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Neutrosophic Axiomatic 

System 

Florentin Smarandache1 

1 University of New Mexico 

705 Gurley Ave., Gallup, NM 87301, USA 

smarand@unm.edu 

Abstract 

In this paper, we introduce for the first time the notions of Neutrosophic Axiom, 

Neutrosophic Axiomatic System, Neutrosophic Deducibility and Neutrosophic 

Inference, Neutrosophic Proof, Neutrosophic Tautologies, Neutrosophic Quantifiers, 

Neutrosophic Propositional Logic, Neutrosophic Axiomatic Space, Degree of 

Contradiction (Dissimilarity) of Two Neutrosophic Axioms, and Neutrosophic 

Model. A class of neutrosophic implications is also introduced. A comparison 

between these innovatory neutrosophic notions and their corresponding classical 

notions is made. Then, three concrete examples of neutrosophic axiomatic systems, 

describing the same neutrosophic geometrical model, are presented at the end of 

the paper. 

Keywords 

Neutrosophic logic, Neutrosophic Axiom, Neutrosophic Deducibility, Neutrosophic 

Inference, Neutrosophic Proof, Neutrosophic Tautologies, Neutrosophic Quantifiers, 

Neutrosophic Propositional Logic, Neutrosophic Axiomatic Space. 

1 Neutrosophic Axiom 

A neutrosophic axiom or neutrosophic postulate (α) is a partial premise, which 

is t% true (degree of truth), i% indeterminate (degree of indeterminacy), and 

f% false (degree of falsehood), where <t, i, f> are standard or nonstandard 

subsets included in the non-standard unit interval ]-0, 1+[.  

The non-standard subsets and non-standard unit interval are mostly used in 

philosophy in cases where one needs to make distinction between “absolute 

truth” (which is a truth in all possible worlds) and “relative truth” (which is a 

truth in at least one world, but not in all possible worlds), and similarly for 



6 Florentin Smarandache 

Neutrosophic Axiomatic System 

Critical Review. Volume X, 2015 

distinction between “absolute indeterminacy” and “relative indeterminacy”, 

and respectively distinction between “absolute falsehood” and “relative 

falsehood”. 

But for other scientific and technical applications one uses standard subsets, 

and the standard classical unit interval [0, 1]. 

As a particular case of neutrosophic axiom is the classical axiom. In the 

classical mathematics an axiom is supposed 100% true, 0% indeterminate, and 

0% false. But this thing occurs in idealistic systems, in perfectly closed systems, 

not in many of the real world situations. 

Unlike the classical axiom which is a total premise of reasoning and without 

any controversy, the neutrosophic axiom is a partial premise of reasoning with 

a partial controversy. 

The neutrosophic axioms serve in approximate reasoning. 

The partial truth of a neutrosophic axiom is similarly taken for granting. 

The neutrosophic axioms, and in general the neutrosophic propositions, deal 

with approximate ideas or with probable ideas, and in general with ideas we 

are not able to measure exactly. That’s why one cannot get 100% true 

statements (propositions). 

In our life we deal with approximations. An axiom is approximately true, 

and the inference is approximately true either. 

A neutrosophic axiom is a self-evident assumption in some degrees of truth, 

indeterminacy, and falsehood respectively. 

2 Neutrosophic Deducing and Neutrosophic Inference 

The neutrosophic axioms are employed in neutrosophic deducing and 

neutrosophic inference rules, which are sort of neutrosophic implications, and 

similarly they have degrees of truth, indeterminacy, and respectively 

falsehood. 

3 Neutrosophic Proof 

Consequently, a neutrosophic proof has also a degree of validity, degree of 

indeterminacy, and degree of invalidity. And this is when we work with not-

well determinate elements in the space or not not-well determinate inference 

rules.  
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The neutrosophic axioms are at the foundation of various neutrosophic 

sciences. 

The approximate, indeterminate, incomplete, partially unknown, ambiguous, 

vagueness, imprecision, contradictory, etc. knowledge can be neutrosophically 

axiomized. 

4 Neutrosophic Axiomatic System 

A set of neutrosophic axioms Ω is called neutrosophic axiomatic system, where 

the neutrosophic deducing and the neutrosophic inference (neutrosophic 

implication) are used. 

The neutrosophic axioms are defined on a given space 𝑆. The space can be 

classical (space without indeterminacy), or neutrosophic space (space which 

has some indeterminacy with respect to its elements). 

A neutrosophic space may be, for example, a space that has at least one 

element which only partially belongs to the space.  Let us say the element x 

<0.5, 0.2, 0.3> that belongs only 50% to the space, while 20% its appurtenance 

is indeterminate, and 30% it does not belong to the space. 

Therefore, we have three types of neutrosophic axiomatic systems: 

[1] Neutrosophic axioms defined on classical space; 

[2] Classical axioms defined on neutrosophic space; 

[3] Neutrosophic axioms defined on neutrosophic space. 

Remark: 

The neutrosophic axiomatic system is not unique, in the sense that several 

different axiomatic systems may describe the same neutrosophic model. This 

happens because one deals with approximations, and because the 

neutrosophic axioms represent partial (not total) truths. 

5 Classification of the Neutrosophic Axioms 

[1] Neutrosophic Logical Axioms, which are neutrosophic statements 

whose truth-value is <t, i, f> within the system of neutrosophic logic. 

For example:  (𝛼 or 𝛽) neutrosophically implies 𝛽. 
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[2] Neutrosophic Non-Logical Axioms, which are neutrosophic properties 

of the elements of the space. For example: the neutrosophic 

associativity 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 , which occurs for some elements, it is 

unknown (indeterminate) for others, and does not occur for others. 

In general, a neutrosophic non-logical axiom is a classical non-logical axiom 

that works for certain space elements, is indeterminate for others, and does 

not work for others. 

6 Neutrosophic Tautologies 

A classical tautology is a statement that is universally true [regarded in a 

larger way, or lato sensu], i.e. true in all possible worlds (according to 

Leibniz’s definition of “world”). For example, “M = M” in all possible worlds.  

A neutrosophic tautology is a statement that is true in a narrow way [i.e. 

regarded in stricto sensu], or it is <1, 0, 0> true for a class of certain parameters 

and conditions, and <t, i, f> true for another class of certain parameters and 

conditions, where <t, i, f> ≠ <1, 0, 0>. I.e. a neutrosophic tautology is true in 

some worlds, and partially true in other worlds. For example, the previous 

assertation: “M = M”.  

If “M” is a number [i.e. the parameter = number], then a number is always equal 

to itself in any numeration base. 

But if “M” is a person [i.e. the parameter = person], call him Martin, then Martin 

at time t1 is the same as Martin at time t1 [i.e. it has been considered another 

parameter = time], but Martin at time t1 is different from Martin at time t2 

(meaning for example 20 years ago: hence Martin younger is different from 

Martin older). Therefore, from the point of view of parameters ‘person’ and 

‘time’, “M = M” is not a classical tautology. 

Similarly, we may have a proposition P which is true locally, but it is untrue 

non-locally. 

A neutrosophic logical system is an approximate minimal set of partially 

true/indeterminate/false propositions. 

While the classical axioms cannot be deduced from other axioms, there are 

neutrosophic axioms that can be partially deduced from other neutrosophic 

axioms. 
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7 Notations regarding the Classical Logic and Set, Fuzzy Logic 

and Set, Intuitionistic Fuzzy Logic and Set,  

and Neutrosophic Logic and Set 

In order to make distinction between classical (Boolean) logic/set, fuzzy logic/

set, intuitionistic fuzzy logic/set, and neutrosophic logic/set, we denote their 

corresponding operators (negation/complement, conjunction/ intersection, 

disjunction/union, implication/inclusion, and equivalence/equality), as it 

follows: 

[1] For classical (Boolean) logic and set: 
¬      ∧       ∨      →      ↔ (1) 

[2] For fuzzy logic and set: 
¬
𝐹 

∧
𝐹

∨
𝐹

→
𝐹

↔
𝐹

(2) 

[3] For intuitionistic fuzzy logic and set: 
¬
𝐼𝐹 

∧
𝐼𝐹

∨
𝐼𝐹

→
𝐼𝐹

↔
𝐼𝐹

(3) 

[4] For neutrosophic logic and set: 
¬
𝑁 

∧
𝑁

∨
𝑁

→
𝑁

↔
𝑁

(4) 

8 The Classical Quantifiers 

The classical Existential Quantifier is the following way: 

, ( )x A P x  .  (5) 

In a neutrosophic way we can write it as: 

There exist x<1, 0, 0> in A such that P(x)<1, 0, 0>, or: 

1,0,0 , ( ) 1,0,0x A P x     .   (6) 

The classical Universal Quantifier is the following way: 

, ( )x A P x  .  (7) 

In a neutrosophic way we can write it as: 

For any x<1, 0, 0> in A one has P(x)<1, 0, 0>, or: 

1,0,0 , ( ) 1,0,0x A P x     . (8) 
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9 The Neutrosophic Quantifiers 

The Neutrosophic Existential Quantifier is in the following way: 

There exist x<tx, ix, fx> in A such that P(x)<tP, iP, fP>, or: 

, , , ( ) , ,x x x P P Px t i f A P x t i f     , (9) 

which means that:  there exists an element x which belongs to A in a 

neutrosophic degree <tx, ix, fx>, such that the proposition P has the 

neutrosophic degree of truth <tP, iP, fP>. 

The Neutrosophic Universal Quantifier is the following way: 

For any x<tx, ix, fx> in A one has P(x)<tP, iP, fP>, or: 

, , , ( ) , ,x x x P P Px t i f A P x t i f     , (10) 

which means that:  for any element x that belongs to A in a neutrosophic degree 

<tx, ix, fx>, one has the proposition P with the neutrosophic degree of truth <tP, 

iP, fP>. 

10 Neutrosophic Axiom Schema 

A neutrosophic axiom schema is a neutrosophic rule for generating infinitely 

many neutrosophic axioms.  

Examples of neutrosophic axiom schema: 

[1] Neutrosophic Axiom Scheme for Universal Instantiation. 

Let Φ(x) be a formula, depending on variable x defined on a domain D, in the 

first-order language L, and let’s substitute x for aD. Then the new formula: 

( ) ( )Nx x a    (11) 

is , ,
N N N

t i f    -neutrosophically [universally] valid. 

This means the following:  if one knows that a formula Φ(x) holds <tx, ix, fx>-

neutrosophically for every x in the domain D, and for x = a the formula Φ(a) 

holds <ta, ia, fa>-neutrosophically, then the whole new formula (a) holds 

, ,
N N N

t i f    -neutrosophically, where t
N

 means the truth degree, i
N

  the 

indeterminacy degree, and f
N

 the falsehood degree –- all resulted from the 

neutrosophic implication
N

 . 
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[2] Neutrosophic Axiom Scheme for Existential Generalization. 

Let Φ(x) be a formula, depending on variable x defined on a domain D, in the 

first-order language L, and let’s substitute x for aD. Then the new formula: 

( ) ( )Na x x    (12) 

is , ,
N N N

t i f    -neutrosophically [universally] valid. 

This means the following:  if one knows that a formula Φ(a) holds <ta, ia, fa>-

neutrosophically for a given x = a in the domain D, and for every x in the domain 

formula Φ(x) holds <tx, ix, fx>-neutrosophically, then the whole new formula (b) 

holds , ,
N N N

t i f    -neutrosophically, where t
N

 means the truth degree, i

N
  the indeterminacy degree, and f

N
 the falsehood degree –- all resulted 

from the neutrosophic implication
N

 . 

These are neutrosophic metatheorems of the mathematical neutrosophic 

theory where they are employed. 

11 Neutrosophic Propositional Logic 

We have many neutrosophic formulas that one takes as neutrosophic axioms. 

For example, as extension from the classical logic, one has the following. 

Let P<tP, iP, fP>, Q<tQ, iQ, fQ>, R<tR, iR, fR>, S<tS, iS, fS> be neutrosophic propositions, 

where <tP, iP, fP> is the neutrosophic-truth value of P, and similarly for Q, R, and 

S. Then: 

a) Neutrosophic modus ponens (neutrosophic implication elimination):

( )N NP Q P  (13) 

b) Neutrosophic modus tollens (neutrosophic law of contrapositive):

(( ) )N N N N NP Q Q P     (14) 

c) Neutrosophic disjunctive syllogism (neutrosophic disjunction elimination):

(( ) )N N N NP Q P Q    (15) 

d) Neutrosophic hypothetical syllogism (neutrosophic chain argument):

(( ) ( )) ( )N N N N NP Q Q R P R     (16) 
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e) Neutrosophic constructive dilemma (neutrosophic disjunctive version of

modus ponens):

((( ) ( )) ( )) ( )N N N N N N NP Q R S P R Q S       (17) 

f) Neutrosophic distructive dilemma (neutrosophic disjunctive version of

modus tollens):

((( ) ( ))

( )) ( )

N N N N

N N N N N N N

P Q R S

Q S P R

   

      
(18) 

All these neutrosophic formulae also run as neutrosophic rules of inference. 

These neutrosophic formulas or neutrosophic derivation rules only partially 

preserve the truth, and depending on the neutrosophic implication operator 

that is employed the indeterminacy may increase or decrease.  

This happens for one working with approximations. 

While the above classical formulas in classical proportional logic are classical 

tautologies (i.e. from a neutrosophical point of view they are 100% true, 0% 

indeterminate, and 0% false), their corresponding neutrosophic formulas are 

neither classical tautologies nor neutrosophical tautologies, but ordinary 

neutrosophic propositions whose < 𝑡, 𝑖, 𝑓 >  – neutrosophic truth-value is 

resulted from the 
𝑁
→ neutrosophic implication  

𝐴 < 𝑡𝐴, 𝑖𝐴, 𝑓𝐴 >
𝑁
→𝐵 < (𝑡𝐵, 𝑖𝐵, 𝑓𝐵) >. (19) 

12 Classes of Neutrosophic Negation Operators 

There are defined in neutrosophic literature classes of neutrosophic negation 

operators as follows: if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), then its negation is: 

¬
𝑁𝐴(𝑓𝐴, 𝑖𝐴, 𝑡𝐴), (20) 

or  
¬
𝑁𝐴(𝑓𝐴, 1 − 𝑖𝐴, 𝑡𝐴), (21) 

¬
or  𝑁𝐴(1 − 𝑡𝐴, 1 − 𝑖𝐴, 1 − 𝑓𝐴), (22) 

or  
¬
𝑁𝐴(1 − 𝑡𝐴, 𝑖𝐴, 1 − 𝑓𝐴), etc. (23) 

http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Modus_ponens
http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Modus_tollens
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13 Classes of Neutrosophic Conjunctive Operators. 

Similarly: if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) and 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then 

𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,  (24) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (25) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉 (26) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (27) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (28) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵|, 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc. (29) 

14 Classes of Neutrosophic Disjunctive Operators 

And analogously, there were defined: 

𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉,  (30) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, (31) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (32) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, (33) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
 , 𝑓𝐴 𝐹

∧  𝑓𝐵〉, (34) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵| , 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc. (35) 

15 Fuzzy Operators 

Let 𝛼, 𝛽 ∈ [0, 1]. 

15.1. The Fuzzy Negation has been defined as 𝛼 = 1 − 𝛼𝐹
¬ .  (36) 

15.2. While the class of Fuzzy Conjunctions (or t-norm) may be: 

𝛼𝐹
∧𝛽 = min{𝛼, 𝛽}, (37) 

or 𝛼𝐹
∧𝛽 = 𝛼 ∙ 𝛽, (38) 

or 𝛼𝐹
∧𝛽 = max{0, 𝛼 + 𝛽 − 1}, etc. (39) 
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15.3. And the class of Fuzzy Disjunctions (or t-conorm) may be: 

𝛼𝐹
∨𝛽 = max{𝛼, 𝛽}, (40) 

or 𝛼𝐹
∨𝛽 = 𝛼 + 𝛽 − 𝛼𝛽, (41) 

or 𝛼𝐹
∨𝛽 = min{1, 𝛼 + 𝛽}, etc. (42) 

15.4.  Examples of Fuzzy Implications 𝑥
𝐹
→ 𝑦, for 𝑥, 𝑦 ∈ [0, 1], defined below: 

 Fodor (1993): 𝐼𝐹𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦

max(1 − 𝑥, 𝑦) , if 𝑥 > 𝑦
(43) 

 Weber (1983): 𝐼𝑊𝐵(𝑥, 𝑦) = {
1, if 𝑥 < 𝑦 
𝑦, if 𝑥 = 1 

(44) 

 Yager (1980): 𝐼𝑌𝐺(𝑥, 𝑦) = {
1, if 𝑥 = 0 and 𝑦 = 0
𝑦𝑥, if 𝑥 > 0 or 𝑦 > 0

 (45) 

 Goguen (1969): 𝐼𝐺𝐺(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦

𝑥
, if 𝑥 > 𝑦

(46) 

 Rescher (1969): 𝐼𝑅𝑆(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
0, if 𝑥 > 𝑦

(47) 

 Kleene-Dienes (1938): 𝐼𝐾𝐷(𝑥, 𝑦) = max(1 − 𝑥, 𝑦) (48) 

 Reichenbach (1935): 𝐼𝑅𝐶(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦 (49) 

 Gödel (1932): 𝐼𝐺𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦, if 𝑥 > 𝑦

(50) 

 Lukasiewicz (1923): 𝐼𝐿𝐾(𝑥, 𝑦) = min(1, 1 − 𝑥 + 𝑦), (51) 

according to the list made by Michal Baczyński and Balasubramaniam Jayaram 

(2008). 

16 Example of Intuitionistic Fuzzy Implication 

Example of Intuitionistic Fuzzy Implication 𝐴(𝑡𝐴, 𝑓𝐴)
𝐼𝐹
→𝐵(𝑡𝐵, 𝑓𝐵) is: 

𝐼𝐼𝐹 = ([(1 − 𝑡𝐴)𝐹

𝑡𝐵] F

 [(1 − 𝑓𝐵)𝐹
∨𝑓𝐴], 𝑓𝐵𝐹

∧(1 − 𝑡𝐴)), (52) 

according to Yunhua Xiao, Tianyu Xue, Zhan’ao Xue, and Huiru Cheng (2011). 
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17 Classes of Neutrosophic Implication Operators 

We now propose for the first time eight new classes of neutrosophic 

implications and extend a ninth one defined previously: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)
𝑁
→𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 

in the following ways: 

17.1-17.2. 𝐼𝑁1 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∧ , 𝑓𝐴  𝑓𝐵𝐹
∧ ), (53) 

where 𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵  is any fuzzy implication (from above or others) or any 

intuitionistic fuzzy implication (from above or others), while  is𝐹
∧  any fuzzy

conjunction (from above or others); 

17.3-17.4. 𝐼𝑁2 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∨ , 𝑓𝐴  𝑓𝐵𝐹
∧ ), (54) 

where  is𝐹
∨  any fuzzy disjunction (from above or others);

17.5-17.6. 𝐼𝑁3 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴  𝑓𝐵𝐹

∧ ); (55) 

17.7-17.8. 𝐼𝑁4 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
,
𝑓𝐴+𝑓𝐵

2
). (56) 

17.9. Now we extend another neutrosophic implication that has been defined 

by S. Broumi & F. Smarandache (2014) and it was based on the classical logical 

equivalence:  

(𝐴 → 𝐵) ↔ (¬𝐴 ∨ 𝐵). (57) 

Whence, since the corresponding neutrosophic logic equivalence: 

(𝐴
𝑁
→𝐵)

𝑁
↔ ( 𝐴𝑁

¬   𝐵𝑁
∨ ) (58) 

holds, one obtains another Class of Neutrosophic Implication Operators as: 

( 𝐴𝑁
¬   𝐵𝑁

∨ ) (59) 

where one may use any neutrosophic negation 
N

  (from above or others), and 

any neutrosophic disjunction 
N

  (from above or others).
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18 Example of Neutrosophic Implication 

Let’s see an Example of Neutrosophic Implication. 

Let’s have two neutrosophic propositions 𝐴〈0.3, 0.4, 0.2〉 and 𝐵〈0.7, 0.1, 0.4〉. 

Then 𝐴
𝑁
→𝐵 has the neutrosophic truth value of 𝐴 𝐵𝑁

∨
𝑁
¬ , i.e.:

〈0.2, 0.4, 0.3〉 〈0.7, 0.1, 0.4〉𝑁
∨ , 

or 〈max{0.2, 0.7},min{0.4, 0.1},min{0.3, 0.4}〉, 

or 〈0.7, 0.1, 0.3〉, 

where we used the neutrosophic operators defined above: 〈𝑡, 𝑖, 𝑓〉 = 〈𝑓, 𝑖, 𝑡〉𝑁
¬  

for neutrosophic negation, and 〈𝑡1, 𝑖1, 𝑓1〉 〈𝑡2, 𝑖2, 𝑓2〉𝑁
∨ =

〈max{𝑡1, 𝑡2},min{𝑖1, 𝑖2},min{𝑓1, 𝑓2}〉 for the neutrosophic disjunction. 

Using different versions of the neutrosophic negation operators and/or 

different versions of the neutrosophic disjunction operators, one obtains, in 

general, different results. Similarly as in fuzzy logic. 

18.1.  Another Example of Neutrosophic Implication. 

Let 𝐴  have the neutrosophic truth-value (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) , and 𝐵  have the 

neutrosophic truth-value (𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then: 

[𝐴
𝑁
→𝐵]

𝑁
↔ [( 𝐴𝑁

¬ ) 𝐵𝑁
∨ ], (60) 

where  is𝑁
¬  any of the above neutrosophic negations, while  is𝑁

∨  any of the 

above neutrosophic disjunctions. 

19 General Definition of Neutrosophic Operators 

We consider that the most general definition of neutrosophic operators shall 

be the followings: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵) = 𝐴 𝐵𝑁
⊕

𝑁
⊕ 〈𝑢(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵),

𝑣(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 𝑤(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵)〉 (61) 

where  is𝑁
⊕  any binary neutrosophic operator, and 

𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 𝑣(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 

𝑤(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6): [0,1]
6 → [0,1].
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Even more, the neutrosophic component functions 𝑢, 𝑣, 𝑤 may depend, on the 

top of these six variables, on hidden parameters as well, such as: ℎ1, ℎ2, … , ℎ𝑛. 

For a unary neutrosophic operator (for example, the neutrosophic negation), 

similarly: 

𝐴𝑁
⌝ (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) = 〈𝑢

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)〉, (62) 

where 𝑢′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴): [0, 1]
3 → [0,1],

and even more 𝑢′, 𝑣′, 𝑤′ may depend, on the top of these three variables, of 

hidden parameters as well, such as: ℎ1, ℎ2, … , ℎ𝑛. 

{Similarly there should be for a general definition of fuzzy operators and 

general definition of intuitionistic fuzzy operators.} 

As an example, we have defined [6]: (63) 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵)𝑁
∧

= 〈𝑡𝐴𝑡𝐵, 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴〉 

these result from multiplying 

(𝑡𝐴 + 𝑖𝐴 + 𝑓𝐴) ⋅ (𝑡𝐵 + 𝑖𝐵 + 𝑓𝐵)  (64) 

and ordering upon the below pessimistic order: 

truth  indeterminacy  falsity, 

meaning that to the truth only the terms of 𝑡’s goes, i.e. 𝑡𝐴𝑡𝐵, 

to indeterminacy only the terms of t’s and i’s go, i.e. 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, 

and to falsity the other terms left, i.e. 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴 + 𝑓𝐴𝑓𝐵 . 

20 Neutrosophic Deductive System 

A Neutrosophic Deductive System consists of a set ℒ1 of neutrosophic logical 

axioms, and a set ℒ2  of neutrosophic non-logical axioms, and a set ℛ  of 

neutrosophic rules of inference – all defined on a neutrosophic space 𝒮 that is 

composed of many elements. 

A neutrosophic deductive system is said to be neutrosophically complete, if for 

any neutrosophic formula 𝜑 that is a neutrosophic logical consequence of ℒ1, 

i.e. ℒ1  𝜑𝑁
⊨ , there exists a neutrosophic deduction of 𝜑 from ℒ1, i.e. ℒ1  𝜑𝑁

⊢ , where

 denotes 𝑁
⊨ neutrosophic logical consequence, and   denotes𝑁

⊢  neutrosophic

deduction. 
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Actually, everything that is neutrosophically (partially) true [i.e. made 

neutrosophically (partially) true by the set ℒ1  of neutrosophic axioms] is 

neutrosophically (partially) provable. 

The neutrosophic completeness of set ℒ2 of neutrosophic non-logical axioms 

is not the same as the neutrosophic completeness of set ℒ1  of neutrosophic 

logical axioms. 

