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Abstract—In this paper, we propose a new fusion approach
to combine basic belief assignments (BBAs) defined on a di-
chotomous frame of discernment based on their canonical de-
composition. In a companion paper, we have already proved
that the canonical decomposition of this type of BBA (called
dichotomous BBA) is always possible and unique thanks to
the proportional conflict redistribution rule No 5 (PCR5). More
precisely, any dichotomous BBA is always the PCR5 combination
of two simpler basic belief assignments named respectively the
pro-evidence, and the contra-evidence. From this interesting
canonical decomposition, we present a new way of combining
many dichotomous BBAs and we show that the computational
time for fusing these dichotomous BBAs based on their canonical
decomposition is quasi-linear with the number of sources to
combine, contrary to the direct fusion of the dichotomous BBAs
altogether.
Keywords: Information fusion, canonical decomposition, be-
lief functions, PCR5 rule, PCR6 rule.

I. INTRODUCTION

The belief functions (BF) introduced by Shafer in the mid
of 1970’s [1] from Dempster’s works are well known and used
in the artificial intelligence community to model epistemic
uncertainty and to reason with it for information fusion and
decision-making support. Dempster’s rule to combine distinct
sources of evidence characterized by their basic belief as-
signments (BBAs) defined on the same frame of discernment
(FoD) is the historical and emblematic rule of combination
in Dempster-Shafer Theory (DST). Unfortunately, Dempster’s
rule (denoted by DS rule for short) suffers of serious draw-
backs in high conflict situation as discussed by Zadeh [2], [3],
but more importantly and surprisingly also in some very low
conflict situations [4] as well. That is why many rules have
been proposed in the literature [5] (Vol.2), among them the
combination of two sources of evidence based on the pro-
portional conflict redistribution principle No. 51 (PCR5 rule)
[6]. It has been shown to be successful in applications, and
well justified theoretically. However its complexity remains
one of its limitations which prevents its use in fusion problems
involving many sources of evidence to combine, and its non

1Actually PCR6 rule is preferentially used for the combination of more than
two sources altogether. For two sources, PCR5 and PCR6 rules coincide and
because canonical decomposition involved only two sources, we only need to
work with PCR5 rule to combine the pro-evidence with its contra-evidence.

associativity property2 which make it not so appealing because
the fusion order matters when sequential PCR5 fusion is
applied instead of global combination of the sources altogether.

In this work, we show how the fusion of many sources
of evidences represented by BBAs defined on a same di-
chotomous frame of discernment can be easily done based on
the PCR5-based canonical decomposition of the BBAs. Such
decomposition of BBA has been proposed recently in [7].

We recall that another canonical decomposition based on
conjunctive rule (but involving improper3 BBA) had been
proposed in 1995 by Smets [8], and extended later by Denœux
[9] to develop the so-called cautious rule of combination.
In this new approach we use our well justified canonical
decomposition based on PCR5 which is strictly based on
proper BBAs. We have shown that any dichotomous BBA
is always the result of the PCR5 fusion of a simple proper
pro-evidence BBA mp with a simple proper contra-evidence
BBA mc, and that this decomposition is unique. Based on
this important result, we address in this work the problem
of combination of many dichotomous BBAs based on their
canonical decomposition.

This paper is organized as follows. After a brief recall of
basics of belief functions in section II, we present briefly the
canonical decomposition for any dichotomous BBA based on
PCR5 rule of combination in section III which is explained
in more details with proofs, and examples in [7]. The fusion
of dichotomous BBAs based on the principle of canonical
decompositions is detailed in section IV. Concluding remarks
with perspectives are given in the last section.

