulation system for tendering and bidding. However, few works
on the mathematical model of a tendering and its evaluation can be found in
publication. The main purpose of this paper is to construct a Smarandache
multi-space model for a tendering, establish an evaluation system for bidding
based on those ideas in the references [7] and [8] and analyze its solution by
applying the decision approach for multiple objectives and value engineering.

Open problems for pseudo-multi-spaces are also presented in the final section.

BIRFN I RIVEST BB R OKF ST

T PR BETAK BRI BE, BRARERFERELY, BITRAK
H AR AR RN —F R RALE, EAXYN—F K, #
FleBARA M IR LRGN ELXWEE T X BRNATHENEATT
M, £ EN I MTHTH EFET EE, BKT FEBFRTRE
REARAR. B, HERSRRE RPN R o X — B

Le-print: arXiv: math.GM/0605495.
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81. Introduction

The tendering is an efficient way for purchasing in the market economy. According to
the Contract Law of the People’s Republic of China (Adopted at the second meeting
of the Standing Committee of the 9th National People’s Congress on March 15,1999),
it is just a civil business through by a tenderer issuing a tendering announcement
or an invitation, bidders submitting bidding documents compiled on the tendering
document and the tenderer accepting a bidding after evaluation by sending out a
notification of award. The process of this business forms a negotiating process of a
contract. In China, there is an interval time for the acceptation of a bidding and
becoming effective of the contract, i.e., the bidding is accepted as the tenderer send
out the notification of award, but the contract become effective only as the tenderer

and the successful bidder both sign the contract.

In the Tendering and Bidding Law of the People’s Republic of China (Adopted
at the 11th meeting of the Standing Committee of the 9th National People’s Congress
on August 30,1999), the programming and liability or obligation of the tenderer,
the bidders, the bid evaluation committee and the government administration are
stipulated in detail step by step. According to this law, the tenderer is on the side
of raising and formulating rulers for a tender project and the bidders are on the
side of response each ruler of the tender. Although the bid evaluation committee is
organized by the tenderer, its action is independent on the tenderer. In tendering
and bidding law and regulations of China, it is said that any unit or person can
not disturbs works of the bid evaluation committee illegally. The action of them

should consistent with the tendering and bidding law of China and they should place
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themselves under the supervision of the government administration.
The role of each partner can be represented by a tetrahedron such as those

shown in Fio 1

T
administration

SUpervising

sSupervising Supervising

committee

evaluation

tendefﬁlz bidding

tenderer bidders

Fig.1

The 41th item in the Tendering and Bidding Law of the People’s Republic of
China provides conditions for a successful bidder:

(1) optimally responsive all of the comprehensive criterions in the tendering
document;

(2) substantially responsive criterions in the tender document with the lowest
evaluated bidding price unless it is lower than this bidder’s cost.

The conditions (1) and (2) are often called the comprehensive evaluation method
and the lowest evaluated price method. In the same time, these conditions also
imply that the tendering system in China is a multiple objective system, not only
evaluating in the price, but also in the equipments, experiences, achievements, staff
and the programme, etc.. However, nearly all the encountered evaluation methods
in China do not apply the scientific decision of multiple objectives. In where, the
comprehensive evaluation method is simply replaced by the 100 marks and the lowest
evaluated price method by the lowest bidding price method. Regardless of whether
different objectives being comparable, there also exist problems for the ability of
bidders and specialists in the bid evaluation committee creating a false impression
for the successful bidding price or the successful bidder. The tendering and bidding
is badly in need of establishing a scientific evaluation system in accordance with
these laws and regulations in China. Based on the reference [7] for Smarandache

multi-spaces and the mathematical model for the tendering in [8], the main purpose
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of this paper is to establish a multi-space model for the tendering and a scientific
evaluation system for bids by applying the approach in the multiple objectives and
value engineering, which enables us to find a scientific approach for tendering and
its management in practice. Some cases are also presented in this paper.

The terminology and notations are standard in this paper. For terminology and
notation not defined in this paper can be seen in [7] for multi-spaces, in [1] — [3] and
[6] for programming, decision and graphs and in [8] for the tendering and bidding

laws and regulations in China.

82. A multi-space model for tendering

Under an idea of anti-thought or paradox for mathematics :combining different fields
into a unifying field, Smarandache introduced the conception of multi-spaces in
1969([9]-[12]), including algebraic multi-spaces and multi-metric spaces. The con-
tains the well-known Smarandache geometries([5] — [6]), which can be used to Gen-
eral Relativity and Cosmological Physics([7]). As an application to Social Sciences,
multi-spaces can be also used to establish a mathematical model for tendering.

These algebraic multi-spaces are defined in the following definition.

Definition 2.1 An algebraic multi-space Y. with multiple m is a union of m sets
A17A27"'7Am

where 1 < m < +o00 and there is an operation or ruler o; on each set A; such that

(A;, 0;) is an algebraic system for any integer i,1 <i < m.

Notice that if ¢ # j,1 < 7,7 < m, there must not be A; N A; = 0, which are just
correspondent with the characteristics of a tendering. Thereby, we can construct a
Smarandache multi-space model for a tendering as follows.

Assume there are m evaluation items A;, As, - - -, A,, for a tendering A and there
are n; evaluation indexes a;1, @, - -, a;,, for each evaluation item A;;1 < i < m.
By applying mathematics, this tendering can be represented by

A:

s

Ai>

=1
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where, for any integer 7,1 <7 < m,

(Ai> Oz’) = {a'ila @52, ", ami|oi}

is an algebraic system. Notice that we do not define other relations of the tendering
A and evaluation indexes a;; with A;,1 <4 <m unless A; C A and a;j € A; in this
multi-space model.

Now assume there are k, k > 3 bidders Ry, Rs,- - -, R in the tendering A and
the bidding of bidder R;,1 < j <k is

Ay R;(Ay)
R =g | " =] B
Am Rj(Am)

According to the successful bidding criterion in the Tendering and Bidding Law
of the People’s Republic of China and regulations, the bid evaluation committee
needs to determine indexes iy, s, - -, i, where {iy,i9, -+, i} = {1,2,---,k} such
that there is an ordered sequence

Ri,(A) = Ri,(A) = --- = Ry (A)

for these bidding Ri(A), Ra(A), -, Rp(A) of bidders Ry, Ry, -+, Ry. Here, these
bidders R;,, R;, and R;, are pre-successful bidders in succession determined by the

bid evaluation committee in the laws and regulations in China.

Definition 2.2 An ordered sequence for elements in the symmetry group S, on

{1,2,---,m} is said an alphabetical sequence if it is arranged by the following crite-
TIONS:

(1) (1,0---,0) = P for any permutation P € S,,.

(13) if integers sy,S9,---,s, € {1,2,---,m},1 < h < m and permutations
(81,82, “* Syt ), (81,89, 8p,L,-++) € Sy, then

(31782a"'a8h7ta"')>_(Sla827”'78hal>”')
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if and only if t < 1. Let {x,,}} be a sequence, where o1 = o9 > -+ = 0, and o; € S,
for 1 <i <mn, then the sequence {x,,}} is said an alphabetical sequence.

Now if x, = x,, x, is preferable than x, in order. If x, = x., then x, is
preferable or equal with x. in order. If v, = x, and x, > x5, then x, is equal x, in

order, denoted by r, ~ x,.

We get the following result for an evaluation of a tendering.

Theorem 2.1 Let O1,05,03 - - - be ordered sets. If R;(A) € O1 x Oy x O3 X -+ for
any integer 7,1 < 5 < k, then there exists an arrangement 11,1z, - -, i for indexes
1,2,---,k such that

R, (A) = Riy(A) = - = Ry (A).

Proof By the assumption, for any integer 7,1 < 7 < k,

Rj(A)EOl><02X03X-'-.

Whence, R;(A) can be represented by

R](A) = (lea X2, Lj3, " " ')7

where xj; € O, t > 1. Define a set

St ={z;;1 <j <m}.

Then the set S; C O, is finite. Because the set O; is an ordered set, so there exists

an order for elements in S;. Not loss of generality, assume the order is

Tig 7= Top &= =+ 7 Topt,

for elements in S;. Then we can apply the alphabetical approach to R;, (A), R;, (A),

-+, R;, (A) and get indexes iy, io, - - -, ) such that
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If we choose O;,7 > 1 to be an ordered function set in Theorem 2.1, particularly,
let Oy = {f},f: Ai — R,1 < i < m be a monotone function set and O; = ) for
t > 2, then we get the next result.

Theorem 2.2 Let R;: A; — R,1 <1 <m,1 < j <k be monotone functions. Then

there exists an arrangement 11,1, - -, i for indexes 1,2,---,k such that

Ri (A) = Ri,(A) = - - = Ry (A).

We also get the following consequence for evaluation numbers by Theorem 2.2.

Corollary 2.1 If R;(4;) € [—00,+00] X [—00, +00] X [—00,+00] X --- for any
integers i, 7,1 < i <m,1 < j <k, then there exists an arrangement iy, s, - - -, i for
indexes 1,2, -,k such that

R (A) = Riy(A) = - = Ry (A).

Notice that in the above ordered sequence, if we arrange R;, >~ R;, or R;, = R;,

further in the case of R;, = R;,, s # [, then we can get an ordered sequence

Ril (A) ~ Rlz(A) e le(A>7

and the pre-successful bidders accordance with the laws and regulations in China.

83. A mathematical analog for bids evaluation

For constructing an evaluation system of bids by the multi-space of tendering, the

following two problems should be solved in the first.

Problem 1 For any integers i, j,1 < 1i,j < m, how to determine R;(A;) on account
of the responsiveness of a bidder R; on indexes a;1, G, - -, Qin, ¢

Problem 2 For any integer j,1 < j < m, how to determine R;(A) on account of
the vector (R] (A1>, Rj(Ag), Tty Rj(Am))t ¢

Different approaches for solving Problems 1 and 2 enable us to get different

mathematical analogs for bids evaluation.

3.1. An approach of multiple objectives decision
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This approach is originated at the assumption that R;(A;), R;(A2),- -+, R;j(An), 1 <
j < m are independent and can not compare under a unified value unit. The
objectives of tendering is multiple, not only in the price, but also in the equipments,
experiences, achievements, staff and the programme, etc., which are also required by
the 41th item in the Tendering and Bidding Law of the People’s Republic of China.

According to Theorems 2.1 — 2.2 and their inference, we can establish a pro-
gramming for arranging the order of each evaluation item A;, 1 <1i < m and getting

an ordered sequence of bids Ry (A), Ry(A), - - -, Ri(A) of a tendering A = G A;, as
i=1

follows:

STEP 1 determine the order of the evaluation items Ay, Ag,---, A,,. For ex-
ample, form =5, Ay = Ay = Az = Ay = As is an order of the evaluation items
Ay, Ay, As, Ay, As.

STEP 2 for two bids Rj (A:), Rj,(Ai),j1 # Jja, 1 < i < m, determine the
condition for R; (A;) = A;,(As). For example, let Ay be the bidding price. Then
R; (A1) = R;,(Ay) providing |R;,(A) — R;,(A1)| < 100(10 thousand yuan).

STEP 3 for any integer i,1 < i < m, determine the order of Ri(A;), R2(A;),
-+, Rk(A;). For example, arrange the order of bidding price from lower to higher

and the bidding programming dependent on the evaluation committee.

STEP 4 alphabetically arrange Ry(A), Ro(A), -+, Rp(A), which need an ap-

proach for arranging equal bids R; (A) ~ R;,(A) in order. For example, arrange

them by the ruler of lower price preferable and get an ordered sequence

Ry (A) = Ry(A) = - = Ry (A)

of these bids Ri(A), Ry(A),---, Ri(A).
Notice that we can also get an ordered sequence through by defining the weight

functions

w(A) = Hw(Ar),w(As), -+, w(An))

and

w(A;) = Fw(an), w(ai), -+, w(din,))-

For the weight function in detail, see the next section.
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Theorem 3.1 The ordered sequence of bids of a tendering A can be gotten by the

above programming.

Proof Assume there are k bidders in this tendering. Then we can alphabetically

arrange these bids R;, (A), R;,(A),-- -, R;, (A) and get

R, (A) = Ri,(A) = --- = R; (A).

= Z 1y,

Now applying the arranging approach in the case of R;, (A) ~ R;,(A), we finally

obtain an ordered sequence

Example 3.1 There are 3 evaluation items in a building construction tendering A
with Ay =price, As=programming and As=similar achievements in nearly 3 years.
The order of the evaluation items is Ay = Az = Ay and R;,(A;) = R;,(A4;),1 <1 <3
providing |R;, (A1) — Rj,(A1)| < 150, Rj, (As) and R;,(As) are in the same rank or
the difference of architectural area between R; (As) and Rj,(As) is not more than
40000m?. For determining the order of bids for each evaluation item, it applies the
rulers that from the lower to the higher for the price, from higher rank to a lower
rank for the programming by the bid evaluation committee and from great to small
amount for the similar achievements in nearly 3 years and arrange R;, (A), R;,(A),
1 < j1, 42 < k =bidders by the ruler of lower price first for two equal bids in order
R, (A) = R;,(A).

There were 4 bidders Ry, Ry, R3, Ry in this tendering. Their bidding prices are
in table 1.

bidder | R, Ry Rs Ry
Ay 3526 | 3166 | 3280 | 3486

table 1
Applying the arrangement ruler for Ay, the order for Ry(A1), Rs(A1), Ra(Ay),
Rl(Al) 18

RQ(Al) ~ Rg(Al) - R4(A1) ~ Rl(Al)
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The evaluation order for As by the bid evaluation committee is R3(Az) =
Ry(As) = Ri(A2) = R4(As). They also found the bidding results for As are in
table 2.

bidder R, Ry Rs R,y
Ag(m2) 250806 | 210208 | 290108 | 300105

table 2
Whence the order of Ry(As), R3(As), R1(A3), Re(As) is

R4(A3) ~ Rg(Ag) - Rl(Ag) ~ RQ(Ag)

Therefore, the ordered sequence for these bids Ri(A), Re(A), R3(A) and Ry(A)
18

R3(A) = Ry(A) = Ry(A) = Ri(A).

Let the order of evaluation items be A; = Ay = --- = A,,. Then we can
also get the ordered sequence of a tendering by applying a graphic method. By
the terminology in graph theory, to arrange these bids of a tendering is equivalent
to find a directed path passing through all bidders Ry, Rs,---, Ry in a graph G [ﬁ]
defined in the next definition. Generally, the graphic method is more convenience in
the case of less bidders, for instance 7 bidders for a building construction tendering

in China.

Definition 3.1 Let Ry, Ry, - -+, Ry be all these k bidders in a tendering A= Lnj A;.
i=1

Define a directed graph G[A] = (V(G[A]), E(G[A])) as follows.

V(G[A]) = {R1, Ry, -+, Ry} x {A1, A, -+, An}, E(G[A]) = E;UE,U E;,
where Ey consists of all these directed edges (Rj, (A;), Rj,(A4:)), 1 < i < m,1 <
J1,d2 < k and R;,(A;) = Rj,(A;) is an adjacent order. Notice that if R(A;) =~
Ri(A;) = R;(A;), then there are Rs(A;) = R;j(A;) and Ri(4;) = R;(A;) simulta-
neously. Ey consists of edges R; (A;))R;,(A;),1 < i < m,1 < ji,jo < k, where
R; (A;) = R;,(A;) and Es = {R;j(A:i)Rj(Ai1))1 <i<m—1,1<j <k}

For example, the graph G[A] for Example 3.1 is shown in Fig.2.
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Now we need to find a directed path passing through R;, Rs, R3, R4 with start
vertex Ro(A;) or R3(A;). By the ruler in an alphabetical order, we should travel
starting from the vertex Rs(A;) passing through As, A3 and then arriving at Aj.

Whence, we find a direct path correspondent with the ordered sequence

R3(A) = Ry(A) = Ry(A) = Ry(A).

3.2. An approach of simply objective decision

This approach is established under the following considerations for Problems 1 and
2.

Consideration 1 In these evaluation items Ay, Ag, -+, Ay of a tendering A, seck
the optimum of one evaluation item. For example, seek the lowest bidding price in a
construction tendering for a simply building or seek the optimum of design scheme
in a design project tendering, etc..

Consideration 2 The value of these evaluation items Ay, As, - - -, A,, s comparable
which enables us to measure each of them by a unify unit and to construct various
weighted functions on them. For example, the 100 marks and the lowest evaluated

price method widely used in China are used under this consideration.

3.2.1. The optimum of one objective

Assume the optimal objective being A; in a tendering A = U A;. We need to deter-
mine the acceptable basic criterions for all other items A, A3, -+, Ag, then arrange
Ri(Ay), Ro(Ay), - -+, Ri(A;) among these acceptable bids Ry, Rs,---, R, for items
Ag, Az, -+, Ar in R;, 1 < < k. For example, evaluating these items As, Ag, -+, Ay
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by qualification or by weighted function on A, As,---, Ay up to these criterions,
then arrange these acceptable bids Ry, R, - -, R, under their response to A; and

the order of R;(A), R;(A) if R;(A1) = Rj(A;). According to Theorem 3.1, we get

the following result.

Theorem 3.2 The approach of one optimal objective can get an ordered sequence
of bids for a tendering A.

Example 3.2 The optimum of design scheme is the objective in a design project
tendering A which is divided into 5 ranks A, B,C,D, E and other evaluation items
such as human resources, design period and bidding price by a qualifiable approach
if the bidding price is in the interval of the service fee norm of China. The final
order of bids is determined by the order of design schemes with qualifiable human
resources, design period and bidding price and applying the ruler of lower price first
for two equal design scheme in order.

There were 8 bidders in this tendering. Their bidding prices are in table 3.

bidder R1 R2 Rg R4 R5 R6 R7 Rg
bidding price | 251 | 304 | 268 | 265 | 272 | 283 | 278 | 296

table 3

After evaluation for these human resources, design period and bidding price,
4 bidders are qualifiable unless the bidder Rs in human resources. The evaluation

result for bidding design schemes is in table 4.

rank A B C D | FE
design scheme | R3. Rg | R1 | Ro. Rs | R7 | Ry

table 4

Therefore, the ordered sequence for bids is

Rs(A) = Re(A) = Ry(A) = Rs(A) = Ry(A) = Rr(A) = Ry(A).

Example 3.3 The optimum objective in a tendering A for a construction of a
dwelling house is the bidding price Ay. All other evaluation items, such as qualifica-

tions, management persons and equipments is evaluated by a qualifiable approach.
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There were 7 bidders R;,;1 < i < 7 in this tendering. The evaluation of price
is by a weighted function approach, i.e., determine the standard price S first, then

calculate the mark N of each bidder by the following formulae

(Ej:lAi —max{R;(A)|]1 <i <7} —min{R;(A)|1 <i <7}

S =
5 Y

Ri(A;)—S
S
where, if Ri(A1) —S >0 thent =6 and if R;(A1) —S <0 thent = 3.

After evaluation, all bidders are qualifiable in qualifications, management per-

N; =100 —t x | | x 100, 1<i<7,

sons and equipments. Their bidding prices are in table 5.

bidder Rl R2 Rg R4 R5 RG R7
Ay 3518 | 3448 | 3682 | 3652 | 3490 | 3731 | 3436

table 5

According to these formulae, we get that S = 3558 and the mark of each bidder

as those shown in table 6.

bidder Rl Rg Rg R4 R5 RG R7
mark | 96.70 | 91.27 | 79.12 | 84.16 | 94.27 | 73.84 | 89.68

table 6

Therefore, the ordered sequence of bids is

R1<A) - R5<A) - RQ(A) — R7(A) >~ R4<A) - Rg(A) - Rﬁ(A)

3.2.2. The pseudo-optimum of multiple objectives

This approach assumes that there is a unifying unit between these evaluation items
Ay, Ag, -+, Ay in an interval [a,b]. Whence it can be transformed into case 3.2.1
and sought the optimum of one objective. Not loss of generality, we assume the

unifying unit is w and
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where f; denotes the functional relation of the metric w(A;) with unit . Now the

objective of tendering turns to a programming of one objective

mQXF(fl(w)a]%(w%afm(w)) or mwinF(fl(w)a]%(w)’"'afm(w))a

where F denotes the functional relation of the tendering A with these evaluation

items A, Ao, - -+, A,,, which can be a weighted function, such as a linear function

i=1
or an ordered sequence. According to Theorem 3.2, we know the following result.

Theorem 3.3 If the function F of a tendering A only has one mazimum value in

[a,b], then there exists an ordered sequence for these bids R;(A),1 < i < k after
determined how to arrange R;(A) and R;(A) when F(R;(A)) = F(R;(A)),i# j.