21 Neutrosophic Axiomatic Space 

The space 𝒮  is called neutrosophic space if it has some indeterminacy with 

respect to one or more of the following: 

a. Its elements;

1. At least one element 𝑥  partially belongs to the set 𝒮 , or

𝑥(𝑡𝑥, 𝑖𝑥, 𝑓𝑥) with (𝑡x, 𝑖x, 𝑓x)≠ (1, 0, 0); 

2. There is at least an element 𝑦 in 𝒮 whose appurtenance to 𝒮 is

unknown. 

b. Its logical axioms;

1. At least a logical axiom 𝒜 is partially true, or 𝒜(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), where

similary (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) ≠ (1, 0, 0); 

2. There is at least an axiom ℬ whose truth-value is unknown.

c. Its non-logical axioms;

1. At least a non-logical axiom 𝒞  is true for some elements, and

indeterminate or false or other elements; 

2. There is at least a non-logical axiom whose truth-value is

unknown for some elements in the space. 

d. There exist at least two neutrosophic logical axioms that have some

degree of contradiction (strictly greater than zero). 

e. There exist at least two neutrosophic non-logical axioms that have

some degree of contradiction (strictly greater than zero). 
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22 Degree of Contradiction (Dissimilarity) 

of Two Neutrosophic Axioms 

Two neutrosophic logical axioms 𝒜1 and 𝒜2 are contradictory (dissimilar) if 

their semantics (meanings) are contradictory in some degree d1, while their 

neutrosophic truth values <t1, i1, f1> and <t2, i2, f2> are contradictory in a 

different degree d2 [in other words d1 ≠ d2]. 

As a particular case, if two neutrosophic logical axioms 𝒜1 and 𝒜2 have the 

same semantic (meaning) [in other words d1 = 0], but their neutrosophic truth-

values are different [in other words d2 > 0], they are contradictory. 

Another particular case, if two neutrosophic axioms 𝒜1 and 𝒜2 have different 

semantics (meanings) [in other words d1 > 0], but their neutrosophic truth 

values are the same <t1, i1, f1> =  <t2, i2, f2> [in other words d2 = 0], they are 

contradictory. 

If two neutrosophic axioms 𝒜1  and 𝒜2 have the semantic degree of 

contradiction d1, and the neutrosophic truth value degree of contradiction d2, 

then the total degree of contradiction of the two neutrosophic axioms is d = |d1 

– d2|, where |  | mean the absolute value.

We did not manage to design a formula in order to compute the semantic 

degree of contradiction d1 of two neutrosophic axioms. The reader is invited 

to explore such metric. 

But we can compute the neutrosophic truth value degree of contradiction d2. 

If 〈𝑡1, 𝑖1, 𝑓1〉  is the neutrosophic truth-value of 𝒜1  and 〈𝑡2, 𝑖2, 𝑓2〉  the 

neutrosophic truth-value of 𝒜2 , where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2  are single values in 

[0, 1] , then the neutrosophic truth value degree of contradiction 𝑑2  of the 

neutrosophic axioms 𝒜1 and 𝒜2 is: 

𝑑2 =
1

3
(|𝑡1 − 𝑡2| + |𝑖1 − 𝑖2| + |𝑓1 − 𝑓2|), (65) 

whence 𝑑2 ∈ [0, 1]. 

We get 𝑑2 = 0 , when 𝒜1 is identical with 𝒜2 from the point of view of 

neutrosophical truth values, i.e. when 𝑡1 = 𝑡2, 𝑖1 = 𝑖2, 𝑓1 = 𝑓2.  And we get 𝑑2 =

1, when 〈𝑡1, 𝑖1, 𝑓1〉 and 〈𝑡2, 𝑖2, 𝑓2〉 are respectively equal to: 

〈1, 0, 0〉, 〈0, 1, 1〉; 

or 〈0, 1, 0〉, 〈1, 0, 1〉; 

or 〈0, 0, 1〉, 〈1, 1, 0〉; 

or 〈0, 0, 0〉, 〈1, 1, 1〉. 
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23 Neutrosophic Axiomatic System 

The neutrosophic axioms are used, in neutrosophic conjunction, in order to 

derive neutrosophic theorems. 

A neutrosophic mathematical theory may consist of a neutrosophic space 

where a neutrosophic axiomatic system acts and produces all neutrosophic 

theorems within the theory. 

Yet, in a neutrosophic formal system, in general, the more recurrences are done 

the more is increased the indeterminacy and decreased the accuracy. 

24 Properties of the Neutrosophic Axiomatic System 

[1] While in classical mathematics an axiomatic system is consistent, in a 

neutrosophic axiomatic system it happens to have partially inconsistent 

(contradictory) axioms. 

[2] Similarly, while in classical mathematics the axioms are independent, in a 

neutrosophic axiomatic system they may be dependent in certain degree. 

[3] In classical mathematics if an axiom is dependent from other axioms, it can 

be removed, without affecting the axiomatic system. 

[4] However, if a neutrosophic axiom is partially dependent from other 

neutrosophic axioms, by removing it the neutrosophic axiomatic system is 

affected. 

[5] While, again, in classical mathematics an axiomatic system has to be 

complete (meaning that each statement or its negation is derivable), a 

neutrosophic axiomatic system is partially complete and partially 

incomplete. It is partially incomplete because one can add extra partially 

independent neutrosophic axioms. 

[6] The neutrosophic relative consistency of an axiomatic system is referred to 

the neutrosophically (partially) undefined terms of a first neutrosophic 

axiomatic system that are assigned neutrosophic definitions from another 

neutrosophic axiomatic system in a way that, with respect to both 

neutrosophic axiomatic systems, is neutrosophically consistent. 
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25 Neutrosophic Model 

A Neutrosophic Model is a model that assigns neutrosophic meaning to the 

neutrosophically (un)defined terms of a neutrosophic axiomatic system. 

Similarly to the classical model, we have the following classification: 

[1] Neutrosophic Abstract Model, which is a neutrosophic model based on 

another neutrosophic axiomatic system. 

[2] Neutrosophic Concrete Model, which is a neutrosophic model based on real 

world, i.e. using real objects and real relations between the objects. 

In general, a neutrosophic model is a <t, i, f>-approximation, i.e. T% of accuracy, 

I% indeterminacy, and F% inaccuracy, of a neutrosophic axiomatic system. 

26 Neutrosophically Isomorphic Models 

Further, two neutrosophic models are neutrosophically isomorphic if there is a 

neutrosophic one-to-one correspondence between their neutrosophic 

elements such that their neutrosophic relationships hold. 

A neutrosophic axiomatic system is called neutrosophically categorial (or 

categorical) is any two of its neutrosophic models are neutrosophically 

isomorphic. 

27 Neutrosophic Infinite Regressions 

There may be situations of neutrosophic axiomatic systems that generate 

neutrosophic infinite regressions, unlike the classical axiomatic systems. 

28 Neutrosophic Axiomatization 

A Neutrosophic Axiomatization is referred to an approximate formulation of a 

set of neutrosophic statements, about a number of neutrosophic primitive 

terms, such that by the neutrosophic deduction one obtains various 

neutrosophic propositions (theorems). 
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29 Example of Neutrosophic Axiomatic System 

Let’s consider two neighboring countries 𝑀  and 𝑁  that have a disputed 

frontier zone 𝑍: 

Figure 1: A Neutrosophic Model. 

Let’s consider the universe of discourse U = M   Z N; this is a neutrosophic 

space since it has an indeterminate part (the disputed frontier).   

The neutrosophic primitive notions in this example are: neutrosophic point, 

neutrosophic line, and neutrosophic plane (space). 

And the neutrosophic primitive relations are: neutrosophic incidence, and 

neutrosophic parallel. 

The four boundary edges of rectangle Z belong to Z (or Z is a closed set). While 

only three boundary edges of M (except the fourth one which is common with 

Z) belong to M, and similarly only three boundaries of N (except the fourth one

which is common with Z) belong to N. Therefore M and N are neither closed 

nor open sets. 

Taking a classical point P in U, one has three possibilities: 

[1] P M (membership with respect to country M); 

[2] P  Z (indeterminate membership with respect to both 

countries); 

[3] or P N (nonmembership with respect to country M). 

Such points, that can be indeterminate as well, are called neutrosophic points. 

A neutrosophic line is a classical segment of line that unites two neutrosophic 

points lying on opposite edges of the universe of discourse U.  We may have:  

[1] determinate line (with respect to country M), that is completely 

into the determinate part M {for example (L1)};  

[2] indeterminate line, that is completely into the frontier zone {for 

example (L2)}; 

[3] determinate line (with respect to country N), that is completely 

into the determinate part N {for example (L3)};  
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[4] or mixed, i.e. either two or three of the following: partially 

determinate with respect to M, partially indeterminate with 

respect to both countries, and partially determinate with respect to 

N {for example the red line (L4)}. 

Through two neutrosophic points there may be passing: 

[1] only one neutrosophic line {for example, through G and H passes 

only one neutrosophic line (L4)}; 

[2] no neutrosophic line {for example, through A and B passes no 

neutrosophic line, since the classical segment of line AB does not 

unite points of opposite edges of the universe of discourse U}. 

Two neutrosophic lines are parallel is they have no common neutrosophic 

points. 

Through a neutrosophic point outside of a neutrosophic line, one can draw: 

[1] infinitely many neutrosophic parallels {for example, through the 

neutrosophic point C one can draw infinitely many neutrosophic 

parallels to the neutrosophic line (L1)}; 

[2] only one neutrosophic parallel {for example, through the 

neutrosophic point H that belongs to the edge (V1V2) one can draw 

only one neutrosophic parallel (i.e. V1V2) to the neutrosophic line 

(L1)}; 

[3] no neutrosophic parallel {for example, through the 

neutrosophic point H there is no neutrosophic parallel to the 

neutrosophic line (L3)}. 

For example, the neutrosophic lines (L1), (L2) and (L3) are parallel. But the 

neutrosophic line (L4) is not parallel with (L1), nor with (L2) or (L3). 

A neutrosophic polygon is a classical polygon which has one or more of the 

following indeterminacies: 

[1] indeterminate vertex; 

[2] partially or totally indeterminate edge; 

[3] partially or totally indeterminate region in the interior of the 

polygon. 

We may construct several neutrosophic axiomatic systems, for this example, 

referring to incidence and parallel. 

a) First neutrosophic axiomatic system

α1) Through two distinct neutrosophic points there is passing a single 

neutrosophic line.  
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{According to several experts, the neutrosophic truth-value of this 

axiom is <0.6, 0.1, 0.2>, meaning that having two given neutrosophic 

points, the chance that only one line (that do not intersect the 

indeterminate zone Z) passes through them is 0.6, the chance that 

line that passes through them intersects the indeterminate zone Z) 

is 0.1, and the chance that no line (that does not intersect the 

indeterminate zone Z) passes through them is 0.2.} 

α2) Through a neutrosophic point exterior to a neutrosophic line there is 

passing either one neutrosophic parallel or infinitely many neutrosophic 

parallels.  

{According to several experts, the neutrosophic truth-value of this 

axiom is <0.7, 0.2, 0.3>, meaning that having a given neutrosophic 

line and a given exterior neutrosophic point, the chance that 

infinitely many parallels pass through this exterior point is 0.7, the 

chance that the parallels passing through this exterior point 

intersect the indeterminate zone Z is 0.2, and the chance that no 

parallel passes through this point is 0.3.} 

Now, let’s apply a first neutrosophic deducibility. 

Suppose one has three non-collinear neutrosophic (distinct) points P, Q, and R 

(meaning points not on the same line, alike in classical geometry). According 

to the neutrosophic axiom (α1), through P, Q passes only one neutrosophic line 

{let’s call it (PQ)}, with a neutrosophic truth value (0.6, 0.1, 0.2). Now, according 

to axiom (α2), through the neutrosophic point R, which does not lie on (PQ), 

there is passing either only one neutrosophic parallel or infinitely many 

neutrosophic parallels to the neutrosophic line (PQ), with a neutrosophic truth 

value (0.7, 0.2, 0.3). 

Therefore, 

(α1)  
∧
𝑁

 (α2) = <0.6, 0.1, 0.2>
∧
𝑁

 <0.7, 0.2, 0.3> = <min{0.6, 0.7}, 

max{0.1, 0.2}, max{0.2, 0.3}>= <0.6, 0.2, 0.3>, (66) 

which means the following:  the chance that through the two distinct given 

neutrosophic points P and Q passes only one neutrosophic line, and through 

the exterior neutrosophic point R passese either only one neutrosophic 

parallel or  infinitely many parallels to (PQ) is (0.6, 0.2, 0.3), i.e. 60% true, 20% 

indeterminate, and 30% false. 

Herein we have used the simplest neutrosophic conjunction operator 
∧
𝑁

 of the 

form <min, max, max>, but other neutrosophic conjunction operator can be 

used as well. 
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A second neutrosophic deducibility: 

Again, suppose one has three non-collinear neutrosophic (distinct) points P, Q, 

and R (meaning points not on the same line, as in classical geometry). 

Now, let’s compute the neutrosophic truth value that through P and Q is 

passing one neutrosophic line, but through Q there is no neutrosophic parallel 

to (PQ). 

α1
∧
𝑁
(
¬
𝑁𝛼2) = <0.6, 0.1, 0.2>

∧
𝑁
(
¬
𝑁<0.7, 0.2, 0.3>) = <0.6, 0.1, 0.2>

∧
𝑁

<0.3, 

0.2, 0.7> = <0.3, 0.2, 0.7>. (67) 

b) Second neutrosophic axiomatic system

β1) Through two distinct neutrosophic points there is passing either a single 

neutrosophic line or no neutrosophic line. {With the neutrosophic truth-value 

<0.8, 0.1, 0.0>}. 

β2) Through a neutrosophic point exterior to a neutrosophic line there is 

passing either one neutrosophic parallel, or infinitely many neutrosophic 

parallels, or no neutrosophic parallel. {With the neutrosophic truth-value <1.0, 

0.2, 0.0>}. 

In this neutrosophic axiomatic system the above propositions W1 and W2: 

W1: Through two given neutrosophic points there is passing only one 

neutrosophic line, and through a neutrosophic point exterior to this 

neutrosophic line there is passing either one neutrosophic parallel or infinitely 

many neutrosophic parallels to the given neutrosophic line; and W2: Through 

two given neutrosophic points there is passing only one neutrosophic line, and 

through a neutrosophic point exterior to this neutrosophic line there is passing 

no neutrosophic parallel to the line; are not deducible. 

c) Third neutrosophic axiomatic system

γ1) Through two distinct neutrosophic points there is passing a single 

neutrosophic line. 

{With the neutrosophic truth-value <0.6, 0.1, 0.2>}. 

γ2) Through two distinct neutrosophic points there is passing no neutrosophic 

line. 

{With the neutrosophic truth-value <0.2, 0.1, 0.6>}. 

δ1) Through a neutrosophic point exterior to a neutrosophic line there is 

passing only one neutrosophic parallel.  



26 Florentin Smarandache 

Neutrosophic Axiomatic System 

Critical Review. Volume X, 2015 

{With the neutrosophic truth-value <0.1, 0.2, 0.9>}. 

δ2) Through a neutrosophic point exterior to a neutrosophic line there are 

passing infinitely many neutrosophic parallels.  

{With the neutrosophic truth-value <0.6, 0.2, 0.4>}. 

δ3) Through a neutrosophic point exterior to a neutrosophic line there is 

passing no neutrosophic parallel.  

{With the neutrosophic truth-value <0.3, 0.2, 0.7>}. 

In this neutrosophic axiomatic system we have contradictory axioms: 

- (γ1) is in 100% degree of contradiction with (γ2); 

- and similarly (δ3) is in 100% degree of contradiction with 

[(δ1) together with (δ2)]. 

Totally or partially contradictory axioms are allowed in a neutrosophic 

axiomatic systems, since they are part of our imperfect world and since they 

approximately describe models that are - in general - partially true. 

Regarding the previous two neutrosophic deducibilities one has: (68) 

γ1
∧
𝑁

 (δ1
∨
𝑁

 δ2)= <0.6, 0.1, 0.2>
∧
𝑁
(< 0.1, 0.2, 0.9 >

∨
𝑁
<

0.6, 0.2, 0.4 >) = < 0.6, 0.1, 0.2 >
∧
𝑁

<max{0.1, 0.6}, min{0.2, 0.2}, 

min{0.9, 0.4}> = < 0.6, 0.1, 0.2 >
∧
𝑁
< 0.6, 0.2, 0.4 >= <0.6, 0.2, 0.4>, 

which is slightly different from the result we got using the first neutrosophic 

axiomatic system <0.6, 0.2, 0.3>, and respectively: 

γ1
∧
𝑁

 δ3= <0.6, 0.1, 0.2>
∧
𝑁
< 0.3, 0.2, 0.7 >=<0.3, 0.2, 0.7>, (69) 

which is the same as the result we got using the first neutrosophic axiomatic 

system. 

The third neutrosophic axiomatic system is a refinement of the first and 

second neutrosophic axiomatic systems. From a deducibility point of view it is 

better and easier to work with a refined system than with a rough system. 
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30 Conclusion 

This paper proposes a new framework to model interdependencies in project 

portfolio. NCM representation model is used for modeling relation among risks. 

In many real world situations, the spaces and laws are not exact, not perfect. 

They are inter-dependent. This means that in most cases they are not 100% 

true, i.e. not universal. For example, many physical laws are valid in ideal and 

perfectly closed systems. However, perfectly closed systems do not exist in our 

heterogeneous world where we mostly deal with approximations. Also, since 

in the real world there is not a single homogenous space, we have to use the 

multispace for any attempt to unify various theories. 

We do not have perfect spaces and perfect systems in reality. Therefore, many 

physical laws function approximatively (see [5]). The physical constants are 

not universal too; variations of their values depend from a space to another, 

from a system to another. A physical constant is t% true, i% indeterminate, 

and f% false in a given space with a certain composition, and it has a different 

neutrosophical truth value <t’, i’, f’> in another space with another 

composition. 

A neutrosophic axiomatic system may be dynamic: new axioms can be added 

and others excluded. 

The neutrosophic axiomatic systems are formed by axioms than can be 

partially dependent (redundant), partially contradictory (inconsistent), 

partially incomplete, and reflecting a partial truth (and consequently a partial 

indeterminacy and a partial falsehood) - since they deal with approximations 

of reality. 
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Abstract 

In 1993, Gau and Buehrer proposed the theory of vague sets as an extension of fuzzy 

set theory. Vague sets are regarded as a special case of context-dependent fuzzy sets. 

In 1995, Smarandache talked for the first time about neutrosophy, and he defined the 

neutrosophic set theory as a new mathematical tool for handling problems involving 

imprecise, indeterminacy, and inconsistent data. In this paper, we define the concept 

of a neutrosophic vague set as a combination of neutrosophic set and vague set. We 

also define and study the operations and properties of neutrosophic vague set and 

give some examples. 

Keywords 

Vague set, Neutrosophy, Neutrosophic set, Neutrosophic vague set. 

Acknowledgement 

We would like to acknowledge the financial support received from Shaqra University. 

With our sincere thanks and appreciation to Professor Smarandache for his support 

and his comments. 

 

1 Introduction 

Many scientists wish to find appropriate solutions to some mathematical 

problems that cannot be solved by traditional methods. These problems lie in 

the fact that traditional methods cannot solve the problems of uncertainty in 

economy, engineering, medicine, problems of decision-making, and others. 

There have been a great amount of research and applications in the literature 

concerning some special tools like probability theory, fuzzy set theory [13], 

rough set theory [19], vague set theory [18], intuitionistic fuzzy set theory [10, 

12] and interval mathematics [11, 14]. 
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Since Zadeh published his classical paper almost fifty years ago, fuzzy set 

theory has received more and more attention from researchers in a wide range 

of scientific areas, especially in the past few years.  

The difference between a binary set and a fuzzy set is that in a “normal” set 

every element is either a member or a non-member of the set; it either has to 

be A or not A. 

In a fuzzy set, an element can be a member of a set to some degree and at the 

same time a non-member of the same set to some degree. In classical set theory, 

the membership of elements in a set is assessed in binary terms: according to 

a bivalent condition, an element either belongs or does not belong to the set.  

By contrast, fuzzy set theory permits the gradual assessment of the 

membership of elements in a set; this is described with the aid of a member-

ship function valued in the closed unit interval [0, 1]. 

Fuzzy sets generalise classical sets, since the indicator functions of classical 

sets are special cases of the membership functions of fuzzy sets, if the later 

only take values 0 or 1. Therefore, a fuzzy set A in an universe of discourse X is 

a function 𝐴: 𝑋 → [0, 1] , and usually this function is referred to as the 

membership function and denoted by 𝜇𝐴(𝑥). 

The theory of vague sets was first proposed by Gau and Buehrer [18] as an 

extension of fuzzy set theory and vague sets are regarded as a special case of 

context-dependent fuzzy sets.  

A vague set is defined by a truth-membership function 𝑡𝑣  and a false-

membership function 𝑓𝑣 , where 𝑡𝑣(𝑥)  is a lower bound on the grade of 

membership of 𝑥 derived from the evidence for 𝑥, and 𝑓𝑣(𝑥) is a lower bound 

on the negation of 𝑥 derived from the evidence against 𝑥. The values of 𝑡𝑣(𝑥) 

and 𝑓𝑣(𝑥) are both defined on the closed interval [0, 1]with each point in a 

basic set  , where 𝑡𝑣(𝑥) + 𝑓𝑣(𝑥) ≤ 1.  

For more information, see [1, 2, 3, 7, 15, 16, 19]. 

In 1995, Smarandache talked for the first time about neutrosophy, and in 1999 

and 2005 [4, 6] defined the neutrosophic set theory, one of the most important 

new mathematical tools for handling problems involving imprecise, 

indeterminacy, and inconsistent data.  

In this paper, we define the concept of a neutrosophic vague set as a 

combination of neutrosophic set and vague set. We also define and study the 

operations and properties of neutrosophic vague set and give examples. 
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2 Preliminaries 

In this section, we recall some basic notions in vague set theory and 

neutrosophic set theory. Gau and Buehrer have introduced the following 

definitions concerning its operations, which will be useful to understand the 

subsequent discussion. 

Definition 2.1 ([18]). Let 𝑥  be a vague value,   [ ,1 ]x xx t f  , where  0,1 ,xt 

 0,1xf  , and 0    1   1x xt f    . If   1xt  and  0xf  (i.e.,    1,1x  ), then 𝑥  is 

called a unit vague value. If   0xt  and   1xf  (i.e.,    0,0x  ), then 𝑥 is called 

a zero vague value. 

Definition 2.2 ([18]). Let 𝑥 and y  be two vague values, where   [ ,1 ]x xx t f  and 

  ,1 .y yy t f    If   x yt t and   x yf f , then vague values 𝑥 and y  are called equal 

(i.e.  [ ,1 ]  ,1x x y yt f t f     ).  

Definition 2.3 ([18]). Let A be a vague set of the universe 𝑈 . If 
iu U  , 

  1A it u  and   0A if u  , then A  is called a unit vague set, where1    i n  . If 

iu U  ,   0A it u  and   1A if u  , then A  is called a zero vague set, where 

1    .i n   

Definition 2.4 ([18]). The complement of a vague set A  is denoted by cA and 

is defined by 
 ,

1  1 .

c

c

AA

AA

t f

f t



  
 

Definition 2.5 ([18]). Let A  and B  be two vague sets of the universe 𝑈. If 

,iu U          ,1    ,1  ,A i A i B i B it u f u t u f u         then the vague set A  and B are 

called equal, where 1    .i n   

Definition 2.6 ([18]). Let A  and B  be two vague sets of the universe .U  If 

,iu U     A i B it u t u and    1    1  ,A i B if u f u   then the vague set A  are 

included by B , denoted by A B , where 1    .i n   

Definition 2.7 ([18]). The union of two vague sets A  and B is a vague set C , 

written as   C A B , whose truth-membership and false-membership 

functions are related to those of A and B by 

  , ,C A Bt max t t    1 1 ,1 1 , .C A B A Bf max f f min f f     
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Definition 2.8 ([18]). The intersection of two vague sets A  and B is a vague 

set C , written as   C A B , whose truth-membership and false-membership 

functions are related to those of A and B by 

  , ,C A Bt min t t    1 1 ,1 1 , .C A B A Bf min f f max f f       

In the following, we recall some definitions related to neutrosophic set given 

by Smarandache. Smarandache defined neutrosophic set in the following way: 

Definition 2.9 [6] A neutrosophic set A  on the universe of discourse 𝑋  is 

defined as 

 = {< , ( ), ( ), ( ) >, }
A A A

A x T x I x F x x X   

where 𝑇, 𝐼, 𝐹: 𝑋 ] 0,1 [  and 0 ( ) ( ) ( ) 3 .
A A A
T x I x F x   

Smarandache explained his concept as it follows: "For example, neutrosophic 

logic is a generalization of the fuzzy logic. In neutrosophic logic a proposition 

is T true , I indeterminate , and F false . For example, let’s analyze the 

following proposition: Pakistan will win against India in the next soccer game. 

This proposition can be (0.6,0.3,0.1) , which means that there is a possibility of 

60%  that Pakistan wins, 30%  that Pakistan has a tie game, and 10%  that 

Pakistan looses in the next game vs. India."  