II. BASICS OF BELIEF FUNCTIONS

Belief functions (BF) have been introduced by Shafer in [1]
to model epistemic uncertainty. We assume that the answer4 of
the problem under concern belongs to a known (or given) finite
discrete frame of discernment (FoD) Θ = {θ1, θ2, . . . , θn},
with n > 1, and where all elements of Θ are mutually
exclusive and exhaustive5. The FoD is said dichotomous when
it involves only two elements (one subset and its complement),

2PCR5 is only quasi-associative.
3called generalized simple BBA (GSBBA) in Smets terminology.
4i.e. the solution, or the decision to take.
5This is so-called Shafer’s model of FoD [5].



that is Θ = {A, Ā} where Ā is the complement of A in
Θ. The set of all subsets of Θ (including empty set ∅ and
Θ) is the power-set of Θ denoted by 2Θ. A proper Basic
Belief Assignment (BBA) associated with a given source of
evidence is defined [1] as a mapping m(·) : 2Θ → [0, 1]
satisfying m(∅) = 0 and

∑
A∈2Θ m(A) = 1. In some BF

related frameworks, like in Smets Transferable Belief Model
(TBM) [8], m(∅) is allowed to take a positive value. In this
case, m(·) is said improper because it doesn’t satisfy Shafer’s
definition [1]. The quantity m(A) is called the mass of A
committed by the source of evidence. Belief and plausibility
functions are respectively defined from a proper BBA m(·) by

Bel(A) =
∑

B∈2Θ|B⊆A

m(B) (1)

and
Pl(A) =

∑
B∈2Θ|A∩B 6=∅

m(B) = 1− Bel(Ā). (2)

where Ā is the complement of A in Θ.

Bel(A) and Pl(A) are usually interpreted respectively as
lower and upper bounds of an unknown (subjective) probabil-
ity measure P (A). The quantities m(·) and Bel(·) are one-to-
one and the following Möbius inverse formula holds (see [1],
p. 39)

m(A) =
∑

B⊆A⊆Θ

(−1)|A−B|Bel(B) (3)

A is called a Focal Element (FE) of m(·) if m(A) > 0.
When all focal elements are singletons, m(·) is called a
Bayesian BBA [1] and its corresponding Bel(·) function is
equal to Pl(·) and they are homogeneous to a (subjective)
probability measure P (·). The vacuous BBA, or VBBA for
short, representing a totally ignorant source is defined as6

mv(Θ) = 1. A dichotomous BBA is a BBA defined on
a dichotomous FoD. A dogmatic BBA is a BBA such that
m(Θ) = 0. If m(Θ) > 0 the BBA m(·) is nondogmatic. A
simple BBA is a BBA that has at most two focal sets and one
of them is Θ. A dichotomous non dogmatic mass of belief is
a BBA having three focal elements A, Ā and A ∪ Ā with A
and Ā subsets of Θ.

In his Mathematical Theory of Evidence [1], Shafer pro-
posed to combine s ≥ 2 distinct sources of evidence rep-
resented by BBAs m1(.), . . . ,ms(.) over the same FoD Θ
with Dempster’s rule (i.e. the normalized conjunctive rule).
For the combination of two BBAs, Dempster’s rule formula
[1] is given by mDS(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mDS(X) =
1

K12

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (4)

with K12 = 1−
∑

X1,X2∈2Θ|X1∩X2=∅

m1(X1)m2(X2).

The justification and behavior of Dempster’s rule have been
disputed over the years from many counter-examples involving

6The complete ignorance is denoted Θ in Shafer’s book [1].

high and low conflicting sources (from both theoretical and
practical standpoints) as reported in [4], [10]–[12]. Many rules
of combination exist in the literature7, among them we recom-
mend the rule based on the proportional conflict redistribution
principle No 5 (PCR5 rule) [6] which has been shown to
be successful in applications and well justified theoretically.
That is why we analyze it in details for solving the BF
canonical decomposition problem (BF-CDP). PCR5 transfers
the conflicting mass only to the elements involved in the
conflict and proportionally to their individual masses, so that
the specificity of the information is entirely preserved in this
fusion process. (see [5], Vol. 2 and Vol. 3 for full justification
and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (5)

where all denominators in (5) are different from zero. If a
denominator is zero, that fraction is discarded. The properties
of PCR5 can be found in [13]. Extension of PCR5 for
combining qualitative BBA’s can be found in [5], Vol. 2 & 3.
A variant of PCR5, called PCR6 has been proposed by Martin
and Osswald in [5], Vol. 2, for combining s > 2 sources. The
general formulas for PCR5 and PCR6 rules are also given in
[5], Vol. 2. PCR6 coincides with PCR5 when one combines
two sources. The difference between PCR5 and PCR6 lies
in the way the proportional conflict redistribution is done as
soon as three (or more) sources are involved in the fusion.
From the implementation point of view, PCR6 is simpler
to implement than PCR5. For convenience, very basic (not
optimized) MatlabTMcodes of PCR5 and PCR6 fusion rules
can be found in [5], [14] and from the toolboxes repository
on the web [15]. The main drawback of PCR5 and PCR6
rules is their combinatorial complexity when the number of
source is big. Even for combining BBAs defined on a simple
dichotomous frame of discernment, the computational time for
combining more than 10 sources can take several hours8.

