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The computational complexity of Dezert–Smarandache Theory (DSmT) increases exponentially with the 
linear increment of element number in the discernment frame, and it limits the wide applications and 
development of DSmT. In order to efficiently reduce the computational complexity and remain high 
accuracy, a new Evidence Clustering DSmT Approximate Reasoning Method for two sources of information 
is proposed based on convex function analysis. This new method consists of three steps. First, the belief 
masses of focal elements in each evidence are clustered by the Evidence Clustering method. Second, the 
un-normalized approximate fusion results are obtained using the DSmT approximate convex function 
formula, which is acquired based on the mathematical analysis of Proportional Conflict Redistribution 
5 (PCR5) rule in DSmT. Finally, the normalization step is applied. The computational complexity of this 
new method increases linearly rather than exponentially with the linear growth of the elements. The 
simulations show that the approximate fusion results of the new method have higher Euclidean similarity 
to the exact fusion results of PCR5 based information fusion rule in DSmT framework (DSmT + PCR5), 
and it requires lower computational complexity as well than the existing approximate methods, especially 
for the case of large data and complex fusion problems with big number of focal elements.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

As a novel key technology with vigorous development, informa-
tion fusion can integrate multiple-source incomplete information 
and reduce uncertainty of information which always has the con-
tradiction and redundancy. Information fusion can improve rapid 
correct decision capacity of intelligent systems and has been suc-
cessfully used in the military and economy fields, thus great atten-
tion has been paid to its development and application by scholars 
in recent years [1–9]. As information environment becomes more 
and more complex, greater demands for efficient fusion of highly 
conflicting and uncertain evidence are being placed on information 
fusion. Belief function theory (also called evidence theory) referred 
by Dezert–Smarandache Theory (DSmT) [9] and Dempster–Shafer 
Theory (DST) [10,11] can well deal with the uncertain and conflict 
information. DSmT, jointly proposed by Dezert and Smarandache, 
is considered as the general extension of DST, since it beyonds 
the exclusiveness limitation of elements in DST. DSmT can ob-
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tain precise results for dealing with complex fusion problems in 
which the conflict is high and the refinement of the frame is not 
accessible [9]. Recently, DSmT (belief function theory) has been 
successfully applied in many areas, such as, Map Reconstruction of 
Robot [12,13], Decision Making Support [14], Target Type Tracking 
[15,16], Image Processing [17], Sonar Imagery [18], Data Classifi-
cation [19–21], Clustering [22,23], and so on. Particularly, the very 
recent credal classification methods [12,15,20] working with belief 
functions have been introduced by Liu, Dezert, et al. for dealing 
with uncertain data, and the object is allowed to belong to any 
singleton class and set of classes (called meta-class) with differ-
ent belief masses. By doing this, the credal classifiers are able to 
well capture the uncertainty of classification and also efficiently 
reduce the errors. However, the main problem of the application 
(e.g. classification task) of DSmT is that when the focal elements’ 
number increases linearly, computational complexity increases ex-
ponentially.

Many approximate reasoning methods of evidence combination 
in DST framework were presented in [24–26]. But these methods 
cannot satisfy the small amount of computational complexity and 
less loss of information requirements at the same time. In recent 
years, there are some important articles [27–34] dealing with the 
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computational complexity of the combination algorithms formu-
lated in DSmT framework in different ways. Djiknavorian [27] has 
proposed a novel method and a Matlab program to reduce the 
DSmT hybrid rule complexity. Smarandache has proposed Smaran-
dache’s codification [35] to describe the parts of a Venn diagram in 
DSmT framework, which is easy to read and apply in unions and 
intersections of sets [28]. For manipulating the focal elements eas-
ily, Martin [28] has proposed a Venn diagram codification, which 
is more complex for the readers than Smarandache’s codification. 
However, the DSmT (belief function theory) complexity can be re-
duced by using this practical Martin’s codification and only consid-
ering the reduced hyper-power set D�

r after integrating the con-
straints in the codification at the beginning of the general belief 
function framework proposed in [28]. Abbas [29,30] has proposed 
a DSmT based combination scheme for multi-class classification 
which also reduces the number of focal elements. Li [31] has pro-
posed a method for reducing the information fusion complexity, 
which is different from the above methods by reducing the com-
bined sources numbers instead of reducing the number of focal 
elements. Li and other scholars [32–34] also proposed an approx-
imate reasoning method for reducing the complexity of the Pro-
portional Conflict Redistribution 5 (PCR5) based information fusion 
rule within DSmT framework. However, when processing highly 
conflict evidences by the method in [32], the belief assignments 
of correct main focal elements transfer to the other focal elements, 
which leads to low Euclidean similarity of the results in this case.

Aiming at reducing the computational complexity of PCR5 
based information fusion rule within DSmT framework (DSmT +
PCR5) and obtaining accurate results in any case, a new Evidence 
Clustering DSmT Approximate Reasoning Method for two sources 
of information is proposed in this paper. In Section 2, the basics 
knowledge on DST, DSmT and the dissimilarity measure method 
of multi evidences are introduced briefly. In Section 3, mathemat-
ical analysis of PCR5 formula is conducted, which discovers every 
conflict mass product satisfies the properties of convex function. 
A new DSmT approximate convex function formula is proposed 
and error analysis of the proposed formula is also presented. Based 
on the error analysis, an Evidence Clustering method is proposed 
as the preprocessing step and the normalization method is applied 
as the final step of the proposed method for reducing the approx-
imate error. The process of the proposed method is given, then 
analysis of computation complexity of DSmT + PCR5 and the pro-
posed method are presented. In Section 4, the results of simulation 
show that the approximate fusion results of the method proposed 
in this paper have higher Euclidean similarity with the exact fu-
sion results of DSmT + PCR5, and lower computational complexity 
than existing DSmT approximate reasoning method in [32]. The 
conclusions are given in Section 5.

2. Basic knowledge

In this section, we will give an overview of the basics knowl-
edge on DST and DSmT, which are closely related to our work in 
this paper.