The 100 marks and the lowest evaluated price method widely used in China
both are applications of this approach. In the 100 marks, the weight function is a

linear function

F(f(w), fal). - fnl0)) = f;fxwx

with 0 < F(fi(@), fo(w), -, fm(w)) < 100, f; > 0,1 < i < m. In the lowest
evaluated price method, each difference of an evaluation item A;,2 < i < m is

changed to the bidding price w(A;), i.e.,

fi=(R(A;) — S(A;))w(Ay), 1 <i<m,

where S(A;) is the standard line for A;, w(A;) is one unit difference of A; in terms

of A;. The weighted function of the lowest evaluated price method is

F(w(Ay), fa(@(Ar)), -+ f(w (A1) = (1 + ZZ(R(AZ) — S(A)))w(Ar).

For example, we can fix one unit difference of a technological parameter 15, i.e.,

w(A;) = 15 ten thousand dollars in terms of the bidding price.
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84. Weighted functions and their construction

We discuss weighted functions on the evaluation items or indexes in this section.

First, we give a formal definition for weighted functions.

Definition 4.1 For a tendering A = '61 A;, where A; = {ap, ain, -+, a4}, 1 < i <m
with k bidders Ry, Ry, -+, Ry, if thg;e is a continuous function w : A — [a,b] C
(—00, +00) or w : A; — [a,b] C (—o00,+00),1 < i < m such that for any integers
I,s,1<1l,s <k, R(w(A) > Ry(w(A)) or Ri(w(A)) = Ry(w(A)) as R;(A) = R,(A)
or Ri(A) = Ry(A) and Ry(w(A;) > Rs(w(A;)) or Ri(w(A)) = Ry(w(4;)) as Ry(4;) =
Rs(A;) or Ri(A;) = Rs(A;),1 <i < m, then w is called a weighted function for the

tendering A or the evaluation items A1 <i<m.

According to the decision theory of multiple objectives([3]), the weighted func-

tion w(A;) must exists for any integer i,1 < i < m. but generally, the weight

function w(A) does not exist if the values of these evaluation items Ay, A, -+, Ay,

can not compare. There are two choice for the weighted function w(4;).

Choice 1 the monotone functions in the interval [a,b], such as the linear functions.

Choice 2 The continuous functions only with one mazimum value in the interval

[a,b], such as w(A;) = —2z* + 6z + 12 or

x, if 0<ax<2,
—x + 4, if z>4.

As examples of concrete weighted functions w, we discuss the tendering of civil

engineering constructions.

4.1. The weighted function for the bidding price

Let A; be the bidding price. We often encounter the following weighted function

w(A;) in practice.

where,
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or
o { R1(A1)+R2(A1)Z-:2+Rk(A1)—M—N’ k> 5’
R1(A1)+Ra(A1)+-+Ry (A1)
1 1 2 ]i k 1 , 3 S k S 4
or

1(A1) + Ro(Ay) + -+ + Ry (Ay) y
k
Where T',A%,k, M and N are the pre-price of the tender, the percentage of T'in S,

S:TXA%+R

(1— A%).

the number of bidders and the maximum and minimum bidding price, respectively,
Ri(Ay),i=1,2,--- k denote the bidding prices and ¢, ¢ are both constants.

There is a postulate in these weighted functions, i.e., each bidding price is
random and accord with the normal distribution. Then the best excepted value
of this civil engineering is the arithmetic mean of these bidding prices. However,
each bidding price is not random in fact. It reflects the bidder’s expected value and
subjectivity in a tendering. We can not apply any definite mathematics to fix its
real value. Therefore, this formula for a weighted function can be only seen as a
game, not a scientific decision.

By the view of scientific decision, we can apply weighted functions according

to the expected value and its cost in the market, such as

(1) the linear function

Ri(A;) — N
M — N
in the interval [N, M|, where M, N are the mazimum and minimum bidding prices

p is the deduction constant and q is a constant such that R;(w(A;)) > 0,1 <i < k.

The objective of this approach is seek a lower bidding price.

w(RZ(Al)) = —pX +q

(2) non-linear functions in the interval [N, M|, such as

T—I—Xk: R;(A1)
Ri(Ay) — =t
o(Ri( A1) = =p x T,

Ri(Ar) = *3/Ri(A1)Ro(Ay) - Ry(Ay)T

w(Ri(A1)) = —p x
( ( )) p k+\1/R1(A1)R2(A1)"'Rk(Al)T

+q
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or

Ri(Ay) — \/Rf(fh)+R§(A1]€):-1--»+R§(A1)+T2

w(Ri(A1)) = —p X +q

R2(A1)+R3(A)++R3 (A1) +T?2
k+1
etc.. If we wish to analog a curve for these bidding prices and choose a point on this

curve as w(R;(A;)), we can apply the value of a polynomial of degree k + 1

f(x) = appr 2™+ apa® + -+ a1z + ag

by the undetermined coefficient method. Arrange the bidding prices and pre-price
of the tender from lower to higher. Not loss of generality, let it be Rj (A1) >
Rija)(Ar) = -+ =T > --- = R; (A;). Choose k + 2 constants ¢; > c3 > --- >
cpr1 > 0, for instance k+1 > k> --- > 1 > 0. Solving the equation system

R (Ay) = apr1cy T+ apd + -+ arer + ag
Rjz (Al) = ak+1c§+1 + CLkCS + -4 a1+ ag

_ k+1 k
Rjk—l (Al) = Ap4+1C,  +agc, + -+ aicg + ag

R, (A1) = ag

we get a polynomial f(z) of degree k + 1. The bidding price has an acceptable
difference in practice. Whence, we also need to provide a bound for the difference

which does not affect the ordered sequence of bids.

4.2. The weighted function for the programming

Let As be the evaluation item of programming with evaluation indexes {as1, ass,
“+ - Qan, b It is difficult to evaluating a programming in quantify, which is not only
for the tender, but also for the evaluation specialists. In general, any two indexes of
A, are not comparable. Whence it is not scientific assigning numbers for each index
since we can not explain why the mark of a programming is 96 but another is 88.
This means that it should qualitatively evaluate a programming or a quantify after
a qualitatively evaluation. Its weight function w(R;(As)),1 < i < k can be chosen

as a linear function
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w(Ri(Az)) = w(Ri(ag)) + w(Ri(axz)) + - + w(Ri(azm,))-

For example, there are 4 evaluation indexes for the programming, and each
with A, B,C, D ranks in a tendering. The corespondent mark for each rank is in
table 7.

index | ag; | @z | Gg3 | @
A 4 2 2 1
B 3 11511508
C 2 1 1 105
D 1 10510503
table 7

If the evaluation results for a bidding programming R;, 1 < i < 4 are w(R;(a9)) =
A, w(R;i(an)) = B, w(R;(as)) = B and w(R;(az)) = A, then the mark of this pro-

gramming is

Ri(w(As)) = Ri(w(aa)) + Ri(w(azz)) + Ri(w(azs)) + Ri(w(az))
= 44+34+15+4+1=9.5.

By the approach in Section 3, we can alphabetically or graphicly arrange the
order of these programming if we can determine the rank of each programming.
Certainly, we need the order of these indexes for a programming first. The index

order for programming is different for different constructions tendering.

85. Further discussions

51 Let A = (nj A; be a Smarandache multi-space with an operation set O(A) =
i=1

{o;;1 < i <m}. If there is a mapping © on A such that ©(A) is also a Smarandache
multi-space, then (;1, ©) is called a pseudo-multi-space. Today, nearly all geometries,
such as the Riemann geometry, Finsler geometry and these pseudo-manifold geome-

tries are particular cases of pseudo-multi-geometries.
For applying Smarandache multi-spaces to an evaluation system, choose @(;1)

being an order set. Then Theorem 3.1 only asserts that any subset of ©(A) is an
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order set, which enables us to find the ordered sequence for all bids in a tendering.
Particularly, if ©(A) is continuous and ©(A) C [—oo, +00], then O is a weighted
function on A widely applied in the evaluation of bids in China. By a mathematical
view, many problems on (;1, ©) is valuable to research. Some open problems are

presented in the following.

Problem 5.1 Characterize these pseudo-multi-spaces (ﬁ, 0), particularly, for these

cases of@(;l) = 6 la;, b, @(ﬁ) = 6 (G;,0;) and @(;1) = LnJ (R; +;, 0;) with (G, 0;)
i= =1 i=1

and (R;+;,0;) being a finite group or a ring for 1 <i <n.

Problem 5.2 Let ©(A) be a group, a ring or a filed. Can we find an ordered sequence
for a finite subset of A?

Problem 5.3 Let ©(A) be n lines or n planes in an Euclid space R". Characterize
these pseudo-multi-spaces (;1, 0©). Can we find an arrangement for a finite subset of
A?

5.2 The evaluation approach in this paper can be also applied to evaluate any multi-

ple objectives, such as the evaluation of a scientific project, a personal management

system, an investment of a project, - - -, etc..
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WA

BIIEE R FRE BOKF o7
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WE. BIREHEFALR N B A %E, WARARFERFTEREL, FRAK
AR A AR A A — A E R AR ARE N R By —F 7 R
#RMERAS T TRER G 2N ELRGEE T BRI TR %
WHATT HHEME, PEHEREX AT XN EFART EE, BK
TRAWFEBREAEEENELR, B, XEREAAEE R LT
NEEANFR —HELEMEANE, ZE—HERERR. AXNEEH
WA TFREEZHLAEELE R RNTAELF [7)[8], BB TNEZE S
Smarandache & R A, XA % HARRK T Efo i E T2 B H
HAT KRBT, BIRZXAT A FHRREATEZENEFHEL., XEX
Ja X E M E R AT IR R AT T R, BT EEENEAK
IR,

A Mathematical Model for
Chinese Bids Evaluation with Its Solution Analyzing

Abstract. A tendering is a negotiating process for a contract through by
a tenderer issuing an invitation, bidders submitting bidding documents and
the tenderer accepting a bidding by sending out a notification of award. As
a useful way of purchasing, there are many norms and rulers for it in the
purchasing guides of the World Bank, the Asian Development Bank, - - -, also

in contract conditions of various consultant associations.

Le-print: H E & # XA % 200607-112.
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In China, there is a law and regulation system for tendering and bidding. How-
ever, few works on the mathematical model of a tendering and its evaluation
can be found in publication. The main purpose of this paper is to construct a
Smarandache multi-space model for a tendering, establish an evaluation sys-
tem for bidding based on those ideas in the references [7] and [8] and analyze
its solution by applying the decision approach for multiple objectives and value
engineering. The final section discusses some questions for the bids evaluation
system already existed in China today. Some suggestions for solving these

questions are presented in this section.

K{@iE): AR, AT, WTAF, Smarandache® 8], WA AM, % HARR
K, BHARRE, AT,
42E AMS(2000): 90B50,90C35,90C90

L. 5|8

AT H 8 — T AR I T 2 W AR AR & R4 )
(FmeEE ARREKRE, 1999 4 3 A 15 H) FHHE, #REhs LR Al
ISRV BRI 15 A BT B2, B KRB I 3 SRR e 2y, 1A
PR ARl R A5 R U 29 — PR IHE Bl (S S R A B T — P RHR A
g R, WX R AR E I, HaROLS & R AR — it 2, Bl
PRI AR H AR B R B EWRE & FOL, HREXOHGEZEIT T HHEaFE
ARHG R AR

A N RILMERRERIREY CRAURE2E ANRAFE KRS, 1999 45 8 A 30
H) FHE T B kS S EAnE s AL Bds AL WHRZ B &
VR BAR T BB B T4 7 B 5AE . BRI 5 3055, Feiin AR 48 i KIE 4R
BiH, A IA —J7 s B AR AR PR IR S R iy — 7, 59
U A5 G PR B IR R 28 =T PR 2ok IEH. BAREEILE TR R R &
H AR ARIEAE, HHEAT BT IARA, R HE L BN AR
T AR R S RS R, BRI =07, B =I5 AR B s B
BT A AT R, B ST U B B FH A I 4Kk St vy M

HE AR BRI A AU R SRR BR FT AR R 2SR E U e A, 4] 1 %2507
AT Gt it
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Bl 1. SRE S S TR R
€ NBERME AR EARE Y S+ — &8 T PR AN S & T2

(1) REME S KRR B 6 R FA bR SCAF P L B & T 2R PR A 1 5
(2) BEAETH R FEAT SRy L TR EEK, FF HAPES B BRARI AR S AIK; (EER AR
PrAg AT A BRI,

X EA & (1) #1 (2) SERR U@ s WA “Z8 6 PEAGE” F1 “LTFH s K TF
Y X — R F BT 7 A AR TR E P ST AR AR R R — R 2 B AR RS, A
A ENE R, FEEEBEARESRS . L0, AFRE . MIAF RIS EFERE.
SR, H RTH B0 PEVR IR LT B4, RN A% R 2 B ARt SRy Bk 5 efi
ZE RIS, MERE PEAGIE PR Fik B T4 BUR, T PEs f B AR PETR 1%
W {6 B B AR AR B . AR X A2 B Anikdl AR B s Z RS FTE U
B e, Bt H Br8An AR PEAR B R B LR R AE R AR B E A o A e 1 2 0],
BEHGE I E PR R BB PIRG R E, R4, W feiimdie i & T &L
— PRI PEUME R T 4552 & Ay F 2 H WAE TRIBVEZ Bric 72 2 E 1
i &3 [7) # Smardanche EZ[EHERA (8] HAFBIREEABAL, R £ B iRk
MPHE LRI, @S0 AR T R R B, JEEAT B 2 B fi 52
BT, DU SR — MRl iR o R 2%, 2T 2 SE b in M B TR 2L

A SO S A R AT WLSCHR (7], FEE R, s B 5 T A ARTE L [1]-[3]
(6], HEFBARERAR IR T A AR TE WL CHR (8],

2. BRI FEE
KPR HAR B A < B4E” | “i#ie” BAE, Smarandache F 1969 4E48H T E 22
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AE ([9-[12]), X G A E = A M B RS ] WA, 5 & a5 H ArE bR
LS Ry Smarandache JUAT ([5]-[6]), FTRAECEZR A T SUHXRA 5 8 P 22
= (7). fE oy E B R ] — SRR B, B AR U AT AR E AR PR R R B

ESL 2.1 _’/]\ m- ﬁ?lﬁj Ea EX}J m /]\%/ﬁ\ A1>A2a"'aAm Q/‘j;cF’ iZE
1<m < +oo,

HEANEAE A EHRXT —FBERHN o #4H5 (A,0) H—MREKZ, K E
n AEEHK, 1<i<m,

R, B iA1 <0 <m, REFFR—RER ANA =0, SR
SIEGFXER., SRl AR — AR50 H #5& Smarandache B 22 [AIBLALATT

e — AR H A FERET m APRIE AL Ay A, BRI
Ay BT T ny AVPRHAT air, aiz, -+, i,y X, 1 <0 <m. RARCERB, X
AEFRIE

-
Il
—

I
Il
s
=

Horp, SMEEEE 1 <i<m,

(Ai> Oz') = {a'z'la @52, ", am,—|0i}

H—FREAR. EE, B A C AR a; € A S, RIDESANEHBRITE A
PLEAFARFENR ai; 5 A, 1 < <m BIRE,
REREZFEAR bk > 3 DMIWA Ry, Ry, -+, Ry ZIT 845, #ARA
Rj, 1 < j < k hptEil e
Al R](Al)
R;(A) = R, A o] )

A R;(A,,)
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e A RSERTE AR AR IR Y R A S M B R (Y B o bR A T R SR
FBERPERIEN Ry, Ro, -+, Ry, BIEER Ri(A), Ro(A), - -, Ri(A) B8 H MAtR
i1y, gy K {0, 00, -k} = {1,2,- -, k), R HBAREEHF

Ril (A) - Rlz(A) e Rik(A)>
M Ri,, Ri, F1 R, B ENAREIUR & M RO PR A

EN 22 BHE (1,2, m) EHAHRES S, Gl TR 47 873 F A
FHHEF

(Z) Rﬁﬁi%ﬁ%ﬁ P e Sn, (1,0. . .’0) - P;

(i) BB 51,80, s €{1,2, -, m} 1< h<m, B (1,50, n 1t ),
(51,82, Sp, b, ++) € Sp, M

(51752a"'a8h>ta"') > (Sla827”'75hal7”')

YHRY t <l {2, B—AFF, XE gy =0y = - = 0, H ;€ Sy, WA
3l {xq, 7 A —NFREFF.

# xy - xr, W 20 BT 205 & 26 = xr, W 2, T4 F 2,0 XF 20 = 2,
H oz =a,, BANW 2o 5§ 2, BF.

HATREN T XA KT ARG R AP i — s

T 21 %&EA 01,05,03--- hoF&, FAEEER j,1<j<k Ri(A) e
Ol X 02 X 03 X I D\“Jﬁ%‘tj%*'% 1727"'7]{; %/ﬂﬁkﬁaﬁ% i177;27”'7ik {f’/f‘%"‘

R (A) = Riy(A) = -+ = Ry (A).

W RIE R, SEREE 1<) <k,

Rj(A)601X02XO3X~-~,
B R;(A) AT LAFRA

RJ(A) = (lea Lj2,Tj3, " ')7

XH 2 € Ont > 1, BXES
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Sy = {wji;1 < j < m},

WA S C O AHRES. B O AeFE, # S PHTTA ey, AREREE
BN

Tig 7= Xop 77 =0 7 Ty

AT LA A P75 Ry, (A), Riy(A), -, Ry (A) BEATHEF, BB EI MR

7:172.2a T 'aika 1%15‘

R (A) = Ri,(A) = -+ = R;, (A). 1§
FEEH 2.1 1 05,0 > 1 NEAEFHEREES, M, O ={f},f: A —
R1<i<m NEHEE, HE t>2, O, =0, NHgEH 2.1 &1

EHE 22 B R A —-R1<Zi<m1 < <k hEABEK NWHEEARF
172aaké/‘j_’ﬁtljﬁ[§}%"j7‘5£ 21722aalk /ﬁi//f'%l‘

R (A) = Ri,(A) = -+ - = Ry (A).

Ee M, EFE 2.2 HATFHER.

WHEAEAAT L2,k —Fr 7 07 3% a1, 00, (245

EBAE Lk, AR\ ERERE SN E R, = Ry, s # | BRYHF T
5, AT AT AR 20 2 ERE A ER A HEF

Ril (A) ~ Riz (A) e le (A)>
PNIIRRER: Al RN V3N

3. IBIRIFMN A REVEF IR
1 b5 bR SRR R BRI ST AR BRI R T BRI LA 7 A P
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[BIRE 1. MEEES 64,1 <i,j<m, EFREFEZTRA R £HFR an,aiz, -,
Qin;, T ETARH T R;j(A;)?

[BIRH 2: MEEEH j,1 <j<m, EFKEHE (R;(A),R;(A), -, R;j(An))
HH R;(A)?

XFRA BN FIAIR, A SRIATR PP R R R A B B ik,

3.1 ZHERRER

R RS R SRR IR 2 F8Y Rj(A), Rj(As), -, Ry(Ay) HIH
S, TR E TAREATR . ST bR AR — AR s, R
R e A B R 25 LSO B F , R « oA AR [
FRUED B0+ — S R A AR FTIE R A

Wﬁt~%*ﬂ2L42&§ﬁ%~&Mﬂu~Wﬁﬂ@i%ﬁﬁﬁﬁ—CL4
M&AﬁmﬁﬁAM<z<mMﬁ$ﬁfﬁ&;ﬁﬁﬁmé%&ﬁRd)Rmﬁ

Ri(A) fyHER:, Hoe BT

F1P: BEIFMTE AL Ay Ay WEEFER, flin m =5 B, A >~
Ay = Ag - Ay = As AWM IE Ay, Ag, Ag, Ay, As B9 —FrHEF 45 R .

£2%: Rﬂﬁ/\?ﬁmé’ﬁﬂr Ri(4), Ryy(Ai),ji # jol < i < m, BRE
Rj (A;) = Aj,(Ag) B4, & Ay REFZARMAM, Bl |R; (A) — Ry, (Ay)| <
100 7 T AR, W Rj; (A1) = Rj, (A1),

E3D: MEEEK,1<i<m, #AE Ri(A), R(Ai), -, Ri(As) WHE 74
K. Pl AR T PN, AR KA EITE&@J%%E#?%

Fa% HFarEmE Ri(A), Ry(A), - R(A) k. EEAHLH
AR FHER Ry (A) ~ Ry, (A) st 7 7 %, Bl aE “WAERN DO HHh L HE
W ATH T, BARE Ri(A), Ro(A), -, Ry(A) 897 E X Lt r 4 £

Ri (A) = Ri,(A) = - = R; (A).

&%,urﬁﬁ¢wﬁu%m%1ﬁuﬁw(d H(w(Ay),w(Az), -, w(Ap))
il w(A) = Fw(an), w(ag), - mm»mﬁ@%&E%W&ﬁﬁmﬁ %?ﬂ@
BRI RE L T —

FIE 3.1 X F—AERTE A, EREF T UFEARA BT
i BA kAR ASINRAR, Wi I HE LR R A 1S 2 R
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Ri (A) = Ri,(A) = - = R; (A).

FEAH BRSO R, (A) = Ry, (A) BHEHF I, R0 1R&ARB 4 HE P
Ry (A) = Riy(A) = -+ = Ry (A).