Our main motivation and contribution is to propose a faster
fusion method to combine many dichotomous BBAs in order
to overcome the combinatorial complexity problem by estab-
lishing a new effective (approximating) fusion method based
on the new PCR5-based canonical decomposition principle.

III. CANONICAL DECOMPOSITION OF DICHOTOMOUS BBA

A FoD Θ = {A, Ā} is called dichotomous if it consists of
only two elements A and Ā with A∪ Ā = Θ and A∩ Ā = ∅.
A is different from Θ and from Empty-Set because we want
to work with informative FoD. Indeed, the very special frame
{Θ, ∅} doesn’t bring any useful information since the only

7see [5], Vol. 2 for a detailed list of fusion rules.
8We did use a MacBook Pro 2.8 GHz Intel Core i7 with 16 Go 1600 MHz

DDR3 memory running MatlabTMR2018a.



possible BBA with such frame is the vacuous BBA. So, we
consider a given proper9 BBA m(·) : 2Θ → [0, 1] of the form

m(A) = a, m(Ā) = b, m(A ∪ Ā) = 1− a− b (6)

with 0 < a < 1, 0 < b < 1 and a+ b < 1.
The conditions 0 < a < 1 and 0 < b < 1 mean that

A and Ā are focal elements of the BBA. The restriction
a+b < 1 means that the BBA is nondogmatic. This assumption
of nondogmaticity of the BBA m(·) is very necessary for
Smets canonical decomposition [8], but it is not essential for
our PCR5-based canonical decomposition (as we will show
in the sequel) because our decomposition also works with a
dogmatic BBA. The canonical decomposition problem consists
in finding the two following simple proper BBAs mp and mc

of the form

mp(A) = x, mp(A ∪ Ā) = 1− x (7)

mc(Ā) = y, mc(A ∪ Ā) = 1− y (8)

with (x, y) ∈ [0, 1]× [0, 1], such that m = Fusion(mp,mc),
for a chosen rule of combination denoted by Fusion(·, ·). The
simple BBA mp(·) is called the pro-BBA (or pro-evidence)
of A, and the simple BBA mc(·) the contra-BBA (or contra-
evidence) of A. The BBA mp(·) is interpreted as a source
of evidence providing an uncertain evidence in favor of A,
whereas mc(·) is interpreted as a source of evidence providing
an uncertain contrary evidence about A.

This decomposition is possible with Dempster’s rule if
0 < a < 1, 0 < b < 1 and a+b < 1, and we have x = a

1−b and
y = b

1−a . However, any dogmatic BBA m(A) = a, m(Ā) = b
with a+ b = 1 is not decomposable from Dempster’s rule for
the case when (a, b) 6= (1, 0) and (a, b) 6= (0, 1) (see Theorem
4 in [7]), and the dogmatic BBAs m(A) = 1, m(Ā) = 0 (case
(a, b) = (1, 0)), or m(A) = 0, m(Ā) = 1 (case (a, b) = (0, 1))
have infinitely many decompositions based on Dempster’s rule
of combination (see Lemma in [7]). In [7], we have shown
that this canonical decomposition cannot be achieved from
conjunctive, disjunctive, Yager’s [16] or Dubois-Prade [17]
rules of combination, neither from averaging rule. However,
such type of decomposition is unique and is always possible
in all cases using the PCR5 rule of combination. In [7], we
did prove the following Theorem.

