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Preface 

 The purpose of writing this book is to suggest some improved estimators using 
auxiliary information in sampling schemes like simple random sampling, systematic 
sampling and stratified random sampling. 

 This volume is a collection of five papers, written by nine co-authors (listed in the 
order of the papers): Rajesh Singh, Mukesh Kumar, Manoj Kr. Chaudhary, Cem Kadilar, 
Prayas Sharma, Florentin Smarandache, Anil Prajapati, Hemant Verma, and Viplav Kr. 
Singh. 

 In first paper dual to ratio-cum-product estimator is suggested and its properties are 
studied. In second paper an exponential ratio-product type estimator in stratified random 
sampling is proposed and its properties are studied under second order approximation. In 
third paper some estimators are proposed in two-phase sampling and their properties are 
studied in the presence of non-response. 

 In fourth chapter a family of median based estimator is proposed in simple random 
sampling. In fifth paper some difference type estimators are suggested in simple random 
sampling and stratified random sampling and their properties are studied in presence of 
measurement error. 

 The authors hope that book will be helpful for the researchers and students who are 
working in the field of sampling techniques.
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Department of Statistics, B.H.U., Varanasi (U.P.), India 

Cem Kadilar 
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Abstract 

Tracy et al.[8] have introduced a family of estimators using Srivenkataramana and Tracy 

([6],[7]) transformation in simple random sampling. In this article, we have proposed a dual 

to ratio-cum-product estimator in stratified random sampling. The expressions of the mean 

square error of the proposed estimators are derived. Also, the theoretical findings are 

supported by a numerical example. 

Key words:  Auxiliary information, dual, ratio-cum-product estimator, stratified random 

sampling, mean square error and efficiency. 

1.  Introduction 

In planning surveys, stratified sampling has often proved as useful in improving the precision 

of un-stratified sampling strategies to estimate the finite population mean of the study 

variable,  
 


L

1h

N

1i
hi

h
y

N
1Y . Let y, x and z  respectively, be the study and auxiliary variates 

on each unit Uh (h=1,2,3, ---, N) of the population U. Here the size of the stratum Uh is Nh, 

and the size of simple random sample in stratum Uh is nh,  where  h=1, 2,---,L.  In this study, 
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under stratified random sampling without replacement scheme, we suggest estimators to 

estimate Y  by considering the estimators in Plikusas [3] and in Tracy et al. [8]. 

To obtain the bias and MSE of the proposed estimators, we use the following notations in the 
rest of the article: 

         

        

          

where, .
N

Nw h
h   

Such that, 

           

 

where   and   are the sample and population means of the study variable in the stratum h, 

respectively. Similar expressions for X and Z can also be defined. 

Using (1), we can write 
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where  

 

 

 
    

 

 
The combined ratio and the combined product estimators are, respectively, defined as 

 

 
          

And the MSE of   and   to  the first degree of approximation  are, respectively, given by 

               

                                              (4) 

                                          (5) 

Note that    Similar expressions for X and Z can also be defined. 

2.  Classical Estimators 
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Srivenkataramana and Tracy ([6],[7]) considered a simple transformation as 

            ( i=1, 2,…,N) 

      

where A is a scalar to be chosen. This transformation renders the situation suitable for a 

product method instead of ratio method. Clearly  is unbiased for   .  

Using this transformation, an estimator in the stratified random sampling is defined as  

           

This is  a product type estimator  ( alternative to combined ratio type estimator) in stratified 

random sampling. 

The exact expression for MSE of is given by  

                             (7) 

 

In some survey situations, information on a second auxiliary variable, Z, correlated 

negatively with the study variable, Y, is readily available. Let  be the known population 

mean of Z. To estimate ,  Singh[4] considered ratio-cum-product estimator as            

 

where Perri[2] used  xXxtx   and   zZztz   instead of x  and z , 

respectively. Here,   and   are constants that make the MSE minimum. 
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Adapting    to the stratified random sampling, the ratio cum product estimator using 

two auxiliary variables can be defined as  

 

The approximate MSE of this estimator is  

 

3.   Suggested Estimators  

Tracy et al. [8] introduced a product estimator using two auxiliary variables in the simple 

random sampling given by 

 

Motivated by Tracy et al. [8], we propose the following product estimator for the 

stratified random sampling scheme as 

 

   Expressing   in terms of e’s, we can write (11) as 

              

The MSE   to the first order of approximation, is given as 

 

and this  MSE equation is minimised for             
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Note that  the corresponding A is 

 

By putting the optimum value of  in (12), we can obtain the minimum MSE equation 

for the first proposed estimator, . 

Remark 3.1  :  The value of X  is known, but the exact values of V110, V011 and V020 are 

rarely available in practice. However in repeated surveys or studies based on multiphase 

sampling, where information is gathered on several occasions it may be possible to guess the 

values of  V110, V011 and V020 quite accurately. Even though this approach may reduce the 

precision, it may be satisfactory provided the relative decrease in precision is marginal, see 

Tracy et al.  [8]. 

Plikusas[3]  defined dual to ratio cum product estimator in stratified random sampling 

as 

 

where  

 

and .
)nN(

ng
hh

h
h


  

Considering the estimator in (13) and motivated by Singh et al. [5], we propose a family of 

dual to ratio cum product estimator as – 
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To obtain the MSE of the second proposed estimator, , we  write  

             

            

           . 

Expressing (14) in terms of e’s, we have  

                                                                             (15) 

Expanding the right hand side of (15), to the first order of approximation, we get 

            
    

 

Squaring both sides of (16) and then taking expectation, we obtain the MSE of the second 

proposed estimator, , to the first order approximation, as 

                 (17) 

where  

         

This MSE equation  is minimized for the optimum values of  and  given by    
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Putting these values of  and  in MSE ( ), given in (17), we  obtain the minimum MSE 

of the second proposed estimator, . 

4.  Theoretical Efficiency Comparisons 

In this section,  we first compare the efficiency between the first proposed estimator, , with  

the classical combined estimator,   as follows: 

           

          . 

The estimator  is better than the usual estimator  if and only if,  

,1
B2
B

2

1                     (21) 

where, 002020
2

1 VVB      and .VVVB 0111011102   

If the condition (21) is satisfied, the first proposed estimator, , performs better than 

the classical combined estimator. 

We also  find the condition under which the second proposed estimator, , performs 

better than  the classical combined estimator in theory as follows:  

           , 

          , 
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The estimator 9y  is better than the usual estimator  if and only if,  

 

where,  and    

5. Numerical Example 

In this section, we use the data set earlier used  in Koyuncu and Kadilar[1] . The population 

statistics are given in Table 1. In this data set, the study variable (Y) is the number of 

teachers, the first auxiliary variable (X) is the number of students, and the second auxiliary 

variable (Z) is the number of classes in both primary and secondary schools for 923 districts 

at 6 regions ( as 1: Marmara, 2: Agean, 3: Mediterranean, 4: Central Anatolia, 5: Black Sea, 

6: East and South east Anatolia) in Turkey in 2007, see Koyuncu and Kadilar[1]. Koyuncu 

and Kadilar[1] have used Neyman allocation for allocating the samples to different strata.  

