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THE PREFACE 

 

This book chapter, Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their 

Applications in Decision Analysis, explores the development and importance of these 

mathematical approaches in managing uncertainty and imprecision in decision-making. 

 

Fuzzy set theory, pioneered by Lotfi Zadeh in 1965, introduced the concept of partial 

membership, moving beyond traditional binary logic to offer a more flexible representation of 

ambiguity in real-world problems. Expanding on this, Krassimir Atanassov introduced 

intuitionistic fuzzy sets in 1983, incorporating both membership and non-membership degrees for 

a more detailed depiction of uncertainty. Later, in 1998, Florentin Smarandache introduced 

neutrosophic set theory, which added the concept of indeterminacy, enabling a three-fold 

perspective—truth, falsity, and indeterminacy—to better model complex and uncertain scenarios. 

The book focuses on the practical applications of these theories in decision-making, demonstrating 

how they improve uncertainty modeling and facilitate more effective decision-making across 

various fields. By leveraging these frameworks, decision-makers can better navigate complexity, 

leading to more accurate and dependable outcomes. 

 

Ultimately, this book  highlights the progression from fuzzy to intuitionistic fuzzy to 

neutrosophic set theories as a significant advancement in capturing and analyzing uncertainty 

within decision-making contexts. 
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TANGENT AND COTANGENT SIMILARITY MEASURES OF FERMATEAN 

QUADRI PARTITIONED NEUTROSOPHIC SETS 

M.Ramya 1 S. Murali 2 and R. Radha 3 

1Assistant Professor, Department of Science and Humanities, Jansons Institute of Technology, 

Karumathampatti. sramya.santhosh@gmail.com 

2Assistant Professor, Department of Mathematics, Coimbatore Institute of Technology,  

Coimbatore murali.s@cit.edu.in. 

3Assistant Professor, Department of Science and Humanities, Karpagam College of Engineering, 

Coimbatore.  

*Corresponding Author: radharmat2020@gmail.com. 

 

Abstract:  In this Chapter, a new tangent and cotangent similarity measures between two Fermatean 

Quadripartitioned Neutrosophic [FQN] sets with truth membership, falsity membership, ignorance and 

contradiction membership as Neutrosophic component is proposed and its properties are investigated. 

Also, the weighted similarity measures are also studied with a decision-making problem. 

 

Keywords:  FQN set, Tangent similarity measure, cotangent similarity measure. 

   

1. Introduction 

           Traditionally, the teaching and learning method uses several exercises fixing, sending and 

evaluating ideas and information about a subject. Learning is that the method of getting relative 

permanent changes in understanding, attitude, knowledge, information, capability and skill through 

expertise. A modification are often set or involuntary, to raised or worse learning. The training method 

is an enclosed cognitive event. To assist this teaching and learning method, it is necessary the utilization 

of a laptop tool ready to stimulate these changes. Also, it is necessary that it will operate as validation 

and serving tool to the college students. 

The COVID-19 pandemic has caused important disruption with in the domain of education, that is 

considered as essential determinant for economic progress of any country. Even developed countries 

are waging a battle against COVID-19 for minimizing the impact on their economy because of 

prolonged lockdown. Education sector isn’t an exception, and method of educational delivery has been 

grossly affected. There has been unforeseen and impetuous transition from real classroom to on-line 

and virtual teaching methodology across the world. There’s an enormous question on the sustainability 

of online mode of teaching post-pandemic and its percussions on world education market. Impact of 

lockdown on the teaching—learning method has been studied in present paper with the objective to 

mailto:radharmat2020@gmail.com
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assess the quality of online classes and challenges associated with them. The paper proposes about the 

benefits of social media in virtual education among College Students 

In order to deal with uncertainties, the thought of fuzzy sets and fuzzy set operations was introduced 

by Zadeh [17]. The speculation of fuzzy topological space was studied and developed by C.L. Chang 

[3]. The paper of Chang sealed the approach for the subsequent growth of the various fuzzy 

topological ideas. Since then, a lot of attention has been paid to generalize the fundamental ideas of 

general topology in fuzzy setting and therefore a contemporary theory of fuzzy topology has been 

developed. Atanassov and plenty of researchers [1] worked on intuitionistic fuzzy sets within 

the literature.   Florentine Smarandache [15] introduced the idea of Neutrosophic set in 

1995 that provides the information of neutral thought by introducing the new issue referred to 

as uncertainty within the set. Thus neutrosophic set was framed and it includes the parts of truth 

membership function(T), indeterminacy membership function(I), and falsity membership 

function(F) severally. Neutrosophic sets deals with non-normal interval of ]−0 1+[. Pentapartitioned 

neutrosophic set and its properties were introduced by Rama Malik and Surpati Pramanik [14]. In this 

case, indeterminacy is divided into three components: contradiction, ignorance, and an unknown 

membership function. The concept of Fermatean Quadripartitioned Neutrosophic sets s was initiated 

by M.Ramya[13].  

Similarity measure is an important topic in the current fuzzy, Pythagorean , Neutrosophic and 

different hybrid environments. Recently, the improved correlation coefficients of Pentapartitioned 

Neutrosophic Pythagorean sets and Quadripartitioned Neutrosophic Pythagorean sets was introduced 

by R. Radha and A. Stanis Arul Mary. Pranamik and Mondal [5,6] has also proposed weighted similarity 

measures based on tangent function and cotangent function and its application on medical diagnosis. In 

this paper, the weighted similarity measures of Tangent and Cotangent functions has been applied to 

PNP sets in virtual education during Covid Pandemic. 

 

      2. Preliminaries 

Definition 2.1 [15] 

Let X be a universe. A Neutrosophic set A on X can be defined as follows: 

𝐴 = {< 𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑋} 

Where 𝑇𝐴  , 𝐼𝐴, 𝐹𝐴: 𝑈 → [0,1] 𝑎𝑛𝑑 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴 (𝑥) ≤ 3 

 

Definition 2. 2[9] 

Let X be a universe. A Fermatean Quadripartitioned neutrosophic [FQN] set A with neutrosophic 

components for A on X is an object of the form  

𝐴 = {< 𝑥, 𝑇𝐴, 𝐶𝐴, 𝑈𝐴, 𝐹𝐴 >: 𝑥 ∈ 𝑋} 
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Where  (𝑇𝐴)
3 + (𝐶𝐴)

3 + (𝑈𝐴)
3 + (𝐹𝐴 )

3 ≤ 2 

Here, 𝑇𝐴(𝑥) is the truth membership, 𝐶𝐴(𝑥) is contradiction membership, 𝑈𝐴(𝑥) is ignorance 

membership and 𝐹𝐴(𝑥) is the false membership. 

 

Definition 2.3 [14] 

Let P be a non-empty set. A Pentapartitioned neutrosophic set A over P characterizes each element p in 

P  a truth -membership function  𝑇𝐴 , a contradiction membership function  𝐶𝐴, an ignorance 

membership function  𝐺𝐴, unknown membership function  𝑈𝐴 and a false membership function  𝐹𝐴 , 

such that for each p in P. 

𝑇𝐴 + 𝐶𝐴 + 𝐺𝐴 + 𝑈𝐴 + 𝐹𝐴 ≤ 5 

Definition 2. 4 [9] 

The complement of a FQN set A on R Denoted by AC or A* and is defined   as  

AC = {< 𝑥, 𝐹𝐴(𝑥), 𝑈𝐴 (𝑥), 𝐶𝐴(𝑥),𝑇𝐴(𝑥) > ∶ 𝑥 ∈ 𝑋}  

 

Definition 2.5 [9] 

Let   A = < 𝑥, 𝑇𝐴(𝑥), 𝐶𝐴(𝑥), 𝑈𝐴(𝑥), 𝐹𝐴(𝑥) > and 

 B = < 𝑥, 𝑇𝐵(𝑥), 𝐶𝐵(𝑥), 𝑈𝐵(𝑥), 𝐹 𝐵(𝑥) > are FQN sets.  

Then 

A∪ B=<x,𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),𝑚𝑎𝑥(𝐶𝐴(𝑥), 𝐶𝐵(𝑥)), min (𝑈𝐴(𝑥), 𝑈 𝐵(𝑥)),min (𝐹𝐴(𝑥), 𝐹𝐵(𝑥)), >  

A∩ B=< 𝑥𝑚𝑖𝑛(𝑇𝐴(𝑥),𝑇𝐵(𝑥)),𝑚𝑖𝑛(𝐶𝐴(𝑥), 𝐶𝐵(𝑥)),𝑚𝑎𝑥(𝑈𝐴(𝑥), 𝑈𝐵(𝑥)),𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹 𝐵(𝑥)) > 

 

Definition 2.6 [9] 

A FQN topology on a nonempty set R is a family of a FQN sets in R satisfying the following axioms. 

1) 0,1∈ 𝜏  

2) 𝑅1 ∩ 𝑅2 ∈ 𝜏 for any 𝑅1, 𝑅2 ∈ 𝜏 

3) ⋃𝑅𝑖  ∈ 𝜏 for any 𝑅𝑖: 𝑖 ∈ 𝐼 ⊆ 𝜏 

The complement R* of FQN open set (FQNOS, in short) in FQN topological space [FQNTS] (R,𝝉), is 

called a FQN closed set [FQNCS]. 

 

      3.Tangent and Cotangent Similarity Measures of FQN Sets 

Definition 3.1 

 Let P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟)): 𝑟 ∈ 𝑅} and  

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟), : 𝑟 ∈ 𝑅} be two Fermatean Quadripartitioned Neutrosophic 

numbers with Neutrosophic components. Now tangent similarity function which measures the 
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similarity between two vectors based only on the direction, ignoring the impact of the distance between 

them can be presented as follows 

𝑇𝐹𝑄𝑁(𝑃, 𝑄) =  
1

𝑛
∑ [1 − tan (

𝜋

16
[|𝐵1𝑃

3(𝑟𝑖) − 𝐵1𝑄
3 (𝑟𝑖)|

𝑛
𝑖=1 +|𝐵2𝑃

3(𝑟𝑖) − 𝐵2𝑄
3 (𝑟𝑖)| + 

|𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| + |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)|)] 

 

Theorem 3. 2 

The defined tangent similarity measure 𝑇𝐹𝑄𝑁(𝑃, 𝑄) between FQN set P and Q satisfies the following 

properties 

1. 0 ≤  𝑇𝐹𝑄𝑁(𝑃, 𝑄)  ≤ 1 ; 

2. 𝑇𝐹𝑄𝑁(𝑃, 𝑄) = 1 iff P = Q; 

3. 𝑇𝐹𝑄𝑁(𝑃, 𝑄) = 𝑇𝐹𝑄𝑁(𝑄, 𝑃); 

4. If T is a FQN set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

      𝑇𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝑇𝐹𝑄𝑁(𝑃, 𝑄) and 𝑇𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝑇𝐹𝑄𝑁(𝑄, 𝑇). 

Proof 

1) As the truth membership, contradiction membership, ignorance membership and falsity membership 

function of the FQN sets and the value of the tangent function also is within [0,1]. 

Hence 0≤  𝑇𝐹𝑄𝑁(𝑃, 𝑄)  ≤ 1. 

2) For any two FQN sets P and Q if P = Q, this implies B1𝑃(𝑟𝑖) =   B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) =   B2𝑄(𝑟𝑖), 

B3𝑃(𝑟𝑖) =   B3𝑄(𝑟𝑖),and B4𝑃(𝑟𝑖) =   B4𝑄(𝑟𝑖) . 

Hence |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| = 0, |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| = 0, |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| = 0 and 

|𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| = 0 . 

Thus  𝑇𝐹𝑄𝑁(𝑃, 𝑄)  = 1. 

Conversely, if 𝑇𝐹𝑄𝑁(𝑃,𝑄) = 1, then |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| = 0, |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| = 0, |𝐵3𝑃
3(𝑟𝑖) −

𝐵3𝑄
3 (𝑟𝑖)| = 0 and|𝐵4𝑃

3(𝑟𝑖) − 𝐵4𝑄
3 (𝑟𝑖)| = 0 since tan(0) = 0. So we can write B1𝑃(𝑟𝑖) =   B1𝑄(𝑟𝑖), 

B2𝑃(𝑟𝑖) =   B2𝑄(𝑟𝑖), B3𝑃(𝑟𝑖) =   B3𝑄(𝑟𝑖) And B4𝑃(𝑟𝑖) =   B4𝑄(𝑟𝑖). 

Hence P = Q. 

3) The Proof is obvious 

4) If P ⊆ 𝑄 ⊆ 𝑇 then B1𝑃(𝑟𝑖)  ≤  B1𝑄(𝑟𝑖) ≤ B1𝑇(𝑟𝑖), B2𝑃(𝑟𝑖)  ≤  B2𝑄(𝑟𝑖) ≤ B2𝑇(𝑟𝑖), 

B3𝑃(𝑟𝑖)  ≤  B3𝑄(𝑟𝑖) ≤ B3𝑇(𝑟𝑖), B4𝑃(𝑟𝑖)  ≤  B4𝑄(𝑟𝑖) ≤ B4𝑇(𝑟𝑖) , 

|𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| ≤ |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)|, 

|𝐵1𝑄
3 (𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)| ≤ |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)|, 

|𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| ≤ |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)|, 
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|𝐵2𝑄
3 (𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)| ≤ |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)|, 

|𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| ≤ |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)|, 

|𝐵3𝑄
3 (𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)| ≤ |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)|, 

 |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| ≤ |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)|, 

|𝐵4𝑄
3 (𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)| ≤ |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)| 

Thus,  

𝑇𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝑇𝐹𝑄𝑁(𝑃, 𝑄) and 𝑇𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝑇𝐹𝑄𝑁(𝑄, 𝑇) 

Since tangent function is increasing in the interval [0, 
𝜋

4
]. 

 

Definition 3.3 

 Let P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟)): 𝑟 ∈ 𝑅} and  

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟))(𝑟): 𝑟 ∈ 𝑅} be two FQN with Neutrosophic components. 

Now weighted tangent similarity function which measures the similarity between two vectors based 

only on the direction, ignoring the impact of the distance between them can be presented as follows 

𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) =  ∑  𝑤𝑖[1 − tan (
𝜋

16
[|𝐵1𝑃

3(𝑟𝑖) − 𝐵1𝑄
3 (𝑟𝑖)|

𝑛
𝑖=1 +|𝐵2𝑃

3(𝑟𝑖) − 𝐵2𝑄
3 (𝑟𝑖)| + |𝐵3𝑃

3(𝑟𝑖) −

𝐵3𝑄
3 (𝑟𝑖)| + |𝐵4𝑃

3(𝑟𝑖) − 𝐵4𝑄
3 (𝑟𝑖)|)] 

Where 𝑤𝑖 ∈ [0,1], 𝑖 = 0,1,2…𝑛  are the weights and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. If we take 𝑤𝑖 =

1

𝑛
, 𝑖 =

0,1,2… , 𝑛, then 𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) =  𝑇𝐹𝑄𝑁(𝑃, 𝑄). 

 

Theorem 3. 4 

The defined weighted tangent similarity measure 𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) between FQN set P and Q satisfies the 

following properties 

1) 0 ≤  𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄)  ≤ 1 ; 

2) 𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) = 1 iff P = Q; 

3) 𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) = 𝑇𝑊𝐹𝑄𝑁(𝑄, 𝑃); 

4) If T is a FQN set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

            𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) and 𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝑇𝑊𝐹𝑄𝑁(𝑄, 𝑇). 
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Proof 

1) As the truth membership, contradiction membership, ignorance membership, falsity membership and 

the unknown membership function of the FQN sets and the value of the tangent function also is within 

[0,1] and where 𝑤𝑖 ∈ [0,1], 𝑖 = 0,1,2…𝑛  are the weights and  

∑ 𝑤𝑖
𝑛
𝑖=1 = 1.  

Hence 0≤  𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄)  ≤ 1. 

B3𝑃(𝑟𝑖) =   B3𝑄(𝑟𝑖)and B4𝑃(𝑟𝑖) =   B4𝑄(𝑟𝑖). 

Hence |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| = 0, |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| = 0, |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| = 0 and 

|𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| = 0 . 

Thus  𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄)  = 1. 

Conversely, if 𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) = 1, then |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| = 0, |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| = 0,

|𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| = 0  𝑎𝑛𝑑 |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| = 0 since tan(0) = 0. So we can write B1𝑃(𝑟𝑖) =

  B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) =   B2𝑄(𝑟𝑖), B3𝑃(𝑟𝑖) =   B3𝑄(𝑟𝑖)and B4𝑃(𝑟𝑖) =   B4𝑄(𝑟𝑖). 

Hence P = Q. 

3) The Proof is obvious 

4) If P ⊆ 𝑄 ⊆ 𝑇 then B1𝑃(𝑟𝑖)  ≤  B1𝑄(𝑟𝑖) ≤ B1𝑇(𝑟𝑖), B2𝑃(𝑟𝑖)  ≤  B2𝑄(𝑟𝑖) ≤ B2𝑇(𝑟𝑖), 

B3𝑃(𝑟𝑖)  ≤  B3𝑄(𝑟𝑖) ≤ B3𝑇(𝑟𝑖) and  B4𝑃(𝑟𝑖)  ≤  B4𝑄(𝑟𝑖) ≤ B4𝑇(𝑟𝑖) and ∑ 𝑤𝑖 = 1.𝑛
𝑖=1  

|𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| ≤ |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)|, 

|𝐵1𝑄
3 (𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)| ≤ |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)|, 

|𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| ≤ |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)|, 

|𝐵2𝑄
3 (𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)| ≤ |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)|, 

|𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| ≤ |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)|, 

|𝐵3𝑄
3 (𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)| ≤ |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)|, 

|𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| ≤ |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)|, 

|𝐵4𝑄
3 (𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)| ≤ |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)| 

Thus,  

𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) and 𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝑇𝑊𝐹𝑄𝑁(𝑄, 𝑇) 

Since tangent function is increasing in the interval [0, 
𝜋

4
]. 

 

Definition 3.5 

 Assume that P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟)): 𝑟 ∈ 𝑅} and  
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Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟))(𝑟): 𝑟 ∈ 𝑅} are two FQN set with dependent Neutrosophic 

components. A cotangent similarity measure between two FQN sets P and Q is proposed as follows 

𝐶𝑂𝑇𝐹𝑄𝑁(𝑃,𝑄) =  
1

𝑛
∑  [cot (

𝜋

16
[4 + |𝐵1𝑃

3(𝑟𝑖) − 𝐵1𝑄
3 (𝑟𝑖)|

𝑛
𝑖=1 +|𝐵2𝑃

3(𝑟𝑖) − 𝐵2𝑄
3 (𝑟𝑖)| + |𝐵3𝑃

3(𝑟𝑖) −

𝐵3𝑄
3 (𝑟𝑖)| + |𝐵4𝑃

3(𝑟𝑖) − 𝐵4𝑄
3 (𝑟𝑖)|)] 

 

Theorem 3. 6 

The cotangent similarity measure 𝐶𝑂𝑇𝐹𝑄𝑁(𝑃,𝑄) between FQN set P and Q  also satisfies the 

following properties 

1) 0 ≤  𝐶𝑂𝑇𝐹𝑄𝑁(𝑃, 𝑄)  ≤ 1 ; 

2) 𝐶𝑂𝑇𝐹𝑄𝑁(𝑃, 𝑄) = 1 iff P = Q; 

3) 𝐶𝑂𝑇𝐹𝑄𝑁(𝑃, 𝑄) = 𝐶𝑂𝑇𝐹𝑄𝑁(𝑄, 𝑃); 

4) If T is a PNP set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

𝐶𝑂𝑇𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝐶𝑂𝑇𝐹𝑄𝑁(𝑃,𝑄) and  CO𝑇𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝐶𝑂𝑇𝐹𝑄𝑁(𝑄, 𝑇). 

 

Definition 3. 7 

 Assume that P = {(r, B1𝑃(𝑟), B2𝑃(𝑟), B3𝑃(𝑟), B4𝑃(𝑟)): 𝑟 ∈ 𝑅} and  

Q = {(r, B1𝑄(𝑟), B2𝑄(𝑟), B3𝑄(𝑟), B4𝑄(𝑟)): 𝑟 ∈ 𝑅} are two FQN numbers as Neutrosophic 

components. A weighted cotangent similarity measure between two FQN sets P and Q is proposed as 

follows 

𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) =  ∑  𝑤𝑖[cot (
𝜋

16
[4 + |𝐵1𝑃

3(𝑟𝑖) − 𝐵1𝑄
3 (𝑟𝑖)|

𝑛
𝑖=1 +|𝐵2𝑃

3(𝑟𝑖) − 𝐵2𝑄
3 (𝑟𝑖)| + |𝐵3𝑃

3(𝑟𝑖) −

𝐵3𝑄
3 (𝑟𝑖)| + |𝐵4𝑃

3(𝑟𝑖) − 𝐵4𝑄
3 (𝑟𝑖)|)] 

Where 𝑤𝑖 ∈ [0,1], 𝑖 = 0,1,2…𝑛  are the weights and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. If we take 𝑤𝑖 =

1

𝑛
, 𝑖 =

0,1,2… , 𝑛, then 𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) =  𝐶𝑂𝑇𝐹𝑄𝑁(𝑃,𝑄). 

 

Theorem 3. 8 

The weighted cotangent similarity measure 𝐶𝑂𝑇𝑃𝑁𝑃(𝑃,𝑄) between PNP set P and Q  also satisfies the 

following properties 

1) 0 ≤  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄)  ≤ 1 ; 

2) 𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) = 1 iff P = Q; 

3) 𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄) = 𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑄, 𝑃); 

4) If T is a PNP set in R and P ⊆ 𝑄 ⊆ 𝑇 then 

𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) and  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑄, 𝑇). 
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Proof 

1) As the truth membership, contradiction membership, ignorance membership and falsity membership 

function of the FQN sets and the value of the tangent function also is within [0,1] and ∑ 𝑤𝑖 = 1.
𝑛
𝑖=1  

Hence 0≤  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄)  ≤ 1. 

2) For any two FQN sets P and Q if P = Q, this implies B1𝑃(𝑟𝑖) =   B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) =   B2𝑄(𝑟𝑖), 

B3𝑃(𝑟𝑖) =   B3𝑄(𝑟𝑖), B4𝑃(𝑟𝑖) =   B4𝑄(𝑟𝑖). 

Hence |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| = 0, |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| = 0, |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| = 0, 

|𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| = 0 . 

Thus  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄)  = 1. 

Conversely, if 𝑇𝑊𝑃𝑁𝑃(𝑃, 𝑄) = 1, then |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| = 0, |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| = 0,

|𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| = 0 And|𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| = 0  since tan(0) = 0. So we can write B1𝑃(𝑟𝑖) =

  B1𝑄(𝑟𝑖), B2𝑃(𝑟𝑖) =   B2𝑄(𝑟𝑖), B3𝑃(𝑟𝑖) =   B3𝑄(𝑟𝑖) 𝑎𝑛𝑑 B4𝑃(𝑟𝑖) =   B4𝑄(𝑟𝑖). 

Hence P = Q. 

3) The Proof is obvious 

4) If P ⊆ 𝑄 ⊆ 𝑇 then B1𝑃(𝑟𝑖)  ≤  B1𝑄(𝑟𝑖) ≤ B1𝑇(𝑟𝑖), B2𝑃(𝑟𝑖)  ≤  B2𝑄(𝑟𝑖) ≤ B2𝑇(𝑟𝑖), 

B3𝑃(𝑟𝑖)  ≥  B3𝑄(𝑟𝑖) ≥ B3𝑇(𝑟𝑖), B4𝑃(𝑟𝑖)  ≥ B4𝑄(𝑟𝑖) ≥ B4𝑇(𝑟𝑖) and ∑ 𝑤𝑖 = 1.
𝑛
𝑖=1  

|𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑄

3 (𝑟𝑖)| ≤ |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)|, 

|𝐵1𝑄
3 (𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)| ≤ |𝐵1𝑃
3(𝑟𝑖) − 𝐵1𝑇

3 (𝑟𝑖)|, 

|𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑄

3 (𝑟𝑖)| ≤ |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)|, 

|𝐵2𝑄
3 (𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)| ≤ |𝐵2𝑃
3(𝑟𝑖) − 𝐵2𝑇

3 (𝑟𝑖)|, 

|𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑄

3 (𝑟𝑖)| ≤ |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)|, 

|𝐵3𝑄
3 (𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)| ≤ |𝐵3𝑃
3(𝑟𝑖) − 𝐵3𝑇

3 (𝑟𝑖)|, 

|𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑄

3 (𝑟𝑖)| ≤ |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)|, 

|𝐵4𝑄
3 (𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)| ≤ |𝐵4𝑃
3(𝑟𝑖) − 𝐵4𝑇

3 (𝑟𝑖)| 

The cotangent function is decreasing function within the interval [0, 
𝜋

4
]. 

Hence ∑ 𝑤𝑖 = 1.
𝑛
𝑖=1   

Hence, we can write 

𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇) ≤  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑄) and 𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃, 𝑇)  ≤  𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑄, 𝑇) 

 

4. Decision Making Based on Tangent and Cotangent Similarity Measures 
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Let 𝐴1, 𝐴2, … 𝐴𝑚 be a discrete set of candidates, 𝐶1, 𝐶2, . . 𝐶𝑛 be the set of criteria for each candidate and 

𝐷1, 𝐷2, … . , 𝐷𝑘 are the alternatives of each candidate. The decision -maker provides the ranking of 

alternatives with respect to each candidate. The ranking presents the performance of candidates 𝐴𝑖(𝑖 =

1,2,…𝑚) against the criteria 𝐶𝑗(𝑗 = 1,2… , 𝑛).The values associated with the alternatives for MADM 

problem can be presented in the following decision matrix( see Table 1 and Table 2). The relation 

between candidates and attributes are given in Tab 1. The relation between attributes and alternatives 

are given in the Tab 2. 

 

Table 1 : The relation between candidates and attributes   

 

 

Table 2: The relation between attributes and alternatives   

 

 

 

Here 𝑎𝑖𝑗 and 𝑐𝑖𝑗 are all FQN numbers. 

The steps corresponding to FQN number based on tangent and cotangent functions are presented 

following steps. 

 

Step 1: Determination of the relation between candidates and attributes 

The relation between candidate 𝐴𝑖(𝑖 = 1,2,…𝑚) and the attribute 𝐶𝑗(𝑗 = 1,2…𝑛) is presented in Table 

3. 