Bl 3.1 ENTEREIBRLTEARET 3 MENIE, KRAK A = AT
s Ao = AT % As = |ATARLZFRXMUTE LG, HFXEN A - Az = As,
MEY R, (A1) — Rj, (A1) < 150, Rj(As) 5§ Rj,(Ax) #rkAMEF R (As) 5
R;,(As) EREET AT 40000m* it Rj (A;) = Rj,(4;),1 <4 <3, B HZHE
BN BIRE &, AT EHF H IR R KREMAAE L =ZFRNURE
W LERE S DHATHT, UK EFRATRLHT L MR~ o9 R N 474
5.

TR E LA 4 MEAFA Ry, Ry, Ry, Ry 7 A7, ERATRNM T % 1,

TAFA Ry R, R3 Ry
Ai1(Ft) | 3526 | 3166 | 3280 | 3486

&L AR &
T, KELER AN, 5 A BAAERNEF A

Rg(Al) ~ R3(A1) — R4(A1) ~ Rl(Al)

WARE Raxt Ay WIFF R Rs(Ar) = Ry(As) = Ri(As) = Ra(Az), [F B
RAHLATHFTE Ay WRARERD T X 2.

FARA Ry Ry Rs Ry
Ag(m2) 250806 | 210208 | 290108 | 300105

F 2. LZHRKPITH vE R &K
REHTFERA

R4(A3) ~ R3(A3) >~ Rl(A3) ~ RQ(Ag)
WR, IREF T RN ZEHTFE RN



112 EME: AR FRXE

R3(g) — RQ(A) — R4(A) — Rl(g)

RPN IH B FRAN A = Ao = = Ay, NIRXFHZ BRI R RIE F]
PASR P Al o R . R IR TR BRTE, il R e Al B 32 RS IR AN
ToE R GIA] hHiE — KB ERITA Ry, Ry, -, R B9 B, TH0HTF
PR ANBAZHIER R+ A

EX 8.1 3~k ARA Ru, R, R St fiqil A= 0 A,
ZX—AHE GA] T
V(G[A]) = {Ri, Ry, -, Ri} x {A1, As, -+, An},
E(G[A)) = E\UE,U Es,
Hor By mATAA (R, (A, Ry (Ad) Mk, B 1 <i<m, 1 <jijp<kH
Ry (Ai) = Ry, (Ay) AR, EEA R(A) ~ Ri(A) = Rj(A), WEH R(A) -
R;(A;) A1 Ri(A;) = Rj(Ai); Ea, B3 A Tw, B By Bl Ry (A)Rj,(4:),1 <
i <m 1< gy S kMK, KB R (A) = R, (Ai); By = {R;(A)R;(Aia)[1 < i <
m—1,1<j <k},

Blan, LIEf) 3.1 XA mE N

—
- ~
P =, e
B AR “':_,ﬁ_’_u*—“'—'?ﬁﬁ
- s --___-I"
& g h-ﬁ:m;
B .-"
';:"-_

@Zﬁii:;;;htmﬁﬂL#1ﬁﬁ

B 2. 4] 3.1 XA E

BT, FMITEAEIE 2 hHiE —5 Ro(A)) B Rs(A)) WA, Zd i Bt
B TR, RIEZIHEE, ROV Rs(A)) &, S5 Ay, Ay, BIFFIE A, X
FERLBEIF LR Ra(A) = Ro(A) = Ry(A) = Ri(A).

3.2. BEIRRRER
B H PR AR R FEE TR 1 A0 2 DL R BFAR.



AT R R FEE R R 113

% 1 ﬁ’= E%’bﬁﬂ‘ﬁl\lﬁﬁ Ay, Ay - Ay E}j, 35*%"/]\1‘]1%@15 %%fjﬁ’pﬁ
Blin e — e KR 2 UM TRATR, 8 KRN &P TE—LRITEFT, 8RET
T ERLE.

B2F: HAFNIE A, A, Ay RANMET A, AT URXAL—8
EEXFAFNIE HTEM, AT RELFHNEHF L AT EMLRTRS 52
WA KB B AR, 2 A o B B WA IME R F R B E 2 4T oA 2R
AR EARN %4,

3.2.1. B HREE

XA RELAE SR B B — PN I H e, #BL AR P 30 H 4 H AR R FB 50 H
ﬁzi}%ﬁﬁi%%%ﬁﬁﬁﬁﬁAhM%EN%@WMWEAm&fwAMQ
BRI T HE, RIS TEXT Ao, As, - - Ay FHEZIIEAS, RN R, Ry, -+ Ry
HXF Ri(Ar), Ro(Ar), - - -, Ri(Ar) #HTHEF, 26T o e #EA i PR iie N4 58, 4D
XPEM I E Az, As, - - -, Ay REIG T PER S0k FBGR R 755 A, As, -+, Ay
AT 4, CE B ENEL, RIS HIERAT R, Ry, -+ Ry MPETE Al 1y
BARBOUEATHET, HHlEH Ri(A) = R;(A) i Ri(A) 5 Ri(A) BHERF k. &K
P 3.1 OSBRI TR,

T 32 AT EFRTE A, 2EARRET UG RARE FHHBET.

B13.2 £ TR EEFTE A DEXRRIT T EREN EARF, £24 A,B,C,
D,E 5 MK, ET ARBAE. RITAMHEE— & H4A%, RFERMLT EX
M B F AT R B E R A, FEAE St B A K E B <R
&> WENHATHF. ZTE F£H 8 MR AS AR, /M Tk 3.

#ARA Ry | Ry | Rs | Ry | Rs | Re | R7 | Rg
AR (]7‘77]) 251 | 304 | 268 | 265 | 272 | 283 | 278 | 296

* 3. A&

LT, BRAAA R BANARTHABEFERS, HARAmA . &
HRABMARBRENGEER, ARTAR T T EHTFERET X 4,

YERN A B C D | E

R ERK | Rs. Re | R1 | Ro. R | Ry | Ry

F 4 Rt EEE 4R
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KR, WARANZREHEFTERN -
Ry(A) > Ro(A) = Ry(A) = Ry(A) = Ry(A) = Re(A) = Ru(A).

B33 XERGETEEIHATE A HRFARRKT B4, TEHEEAR
Fadg R % 4 F E BT A F TS A EE T E, 30 T AMRA R, <
i< THmT A, BN FRA T RERE T %, BE L5 TR EEN S, &
FEitEHRmAFELS N, KB

(S A — max{Ry(A)[1 < i < 7} — min{Ri(A)|1 < i < 7}
i=1

S = E ,

Ri(Ay) =S
S
BB, # OR(A) =S >0 t=6; # Ri(A)— S <00 ¢ =3, F#AELHM
FIBE, 4 “BAMb " RIHEA, B3P, 7 MURASIE . TH A R A i

RESTE. BTAREHHELER, RAEAGRA B TE 5.

N; =100 —t x | | x 100, 1<:i<7,

#ARA R, Ry Rs Ry Rs Rs Ry
Al(ﬁﬁj) 3518 | 3448 | 3682 | 3652 | 3490 | 3731 | 3436

5. AN K
WAL T7 %, 752 S = 3558 AT A% 2

#ARA | M Ny N3 Ny N5 Ne Ny
15 96.70 | 91.27 | 79.12 | 84.16 | 94.27 | 73.84 | 89.68

6. ek

an
h\

REATHE T 45 RN -

Rl(A) - R5(A) - RQ(A) — R7(A) — R4(A) - R3(A) - R6(A)

3.2.2. thEEETVEM Fe
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XFONRBBPPI I H Ar, As, -, Ay TE—ERUXE] [a, ] EAFFEG—RYE
RIME, AT ALy 3.2.1 AR E R B ird . AR, TR AR B
GH—EREA w, HHEMERERN

w(4;) = fi(w), 1<i<m,

X fi FRRREBOCR, WIBAER PRt F AL T 5 B AR LA

mQXF(fl(W)afz(w)a"'afm(w))

rrgnF(fl(w)vf2(w)v'"7fm(w>>v
X F FRBFHE A SIEMIHE A, Ay, -, A, [BIEIER, FTRURAGEEL,
NG AT

F(f(@), fo(@), -+ fm(@)) = 3 fil(=)
BURREFF R, FIFEHE 3.2, RAVREITREE.

FIE33 FEKF AR [0,b]) L HEE—HRAM, B —FAF Ri(A) =
Rj(A),i # j ot Ri(A) 5 Ry(A) e fr o7, W th 5 A MEEIBARA Ri1 <<k
MARTE A% R Ri(A),1<i <k 8=,

AT A ] YA PRI SR B B 20T 20 A e VP o B S IRV AR I S _E 225X
— PP ARAI . TEE MRIET e, FAT3E et R AL
F(fi(@), fa(@), -, fu(@)) = > fil=),

HO0< F(fAi(@), fo(@), -+, fn(w)) <100, f; = 0,1 < i < m. MAELFHRRIKE
fRAmE, FHAMPPI T E Az, As, - - -, A BIBAMREIFT BN Ar, B

KHL Iy T H PP BEE R, w(Ay) RBOLmZ T Ia TR, TR R B
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m

F(w(A), fa(@(A1), - fm(@(A1)) = (14 D_(1(A) — lo(A)))w(Ay).
1=2
PRl e R AR R EBAR SRR R AT In 2 — R (ER, SRR %
10, Bl w(A;) =10 JiIL.

4. MEBREE

X TR SCTF I I H 80P 1845 LA R, JATE S A
X,

Y AL M F—AH EMEAFA B, B, B 55 8 MBHFRE A= U A,

FFNHE A = {an,an, 0}, < i< m, BHEE-NEZER 0 A —
[a,b] C (=00, +0) B w : A; — [a,b] C (=00, +0),1 < i < m, FHEEEHK
I,s,1 <l,s <k, R(A) = Ry(A) & R/(A) ~ R,(A) % Ri(w(A)) > Ry(w(A4)) %
Ri(w(A)) = Ry(w(A)), H# Ri(A;) = Ry(4A) H Ri(A) ~ Ry(A), 1 <i<m A
Ri(w(A;) > Ry(w(A)) & Ri(w(Ai) = Ro(w(Ay)), WAk w HHATE A SFH R

B Ai,1<i<m E#y—PREEK.

B eR B s i PR AR 0T H Y AL . bl T SERs AR s A B R A TRAY,
KIEZ HingesRae (3D, MMERER i1 <i < m, MEE w(4;) —EFE; B
—ft, EVPNITE Ay, Ay, -, A BIPHEAREA T EHE, TUACREL w(A) RIEZE,
KT w(A;) ATLAA LAT PR T ik

(DR [a,b] Loy #5005, =& ERE;

()X [a,b] LAAPE—RAENESZER, PFELBR. —RERF.

TR AT TRRAR B, XAREL w HEATRE—25 04T

A1 FRINBEEREL

B Ay BRI, SEPR TARFR 2B ER AT NS AR w(A). B
FeitFIPPR R HET S,

Ri(A;1) + Ra(Ay) + -+ Re(Ay)

5= k
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k—2 )
Ri(A1)+Rp(A1)++Ry (A1)
1 1 2 ]i k 1 , 3 S k S 4

{ Ri(A1)+Ro(A1)++Rp(A1)—M—-N k >5
S= > 5,

AR ARIRIR

Ar) + Bo(A) + -+ Bi(A)
k

XK, Ri(Ar),i = 1,2, k FRBARRAMT, & BRI, M. N 2588,

BARBAMRAY, T APRERINHE, A% NARRM AR TE AR HEN BT G5 . AL B

BORi(w(A), 1 <i <k BHEARH

S:TXA%+R1(

(1— A%).

&mg—s+c
XH, ¢ A ER, M ¢ A—ME w(A) > 0 BHEL X—iH5omE Rk
PriBLE ER AT, AR FBORSE T 09 7 125 7] DS H BB S b LA S 4R
AR AR, (BSEPR L, FR A BAn i A& —Frbadi s, HHm
HEBARA AR E R EA A EE, XFHEEETFZHEE T AR ERT
Vo, FrA R R AR, PO A g — R A AR R R e SRR
RIEFEAR AR AS BAE R TT 4T, AT RAR A A0 T AR %K

(DK [N, M] k8% MEACE %

Ri(w(Ay)) = —¢ X

AR B3 R R K
QKB [N, M] b &MAEHK, o

T+§:Ri(A1)
R,(A)) — ————
R = —px PR T,

Ri(Ar) = *3/Ri(A1)Ra(Ay) -+ - Ry (Ay)T

Ri(w(A1)) = —p x k+\1/R1(A1)R2(A1) o Ry (AT

}2\7
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Ri(Ay) — \/Rf(A1)+R§(A1k):1~~+Ri(A1)+T2

Ri(w(Ay)) = —p X +q

\/ R2(A1)+R2(A1)+-+ R2(A)+T2
k+1

&, XE pqgaXEL,
R R E WM A A m 2, WErT DR RME &+ 1 IR L,
B EBFRRIN A b+ 1 IREZBIAR

f(z) = "+ ap® + -+ ar + ag

HIE, RIE KB BRAR AN ZARENAE AR SHIIR T, WM Rj, (A1) = Rija) (A1) >
o= T o= Ry (Ay), ORI k42 NMEB ¢ > o > -+ > cpq > 0, 40
k+1>k>--->1>0, R4

R (Ay) = a1+ apci + -+ arer + ag
Rj2 (Al) = ak+1c§+1 + CLkCS + -4 a1+ ag

_ k+1 k
Rjk—l (Al) = Ap41C,  +agc, + -+ aicp + ag

Rj (Al) = Qo

M2l k+1 KWK f(2), ey kign ik, BVER, SirkirE
bR TARF ALV S, Br AR R PO i R AR 55 A€ H 2 KRBT i Z A5
HEFEER

4.2. FRNEH

W RPN ITE N Ay, HIFHIER A {021, A22, ", a2n2}o ERAW— TR
IS 2 EBC R XY , IXAMELR AR AT S, MIER BB, 77 R0 F 1545
HOHORANAT R, B DA H R M PR FE AR T AN [R] 20 (B A B0 SR AN TR
E A RAVRMERBRIE RN 24— R 96 T 55— MR RS 92 40, M E
F PR ER e P D B R PR A B B PR R, AR R Ri(w(Aq)), 1 <i <k
AR e R %K

Ri(w(Az)) = Ri(w(aa1)) + Ri(w(as)) + -+ + Ri(w(aan,)).
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TR FEAR AR R w(a:), 1 < i < no BRI E HEDPR B 1 f 2 BEVEH
ANTR] B 3] %ok AR [ I ASL B

WIANSEAAPR I H 77 S0P S 4 MIPHFERR, SRR A, B, C, D A
B, IR T PR,

PEHTEIR | ag1 | ag | ags | ax
A 4 2 2 1
B 3 | 1.5 1508
C 2 1 1 10.5
D 1 105]10.51(0.3

R TR B BRI R

ﬁﬂ%_‘/l\ﬁﬁi R; B’Jfﬁ‘@ﬂzﬁéﬁ%j@ Rz‘(w(am)) = A,Rz‘(w(am)) =B, Rz‘(w(a23))
= B,R;(w(az)) = A, MZHA NI TTRAFH

Ri(w(As)) = Ri(w(aa1)) + Ri(w(azz)) + Ri(w(azs)) + Ri(w(az))
= 44+34+15+4+1=9.5.

MAHERF BT, REDPH 7 A 0N, A L —35 9 7 I HE R s ARk
ST LR A BAR A TT R HEF 4R . B, 1EX Z BT < H PR $5 18] 89 17
KA, AR TRBRIE, HIrRIPHIERe FRREA R,

5. JINRE—E 1T ti[e)

€A N RICATE PR EARIE Y 2 NAE 2R SEER, © 2 EHATR R R S
TG H T — K2, (EEMCE RS, haesek  —87E%R T
Ve LT RD A R, A BB AT AL, BB S e g, X H,
FATXT LA AT — &2 ot St

& 1. BIRSEREREXR LM EEE, Mt 6 RS HRS 1 FEBam A
e HAY, XMEZ SRR EMAEERZE LR EER . HIFa LRy,
T E E NIRRT OB N, DEFE. ERFAEGREHEN &S,
EAEE R T EL S SRR A IO TAR BT ] S5 B AR A A g o
YA, KT AL, MR S & FEH R M, ERiAts AL 8
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PR PR ZR RS A RAAR B 0 THE AL R R LR 2 ], & it
FCOU, AT et il 1k R AR B B ANEA T, SEBE < T0F °F. A IEAIEE
7 BFAPREARIEN, X5, fE MR AT E | i AR AL B AR AR e
B, SCERRM, HER ALY, H ATEIAR SR G802 i R Yy [ LA |
AR T ALESA AR SO SR A R A ) A A AR AL 23 FP AR S A 28 Bl S5 gk {H
XAV NEAT A2 29, BRAnfel AE3L A HLE T L AL BRAF SRR N ik A 7L
RS, 25 RR ST SR HNITI e .

[EIRE 2: VFARARERIE ML Frif AR IR AE R & EAC I, gl 2 BEORORE BT A Y
PR E AR dE R H R PP RIBRHE SO, ZEMTHKTE S B RS 5 IA VP H A HE
AR . H AT PYXTSAR SR R R 55 00 i PP A RSB T AP (H
AR HEMIFHE INERGREGH), EXHARE D, WHARITE., i LHAR BT,
BORHRESFH VER WISE 23045 T IFARZ R S KIS B HWIFR (7%, EHGEK
T —EPPR GRS AR AA LT G T B R iR ESEE R E M A 2 X hE
HEWRR, HEEZER, E£TIHRE RSN A FOREMEL LR FTA—, X
— BRI AT S A FE R PPAIZER, JTCHRAER A B I A R
. AR, ISR AR % Sl 55 SE IR PEAR S BE A DI FR REAR # 70 Hh fg pReaX A 1]
B, ARV TR — IR AL R VPR 3815 504 T IR ER A & 5 5 BEPFH IF (5]
NIE. BRGBEARSHE— WG FE, MZBXORFTERAT, 75
TIREBRG SRR E . FELH PR & Rl 55 RS IRAT-. SR RS RERI 51 T,
BIRGEARR T o B, R PP AR A T & AL A 2 B r sy B H An ke sk e
RO — PR R DLRAE, FIRAT G IR ARERINIE, LAGERER A% Bl 2 T 1E
112 Binge s e e

(U8R 3 RSP [ Y K R B e R B T
ST SR F e RLVP AR . TR, P GO IPA H 2 RS
—HBERER, TR, AR SR H 2 AR — B R,
125 L TSP P VP P JE B LTI AR S Bt LA . X — 2R
RE LA P, SR P S P 2 A BV 77 0 T LA R s — A T
TS, VAR R AR — AR I R4 0 A SR T LR P, i
% RBHIERA, LA — A T ROAHTE, B MRFEHRER G
Ir AR R R AL ERY, FERCRI AR, X Tk R A0 H
L SHE AR TS5 0 VR SR 5 7 2 VP T B A 4 T PR 4 S R LR AT T
By, %P4V S ATECH TAET BT INRORR S 5 85, RS T, B
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S HHINESNITT4T 8, RAREA R 7 S 2 TR PR PR 28 A R g e [ R
A, M TR S, WIKET 2 5HRESR ST KL 3, mRRTR
A7 5, (H AR (A N RICATE AR EBARIR ) HYSEERAR I, X — T
WAy TAE.
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Abstract: A map is a connected topological graph cellularly embedded in
a surface and a complete map is a cellularly embedded complete graph in a
surface. In this paper, all automorphisms of complete maps of order n are
determined by permutations on its vertices. Applying a scheme for enumerat-
ing maps on surfaces with a given underlying graph, the numbers of unrooted

complete maps on orientable or non-orientable surfaces are obtained.
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1. Introduction

All surfaces considered in this paper are 2-dimensional compact closed manifolds
without boundary, graphs are connected and simple graphs with the maximum va-
lency > 3 and groups are finite. For terminologies and notations not defined here

can be seen in [21] for maps, [20] for graphs and in [2] for permutation groups.

The enumeration of rooted maps on surfaces, especially, the sphere, has been
intensively investigated by many researchers after the Tutte’s pioneer work in 1962
(see [21]). Comparing with rooted maps, observation for the enumeration of un-
rooted maps on surface is not much. By applying the automorphisms of the sphere,
Liskovets gave an enumerative scheme for unrooted planar maps(see [12]). Liskovets,
Walsh and Liskovets got many enumeration results for general planar maps, regular
planar maps, Eulerian planar maps, self-dual planar maps and 2-connected planar
maps, etc (see [12] — [14]).

General results for the enumeration of unrooted maps on surface other than
sphere are very few. Using the well known Burnside Lemma in permutation group
theory, Biggs and White presented a formula for enumerating non-equivalent em-
beddings of a given graph on orientable surfaces?, which are the classification of em-
beddings by orientation-preserving automorphisms of orientable surfaces. Following
their idea, the numbers of non-equivalent embeddings of complete graphs,complete
bipartite graphs, wheels and graphs whose automorphism group action on its or-
dered pair of adjacent vertices is semi-regular are gotten in references [15] — [16], [20]
and [11]. Although this formula is not very efficient and need more clarifying for the
actual enumeration of non-equivalent embeddings of a graph, the same idea is more
practical for enumerating rooted maps on orientable or non-orientable surfaces with
given underlying graphs(see [8] — [10]).