2.1. Dempster–Shafer Theory (DST)

Let us consider a discernment frame � = {θ1, θ2, · · · , θn} con-
taining n elements θ1, θ2, · · · , θn , which is the refinement of the 
discernment based on Shafer’s model. The basic belief assignment 
(bba) is defined over the power-set 2� which consists of all sub-
sets of �. For example, if one has � = {θ1, θ2, θ3}, the power set is 
given by 2� = {∅, θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}, and 
the bba m(.) : 2� → [0, 1] on the power set is defined by [10,11]

m(Xi) = 0, Xi = ∅ (1)
∑
Xi∈2�,1≤i≤n

m(Xi) = 1 (2)

The element Xi is called focal elements if it holds m(Xi) > 0. 
Dempster’s rule is often used for the combination of multiple 
sources of evidence represented by bba’s in Shafer’s model, and 
it requires that the bba’s must be independent. The bba of the ith 
source of evidence is denoted mi . The Dempster combination rule 
is defined by Equation (3) and the conflict in Dempster combina-
tion rule, denoted by C , is defined by Equation (4) [10,11]

mDS(Z) = 1

1 − C

∑
Xi∩X j=Z ,i 	= j

m1(Xi) · m2(X j) ∀Z ⊆ � (3)

C =
∑

Xi ,X j⊆�,i 	= j
Xi∩X j=∅

m1(Xi) · m2(X j) (4)

One can see that all the conflicting beliefs C has been redis-
tributed to other focal elements. Dempster’s rule usually produces 
very unreasonable results in the fusion of high conflicting infor-
mation due to the redistribution of conflicting beliefs. In order to 
solve this problem, many alternative combination rules like Pro-
portional Conflict Redistribution 1–6 (PCR1-6) rules [36,38,39] have 
been developed.

2.2. Dezert-Smarandache Theory (DSmT)

DSmT [29] overcomes the exclusiveness limitation in Shafer’s 
model. In many fusion problems, the hypotheses can be vague in 
reality and the elements are not precisely separated which don’t 
satisfy Shafer’s model. The hyper-power set denoted by D� is built 
by applying operator ∩ and ∪ to the elements in � [36,37]. Let 
us consider a simple frame of discernment � = {θ1, θ2}, then one 
gets D� = {∅, θ1, θ2, θ3, θ1 ∪θ2, θ1 ∩θ2}. The bba in DSmT is defined 
over the hyper-power set as m(.) : D� → [0, 1].

In the combination of multiple sources of evidence, there ex-
ist two models in DSmT [36,37]: 1) free combination model and 
2) hybrid combination model which is often used in real appli-
cation because it takes into account some integrity constraints. 
In hybrid combination rule, it transfers partial conflicting beliefs 
to the corresponding intersected elements, but this increases the 
uncertainty of fusion results. The Proportional Conflict Redistribu-
tion 1–6 (PCR1-6) rules [37,39,40] provide proper conflict redistri-
bution ways, and they proportionally transfer conflicting masses to 
the involved elements.

The difference of PCR1-6 rules mainly lies in the redistribution 
of conflicts, and PCR5 is considered as the most precise redistribu-
tion way [37,39,40]. The combination of two independent sources 
of evidences by PCR5 rule is given as follows [37,39,40]

m1⊕2(Xi) =
∑

Y ,Z∈G� and Y ,Z 	=∅
Y ∩Z=Xi

m1(Y ) · m2(Z) (5)

mPCR5(Xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m1⊕2(Xi) +
∑

X j∈G� and i 	= j
Xi∩X j=∅

[
m1(Xi)

2 · m2(X j)

m1(Xi) + m2(X j)

+m2(Xi)
2 · m1(X j)

m2(Xi) + m1(X j)

]
Xi ∈ G� and Xi 	= ∅

0 Xi = ∅

(6)

where G� can been seen as the power set 2� , the hyper-power 
set D� and the super-power set S� , if discernment of the fusion 
problem satisfies Shafer’s model, the hybrid DSm model, and the 
minimal refinement �ref of � respectively and where all denomi-
nators are more than zero and the fraction is discarded when the 
denominator of it is zero [37,39,40].
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Nevertheless, PCR5 rule still has some disadvantages, such as, 
firstly, it is not associative in the fusion of multiple (more than 2) 
sources of evidences, so the combination order may have influence 
on the results, secondly, its computational complexity increases 
exponentially, when the focal elements’ number increases. Our re-
search in this paper is mainly for reducing the complexity of PCR5 
within DSmT framework.

2.3. The dissimilarity measure method of multi evidences

The dissimilarity measure method of multi evidences and sev-
eral Evidence Support Measure of Similarity (ESMS) functions have 
been given in [31,41]. The often used Euclidean ESMS function and 
Jousselme ESMS function are briefly recalled.

1) Euclidean ESMS function SimE (m1, m2)

Let � = {θ1, θ2, · · · , θn}, n > 1, |G�| be the cardinality of G� , 
m1(·) and m2(·) be two bba’s. The Euclidean ESMS function is de-
fined by [31]

SimE(m1,m2) = 1 − 1√
2

√√√√√|G�|∑
i=1

[
m1(Xi) − m2(Xi)

]2
(7)

2) Jousselme ESMS function Sim J (m1, m2)

The Jousselme ESMS function [31] is defined based on the Jous-
selme et al. measure [41]

Sim J (m1,m2) = 1 − 1√
2

√
(m1 − m2)T D(m1 − m2) (8)

where D = [Dij] is a |G�| × |G�| positively definite matrix, and 
Dij = |Xi ∩ X j|/|Xi ∪ X j | with Xi, X j ∈ G� .

Some more ESMS functions can be seen in [31] for details. 
SimE(m1, m2) is considered with the fastest convergence speed 
[31], and it is adopted here as the dissimilarity measure for com-
parison of the method proposed in this paper with the other meth-
ods.

3. An evidence clustering DSmT approximate reasoning method

3.1. Mathematical analysis of PCR5 formula

As shown in Equation (6), 
∑

X j∈G� and i 	= j
Xi∩X j=∅

[m1(Xi)
2·m2(X j)

m1(Xi)+m2(X j)
+

m2(Xi)
2·m1(X j)

m2(Xi)+m1(X j)
] has symmetry.

Due to the symmetry, one item m1(Xi)
2·m2(X j)

m1(Xi)+m2(X j)
is analyzed.

Let m1(Xi) = a and m2(X j) = x get

m1(Xi)
2 · m2(X j)

m1(Xi) + m2(X j)
= a2x

a + x
= a2

[
1 − a

(
1

a + x

)]
. (9)

Let x1, x2, · · · , xn ∈ {m2(X j)|i 	= j, X j ∈ G� and Xi ∩ X j = ∅}, then

∑
X j∈G� and i 	= j

X∩Y =∅

[
m1(Xi)

2 · m2(X j)

m1(Xi) + m2(X j)

]

= a2
[

n − a

(
1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn

)]
. (10)

Let f (x) = 1
a+x , since f (x) is continuous function on (0, 1), it has 

a second order derivatives on (0, 1), and f ′′(x) > 0 on (0, 1), f (x)
is a convex function.