Table 3 : The relation between candidates and attributes  in terms of FQN sets 

𝑅1 𝐶1 𝐶2 … 𝐶𝑛 

𝐴1 (𝑏111,𝑏211, 𝑏311, 𝑏411) (𝑏112,𝑏212, 𝑏312, 𝑏412) … (𝑏11𝑛,𝑏21𝑛 , 𝑏31𝑛 , 𝑏41𝑛) 

𝐴2 (𝑏121,𝑏221, 𝑏321, 𝑏421) (𝑏122,𝑏222, 𝑏322, 𝑏422) … (𝑏12𝑛,𝑏22𝑛 , 𝑏32𝑛 , 𝑏42𝑛) 

𝑅1 𝐶1 𝐶2 … 𝐶𝑛 

𝐴1 𝑎11 𝑎12 … 𝑎1𝑛 

𝐴2 𝑎21 𝑎13 … 𝑎2𝑛 

… … … … … 

𝐴𝑚 𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛 

𝑅2 𝐷1 𝐷2 … 𝐷𝑘 

𝐶1 𝑐11 𝑐12 … 𝑐1𝑘  

𝐶2 𝑐21 𝑐22 … 𝑐2𝑘  

… … … … … 

𝐶𝑛 𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑘 
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… … … … … 

𝐴𝑚 (𝑏1𝑚1𝑏2𝑚1, 𝑏3𝑚1, 𝑏4𝑚1) (𝑏1𝑚2,𝑏2𝑚2, 𝑏3𝑚2, 𝑏4𝑚2) … (𝑏1𝑚𝑛,𝑏2𝑚𝑛 , 𝑏3𝑚𝑛 , 𝑏4𝑚𝑛) 

 

Table 4 : The relation between attributes and alternatives in terms of FQN sets   

𝑅2 𝐷1 𝐷2 … 𝐷𝑘 

𝐶1 (𝑐111,𝑐𝑏211, 𝑐311, 𝑐411) (𝑐112,𝑐212, 𝑐312, 𝑐412) … (𝑐11𝑘,𝑐21𝑘, 𝑐31𝑘 , 𝑐41𝑘) 

𝐶2 (𝑏121,𝑏221, 𝑏321, 𝑏421) (𝑐122,𝑐222, 𝑐322, 𝑐422) … (𝑐12𝑘,𝑐22𝑘 , 𝑐32𝑘 , 𝑐42𝑘) 

… … … … … 

𝐶𝑛 (𝑐1𝑛1,𝑐2𝑛1, 𝑐3𝑛1, 𝑐4𝑛1) (𝑐1𝑛2,𝑐2𝑛2, 𝑐3𝑛2, 𝑐4𝑛2) … (𝑐1𝑛𝑘,𝑐2𝑛𝑘 , 𝑐3𝑛𝑘 , 𝑐4𝑛𝑘) 

 

Step 3: Determination of the relation between attributes and alternatives 

Determine the similarity measure between the Tab 3 and Tab 4 using 𝑇𝐹𝑄𝑁(𝑃, 𝑄)   𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄), 

𝐶𝑂𝑇𝐹𝑄𝑁(𝑃,𝑄) and 𝐶𝑂𝑇𝑊𝐹𝑄𝑁(𝑃,𝑄). 

 

Step 4: Ranking the alternatives 

Ranking the alternatives is prepared based on the descending order of the similarity measures.  

Highest value reflects the best alternative. 

Step 5: End 

 

5. Application 

Higher education institutions have faced various challenges in adapting online education to control the 

pandemic spread of COVID. The present work aims to apply similaty measures between social media 

and its benefits of students. Let D = {R1, R2, R3} be a set of college student respondents, E = 

{YouTube, Facebook, WhatsApp, Blog} be social medias and H = {Communication Tool, Online 

Learning, connecting with experts, Global exposure} be its benefits. The solution strategy is to 

determine the student regarding the relation between student respondents and its benefits in virtual 

education (see Tab 5) and the relation between social media and its benefits in Table 6 . Further we 

have calculated Tangent and Cotangent similarity measures can be calculated in Table 7 and 8. Also 

the weighted similarity measures of the tangent and cotangent functions of PNP sets be calculated in 

Table 9 and 10. w = (0.3,.4,.3) 
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Table 5 : (P1) The relation between respondents and benefits in Virtual Education 

 

 

 

 

 

 

 

Table 6: (P2) The relation between social media and its benefits 

 

P2 WhatsApp  YouTube Facebook 

Online 

Learning 

(0.4,0.2,0.3,0.1) (0.1, 0.2, 0.3,  0.5) (0.2,0.2,0.3,0.4) 

Communication 

Tool 

(0.7,0.2,0.3,0.3) (0.5,0.2,0.3,0.5) (0.7,0.2,0.3,0.2) 

Connecting 

with Experts 

(0.1,0.2,0.3,0.7) (0.8,0.2.0.3,0.2) (0.6,0.2,0.3,0.4) 

 

Table 7: The Tangent Similarity Measure between P1 and P2 

 

Tangent 

Similarity 

Measure 

 

WhatsApp 

 

YouTube 

 

Facebook 

R1 0.8467 0.8430 0.8148 

R2 0.8583 0.8792 0.8603 

R3 0.8595 0.8791 0.8504 

 

 

 

Table 8: The Weighted Tangent Similarity Measure between P1 and P2 

 

P1 Online 

Learning 

Communication 

Tool 

Connecting 

with Experts 

R1 (0.7,0.2,0.4,0.3) (0.1,0.2,0.4,0.7) (0.4,0.6,0.3,0.6) 

R2 (0.3,0.5,0.4,0.6) (0.6,0.5,0.7,0.4) (0.6,0.7,0.3,0.4) 

R3 (0.1,0.4,0.3,0.5) (0.6,0.6,0.3,0.4) (0.6,0.1,0.9,0.4) 
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Weighted 

Tangent 

Similarity 

Measure 

 

WhatsApp 

 

YouTube 

 

Facebook 

R1 0.8484 0.8409 0.8219 

R2 0.8547 0.8647 0.8497 

R3 0.8635 0.8961 0.8565 

 

Table 9: The Cotangent Similarity Measure between P1 and P2 

 

Cotangent 

Similarity 

Measure 

 

WhatsApp 

 

YouTube 

 

Facebook 

R1 0.8959 0.8927 0.8504 

R2 0.8583 0.8567 0.8195 

R3 0.8244 0.8496 0.8092 

 

Table 10: The Weighted Cotangent Similarity Measure between P1 and P2 

 

Weighted 

Cotangent 

Similarity 

Measure 

 

WhatsApp  

 

YouTube  

 

Facebook  

R1 0.8977 0.889 0.8587 

R2 0.8547 0.8761 0.8185 

R3 0.8308 0.8545 0.8207 

 

The highest similarity measures reflect the benefits of social media among College Students. Therefore, 

Student R2 and R3 gains knowledge more from YouTube and R1 from WhatsApp.  

6. Conclusion  

In this paper, we have proposed tangent and cotangent similarity measures for Fermatean 

Quadripartitioned Neutrosophic set with Neutrosophic components and proved some of its basic 

properties. Furthermore, we have also investigated about the weighted similarity measures in Decision 
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Making and illustrated with an example. In future, we can study about the improved similarity measure 

for the above set and can be used in Medical Diagnosis, Data mining. Clustering Analysis etc. 
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Abstract 

In traditional statistics all data are determined and it is used to estimate the mean of the population when 

auxiliary information is available. Those estimators often are biased. The main aim is to find the best 

estimator for the unknown value of the population mean with minimum variance/mean square error 

(MSE). The neutrosophic statistics, generalization of classical statistics deal with indistinct, 

indeterminate, uncertain information. The neutrosophic observation is of the form 𝑍𝑁 = 𝑍𝐿 + 𝑍𝑈𝐼𝑁 

where 𝐼𝑁 ∈ [𝐼𝐿, 𝐼𝑈], 𝑍𝑁 ∈ [𝑍𝐿, 𝑍𝑈]. In this paper neutrosophic linear regression type estimator and 

modified neutrosophic linear regression type estimators for estimation of population mean of the study 

variable using the known parameters of the auxiliary variable have been proposed. The variance/mean 

squared error of the proposed estimators is derived up to first order of approximation. The efficiency of 

the proposed neutrosophic linear regression-type estimators is evaluated using natural population and 

also by using simulation study. A comparison is also carried out to illustrate the usefulness of proposed 

neutrosophic linear regression-type estimators over the classical estimator. 

 

Keywords: Parameters, Auxiliary variable, Regression type, Neutrosophic statistics 

 

1. Introduction  

Consider a finite population U = {U1, U2, … , UN} of N distinct and identifiable units. Let Yis a study 

variable with value Yi measured on Ui, i = 1,2,3,… ,N giving a vectorY = {Y1, Y2, … , YN}. In general the 

population mean Y̅ =  
1

N
∑ Yi
N
i=1  and the population variance Sy

2 =
1

(N−1)
∑ (Yi − Y̅)

2N
i=1  are unknown.  

Now, in this article the problem is to estimate the population mean Y̅ on the basis of a random sample 

of sizen, selected from the population U with some desirable properties like: 

 Unbiasedness / Minimum Bias 

 Minimum Variance / Mean squared error(MSE) 

mailto:kumarapandiyan@mcc.edu.in
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It is often the case that an auxiliary variable X closely related to the study variable Y is available. Then, 

one can improve the performance of the estimator of the study variable by using the known values of 

the population parameters of the auxiliary variable like Population mean X̅, Coefficient of variation CX, 

Skewness β1(x), Kurtosis β2(x), etc. For further discussion about ratio estimators and its modification 

for estimating population mean one may refer to Al-Omari et al. (2009), Cingi and Kadilar (2009), 

Cochran (1940, 1977), Kadilar and Cingi (2004,2005,2006a,2006b), Murthy(1967),  Sen (1993), Singh 

and Chaudhary (1986), Singh (2003), Singh and Tailor (2003), Singh et al. (2004), Sisodia and Dwivedi 

(1981), Sukhatme (1970), Upadhyaya and Singh (1999b) and Yan and Tian (2010). 

 

While the classical method of statistics deals with determinate inference method or    randomness so 

that when the data is indeterminate or ambiguous or vague the classical method of estimation would 

not give the required result. In that situation neutrosophic statistics gives us promising results. The 

neutrosophic statistics is an extension of classical statistics (Indeterminacy is zero). The main difference 

between classical and neutrosophic statistics, is the total of number of sample size would not be an 

exact number in neutrosophic. In other words, neutrosophic statistics is a set analysis. The probability 

distribution of neutrosophic data shall be presented in three curves and they are: 

 Probability of event that occur 

 Probability of event that do not occur 

 Intermediate chance of the event occur or not 

For further discussion about neutrosophic statistics one may refer to Smarandache(1998, 2014,2015), 

Alblowi et.al (2014), Smarandache and Pramanik(2016), Alhabib(2018), Aslam(2018), Smarandache 

et.al (2019), Olgun and Hatip(2020) and Tahir et.al(2021). The following flow chart explains the way 

of using proposed methods under neutrosophic statistics 
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2. Notation and Terminology 

Consider a neutrosophic random sample of size 𝑛𝑁 ∈ [𝑛𝐿, 𝑛𝑈], which is drawn from a finite population 

of 𝑁 units (𝑇1, 𝑇2, … , 𝑇𝑁). Let 𝑦𝑁(𝑖) is the 𝑖𝑡ℎ sample observation of our neutrosophic data, which is of 

the form 𝑦𝑁(𝑖) ∈ [𝑦𝐿 , 𝑦𝑈] and similarly for auxiliary variable we have 𝑥𝑁(𝑖) ∈ [𝑥𝐿, 𝑥𝑈] which is 

correlated to our study variable. Let 𝑦̅𝑁(𝑖) ∈ [𝑦̅𝐿 , 𝑦̅𝑈] is mean of neutrosophic variable of interest, and 

𝑥̅𝑁(𝑖) ∈ [𝑥̅𝐿, 𝑥̅𝑈]is mean of auxiliary neutrosophic variable. In addition,SyN
2 ∈ [SyNL

2 , SyNU
2 ] and SxN

2 ∈

[SxNL
2 , SxNU

2 ] are the variance of the neutrosophic set of data. CyN ∈ [CyNL , CyNU] and CxN ∈

[CxNL , CxNU] are neutrosophic coefficients of variation for 𝑌𝑁 and 𝑋𝑁 , respectively. ρ𝑁  is the 

neutrosophic correlation between 𝑌𝑁 and 𝑋𝑁 (neutrosophic variables). In addition, β2(xN) ∈

[β2(xNL) , β2(xNU)] is the neutrosophic coefficient of kurtosis for auxiliary variable 𝑋𝑁. 𝑒𝑦̅𝑁(𝑖) ∈

[𝑒𝑦̅𝐿, 𝑒𝑦̅𝑈]and 𝑒𝑥̅𝑁(𝑖) ∈ [𝑒𝑥̅𝐿, 𝑒𝑥̅𝑈] are the neutrosophic mean errors.. Similarly, MSE(. ) ∈

[MSEL, MSEU] belong to the MSE of neutrosophic sets were also computed for the analysis: 

These terms can be computed by the following notations to be used in this article are defined below: 

 N − Population Size 

 n − Sample Size 

 f = n/N, - Sampling Fraction 

 δ =
1−f

n
, - Finite Population Correction 

 XN,𝑌𝑁-Population Totals 

 X̅𝑁, Y̅𝑁  - Population Means 

 𝑥𝑁, 𝑦𝑁 - Sample Totals 

 x̅𝑁 , y̅𝑁Sample Means 

 SXN , SyN − Population Standard Deviations 

 SxyN = E(𝑋𝑁 − X̅𝑁)(Y𝑁 − Y̅𝑁) − Population Covariance between XN  and 𝑌𝑁 

 CXN =
SxN

XÑ
&CYN =

SyN

YÑ
− Co-efficient of Variations 

 ρN =
SxyN

SxNSyN
− Co-efficient of Correlation between XN and 𝑌𝑁 

 βN -Population regression coefficient of 𝑌𝑁 on XN  

 μrsN =
1

N
∑ (YiN − Y̅N)

rN
i=1 (XiN − X̅N)

s 

 β1(xN) = 
μ03N
2

μ02N
3  , Skewness of the Auxiliary Variable 

 β2(xN) =
μ04N

μ02N
2  , Kurtosis of the Auxiliary Variable  

 β2(yN) =
μ40N

μ20N
2  , Kurtosis of the Study Variable  

 MdN −Median of the Auxiliary Variable 
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 Q1N −First (lower) Quartile of the Auxiliary Variable 

 Q3N −Third (upper) Quartile of the Auxiliary Variable 

 QrN = Q3 − Q1, Inter-Quartile Range of the Auxiliary Variable 

 QdN =
Q3−Q1

2
, Semi-Quartile Range of the Auxiliary Variable 

 QaN =
Q3+Q1

2
, Semi-Quartile Average of the Auxiliary Variable 

 DmN − m
thDecile of the Auxiliary Variable 

 MSE(. ) − Mean Squared Error (MSE) of the Estimator 

 V(. ) − Variancer of the Estimator 

 y̅𝑁     - Neutrosophic Simple Random Sampling Without Replacement (SRSWOR) Sample  

mean 

 Ŷ̅RN − Neutrosophic Ratio Type Estimator of 𝑌̅ 

 Ŷ̅LRN- Neutrosophic Linear Regression Type Estimator of 𝑌̅ 

 Ŷ̅MLRNj − j
th Proposed Modified Neutrosophic Linear regression Type Estimator of 𝑌̅ 

When there is no auxiliary information available, the simplest estimator of population mean is the 

sample mean obtained by using simple random sampling without replacement. In case of simple 

random sampling without replacement (SRSWOR), the sample mean y̅𝑁 is used to estimate 

population mean  𝑌̅ which is an unbiased estimator and its variance is given below: 

V(y̅𝑁) = δSyN
2           (1) 

In the presence of an auxiliary variable X and is positively correlated with the study variable Y, Tahir 

et.al (2021) has introduced the classical neutrosophic ratio estimator for estimating the population mean 

of the study variable as given below: 

Ŷ̅RN =
y̅𝑁

x̅𝑁
X̅𝑁          (2) 

The mean squared error of Ŷ̅RN  to the first order of approximation is given below: 

MSE(Ŷ̅RN) = δY̅N
2(CyN

2 + CxN
2 − 2ρNCxNCyN)      (3) 

Motivated by Tahir et.al (2021), neutrosophic linear regression type estimator for estimating population 

mean has been proposed. Further improvements shall be made on the neutrosophic linear regression 

type estimator by introducing a large number of modified neutrosophic linear regression type estimators 

with known neutrosophic Co-efficient of Variation, Kurtosis, Skewness and Population Correlation 

Coefficient, First quartile, Third quartile etc of auxiliary variable. 

 

3. Proposed Neutrosophic Linear Regression Type Estimator for Estimating Population Mean 

The proposed Neutrosophic linear regression type estimator and its variance are given as 
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Ŷ̅LRN = y̅𝑁 + βN(X̅𝑁 − x̅𝑁)        (4) 

V(Ŷ̅LRN) = δSyN
2 (1 − ρN

2 )        (5) 

Motivated by Kadilar and Cingi (2004), modified neutrosophic linear regression type estimator has 

been proposed for estimating population mean by replacing SRSWOR sample mean y̅𝑁  by regression 

estimator Ŷ̅LRN in Ŷ̅RN  as given below: 

Ŷ̅MLRNKC = [y̅𝑁 + βN(X̅𝑁 − x̅𝑁)] [
X̅𝑁

x̅𝑁
]       (6)  

 

The mean squared error of the proposed estimators Ŷ̅MLRNKC  have been derived and given below: 

MSE(Ŷ̅MLRNKC) = δ(RN
2 SxN

2 + SyN
2 (1 − ρN

2 ))       (7) 

 

A class of modified neutrosophic linear regression type estimator using the known parameters of the 

auxiliary variable for estimating the neutrosophic population mean of the study variable YN ∈ [Y L, YU]  

have been suggested. The proposed modified neutrosophic linear regression type estimator Ŷ̅MLRNj  , j =

1,… ,36 for estimating the neutrosophic population mean Y̅𝑁 is given below: 

Ŷ̅MLRNj = [y̅𝑁 + βN(X̅𝑁 − x̅𝑁)] [
X̅𝑁+ωj

x̅𝑁+ωj
]       (8) 

The mean squared error of the proposed estimators Ŷ̅MLRNj  , i = 1,2,… ,36 have been derived and are 

given below: 

MSE (Ŷ̅MLRNj) = δ (RNj
2 SxN

2 + SyN
2 (1 − ρN

2 ))      (9) 

where RNj =
Y̅

X̅+ωj
, ω1 = CxN, ω2 = β2(xN)  , ω3 =

CxN

β2(xN)
, ω4 =

β2(xN)

CxN
, ω5 = ρN, ω6 =

ρN

CxN
 

ω7 =
CxN
ρN

, ω8 =
ρN

β2(xN)
, ω9 =

β2(xN)
ρN

, ω10 = β1(xN) , ω11 =
β2(xN)
β1(xN)

, ω12 = MdN, ω13 =
MdN

CxN
, 

ω14 =
MdN

β2(xN)
, ω15 =

MdN

β1(xN)
, ω16 =

MdN

ρN
, ω17 = Q1N, ω18 = Q3N, ω19 = QrN, ω20 = QdN, 

ω21 = QaN, ω22 =
Q1N
CxN

, ω23 =
Q3N
CxN

, ω24 =
QrN
CxN

, ω25 =
QdN
CxN

, ω26 =
QaN
CxN

, ω27 = D1N, 

ω28 = D2N, ω29 = D3N , ω30 = D4N , ω31 = D5N, ω32 = D6N, ω33 = D7N , ω34 = D8N , 

ω35 = D9N, ω36 = D10N 
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Remark 3.1: When the study variable 𝐘𝐍 ∈ [𝐘 𝐋, 𝐘𝐔] and auxiliary variable 𝐗𝐍 ∈ [𝐗 𝐋, 𝐗𝐔] are 

negatively correlated and the population parameters of the auxiliary variable are known, the following 

modified neutrosophic regression type variance estimator can be proposed: 

Ŷ̅MLPRNj = [y̅𝑁 + βN(X̅𝑁 − x̅𝑁)] [
x̅𝑁+ωj

X̅𝑁+ωj
]   

    

    4. Efficiency of the Proposed Estimators  

Comparing (1) and (8) we have derived (see Appendix A) the condition for which the proposed 

modified neutrosophic regression type estimators 𝐘̂𝐌𝐋𝐑𝐍𝐣  ,is more efficient than the neutrosophic 

SRSWOR sample mean 𝐲̅𝑵 and it is given below: 

𝐌𝐒𝐄 (𝐘̂𝐌𝐋𝐑𝐍𝐣)  ≤ 𝐕( 𝐲̅𝑵) 𝐢𝐟 𝐑𝐍𝐣 ≤ 𝛒𝐍
𝐒𝐲𝐍

𝐒𝐱𝐍
; 𝐣 = 𝟏, 𝟐, … , 𝟑𝟔    (10) 

Comparing (2) and (8) we have derived (see Appendix B) the conditions for which the proposed 

modified neutrosophic regression type estimators 𝐘̂𝐌𝐋𝐑𝐍𝐣  is more efficient than the neutrosophic ratio 

type estimator 𝐘̂𝐑𝐍 and it is given below: 

 

      𝐌𝐒𝐄 (𝐘̂𝐌𝐋𝐑𝐍𝐣) ≤ 𝐌𝐒𝐄(𝐘̂𝐑𝐍) if  𝐘𝑵 (
𝐂𝐱𝐍 −𝛒𝐍𝐂𝐲𝐍 

𝐒𝐱𝐍
) ≤ 𝐑𝐍𝐣 ≤ 𝐘𝑵 (

𝛒𝐍𝐂𝐲𝐍 −𝐂𝐱𝐍

𝐒𝐱𝐍
) or 

    𝐘𝑵 (
𝛒𝐍𝐂𝐲𝐍 −𝐂𝐱𝐍

𝐒𝐱𝐍
) ≤ 𝐑𝐍𝐣 ≤ 𝐘𝑵 (

𝐂𝐱𝐍 −𝛒𝐍𝐂𝐲𝐍 

𝐒𝐱𝐍
)      (11)  

 

5. Numerical Study 

 

The performance of the proposed Neutrosophic Linear Regression type estimator for mean are 

compared with that of Neutrosophic SRSWOR sample mean, Neutrosophic ratio type mean estimator 

and Modified Neutrosophic Linear Regression type estimator using a natural population. For numerical 

study, we have considered the daily stock prices of Samsung Electronics Co., Ltd. from 1st September 

2020 to 30th September 2021 as the neutrosophic variable. We are estimating this low price and high 

price interval (YL, YU) within which the price of the stock lies using daily opening price and closing 

price as an neutrosophic auxiliary variable (XL, XU). 

The population parameters of the above population are given below: 

XL – Opening Price XU – Closing Price 

YL – Low Price  YU – High Price 

N=267   n=120   𝑌̅L= 751.70   𝑌̅U = 765.15        

𝑋̅L= 758.09  𝑋̅U= 758.01  SyL= 91.7629   SyU = 93.7754 
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SxL= 92.8418  SxU= 92.1824  β1(xL) = 0.7859   β1(xU) =0.7934 

β1(yL) = 0.8362  β1(yU) = 0.6983  β2(xL) = 2.4808   β2(xU) = 2.5018                        

β2(yL)= 2.4736  β2(yU) = 2.5296  CxL= 0.1225   CxU= 0.1216           

λ22L = 2.4708  λ22U = 2.5008  MdL = 797   MdU =797 

Q1L=  723   Q1U= 725                    Q3L=  823.5   Q3U=821                                 

D1L=598.6   D1U= 596.2  D2L= 649.8   D2U= 658.2                                    

D3L= 738.8  D3U=739  D4L= 773.4   D4U=773                                

D5L= 797   D5U= 797  D6L=810   D6U= 809                        

D7L= 818.2  D7U= 819  D8L= 828   D8U=826 

D9L=840   D9U= 840  D10L= 903   D10U= 910 

 

The variance of Neutrosophic SRSWOR sample mean, the MSE of the Neutrosophic Ratio type 

estimator and the variance of Neutrosophic Linear Regression estimator for the natural population is 

given below: 

Table 1: Variance of Neutrosophic SRSWOR sample mean, MSE of the Neutrosophic   Ratio 

Type estimator and Variance of Neutrosophic Linear Regression Estimator 

Estimators MSE / Variance 

Neutrosophic SRSWOR sample mean, 𝑦̅𝑁  [38.6331,40.3462] 

Neutrosophic Ratio Type Estimator, 𝑌̅𝑅𝑁  [0.1185, 0.1966] 

Neutrosophic Linear Regression Estimator, 

𝑌̅𝐿𝑅𝑁 
[0.1177, 0.1954] 

 

The MSE of the proposed Neutrosophic Modified Linear Regression Type Ratio (NMLRR) estimator 

are given below: 

 

Table 2: MSE of the proposed Neutrosophic Modified Linear Regression Type Ratio estimator 

Proposed 

Neutrosophic Estimators 

MSE values 

𝑌̅𝑀𝐿𝑅𝑁𝐾𝐶  [38.9981, 39.9191] 

𝑌̅𝑀𝐿𝑅𝑁1 [38.9855, 39.9063] 

𝑌̅𝑀𝐿𝑅𝑁2 [38.7448, 39.6581] 

𝑌̅𝑀𝐿𝑅𝑁3 [38.9930, 39.9139] 

𝑌̅𝑀𝐿𝑅𝑁4 [37.0010, 37.8473] 
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𝑌̅𝑀𝐿𝑅𝑁5 [38.8958, 39.8147] 

𝑌̅𝑀𝐿𝑅𝑁6 [38.1752, 39.0729] 

𝑌̅𝑀𝐿𝑅𝑁7 [38.9855, 39.9063] 

𝑌̅𝑀𝐿𝑅𝑁8 [38.9568, 39.8773] 

𝑌̅𝑀𝐿𝑅𝑁9 [38.7445,  39.6575] 

𝑌̅𝑀𝐿𝑅𝑁10 [38.9176,  39.8360] 

𝑌̅𝑀𝐿𝑅𝑁11 [38.6763,  39.5906] 

𝑌̅𝑀𝐿𝑅𝑁12  [9.3561, 9.6330] 

𝑌̅𝑀𝐿𝑅𝑁13  [0.5393, 0.6203] 

𝑌̅𝑀𝐿𝑅𝑁14  [19.2965, 19.8871] 

𝑌̅𝑀𝐿𝑅𝑁15  [7.2306, 7.5409] 

𝑌̅𝑀𝐿𝑅𝑁16  [9.3419, 9.609] 

𝑌̅𝑀𝐿𝑅𝑁17  [10.3025, 10.5718] 

𝑌̅𝑀𝐿𝑅𝑁18  [9.0490, 9.3482] 

𝑌̅𝑀𝐿𝑅𝑁19 [30.4283, 31.4898] 

𝑌̅𝑀𝐿𝑅𝑁20 [34.3142, 35.3284] 

𝑌̅𝑀𝐿𝑅𝑁21 [9.6449, 9.9313] 

𝑌̅𝑀𝐿𝑅𝑁22 [0.6196, 0.6989] 

𝑌̅𝑀𝐿𝑅𝑁23 [0.5151, 0.598] 

𝑌̅𝑀𝐿𝑅𝑁24 [9.0840, 9.7251] 

𝑌̅𝑀𝐿𝑅𝑁25 [16.4874, 17.3706] 

𝑌̅𝑀𝐿𝑅𝑁26 [0.5628, 0.6443] 

𝑌̅𝑀𝐿𝑅𝑁27 [12.2562, 12.6399] 

𝑌̅𝑀𝐿𝑅𝑁28 [11.3893, 11.5739] 

𝑌̅𝑀𝐿𝑅𝑁29  [10.0886, 10.3786] 

𝑌̅𝑀𝐿𝑅𝑁30 [9.6430, 9.9313] 

𝑌̅𝑀𝐿𝑅𝑁31 [9.3561, 9.6330] 

𝑌̅𝑀𝐿𝑅𝑁32 [9.2035, 9.4889] 

𝑌̅𝑀𝐿𝑅𝑁33 [9.1092, 9.3715] 
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𝑌̅𝑀𝐿𝑅𝑁34 [8.9984, 9.2905] 

𝑌̅𝑀𝐿𝑅𝑁35 [8.8655, 9.1318] 

𝑌̅𝑀𝐿𝑅𝑁36 [8.2144, 8.3974] 

 

From the last column of Table 1 and 2, we can see that the variance of the Neutrosophic Linear 

Regression Estimator is minimum when compared with the variance of SRSWOR sample mean, MSE 

of Neutrosophic ratio type estimators and proposed Neutrosophic modified linear regression type ratio 

estimators. Hence, the Neutrosophic Linear Regression Estimator is performed better than other 

estimators for this available data. 