Note that all correlations between the study and auxiliary variables are positive. Therefore, 

we decide not to use product estimators for this data set for efficiency comparison. For this 

reason, we apply the classical combined estimator,  , combined ratio estimator , , the 

ratio-cum-product estimator, , Plikusas [3] estimator, , and the second proposed 

estimator, , to the data set. For the efficiency comparison, we compute percent relative 

efficiencies as  
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Table 1. Data Statistics of Population 

N1=127              N2=117            N3=103  

N4=170              N5=205            N6=201 

n1=31               n2=21             n3=29  

n4=38               n5=22             n6=39 

 = 883.835             = 644                       = 1033.467 

 810.585                        = 403.654             =711.723 

 = 703.74              = 413             573.17          

   = 424.66                          = 267.03                  = 393.84     

 =30486.751               =15180.760            =27549.697 

 =18218.931               =8997.776              =23094.141 

 =20804.59     =9211.79    =14309.30 

 =9478.85     = 5569.95               =12997.59 

 =25237153.52    =9747942.85   =28294397.04 

 = 14523885.53    =3393591.75   =15864573.97 

 = 0.936     = 0.996    =0.994 

 = 0.983     = 0.989    = 0.965 

 = 555.5816      = 365.4576   =612.9509281   

 = 458.0282      = 260.8511   = 397.0481  

 = 498.28     = 318.33    = 431.36    

  = 498.28       = 227.20                              = 313.71 

 = 480688.2    = 230092.8   = 623019.3 

 = 364943.4    = 101539    = 277696.1 

 = 15914648    = 5379190   = 164900674.56 

 = 8041254    = 2144057   = 8857729 
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 = 0.978914    = 0.9762    = 0.983511 

 = 0.982958    = 0.964342   = 0.982689 

 

Table 2.  Percent Relative Efficiencies (PRE) of estimators 

Estimators   Values of                          PRE( ) 

 0 0 100 

 1 0 1029.469 

 1 1 149.686 

 1 1 115.189 

MSE( )min 6.2918 -0.8870 2854.549 

 

    Table3. The MSE values according to A 

Value of                Corresponding value of A        
<0.8 - >V(yst) 
0.8 25779.79 2186.879 
0.9 24188.44 1814.999 
1.00 22915.37 1492.895 
1.10 21873.76 1220.564 
1.20 21005.75 998.009 
1.30 20271.29 825.227 
1.40 19641.74 702.221 
1.50 19096.14 628.989 

1.5971(opt) 18631.62(opt) 605.511* 
1.60 18618.74 605.532 
1.70 18197.50 631.849 
1.80 17823.06 707.941 
1.90 17488.04 833.807 
2.00 17186.53 1009.448 
2.10 16913.72 1234.864 
2.20 16665.72 1510.054 
2.30 16439.29 1835.019 
2.40 16231.72 2209.758 

>2.40 - >V(yst) 
* MSE (min) at the value A(optimal). 
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6.  Conclusion 

When we examine Table 2, we observe that the second proposed estimator, , under 

optimum condition certainly performs quite better than all other estimators discussed here. 

Although the correlations are negative, we also examine the performance of the first proposed 

estimator, , according to the classical combined estimator. Therefore, for various values of 

A and   in Table 3, the MSE values of  and   are computed. From Table 3, we observe 

that the first proposed estimator, , performs better than the estimator, ,  for a wide range 

of  as  , even in the negative correlations. 
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Abstract 

                   Singh et al. (20009) introduced a family of exponential ratio and product type 

estimators in stratified  random sampling. Under stratified random sampling without 

replacement scheme, the expressions of bias and mean square error (MSE)  of Singh et al. 

(2009) and some other estimators, up to the first- and second-order approximations are 

derived. Also, the theoretical findings are supported by a numerical example. 

Keywords:  Stratified Random Sampling, population mean, study variable, auxiliary variable, 

exponential ratio type estimator, exponential product estimator, Bias and MSE. 

 

1.  INTRODUCTION  

In survey sampling, it is well established that the use of auxiliary information results in 

substantial gain in efficiency over the estimators which do not use such information. 

However, in planning surveys, the stratified sampling has often proved needful in improving 

the precision of estimates over simple random sampling. Assume that the population U 

consist of L strata as U=U1, U2,…,UL . Here the size of the stratum Uh is Nh, and the size of 

simple random sample in stratum Uh is nh,  where  h=1, 2,---,L.   

       When the population mean of the auxiliary variable, X , is known, Singh et al. 
(2009) suggested a combined  exponential ratio-type  estimator for estimating the population 
mean of the study variable  Y   : 
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The exponential product-type estimator under stratified random sampling is given by  
 

           













Xx
xXexpyt

st

st
S2                                                                                                     (1.2) 

Following  Srivastava (1967) an estimator t3s   in stratified random sampling is  defined as : 

           

















Xx
xXexpyt

st

st
S3                                                                                 (1.3) 

 

where α is a constant  suitably chosen by minimizing MSE of  S3t . For  α=1 , S3t  is same as 

conventional exponential ratio-type estimator whereas for  α = -1, it becomes conventional 

exponential product type estimator. 

 Singh et al. (2008) introduced an estimator which is linear combination of exponential ratio-

type and exponential product-type estimator  for estimating the population mean of the study 

variable  Y   in simple random sampling. Adapting Singh et al. (2008) estimator in stratified random 

sampling we propose an estimator t4s as : 
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where    is the constant and suitably chosen by minimizing mean square error of the 

estimator S4t . It is observed that the estimators considered here are equally efficient when 

terms up to first order of approximation are taken.  Hossain et al. (2006) and Singh and 

Smarandache (2013) studied some estimators in  SRSWOR under second order approximation. 

Koyuncu  and Kadilar (2009, 2010) ),  have studied some estimators in  stratified random sampling  

under second order approximation.  To have more clear picture about the best estimator, in this 

study we have derived the expressions of MSE’s of the estimators considered in this paper  

up to second order of approximation in stratified random sampling. 

 

3.  Notations used 

Let us define, 
y

yy
e st

0


  and 
x

xx
e st

1


 ,  

such that 

    

    s
hh

r
hh

L

1h

sr
hrs YyXxEWV 



  

To obtain the bias and MSE of the proposed estimators, we use the following 
notations in the rest of the article: 

         

                                                                       

where   and   are the sample and population means of the study variable in the stratum h, 

respectively. Similar expressions for X and Z can also be defined. 

Also, we have 
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Some additional notations for  second order approximation: 
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4. First Order Biases and Mean Squared Errors under stratified random sampling 

 

The expressions for biases and MSE,s  of the estimators  t1S,  t2S  and t3S  respectively, are : 
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
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By minimizing )s3t(MSE , the optimum value of   is obtained as 
02

11
o V

V2
 .  By putting this 

optimum value of    in equation (4.5) and (4.6), we get the minimum value for bias and MSE of the 

estimator t3S. 

 

The expression for the bias and MSE of t4s  to the first order of approximation are given respectively, 

as  
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By minimizing )S4t(MSE , the optimum value of    is obtained as 
2
1

V
V

02

11
o  .  By putting this 

optimum value of    in equation (4.7) and (4.8) we get the minimum value for bias and MSE of the 

estimator t3S. We observe  that for the optimum cases the biases of the estimators   S3t  and S4t are  

different but the MSE of S3t  and S4t  are same. It is also observed that the MSE’s of the 

estimators S3t  and S4t  are always less than the MSE’s of the estimators S1t  and S2t . This prompted 

us to study the estimators S3t and  S4t  under second order approximation. 