Theorem 1: Consider a dichotomous FoD Θ = {A, Ā} with
A 6= Θ and A 6= ∅ and a nondogmatic BBA m(·) : 2Θ → [0, 1]
defined on Θ by m(A) = a, m(Ā) = b, and m(A ∪ Ā) =
1 − a − b, where a, b ∈ [0, 1] and a + b < 1. Then the BBA
m(·) has a unique canonical decomposition using PCR5 rule
of combination of the form m = PCR5(mp,mc) with pro-
evidence mp(A) = x, mp(A∪Ā) = 1−x and contra-evidence
mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Moreover, we also proved in [7] that the canonical decom-
position also exists even if the dichotomous BBA is dogmatic
(i.e. Bayesian) and the following theorem also holds.

9which means that m(∅) = 0.

Theorem 2: Any dogmatic BBA defined by m(A) = a and
m(Ā) = b, where a, b ∈ [0, 1] and a+ b = 1, has a canonical
decomposition using PCR5 rule of combination of the form
m = PCR5(mp,mc) with mp(A) = x, mp(A ∪ Ā) = 1− x
and mc(Ā) = y, mc(A ∪ Ā) = 1− y where x, y ∈ [0, 1].

Theorems 1 & 2 prove that the decomposition based on
PCR5 always exists and it is unique for any dichotomous
(nondogmatic, or dogmatic) BBA.

For the case of dichotomous dogmatic BBA considered
in Theorem 2, the expression of solutions x and y can be
established explicitly as follows - see [7] for details
• If a < b then x < y. Therefore y = 1 and x = a+

√
a2+4a
2 .

• If a > b then x > y. Therefore x = 1 and y = b+
√
b2+4b
2 .

• If a = b and a+ b = 1 then a = b = 0.5 and x = y = 1.
For the case of dichotomous nondogmatic BBA considered

in Theorem 1, one has to find x and y solutions of the system

a = x(1− y) +
x2y

x+ y
=
x2 + xy − xy2

x+ y
(9)

b = (1− x)y +
xy2

x+ y
=
y2 + xy − x2y

x+ y
(10)

under the constraints (a, b) ∈ [0, 1]2, and 0 < a + b < 1. In
fact, it has been proved in [7] that x ∈ [a, a + b] ⊂ [0, 1]
and y ∈ [b, a + b] ⊂ [0, 1], but the explicit expression of x
and y are very complicate to obtain analytically (even with
modern symbolic computing systems like MathematicaTM, or
MapleTM) because after algebraic calculation, and for x 6= 1,
one has to solve the following quartic equation which has at
most four real solutions with only a valid one in [a, a+ b]

x4 + (−a− 2)x3 + (2a+ b)x2

+ (a+ b− ab− b2)x+ (−a2 − ab) = 0 (11)

and then compute y as y = a+b−x
1−x .

Fortunately, the solutions can be easily calculated nu-
merically by these computing systems, and even with
MatlabTMsystem10 as soon as the numerical values are com-
mitted to a and to b, and this is what we do in our simulations
in the sequel.

Example 1: Let consider Θ = {A, Ā} and m(A) = 0.6,
m(Ā) = 0.3 and m(A∪Ā) = 1−m(A)−m(Ā) = 0.1. Hence,
a = 0.6 and b = 0.3. The quartic equation (11) becomes

x4 − 2.6x3 + 1.5x2 + 0.63x− 0.54 = 0 (12)

The four solutions of this quartic equation provided by the
computing system11 are approximately

x1 ≈ 0.7774780438 x2 ≈ 0.9297589637

x3 ≈ 1.4191515820 x4 ≈− 0.5263885898

Clearly x3 and x4 are not acceptable solutions because they
don’t belong to [0, 1]. If we take x1 ≈ 0.7774780438, then

10thanks to the fsolve command.
11We did get same solutions with MapleTM, and with MatlabTM.



we will get y1 = (a + b − x1)/(1 − x1) = (0.9 − x1)/(1 −
x1) ≈ 0.5506061437. The pair (x1, y1) ∈ [0, 1]2 is a solution
of the decomposition problem of the BBA m(·). If we take
x2 ≈ 0.9297589637, then we will get y2 = (a+ b−x2)/(1−
x2) = (0.9 − x2)/(1 − x2) ≈ −0.4236692006. We see that
y2 /∈ [0, 1], and therefore the pair (x2, y2) cannot be a solution
of the decomposition problem of the BBA m(·). Therefore the
canonical masses mp(·) and mc(·) are given by

mp(A) ≈ 0.7774780438, mp(A ∪ Ā) ≈ 0.2225219562

mc(Ā) ≈ 0.5506061437, mc(A ∪ Ā) ≈ 0.4493938563

It can be verified that the PCR5 combination of BBAs mp and
mc, denoted by PCR5(mp,mc), is equal to the BBA m(·).