 

6. Simulation Study 

To evaluate more about the efficiency of the proposed neutrosophic estimators, we have undertaken a 

simulation study as given below: 

For simulating 1000 normal random variates from a Bi-variate normal distribution we took                 XN 

~ NN ([171.2,180.4], [(5.8)2, (6.7)2]) and YN ~ NN ([76.0, 84.9], [(12.9)2, (17.2)2]). The correlation 

coefficient is fixed at value [0.992, 0.996]. Simple random sampling without replacement has been 

considered for sample size, n=100. 

Variance of Neutrosophic SRSWOR sample mean and the MSE of the Neutrosophic Ratio type 

estimator and the variance of Neutrosophic Linear Regression estimator for simulated data are given 

below: 

 

Table 4: Variance of Neutrosophic SRSWOR sample mean, MSE of the Neutrosophic   Ratio 

Type estimator and Variance of Neutrosophic Linear Regression Estimator 

Estimators MSE / Variance 

Neutrosophic SRSWOR sample mean, 𝑦̅𝑁  [1.4962, 2.6599] 

Neutrosophic Ratio Type Estimator, 𝑌̅𝑅𝑁  [0.9671, 1.7835] 

Neutrosophic Linear Regression Estimator, 

𝑌̅𝐿𝑅𝑁 
[0.0238, 0.0212] 

 

Table 5 shows the MSE of the proposed Neutrosophic Modified Linear Regression Type Ratio 

(NMLRR) estimators. 

 

Table 5: MSE of the proposed neutrosophic modified linear regression type ratio estimators for 

ρ=[0.992,0.996] 
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Proposed Neutrosophic 

Estimators 

MSE values 

𝑌̅𝑀𝐿𝑅𝑁𝐾𝐶  [0.0825, 0.1094] 

𝑌̅𝑀𝐿𝑅𝑁1 [0.0825, 0.1093] 

𝑌̅𝑀𝐿𝑅𝑁2 [0.0803, 0.1064] 

𝑌̅𝑀𝐿𝑅𝑁3 [0.0825, 0.1094] 

𝑌̅𝑀𝐿𝑅𝑁4 [0.0474, 0.0623] 

𝑌̅𝑀𝐿𝑅𝑁5 [0.0818, 0.1084] 

𝑌̅𝑀𝐿𝑅𝑁6 [0.0665, 0.0879] 

𝑌̅𝑀𝐿𝑅𝑁7 [0.0825, 0.1093] 

𝑌̅𝑀𝐿𝑅𝑁8 [0.0823, 0.1091] 

𝑌̅𝑀𝐿𝑅𝑁9 [0.0803,  0.1064] 

𝑌̅𝑀𝐿𝑅𝑁10 [0.0825,  0.1094] 

𝑌̅𝑀𝐿𝑅𝑁11 [0.0319,  0.0390] 

𝑌̅𝑀𝐿𝑅𝑁12  [0.0385, 0.0433] 

𝑌̅𝑀𝐿𝑅𝑁13  [0.0239, 0.0213] 

𝑌̅𝑀𝐿𝑅𝑁14  [0.0585, 0.0716] 

𝑌̅𝑀𝐿𝑅𝑁15  [0.0239, 0.0213] 

𝑌̅𝑀𝐿𝑅𝑁16  [0.0384, 0.0432] 

𝑌̅𝑀𝐿𝑅𝑁17  [0.0388, 0.0438] 

𝑌̅𝑀𝐿𝑅𝑁18  [0.0382, 0.0428] 

𝑌̅𝑀𝐿𝑅𝑁19 [0.0776, 0.1014] 

𝑌̅𝑀𝐿𝑅𝑁20 [0.0799, 0.1053] 

𝑌̅𝑀𝐿𝑅𝑁21 [0.0385, 0.0433]  

𝑌̅𝑀𝐿𝑅𝑁22 [0.0239, 0.0214] 

𝑌̅𝑀𝐿𝑅𝑁23 [0.0239, 0.0213] 

𝑌̅𝑀𝐿𝑅𝑁24 [0.0347, 0.0378] 

𝑌̅𝑀𝐿𝑅𝑁25 [0.0451, 0.0534] 

𝑌̅𝑀𝐿𝑅𝑁26 [0.0239, 0.0213] 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

25  

𝑌̅𝑀𝐿𝑅𝑁27 [0.0391, 0.0443] 

𝑌̅𝑀𝐿𝑅𝑁28 [0.0389, 0.0439] 

𝑌̅𝑀𝐿𝑅𝑁29  [0.0388, 0.0437] 

𝑌̅𝑀𝐿𝑅𝑁30 [0.0387, 0.0435] 

𝑌̅𝑀𝐿𝑅𝑁31 [0.0385, 0.0433] 

𝑌̅𝑀𝐿𝑅𝑁32 [0.0384, 0.0431] 

𝑌̅𝑀𝐿𝑅𝑁33 [0.0383, 0.0429] 

𝑌̅𝑀𝐿𝑅𝑁34 [0.0381, 0.0426] 

𝑌̅𝑀𝐿𝑅𝑁35 [0.0379, 0.0423] 

𝑌̅𝑀𝐿𝑅𝑁36 [0.0369, 0.0409] 

 

From the above table, the variance of Neutrosophic Linear Regression Estimator is minimum when 

comparing with the variance of SRSWOR sample mean, MSE of Neutrosophic ratio type estimators 

and   proposed Neutrosophic modified linear regression type ratio estimators. So we conclude that the 

performance efficiency of the Neutrosophic Linear Regression Estimator is better than the other 

estimators. 

 

7. Conclusion: 

In this paper a neutrosophic linear regression type estimator and modified neutrosophic linear regression 

type estimators for estimating population mean using the known parameters of the auxiliary variable 

has been proposed. The mean squared error of the proposed estimators is derived. The performances of 

the proposed estimators with that of the neutrosophic SRSWOR sample mean and neutrosophic ratio 

type estimator for simulated data and natural population have been assessed. It is observed from the 

numerical comparison that the variance of the proposed neutrosophic linear regression type estimator 

and MSE of proposed modified neutrosophic linear regression type estimator is less than the variance 

of the neutrosophic SRSWOR sample mean and MSE of neutrosophic ratio type estimator. Hence, we 

strongly recommend that the proposed neutrosophic linear regression type estimator and modified 

neutrosophic linear regression type estimators for the use of practical applications for estimation of 

population mean of neutrosophic statistics. 
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Abstract: 

Decision-making processes often involve selecting the most suitable candidate from a pool of 

alternatives, which can be challenging due to uncertainties and subjective criteria. Soft set theory has proven 

effective in handling such complexities. In this paper we introduced neutrosophic soft matrices as a 

comprehensive frame work for managing uncertain and imprecise data in decision making. Specifically, 

we proposed the integration of score matrices within the neutrosophic soft matrix framework to facilitate 

the selection of the best candidates. Score matrices provide a structured approach for evaluating candidates 

based on multiple criteria, accommodating vague and conflicting information. By incorporating score 

matrices into neutrosophic soft matrices, we enhance the decision-making process, enabling a more 

comprehensive assessment of candidate suitability. Through case studies and examples, we demonstrate 

the practical application of this approach in selecting the best candidate across various domains. Our 

research contributes to the advancement of decision-making methodologies, offering a robust tool for 

navigating uncertainty and ambiguity in candidate selection processes. 

  

Keywords: Fuzzy soft set, Neutrosophic soft set, Neutrosophic soft matrix, Decision- Making and Score 

matrix. 

 

1. Introduction 

A multitude of academics utilize various approaches to address uncertainties and challenges in a 

variety of fields, such as engineering, business administration, environmental sciences, and medical 

sciences. Often, traditional mathematical tools are insufficient to adequately address these issues. To 

overcome these obstacles, researchers hunt for other approaches such fuzzy sets, intuitionistic fuzzy sets, 

neutrosophic sets, and so forth. 

The journey began in 1965 when Lotfi A. Zadeh [16] proposed the groundbreaking fuzzy set theory 

to tackle uncertain problems. Subsequently, in 1975, Yang [15] introduced the interval-valued fuzzy set 

(IVFS), offering a broader scope than conventional fuzzy sets. In 1982, Pawlak introduced the rough set 

theory [12], providing another valuable tool for handling uncertainty. Building upon thesefoundations, 
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Atanassov [1] coined the intuitionistic fuzzy set theory in 1983, followed by Florentin Smarandache's [14] 

proposal of the neutrosophic fuzzy set in 1995.   Molodtsov [11] created the soft set theory in 1999 as a 

result, and it is a crucial mathematical tool for handling decision-making issues in ambiguous situations. 

The idea of Molodtsov [11] was expanded upon and many foundations of soft sets were defined by Maji et 

al. [6] in 2001. Intuitionistic fuzzy soft sets were introduced later in 2004 by Maji et al. [7]. Fuzzy soft 

matrices were first proposed in 2010 by Cagman [3]. 

  Neutrosophic soft matrices find applications in various real-world decision-making domains 

including, but not limited to engineering, finance, healthcare, and environmental management. They enable 

decision-makers to make informed decisions in complex and uncertain environments. Researchers have 

developed algorithms and computational techniques for solving decision-making problems using 

neutrosophic soft matrices. These algorithms assist in analyzing and processing the information contained 

in the matrices to derive optimal or satisfactory solutions. 

 The main objective of this article is to utilize Neutrosophic soft matrices in decision-making, 

supported by a scoring system, to identify top candidates with varied skill sets suitable for specific positions 

within the company.       

 

2. Preliminaries 

Definition 2.1:[11]  

Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of U. 

Let A ⊆ E. A pair (𝐹𝐴, E) is called a soft set over U, where 𝐹𝐴 is a mapping given by                  𝐹𝐴: E→ 

P(U) Such that 𝐹𝐴(e) = φ if e∉A. Here 𝐹𝐴 is called approximate function of the soft set     (𝐹𝐴, E). The set 

𝐹𝐴(e) is called e- approximate value set which consist of related objects of the parameter e ∈ E. In other 

words, a soft set over U is a parameterized family of subsets of the universe U. 

 

Definition 2.2:[8]  

              Let U be an initial Universe set and E be the set of parameters. Let A E . A pair 

 (F, A) is called fuzzy soft set over U where F is a mapping given by F: A→𝐼𝑈, where 𝐼𝑈 denotes the 

collection of all fuzzy subsets of  U. 

 

Definition 2.3: 

 Let (𝐹𝐴,E) be a fuzzy soft set over U. Then a subset of  U×E  is uniquely defined by 𝑅𝐴={(u,e): e ∈ 

A, u ∈𝐹𝐴 (e)} which is called relation form of (𝐹𝐴,E). The characteristic function of 𝑅𝐴 is written by 𝜇𝑅𝐴  : 

U×E→ [0,1],where𝜇𝑅𝐴(u,e) ∈ [0,1] is the membership value of  u ∈ U for each e ∈ U.    

            If [𝜇𝑖𝑗  ] = 𝜇𝑅𝐴  (𝑢𝑖 ,𝑒𝑗), we can define a matrix 
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 [𝜇𝑖𝑗]𝑚×𝑛 = [

𝜇11 𝜇12 … . 𝜇1𝑛
𝜇21 𝜇22 … . 𝜇2𝑛
: : : :

𝜇𝑚1 𝜇𝑚2 … 𝜇𝑚𝑛

] 

 

 which is called an m × n soft matrix of the soft set (𝐹𝐴,E) over U. Therefore, we can say that a fuzzy soft 

set (𝐹𝐴 ,E) is uniquely characterized by the matrix[𝜇𝑖𝑗]𝑚×𝑛 and both concepts are interchangeable. 

  

Definition 2.4: [13] 

Let U be the Universe of discourse. The neutrosophic set A on the Universe of discourse U is defined as 

A={<𝑻𝑨(𝑿), 𝑰𝑨(𝑿), 𝑭𝑨(𝑿)>: x∈U}, where the characteristic functions T,I,F:U→[0,1]  and 0≤ T+I+F ≤3 ; 

T, I, F are neutrosophic components which defines the degree of membership, the degree of indeterminacy 

and the degree of non membership respectively. 

 

Definition 2.5:[4] 

Suppose K be a universe with an element in K denoted by f and D be a set of attributes. A neutrosophic 

set N over K is characterized by a truthiness𝑻𝑨 , indeterminacy  𝑰𝑨, and a falsity value 𝑭𝑨 where 𝑻𝑨,𝑰𝑨 

and 𝑭𝑨are  real standard  subsets  of  [0,1]. And 𝒇𝑵: 𝑫 → 𝑵(𝑲). 

 A = {(e, {< 𝑓, (𝑇𝐴(f), 𝐼𝐴(𝑓), 𝐹𝐴(𝑓))} >): 𝑓 ∈ 𝑈, 𝑒 ∈D, 𝑇𝐴(𝑓), 𝐼𝐴(𝑓), 𝐹𝐴(𝑓) ∈ [0,1]}  

There is no restriction on the sum of  𝑇𝐴(𝑓), 𝐼𝐴(𝑓), 𝐹𝐴(𝑓),  0 ≤ 𝑇𝐴(𝑓) + 𝐼𝐴(𝑓) + 𝐹𝐴(𝑓) ≤ 3+ 

 

Definition 2.6:[2]  

Suppose K = {𝒇̇𝟏,𝒇̇𝟐,𝒇̇𝟑… ..} be the univers and D = {𝒆𝟏,𝒆𝟐,𝒆𝟑… . ..} be a set of attributes and A ⊆D. A set 

(F ,A) be an NSS over K. Then the subset of  K×D is defined as 𝑹𝑨 = {(𝒇̇, 𝒆); e∈ A, 𝒇̇ ∈ 𝑭𝑨(e)} which is 

the relation form of (𝑭𝑨, 𝑫). The truithiness, indeterminacy and falsity  value are : 

𝑇𝑅𝐴 ∶ K × D → [0,1], 𝐼𝑅𝐴 ∶ K × D → [0,1], 𝐹𝑅𝐴 ∶ K × D → [0,1],  

 

𝑇𝑅𝐴(𝑓 , 𝑒) ∈ [0,1] ,  𝐼𝑅𝐴(𝑓, 𝑒) ∈ [0,1] ,𝐹𝑅𝐴(𝑓, 𝑒) ∈ [0,1]   are the truithiness , indeterminacy  and falsity of 

f∈ K for  each e ∈ D 

If   [(𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗)] = [𝑇𝑖𝑗(𝑓𝑖̇ , 𝑒𝑗), 𝐼𝑖𝑗(𝑓𝑖̇, 𝑒𝑗), 𝐹𝑖𝑗(𝑓𝑖̇, 𝑒𝑗)],  then 

 

[(𝑇𝑖𝑗, 𝐼𝑖𝑗 , 𝐹𝑖𝑗)]𝑚×𝑛  =  [

(𝑇11, 𝐼11, 𝐹11) (𝑇12, 𝐼12, 𝐹12) … . (𝑇1𝑛 , 𝐼1𝑛 , 𝐹1𝑛)
(𝑇21, 𝐼21, 𝐹21) (𝑇22, 𝐼22, 𝐹22) … . (𝑇2𝑛 , 𝐼2𝑛 , 𝐹2𝑛)

: : : :
(𝑇𝑚1, 𝐼𝑚1, 𝐹𝑚1) (𝑇𝑚2, 𝐼𝑚2, 𝐹𝑚2) … . (𝑇𝑚𝑛 , 𝐼𝑚𝑛 , 𝐹𝑚𝑛)

] 

 

 That's known as an m × n neutrosophic soft matrix over K. 
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Definition 2.7: [5] 

Suppose A = [( 𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗)] ∈ 𝑁𝑆𝑀m×n .Then the complement of  A is denoted by𝐴° and is defined 

as 𝐴°= [(𝐹𝑖𝑗,1−𝐼𝑖𝑗 , 𝑇𝑖𝑗)] for all i and j. 

 

Definition 2.8: [10]  

  If  A = [(𝑇𝑖 𝑗
𝐴 ,𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴)] ∈NS𝑀𝑚×𝑛, 𝐵 = [(𝑇𝑖𝑗

𝐵,𝐼𝑖𝑗
𝐵 , 𝐹𝑖𝑗

𝐵)] ∈NS𝑀𝑚×𝑛then  

𝐶=[(𝑇𝑖𝑗
𝐶 ,𝐼𝑖𝑗

𝐶 , 𝐹𝑖𝑗
𝐶)] ∈NS𝑀𝑚×𝑛 .Then the addition of A and B  as    

 A+B = C =  (max (𝑇𝑖𝑗
𝐴,𝑇𝑖𝑗

𝐵), 
𝐼𝑖𝑗
𝐴+𝐼𝑖𝑗

𝐵

2
, min (𝐹𝑖𝑗

𝐴,𝐹𝑖𝑗
𝐵))  i and j.        

    

 Definition 2.9: [8]  

  If  A = [𝑇𝑖𝑗
𝐴,𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴] ∈NS𝑀𝑚×𝑛,  𝐵 = [(𝑇𝑖𝑗

𝐵,𝐼𝑖𝑗
𝐵 , 𝐹𝑖𝑗

𝐵)] ∈NS𝑀𝑚×𝑛then 

𝐶 = [(𝑇𝑖𝑗
𝐶 ,𝐼𝑖𝑗

𝐶 , 𝐹𝑖𝑗
𝐶)] ∈NS𝑀𝑚×𝑛 .Then the subtraction of A and B  as 

                      A−B = C = (𝑇𝑖𝑗
𝐴 − 𝑇𝑖𝑗

𝐵 , 𝐼𝑖𝑗
𝐴 − 𝐼𝑖𝑗

𝐵 , 𝐹𝑖𝑗
𝐴 − 𝐹𝑖𝑗

𝐵) 

 

 Definition 2.10: [9] 

  Let  A = [𝑇𝑖𝑗
𝐴,𝐼𝑖𝑗

𝐴, 𝐹𝑖𝑗
𝐴] and𝐵 = [(𝑇𝑖𝑗

𝐵,𝐼𝑖𝑗
𝐵 , 𝐹𝑖𝑗

𝐵)] be two neutrosophic soft matrices. Then the max-min 

produuct of the two neutrosophic soft matrices A and B is denoted as A*B is defined as,  

 A*B = [ max min ((𝑇𝑖𝑗
𝐴,𝑇𝑖𝑗

𝐵), min max (𝐼𝑖𝑗
𝐴, 𝐼𝑖𝑗

𝐵), min max (𝐹𝑖𝑗
𝐴,𝐹𝑖𝑗

𝐵)] i and j. 

 

3.Neutrosophic  Soft  Matrix Theory  in Decision Making  

Definition 3.1:  

 Suppose A = [(𝑇𝑖𝑗
𝐴, 𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴)] ∈ NS𝑀𝑚×𝑛. Then A is called the value of NSM denoted by V(A) and 

is defined by V(A) = [(𝑇𝑖𝑗
𝐴 + 𝐼𝑖𝑗

𝐴 − 𝐹𝑖𝑗
𝐴)] for all i and j respectively, where i=1,2,3,…m and j=1,2,3....n. 

 

Definition 3.2: 

 If A = [(𝑇𝑖𝑗
𝐴, 𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴)] ∈ NS𝑀𝑚×𝑛, B = [(𝑇𝑖𝑗

𝐵 , 𝐼𝑖𝑗
𝐵 , 𝐹𝑖𝑗

𝐵)] ∈ NS𝑀𝑚×𝑛. Then the score matrix of A and B  

is denoted by  𝑆(𝐴,𝐵) and is defined as  𝑆(𝐴,𝐵) = 𝑉(𝐴) − V(B).  

 

Definition 3.3:  

 If A = [(𝑇𝑖𝑗
𝐴, 𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴)] ∈ NS𝑀𝑚×𝑛, 𝐵 = [(𝑇𝑖𝑗

𝐵,𝐼𝑖𝑗
𝐵 , 𝐹𝑖𝑗

𝐵)] ∈ NS𝑀𝑚×𝑛. Then, their corresponding value 

matrix be V(A),V(B) and their score matrix be 𝑆(𝐴,𝐵) .Then the total score for each 𝑢𝑖 in U as 

𝑆𝑖 = ∑  ((𝑉(𝐴) − 𝑉(𝐵))
𝑛

𝑗=1
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Methodology   

Take a set U of applicants that are going through interviews to be hired by a corporation for 

managerial roles. Let E be a collection of criteria related to the managerial experience of candidates. Two 

Neutrosophic Soft Sets (NSS) are established: (𝐹𝐴, E) over U, which represents candidate selection by field 

expert X, and (𝐺𝐵, E) over U, which represents candidate selection                        by field expert Y. F is a 

mapping defined by F: A→𝐼𝑈, and 𝐼𝑈 signifies the collection of all fuzzy subsets comprising U. The 

corresponding NSS (𝐹𝐴, E) and (𝐺𝐵, E) are represented by matrices          A and B. The maximum 

membership for the judges' candidate selection process is determined                     by evaluating A+B, 

which is computed by taking the complements (𝐹𝐴, E)° and (𝐺𝐵, E)° and calculating their corresponding 

matrices A° and B°. Additionally, we also compute A° + B°. For each candidate in U, we compute V(A+B), 

V(A°+B°), 𝑆((𝐴+𝐵),(A° +B°)), and the sum of the scores, 𝑆𝑖. In order to determine that candidate 𝐶𝑖 has been 

chosen by the judges, we finally find 𝑆𝑘  = max(𝑆𝑖).  Re-evaluating the parameters is the process that is 

repeated if 𝑆𝑘has  more  than one  value.  

 

4. Algorithm 

Step 1 :Provide the Neutrosophic soft sets (𝐹𝐴, E) and (𝐺𝐵, E), then derive the corresponding Neutrosophic  

soft matrices A and B for (𝐹𝐴, E) and (𝐺𝐵, E) respectively. 

Step 2 :Formulate the complement sets of the Neutrosophic  soft sets (𝐹𝐴, E) and 

(𝐺𝐵, E) as (𝐹𝐴, E)° and (𝐺𝐵, E)° respectively, then derive the corresponding Neutrosophic 

soft matrices A° and B° for  (𝐹𝐴, E)° and (𝐺𝐵, E)° accordingly. 

Step 3 :Determine (A+B ), (A°+B °), V(A+B ), V(A°+B °) and  𝑆((𝐴+𝐵),(A° +B° )). 

Step 4 :Work out  the total score 𝑆𝑖 for each 𝑢𝑖 in U. 

Step 5 :Determine 𝑆𝐾= max(𝑆𝑖). 

In conclusion, candidate 𝐶𝑖is deemed suitable for the position. 

Step 6 :If multiple instances yield the maximum value𝑆𝐾 , continue by reassessing the parameters 

and iterating the process. 

 

5. Technology in a Decision-Making Problem 

In the context provided, let (𝐹𝐴, E) and (𝐺𝐵, E) denote two neutrosophic soft sets representing the 

selection of four candidates from the universal set  U = {𝐶1, 𝐶2, 𝐶3, 𝐶4} by the experts X and Y, respectively. 
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Here, E = {𝑒1, 𝑒2, 𝑒3 } represents the set of parameters, symbolising different types of qualities such as 

stand for confident, presence of mind and willingness to take risk. 

(𝐹𝐴, E) = {𝐹𝐴(𝑒1), 𝐹𝐴(𝑒2),𝐹𝐴(𝑒3)} 

𝐹𝐴(𝑒1) = {(𝐶1,0.6,0.2,0.1),(𝐶2,0.4,0.3,0.1),(𝐶3,0.5,0.2,0.2),(𝐶4,0.3,0.5,0.2)} 

𝐹𝐴(𝑒2)= {(𝐶1,0.4,0.5,0.1),(𝐶2,0.7,0.2,0.1),(𝐶3,0.2,0.4,0.3),(𝐶4,0.2,0.5,0.3)} 

𝐹𝐴(𝑒3)= {(𝐶1,0.7,0.1,0.2),(𝐶2,0.5,0.3,0.2),(𝐶3,0.6,0.1,0.2),(𝐶4,0.3,0.5,0.2)} 

(𝐺𝐵, E) = {𝐺𝐵(𝑒1), 𝐺𝐵(𝑒2), 𝐺𝐵(𝑒3)} 

 𝐺𝐵(𝑒1) = {(𝐶1,0.1,0.5,0.2),(𝐶2,0.4,0.3,0.2),(𝐶3,0.6,0.3,0.1),(𝐶4,0.2,0.6,0.1)} 

 𝐺𝐵(𝑒2) = {(𝐶1,0.6,0.2,0.1),(𝐶2,0.7,0.2,0.1),(𝐶3,0.5,0.3,0.2),(𝐶4,0.4,0.3,0.2)} 

 𝐺𝐵(𝑒3)= {(𝐶1,0.7,0.2,0.1),(𝐶2,0.2,0.5,0.3),(𝐶3,0.4,0.2,0.4),(𝐶4,0.6,0.2,0.2)} 

 

The following neutrosophic fuzzy soft matrices represent these two neutrosophic fuzzy soft sets, 

respectively. 

                               𝑒1                            𝑒2                     𝑒3  

            𝐴 =  

𝑐1
𝑐2
𝑐3
𝑐4

[

(0.6,0.2,0.1) (0.4,0.5,0.1) (0.7,0.1,0.2)
(0.4,0.3,0.1) (0.7,0.2,0.1) (0.5,0.3,0.2)
(0.5,0.2,0.2) (0.2,0.4,0.3) (0.6,0.1,0.2)
(0.3,0.5,0.2, ) (0.2,0.5,0.3) (0.3,0.5,0.2)

] 

 

                             𝑒1                            𝑒2                     𝑒3  

            B =  

c1
c2
c3
c4

[

(0.1,0.5,0.2) (0.6,0.2,0.1) (0.7,0.2,0.1)
(0.4,0.3,0.2) (0.7,0.2,0.1) (0.2,0.5,0.3)
(0.6,0.3,0.1) (0.5,0.3,0.2) (0.4,0.2,0.4)
(0.2,0.6,0.1) (0.4,0.3,0.2) (0.6,0.2,0.2)

] 

 

Then the neutrosophic fuzzy soft complement matrices are, 

                                       𝑒1                            𝑒2                     𝑒3  

                 A°=  

c1
c2
c3
c4

[

(0.1,0.8,0.6) (0.1,0.5,0.4) (0.2,0.9,0.7)
(0.1,0.7,0.4) (0.1,0.8,0.7) (0.2,0.7,0.5)
(0.2,0.8,0.5) (0.3,0.6,0.2) (0.2,0.9,0.6)
(0.2,0.5,0.3) (0.3,0.5,0.2) (0.2,0.5,0.3)

] 

 

                                             𝑒1                            𝑒2                     𝑒3  

                 𝐵°=   

𝑐1
𝑐2
𝑐3
𝑐4

[

(0.2,0.5,0.1) (0.1,0.8,0.6) (0.1,0.8,0.7)
(0.2,0.7,0.4) (0.1,0.8,0.7) (0.3,0.5,0.2)
(0.1,0.7,0.6) (0.2,0.7,0.5) (0.3,0.8,0.4)
(0.1,0.4,0.2) (0.2,0.7,0.4) (0.2,0.8,0.6)

] 

Following that, we compute the addition matrices. 
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                                    𝑒1                            𝑒2                     𝑒3  

        (𝐴 + 𝐵) =

𝑐1
𝑐2
𝑐3
𝑐4

[

(0.6,0.35,0.1) (0.6,0.35,0.1) (0.7,0.15,0.1)
(0.4,0.3,0.1) (0.7,0.2,0.1) (0.5,0.4,0.2)
(0.6,0.25,0.1) (0.5,0.35,0.2) (0.6,0.15,0.2)
(0.3,0.55,0.1) (0.4,0.4,0.2) (0.6,0.35,0.2)

] 

                                                      𝑒1                            𝑒2                     𝑒3  

      (𝐴° + 𝐵° ) =    

𝑐1
𝑐2
𝑐3
𝑐4

[

(0.2,0.65,0.1) (0.1,0.65,0.4) (0.2,0.85,0.7)
(0.2,0.7,0.4) (0.1,0.8,0.7) (0.3,0.6,0.2)
(0.2,0.75,0.5) (0.3,0.65,0.2) (0.3,0.85,0.4)
(0.2,0.65,0.1) (0.1,0.65,0.4) (0.2,0.85,0.7)

] 

  

                                    𝑒1          𝑒2          𝑒3  

         V(A+B)  = 

𝑐1
𝑐2
𝑐3
𝑐4

[

0.85 0.85 0.75
0.6 0.8 0.7
0.75 0.65 0.55
0.75 0.6 0.75

] 

                                   𝑒1          𝑒2          𝑒3  

         V(A°+B°)  =

𝑐1
𝑐2
𝑐3
𝑐4

[

0.75 0.35 0.35
0.5 0.2 0.7
0.45 0.75 0.75
0.6 0.7 0.55

] 

 

Compute the score matrix and total score for the selection 

                                      𝑒1        𝑒2           𝑒3  

𝑆((𝐴+𝐵),(𝐴°+𝐵°))=   

𝑐1
𝑐2
𝑐3
𝑐4

[

0.1 0.5 0.4
0.1 0.6 0.0
0.3 −0.1 −0.2
0.15 −0.1 0.2

] 

 

The aggregate score for the top-candidate :

c1
c2
c3
c4

 [

1.0
0.7
0.0
0.25

] 

Upon observing that the second candidate possesses the highest value, we deduce that, based on the 

opinions of both experts, candidate c2 is chosen for the position. 

