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Abstract—In this paper, we propose a new fusion approach
to combine basic belief assignments (BBAs) defined on a di-
chotomous frame of discernment based on their canonical de-
composition. In a companion paper, we have already proved
that the canonical decomposition of this type of BBA (called
dichotomous BBA) is always possible and unique thanks to
the proportional conflict redistribution rule No 5 (PCR5). More
precisely, any dichotomous BBA is always the PCR5 combination
of two simpler basic belief assignments named respectively the
pro-evidence, and the contra-evidence. From this interesting
canonical decomposition, we present a new way of combining
many dichotomous BBAs and we show that the computational
time for fusing these dichotomous BBAs based on their canonical
decomposition is quasi-linear with the number of sources to
combine, contrary to the direct fusion of the dichotomous BBAs
altogether.
Keywords: Information fusion, canonical decomposition, be-

lief functions, PCR5 rule, PCR6 rule.

I. INTRODUCTION

The belief functions (BF) introduced by Shafer in the

mid of 1970’s [1] from Dempster’s works are well known

and used in the artificial intelligence community to model

epistemic uncertainty and to reason with it for informa-

tion fusion and decision-making support. Dempster’s rule to

combine distinct sources of evidence characterized by their

basic belief assignments (BBAs) defined on the same frame

of discernment (FoD) is the historical and emblematic rule

of combination in Dempster-Shafer Theory (DST). Unfortu-

nately, Dempster’s rule (denoted by DS rule for short) suffers

of serious drawbacks in high conflict evidences as pointed

out by Zadeh [2], [3], but more importantly also in some

very low conflict situations [4] as well. That is why many

rules have been proposed in the literature [5] (Vol.2), among

them the combination of two sources of evidence based on

the proportional conflict redistribution principle No. 51 (PCR5

rule) justified theoretically in [6], which has been shown

successful in applications. However its complexity remains

one of its limitations which prevents its use in fusion problems

involving many sources of evidence to combine, and its non

1Actually PCR6 rule is preferentially used for the combination of more than
two sources altogether. For two sources, PCR5 and PCR6 rules coincide and
because canonical decomposition involved only two sources, we only need to
work with PCR5 rule to combine the pro-evidence with its contra-evidence.

associativity property2 which make it not so appealing because

the fusion order matters when sequential PCR5 fusion is

applied instead of global combination of the sources altogether.

In this work, we show how the fusion of many sources

of evidences represented by BBAs defined on a same di-

chotomous frame of discernment can be easily done based on

the PCR5-based canonical decomposition of the BBAs. Such

decomposition of BBA has been proposed recently in [7].

We recall that another canonical decomposition based on

conjunctive rule (but involving improper3 BBA) had been

proposed in 1995 by Smets [8], and extended later by Denœux

[11] to develop the so-called cautious rule of combination.

In this new approach we use our well justified canonical

decomposition based on PCR5 which is strictly based on a

proper (i.e. normal) BBAs as defined by Shafer himself. We

have shown that any dichotomous BBA is always the result

of the PCR5 fusion of a simple proper pro-evidence BBA

mp with a simple proper contra-evidence BBA mc, and that

this decomposition is unique. Based on this important result,

we address in this work the problem of combination of many

dichotomous BBAs based on their canonical decomposition.

This paper is organized as follows. After a brief recall of

basics of belief functions in section II, we present briefly the

canonical decomposition for any dichotomous BBA based on

PCR5 rule of combination in section III which is explained

in more details with proofs, and examples in [7]. The fusion

of dichotomous BBAs based on the principle of canonical

decompositions is detailed in section IV. Concluding remarks

with perspectives are given in the last section.

II. BASICS OF BELIEF FUNCTIONS

Belief functions (BF) have been introduced by Shafer in [1]

to model epistemic uncertainty. We assume that the answer4 of

the problem under concern belongs to a known (or given) finite

discrete frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn},

with n > 1, and where all elements of Θ are mutually

exclusive and exhaustive5. The FoD is said dichotomous when

2PCR5 is only quasi-associative.
3We call a BBA improper when it does not satisfy Shafer’s original

definition. Smets called it a generalized simple BBA (GSBBA).
4i.e. the solution, or the decision to take.
5This is so-called Shafer’s model of FoD [5].
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it involves only two elements (one subset and its complement),