So 1
n ( f (x1) + f (x2) +· · ·+ f (xn)) ≥ f ( x1+x2+···+xn

n ), the equation 
holds iff x1 = x2 = · · · = xn .
The approximate convex function formula is given by

1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn

= n

a + (x1 + x2 + · · · + xn)/n
+ �,

� ≥ 0, � = 0 iff x1 = x2 = · · · = xn. (11)

Let x1 ≤ x2 ≤ · · · ≤ xi ≤ · · · ≤ xn , carry out analysis of convex func-
tion formula errors

� =
[

1

a + x1
− 1

a + (x1 + x2 + · · · + xn)/n

]

+
[

1

a + x2
− 1

a + (x1 + x2 + · · · + xn)/n

]
+ · · ·

+
[

1

a + xn
− 1

a + (x1 + x2 + · · · + xn)/n

]
. (12)

Analysis of the i item in Equation (12).
Let (x1 + x2 + · · · + xn)/n = x0, then

1

a + xi
− 1

a + (x1 + x2 + · · · + xn)/n
= 1

a + xi
− 1

a + x0
. (13)

By Taylor expansion theorem

1

a + xi
− 1

a + x0

= f ′(x0)(xi − x0) + f ′′(x0)

2
(xi − x0)

2 + f ′′′(δ)
3! (xi − x0)

3 + · · · ,
δ ∈ (xi, x0) or (x0, xi), (14)

then Equation (14) is transformed to

1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn
− n

a + (x1 + x2 + · · · + xn)/n

= f ′(x0)
[
(x1 − x0) + (x2 − x0) + · · · + (xn − x0)

]

+ f ′′(x0)

2

[
(x1 − x0)

2 + (x2 − x0)
2 + · · · + (xn − x0)

2]

+
n∑

i=1

o(xi − x0)
2. (15)

Since f ′(x0)[(x1 − x0) + (x2 − x0) + · · · + (xn − x0)] = 0, then

1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn
− n

a + (x1 + x2 + · · · + xn)/n

= f ′′(x0)

2

n∑
i=1

(xi − x0)
2 +

n∑
i=1

o(xi − x0)
2, (16)

where

n∑
i=1

o(xi − x0)
2

= f ′′′(x0)

3!
[
(x1 − x0)

3 + (x2 − x0)
3 + · · · + (xn − x0)

3]

+ f ′′′′(δ1)

4! (x1 − x0)
4 + f ′′′′(δ2)

4! (x2 − x0)
4 + · · ·

+ f ′′′′(δn)

4! (xn − x0)
4 + · · · .

Analysis of | f (m)(x)|, m = 2, 3, · · · , ∞
∣∣ f (m)(x)

∣∣ =
∣∣∣∣
(

1
)(m)∣∣∣∣ = m

(
1

)(m−1)

, (17)

a + x a + x
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then∣∣∣∣ f (m−1)(x0)

(m − 1)! (x − x0)
m−1

∣∣∣∣ −
∣∣∣∣ f (m)(x0)

m! (x − x0)
m

∣∣∣∣
= 1

(m − 2)!
(

1

a + x0

)(m−2)∣∣(x − x0)
m−1

∣∣

− 1

(m − 1)!
(

1

a + x0

)(m−1)∣∣(x − x0)
m
∣∣

= 1

(m − 2)!
(

1

a + x0

)(m−2)∣∣(x − x0)
m−1

∣∣

×
[

1 − 1

(m − 1)

(
1

a + x0

)
|x − x0|

]
. (18)

If x ≤ x0, |x − x0| = x0 − x < x0 + a, then
∣∣∣∣ f (m−1)(x0)

(m − 1)! (x − x0)
m−1

∣∣∣∣ >

∣∣∣∣ f (m)(x0)

m! (x − x0)
m

∣∣∣∣. (19)

If m ≥ 2, x > x0, x < a + 2x0, then

1

m − 1
·
(

1

a + x0

)∣∣(x − x0)
∣∣ > 0. (20)

So if xi < a + 2x0, i = 1, 2, · · · , n,∣∣∣∣ f (m−1)(x0)

(m − 1)! (xi − x0)
m−1

∣∣∣∣ >

∣∣∣∣ f (m)(x0)

m! (xi − x0)
m

∣∣∣∣,m ≥ 2, (21)

namely,∣∣∣∣ f ′′(x0)

2
(xi − x0)

2
∣∣∣∣ >

∣∣∣∣ f ′′′(x0)

3! (xi − x0)
3
∣∣∣∣ > · · ·

>

∣∣∣∣ f (m)(x0)

m! (xi − x0)
m

∣∣∣∣. (22)

Neglect the fourth order item errors and more order item errors.
For the third order item is odd number item, for each xi , i = 1,

2, · · · , n, f 3(x0)
3! (xi − x0)

3 can be positive and negative. Then the 
sum of the third order items is much smaller than the sum of the 
second order items if xi < a + 2x0, i = 1, 2, · · · , n. Neglect the third 
order item and more order item errors if xi < a + 2x0, i = 1, 2,

· · · , n.
So,

1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn
− n

a + (x1 + x2 + · · · + xn)/n

≈ M

2

n∑
i=1

(xi − x0)
2 =

∑n
i=1(xi − x0)

2

2(a − x0)3
, xi < a + 2x0. (23)

Then

a2
(

x1

a + x1
+ x2

a + x2
+ · · · + xn

a + xn

)

− a2
[

x1 + x2 + · · · + xn

a + (x1 + x2 + · · · + xn)/n

]

≈ a2 f ′′(x0)

2

n∑
i=1

(xi − x0)
2 = a2

∑n
i=1(xi − x0)

2

2(a + x0)3
. (24)

From the above analysis, the errors are related to 
∑n

i=1(xi −x0)
2

and a2

2(a+x0)3 .

By the properties of a2

2(a+x0)3 , if the mean point x0 increases, 
a2

3 decreases quickly accordingly. When the cluster set {xi}
2(a+x0)
is not particularly divergent, 
∑n

i=1(xi − x0)
2 is much smaller than 

divergent cluster. So get the conclusion that if the distribution of 
the cluster set {xi} is concentrated and the mean point x0 is large, 
the errors can be smaller.