 

Product of Neutrosophic Soft Matrices 

 

Here we have defined the Neutrosophic soft matrices with suitable examples and the matrices 

is compared with other existing matrices like Neutrosophic soft matrices, Neutrosophic complement 
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matrices, Neutrosophic Square matrices and somebinary operators and so on. The product and 

complement of two Neutrosophic Soft Matrices were examined and total score matrices are derived. 

 

Case Study: 

Suppose the test results of four candidates C ={c1,c2,c3 and c4} as the universal set where 

c1,c2,c3and c4 represents Swathi, Sowndarya, Saranya, Aruna with systems. 

Q = {q1, q2, q3, q4, q5} represents the set of parameters, symbolizing different types of 

qualities such as standing for confidence, presence of mind, willingness to take risks, communication, 

Innovative ideas, and experience leadership respectively. Let the possible qualities relating to the 

above posting P ={P1,P2, P3}be Manager, HR, TL. 

Suppose that NSS (F, Q) over C, where F is mapping F: Q→ gives a collection of an 

approximate description of candidate selection in the company. 

 

Algorithm 

Step1:Input Neutrosophic soft set (F,Q) and (G,P) and obtain Neutrosophics of matrices A and B. 

Step2: Write the Neutrosophic soft complement set ,  and obtain Neutrosophics   

complement matrix Bc. 

Step3: Compute candidate posting quality A∗B. 

 

Step4: Compute the candidate's quality non-posting matrix A∗Bc. 

Step 5: Compute V, W. 

Step6: Compute the score matrix
∗,∗

. 

 

Step7:Identify the maximum score for candidate ci and conclude that candidate ci and conclude that 

candidate Ci has the posting Pi. 

(F, Q) ={F(q1) ={(c1,0.2,0.8,0.2),(c2,0.6,0.1,0.3), (c3,0.0,0.6,0.4), (c4,0.3,0.4,0.5)} 

 

               {F(q2) ={(c1,0.7,0.1,0.2), (c2,0.1,0.8,0.1), (c3,0.6,0.1,0.4), (c4,0.5,0.2,0.4)} 

 

               {F(q3) ={(c1,0.6,0.1,0.3), (c2,0.4,0.4,0.8), (c3,0.8,0.1,0.2), (c4,0.5,0.4,0.1)} 

 

               {F(q4) ={(c1,0.1,0.6,0.3), (c2,0.1,0.8,0.2), (c3,0.6,0.5,0.1), (c4,0.3,0.4,0.4)} 

 

                {F(q5) ={(c1,0.1,0.6,0.2), (c2,0.1,0.7,0.2), (c3,0.5,0.3,0.3), (c4,0.7,0.2,0.1)} 

 

The Neutrosophic soft set  is represented by the following Neutrosophic soft  matrix to describe the 

candidate's qualities relationship. 
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                         q1                                     q2                         q3                         q4                      q5                

  

A=         [

(0.2,0.8,0.2) (0.7,0.1,0.2) (0.6,0.1,0.3)

(0.6,0.1,0.3) (0.1,0.8,0.1) (0.4,0.4,0.5)
(0.0,0.6,0.4)
(0.3,0.4,0.5)

(0.6,0.1,0.4)
(0.5,0.2,0.4)

(0.8,0.1,0.2)
(0.5,0.4,0.1)

    

(0.1,0.6,0.3) (0.1,0.6,0.2)

(0.1,0.8,0.2) (0.1,0.7,0.2)
(0.6,0.5,0.1)
(0.3,0.4,0.4)

(0.5,0.3,0.3)
(0.7,0.2,0.1)

] 

                 Again, let the set Q = {q1, q2, q3, q4, q5} be a universal set where q1, q2, q3, 

q4 and q5 represent the qualities confidence, presence of mind, willingness to take risks, 

communication, Innovative ideas and experience leadership respectively. 

Let the possible qualities relating to the above posting P = {P1, P2, P3} be Manager, 

HR,TL. 

Suppose that Neutrosophic of the set (G,P) over Q, where G is mapping gives collection of an 

approximate description of the selection process of the three postings and their qualities. 

(G,P)={G(P1)={(q1,0.3,0.4,0.3),(q2,0.7,0.2,0.4),(q3,0.7,0.2,0.3), 

(q4,0.3,0.4,0.4),(q5,0.2,0.7,0.3)} 

{G(P2)={(q1,0.6,0.2,0.2),(q2,0.2,0.6,0.3),(q3,0.5,0.4,0.3), 

(q4,0.7,0.2,0.1),(q5,0.1,0.8,0.2)} 

{G(P3)={(q1,0.6,0.2,0.3),(q2,0.3,0.5,0.4),(q3,0.1,0.8,0.1), 

(q4,0.4,0.5,0.3),(q5,0.7,0.4,0.2)} 

 

The Neutrosophic soft set can be represented by the following Neutrosophic matrix. 

 

  1 2 3 

1 0.3,0.4,0.3   0.6,0.2,0.2 0.6,0.2,0.3 

2 0.7,0.2,0.4   0.2,0.6,0.3 0.3,0.5,0.4 

B= 3 0.7,0.2,0.3   0.5,0.4,0.3 0.1,0.8,0.1 

 4 0.3,0.4,0.4   0.7,0.2,0.1 0.4,0.5,0.3 

5 0.2,0.7,0.3   0.1,0.8,0.2 0.7,0.4,0.2 

 

Neutrosophic of complement matrix 

 

  1 2 3 

 1 0.3,0.4,0.3   0.2,0.2,0.6     0.3,0.2,0.6 

 2 0.4,0.2,0.7   0.3,0.6,0.2     0.4,0.5,0.3 

B °= 3 0.3,0.2,0.7   0.3,0.4,0.5     0.1,0.8,0.1 

 4 0.4,0.4,0.3   0.1,0.2,0.7     0.3,0.5,0.4 

5 0.3,0.7,0.2   0.2,0.8,0.1     0.2,0.4,0.7 

 

Max-min compositions of two Neutrosophics of matrices will produces the following results. Let 

us suppose A∗B = 𝑖 ×
where, 
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C11=[max(0.2,0.7,0.6,0.1,0.1),min(0.8,0.2,0.2,0.6,0.7),min(0.3,0.4,0.3,0.4,0.3) 

C1=(0.7,0.2,0.3) 

C12=[max(0.2,0.2,0.5,0.1,0.1),min(0.8,0.6,0.4,0.6,0.8),min(0.3,0.4,0.3,0.3,0.2)] 

C12=(0.5,0.4,0.2) 

C13=[max(0.2,0.3,0.1,0.1,0.1),min(0.8,0.5,0.8,0.6,0.6),min(0.3,0.4,0.3,0.3,0.2)] 

C13=(0.3,0.5,0.2) 

C21=[max(0.3,0.1,0.4,0.1,0.1),min(0.4,0.8,0.4,0.8,0.7),min(0.3,0.4,0.3,0.4,0.3)] 

C21=(0.4,0.4,0.3) 

C22=[max(0.6,0.1,0.4,0.1,0.1),min(0.2,0.8,0.4,0.8,0.8),min(0.3,0.3,0.5,0.2,0.2)] 

C22=(0.6,0.2,0.2) 

C23=[max(0.6,0.1,0.1,0.1,0.1),min(0.2,0.8,0.8,0.8,0.7),min(0.3,0.4,0.5,0.3,0.2)] 

C23=(0.6,0.2,0.2) 

C31=[max(0.0,0.6,0.7,0.3,0.2),min(0.6,0.2,0.2,0.5,0.7),min(0.4,0.4,0.3,0.4,0.3)] 

C31=(0.7,0.2,0.3) 

C32=[max(0.0,0.2,0.5,0.6,0.1),min(0.6,0.6,0.4,0.5,0.3),min(0.4,0.4,0.3,0.1,0.3)] 

C32=(0.6,0.3,0.1) 

C33=[max(0.0,0.3,0.1,0.4,0.5),min(0.6,0.5,0.8,0.5,0.4),min(0.4,0.4,0.2,0.3,0.3)] 

C33=(0.5,0.4,0.2) 

C41=[max(0.3,0.5,0.5,0.3,0.2),min(0.4,0.2,0.4,0.4,0.7),min(0.5,0.4,0.3,0.4,0.3)] 

C41=(0.5,0.2,0.3) 

C42=[max(0.3,0.2,0.5,0.3,0.7),min(0.4,0.6,0.4,0.4,0.8),min(0.5,0.4,0.3,0.4,0.2)] 

C42=(0.5,0.4,0.2)  

C43=[max(0.3,0.3,0.1,0.3,0.7),min(0.4,0.5,0.8,0.5,0.4),min(0.5,0.4,0.1,0.4,0.2)] 

C43=(0.7,0.4,0.1) 

 

Then  A∗B=

1                     2                   3

1
2
3
4

[

(0.4,0.2,0.2) (0.3,0.4,0.2) (0.1,0.5,0.3)
(0.3,0.4,0.3)

(0.4,0.2,0.3)
(0.4,0.2,0.2)

(0.3,0.2,0.2)

(0.3,0.4,0.3)
(0.3,0.4,0.1)

(0.3,0.2,0.3)

(0.4,0.4,0.2)
(0.4,0.4,0.1)

]
 

 

Hence  

        1     2     3 

W =

1
2
3
4

[

0.4 0.5 0.6
0.3 0.3 0.2
0.3 0.4 0.6
0.4 0.6 0.7

] 
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and finally, it is observed that, 

 

                   1    2      3 

V-W =

    1
     2
    3
    4

[

0.2 0.2 0.0
0.2 0.3 0.4
0.3 0.4 0.1
0.0 0.1 0.3

] 

 

 

6. Conclusion  

 The literature on Neutrosophic soft matrices, first introduced by Florentine Smarandache in 1995 

and expanded by Molodtsov in 1999, reveals multiple methods for decision-making selection processes. 

This article compares various Neutrosophic soft matrices operations, including addition, subtraction, 

product, union, and intersection, with other existing matrices. It highlights the potential of these matrices 

in addressing uncertainties through new operations and demonstrates their application in real-life decision-

making problems. The study underscores the significance of Neutrosophic soft matrices in tackling 

uncertainties and facilitating decision-making, presenting a novel solution procedure with practical utility. 

It contributes to advancing decision-making techniques in fields requiring uncertainty management, 

suggesting broader applications and future exploration. 
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Abstract: 

In this paper, we define the new notation of Algebraic structures of 𝜗 −T and 𝜗 −𝑀 in Doubt Fuzzy 

𝑍 −Sub Algebra of 𝑍 −Aalgebras. And also defined the 𝜗 − 𝑇 and 𝜗 −𝑀 in Doubt Fuzzy 𝑍 −Ideal of 

𝑍 −Algebra and discussed some of their properties in detail by 𝑍 −Aalgebras. 

Keywords: 

Fuzzy Set(FS), Fuzzy Subset(FSb), Doubt Fuzzy 𝑍–Ideal (DFZI), Doubt Fuzzy 𝑍 −Sub 

Algebra(DFZSA), Doubt Fuzzy 𝜗 − Translation (𝐷𝐹 𝜗 −  𝑇), Doubt Fuzzy 𝜗 − Multiplication 

(𝐷𝐹 𝜗 − 𝑀). 

1. Introduction 

In 1965, Zadeh L A [14], initiated by the concept of fuzzy sets. Several researchers explored on the 

generalization of the notion of fuzzy subset. The study of fuzzy subsets and its applications to various 

mathematical contents has given rise to what is now commonly called fuzzy mathematics. Iseki K and 

Tanaka S [3], introduced the concept of an introduction to the theory of BCK-algebras in 1978. In1980, 

Iseki K [4], first introduced the notation on BCI-algebras. Kyoungja Lee, Young Bae Jun and Myung 

ImDoh [5], introduced the concept of fuzzy translations and fuzzy multiplication of BCK/BCI-algebras in 

2009. Abu Ayub Ansari and Chandramouleeswaran M [1], introduced the concept of fuzzy translation of 

fuzzy 𝛽 − ideals of 𝛽 −algebras in 2014. In 2014, Priya and Ramachandran T [11], introduced the new 

notation of fuzzy translation and multiplication on PS-algebras. Prasanna A, Premkumar M and Ismail 

Mohideen S [6] & [7], introduced the concept of fuzzy translation and multiplication on B-algebras in 2018 

and also derived from Fuzzy Translation and Fuzzy Multiplication in BG – Algebras in 2019. In 2021, 

Premkumar [8] derived the new notation of Algebraic Properties on Fuzzy Translation and Multiplication 

in BP– Algebras. Premkumar [9] & [10], introduced the new concept of Algebraic Properties on 𝜔 − Fuzzy 

Translation and Multiplication in 𝐵𝐻– Algebras in 2020 and also derived from the concept of 

https://orcid.org/0000-0002-1827-7687
mailto:*a)%20mprem.maths3033@gmail.com
mailto:joelsofflmail@gmail.com
mailto:apj_jmc@yahoo.co.in
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Characteristics of κ − 𝑄 − Fuzzy Translation and Fuzzy Multiplication in T-Ideals in T-Algebra in 2022. 

Sowmiya[12] & [13] initiated by the concept on Fuzzy Z-ideals in Z-algebras and also Fuzzy Algebraic 

Structure in Z-Algebras in 2019. 

We define the new notation of Algebraic structures of DF𝜗 −T and DF𝜗 −M in 𝐷𝐹𝑍𝑆𝐴 of 

𝑍 −Aalgebras. And also defined the DF𝜗 −T and DF𝜗 −Tin 𝐷𝐹𝑍𝐼 of 𝑍 −Algebra and discussed some of 

their properties 

2. Preliminaries: 

Definition 2.1:  

A Z-algebra (ὧ,∗ ,0)  be a Z-algebra. A FS 𝐴 in ὧ with a membership function  Ѯ𝐴  is said to be a 

FZSA of a Z-algebra ὧ if , for all ŕ, š 𝑖𝑛 ὧ the following condition is satisfied   

Ѯ(ŕ ∗ š) ≥ {Ѯ(ŕ) ⋀ Ѯ(š)} 

Definition 2.2:  

A Z-algebra (ὧ,∗ ,0)  be a Z-algebra. A FS 𝑉 in ὧ with a membership function  Ѯ𝐴  is said to be a 

FZI of a Z-algebra ὧ if , for all ŕ, š 𝑖𝑛 ὧ  the following condition is satisfied   

(i) Ѯ(0) ≥ Ѯ(ŕ) 

(ii) Ѯ(ŕ) ≥ {Ѯ(ŕ ∗ š) ⋀ Ѯ(š)} 

 

3. Algebraic Structures of 𝝑 − Translation and 𝝑 − Multiplication in Doubt Fuzzy Z-Subalgebra 

Let, ὧ be a Z-algebra. For any 𝐷𝐹𝑆 Ѯ of ὧ, we define T=1-𝑠𝑢𝑝{Ѯ(ŕ)/ŕ ∈ ὧ}, unless otherwise we 

specified. 

Definition: 3.1 

Let, Ѯ be a DFSb of ὧ and 𝜗 ∈ [0, 𝑇]. A mapping Ѯ𝜗
𝑇 : ὧ → [0,1] is said to be a 𝐷𝐹 𝜗 −  𝑇 of Ѯ if it 

satisfies  Ѯ𝜗
𝑇 = Ѯ(ŕ) + 𝜗, ∀ŕ ∈ ὧ. 

 

Definition: 3.2 

Let, Ѯ be a DFSb of ὧ and 𝜗 ∈ [0,1]. A mapping Ѯ𝜗
𝑀: ὧ → [0,1] is said to be a 𝐷𝐹 𝜗 −  𝑀 of Ѯ if it 

satisfies  Ѯ𝜗
𝑀 = 𝜗 Ѯ(ŕ), ∀ŕ ∈ ὧ. 

 

Example: 3.2.1 

 Let ὧ ={0,1,2,3} be the set with the following table. 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 1 1 

2 2 2 0 2 

3 3 3 3 0 
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Then (ὧ,∗ ,0) is a Z – algebra.  

Define DFS Ѯ is of ὧ by  Ѯ(ŕ) = {
0.4   𝑖𝑓 ŕ ≠ 1
0.3   𝑖𝑓 ŕ = 1

} 

Thus Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of X. 

Hence 𝑇 = 1 − 𝑠𝑢𝑝{Ѯ(ŕ)/ŕ ∈ ὧ} = 1-0.4 = 0.6,  

Choose 𝜗 = 0.2 ∈ [0,1] and 𝜗 = 0.3 ∈ [0,1]. 

         Then the mapping  Ѯ0.2𝑇 ∶ ὧ → [0,1] is defined by 

 

              Ѯ0.2𝑇 = {
0.2 + 0.4 = 0.6   𝑖𝑓 ŕ ≠ 1
0.2 + 0.3 = 0.5   𝑖𝑓 ŕ = 1

 

Which satisfies  Ѯ0.2𝑇(ŕ) = Ѯ(ŕ) + 0.2, ∀ ŕ ∈ ὧ, is a DF 0.2-T. 

The mapping 𝛾0.3𝑀 ∶ ὧ → [0,1] is defined by  

Ѯ0.3𝑀 = {
0.3 ∗ 0.4 = 0.12  𝑖𝑓 ŕ ≠ 1
0.3 ∗ 0.3 = 0.09   𝑖𝑓 ŕ = 1

 

Which satisfies  Ѯ0.3𝑀(ŕ) =  Ѯ(ŕ)(0.3), ∀ ŕ ∈ ὧ, is aDF0.3-M. 

 

Theorem: 3.3 

 If Ѯ of ὧ is a 𝐷𝐹𝑍𝑆𝐴 and 𝜗 ∈ [0,1], then the 𝐷𝐹 𝜗 − 𝑇. Ѯ𝜗
𝑇
(ŕ)of Ѯ is also a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

Let, ŕ, š ∈ ὧ and 𝜗𝜖[0, 𝑇] 

Then,  Ѯ(ŕ ∗ š) ≤ Ѯ(ŕ) ∨  Ѯ(š) 

Now,  

Ѯ𝜗
𝑇
(ŕ ∗ š) = Ѯ(ŕ ∗ š) + 𝜗 

                           ≤ [Ѯ(ŕ) ∨  Ѯ(š)] + 𝜗 

                                       =[(Ѯ(ŕ) + 𝜗) ∨ ( Ѯ(š) + 𝜗)] 

                                            =[Ѯ𝜗
𝑇
(ŕ) ∨ Ѯ𝜗

𝑇
(š)]. ∀ ŕ, š ∈ ὧ. 

 

Theorem: 3.4 

 Let, Ѯ be a DFSb of ὧ such that the 𝐷𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑇
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ, for some 𝜗𝜖[0, 𝑇], then 

Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

        Assume that Ѯ𝜗
𝑇
(ŕ)is a 𝐷𝐹𝑍𝑆𝐴 of ὧ for some 𝜗𝜖[0, 𝑇] 

        Let ŕ, š ∈ ὧ, we have 

Ѯ(ŕ ∗ š) + 𝜗 = Ѯ𝜗
𝑇
(ŕ ∗ š) 

                                 ≤ [Ѯ𝜗
𝑇
(ŕ) ∨ Ѯ𝜗

𝑇
(š)] 

                                                = [(Ѯ(ŕ) + 𝜗) ∨ ( Ѯ(š) + 𝜗)] 

                                    =  [Ѯ(ŕ) ∨  Ѯ(š)] + 𝜗 

⟹ Ѯ(ŕ ∗ š)≥ [Ѯ(ŕ) ∨  Ѯ(š)], ∀ŕ, š ∈ ὧ 

Hence, Ѯ is 𝐷𝐹𝑍𝑆𝐴 of ὧ. 
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Theorem: 3.5 

              For any 𝐷𝐹𝑍𝑆𝐴 Ѯ of ὧ and 𝜗𝜖[0,1], if the 𝐷𝐹 𝜗 −𝑀  Ѯ𝜗
𝑀
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

           Let ŕ, š ∈ ὧ and 𝜗𝜖[0,𝑇] 

Then Ѯ(ŕ ∗ š)≥ Ѯ(ŕ) ∧  Ѯ(š) 

Now,  

Ѯ𝜗
𝑀
(ŕ ∗ š) = 𝜗Ѯ(ŕ ∗ š) 

≤ 𝜗 [Ѯ(ŕ) ∨  Ѯ(š)] 

≤ [𝜗 Ѯ(ŕ) ∨ 𝜗 Ѯ(š)] 

= [Ѯ𝜗
𝑀
(ŕ) ∨ Ѯ𝜗

𝑀
(š)] 

⟹ Ѯ𝜗
𝑀
(ŕ ∗ š) ≤ [Ѯ𝜗

𝑀
(ŕ) ∨ Ѯ𝜗

𝑀
(š)] 

Therefore, Ѯ𝜗
𝑀

 is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

 

Theorem: 3.6 

 For any DFSB, Ѯ of ὧ and 𝜗𝜖[0,1], if the D𝐹 𝜗 −𝑀  Ѯ𝜗
𝑀
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ, then so in Ѯ. 

Proof: 

         Assume that,  Ѯ𝜗
𝑀
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ for some 𝜗𝜖[0, 𝑇] 

Let ŕ, š ∈ ὧ, we have 

𝜗Ѯ(ŕ ∗ š)=Ѯ𝜗
𝑀
(ŕ ∗ š) 

≤ [Ѯ𝜗
𝑀
(ŕ) ∨ Ѯ𝜗

𝑀
(š)]                      

      = [𝜗 Ѯ(ŕ) ∨ 𝜗 Ѯ(š)] 

                             = 𝜗  [Ѯ(ŕ) ∨  Ѯ(š)] 

⟹  Ѯ(ŕ ∗ š) ≤  𝜗  [Ѯ(ŕ) ∨  Ѯ(š)] 

Hence, Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

 

4. Algebraic Structures of 𝝑 − Translation and 𝝑 − Multiplication in Doubt Fuzzy Z-Ideal of Z-

Algebra 

Theorem: 4.1 

 If the 𝐷𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑇
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝐼, then it satisfies the condition Ѯ𝜗

𝑇
(š ∗ (ŕ ∗ š)) ≤ Ѯ𝜗

𝑇
(ŕ). 

Proof: 

 Ѯ𝜗
𝑇
(š ∗ (ŕ ∗ š)) = Ѯ(š ∗ (ŕ ∗ š)) + 𝜗 

≤ {Ѯ(0 ∗ (š ∗ (ŕ ∗ š)) + 𝜗 ∨  Ѯ(0) + 𝜗} 

≤ {Ѯ(0 ∗ (š ∗ (š ∗ ŕ)) + 𝜗 ∨  Ѯ(0) + 𝜗} 

 

= {Ѯ(0 ∗ ((š ∗ š) ∗ ŕ) + 𝜗 ∨  Ѯ(0) + 𝜗} 

= {Ѯ(0 ∗ (š ∗ ŕ) + 𝜗 ∨ Ѯ(0) + 𝜗} 

= {Ѯ((š ∗ ŕ) ∗ 0 + 𝜗 ∨  Ѯ(0) + 𝜗} 

≤ {Ѯ((š ∗ ŕ) ∗ 0 + 𝜗 ∨  Ѯ(ŕ) + 𝜗} 
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≤ {Ѯ𝜗
𝑇
(0) ∨  Ѯ𝜗

𝑇
(ŕ)} 

= Ѯ𝜗
𝑇
(ŕ). 

          ⇒ Ѯ𝜗
𝑇
(š ∗ (ŕ ∗ š)) ≤ Ѯ𝜗

𝑇
(ŕ)  ∀ ŕ, š ∈ ὧ 

 

Theorem: 4.2 

               If, Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ, then the 𝐷𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑇
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ, for all 𝜗𝜖[0, 𝑇] . 

Proof: 

        Let, Ѯ be a 𝐷𝐹𝑍𝐼 of ὧ and let 𝜗𝜖[0, 𝑇] 

Then, 

(i)Ѯ𝜗
𝑇
(0)= Ѯ(0) + 𝜗 

≤ Ѯ(ŕ) + 𝜗 

=Ѯ𝜗
𝑇
(ŕ) 

(ii)  Ѯ𝜗
𝑇
(ŕ) = Ѯ(ŕ) + 𝜗 

≤ {Ѯ(ŕ ∗ š)  ∨  Ѯ(š)} + 𝜗 

= {(Ѯ(ŕ ∗ š) + 𝜗) ∨ (Ѯ(š) + 𝜗)} 

= {Ѯ𝜗
𝑇
(ŕ ∗ š) ∨ Ѯ𝜗

𝑇
(š)} 

⇒ Ѯ𝜗
𝑇
(ŕ) ≤ {Ѯ𝜗

𝑇
(ŕ ∗ š) ∨ Ѯ𝜗

𝑇
(š)} 

Hence Ѯ𝜗
𝑇
(ŕ) of  Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ,  ∀𝜗𝜖[0, 𝑇] 

 

Theorem: 4.3 

               Let, Ѯ is a 𝐷𝐹𝑆𝑏 of ὧ such that the 𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑇
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ, for some  𝜗𝜖[0, 𝑇] , then 

Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ. 

Proof: 

 Assume that,  Ѯ𝜗
𝑇
 is a 𝐷𝐹𝑍𝐼 of ὧ for some 𝜗𝜖[0, 𝑇]. 

Let ŕ, š ∈ ὧ 

Then,  

(i) Ѯ(0) + 𝜗 = Ѯ𝜗
𝑇
(0) 

                       ≤ Ѯ𝜗
𝑇
(ŕ) 

                                     = Ѯ(ŕ) + 𝜗 

And so                   ⇒Ѯ(0) ≤ Ѯ(ŕ) 

(ii) Ѯ(ŕ) + 𝜗 = Ѯ𝜗
𝑇
(ŕ) 

≤ {Ѯ𝜗
𝑇
(ŕ ∗ š) ∨ Ѯ𝜗

𝑇
(š)} 

= {(Ѯ(ŕ ∗ š) + 𝜗) ∨ (Ѯ(š) + 𝜗)} 

= {Ѯ(ŕ ∗ š)  ∨  Ѯ(š)} + 𝜗 

and so Ѯ(ŕ) ≤ {(ŕ ∗ š)  ∨  Ѯ(š)} 

               Hence, Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ. 