A. Particular cases

1) Case (a, b) = (0, 0) (i.e. m is the vacuous BBA): This
is the most degenerate case where the BBA m(·) corresponds
to the vacuous BBA. For averaging rule, conjunctive rule,
Yager’s, Dubois-Prade’s, Dempster’s and PCR5 rules one has
x = 0 and y = 0 (conflict between canonical masses is
zero). In fact the vacuous BBA m(·) can always be interpreted
as the fusion of mp and mc, where mp and mc are also
vacuous BBAs. This degenerate case has no particular interest
in practice but to model the total ignorant state of knowledge.

2) Case when a = 0, or b = 0: In the case a = 0 and
0 < b ≤ 1, then for conjunctive rule, Yager’s, Dubois-Prade’s,
Dempster’s and PCR5 rules one has x = 0 and y = b (conflict
between canonical masses is zero) and m(·) corresponds to
the fusion of vacuous pro-evidence mp = mv with the contra-
evidence mc = m. In the case 0 < a ≤ 1 and b = 0, then
for conjunctive rule, Yager’s, Dubois-Prade’s, Dempster’s and
PCR5 rules one has x = a and y = 0 (conflict between
canonical masses is zero) and m(·) corresponds to the fusion
of the pro-evidence mp = m with the vacuous contra-evidence
mc = mv . These cases have no particular interest because they
can be seen just as the combination of pro (or contra) BBA
with the vacuous BBA.

3) Case when a = b ∈ (0, 0.5): In this case, the BBA
m(A) = m(Ā) = a and m(A∪Ā) = 1−2a can be canonically
decomposed from PCR5 rule with the BBAs mp(A) = 1 −√

1− 2a, mp(A∪ Ā) =
√

1− 2a and mc(Ā) = 1−
√

1− 2a,
mc(A ∪ Ā) =

√
1− 2a - see details and proof in [7].

B. Interest of canonical decomposition

The canonical decomposition based on PCR5 offers several
interests and advantages that are briefly listed.

1) This canonical decomposition of m(·) into the pro-
evidence mp(·) and the contra-evidence mc(·) allows to
define now the notion of internal conflict of a dichoto-
mous source of evidence, denoted by Kint(m), as

Kint(m) , mp(A)mc(Ā) (13)

where mp(A) = x and mc(Ā) = y are the canonical
factors of the BBA m(·) based on PCR5 rule of combi-
nation.

2) The canonical decomposition also allows to adjust/revise
easily a dichotomous source of evidence (if needed)
according to the knowledge one has on it. For instance,
if one knows that a source over (or under) estimate the
hypothesis A, then one could apply an adjustment (based
on some discounting or reinforcing factors) on the pro
(or contra) evidence to de-bias this source of evidence.

3) This canonical decomposition can help to develop
new fast rules of combination for the fusion of
S ≥ 2 (dichotomous) distinct12 BBAs ms(·) =
(ms(A),ms(Ā),ms(A ∪ Ā)) = (as, bs, 1 − as − bs),
s = 1, 2 . . . , S. This is presented next.

IV. FAST FUSION OF DICHOTOMOUS BBAS

In this section, we show how to combine many dichotomous
BBAs defined on the same FoD Θ thanks to their canonical
decompositions.

A. Principle of the fast fusion of dichotomous BBAs

The main idea for making the fast fusion of dichotomous
BBAs is, at first, to decompose canonically each dichoto-
mous BBA ms(.), for s = 1, 2, . . . , S into their pro and
contra evidences mp,s = (mp,s(A),mp,s(Ā),mp,s(A∪ Ā)) =
(xs, 0, 1−xs) and mc,s = (mc,s(A),mc,s(Ā),mc,s(A∪Ā)) =
(0, ys, 1 − ys), and then combine the pro-evidences mp,s

for s = 1, 2, . . . , S altogether on one hand to get a global
pro-evidence mp, and combine the contra-evidences mc,s

for s = 1, 2, . . . , S altogether on the other hand to get a
global contra-evidence mc. The fusion step of pro and contra
evidences is discussed in section IV-D. Once mp and mc

are calculated, then one combines them with PCR5 fusion
rule to get the final result. This general principle of the new
fusion method is represented by the diagram of figure 1 for
convenience.