that is Θ = {A, Ā} where Ā is the complement of A in

Θ. The set of all subsets of Θ (including empty set ∅ and

Θ) is the power-set of Θ denoted by 2Θ. A proper Basic

Belief Assignment (BBA) associated with a given source of

evidence is defined [1] as a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑
A∈2Θ m(A) = 1. In some BF

related frameworks, like in Smets Transferable Belief Model

(TBM) [8], m(∅) is allowed to take a positive value. In this

case, m(·) is said improper because it does not satisfy Shafer’s

definition [1]. The quantity m(A) is called the mass of A
committed by the source of evidence. Belief and plausibility

functions are respectively defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (1)

and

Pl(A) =
∑

B∈2Θ|A∩B �=∅
m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are interpreted respectively as lower and

upper bounds of an unknown (subjective) probability measure

P (A) in original Dempster’s works [9], [10]. The quantities

m(·) and Bel(·) are one-to-one and the following Möbius

inverse formula holds (see [1], p. 39)

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B) (3)

A is called a Focal Element (FE) of m(·) if m(A) > 0.

When all focal elements are singletons, m(·) is called a

Bayesian BBA [1] and its corresponding Bel(·) function is

equal to Pl(·) and they are homogeneous to a (subjective)

probability measure P (·). The vacuous BBA, or VBBA for

short, representing a totally ignorant source is defined as6

mv(Θ) = 1. A dichotomous BBA is a BBA defined on

a dichotomous FoD. A dogmatic BBA is a BBA such that

m(Θ) = 0. If m(Θ) > 0 the BBA m(·) is nondogmatic. A

simple BBA is a BBA that has at most two focal sets and one

of them is Θ. A dichotomous non dogmatic mass of belief is

a BBA having three focal elements A, Ā and A ∪ Ā with A
and Ā subsets of Θ.

In his Mathematical Theory of Evidence [1], Shafer pro-

posed to combine s ≥ 2 distinct sources of evidence rep-

resented by BBAs m1(.), . . . ,ms(.) over the same FoD Θ
with Dempster’s rule (i.e. the normalized conjunctive rule).

For the combination of two BBAs, Dempster’s rule formula

[1] is given by mDS(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mDS(X) =
1

K12

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (4)

with K12 = 1−
∑

X1,X2∈2Θ|X1∩X2=∅
m1(X1)m2(X2).

6The complete ignorance is denoted Θ in Shafer’s book [1].

The justification and behavior of Dempster’s rule have been

disputed over the years from many counter-examples involving

high and low conflicting sources (from both theoretical and

practical standpoints) as reported in [4], [12]–[14]. Many rules

of combination exist in the literature7, among them we recom-

mend the rule based on the proportional conflict redistribution

principle No. 5 (PCR5 rule) [6] which has been shown to

be successful in applications and well justified theoretically.

That is why we analyze it in details for solving the BF

canonical decomposition problem (BF-CDP). PCR5 transfers

the conflicting mass only to the elements involved in the

conflict and proportionally to their individual masses, so that

the specificity of the information is entirely preserved in this

fusion process (see [5], Vol. 2 and Vol. 3 for full justification

and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (5)

where all denominators in (5) are different from zero. If a

denominator is zero, that fraction is discarded. The properties

of PCR5 can be found in [15]. Extension of PCR5 for

combining qualitative BBA’s can be found in [5], Vol. 2 & 3.

A variant of PCR5, called PCR6 has been proposed by Martin

and Osswald in [5], Vol. 2, for combining s > 2 sources. The

general formulas for PCR5 and PCR6 rules are also given in

[5], Vol. 2. PCR6 coincides with PCR5 when one combines

two sources. The difference between PCR5 and PCR6 lies

in the way the proportional conflict redistribution is done as

soon as three (or more) sources are involved in the fusion.

From the implementation point of view, PCR6 is simpler

to implement than PCR5. For convenience, very basic (not

optimized) MatlabTMcodes of PCR5 and PCR6 fusion rules

can be found in [5], [16] and from the toolboxes repository

on the web [17]. The main drawback of PCR5 and PCR6

rules is their combinatorial complexity when the number of

source is big. Even for combining BBAs defined on a simple

dichotomous frame of discernment, the computational time for

combining more than 20 sources can take several hours8.

Our main motivation and contribution is to propose a faster

fusion method to combine many dichotomous BBAs in order

to overcome the combinatorial complexity problem by estab-

lishing a new effective (approximating) fusion method based

on the new PCR5-based canonical decomposition principle.