 

 

 

Theorem: 4.4 
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 Let, 𝜗𝜖[0, 𝑇] and let Ѯ be a 𝐷𝐹𝑍𝐼 of ὧ. If ὧ is a Z-algebra, then the fuzzy 𝐷𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑇
 of Ѯ is a 

𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

Let, ŕ, š ∈ ὧ. 

Now, we have,    Ѯ𝜗
𝑇
(ŕ ∗ š)       = Ѯ(ŕ ∗ š) + 𝜗 

                 ≤ {Ѯ((ŕ ∗ š) ∗ š) ∨ Ѯ(š)} + 𝜗 

                         = {Ѯ(š ∗ (ŕ ∗ š)) ∨  Ѯ(š)} + 𝜗  by Theorem 3.7 

≥ {Ѯ(0) ∨ Ѯ(š)} + 𝜗 

≤ {Ѯ(ŕ) ∨ Ѯ(š)} + 𝜗 

                 ≤ {(Ѯ(ŕ) + 𝜗) ∨ (Ѯ(š) + 𝜗)} 

= {Ѯ𝜗
𝑇
(ŕ) ∨ Ѯ𝜗

𝑇
(š)} 

                         Hence Ѯ𝜗
𝑇
 is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

 

Theorem: 4.5 

 If the  𝐷𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑇
 of Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ, 𝜗𝜖[0, 𝑇], then Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

Let us assume that, Ѯ𝜗
𝑇
 of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ. 

Then  

Ѯ(ŕ ∗ š) + 𝜗 = Ѯ𝜗
𝑇
(ŕ ∗ š) 

≤ {Ѯ𝜗
𝑇
((ŕ ∗ š) ∗ š) ∨ Ѯ𝜗

𝑇
(š)} 

                                                   = {Ѯ𝜗
𝑇
(š ∗ (ŕ ∗ š)) ∨ Ѯ𝜗

𝑇
(š)}    

≤ {Ѯ𝜗
𝑇
(0) ∨ Ѯ𝜗

𝑇
(š)} 

≤ {Ѯ𝜗
𝑇
(ŕ) ∨ Ѯ𝜗

𝑇
(š)} 

 = {(Ѯ(ŕ) + 𝜗) ∨ (Ѯ(š) + 𝜗)} 

= {Ѯ(ŕ) ∨ Ѯ(š)} + 𝜗 

 ⇒Ѯ(ŕ ∗ š) ≤ {Ѯ(ŕ) ∨ Ѯ(š)} 

Hence Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

 

Theorem: 4.6 

            Let, Ѯ is a 𝐷𝐹𝑆𝑏 of ὧ such that the 𝐷𝐹 𝜗 −𝑀 Ѯ𝜗
𝑀
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ, for some  𝜗𝜖(0,1] , then 

Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ. 

Proof: 

Assume that,  Ѯ𝜗
𝑀

 is a 𝐷𝐹𝑍𝐼 of ὧ for some 𝜗𝜖[0, 𝑇]. 

Let ŕ, š ∈ ὧ 

(i) 𝜗Ѯ(ŕ) = Ѯ𝜗
𝑀
(0) 

                       ≤ Ѯ𝜗
𝑀
(ŕ) 

                                     = 𝜗Ѯ(ŕ) 

   And so         ⇒Ѯ(0) ≤ Ѯ(ŕ) 

(ii) 𝜗Ѯ(ŕ) = Ѯ𝜗
𝑀
(ŕ) 
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≤ {Ѯ𝜗
𝑀
(ŕ ∗ š) ∨ Ѯ𝜗

𝑀
(š)} 

= {(𝜗Ѯ(ŕ ∗ š)) ∨ (𝜗Ѯ(š))} 

= 𝜗{Ѯ(ŕ ∗ š)  ∨  Ѯ(š)} 

and so Ѯ(ŕ) ≤ {(ŕ ∗ š)  ∨  Ѯ(š)} 

Hence,  Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ. 

 

Theorem: 4.7 

                  If, Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ, then the  𝐷𝐹 𝜗 − 𝑀 Ѯ𝜗
𝑀
(ŕ) of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ, for all 𝜗𝜖(0,1] . 

Proof: 

        Let, Ѯ be a 𝐷𝐹𝑍𝐼 of ὧ and let 𝜗𝜖(0,1] 

Then 

(i) Ѯ𝜗
𝑀
(0) =  𝜗Ѯ(ŕ) 

≤  𝜗Ѯ(ŕ) 

         = Ѯ𝜗
𝑀
(ŕ) 

⇒Ѯ𝜗
𝑀
(0) ≤ Ѯ𝜗

𝑀
(ŕ) 

 

(ii) Ѯ𝜗
𝑀
(ŕ) =  𝜗Ѯ(ŕ) 

≤ 𝜗{Ѯ(ŕ ∗ š)  ∨  Ѯ(š)} 

              = 𝜗{Ѯ(ŕ ∗ š) ∨  Ѯ(š)} 

= {(𝜗Ѯ(ŕ ∗ š)) ∨ (𝜗Ѯ(š))} 

≤ {Ѯ𝜗
𝑀
(ŕ ∗ š) ∨ Ѯ𝜗

𝑀
(š)} 

⇒ Ѯ𝜗
𝑀
(ŕ) ≤ {Ѯ𝜗

𝑀
(ŕ ∗ š) ∨ Ѯ𝜗

𝑀
(š)} 

 

Hence, Ѯ𝜗
𝑀

 of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ,  ∀ŕ, š ∈ (0,1]. 
 

Theorem: 4.8 

 Let, 𝜗𝜖(0,1] and let, Ѯ be a 𝐷𝐹𝑍𝐼 of a Z-algebra ὧ. Then the  𝐷𝐹 𝜗 −𝑀 Ѯ𝜗
𝑀
(ŕ) of Ѯ is  

a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

Let, ŕ, š ∈ ὧ. 
Now, we have  

Ѯ𝜗
𝑀
(ŕ ∗ š) = 𝜗Ѯ(ŕ ∗ š) 

≤ 𝜗{Ѯ((ŕ ∗ š) ∗ š) ∨ Ѯ(š)} 

= {𝜗Ѯ(š ∗ (ŕ ∗ š)) ∨ 𝜗Ѯ(š)} 

= 𝜗{Ѯ(0) ∨ Ѯ(š)} 

≤ 𝜗{Ѯ(ŕ) ∨ Ѯ(š)} 

                                                                     ≤ {(𝜗Ѯ(ŕ)) ∨ (𝜗Ѯ(š))} 

                                                    = {Ѯ𝜗
𝑀
(ŕ) ∨ Ѯ𝜗

𝑀
(š)} 

Hence Ѯ𝜗
𝑀

 is a 𝐷𝐹𝑍𝑆𝐴 of ὧ, ∀ŕ, š ∈ (0,1]. 
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Theorem: 4.9 

If the 𝐷𝐹 𝜗 − 𝑇 Ѯ𝜗
𝑀

 of Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ, 𝜗𝜖(0,1], then Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

Proof: 

Let us assume that, Ѯ𝜗
𝑀

 of Ѯ is a 𝐷𝐹𝑍𝐼 of ὧ. 

Then  

𝜗Ѯ(ŕ ∗ š) = Ѯ𝜗
𝑀
(ŕ ∗ š) 

≤ {Ѯ𝜗
𝑀
((ŕ ∗ š) ∗ š) ∨ Ѯ𝜗

𝑀
(š)} 

= {Ѯ𝜗
𝑀
(š ∗ (ŕ ∗ š)) ∨ Ѯ𝜗

𝑀
(š)} 

= {Ѯ𝜗
𝑀
(0) ∨ Ѯ𝜗

𝑀
(š)} 

≤ {Ѯ𝜗
𝑀
(ŕ) ∨ Ѯ𝜗

𝑀
(š)} 

= {(𝜗Ѯ(ŕ)) ∨ (𝜗Ѯ(š))} 

 ⇒Ѯ(ŕ ∗ š) ≤ {Ѯ(ŕ) ∨ Ѯ(š)} 

 Hence Ѯ is a 𝐷𝐹𝑍𝑆𝐴 of ὧ. 

 

Theorem: 4.10 

 Intersection and union of any two 𝜗 − T of a 𝐷𝐹𝑍𝐼 of Ѯ of ὧ is also a 𝐷𝐹𝑍𝐼 of ὧ. 

Proof: 

Let Ѯ𝜗
𝑇
 and Ѯ𝛿

𝑇
 be two 𝐷𝐹 𝜗 − T of a 𝐷𝐹𝑍𝐼 of Ѯ of ὧ, where 𝜗, 𝛿 ∈ [0,1]. 

Assume that 𝜗 ≤ 𝛿. 

Then by theorem 3.14, Ѯ𝜗
𝑇
 and Ѯ𝛿

𝑇
 are 𝐷𝐹𝑍𝐼𝑠 of ὧ. 

Now,      (Ѯ𝜗
𝑇
∩Ѯ𝛿

𝑇
)(ŕ) = {Ѯ𝜗

𝑇
(ŕ) ∨ Ѯ𝛿

𝑇
(ŕ)} 

= {(Ѯ(ŕ) + 𝜗) ∨ (Ѯ(ŕ) + 𝛿)} 

=  Ѯ(ŕ) + 𝜗 

= Ѯ𝜗
𝑇
(ŕ) 

And (Ѯ𝜗
𝑇
∪ Ѯ𝛿

𝑇
)(ŕ)={Ѯ𝜗

𝑇
(ŕ) ∧ Ѯ𝛿

𝑇
(ŕ)} 

= {(Ѯ(ŕ) + 𝜗) ∧ (Ѯ(ŕ) + 𝛿)} 

=  Ѯ(ŕ) + 𝛿 

= Ѯ𝛿
𝑇
(ŕ) 

Hence Ѯ𝜗
𝑇
∩Ѯ𝛿

𝑇
 and Ѯ𝜗

𝑇
∪ Ѯ𝛿

𝑇
 are 𝐷𝐹𝑍𝐼𝑠 of ὧ. 

 

5.  Conclusion 

In this paper we have discussed 𝜗 − 𝑇 and 𝜗 −𝑀 on Z-Algebras through DFZSA and  

discussed with some other properties. And also derived from the 𝜗 − 𝑇 and 𝜗 − 𝑀 on DFZI of FZA.  
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Abstract : 

In this study, we introduce and explore the concept of a Penta-Partitioned Neutrosophic Soft Topological 

Space (PPNSTS), an innovative framework combining the principles of neutrosophic logic, soft set theory, 

and topology. The PPNSTS is designed to model uncertainty, indeterminacy, and vagueness in complex 

systems with enhanced granularity through five distinct partitions of the neutrosophic domain. 

The construction of PPNSTS integrates truth-membership, indeterminacy-membership, and falsity-

membership functions, partitioned into five subsets, allowing for a multi-layered approach to handling 

imprecise and ambiguous data. Key properties such as open sets, closed sets, neighbourhood systems, bases, 

and subspaces are defined and analyzed within this novel framework. Additionally, the study investigates 

the interrelationships between penta-partitioned neutrosophic soft topological spaces and existing soft and 

neutrosophic topological spaces. 

Applications of PPNSTS in decision-making, artificial intelligence, and data classification are presented to 

highlight its utility in real-world problem-solving scenarios where conventional methods fall short. This 

work extends the theoretical foundation of soft topology and neutrosophic systems, providing a robust 

mathematical tool for researchers and practitioners dealing with uncertainty in multi-dimensional 

environments. 

 

Keywords: Soft set, Penta partitioned Neutrosophic set, Penta partitioned neutrosophic topological 

space. 

 

1.Introduction  

 

The concept of fuzzy sets was introduced by Zadeh [25] in 1965 to handle data uncertainty and imprecision 

in mathematical models. This groundbreaking idea paved the way for various generalized set theories aimed 

at addressing increasingly complex problems involving vagueness and ambiguity. Among these 

advancements, the Neutrosophic Set, proposed by F. Smarandache[20], has emerged as a versatile 

mathematical framework for managing imprecise, indeterminate, and inconsistent data. Unlike fuzzy sets, 

neutrosophic sets offer a distinct feature where the indeterminacy membership function operates 

independently of the truth and falsity membership functions. This flexibility allows neutrosophic theory to 

be effectively applied in solving real-world problems characterized by significant uncertainty and 

contradictions. 
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Building upon the neutrosophic framework, researchers have further explored its practical applications in 

decision-making, classification, and artificial intelligence. Neutrosophic sets have been successfully 

integrated into a wide array of mathematical and computational theories, proving their robustness in diverse 

domains. 

Similarly, the concept of soft sets, first introduced by Molodtsov [6], serves as another powerful tool for 

addressing uncertainty. A soft set is defined as a parameterized family of subsets of a universal set, where 

each parameter represents a set of approximate elements. Soft set theory has garnered significant attention 

over the years, with its fundamentals and extensions being extensively studied by researchers. It has shown 

tremendous potential in applications requiring flexible and generalized solutions for uncertain data. In 2020, 

Rama Malik and  Surapati Pramanik [14] introduced the concept of  Pentapartitioned Neutrosophic set and 

its properties. The researchers [15],[16] introduced the new concept Quadri partitioned Neutrosophic soft 

set and its topological space. 

 

In our previous work, the researchers [17]  introduced the concept of the Penta Partitioned Neutrosophic 

Soft Set (PPNSS), an extension that combines the strengths of neutrosophic and soft set theories while 

partitioning the neutrosophic domain into five distinct subsets. This structure provides a more granular 

approach to managing uncertainty and indeterminacy. We established foundational properties of PPNSS, 

demonstrating its efficacy in theoretical and application-oriented scenarios. 

Building on this foundation, we now extend our research by incorporating PPNSS into the realm of 

topological spaces. This extension, termed the Penta Partitioned Neutrosophic Soft Topological Space 

(PPNSTS), introduces a novel framework for applying the principles of topology to neutrosophic soft sets. 

By defining open and closed sets, neighborhoods, and other fundamental topological concepts within the 

PPNSTS framework, we aim to explore its potential in providing structured solutions to problems in 

mathematics and applied sciences. This work not only enriches the theory of soft topology but also 

contributes to the broader understanding of neutrosophic systems as a versatile tool for handling 

uncertainty.  

 

2. Preliminaries  

 

Definition: 2. 1[14] 

 

Let P be a non-empty set. A Pentapartitioned neutrosophic set A over P characterizes each element p in P 

a truth -membership function 𝑇𝐴 , a contradiction membership function 𝐶𝐴, an ignorance membership 

function 𝐺𝐴, unknown membership function 𝑈𝐴 and a false membership function 𝐹𝐴 , such that for each p 

in P    𝑇𝐴 + 𝐶𝐴 + 𝐺𝐴 + 𝑈𝐴 + 𝐹𝐴 ≤ 5 

 

Definition:2. 2[15] 

Let X be the initial universe set and E be a set of parameters. Consider a non-empty set A and A ⊆ E. Let 

P(X) denote the set of all quadri partitioned neutrosophic sets of X. The collection (F, A) is termed to be 

the quadri partitioned neutrosophic soft set (QNSS) over X, where F is a mapping given by F : A⟶ P(X). 

Where 𝐴 = {< 𝑥, 𝑇𝐴(𝑥),𝐶𝐴(𝑥), 𝑈𝐴(𝑥),𝐹𝐴(𝑥) >: 𝑥 ∈ X}    Where 𝑇𝐴  , 𝐹𝐴, 𝐶𝐴  , 𝑈𝐴 ∶ 𝑋 ⟶ [0,1] 𝑎𝑛𝑑  

 0 ≤ 𝑇𝐴(𝑥) + 𝐶𝐴(𝑥) + 𝑈𝐴(𝑥) + 𝐹𝐴 (𝑥) ≤ 4 Here 𝑇𝐴(𝑥) is the truth membership, 𝐶𝐴(𝑥) is contradiction 

membership, 𝑈𝐴(𝑥) is ignorance membership and 𝐹𝐴(𝑥) is the false membership. 
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Definition:2. 3[17] 

 

Let X be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let P(X) 

denote the set of all penta partitioned neutrosophic sets of U. The collection (F, A) is termed to be penta 

partitioned neutrosophic soft set over U, where F is a mapping given by F: A → P(X). Where 𝐴 =
 {< 𝑥, 𝑇𝐴(𝑥),𝐶𝐴(𝑥), 𝐺𝐴(𝑥), 𝑈𝐴(𝑥),𝐹𝐴(𝑥) >: 𝑥 ∈ X}    Where 𝑇𝐴  , 𝐹𝐴, 𝐶𝐴  , 𝑈𝐴 ∶ 𝑋 ⟶ [0,1] 𝑎𝑛𝑑  

 0 ≤ 𝑇𝐴(𝑥) + 𝐶𝐴(𝑥) + 𝑈𝐴(𝑥) + 𝐹𝐴 (𝑥) ≤ 4 Here 𝑇𝐴(𝑥) is the truth membership, 𝐶𝐴(𝑥) is contradiction 
membership, 𝐺𝐴(𝑥) is ignorance membership 𝑈𝐴(𝑥) is unknown membership and 𝐹𝐴(𝑥) is the false 
membership. 

 

3 .  Penta Partitioned Neutrosophic Soft Topological Space [PPNSTS] 

 

Definition : 3. 1 

Let (K, M) be Penta Partitioned Neutrosophic set on (X, R) and 𝜏 be a collection of Penta partitioned 

neutrosophic soft subsets of (K, M). Then (K, M) is called Penta Partitioned Neutrosophic Soft Topology 

if the following conditions are satisfied. 

i) 𝜙𝑀 , 𝑋𝑀 ∈ 𝜏 

ii) The union of the elements of any sub collection of 𝜏  is in 𝜏  

iii) The intersection of the elements of any finite sub collection 𝜏  is in 𝜏  

The triplet (X, 𝜏, M) is called an Penta Partitioned Neutrosophic Soft Topological Space over X. 

 

Note :3. 2 

1. Every member of 𝜏 is called a Penta Partitioned Neutrosophic Soft open set in X. 

2. The set 𝐴𝑀is called a Penta Partitioned Neutrosophic Soft closed set in X if 𝐴𝑀 ∈ 𝜏
𝑐, where 𝜏𝑐 =

{𝐴𝑀
𝑐: 𝐴𝑀 ∈ 𝜏}. 

 

Example : 3. 3 

Let X = {𝜍1, 𝜍 2, 𝜍 3, 𝜍 4}, M = {m1, m2} and Let 𝐴𝑀 , 𝐵𝑀 , 𝐶𝑀 , 𝐷𝑀 be Penta Partitioned Neutrosophic Soft 

where 

A(m1) = {< 𝜍1, .5, .6, .1, .7, .2 > < 𝜍2, .7, .5, .2, .4, .1 >  < 𝜍3, .6, .5, .3, .4, .3 > <  𝜍4, .3, .2, .4, .6, .1 >} 

A(m2) = {< 𝜍1, .8, .7, .4, .6, .3 > < 𝜍2, .2, .3, .5, .6, .7 >  < 𝜍3, .9, .8, .6, .7, .1 > <  𝜍4, .7, .5, .7, .4, .3 >} 

B(m1) = {< 𝜍1, .2, .3, .5, .5, .1 > < 𝜍2, .6, .4, .6, .3, .2 >  < 𝜍3, .2, .3, .7, .6, .5 > <  𝜍4, .1, .8, .8, .9, .5 >} 

B(m2) = {< 𝜍1, .5, .8, .9, .2, .4 > < 𝜍2, .5, .8, .8, .7, .9 >  < 𝜍3, .4, .5, .7, .8, .6 > <  𝜍4, .5, .6, .7, .8, .9 >} 

C(m1) = {< 𝜍1, .1, .2, .6, .3, .4 > < 𝜍2, .7, .8, .5, .9, .1 >  < 𝜍3, .3, .2, .4, .4, .5 > < 𝜍4, .9, .3, .3, .4, .5 >} 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

52  

C(m2) = {< 𝜍1, .3, .8, .2, .7, .6 > < 𝜍2, .7, .6, .1, .5, .4 >  < 𝜍3, .2, .3, .2, .4, .5 > <  𝜍4, .7, .2, .3, .8, .5 >} 

D(m1) = {< 𝜍1, .9, .2, .4, .7, .3 > < 𝜍2, .2, .4, .5, .6, .8 >  < 𝜍3, .1, .3, .6, .5, .7 > <  𝜍4, .3, .6, .7, .9, .1 >} 

D(m2) = {< 𝜍1, .8, .6, .5, .4, .2 > < 𝜍2, .9, .7, .4, .5, .3 >  < 𝜍3, .2, .3, .2, .4, .5 > < 𝜍4, .7, .8, .1, .9, .2 >} 

 

𝜏 = {𝐴𝑀 , 𝐵𝑀 , 𝐶𝑀 , 𝐷𝑀 , 𝜙𝑀 , 𝑋𝑀} is an PPNST on X. 

 

Preposition : 3. 4 

Let (X, 𝜏1, M) and (X, 𝜏2, M) be two PPNSTS on X.  Then 𝜏1⋂𝜏2  is an Penta Partitioned Neutrosophic 

Soft topology on X. where  𝜏1⋂𝜏2 = {𝐴𝑀: 𝐴𝑀 ∈ 𝜏1 and  𝐴𝑀 ∈ 𝜏2 } 

Proof : 

Obviously 𝜙𝑀 , 𝑋𝑀 ∈ 𝜏. 

Let 𝐴𝑀 , 𝐵𝑀 ∈ 𝜏1⋂𝜏2 

Then 𝐴𝑀 , 𝐵𝑀 ∈ 𝜏1  and 𝐴𝑀 , 𝐵𝑀 ∈ 𝜏2 

We know that 𝜏1 and 𝜏2 are two PPNSTS on X. 

Then 𝐴𝑀⋂𝐵𝑀 ∈ 𝜏1 and 𝐴𝑀⋂𝐵𝑀 ∈ 𝜏2  

Hence 𝐴𝑀⋂𝐵𝑀 ∈ 𝜏1⋂𝜏2 . 

Let 𝜏1 and 𝜏2 are two PPNSTS on X. 

Denote 𝜏1  ∨  𝜏2 = {𝐴𝑀 ⊔𝐵𝑀  : 𝐴𝑀 ∈ 𝜏1 and  𝐴𝑀 ∈ 𝜏2} 

                   𝜏1  ∧  𝜏2 = {𝐴𝑀 ⊓ 𝐵𝑀  : 𝐴𝑀 ∈ 𝜏1 and  𝐴𝑀 ∈ 𝜏2}. 

 

Example : 3. 5 

Let 𝐴𝑀 𝑎𝑛𝑑 𝐵𝑀 be two PPNSTS on X. 

Define 𝜏1 = {𝜙𝑀 , 𝑋𝑀 , 𝐴𝑀} 

                 𝜏2 = {𝜙𝑀 ,  𝑋𝑀 , 𝐵𝑀} 

Then 𝜏1 ∩ 𝜏2 = {𝜙𝑀 , 𝑋𝑀} is a PPNSTS on X.  

But 𝜏1 ∪ 𝜏2 = {𝜙𝑀 , 𝐴𝑀 , 𝐵𝑀 , 𝑋𝑀}, 𝜏1  ∨  𝜏2 = {𝜙𝑀 , 𝐴𝑀 , 𝐵𝑀 , 𝑋𝑀 , 𝐴𝑀 ⊔ 𝐵𝑀} 𝑎𝑛𝑑  

𝜏1  ∧  𝜏2 = {𝜙𝑀 , 𝐴𝑀 , 𝐵𝑀 , 𝑋𝑀 , 𝐴𝑀 ⊓ 𝐵𝑀} are not PPNSTS on X. 

 

Theorem : 3. 6 
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Let (X, 𝜏, M) be a PPNSTS on X and let m ∈ M,          

{𝜏(𝑚) = {𝐴(𝑚): 𝐴𝑀 ∈ 𝜏} is an PPNSTS on X. 

Proof: 

Let m ∈ M. 

i) 𝜙𝑀 , 𝑋𝑀 ∈ 𝜏  0𝑁
𝑐  = 𝜙(𝑚) and 1𝑁

𝑐  = X(m) 

  we have 0𝑁
𝑐 , 1𝑁

𝑐 ∈ 𝜏(𝑚) 

ii) Let V, W ∈ 𝜏(𝑚). Then there exist 𝐴𝑀 , 𝐵𝑀 ∈ 𝜏 such that V =A(m) and W =G(m) 

     By 𝜏 is an PPNSTS on X, 𝐴𝑀 ⊓ 𝐵𝑀 ∈ 𝜏 

     Take 𝐶𝑀 = 𝐴𝑀 ⊓𝐵𝑀 

     Then 𝐶𝑀 ∈ 𝜏 

     Note that V∩ W =  𝐴𝑀 ∩ 𝐵𝑀 = 𝐶𝑀 and {𝜏(𝑚) = {𝐴(𝑚):𝐴𝑀 ∈ 𝜏} 

     Then V∩ W = 𝜏(𝑚) 

 

Definition : 3. 7 

Let (X, 𝜏, M) be a PPNSTS on X and let  𝔅 ⊆ 𝜏,𝔅 is a basis on 𝜏 if for each 𝐴𝑀 ∈ 𝜏, there exist 𝔅′ ⊆ 𝔅 

such that 𝐴𝑀 ⊔𝔅′ 

 

Example : 3. 8 

Let (X, 𝜏, M) be a PPNSTS on X as in Example:3.3 

Then 𝔅 = {𝐴𝑀 , 𝐵𝑀 , 𝐶𝑀 , 𝜙𝑀 , 𝑋𝑀} is a basis for 𝜏. 

 

Theorem : 3. 9 

Let 𝔅 be a basis for PPNSTS on 𝜏. Define  𝔅𝑚 =  {𝐴(𝑚): 𝐴𝑀 ∈ 𝔅}and 𝜏(𝑚) = {𝐴(𝑚): 𝐴𝑀 ∈ 𝜏} for and 

m ∈ 𝑀. Then 𝔅𝑚 is a basis PPNST 𝜏(𝑚). 

Proof : 

Let m ∈ 𝑀. For any V=  𝜏(𝑚), V= B(m) , for 𝐵𝑀 ∈ 𝜏. 

Now 𝔅 is a basis for 𝜏.  

Then there exists 𝔅′ ⊆ 𝔅 such that 𝐵𝑀 =⊔ 𝔅
′ where 𝔅𝑚

,′ = {𝐴(𝑚): 𝐴𝑀 ∈ 𝔅
′′}⊆ 𝔅𝑚 . 

Thus 𝔅𝑚is a basis for PPNST 𝜏(𝑚). 

 

 

4. PROPERTIES OF PPNSTS 
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Definition : 4. 1 

Let  (X, 𝜏, M) be a PPNSTS on X and let 𝐴𝑀 belongs to PPNSS on 𝑋𝑀. Then the interior of 𝐴𝑀 is denoted 

as PPNSint (𝐴𝑀). It is defined by PPNSint (𝐴𝑀) = ⊔ {𝐵𝑀 ∈ 𝜏: 𝐵𝑀 ⊆ 𝐴𝑚} 

 

Definition : 4. 2 

Let  (X, 𝜏, M) be a PPNSTS  on X and let 𝐴𝑀 belongs to PPNSS on 𝑋𝑀. Then the closure of 𝐴𝑀 is denoted 

as PPNScl (𝐴𝑀). It is defined by PPNScl (𝐴𝑀) = ⊓ {𝐵𝑀 ∈ 𝜏
𝑐 : 𝐴𝑀 ⊆ 𝐵𝑚} 

 

Theorem : 4. 3 

Let  (X, 𝜏, M) be a PPNSTS over X. Then the following properties are hold. 

i) 𝜙𝑀 𝑎𝑛𝑑 𝑋𝑀  are PPNS closed sets over X 

ii) The intersection of any number of PPNS closed set is a PPNS closed set over X. 

iii) The union of any two PPNS closed set is an PPNS closed set over X. 