Now we give a brief overview of concepts of neutrosophic set defined in [8, 5, 

17]. Let 
1S and 

2S  be two real standard or non-standard subsets, then  

1 2 1 2 1 1 2 2  { |    ,   },S S x x s s s S and s S     

  2 2 2 21 { |  1 , },S x x s s S     

1 2 1 2 1 1 2 2  { |   ,   },S S x x s s s S and s S     

1 2 1 2 1 1 2 2  { |   . ,   },S S x x s s s S and s S   

  2 2 2 21 { |  1 , }.S x x s s S       

Definition 2.10 (Containment) A neutrosophic set A is contained in the other 

neutrosophic set B , A B , if and only if 

       inf inf ,  sup sup ,A B A BT x T x T x T x   

       inf inf ,  sup sup ,A B A BI x I x I x I x   

       inf inf ,  sup sup ,A B A BF x F x F x F x   for all   x X . 
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Definition 2.11 The complement of a neutrosophic set A is denoted by A  and 

is defined by 

     1 ,  
ÂA

T x T x   

     1 ,  
ÂA

I x I x   

     1 ,  
ÂA

F x F x   for all   x X . 

Definition 2.12 (Intersection) The intersection of two neutrosophic sets 𝐴 and 

𝐵  is a neutrosophic set 𝐶 , written as 𝐶 = 𝐴 ∩ 𝐵 , whose truth-membership, 

indeterminacy-membership and falsity-membership functions are related to 

those of A and B by 

      ,  C A BT x T x T x  

     ,  C A BI x I x I x  

     ,  C A BF x F x F x  for all   x X . 

Definition 2.11 (Union) The union of two neutrosophic sets 𝐴  and 𝐵  is a 

neutrosophic set 𝐶  written as 𝐶 = 𝐴 ∪ 𝐵 , whose truth-membership, 

indeterminacy-membership and falsity-membership functions are related to 

those of A and B by 

          ,  C A B A BT x T x T x T x T x    

          ,  C A B A BI x I x I x I x I x    

          ,  C A B A BF x F x F x F x F x    for all   x X . 

 

3 Neutrosophic Vague Set 

A vague set over 𝑈 is characterized by a truth-membership function 
vt and a 

false-membership function
vf ,   :  0,1vt U  and   :  0,1vf U  respectively 

where  v it u is a lower bound on the grade of membership of 
iu which is 

derived from the evidence for
iu ,  v if u is a lower bound on the negation of 

iu  

derived from the evidence against 
iu  and     1v i v it u f u  . The grade of 

membership of 
iu in the vague set is bounded to a subinterval    ,1v i v it u f u  

of  0,1 . The vague value    ,1v i v it u f u    indicates that the exact grade of 
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membership  v iµ u of 
iu  maybe unknown, but it is bounded by 

     v i v i v it u µ u f u  where     1.v i v it u f u   Let U  be a space of points 

(objects), with a generic element in 𝑈 denoted byu . A neutrosophic sets (N-

sets) 𝐴  in 𝑈  is characterized by a truth-membership function
AT , an 

indeterminacy-membership function 
AI and a falsity-membership function

AF .

 AT u ;  AI u and  AF u are real standard or nonstandard subsets of  0,  1 . It can 

be written as: 

      ,  ( ), ( ), ( )  : , ( ), ( ), ( ) 0,1 .A A A A A AA u T u I u F u u U T u I u F u    
 

There is no restriction on the sum of  AT u ;  AI u and  AF u , so: 

0 sup ( )  sup ( )  sup ( ) 3A A AT u I u F u    .  

By using the above information and by adding the restriction of vague set to 

neutrosophic set, we define the concept of neutrosophic vague set as it follows.  

Definition 3.1 A neutrosophic vague set NV
A  (NVS in short) on the universe of 

discourse X  written as  

𝐴𝑁𝑉 = {< 𝑥, 𝑇̂𝐴𝑁𝑉(𝑥), 𝐼𝐴𝑁𝑉(𝑥), 𝐹𝐴𝑁𝑉(𝑥) >, 𝑥 ∈ 𝑋} 

whose truth-membership, indeterminacy-membership and falsity-member-

ship functions is defined as  

 ( ) , , ( ) , , ( ) , ,
NV NV NV
A A A
T x T T I x I I F x F F  

 where 

 ,1 , 1T F F T  and  

0 2T I F , 

when 𝑋 is continuous, a NVS 𝐴𝑁𝑉 can be written as 

      , , , / ,  .
NV NV NVNV A A A

X

A x T x I x F x x x X   
 

When 𝑋 is discrete, a NVS 𝐴𝑁𝑉 can be written as 

     
1

 , , , / ,  .
NV NV NV

n

NV A i A i A i i i

i

A x T x I x F x x x X


   
  

In neutrosophic logic, a proposition is T true , I indeterminate , and 

F false such that: 

0 sup ( )  sup ( )  sup ( ) 3.
N N NA A AT u I u F u      
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Also, vague logic is a generalization of the fuzzy logic where a proposition is 

T true  and F false , such that:     1,v i v it u f u  he exact grade of 

membership  v iµ u of 
iu  maybe unknown, but it is bounded by  

     .v i v i v it u µ u f u    

For example, let’s analyze the Smarandache's proposition using our new 

concept: Pakistan will win against India in the next soccer game. This 

proposition can be as it follows: 

0.6,0.9 , 0.3,0.4 and 0.4,0.6 ,
NV NV NV
A A A
T I F   

which means that there is possibility of 60% 90%to  that Pakistan wins, 

30% 40%to  that Pakistan has a tie game, and 40% 60%to  that Pakistan 

looses in the next game vs. India. 

Example 3.1 Let  1 2 3, ,U u u u  be a set of universe we define the NVS 
NVA as 

follows: 

     

     

     

1

2

3

,
0.3,0.5 , 0.5,0.5 , 0.5,0.7

,
0.4,0.7 , 0.6,0.6 , 0.3,0.6

.
0.1,0.5 , 0.5,0.5 , 0.5,0.9

NV

u
A

u

u


 






 

Definition 3.2 Let 
NV be a NVS of the universeU where

iu U  , 

( ) 1,1 , ( ) 0, 0 , ( ) 0, 0 ,
NV NV NV

T x I x F x   

then 
NV  is called a unit NVS, where1    i n  .  

Let 
NV be a NVS of the universeU where iu U  , 

 ( ) 0, 0 , ( ) 1,1 , ( ) 1,1 ,
NV NV NV

T x I x F x   

then 
NV  is called a zero NVS, where 1    .i n   

Definition 3.3 The complement of a NVS NVA  is denoted by cA and is defined 

by  

( ) 1 ,1 ,

( ) 1 ,1 ,

( ) 1 ,1 ,

NV

NV

NV

A

A

A

c

c

c

T x T T

I x I I

F x F F

 



36 

 

 

Shawkat Alkhazaleh 

Neutrosophic Vague Set Theory 

Critical Review. Volume X, 2015 

Example 3.2 Considering Example 3.1, we have: 

     

     

     

1

2

3

,
0.5,0.7 , 0.5,0.5 , 0.3,0.5

,
0.3,0.6 , 0.4,0.4 , 0.4,0.7

.
0.5,0.9 , 0.5,0.5 , 0.1,0.5

c

NV

u
A

u

u


 






 

Definition 3.5 Let 
NVA  and 

NVB  be two NVSs of the universe U . If ,iu U   

           ,  and = ,
NV NV NV NV NV NVA i B i A i B i A i B iT u T u I u I u F u F u   

then the NVS 
NVA  and 

NVB are called equal, where 1    .i n   

Definition 3.6 Let 
NVA  and 

NVB  be two NVSs of the universe .U  If ,iu U   

       

   

,  and

 ,

NV NV NV NV

NV NV

A i B i A i B i

A i B i

T u T u I u I u

F u F u

 


  

then the NVS 
NVA  are included by 

NVB , denoted by
NV NVA B , where 1    .i n   

Definition 3.7 The union of two NVSs 
NVA  and 

NVB is a NVS 
NVC , written as

  NV NV NVC A B , whose truth-membership, indeterminacy-membership and 

false-membership functions are related to those of 
NVA  and 

NVB by 

𝑇̂𝐶𝑁𝑉
(𝑥) = [𝑚𝑎𝑥(𝑇̂𝐴𝑁𝑉𝑥

− , 𝑇̂𝐵𝑁𝑉𝑥

−  ), 𝑚𝑎𝑥(𝑇̂𝐴𝑁𝑉𝑥

+ , 𝑇̂𝐵𝑁𝑉𝑥

+  )], 

𝐼𝐶𝑁𝑉
(𝑥) = [𝑚𝑖𝑛(𝐼𝐴𝑁𝑉𝑥

− , 𝐼𝐵𝑁𝑉𝑥

−  ), 𝑚𝑖𝑛(𝐼𝐴𝑁𝑉𝑥

+ , 𝐼𝐵𝑁𝑉𝑥

+  )], 

𝐹̂𝐶𝑁𝑉
(𝑥) = [𝑚𝑖𝑛(𝐹̂𝐴𝑁𝑉𝑥

− , 𝐹̂𝐵𝑁𝑉𝑥

−  ), 𝑚𝑖𝑛(𝐹̂𝐴𝑁𝑉𝑥

+ , 𝐹̂𝐵𝑁𝑉𝑥

+  )]. 

Definition 3.8 The intersection of two NVSs 
NVA  and 

NVB is a NVS 
NVH , written 

as   NV NV NVH A B , whose truth-membership, indeterminacy-membership 

and false-membership functions are related to those of 
NVA  and 

NVB by 

𝑇̂𝐻𝑁𝑉
(𝑥) = [𝑚𝑖𝑛(𝑇̂𝐴𝑁𝑉𝑥

− , 𝑇̂𝐵𝑁𝑉𝑥

−  ), 𝑚𝑖𝑛(𝑇̂𝐴𝑁𝑉𝑥

+ , 𝑇̂𝐵𝑁𝑉𝑥

+  )], 

𝐼𝐻𝑁𝑉
(𝑥) = [𝑚𝑎𝑥(𝐼𝐴𝑁𝑉𝑥

− , 𝐼𝐵𝑁𝑉𝑥

−  ), 𝑚𝑎𝑥(𝐼𝐴𝑁𝑉𝑥

+ , 𝐼𝐵𝑁𝑉𝑥

+  )], 

𝐹̂𝐻𝑁𝑉
(𝑥) = [𝑚𝑎𝑥(𝐹̂𝐴𝑁𝑉𝑥

− , 𝐹̂𝐵𝑁𝑉𝑥

−  ), 𝑚𝑎𝑥(𝐹̂𝐴𝑁𝑉𝑥

+ , 𝐹̂𝐵𝑁𝑉𝑥

+  )]. 

Example 3.3 Let  1 2 3, ,U u u u  be a set of universe and let NVS
NVA and 

NVB

define as follows: 
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     

     

     

1

2

3

,
0.3,0.5 , 0.7,0.8 , 0.5,0.7

,
0.4,0.7 , 0.6,0.8 , 0.3,0.6

.
0.1,0.5 , 0.3,0.6 , 0.5,0.9

NV

u
A

u

u


 






 

     

     

     

1

2

3

,
0.7,0.8 , 0.3,0.5 , 0.2,0.3

,
0.2,0.4 , 0.2,0.4 , 0.6,0.8

.
0.9,1 , 0.6,0.7 , 0,0.1

NV

u
B

u

u


 






 

Then we have   NV NV NVC A B  where 

     

     

     

1

2

3

,
0.7,0.8 , 0.3,0.5 , 0.2,0.3

,
0.4,0.7 , 0.2,0.4 , 0.3,0.6

.
0.9,1 , 0.3,0.6 , 0,0.1

NV

u
C

u

u


 






 

Moreover, we have   NV NV NVH A B  where 

     

     

     

1

2

3

,
0.3,0.5 , 0.7,0.8 , 0.5,0.7

,
0.2,0.4 , 0.6,0.8 , 0.6,0.8

.
0.1,0.5 , 0.6,0.7 , 0.5,0.9

NV

u
H

u

u


 






 

Theorem 3.1 Let P be the power set of all NVS defined in the universe X . Then 

; ,NV NVP  is a distributive lattice. 

Proof Let 𝐴, 𝐵, 𝐶 be the arbitrary NVSs defined on 𝑋. It is easy to verify that 

  ,   A A A A A A   (idempotency), 

  ,   A B B A A B B A   (commutativity), 

 ( ) ( ), ( ) ( )A B C A B C A B C A B C   (associativity), and 

( ) ( ) ( ), ( ) ( ) ( )A B C A B A C A B C A B A C   (distributivity). 
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4 Conclusion 

In this paper, we have defined and studied the concept of a neutrosophic vague 

set, as well as its properties, and its operations, giving some examples. 
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Abstract 

Interdependency modeling and analysis have commonly been ignored in project 

portfolio management. In this work, we proposed a new method for modeling project 

portfolio interdependencies, and specially risks interdependencies, using 

neutrosophic logic and neutrosophic cognitive maps. This proposal has many 

advantages for dealing with indeterminacy making easy the elicitation of knowledge 

from experts. An illustrative example is presented to demonstrate the applicability of 

the proposed method. 

Keywords 

Neutrosophic logic, Neutrosophic cognitive maps, Risk interdependencies, Project 

portfolio interdependencies. 

 

1 Introduction 

A portfolio of project is a group of project that share resources creating 

relation among them of complementarity, incompatibility or synergy [1]. The 

interdependency modeling and analysis have commonly been ignored in 

project portfolio management [2].  



41 

 

 
Critical Review. Volume X, 2015 

Ameirys Betancourt-Vázquez, Maikel Leyva-Vázquez, Karina Perez-Teruel 

Neutrosophic cognitive maps for modeling project portfolio interdependencies 

In an international survey only 38.6 % of responders understand this element 

[2]. Cost increasing, the lack of benefits exploitation [3] and the incorrect 

selection of projects [4] are among the consequences. In this work a proposal 

for modeling project portfolio risk interdependencies neutrosophic cognitive 

maps (NCM) [11] is developed.  

This paper is structured as follows: Section 2 reviews some important 

concepts about neutrosophic cognitive maps and risks interdependencies 

modeling. In Section 3, we present a framework for modeling 

interdependencies in project portfolio risks. Section 4 shows an illustrative 

example. The paper ends with conclusions and further work 

recommendations in Section 5. 

 

2 Neutrosophic cognitive maps and risks interdependencies 

A fuzzy cognitive maps (FCM) [5] are fuzzy graph structures for representing 

causal knowledge. FCM have been applied to diverse areas such as decision 

support and com-plex systems analysis [6]. Furthermore multiples extensions 

have been developed such as fuzzy grey cognitive maps [7], interval fuzzy 

cognitive maps [8], Intuitionistic fuzzy cognitive maps [9] and linguistic 2-

tuple fuzzy cognitive maps [10].  

Neutrosophic cognitive maps (NCM) were created by Vasantha & 

Smarandache [11] as an extension of the Fuzzy Cognitive Maps (FCMs) in 

which indeterminacy is included using neutrosophic logic. Neutrosophic logic 

is a logic in which each proposition is esti-mated to have the percentage of 

truth in a subset T, the percentage of indeterminacy in a subset I, and the 

percentage of falsity in a subset F [12]. 

There are five types of project portfolio interdependencies: benefit, risk, 

outcome, schedule and resources [13]. Risks have a positive or negative 

correlation with others provoking risk diversification or amplification effects. 

In this work project portfolio risk interdependencies are modeled using 

neutrosophic logic to include indeterminacy. 

 

3 Modeling project portfolio interdependencies 

Our aim is develop framework for modeling project portfolio and its 

interrelation based NCM. The model consists of the following phases 

(graphically, Figure 1): 

 



42 

 

 

Ameirys Betancourt-Vázquez, Maikel Leyva-Vázquez, Karina Perez-Teruel 

Neutrosophic cognitive maps for modeling project portfolio interdependencies 

Critical Review. Volume X, 2015 

 

Figure 1. A Framework project portfolio risk interdependencies. 

Identifying risks 

The first step is the identification of risks. Risks are identified initially at 

project level. A portfolio risk breakdown structure with interdependencies is 

obtained. An example for a risk breakdown structure applicable to IT 

portfolios with interdependencies is shown in [13]. 

NCM development  

The weight of the relationship among from given risk Ri to risk Rj is 

represented by means of neutrosophic logic. Additionally static analysis for 

selecting the most important risks could be developed [14]. 

 

4 Illustrative example 

Five risks R =  ( r1, … , r5) are identified at portfolio level (Table 2). 

 
Table 1. Portfolio risks 

Node Description  
𝐑𝟏 Project 1 Technical feasibility 
𝐑𝟐 Project 1 Timely completion 
𝐑𝟑 Project 2 Timely completion  
𝐑𝟒 Project 2 Code quality 
𝐑𝟓 Project 3  Timely completion 
𝐑𝟔 Project 3 Cultural acceptance 

 

Later, the expert provides the following interrelations (Figure 2): 

𝑊 =

0 0 0.75 0 0 0
0 0 0.3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼 0 0 0
0 0 0.5 𝐼 0 0

 

 

Identifying risks
NCM 

development  
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R1

R3

R4

R2

R5

R6

0.75

0.3

0.5

 

Figure 2. Neutrosophic cognitive map representing risks interdependencies. 

In this example, the technical feasibility of project #1 (technical risk) could 

severely affect the timely completion of projects #2. Also, if no consistent 

tooling is used, and the agile development approach (project #3) is not 

culturally accepted, projects #2 are more likely to experience quality issues 

and time delay. Indeterminacy is introduced in project #3 risks interrelation 

with other risks of project #2.  

 

5 Conclusion 

This paper proposes a new framework to model interdependencies in project 

portfolio. NCM representation model is used for modeling relation among risks.  

Building NCM follows an approach more similar to human reasoning 

introducing indeterminacy in relations. An illustrative example showed the 

applicability of the proposal. Further works will concentrate on two objectives: 

developing a consensus model, and extending the model to other areas of 

project portfolio interdependencies modeling. 
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Abstract 

In this paper a new concept is called n-valued interval neutrosophic sets is given. The 

basic operations are introduced on n-valued interval neutrosophic sets such as; union, 

intersection, addition, multiplication, scalar multiplication, scalar division, truth-

favorite and false-favorite. Then, some distances between n-valued interval 

neutrosophic sets (NVINS) are proposed. Also, we propose an efficient approach for 

group multi-criteria decision making based on n-valued interval neutrosophic sets. 

An application of n-valued interval neutrosophic sets in medical diagnosis problem is 

given. 

Keywords 

Neutrosophic sets, n-valued neutrosophic set, interval neutrosophic sets, n-valued 

interval neutrosophic sets. 

 

1 Introduction 

In 1999, Smarandache [37] proposed the concept of neutrosophic set (NS for 

short) by adding an independent indeterminacy-membership function which 
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is a generalization of classic set, fuzzy set [45], intuitionistic fuzzy set [3] and 

so on. In NS, the indeterminacy is quantified explicitly and truth-membership 

(T), indeterminacy (I) membership, and false-membership (F) are completely 

independent and from scientific or engineering point of view, the NS operators 

need to be specified. Therefore, Wang et al [39] defined a single valued 

neutrosophic set (SVNS) and then provided the set theoretic operations and 

various properties of single valued neutrosophic sets and Wang et al. [40] 

proposed the set theoretic operations on an instance of neutrosophic set is 

called interval valued neutrosophic set (IVNS) which is more flexible and 

practical than NS. The works on single valued neutrosophic set (SVNS)  and 

interval valued neutrosophic sets (IVNS) and their hybrid structure in theories 

and application have been progressing rapidly (e.g., [1,2,4-19,21,22,24-26,28-

30,36,41,43]). Also, neutrosophic sets extended neutrosophic models in [13,16] 

both theory and application by using [27,31].  

The concept of intuitionistic fuzzy multiset and some propositions with 

applications is originaly presented by Rajarajeswari and Uma [32-35]. After 

Rajarajeswari and Uma, Smarandache [38] presented n-Valued neutrosophic 

sets with applications. Recently, Chatterjee et al. [20], Deli et al. [18, 23], Ye et 

al. [42] and Ye and Ye [44] initiated definition of neutrosophic multisets with 

some operations.  Also, the authors gave some distance and similarity 

measures on neutrosophic multisets. In this paper, our objective is to 

generalize the concept of n-valued neutrosophic sets (or neutrosophic multi 

sets; or neutrosophic refined sets) to the case of n-valued interval 

neutrosophic sets. 

The paper is structured as follows; in Section 2, we first recall the necessary 

background on neutrosophic sets, single valued neutrosophic sets, interval 

valued neutrosophic sets and n-valued neutrosophic sets (or neutrosophic 

multi sets). Section 3 presents the concept of n-valued interval neutrosophic 

sets and derive their respective properties with examples. Section 4 presents 

the distance between two n-valued interval neutrosophic sets. Section 5 

presents an application of this concept in solving a decision making problem. 

Section 6 concludes the paper. 

 

2 Preliminaries 

This section gives a brief overview of concepts of neutrosophic set theory [37], 

n-valued neutrosophic set theory [42,44] and interval valued neutrosophic set 

theory [40]. More detailed explanations related to this subsection may be 

found in [18,20,23,37,40,42,44]. 



47 

 

 
Critical Review. Volume X, 2015 

Said Broumi, Irfan Deli, Florentin Smarandache 

N-Valued Interval Neutrosophic Sets and Their Application in Medical Diagnosis 

Definition 2.1. [37,39] Let X be an universe of discourse, with a generic element 

in X denoted by x,  then a  neutrosophic (NS) set A is an object having the form  

A = {< x: TA(x), IA(x), FA(x)>,x ∈ X} 

where the functions T, I, F : X→ ]−0, 1+[  define respectively the degree of 

membership (or Truth) , the degree of indeterminacy, and the degree of non-

membership (or Falsehood) of the element x ∈  X to the set A with the 

condition.  

−0 ≤ TA(x) + IA(x)+ FA(x)≤ 3+ 

From philosophical point of view, the neutrosophic set takes the value from 

real standard or non-standard subsets of ]−0, 1+[. So instead of ] −0, 1+[ we need 

to take the interval [0, 1] for technical applications, because ]−0, 1+[will be 

difficult to apply in the real applications  such as in scientific and engineering 

problems.  

For two NS, 𝐴𝑁𝑆 ={ <x , TA(x) ,  IA(x),  FA(x)> | x ∈ X }    

and𝐵𝑁𝑆 ={ <x , TB(x) ,  IB(x),  FB(x)> | x ∈ X } the two relations are defined as 

follows: 

(1)𝐴𝑁𝑆 ⊆  𝐵𝑁𝑆 if and only if TA(x) ≤ TB(x)  ,IA(x) ≥ IB(x)  , FA(x) ≥

FB(x) 

(2) 𝐴𝑁𝑆 =  𝐵𝑁𝑆  if and only if , TA(x)  = TB(x)  , IA(x)  = IB(x)  , FA(x) 

=FB(x) 

Definition 2.2. [40] Let X be a space of points (objects) with generic elements 

in X denoted by x. An interval valued neutrosophic set (for short IVNS) A in X 

is characterized by truth-membership function  TA(x) , indeteminacy-

membership function  IA(x) and falsity-membership function FA(x). For each 

point x in X, we have that TA(x), IA(x), FA(x) ⊆ [0, 1]. 

For two IVNS 

 𝐴IVNS={<x, [inf 𝑇𝐴
1(𝑥),sup 𝑇𝐴

1(𝑥)], 

[inf 𝐼𝐴
1(𝑥) , sup 𝐼𝐴

1(𝑥)], [inf 𝐹𝐴
1(𝑥) , sup 𝐹𝐴

1(𝑥)] >:x ∈ X} 

and 

𝐵IVNS= {<x, 

inf 𝑇𝐵
1(𝑥) , sup 𝑇𝐵

1(𝑥)],[inf 𝐼𝐵
1(𝑥), sup 𝐼𝐵

1(𝑥)], [inf 𝐹𝐵
1(𝑥) , sup 𝐹𝐵

1(𝑥)]> :

x ∈ X} 

Then, 

1. 𝐴IVNS ⊆  𝐵IVNS if and only if 
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inf 𝑇𝐴
1(𝑥) ≤ inf 𝑇𝐵

1(𝑥), sup 𝑇𝐴
1(𝑥) ≤ sup 𝑇𝐵

1(𝑥), 

inf 𝐼𝐴
1(𝑥) ≥ inf 𝐼𝐵

1(𝑥), sup 𝐼𝐴
1(𝑥) ≥ sup 𝐼𝐵

1(𝑥), 

inf 𝐹𝐴
1(𝑥) ≥ inf 𝐹𝐵

1(𝑥), sup 𝐹𝐴
1(𝑥) ≥ sup 𝐹𝐵

1(𝑥), 

for all x ∈ X. 