It is worth noting that our new method is very different

of the method based on the clustering of non conflicting

BBAs followed by a discounting step and the conjunctive rule

presented in [18].

7see [5], Vol. 2 for a detailed list of fusion rules.
8due to the exponential complexity of the PCR6 rule (as shown in Figure

4). For our simulations, we did use a MacBook Pro 2.8 GHz Intel Core i7
with 16 Go 1600 MHz DDR3 memory running MatlabTMR2018a.
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III. CANONICAL DECOMPOSITION OF DICHOTOMOUS BBA

A FoD Θ = {A, Ā} is called dichotomous if it consists of

only two elements A and Ā with A∪ Ā = Θ and A∩ Ā = ∅.

A is different from Θ and from Empty-Set because we want

to work with informative FoD. Indeed, the very special frame

{Θ, ∅} does not bring any useful information since the only

possible BBA with such frame is the vacuous BBA. So, we

consider a given proper9 BBA m(·) : 2Θ → [0, 1] of the form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b (6)

with 0 < a < 1, 0 < b < 1 and a+ b < 1.

The conditions 0 < a < 1 and 0 < b < 1 mean that A and

Ā are focal elements of the BBA. The restriction a + b < 1
means that the BBA is nondogmatic.

This assumption of nondogmaticity of the BBA m(·) is

necessary for Smets canonical decomposition [8], but it is

not essential for our PCR5-based canonical decomposition (as

we will show in the sequel) because our decomposition also

works directly with a dogmatic BBA. Of course any dogmatic

BBA can always be modified as a non-dogmatic BBA by

using a very small discounting number (ε > 0) so that, in

practice, Smets’ decomposition can always be applied, but

this is not sufficient to prove that Smets approach always

provides relevant results. Why? just because we know (and we

have proved) that Dempster’s (normalized conjunctive rule)

and even the conjunctive rule in Smets’ TBM suffers of

serious drawbacks - see justifications in our aforementioned

references. That is why we explore in this work another way of

making a canonical decomposition, which is, for now, limited

to dichotomous BBA.

Our canonical decomposition problem consists in finding

the two following simple proper BBAs mp and mc of the

form

mp(A) = x, mp(A ∪ Ā) = 1− x (7)

mc(Ā) = y, mc(A ∪ Ā) = 1− y (8)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The

simple BBA mp(·) is called the pro-BBA (or pro-evidence)

of A, and the simple BBA mc(·) the contra-BBA (or contra-

evidence) of A. The BBA mp(·) is interpreted as a source

of evidence providing an uncertain evidence in favor of A,

whereas mc(·) is interpreted as a source of evidence providing

an uncertain contrary evidence about A.

This decomposition is possible with Dempster’s rule only

if 0 < a < 1, 0 < b < 1 and a + b < 1, and in

this case we have x = a
1−b and y = b

1−a . However, any

dogmatic BBA m(A) = a, m(Ā) = b with a + b = 1 is

not decomposable from Dempster’s rule for the case when

(a, b) 	= (1, 0) and (a, b) 	= (0, 1) (see Theorem 4 in [7]),

and the dogmatic BBAs m(A) = 1, m(Ā) = 0 (case

(a, b) = (1, 0)), or m(A) = 0, m(Ā) = 1 (case (a, b) = (0, 1))
have infinitely many decompositions based on Dempster’s rule

9which means that m(∅) = 0.

of combination (see Lemma in [7]). In [7], we have shown

that our canonical decomposition cannot be achieved from

conjunctive, disjunctive, Yager’s [19] or Dubois-Prade [20]

rules of combination, neither from averaging rule. However,

such type of decomposition is unique and is always possible

in all cases of dichotomous BBA m(·) using the PCR5 rule

of combination. In [7], we did prove the following Theorem.

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with

A 	= Θ and A 	= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA

m(·) has a unique canonical decomposition using PCR5 rule

of combination of the form m = PCR5(mp,mc) with pro-

evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence

mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Moreover, we also proved in [7] that the canonical decom-

position also exists even if the dichotomous BBA is dogmatic

(i.e. Bayesian) and the following theorem also holds.

Theorem 2: Any dogmatic BBA defined by m(A) = a and

m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical

decomposition using PCR5 rule of combination of the form

m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorems 1 & 2 prove that the decomposition based on

PCR5 always exists and it is unique for any dichotomous

(nondogmatic, or dogmatic) BBA.