 

5. Second Order Biases and Mean Squared Errors in stratified random sampling  

 

Expressing estimator ti’s(i=1,2,3,4)  in terms of ei’s (i=0,1), we get 
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      Taking expectations, we get the bias of the estimator s1t up to the second order of 

approximation as 
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 Squaring equation  (5.1) and taking expectations and using lemmas we get MSE of s1t  up to second 

order of approximation as 
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Or,  
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Similarly we get the biases  and MSE’s of the estimators t2S, t3S and t4S  up to second order of 

approximation respectively,  as  
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The optimum value of   we get by minimizing  S32 tMSE .  But theoretically the determination of 

the optimum value of   is very difficult, we have calculated the optimum value by using numerical 

techniques. Similarly the optimum value of   which minimizes the MSE of the estimator t4s is 

obtained by using numerical techniques. 

6. Numerical Illustration 
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For the one natural population data, we shall calculate the bias and the mean square error of the 

estimator and compare Bias and MSE for the first and second order of approximation.  

Data Set-1  

 

To illustrate the performance of above estimators , we have considered the natural data given 

in Singh and Chaudhary (1986, p.162). 

The data were collected in a pilot survey for estimating the extent of cultivation and 

production of fresh fruits in three districts of Uttar- Pradesh in the year 1976-1977. 

 

Table 6.1:  Bias and MSE of estimators 

Estimator Bias  MSE  
 First order Second order First order Second order 

t1s  
-1.532898612 

 
-1.475625158 

 
2305.736643 

 
2308.748272 

t2s  
8.496498176 

 
8.407682289 

 
23556.67462 

 
23676.94086 

t3s  
-1.532898612 

 

 
-1.763431841 

 

 
704.04528 

 

 
705.377712 

 
t4s  

-5.14408 
 

 
-5.0089 

 

 
704.04528 

 

 
707.798567 

 
 

 

7. CONCLUSION  

 

In the Table 6.1  the bias and MSE of the estimators t1S, t2S, t3S and t4S are written under 

first order and second order of  approximation. The estimator t2S is exponential product-type 

estimator and it is considered in case of negative correlation. So the bias and mean squared 

error for this estimator is more than the other estimators considered here.  For the classical 

exponential ratio-type estimator, it is observed that the biases and the mean squared errors  

increased for second order. The estimator S3t  and S4t  have the same mean squared error for 

the first order but the mean squared error of S3t  is less than S4t for the second order. So,  on 
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the basis of the given data set we conclude that the estimator t3S is best followed by the 

estimator t4S among the estimators considered here. 
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Abstract 

The present paper presents the detail discussion on estimation of population mean in 
simple random sampling in the presence of non-response. Motivated by Gupta and Shabbir 
(2008), we have suggested the class of estimators of population mean using an auxiliary 
variable under non-response. A theoretical study is carried out using two-phase sampling 
scheme when the population mean of auxiliary variable is not known. An empirical study has 
also been done in the support of theoretical results. 

Keywords: Two-phase sampling, class of estimators, optimum estimator, non-response, 
numerical illustrations.               

1. Introduction 

The auxiliary information is generally used to improve the efficiency of the 

estimators. Cochran (1940) proposed the ratio estimator for estimating the population mean 

whenever study variable is positively correlated with auxiliary variable. Contrary to the 

situation of ratio estimator, if the study and auxiliary variables are negatively correlated, 

Murthy (1964) suggested the product estimator to estimate the population mean. Hansen et al. 

(1953) proposed the difference estimator which was subsequently modified to provide the 

linear regression estimator for the population mean or total. Mohanty (1967) suggested an 

estimator by combining the ratio and regression methods for estimating the population 

parameters. In order to estimate the population mean or population total of the study 

character utilizing auxiliary information, several other authors including Srivastava  ( 1971), 

Reddy (1974), Ray and Sahai (1980), Srivenkataramana (1980), Srivastava and Jhajj (1981) 
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and Singh and Kumar (2008, 2011) have proposed estimators which lead improvements over 

usual per unit estimator.  

 It is observed that the non-response is a common problem in any type of survey. 

Hansen and Hurwitz (1946) were the first to contract the problem of non-response while 

conducting mail surveys. They suggested a technique, known as ‘sub-sampling of non-

respondents’, to deal with the problem of non-response and its adjustments. In fact they 

developed an unbiased estimator for population mean in the presence of non-response by 

dividing the population into two groups, viz. response group and non-response group. To 

avoid bias due to non-response, they suggested for taking a sub-sample of the non-responding 

units.  

Let us consider a population consists of N  units and a sample of size n   is selected from 

the population using simple random sampling without replacement (SRSWOR) scheme. Let 

us assume that Y and X  be the study and auxiliary variables with respective population 

means Y and X . Let us consider the situation in which study variable is subjected to non-

response and auxiliary variable is free from the non-response. It is observed that there are 

1n respondent and 2n non-respondent units in the sample of n  units for the study variable. 

Using the technique of sub sampling of non-respondents suggested by Hansen and Hurwitz 

(1946), we select a sub-sample of 2h non-respondent units from 2n units such 

that 1k,knh 22   and collect the information on sub-sample by personal interview method.  

The usual sample mean, ratio and regression estimators for estimating the population mean 

Y  under non-response are respectively represented by 

                  
n

ynyn
y 2h21n1* 

        (1.1)  
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where 1ny  and 2hy  are the means based on 1n respondent and 2h non-respondent units 

respectively. x  is the sample mean estimator of population mean X , based on sample of size 

n and b is the sample regression coefficient of Y on X . 

The variance and mean square errors (MSE) of the above estimators
*

y , 
*

Ry  and 
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where 2
YS  and 2

XS  are respectively the mean squares of Y and X  in the population.  

 YSC YY   and  XSC XX   are the coefficients of variation of Y and X  respectively. 

2
2YS  and 2W  are respectively the  mean square and non-response rate of the non-response 

group in the population for the study variable Y .   is the population correlation coefficient 

between Y and X . 

When the information on population mean of auxiliary variable is not available, one 

can use the two-phase sampling scheme in obtaining the improved estimator rather than the 

previous ones. Neyman (1938) was the first who gave concept of two-phase sampling in 

estimating the population parameters. Two-phase sampling is cost effective as well as easier. 

This sampling scheme is used to obtain the information about auxiliary variable cheaply from 
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a bigger sample at first phase and relatively small sample at the second stage. Sukhatme 

(1962) used two-phase sampling scheme to propose a general ratio-type estimator. Rao 

(1973) used two-phase sampling to stratification, non-response problems and investigative 

comparisons. Cochran (1977) supplied some basic information for two-phase sampling. 

Sahoo et al. (1993) provided regression approach in estimation by using two auxiliary 

variables for two-phase sampling. In the sequence of improving the efficiency of the 

estimators, Singh and Upadhyaya (1995) suggested a generalized estimator to estimate 

population mean using two auxiliary variables in two-phase sampling.  