Figure 1. General principle of the fusion of dichotomous BBAs from their
canonical decompositions.

This new fusion approach is interesting because the fusion
of the pro-evidence mp,s (resp. contra-evidences mc,s) is quite

12i.e. cognitively independent.



simple because there is non conflict between mp,s (resp.
between mc,s), so that their fusion can be done quite easily
and a large number of sources can be combined without a high
computational burden. In fact, with this fusion approach, only
one PCR5 fusion step of simple (combined) canonical BBAs
is needed at the very end of the fusion process.

B. Analysis of the effectiveness of this new fusion approach

Because the PCR5 rule13 of combination is not associative,
the fusion14 of the canonical BBAs followed by their PCR5
fusion will not provide in general the same result as the
direct fusion of the dichotomous BBAs altogether but only
an approximate result, which is normal.

The main question is to know how good is the approx-
imation obtained by this new fusion method based on the
fusion of pro-evidences and contra-evidences with respect to
the direct fusion of the BBAs with PCR5 (or PCR6 when
considering more than two sources to combine). To answer to
this important question we make a statistical analysis of the
quality of the combined result m, with respect to the direct
PCR5, or PCR6 fusion of all BBAs altogether.

The measure of the goodness is obtained by the normalized
(Euclidean) Belief Interval distance dBI(mPCR5,m) (for the
case of two BBAs only), or by dBI(mPCR6,m) if more
than two sources are considered in the fusion process, where
m is the result of the fusion principle based on canonical
decompositions, and mPCR5 (resp. mPCR6) is the result
of the combination of original BBAs altogether with PCR5
(resp. PCR6) rule. The dBI distance between two BBAs
m1(·) and m2(·) defined on the powerset of a given FoD
Θ = {θ1, . . . , θn} is defined by [18]–[20]

dBI(m1,m2) ,
√
Nc ·

∑
X∈2Θ

d2
W (BI1(X), BI2(X)) (14)

where Nc = 1/2n−1 is a normalization factor to
make dBI(m1,m2) ∈ [0, 1], and dW (BI1(X), BI2(X))
is Wassertein’s distance [21] between belief intervals
BI1(X) , [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) ,
[Bel2(X), P l2(X)] = [a2, b2]. Here, d2

W (BI1(X), BI2(X))
entering in (14) is given by

d2
W ([a1, b1], [a2, b2]) ,

[
a1 + b1

2
− a2 + b2

2

]2

+
1

3

[
b1 − a1

2
− b2 − a2

2

]2

(15)

The figure 2 shows the normalized histogram (i.e. the
empirical probability distribution) of the distance values
dEBI(mPCR5,m) based on 20000 random15 generations of

13The same remark holds for PCR6 rule with more than two BBAs.
14We assume here that the fusion of all the pro-evidences (resp. contra-

evidences) is done with PCR5 rule which coincides in this case with the
conjunctive rule because there is no conflict between the pro-evidences (resp.
the contra-evidences).

15For this, we generate three random numbers uniformly distributed in [0, 1]
and we normalize them to generate randomly a dichotomous BBA.

dichotomous BBAs m1 and m2. One observes that the new
fusion approach based on the canonical decompositions of
BBAs (with the conjunctive fusion of pro-evidences, and the
conjunctive fusion of contra-evidences) provides a solution
which is very close to what we obtain from the direct ap-
plication of PCR5 rule, with a mean of 0.0287 and a standard
deviation of 0.0289. In 98.20% of cases, the final decision
(based on the min of dEBI decision-making strategy explained
in [19]) based on mPCR5, or on m are in agreement. This
means that the decision agreement (DA) rate is 98.20%.

Figure 2. Normalized histogram of dEBI(mPCR5,m) for 2 dichotomous
BBAs case (20000 runs).