For the case of dichotomous dogmatic BBA considered

in Theorem 2, the expression of solutions x and y can be

established explicitly as follows - see [7] for details

• If a < b then x < y, and we have y = 1 and x =
a+

√
a2+4a
2 .

• If a > b then x > y, and we have x = 1 and y =
b+

√
b2+4b
2 .

• If a = b and a+ b = 1 then a = b = 0.5 and x = y = 1.

For the case of dichotomous nondogmatic BBA considered

in Theorem 1, one has to find x and y solutions of the system

a = x(1− y) +
x2y

x+ y
=

x2 + xy − xy2

x+ y
(9)

b = (1− x)y +
xy2

x+ y
=

y2 + xy − x2y

x+ y
(10)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1. In

fact, it has been proved in [7] that x ∈ [a, a + b] ⊂ [0, 1]
and y ∈ [b, a + b] ⊂ [0, 1], but the explicit expression of x
and y are very complicated to obtain analytically (even with

modern symbolic computing systems like MathematicaTM, or

MapleTM) because after algebraic calculation, and for x 	= 1,

one has to solve the following quartic equation which has at

most four real solutions with only a valid one in [a, a+ b]

x4 + (−a− 2)x3 + (2a+ b)x2

+ (a+ b− ab− b2)x+ (−a2 − ab) = 0 (11)
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and then compute y as y = a+b−x
1−x .

Fortunately, the solutions can be easily calculated nu-

merically by these computing systems, and even with

MatlabTMsystem10 as soon as the numerical values are com-

mitted to a and to b, and this is what we do in our simulations

in the sequel.

Example 1: Let consider Θ = {A, Ā} and m(A) = 0.6,

m(Ā) = 0.3 and m(A∪Ā) = 1−m(A)−m(Ā) = 0.1. Hence,

a = 0.6 and b = 0.3. The quartic equation (11) becomes

x4 − 2.6x3 + 1.5x2 + 0.63x− 0.54 = 0 (12)

The four solutions of this quartic equation provided by the

computing system11 are approximately

x1 ≈ 0.7774780438 x2 ≈ 0.9297589637

x3 ≈ 1.4191515820 x4 ≈− 0.5263885898

Clearly x3 and x4 are not acceptable solutions because they

don’t belong to [0, 1]. If we take x1 ≈ 0.7774780438, then

we will get y1 = (a + b − x1)/(1 − x1) = (0.9 − x1)/(1 −
x1) ≈ 0.5506061437. The pair (x1, y1) ∈ [0, 1]2 is a solution

of the decomposition problem of the BBA m(·). If we take

x2 ≈ 0.9297589637, then we will get y2 = (a+ b−x2)/(1−
x2) = (0.9 − x2)/(1 − x2) ≈ −0.4236692006. We see that

y2 /∈ [0, 1], and therefore the pair (x2, y2) cannot be a solution

of the decomposition problem of the BBA m(·). Therefore the

canonical masses mp(·) and mc(·) are given by

mp(A) ≈ 0.7774780438, mp(A ∪ Ā) ≈ 0.2225219562

mc(Ā) ≈ 0.5506061437, mc(A ∪ Ā) ≈ 0.4493938563

It can be verified that the PCR5 combination of BBAs mp and

mc, denoted by PCR5(mp,mc), is equal to the BBA m(·).
Of course there are necessarily numerical approximations

involved by the proposed decomposition because this decom-

position is obtained by numerical solvers. This may have some

little impact in the PCR5 fusion result but because PCR5 rule

is numerically robust to small input changes (contrariwise to

Dempster’s rule) the PCR5 result will not change substantially

with small changes (due to small numerical imprecisions) in

the values of BBAs to combine.

A. Particular cases

1) Case (a, b) = (0, 0) (i.e. m is the vacuous BBA): This

is the most degenerate case where the BBA m(·) corresponds

to the vacuous BBA. For averaging rule, conjunctive rule,

Yager’s, Dubois-Prade’s, Dempster’s and PCR5 rules one has

x = 0 and y = 0 (conflict between canonical masses is

zero). In fact the vacuous BBA m(·) can always be interpreted

as the fusion of mp and mc, where mp and mc are also

vacuous BBAs. This degenerate case has no particular interest

in practice but to model the total ignorant state of knowledge.