Proof: 

It is obviously true. 

 

Theorem : 4. 4 

Let (X, 𝜏, M) be a be a PPNSTS over X.and Let 𝐴𝑀 ∈ Penta Partitioned Neutrosophic Soft topological 

space .Then the following properties hold. 

(i) PPNSInt (AM) ⊆ AM 

(ii) AM ⊆ BM implies PPNSInt (AM) ⊆ PPNSInt (BM) . 

(iii) PPNSInt (𝐴𝑀) ∈  𝜏. 

(iv) 𝐴𝑀 is a PPNS open set implies PPNSInt (𝐴𝑀) = 𝐴𝑀. 

(v) Pinsent (PPNSInt (𝐴𝑀)) = PPNSInt (𝐴𝑀) 

(vi) PPNSInt (𝜙𝑀) = 𝜙𝑀, QNSInt (𝑋𝑀) = 𝑋𝑀. 

Proof: 

  (i) and (ii) are obviously true. 

 

 (iii) Obviously  ⊔ {𝐵𝑀 ∈ 𝜏: 𝐵𝑀 ⊆ 𝐴𝑚} ∈ 𝜏 

        Note that ⊔ {𝐵𝑀 ∈ 𝜏:𝐵𝑀 ⊆ 𝐴𝑚} = PPNSInt (AM) 
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       ∴ PPNSInt (AM) ∈ τ 

(iv) Necessity: Let AM be a PPNS open set. ie., AM ∈ τ. By (i) and (ii) PPNSInt (AM) ⊆ Am . 

       Since AM ∈ τ and AM ⊆ Am 

       Then AM  ⊆ ⊔ {BM ∈ τ: BM ⊆ Am}= PPNSInt (AM) 

     𝐴𝑀  ⊆ PPNSInt (𝐴𝑀) 

     Thus PPNSInt = 𝐴𝑚. 

     Sufficiency: Let PPNSInt(𝐴𝑚) = 𝐴𝑚 

     By (iii) PPNSInt(𝐴𝑚) ∈ 𝜏 , ie., 𝐴𝑚 is a PPNS open set. 

(v) To prove PPNSInt (PPNSInt (𝐴𝑚)) = PPNSInt (𝐴𝑚) 

      By (iii) PPNSInt (𝐴𝑚) ∈ 𝜏. 

      By (iv) PPNSInt (QNSInt (𝐴𝑚)) = PPNSInt (𝐴𝑚). 

   (vi) We know that 𝜙𝑀 and 𝑋𝑀 are in 𝜏 

       By (iv) PPNSInt (𝜙𝑀) = 𝜙𝑀 , PPNSInt (𝑋𝑀) = 𝑋𝑀. 

 

Theorem : 4. 5 

 Let (X, 𝜏, M) be a be a PPNSTS over X and Let 𝐴𝑀 is in the PPNSTS .Then the following properties hold. 

(i) 𝐴𝑀 ⊆ PPNSCl(𝐴𝑀) 

(ii) 𝐴𝑀 ⊆ 𝐵𝑀 implies PPNSCl (𝐴𝑀) ⊆ PPNSCl (𝐵𝑀) . 

(iii) PPNSCl (𝐴𝑀)c ∈  𝜏. 

(iv) 𝐴𝑀 is a PPNS closed set implies PPNSCl (𝐴𝑀) = 𝐴𝑀. 

(v) PPNSCl (PPNSCl (𝐴𝑀)) = PPNSCl (𝐴𝑀) 

(vi) PPNSCl (𝜙𝑀) = 𝜙𝑀, PPNSCl (𝑋𝑀) = 𝑋𝑀. 

 

Proof: 

(i) and (ii) are obviously true. 

(iii) By theorem, PPNSInt (𝐴𝑀
c) ∈ 𝜏 

      Therefore [PPNSCl (𝐴𝑀)]c = (⊓ {𝐵𝑀 ∈ 𝜏
c: 𝐵𝑀 ⊆ 𝐴𝑚})

c 
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                                                    = ⊔ {𝐵𝑀 ∈ 𝜏: 𝐵𝑀 ⊆ 𝐴𝑚
c} = PPNSInt (𝐴𝑀

c) 

       ∴ [PPNSCl (𝐴𝑀)]c∈ 𝜏 

(iv) Necessity:  

      By theorem, 𝐴𝑀 ⊆ PPNSCl(𝐴𝑀) 

 Let 𝐴𝑀 be a PPNS closed set. ie., 𝐴𝑀 ∈ 𝜏c . 

      Since 𝐴𝑀 ∈ 𝜏 𝑎𝑛𝑑 𝐴𝑀 ⊆ 𝐴𝑚 

 [PPNSCl (𝐴𝑀)] = ⊓ {𝐵𝑀 ∈ 𝜏
c: 𝐴𝑀 ⊆ 𝐵𝑚} ⊆ {𝐵𝑀 ∈ 𝜏

c: 𝐴𝑀 ⊆ 𝐴𝑚}
 

      PPNSCl (𝐴𝑀) ⊆ 𝐴𝑚. 

 Thus 𝐴𝑚 =PPNSCl(𝐴𝑚) 

Sufficiency: This is obviously true by (iii) 

     (v) and (vi) can be proved by (iii) and (iv) . 

 

Theorem :4. 6 

Let (X, 𝜏, M) be a be a PPNSTS over X and Let 𝐴𝑀 , 𝐵𝑀  are in PPNSTS 𝑋𝑀 .Then the following properties 

hold. 

(i) PPNSInt (AM) ⊓ PPNSInt (BM ) =  PPNSInt (AM ⊓ BM) 

(ii) PPNSInt (AM) ⊔ PPNSInt (BM ) ⊆  PPNSInt (AM ⊔ BM)   

(iii) PPNSCl (AM) ⊔ PPNSCl (BM ) ⊆  PPNSCl (AM ⊔ BM)   

(iv) PPNSCl (AM ⊔ BM) ⊆ PPNSCl (AM) ⊓ PPNSCl (BM ) 

(v) (PPNSInt (FE))c = PPNSCl (FE
c) 

(vi) (PPNSCl (FE))c = PPNSInt (FE
c) 

Proof 

(i) Since 𝐴𝑀 ⊓ 𝐵𝑀 ⊆ 𝐴𝑚 for any m in M 

By theorem, PPNSInt (𝐴𝑀 ⊓ 𝐵𝑀) ⊆  PPNSInt (𝐴𝑀) 

Similarly, PPNSInt (𝐴𝑀 ⊓ 𝐵𝑀) ⊆  PPNSInt (𝐵𝑀) 

PPNSInt (𝐴𝑀 ⊓ 𝐵𝑀 ) ⊆  PPNSInt (𝐴𝑀) ⊓ PPNSInt(𝐵𝑀)   

By theorem, PPNSInt (𝐴𝑀 ) ⊆ 𝐴𝑀 and PPNSInt (𝐵𝑀 ) ⊆ 𝐵𝑀  

Thus  PPNSInt (𝐴𝑀 ⊓ 𝐵𝑀) ⊆  𝐴𝑀 ⊓ 𝐵𝑀 

Therefore, PPNSInt (𝐴𝑀) ⊓ PPNSInt (𝐵𝑀 ) =  PPNSInt (𝐴𝑀 ⊓ 𝐵𝑀) 

Similarly we can prove (ii),(iii) and (iv). 

v) (PPNSInt (FE))c = (⊔ {𝐵𝑀 ∈ 𝜏: 𝐵𝑀 ⊆ 𝐴𝑚})
c 
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                           = ⊓ {𝐵𝑀 ∈ 𝜏
c: 𝐴𝑀

c ⊆ 𝐵𝑚}  

     = PPNSCl (𝐴𝑀
c) 

Similarly we can prove (vi) 

 

Example : 4. 7 

Let X = { 𝜍 1, 𝜍 2}, M = {m1, m2} and Let 𝐴𝑀 , 𝐵𝑀 , 𝐶𝑀 , 𝐷𝑀 be PPNS where 

A(m1) = {< 𝜍1, .5, .6, .1, .7, .2 > < 𝜍2, .7, .5, .6, .4, .1 > } 

A(m2) = {< 𝜍1, .8, .7, .5, .6, .3 > < 𝜍2, .2, .3, .4, .6, .7 >  } 

B(m1) = {< 𝜍1, .2, .3, .4, .5, .1 > < 𝜍2, .6, .4, .5, .3, .2 > } 

B(m2) = {< 𝜍1, .5, .8, .3, .2, .4 > < 𝜍2, .5, .8, .2, .7, .9 > } 

C(m1) = {< 𝜍1, .1, .2, .5, .3, .4 > < 𝜍2, .7, .8, .6, .9, .1 >  } 
C(m2) = {< 𝜍1, .3, .8, .4, .7, .6 > < 𝜍2, .7, .6, .3, .5, .4 > } 

𝜏 = {𝐴𝑀 , 𝐵𝑀 , 𝐶𝑀 , 𝐷𝑀 , 𝜙𝑀 , 𝑋𝑀} is an PPNST on X. 

i) PPNSInt (𝐵𝑀) = 𝜙𝑀= QNSInt (𝐶𝑀)  

Then 𝐵𝑀 ⊔ 𝐶𝑀 = 𝐴𝑀 

PPNSInt (𝐵𝑀) ⊔ PPNSInt (𝐶𝑀 ) =𝜙𝑀 ⊔ 𝜙𝑀=𝜙𝑀 

And QNSInt (𝐵𝑀 ⊔ 𝐶𝑀) =  PPNSInt (𝐴𝑀)= 𝐴𝑀 

PPNSInt (𝐵𝑀) ⊔  PPNSInt (𝐶𝑀) ≠  PPNSInt (𝐵𝑀 ⊔ 𝐶𝑀) 

ii) PPNSCl (𝐵𝑀)c = (PPNSCl (𝐵𝑀))c = 𝜙𝑀
c = 𝑋𝑀 

Similarly PPNSCl (C𝑀)c= 𝑋𝑀 

PPNSCl (𝐵𝑀)c ⊓ PPNSCl (C𝑀)c= 𝑋𝑀 ⊓ 𝑋𝑀 = 𝑋𝑀 

Similarly PPNSCl (𝐵𝑀
c⊓ C𝑀

c) = PPNSCl (𝐵𝑀 ⊓ C𝑀)
c 

     = PPNSInt (𝐵𝑀 ⊔ C𝑀)
c 

     = A𝑀
c 

QNSCl (𝐵𝑀
c⊓ C𝑀

c) ≠ PPNSCl (𝐵𝑀)c ⊓ (PPNSCl (𝐵𝑀)]c 

 

5. CONCLUSION 

In this study, we have successfully extended the concept of Penta Partitioned Neutrosophic Soft Set 

(PPNSS) into the framework of Penta Partitioned Neutrosophic Soft Topological Space (PPNSTS). By 

integrating the principles of topology with the advanced structure of neutrosophic soft sets, we have 

established a robust mathematical model capable of addressing complex problems involving uncertainty, 

indeterminacy, and inconsistency. 

The properties and foundational elements of PPNSTS, such as open and closed sets, neighbourhood 

systems, bases, and subspaces, have been rigorously defined and analyzed. These theoretical constructs not 

only enhance the flexibility and applicability of neutrosophic soft sets but also provide a deeper 

understanding of their behaviour in a topological context. 
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The PPNSTS framework opens new avenues for research and practical applications, particularly in fields 

like decision-making, data classification, and artificial intelligence, where uncertainty is a predominant 

challenge. By offering a systematic and granular approach to uncertainty modeling, this work lays a solid 

foundation for future studies in soft topology and neutrosophic systems. 

In conclusion, the introduction of PPNSTS marks a significant advancement in the intersection of 

neutrosophic theory and topology, providing a versatile tool for both theoretical exploration and real-world 

problem-solving. Further research could focus on extending this framework to dynamic systems, hybrid 

models, and interdisciplinary applications. 
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Abstract:  

Image processing is the process of enhancing images that are digital or extracting information from them. 

The proposed approach initially denoises the image in the normal domain using all three filter types. The 

image is then turned into a Neutrosophic Set, which is classed as True (T), Indeterminacy (I), or False (F). 

The entropy of the Neutrosophic Set is used to assess the image's level of indeterminacy. PSNR, RMSE, 

and MSE are used to assess performance on datasets from the brain, eye, and lung. The results show that 

Neutrosophic filters outperform standard approaches, notably in dealing with mixed noise and maintaining 

image quality. Neutrosophic sets improve denoising by resolving uncertainty in noisy data, making them 

suitable for medical imaging applications. These methods demonstrate the efficiency of Neutrosophic filters 

in improving image clarity and diagnostic accuracy. 

 

Keywords: Image Processing, Denoising, Filtration, Neutrosophic Sets, Medical Imaging. 

 

1. Introduction 

Image processing is a significant technique in many areas, particularly medical imaging, where image 

quality has a substantial impact on diagnosis and treatment plans[1]. Medical imaging of the brain, eye, and 

lungs frequently contains noise added during acquisition, which can make precise interpretation difficult. 

Noise, particularly Gaussian noise, is one of the most common forms seen in medical images. To solve this 

issue, image denoising techniques are used to improve image quality and detail. Filters such as Average, 

Median, and Wiener have been frequently utilized for noise reduction, with each providing distinct benefits 

in terms of performance and computational efficiency[2]. The filter performance is evaluated in two 

domains: the original domain and the Neutrosophic Set (NS) domain, which has a more precise 

representation of the image's truth, false, and indeterminacy components[3]. The analysis evaluates the 

performance of three image denoising filters Average, Median, and Wiener, on medical image datasets 

(brain, eye, and lung) with Gaussian noise. It analyzes the performance of these filters in two domains: the 

ordinary domain and the Neutrosophic Set (NS) domain (where image data is represented with added 

uncertainty and indeterminacy). The objective is to determine the optimum image processing approach for 

improving medical images by assessing domain combinations using metrics such as Peak Signal-to-Noise 

Ratio (PSNR), Root Mean Square Error (RMSE), and Mean Square Error (MSE). These measures aid in 

determining the most effective method for reducing noise and improving image quality in diagnostic 

applications. 

 

2. Preprocessing 

Suitable preprocessing plays an essential role in image processing, especially for medical imaging, in 

which accurate diagnosis requires clear, high-quality images [4]. Initial processing prepares images to 

mailto:aarthi.pkm16@gmail.com
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provide filtration by classifying them, allowing them to be used in subsequent analyses. To maintain 

consistency across datasets, each image in the brain, lung, and eye datasets was pre-processed, which 

included resizing, normalization, and controlled noise addition [5]. 

 

2.1.NOISE REDUCTION FILTERS 

2.1.1. GAUSSIAN NOISE 

Gaussian noise, which is created by random variations in the signal, is represented by adding random 

numbers to an image [6]. This noise follows a normal Probability Density Function (pdf). It might also be 

known as the Gaussian distribution. 

 

3. NEUTROSOPHIC SET 

A neutrosophic set is a fuzzy set extension that uses truth, indeterminacy, and falsehood as its three 

membership functions to describe uncertainty [7]. It is used to simulate situations involving inadequate, 

inconsistent, or uncertain data. The neutrosophic set for an element 𝑥 in a universe 𝑈 is defined by three 

values: 

 True (T(x)) is the degree of truth, indicating how much x belongs to the set. 

 

 Falsity (F(x)) is the degree to which x does not belong in the set. 

 

 Indeterminacy (I(x)) refers to the uncertainty or undecidability around x's membership. 

 

These values vary from 0 to 1, and the total of truth, indeterminacy, and falsity does not always equal 1[8]. 

The neutrosophic set is especially helpful in image processing and decision-making situations where there 

is ambiguity or uncertainty, like in medical image analysis. 

A. Convert the image into a Neutrosophic 

To convert an image into neutrosophic, each of the pixels is assigned three membership values: truth 

(T(p,q)), indeterminacy (I(p,q)), and falsity (F(p,q). The truth is computed using the local mean intensity 

of the pixel's neighborhood, the indeterminacy is calculated using the difference between the pixel intensity 

and the local mean, and the falsity is the inverse of the truth. The values constitute a 3D matrix with 

dimensions (𝑚 × 𝑛 × 3). Each pixel has a triplet reflecting its truth, indeterminacy, and falsity. These are 

defined as follows: 

 

where 𝐿(𝑝, 𝑞) is the average intensity of the input data in a window that occupies the position.  𝐿𝑚𝑖𝑛 and 

𝐿𝑚𝑎𝑥 are the minimum and maximum average intensity in the region. U(p, q) function calculates the 
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complement of the normalized intensity. It is commonly employed in applications where the opposite scale 

is required. 

 

4. FILTERING TECHNIQUES 

 

4.1. MEDIAN FILTER 

 

A Median Filter represents a non-linear filtration process that reduces noise, particularly random noise as 

salt and pepper, preserving its edges. This operates by substituting the value of each pixel with the median 

of each from its neighbours across a specified frame. Using this technique effectively removes both minor 

and large amounts of noise without causing image edges to blur [9]. Yet, it might not be best suited for 

captures containing individual components because it may cause some loss of minor elements. Regardless, 

it is straightforward to build and is frequently employed during preprocessing to improve the quality of 

images while preserving critical components [10]. 

 

4.2. AVERAGE FILTER 

In image processing, an average filter, sometimes referred to as a mean filter, is a kind of linear filter that 

smoothes and reduces noise. It lowers sharpness and becomes flatter regional variations [11]. The algorithm 

replaces each pixel with the average of pixels in a square window surrounding it. The kernel, which usually 

occupies an odd dimension (e.g., 3x3 or 5x5), moves over the image and computes the average of the pixels 

that are adjacent to each place. This procedure reduces random noise, such as salt-and-pepper noise, by 

blurring the image and smoothing sharp transitions. While successful at reducing noise, the average filter 

can create blurring, resulting in a loss of clarity and sharpness in the image, particularly around the edges. 

It is computationally simple and frequently used, however, it may not maintain crucial features like edges 

or more complicated filters. 

 

4.3.WIENER FILTER 

By comparing a signal's noise level to an approximation of the perfect noiseless signal, the Wiener filter a

ims to reduce noise in the signal [12]. The Wiener filter reduces noise by determining the target and 

predicted procedure and lowering the difference between them [13]. The Wiener filter filters out noise that 

might degrade signal quality. This filter removes additive noise while also inverting blurring [14]. 

 

5. THE INDICATORS OF EVALUATION 

The PSNR, MSE, and RMSE are used in this work to assess the filter’s efficacy.  

 

5.1. PEAK SIGNAL TO NOISE RATIO (PSNR) 

   The PSNR is a parameter used to evaluate the image quality of regenerated or denoised representations 

[15]. This contrasts with the strongest achievable signals with noise created through the processing. A 

higher essential PSNR value signifies higher image quality. The following is an expression for the PSNR: 

                        PSNR = 10.𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                            (10) 

That is, MAX represents the image's maximum potential pixel value. 

The Mean Squared Error (MSE) between original and processed images [16]. A higher PSNR value denotes 

superior image quality. 

 

5.2. MEAN SQUARE ERROR (MSE) 
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The MSE is a statistic that determines the average squared difference between the original and processed 

images. It quantifies the difference (or inaccuracy) between the two photographs [17]. A lesser mean square 

error suggests that the result of processing is more similar to the actual[18]. 

                                                 MSE = 
∑ (𝑦𝑖
𝑛
𝑖=1 −𝑦𝑖̂)

2

𝑛
                (11) 

 

5.3. THE ROOT MEAN SQUARE ERROR (RMSE) 

The RMSE is the square root of the MSE, which provides an absolute measure of error. It determines the 

value of the error to an identical measure with the image's pixels[19]. A lower RMSE indicates that the 

original and denoised photos are more similar. The formula for RMSE is: 

                       RMSE = √
∑(𝑦𝑖− 𝑦𝑖̂)

2

𝑁 − 𝑃
                                        (12) 

Using the Root Mean Square Error (RMSE), we compare the observed value 𝑦𝑖  to the expected value 𝑦𝑖̂ 

[20]. Because the root mean square error is always positive, a lower RMSE number suggests that the model 

fits the data more well. 

 

6. EXPERIMENTAL RESULTS AND COMPARATIVE ANALYSIS 

The image undergoes denoising in both the normal domain and the neutrosophic domain through the use 

of the Median Filter as well as average and wiener filters. After the medical image is tainted by the addition 

of Gaussian noise, it is subjected to denoising processes. The tasks were performed using MATLAB. Once 

the image preprocessing is complete, it is altered into the Neutrosophic domain, as shown in the results. 

Figure 1 displays the brain image after applying the median filter during preprocessing. Figure 2 shows the 

brain image in the Neutrosophic Set (NS) domain, also with the median filter applied. Figure 3 illustrates 

the pre-processed lung image after the median filter has been used, highlighting its noise reduction 

effectiveness. Following the median filter application, Figure 4 presents the lung image transformed into 

the Neutrosophic Set (NS) domain, emphasizing the components of truth, falsehood, and indeterminacy. 

Figure 5 exhibits the pre-processed eye image containing Gaussian noise, with the median filter applied. 

Figure 6 shows the eye image in the NS domain after median filtering. Figures 7 and 8 feature a brain image 

processed with the Average filter and its representation in the NS domain. Figures 9 and 10 present an eye 

image processed with the Average filter alongside its NS domain representation. Figures 11 and 12 

showcase a lung image filtered using the Average filter, including its NS domain representation. Figures 

13 and 14 display a brain image processed by the Wiener filter, along with its NS domain representation. 

Figures 15 and 16 depict a lung image processed with the Wiener filter and its corresponding NS domain 

representation. Finally, Figures 17 and 18 illustrate an eye image processed through the Wiener filter, along 

with its NS domain representation are shown. 

                              

(a) Original Image                    (b) Gaussian Noise Image           (c) Median Filtered Image 

Fig 1 demonstrates a pre-processed brain image using the median filter. 
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          (a) True                                                     (b) False                                     (c) Indeterminacy 

Fig 2 demonstrates the brain image in the NS Domain with the median filter 

 

                                  

(a) Original Image                 (b) Gaussian Noise Image   (c) Median Filtered Image 

Fig 3 demonstrates a pre-processed lung image using the median filter 

 

                        

(a) True (b) False (c) Indeterminacy 

Fig 4 demonstrates the lung image in the NS Domain with the median filter 

                              

 

 

 

 

 

(a)Original Image                 (b) Gaussian Noise Image          (c) Median Filtered Image 

 

Fig 5 demonstrates a pre-processing eye image using the median filter 
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Fig 6 demonstrates the eye image in the NS Domain with the median filter 

            

 

 

 

 

 

(a)Original Image                 (b) Gaussian Noise Image                 (c) Average Filtered Image 

 

Fig 7 demonstrates a pre-processing brain image using the average filter 

 

                         

 

 

 

 

 

 

Fig 8 demonstrates the brain image in the NS Domain with the average filter 

                                     

(a) Original Image                 (b) Gaussian Noisy Image           (c) Average Filtered Image 

 

Fig 9 demonstrates pre-processing eye image using the average filter 

                          

 

 

Fig 10 demonstrates the eye image in the NS Domain with the average filter 

 

 

 

 

  

          (a) True                                              (b) False                                  (c) Indeterminacy 

          (a) True                                              (b) False                                   (c) Indeterminacy 
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(a) Original Image                 (b) Gaussian Noise Image           (c) Average Filtered Image 

 

Fig 11 

demonstrates pre-processing lung image using the average filter 

                          

 

 

 

 

 

 

Fig 12 demonstrates the lung image in the NS Domain with the wiener filter 

 

                                 

(a) Original Image                 (b) Gaussian Noise Image           (c)  Wiener Filtered Image 

 

Fig 13 demonstrates pre-processing brain image using the wiener filter 

                

(a) True (b) False (c) Indeterminacy 

 

Fig 14 demonstrates the brain image in the NS Domain with the wiener filter 

                                  

(a) Original Image               (b) Gaussian Noise Image  (c)  Wiener Filtered Image 

 

Fig 15 demonstrates pre-processing lung image using the wiener filter  

(a) True (b) False (c) Indeterminacy 
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(a) True (b) False (c) Indeterminacy 

 

Fig 16 demonstrates the lung image in the NS Domain with the wiener filter 

                                           

(a) Original Image                 (b) Gaussian Noisy Image           (c)  Wiener Filtered Image 

 

Fig 17 demonstrates pre-processing lung image using the wiener filter 

 

                                         

   

 

(a) True                                        (b) False                               (c) Indeterminacy 

Fig 18 demonstrates the eye image in the NS Domain with the wiener filter 

 

We analyzed each filter's efficiency across several window sizes (ranging from 2x2 to 6x6) for each dataset, 

and the PSNR values are provided in Table 1. The noise utilized in the evaluation was Gaussian. Table 2 

provides the RMSE values, whereas Table 3 shows the MSE values, which provide further information 

about the performance of each filtering strategy in terms of error metrics. The table displays the results 

acquired using several filters in two distinct domains, demonstrating each filter's performance across a 

range of window sizes and domains. 

Filters Window 

size 

Normal Neutrosophic 

Brain Eye Lung Brain Eye Lung 

 

Median 

2x2 21.5601 21.0702 21.0442 25.9562 25.2223 24.9792 

3x3 20.9360 20.4766 20.6291 28.7297 27.9516 27.7868 

4x4 20.7023 20.2731 20.1861 29.8540 29.3192 27.7187 
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5x5 20.6711 20.2541 20.2492 31.2066 31.1950 28.9539 

6x6 20.4947 20.1440 19.9279 30.5022 31.0372 27.7699 

 

Average 

2x2 20.1099 20.2577 20.0014 25.9043 25.6052 25.2782 

3x3 20.7619 20.9141 20.8008 28.1631 28.1660 27.8916 

4x4 20.8231 21.0671 20.6351 28.2332 28.9456 27.1436 

5x5 20.9143 21.1547 20.7396 28.6503 29.5537 27.3213 

6x6 20.8168 21.1423 20.4832 27.9753 29.4241 26.2270 

 

Wiener 

2x2 24.4927 24.0731 24.0409 24.5824 24.2481 24.3484 

3x3 22.8537 22.3531 22.3715 26.4539 26.7064 26.6232 

4x4 22.1752 21.6951 21.6807 27.1806 28.1550 27.4650 

5x5 21.8629 21.3299 21.3640 27.6451 29.1309 27.8725 

6x6 21.6434 21.0645 21.1542 27.7915 29.7406 27.8200 

Table 1: PSNR values of brain, eye, and lung datasets 

 

 

Fig. 19. PSNR values are graphically shown. 