The figures 3 show the normalized histograms of the
dEBI(mPCR6,m) values based also on 20000 random runs
for the fusion of 6 dichotomous BBAs respectively. We use
PCR6 rule instead of PCR5 rule to combine the 6 dichotomous
BBAs altogether because PCR6 rule has been recognized to
be more effective than PCR5 in applications [5] (Vol.2 - Chap.
2). As we can observe, the shape of the histograms is a bit
different from the histogram of fig. 2, but what matters is that
the mean value and the standard deviation of the dEBI distance
are still low (0.1119 and 0.0392 respectively) indicating that
the approximation obtained by this new fusion method is
globally very good. Also the decision based on this new
fusion approach is globally coherent with the decision taken
by the direct PCR6 fusion of the BBAs (95.84% of decision
coherence).

Several Monte Carlo simulations have been done with
different numbers of dichotomous BBAs to combine. The
results obtained based on 20000 runs Monte Carlo simulations
are summarized in the Table I.

The second column of Table I indicates the mean value,
denoted by mean(dEBI ), of the normalized Euclidean belief
Interval distance between the direct fusion of the BBAs by
the PCR5 (when combining 2 BBAs only), or PCR6 rules
(when combining more than two BBAs) and the new fusion
rule based on their canonical decomposition. The third column
of the Table I shows the corresponding standard deviation
values denoted by std(dEBI ). The last column indicates the
decision agreement (DA) factor between the decision taken
from the direct fusion method, and the indirect (canonical



Figure 3. Normalized histogram of dEBI(mPCR6,m) for 6 dichotomous
BBAs case (20000 runs).

# of BBAs mean(dEBI ) std(dEBI ) Decision Agreement (%)
2 0.0287 0.0289 98.20
3 0.0578 0.0373 97.52
4 0.0838 0.0394 96.69
5 0.1008 0.0397 96.05
6 0.1119 0.0392 95.84
7 0.1169 0.0385 95.40
8 0.1200 0.0374 94.89
9 0.1211 0.0365 94.25
10 0.1204 0.0348 94.21

Table I
COMPARATIVE EVALUATION OF CANONICAL DECOMPOSITION FUSION

METHOD W.R.T. THE DIRECT PCR-BASED FUSION METHOD.

decomposition based) method. As we can see, the DA factors
are very high which means that most of the time the decisions
taken from the direct fusion method and from the indirect
fusion method are the same.

After a deep analysis of our simulation results, one can
attest that the decision-making disagreement occurs when the
numerical values of the mass of A and the mass of Ā are very
close. This indicates a very high ambiguity in the decision to
take in such situation which can be easily tracked in practice
by evaluating the quality indicator of the decision-making -
see [19] for details.

C. Computational time of the new fusion method

Because of very high combinatorial complexity (and thus
high computational time) required for applying the direct
PCR6 fusion of many BBAs, we did only make the perfor-
mance evaluation up to the fusion of ten BBAs only with
PCR6. We conjecture that the performances of this new fusion
method based on canonical decomposition will very slowly
degrade with the increase of the number of BBAs involved in
the fusion process. Of course the new fusion method based on
this canonical decomposition does not suffer of combinatorial
complexity limitation which is of great interest in some
applications (like in multi-spectral imagery for detection and
classification) because many (hundreds or even thousands) of
dichotomous BBAs could be easily combined very quickly.
Actually with this method what takes a bit time is only the

canonical decomposition done by the numerical solver16.
The figure 4 shows the average (based on 50 random runs)

computational time (in seconds) of the direct PCR6 fusion
of the BBAs altogether (red plot), and the average compu-
tational time of the new fusion method based on canonical
decomposition (blue plot). It is clear that the computational
time of the direct PCR6 fusion method (the red curve) grows
exponentially with the number of sources, whereas the com-
putational time grows only slowly and quasi-linearly with the
new method proposed in this work.
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Figure 4. Computing time versus number of BBAs to combine.

Based on a set of 1000 random dichotomous BBAs, the
figure 5 shows that the computational time (in seconds) of the
fusion based on the canonical decomposition is a quasi-linear17

function of the number of BBAs to combine.
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Figure 5. Computing time versus number of BBAs to combine.