2.  𝐴IVNS =  𝐵IVNS  if and only if ,  

inf 𝑇𝐴
1(𝑥) = inf 𝑇𝐵

1(𝑥), sup 𝑇𝐴
1(𝑥) = sup 𝑇𝐵

1(𝑥), 

inf 𝐼𝐴
1(𝑥) = inf 𝐼𝐵

1(𝑥), sup 𝐼𝐴
1(𝑥) = sup 𝐼𝐵

1(𝑥), 

inf 𝐹𝐴
1(𝑥) = inf 𝐹𝐵

1(𝑥), sup 𝐹𝐴
1(𝑥) = sup 𝐹𝐵

1(𝑥), 

for any x ∈ X. 

3.  𝐴IVNS
𝑐= {𝑥,[inf 𝐹𝐴

1(𝑥) , sup 𝐹𝐴
1(𝑥)], [1 −  𝑠𝑢𝑝 𝐼𝐴

1(𝑥) , 1 − 𝑖𝑛𝑓 𝐼𝐴
1(𝑥)],  

[𝑖𝑛𝑓 𝑇𝐴
1(𝑥) , 𝑠𝑢𝑝 𝑇𝐴

1(𝑥)]: 𝑥 ∈ 𝑋} 

4.  𝐴IVNS ∩  𝐵IVNS={<x, [inf 𝑇𝐴
1(𝑥) ∧ inf 𝑇𝐵

1(𝑥) , sup 𝑇𝐴
1(𝑥) ∧ sup 𝑇𝐵

1(𝑥)],  

[inf 𝐼𝐴
1(𝑥) ∨ inf 𝐼𝐵

1(𝑥) , sup 𝐼𝐴
1(𝑥) ∨ sup 𝐼𝐵

1(𝑥)], 

[inf 𝐹𝐴
1(𝑥) ∨ inf 𝐹𝐵

1(𝑥) , sup 𝐹𝐴
1(𝑥) ∨ sup 𝐹𝐵

1(𝑥)]>: x ∈ X} 

5.  𝐴IVNS ∪  𝐵IVNS={<x, [inf 𝑇𝐴
1(𝑥) ∨ inf 𝑇𝐵

1(𝑥) , sup 𝑇𝐴
1(𝑥) ∨ sup 𝑇𝐵

1(𝑥)], 

[inf 𝐼𝐴
1(𝑥) ∧  inf 𝐼𝐵

1(𝑥) , sup 𝐼𝐴
1(𝑥) ∧ sup 𝐼𝐵

1(𝑥)], 

[inf 𝐹𝐴
1(𝑥) ∧ inf 𝐹𝐵

1(𝑥) , sup 𝐹𝐴
1(𝑥) ∧ sup 𝐹𝐵

1(𝑥)]>: x ∈ X} 

6.  𝐴IVNS\

 𝐵IVNS={<x,[min {inf 𝑇𝐴
1(𝑥), inf 𝐹𝐵

1(𝑥)} , min {sup 𝑇𝐴
1(𝑥), sup 𝐹𝐵

1(𝑥)} ], 

[max(inf  𝐼𝐴
1(𝑥),1-sup 𝐼𝐵

1(𝑥)), max(sup 𝐼𝐴
1(𝑥),1-inf 𝐼𝐵

1(𝑥))], 

[max(inf𝐹𝐴
1(𝑥),inf 𝑇𝐵

1(𝑥)), max(sup 𝐹𝐴
1(𝑥), sup 𝑇𝐵

1(𝑥))]>: x ∈ X}  

7.  𝐴IVNS+ 𝐵IVNS ={<x,[min(inf 𝑇𝐴
1(𝑥) + inf 𝑇𝐵

1(𝑥), 1) , min (sup 𝑇𝐴
1(𝑥) +

sup 𝑇𝐵
1(𝑥), 1) ], 

  [min(inf 𝐼𝐴
1(𝑥) +  inf 𝐼𝐵

1(𝑥), 1) , min (sup 𝐼𝐴
1(𝑥) +  sup 𝐼𝐵

1(𝑥), 1) ], 

[min(inf 𝐹𝐴
1(𝑥) +  inf 𝐹𝐵

1(𝑥), 1) , min (sup 𝐹𝐴
1(𝑥) +  sup 𝐹𝐵

1(𝑥), 1) ] >

: x ∈ X}, 

8.  𝐴IVNS.a={<x,[min (inf 𝑇𝐴
1(𝑥). a ,1) , min (sup 𝑇𝐴

1(𝑥). a ,1)],

[min(inf 𝐼𝐴
1(𝑥). a ,1) , min(sup 𝐼𝐴

1(𝑥). a ,1)], 

[min(inf 𝐹𝐴
1(𝑥). a ,1) , min (sup 𝐹𝐴

1(𝑥). a ,1)], 

             [min(inf 𝐼𝐴
1(𝑥). a ,1) , min(sup 𝐼𝐴

1(𝑥). a ,1)] >: x ∈ X}, 

9.  𝐴IVNS/a={<x,[min (inf 𝑇𝐴
1(𝑥)/a ,1) , min (sup 𝑇𝐴

1(𝑥)/a ,1)], 

[min(inf 𝐼𝐴
1(𝑥)/ a ,1) , min(sup 𝐼𝐴

1(𝑥)/ a ,1)], 

     [min(inf 𝐹𝐴
1(𝑥)/ a ,1) , min(sup 𝐹𝐴

1(𝑥). a ,1)] > : x ∈ X}, 

10. ∆ 𝐴IVNS ={<x,[min(inf 𝑇𝐴
1(𝑥) + inf 𝐼𝐴

1(𝑥), 1) , min (sup 𝑇𝐴
1(𝑥) +

 sup 𝐼𝐵
1(𝑥), 1) ], [0,0], 

               [inf 𝐹𝐴
1(𝑥) , sup 𝐹𝐴

1(𝑥)] >: x ∈ X}, 

11. ∇ 𝐴IVNS ={<x,[inf 𝑇𝐴
1(𝑥) , sup 𝑇𝐴

1(𝑥)], [0,0], 
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              [min(inf 𝐹𝐴
1(𝑥) +  inf 𝐼𝐴

1(𝑥), 1) , min (sup 𝐹𝐴
1(𝑥) +

 sup 𝐼𝐵
1(𝑥), 1) ] > : x ∈ X} 

Definition 2.3. [20,42] Let E be a universe. A n-valued neutrosophic sets on E 

can be defined as follows: 

A = {<x,(TA
1(x),TA

2(x),...,TA
p(x)), (IA

1 (x),IA
2 (x),...,IA

p(x)), 

(FA
1 (x),FA

2(x),…,FA
p(x))>: x ∈ X} 

where 

TA
1(x),TA

2(x),...,TA
p(x), IA

1 (x),IA
2 (x),...,IA

p(x),  FA
1 (x),FA

2(x),...,FA
p(x): E→ 

[0 ,1] such that     

                    0≤ TA
i (x) +IA

i (x) +FA
i (x) ≤3 for i=1, 2,…,p  for any x∈ X, 

Here, (TA
1(x),TA

2(x),…,TA
p(x)), (IA

1 (x),IA
2 (x),…,IA

p(x)) and (FA
1 (x),FA

2(x),…,FA
p(x)) 

is the truth-membership sequence, indeterminacy-membership sequence and 

falsity-membership sequence of the element x, respectively. Also, P is called 

the dimension of n-valued neutrosophic sets (NVNS) A. 

 

3 N-Valued Interval Neutrosophic Sets 

Following the n-valued neutrosophic sets (multiset or refined set) and interval 

neutrosophic sets defined in [20,38,42,44] and Wang et al. in [40], respectively. 

In this section, we extend these sets to n-valued interval valued neutrosophic 

sets. 

Definition 3.1. Let X be a universe, a n-valued interval neutrosophic sets (NVINS) 

on X can be defined as follows: 

A= {𝑥, (
[inf 𝑇𝐴

1(𝑥) , sup 𝑇𝐴
1(𝑥)], [inf 𝑇𝐴

2(𝑥) , sup 𝑇𝐴
2(𝑥)], … ,

[inf 𝑇𝐴
𝑝(𝑥) , sup 𝑇𝐴

𝑝(𝑥)]
),  

  

(
[inf 𝐼𝐴

1(𝑥) , sup 𝐼𝐴
1(𝑥)], [inf 𝐼𝐴

2(𝑥) , sup 𝐼𝐴
2(𝑥)], … . ,

[inf 𝐼𝐴
𝑝(𝑥) , sup 𝐼𝐴

𝑞(𝑥)]
),

 [inf 𝐹𝐴
1(𝑥), sup 𝐹𝐴

1(𝑥)] , ([𝑖𝑛𝑓 𝐹𝐴
2(𝑥), 𝑠𝑢𝑝 𝐹𝐴

2(𝑥)], …, 

([𝑖𝑛𝑓 𝐹𝐴
𝑝(𝑥), 𝑠𝑢𝑝 𝐹𝐴

𝑟(𝑥)]): x ∈ X} 

where 

inf TA
1(x),inf TA

2(x),..., inf  TA
p(x),inf  IA

1 (x),inf  IA
2 (x),...,inf  IA

p(x),inf

 FA
1 (x),inf  FA

2(x),...,inf  FA
q(x),  sup TA

1(x), sup TA
2(x),..., sup  TA

p(x),
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sup  IA
1 (x), sup  IA

2 (x),...,sup  IA
q(x), 

sup FA
1 (x), sup FA

2(x),...,sup  FA
r (x)∈[0, 1]   

such that  0≤ supTA
i (x) +supIA

i (x) +supFA
i (x) ≤3, ∀ i=1, 2,…, p. 

In our study, we focus only on the case where p=q=r is the interval truth-

membership sequence, interval indeterminacy-membership sequence and 

interval falsity-membership sequence of the element x, respectively. Also, p is 

called the dimension of n-valued interval   (NVINS) A. Obviously, when the 

upper and lower ends of the interval values of TA
i (x), IA

i (x), FA
i (x) in a NVINS 

are equal, the NVINS reduces to n-valued neutrosophic set (or neutrosophic 

multiset proposed in [17,20]).  

The set of all n-valued interval neutrosophic set on X is denoted by NVINS(X).  

Example 3.2.  Let X={x1 , x2} be the universe and A is an n- valued interval 

neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.3, .4],[.1, .5]},{[.3, .4], [.2, .5]}>, 

<x2,{[.3, .4], [.2,.4]},{[.3, .5],[.2, .4]},{[.1, .2], [.3, .4]}>} 

Definition 3.3. The complement of A is denoted by Ac and is defined by 

𝐴𝑐= {𝑥, ( [inf 𝐹𝐴
1(𝑥), sup 𝐹𝐴

1(𝑥)] , ([inf 𝐹𝐴
2(𝑥), sup 𝐹𝐴

2(𝑥)], … .,  

([𝑖𝑛𝑓 𝐹𝐴
𝑝(𝑥), 𝑠𝑢𝑝 𝐹𝐴

𝑝(𝑥)]), 

(
[1 −  𝑠𝑢𝑝 𝐼𝐴

1(𝑥) , 1 − 𝑖𝑛𝑓 𝐼𝐴
1(𝑥)], [1 − 𝑠𝑢𝑝 𝐼𝐴

2(𝑥) , 1 − 𝑖𝑛𝑓 𝐼𝐴
2(𝑥)], … . ,

[1 −  𝑠𝑢𝑝 𝐼𝐴
𝑝(𝑥) ,  1 − 𝑖𝑛𝑓 𝐼𝐴

𝑝(𝑥)]
) , 

([𝑖𝑛𝑓 𝑇𝐴
1(𝑥) , 𝑠𝑢𝑝 𝑇𝐴

1(𝑥)], [𝑖𝑛𝑓 𝑇𝐴
2(𝑥) , 𝑠𝑢𝑝 𝑇𝐴

2(𝑥)], …, 

[𝑖𝑛𝑓 𝑇𝐴
𝑝(𝑥) , 𝑠𝑢𝑝 𝑇𝐴

𝑝(𝑥)] ): 𝑥 ∈ 𝑋}. 

Example 3.4. Let us consider the Example 3.5. Then we have, 

𝐴𝑐= { <x1,{[.3,.4],[.2,.5]},{[.6,.7],[.5,.9]},{[.1,.2],[.2,.3]}>,            

            <x2,{[.1,.2],[.3,.4]},{[.5,.7],[.6,.8]},{[.3,.4],[.2,.4]}>} 

Definition 3.5. For ∀ i=1, 2,…,p if inf TA
i (x) = sup TA

i (x) =0 and inf IA
i (x) 

= sup IA
i (x) = inf FA

i (x)  =sup FA
i (x) =1, then A is called null n-valued interval 

neutrosophic set denoted by Φ, for all x ∈ X. 

Example 3.6. Let X={x1 ,  x2 } be the universe and A is an n-valued interval 

neutrosophic sets 

Φ= { <x1,{[0, 0], [ 0, 0]},{[1, 1], [1, 1] },{[1, 1], [1, 1]}>, 

<x2,{[ 0, 0], [ 0, 0]},{[1, 1], [1, 1]},{[1, 1], [1, 1]}>}. 
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Definition 3.7. For ∀ i=1,2,…,p  if inf TA
i (x) = sup TA

i (x) =1 and 

inf IA
i (x)=sup IA

i (x)=inf FA
i (x) =sup FA

i (x)=0, then A is called universal n-valued 

interval neutrosophic set denoted by E, for all x ∈ X. 

Example 3.8. Let X={x1 ,  x2 } be the universe and A is an n-valued interval 

neutrosophic sets 

                    E= { <x1,{ [1, 1], [1, 1] },{[0, 0], [0, 0] },{[0, 0], [0, 0]}>, 

                          <x2{ [1, 1], [1, 1] },{[0, 0], [0, 0] },{[0, 0], [0, 0]}>}. 

Definition 3.9. A n-valued interval neutrosophic set A is contained in the other 

n-valued interval neutrosophic set B, denoted by A⊆B, if and only if 

inf 𝑇𝐴
1(𝑥) ≤ inf 𝑇𝐵

1(𝑥), inf 𝑇𝐴
2(𝑥) ≤ inf 𝑇𝐵

2(𝑥),..., inf 𝑇𝐴
𝑝(𝑥) ≤

inf 𝑇𝐵
𝑝(𝑥), 

sup 𝑇𝐴
1(𝑥) ≤ sup 𝑇𝐵

1(𝑥), sup 𝑇𝐴
2(𝑥) ≤ sup 𝑇𝐵

2(𝑥),..., sup 𝑇𝐴
𝑝(𝑥) ≤

sup 𝑇𝐵
𝑝(𝑥), 

inf 𝐼𝐴
1(𝑥) ≥ inf 𝐼𝐵

1(𝑥), inf 𝐼𝐴
2(𝑥) ≥ inf 𝐼𝐵

2(𝑥),..., inf 𝐼𝐴
𝑝(𝑥) ≥ inf 𝐼𝐵

𝑝(𝑥), 

sup 𝐼𝐴
1(𝑥) ≥ sup 𝐼𝐵

1(𝑥), sup 𝐼𝐴
2(𝑥) ≥ sup 𝐼𝐵

2(𝑥),..., sup 𝐼𝐴
𝑝(𝑥) ≥

sup 𝐼𝐵
𝑝(𝑥), 

inf 𝐹𝐴
1(𝑥) ≥ inf 𝐹𝐵

1(𝑥), inf 𝐹𝐴
2(𝑥) ≥ inf 𝐹𝐵

2(𝑥),..., inf 𝐹𝐴
𝑝(𝑥) ≥

inf 𝐹𝐵
𝑝(𝑥), 

sup 𝐹𝐴
1(𝑥) ≥ sup 𝐹𝐵

1(𝑥), sup 𝐹𝐴
2(𝑥) ≥ sup 𝐹𝐵

2(𝑥),..., sup 𝐹𝐴
𝑝(𝑥) ≥

sup 𝐹𝐵
𝑝(𝑥) 

for all x ∈ X. 

Example 3.10. Let X={x1 , x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6],[.7, .8]}>, 

<x2,{[.1, .4],[.1, .3]},{[.6, .8], [.4, .6]},{[.5, .6], [.6, .7]}>} 

and 

B= { <x1,{[.5, .7], [.4, .5]},{[.3,.4],[.1,.5]},{[.3,.4],[.2,.5]}>, 

<x2,{[.2, .5],[.3, .6]},{[.3, .5],[.2,.4]},{[.1, .2], [.3, .4]}>} 

Then, we have A ⊆ B. 

Definition 3.11. Let A and B be two n-valued interval neutrosophic sets. Then, 

A and B are equal, denoted by A= B if and only if A ⊆ B and B⊆ A. 

Proposition 3.12.  Let A, B, C ∈NVINS(X).Then, 

1. ∅⊆ A 

2. A ⊆ A  
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3. A ⊆ E 

4. A ⊆ B and B ⊆ C →A ⊆ C 

5. K=L and L=M↔ 𝐾 = 𝑀 

6. K⊆L and L⊆K↔ 𝐾 = 𝐿. 

Definition 3.13. Let A and B be two n-valued interval neutrosophic sets. Then, 

intersection of A and B, denoted by A∩B, is defined by 

A∩B={<x,([inf 𝑇𝐴
1(𝑥) ∧ inf 𝑇𝐵

1(𝑥) , sup 𝑇𝐴
1(𝑥) ∧

sup 𝑇𝐵
1(𝑥)], [inf 𝑇𝐴

2(𝑥) ∧             inf 𝑇𝐵
2(𝑥) , sup 𝑇𝐴

2(𝑥) ∧

sup 𝑇𝐵
2(𝑥)], … , [inf 𝑇𝐴

𝑝(𝑥) ∧ inf 𝑇𝐵
𝑝(𝑥) , sup 𝑇𝐴

𝑃(𝑥) ∧

            sup 𝑇𝐵
𝑃(𝑥)]),([inf 𝐼𝐴

1(𝑥) ∨ inf 𝐼𝐵
1(𝑥) , sup 𝐼𝐴

1(𝑥) ∨

sup 𝐼𝐵
1(𝑥)], [inf 𝐼𝐴

2(𝑥) ∨             inf 𝐼𝐵
2(𝑥) , sup 𝐼𝐴

2(𝑥) ∨

sup 𝐼𝐵
2(𝑥)], … , [inf 𝐼𝐴

𝑝(𝑥) ∨ inf 𝐼𝐵
𝑝(𝑥) , sup 𝐼𝐴

𝑃(𝑥) ∨ sup 𝐼𝐵
𝑃(𝑥)]), 

          ([inf 𝐹𝐴
1(𝑥) ∨ inf 𝐹𝐵

1(𝑥) , sup 𝐹𝐴
1(𝑥) ∨ sup 𝐹𝐵

1(𝑥)], [inf 𝐹𝐴
2(𝑥) ∨

inf 𝐹𝐵
2(𝑥) , sup 𝐹𝐴

2(𝑥) ∨            sup 𝐹𝐵
2(𝑥)], … , [inf 𝐹𝐴

𝑝(𝑥) ∨

inf 𝐹𝐵
𝑝(𝑥) , sup 𝐹𝐴

𝑃(𝑥) ∨ sup 𝐹𝐵
𝑃(𝑥)])>: x ∈ 𝑋} 

Example 3.14. Let U={x1, x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1,.3]},{[.6, .8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4,.6]},{[.3, .5], [.4, .5]},{[.3, .4], [.1, .2]}>} 

Then, 

A∩B={<x1,{[.1,.2],[.2,.3]},{[.4,.5],[.6,.7]},{[.5,.6],[.7,.8]}>,           

<x2,{[.1,.4],[.1,.3]},{[.6,.8],[.4,.6]},{[.3,.4],[.2,7]}>} 

Proposition 3.15. Let A, B, C∈NVINS(X). Then, 

1. A∩A=A 

2. A∩ ∅ = ∅. 

3. A∩E=A 

4. A∩B= B∩A 

5. (A∩B) ∩ 𝐶 = A ∩ (B ∩ 𝐶). 

Proof: The proof is straightforward. 

Definition 3.16. Let A and B be two n-valued interval neutrosophic sets. Then, 

union of A and B, denoted by A∪B, is defined by 
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        A∪B =  {x,<([inf 𝑇𝐴
1(𝑥) ∨ inf 𝑇𝐵

1(𝑥) , sup 𝑇𝐴
1(𝑥) ∨

sup 𝑇𝐵
1(𝑥)], [inf 𝑇𝐴

2(𝑥) ∨            inf 𝑇𝐵
2(𝑥) , sup 𝑇𝐴

2(𝑥) ∨

sup 𝑇𝐵
2(𝑥)], … , [inf 𝑇𝐴

𝑝(𝑥) ∨ inf 𝑇𝐵
𝑝(𝑥) , sup 𝑇𝐴

𝑃(𝑥) ∨

            sup 𝑇𝐵
𝑃(𝑥)]),([inf 𝐼𝐴

1(𝑥) ∧ inf 𝐼𝐵
1(𝑥) , sup 𝐼𝐴

1(𝑥) ∧

sup 𝐼𝐵
1(𝑥)], [inf 𝐼𝐴

2(𝑥) ∧            inf 𝐼𝐵
2(𝑥) , sup 𝐼𝐴

2(𝑥) ∧

sup 𝐼𝐵
2(𝑥)], … , [inf 𝐼𝐴

𝑝(𝑥) ∧ inf 𝐼𝐵
𝑝(𝑥) , sup 𝐼𝐴

𝑃(𝑥) ∧     sup 𝐼𝐵
𝑃(𝑥)]),            

        ([inf 𝐹𝐴
1(𝑥) ∧ inf 𝐹𝐵

1(𝑥) , sup 𝐹𝐴
1(𝑥) ∧ sup 𝐹𝐵

1(𝑥)], [inf 𝐹𝐴
2(𝑥) ∧

inf 𝐹𝐵
2(𝑥) , sup 𝐹𝐴

2(𝑥) ∧           sup 𝐹𝐵
2(𝑥)], … , [inf 𝐹𝐴

𝑝(𝑥) ∧

inf 𝐹𝐵
𝑝(𝑥) , sup 𝐹𝐴

𝑃(𝑥) ∧ sup 𝐹𝐵
𝑃(𝑥)])>: x ∈ X} 

Proposition 3.17. Let A, B, C ∈ NVINS(X).Then, 

1. A∪A=A. 

2. A∪ ∅ = A. 

3. A∪E=E. 

4. A∪B= B∪A. 

5. (A∪B) ∪ 𝐶 = A ∪ (B ∪ 𝐶). 

Proof: The proof is straightforward. 

Definition 3.18. Let A and B be two n-valued interval neutrosophic sets. Then, 

difference of A and B, denoted by A \B, is defined by 

A\B={x,([min {inf 𝑇𝐴
1(𝑥), inf 𝐹𝐵

1(𝑥)} , min {sup 𝑇𝐴
1(𝑥), sup 𝐹𝐵

1(𝑥)} ], 

          [min {inf 𝑇𝐴
2(𝑥), inf 𝐹𝐵

2(𝑥)} , min {sup 𝑇𝐴
2(𝑥), sup 𝐹𝐵

2(𝑥)} ],...,          

[min {inf 𝑇𝐴
𝑝(𝑥), inf 𝐹𝐵

𝑝(𝑥)} , min {sup 𝑇𝐴
𝑝(𝑥), sup 𝐹𝐵

𝑝(𝑥)} ]),([max(inf

𝐼𝐴
1(𝑥),1-sup           𝐼𝐵

1(𝑥)),max(sup𝐼𝐴
1(𝑥),1-

inf𝐼𝐵
1(𝑥))],[max(inf𝐼𝐴

2(𝑥),1-sup𝐼𝐵
2(𝑥)),max(sup𝐼𝐴

2(𝑥),1-inf 

          𝐼𝐵
2(𝑥))],...,[max(inf𝐼𝐴

𝑝(𝑥),1-sup𝐼𝐵
𝑝(𝑥)),max(sup𝐼𝐴

𝑝(𝑥),1-

inf𝐼𝐵
𝑝(𝑥))]),([max(inf           𝐹𝐴

1(𝑥),inf𝑇𝐵
1(𝑥)), max(sup 𝐹𝐴

1(𝑥), 

sup𝑇𝐵
1(𝑥))], [max(inf 𝐹𝐴

2(𝑥),inf𝑇𝐵
2(𝑥)),  

max(sup𝐹𝐴
2(𝑥),Sup𝑇𝐵

2(𝑥))],..., [max(inf 𝐹𝐴
𝑝(𝑥),inf𝑇𝐵

𝑝(𝑥)), max(sup 

𝐹𝐴
𝑝(𝑥), sup𝑇𝐵

𝑝(𝑥))])∶  x ∈ X} 

Example 3.19. Let X= {x1, x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6,.8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3,.5], [.4, .5]},{[.3, .4], [.1, .2]}>} 

Then,  
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A \ B={ < x1 ,{[.1, .2], [.2, .3]},{[.6 ,.8], [.6, .7]},{[.5, .7], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .2]},{[.6,.8], [.5,  .6]},{[.3, .5], [.4, 7]}>} 

Definition 3.20. Let A and B be two n-valued interval neutrosophic sets. Then, 

addition of A and B, denoted by A +̃B, is defined by 

A+̃ = {<x,([min (inf 𝑇𝐴
1(𝑥) + inf 𝑇𝐵

1(𝑥), 1) , min (sup 𝑇𝐴
1(𝑥) +

sup 𝑇𝐵
1(𝑥), 1) ], 

[min(inf 𝑇𝐴
2(𝑥) +  inf 𝑇𝐵

2(𝑥), 1) , min (sup 𝑇𝐴
2(𝑥) +

sup 𝑇𝐵
2(𝑥), 1) ],...,[min(inf 𝑇𝐴

𝑝(𝑥) +  inf 𝐹𝐵
𝑝(𝑥), 1) , min (sup 𝑇𝐴

𝑝(𝑥) +

 sup 𝑇𝐵
𝑝(𝑥), 1) ])         

 ([min(inf 𝐼𝐴
1(𝑥) +  inf 𝐼𝐵

1(𝑥), 1) , min (sup 𝐼𝐴
1(𝑥) +

 sup 𝐼𝐵
1(𝑥), 1) ], [min(inf 𝐼𝐴

2(𝑥) +  inf 𝐼𝐵
2(𝑥), 1) , min (sup 𝐼𝐴

2(𝑥) +

 sup 𝐼𝐵
2(𝑥), 1) ],...,[min(inf 𝑇𝐴

𝑝(𝑥) +  inf 𝑇𝐵
𝑝(𝑥), 1) , min (sup 𝑇𝐴

𝑝(𝑥) +

 sup 𝑇𝐵
𝑝(𝑥), 1) ]),([min(inf 𝐹𝐴

1(𝑥) + inf 𝐹𝐵
1(𝑥), 1) , min (sup 𝐹𝐴

1(𝑥) +

 sup 𝐹𝐵
1(𝑥), 1) ], [min(inf 𝐹𝐴

2(𝑥) +    inf 𝐹𝐵
2(𝑥), 1) , min (sup 𝐹𝐴

2(𝑥) +

 sup 𝐹𝐵
2(𝑥), 1) ],...,[min(inf 𝐹𝐴

𝑝(𝑥) + inf 𝐹𝐵
𝑝(𝑥), 1) , min (sup 𝐹𝐴

𝑝(𝑥) +

 sup 𝐹𝐵
𝑝(𝑥), 1) ]>: x ∈ X }. 