For projective maps with a given 3-connected underlying graph, Negami got an
enumeration result for non-equivalent embeddings by establishing the double planar
covering of projective maps(see [18]). In [7], Jin Ho Kwak and Jaeun Lee obtained
the number of non-congruent embeddings of a graph, which is also related to the

topic discussed in this paper.

Combining the idea of Biggs and White for non-equivalent embeddings of a

graph on orientable surfaces and the Tutte’s algebraic representation for maps on
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surfacel™:21 a general scheme for enumerating unrooted maps on locally orientable
surfaces with a given underlying graph is obtained in this paper. Whence, the
enumeration of unrooted maps on surfaces can be carried out by the following pro-

gramming:
STEP 1. Determined all automorphisms of maps with a given underlying graph;

STEP 2. Calculation the the fixing set Fiz(s) for each automorphism ¢ of

maps;

STEP 3. Enumerating the unrooted maps on surfaces with a given underlying

graph by this scheme.

Notice that this programming can be used for orientable or non-orientable sur-
faces, respectively and get the numbers of orientable or non-orientable unrooted
maps underlying a given graph.

The main purpose of this paper is to enumerate the orientable or non-orientable
complete maps. In 1971, Biggs proved!!] that the order of automorphism group of
an orientable complete map of order n divides n(n — 1), and equal n(n — 1) only if
the automorphism group of the complete map is a Frobenius group. In this paper,
we get a representation by the permutation on its vertices for the automorphisms of
orientable or non-orientable complete maps. Then as soon as we completely calculate
the fixing set Fiz(s) for each automorphism ¢ of complete maps, the enumeration
of unrooted orientable or non-orientable complete maps can be well done by our
programming.

The problem of determining which automorphism of a graph is an automor-
phism of a map is also interesting for Riemann surfaces or Klein surfaces - surfaces
equipped with an analytic or dianalytic structure, for example, automorphisms
of Riemann or Klein surfaces have be given more attention since 1960s, see for
example,[3] — [4], [6], [17], but it is difficult to get a concrete representation for an
automorphism of Riemann or Klein surfaces. The approach used in this paper can be
also used for combinatorial discussion automorphisms of Riemann or Klein surface.

Terminologies and notations used in this paper are standard. Some of them are
mentioned in the following.

For a given connected graph I', an embedding of I is a pair (J, ), where J is
a rotation system of I', and A : E(I') — Z. The edge with A(e) =0 or A(e) =1 is
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called the type 0 or type 1 edge, respectively.

A map M = (X,p3,P) is defined to be a permutation P acting on X, 3 of
a disjoint union of quadricells Kz of x € X, where, X is a finite set and K =
{1, , B, a3} is the Klein group, satisfying the following conditions:

i) Vo € X, 5, there does not exist an integer k such that P*z = au;

ii) aP =P a;

i17) the group ¥, = (o, 3, P) is transitive on &, g.

According to the condition i), the vertices of a map are defined to be the pairs
of conjugate of P action on X, 3 and edges the orbits of K on X, g, for example, for
Vo € X, 5, {x,az, fr,afz} is an edge of the map M. Geometrically, any map M
is an embedding of a graph I' on a surface, denoted by M = M(I') and I = T'(M)
( see also [19] — [21] for details). The graph I is called the underlying graph of the
map M. If r € X, 3 is marked beforehand, then M is called a rooted map, denoted
by M”. A map is said non-orientable or orientable if the group ¥; = (a8, P) is
transitive on X, g or not.

For example, the graph K, on the tours with one face length 4 and another 8 |
shown in the following Fig.1,

Fig.1

can be algebraically represented as follows:
A map (X, 3, P) with X, s = {x,y, z,u,v,w, ax, oy, az, au, av, aw, Bz, By, Bz, fu,
B, pw, afx, afy, afz, afu, afv, afw} and
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P = (x,y,2)(afz,u,w)(afz, afu,v)(afy, afv, afw)
X (ax, az,ay) Bz, aw, au)(Bz, av, fu)(Ly, fw, Bv)

The four vertices of this map are {(z, y, 2), (ax, az, ay)}, {(afz, u, w), (Bz, aw, au)},

{(aBz, aBu,v), (Bz, aw, Bu)} and {(aBy, afv, apw), (By, Bw, fv)} and six edges are
{e, e, Be, afe} for Ve € {z,y, z,u,v,w}.

Two maps M; = (X 3, P1) and My = (X2 5, P2) are said to be isomorphic if

there exists a bijection 7 : X} ; — X2 5 such that for Vo € X} 3, 7a(z) = ar(x),

76(x) = Br(x) and 7P (x) = Por(x). 7 is called an isomorphism between them. If

My, = My = M, then an isomorphism between M; and M is called an automorphism

of M. All automorphisms of a map M form a group, called the automorphism group
of M and denoted by AutM. Similarly, two rooted maps M;, MJ are said to be

isomorphic if there is an isomorphism ¢ between them such that 0(r;) = ro, where

r1, T2 are the roots of M7 , MJ, respectively and denote the automorphism group of

M" by AutM". It has been known that AutM" is a trivial group.

According to their action, isomorphisms between maps can divided into two

classes: cyclic order-preserving isomorphism and cyclic order-reversing isomorphism,

defined as follows, which is useful for determining automorphisms of a map under-

lying a graph.

For two maps M; and M, a bijection & between M; and M, is said to be cyclic

order-preserving if for Vo € X} g ra(x) = ar(z), 78(zx) = fr(z), 7P (x) = Po7()

and cyclic order-reversing if Ta(z) = at(z), 78(z) = fr(z) 7P (z) = Py '7(x).

Now let I" be a connected graph. The notations £9(T), EY(I') and £X(T) denote

the embeddings of I' on the orientable surfaces, non-orientable surfaces and locally

surfaces, M(I") and Autl" denote the set of non-isomorphic maps underlying I" and

its automorphism group, respectively.

2. The enumerative scheme for maps underlying a graph

A permutation p on set €2 is called semi-regular if all of its orbits have the same
length. For a given connected graph I', Vg € Autl’, M = (X, 3, P) € M(T), define

an extended action of g on M to be
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g* : Xa,ﬁ — Xa,ﬁa

such that M9 = gMg~! with go = ag and g3 = Bg.

We have already known the following two results.

Lemma 2.1%YU For any rooted map M", AutM" is trivial.

Lemma 2.2 For q given map M, Y€ € AutM, & transforms vertices to vertices,
edges to edges and faces to faces on a map M, i.e, & can be naturally extended to an

automorphism of surfaces.

Lemma 2.3 If there is an isomorphism & between maps My and My, then I'(M;) =
['(My) =T and £ € Autl if € is cyclic order-preserving or o € Autl if € is cyclic

order-reversing.

Proof By the definition of an isomorphism between maps, if M; = (X;,ﬁ> Pr)
is isomorphic with My = (Xgﬂ, P,), then there is an 1 — 1 mapping & between Xo%ﬂ
and Xi 5 such that (P1)¢ = P, . Since isomorphic graphs are considered to be equal,
we get that I'(M;) = I'(My) = I'. Now since

(Po)~" = (Py)™.

We get that I'¢ =T or I'*® =T', whence, £ € Autl or o € Autl. h

According to Lemma 2.3, For Vg € Autl', VM € EL(T), the induced action g*
of g on M is defined by M9 = gMg™ = (X, 3, gPg™").

Since P is a permutation on the set X, g, by a simple result in permutation
group theory, P? is just the permutation replaced each element x in P by g(x).
Whence M and M9 are isomorphic. Therefore, we get the following enumerative

theorem for unrooted maps underlying a graph.

Theorem 2.1 For a connected graph T, let £ C EX(T). Then the number n(E,T)

of unrooted maps in & is

1
WED) = e X (90

geAutl'x ()

where, ®(g) = {P|P € € and P = P}.
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Proof According to Lemma 2.1, two maps M, My € £ are isomorphic if and
only if there exists an isomorphism § € AutI'x < a > such that M{" = M,.
Whence, we get that all the unrooted maps in £ are just the representations of
orbits in € under the action of Autl’ x (). By the Burnside Lemma, we get the

following result for the number of unrooted maps in €

nET) = — Y g b

|[Autl’ x (o) | gEAULI % (a)

Corollary 2.1 For a given graph ', the numbers of unrooted maps in E9(T'), EN(T)
and EX(T) are

1

no = o ) .
O = @, 2, [P0k @D
Ny 1 N(oAL
n (F> - \AutF % <Oé> | QGA§X<Q> |(I) (g>|7 (22)
L _ 1 L
n (F) - ‘Autl—w % <Oé> | QGA§X<Q> |(I> (g)|? (23)

where, ®°(g) = {P|P € E°(T) and P9 = P}, ®V(g9) = {P|P € EN(T) and P9 =
P}, ®F(g) = {P|P € EX(T) and P9 = P}.

Corollary 2.2 Let £(S,T") be the embeddings of I' in the surface S, then the number
n([,S) of unrooted maps on S with underlying g is

WS = —2 Y ja(g),

N |AU'tF X <Oé> | geAutl'x ()
where, ®(g) = {P|P € £(S,T") and P9 = P}.

Corollary 2.3 In formulae (2.1)-(2.3), |®(g)| # 0 i and only if g is an automor-

phism of an orientable or non-orientable map underlying T.

Directly using these formulae (2.1)-(2.3) to count unrooted maps with a given
underlying graph is not straightforward. More observation should be considered.
The following two lemmas give necessary conditions for an induced automorphism

of a graph I" to be an cyclic order-preserving automorphism of a surface.
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Lemma 2.4 For a map M underlying a graph I', Vg € AutM,Vx € X, 3 with
X =E(T),

() |zAM| = [AutM] ;

(i) [2=97] = o(g),
where, o(g) denotes the order of g.

Proof For a subgroup H < AutM, we know that |H| = |z||H,|. Since
H, < AutM”, where M¥ is a rooted map with root x, we know that |H,| = 1 by
Lemma 2.1. Whence, |#7| = |H|. Now take H = AutM or < g >, we get the

assertions (i) and (7). h

Lemma 2.5 Let T be a connected graph and g € Autl. If there is a map M € EX(T)
such that the induced action g* € AutM, then for V(u,v), (z,y) € E(I),

[19(u),?(v)] = [I9(x),1?(y)] = constant,

where, 19(w) denotes the length of the cycle containing the vertex w in the cycle

decomposition of g and [a,b] the least common multiple of integers a and b.

Proof According to Lemma 2.4, we know that the length of any quadricell u**
or v~ under the action of g* is [l9(u),9(v)]. Since g* is an automorphism of map,

therefore, ¢g* is semi-regular. Whence, we get that
19(u), 1(v)] = [(x), ()] = constant.

Now we consider conditions for an induced automorphism of a map by an

automorphism of graph to be a cyclic order-reversing automorphism of surfaces.

Lemma 2.6 If £« is an automorphism of a map, then Ea = af.

Proof Since £ is an automorphism of a map, we know that
(fa)o = affa).
That is, {a = af. b

Lemma 2.7 If  is an automorphism of M = (X, 3, P), then a is semi-reqular on
Xo.p with order o(€) if o(§) = 0(mod2) or 20(§) if o(§) = 1(mod2).
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Proof Since ¢ is an automorphism of map by Lemma 2.6, we know that the

cycle decomposition of £ can be represented by

§= H(x17x27 e '7$k)(04351704$27 . ',OéIk),
k

where, [], denotes the product of disjoint cycles with length k = o(§).
Therefore, if k = 0(mod2), we get that

Sa = [[(z1, awe, 3, - -+, )
k

and if k = 1(mod2), we get that

504 = H($1a QT2, T3, "+, Tk, AT, L2, AL, "+ ", Oé[lfk).
2k
Whence, £ is semi-regular acting on X, g. il

Now we can prove the following result for cyclic order-reversing automorphisms

of maps.

Lemma 2.8 For a connected graph I", let IC be all automorphisms in Autl’ whose

extending action on X, 3, X = E(I'), are automorphisms of maps underlying the
graph T'. Then for V¢ € IC, o(&*) > 2, &*a € K if and only if o(&*) = 0(mod2).

Proof Notice that by Lemma 2.7, if £* is an automorphism of a map underlying
I, then {*ov is semi-regular acting on X, g.
Assume £* is an automorphism of the map M = (X, 3, P). Without loss of

generality, we assume that

P=CiCy---C,
where,C; = (%1, %i2, -+, 245,) is a cycle in the decomposition of £|vr) and x; =
(&, 62, &) (aeil, aetti, - - aei?)},

€|E(F) = (611, €12, ", 681)(621, €22, ", 6252) T (€l1, €12, ", 6181),

and
& =ClaC™a),
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Where? C == (6117 €12, ", 681)(6217 €22, ", 6282) tee (€l17 €12, ", elsl)- NOW Since 5* iS
an automorphism of a map, we get that s; = sy =+ = 5, = 0(&*) = s.
If o(£*) = 0(mod2), define a map M* = (X, g, P*) with

P =CiC; - Cf,

where, Cz* = (I;'kl’x;'k2>"'>a7;kji)’ x;'kt = {(e;'klae;'k%"'>6;'kti)(a€;'k1>ae;'kti>"'>6;'k2)} and

e;; = epg- Take ef; = ey, if ¢ = 1(mod2) and ej; = aey, if ¢ = 0(mod2). Then
we get that M = M.

Now if o(¢*) = 1(mod2), by Lemma 2.7, o(*a) = 20(£*). Therefore, for a
chosen quadricell in (e, e, .- e) adjacent to the vertex x; for i = 1,2,---,n,
where, n = the order of the graph I', the resultant map M is unstable under the

action of . Whence, £« is not an automorphism of a map underlying I'. b

3. Determine automorphisms of complete maps

Now we determine all automorphisms of complete maps in this section by applying
the results gotten in Section 2.

Let K,, be a complete graph of order n. Label its vertices by integers 1,2, ..., n.
Then its edge set is {ij|l <i,j7 <n,i#j and ij= ji}. For convenience, we use
i/ denoting an edge ij of the complete graph K, and i/ = j°.1 < i,j < n,i # j.
Then its quadricells of this edge can be represented by {#/*, =, 7** 5~} and

Kop(I) = {#T 11 <id,j<n,i £ U{FE 1 <i,5 <n,i#j},

a = H (ij+,ij_),

1<i,j<n,i#j
/6 = H (Z.j—i_a ij+)(ij_a ij_)‘
1<i,j<n,i#j
Recall that the automorphism group of K, is just the symmetry group of de-
gree n, i.e., AutK,, = S,. The above representation enables us to determine all

automorphisms of complete maps of order n on surfaces.

Theorem 3.1 All cyclic order-preserving automorphisms of non-orientable complete

maps of order> 4 are extended actions of elements in
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8 5 n—1

K 1,575 ]

n
s

[s

and all cyclic order-reversing automorphisms of non-orientable complete maps of
order> 4 are extended actions of elements in
af

Oég 045[1,172},

[(25) %] [(25)%5]

where, & denotes the conjugate class containing element 6 in the symmetry group
Sn

Proof Firstly, we prove that the induced permutation £* on complete map
of order n by an element £ € S, is an cyclic order-preserving automorphism of a

non-orientable map, if, and only if,

ceEplUE, an

Assume the cycle index of ¢ is [1% 22 .. n*]. If there exist two integers
ki kj # 0, and 4,7 > 2,7 # j, then in the cycle decomposition of £ , there are two

cycles

(Ul,UQ,...,Ui) and (’Ul,Ug,...,’Uj).

Since
[5(w1), 1 (uz)] =i and  [I*(vy), 1 (ve)] = j

and 7 # j, we know that £* is not an automorphism of embedding by Lemma
2.5. Whence, the cycle index of & must be the form of [1*, s!].

Now if k > 2, let (u), (v) be two cycles of length 1 in the cycle decomposition
of £&. By Lemma 2.5, we know that

[15(w), I(v)] = 1.

If there is a cycle (w,...) in the cycle decomposition of £ whose length greater

or equal to two, we get that

[1°(w), 1 (w)] = [1, 15 (w)] = *(w).
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According to Lemma 2.5, we get that [*(w) = 1, a contradiction. Therefore,
the cycle index of £ must be the forms of [s!] or [1, s!]. Whence, sl = n or sl+1 = n.
Calculation shows that [ = % or [ = "T_l That is, the cycle index of ¢ is one of the
following three types [17], [1, s%] and [s*] for some integer s .

Now we only need to prove that for each element £ in 8[1 S5 and 5[8%} , there

exists an non-orientable complete map M of order n with an induced permutation
&* being its cyclic order-preserving automorphism of surface. The discussion are

divided into two cases.
Case 1 § €&

Assume the cycle decomposition of € being £ = (a,b,---,¢)---(x,y, -+, 2) - (u, v,
-+, w), where, the length of each cycleis k, and 1 < a,b,---,c,x,y, -+, z,u,v,- -, w <

n . In this case, we can construct a non-orientable complete map M; = (?C'al,ﬁ,Pl)

as follows.
Xop =177 1<, 7 <nd(G U™ 1 <0 <nji £ 5},
P = II (C(x))(aC(z) a),
x€{a,b, -+ ,Cy Ty Y 2, U0, W
where,
C(ZI}') = (xa+7 7$$*7 7$u+7xb+7xy+7”'7"'7$U+7xc+7 7:1:2—1-’ 7:1:10-1-)7

It is clear that Mf = M. Therefore, £* is an cyclic order-preserving automor-
phism of the map M.
Case 2 e 5[1 e,

We assume the cycle decomposition of £ being

E=(a,b,....c)..(x,y,....2)...(u,v, ..., w)(t),
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where, the length of each cycle is k& beside the final cycle, and 1 < a,b...c,z,y..., 2,
u,v,...,w,t <n . In this case, we construct a non-orientable complete map My =
(X2 5,P,) as follows.

X2o={i":1<ij<nmi#j}U#F 1<i,j<nji#jh

Py = (A)(aA™) 11 (C(@)(aC(z) " a),

z€{a,b,....Cy...,T,Y,...2,U,0,.. W}

where,

A= (0T 47T T T T e T ),

QA o = (107 T T T T Lt T T L),

and

It is also clear that MQE = M,. Therefore, £* is an automorphism of the map
M, .

Now we consider the case of cyclic order-reversing automorphisms of a complete
map. According to Lemma 2.8, we know that an element {«, where, £ € S,,, is an

cyclic order-reversing automorphism of a complete map only if,

568 ny w]

(k% ,(2k) 2%

Our discussion is divided into two parts.

Case 3 n=n

Without loss of generality, we can assume the cycle decomposition of ¢ has the

following form in this case.
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E=(1,2, k) (k+1,k+2,-,2k) - (n—k+1,n—k+2 - n).

Subcase 3.1 k = 1(mod2) and k > 1

According to Lemma 2.8, we know that *« is not an automorphism of maps
since 0(¢*) = k = 1(mod2).

Subcase 3.2 k = 0(mod2)

Construct a non-orientable map Mz = (X2 5, P3), where X? = F(K,) and

Ps= I (C@)aCl) o),

i€{1,2,n}
where, if i = 1(mod2), then
N e B n—k+1+ -2+ n—k-+2+ % k4 2k+ n+
C(Z)_(Z b yrr sl y Uyt ) A A ) b )7
1. _ (1= n— 2k— k— k41—
aC(t) o= (1", T )
and if i = 0(mod2), then
N (1= k41— n—k+1— -2— ‘n—k-+2— 45k k—  2k— n—
C(Z)—(Z ,’l ,"',’l ,’l ,"',’l ’...77[ ,"',’l ,’l ’...77[ )7
N—1_ _ -1+ n+ 2k+ k4 k+1+
OéC(Z) Oé—(’L y Uy 7Oyt )

Where, i* denotes the empty position, for example, (2!, 22*,23 21 25) = (21 23 21 25).

It is clear that P;* = Ps, that is, {« is an automorphism of map Ms;.

Case 4 ny#En

Without loss of generality, we can assume that

£ = (1,2, )k +1,k+2 ) (o —k+ L — k42, n)
X (L 42, A 2k) (- 2k 1,y AR) - (n— 2k 1, n)
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Subcase 4.1 k = 0(mod2)

Consider the orbits of 12* and n; + 2k + 1'* under the action of < fa >, we
get that

lorb((17F)=57)| = &

and

lorb(((ny + 2k + 1)1+)<5°‘>)| = 2k.
Contradicts to Lemma 2.5.

Subcase 4.2 k = 1(mod2)

In this case, if k # 1, then k£ > 3. Similar to the discussion of Subcase 3.1, we

know that £« is not an automorphism of complete map. Whence, £ = 1 and

5 E €[1n1 ,an} .

Without loss of generality, assume that

E=(1)(2)--(n)(n1 +1,ny +2)(ng + 3,01 +4)---(ng +n2 — 1,101 + no).