10thanks to the fsolve command.
11We did get same solutions with MapleTM, and with MatlabTM.

2) Case when a = 0, or b = 0: In the case a = 0 and

0 < b ≤ 1, then for conjunctive rule, Yager’s, Dubois-Prade’s,

Dempster’s and PCR5 rules one has x = 0 and y = b (conflict

between canonical masses is zero) and m(·) corresponds to

the fusion of vacuous pro-evidence mp = mv with the contra-

evidence mc = m. In the case 0 < a ≤ 1 and b = 0, then

for conjunctive rule, Yager’s, Dubois-Prade’s, Dempster’s and

PCR5 rules one has x = a and y = 0 (conflict between

canonical masses is zero) and m(·) corresponds to the fusion

of the pro-evidence mp = m with the vacuous contra-evidence

mc = mv . These cases have no particular interest because they

can be seen just as the combination of pro (or contra) BBA

with the vacuous BBA.

3) Case when a = b ∈ (0, 0.5): In this case, the BBA

m(A) = m(Ā) = a and m(A∪Ā) = 1−2a can be canonically

decomposed from PCR5 rule with the BBAs mp(A) = 1 −√
1− 2a, mp(A∪ Ā) =

√
1− 2a and mc(Ā) = 1−√

1− 2a,

mc(A ∪ Ā) =
√
1− 2a - see details and proof in [7].

B. Benefits of canonical decomposition

The canonical decomposition based on PCR5 offers several

interests and advantages that are briefly listed.

1) This canonical decomposition of m(·) into the pro-

evidence mp(·) and the contra-evidence mc(·) allows to

define the notion of internal conflict of a dichotomous

source of evidence, denoted by Kint(m), as

Kint(m) � mp(A)mc(Ā) (13)

where mp(A) = x and mc(Ā) = y are the canonical

factors of the BBA m(·) based on PCR5 rule of combi-

nation.

2) The canonical decomposition also allows to adjust/revise

easily a dichotomous source of evidence (if needed)

according to the knowledge one has on it. For instance,

if one knows that a source over (or under) estimate the

hypothesis A, then one could apply an adjustment (based

on some discounting or reinforcing factors) on the pro

(or contra) evidence to de-bias this source of evidence.

3) This canonical decomposition can help to develop

new fast rules of combination for the fusion of

S ≥ 2 (dichotomous) distinct12 BBAs ms(·) =
(ms(A),ms(Ā),ms(A ∪ Ā)) = (as, bs, 1 − as − bs),
s = 1, 2, . . . , S. This is presented next.

IV. FAST FUSION OF DICHOTOMOUS BBAS

In this section, we show how to combine many dichotomous

BBAs defined on the same FoD Θ thanks to their canonical

decompositions.

A. Principle of the fast fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous

BBAs is, at first, to decompose canonically each dichoto-

mous BBA ms(.), for s = 1, 2, . . . , S into their pro and

contra evidences mp,s = (mp,s(A),mp,s(Ā),mp,s(A∪ Ā)) =

12i.e. cognitively independent.
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(xs, 0, 1−xs) and mc,s = (mc,s(A),mc,s(Ā),mc,s(A∪Ā)) =
(0, ys, 1 − ys), and then to combine the pro-evidences mp,s

for s = 1, 2, . . . , S altogether on one hand to get a global

pro-evidence mp, and to combine the contra-evidences mc,s

for s = 1, 2, . . . , S altogether on the other hand to get a

global contra-evidence mc. The fusion step of pro and contra

evidences is discussed in section IV-D. Once mp and mc

are calculated, then one combines them with PCR5 fusion

rule to get the final result. This general principle of the new

fusion method is represented by the diagram of figure 1 for

convenience.

Figure 1. General principle of the fusion of dichotomous BBAs from their
canonical decompositions.

This new fusion approach is interesting because the fusion

of the pro-evidence mp,s (resp. contra-evidences mc,s) is quite

simple because there is non conflict between mp,s (resp.

between mc,s), so that their fusion can be done quite easily

and a large number of sources can be combined without a high

computational burden. In fact, with this fusion approach, only

one PCR5 fusion step of simple (combined) canonical BBAs

is needed at the very end of the fusion process. It is worth

noting that in this work there is no link with the canonical

decomposition proposed by Shafer and then extended by

Smets because here we use another fusion rule based on the

proportional conflict redistribution principle.