Based on the above error analysis, for reducing approximate 
error of the DSmT approximate convex function formula, a new 
Evidence Clustering method is proposed as follows:

1) Force the mass assignments of focal elements in the evidence 
to two sets by the standard of 2

n .
2) If xi ≥ 2

n , xi is forced to one set, denoted by {xL
i }, and the sum 

of mass assignments for {xL
i } is denoted by SL , the number of 

points in {xL
i } is denoted by nL ; otherwise, xi is forced to the 

other set, denoted by {xS
i }.

3) If xi ∈ {xS
i }, pick the focal element xi with the maximal value 

xi max; if xi max ≥ 2(1−SL )
n−nL

, xi is forced to one set {xL
i }.

4) Go on the step 3), until xi max <
2(1−SL )

n−nL
; the sum of mass as-

signments for {xS
i } is denoted by S S .

After the above cluster steps in the evidence, the mass assign-
ments of focal elements are forced to 2 sets denoted by {xL

i } and 
{xS

i }. Compared to {xL
i }, the distribution of {xS

i } may be more con-
centrated. Compared to {xS

i }, the main point of {xL
i } is large. So 

carrying out the above evidence clustering method in front of the 
approximate convex function formula can make errors of approxi-
mate results much smaller.

Let m1(X) = a, x1, x2, · · · , xn ∈ {m2(X j)|X j ∈ G�, i 	= j and Xi ∩
X j = ∅}, the approximate convex function formula of DSmT +
PCR5 is given by

∑
X j∈G� and i 	= j

X∩Y =∅

[
m1(Xi)

2 · m2(X j)

m1(Xi) + m2(X j)

]

= a2
[

n − a · n

a + (x1 + x2 + · · · + xn)/n

]
+ � (25)

Finally, analysis of relationship between the approximate com-
putation item and its errors item is as follows

∑
X j∈G� and i 	= j

X∩Y =∅

[
m1(Xi)

2 · m2(X j)

m1(Xi) + m2(X j)

]

= a2
[

n − a

(
1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn

)]

≈ a2
[

n − a · n

a + (x1 + x2 + · · · + xn)/n

]

+ a2
∑n

i=1[xi − (x1 + x2 + · · · + xn)/n]2

2[a + (x1 + x2 + · · · + xn)/n]3

= a2
[

x1 + x2 + · · · + xn

a + (x1 + x2 + · · · + xn)/n

]

+ a2
∑n

i=1[xi − (x1 + x2 + · · · + xn)/n]2

2[a + (x1 + x2 + · · · + xn)/n]3
(26)

After evidence clustering method, the influence of numerator 
x1 + x2 +· · ·+ xn to the approximate computation item and the in-
fluence of numerator 

∑n
i=1(xi − (x1 + x2 + · · · + xn)/n)2 to errors 

item is much smaller than the influence of their denominators. So 
the approximate computation item a2[ x1+x2+···+xn

a+(x1+x2+···+xn)/n ] is mainly 

proportional to the error item a2
∑n

i=1[xi−(x1+x2+···+xn)/n]2

2[a+(x1+x2+···+xn)/n]3 . By the 
properties of convex function, all the errors items of focal ele-
ments are negative. Based on the above analysis, the normalization 
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method is applied as the final step of the proposed method for er-
rors redistribution.

3.2. The process of evidence clustering DSmT approximate reasoning 
method

Based on the mathematical analysis of PCR5 in Section 3.1, 
the process of Evidence Clustering DSmT Approximate Reasoning 
Method is proposed as follows

Definition 1. Assuming the existence of a cluster set {x}, the defi-
nition of the total number of {x} is Num({x}) = number{x}, the sum 
of each point in {x} is Sum({x}) = ∑{x} and the mean point of {x}
is Mean({x}) =

∑{x}
number{x} .

1) Carry out Clustering Evidence method proposed in Sec-
tion 3.1. Force mass assignments of focal elements in each evi-
dence to two cluster sets. Giving an example of two evidences, 
denoted by x = {xi}, y = {yi}, i = 1, 2, · · · , n. Then force each 
evidence to two cluster sets, respectively denoted by xL = {xL

i }, 
xS = {xS

i }, xL ∪ xS = x, yL
i = {yL

i }, yS = {yS
i }, yL ∪ yS = y.

2) Un-normalized approximate fusion results are obtained by 
the approximate convex formula as follows

mCONVEXi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi · yi + x2
i Sum({yL

i }/yi)

xi+Mean({yL
i }/yi)

+ x2
i Sum({yS

i })
xi+Mean({yS

i })

+ y2
i Sum({xL

i }/xi)

yi+Mean({xL
i }/xi)

+ y2
i Sum({xS

i })
yi+Mean({xS

i }) ,

yi ∈ {yL
i }, xi ∈ {xL

i }
xi · yi + x2

i Sum({yL
i })

xi+Mean({yL
i }) + x2

i Sum({yS
i }/yi)

xi+Mean({yS
i }/yi)

+ y2
i Sum({xL

i }/xi)

yi+Mean({xL
i }/xi)

+ y2
i Sum({xS

i })
yi+Mean({xS

i }) ,

yi ∈ {yL
i }, xi ∈ {xS

i }
xi · yi + x2

i Sum({yL
i })

xi+Mean({yL
i }) + x2

i Sum({yS
i }/yi)

xi+Mean({yS
i }/yi)

+ y2
i Sum({xL

i })
yi+Mean({xL

i }) + y2
i Sum({xS

i }/xi)

yi+Mean({xS
i }/xi)

,

yi ∈ {yS
i }, xi ∈ {xS

i }
xi · yi + x2

i Sum({yL
i }/yi)

xi+Mean({yL
i }/yi)

+ x2
i Sum({yS

i })
xi+Mean({yS

i })

+ y2
i Sum({xL

i })
yi+Mean({xL

i }) + y2
i Sum({xS

i }/xi)

yi+Mean({xS
i }/xi)

,

yi ∈ {yS
i }, xi ∈ {xL

i }

(27)

3) Final approximate fusion results are obtained by the normal-
ization step as follows

mGH =
(

1 −
∑

X=xi∩y j

X∈G�

m(X)

)
mCONVEXi∑n
i=1 mCONVEXi

(28)

3.3. Analysis of computation complexity

If there are 2 evidence sources, assume that all possible unions 
of the elements in the discernment framework are empty for con-
venient computation of complexity. All singleton focal elements 
and multiple intersection focal elements have mass assignments in 
hyper-power sets of 2 evidences, denoted by G� = {θ1, θ2, · · · , θn,

θa ∩· · ·∩θb, · · · , θc ∩θd ∩· · ·∩θe}, {a, b, c, d, e} ∈ [1, · · · , n], n denotes 
the number of singleton focal elements, c denotes the number of 
multiple focal elements. First, the computation complexity of 2 ev-
idence sources fusion based on DSmT + PCR5 is analyzed. Then, 
the computation complexity of the same 2 evidence sources fusion 
problem based on the method in this paper is also analyzed. Com-
putation complexity comparison of two methods can be obtained 
from the analysis.