Example 3.21. Let X={x1 , x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6, .8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3, .5], [.4, .5]},{[.3, .4], [.1, .2]}>} 

then,  

A+̃B={<x1,{[.4,.9],[.5,.8]},{[.6,.9],[.9,1]},{[.8,1],[.9,1]}>,     

<x2,{[.4,.9],[.5,.9]},{[.9,1],[.8,1]},{[.6,.8],[.3,9]}>}. 

Proposition 3.22. Let A, B, C ∈ NVINS(X).Then, 

1. A+̃B=B+̃A. 

2.(A+̃B)+̃C = A+̃(B+̃C). 

Proof: The proof is straightforward. 

Definition 3.23. Let A and B be two n-valued interval neutrosophic sets. Then, 

scalar multiplication of A, denoted by A .  ̃a, is defined by 

A.  ̃a = {x, ([min (inf 𝑇𝐴
1(𝑥). a ,1) , min (sup 𝑇𝐴

1(𝑥). a ,1)], [
min (inf 𝑇𝐴

2(𝑥). a ,1) ,

min(sup 𝑇𝐴
2(𝑥). a ,1)

] 
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,...,[min(inf 𝑇𝐴
𝑝(𝑥). a ,1) , min(sup 𝑇𝐴

𝑝(𝑥). a ,1)]), 

([min (inf 𝐼𝐴
1(𝑥). a ,1) , min (sup 𝐼𝐴

1(𝑥). a ,1)], 

[min (inf 𝐼𝐴
2(𝑥). a ,1) , min (sup 𝐼𝐴

2(𝑥). a ,1)],...,

[min (inf 𝐼𝐴
𝑝(𝑥). a ,1) , min (sup 𝐼𝐴

𝑝(𝑥). a ,1)]), 

([min (inf 𝐹𝐴
1(𝑥). a ,1) , min (sup 𝐹𝐴

1(𝑥). a ,1)], 

[min(inf 𝐼𝐴
1(𝑥). a ,1) , min(sup 𝐼𝐴

1(𝑥). a ,1)],...,

[min(inf 𝐼𝐴
𝑝(𝑥). a ,1) , min(sup 𝐼𝐴

𝑝(𝑥). a ,1)])∶ x ∈ X }. 

Example 3.24. Let X={x1 , x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6,.8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3,.5], [.4, .5]},{[.3, .4], [.1, .2]}>}, 

then,  

A.  ̃2 = { <x1,{[.2, .4] ,[.4 ,.6]},{[.8, 1],[1, 1]},{[1, 1],[1, 1]}>, 

<x2,{[.2,.8],[.2, .6]},{[1, 1],[.8, 1]},{[.6, .8],[.4, 1]}>} 

Proposition 3.25. Let A, B, C ∈ NVINS(X). Then, 

1. A.  ̃B=B.  ̃A 

2. (A.  ̃̃B).  ̃𝐶 = A.  ̃(B.  ̃𝐶) 

Proof: The proof is straightforward. 

Definition 3.26. Let A and B be two n-valued interval neutrosophic sets. Then, 

scalar division of A, denoted by A /  ̃a, is defined by  

A/  ̃a={x,[min(inf 𝑇𝐴
1(𝑥)/a ,1) , min(sup 𝑇𝐴

1(𝑥)/a ,1)],

[min(inf 𝑇𝐴
2(𝑥)/a ,1) , min(sup 𝑇𝐴

2(𝑥)/ a ,1)] 

,...,[min(inf 𝑇𝐴
𝑝(𝑥)/ a ,1) , min(sup 𝑇𝐴

𝑝(𝑥)/ a ,1)]),([min(inf 𝐼𝐴
1(𝑥)/

 a ,1) , min(sup 𝐼𝐴
1(𝑥)/ a ,1)], [min(inf 𝐼𝐴

2(𝑥)/ a ,1) , min(sup 𝐼𝐴
2(𝑥)/

a ,1)],...,[min(inf 𝐼𝐴
𝑝(𝑥)/a ,1) , min(sup 𝐼𝐴

𝑝(𝑥)/ a ,1)]), 

[[min(inf 𝐹𝐴
1(𝑥)/ a ,1) , min(sup 𝐹𝐴

1(𝑥). a ,1)]], [min(inf 𝐹𝐴
2(𝑥)/

a ,1) , min(sup 𝐹𝐴
2(𝑥)/ a ,1)], ...,[min(inf 𝐼𝐴

𝑝(𝑥)/

 a ,1) , min(sup 𝐼𝐴
𝑝(𝑥)/ a ,1)])∶ x ∈ X }. 

Example 3.27. Let X={x1 , x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 
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A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6, .8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3, .5], [.4, .5]},{[.3, .4], [.1, .2]}>}, 

then,  

A/  ̃2= { <x1,{[.05, .1], [.1, .15]},{[.2, .25], [.3, .35]},{[.25, .3],[.35, .4]}>,     

                        <x2,{[.05,.2], [.05, .15]},{[.3,  .4],[.2, .3]},{[.15, .2], [.1, .35]}>} 

Definition 3.28. Let A and B be two n-valued interval neutrosophic sets. Then, 

truth-Favorite of A, denoted by △̃A, is defined by 

△̃A ={x,([min(inf 𝑇𝐴
1(𝑥) + inf 𝐼𝐴

1(𝑥), 1) , min (sup 𝑇𝐴
1(𝑥) +

 sup 𝐼𝐵
1(𝑥), 1) ], [min(inf 𝑇𝐴

2(𝑥) +  inf 𝐼𝐴
2(𝑥), 1) , min (sup 𝑇𝐴

2(𝑥) +

 sup 𝐼𝐴
2(𝑥), 1) ],...,[min(inf 𝑇𝐴

𝑝(𝑥) + inf 𝐼𝐴
𝑝(𝑥), 1) , min (sup 𝑇𝐴

𝑝(𝑥) +

 sup 𝐼𝐴
𝑝(𝑥), 1) ]) ,([0,0], [0,0],...,[0,0]), 

([inf 𝐹𝐴
1(𝑥) , sup 𝐹𝐴

1(𝑥)], [inf 𝐹𝐴
2(𝑥) , sup 𝐹𝐴

2(𝑥)],...,

[inf 𝐹𝐴
𝑝(𝑥) , sup 𝐹𝐴

𝑝(𝑥)])∶ x ∈ X } 

Example 3.29. Let X={x1 , x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6, .8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3,.5], [.4, .5]},{[.3, .4], [.1, .2]}>} 

Then,  

△̃A= { <x1,{[.5, .7],[.8, 1]},{[0, 0],[0, 0]},{[. 5, .6], [.7, .8]}>, <x2,{[.7, 1], 

[. 5, .9]},{[0, 0],[0, 0]},{[. 3, .4],[.2, .7]}>} 

Proposition 3.30. Let A, B, C ∈ NVINS(X).Then, 

1. △̃△̃A=∇̃𝐴. 

2. △̃ (𝐴 ∪ 𝐵)⊆△̃ 𝐴 ∪△̃ 𝐵. 

3. △̃ (𝐴 ∩ 𝐵)⊆△̃ 𝐴 ∩△̃ 𝐵 

4. △̃ (𝐴+̃𝐵)⊆△̃ 𝐴+̃ △̃ 𝐵. 

Proof: The proof is straightforward. 

Definition 3.31. Let A and B be two n-valued interval neutrosophic sets. Then, 

false-Favorite of A, denoted by ∇̃A, is defined by 
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∇̃A= 

{x([inf 𝑇𝐴
1(𝑥) , sup 𝑇𝐴

1(𝑥)], [inf 𝑇𝐴
2(𝑥) , sup 𝑇𝐴

2(𝑥)],...,

[inf 𝑇𝐴
𝑝(𝑥) , sup 𝑇𝐴

𝑝(𝑥)]),([0,0], [0,0],...,[0,0]), [min(inf 𝐹𝐴
1(𝑥) +

 inf 𝐼𝐴
1(𝑥), 1) , min (sup 𝐹𝐴

1(𝑥) + sup 𝐼𝐵
1(𝑥), 1) ], [min(inf 𝐹𝐴

2(𝑥) +

 inf 𝐼𝐴
2(𝑥), 1) , min (sup 𝐹𝐴

2(𝑥) +  sup 𝐼𝐴
2(𝑥), 1) ],...,[min(inf 𝐹𝐴

𝑝(𝑥) +

 inf 𝐼𝐴
𝑝(𝑥), 1) , min (sup 𝐹𝐴

𝑝(𝑥) +  sup 𝐼𝐴
𝑝(𝑥), 1) ])∶ x ∈ X } 

Example 3.32. Let X={x1 , x2} be the universe and A and B are two n-valued 

interval neutrosophic sets 

A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6,.8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3,.5], [.4, .5]},{[.3, .4], [.1, .2]}>} 

Then,  

∇̃A = { <x1,{[.1, .2],[.2, .3]},{[0, 0],[0, 0]},{[. 9, 1], [1, 1]}>, 

<x2,{[.1, .4], [. 1, .3]},{[0, 0], [0, 0]},{[. 9, 1], [.6, 1]}>} 

Proposition 3.33. Let A, B, C ∈ NVINS(X). Then, 

1. ∇̃∇̃A = ∇̃𝐴. 

2. ∇̃(𝐴 ∪ 𝐵) ⊆ ∇̃𝐴 ∪ ∇̃𝐵. 

3. ∇̃(𝐴 ∩ 𝐵)⊆ ∇̃𝐴 ∩ ∇̃𝐵. 

4. ∇̃(𝐴+̃𝐵) ⊆ ∇̃𝐴+̃∇̃𝐵. 

Proof: The proof is straightforward. 

Here ∨, ∧, +, . ,  /, .  ̃ , /  ̃denotes maximum, minimum, addition, multiplication, 

scalar multiplication, scalar division of real numbers respectively. 

Definition 3.34. Let E is a real Euclidean space 𝐸𝑛. Then, a NVINS A is convex if 

and only if 

inf 𝑇𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)≥ min(inf 𝑇𝐴

𝑖(𝑥1), inf 𝑇𝐴
𝑖(𝑥2)), 

sup 𝑇𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)≥ min(sup 𝑇𝐴

𝑖(𝑥1), sup 𝑇𝐴
𝑖(𝑥2)), 

inf 𝐼𝐴
𝑖 (𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)≤ min(inf 𝐼𝐴

𝑖 (𝑥1), inf 𝐼𝐴
𝑖 (𝑥2)), 

sup 𝐼𝐴
𝑖 (𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)≤ min(sup 𝑖𝐴

𝑖 (𝑥1), sup 𝐼𝐴
𝑖 (𝑥2)), 

inf 𝐹𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)≤ min(inf 𝐹𝐴

𝑖(𝑥1), inf 𝐹𝐴
𝑖(𝑥2)), 

sup 𝐹𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)≤ min(sup 𝐹𝐴

𝑖(𝑥1), sup 𝐹𝐴
𝑖(𝑥2)), 

for all𝑥1, 𝑥2 ∈ E and all 𝜆 ∈ [0 ,1] and  i= 1, 2,..., p. 

Theorem 3.35. If A and B are convex, so is their intersection. 
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Proof: Let C= A ∩ B 

Inf𝑇𝐶
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≥ min (Inf 𝑇𝐴

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) , Inf 𝑇𝐵

𝑗
 (𝜆𝑥1 

+(1- 𝜆)𝑥2)) ,sup𝑇𝐶
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≥ min (sup 𝑇𝐴

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) , 

sup 𝑇𝐵
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)) , , Inf 𝐼𝐶

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≤ max (Inf 𝐼𝐴

𝑗
 (𝜆𝑥1 

+(1- 𝜆)𝑥2) , Inf 𝐼𝐵
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)), sup𝐼𝐶

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≤ max 

(sup 𝐼𝐴
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) , sup 𝑖𝐵

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2))  , Inf 𝐹𝐶

𝑗
 (𝜆𝑥1 +(1-

 𝜆)𝑥2)≤ max (Inf 𝐹𝐴
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) , Inf 𝐹𝐵

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)), 

sup𝐹𝐶
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≤ max (inf 𝐹𝐴

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ,inf 𝐹𝐵

𝑗
 (𝜆𝑥1 

+(1- 𝜆)𝑥2))  since  A and are convex: Inf 𝑇𝐴
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≥ min 

(Inf 𝑇𝐴
𝑗
 ( 𝑥1 )+ Inf 𝑇𝐴

𝑗
 ( 𝑥2 )), sup 𝑇𝐴

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≥ min (sup 𝑇𝐴

𝑗
 

( 𝑥1 )+ sup 𝑇𝐴
𝑗
 ( 𝑥2 )) , Inf 𝐼𝐴

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2) ≤ max (Inf 𝐼𝐴

𝑗
 ( 𝑥1 )+ Inf 

𝐼𝐴
𝑗
 ( 𝑥2 )) , sup 𝐼𝐴

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≤max (sup 𝐼𝐴

𝑗
 ( 𝑥1 )+ sup 𝐼𝐴

𝑗
 

( 𝑥2 )) ,inf 𝐹𝐴
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≤max (inf 𝐹 ( 𝑥1 )+ inf 𝐹𝐴

𝑗
 ( 𝑥2 )) , 

sup 𝐹𝐴
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≤max (sup 𝐹𝐴

𝑗
 ( 𝑥1 )+ sup 𝐹𝐴

𝑗
 ( 𝑥2 )) , 

inf 𝑇𝐵
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≥max (inf 𝑇𝐵

𝑗
 ( 𝑥1 )+ inf 𝑇𝐵

𝑗
 ( 𝑥2 )) , sup 𝑇𝐵

𝑗
 

(𝜆𝑥1 +(1- 𝜆)𝑥2)≥min (sup 𝑇𝐵
𝑗
 ( 𝑥1 )+ sup 𝑇𝐴

𝑗
 ( 𝑥2 )) , inf 𝐼𝐵

𝑗
 (𝜆𝑥1 +(1-

 𝜆)𝑥2)≤max (inf 𝐼𝐵
𝑗
 ( 𝑥1 )+ inf 𝐼𝐴

𝑗
 ( 𝑥2 )) , sup 𝐼𝐵

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2 ≤max 

(sup 𝐼𝐵
𝑗
 ( 𝑥1 )+ sup 𝐼𝐴

𝑗
 ( 𝑥2 )) , inf 𝐹𝐵

𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≤max (inf 𝐹𝐵

𝑗
 

( 𝑥1 )+ inf 𝐹𝐴
𝑗
 ( 𝑥2 ))  , sup 𝐹𝐵

𝑗
 (𝜆𝑥1+(1- 𝜆)𝑥2)≤max (sup 𝐹𝐵

𝑗
 ( 𝑥1 )+ 

sup 𝐹𝐴
𝑗
 ( 𝑥2 )). 

Hence, 

inf𝑇𝐶
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≥min(min (inf 𝑇𝐴

𝑗
 ( 𝑥1 )+ inf 𝑇𝐴

𝑗
 ( 𝑥2 )) , min 

(inf 𝑇𝐵
𝑗
 ( 𝑥1 )+ inf 𝑇𝐵

𝑗
 ( 𝑥2 )))= min (inf 𝑇𝐴

𝑗
 ( 𝑥1 )+ inf 𝑇𝐵

𝑗
 ( 𝑥1 )), min 

(inf 𝑇𝐴
𝑗
 ( 𝑥2 )+ inf 𝑇𝐵

𝑗
 ( 𝑥2 ))= min (inf 𝑇𝐶

𝑗
 ( 𝑥1 )+ inf 𝑇𝐶

𝑗
 ( 𝑥2 )), 

sup 𝑇𝐶
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≥min(min (sup𝑇𝐴

𝑗
 ( 𝑥1 )+ sup 𝑇𝐴

𝑗
 ( 𝑥2 )) , min 

(sup 𝑇𝐵
𝑗
 ( 𝑥1 )+ sup 𝑇𝐵

𝑗
 ( 𝑥2 )))= min (sup𝑇𝐴

𝑗
 ( 𝑥1 )+sup 𝑇𝐵

𝑗
 ( 𝑥1 )), 

min (sup 𝑇𝐴
𝑗
 ( 𝑥2 )+ sup 𝑇𝐵

𝑗
 ( 𝑥2 ))= min (sup 𝑇𝐶

𝑗
 ( 𝑥1 )+ sup 𝑇𝐶

𝑗
 

( 𝑥2 )), 

inf𝐼𝐶
𝑗
 (𝜆𝑥1 +(1- 𝜆)𝑥2)≤max(max (inf 𝐼𝐴

𝑗
 ( 𝑥1 )+ inf 𝐼𝐴

𝑗
 ( 𝑥2 )) , max(inf 

𝐼𝐵
𝑗
 ( 𝑥1 )+ inf 𝐼𝐵

𝑗
 ( 𝑥2 )))= max(inf𝐼𝐴

𝑗
 ( 𝑥1 )+inf 𝐼𝐵

𝑗
 ( 𝑥1 )),max (inf 𝐼𝐴

𝑗
 

( 𝑥2 )+ inf 𝐼𝐵
𝑗
 ( 𝑥2 ))= max (inf 𝐼𝐶

𝑗
 ( 𝑥1 )+ inf 𝐼𝐶

𝑗
 ( 𝑥2 )). 

Definition 3.36. An n-valued interval neutrosophic set is strongly convex if for 

any two points 𝑥1 and 𝑥2and any 𝜆 in the open interval (0.1). 

inf 𝑇𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)> min(inf 𝑇𝐴

𝑖(𝑥1), inf 𝑇𝐴
𝑖(𝑥2)), 
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sup 𝑇𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)> min(sup 𝑇𝐴

𝑖(𝑥1), sup 𝑇𝐴
𝑖(𝑥2)), 

inf 𝐼𝐴
𝑖 (𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2)< min(inf 𝐼𝐴

𝑖 (𝑥1), inf 𝐼𝐴
𝑖 (𝑥2)), 

sup 𝐼𝐴
𝑖 (𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2) < min(sup 𝑖𝐴

𝑖 (𝑥1), sup 𝐼𝐴
𝑖 (𝑥2)), 

inf 𝐹𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2) < min(inf 𝐹𝐴

𝑖(𝑥1), inf 𝐹𝐴
𝑖(𝑥2)), 

sup 𝐹𝐴
𝑖(𝑥)(𝜆𝑥1 +(1- 𝜆) 𝑥2) < min(sup 𝐹𝐴

𝑖(𝑥1), sup 𝐹𝐴
𝑖(𝑥2)), 

for all𝑥1 ,𝑥2 in X and all 𝜆 in [0 ,1] and  i= 1, 2,...,p. 

Theorem 3.37. If A and B are strongly convex, so is their intersection. 

Proof: The proof is similar to Theorem 3.25 

 

4 Distances between n-valued interval neutrosophic sets 

In this section, we present the definitions of the Hamming, Euclidean distances 

between n-valued interval neutrosophic sets, generalized weighted distance 

and the similarity measures between n-valued interval neutrosophic sets 

based on the distances, which can be used in real scientific and engineering 

applications. 

On the basis of the Hamming distance and Euclidean distance between two 

interval neutrosophic set defined by Ye in [43], we give the following Hamming 

distance and Euclidean distance between NVINSs as follows: 

Definition 4.1 Let A and B two n-valued interval neutrosophic sets, Then, the 

Hamming distance is defined by: 

1- 𝑑𝐻𝐷= 
1

𝑝
∑

1

6 
∑ [|infTA

j (xi) − infTB
j (xi)| + |supTA

j (xi) −𝑛
𝑖=1

𝑝
𝑗=1

supTB
j (xi)| +             |infIA

j (xi) − infIB
j (xi)| + |supIA

j (xi) −

supIB
j (xi)| + |𝑖𝑛𝑓FA

j (xi) − infFB
j

(x)| +             |𝑠𝑢𝑝FA
j (xi) −

supFB
j

(x)|] 

The normalized Hamming distance is defined by: 

2- 𝑑𝑁𝐻𝐷= 
1

𝑝
∑

1

6 𝑛
∑ [|infTA

j (xi) − infTB
j (xi)| + |supTA

j (xi) −𝑛
𝑖=1

𝑝
𝑗=1

supTB
j (xi)| +              |infIA

j (xi) − infIB
j (xi)| + |supIA

j (xi) −

supIB
j (xi)| + |𝑖𝑛𝑓FA

j (xi) − infFB
j

(x)| +              |𝑠𝑢𝑝FA
j (xi) −

supFB
j

(x)|] 

However, the difference of importance is considered in the elements in the 

universe. Therefore, we need to consider the weights of the elements xi (i=1, 

2,…, n) into account. In the following, we defined the weighted Hamming 

distance with w={w1 ,w2,...,wn} 
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3- eighted normalized Hamming distance is defined by: 

𝑑𝑤𝐻𝐷= 
1

𝑝
∑

1

6 𝑛
∑ 𝑤𝑖[|infTA

j (xi) − infTB
j (xi)| + |supTA

j (xi) −𝑛
𝑖=1

𝑝
𝑗=1

supTB
j (xi)| +               |infIA

j (xi) − infIB
j (xi)| + |supIA

j (xi) −

supIB
j (xi)| + |𝑖𝑛𝑓FA

j (xi) − infFB
j

(x)| +               |𝑠𝑢𝑝FA
j (xi) −

supFB
j

(x)|] 

If wi= (
1

𝑛
,

1

 𝑛
 ,…,

1

 𝑛
), then (3) reduces to the Normalized Hamming distance. 

Example 4.2. Let X={x1, x2} be the universe and   A and B   are two n- valued 

interval neutrosophic sets 

    A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6,.8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

    B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3,.5], [.4, .5]},{[.3, .4], [.1, .2]}>} 

 Then, we have 𝑑𝐻𝐷= 0.4. 