 

Filters Window 

size 

Normal Neutrosophic 

Brain Eye Lung Brain Eye Lung 

 

Median 

2x2 4.6432 4.5902 4.5873 2.8447 3.9773 1.3257 

3x3 4.5756 4.5251 4.5419 3.3338 1.2085 2.4039 

4x4 4.5499 4.5025 4.4928 3.2004 3.7212 1.4858 

5x5 4.5465 4.5004 4.4999 3.0178 3.0272 3.9579 

6x6 4.5271 4.4882 4.4640 3.6107 3.1561 1.4242 

 2x2 3.0987 4.4970 3.0999 2.9217 1.3745 1.8876 
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Average 3x3 3.9216 6.0900 4.0911 2.9629 3.9595 2.2791 

4x4 4.4369 4.0884 5.0929 3.8828 3.1045 4.2036 

5x5 5.3965 3.0875 2.0918 3.4194 2.4889 2.9766 

6x6 4.0910 2.0876 4.9458 2.1806 1.6165 1.4505 

 

Wiener 

2x2 4.9490 5.9064 3.9031 1.0458 1.6362 1.4568 

3x3 4.7805 3.7279 2.7298 1.1294 2.7819 2.8953 

4x4 4.7091 4.6577 6.6562 1.1560 3.9721 2.7966 

5x5 4.6757 4.6184 5.6221 2.5750 3.9123 2.3318 

6x6 4.6522 4.5896 2.5993 2.3982 2.3082 1.3643 

                         Table 2: RMSE values of brain, eye, and lung datasets 

 

 

Fig. 20. RMSE values are graphically shown. 

   

Filters Window 

size 

Normal Neutrosophic 

Brain Eye Lung Brain Eye Lung 

 

Median 

2x2 4.5401 5.0823 5.1127 1.6498 1.9536 2.0522 

3x3 5.2415 5.8266 5.6255 4.1193 1.2132 1.0824 

4x4 5.5314 6.1061 6.2296 4.2480 4.0605 1.0995 

5x5 5.5714 6.1329 6.1397 4.2508 4.3825 2.7335 

6x6 5.8023 6.2904 6.6113 3.9234 5.2101 1.0866 

 

Average 

2x2 0.0097 4.3094 2.3099 1.6697 2.7887 1.9286 

3x3 3.3483 3.0081 4.3083 2.2587 3.1923 1.0566 

4x4 4.3082 2.0078 2.2186 2.6697 1.8925 1.2552 

5x5 3.0081 2.2376 3.6584 2.7258 1.0617 1.2048 

6x6 4.0082 7.0076 2.9889 2.0364 4.2443 1.5501 

 

Wiener 

2x2 2.3110 5.5453 5.5643 1.2637 4.4449 2.3891 

3x3 3.3709 3.7823 3.7664 1.4712 1.3881 1.4149 

4x4 3.9399 4.4011 4.4157 1.2445 3.4429 1.1656 

0

1

2

3

4

5

6

7

2x2 3x3 4x4 5x5 6x6 2x2 3x3 4x4 5x5 6x6 2x2 3x3 4x4 5x5 6x6

Median Average Wiener

RMSE Values

Normal Brain Normal Eye Normal Lung

Neutrosophic Brain Neutrosophic Eye Neutrosophic Lung



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

70  

5x5 4.2343 4.7871 4.7498 1.1183 3.4303 1.0612 

6x6 4.4538 5.0889 4.9848 1.0812 4.0271 1.0741 

             Table 3: MSE values of brain, eye, and lung datasets  

 

Fig 21 MSE values are graphically shown. 

 

7. CONCLUSION 

The image denoising method utilizes the Median filter, Average filter, and Wiener filter to handle Gaussian 

noise in three datasets: brain, eye, and lung. The filters are used in both the Neutrosophic and Normal 

domains. However, the results show that denoising is more effective in the Neutrosophic domain, resulting 

in better noise reduction. The use of Neutrosophic sets improved the results by addressing the uncertainty 

and indeterminacy inherent in noisy data, making them especially useful for medical imaging with mixed 

noise types. The addition of Neutrosophic sets improved performance even more by addressing uncertainty 

and indeterminacy in noisy data, making them especially useful for medical imaging with complex or mixed 

noise. Neutrosophic filtering not only reduced noise more effectively, but it also preserved small features, 

resulting in enhanced image quality. Thus, Neutrosophic-based filters are the most effective way to improve 

medical image, improving the capacity for diagnosis by providing clearer and better-quality images. 
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Abstract: A Fermatean Quadripartitioned Neutrosophic Set is a powerful general formal framework that 

generalizes the concept of Fermatean Neutrosophic sets and Quadripartitioned Neutrosophic Sets. In this 

paper, we apply the notion of Fermatean Quadripartitioned Neutrosophic (FQN) sets to Lie algebras. We 

develop the concepts of FQN Lie subalgebras and FQN Lie ideals. We describe some interesting results of 

FQN Lie ideals. 

 

Keywords: FQN Lie ideal, FQN sets, FQN Lie subalgebra 

1. Introduction 

The concept of Lie groups was first introduced by Sophus Lie in nineteenth century through his 

studies in geometry and integration methods for differential equations. Lie algebras were also 

discovered by him when he attempted to classify certain smooth subgroups of a general linear group. 

The importance of Lie algebras in mathematics and physics has become increasingly evident in recent 

years. In mathematics, Lie theory remains a robust tool for studying differential equations, special 

functions and perturbation theory. It’s noted that Lie theory has applications not only in mathematics 

and physics but also in diverse fields like continuum mechanics, cosmology and life sciences. Lie 

algebra has been utilized by electrical engineers, mainly within the mobile robot control [6]. Lie 

algebra has also been accustomed solve the problems of computer vision. 

Fuzzy structures are related to theoretical soft computing, especially Lie algebras and their different 

classifications, have numerous applications to the spectroscopy of molecules, atoms and nuclei.  One 

amongst the key concepts within the applying of Lie algebraic method in physics is that of spectrum 

generating algebras and their associated dynamic symmetries. The most important  advancements 

within the fascinating world of fuzzy sets started with the work of renowned scientist Zadeh [19] with 

new directions and ideas. Smarandache and Wang et al. [7] defined SVN sets as a generalization of 

fuzzy sets  and intuitionistic fuzzy sets [4]. Algebraic structures have a major place with vast 

applications in various disciplines. Neutrosophic set has been applied to algebraic structures. 

Fuzzification of Lie algebras has been discussed in [1–3]. The idea of single valued neutrosophic Lie 
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algebra was investigated by Muhammad Akram, Hina Gulzar and Kar Ping Shum[8]. Pentapartitioned 

neutrosophic set and its properties were introduced by Rama Malik and Surpati Pramanik [17]. During 

this case, indeterminacy is split into three components: contradiction, ignorance, and an unknown 

membership function. We have  now extended our research during this Pentapartitioned neutrosophic 

set as a space. Also we introduced the concept of Fermatean Quadripartitioned Neutrosophic set  and 

establish variety of its properties in our previous work. During this paper, we apply the notion of 

Fermatean Quadripartitioned Neutrosophic (FQN) sets to Lie algebras.  

In this paper, We develop the concepts of FQN Lie subalgebras and investigated some of its 

properties. Furthermore, we have also studied the concept of FQN Lie ideals. We describe some 

interesting results of FQN Lie ideals.  

 

2. Preliminaries 

In this section, we first review some elementary aspects that are necessary for this paper. A 

Lie algebra[1] is a vector space L over a field F (equal to R or C) on which L ×L → L denoted 

by (x, y) → [x, y] is defined satisfying the following axioms: 

(L1) [x, y] is bilinear, 

(L2) [x, x] = 0 for all x ∈ L, 

(L3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity). 

Throughout this paper, L is a Lie algebra and F is a field. We note that the multiplication 

in a Lie algebra is not associative, i.e., it is not true in general that [[x, y], z] = [x, [y, z]]. But it  

is anti-commutative, i.e., [x, y] = −[y, x]. A subspace H of L closed under [・, ・] will be called a 

Lie subalgebra. 

A fuzzy set μ : L → [0, 1] is called a fuzzy Lie ideal [1] of L if 

(a) μ(x + y) ≥ min{μ(x), μ(y)}, 

(b) μ(𝛼x) ≥ μ(x), 

(c) μ([x, y]) ≥ μ(x) 

hold for all x, y ∈ L and 𝛼 ∈ F. 

 

Definition: 2. 1[10]  

Let R be a space of points(objects). A Fermatean Quadripartitioned Neutrosophic (FQN) set on a non-

empty R is characterized by truth membership function A1: R → [0, 1], contradiction membership function 

A2: R → [0, 1], ignorance membership function A3: R  → [0, 1] and false membership function A4: R  → 

[0, 1]. 
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Thus, R = {<r, A1(r), A2(r), A3(r),A4 (r)>} satisfies with the following conditions 

(A1)3+(A2)3+(A3)3+(A4)3 ≤2.  

 

Definition: 2.2  [8]  

An SVN set N = (TN, IN, FN) on Lie algebra L is called an SVN Lie subalgebra 

if the following conditions are satisfied: 

(1) TN(x + y) ≥ min(TN(x), TN(y)), IN(x + y) ≥ min(IN(x), IN(y)) and  

FN(x + y) ≤ max(FN(x), FN(y)), 

(2) TN(𝛼x) ≥ TN(x), IN(𝛼x) ≥ IN(x) and FN(𝛼x) ≤ FN(x), 

(3) TN([x, y]) ≥ min{TN(x), TN(y)}, IN([x, y]) ≥ min{IN(x), IN(y)} and FN([x, y]) ≤ 

max{FN(x), FN(y)} 

for all x, y ∈ L and 𝛼 ∈ F. 

 

Definition: 2.3  [8] 

 A SVN set N = (TN, IN, FN) on L is called an SVN Lie ideal if it satisfies 

the conditions (1), (2) and the following additional condition: 

Single-valued Neutrosophic Lie algebras  

(1) TN([x, y]) ≥ TN(x), IN([x, y]) ≥ IN(x) and FN([x, y]) ≤ FN(x) 

for all x, y ∈ L. 

From (2) it follows that: 

(2) TN(0) ≥ TN(x), IN(0) ≥ IN(x), FN(0) ≤ FN(x), 

(3) TN(−x) ≥ TN(x), IN(−x) ≥ IN(x), FN(−x) ≤ FN(x). 

 

3. Fermatean Quadripartitioned Neutrosophic Lie subalgebra  

We define here Fermatean Quadripartitioned Neutrosophic (FQN) Lie subalgebras and Fermatean 

Quadripartitioned Neutrosophic Lie ideal. 

 

Definition : 3.1 

A FQN set R = (A1 R, A2 R, A3 R , A4 R ) is called an FQN Lie subalgebra ℒ if the following conditions are 

satisfied: 

1) A1 R (a + b) ≥ min (A1 R (a), A1 R (b)), A2 R (a + b) ≥ min (A2 R (a), A2 R (b)). 

A3 R (a + b) ≤ max (A3 R (a), A3 R (b)), A4 R (a + b) ≤ max (A4 R (a), A4 R (b)). 

2) A1 R (𝛽a) ≥ A1 R (a), A2 R (𝛽a) ≥ A2 R (a), A3 R (𝛽a) ≤A3 R (a), A4 R (𝛽a) ≤ A4 R (a) and  

3) A1 R ([a, b]) ≥  min (A1 R (a), A1 R (b)), A2 R ([a, b]) ≥ min (A2 R (a), A2 R (b)), 
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A3 R ([a, b]) ≤ max (A3 R (a), A3 R (b)), A4 R ([a, b]) ≤ max (A4 R (a), A4 R (b)). 

     For all a, b ∈ ℒ and 𝛽 ∈  ℱ . 

 

Definition: 3.2 

A FQN set R = (A1 R, A2 R, A3 R , A4 R ) on ℒ  is called an FQN  Lie ideal if it satisfies the following 

conditions (1) and (2) and the following additional conditions: 

1) A1 R ([a, b]) ≥  A1 R (a), A2 R ([a, b]) ≥ A2 R (a), A3 R ([a, b]) ≤ A3 R (a) and  

a. A4 R ([a, b]) ≤ A4 R (a)  

From (2), it follows that: 

2) A1 R (0) ≥ A1 R (a), A2 R (0) ≥ A2 R (a), A3 R (0) ≤A3 R (a) and A4 R (0) ≤ A4 R (a) 

3) A1 R (- a) ≥ A1 R (a), A2 R (- a) ≥ A2 R (a), A3 R (- a) ≤A3 R (a) and A4 R (- a) ≤ A4 R (a). 

 

Proposition: 3.3 

Every FQN Lie ideal is an FQN Lie subalgebra. 

 

We note here that the converse of the above proposition does not hold in general as it can be seen in the 

following example. 

 

Example: 3.4 

Consider  ℱ = ℝ. Let ℒ = ℜ3 = {(a, b, c): a, b, c ∈ ℝ } be the set of all three-dimensional real vectors which 

forms a FQN Lie algebra and define  

ℜ3  x ℜ3 → ℜ3  

[a, b] → a x b, 

Where x is the usual cross product. We define an FQN set R = (A1 R, A2 R, A3 R , A4 R) : ℜ3 → [0,1] x [0,1] 

x [0,1] x [0,1] by 

A1 R (a, b, c) = {
1, 𝑖𝑓 𝑎 = 𝑏 = 𝑐 = 0,

0.3, 𝑖𝑓 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

A2 R (a, b, c) = {
1, 𝑖𝑓 𝑎 = 𝑏 = 𝑐 = 0,

0.2, 𝑖𝑓 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

A3 R (a, b, c) = {
0, 𝑖𝑓 𝑎 = 𝑏 = 𝑐 = 0,

0.5, 𝑖𝑓 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

A4 R (a, b, c) = {
0, 𝑖𝑓 𝑎 = 𝑏 = 𝑐 = 0,

0.3, 𝑖𝑓 𝑎 ≠ 0, 𝑏 = 𝑐 = 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Then R = (A1 R, A2 R, A3 R , A4 R )  is  an FQN Lie subalgebra of  ℒ but R = (A1 R, A2 R,A3 R ,A4 R )   is not 

an  FQN Lie ideal of  ℒ since  

A1 R ([1,0,0) (1,1,1)]) = A1 R (0, -1, 1) = 0, 

A2 R ([1,0,0) (1,1,1)]) = A2 R (0, -1, 1) = 0, 

A3 R ([1,0,0) (1,1,1)]) = A3 R (0, -1, 1) = 1, 

A4 R ([1,0,0) (1,1,1)]) = A4 R (0, -1, 1) = 1 

 

A1 R (1,0,0) = 0.2, A2 R (1,0,0) = 0.3, A3 R (1,0,0) = 0.5, A4 R (1,0,0) = 0.3. 

That is,  

 

A1 R ([1,0,0) (1,1,1)]) ≱ A1 R (1,0,0), 

A2 R ([1,0,0) (1,1,1)]) ≱ A2 R (1,0,0), 

A3 R ([1,0,0) (1,1,1)]) ≰ A3 R (1, 0,0), 

A4 R ([1,0,0) (1,1,1)]) ≰ A4 R (1,0,0) 

 

Proposition: 3.5   

If R is an FQN Lie ideal of ℒ , then 

1) A1 R (0) ≥ A1 R (a), A2 R (0) ≥ A2 R (a), A3 R (0) ≤A3 R (a), A4 R (0) ≤ A4 R (a). 

2) A1 R ([a, b]) ≥ max {A1 R (a), A1 R (b)}, 

3) A2 R ([a, b]) ≥ max {A2 R (a), A2 R (b)}, 

4) A3 R ([a, b]) ≤ min {A3 R (a), A3 R (b)}, 

5) A4 R ([a, b]) ≤ min {A4 R (a), A4 R (b)}, 

6) A1 R ([a, b]) = A1 R (- [b, a]) = A1 R ([b, a]), 

7) A2 R ([a, b]) = A2 R (- [b, a]) = A2 R ([b, a]), 

8) A3 R ([a, b]) = A3 R (- [b, a]) = A3 R ([b, a]), 

9) A4 R ([a, b]) = A4 R (- [b, a]) = A4 R ([b, a]) 

For all a, b  ∈ ℒ . 

Proof: 

The proof follows from Definition 3.2. 

 

Proposition: 3.6 

If {R i : 𝑖 𝜖 𝐽}  is a family of FQN Lie algebra of ℒ, then ⋂ R i = ( ∧ A1 Ri ∧ A2 Ri ∨A3 Ri ∨A4 Ri) is an FQN 

Lie ideal of ℒ where,  
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∧ A1 Ri (a) = inf {∧ A1 Ri (a) : 𝑖 𝜖 𝐽, 𝑎 𝜖 ℒ } , 

∧ A2 Ri (a) = inf {∧ A2 Ri (a) : 𝑖 𝜖 𝐽, 𝑎 𝜖 ℒ } , 

∨A3 Ri (a) = sup {∨ A3 Ri (a) : 𝑖 𝜖 𝐽, 𝑎 𝜖 ℒ } , 

∨A4 Ri (a) = sup {∨ A4 Ri (a) : 𝑖 𝜖 𝐽, 𝑎 𝜖 ℒ }  

Proof: 

The proof follows from definition 3.2 

 

Definition: 3.7 

Let R = (A1 R, A2 R, A3 R , A4 R )  be an FQN Lie subalgebra of  ℒ and  let (𝛼, 𝛽, 𝛾, 𝛿) [0,1] X [0,1] X [0,1] 

X [0,1] with 𝛼 + 𝛽 + 𝛾 + 𝛿 ≤ 2 . Then level subset of R is defined as 

𝑅(𝛼,𝛽,𝛾,𝛿,𝜗) = {   𝑎 𝜖 ℒ: A1(a) ≥ 𝛼 ,A2(a) ≥  𝛽, A3(a) ≤ 𝛾, A 4(a) ≤ 𝛿  

are called (𝛼, 𝛽, 𝛾, 𝛿) level subsets of FQN set R. The set of all (𝛼, 𝛽, 𝛾, 𝛿) ∈ Im(A1R) X Im(A2R) X Im(A3R) 

X Im(A4R) such that 𝛼 + 𝛽 + 𝛾 + 𝛿 ≤ 2 is known as image of R = (A1 R, A2 R, A3 R, A4 R) . 

 

Note : 

𝑅(𝛼,𝛽,𝛾,𝛿) = { 𝑎 𝜖 ℒ: A1(a) ≥ 𝛼 ,A2(a) ≥  𝛽, A3(a) ≤ 𝛾, A 4(a) ≤ 𝛿 }, 

𝑅(𝛼,𝛽,𝛾,𝛿) ={ 𝑎 𝜖 ℒ: A1(a) ≥ 𝛼} ∩ { 𝑎 𝜖 ℒ: 𝐴2(a) ≥ 𝛽} ∩ { 𝑎𝜖ℒ: A3(a) ≤ 𝛾} ∩ { 𝑎 𝜖 ℒ: A 4(a) ≤ 𝛿} }, 

𝑅(𝛼,𝛽,𝛾,𝛿) = U(A1(a),𝛼) ∩ U′(A2(a), 𝛽) ∩ L(A3(a),𝛾) ∩ 𝐿′( A 4(a), 𝛿). 

 

Theorem: 3.8 

An FQN set R = (A1 R, A2 R, A3 R , A4 R ) of ℒ is an FQN lie ideal of ℒ iff 𝑅(𝛼,𝛽,𝛾,𝛿) is a FQN Lie ideal of 

ℒ for every (𝛼, 𝛽, 𝛾, 𝛿) [0,1] X [0,1] X [0,1] X [0,1] with 𝛼 + 𝛽 + 𝛾 + 𝛿 ≤ 2 . 

 

Proposition: 3.9 

Let R = (A1 R, A2 R, A3 R , A4 R ) be an FQN Lie ideal of  ℒ  and (r1, s1, t1, u1), (r2, s2, t2, u2) ∈ Im(A1R) X 

Im(A2R) X Im(A3R) X Im(A4R) with ri + si + ti + ui ≤ 2  for i = 1,2. Then  ℒ𝑅
(r1,s1,t1,u1)

 =  ℒ𝑅
(r2,s2,t2,u2)

 if and 

only if (r1, s1, t1, u1) = (r2, s2, t2, u2). 

 

Theorem: 3.10 

Let K 0 ⊂ K 1⊂ K 2 ⊂ K 3………⊂ K n = L be a chain of FQN Lie ideals of a FQN Lie algebra ℒ. Then there 

exists an FQN ideal A1R of ℒ for which level subsets U(A1(a),𝛼), U′(A2(a), 𝛽),  

L(A3(a),𝛾) 𝑎𝑛𝑑 𝐿′( A 4(a), 𝛿) coincide with this chain. 
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Proof 

Let { r k : k = 0,1,2…,n}, {s k :k = 0,1,….n} and {t k: k = 0,1,2…n}, {u k: k = 0,1,2…n}, {vk: k = 0,1,2…n}be 

finite decreasing and increasing sequences in [0,1]. Let R = (A1 R, A2 R, A3 R , A4 R ,A5 R) be a FQN set in 

ℒ defined by A1 R(K 0) = r 0, A2 R(K 0) = s 0, A3 R(K 0) = t 0, A4 R(K 0) = u 0,  

A5 R(K 0) = v 0, A1 R(K l:K l-1) = r l, A2 R(K l\K l-1) = s l, A3 R(K l:K l-1) = t l, A4 R(K l\K l-1) = u l K l 

A1 R (a + b) ≥ r k = min {A1 R (a), A1 R (b)},  

A2 R (a + b) ≥ s k = min {A2 R (a), A2 R (b)}, 

A3 R (a + b) ≤ t k = max {A3 R (a), A3 R (b)}, 

A4 R (a + b) ≤ u k = max {A4 R (a), A4 R (b)}. 

A1 R (𝛼a) ≥ r k = A1 R (a), A2 R (𝛼a) ≥ s k = A2 R (a), A3 R (𝛼a) ≤ t k = A3 R (a),  

A4 R (𝛼a) ≤ u k = A4 R (a). 

A1 R ([a, b]) ≥ r k = A1 R (a), A2 R ([a, b]) ≥ s k = A2 R (a), A3 R ([a, b]) ≤ t k = A3 R (a),  

A4 R ([a, b]) ≤ u k = A4 R (a). 

For i > j, if a ∈ K i \ K i-1 and b ∈ K j \ K j-1 , then A1 R (a) = r i = A1 R (b), A2 R (a) = s i = A2 R (b),  

A3 R (a) = t j = A3 R (b), A4 R (a) = u j = A4 R (b) and a +b, 𝛼a, [a, b] ∈ K I . Thus  

A1 R (a + b) ≥ r i = min {A1 R (a), A1 R (b)}, 

A2 R (a + b) ≥ s i = min {A2 R (a), A2 R (b)}, 

A3 R (a + b) ≤  t j = max {A3 R (a), A3 R (b)}, 

A4 R (a + b) ≤ u j = max {A4 R (a), A4 R (b)} 

A1 R (𝛼a) ≥ r i = A1 R (a), A2 R (𝛼a) ≥ s i = A2 R (a), A3 R (𝛼a) ≤ t j = A3 R (a),  

A4 R (𝛼a) ≤ u j = A4 R (a). 

A1 R ([a, b]) ≥ r i = A1 R (a), A2 R ([a, b]) ≥ s i = A2 R (a), A3 R ([a, b]) ≤ t j = A3 R (a),  

A4 R ([a, b]) ≤ u j = A4 R (a). 

Thus, we conclude that R = (A1 R, A2 R, A3 R , A4 R ) is an FQN Lie ideal of a FQN Lie algebra ℒ and 

all its non-empty level subsets are FQN Lie ideals. 

Since Im (A1 R) = {r 0, r 1, r 2…..,r n }, Im (A2 R) = {s 0, s 1, s 2…..,s n },   

Im (A3 R) = {t 0, t 1, t 2…..,t n },        

Im (A4 R) = {u 0, u 1, u 2…..,u n } level subsets of R forms chains: 

U(A1 R , r 0) ⊂ U(A1 R , r 1) ⊂  ….. ⊂ U(A1 R , r n) = L, 

U’(A2 R , s 0) ⊂ U’(A2 R , s 1) ⊂  ….. ⊂ U’(A2 R , s n) = L, 

L(A3 R , t 0) ⊂ L(A3 R , t 1) ⊂  ….. ⊂ L(A3 R , t n) = L, 

L’(A4 R , u 0) ⊂ L’(A4 R , u 1) ⊂  ….. ⊂  𝐿′(A4 R , u n) = LL, 

Respectively. Indeed 

U(A1 R , r 0) = { a ∈  ℒ : A1 R (a) ≥ r 0} = K 0 , 
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U’(A2 R , s 0) = { a ∈  ℒ : A2 R (a) ≥ s 0} = K 0 , 

L(A3 R , t 0) = { a ∈  ℒ : A3 R (a) ≤ t 0} = K 0 , 

L’(A4 R , u 0) = { a ∈  ℒ : A4 R (a) ≤ u 0} = K 0 .. 

We prove that 

U(A1 R , r l) = U’(A2 R , s l) = L(A3 R , t l) = L’(A4 R , u l) = K l for 0 ≤ l ≤ n . 

Clearly, K l ⊆ U(A1 R , r l), K l ⊆ U’(A2 R , s l), K l ⊆ L(A3 R , t l), K l ⊆ L’(A4 R , u l). 

If a ∈ U(A1 R , r l), then A1 R (a) ≥ r l and for a ∉ K j , for j > l. Hence A1 R(a)  ∈ {r 0, r 1, r 2…..,r l }, 

Which implies a ∈ K j  for some j ≤ l. Since K j ⊂ K l ,it follows that a ∈ K l .Consequently,  

U(A1 R , r l) = K l for some 0 < l ≤ n.  

If a ∈ U’(A2 R , s l), then A2 R (a) ≥ s l and for a ∉ K j , for j > l. Hence A2 R(a) ∈ {s 0, s 1, s 2…..,s l }, 

Which implies a ∈ K j  for some j ≤ l. Since K j ⊂ K l ,it follows that a ∈ K l .Consequently, 

 U’(A2 R , s l) = K l for some 0 < l ≤ n.  

If a ∈ L(A3 R , t l), then A3 R (a) ≤ t l and for a ∉ K m , for m > l. Hence A3 R(a)  ∈ {t 0, t 1, t 2…..,t l }, 

Which implies a ∈ K m for some m ≤ l. Since K m ⊂ K l ,it follows that a ∈ K l . Consequently,  

L(A3 R , t l) = K l for some 0 < l ≤ n.  

If a ∈ L’(A4 R , u l),then A4 R (a) ≤ u l and for a ∉ K m ,for m>l. Hence A4 R(a)∈{u 0, u 1,u 2…..,u l }, 

Which implies a ∈ K m  for some m ≤ l. Since K m ⊂ K l ,it follows that a ∈ K l .  

Consequently, L’(A4 R , u l) = K l for some 0 < l ≤ n.  

This completes the proof. 

 

Theorem: 3.11 

If R = (A1 R, A2 R, A3 R , A4 R ) is an FQN Lie ideal of a FQN Lie algebra ℒ, then 

A1 R (a) = sup {r ∈ [0,1] \ a ∈ U(A1 R , r)}, 

A2 R (a) = sup {s ∈ [0,1] \ a ∈ U’(A2 R , s)}, 

A3 R (a) = inf {t ∈ [0,1] \ a ∈ L(A3 R , t)}, 

A4 R (a) = inf {u ∈ [0,1] \ a ∈ L’(A4 R , u)}. 

For every a ∈  ℒ. 

Proof 

The proof follows from definition 3.2. 

 

 

Definition:3.12 

Let f be a map from  a set ℒ1 to a set ℒ2 . If R1 = (A1 R1, A2 R1, A3 R1, A4 R1 ) and   
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R2 = (A1 R2, A2 R2, A3 R2 , A4 R2 ) are FQN sets in ℒ1 and ℒ2 respectively, then the preimage of R2 under f, 

denoted by 𝑓− 1(R2), is a FQN set defined by 

𝑓− 1(R2) = (𝑓− 1(A1 R2), 𝑓− 1(A2 R2), 𝑓− 1(A3 R2), 𝑓− 1(A4 R2)). 