16We did use MatlabTMfsolve function for this.
17It is not strictly linear because the time for the numerical fsolve search

of pro-evidence and contra-evidence factors for making the canonical decom-
position is not constant.



Figures 4 and 5 show clearly the real advantage of the fusion
of dichotomous BBAs based on their canonical decomposi-
tions in term of computational time, and that is why we can say
that the new proposed method is really a fast fusion method
with respect to the direct PCR5 or PCR6 rule of combination
when working with a dichotomous frame of discernment.

D. On the fusion of pro and contra evidences

In the previous analysis, we did use the conjunctive rule for
the intermediary fusion step of pro-evidences in one hand, and
the intermediary fusion step of contra-evidences in the other
hand. It is worth noting that the intermediary step of fusion of
pro-evidences, and the intermediary step of fusion of contra-
evidences can be done in parallel which offers a computational
advantage with respect to the direct fusion method (if one
has many sources to combine in a specific application). This
parallelization cannot be achieved in general with the other
existing rules of combination of evidences.

Because of the fusion principle depicted in Figure 1, this
new fusion method offers also the possibility (if one prefers
for some own specific reasons) of selecting other fusion rules
for the intermediary fusion steps for combining the pro-
evidences, and the contra-evidences. Of course the choice of
the fusion rules used for the combination of pro-evidences and
the combination of contra-evidences impacts the final result,
but depending on the type of rules chosen we can obtain an
associative rule, an idempotent rule, and even a new cautious
rule. For example, let’s consider the same type of fusion rule
for combining the pro-evidences mp,s s = 1, . . . , S, and for
combining contra-evidences mc,s s = 1, . . . , S and consider
the following cases:

1) If we use the conjunctive rule [5] (Vol. 1), denoted by
Conj(., . . . , .) (as we did previously in our Monte Carlo
simulations for histogram plots), then

mp = Conj(mp,1, . . . ,mp,S)

and one has mp(A∪ Ā) =
∏S

s=1(1−xs) and mp(A) =
1−mp(A∪ Ā). Because the conjunctive rule is associa-
tive the fusion of pro-evidences can be done sequentially.
Similarly, for the fusion of contra-evidences using the
conjunctive rule one has mc(A∪Ā) =

∏S
s=1(1−ys) and

mp(Ā) = 1−mc(A ∪ Ā). Because there is no conflict
between the pro-evidences (resp. contra-evidences), the
fusion result of the pro-evidences (resp. the contra-
evidences) by PCR5 (or PCR6) rules is equivalent to the
conjunctive fusion result. The conjunctive rule however
is not idempotent in general but in very specific cases
where only one focal element gets all the mass of belief.

2) If we prefer to use the averaging rule, then we will
have mp(A) = 1

S

∑S
s=1 xs and mp(A ∪ Ā) = 1 −

mp(A) = 1
S

∑S
s=1(1 − xs), and mc(Ā) = 1

S

∑S
s=1 ys

and mc(A ∪ Ā) = 1 − mc(Ā) = 1
S

∑S
s=1(1 − ys).

Because the averaging rule is not associative, the se-
quential fusion of pro-evidences (and contra-evidences)
is not recommended, however the averaging rule allows

to get an idempotent fusion rule based on canonical
decompositions if needed.

3) We could also prefer to use the min rule to build a new
cautious rule of combination which will be associative
and idempotent. For this, we just have to take mp(A) =
mins=1,...,S(xs) and mp(A∪Ā) = 1−mp(A). Similarly,
mc(Ā) = mins=1,...,S(ys) and mc(A∪Ā) = 1−mc(Ā).

V. CONCLUSIONS

In this research paper, we did propose a new fusion
method to combine very quickly many BBAs defined on a
dichotomous frame of discernment thanks to their unique
canonical decompositions. This new interesting method can
be parallelized and offers the advantage to have a quasi-linear
computational time with the number of sources. For now, this
method is limited to the fusion of many BBAs that are defined
on a simple (dichotomous) frame of discernment. After some
unsuccessful attempts, it appears that the development of a fast
fusion method based on the canonical decomposition principle
for working with non-dichotomous frames of discernment is
actually a very difficult problem that we want to address to
the scientific community working with belief functions as a
future research challenge.
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