If ny > 2, and there exists a map M = (X, 3, P), assume the vertex v; in M
being

v = (1112+ 1113+ . 1lln+>(1l12_ 1l1n_ 1113—>
where, [1; € {+2, —2,43,-3,---,+n, —n} and [q; §£ llj if ¢ §£ 7.
Then we get that

(Ul)ﬁa — (1l12—’ 1113—’ e 1l1n_)(1112+’ ]_lln"l" . 1113+) 7& vy

Whence, £« is not an automorphism of map M, a contradiction.
Therefore, ny = 1. Similarly, we can also get that n; = 2. Whence, £ =
(1)(2)(34) and n = 4. We construct a stable non-orientable map M, under the

action of £« as follows.
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My = (X5, Pa),

where,

7)4 — (12+ 13+ 14+)(21+ 23—1— 24+)(31+ 32+ 34—1—)(41—1— 42+ 43—1—)
x (177,10, 1P (20,20, 2°7) (31,30, 37 ) (40, 47 47,

Therefore, all cyclic order-preserving automorphisms of non-orientable complete

maps are extended actions of elements in

8 8 n—1

[5%]’ [1,s7=

and all cyclic order-reversing automorphisms of non-orientable complete maps are

extended actions of elements in

Oég[(zs)%}, Oég[(zs)il_s} Oég[17172}.

This completes the proof. il

According to the Rotation Embedding Scheme for orientable embedding of a
graph formalized by Edmonds in [5], each orientable complete map is just the case
of eliminating the signs “-+, -” in our representation for complete maps. Whence,we
also get the following result for automorphisms of orientable complete maps, which

is similar to Theorem 3.1.
Theorem 3.2 All cyclic order-preserving automorphisms of orientable complete
maps of order> 4 are extended actions of elements in

g g n—1

n
[ss] [1,s7=

and all cyclic order-reversing automorphisms of orientable complete maps of order>

4 are extended actions of elements in

ag[(zs)%p O‘g[(zs)i‘—sp a1,

where,& denotes the conjugate class containing # in S,,.
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Proof The proof is similar to that of Theorem 3.1. For completion, we only
need to construct orientable maps M?, i = 1,2,3,4 to replace these non-orientable
maps Mi,1=1,2,3,4 in the proof of Theorem 3.1.

In fact, for cyclic order-preserving case, we only need to take M, M¢ to be
the resultant maps eliminating the signs + - in M;, M5 constructed in the proof of
Theorem 3.1.

For the cyclic order-reversing case, we take M = (E(K,)a s, P$) with

i€{1,2,n}
where, if i = 1(mod2), then
(1 k41 n—k+1 2 ‘n—k+2 1% -k -2k n
C(Z)_(Zal ) al ala 72 ) 72 ) alal ) 72 )7
and if i = 0(mod2), then
N (1 k41 ‘n—k+1 2 ‘n—k+2 e ko -2k -n\—1
O(Z)_(Z>Z y oy YUy, y Tyl oy, 7"')7') )

where i* denotes the empty position and MY = (E(Ky)a.s, Ps4) with

Py= (17,1°,1%)(2",2%,2%) (3", 3%, 3%) (41, 4%, 4%).

It can be shown that (M) = MP,i=1,2 and (MP)* = MP for i = 3,4. f
All results in this section are useful for the enumeration of complete maps in

the next section.

4. The Enumeration of complete maps on surfaces

We firstly consider the permutation and its stabilizer . The permutation with the
following form (1, s, ..., T,)(aT,, aTa, ..., axq) is called a pair permutation. The

following result is obvious.

Lemma 4.1 Let g be a permutation on the set = {x1,zy,...,x,} such that go =
ag. 1If
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g(x1, T2y oy ) (p, 1, .. ole)g_1 = (21, T2y ooy Tp ) (T, ATy 1, ...y QT7),

then

g = (Il,SL’g, ,l’n)k

and if

ga(xy, e, ..., ) (X, @z, 1, ..o omcl)(goz)_1 = (21, T2,y ooy T ) (T, Ty 1, ...y Q)

then

go = (a$n> ATp—1, - axl)k
for some integer k,1 < k < n.
Lemma 4.2 For each permutation g,g € E[k%} satisfying gae = ag on the set () =

{1, 29, ..., 2, }, the number of stable pair permutations in Q) under the action of g

or g 18

2¢(k)(n —1)!
€

where ¢(k) denotes the Euler function.

)

[k%1|

Proof Denote the number of stable pair permutations under the action of g
or ga by n(g) and C the set of pair permutations. Define the set A = {(g,C)|g €
S[k%},C’ €C and C9 =C or (9% = C}. Clearly, for Vgi,92 € E[k
n(g1) = n(g2). Whence, we get that

B, We have

] = [, n9). (4.1)

On the other hand, by Lemma 4.1, for any pair permutation C' = (1, T3, ..., T,,)
(xp, ax, 1, ...,axy), since C is stable under the action of g, there must be g =
(11,29, ..., )" or ga = (i, aTpy_1, ..., ax1)!, where [ = st,1 <s<kand (s, k) =

1. Therefore, there are 2¢(k) permutations in 5[k% acting on it stable. Whence, we

]
also have
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| Al = 2¢(k)[C]. (4.2)

Combining (4.1) with (4.2), we get that

20(k)IC| _ 2¢(k)(n —1)!
n(g) = = :
|£[k%}‘ ‘g[k%}‘

Now we can enumerate the unrooted complete maps on surfaces.

Theorem 4.1 The number n*(K,) of complete maps of order n > 5 on surfaces is

1

20k} (, — 2)1% P(k)200R) (n — 2)1" %

A S S

>

kln  kln,k=0(mod2) k) k| (n—1),k#1 n—1 ’
where,
n=3) it k= 1(mod2);
a(n, k) = n(zlig)’ . ( )
s> if k= 0(mod2),
and

(n=D(n=2) = ;
B(n, k) = o AL k= 1(mod2);
) =D0=3) i k= 0(mod2).

2k

and n*(K4) = 11.

Proof According to (2.3) in Corollary 2.1 and Theorem 3.1 for n > 5, we know
that

1

MKy = s x (> @)+ Y [®(g20)]
2|AutK,|
g1€EE n g2€€  n
kF] [(25)25]
+ > [em)
helf  n—1
Lk k]
1

= X (Z |5[k%}Hq)(gl)‘ + Z |5[ﬁ]||q)(g2a)‘

|
2n! k|n l|n,l=0(mod2)
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where, g € 5 B2 92 € g[lT and h € 8 5 are three chosen elements.

Without loss of generality, we assume that an element g,¢g € 5 K has the

following cycle decomposition.

g= (1,2 k) (k+1k+2 ...,Qk)...((% — Dk + 1, (% —Dk+2,...,n)
and
P = Hl x Hg’
where,

[1, = (121, 1%, L2002, 20 2002) | (ntn on, . i),

and

H2 = a(Hl_l)ofl
being a complete map which is stable under the action of g, where s;; € {k+,k—|k =
1,2,..n}.

Notice that the quadricells adjacent to the vertex ”1”7 can make 2" 2(n — 2)!
different pair permutations and for each chosen pair permutation, the pair permu-
tations adjacent to the vertices 2,3, ..., k are uniquely determined since P is stable
under the action of g.

Similarly, for each given pair permutation adjacent to the vertex k + 1,2k +
1,...,( — 1)k + 1, the pair permutations adjacent to k 4 2,k + 3, ...,2k and 2k +
2,2k+3,...,3k and,....and (7 —1)k+2, (3 —1)k+3,...n are also uniquely determined
because P is stable under the action of g.

Now for an orientable embedding M; of K, all the induced embeddings by
exchanging two sides of some edges and retaining the others unchanged in M; are
the same as M; by the definition of maps. Whence, the number of different stable

embeddings under the action of g gotten by exchanging x and ax in M; for z €

UU C X, where X3 = U {z,pz} , is 29©~%, where g(¢) is the number of
(EGE(KTL

orbits of E(K,) under the action of g and we substract 7 because we can chosen

125 k+ 1Y 2k + 1 ... n — k4 1'7F first in our enumeration.
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Notice that the length of each orbit under the action of g is k for Vx € E(K,,)
if k£ is odd and is g for x = i”%,i =1,k+1,---,n—k+1, or k for all other edges

if k is even. Therefore, we get that

g(e) =

a(llj”) if k= 1(mod2);
if k= 0(mod2).

Whence, we have that

n(n—3) . _ .
a(n, k) = g(e) — n_ s, i k= 1(mod2);
| g n(3;2)7 if k= 0(mod2),

and

[@(g)] = 22"F (n — 2)IF, (4.3)

Similarly, if k& = 0(mod2), we get also that

|@(ga)| = 22" (n - 2)1F (4.4)

for an chosen element g, g € E[k%].
Now for Vh € 5[1’16%1], without loss of generality, we assume that h = (1,2, ..., k) (k+
Lk+2,..,2k). (%2 =1)k+1, (%2 —1)k+2,...,(n—1))(n). Then the above state-
ment is also true for the complete graph K,,_; with the vertices 1,2, ---,n—1. Notice
that the quadricells n'*, n?*,--- n" '* can be chosen first in our enumeration and

they are not belong to the graph K,,_;. According to Lemma 4.2, we get that

w1 20(k)(n —2)!

o] = 2200 ayte 20D
16 F ]
Where
e(Bn— n— n—1)(n—4 . o )
B(n, k) =h(e) = %_Tl :%, if k= 1(mod2);
| W_HTA:%, if k= 0(mod2).

Combining (4.3) — (4.5), we get that

1
K) = o (Sl + Y i
2n! (k%] K (7]
k|n l|n,l=0(mod2)

|[©(g100)]|
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X 1€, [12(R)])
n—1)

1 n1200k) (n, — 2)1% n1200k) (n — 2)1%

== — X n n

o T Eer t 2 KE(D)]

k|n,k=0(mod2)
n

n! 20(k)(n — 212600 (n, — 2)1"5
+ > = X =1 )

KDz B F () =y
1%

1 20k (1, — 2)!
- 5(2_'_ Z ) k‘%(%)'

kln  k|n,k=0(mod2)

k

>

k|(n—1),k#1

n—1

For n = 4, similar calculation shows that n’(K,) = 11 by consider the fixing

& af aoand apy ). il

set of permutations in 5[83},5 (29) %]

[1,s%) “(25) %]

For orientable complete maps, we get the number n®(K,) of orientable complete

maps of order n as follows.

Theorem 4.2 The number n®((K,) of complete maps of order n > 5 on orientable

surfaces is

i knkeoimodzy FEG h e

and n(Ky4) = 3.

Proof According to the Tutte’s algebraic representation of maps, a map M =
(X,,, P) is orientable if and only if for Vo € X, 3, v and afz are in a same orbit of
X, under the action of the group ¥; = (a3, P). Now applying (2.1) in Corollary
2.1 and Theorem 3.1, similar to the proof of Theorem 4.1, we get the number n(K,,)

for n > 5 as follows

n—1

=3

o S D S

kln  kln,k=0(mod2) k| (n—1),k#1 n—1

and for the complete graph K, calculation shows that n(K,) = 3. b

Notice that n? (K, )+n"™(K,) = n*(K,). Therefore, we can also get the number
n™V(K,,) of unrooted complete maps of order n on non-orientable surfaces by Theorem
4.1 and Theorem 4.2.
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Theorem 4.3 The number n™ (K,,) of unrooted complete maps of order n,n >5 on

non-orientable surfaces is

CAIEEI)SED DI I

kln  k|n,k=0(mod2)
$(k)(2°" — 1) (n — 2)1"F
n—1

o

k|(n—1),k#1

and n (K,) = 8. Where, a(n, k) and 3(n, k) are same as in Theorem 4.1.
For n = 5, calculation shows that nl(K5) = 1080 and n®(K;5) = 45 based
on Theorem 4.1 and 4.2. For n = 4, there are 3 unrooted orientable maps and 8

non-orientable maps shown in the Fig.2.
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All the 11 maps of K, on surfaces are non-isomorphic.

Noticing that for an orientable map M, its cyclic order-preserving automor-
phisms are just the orientation-preserving automorphisms of map M by definition.
Now consider the action of cyclic order-preserving automorphisms of complete maps,
determined in Theorem 3.2 on all orientable embeddings of a complete graph of or-
der n. Similar to the proof of Theorem 4.2, we can get the number of non-equivalent
embeddings of complete graph of order n, which is same as the result of Mull et al.
in [15].
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Abstract: A map is a connected topological graph I' cellularly embedded
in a surface. In this paper, applying Tutte’s algebraic representation of map,
new ideas for enumerating non-equivalent orientable or non-orientable maps
of graph are presented. By determining automorphisms of maps of Cayley
graph I' = Cay(G : S) with Autl’ 2 G x H on locally orientable, orientable
and non-orientable surfaces, formulae for the number of non-equivalent maps
of I" on surfaces (orientable, non-orientable or locally orientable) are obtained
. Meanwhile, using reseults on GRR graph for finite groups, we enumerate the
non-equivalent maps of GRR graph of symmetric groups, groups generated by

3 involutions and abelian groups on orientable or non-orientable surfaces.
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representation, automorphism group, Burnside Lemma.

Classification: AMS(1991) 05C10,05C25,05C30

1. Introduction

Maps originate from the decomposition of surfaces. A typical example in this field
is the Heawood map coloring theorem. Combinatorially, a map is a connected topo-
logical graph I" cellularly embedded in a surface. Motivated by the four color prob-
lem, the enumeration of maps on surfaces, especially, the planar rooted maps, has
been intensively investigated by many researchers after the Tutte’s pioneer work
in 1962 (see [10]). By using the automorphisms of the sphere, Liskovets gives an
enumerative scheme for unrooted planar maps®. Liskovets, Walsh and Liskovets
got many enumeration results for general planar maps, regqular planar maps, Eu-
lerian planar maps, self-dual planar maps and 2-connected planar maps, etc =11,
Applying the well-known Burnside Lemma in permutation groups and the Edmonds
embedding schemel? | Biggs and White presented a formula for enumerating the non-
equivalent maps (also a kind of unrooted maps) of a graph on orientable surfaces(see
[1],[14],[19]), which has been successfully used for the complete graphs, wheels and
complete bipartite graphs by determining the fix set F,(«) for each vertex v and

automorphism a of a graph!!4=[1519],

Notice that Biggs and White’s formula can be only used for orientable surfaces.
For counting non-orientable maps of graphs, new mechanism should be devised.
In 1973, Tutte presented an algebraic representation for maps on locally orientable
surface(l'OL07I=118)  Applying the Tutte’s map representation, a general scheme for
enumerating the non-equivalent maps of a graph on surfaces can be established
(Lemma 3.1 in section 3), which can be used for orientable or non-orientable sur-
faces. This enumeration scheme has been used to enumerate complete maps on sur-
faces (orientable,non-orientable or locally orientable) by determining all orientation-
preserving automorphisms of maps of a complete graph!'®. In orientable case, re-

sult is the same as in [14]. The approach of counting orbits under the action of a
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permutation group is also used to enumerate the rooted maps and non-congruent

embeddings of a graphl®-1:1],

Notice that an algebraic approach for construction
non-hamiltonian cubic maps on every surface is presented in [12]. The main purpose
of this paper is to enumerate the non-equivalent maps of Cayley graph I' of a finite
group G satisfying Autl’ = R(G) x H = G x H on orientable, non-orientable or lo-
cally orientable surfaces, where H is a subgroup of Autl'. For this objective, we get
all orientation-preserving automorphisms of maps of I' in the Section 2. The scheme
for enumerating non-equivalent maps of a graph is re-established in Section 3. Us-
ing this scheme, results for non-equivalent maps of Cayley graphs are obtained. For
concrete examples, in Section 4, we calculate the numbers of non-equivalent maps of
GRR graphs for symmetric groups, groups generated by 3 involutions and abelian
groups. Terminologies and notations used in this paper are standard. Some of them
are mentioned in the following.

All surfaces are 2-dimensional compact closed manifolds without boundary,
graphs are connected and groups are finite in the context.

For a finite group G, choose a subset S C G such that S~ = S and 1 & S,
the Cayley graph I' = Cay(G : S) of G with respect to S is defined as follows:

V() =G;

E() ={(g,s9)|lg € G,s € S}.

It has been shown that I' is transitive, the right regular representation R(G) is a
subgroup of Autl" and it is connected if and only if G = (S). If there exists a Cayley
set S such that Aut(Cay(G : S)) = R(G) = G, then G is called to have a graphical
reqular representation, abbreviated to GRR and say Cay(G : S) is the GRR graph of
the finite group G. Notice that which groups have GRR are completely determined
(see [4] — [5] and [21] for details).

A map M = (X, 3,P) is defined | to be a permutation P acting on &, g of a
disjoint union of quadricells Kz of x € X, where K = {1,«, 3, a3} is the Klein
group, satisfying the following conditions:

(i) for Vz € X, 5, there does not exist an integer k such that P*z = a;

(ii) aP =P a;

(#43) the group ¥; = (a, #,P) is transitive on X, 3.

According to the condition (i7), the vertices of a map are defined to be the

pairs of conjugate of P action on X, 3 and edges the orbits of K on X, 3. For
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example, {z,ax, fx,afz} is an edge for Vo € X, 5 of M. Geometrically, any map
M is an embedding of a graph I' on a surface ( see also [10], [17] —[18] ), denoted by
M = M(T') and I' = I'(M). The graph I' is called the underlying graph. If r € X, 3
is marked beforehand, then M is called a rooted map, denoted by M".

For example, the graph K, on the tours with one face length 4 and another 8

shown in Fig. 1,

Fig.1

can be algebraically represented as follows:
A map (Xup, P) with X, 53 = {z,y, z, u,v,w, ax, ay, az, au, av, aw, Bz, By, z,

Bu, fv, fw, afx, afy, afz, afu, afv, afw} and

P = (x,y,2)(afz,u,w)(afz, afu,v)(afy, afv, afw)

The four vertices of this map are {(x, y, 2), (ax, az, ay)}, {(afz, u, w), (Bz, aw, au)},
{(aBz, afu,v), (Bz, av, fu)} and {(afy, afv, afw), (By, fw, fv)} and six edges are
{e, ae, e, apfe} for Ve € {z,y, z,u, v, w}.

Two maps My = (X 5,P1) and My = (X2 5,P,) are called to be isomorphic if
there exists a bijection 7 : X} 5 — X2 5 such that for Vo € X} 5, 7a(x) = ar(x),
70(x) = pr(x) and 7Pi(z) = Per(x) and 7 is called an isomorphism between
them. Similarly, two maps M;, My are called to be equivalent if there exists an
isomorphism ¢ between M; and M, such that for Vo € X 5, 7Pi(x) # Py '7(x).
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Call £ an equivalence between M; and My. If My = My = M, then an isomorphism
or an equivalence between M; and M5 is called an automorphism or an orientation-
preserving automorphism of M. Certainly, an orientation-preserving automorphism
of a map is an automorphism of map preserving the orientation on this map.

All automorphisms or orientation-preserving automorphisms of a map M form
groups, called automorphism group or orientation-preserving automorphism group
of M and denoted by AutM or AutoM, respectively. Similarly, two rooted maps
M7 and M] are said to be isomorphic if there is an isomorphism 6 between them
such that 0(r;) = re, where 11, 5 are the roots of M} and MJ, respectively and
denote the automorphism group of M"™ by AutM". It has been known that AutM"
is the trivial group.

Now let I' be a connected graph. The notations £°(I'), E¥(I') and EX(T) de-
note the embeddings of I" on the orientable surfaces, non-orientable surfaces and
locally orientable surfaces, M(I") and AutI’ denote the set of non-isomorphic maps
underlying a graph I' and its automorphism group, respectively.

Terminologies and notations not defined here can be seen in [10] for maps and
graphs and in [1] and [20] for groups.

Notice that the equivalence and isomorphism for maps are two different con-
cepts, for example, map M = (X, 3,P) is always isomorphic to its mirror map
M~ = (X, 5, P71, but M; must not be equivalent to its mirror M. We establish
an approach for calculating non-equivalent maps underlying a graph and concrete

results in the sequel sections.

2. Determining orientation-preserving automorphisms of maps of Cayley

graphs

For C' = {(x1, 29, -+, x)), (e, axy_q, - - -, xq) }, the permutation © = (z1,z9, - -,
x) (o, ax;_q, -+ -, axy) is called a pair permutation. Denote by {C'} the set {x1, xo, - - -
T, 1, Ao, - - -, oy} and g |o, the constraint of permutation g action on 2; for

Q; C Q. Then we get the following result.

Lemma 2.1 Let I' be a connected graph. Then
(i) For any map M € M(L), if T € AutM, then 7 |y € Autl’;
(ii) For any two maps My, My underlying the graph U, if 6 is an isomorphism
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mapping My to My, then 0 |y € Autl.