B. Analysis of the effectiveness of this new fusion approach

Because the PCR5 rule13 of combination is not associative,

the fusion14 of the canonical BBAs followed by their PCR5

fusion will not provide in general the same result as the

direct fusion of the dichotomous BBAs altogether but only

an approximate result, which is normal.

The main question is to know how good is the approx-

imation obtained by this new fusion method based on the

13The same remark holds for PCR6 rule with more than two BBAs.
14We assume here that the fusion of all the pro-evidences (resp. contra-

evidences) is done with PCR5 rule which coincides in this case with the
conjunctive rule because there is no conflict between the pro-evidences (resp.
the contra-evidences).

fusion of pro-evidences and contra-evidences with respect to

the direct fusion of the BBAs with PCR5 (or PCR6 when

considering more than two sources to combine). To answer to

this important question we make a statistical analysis of the

quality of the combined result m, with respect to the direct

PCR5, or PCR6 fusion of all BBAs altogether.

The measure of the goodness is obtained by the normalized

(Euclidean) Belief Interval distance dBI(mPCR5,m) (for the

case of two BBAs only), or by dBI(mPCR6,m) if more

than two sources are considered in the fusion process, where

m is the result of the fusion principle based on canonical

decompositions, and mPCR5 (resp. mPCR6) is the result

of the combination of original BBAs altogether with PCR5

(resp. PCR6) rule. The dBI distance between two BBAs

m1(·) and m2(·) defined on the powerset of a given FoD

Θ = {θ1, . . . , θn} has been proposed and justified in [21],

[22]. It is defined by

dBI(m1,m2) �
√
Nc ·

∑
X∈2Θ

d2W (BI1(X), BI2(X)) (14)

where Nc = 1/2n−1 is a normalization factor to

make dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X))
is Wassertein’s distance [23] between belief intervals

BI1(X) � [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) �
[Bel2(X), P l2(X)] = [a2, b2]. Here, d2W (BI1(X), BI2(X))
entering in (14) is given by

d2W ([a1, b1], [a2, b2]) �
[
a1 + b1

2
− a2 + b2

2

]2

+
1

3

[
b1 − a1

2
− b2 − a2

2

]2
(15)

Figure 2 shows the normalized histogram (i.e. the

empirical probability distribution) of the distance values

dEBI(mPCR5,m) based on 20000 random15 generations of

dichotomous BBAs m1 and m2. One observes that the new

fusion approach based on the canonical decompositions of

BBAs (with the conjunctive fusion of pro-evidences, and the

conjunctive fusion of contra-evidences) provides a solution

which is very close to what we obtain from the direct ap-

plication of PCR5 rule, with a mean of 0.0287 and a standard

deviation of 0.0289. In 98.20% of cases, the final decision

(based on the min of dEBI decision-making strategy explained

in [22]) based on mPCR5, or on m are in agreement. This

means that the decision agreement (DA) rate is 98.20%.

Figures 3 show the normalized histograms of the

dEBI(mPCR6,m) values based also on 20000 random runs

for the fusion of 6 dichotomous BBAs respectively. We use

PCR6 rule instead of PCR5 rule to combine the 6 dichotomous

BBAs altogether because PCR6 rule has been recognized to

be more effective than PCR5 in applications [5] (Vol.2 - Chap.

2). As we can observe, the shape of the histograms is a bit

different from the histogram of fig. 2, but what matters is that

15For this, we generate three random numbers uniformly distributed in [0, 1]
and we normalize them to generate randomly a dichotomous BBA.
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Figure 2. Normalized histogram of dEBI(mPCR5,m) for 2 dichotomous
BBAs case (20000 runs).

the mean value and the standard deviation of the dEBI distance

are still low (0.1119 and 0.0392 respectively) indicating that

the approximation obtained by this new fusion method is

globally very good. Also the decision based on this new

fusion approach is globally coherent with the decision taken

by the direct PCR6 fusion of the BBAs (95.84% of decision

coherence).

Figure 3. Normalized histogram of dEBI(mPCR6,m) for 6 dichotomous
BBAs case (20000 runs).

Several Monte Carlo simulations have been done with

different numbers of dichotomous BBAs to combine. The

results obtained based on 20000 runs Monte Carlo simulations

are summarized in the Table I.