Assume that the computation complexity of one time multi-
plication is denoted by K , the computation complexity of one time 
addition is denoted by 

∑
, the computation complexity of one time 

division is denoted by ψ and the computation complexity of one 
time subtraction is denoted by B . The computation complexity of 
the processing procedure of 2 evidence sources fusion based on 
DSmT + PCR5, denoted by oDSmT[n], is given as follows

oDSmT+PCR5[n + c] = [
K + (4K + 2ψ + 4�)(n + c − 1)

]
(n + c)

− x(2K + 2ψ + 4�) + y�

= (4n + 4c − 3)(n + c)K

+ (2n + 2c − 2)(n + c)ψ

+ (4n + 4c − 4)(n + c)�

− x(2K + 2ψ + 4�) + y� (29)

where x denotes the number of multiple focal elements in the 
results, y denotes the number of the same multiple focal ele-
ments generated in the procedure of mass assignments combina-
tion product.

The computation complexity of the same problem based on the 
method in this paper, denoted by oGH[n + c], is given as follows

oGH[n + c] = (n + c)K + 2(n + c)
[
2(3K + � + ψ) + �

]
+ � + nψ + 2(n + c)B − x(2K + 2ψ + 4�) + y�

= 13(n + c)K + [
4(n + c) + 1

]
� + (5n + 4c)ψ

+ 2(n + c)B − x(2K + 2ψ + 4�) + y� (30)

where x denotes the number of multiple focal elements in the 
results, y denotes the number of the same multiple focal ele-
ments generated in the procedure of mass assignments combina-
tion product.

Computation complexity comparison of two methods obtained 
from Equation (29) and Equation (30) shows that the computa-
tion complexity of DSmT is almost proportion to (n + c)2 and the 
computation complexity of the method in this paper is almost pro-
portion to (n + c). Analysis of computation complexity shows that 
the computational complexity of the proposed method increases 
linearly instead of exponentially when the elements number of the 
discernment framework increases linearly.

4. Simulation experiments

4.1. Simple cases of cluster sets in each evidence

Example 1. If there are 2 evidence sources, assume that only 
singleton focal elements have mass assignments in hyper-power 
sets, denoted by G�

k = {θ1, θ2, · · · , θ7}, k = or 2. The mass assign-
ments in each evidence are x = {0.1, 0.1, 0.05, 0.3, 0.2, 0.2, 0.05}, 
y = {0.2, 0.05, 0.05, 0.2, 0.15, 0.3, 0.05}, the process of the method 
is given as follows:

1) The mass assignments of focal elements in each evidence are 
clustered to two sets, denoted by x = {x1, x2, x3, x5, x6, x7} ∪ {x4}, 
y = {y1, y2, y3, y4, y5, y7} ∪ {y6}.

2) Un-normalized approximate fusion results are calculated by 
Equation (27)

mCONVEX1 = x1 · y1 + y2 · Sum({x2, x3, x5, x6, x7})
y1 + Mean({x2, x3, x5, x6, x7}) + y2

1 · x4

y1 + x4

+ x2
1 · Sum({y2, y3, y4, y5, y7}) + x2

1 · y6
x1 + Mean({y2, y3, y4, y5, y7}) x1 + y6
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Table 1
Euclidean similarities and average computing time comparison of the methods.

Euclidean similarities with results of DSmT + PCR5 Average computing 
times (s)1 2 3 4 5 6

The method in this paper 0.9939 0.9911 0.9955 0.9938 0.9965 0.9960 0.0028
The method in [32] 0.9583 0.9791 0.9588 0.9530 0.9443 0.9347 0.0105
mCONVEX2 = x2 · y2 + y2
2 · Sum({x1, x3, x5, x6, x7})

y2
2 + Mean({x1, x3, x5, x6, x7})

+ y2
2 · x4

y2
2 + x4

+ x2
2 · Sum({y1, y3, y4, y5, y7})

x2
2 + Mean({y1, y3, y4, y5, y7})

+ x2
2 · y6

x2
2 + y6

mCONVEX3 = x3 · y3 + y2
3 · Sum({x1, x2, x5, x6, x7})

y2
3 + Mean({x1, x2, x5, x6, x7})

+ y2
3 · x4

y2
3 + x4

+ x2
3 · Sum({y1, y2, y4, y5, y7})

x2
3 + Mean({y1, y2, y4, y5, y7})

+ x2
3 · y6

x2
3 + y6

mCONVEX4 = x4 · y4 + y2
4 · Sum({x1, x2, x3, x5, x6, x7})

y2
4 + Mean({x1, x2, x3, x5, x6, x7})

+ x2
4 · Sum({y1, y2, y3, y5, y7})

x2
4 + Mean({y1, y2, y3, y5, y7})

+ x2
4 · y6

x2
4 + y6

mCONVEX5 = x5 · y5 + y2
5 · Sum({x1, x2, x3, x6, x7})

y2
5 + Mean({x1, x2, x3, x6, x7})

+ y2
5 · x4

y2
5 + x4

+ x2
5 · Sum({y1, y2, y3, y4, y7})

x2
5 + Mean({y1, y2, y3, y4, y7})

+ x2
5 · y6

x2
5 + y6

mCONVEX6 = x6 · y6 + y2
6 · Sum({x1, x2, x3, x5, x7})

y2
6 + Mean({x1, x2, x3, x5, x7})

+ y2
6 · x4

y2
6 + x4

+ x2
6 · Sum({y1, y2, y3, y4, y5, y7})

x2
6 + Mean({y1, y2, y3, y4, y5, y7})

mCONVEX7 = x7 · y7 + y2
7 · Sum({x1, x2, x3, x5, x6})

y2
7 + Mean({x1, x2, x3, x5, x6})

+ y2
7 · x4

y2
7 + x4

+ x2
7 · Sum({y1, y2, y3, y4, y5})

x2
7 + Mean({y1, y2, y3, y4, y5})