Definition 4.3. Let A, B two n-valued interval neutrosophic sets. Thus,  

1. The Euclidean distance 𝑑𝐸𝐷 is defined by: 

𝑑𝐸𝐷={
1

𝑝
∑

1

6 
∑ [(infTA

j (xi) − infTB
j (xi))

2

+ (supTA
j (xi) −𝑛

𝑖=1
𝑝
𝑗=1

supTB
j (xi))

2

+ (infIA
j (xi) − infIB

j (xi))
2

+ (supIA
j (xi) −

supIB
j (xi))

2

+ (𝑖𝑛𝑓FA
j (xi) −             infFB

j
(x))

2
+ (𝑠𝑢𝑝FA

j (xi) −

supFB
j

(x))
2

]}

𝟏

𝟐
 

2. The normalized Euclidean distance 𝑑𝑁𝐸𝐷 is defined by: 

𝑑𝑁𝐸𝐷={
1

𝑝
∑

1

6 𝑛 
∑ [(infTA

j (xi) − infTB
j (xi))

2

+ (supTA
j (xi) −𝑛

𝑖=1
𝑝
𝑗=1

supTB
j (xi))

2

+ (infIA
j (xi) − infIB

j (xi))
2

+ (supIA
j (xi) −

supIB
j (xi))

2

+ (𝑖𝑛𝑓FA
j (xi) −              infFB

j
(xi))

2
+ (𝑠𝑢𝑝FA

j (xi) −

supFB
j

(x))
2

]}

𝟏

𝟐
 

However, the difference of importance is considered in the elements in the 

universe. Therefore, we need to consider the weights of the elements xi (i=1, 

2,…, n) into account. In the following, we defined the weighted Euclidean 

distance with w={w1 ,w2,...,wn} 
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3. The weighted Euclidean distance  𝑑𝑊𝐸𝐷 is defined by: 

𝑑𝑊𝐸𝐷={
1

𝑝
∑

1

6 𝑛 
∑ 𝑤𝑖 [(infTA

j (xi) − infTB
j (xi))

2

+𝑛
𝑖=1

𝑝
𝑗=1

(supTA
j (xi) − supTB

j (xi))
2

+ (infIA
j (xi) − infIB

j (xi))
2

+

(supIA
j (xi) − supIB

j (xi))
2

+ (𝑖𝑛𝑓FA
j (xi) −             infFB

j
(x))

2
+

(𝑠𝑢𝑝FA
j (xi) − supFB

j
(x))

2
]}

𝟏

𝟐
 

If wi= (
1

𝑛
, 

1

 𝑛
 ,…, 

1

 𝑛
), then (3) reduces to the Normalized Euclidean  distance. 

Example 4.4.  Let X={x1, x2} be the universe and   A and B   are two n- valued 

interval neutrosophic sets 

 A= { <x1,{[.1, .2], [.2, .3]},{[.4, .5], [.6, .7]},{[.5, .6], [.7, .8]}>, 

<x2,{[.1, .4], [.1, .3]},{[.6,.8], [.4, .6]},{[.3, .4], [.2, .7]}>} 

and 

B= { <x1,{[.3, .7], [.3, .5]},{[.2, .4], [.3, .5]},{[.3, .6], [.2, .7]}>, 

<x2,{[.3, .5], [.4, .6]},{[.3,.5], [.4, .5]},{[.3, .4], [.1, .2]}>}, 

then, we have 𝑑𝐸𝐷= 0.125. 

Definition 4.5. Let A, B two n-valued interval neutrosophic sets. Then based on 

Broumi et al.[11] we proposed a generalized interval valued neutrosophic 

weighted distance measure between A and B as follows:  

𝑑𝜆(𝐴 , 𝐵)={
1

𝑝
∑

1

6 𝑛
∑ 𝑤𝑖 [|infTA

j (xi) − infTB
j (xi)|

𝜆
+𝑛

𝑖=1
𝑝
𝑗=1

|supTA
j (xi) − supTB

j (xi)|
𝜆

+ |inf IA
j (xi) − inf IB

j (xi)|
𝜆

+

|sup IA
j (xi) − sup IB

j (xi)|
𝜆

+ |inf FA
j (xi) − inf FB

j
(x)|

𝜆
+

|sup FA
j (xi) − sup FB

j
(x)|

𝜆
]}

1

𝜆
 

If 𝜆=1 and wi= (
1

𝑛
, 

1

 𝑛
 ,…,

1

 𝑛
), then the above equation reduces to the normalized 

Hamming distance. 

If 𝜆=2 and   wi=(
1

𝑛
, 

1

 𝑛
 ,…,

1

 𝑛
),then the above equation reduces to the normalized 

Euclidean distance. 

Theorem 4.6. The defined distance dK(A, B) between NVINSs A and B satisfies 

the  following properties (1-4), for (k=HD, NHD, ED, NED); 

1. dk(A, B) ≥ 0, 

2. dk(A, B) =0 if and only if A = B; for all A,B ∈ NVINSs, 
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3. dk(A, B) = dk(B, A), 

4. If  A⊆ B ⊆ C, for A, B, C ∈ NVINSs, then  dk(A, C) ≥ dk(A, B) and  

dk(A, C) ≥ dk(B, C). 

Proof: it is easy to see that dk (A, B) satisfies the properties (D1)-(D3). 

Therefore, we only prove (D4). Let A ⊆ B⊆ C, then, 

 inf  TA
j (xi) ≤ inf  TB

j (xi) ≤ inf  TC
j (xi) ,supf  TA

j (xi) ≤ sup  TB
j (xi) ≤

sup  TC
j (xi),inf IA

j (xi) ≥ inf  IB
j (xi) ≥ inf  IC

j (xi) ,supf  IA
j (xi) ≥

sup  IB
j (xi) ≥ sup  IC

j (xi),  

and 

 inf FA
j (xi) ≥ inf  FB

j (xi) ≥ inf  FC
j (xi),supf  FA

j (xi) ≥ sup  FB
j (xi) ≥

sup  FC
j (xi),  

for k= (HD, NHD, ED, NED), we have 

|infTA
j (xi) − infTB

j (xi)|
𝑘

≤ |infTA
j (xi) − infTC

j (xi)|
𝑘

,|supTA
j (xi) −

supTB
j (xi)|

𝑘
≤ |supTA

j (xi) − supTC
j (xi)|

𝑘
, 

|infTB
j (xi) − infTC

j (xi)|
𝑘

≤ |infTA
j (xi) − infTC

j (xi)|
𝑘

,|supTB
j (xi) −

supTB
j (xi)|

𝑘
≤ |supTA

j (xi) − supTC
j (xi)|

𝑘
, 

|inf IA
j (xi) − inf IB

j (xi)|
𝑘

≤ |inf IA
j (xi) − inf IC

j (xi)|
𝑘

,|sup IA
j (xi) −

sup IB
j (xi)|

𝑘
≤ |sup IA

j (xi) − sup IC
j (xi)|

𝑘
, 

|inf IB
j (xi) − inf IC

j (xi)|
𝑘

≤ |inf IA
j (xi) − inf IC

j (xi)|
𝑘

,|sup IB
j (xi) −

sup IB
j (xi)|

𝑘
≤ |sup IA

j (xi) − sup IC
j (xi)|

𝑘
 

|inf IA
j (xi) − inf IB

j (xi)|
𝑘

≤ |inf IA
j (xi) − inf IC

j (xi)|
𝑘

,|sup IA
j (xi) −

sup IB
j (xi)|

𝑘
≤ |sup IA

j (xi) − sup IC
j (xi)|

𝑘
, 

|inf IB
j (xi) − inf IC

j (xi)|
𝑘

≤ |inf IA
j (xi) − inf IC

j (xi)|
𝑘

,|sup IB
j (xi) −

sup IB
j (xi)|

𝑘
≤ |sup IA

j (xi) − sup IC
j (xi)|

𝑘
, 

|inf FA
j (xi) − inf FB

j (xi)|
𝑘

≤ |inf FA
j (xi) − inf FC

j (xi)|
𝑘

,|sup FA
j (xi) −

sup FB
j (xi)|

𝑘
≤ |sup FA

j (xi) − sup FC
j (xi)|

𝑘
, 

|inf FB
j (xi) − inf FC

j (xi)|
𝑘

≤ |inf FA
j (xi) − inf FC

j (xi)|
𝑘

, 

|sup FB
j (xi) − sup FB

j (xi)|
𝑘

≤ |sup FA
j (xi) − sup FC

j (xi)|
𝑘

 

Hence  
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|infTA
j (xi) − infTB

j (xi)|
𝑘

+|supTA
j (xi) − supTB

j (xi)|
𝑘

+|inf IA
j (xi) −

inf IB
j (xi)|

𝑘
+|sup IA

j (xi) − sup IB
j (xi)|

𝑘
+|inf FA

j (xi) −

inf FB
j (xi)|

𝑘
+|sup FA

j (xi) − sup FB
j (xi)|

𝑘
≤ |infTA

j (xi) −

infTC
j (xi)|

𝑘
+|supTA

j (xi) − supTC
j (xi)|

𝑘
+|inf IA

j (xi) −

inf IC
j (xi)|

𝑘
+|sup IA

j (xi) − sup IC
j (xi)|

𝑘
+|inf FA

j (xi) −

inf FC
j (xi)|

𝑘
+|sup FA

j (xi) − sup FC
j (xi)|

𝑘
 

1

𝑝
∑

1

6 
∑|infTA

j (xi) − infTB
j (xi)|

𝑘
+ |supTA

j (xi) − supTB
j (xi)|

𝑘
𝑛

𝑖=1

𝑝

𝑗=1

+ |inf IA
j (xi) − inf IB

j (xi)|
𝑘

+ |sup IA
j (xi) − sup IB

j (xi)|
𝑘

+ |inf FA
j (xi) − inf FB

j (xi)|
𝑘

+ |sup FA
j (xi) − sup FB

j (xi)|
𝑘

≤
1

𝑝
∑

1

6 
∑|infTA

j (xi) − infTC
j (xi)|

𝑘
𝑛

𝑖=1

𝑝

𝑗=1

+ |supTA
j (xi) − supTC

j (xi)|
𝑘

+ |inf IA
j (xi) − inf IC

j (xi)|
𝑘

+ |sup IA
j (xi) − sup IC

j (xi)|
𝑘

+ |inf FA
j (xi) − inf FC

j (xi)|
𝑘

+ |sup FA
j (xi) − sup FC

j (xi)|
𝑘

 

Then dk (A, B) ≤ dk(A, C) 

|infTB
j (xi) − infTC

j (xi)|
𝑘

+|supTB
j (xi) − supTC

j (xi)|
𝑘

+|inf IB
j (xi) −

inf IC
j (xi)|

𝑘
+|sup IB

j (xi) − sup IC
j (xi)|

𝑘
+|inf FB

j (xi) −

inf FC
j (xi)|

𝑘
+|sup FB

j (xi) − sup FC
j (xi)|

𝑘
≤ |infTA

j (xi) −

infTC
j (xi)|

𝑘
+|supTA

j (xi) − supTC
j (xi)|

𝑘
+|inf IA

j (xi) −

inf IC
j (xi)|

𝑘
+|sup IA

j (xi) − sup IC
j (xi)|

𝑘
+|inf FA

j (xi) −

inf FC
j (xi)|

𝑘
+|sup FA

j (xi) − sup FC
j (xi)|

𝑘
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1

𝑝
∑

1

6 
∑|infTB

j (xi) − infTC
j (xi)|

𝑘
+ |supTB

j (xi) − supTC
j (xi)|

𝑘
𝑛

𝑖=1

𝑝

𝑗=1

+ |inf IB
j (xi) − inf IC

j (xi)|
𝑘

+ |sup IB
j (xi) − sup IC

j (xi)|
𝑘

+ |inf FB
j (xi) − inf FC

j (xi)|
𝑘

+ |sup FB
j (xi) − sup FC

j (xi)|
𝑘

≤
1

𝑝
∑

1

6 
∑|infTA

j (xi) − infTC
j (xi)|

𝑘
𝑛

𝑖=1

𝑝

𝑗=1

+ |supTA
j (xi) − supTC

j (xi)|
𝑘

+ |inf IA
j (xi) − inf IC

j (xi)|
𝑘

+ |sup IA
j (xi) − sup IC

j (xi)|
𝑘

+ |inf FA
j (xi) − inf FC

j (xi)|
𝑘

+ |sup FA
j (xi) − sup FC

j (xi)|
𝑘

 

Then dk (B, C) ≤ dk(A, C). 

Combining the above inequalities with the above defined distance formulas 

(1)-(4), we can obtain that dk (A, B) ≤ dk (A, C) and dk (B, C) ≤ dk (A, C) for k= 

(HD, NHD, ED, NED). 

Thus the property (D4) is obtained. 

It is well known that similarity measure can be generated from distance 

measure. Therefore we may use the proposed distance measure to define 

similarity measures. 

Based on the relationship of similarity measure and distance we can define 

some similarity measures between NVINSs A and B as follows: 

Definition 4.7. The similarity measure based on 𝑠NVINS(A, B)= 1-dk(A, B),

sNVINS(A,B) is said to be the similarity measure between A and B, where A, B 

∈ NVINS. 

Theorem 4.8. The defined similarity measure sNVINS(A, B) between NVINSs 

A and B satisfies the following properties (1-4), 

1. sNVINS(A, B) = sNVINS(B, A).  

2. sNVINS(A, B) = (1, 0, 0)=1 .if  A=B  for all A, B ∈ NVINSs. 

3. sNVINS(A, B)  ∈[0,1] 

4. If A⊆B⊆C for all A, B, C ∈ NVNSs then sNVINS(A, B)≥

sNVINS(A, C) and sNVINS(B, C) ≥ sNVINS(A, C). 

From now on, we use 

A= {𝑥, (
[inf 𝑇𝐴

1(𝑥) , sup 𝑇𝐴
1(𝑥)], [inf 𝐼𝐴

1(𝑥) , sup 𝐼𝐴
1(𝑥)],

[𝑖𝑛𝑓 𝐹𝐴
1(𝑥), 𝑠𝑢𝑝 𝐹𝐴

1(𝑥)]
) , …, 
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(
[inf 𝑇𝐴

𝑃(𝑥) , sup 𝑇𝐴
𝑃(𝑥)], [inf 𝐼𝐴

𝑃(𝑥) , sup 𝐼𝐴
𝑃(𝑥)],

[𝑖𝑛𝑓 𝐹𝐴
𝑃(𝑥), 𝑠𝑢𝑝 𝐹𝐴

𝑃(𝑥)]),
)): x ∈ E} 

instead of  

A= {𝑥, (
[inf 𝑇𝐴

1(𝑥) , sup 𝑇𝐴
1(𝑥)], [inf 𝑇𝐴

2(𝑥) , sup 𝑇𝐴
2(𝑥)], … ,

[inf 𝑇𝐴
𝑝(𝑥) , sup 𝑇𝐴

𝑝(𝑥)]
),  

(
[inf 𝐼𝐴

1(𝑥) , sup 𝐼𝐴
1(𝑥)], [inf 𝐼𝐴

2(𝑥) , sup 𝐼𝐴
2(𝑥)], … . ,

[inf 𝐼𝐴
𝑝(𝑥) , sup 𝐼𝐴

𝑞(𝑥)]
), 

 ( [inf 𝐹𝐴
1(𝑥), sup 𝐹𝐴

1(𝑥)] , ([inf 𝐹𝐴
2(𝑥), sup 𝐹𝐴

2(𝑥)], … .,  

([𝑖𝑛𝑓 𝐹𝐴
𝑝(𝑥), 𝑠𝑢𝑝 𝐹𝐴

𝑟(𝑥)]): x ∈ E}. 

 

5 Medical Diagnosis using NVINS 

In what follows, let us consider an illustrative example adopted from 

Rajarajeswari and Uma [32] with minor changes and typically considered in 

[17,20,37]. Obviously, the application is an extension of intuitionistic fuzzy 

multi sets [17,20,32,33,34]. 

"As Medical diagnosis contains lots of uncertainties and increased volume of 

information available to physicians from new medical technologies, the 

process of classifying different set of symptoms under a single name of disease 

becomes difficult. In some practical situations, there is the possibility of each 

element having different truth membership, indeterminate and false 

membership functions. The proposed similarity measure among the patients 

Vs symptoms and symptoms Vs diseases gives the proper medical diagnosis. 

The unique feature of this proposed method is that it considers multi truth 

membership, indeterminate and false membership. By taking one time 

inspection, there may be error in diagnosis. Hence, this multi time inspection, 

by taking the samples of the same patient at different times gives best 

diagnosis" [32]. 

Now, an example of a medical diagnosis will be presented. 

Example 5.1. Let P={P₁,P₂,P₃} be a set of patients, D={Viral Fever, Tuberculosis, 

Typhoid, Throat disease} be a set of diseases and S={Temperature, cough, 

throat pain, headache, body pain} be a set of symptoms. Our solution is to 

examine the patient at different time intervals (three times a day), which in 

turn give arise to different truth membership, indeterminate and false 

membership function for each patient. 
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Let the samples be taken at three different timings in a day (in 

08:00,16:00,24:00). 

 

 

 
The highest similarity measure from the Table IV gives the proper medical 

diagnosis. Therefore, patient P1 suffers from Viral Fever, P2 suffers from Throat 

disease and P3 suffers from Viral Fever. 

 

6 Conclusion 

In this paper, we give n-valued interval neutrosophic sets and desired 

operations such as; union, intersection, addition, multiplication, scalar 

multiplication, scalar division, truth-favorite and false-favorite. The concept of 

n-valued interval neutrosophic set is a generalization of interval valued 

neutrosophic set, single valued neutrosophic sets and single valued 

neutrosophic multi sets. Then, we introduce some distances between n-valued 
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interval neutrosophic sets (NVINS) and propose an efficient approach for 

group multi-criteria decision making based on n-valued interval neutrosophic 

sets. The distances have natural applications in the field of pattern recognition, 

feature extraction, region extraction, image processing, coding theory etc. 
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Abstract 

In spite of researchers’ concerns to find causalities, reviewing the literature of 

psychological studies one may argue that the classical statistical methods applied in 

order to find causalities are unable to find uncertainty and indeterminacies of the 

relationships between concepts.  
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In this paper, we introduce two methods to find effective solutions by identifying 

“hidden” patterns in the patients’ cognitive maps. Combined Overlap Block Fuzzy 

Cognitive Map (COBFCM) and Combined Overlap Block Neutrosophic Map (COBNCM) 

are effective when the number of concepts can be grouped and are large in numbers. 

In the first section, we introduce COBFCM, COBNCM, their applications, and the 

advantages of COBNCM over COBFCM in some cases. In the second section, we explain 

eight overlapped cognitive concepts related to ADHD in children and apply COBNCM 

and COBFCM to analyze the modeled data, comparing their results. Conclusions, 

limitations, and implications for applying COBNCM in other psychological areas are 

also discussed. 

Keywords 

Fuzzy Cognitive Map, Neutrosophic Cognitive Map, Fuzzy model, Causal model, ADHD, 

Methodology. 

1 Introduction 

A portfolio of project is a group of project that share resources creating 

relation among them of complementarity, incompatibility or synergy [1]. The 

interdependency modeling and analysis have commonly been ignored in 

project portfolio management [2].  

Identifying causalities is one of the most important concerns of researchers, 

one may find out reviewing the literature of psychological research. Although 

there are some statistical methods to investigate this issue, all, or majority, rely 

on quantitative data. Less attention was directed towards scientific qualitative 

knowledge and experience. In some methods based on theoretical basics such 

as structural equation modeling (SEM), there is no chance to find optimal 

solutions, hidden patterns and indeterminacies (possibilities) of causal 

relationships between variables, which are common in psychological research. 

Therefore, for linking quantitative and qualitative knowledge, it seems an urge 

to use methods as fuzzy cognitive maps or neutrosophic cognitive maps in 

psychological research. The two methods are rooted in cognitive map (CM). 

The cognitive maps for representing social scientific knowledge and 

describing the methods that is used for decision-making were introduced by 

Axelrod in 1976. The fuzzy cognitive map (FCM) was proposed by Kosko (1986) 

to present the causal relationship between concepts and analyze inference 

patterns. Kosko (1986, 1988, 1997) considered fuzzy degree of inter 

relationships between concepts, its nodes corresponding to a relevant node 

and the edges stating the relation between two nodes, denoted by a sign. A 

positive sign implies a positive relation; moreover, any increase in its source 

value leads to increase in its target value. A negative sign stages a negative 
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relation and any increase or decrease in its source value leads to reverse effect 

to its target value. If there is no edge between two nodes in a cognitive map, it 

means that there is no relation between them (Zhang et al., 1998). In a simple 

fuzzy cognitive map, the relation between two nodes is determined by taking 

a value in interval [-1, 1]. 

While -1 corresponds to the strongest negative value, +1 corresponds to 

strongest positive value. The other values express different levels of influence 

(Lee, et al., 2003). Fuzzy cognitive maps are important mathematical models 

representing the structured causality knowledge for quantitative inferences 

(Carvalho & Tome, 2007). FCM is a soft computing technique that follows an 

approach similar to the human reasoning and decision-making process 

(Markinos, et al., 2004). Soft computing is an emerging field that combines and 

synergies advanced theories and technologies such as Fuzzy Logic, Neural 

Networks, Probabilistic reasoning and Genetic Algorithms. Soft computing 

provides a hybrid flexible computing technology that can solve real world 

problems. Soft computing includes not only the previously mentioned 

approaches, but also useful combinations of its components, e.g. Neurofuzzy 

systems, Fuzzy Neural systems, usage of Genetic Algorithms in Neural 

Networks and Fuzzy Systems, and many other hybrid methodologies (Stylios 

& Peter, 2000). FCM can successfully represent knowledge and human 

experiences, introduce concepts to represent the essential elements, cause and 

effect relationships among the concepts, to model the behavior of a system 

(Kandasamy, 1999, 2004). This method is a very simple and powerful tool that 

is used in numerous fields (Thiruppathi, et al. 2010). When dataset is an 

unsupervised one and there is uncertainty within the concepts, this method is 

very useful. The FCM give us the hidden patterns; this method is one effective 

method, providing a tool for unsupervised data. In addition, using this method, 

one can analyze the data by directed graphs and connection matrices where 

nodes represent concepts and edges - strength of relationships (Stylios & 

Groumpos, 2000). FCM works on the opinion of experts or another uncertainty 

results like the obtained results using structural equation modeling (SEM). 

FCM clarify optimal solution by using a simple way, while other causal models 

such as SEM are complicated. They do not perform well to clarify what-if 

scenario, for example, their results do not clarify what happens to marital 

satisfaction if Alexithymia is very high and Family intimacy is very low. 

Another advantage of FCM is its functioning on experts’ opinions (Thiruppathi 

et al. 2010). FCM is a flexible method used in several models to display several 

types of problems (Vasantha Kandasamy & Devadoss, 2004; Vasantha 

Kandasamy & Kisho, 1999). Although by using this method we are able to 

study uncertainty and find hidden patterns, the FCM is unable to investigate 

indeterminate relationships, which is a limitation in psychological causal 
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models. A solution to overcome this limitation is the Neutrosophic Cognitive 

Map (NCM). 

Vasantha Kandasamy and Smarandache (2003) proposed the neutrosophic 

cognitive maps, making it possible to mitigate the limitation of fuzzy cognitive 

maps, which cannot represent the indeterminate relations between variables. 

The capability of neutrosophic cognitive maps to represent indetermination 

facilitates the apprehension of systems complexity, and thus elucidates and 

predicts their behaviors in the absence of complete information. 

Neutrosophic Cognitive Map (NCM) relies on Neutrosophy. Neutrosophy is a 

new branch of philosophy introduced by Smarandache in 1995 as a 

generalization of dialectics, which studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra. 

Neutrosophic Cognitive Map (NCM) is the generalization and combination of 

the Fuzzy Cognitive Map in which indeterminacy is included. Fuzzy theory only 

measures the grade of membership or the non-existence of a membership in a 

revolutionary way, but failing to attribute the concept when the relationship 

between concepts in debate are indeterminate (Vasantha Kandasamy & 

Smarandache, 2007). A Neutrosophic Cognitive Map is a neutrosophic directed 

graph with concepts like policies, events etc. as nodes and causalities, or 

indeterminacies as edges. It represents the causal relationship between 

concepts defined by Smarandache (2001) and Vasantha Kandasamy (2007). 

Fuzzy cognitive maps deals with the relation / non-relation between two 

nodes or concepts, but it declines to attribute the relation between two 

conceptual nodes when the relation is an indeterminate one. In Neutrosophic 

Logic, each proposition is estimated to have the percentage of truth in a subset 

T, the percentage of indeterminacy in a subset I, and the percentage of falsity 

in a subset F. Every logical variable x is described by an ordered triple x = (T, I, 

F), where T is the degree of truth, F is the degree of false and I - the level of 

indeterminacy. Neutrosophy means that any proposition has a percentage of 

truth, a percentage of indeterminacy and a percentage of falsity (some of these 

percentages may be zero). Neutrosophy also makes distinctions between 

absolute truth (a proposition true in all possible worlds), which is denoted by 

1, and relative truth (a proposition which is true in at least one world, but not 

in all), which is denoted by I (Smarandache & Liu, 2004). Sometimes, in 

psychological and educational research, the causality between the two 

concepts, i.e. the effect of Ci on Cj is indeterminate. Chances of indeterminacy 

are possible and frequent in case of unsupervised data. Therefore, the NCM is 

a flexible and effective method based on fuzzy cognitive map for investigating 

the relations of psychological casual models in which indeterminate 

relationships are not unusual. We describe the basic components in detail to 

explain differences between the two methods. 
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2 Combined Overlap Block Fuzzy Cognitive Maps 

(COBFCM) and Combined Overlap Block Neutrosophic 

Cognitive Map (COBNCM) 

We can combine arbitrarily FCM and NCM connection matrices F1, F2,…, FK by 

adding augmented FCM and NCM matrices, F1, …, FK. Each augmented matrix 

Fi has n-rows and n-columns; n equals the total number of distinct concepts 

used by the experts. We permute the rows and columns of the augmented 

matrices to bring them into mutual coincidence. Then we add the Fi’s point 

wise to yield the combined FCM and NCM matrix F, F = ΣFi. We can then use F 

to construct the combined FCM and NCM directed graph. The combination can 

be in disjoint or overlapping blocks. 