The second column of Table I indicates the mean value,

denoted by mean(dEBI ), of the normalized Euclidean belief

Interval distance between the direct fusion of the BBAs by

the PCR5 (when combining 2 BBAs only), or PCR6 rule

(when combining more than two BBAs) and the new fusion

rule based on their canonical decomposition. The third column

of the Table I shows the corresponding standard deviation

values denoted by std(dEBI ). The last column indicates the

decision agreement (DA) factor between the decision taken

from the direct fusion method, and the indirect (canonical

# of BBAs mean(dEBI ) std(dEBI ) Decision Agreement (%)
2 0.0287 0.0289 98.20
3 0.0578 0.0373 97.52
4 0.0838 0.0394 96.69
5 0.1008 0.0397 96.05
6 0.1119 0.0392 95.84
7 0.1169 0.0385 95.40
8 0.1200 0.0374 94.89
9 0.1211 0.0365 94.25
10 0.1204 0.0348 94.21

Table I
COMPARATIVE EVALUATION OF CANONICAL DECOMPOSITION FUSION

METHOD W.R.T. THE DIRECT PCR-BASED FUSION METHOD.

decomposition based) method. As we can see, the DA factors

are very high which means that most of the time the decisions

taken from the direct fusion method and from the indirect

fusion method are the same.

After a deep analysis of our simulation results, one can

attest that the decision-making disagreement occurs when the

numerical values of the mass of A and the mass of Ā are very

close. This indicates a very high ambiguity in the decision to

take in such situation which can be easily tracked in practice

by evaluating the quality indicator of the decision-making -

see [22] for details.

In this paper we did not investigate the quality of the

approximation of the fusion result based on this canonical

decomposition when replacing the PCR5 fusion step of mp

and mc by other rules of combination because the core of the

canonical decomposition is based on PCR5.

C. Computational time of the new fusion method

Because of very high combinatorial complexity (and thus

high computational time) required for applying the direct

PCR6 fusion of many BBAs, we did only make the perfor-

mance evaluation up to the fusion of ten BBAs only with

PCR6. We conjecture that the performances of this new fusion

method based on canonical decomposition will very slowly

degrade with the increase of the number of BBAs involved in

the fusion process. Of course the new fusion method based on

this canonical decomposition does not suffer of combinatorial

complexity limitation which is of great interest in some

applications (like in multi-spectral imagery for detection and

classification) because many (hundreds or even thousands) of

dichotomous BBAs could be easily combined very quickly.

Actually with this method what takes a bit time is only the

canonical decomposition done by the numerical solver16.

Figure 4 shows the average (based on 50 random runs)

computational time (in seconds) of the direct PCR6 fusion

of the BBAs altogether (red plot), and the average compu-

tational time of the new fusion method based on canonical

decomposition (blue plot). It is clear that the computational

time of the direct PCR6 fusion method (the red curve) grows

exponentially with the number of sources, whereas the com-

putational time grows only slowly and quasi-linearly with the

new method proposed in this work.

16We did use MatlabTMfsolve function for this.
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Figure 4. Computing time versus number of BBAs to combine.

Based on a set of 1000 random dichotomous BBAs, figure

5 shows that the computational time (in seconds) of the

fusion based on the canonical decomposition is a quasi-linear17

function of the number of BBAs to combine.
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Figure 5. Computing time versus number of BBAs to combine.

Figures 4 and 5 show the computational times including

the canonical decomposition itself done on the fly. Of course,

the canonical decomposition could be done off-line once for

all and stored in the computer memory (if necessary) - see

for instance the (x, y) values given in [7] for convenience.

If we have n dichotomous BBAs to combine, we have to

make their canonical decomposition at first and because the n
pro-evidence BBAs to combine (resp. contra evidence BBAs)

have a very simple structure their conjunctive fusion mp(A)
is obtained very quickly by the direct product of n real

numbers, that is mp(A) =
∏n

i=1 mp,i(A), and we need

17It is not strictly linear because the time for the numerical fsolve search
of pro-evidence and contra-evidence factors for making the canonical decom-
position is not constant.

also a subtraction because mp(A ∪ Ā) = 1 − mp(A). The

complexity of this fast suboptimal PCR fusion approach (once

the canonical decomposition is available) is therefore 2(n−1)
multiplications and 2 subtractions for making the conjunctive

fusion of mp,i and the conjunctive fusion of mc,i, and 7

additions and 5 multiplications for making the PCR5 fusion of

mp with mc. There is no need to use the commonality function

or the Smets canonical decomposition to make the fusion of

these dichotomous BBAs. These figures show clearly the real

advantage of the fusion of dichotomous BBAs based on their

canonical decompositions in term of computational time, and

that is why we can say that the new proposed method is really

a fast fusion method with respect to the direct PCR5 or PCR6

rule of combination when working with a dichotomous frame

of discernment.