+ x2
7 · y6

x2
7 + y6

Get mCONVEX = {0.1588, 0.0558, 0.0273, 0.3108, 0.1926, 0.3108,

0.0273}.
3) The final approximate results are obtained by Equation (28)

mGH = {0.1465,0.0515,0.0252,0.2869,0.1778,0.2869,

0.0252}.
4) The results of DSmT + PCR5 and the method in [32] are also 

calculated for the comparison with the method in this paper.
The results of DSmT + PCR5

mDSmT+PCR5 = {0.1435,0.0488,0.0237,0.2922,0.1751,0.2929,

0.0237}.
The results of the method in [32]

mXDL = {0.1536,0.0605,0.0253,0.2980,0.1670,0.2738,

0.0217}.
The Euclidean similarity between results mGH obtained by the 

method in this paper and the results mDSmT+PCR5 of DSmT + PCR5, 
is obtained by Equation (7)

EGH = 0.9932.
In the same way, the Euclidean similarity between the results 
mXDL of the method in [32] and the results mDSmT+PCR5 of DSmT +
PCR5 is obtained by Equation (7)

EXDL = 0.9812.

From the above results of this example, the results obtained 
by the method proposed in this paper have higher Euclidean Sim-
ilarity with DSmT + PCR5 than the existing DSmT approximate 
reasoning method in [32]. The Euclidean Similarity which remains 
over 99% shows that the method proposed in this paper has high 
accuracy and practical meaning.

Example 2. If there are the same 2 evidence sources in Exam-
ple 1, the hyper-power sets are denoted by G�

k = {θ1, θ2, · · · , θ7}, 
k = 1 or 2. The mass assignments in each evidence are x =
{0.1, 0.1, 0.05, 0.3, 0.2, 0.2, 0.05}, y = {0.2, 0.05, 0.05, 0.2, 0.15,

0.3, 0.05}. The mass assignments in the second evidence source are 
unchanged, denoted by y = {0.2, 0.05, 0.05, 0.2, 0.15, 0.3, 0.05}, 
and the mass assignments in the first evidence change and the 
sequence of the mass belief of each focal element moves one po-
sition backward at one time to procedure 6 new evidences, such 
as:

x1 = {0.1,0.1,0.05,0.3,0.2,0.2,0.05},
x2 = {0.05,0.1,0.1,0.05,0.3,0.2,0.2},
x3 = {0.2,0.05,0.1,0.1,0.05,0.3,0.2},
x4 = {0.2,0.2,0.05,0.1,0.1,0.05,0.3},
x5 = {0.3,0.2,0.2,0.05,0.1,0.1,0.05},
x6 = {0.05,0.3,0.2,0.2,0.05,0.1,0.1}.

Each new evidence and the evidence y are calculated to obtain 
the fusion results by DSmT + PCR5 and the approximate fusion 
results by the method in this paper and the method in [32]. Then 
Euclidean similarities of the approximate results of different meth-
ods with the results of DSmT + PCR5 are obtained by Equation (7)
and the average computing times of the methods are also taken 
record as Table 1. (In this paper, all the simulation experiments 
are implemented by Matlab simulation in the hardware condition 
of Pentimu(R) Dual-Core CPU E5300 2.6 GHz 2.59 GHz, memory 
1.99 GB.)

As shown in Table 1, in the simple cases of cluster sets in each 
evidence, the accuracies of the method in this paper all remain 
over 99% and much higher than the method in [32]. Average com-
puting time of the method in this paper is much lower than the 
method in [32]. At the same time, the accuracies of the method 
in this paper in different evidence cases change little, which prove 
that the method in this paper has higher performance stability.

4.2. Complex cases of cluster sets in each evidence

Example 3. If there are 2 evidence sources, assume that only sin-
gleton focal elements have mass assignments in hyper-power sets, 
denoted by G�

k = {θ1, θ2, · · · , θ12}, k = 1 or 2. The mass assign-
ments in each evidence are x = {0.3, 0.35, 0.05, 0.05, 0.04, 0.06,

0.02, 0.01, 0.02, 0.01, 0.04, 0.05}, y = {0.2, 0.05, 0.04, 0.21, 0.15,
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Table 2
Euclidean similarities and average computing time comparison of the methods.

Euclidean similarities with results of DSmT + PCR5 Average computing 
times (s)1 2 3 4 5 6 7 8 9 10 11

The method in this paper 0.9987 0.9983 0.9982 0.9979 0.9981 0.9985 0.9985 0.9983 0.9984 0.9983 0.9983 0.0038
The method in [32] 0.8795 0.9330 0.9514 0.9484 0.8112 0.8636 0.8253 0.8342 0.8331 0.8189 0.8483 0.0186
0.25, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01}, the method process is given 
as follows:

1) The mass assignments of focal elements in each evidence are 
clustered to two sets, denoted by x = {x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12} ∪ {x1, x2}, y = {y2, y3, y7, y8, y9, y10, y11, y12} ∪ {y1, y4,

y5, y6}.
2) Un-normalized approximate fusion results are calculated by 

Equation (27)

mCONVEX = {0.3069,0.2559,0.0247,0.1309,0.0834,0.1662,

0.0177,0.0019,0.0041,0.0019,0.0110,0.0153}.
3) The final approximate results are obtained by Equation (28)

mGH = {0.3009,0.2509,0.0242,0.1283,0.0818,0.1630,0.0174,

0.0019,0.0041,0.0019,0.0108,0.0150}.
4) The results of DSmT + PCR5 and the method in [32] are also 

calculated for the comparison with the method in this paper.
The results of DSmT + PCR5

mDSmT+PCR5 = {0.3019,0.2524,0.0235,0.1282,0.0811,0.1635,

0.0169,0.0018,0.0039,0.0018,0.0104,0.0146}.
The results of the method in [32]

mXDL = {0.3710,0.1834,0.0276,0.1269,0.0828,0.1651,0.0003,

0.0000,0.0001,0.0001,0.0002,0.0002}.
The Euclidean similarity between the results mGH and

mDSmT+PCR5 is calculated, denoted by EGH = 0.9984 and computing 
time is 0.0035 s.

In the same way, the Euclidean similarity between the results 
mXDL and mDSmT+PCR5 is calculated, denoted by EXDL = 0.9287 and 
computing time is 0.0185 s.

As shown in the above experiment results, the results obtained 
by the method proposed in this paper have higher Euclidean simi-
larity and lower computation complexity than the existing method 
in [32]. The Euclidean similarity which remains over 99% shows 
that the method proposed in this paper has higher accuracy and 
practical meaning.