Proof According to the Tutte’s algebraic representation for maps, we can as-
sume that M = (X, g, P) with X = E(I'). For Vz,y € V(M), we know that

T = {(617 €2, '768)7 (a637aes—17 o '7O{€1>};

y={(e' e -, e, (ae, et - aeh)}.

Now if e = zy € F(G), there must be two integers i, 7, such that ¢; = fe/ = ¢
or fe; = e; = e. Whence, we get that
(1) if 7 € AutM, then V(I') = V(M) =V7(M) =V (I') and

ot ={(r(er), 7(e2), - -, 7(es)), (a7(es), aT(esa), - -+, ar(en)) };

Therefore,

et e{a"}np{y"} or " epf{aTin{y’}.

Whence, 27y € E(I') and 7 |yrye Autl.
(#7) Similarly, if 6 : My — M is an isomorphism, then 0 : V/(I') = V(M) —
V(Ms) = V(') and

e’ e {2y np{y’} or € e p{z’}n{y’}

Whence we get that
e =2’ € E() and 0 |yr€ Autl. b

Lemma 2.2 For Vg € AutM,Vz € X, 3 of a map M,
(i) |zAM] = [AutM] ;
(i) [2797] = o(g),

where, o(g) denotes the order of g.
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Proof For any subgroup H < AutM, we know that |H| = |zf||H,|. Since
H, < AutM® by definition, where M?* is the rooted map with root x, and AutM? is
trivial, we know that |H,| = 1. Whence, || = |H|. Now take H = AutM or (g),
we get the assertions (i) and (7). h
For Vg € Autl', M = (X, 3, P) € M(I'), define an extending action of g on M
by
g =gl Xap — Xag,

such that M9 = gMg~! and ga = ag, g8 = Bg. A permutation p on set € is called
semi-regular if all of its orbits have the same length. Whence, an automorphism of
a map is semi-regular. The next result is followed by Lemma 2.1 and the definition
of extending action of elements in Autl’ gives a necessary and sufficient condition
for an automorphism of a map to be an orientation-preserving automorphism of this

map.

Theorem 2.1 For a connected graph ', an automorphism & of map M is an
orientation-preserving automorphism of map underlying I if and only if there exists
an element & € Autl’ such that £ = & |Yes.

Now for a finite group G, let I' = Cay(G : S) be a connected Cayley graph
respect to S. Then its edge set is {(g, sg)|Vg € G,Vs € S}. For convenience, we use
g°? denoting an edge (g, sg) in the Cayley graph Cay(G : S). Then its quadricell of
this edge can be represented by {g*9", g9~ (sg)9™, (sg)?~ } and

X, () ={g*" Vg € G,Vs € S} U{g* " |Vg € G,Vs € S};

a= I @ ¢7);
geG,seS

B= 1] (¢, (s9)"")(g*, (s9)").

g€eG,seS

The main result of this section is the following.

Theorem 2.2 Let I' = Cay(G : S) be a connected Cayley graph with Autl’ =
R(G) x H. Then for V0 € Autl', the extending action 6 |5 is an orientation-

preserving automorphism of a map in E(I') on surfaces.
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Proof The proof is divided into two parts. First, we prove each automorphism
of the graph I' is semi-regular and second, construct a stable embedding of I for
VO € Autl.

(1) For Vg € Autl', since Autl’ = R(G) x H, there must exist v € R(G),0 € H
such that g = 79 = . Now for Vo € G, the action of elements in (g) on = are as
follows.

20 = (2°)7 = 2y

o = ()7 = P2

Therefore, the orbit of (g) acting on z is

n

l’<g> — (x’$67’1’6272’ cee xé ryn’ .. )

That is, for Vo € G, |2'9| = [0(0), o(y)]. Whence, g is semi-regular.

(77) Assume that the automorphism 6 of T is

9:(a,b,---,c)---(g,h,---,k)---(a?,y,---,z),

where the length of each cycle is k = o(g), G = {a,b,---,¢, -, g,h, -k, 2,9,
«o-,z} and S = {s1,89,--+,8} C G. Denote by T' = {a,---,g,---,z} the repre-
sentation set of each cycle in §. We construct a map M = (X, g, P) underlying I’
with

X, p5(T) ={¢%" Vg € G,Vs € S}U{¢g* Vg € G,Vs € S};

P=1I II (Co)aCila™),

g€T zeC(g)

where C(g) denotes the cycle containing g and let z = 6/(g), then

Co = (07(9)" 9,67 (g)"277), . 07 ()" (a0

and
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aC-la ! = (agf(g)ef(s,sg—)’ a@f(g)ﬁf(mlg—)’ e agf(g)ﬁf(slg—)).

T

It is clear that M = MO, According to Theorem 2.1, we know that 6 |%es
is an orientation-preserving automorphism of map M.

Combining (¢) with (i7), the proof is complete. h

According to the Rotation Embedding Scheme for orientable embeddings of a
graph formalized by Edmonds in [2], each orientable complete map is just the case
of eliminating the signs “-+, -” in our representation of maps. Whence,we get the

following result for orientable maps underlying a Cayley graph of a finite group.

Theorem 2.3 Let I' = Cay(G : S) be a connected Cayley graph with Autl’ =
R(G) x H. Then for Y0 € Autl, the extending action 6 |5 is an orientation-

preserving automorphism of a map in M(I') on orientable surfaces.

Notices that a GRR graph I' of a finite group G satisfies Autl’ = R(G). Since
R(G) = R(G) x {1awr}, by Theorems 2.2 and 2.3, we get all orientation-preserving

automorphisms of maps of GRR graphs of a finite group as follows.

Corollary 2.1 Let I' = Cay(G : S) be a connected GRR graph of a finite group
G. Then for V8 € Autl, the extending action 0 |8 is an orientation-preserving

automorphism of a map in M(T') on locally orientable surfaces.

Corollary 2.2 Let I' = Cay(G : S) be a connected GRR of a finite group G. Then
for V0 € Autl', the extending action 0 |5 is an orientation-preserving automor-

phism of a map in M(I") on orientable surfaces.

3. The enumeration of non-equivalent maps of Cayley graphs

According to Theorem 2.1, we can get a general scheme for enumerating the non-

equivalent maps of a graph I' on surfaces.

Lemma 3.1 For any connected graph T, let £ C EX(T), then the number n(€, M)

of non-equivalent maps in & is

1
nEM) = e 3 12(0)]

geAutl’
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where, ®(g) = {P|P € £ and P? = P}.

Proof According to Theorem 2.1, two maps My, My € £ are equivalent if and
only if there exists an automorphism g € Autl’ such that Mf* = Ms, where,g* =

g |*es

orbits in £ under the action of Autl’. By the Burnside Lemma, the number of

. Whence, all non-equivalent maps in & are just the representations of the

non-equivalent maps in & is
1
n(EM) = o X190 g

geAutl’

Corollary 3.1 The numbers of non-equivalent maps in E°(T),EN(T) and EL(T') are

wEMM =y X 9%k B)
N _ 1 N .

MEDM = gy X Nk 62)
L _ 1 L

wE )M = iy 390l @9

where, ®°(g) = {P|P € E°(T) and P9 = P}, ®V(g9) = {P|P € EN(T) and P9 =
P}, ®F(g) = {P|P € EX(T) and P9 = P}.

Corollary 3.2 In formula (3.1)-(3.3), |®(g)| # 0 if, and only if g is an orientation-
preserving automorphism of map of graph I' on an orientable, non-orientable or

locally orientable surface.

The formula (3.1) is obtained by Biggs and White in [1]. Applying Theorems
2.2 — 2.3 and the formulae (3.1) — (3.3), we can enumerate the non-equivalent maps
underlying a Cayley graph I' of a finite group G satisfying Autl’ = R(G) x H on

orientable surfaces, non-orientable surfaces and locally orientable surfaces.

Theorem 3.1 Let I' = Cay(G : S) be a connected Cayley graph with Autl’ =
R(G) x H. Then the number ni (G : S) of non-equivalent maps underlying T’ on
locally orientable surfaces is

i
o(¢)

L . o(5,6) _
G 5) = g 3 (€02 S0(1s] - e
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where O¢ denotes the representation set of conjugate class of Autl' , & the conjugate

class in Autl' containing & and

|G]1S]-2|G] :
a(S,§) = { |GH2.S(‘)|(-|£-)21—2’|G\ ?f $€0
T({)’ lf é- - A

where, © = {&|o(§) = 1(mod2) V o(§) = 0(mod2), As € S,t € G such that s =
tfo_g_)}, A = {£lo(€) = 0(mod2)A\3s; € S, t; € G,1 <1 <[(£),l(§) = O(mod@) such

o(&)
that s; =t5 ° }.

Proof Notice that ®F(€) is a class function on Autl’. According to Theorem
2.2 and Corollary 3.1, we know that

1

L . — q)L
LV (G S) \Autf\ X ge%tp| (§)|

1 L
- G, % ek 6

R(G)xH

Since for V¢ = (u,v) € Autl’, £ is semi-regular, without loss of generality, we

can assume that

5:(a’b’...’C)...(g’h’...’k)...(l"y’...’z)’

where the length of each cycle is o(§) = [o(u), o(v)],

P=1I II (Ca)(aC;h),

g€T zeC(g)

being a map underlying the graph I' and stable under the action of £, C'(¢) denotes
the cycle containing g and T is the representation set of cycles in . Let S =
{Sla S2, 00, Sk} and z = é"f(g)’ then

Cp = (£ (g)8 119, ¢ (g)8 10292 . ¢ () Cuod), (3.5)

with v; € {+,—-},1 <i < k.
Notice that the quadricell adjacent to the vertex a can make 2/%1=1(|.S| —1)! pair

permutations, and for each chosen pair permutation, the pair permutations adjacent
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to the vertex z,z € C(a) are uniquely determined by (3.5) since P is stable under
the action of &.

Similarly, for each given pair permutation adjacent to a vertex u € T, the pair
permutations adjacent to the vertices v,v € C(u) are also uniquely determined by
(3.5) since P is stable under the action of .

Notice that any non-orientable embedding can be obtained by exchanging some
x with az,z € X, 3(M) in an orientable embedding M underlying I". Now for an
orientable embedding M; of I', all the induced embeddings by exchanging some
edge’s two sides and retaining the others unchanged in M; are the same as M; by
the definition of embedding. Therefore, the number of different stable maps under
the action of £ gotten by exchanging x and ax in M, for x € U,U C X3, where
Xz = {:c Ba} s 2°© 0(€> where £(¢) is the number of orbits of E(I") under

z€E(T

b+

the action of ¢, and we subtract —= because we can choose a g

first in our enumeration.
Since the length of each orbit under the action of £ is o(&) for Ve € E(T)

if 0(¢) = 1(mod2) or o(§) = 0(mod2) but there are not s € S;t € G such that
0(®)

s =17 and is 2 for each edge t{", 1 < i < 1(5)(;) if o(¢) = 0(mod2) and there

are s; € S,t; € G, 1 < i <1(€), such that s; = £ © (Notice that there must be

[ = 0(moalo(5 ) because ¢ is an automorphism of the graph I') or o(§) for all other
edges. Whence, we get that

e(l) .
§(e) = { Die) , 2 ?f e
® Toewr A EEA

Now for Vr € Autl', since § = w&én~! € Autl, we know that 6(g) = £(e).
Therefore, we get that

|G115]-2|G] ;
O{(S7 5) = { |GH25?|(£)21(£)’_2|G‘ lf é- © @
T’ lf 6 c A
and
i
BT (&) = 2739 (|| — 1)1°® (3.6)

Combining (3.4) with (3.6), we get that
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1 \G\
a(S.8) 6]

€0g¢g

and the proof is complete. il

According to the formula (3.1) and Theorem 2.3, we also get the number n,(G :
S) of non-equivalent maps of a Cayley graph Cay(G : S) on orientable surfaces.

Theorem 3.2 Let I' = Cay(G : S) be a Cayley graph with Autl' = R(G) x H. Then
the number nQ (G : S) of non-equivalent maps underlying I' on orientable surfaces

18

nS(G:9) = IE|(|S] —
4 o &,
where,the means of notations &, Oq are the same as in Theorem 3.1.

Proof By Corollary 3.1, we know that

1
GliH]

nu(G:8) =

Yoo 199

EER(G)xH
Similar to the proof of Theorem 3.1 by applying Theorem 2.3 and Corollary 3.1, we
get that for V¢ € R(G) x H,

i
o(¢)

[2°(9)] = (IS| - 1)!7

Therefore,

o] .

Notice that for a given Cayley graph Cay(G : S) of a finite group G, n§, (G : S)+
nV(G : S) = nfy (G : S). Whence, we get the number of non-equivalent maps

underlying a graph Cay(G : S) on non-orientable surfaces.

Theorem 3.3 Let I' = Cay(G : S) be a Cayley graph with Autl' = R(G) x H.
Then the number n(G : S) of non-equivalent maps underlying T' on non-orientable

surfaces is

NG a(S8) _ _
m(G:5) = |G||H| EZ &l (2 1)(IS] - 1)1
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where O¢ denotes the representation set of conjugate class of Autl’, & the conjugate

class in Autl' containing £ and (S, &) is the same as in Theorem 3.1.

o(€)
Since R(G) = R(G) x {1awr} and the condition s € S,t € G such that s = & *
turns to s = t& %41 when AutT = R(G), we get the number of non-equivalent maps

underlying a GRR graph of a finite group by Theorems 3.1 — 3.3 as follows.

Corollary 3.3 Let G be a finite group with a GRR graph T = Cay(G : S). Then the
numbers of non-equivalent maps underlying I' on locally orientable, orientable and

non-orientable surfaces are respective

a1(S,9) _
L(G:8) = ¥ IE[2(S] - i

9€0¢

UG 8) = 5 Y IENS] -

9€0¢
and
nia(G 2 5) = \G| > 1£1(2759 — 1)(|S] - 1)1,
9€0¢
where O¢ denotes the representation set of conjugate class of G, €, the conjugate

class in G containing g and

|G1|S]|-2|G]| ; /
(6] (57 g) = { |GH2.S?|(—|L(Z)21(£])’—2|G‘ lf / © @,
T, if g € A

where, ©" = {glo(g) = 1(mod2) V o(g) = 0(mod2),Vs € S,s & & m} and A’ =

{glo(g) = 0(mod2),3t; € G,1 <i <l(g),l(g9) = O(mod@) such that tig o

€S}

t 1

Corollary 3.4 Let G be a finite group of odd order with a GRR graph I' = Cay(G :

S). Then the number nk, (G : S) of non-equivalent maps of graph I on surfaces is

k(G : S) = ‘G| S &2 (|S] - 1)1

9€0¢

4. Examples and calculation for GRR graphs

Hetze and Godsil investigated GRR. for solvable, non-solvable finite groups, respec-
tively. They proved 2! that every group has GRR unless it belongs to one of the

following groups:
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a) abelian groups of exponent greater than 2;

b) generalized dicyclic groups;

¢) thirteen ”exceptional” groups:

1) 23,73, Zy;

2) Dg, Ds, Dg;

3) As;

4) {a,b, cla* = b* = ¢ = 1, abc = bca = cab);

5) {a,bla® = b* = 1,bab = b°);

6) (a,b,cla® = =b* = 1,ac = ca, (ab)* = (cb)? = 1);
7) {a,b,cla® =b® = = 1,ac = ca,bc = cb,c = a~*b~Lab);
8) Qg X Z3,Qs X Zj.

Based on results in previous section, the constructions given in [4] — [5] and

(
(
(
(
(
(
(
(
(
(
(

Corollary 3.2, we give some calculations for the numbers of non-equivalent maps

underlying a GRR graph on surfaces for some special groups.

Calculation 4.1 Symmetric group %,

Using the notation (k) denotes a partition of the integer n: (k) = ki, ko, -~ -, ky,)

such that 1k +2ky+- - -+nk, = n and lem(k) the least common multiple of the inte-
gers 1(k; times), 2(ky times), - - -, n(k, times), i.e, lem(k) = [1(kitimes), 2(kotimes),
- n(kytimes)] . Godsil proved that?®! every symmetric group ¥, with n > 19 has
a cubic GRR with S = {x,y,y~'}, where 2> = y3 = e. Since |2, | = n!, we get that

the numbers of non-equivalent maps underlying a cubic GRR graph of ¥,, are

1 =l 1 N u
nh (S, 8) = — x 30 2659 x A% = L 30 9 (S.g)+ 2
n. 9en n! e,

and

1 [Snl
M (Tn:8) = S x 20w
n: gEYX,
1 n' chﬁ(xz)
&) I1 %k, (&) IT %k,

and
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1 nt_
n/]\\cl(zn : S) = E X Z 20(9) (20‘1(579) _ 1)

gEXn
For the case n = 6m + 1, we know thatl® = = b, if m = 1(mod2) and x = by if

m = 0(mod2), where

b = (1,4)(2,n)3,n—1)(n—6,n—3)(n—5n—2)

x ] (6r,6r 4+ 3)(6r + 1,6r + 4)(6r + 2,6r + 5)

r=1

and

bg = bl(n — 12,7’L — 9)

Notice that by € Epsgsm-1) and by € Epsgsm—2). We define the sets Ay, By, Ay and

Bs as follows.

Ay ={g|g € X,,0(9) = 1(mod2) or o(g) =0(mod2) but gO(zg) & Epsgsm-1)},

By ={glg € ¥,,0(9) = 0(mod2) but gO(Zg) & Epsosm-11}

and

Ay ={g|g € 3,,0(9) = 1(mod2) or o(g) =0(mod2) but gO(zg) & Epsosm-21},

By = {g|g S En, O(g) = 0(m0d2) but g@ g 5[15237n72}}.
For VO € %, if ( € A; or B;, i = 1 or 2, it is clear that §C6~1 € A; or B;.

Whence, £ C A; or B;. Now calculation shows that

3'(71 — 3)”, lf g € 8[1323m71]
lg) =1 Bln—2)1', if g€ Epspm—y

0, otherwise.

Therefore, we have that
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nflv((zn . S)|m£1(mod2) =

1 _nl @R

C (R IT iRk
=1

001 (S,(R)+ i

(k) ﬁ iki k)
i=1
where,
| .
— .ni'*, lf 5 k C Al
ai(S, (k) = { e
2lem(k) if E(E) C Bl
and
T 9159+ 5
X
nﬁ,l(zn . S)|m50(mod2) = 9< nl
00 (S, (B)+ 2
(k) ﬁ ikik,;!
i=1
where
o 2.107:7i(k)v it &g C Ay
ay (S, (k) = n14240(n—5)!1 .
2.dem(k) if E(E) C B2'
Calculation 4.2 Group generated by 3 involutions

163

Let G = (a,b,cla®* =b*> = ¢* =€) be a finite group of order n. In [5], Godsil
proved that if (AutG)s = e, where S = {a,b,c}, then G has a GRR Cay(G : 9).

Since any element of order 2 must has the form tzt=',t € G and x = a,b or c. We

assume that for Vt € G, tx # «xt, for x = a,b,c. Then for Vg € G,

n, if o(g)
I(q) =
(9) { 0, if  o(g)

0(mod2)
1(mod2).

mo
mo

Therefore, we get that
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_ 207(Lg)7 if o(g) = 1(mod2)
(S,9) = { 3n if o(g) = 0(mod2),

20(g)’
Y 2% 4 9%ote)
(G S) __ o(g)=1(mod2) o(g)=0(mod2)
n 7
> 200

nJO\,I(G :8) = 9€G

and

270 (2% — 1)+ Y 279 (2% — 1)
=1(mod2) o(g)=0(mod2)

N(G:8) =22

n

Calculation 4.3 Abelian group

Let £ = |S|. It has been proved that an abelian group G has GRR if and
only if G = (Zy)" forn =1 or n > 5. Now for the abelian group G = (Z,)" =

(a) x (b) x -+ x (c), every element in G has order 2. Calculation shows that
2n if ge S
lg) = .
0, if g¢5.
Whence, we get that
k—2)2n=2 if g¢&S
a1(57 g) = ( _92 ) . ¢
k22 it geS.

Therefore, the numbers of non-equivalent maps underlying a GRR graph of (Z3)"

on locally orienatble or orientable surfaces are

|Gl
n5((Z)": 8) = \G| x o 2Bk — o
gE(Z2 n
1 n— n— n— n—
= 2—nx(22k2 RO I N G i (7R DI
geS 9¢S,g#e
2R TR — 1)1 4 (20 — ke — 1)20 22 (f — )12
_ -

N 2(1»:—2)2"*2(]{: _ 1)!2"
2" ’
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and
0 " 1 |2
nu((Z2)":8) = o ¥ (k— 1)@
ge(Z2)™
k=D 2r - (k- 1)
— 5 .
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21math-001-009 21S8T
WA

Riemannfi L HurwitzEIREHE S

BHE HE

CHER RS R 58 R, x, 100080)

H%E: — > Riemann @R E— NPT €Mt @ W T T BH B BLARE
=R T A, H B EA € % Riemann dh @ _E AR A B
E R, % T Riemann &ty 8 A #, L34 K d Huwitz £ 19 #

K453, QAT — T4 g>2 8 Riemann ¢hH S, H EWF 10 8 EAA
# |Aut’S| < 84(g — 1), J& A Fuchsian Bt %, T EAM#4 60
SREMMERFATT IS HAE N, EAMAHRER X7 @ N7
X, AXWFEFEE B, &£ TF FH EE® 3 Riemann gh & g B4 34T 4
A7 E, FEENE RN FRELMEE AMBENTESLESA b EE
B A A AR R B9 R, FRIEEA T sk T DA4E ) Hurwitz @ 2 ALK JE A
M —edg ), EmRREAA LB N NFRT .