Combined overlap block fuzzy cognitive maps (COBFCM) were introduced and 

applied in social sciences by Vasantha Kandasamy et al. (2004), and combined 

overlap block neutrosophic cognitive map (COBNCM) - by Vasantha 

Kandasamy & Smarandache (2007). In these two methods, finite number of 

NCM and FCM can be combined together to produce the joint effect of all NCM 

and FCM. In NCM method, N (E1), N (E2),…, N(Ep) are considered  the 

neutrosophic adjacency matrices, with nodes C1, C2,…, Cn, and E1, E2, …, Ep are 

the adjacency matrices of FCM with nodes C1, C2, …, Cn. The combined NCM and 

the combined FCM are obtained by adding all the neutrosophic adjacency 

matrices N (E1)… N (Ep) and adjacency matrices by E1,..,EP respectively. We 

denote the Combined NCM adjacency neutrosophic matrix by N(E) =N(E1) + 

N(E2)+…+ N(Ep) and the Combined FCM adjacency matrix by E=E1+E2+…+Ep . 

Both models {C1, C2,C3,….Cn} contain n concepts associated with P (a given 

problem). We divide the number of concepts {C1, C2,C3,….Cn} into K classes S1, 

S2,S3,…SK , where the classes are such that Si  Si+1≠ф , U Si = { C1, C2, ...,Cn } and 

|Si| ≠|Sj| ,if i≠ j in general. To introduce these methods in detail, we explain their 

basic components below. 

3 Concepts and edges 

In Combined Overlap Block Fuzzy Cognitive Maps (COBFCM) and Combined 

Overlap Block Neutrosophic Cognitive Map (COBNCM), the edges are 

qualitative concepts considered as nodes and causal influences. Concept nodes 

possess a numeric state, which denotes qualitative measures of the concepts 

present in the conceptual domain. When the nodes of FCM are a fuzzy set, they 

are called fuzzy nodes. Fuzzy means the concepts are not quantitative, they are 

uncertain, and we have to study them using linguistic variables, such as “very 

high”, “high”, “middle”, etc. The nodes or concepts are presented by C1, C2 ,
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C3 ,…..,Cn. The state of concepts is portrayed as a vector. In COBNCM, we assume 

each node is a neutrosophic vector from neutrosophic vector space V. Let C1, 

C2, …, Cn denote n nodes, So a node Ci will be represented by (x1, …,xn), where 

xk’s - zero or one or I (I is the indeterminate) and xk = 1 means that the node Ck 

is in the ON state, and xk =0 means the node is in the OFF state, and xk = I means 

the nodes state is an indeterminate at that time or in that situation. Let C1, C2… 

Cn be the nodes of COBNCM and let A = (a1, a2,…, an), where ai  {0, 1, I}. A is 

called the instantaneous state neutrosophic vector and it denotes the ON – OFF 

– indeterminate state position of the node at an instant:

ai = 0 if ai is off (no effect), 

ai = 1 if ai is on (has effect), 

ai = I if ai is indeterminate (effect cannot be determined), 

for i = 1, 2,…, n. 

In COBNCM, the nodes C1, C2, …, Cn are nodes and not indeterminate nodes, 

because they indicate the concepts which are well known. But the edges 

connecting Ci and Cj may be indeterminate, i.e. an expert may not be in the 

position to say that Ci has some causality on Cj, either he will be in the position 

to state that Ci has no relation with Cj; in such cases, the relation between Ci 

and Cj, which is indeterminate, is denoted by I. The COBFCM with edge weights 

or causalities from the set {-1, 0, 1} are called simple, and COBNCM with edge 

weight from {-1, 0, 1, I} are called simple COBNCM. In COBFCM, the edges (eij) 

take values in the fuzzy causal interval [-1, 1], eij =0, eij>0 and eij<0 indicate no 

causality, positive and negative causality, respectively. In simple FCM, if the 

causality occurs, it occurs to a maximal positive or negative degree. Every edge 

in COBNCM is weighted with a number in the set {-1, 0, 1, I}. eij is the weight of 

the directed edge CiCj, eij  {–1, 0, 1, I}. eij = 0 if Ci does not have any effect on 

Cj, eij = 1 if increase (or decrease) in Ci causes increase (or decrease) in Cj, eij = 

–1 if increase (or decrease) in Ci causes decrease (or increase) in Cj . eij = I if

the relation or effect of Ci on Cj is an indeterminate. In such cases, it is denoted 

by dotted lines in the model.  

4 Adjacency Matrix 

In COBFCM and COBNCM, the edge weights are presented in a matrix. This 

matrix is defined by E= (eij), where eij  indicates the  weight of direct edge CiCj 

and eij {0, 1,-1}, and by N (E) = (eij), where eij is the weight of the directed 

edge Ci Cj, where eij  {0, 1, -1, I}. We denote by N(E) the neutrosophic 

adjacency matrix of the COBNCM. It is important to note that all matrices used 
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in these methods are always a square matrix with diagonal entries as zeros. All 

off-diagonal entries are edge weights that link adjacent nodes to each other. A 

finite number of  FCM and NCM can be combined together to produce the joint 

effect of all FCM and NCM. Suppose E1,E2 ,E3…..EP and N(E1),N(E2),N(E3)…N(EP) 

are adjacency matrices of FCM and neutrosophic adjacency matrix of NCM, 

respectively, with nodes C1, C2 ,C3 ,…..,Cn. Then combined FCM and NCM are 

obtained by adding all the adjacency matrices (Vasantha Kandasamy & 

Smarandache, 2003). In combined overlap FCM and NCM, all entries of all 

different overlapped matrices are put in a whole matrix and added to each 

other. 

5 Inference process 

The states of concepts are rendered as vectors. Therefore, the inference 

process of FCM and NCM can be represented by an iterative matrix calculation 

process. Let V0 be the initial state vector, Vn be the state vector after n th 

iterative calculation, and W be the causal effect degree matrix; then the 

inference process can be defined as a repeating calculation of Equation 1 until 

the state vector converges to a stable value or fall in to an infinite loop. Suppose 

X1 = [1 0 0 0….0] is the input vector and E is the associated adjacency matrix. 

X1E  is obtained by multiplying X1 by the matrix E. We obtain X1E =[x1,x2,x3,….xn] 

by replacing xi by 1, if xi>c, and xi by 0, if xi<c (c is a suitable positive integer). 

After updating the thresholding concept, the concept is included in the 

updated vector by making the first coordinate as 1 in the resulting vector. 

Suppose X1E→X2, then X2E  is considered; the same procedure is repeated until 

it gets limit cycle or a fixed point (Thiruppathi, et al., 2010). 

Vn+1 = f (Vn ×W + Vn), (1)   

where the f is usually simply defined as f(x) = f0(x) = 1 (x ≥ 1), 0 (1 > x > −1) 

and −1 (−1 ≤ x). 

If the equilibrium state of a dynamical system is a unique state vector, then it 

is called a fixed point. Consider FCM and NCM with C1, C2…, Cn as nodes. For 

example, let us start the dynamical system by switching on C1. Let us assume 

that NCM and FCM settle down with C1 and Cn ON, i.e. the state vector remains 

as (1, 0,…, 1); this state vector (1,0,…, 0, 1) is called the fixed point; if FCM and 

NCM settle down with a state vector repeating in the form A1 → A2 → … → Ai → 

A1, then this equilibrium is called a limit cycle of NCM and FCM (Tabar, 1991). 

Let C1, C2,…, Cn be the vector of FCM and NSM. Let E be the associated adjacency 

matrix. Let us find the hidden pattern when x1 is switched on when an input is 

given as the vector A1= (1, 0, 0,…, 0); the data should pass through the 
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neutrosophic matrix N(E); this is done by multiplying A1 by the matrix N(E). Let 

A1N(E) = (a1, a2,…, an) with the threshold operation, by replacing ai by 1, if ai > 

k, and ai by 0, if ai < k, and ai by I, if ai is not an integer. 

𝑓(𝑘){

𝑎𝑖 < 𝑘 → 𝑎𝑖 = 0
𝑎𝑖 > 𝑘 → 𝑎𝑖 = 1

𝑎𝑖 = 𝑏 + 𝑐 × 𝐼 → 𝑎𝑖 = 𝑏
𝑎𝑖 = 𝑐 × 𝐼 → 𝑎𝑖 = 𝐼

} 

(k depends on researcher’s opinion, for example K=1 or 0.5). 

Note that (a1, a2… an) and (a'1, a'2, …, a'n) are two neutrosophic vectors. We say 

(a1, a2, … , an) is equivalent to (a'1, a'2, … , a'n) denoted by (a1, a2, … , an) ~ (a'1, 

a'2, …, a'n), if we get (a'1, a'2, … , a'n) after thresholding and updating the vector 

(a1, a2, … , an), after passing through the neutrosophic adjacency matrix N(E). 

The initial state vector in FCM and NCM is included 0 and 1 only (OFF and ON 

states, respectively). But after it passes through the adjacency matrix, the 

updating resultant vector may have entries from (0 and 1) in FCM and from (0, 

1, I) in NCM, respectively. In this case, we cannot confirm the presence of that 

node (ON state), nor the absence (OFF state). Such possibilities are present 

only in the case of NCM. 

6 Cyclic and acyclic FCM and NCM 

If FCM and NCM possess a directed cycle, it is said to be cyclic (to have a 

feedback) and we call it a dynamical system. FCM and NCM are acyclic if they 

do not possess any directed cycle. 

7 FCM versus NCM 

Vasantha Kandasamy and Smarandache (2003) summarize the differences 

between FCM and NCM: 

[1] FCM indicates the existence of causal relation between two concepts, 

and if no relation exists, it is denoted by 0. 

[2] NCM does not indicate only the existence or absence of causal relation 

between two concepts, but also gives representation to the 

indeterminacy of relations between any two concepts. 

[3] We cannot apply NCM for all unsupervised data. NCM will have 

meaning only when relation between at least two concepts Ci and Cj are 

indeterminate. 
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[4] The class of FCM is strictly contained in the class of NCM. All NCM can 

be made into FCM by replacing I in the connection matrix by 0. 

[5] The directed graphs in case of NCM are called neutrosophic graphs. In 

the graphs, there are at least two edges, which are related by the dotted 

lines, meaning the edge between those two vertices is an indeterminate. 

[6] All connection matrices of the NCM are neutrosophic matrices. They 

have in addition to the entries 0, 1, –1, the symbol I. 

[7] The resultant vectors, i.e. the hidden pattern resulting in a fixed point 

or a limit cycle of a NCM, can also be a neutrosophic vector, signifying 

the state of certain conceptual nodes of the system to be an 

indeterminate; indeterminate relation is signified by I. 

[8] Because NCM measures the indeterminate, the expert of the model can 

give careful representation while implementing the results of the 

model. 

[9] In case of simple FCM, we have the number of instantaneous state 

vectors to be the same as the number of resultant vectors, but in the 

case of NCM the number of instantaneous state vectors is from the set 

{0,1}, whereas the resultant vectors are from the bigger set {0, 1, I}. 

[10] Neutrosophic matrix {N (E)} converts to adjacency matrix (E) by easily 

recoding I to 0. 

8 Case study: The comparison of COBFCM and COBNCM 

to find solution for ADHD 

Attention-Deficit/Hyperactivity Disorder (ADHD) is not only the most 

common neuro-developmental disorder of childhood today, but also the most 

studied. Literature reviews report very different prevalence estimates. The 

DSM-IV states that the prevalence of ADHD is about 3–5% among school-age 

children [American Psychiatric Association, 1994]. Some of consequences of 

untreated ADHD children are social skills deficits, behavioral disinhibition and 

emotional skills deficits. Therefore, early diagnosis of ADHD is very important. 

The purpose of this paper is the comparison of application of COBFCM and 

COBNCM to identify the risk groups. When data is an unsupervised one and 

based on experts’ opinions and there is uncertainty in the concepts, COBFCM 

is the best option, and when data is an unsupervised one and there is 

indeterminacy in the concepts, COBNCM is a preferred method. The 

comparison of these methods clarifies this fundamental point and the 

relationship of to-be-determined and not-to-be-determined between the 

concepts, including the effect on results in casual models in psychological 

research.  
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Based on experts’ opinions (five child and developmental psychologists) and 

the corresponding literature, we determined eight cognitive concepts related 

to ADHD: 

[1] C1: Mother’s harmful substance use; 

[2] C2: Mother’s low physical self-efficacy; 

[3] C3: Mother’s bad nutrition; 

[4] C4: Mother’s depression; 

[5] C5: Family conflict; 

[6] C6: Father’s addiction; 

[7] C7: Child’s emotional problems; 

[8] C8: Child’s hyper activity. 

9 Combined Overlap Block NCM 

We divide these concepts in to 3 equal length classes; each class has just four 

concepts in the following manner: 

S1={C1,C2,C3,C4}, S2={C2,C4,C5,C6} and S3={C4,C5,C7,C8} 

These three classes are offered to experts in order to determine relationships 

and the strength. In addition, we asked them to delineate edges that have 

indeterminate effects by dotted lines in the figures and by I in the 

corresponding matrices. The directed graph and relation matrix for the S1, S2 

and S3 given by the expert is as follow: 

The combined overlap block connection matrix of NCM is given by E (N). 

   C1  C2 C3 C4 

C1   0 I 0 1 

C2   0 0 0 1 

C3   1 0 0 I 

C4   0 0 I 0  

  C2  C4  C5  C6  

C2 0 1  0  0 

C4  0 0 1 I 

C5  0 1 0 0 

C6  0  I I 0 

  C4  C5  C7  C8 

C4  0 1  1  0 

C5  1 0  1 1 

C7  1 0  0 1 

C8  0 0 1 0 

Figure 1  Figure 2 Figure 3 

 

C4C3

C2C1

C2

C5 C6

C4
C5C4

C7 C8
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The combined overlap block connection matrix of FCM is given by E. 

0, 0, 0, 1, 0, 0, 0, 0  

0, 0, 0, 2, 0, 0, 0, 0 

1, 0, 0, 0, 0, 0, 0, 0 

0, 0, 0, 0, 1, 0, 1, 0 

0, 0, 0, 2, 0, 0, 1, 1 

0, 0, 0, 0, 0, 0, 0, 0 

0, 0, 0, 1, 0, 0, 0, 1 

0, 0, 0, 0, 0, 0, 1, 0 

10 Hidden Patterns 

Now, using the combined matrix E(N), we can determine any hidden patterns 

embedded in the matrix. Suppose the concept C4 (Mother’s depression) is in 

the ON state. So, initial vector for studying the effects of these concepts on the 

dynamical system E is A= [0 0 0 1 0 0 0 0]. Let A state vector depicting the ON 

state of Mother’s depression passing the state vector A in to the dynamical 

system E (N): 

A=[0 0 0 1 0 0 0 0] 

AE(N) =[ 0, 0, I, 0, 1, I, 1, 0]        [0 0 I 1 1 I 1 0]=A1 

A1E(N)=[ I, 0, I, 2*I^2 + 3, I^2 + 1, I, 2, 2]  [I 0 I 1 1 I 1 1]=A2 

A2E(N)=[ I, I^2, I, 2*I^2 + I + 3, I^2 + 1, I, 3, 2]  

[I I I 1 1 I 1 1]=A3 

A3E(N) =[ I, I^2, I, 2*I^2 + 3*I + 3, I^2 + 1, I, 3, 2]    

[I I I 1 1 I 1 1]=A4=A3. 

  C1  C2 C3 C4 C5 C6 C7 C8 

C1 

C2  

C3  

C4  

C5  

C6  

C7 

C8  

E (N) 

 

C4C3

C2C1

C7 C8

C5

C6

0, I, 0, 1, 0, 0, 0, 0 

0, 0, 0, 2, 0, 0, 0, 0 

1, 0, 0, I, 0, 0, 0, 0 

0, 0, I, 0, 1, I, 1, 0 

0, 0, 0, 2, 0, 0, 1, 1 

0, 0, 0, I, I, 0, 0, 0 

0, 0, 0, 1, 0, 0, 0, 1 

0, 0, 0, 0, 0, 0, 1, 0 

  C1 C2 C3 C4 C5 C6 C7 C8 

C1 

C2  

C3  

C4  

C5  

C6  

C7 

 C8  

E 
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Since A4=A3 (we have reached the fixed point of the dynamical system). A3 is 

determined to be a hidden pattern. Now again using the COBFCM we can 

determine hidden patterns embedded in the matrix (E), such as COBNCM, here 

initial vector considered A= [0 0 0 1 0 0 0 0], i.e. we suppose the Mother’s 

depression is high. The results obtained are as following: 

 AE=[0 0 0 1 1 0 1 0] =A1 

 A1E=[ 0 0 0 1 1 0 1 1] =A2 

 A2E=[ 0 0 0 1 1 0 1 1] =A3=A2 

By A3=A2 we have reached the fixed point of the dynamical system. A2 is 

determined to be a hidden pattern using the COBFCM. 

11 Weighted Method 

We can use the weighted method to clarify the results, when there is a tie 

between the concepts inputs. Suppose the resultant vector be A= [10 0 1 1 1 

0], i.e., the half of the concepts suggest that the given problem exists, but other 

three suggest that the problem is not justified on the basis of available concept. 

In this case, we can adopts a simple weighted approach where in each of the 

concepts can be assigned weights based on experts’ opinions. For example, 

C1=20%, C2=10%, C3=10%, C4=60%, C5=25%, C6=30%, C7=20%. The ON - OFF 

state for each Concept in A vector leads to a weighted average score of the 

corresponding concepts. Suppose the initial vector is A= [0 0 0 0 0 1 0]; based 

on the resultant vector and the experts’  weights  for the concepts, we can find 

a weighted average score. In this case, Geometric mean is an accurate and 

appropriate  measure for calculating average score, because the data are 

expressed in percentage terms. The resulting of the example equals to 30% 

(which tends towards absence of the problem (since this is <50%, the point of 

no difference). 

The results based on the COBNCM indicated when a mother suffering from 

depression, i.e. the C4 is in the ON state; there will be family conflict, child’s 

emotional problems, Child’s hyper activity and also there may be Mother’s 

harmful substance use, Mother’s low physical self-efficacy, Mother’s bad 

nutrition and Father’s addiction. Based on the results of this study using the 

COBFCM, when a mother is depressed, there will be child’s hyperactivity, 

emotional problems, and family conflict. Although, based on the results of the 

two models mother’s depression being the main cause of ADHD, based on the 

COBFCM we cannot determine the occurrence of possibilities of some 

corresponding concepts in developing ADHD. 
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12 Discussion 

It is important to note that in COBFCM eij measures only absence or presence 

of influence of the node Ci on Cj, but untill now any researcher has not 

contemplated the indeterminacy of any relation between two nodes Ci and Cj. 

When researchers deal with unsupervised data, there are situations when no 

relation can be determined between two nodes (Vasantha Kandasamy & 

Smarandache, 2005). The presence of I in any coordinate implies the expert 

cannot tell the presence of that node, i.e. on state after passing through N (E), 

nor can we say the absence of the node, i.e. off state - the effect on the node 

after passing through the dynamical system is indeterminate, so it is 

represented by I. Thus, only in case of NCM we can identify that the effect of 

any node on other nodes can also be indeterminate. Such possibilities and 

analysis is totally absent in the case of FCM. Therefore, the COBFCM only 

indicates that what happens for Cj when Ci  is  in an ON state, but it cannot 

indicate the effects of the concepts on each other in neutral states. In other 

words, by using COBFCM, some of the latent layers of the relationships 

between the concepts are not discovered. Thus, only the COBNCM helps in 

such conditions.  

The core of psychology and education is theoretical. Theories themselves 

consist of constructs, concepts and variables, which are expressed by linguistic 

propositions - to describe, explain and predict the phenomena. For these 

characteristics of theory, Smarandache (2001) believes that no theory is 

exempted from paradoxes, because of language imprecision, metaphoric 

expression, various levels or meta-levels of understanding/interpretation, 

which might overlap. These propositions do not mean a fixed-valued 

components structure and it is dynamic, i.e. the truth value of a proposition 

may change from one place to another place and from one time to another time, 

and it changes with respect to the observer (subjectivity). For example, the 

proposition "Family conflict leads to divorce" does not mean a fixed-valued 

components structure; this proposition may be stated 35% true, 45% 

indeterminate, and 45% false at time t1; but at time t2 may change at 55% true, 

49% indeterminate, and 32% false (according with new evidences, sources, 

etc.); or the proposition " Jane is depressed " can be (.76,.56, .30) according to 

her psychologist, but (.85, .25, .15) according to herself, or (.50, .24, .35) 

according to her friend, etc. Therefore, considering the indeterminacies in 

investigating the causal relationships in psychological and educational 

research is important, and it is closer to the human mind reasoning. A good 

method in this condition is using the NCM, as seen before, using the FCM leads 

to ignoring indeterminacies (by converting the eij=I to eij=0), and this ignoring 

itself  leads to the covering  the latent effects of the concepts of the causal 

models. It is recommended that in the conditions that indeterminacies are 

important, researchers use the NCM method. 
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Abstract 

According to the principle of the uniqueness of truth, there should be only one truth, 

namely law of conservation of energy, in the area of Newton Mechanics. Through the 

example of free falling body, according to the neutrosophic principle considering 

neutralities (the small ball is falling to the middle positions), this paper derives the 

original Newton's second law and the original law of gravity respectively by using the 

law of conservation of energy.
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1 Introduction 

Philosophers often say that, there should be a unique truth. According to this 

principle, and taking into account that the law of conservation of energy is the 

most important law in the natural sciences, therefore in the area of Newtonian 

mechanics, the law of conservation of energy should be the unique truth. 

The law of conservation of energy states that the total energy of an isolated 

system remains constant. 
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As well-known, in Newton's classical mechanics, there were four main laws: 

the three laws of Newton and the law of gravity. If the law of conservation of 

energy is choosing as the unique truth, then in principle, all the Newton's four 

laws can be derived according to the law of conservation of energy; after 

studying carefully we find that this conclusion may be correct. According to 

the neutrosophic principle considering neutralities (the small ball is falling to 

the middle positions), this paper discusses how to derive the original Newton's 

second law and the original law of gravity respectively by using the law of 

conservation of energy. 

2 Basic Contents of Neutrosophy 

Neutrosophy is proposed by Prof. Florentin Smarandache in 1995. 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and 

scope of neutralities, as well as their interactions with different ideational 

spectra.  

This theory considers every notion or idea <A> together with its opposite or 

negation <Anti-A> and the spectrum of "neutralities" <Neut-A> (i.e. notions or 

ideas located between the two extremes, supporting neither <A> nor <Anti-

A>). The <Neut-A> and <Anti-A> ideas together are referred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic 

probability and statistics used in engineering applications (especially for 

software and information fusion), medicine, military, cybernetics, and physics. 

Neutrosophic Logic is a general framework for unification of many existing 

logics, such as fuzzy logic (especially intuitionistic fuzzy logic), paraconsistent 

logic, intuitionistic logic, etc.  

The main idea of NL is to characterize each logical statement in a 3D 

Neutrosophic Space, where each dimension of the space represents 

respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the 

statement under consideration, where T, I, F are standard or non-standard real 

subsets of ]-0, 1+[ without necessarily connection between them. 

From the basic contents of Neutrosophy we can see that, the neutralities are 

very important indeed.  

More information about Neutrosophy can be found in references [1, 2]. 
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3 Deriving the original Newton's second law 

by using the law of conservation of energy 

In this section, only Newton's second law can be derived, but we have to apply 

the law of gravity at the same time, so we present the general forms of 

Newton's second law and the law of gravity with undetermined constants 

firstly.  

Assuming that for the law of gravity, the related exponent is unknown, and we 

only know the form of this formula is as it follows: 

Dr

GMm
F  , (1) 

where: D is an undetermined constant, in the next section we will derive that 

its value is equal to 2. 

Similarly, assuming that for Newton's second law, the related exponent is also 

unknown, and we only know the form of this formula is as follows 

'DmaF  , (2) 

where: D’ is an undetermined constant, in this section we will derive that its 

value is equal to 1. 

As shown in Figure 1, supposing that circle O’ denotes the Earth, M denotes its 

mass; m denotes the mass of the small ball (treated as a mass point P), A O’ is 

a plumb line, and coordinate y is parallel to AO’. The length of AC is equal to H, 

and O’C equals the radius R of the Earth. 

Figure 1 A small ball free falls in the gravitational field of the Earth. 
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We also assume that it does not take into account the motion of the Earth and 

only considering the free falling of the small ball in the gravitational field of the 

Earth (from point A to point C). 

For this example, the value of 2

Pv  which is the square of the velocity for the 

small ball located at point P (somewhere in the Middle, namely the small ball 

is falling to the middle position) will be investigated. To distinguish the 

quantities calculated by different methods, we denote the value given by the 

law of gravity and Newton’s second law as 2

Pv ，while 2

P'v  denotes the value 

given by the law of conservation of energy. 