Example 4. If there are the same 2 evidence sources in Example 3, 
the hyper-power sets are denoted by G�

k = {θ1, θ2, · · · , θ12}, k = 1
or 2. The mass assignments in the second evidence source are 
unchanged, denoted by y = {0.2, 0.05, 0.04, 0.21, 0.15, 0.25, 0.05,

0.01, 0.01, 0.01, 0.01, 0.01}. The mass assignments in the first 
source change and the sequence of the mass beliefs of focal el-
ements moves one position backward at one time to procedure 11 
new evidences.

Each new evidence and the second evidence y are calculated 
to get the fusion results of DSmT + PCR5 and the approximate re-
sults by the method in this paper and the method in [32]. Then 
Euclidean similarities of the approximate results of different meth-
ods with the results of DSmT + PCR5 and the average computing 
times of the methods are taken record as Table 2.

As shown in Table 2, under complex cases of cluster sets in each 
evidence, the accuracy of the method in this paper also remains 
over 99% and much higher than the method in [32]. Average com-
puting time of the method in this paper is lower than the method 
in [32]. At the same time, the accuracies of the method in this pa-
Table 3
The mass assignments of highly conflict evidence sources.

Conflict evidence sources a b c d

S1 x − ε ε 1 − x − ε ε
S2 ε y − ε ε 1 − y − ε

Fig. 1. Euclidean similarity of the method in [32] with DSmT + PCR5.

per in different evidence cases change little, which prove that the 
method in this paper has higher performance stability.

4.3. Cases of highly conflict evidence sources

Example 5. In order to verify that information fusion of highly con-
flict evidence sources can be effectively solved by the method in 
this paper, assume there are two highly conflict evidence sources 
with the hyper-power set denoted by D� = {a, b, c, d} and the 
mass assignments of two evidence sources are shown as Table 3.

Let ε = 0.01, x, y ∈ [0.02, 0.98]. The fusion results are obtained 
by different methods when x, y is increasing from 0.02 to 0.98 by 
0.01 step at the same time. Euclidean similarity of the method in 
[32] with DSmT + PCR5 is shown in Fig. 1. Euclidean similarity of 
the method in this paper with DSmT + PCR5 is shown in Fig. 2.

The average Euclidean similarity of the method in this paper 
is 0.9873 and the average Euclidean similarity of the method in 
[32] is 0.8513. It’s shown that information fusion problem of highly 
conflict evidence sources can be effectively solved by the method 
proposed in this paper.

4.4. Convergence analysis

Example 6. If there are 2 evidence sources, assume that only sin-
gleton focal elements have mass assignments in hyper-power sets, 
denoted by G�

k = {θ1, θ2, · · · , θ12}, k = 1 or 2. The mass assign-
ments in each evidence are x = {0.1, 0.01, 0.02, 0.25, 0.15, 0.05,

0.1, 0.1, 0.1, 0.05, 0.05, 0.02}, y = {0.5, 0.35, 0.02, 0.02, 0.01, 0.01,

0.01, 0.01, 0.01, 0.01, 0.01, 0.04}. First, fusion results of two evi-
dences x and y are obtained by different fusion methods. Then, 
fusion of the prior fusion results with y is carried out repeatedly. 
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Table 4
Fusion results comparison of the methods for convergence analysis.

Fusion results

1 DSmT + PCR5 0.4287, 0.2600, 0.0058, 0.1163, 0.0539, 0.0109, 0.0297, 0.0297, 0.0297, 0.0109, 0.0109, 0.0136
The method in [32] 0.4067, 0.0994, 0.0212, 0.1888, 0.0798, 0.0385, 0.0027, 0.0027, 0.0027, 0.0010, 0.0010, 0.0019
The method in this paper 0.4285, 0.2610, 0.0060, 0.1151, 0.0535, 0.0110, 0.0296, 0.0296, 0.0296, 0.0110, 0.0110, 0.0141

2 DSmT + PCR5 0.5829, 0.3324, 0.0031, 0.0388, 0.0120, 0.0017, 0.0053, 0.0053, 0.0053, 0.0017, 0.0017, 0.0099
The method in [32] 0.5687, 0.1686, 0.0036, 0.0642, 0.0202, 0.0127, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
The method in this paper 0.5705, 0.3459, 0.0031, 0.0371, 0.0116, 0.0018, 0.0052, 0.0052, 0.0052, 0.0018, 0.0018, 0.0109

3 DSmT + PCR5 0.6439, 0.3342, 0.0018, 0.0084, 0.0016, 0.0006, 0.0008, 0.0008, 0.0008, 0.0006, 0.0006, 0.0060
The method in [32] 0.6171, 0.1968, 0.0009, 0.0109, 0.0027, 0.0021, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
The method in this paper 0.6118, 0.3655, 0.0021, 0.0078, 0.0015, 0.0006, 0.0008, 0.0008, 0.0008, 0.0006, 0.0006, 0.0069

4 DSmT + PCR5 0.6726, 0.3181, 0.0012, 0.0017, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0040
The method in [32] 0.6152, 0.2047, 0.0008, 0.0018, 0.0004, 0.0003, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000
The method in this paper 0.6264, 0.3626, 0.0015, 0.0017, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0004, 0.0048
Fig. 2. Euclidean similarity of the method in this paper with DSmT + PCR5.

Through the fusion results each time, the different methods’ con-
vergences are analyzed in Table 4.

As shown in Table 4, the convergences of three methods are 
similar. The results of the methods can converge to the main focal 
elements after 3 times of evidences fusion. However, the results 
of the method in this paper have higher Euclidean similarity with 
DSmT + PCR5, and lose less information than the method in [32]
each time.

4.5. Monte Carlo simulations in the case of non-empty multiple focal 
elements

If there are 2 evidence sources, assume that singleton focal 
elements and multiple focal elements have mass assignments in 
hyper-power sets, denoted by P� = {θ1, θ2, · · · , θ20, θ1 ∩ θ5 ∩ θ10 ∩
θ20}. Carry out 1000 times Monte Carlo simulation experiments. 
The simulation experiment process of each time consists of 3 steps. 
First, mass values of all focal elements of hyper-power sets in each 
evidence are assigned randomly. Then, the fusion results of 2 ev-
idences are obtained by DSmT + PCR5 and the method in this 
paper separately. Thirdly, the Euclidean similarity of the method 
in this paper with DSmT + PCR5 and computing times of both 
methods are calculated and recorded. The Monte Carlo simulation 
results are shown in Fig. 3, Fig. 4 and Table 5.