In estimating the population mean Y , if X  is unknown, first, we obtain the estimate 

of it using two-phase sampling scheme and then estimate Y . Under two-phase sampling 

scheme, first we select a larger sample of 'n  units from the population of size N  with the 

help of SRSWOR scheme. Secondly, we select a small sample of size n  from 'n units. Let us 

again assume that the situation in which the non-response is observed on study variable only 

and auxiliary variable is free from the non-response. The usual ratio and regression estimators 

of population mean Y under two-phase sampling in the presence of non-response are 

respectively given by 

'
*

**

R x
x
yy             (1.7)  

and       xxbyy
'***

lr            (1.8) 

where 
'

x  is the mean based on 'n units for the auxiliary variable.   

The MSE’s of the estimators 
**

Ry  and 
**

lry  are respectively represented by the  

following expressions 
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and 
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In the present paper, we have discussed the study of non-response of a general class of 

estimators using an auxiliary variable. We have suggested the class of estimators in two-

phase sampling when the population mean of auxiliary variable is unknown. The optimum 

property of the class is also discussed and it is compared to ratio and regression estimators 

under non-response. The theoretical study is also supported with the numerical illustrations. 

2. Suggested Class of Estimators 

Let us assume that the non-response is observed on the study variable and auxiliary 

variable provides complete response on the units. Motivated by Gupta and Shabbir (2008), 

we suggest a class of estimators of population mean Y under non-response as  
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where 1  and 2  are the constants and whose values are to be determined.   and  0 are 

either constants or functions of the known parameters. 

In order to obtain the bias and MSE of
*

ty , we use the large sample approximation. Let 
us assume that 
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Putting the values of 
*

y and x  form the above assumptions in the equation (2.1), we 
get 
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On taking expectation of the equation (2.2), the bias of 
*
ty  to the first order of 

approximation is given by 
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Squaring both the sides of the equation (2.2) and taking expectation, we can obtain the 

MSE of 
*

ty  to the first order of approximation as 
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In the sequence of obtaining the best estimator within the suggested class with respect 

to 1  and 2 , we obtain the optimum values of 1  and 2 . On differentiating  *

tyMSE  

with respect to 1  and 2  and equating the derivatives to zero, we have 
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Solving the equations (2.4) and (2.5), we get 
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
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
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and   
   

X

XY1
2 CX

CCYoptopt 
            (2.8) 

Substituting the values of  opt1  and  opt2  from equations (2.7) and (2.8) into the 

equation (2.4), the MSE of 
*

ty  is given by the following expression. 

   
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*

t
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
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


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



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3. Suggested Class in Two-Phase Sampling 

It is generally seen that the population mean of auxiliary variable, X  is not known. In 

this situation, we may use the two-phase sampling scheme to find out the estimate of X . 

Using two-phase sampling, we now suggest a class of estimators of population mean Y in the 

presence of non-response when X  is unknown, as 

  



















x
xxxyy

'
'

2
*

1
**

t          (3.1) 

3.1 Bias and MSE of 
**

ty  

By applying the large sample approximation, we can obtain the bias and mean square 

error of 
**

ty . Let us assume that  

 1
*

e1Yy  ,  2e1Xx   and  3
'

e1Xx   

such that       0321  eEeEeE , 
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Under the above assumption, the equation (3.1) gives 
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Taking expectation of both the sides of equation (3.2), we get the bias of 
**

ty up to the 

first order of approximation as 
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The MSE of 
**

ty  up to the first order of approximation can be obtained by the 

following expression 
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3.2 Optimum Values of 1 and 2  

On differentiating  **

tyMSE  with respect to 1 and 2  and equating the derivatives 

to zero, we get the normal equations 
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From equations (3.5) and (3.6), we get the optimum values of 1 and 2  as 
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On substituting the optimum values of 1 and 2 , the equation (3.4) provides 

minimum MSE of 
**

ty  
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4. Empirical Study 

In the support of theoretical results, some numerical illustrations are given below:  

4.1 In this section, we have illustrated the relative efficiency of the estimators
*

Ry , 
*

lry  and 

 opty
*

t  with respect to
*

y . For this purpose, we have considered the data used by Kadilar and 
Cingi (2006). The details of the population are given below: 

200N  ,  50n  , 500Y  , 25X  , 15CY  , 2CX  , 90.0  

5.1k  ,      2
Y

2
2Y S

5
4S   
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Table 1. Percentage Relative Efficiency (PRE) with respect to 
*

y  

2W  Estimator 

*

Ry  
*

lry   opty
*

t  

0.1 126.74 432.88 788.38 

0.2 125.13 373.03 746.53 

0.3 123.70 331.43 722.93 

0.4 122.42 300.83 710.33 

0.5 121.28 277.37 704.87 

 

4.2 The present section presents the relative efficiency of the estimators
**

Ry , 
**

lry  

and  opty
**

t  with respect to
*

y . There are two data sets which have been considered to 
illustrate the theoretical results. 

 

Data Set 1:  

The population considered by Srivastava (1993) is used to give the numerical 
interpretation of the present study. The population of seventy villages in a Tehsil of India 
along with their cultivated area (in acres) in 1981 is considered. The cultivated area (in acres) 
is taken as study variable and the population is assumed to be auxiliary variable. The 
population parameters are given below: 

70N  ,  40n '  ,     25n  ,  29.981Y  , 53.1755X  ,  66.613SY  , 

13.1406SX  ,  11.244S 2Y  ,  778.0 , 5.1k   
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Table 2:  Percentage Relative Efficiency with respect to 
*

y  

2W  Estimator 

*

Ry  
*

lry   opty
*

t  

0.1 125.48657 153.56020 154.57983 

0.2 125.10358 152.57858 153.60848 

0.3 124.73193 151.63228 152.67552 

0.4 124.37111 150.71945 151.77449 

0.5 124.02068 149.83834 150.90579 

 

Data Set 2:  

Now, we have used another population considered by Khare and Sinha (2004). The 

data are based on the physical growth of upper-socio-economic group of 95 school children 

of Varanasi district under an ICMR study, Department of Paediatrics, Banaras Hindu 

University, India during 1983-84. The details are given below: 

95N  ,  70n '  ,   35n  ,  4968.19Y  , 8611.55X  , 0435.3SY  , 2735.3SX  ,  

3552.2S 2Y  , 8460.0 , 5.1k  . 
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Table 3:  Percentage Relative Efficiency with respect to 
*

y  

2W  Estimator 

*

Ry  
*

lry   opty
*

t  

0.1 159.61889 217.83004 217.99278 

0.2 155.61224 207.27149 207.43596 

0.3 152.10325 198.44091 198.58540 

0.4 149.01829 190.94488 190.94488 

0.5 146.26158 184.51722 184.66554 

 

 

5. Conclusion  

The study of a general class of estimators of population mean under non-response has 

been presented. We have also suggested a class of estimators of population mean in the 

presence of non-response using two-phase sampling when population mean of auxiliary 

variable is not known. The optimum property of the suggested class has been discussed. We 

have compared the optimum estimator with some existing estimators through numerical 

study. The Tables 1, 2 and 3 represent the percentage relative efficiency of the optimum 

estimator of suggested class, linear regression estimator and ratio estimator with respect to 

sample mean estimator. In the above tables, we have observed that the percentage relative 

efficiency of the optimum estimator is higher than the linear regression and ratio estimators. 