D. On the fusion of pro and contra evidences

In the previous analysis, we did use the conjunctive rule for

the intermediary fusion step of pro-evidences in one hand, and

the intermediary fusion step of contra-evidences in the other

hand. It is worth noting that the intermediary step of fusion of

pro-evidences, and the intermediary step of fusion of contra-

evidences can be done in parallel which offers a computational

advantage with respect to the direct fusion method (if one

has many sources to combine in a specific application). This

parallelization cannot be achieved in general with the other

existing rules of combination of evidences.

Because of the fusion principle depicted in Figure 1, this

new fusion method offers also the possibility (if one prefers

for some own specific reasons) of selecting other fusion rules

for the intermediary fusion steps for combining the pro-

evidences, and the contra-evidences. Of course the choice of

the fusion rules used for the combination of pro-evidences and

the combination of contra-evidences impacts the final result,

but depending on the type of rules chosen we can obtain an

associative rule, an idempotent rule, and even a new cautious

rule. For example, let’s consider the same type of fusion rule

for combining the pro-evidences mp,s s = 1, . . . , S, and for

combining contra-evidences mc,s s = 1, . . . , S and consider

the following cases:

1) If we use the conjunctive rule [5] (Vol. 1), denoted by

Conj(., . . . , .) (as we did previously in our Monte Carlo

simulations for histogram plots), then

mp = Conj(mp,1, . . . ,mp,S)

and one has mp(A∪ Ā) =
∏S

s=1(1−xs) and mp(A) =
1−mp(A∪ Ā). Because the conjunctive rule is associa-

tive the fusion of pro-evidences can be done sequentially.

Similarly, for the fusion of contra-evidences using the

conjunctive rule one has mc(A∪Ā) =
∏S

s=1(1−ys) and

mp(Ā) = 1 −mc(A ∪ Ā). Because there is no conflict

between the pro-evidences (resp. contra-evidences), the

fusion result of the pro-evidences (resp. the contra-

evidences) by PCR5 (or PCR6) rules is equivalent to the

conjunctive fusion result. The conjunctive rule however
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is not idempotent in general but in very specific cases

where only one focal element gets all the mass of belief.

2) If we prefer to use the averaging rule, then we will

have mp(A) = 1
S

∑S
s=1 xs and mp(A ∪ Ā) = 1 −

mp(A) = 1
S

∑S
s=1(1 − xs), and mc(Ā) = 1

S

∑S
s=1 ys

and mc(A ∪ Ā) = 1 − mc(Ā) = 1
S

∑S
s=1(1 − ys).

Because the averaging rule is not associative, the se-

quential fusion of pro-evidences (and contra-evidences)

is not recommended, however the averaging rule allows

to get an idempotent fusion rule based on canonical

decompositions if needed.

3) We could also prefer to use the min rule to build a new

cautious rule of combination which will be associative

and idempotent. For this, we just have to take mp(A) =
mins=1,...,S(xs) and mp(A∪Ā) = 1−mp(A). Similarly,

mc(Ā) = mins=1,...,S(ys) and mc(A∪Ā) = 1−mc(Ā).

V. CONCLUSIONS

In this research paper, we did propose a new fusion

method to combine very quickly many BBAs defined on a

dichotomous frame of discernment thanks to their unique

canonical decompositions. This new interesting method can

be parallelized and offers the advantage to have a quasi-linear

computational time with the number of sources. For now, this

method is limited to the fusion of many BBAs that are defined

on a simple (dichotomous) frame of discernment. After some

unsuccessful attempts, it appears that the development of a fast

fusion method based on the canonical decomposition principle

for working with non-dichotomous frames of discernment is

actually a very difficult problem that we want to address to the

scientific community working with belief functions as a future

research challenge. This very new method brings already a

significant benefit for real application involving inter-criteria

analysis for the evaluation of multiple-objective ant colony op-

timization algorithm for wireless sensor networks deployment

that should be reported in a forthcoming publication.
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