As shown in Fig. 3, Fig. 4 and Table 5, in the case of non-
empty multiple focal elements, the average Euclidean similarity of 
the method in this paper can reach 98.49% and Euclidean similar-
ity changes little with different evidences. Computing times of the 
method in this paper almost reduce halfly than DSmT + PCR5.
Fig. 3. Computing time comparison of the method in this paper with DSmT + PCR5.

Fig. 4. Euclidean similarity of the method in this paper with DSmT + PCR5.

4.6. Monte Carlo simulations in the case of increasing focal elements 
number

Example 7. If there are 2 evidence sources, assume that only sin-
gleton focal elements have mass assignments in hyper-power sets, 
denoted by G�

k = {θ1, θ2, · · · , θ10}, k = 1 or 2. The focal elements 
of the hyper-power sets are increased 10 focal elements each time 
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Table 5
Fusion results comparison in the case of increasing focal elements number.

Average Euclidean 
similarity

Max Euclidean 
similarity

Min Euclidean 
similarity

Average computing 
time (ms)

Max computing 
time (ms)

Min computing 
time (ms)

DSmT + PCR5 1.9 3.1 1.9
The method in this paper 0.9849 0.9956 0.9693 0.84911 1.4 0.83593
Fig. 5. Euclidean similarity of the method in this paper with DSmT + PCR5.

until 500 and the mass values of every focal elements of hyper-
power sets in each evidence are assigned randomly each time. 
1000 times Monte Carlo simulation experiments in each hyper-
power set are carried out and the average Euclidean similarities 
of the method in this paper with DSmT + PCR5 are calculated and 
recorded as shown in Fig. 5. The average computing time com-
parison of the method in this paper with DSmT + PCR5 in each 
hyper-power sets is shown in Fig. 6.

The fusion results comparison in the case of increasing focal 
elements number is shown in Table 6. (As the increasing number 
of focal elements, the mass assignment of average cluster center is 
decreasing sharply. For reducing computation complexity, neglect 
the influence of the different classification of clusters and apply 
the standard of 2

n as one step cluster method, n denotes the focal 
elements number of hyper-power sets.)

As shown in Fig. 5, Fig. 6 and Table 6,
1) In the case of increasing focal elements number, comput-

ing time of the method in this paper decreases significantly, and 
the computation complexity of the method almost appears lin-
ear growth instead of exponential growth, which proves that the 
method in this paper has a high application in the case of com-
plex fusion problems with big number of focal elements.

2) The accuracy of the method in this paper is increasing with 
the growth of focal elements number of hyper-power sets as the 
Fig. 6. Computing time comparison of the method in this paper with DSmT + PCR5.

errors item becomes much smaller. The minimum average Eu-
clidean Similarity is 0.9974 in the case of the minimum num-
ber of hyper-power sets. When the number of hyper-power sets 
increases over 50, the average Euclidean similarity exceeds 99%, 
which proves that the method in this paper can effectively sup-
port correct and quick decision in the case of large data.

5. Conclusions

A new Evidence Clustering DSmT Approximate Reasoning Me-
thod is proposed based on convex function analysis in this paper. 
This new method consists of three steps. First, the belief masses 
of focal elements in each evidence are clustered by the Evidence 
Clustering method. Second, the un-normalized approximate fusion 
results are obtained using the DSmT approximate convex function 
formula, which is acquired based on the mathematical analysis 
of PCR5 rule in DSmT. Finally, the normalization step is applied. 
The method reduces computation complexity of PCR5 based in-
formation fusion rule within DSmT framework significantly which 
constrains the wide application and development of DSmT and re-
mains high accuracy. Simulation results in different cases show 
that the method in this paper can process evidences fusion prob-
lems effectively and efficiently, especially, in the case of large data 
Table 6
Fusion results comparison in the case of increasing focal elements number.

The focal elements number of hyper-power sets is increasing from 10 to 510

Average computing times of 
DSmT + PCR5 (s)

0.0008 0.0032 0.0073 0.0132 0.0208 0.0297 0.0406 0.0530 0.0670 0.0829 0.1017 0.1219 0.1405 0.1636 0.1867 0.2133 0.2431 0.2685 
0.3009 0.3319 0.3698 0.4013 0.4427 0.4816 0.5212 0.5588 0.6011 0.6462 0.6959 0.7413 0.7909 0.8425 0.8962 0.9505 1.0082 1.0659 
1.1263 1.1882 1.2516 1.3166 1.3828 1.4509 1.5225 1.5926 1.6660 1.7409 1.8174 1.8946 1.9765 2.0574 2.1397

Average computing times of the 
method in this paper (s)

0.0003 0.0006 0.0010 0.0013 0.0017 0.0020 0.0024 0.0028 0.0032 0.0036 0.0040 0.0044 0.0048 0.0053 0.0057 0.0062 0.0067 0.0071 
0.0076 0.0081 0.0087 0.0092 0.0098 0.0103 0.0108 0.0114 0.0118 0.0124 0.0130 0.0136 0.0142 0.0148 0.0154 0.0160 0.0167 
0.0173 0.0180 0.0186 0.0193 0.0200 0.0207 0.0214 0.0222 0.0229 0.0236 0.0244 0.0251 0.0259 0.0265 0.0275 0.0282

Average Euclidean similarities 
with results of DSmT +
PCR5

0.9774 0.9826 0.9871 0.9881 0.9895 0.9907 0.9917 0.9922 0.9922 0.9927 0.9931 0.9933 0.9939 0.9940 0.9938 0.9945 0.9945 
0.9946 0.9947 0.9947 0.9950 0.9953 0.9949 0.9954 0.9955 0.9955 0.9955 0.9956 0.9959 0.9958 0.9961 0.9959 0.9961 0.9960 
0.9959 0.9961 0.9962 0.9964 0.9961 0.9964 0.9964 0.9964 0.9964 0.9965 0.9966 0.9966 0.9966 0.9968 0.9966 0.9968 0.9967
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and complex fusion problems, the method can get highly accurate 
results and need low computation complexity.

However, our proposed method is not associative and the com-
bination order really has influence on the results, which is the 
same problem to PCR5. This problem is really needed to be re-
solved especially for the efficient fusion of multiple (more than 2) 
sources of evidences and more research would be carried out to 
resolve this associative question of our method in the near future. 
Our method would also be applied to the realistic and applied data 
or database in future.
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