It is also observed that the percentage relative efficiency decreases with increase in non-

response. 
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Abstract 

In this paper we have proposed a median based estimator using known value of some 
population parameter(s) in simple random sampling. Various existing estimators are shown particular 
members of the proposed estimator. The bias and mean squared error of the proposed estimator is 
obtained up to the first order of approximation under simple random sampling without replacement. 
An empirical study is carried out to judge the superiority of proposed estimator over others. 

 

Keywords: Bias, mean squared error, simple random sampling, median, ratio estimator. 

 

1.  Introduction 

          Consider a finite population }U,...,U,U{U N21  of N distinct and identifiable units. Let Y be 

the study variable with value iY  measured on N1,2,3...,i ,Ui  . The problem is to estimate the 

population mean 



N

1i
iY

N
1Y . The simplest estimator of a finite population mean is the sample mean 

obtained from the simple random sampling without replacement, when there is no auxiliary 

information available. Sometimes there exists an auxiliary variable X  which is positively correlated 

with the study variable Y. The information available on the auxiliary variable X may be utilized to 

obtain an efficient estimator of the population mean. The sampling theory describes a wide variety of 

techniques for using auxiliary information to obtain more efficient estimators. The ratio estimator and 

the regression estimator are the two important estimators available in the literature which are using the 

auxiliary information. To know more about the ratio and regression estimators and other related 

results one may refer to [1-13]. 
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        When the population parameters of the auxiliary variable X such as population mean, coefficient 
of variation, kurtosis, skewness and median are known, a number of modified ratio estimators are 
proposed in the literature, by extending the usual ratio and Exponential- ratio type estimators. 

         Before discussing further about the modified ratio estimators and the proposed median based 
modified ratio estimators the notations and formulae to be used in this paper are described below: 

 

 N -  Population size 

 n    -  Sample size 

 Y   -  Study variable 

  X  -  Auxiliary variable 

 








N

1i

r
ir3

2

2
3

1 ,)Xx(
N
1  Where  Coefficient of skewness of the auxiliary variable  

 ρ   - Correlation Co-efficient between X and Y  

 Y,X  - Population means 

 y,x  -  Sample means 

 ,M   -  Average of sample medians of Y 

 m    -  Sample median of Y 

 β    - Regression coefficient of Y on X 

 B (.) - Bias of the estimator 

 V (.) - Variance of the estimator 

 MSE (.) - Mean squared error of the estimator 

 100*
)e(MSE
)e(MSE)p,e(PRE  - Percentage relative efficiency of the proposed estimator p 

with respect to the existing estimator e.            

       The formulae for computing various measures including the variance and the covariance of the 
SRSWOR sample mean and sample median are as follows: 


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)x(VC '
yx

'
ym2

'
mm2

'
xx   

 









N

1i

2
i

2
x

N

1i

2
i

2
y )Xx(
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N
nf Where ,  

In the case of simple random sampling without replacement (SRSWOR), the sample mean y is used to 

estimate the population mean Y . That is the estimator of yYY r   with the variance  

                         2
yr S

n
f1)Y(V 

                                 (1.1) 

The classical Ratio estimator for estimating the population mean Y  of the study variable Y is defined 

as X
x
yYR  . The bias and mean squared error of RY  are given as below: 

                        '
yx

'
xxR CCY)Y(B                         (1.2)  

                       )x,y(CovR2)x(VR)y(V)Y(MSE ''
R

2
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X
YR '        (1.3) 

 

2.  Proposed estimator 

Suppose 

if iety,linear var a is set w  thedefinitionBy  . Ymean  population the
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where iw (i=0, 1, 2) denotes the statistical constants and R denotes the set of real numbers. 
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.bamm  ,bMaM  and **
  

To obtain the bias and MSE expressions of the estimator t, we write 

)e1(Mm            ),e1(Yy 10   

such that 

          ,0)e(E)e(E 10   

     
ym10mm2

2
12

2
0 C

MY
m,yCov)eE(e   ,C

M
mV)E(e   ,

Y
yV)e(E   

Expressing the estimator  t in terms of e’s, we have 

.
bMa

Ma  where

(2.3)                                   
2
e1

2
eexpw)e1(ww)e1(Yt

1
11

2
g

1100





































 








 






 

Expanding the right hand side of equation(2.3) up to the first order of approximation, we get 
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From (2.4), we have 
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Squaring both sides of (2.9) and then taking expectations, we get the MSE of the estimator t, up to the 
first order of approximation as 
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Putting the value of w(=k) in (2.10), we get the minimum MSE of the estimator t, as 
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The minimum MSE of the estimator t  is same as that of traditional linear regression estimator. 

From (2.5) and (2.11), we have 
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From (2.2) and (2.13), we have only two equations in three unknowns. It is not possible to find the 
unique values of wi’s (i=0, 1, 2). In order to get unique values for wi’s, we shall impose the linear 
restriction 
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Equations (2.2), (2.11) and (2.14) can be written in matrix form as 
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Using (2.15) we get the unique value of wi’s (i=0, 1, 2) as 
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Table 2.1: Some members of the proposed estimator 
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3.   Empirical Study 

              For numerical illustration we consider:  the population 1 and 2 taken from [14] pageno.177, 
the population 3 is taken from [15]  page no.104. The parameter values and constants computed for 
the above populations are given in the Table 3.1. MSE for the proposed and existing estimators 
computed for the three populations are given in the Table 3.2 whereas the PRE for the proposed and 
existing estimators computed for the three populations are given in the Table 3.3. 

Table: 3.1 Parameter values and constants for 3 different populations 

 

 

 

 

Parameters 
For sample size n=3 For sample size n=5 

Popln-1 Popln-2 Popln-3 Popln-1 Popln-2 Popln-3 

N 34 34 20 34 34 20 

n 3 3 3 5 5 5 

n
N C  5984 5984 1140 278256 278256 15504 

Y  856.4118 856.4118 41.5 856.4118 856.4118 41.5 

M  747.7223 747.7223 40.2351 736.9811 736.9811 40.0552 

X  208.8824 199.4412 441.95 208.8824 199.4412 441.95 

1  0.8732 1.2758 1.0694 0.8732 1.2758 1.0694 

R 1.1453 1.1453 1.0314 1.1621 1.1621 1.0361 

)y(V  163356.4086 163356.4086 27.1254 91690.3713 91690.3713 14.3605 

)x(V  6884.4455 6857.8555 2894.3089 3864.1726 3849.248 1532.2812 

)m(V  101127.6164 101127.6164 26.0605 58464.8803 58464.8803 10.6370 

)m,y(Cov  90236.2939 90236.2939 21.0918 48074.9542 48074.9542 9.0665 

)x,y(Cov  15061.4011 14905.0488 182.7425 8453.8187 8366.0597 96.7461 

  0.4491 0.4453 0.6522 0.4491 0.4453 0.6522 
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Table: 3.2. Variance / Mean squared error of the existing and proposed estimators 