Now we calculate the related quantities according to the law of conservation 

of energy.  

From Eq.(1), the potential energy of the small ball located at point P is as 

follows 

1

')1( 


D

POrD

GMm
V .        (3) 

According to the law of conservation of energy, we can get 







2

1

'

'
2

1

)1(
PD
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mv
rD

GMm
1

')1(  D

POrD

GMm
, (4) 

and therefore 

]
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11
[

1

2
'

11

'

2

 





DD

PO

P
HRrD

GM
v . (5) 

Now we calculate the related quantities according to the law of gravity and 

Newton’s second law. 

For the small ball located at any point P, we have 

adtdv / . (6) 

We also have 

v

dy
dt   , 

therefore 

adyvdv  . (7) 
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According to Eq. (1), along the plumb direction, the force acted on the small 

ball is as follows 

D

PO

a
r

GMm
F

'

 . (8) 

From Eq. (2), it gives 

'/1

'

'/1 )()( D

D
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m

F
a  . (9) 

According to Eq.(7), we have 

dy
yHR

GM
vdv D

D

'/1}
)(

{


 . (10) 

For the two sides of this expression, we run the integral operation from A to P; 

it gives: 

dyyHRGMv DD
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Let 2'2

PP vv  , then we should have: '/11 D , and 1)'/(1  DDD ; these two 

equations all give: 1'D , this means that for free falling problem, by using the 

law of conservation of energy, we strictly derive the original Newton's second 

law maF  . 

Here, although the original law of gravity cannot be derived (the value of D 

may be any constant, certainly including the case that D=2), we already prove 

that the original law of gravity is not contradicted to the law of conservation 

of energy, or the original law of gravity is tenable accurately. 

4 Deriving the original law of gravity  

by using the law of conservation of energy

In order to really derive the original law of gravity for the example of free 

falling problem, we should consider the case that a small ball free falls from 

point A to point P’  (point P’ is also shown in Figure1, it is located at the middle 
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position closed to point A) through a very short distance Z  (the two 

endpoints of the interval Z  are point A and point P’). 

As deriving the original Newton's second law, we already reach 

]
)(

1

)(

1
[

1

2
'

11

2

'  





DDP
HRZHRD

GM
v , 

where: ''POrZHR  . 

For the reason that the distance of  Z  is very short, and in this interval the 

gravity can be considered as a linear function, therefore the work W of gravity 

in this interval can be written as follows 

Z
ZHR

GMm
ZFW

Dav 



)(

2
1

, 

where avF  is the average value of gravity in this interval  Z , namely the value 

of gravity for the midpoint of interval Z . 

Omitting the second order term of Z  ( 2

4

1
）（ Z ), it gives 

2/22 )2( DZHZRRHHR

ZGMm
W




 . 

As the small ball free falls from point A to point P’, its kinetic energy is as it 

follows: 
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According to the law of conservation of energy, we have 

2

''
2

1
PmvW  . 

Substituting the related quantities into the above expression, it gives 
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To compare the related terms, we can reach the following three equations 
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11D  

12/  DD  

  11 )()(   DD ZHRHRZ . 

All of these three equations will give the following result 

2D . 

Thus, we already derive the original law of gravity by using the law of 

conservation of energy. 

5 Conclusion and Further Topic 

According to the above results it can be said that, for the free falling problem, 

we do not rely on any experiment, only apply law of conservation of energy to 

derive the original Newton's second law and the original law of gravity. 

In references [3, 4], based on the equation given by Prof. Hu Ning according to 

general relativity and Binet’s formula, we get the following improved Newton's 

formula of universal gravitation 

, (11)

where: G is the gravitational constant, M and m are the masses of the two 

objects, r is the distance between the two objects, c is the speed of light, p is 

the half normal chord for the object m moving around the object M along with 

a curve, and the value of p is given by: p = a(1-e2) (for ellipse), p = a (e2-1) (for 

hyperbola), p = y2/2x (for parabola). 

This improved Newton’s universal gravitation formula can give the same 

results as given by general relativity for the problem of planetary advance of 

perihelion and the problem of gravitational defection of a photon orbit around 

the Sun. 

For the problem of planetary advance of perihelion, the improved Newton’s 

universal gravitation formula reads 

42
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For the problem of gravitational defection of a photon orbit around the Sun, 

the improved Newton’s universal gravitation formula reads 

42
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4

2

0

2

5.1

r

GMmr

r

GMm
F  , (13) 

where 0r  is the shortest distance between the light and the Sun, if the light and 

the Sun is tangent, it is equal to the radius of the Sun. 

The funny thing is that, for this problem, the maximum gravitational force 

given by the improved Newton’s universal gravitation formula is 2.5 times of 

that given by the original Newton’s law of gravity. 

The further topic is how to apply the law of conservation of energy to derive 

Eqs.(11), (12), (13), and the like. 

In this regard, philosophical principles (including principles of Neutrosophy 

and the like), will play a major role. 
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Abstract 

The objective of this paper is to introduce and study neutrosophic ideals of 

neutrosophic BCI-algebras. Elementary properties of neutrosophic ideals of 

neutrosophic BCI-algebras are presented.
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1 Introduction 

BCI/BCK-algebras are generalizations of the concepts of set-theoretic dif- 

ference and propositional calculi. These two classes of logical algebras were 

introduced by Imai and Iséki [8, 9] in 1966. It is well known that the class of 

MV-algebras introduced by Chang in [4] is a proper subclass of the class of 

BCK- algebras which in turn is a proper subclass of the class of BCI-algebras. 

Since the introduction of BCI/BCK-algebras, a great deal of literature has been 

produced, for example see [5, 9, 10, 11, 14]. For the general develop- ment of 

BCI/BCK-algebras, the ideal theory plays an important role. Hence much 

research emphasis has been on the ideal theory of BCI/BCK-algebras, see [3, 6, 

7, 15]. 

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the 

following axioms, for all x, y, z ∈ X, 
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(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z∗ y) = 0, (2) (x∗ (x ∗ y)) ∗ y = 0, 

(3) x ∗  x = 0, 

(4) x ∗ y = 0 and y ∗ x = 0 imply x = y. 

Example 1. 

(1) Every abelian group is a BCI-algebra, with group substraction and 0 the 

group identity. 

(2) Consider X = {0, a, b}. Then, X with the following Cayley table is a BCI-

algebra. 

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. 

If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈  X, then we say that X is a BCK-

algebra. Any BCK-algebra X satisfies the following axioms for all x, y, z  ∈   X, 

(1) (x ∗ y) ∗ z = (x ∗ z) ∗  y, 

(2) ((x ∗ z) ∗  (y ∗ z)) ∗ (x ∗ y) = 0, 

(3) x ∗ 0 = x, 

(4) x ∗ y = 0 ⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0. 

Example 2.  

(1) The subsets of a set form a BCK-algebra, where A ∗ B is the difference A \ B. 

(2) A Boolean algebra is a BCK-algebra, if A ∗ B is defined to be A ∧ ¬B (A does 

not imply B). 

A subset A of a BCI/BCK-algebra (X, ∗, 0) is called a subalgebra of X if x ∗ y ∈ A 

for all x, y ∗ A. 

Let (X, ∗, 0) be a BCI-algebra. A subset A of X is called an ideal of X if the 

following conditions hold: 

(1) 0  ∈  A. 

(2) For all x, y ∈ X, x ∗ y ∈ A and y ∗ A implies that x ∈ A. 

Neutrosophy is a new branch of philosophy that studies the origin, nature, 

and scope of neutralities, as well as their interactions with different ideational 

spectra. Neutrosophic set and neutrosophic logic were introduced in 1995 by 

∗ 0 a b 

0 0 0 b 

a a 0 b 

b b b 0 
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Smarandache as generalizations of fuzzy set and respectively intuitionistic fuzzy 

logic. In neutrosophic logic, each proposition has a degree of truth (T ), a degree 

of indeterminancy (I), and a degree of falsity (F ), where T, I, F are standard or 

non-standard subsets of ]−0, 1+[, see [16, 17, 18]. Neutrosophic logic has

wide applications in science, engineering, Information Technology, law, 

politics, economics, finance, econometrics, operations research, optimization 

theory, game theory and simulation etc.  

The notion of neutrosophic algebraic structures was introduced by Kandasamy 

and Smarandache in 2006, see [12, 13]. Since then, several researchers have 

studied the concepts and a great deal of literature has been produced. For 

example, Agboola et al. in [1] continued the study of some types of neutrosophic 

algebraic structures. Agboola and Davvaz introduced the concept of 

neutrosophic BCI/BCK-algebras in [2]. 

Let X be a nonempty set and let I be an indeterminate. 

The set X(I) =< X, I >= {(x, yI) : x, y∈X} is called a neutrosophic set 

generated by X and I. If + and . are ordinary addition and multiplication, I 
has the following properties: 

1 ) I + I + · · · + I = nI.

2) I + (−I) = 0.

3) I.I. · · · .I = In = I for all positive integer n.

4) 0.I = 0. 

5) 𝐼−1 is undefined and therefore does not exist.

If ∗: X(I) × X(I) → X(I) is a binary operation defined on X(I), then the couple 

(X(I), ∗) is called a neutrosophic algebraic structure and it is named according 

the axioms satisfied by ∗. If (X(I), ∗) and (Y (I), ∗’) are two neutrosophic 

algebraic structures, the mapping φ : (X(I), ∗) → (Y (I), ∗’) is called a 

neutrosophic homomorphism if the following conditions hold: 

(1) φ((w, xI) ∗ (y, zI)) = φ((w, xI)) ∗' φ((y, zI)). 

(2) φ(I) = I ∀(w, xI), (y, zI) ∈ X(I). 

We recall the definition of a neutrosophic group. 
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Definition 1.1. 

Let (G, ∗) be a group. Then, the neutrosophic group is generated by I and G 

under ∗  defined by (< G, I >, ∗). The present paper is concerned with the 

introduction of the concept of neutrosophic of ideals of neutrosophic BCI-

algebras. Some elementary properties of neutrosophic ideals of neutrosophic 

BCI-algebras are presented. First, we recall some basic concepts from [2]. 

Definition 1.2. 

Let (X, ∗, 0) be any BCI/BCK-algebra and let X(I) = < X, I > be a set generated 

by X and I. The triple (X(I), ∗, (0, 0)) is called a neutrosophic BCI/BCK-

algebra. If (a, bI) and (c, dI) are any two elements of X(I) with a, b, c, d ∈ X, we 

define 

(a, bI) ∗ (c, dI) = (a ∗ c, (a ∗ d ∧ b ∗ c ∧ b ∗ d)I)       (1) 

An element x ∈ X is represented by (x, 0) ∈ X(I) and (0, 0) represents the 

constant element in X(I). For all (x, 0), (y, 0) ∈ X, we define 

(x, 0) ∗ (y, 0) = (x ∗ y, 0) = (x ∧ ¬y, 0),   (2) 

where ¬y is the negation of y in X. 

Definition 1.3. 

Let (X, ∗, 0) be any BCI/BCK-algebra and let X(I) =< X, I > be a set generated 

by X and I. The triple (X(I), ∗, (0, )) is called a neutrosophic BCI/BCK-algebra. 

If (a, bI) and (c, dI) are any two elements of X(I) with a, b, c, d ∈ X, we define 

(a, bI) ∗ (c, dI) = (a ∗ c, (a ∗ d ∧ b ∗ c ∧ b ∗ d)I)                                                  (3) 

An element x ∈ X is represented by (x, 0) ∈ X(I) and (0, 0) represents the 

constant element in X(I). For all (x, 0), (y, 0) ∈ X, we define 

(x, 0) ∗ (y, 0) = (x ∗ y, 0) = (x ∧ ¬y, 0)     (4) 

where ¬y is the negation of y in X. 

Example 3.  

Let (X(I), +) be any commutative neutrosophic group. 

For all (a, bI), (c, dI) ∈ X(I) define 

(a, bI) ∗ (c, dI) = (a, bI) − (c, dI) = (a − c, (b − d)I).  (5) 
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Then, (X(I), ∗, (0, 0)) is a neutrosophic BCI-algebra. 

Theorem 1.4. 

(1) Every neutrosophic BCK-algebra (X(I), ∗, (0, 0)) is a neutrosophic BCI-

algebra. 

(2) Every neutrosophic BCK-algebra (X(I), ∗, (0, 0)) is a BCI-algebra and not 

the converse. 

(3) Let (X(I), ∗, (0, 0)) be a neutrosophic BCK-algebra.  Then, (a, bI) ∗ (0, 0) 

= (a, bI) if and only if a = b. 

Definition 1.5. 

Let (X(I), ∗, (0, 0)) be a neutrosophic BCI/BCK-algebra. A non-empty subset 

A(I) is called a neutrosophic subalgebra of X(I) if the following conditions hold: 

1) (0, 0) ∈ A(I).

2) (a, bI) ∗ (c, dI) ∈ A(I) for all (a, bI), (c, dI) ∈ A(I).

3) A(I) contains a proper subset which is a BCI/BCK-algebra.

If A(I) does not contain a proper subset which is a BCI/BCK-algebra, then A(I) 

is called a pseudo neutrosophic subalgebra of X(I). 

2 Main Results 

Theorem 2.1.  

Let (X(I), ∗, (0, 0)) be a neutrosophic BCI-algebra and let Xω (I) be a subset of 

X(I) defined by 

Xω (I) = {(x, xI) : x ∈ X}.  (6) 

Then, Xω (I) is a neutrosophic subalgebra of X(I). 

Proof.  

Obviously, (0, 0) ∈ Xω (I). Let (x, xI), (y, yI) ∈ Xω (I) be arbitrary. Then, we have 

(x, xI) ∗ (y, yI) = (x ∗ y, (x ∗ y)I) = (x ∧ ¬y, (x ∧ ¬y)I) ∈ Xω (I). 

Remark 1.  

Since (Xω (I), ∗, (0, 0)) is a neutrosophic subalgebra, then Xω (I) is a 

neutrosophic BCI-algebra in its own right. 
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Example 4. 

Let Xω (I) = {(0, 0), (a, aI), (b, bI), (c, cI)} be a set and let ∗ be a binary operation 

defined on Xω (I) as shown in the Cayley table below: 

∗ (0, 0) (a, aI) (b, bI) (c, cI)
(0, 0) (0, 0) (0, 0) (c, cI) (b, bI)
(a, aI) (a, aI) (0, 0) (c, cI) (b, bI)
(b, bI) (b, bI) (b, bI) (0, 0) (c, cI)
(c, cI) (c, cI) (c, cI) (b, bI) (0, 0I)

Then, (Xω (I), ∗, (0, 0)) is a neutrosophic BCI-algebra. 

Definition 2.2. 

Let (X(I), ∗, (0, 0)) be a neutrosophic BCI-algebra. A subset A(I) is called a 

neutrosophic ideal of X(I) if the following conditions hold: 

(1) (0, 0) ∈ A(I). 

(2) For all (a, bI), (c, dI) ∈ X(I), (a, bI) ∗ (c, dI) ∈ A(I) and (c, dI) ∈ A(I) 

implies that (a, bI) ∈ A(I). 

Definition 2.3.  

Let (X(I), ∗, (0, 0)) be a neutrosophic BCI-algebra and let A(I) be a neutrosophic 

ideal of X(I). 

1) A(I) is called a closed neutrosophic ideal of X(I) if A(I) is also

a neutrosophic subalgebra of X(I).

2) A(I) is called a closed pseudo neutrosophic ideal of X(I) if A(I)

is also a pseudo neutrosophic subalgebra of X(I).

Lemma 2.4.  

Let A(I) be a closed neutrosophic ideal of neutrosophic BCI-algebra (X(I), ∗, (0, 

0)). Then, 

1) A(I) ∗ A(I) = A(I).

2) (a, bI) ∗ A(I) = A(I) if and only if (a, bI) ∈ A(I).

Definition 2.5.  

Let Aω (I) be a non-empty subset of Xω (I). 

1) Aω (I) is called a neutrosophic α-ideal of Xω (I) if the following

conditions hold:

a. (0, 0) ∈ Aω (I).
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b. For all (x, xI), (y, yI), (z, zI) ∈ Xω (I), ((x, xI)∗(z, zI))∗((y, yI)∗(z,

zI)) ∈ Aω (I) and (y, yI) ∈ Aω (I) imply that (x, xI) ∈ Aω (I).

2) Aω (I) is called a neutrosophic β-ideal of Xω (I) if the following

conditions hold:

a. (0, 0) ∈ Aω (I).

b. For all (x, xI), (y, yI), (z, zI) ∈ Xω (I), (x, xI)∗((y, yI)∗(z, zI)) ∈

Aω (I) and (y, yI) ∈ Aω (I) imply that (x, xI) ∗ (z, zI) ∈ Aω (I).

Theorem 2.6.  

Every neutrosophic α-ideal of Xω (I) is a neutrosophic ideal of Xω (I). 

Proof.  

Putting (z, zI) = (0, 0) in Definition 2.5 (1-b), the result follows. 

Theorem 2.7.  

Every neutrosophic β-ideal of Xω (I) is a neutrosophic ideal of Xω (I). 

Proof.  

Follows easily by putting (z, zI) = (0, 0) in Definition 2.5 (2-b). 

Theorem 2.8.  

Let Aω (I) and Bω (I) be neutrosophic α-ideal and neutrosophic β-ideal of Xω 

(I), respectively. Then, 

Aω (I) ∗ Bω (I) = {(a, aI) ∗ (b, bI) : (a, aI) ∈ Aω (I), (b, bI) ∈ Bω (I)}            (7) 

is a neutrosophic ideal of Xω (I). 

Proof.  

Follows easily from Theorems 2.6 and 2.7. 

Theorem 2.9.  

Let (X(I), ∗, (0, 0)) be a neutrosophic BCI-algebra and let A(I) be a neutrosophic 

ideal of X(I). For all (a, bI), (c, dI) ∈ X(I), let τ be a relation defined on X(I) by 

(a, bI)τ (c, dI) ⇐⇒ (a, bI) ∗ (c, dI), (c, dI) ∗ (a, bI) ∈ A(I). 

Then, τ is a congruence relation on X(I). 

Proof.  

It is clear that τ is an equivalence relation on X(I). For τ to be a congruence 

relation on X(I), we must show that for all (x, yI) /= (0, 0) in X(I), (a, bI)τ 
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(c, dI) implies that (a, bI) ∗ (x, yI)τ (c, dI) ∗ (x, yI)  and (x, yI) ∗ (a, bI)τ (x, yI) ∗ (c, 

dI). To this end, if (a, bI)τ (c, dI), then (a, bI) ∗ (c, dI), (c, dI)∗(a, bI) ∈ A(I) that is (a∗c, 

(a∗d∧b∗c∧b∗d)I), (c∗a, (c∗b∧d∗a∧d∗b)I) ∈ A(I) so that (a∧¬c, (a∧¬d∧b¬c)I), (c∧¬a, 

(c∧¬b∧d∧¬a)I) ∈ A(I) and thus a ∧ ¬c, a ∧ ¬d ∧ b¬c, c ∧ ¬a, c ∧ ¬b ∧ d ∧ ¬a ∈ A. 

Now, let (p, qI) = (a, bI) ∗ (x, yI) and (u, vI) = (c, dI) ∗ (x, yI). 

Then, 

(p, qI)  =  (a ∗ x, (a ∗ y ∧ b ∗ x ∧ b ∗ y)I) 

= (a ∧ ¬x, (a ∧ ¬y ∧ b ∧ ¬x)I). 

(u, vI)  =  (c ∗ x, (c ∗ y ∧ d ∗ x ∧ d ∗ y)I) 

= (c ∧ ¬x, (c ∧ ¬y ∧ d ∧ ¬x)I). 

Now, we have 

(p, qI) ∗ (u, vI) = (p ∗ u, (p ∗ v ∧ q ∗ u ∧ q ∗ v)I) 

= (p ∧ ¬u, (p ∧ ¬v ∧ q ∧ ¬u)I) ≡   (m, kI), 

where 

m  =  p ∧ ¬u = a ∧ ¬x ∧ (¬c ∨ x) = a ∧ ¬x ∧ ¬c ∈ A. k = p ∧ ¬v ∧ q ∧ ¬u 

= a ∧ ¬x ∧ (¬c ∨ x) ∧ a¬y ∧ b ∧ ¬x ∧ (¬c ∨ y ∨ ¬d ∨ x) 

= a ∧ ¬x ∧ ¬c ∧ ¬y ∧ b ∧ (¬c ∨ y ∨ ¬d ∨ x) 

= (a ∧ ¬c ∧ b ∧ ¬x ∧ ¬y) ∨ (a ∧ ¬d ∧ b ∧ ¬c ∧ ¬x ∧ ¬y) ∈A. 

These show that (m, kI) ∈ A(I) that is ((a, bI) ∗ (x, yI)) ∗ ((c, dI) ∗ (x, yI)) ∈ A(I). 

Similarly, it can be shown that (((x, yI) ∗ (a, bI)) ∗ ((x, yI) ∗ (c, dI)) ∈ A(I).  Thus, (a, 

bI) ∗ (x, yI)τ (c, dI) ∗ (x, yI) and (x, yI) ∗ (a, bI)τ (x, yI) ∗ (c, dI). Hence, τ is a 

congruence relation on X(I). 

For all (a, bI) ∈ X(I), let [(a, bI)] denote the congruence class containing (a, bI) 

and let X(I)/A(I) denote the set of all congruence classes.  For all [(a, bI)], [(c, 

dI)] ∈ X(I)/A(I), we define 

[(a, bI)] = (a, bI) ∗ A(I),  (8) 

[(0, 0)] = {(0, 0) ∗ (x, yI) : (x, yI) ∈ A(I)}.         (9) 

Theorem 2.10.  

Let A(I) be a closed neutrosophic ideal of neutrosophic BCI-algebra (X(I), ∗, 

(0, 0)). Then, (X(I)/A(I), ∗, [(0, 0)]) is a neutrosophic BCI-algebra. 
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Definition 2.11.  

Let (X(I), ∗, (0, 0)) and (X'(I), ◦, (0', 0')) be two neutrosophic BCI-algebras. A

mapping φ : X(I) → X'(I) is called a neutrosophic homomorphism if the

following conditions hold: 

(1) φ((a, bI) ∗ (c, dI)) = φ((a, bI)) ◦ φ((c, dI)), ∀ (a, bI), (c, dI) ∈ X(I). 

(2) φ((0, I)) = (0, I). 

If in addition: 

1) φ is injective, then φ is called a neutrosophic monomorphism.

2) φ is surjective, then φ is called a neutrosophic epimorphism.

3) φ is a bijection, then φ is called a neutrosophic isomorphism. A

bijective neutrosophic homomorphism from X(I) onto X(I) is 

called a neutrosophic automorphism. 

Definition 2.12. 

Let φ : X(I) → Y (I) be a neutrosophic homomorphism of neutrosophic BCI-

algebras. 

(1) Kerφ = {(a, bI) ∈ X(I) : φ((a, bI)) = (0, 0)}. 

(2) Imφ = {φ((a, bI)) ∈ Y (I) : (a, bI) ∈ X(I)}. 

Theorem 2.13.  

Let φ : X(I) → Y (I) be a neutrosophic homomorphism of neutrosophic BCI-

algebras. Then, Kerφ is not a neutrosophic ideal of X(I). 

Proof.  

The proof is straightforward since (0, I) ∈ X(I) can not be mapped to (0, 0) ∈ Y 

(I). 

Theorem 2.14.  

Let A(I) be a closed neutrosophic ideal of neutrosophic BCI-algebra (X(I), ∗, 

(0, 0)).  Then, the mapping φ : X(I) → X(I)/A(I) defined by 

φ((x, yI)) = [(x, yI)],   ∀(x, yI) ∈ X(I) 

is not a neutrosophic homomorphism. 

Proof.  

Straightforward since φ((0, I)) = [(0, I)] /= (0, I). 
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Theorem 2.15.  

Let φ : Xω (I) → Yω (I) be a neutrosophic homomorphism. Then, Kerφ is a closed 

neutrosophic ideal of Xω (I). 

Proof. 

Obvious. 

Theorem 2.16.  

Let φ : Xω (I) → Yω (I) be a neutrosophic homomorphism and let A[I] be a 

neutrosophic ideal of Xω (I) such that Kerφ ⊆ A[I]. Then, φ−1(φ(A[I])) = A[I].

Proof.  

Same as the classical case. 

Theorem 2.17.  

Let A[I] be a neutrosophic ideal of Xω (I). Then, the mapping φ : Xω (I) → Xω 

(I)/A[I] defined by 

φ((x, xI)) = [(x, xI)],  ∀(x, xI) ∈ Xω (I) 

is a neutrosophic homomorphism. 

Proof.  

The proof is straightforward. 

Theorem 2.18. 

Let φ : Xω (I) → Yω (I) be a neutrosophic epimorphism. Then, Xω (I)/Kerφ ∼=

Yω (I). 

Proof.  

Same as the classical case. 
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