A Combinatorial Refinement of Hurwitz Theorem

on Riemann surfaces

Abstract: A Riemann surface is an orientable surface endowed with an
analytic structure. Its automorphisms are defined to be conformal mappings
on this surface. For the automorphism group of a Riemann surface S, a well-
known result is obtained by Hurwitz in 19th century, i.e., |Aut™S| < 84(g —1)
for a Riemann surface § with g > 2.Since then, many refinements for this
result are got by applying Fuchsian group. Such works can be also found on

journals today.

YEAER G T EA AL RS R X FER AR LR, 2004 4F 12 H, JLE.
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The purpose of this paper is to find a combinatorial description for Rie-
mann surfaces by applying combinatorial maps, get a necessary and sufficient
condition for an automorphism subgroup of a graph G to be an automorphism
group of a map underlying G and the bounds for the order of automorphism
groups of maps. These results enables us to deduce easily the Hurwitz the-
orem and some other results. Further considerations for automorphisms of

Klein surfaces are presented in the final section.
Kf&5): Riemann dyw, #E, E o9&, F w0 E FEA, B R, #EA,
4S5 AMS(2000): 05C10,05C25, 30F10, 30F35, 30F99

1. 58

AR S 0 T 4 I o PG, (155 %3 E0A0 AT, — A Riemann
& R —A @) Hausdorft 250 S, HEA —MeFrE % {U;, @} W2 TEMR
1116,

(Ch) BN U, 2 S WHHEE, HH UU, = M,

(Co) WLt @, : U; — C' J& U; BE i O LAY R Rm S

SRR, G, fEAT RO R A, Riemann i BA g A E XCHE L 1-1
LR A R SRT

Ve R a2 EE B — R A8, Riemann S AEFHIF L0 2,
WAREIU . s JUT A SR B0 S A g T B (E T ) TR, HA BAERCE D
K HAl Y R B A EEA AL, WIEFE I, 2 RS BEER G
XS 3 BB A TTER. Schwartz B 5GUEM T Riemann #iTH B H FHEHR
BRE Bl X —RfE R 5] AT 28— H 4 & —4 Riemann #iT, H EEAKRH
A A%, Hurwitz 53] 7 HanF E5 6L

%w—NTH g(S)>2 8 Riemann $hi S, E Lty g FH#E [AuttS| <
84(g(S) —1).

Accola T 1968 41837 MRiemann g S FHFEM M TR AuttS| >
8(g(S) 4 1). Harveyl™ i1 Maclachlan"!! %}F Riemann fi FAEFF [ [FH BEM A e
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HFEMRBEA TS, 2 EF2Ah 2(29(S) + 1) M 12(g(S) — 1), 3CHL [13]
LR THr > 39(S) T < 49(S) + 2 B H FMXTRE Riemann #iE S K& A R
HRFRIE K.

AW EEBEW, ETRAMBER LR Riemann #iTH _EH R HEFF
AE, BET R A HE G 4H S 25 H Riemann W B FEAE, B3 HMB EHRE.
KA Riemann g, & & EHEBEHIARES S, 728 W3CHR [5][16]. [9][10]
2],

2. Riemannian giMEAY4H & HEIHEHEY

R T — Rl sy, XA R SN TR R T 2 4R {(v,y)]2® +
y? < 1}, HEIRE SCRVFZ T, SRR i — ORI i BT T RN 2 SCHEE], Tutte
T 1973 £Ega i T Rl AR %0 R PIRoIna,

— B M = (Xop, P), @XNEEMSEES X 8 4 THE Kr,o € X, 1y
TnITHIFHE Xop L —DEAESR P, HWE THEMAHE 1 MIANH 2, XE
K ={l.a,B,a8} 29 Klein 4- JTTHE, Briff P AhEA RS, HATFELEL L, #53

Prr = ax,
/AEE 1: aP = P_IOZ;
/AIE 2: ﬁ \IIJ = <Oé,6,73> T:E Xaﬂ _I:ﬂ‘ﬁzbﬁo

WIEAF 1, MBI E CHERT Xy LATER P JEER 0 i 3
Xf{C, aCa™'}, N SCH Klein 4- JTTHEAE X s ERIVERBEE, #lan, Vo € X, 5,
{z, oz, Bz, afx} EME M #—5%d., NUTEW B, ET#E M 28— E
G ERT LRI (B30 [9,[10]), 388 M = M(G) fl G = G(M), I G %N
R M AR, AR M FRREST r € X WRE, WK M NAeARHE, 0l
M,

HRE U =< af, P> EEG Xopg LRERRAGER, WK M = (X, P) 2
AR, BN, PR,

filgn, B 1 HREEH T 4 Brogel Ky 30 L —Frg, H—AmEKoy 4 1
AR 8.
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B 1

A PMRBER R I T
i‘[ﬁl@ (Xaﬂa P)a iz% Xaﬂ = {$a Y,z,u,v,w,ar, ay, az, au, xv, aw, ﬁ$7 ﬁy7 ﬁZ, ﬁua
Bv, Bw, afz, aBy, afz, afu, afv, afw}, T

P = (z,9,2)(afz,u,w)(abz, afu,v)(afy, afv, afw)
X (ax, az,ay) Bz, aw, au)(Bz, av, fu)(Ly, fw, Bv)

WG 4 AT (., ). (0, 0z, o)}, {(0fz,u, w), (Bz, aw, o)}, {(af-
0Bu,v), (B2, v, Bu)} A {(aBy, v, apuw), (By, fuw, Bu)) . 6 AW (e, ae, fe, afe},
XH, ee{r,y zuuvw}

W‘j/l\ﬂﬁlg M, = (X01l7/3,7)1) Al My = (Xi/g,Pz) %%Fﬂ?f@é’], %“ﬁﬁ_‘/l\ I-1
BRI 7 X, 5 — A2 5, 18 Vo € A 57a(z) = ar(x), 76(z) = fr(x) H 7Pi(z) =
Por(z). B8 7 AXWADHUE A —AE A 2 My = My = M, W My, 5 M, [8]#[A]
WP A M B A, s M TR E RN, EE GBI — 8, RN
HE M #yE R, 158 AutM, S0, PiIMRRsE M7, My BRI, 2
ENZEFE—NHE R 0, 5 0(r) = ro, XH, ri, ro MBIFRRME M7, M
AR, ICPRRILE] M™ /) B RIS AutM™, RATELHIE, £ AutM"™ - MUEE.

Riemann HiT . HER H [ -5 80HE _A = A3 00 B R EE —A 3
HIEIRAR, e Jones Al Singerman %5 Hi iy R] i i i 17 _E i 3 ] B2 AT Tucker X
T EREAVE ARG, FRAOTFTLA%IE Riemann BT A9 B [F4 5 H & H R #) 2 8]
TR ER, HILFE T Riemann o0& 771%,
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FIE 2,108 % G 4 Riemann 5 S EH— Mg EME, W S L HA-NHE
M, #4 G y#E M #hg B, i, hEm S EHEE— A W Cayley
Weyx e M, £ G &2 M* &g B H#,

HiL 2.1 ww S EEFAEHE M, I AutS = AutM.

WiR 22 W@ S LavE M AREFELR, B JAutM| < C, X2 C 5HE
M Ex oy —MEH, N [AutS] < C.

3. EVBRWHEXEE 4 ThEE EF{EH

BLLT = (V. B) H—AEEm 2, JoERMBHE A Autl, BSOS X =
E(T), N 4 STHIE X, & SCH:

Xop = U {z,az, fx, fafz},
reX
XH, K ={1,a,8,a8} K Klein 4 JTEE,
RHERTE Vg € Autl, 3 g 48 Xy ERMRETHEK g% 0T, KB X =
E(G):

MERET Ve € Xog, 7 29 =y, RX (ax)? = ay, (Bz)? = By K (afr)! = afy.

WHLE M = (Xos, P), MEFM g € AutM AHERTR Yu,v € V(M), glv )
uw— v, A u = v, W g IFIEFEME; & w =o', WK g R E R, XHE
B geAutM, GRg A FEEy, 3Oh Ry, B g RS ¥ g EAH SRR
HE RN, MEEEEAS FE g R, R RS R g RS TERE N
R, G < AutM, X GY = G R G RRSFRE TR, NGT h G+
B3O 2 A, WU v FRAN v = (21,22, Tp)) (QTp), - - -, Az, ),
WCH v ERATEEREEA (v). MIXTHLER A AR, B T RHR.

BIEE 31 # G < AuwtM HHE M W8 FHTE W Yo e V(M)
(i) £VgeGgHFHERM, U G, < (v), HEXE;
(i) Gy = <v> x{a).

W (i) KK M = (X5 P). HTERE Y9 € G RH~5FIR EIFEM, #Hot
Yo e V(M) h € G, Ho"=v, RETK
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V= (21,2, Tp()) (AT p(0), AT p(o)—1, -+, QT1).

UES)

(21, T, -+, Tp() (AT (), 5 gy )| = (21, T,y - -+, Tp)) (AT (), T, ).

EEE—R, & h(z1) = 2341, 1 < k < p(v), WFH

h=[(w1, 22, Tp)) (O p), AT ()1, axr)]F = 0",
 h(1)) = ap)—re1, L <k < p(v), WA
h= (21,22, -, Zp)) (O p), AT py—1, -, az)]fa = vta.

h = vta, SE V" =" = v, BULK b RRSFRE R, 80H h =
1<k < p(v), BY G, EGIEER v TR, B &N G, TOTHBUNESEE, T
Gy = (ve) = (v) o ot AATREFRE,

(i1) Xt Vg € G, H v9 =wv, B

[(zla Loy -, l’p)(OéZL'p, ATp—1," "+, C]51’1)]51 = (1'1, Ty, l’p)(OéZL'p, ATp—1," ", C]51’1)-

KT (1) BIEM, SR s, 1 < s < p, f#iff g = v° H g = v’a., WA
g€ (v)Hyge (v)a, Al

G, =2 (v) x {a). b

B3 3.2 %I H—NE#EE, # G Aul, A VoeV(I),G, < (v)x(a), I G
B Xop EOERZFEN 8,

W ARE—A 4 TR © € X, 5, TATEH G, = {1¢}. Eh L, % g € Gy,
NAF 29 =z, Feplhh, HCERTE o 75 g fER T AZ), BRI v =u., &
u= (2,91, Yp(w)—-1) (T, WYp(u)—1, -+, Y1),

W T Gy =2 (u) x (o), #&
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=2yl =y, Y1 = Yp(u)-1

(ax)? = ax, (ay)? = ayi, -+, (OYpu)-1)! = WYp(u)—1

BPXHAE—RERT TR w (9 4 JCHERE eu, ef = ey MKTEH RIMHEE Autl £ Xy p
LRI S, A

(ﬁx>g = ﬁ$, (ﬁyl)g = ﬁylv ) (ﬁyp(u)—1>g = ﬁyp(u)—l

(aﬁx)g = aﬁxv (aﬁyl)g = aﬁyl, T (aﬁyp(u)—1>g = O‘ﬁyp(u)—l

XHE, R —NIC v € Ao, Wy RERIITUEA w, M i R EEYE, 5T A
FEE—25EHE « Al w WIEEE P(u,w) = uvivs - - - vyw, NRFEME, ® By, KRBT
Tt v, W (Bye)? = Byr X Go, = (1) x (@), FHE—PRERTF TR v1 7 4 JCH
B €y, €9, = ey,

Fefoltth, ZALAT—ARBRTF T AL v B9 4 JTOHIRE e, 76 g FERITANED, B (e0,)? =
€, WA RAIE AR — DGR T T vy 19 4 JTTHRE o, 78 9 TERI TAZ). IR
Heffe, BBEULAMT—NREEF TR w # 4 THRE e £ g TERTAZ), Filth, H
Y =y.

WA g =1¢, NTTA G, = {1}, il

BAE, IWATERAER B FA Ry R B R R 254 .

31 kD A-NHEAE. # G < Autl, W G 2N T HERENHEE R
MBNTEFMFEXN Ve VD), REFTH G, 2 (v) x(a).

B REETIHE 3.1(i0) SR BER . BIERA S5 (400 78401

HEIEE 3.2 41 G 7E Ao ERFERZEIENR, BIXE Vo € Aup, F |G| =1,
BT « 76 G AER FIBERE 29 = |G,z = |G|, Bl Vo € X, 5 7 G FEHITHY
HMERKEY R |G|,

WG V(D) FERIEE s KHE 01,0,,---,0,, XH O1 = {ug, us, - - -, ur},
Oy = {v1,v2, -+, u}, .05 = {wi, wo, - - - wy b, WATME L T FETRAIEE, 53
T G VER T A e P,
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R, X Vu e V(T), B |G| = |Gul[u®], 51 [k, 1, 8] |G], 3KH [k, 1, ] %
kLt R/ NARERL.

LATE S E HHE %_T%Wﬁﬂ‘])‘f& RS v € O1, BRETHE G,
HIZRR N {1G,g1,g2g1,~-~, il;ll gm—i}3 XHE m = |Gu1| KME T FCEEF A w
1y 4 fcﬂ@ﬂ%%ﬁﬁ N(w)., EHRRAUTHEMS N(uw) @oTHERFE, B4 5
HfE uf € N(ul) M Gy, T8 uf A auf ERIEH, 5 IJ 4 THETFSE A =
{uf, g1 (ug), - H Gm-i(u))} T @Ay = {ouf, agi(uf), -« H gm—i(uf)}. EREH
l’é—léﬁﬁﬂﬁﬂif 4 EH@H”J:E’WFJ%EX M A Nad =0, 4% Ay T A
Al = uf, g1(uf), -, H Gm—i(uf).

%NE)\(AlLJaAl) = 0, W N(uw) PRTHHFSRRE Al % N(w) \
(AiUad,) #0, EX4JDHE;§§31’ uh € N(u)\ (A1 UaA), AR G, Vﬁmﬁ_ﬁl? uf I, 15
2 Ay = {uf, g1 (uf), - 1211 gm—i(uf)} Ml s = {auf, agi(u}),- ,OéZl:Tl Gm—i(u?)}.
B A U Ay iy soHEF A

A1UA2 uy, gi(uy), H u1>91 ul H

# N(u)\(A1 U Az Uad, Uads) = 0, T Ay U Ay S TEHHEFZE RS AL A,
I, N (uy)\ (A U Ay Uy Uads) £ 0, TTIT 4 TR us € N(ur)\ (AU As U
aArUady), —fH, HE LR 4 TCHE T8 AL Ag, -+ AL 1L < < 2k, [FIFFEZ
B THHF AlUAU - UA, # Nuw)\ (A UAU---UA Uad Uads U

~UaA,) # 0, WATLIB 4 T uf € N(u)\(AUAsU---UA, Uad Uads U --
UaA,), %% 4 TEHIK T4

Ay = {uf, g1 (u), H

aAr = {ouf, ag(uf), -, o H gm—i(uf)}

K A HITHIHER

m—
—_—
A1 =uf, g1 (uf), H

r+1

S U A, AHIEH LR
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T N
r+1

U Aj = U Ay m
j=1 i=1

G Ez]

H A B oo 7ERAETRE Go, fEFI RIS, FAREEET 4 SIEES Nuw)
k

,61 A, SRS | A,

Jj= j=1

RE TR i HIBED

0w, = (C)(aC™ ),

XH,
b b —1 m—1 b m—1
C= (uiclb’ Upy - ,Ui; gl(u(f)agl(ul)7 e ’gl(ui)? ) (uib)’ H (u1)> ) H (UT))
i=1 i=1 i=1

IHEBTS w, € 01,1 <i <k, % heq, #15 h(u) =w, NEXTE w 1
WE 0u, A

0u, = 0y, = (CM)(@C ™).
MET O, & G 7 VI) EryshiE, 8h
k

(H Qui)G = 1:[1 Ou; -

i=1
%Mﬂﬁ, %)‘U—Fﬂiﬁ O2a e >Os *Tﬁﬁlﬁ@ﬁﬁé Ouis Ougs " 5 Ouys * " "5 Owyy Oway " 5 Owy s
[FIFEA
1 o l
=1 i=1
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B SCHE e

k l t
P = (1:[9%) X (HQW) X X (ngi)
MHTF O1,0,--+,0, % GIET ERERSUE, A

PG = (1:[ Qu)G X (H Qvi)G X X (H sz‘)G

TEXHE M = (Xop,P), M G M #H R, f

EM 32 %D A-TERAE, & G < Awtl, W G &2 T 28 B EH 5w
HEA BN R EA RN Yo e VD), REFH G, =2 (v) RIEFH.

IR MRAETIEE 3.1(0), FAMHRLER. HEEAEEH 3.10) IEH M VES T
SERY RIS, MG SERR B M ORSEIR B R EE. y
B R PE R RER TR SR RIS, g s 3.2 T ARSI A T HEL.

#iL 31 kT H—AEEE, N wE—MEF g EmFE A dE LN D A&
Al By 30 F B R

iR 32 AEREEH n, FAE- MU REXEYEREN R FERE M, £
% Z, A M B E R,

REFL 3.1 M 3.2 45t T IEIRY B R - O LA D A T 1] B R AR 7E 00
WEZEAF. SCHk 6] . Gardiner S AGER] TFEM AR LA — 22 2R G 72K BAY
I, DU |l T AT — I LA PR A 2 PR R PRt ]

4. #ERY B Fltast

mE—TE L, HEE—FTE P, flan, IERFE. @, W 2 REHRVE L1y
P-TH., X =E(I), @ Xop THITH A BFEMER P, 5 A EMERE T
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i P- & T HUE R B R, RAOTA ks

T 41 BT h—NERE, # G < Autl A Yo e V), B F# G, <
(V) x (o), Mt 4 THESE Xop THAEEHEER P WTE AWRNES AP), A

[[v¥]|v e V(D)] | |G]
Fn

|G| A[|A]
ﬁEa [au bv] %j& CL,b,"' %%/J\Q\{%ﬁo

Y ARYEEEBE T —NMARGR, X Yo € V(G) F |G] = [Gul]ve]. K
[T |G, WA

[v°lv e V()] | |G

NHGHE 3.2, JIEE G 1E 4 TTHER G Xo s DRITERDZEIENIET, B Vo € X,
A |G| =1,

BEIERE G EMHE A(P) ERfER. EEE A€ A(P), MBT G < Autl, i
Vg € G.AY) € A(P), B} A% C A(P), #F 2, G 1€ A(P) LIRS A, i
HATATLRA G X A(P) Hig 4 TTHREHEST 2. X Vo, y € A(P), B z~y X4
HPBAFAE g € G, (ifF 29 =y,

R |G| =1, B 29 = |G| J1 G 1€ X.p EAERBEA— R PUERK R
G|, X@TF G 78 A(P) ERTEHEEAR, 8 G 78 A(P) LARRB AT —25
ERRENN (Gl TR AP) F354 [A|lA] A 4 JohafE, A

IGITIA[Al g
Bl P oy I i ERE KB KT 2 iAFZSR, WA T JLAE B,

Wi 41 T - HEAEAE., F G < Autl H Yo € V(D), g T# G, =
(V) x (), MET FHEZREN 2 EE Tro, K

T
@l 1= =Bl 21 reTn,)

Al v RUERMER Tri, A
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T
G| | 2T 7,1 =|T| = % >1, TeTr,).

A, G Oy E M B E R, oG, )) RoaE M v EKY i, AFF
WHH JE L, WA

K8, (a,b,-+) BT a,b,--- WEAMEK,
i 42 T A—PFEAEAE., F G < Autl H Yo € V(I), BE T# G, =
(v) x (o), M Tr h#&EE T, WA
G| | (20,1 > 1),
XE, 6 RTET FAB TR,

Wit43 KT -1 EHEE.G 2 Awtl EVoe V(D), B2 78 G, <X (v)x{a),
A&
|G| | (2iv;,5 > 1),
KE, v kBT WRA ¢ TR
WM Eidsgie, BT LA 2B S Riemann b H [F#H) 5.