Estimators 
For sample size n=3 For sample size n=5 

Population-1 Population-2 Population-3 Population-1 Population-2 Population-3 

q1 163356.41 163356.41 27.13 91690.37 91690.37 14.36 

q2 89314.58 89314.58 11.34 58908.17 58908.17 6.99 

q3 89274.35 89287.26 11.17 58876.02 58886.34 6.93 

q4 89163.43 89092.75 10.92 58787.24 58730.58 6.85 

q5 93169.40 93169.40 12.30 55561.98 55561.98 7.82 

q6 93194.86 93186.68 12.42 55573.42 55569.74 7.88 

q7 93265.64 93311.19 12.62 55605.24 55625.75 7.97 

q8 113764.16 113810.72 21.52 76860.57 76891.47 10.66 

q9 151049.79 150701.09 22.00 101236.37 101004.87 10.99 

q10 151791.97 151791.97 24.24 101728.97 101728.97 11.87 

t(opt) 82838.45 82838.45 10.05 52158.93 52158.93 6.63 

           

 

Table: 3.3. Percentage Relative Efficiency of estimators with respect to y  

Estimators 
For sample size n=3 For sample size n=5 

Population-1 Population-2 Population-3 Population-1 Population-2 Population-3 

q1 100 100 100 100 100 100 

q2 182.90 182.90 239.191236 155.65 155.65 205.40 

q3 182.98 182.96 242.877047 155.73 155.71 207.12 

q4 183.21 183.36 248.504702 155.97 156.12 209.64 

q5 175.33 175.33 220.500742 165.02 165.02 183.60 

q6 175.28 175.30 218.381298 164.99 165.00 182.30 

q7 175.15 175.07 214.915968 164.90 164.83 180.16 

q8 143.59 143.53 126.034732 119.29 119.25 134.70 
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q9 108.15 108.40 123.254986 90.57 90.78 130.57 

q10 107.62 107.62 111.896010 90.13 90.13 120.97 

t(opt) 197.20 197.20 269.771157 175.79 175.79 216.51 

 

4.  Conclusion 

           From empirical study we conclude that the proposed estimator under optimum conditions 
perform better than other estimators considered in this paper. The relative efficiencies and MSE of 
various estimators are listed in Table 3.2 and 3.3. 
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Abstract 

 In this paper we have suggested difference-type estimator for estimation of 

population mean of the study variable y in the presence of measurement error using  auxiliary 

information. The optimum estimator in the suggested estimator has been identified along with 

its mean square error formula. It has been shown that the suggested estimator performs more 

efficient then other existing estimators. An empirical study is also carried out to illustrate the 

merits of proposed method over other traditional methods. 

Key Words: Study variable, Auxiliary variable, Measurement error, Simple random 

Sampling, Bias, Mean Square error. 

 

1. PERFORMANCE OF SUGGESTED METHOD USING SIMPLE RANDOM 

SAMPLING
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IINNTTRROODDUUCCTTIIOONN  

   The present study deals with the impact of measurement errors on estimating 

population mean of study variable (y) in simple random sampling using  auxiliary 

information. In theory of survey sampling, the properties of estimators based on data are 

usually presupposed that the observations are the correct measurement on the characteristic 

being studied. When the measurement errors are negligible small, the statistical inference 

based on observed data continue to remain valid.   

   An important source of measurement error in survey data is the nature of variables 

(study and auxiliary). Here nature of variable signifies that the exact measurement on 

variables is not available. This may be due to the following three reasons:  

1. The variable is clearly defined but it is hard to take correct observation at least with the 

currently available techniques or because of other types of practical difficulties. Eg: The level 

of blood sugar in a human being.  

2. The variable is conceptually well defined but observation can obtain only on some closely 

related substitutes known as Surrogates. Eg: The measurement of economic status of a 

person. 

3. The variable is fully comprehensible and well understood but it is not intrinsically defined. 

Eg: Intelligence, aggressiveness etc.                                                         

     Some authors including Singh and Karpe (2008, 2009), Shalabh(1997), Allen et al. (2003), 

Manisha and Singh (2001, 2002),  Srivastava and Shalabh  (2001), Kumar et al. (2011 a,b), 

Malik and Singh (2013), Malik et al. (2013)  have paid their attention towards the estimation 

of population mean y  of study variable using auxiliary information in the presence of 

measurement errors. Fuller (1995) examined the importance of measurement errors in 

estimating parameters in sample surveys. His major concerns are estimation of population 

mean or total and its standard error, quartile estimation and estimation through regression 

model. 

  SSYYMMBBOOLLSS  AANNDD  SSEETTUUPP  
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 Let, for a SRS scheme )y,x( ii  be the observed values instead of true values 

)Y,X( ii on two characteristics (x, y), respectively for all i=(1,2,…n) and the observational or 

measurement errors are defined as 

                     )Yy(u iii                                                                                                       (1) 

                     )Xx(v iii                                                                                                       (2) 

where ui and vi are stochastic in nature with mean 0 and variance 2
u  and 2

v  respectively. 

For the sake of convenience, we assume that s'u i  and s'v i  are uncorrelated 

although s'X i and s'Yi are correlated .Such a specification can be, however, relaxed at the 

cost of some algebraic complexity. Also assume that finite population correction can be 

ignored. 

Further, let the population means and variances of (x, y) be ),( yx  and ),( 2
y

2
x  . xy and 

 be the population covariance and the population correlation coefficient between x and y 

respectively. Also let 
y

y
yC




 and 

x

x
xC




 are the population coefficient of variation and 

yxC is the population coefficients of covariance in y and x. 

      LLAARRGGEE  SSAAMMPPLLEE  AAPPPPRROOXXIIMMAATTIIOONN  

Define: 

y

y
0

y
e




  and 

x

x
1

xe



  

where, 0e  and 1e  are very small numbers and )1,0i(1ei  . 

Also,  )1,0i(0)e(E i   

and, 02
y

2
u2

y
2
0 1C)e(E 










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 . 

    22..      EEXXIISSTTIINNGG  EESSTTIIMMAATTOORRSS  AANNDD  TTHHEEIIRR  PPRROOPPEERRTTIIEESS  

Usual mean estimator is given by 

                       



n

1i

i

n
yy                                                                                                           (3) 

Up to the first order of approximation the variance of y is given by 

               2
y2

y

2
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y C1)y(Var
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













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The usual ratio estimator is given by 

  






 


x
yy x

R                                                                                                                          (5) 

where x is known population mean of x. 

The bias and MSE ( Ry ), to the first order of approximation, are respectively, given 
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The traditional difference estimator is given by 

 )x(kyy xd                                                                                                                   (8) 

where, k is the constant whose value is to be determined. 

Minimum mean square error of dy   at optimum value of  
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Srivastava (1967) suggested an estimator 
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where, 1 is an arbitrary constant. 

Up to the first of approximation, the bias and minimum mean square error of Sy  at optimum 
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
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


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
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














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









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
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
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11

1C1)y(MSE                                                          (12) 

         Walsh (1970) suggested an estimator wy  

 













x22

x
w )1(x

yy


                                                                                                    

(13) 

where, 2 is an arbitrary constant. 
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Up to the first order of approximation, the bias and minimum mean square error of wy  at 

optimum value of 

x2
x

2
v

y
2

C1

C





















 , are  respectively, given by      













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
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 xy22
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x
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2yw CC1C)y(B                                                                             (14) 
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
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1C1)y(MSE                                                         (15) 

Ray and Sahai (1979) suggested the following estimator 

  











x
33RS

xyy)1(y                                                                                                   (16) 

where, 3 is an  arbitrary constant. 