EEA2 KT H—NERAE,
(1) F G < AutD ZEAEN T 08 M, g(M) > 2 #yF i) 8 BA#, WA
|G| < 84(g(M) —1)
(1) # G = AutD 2R EN T 30K M, g(M) > 2 th g R4#, UAF

|G| < 168(g(M) — 1),
XE, g(M) HHE M th7H#,
P SHE M FPEEIR (M) 5FEHER o(M) -

T

1/( sz

z>1
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- 1 )
(M) = m;ﬂ%
XE, v(M), ¢(M), o(M) Ml ¢; 3HIFR M FRTIERL R KOy @ TR AL
TRy j HITEEL.
W v(Mp(M) = o(M)¢(M) = 2:(M), #H, v(M) = Z5 il o(M) =
%;((]%) . RYE Euler A=

v(M) —e(M) + (M) = 2 — 29(M)

XH, (M), g(M) s3RRmHE M fhEf=#, &

FN1-2-2 >0, Fk>31> 2, HERF, M 1-2-2 fRKERN
21, HAXY (k1) = (3,7) 8¢ (7,3) BYSE50L, A

S(M < 42(g(M) — 1),

WAIEEH 4.1, 51 |G| < 4e(M), FIn, EBE G RSFHE, M |G| < 2¢(
yil

M). #%
|G| < 168(g(M) — 1))
HEE G Rsrmiy, N

G| < 84(g(M) —1)).
FFHOLE AN G = AutM, (k1) = (3,7) 5 (7,3).

i
Xt Riemann M H B [FA9H#E, H

#ig 44 XHET5% g >2 & Riemann $h@ S, A
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49(S) + 2 < JAut*S| < 84(g(S) — 1)

89(S) +4 < [AutS| < 168(¢g(5) — 1),

IEE ARG 4.2 MHEL 2.2 A1 |AutS| AT [Aut™S| B LR, BAEIEHET
A, FEEE—NTHHK g > 2 B Riemann B b, FATEE—DXFRHE M, =
(X, Pe), XB k=2g9+1, W0TF:

Xk = {xlv X,y Xk, AT, T2, +, ATy, ﬁxb 63727 ) 6xk7 aﬁxla Oéﬁ.]fg, Tty Oéﬁ.]fk}

Pk? = (xh Ty, Tk, Oéﬂﬂfl, Oéﬂﬂfg, ) O‘ﬁxk)(ﬁxkv ) ﬁl’g, 63717 ALp, -+, OT2, Oéﬂfl).

G My, AXSFRIGE, HILSFE B AR Aut™ M, =< P, >, HEHHAY
k= 0(mod2) B, My H 2 AN, T k= 1(mod2) B M, {UE 1 ANE ., X, MR
w21, A

|Aut*S| > 2e(M},) > 4g + 2.
Giln®

AutS| > 4e(M;) > 8g +4.

5. HAE5IRE

L RAAEHIE, BRATEM T Hurwitz E3, [FEHER T HS5 58704 HAUSHE
X LI TR S K R 3, TR 7, B, TS 7 KR 3, HoXFRHA .
XX PR E FIAETEYE Macbeath 7ESCHR [12] Hrfgde. H4h, Hurwitz & BE5 [RA
FH—RAERE: pE—NERE, DEVEASEANMEGRAFENRANES D2
H X BE B A AR K R RR M B M A R R B A AR ? X — RN R R, AREXTRA
WF5¢ Riemann B K3 & 0 B MBS 2 X.



Riemann W & _ Hurwitz &3 WA A3 181

2. B4 Riemann Ml 5 —268e5k B MBS 89 L5, #14n, Harvey!” F1 Maclach-
lan!" %+ Riemann Hi_FA§EF B R BRI B MBS H TR, L ER
7R 2(29(S) + 1) Fil 12(g(S) — 1), Chetia M Patra 7E3CHR [4] 25 i T A HRE
WAy 5, X R A B AR BRI 8 e B A B R ? R, b TR
JEXTFRHE ? X —2Km S, HATMEASIRAMIMEN. (RAAEFIEERERE
BRI N A A X L T, R RAS RN — N EEMN A
&I,

3. Klein i % Riemann M, [T EGHFL S Riemann #EAHPIAER, 4
n, Klein BHTE A H R EARRE . EE SR 4.2 f03ER FH3H5A 23 E § 7] &
PR, BCRARY 7k v IS BIXER T @ B M, (M) > 3 f B B, &

|Aut™ M| < 42(g(M) — 2)

|AutM| < 84(g(M) — 2).
[FEF, AR — A EmfliE S, 9(S) >3, &

IAuttS| < 42(g(M) — 2)

AutS| < 84(g(S) — 2).

FRE, HES ALY BACYH TR R 3, kR 7, Sk, TURIRK 7 KA
3, BT FBYXI PRI, X RIEDEBAFAE? AR5 Al MR,
HIREZA?

4. Bujalance 7E3CHK [3] 45 T AR E MY Klein #iE_LJE3F B MR RKH, 5
Riemann AL, #E—2 WA G M BER DT R AR REAY K 45
PP ) Klein #if 2 8 XA — AL,
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HKIVBF 2B -
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(b EH B HES £ AR EFAR, L3 100080 )

faE: RKEHENLERE, AXERT R\ —MEATARKY —PRF
X, AEFFHH. - FKEAXT T, AT RBAFR
R, ATEMFRAEEIEALUREICGETA RTEA
8 TS, XA EH T A 1985 4 -2006 4 & A FER FH X NRER
B, GEBRT —LHARRANREADTE, AFERFAMER MR YL
2,

The Mathematical Steps of Mine

Abstract: This paper historically recalls each step that I passed from a
scaffold erector to a mathematician, including the period in a middle school,
in a construction company, in Northern Jiaotong University, also in Chinese
Academy of Sciences and in Guoxin Tendering Co.LTD. Achievements of mine
on mathematics and engineering management gotten in the period from 1985
to 2006 can be also found. There are many rough and bumpy, also delightful
matters on this road. The process for raising the combinatorial conjecture for
mathematics is also called to mind.

IHE: P T, TREEH., BtE, Bh)e, BER. $E4AS
LB,

AMS(2000): 01A25,01A70

— 00 HEHAHAZ=Z+—H B4 10: 00 %, PEBIEREEF S RER =R
WEITH, FE “On Automorphism Groups of Maps, surfaces and Smarandache
Geometries” (M ®E . dh & & Smarandache JU{F By B F A4 #) B )/5HEmHH
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247, SULFERE, S5E SNJ 23 14 Perze M HWMIE R IR A, ILRT, W
M NAECZ M BUoE . WrikEr, BRENAEEE R HARE BEEN BRI, &
B A, BRIREFI Map Geometries—Bxif, FEPLBEMF R AT w250,
B R G X RAER T Fh—iKE, 3 “Iseri # Smarandache LT % 7 3
ERE AT AEIRS, W EXKERERED?” W “FE L, FREE I, MH
#51d Iseri X T Smarandache W WA A% F, X B & X8y Map GeometriesZ e,
WA AR, BT URELAEG BT, FHURAGHET 2R EER
R AT EE S E, WP, A8 T HANHAEHE %K.
T L I E MBI E .

U ERBEELERESEAE—E. 28 T HREME T, BRN—L
AT ABEBN THAR. SRARE TS EAIMEER R OG53R, X4
AR P I A — SR S U X SR AE A8 N KA BT 5T 77 T R

(—) shE

FRAEN 103 TRIHEMRAEMNETER () TH/NERr /e, F
1976 SEEL, B H/NETHRI R B R BL], SOCRIHME 103 TARTEERIRAE S
WERBH T TR, e/ ilny) " B3R AR T =428, JTEFE 7
VR ERMLE A2, SORRIBIEHRE, EHE CHE T8 TR
FRCSHI . XA, 1976 45 9 A -1978 4 7 H, FORBNZLEAFZERZY+ (FI4F
).

I A E R e B35 2. IR EFRREXT Goldbach FF A8 i «1+-2”
ATk, P B B AT R B AR, R R IR B AR SO “ RHE SR
AR BRI TR . TEREARI 22 2] IR W AT T S Hi -~ IRAR
S [ 22 T R D T 3 — SR

FHEYIIEA LA LA AR WL, BRIt
I FRATT TR LRy T, BRI . RAETRAR SRR Z it (A1 AR
& LI T, AL/ NERRE R P, HEA PR, AR LA REER A,
TPREARHR I IR IR~ HAAEA R — PR g — i BeF iR 58, 28 =30
BB YIFRFIRESE S . AR AT R T m iR e, KR BAEERIEA
TR E S — IR S s B X R R SO R AR B R

1977 EZME RIS, BECER T 120 20, BEHE — B,
HOE AT HIEHZITHA A BA A G EE AR, MRAFEERIEFA, —2H
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BHRES .

WAV PRCE S RIS AN, — B BT8R, Flat ) S — S R
RESH PR 5 AME, Xt 2B EA 22 ) B (A — e B AR 518, 5
R ZHUE—BRF FERE R TS, BIARRHAVSEREE 75T DR,
RN rhr 2 A SR L T 5 7 VA TR IR 2 ME T PR Y

ICAR Y BT RI R FE 2 A 2R, 220, /NS, AT R 2R i A A i
T4, FE2ed 103 TREFIERHGIM L) 8 5 A5, fhilERHEFEER
F_TRERERGN TE.

v E S e B A5, RS T RESF S, 47 B2 BTt
222 FHIET 100 ZH AL BB TR 222], Af 50 Z4&97E 1 3E, 51-100 H#7E
2 PE, IS RAN S L F2E 80 4 1 Ji2 . BB msid, RE
BeE 2P AR R, MORE S IR — SURIME . FRERA IR IR SR, IR
ZINT 1979 SE=HB B X8R 53, A8 THIXES 18 B4R,

1o A R K — SR PRAME Y, AnVRSEN AT AT 4K LT AR Y L SRR
B ERFEEZIRFRY BT R AAGE=ZAREY, HEN CAELAF
KA, BECBHEM CEEHEY GE) 4.

1980 4F 4 HIACHE &R i A IE MBI E L, S mEILEERE B &
hn5e 1980 575 f5 ZHy FE L.

m TR B B TR B A S A A ARSN, S, W naR s A R R R
HE, MEXXIMEAMBCEZINEE TE&SER, MREHEES. eHyNmE
ANE, NEAGEHEH HAY . B R & — B, X EER . 52
br b, R 2% AN B — D B R R ZUT R R IRAE R, ARE
B CRANEH”, ZAERINATER “BIEFR” X%, RETHRFIK 60 445
FEARU, WREZ RIS 4 AR B MR IAAX R
BEAHME G R XNEHEMAEH? ARA FIr4RE%E. R, &5
FREHASERR B R A T N SLRR R BT, XOREC S A T T AR 5 A ALY
[

W

(=) BT A

1980 4 7 AIREH AT EEAL K EEF L TV LREZER A5 LRI R
HER Crsgoey (1), BIFILJE NARES IR E (k=5 ). TREITHY
PR BT, FIRARESE T B ERCE, TR E SRS 4 (R F 047 A
&) BT,
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1980 47 12 ARSMTAR, EEES —R—AR % T —&HTFL, St
SRR K Rv ] BET L EEE P PR, TS AN IE, e L
EPROLLW NG, A WA L2 B T, — BT A S R R,
BONTRRESEASER T . KR, 5 H— AT, T AR R iR b
WERT, (ERAEHTE ST R A 1],

B k2 SRR (B TR LK B S0 (% 3 of
S 475y — R H A M AR B, FREIA RV AR T RAETA
IRERS I 52 ST R MM RE, RO, 1T AR B S
I, AR, BRI E CRTARA B R R AR BT T
BrATEE.

1983 4 6 HRZMFEER ~H—ARFERRA ARSI, 085 1 4
CEA T

(=) 2B

HFHET AL ZERE, 1983 48 9 A& 1987 48 7 ARFEACEIREF R LI 5 R
AL 83-1 FE27 2] X B R BRI ANBA TSI B B . I S= R
MG, 1985 SRR IAE € & JF o 70 ) LA

(1) R EL. PrERAH X RMI RN, + %% %%, 29-32,1 (1985)

(2) FIHER RS, TR RFAR, 22-23,2 (1985)
P SCEE

M 1983 4F 10 A, St BIREZIFNF, ALK Tl K173 B £ its 5
T RG22 EAREE TR RE ., XAHIEEST T (B E Y CEER
B, CEEREY, (A% FEY., CE®BY SRR, HHERE, b3S, #i1—
5 ] I R i A 4T (PUR B R% ) B CREE Y (&
FHRIEER Bollobas ), —22%%5%8 T HIPIE, X RIGRNFERTR, AR5
% ERER T EEAER . % D R EBOT e n e B 2T oA IR SC TR TR, fhAE
ST BT = ARRIBAK, K5 AR FALE, B XA BRAERE
LFERERRTE? 7, TRMAERR EET (123) 5 (132) A EHHU: « Xl e 4
TR, HILET IR AR TR, BUORIE T A I IR ss THES, Bl
F T HER 7 i Bk Rl BRI I 72, XI5 SRAE BRI 8 T R
FFH IR SRR T HEAER.

KR, BHEEEME R —RARECTBEANFERY LR “XTEFQ
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By LA 3 AR RONE R — T, X “H A R BEREFS T, B
B, AE—LKFEFNTFRT .

TEWHEE LIRS T, S RERRIRIE, AR LS4 R I A
JUASTT IEEATHE, XFERRG 2R ) T =Rk sC, e BRI H0R T R,
XA RV SCHY R AR R AR, At HE T YA X AR — MR E e
FHTEE, RGN, MG UrRa T AEAEEERK Erdos AL MERE, &
HBREHT I — T . L2 LA, REE] T — P —ethaiR), BARRAETIRR
X AR, (H% R IR O 4 RS AR 1. IE4F 1987 47 “2 [ 1 )m &g
ARG EHAZMNATF, BEES XKW, SACR TS T itAEEn.
RSN T XKW, FHAES XA RET T M.

1987 42 11 A, mHERAR O BIE T R4, AR T EHNEA
PAMERRE R . JE ARy B f T S0 A o B2 e B A B B X 2 R 2.
WRBX M F R R, B (R FY AR TAGESFXCE
BT F R H I, R SO T I TR A, W SE)R % LR, HBF R
WA HE T HRXFE DA XFRIRE CR A& ) LT 1990 FIEXKKR.

2 AU U B R D AR B F W, R & P AR R RSP AR
HEETIR, B —BWAER, ARG T B ] A0 B H IR — 2508,
FIFE TR S0 E 2T —E IR M. S INE 52808 — 50
PHRPEE ], AN 1986-1987 48, mJc/a SN T BAEHT T R (BUIERE) EFr
“Kac-Moody fRERIE” , L TALKFE B (BUFHERFHIR) EFH <0
SRR RN HTHEIE” 4F . XN T RARAEB U7 — D W Z R A4
AR TA/MEH.

() EHRHRAEIE

1987 4% 8 H, HIEE T FEER J/F—nd, 2E T IEAF S = TR EFEAR R
ERARR . HESs EERM G THLR BT, i TO7 Z MR TR Tad f2 A
DA BARNER

FAE 1989 48 -1991 4 8 AZ IRV 522 e — I AR @ BB 5 1991 410 A
-1993 £ 12 AFHNEARG, ZMALrOe R T IR TRED; 1994 41 A -12 A
EPEEA AR =0 A F A EARBRHS, 1994 5 3 A PRI TR
Jifis 1995 4F 1 A -1998 4 9 AALACHT B 7 AL BE 145 PO AR, X TARR T
JEBENE R “EIEI” TAE; 1998 4 10 A -12 AL e R R H & TR0,

X—AEHREET TS — B, 8 — BT T ARMES Y 2L, i
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XoF B PN e /K B KR T A CHOR M5 . X RBIE K M Wi B B AR R
. SEIETE LA T R AR E R ERMERR, IR 7E E i Tk
REFFARRSC, BEERLHEA, ELREMZ2ERFHERT 2B,
FHWBESINT €2 A T M T A LB H 0 A F M) F1 5 TA2 3 T 526 F 4 )
22 M 7T MRS .

BRI, ) 80E  ERRE ARSI ARG . BAMB AR T
BN ABFEL VAR E2ER, TEM 1991 £ 4 AFFGES It ESHEFA
222K, B 1995 4F 6 H S VB R, R0t R 2= m & W N B Ll AR 5
I v A

X —BF S N E A — R S, 1988 4EAE RIEFHF RZES 00 “H Ja
EAHEGRMACER T84 5 1989 SEFE AT S «2EF N mEIREARILMS”
%,

1993 4EH ), e B IRME, bR S —ET 1994 4 8 A EKESMm “&
EHE/NBEREARZR S, XHFERIOHRE T 4 FrBEMRERRBER, &
XETH G E 254 3] T hamiltonian EIATHFS b, Zeadxt 1991 4 & 3275 H br Bl e
Z=i b Gould ##—Im 4R SCRE A2 > BAHIEIR SCHIBFEE, RIFLETEM T — T
hamiltonian B FJ3C, 3 AITE CRIFENIREFE R . CBEEFR SR Y e b
R,

Zhn “2EE/NBEIRFE AR S RS, FINR T H#E 2 K2R %,
AR IR, tEEREEERH LA, A — S 2SR T
ER, WS AL EH, 2% F, IESEBHAKR

h 2 .
G v R Sl il
B e N o

&l. (e Al " v

1989 &£ 50w “2E % NmEHBFAR RS (WWARFH)
R %H5Z BN AE) 6%
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] B

1994 £ 5 0m “2HENBERFAR TS (WEAR), FEGLEEGY

EABHHEIETE CRCBEY KR FA R G IF0N ., KR FS M AKFEY F
ZEARMATI ERERT b MEEHR .

1994-1998 4EFRAEACHTHE A P He 8 O TR BoR B B TR, 4t
B &R AT hamiltonian K] —2i03C5EFR ERFEX —BIASEMA. “B—#
g BN E, A EERRE”, LA AL AR T TR, AER I
IIARE THE, HRAIREREEE L. —KEROVLS, FECRE KW E AR
FHR, RARBAGRTINHRAR B R 2, A kRTRL. FEMA
PR AEURS %0 WS 0 E300HE E F40.

XEEM 1996 4EiE, T2 DLl A Ny iR, &EAT 1998 %
BT 65 3 E R PR e X E MR i AR

(f) BiEEL A

1999 4 4 H, FHEN T ALIT3GENRESF ], TPah TR LA AR, BREE—45h, 2
AEE ARG XA TARRREAETERER S/ —2ad. iIASR&
7o), ToARfl AT EEG . IXFRRR S TS, TR 24T LI ER A R 5K ETF 3. 1999
1 A -2000 47 6 A, BIBEFERSSEEQZE L TN, 2000 47 H -2002
SRR G ARIUEA R T H ZH, EHTRADIRE, L T ANREME R
TR M AR AT, PR AR A T 15

FEALTBCEARE R EME S G T T, BRAEFOREREA L, TFas T HitER &
HEHEIRF T GHFTE . BORICKR Z AT AZ AU = IR R S AR HU R i
FAEL, FEIEN G B T B 58 AR RUR BRI MO T — e TA G R
BEAFEE R, B8 T SRR, X ER A RAE (R F 2 F40) BAR.

Al R R TR B A o 2P AR, 2 N R 9 N E BT IS5
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1. 2001 42, FAVUAFZ R EEE T 3l s B AN “2 % F4£ K # i
LR F 52 /7 (IR, % e LA RIR, EEAETE, GREA UM FE
2, HIFARAHER, S —HIREesC. eilE, RABRH L, 46
A IRES T —RRXTARSTE AT NIRRT B, SR ERE, M
SER—TTIREET B . BIIRE, AL FS a0 SRR T 90 7, H—M&kF %
153 80 7 UARAEE T, MUt H MR 3S@E MR A4 90 35t
TNZR 0, RS T, WX 3T A3 E N —% 388 4 b
KT, XEEMTRT (FEAEERY, SR FRMARBRT . BHE, B
B 3 A A T AR ORI LU MERY

HTERE LR E LA T T 2EM MR ZMF RIS, B MEEIRSC <A cen-
sus of maps on surfaces with given underlying graphs” (¥ 1 H % = 2L ul & By 0 &)
IR E Cry B 4er N5 ok, FERARRE B i B4 A K AT 4
K. IHEER, XEEP EERATERTTRY . IRSCEBUERAE W 10 MBERVEE,
LB .

XL —NE B, TR SRR RS EENRENELRE
K. TEPBEBE R R LB, EERET 20 R, M rXIEMBEEHEEA TR
HIESC. B, TEX Z M E RN 2, X i B A Tk it AT 1
AP TR R, BRI SR RANINE., B 500% . BRI FEL
W S s AR T T ) 2 R SR SR M AT T RN A AR, TIRE T —4&,
AR BB AR Z X ZE B TS S LA E G IR BRr, S50 —
EFE, TRMRAE T TARCHHE, A S U SRR g — 25
2308

B XEREY
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ERZFRFE. EMRE ML, MRE, H -

() BEEHR

FH QR RO 2 a8 R AEIE TR E it — P LB, R — MR &
P 25523, IXRRAE T Bl R T 4R IR R AN 15 .

2002 £ 500 U REFEXRARAETELW (BRE)
ERE; &R FH, A8 ALH. TRE. BAE
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