Up to the first order of approximation, the bias and mean square of RSy at optimum value of 























2
x

2
v

y
3

1

C
   are respectively, given by 

xyy3RS CC)y(B                                                                                                          (17) 
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1C1)y(MSE                                                         (18) 

3.  SUGGESTED ESTIMATOR  

Following Singh and Solanki (2013), we suggest the following difference-type class of 

estimators for estimating population mean Y of study variable y as 
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 










 *

*
x*

x21
*

21p x
)1(xyt                                                                             (19)  

     where ),( 21   are suitably chosen scalars such that MSE of the proposed estimator is 

minimum, )x(x*  , )( x
*
x  with ),n(  are either constants or function of some 

known population parameters. Here it is interesting to note that some existing estimators have 

been shown as the members of proposed class of estimators pt  for different values of 

),,,,( 21  , which is summarized in Table 1. 

Table 1: Members of suggested class of estimators 

                                                                                               Values of Constants 

Estimators                                                  1               2                                                    

y [Usual unbiased]                                        1                 0                 0                  -                   - 

 

Ry [Usual ratio]                                            1                 0                 1                  1                  0 

 

dy [Usual difference]                                   1                2                0                 -1               x  

 

Sy [Srivastava (1967)]                                   1                 0                                  1                 0 

 

DSy [Dubey and Singh]                                 1              2                0                 1                 0 

 

     The properties of suggested estimator are derived in the following theorems. 

Theorem 1.1: Estimator pt  in terms of 1,0i;ei    expressed as: 

  10yy0
2
111

2
1

*
x

*
x1

*
xp eeAeBCeACeCeBAet   

                                                                                    2
11x2 Aee   
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ignoring the terms )ee(E s
j

r
i for (r+s)>2,where r,s=0,1,2... and 1,0i ; 1j  (first order of 

approximation). 

where, 





x

xA , 2A
2

)1(B 
  and .C *

xy    

Proof        

                










 *

*
x*

x21
*

21p x
)1(xyt  

 Or 

   
 1

*
x11x201p Ae1)1(e)e1(t                                                              (20) 

We assume 1eA 1  , so that the term  )Ae1( 1 is expandable. Expanding the right hand 

side (20) and neglecting the terms of e’s having power greater than two, we have            

 10yy0
2
111

2
1

*
x

*
x1

*
xp eeAeBCeACeCeBAet   

                                                                                                       2
11x2 Aee   

Theorem: 1.2 Bias of the estimator pt  is given by 

  1x201y111
*
xp AABCB)t(B                                                         (21) 

Proof: 

          )t(E)t(B ypp   

                    =E   10yy0
2
111

2
1

*
x

*
x1y

*
x eeAeBCeACeCeBAe   

                                                                                                     2
11x2 Aee   

                    =   1x201y111
*
x AABCB   

where, 0110 and,   are already defined in section 3. 
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Theorem 1.3: MSE of the estimator pt , up to the first order of approximation is 

   1
2
x

22
201y

2222
10

2
y

22
1p AC4BC2CAC)t(MSE   

       CACABCBCC2BC2AC *
xy01

*
x

22*
x

2
1

2
1

*
x

2
x

22
1

2   

   101yx21
*
x1x2 CA22CA2                                                        (22) 

 Proof: 

2
ypp )t(E)t(MSE   

                =     2
11x210y

2
1y011 eAeeeABCeeCeACE       

                          22
1

*
x

*
x1 eBAeC    

Squaring and then taking expectations of  both sides, we get the  MSE of  the suggested 

estimator up to the first order of approximation as 

   1
2
x

22
201y

2222
10

2
y

22
1p AC4BC2CAC)t(MSE   

       CACABCBCC2BC2AC *
xy01

*
x

22*
x

2
1

2
1

*
x

2
x

22
1

2   

   101yx21
*
x1x2 CA22CA2   

Equation (22) can be written as: 

 52142312
2
21

2
1p 222)t(MSE                                                   (23) 

Differentiating (23) with respect to ),( 21  and equating them to zero, we get the optimum 

values of  ),( 21   as  

2
521

5432
)opt(1




 and 2

521

5341
)opt(2




  

where,         01y
2222

10
2
y

2
1 AC4BC2CAC   

                   1
2
x

2
2   
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                      CACABCBCC *
xy01

*
x

22*
x

2
1

2
3   

                    CA *
x1x4   

                    .CA2 101yx5   

                    *
x

2
x

22
1

2 BC2AC   

In the Table 2 some estimators are listed which are particular members of the suggested class 

of estimators tp   for different values of ),,(  . 

 

 

Table  2:  Particular members of the suggested class of estimators tp 

Estimators  

 

                          Values of constants                                                                               

                                                             

  









x
)1(xyt x

x21211                                              -1                 1             0 

  













1x
1)1)(1()1x(yt x

x21212                           1                 1              1 

 
1

x
x21213 x

)1)(1()1x(yt










                             -1                  1             1 

 
1

x
x21214 x

))(1()x(yt














                      -1                  1              

 
1

x

xx
xx21x215 Cx

C)C)(1()Cx(yt














           -1                  1            xC  
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  













x

xx
xx21x216 Cx

C)C)(1()Cx(yt               -1                 1         xC  

 
1

x

xx
xx21217 Cx

C)C)(1()1x(yt














                 -1               -1             -1 

4. EMPIRICAL STUDY              

Data statistics: The data used for empirical study has been taken from Gujarati (2007) 

Where, iY =True consumption expenditure, 

             iX =True income, 

             iy =Measured consumption expenditure, 

             ix = Measured income. 

n        y                   x                  2
y                   2

x                                      2
u                2

v  

10      127                170                1278                3300               0.964             36                 36 

 

The percentage relative efficiencies (PRE) of various estimators with respect to the mean per 

unit estimator of Y , that is y ,can be obtained as 

100*
(.)MSE
)y(Var(.)PRE   

Table 3: MSE and PRE of estimators with respect to y  

      Estimators                    Mean Square Error                      Percent Relative Efficiency 

           y                                         131.4                                                         100 

          Ry                                     21.7906                                                   603.0118 

          dy                                      13.916                                                     944.1285 
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          Sy                                      13.916                                                     944.1285 

          DSy                                    13.916                                                     944.1285 

           1t                                      10.0625                                                   1236.648      

           2t                                      9.92677                                                   1323.693 

           3t                                      6.82471                                                   1925.356 

           4t                                      6.9604                                                     1887.818                                  

           5t                                      9.3338                                                     1407. 774 

           6t                                      11.9246                                                   1101.923 

           7t                                      7.9917                                                     1644.194 

5. PERFORMANCE OF SUGGESTED ESTIMATOR IN STRATIFIED RANDOM 

SAMPLING          

              SSYYMMBBOOLLSS  AANNDD  SSEETTUUPP  

         Consider a finite population )u,...,u,u(U N21 of size N and let X and Y respectively 

be the auxiliary and study variables associated with each unit )N,......,2,1j(u j  of 

population. Let the population of N be stratified in to L strata with the thh  stratum containing 

hN units, where h=,1,2,3,….,L such that 



L

1i
h NN . A simple random size nh is drown 

without replacement from the hth stratum such that nn
L

1i
h 



. Let )X,y( hihi of two 

characteristics (Y,X) on ith unit of the hth stratum, where i=,1,2,…,Nh. In addition let 

( 



hn

1i
hi

h
h y

n
1y , 




hn

1i
hi

h
h x

n
1x ), 

( h

n

1i
hsth

n

1i
hst xWx,yWy

hh




 ), 
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(  
 


h hN

1i

N

1i
hi

h
Xhhi

h
Yh x

N
1,y

N
1 ), 

And (  
 


L

1h

N

1i
XhhXYhhY

h

W,W ) be the samples means and population means of(Y,X) 

respectively, where 
N

NW h
h  is the stratum weight. Let the observational or measurement 

errors be 

               hihihi Yyu                                                                                                           (24) 

               hihihi Xxv                                                                                                          (25) 

Where uhi and vhi  are stochastic in nature and are uncorrelated with mean zero and variances 
2

Vh and 2
Uh respectively. Further let h be the population correlation coefficient between Y 

and X in the hth stratum. It is also assumed that the finite population correction  terms 

)f1( h and )f1(  can be ignored where 
h

h
h N

nf  and 
N
nf  . 

        LLAARRGGEE  SSAAMMPPLLEE  AAPPPPRROOXXIIMMAATTIIOONN  

Let, 

 )e1(y h0Yst  , and )e1(x h1Xst   

such that, 0)e(E)e(E h1h0  , 

0
Yhh

2
Yh

2
Yh

2
Uh

h

2
Yh2

h0 n
C1

n
C)e(E 



















 , 

1
Xhh

2
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2
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Vh

h
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Xh2

h1 n
C1

n
C)e(E 



















 , 

01XhYhh
h

h1h0 CC
n
1)ee(E  . 

where, ,C
Yh

Yh
Yh




 ,C

Xh

Xh
Xh




 2

Yh
2
Uh

2
Uh

Yh



 and .2

Xh
2
Vh

2
Vh

Xh



  
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  EEXXIISSTTIINNGG  EESSTTIIMMAATTOORRSS  AANNDD  TTHHEEIIRR  PPRROOPPEERRTTIIEESS 

sty  is usual unbiased estimator in stratified random sampling scheme. 

The usual combined ratio estimator in stratified random sampling in the presence of 

measurement error is defined as-  

      
st

x
stR x

yT 
                                                                                                                      (26) 

The usual combined product estimator in the presence of measurement error is 

defined as- 

     
x

st
stPR

x
yT


                                                                                                                     (27) 

Combined difference estimator in stratified random sampling is defined in the 

presence of measurement errors for a population mean, as 

)x(dyT stxstD                                                                                                             (28) 

The variance and mean square term of above estimators, up to the first order of 

approximation, are respectively given by 


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













 2
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
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6. SUUGESTED ESTIMATOR AND ITS PROPERTIES  

       Let B(.) and M(.) denote the bias and mean square error (M.S.E) of an estimator under 

given sampling design. Estimator tp defined in equation (19) can be written in stratified 

random sampling as  

  










 *

st

*
x*

x21
*
st2st1P x

)1(xyT                                                                        (33) 

where ),( 21   are suitably chosen scalars such that MSE of proposed estimator is 

minimum, )x(x st
*
st  , )( x

*
x  with ),n(  are either constants or functions of 

some known population parameters. Here it is interesting to note that some existing 

estimators have been found particular members of proposed class of estimators Tp for 

different values of ),,,,( 21  , which are summarized  in Table 4. 

Table 4:  Members of proposed class of estimators Tp 

                                                                                           Values of Constants 

Estimators                                                   1               2                                                    

sty [Usual unbiased]                                     1                 0                 0                  -                   - 

 

RT [Usual ratio]                                            1                0                 1                  1                  0 

 

PRT [Usual product]                                    1                 0                 -1                  1                  0 

 

DT [Usual difference]                                  1             2                0                 -1                   x  
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Theorem 2.1: Estimator PT  in terms of 1,0; iei  by ignoring the terms )( s
jh

r
iheeE for 

(r+s)>2,where r,s=0,1,2... and 1,0i ; 1j , can be written as 

  h1h0yyh0
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2
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x
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*
xP ee'Aee'C'BCe'A'Ce'Be'AT   

                  2
h1h1x2 e'Ae   

where, 
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Proof        
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 h1

*
x1h1x2h01 e'A1)1(e)e1(                                   (34) 

We assume 1' 1 heA , so that the term  )'1( 1heA is expandable. Thus by expanding the 

right hand side (20) and neglecting the terms of e’s having power greater than two, we have 

  Tp =   h1h0yyh0
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2
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*
x
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                                                                                                    2
h1h1x2 e'Ae   

Theorem: 2.2 Bias of pT  is given by 

  1x201y111
*
xP 'A'A'C'B'B)T(B                                                 (35) 

Proof: 
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            =   1x201y111
*
x 'A'A'C'B'B   

where, 0110 and,   are already defined in section 3. 

Theorem: 2.3 Mean square error of Tp, up to the first order of approximation is given by 
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 MSE(Tp) can also be written as   
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Differentiating equation (37) with respect to ),( 21  and equating it to zero, we get the 

optimum values of  ),( 21   respectively, as  
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                    .'C'A2 101yx5   

                    *
x

2
x

22
1

2 'C'B2'A'C   

With the help of these values, we get the minimum MSE of the suggested estimator Tp.  

7. DISCUSSION AND CONCLUSION 

     In the present study, we have proposed difference-type class of estimators of the 

population mean of a study variable when information on an auxiliary variable is known in 

advance. The asymptotic bias and mean square error formulae of suggested class of 

estimators have been obtained. The asymptotic optimum estimator in the suggested class has 

been identified with its properties. We have also studied some traditional methods of 

estimation of population mean in the presence of measurement error such as usual unbiased, 

ratio, usual difference estimators suggested by Srivastava(1967), dubey and singh( 2001), 

which are found to be particular members of suggested class of estimators. In addition, some 

new members of suggested class of estimators have also been generated in simple random 

sampling case. An empirical study is carried to throw light on the performance of suggested 

estimators over other existing estimators using simple random sampling scheme. From the 

Table 3, we observe that suggested estimator t3 performs better than the other estimators 

considered in the present study and which reflects the usefulness of suggested method in 

practice. 
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The purpose of writing this book is to suggest some improved estimators 
using auxiliary information in sampling schemes like simple random sampling, 
systematic sampling and stratified random sampling. 
 This volume is a collection of five papers, written by nine co-authors 
(listed in the order of the papers): Rajesh Singh, Mukesh Kumar, Manoj Kr. 
Chaudhary, Cem Kadilar, Prayas Sharma, Florentin Smarandache, Anil 
Prajapati, Hemant Verma, and Viplav Kr. Singh. 
 In first paper dual to ratio-cum-product estimator is suggested and its 
properties are studied. In second paper an exponential ratio-product type 
estimator in stratified random sampling is proposed and its properties are 
studied under second order approximation. In third paper some estimators are 
proposed in two-phase sampling and their properties are studied in the 
presence of non-response. 
 In fourth chapter a family of median based estimator is proposed in 
simple random sampling. In fifth paper some difference type estimators are 
suggested in simple random sampling and stratified random sampling and their 
properties are studied in presence of measurement error. 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 