 

Theorem: 3.13 

Let f : ℒ1  → ℒ2 be an onto homomorphisms of Lie algebras. If R2 = (A1 R2, A2 R2, A3 R2 , A4 R2 ) is a FQN 

Lie  ideal of ℒ2, then the preimage  

𝑓− 1(R2) = (𝑓− 1(A1 R2), 𝑓− 1(A2 R2), 𝑓− 1(A3 R2), 𝑓− 1(A4 R2)) under f is a FQN Lie ideal of ℒ1 . 

Proof 

The proof follows from definition 3.2 and 3.12 

 

Theorem: 3.14 

Let f : ℒ1  → ℒ2 be an epimorphisms of FQN Lie algebras. If R1 = (A1 R1, A2 R1, A3 R1 , A4 R1 ) is a FQN 

Lie ideal of ℒ2, then the preimage  𝑓− 1((R1)C) = (𝑓− 1(R1 ))
C 

Proof 

The proof follows from definition 3.2 and 3.12. 

 

Theorem: 3.15 

Let f : ℒ1  → ℒ2 be an epimorphisms of FQN Lie algebras. If R1 = (A1 R1, A2 R1, A3 R1 , A4 R1 ,A5 R1) is a 

FQN Lie ideal of ℒ2 and  R2 = (A1 R2, A2 R2, A3 R2 , A4 R2 ,A5 R2) is the preimage of R1 = (A1 R1, A2 R1, A3 

R1 , A4 R1 , A5 R1) under f. Then R2 is a FQN Lie ideal of ℒ1 . 

Proof 

The proof follows from definition 3.2 and 3.12. 

 

Definition: 3.16 

Let ℒ1 and ℒ2  be two FQN Lie algebras and f be a mapping of ℒ1 into ℒ2.  

If R1 = (A1 R1, A2 R1, A3 R1 , A4 R1 ) is a FQN set of ℒ1, then the image of R1 under f is the FQN set in ℒ2 

defined by 

f(A1 R1)(b) = {
𝑠𝑢𝑝𝑎∈𝑓− 1(𝑏) 𝐴1𝑅1(𝑎),   𝑖𝑓 𝑓

− 1(𝑏) ≠ 0,

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

f(A2 R1)(b) = {
𝑠𝑢𝑝𝑎∈𝑓− 1(𝑏) 𝐴2𝑅1(𝑎),   𝑖𝑓 𝑓

− 1(𝑏) ≠ 0,

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

f(A3 R1)(b) = {
𝑖𝑛𝑓𝑎∈𝑓− 1(𝑏) 𝐴3𝑅1(𝑎),   𝑖𝑓 𝑓

− 1(𝑏) ≠ 0,

1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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f(A4 R1)(b) = {
𝑖𝑛𝑓𝑎∈𝑓− 1(𝑏) 𝐴4𝑅1(𝑎),   𝑖𝑓 𝑓

− 1(𝑏) ≠ 0

1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for each b ∈ ℒ2 

 

Theorem: 3.17 

Let f : ℒ1  → ℒ2 be an epimorphisms of FQN Lie algebras. If R1 = (A1 R1, A2 R1, A3 R1 , A4 R1 ) is a FQN 

Lie ideal of ℒ1, then f(R1) is a FQN Lie ideal of ℒ2. 

Proof 

The proof follows from definition 3.2 and 3.16. 

 

Definition: 3.18 

Let f : 𝓛1  → 𝓛2 be an homomorphisms of FQN Lie algebras, For any FQN set, If R = (A1 R, A2 R, A3 R , 

A4 R ) is a FQN Lie ideal of 𝓛2, we define a PN set 𝑹𝒇 = (𝑨𝟏𝑹
𝒇

, 𝑨𝟐𝑹
𝒇

, 𝑨𝟑𝑹
𝒇

, 𝑨𝟒𝑹
𝒇
 ) in 𝓛1 by  

𝐀𝟏𝐑
𝐟  (a) = A1 R (f(a)), 𝐀𝟐𝐑

𝐟  (a) = A2 R (f(a)),  𝐀𝟑𝐑
𝐟  (a) = A3 R (f(a)),  𝐀𝟒𝐑

𝐟  (a) = A4 R (f(a)), for all           a 

∈ 𝓛1 .  

 

Lemma: 3.19 

Let f : 𝓛1  → 𝓛2 be an homomorphisms of FQN Lie algebras, If R = (A1 R, A2 R, A3 R , A4 R) is a FQN Lie 

ideal of 𝓛2, then 𝑹𝒇 = (𝑨𝟏𝑹
𝒇

, 𝑨𝟐𝑹
𝒇

, 𝑨𝟑𝑹
𝒇

, 𝑨𝟒𝑹
𝒇
) is a FQN Lie ideal in 𝓛1 . 

Proof 

Let a, b ∈ 𝓛1  𝐚𝐧𝐝 𝛃 ∈  𝓕 . Then  

𝐀𝟏𝐑
𝐟  (a + b) = A1 R (f(a + b)) = A1 R (f(a) + f(b)) ≥ min{ A1 R (f(a)), A1 R (f(b))} = min{𝐀𝟏𝐑

𝐟 (a), 𝐀𝟏𝐑
𝐟  (b)}, 

𝐀𝟐𝐑
𝐟  (a + b) = A2 R (f(a + b)) = A2 R (f(a) + f(b)) ≥ min{ A2 R (f(a)), A2 R (f(b))} = min{𝑨𝟐𝑹

𝒇
 (a), 𝑨𝟐𝑹

𝒇
 (b)}, 

𝐀𝟑𝐑
𝐟  (a + b) = A3 R (f(a + b)) = A3 R (f(a) + f(b)) ≤ min{ A3 R (f(a)), A3 R (f(b))} = min{𝐀𝟑𝐑

𝐟 (a), 𝐀𝟑𝐑
𝐟  (b)}, 

𝐀𝟒𝐑
𝐟  (a + b) = A4 R (f(a + b)) = A4 R (f(a) + f(b)) ≤ min{ A4 R (f(a)), A4 R (f(b))} = min{𝐀𝟒𝐑

𝐟 (a), 𝐀𝟒𝐑
𝐟  (b)}. 

𝐀𝟏𝐑
𝐟  (𝛃 a) = A1 R (f(𝛃 a)) = A1 R (𝛃 f(a)) ≥ A1 R (f(a)) = 𝐀𝟏𝐑

𝐟 (a), 

𝐀𝟐𝐑
𝐟  (𝛃 a) = A2 R (f(𝛃 a)) = A2 R (𝛃 f(a)) ≥ A2 R (f(a)) = 𝐀𝟐𝐑

𝐟 (a), 

𝐀𝟑𝐑
𝐟  (𝛃 a) = A3 R (f(𝛃 a)) = A3 R (𝛃 f(a)) ≤ A3 R (f(a)) = 𝐀𝟑𝐑

𝐟 (a), 

𝐀𝟒𝐑
𝐟  (𝛃 a) = A4 R (f(𝛃 a)) = A4 R (𝛃 f(a)) ≤ A4 R (f(a)) = 𝐀𝟒𝐑

𝐟 (a). 

Similarly, 

𝐀𝟏𝐑
𝐟  ([a, b]) = A1 R (f[ a, b]) = A1 R ([ f(a), f(b]) ≥ A1 R (f(a)) = 𝐀𝟏𝐑

𝐟 (a), 

𝐀𝟐𝐑
𝐟  ([ a, b]) = A2 R (f([ a,b]) = A2 R ( [f(a), f(b)]) ≥ A2 R (f(a)) = 𝐀𝟐𝐑

𝐟 (a), 

𝐀𝟑𝐑
𝐟  ([ a, b]) = A3 R (f([a, b]) = A3 R ([f(a), f(b)]) ≤ A3 R (f(a)) = 𝐀𝟑𝐑

𝐟 (a), 
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𝐀𝟒𝐑
𝐟  ([ a, b]) = A4 R (f([a, b]) = A4 R ([f(a), f(b)]) ≤ A4 R (f(a)) = 𝐀𝟒𝐑

𝐟 (a). 

This proves that 𝑹𝒇 = (𝑨𝟏𝑹
𝒇

, 𝑨𝟐𝑹
𝒇

, 𝑨𝟑𝑹
𝒇

, 𝑨𝟒𝑹
𝒇
 ) is a FQN Lie ideal in 𝓛1 . 

We now characterize the FQN Lie ideals of Lie algebras. 

 

Theorem: 3.20 

Let f : 𝓛1  → 𝓛2 be an epimorphisms of FQN Lie algebras. Then 𝑹𝒇 = (𝑨𝟏𝑹
𝒇

, 𝑨𝟐𝑹
𝒇

, 𝑨𝟑𝑹
𝒇

, 𝑨𝟒𝑹
𝒇

  ) is a FQN 

Lie ideal in 𝓛1 iff R = (A1 R, A2 R, A3 R , A4 R) is a FQN Lie ideal of 𝓛2. 

 

Definition: 3.21 

Let R = (A1 R, A2 R, A3 R , A4 R ) be a FQN Lie ideal in 𝓛. Define a inductively a sequences of FQN Lie 

ideals in 𝓛 by 𝐑𝟎 = R, 𝐑𝟏 = [𝐑𝟎, 𝐑𝟎], 𝐑𝟐 = [𝐑𝟏, 𝐑𝟏],….. 𝑹𝐧 = [𝑹𝐧−𝟏, 𝐑𝐧−𝟏]. 

𝑹𝐧 is called the n th derived FQN Lie ideal of 𝓛. A series 𝑹𝟎  ⊇ 𝐑𝟏 ⊇ 𝐑𝟐 ⊇…..⊇ 𝑹𝐧 ⊇ ⋯is called derived 

series of a FQN Lie ideal R in 𝓛. 

 

Definition: 3.22 

A FQN Lie ideal R in is called a solvable FQN Lie ideal, if there exists a positive integer n such that 

𝑹𝟎  ⊇ 𝐑𝟏 ⊇ 𝐑𝟐 ⊇…..⊇ 𝑹𝐧 = (0,0,0). 

 

Theorem: 3.23 

Homomorphic images of solvable FQN Lie ideals are solvable FQN Lie ideals. 

Proof 

Let f : 𝓛1  → 𝓛2 be homomorphisms of FQN Lie algebras. Suppose that R = (A1 R, A2 R, A3 R , A4 R) is a 

FQN Lie ideal of 𝓛𝟏. We prove by induction on n that f(𝑹𝒏)  ⊇ [𝒇(𝑹)]𝒏, where n is any positive integer. 

First we claim that f([R, A]) ⊇ [f( R ), f( R )]. Let y ∈ 𝓛𝟐. Then 

f(<<A1 R , A1 R >>)(y) = sup { <<A1 R, A1 R >>(y)\f(x) = y} 

                    = sup{sup{min(A1 R(a), A1 R(b))\a, b ∈ 𝓛𝟏,[a, b] = x, f(x) = y}} 

                   = sup{min(A1 R(a), A1 R(b))\a, b ∈ 𝓛𝟏,,[a, b] = x, f(x) = y}} 

                    = sup{min(A1 R(a), A1 R(b))\a, b ∈ 𝓛𝟏,,[f(a), f(b)] = x} 

                    = sup{min(A1 R(a), A1 R(b))\a, b ∈ 𝓛𝟏,f(a) = u, f(b) = v,[u, v] = y}} 

                    ≥sup{min(su𝒑𝒂∈𝒇−𝟏(𝒖) A1 R(a), min(su𝒑𝒃∈𝒇−𝟏(𝒗) A1 R(b)\[u, v] = y} 

                    = sup{min{f(A1 R)(u),f(A1 R)(v))\[u, v] = y} 

                     = << f(A1 R), f(A1 R)>>(y), 
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f(<<A2 R , A2 R >>)(y) = sup { <<A2 R, A2 R >>(y)\f(x) = y} 

                    = sup{sup{min(A2 R(a), A2 R(b))\a, b ∈ 𝓛𝟏,[a, b] = x, f(x) = y}} 

                   = sup{min(A2 R(a), A2 R(b))\a, b ∈ 𝓛𝟏,,[a, b] = x, f(x) = y}} 

                    = sup{min(A2 R(a), A2 R(b))\a, b ∈ 𝓛𝟏,,[f(a), f(b)] = x} 

                    = sup{min(A2 R(a), A2 R(b))\a, b ∈ 𝓛𝟏,,f(a) = u, f(b) = v,[u, v] = y}} 

                    ≥sup{min(su𝒑𝒂∈𝒇−𝟏(𝒖) A2 R(a), min(su𝒑𝒃∈𝒇−𝟏(𝒗) A2 R(b)\[u, v] = y} 

                    = sup{min{f(A2 R)(u),f(A2 R)(v))\[u, v] = y} 

                     = << f(A2 R), f(A2 R)>>(y), 

 

f(<<A3 R , A3 R >>)(y) = inf { <<A3 R, A3 R >>(y)\f(x) = y} 

                    = inf{inf{max(A3 R(a), A3 R(b))\a, b ∈ 𝓛𝟏,,[a, b] = x, f(x) = y}} 

                   = inf{max(A3 R(a), A3 R(b))\a, b ∈ 𝓛𝟏,[a, b] = x, f(x) = y}} 

                    = inf {max(A3 R(a), A3 R(b))\a, b ∈ 𝓛𝟏,[f(a), f(b)] = x} 

                    = inf{max(A3 R(a), A3 R(b))\a, b ∈ 𝓛𝟏,f(a) = u, f(b) = v,[u, v] = y}} 

                     ≤inf{max(in𝐟𝐚∈𝐟−𝟏(𝐮) A3 R(a), min(in𝐟𝐛∈𝐟−𝟏(𝐯) A3 R(b)\[u, v] = y} 

                    = inf{max{f(A3 R)(u),f(A3 R)(v))\[u, v] = y} 

                     = << f(A3 R), f(A3 R)>>(y), 

 

f(<<A4 R , A4 R >>)(y) = inf { <<A4 R, A4 R >>(y)\f(x) = y} 

                    = inf{inf{max(A4R(a), A4 R(b))\a, b ∈ 𝓛𝟏,[a, b] = x, f(x) = y}} 

                   = inf{max(A4 R(a), A4 R(b))\a, b ∈ 𝓛𝟏,[a, b] = x, f(x) = y}} 

                    = inf {max(A4 R(a), A4 R(b))\a, b ∈ 𝓛𝟏,[f(a), f(b)] = x} 

                    = inf{max(A4 R(a), A4 R(b))\a, b ∈ 𝓛𝟏,f(a) = u, f(b) = v,[u, v] = y}} 

                     ≤inf{max(in𝐟𝐚∈𝐟−𝟏(𝐮) A4 R(a), min(in𝐟𝐛∈𝐟−𝟏(𝐯) A4 R(b)\[u, v] = y} 

                    = inf{max{f(A4 R)(u),f(A4 R)(v))\[u, v] = y} 

                     = << f(A4 R), f(A4 R)>>(y), 

 

Thus f([R, R]) ⊇ f(<<A,A>>) ⊇ <<f( R ), f( R )>> = [f( R ), f( R )]. 

Now for n > 1, we get f(𝑹𝒏) = f([𝑹𝒏−𝟏, 𝑹𝒏−𝟏]) ⊇ [f(𝑹𝒏−𝟏), f(𝑹𝒏−𝟏)]. 

This completes the proof. 

 

Definition: 3.24 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

84  

Let R = (A1 R, A2 R, A3 R , A4 R ) be a FQN Lie ideal in 𝓛. We define a inductively a sequences of FQN Lie 

ideals in 𝓛 by 𝐑𝟎= R, 𝐑𝟏 = [R, 𝐑𝟎], 𝑹𝟐= [𝑹,𝑹𝟏] … . 𝐑𝐧 = [𝐑,𝐑𝐧−𝟏]. A series  

 𝑹𝟎  ⊇ 𝑹𝟏 ⊇ 𝑹𝟐  ⊇…..⊇ 𝑹𝒏 ⊇ ⋯is called descending central  series of a FQN Lie ideal R in 𝓛. 

 

Definition: 3.25 

An FQN Lie ideal R is called a nilpotent FQN Lie ideal in 𝓛 , if there exists a positive integer n such that 

𝑹𝟎  ⊇ 𝑹𝟏 ⊇ 𝑹𝟐  ⊇…..⊇ 𝑹𝒏= (0,0,0). 

 

Theorem: 3.26 

Homomorphic image of a nilpotent FQN Lie ideal is a nilpotent FQN Lie ideal. 

Proof: It is obvious 

 

Theorem: 3.27 

Let K be a FQN Lie ideal of a FQN Lie algebra 𝓛. If R = (A1 R, A2 R, A3 R , A4 R ) is  a FQN Lie ideal of 

𝓛, then the FQN set *R = (*A1 R, *A2 R, *A3 R , *A4 R) of  𝓛 /K defined by  

*A1 R(a + K) = 𝐬𝐮𝐩𝐱∈𝐊 𝐀𝟏𝐑(𝐚 + 𝐱), 

*A2 R(a + K) = 𝐬𝐮𝐩𝐱∈𝐊 𝐀𝟐𝐑(𝐚 + 𝐱), 

*A3 R(a + K) = 𝒊𝒏𝒇𝒙∈𝑲 𝑨𝟑𝑹(𝐚 + 𝐱), 

*A4 R(a + K) = 𝒊𝒏𝒇𝒙∈𝑲 𝑨𝟒𝑹(𝐚 + 𝐱) 

is a FQN Lie ideal of the quotient FQN Lie algebra 𝓛 /K of 𝓛 with respect to K.  

Proof 

Clearly, *R is defined. Let x + K, y + K ∈ 𝓛/ K. Then  

*A1 R((x + K) + (y + K)) = *A1 R((x + y) + K)  

                      = 𝐬𝐮𝐩𝐳∈𝐊 𝐀𝟏𝐑((𝐱 + 𝐲) + 𝐳), 

                    = 𝐬𝐮𝐩𝐳=𝐬+𝐭∈𝐊 𝐀𝟏𝐑((𝐱 + 𝐲) + (𝐬 + 𝐭)), 

                    ≥ 𝐬𝐮𝐩𝐬,𝐭∈𝐊 𝐦𝐢𝐧 {𝐀𝟏𝐑(𝐱 + 𝐬), 𝐀𝟏𝐑(𝐲 + 𝐭)}, 

                    = min { 𝐬𝐮𝐩𝐬∈𝐊  𝐀𝟏𝐑(𝐱 + 𝐬),𝐬𝐮𝐩𝐭∈𝐊  𝐀𝟏𝐑(𝐲 + 𝐭)},   

                   = min{∗ 𝐀𝟏𝐑(𝒙 + 𝒔), ∗ 𝐀𝟏𝐑(𝒚 + 𝒕)}, 

 

*A1 R(𝜷(x + K) = *A1 R(𝜷x + K) = 𝐬𝐮𝐩𝐳∈𝐊 𝐀𝟏𝐑(𝛃𝐱 + 𝐳) ≥ 𝐬𝐮𝐩𝐳∈𝐊 𝐀𝟏𝐑(𝐱 + 𝐳)=*A1 R(x + K). 

*A1 R([x + K, *A1 R(a + K) = 𝐬𝐮𝐩𝐱∈𝐊 A1 R(a + x),y + K]) = *A1 R([x , y] + K) = 𝐬𝐮𝐩𝐳∈𝐊 𝐀𝟏𝐑([𝐱, 𝐲] + 𝐳) ≥

𝐬𝐮𝐩𝐳∈𝐊 𝐀𝟏𝐑([𝐱, 𝐲] + 𝐳)=*A1 R(x + K). 

Thus *A1 R is a FQN Lie ideal of 𝓛/ K. In a similar way, we can verify that  *A2 R, *A3 R , *A4 R  FQN Lie 

ideals of  𝓛 /K. Hence *R = (*A1 R, *A2 R, *A3 R , *A4 R ) is a FQN Lie ideal of 
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 𝓛 /K 

 

Theorem: 3.28 

Let K be a FQN Lie ideal of a FQN Lie algebra 𝓛. Then there is a one-to=one correspondence between the 

set of FQN Lie ideals R = (A1 R, A2 R, A3 R , A4 R ) of 𝓛 such that R(0) = A(s) for all s ∈ K and the set of 

all FQN Lie ideals *R = (*A1 R, *A2 R, *A3 R , *A4 R ) of  𝓛 /K. 

Proof 

Let R = (A1 R, A2 R, A3 R , A4 R ) be FQN Lie ideal of 𝓛. Using Theorem 3.27, we prove that  

*A1 R, *A2 R, *A3 R , *A4 R ,*A5 R defined by  

*A1 R(a + K) = 𝐬𝐮𝐩𝐱∈𝐊 A1 R(a + x),  

*A2 R(a + K) = 𝐬𝐮𝐩𝐱∈𝐊 A2 R(a + x), 

*A3 R(a + K) = 𝐢𝐧𝐟𝐱∈𝐊 A3 R(a + x), 

*A4 R(a + K) = 𝒊𝒏𝒇𝐱∈𝐊 A4 R(a + x) 

are FQN Lie ideals of 𝓛 /K. Since A1 R(0) = A1 R(s), A2 R(0) = A2 R(s), A3 R(0) = A3 R(s), 

 A4 R(0) = A4 R(s) for all s ∈ K, 

A1 R(a + s) ≥ min(A1 R(a), A1 R(s)) = A1 R(a), 

A2 R(a + s) ≥ min(A2 R(a), A2 R(s)) = A2 R(a), 

A3 R(a + s) ≤ max(A3 R(a), A3 R(s)) = A3 R(a), 

A4 R(a + s) ≤ max(A4 R(a), A4 R(s)) = A4 R(a). 

Again, 

A1 R(a) = A1 R(a + s - s) ≥ min(A1 R(a + s), A1 R(s)) = A1 R(a + s), 

A2 R(a) = A2 R(a + s - s) ≥ min(A2 R(a + s), A2 R(s)) = A2 R(a + s), 

A3 R(a) = A3 R(a + s - s) ≤ max(A3 R(a + s), A3 R(s)) = A3 R(a + s), 

A4 R(a) = A4 R(a + s - s) ≤ max(A4 R(a + s), A4 R(s)) = A4 R(a + s). 

Thus R(a + s) = R(a) for all s ∈ K. Hence the correspondence R → *R is one- to -one. Let *R be a FQN Lie 

ideal of 𝓛 / K and define a FQN set R = (A1 R, A2 R, A3 R , A4 R ) in 𝓛 by  

A1 R(a) = * A1 R(a +K),A2 R(a) = * A2 R(a +K), A3 R(a) = * A3 R(a +K), A4 R(a) = * A4 R(a +K) 

For a, b ∈ 𝓛, we have 

A1 R(a + b) = *A1 R((a + b) +K) = * A1 R((a +K) + (b + K)) 

            ≥ min{*A1 R(a + K), *A1 R(b + K)} , 

           = min { A1 R(a ), A1 R(b)}, 

A1 R(𝜷a) = * A1 R(𝜷a +K) ≥ * A1 R(a +K) = A1 R(a), 

A1 R([a, b]) = * A1 R([a, b] +K) = * A1 R([a + K, b + K]) 

           ≥ * A1 R(a +K) = A1 R(a ). 
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Thus A1 R is a FQN lie ideal of 𝓛. In a similar way, we  can verify that A2 R, A3 R and A4 R  are FQN  Lie 

ideals of  𝓛 . Hence R = (A1 R, A2 R,A3 R , A4 R ) is a FQN Lie ideal of 𝓛 .  

Note that A1 R(a) = * A1 R(a +K),A2 R(a) = * A2 R(a +K), A3 R(a) = * A3 R(a +K), A4 R(a) = * A4 R(a +K). 

For a∈ 𝐊, which shows that R(a) = R(0) for all a∈ 𝐊.This completes the proof. 

 

4. Conclusion 

In this article, we have discussed above FQN Lie subalgebra and FQN Lie ideals of a FQN Lie Algebra. 

We have also investigated some of its properties of Fermatean Quadripartitioned Neutrosophic Lie ideals.  

In future, we are Planned to study on Lie rings. We may also develop for heptapartitioned neutrosophic sets 

and other hybrid sets. 
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Abstract: 

In this paper we introduce the concept of quadripartitioned neutrosophic product 

spaces and investigate some of their properties. 

 

Keywords : Fuzzy Neutrosophic set, Fuzzy Neutrosophic topological space and 

Fuzzy Neutrosophic product space. 

 

1   Introduction 

The concept of neutrosophic set was introduced by Smarnandache [28, 29]. The traditional 

neutrosophic sets is characterized by the truth value, indeterminate value and false value. 

Neutrosophic set is a mathematically tool for handling problems involving imprecise, 

indeterminacy inconsistent data and inconsistent information which exits in belief system. The 

concept of neutrosophic set which overcomes the inherent difficulties that existed in fuzzy sets 

and intuitionistic fuzzy sets. Following this, the neutrosophic sets are explored to differ- ent 

heights in all fields of science and engineering. A.A.Salama [9] - [26]applied neutrosphic set in 

various prospects. Many researchers [3, 4, 5, 6, 7, 8, 30] applied the concept of fuzzy sets and 

intuitionistic fuzzy sets to topologies. In this paper we initiate the concept of fuzzy neutrosophic 

product and some of its properties are discussed. 

 

2    Preliminary Notes 

Definition 2.1. [1] A Fuzzy Neutrosophic set A on the universe of discourse X is defined as A = 

⟨x, TA(x), IA(x), FA(x)⟩, x∈ X where T, I, F : X −→ [0, 1] and 0≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 2.2. [1] Let X be a non empty set, and A = ⟨x, TA(x), IA(x), FA(x)⟩, B = ⟨x, TB(x), 

IB(x), FB(x)⟩ are fuzzy neutrosophic sets. Then A is a subset of B if ∀ x ∈ X, TA(x) ≤ 

TB(x), IA(x) ≤ IB(x)), FA(x) ≥ FB(x)). 

 

Definition 2.3. [1] Let X be a non-empty set, and A = ⟨x, TA(x), IA(x), FA(x)⟩,  

mailto:stanisarulmary@gmail.com
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c 

B = ⟨x, TB(x), IB(x), FB(x)⟩ are fuzzy neutrosophic sets. Then 

A ∪ B = ⟨x, max(TA(x), TB(x)), max(IA(x), IB(x)), min(FA(x), FB(x))⟩ 

A ∩ B = ⟨x, min(TA(x), TB(x)), min(IA(x), IB(x)), max(FA(x), FB(x))⟩ 

 

Definition 2.4. [1] A Fuzzy neutrosophic set A over the non-empty set X is said to be empty 

fuzzy neutrosophic set if TA(x) = 0, IA(x) = 0,FA(x) = 1,∀ x∈ X. It is denoted by 0N . 

A Fuzzy neutrosophic set A over the non-empty set X is said to be universe fuzzy 

neutrosophic set if TA(x) = 1, IA(x) = 1,FA(x) = 0,∀ x ∈ X. It is de- noted by 1N . 

 

Definition 2.5. [1] The complement of Fuzzy neutrosophic set A denoted by 

Ac and is defined as 

   A  (x) = ⟨x, TAc (x) = FA(x), IAc (x) = 1 − IA(x), FAc (x) = TA(x)⟩ 

 

Definition 2.6. [2] Let X and Y be a non-empty sets and let f be a map- ping from a set 

X to a set Y. Let A = {⟨x, TA(x), IA(x), FA(x)⟩ /x ∈ X} , B = {⟨y, TB(y), IB(y), FB(y)⟩ 

/y ∈ Y } be fuzzy neutrosophic set in X and Y respectively, 

(a) then the preimage of B under f denoted by f −1(B) is the fuzzy neutrosophic set in X 

defined by 

f −1 = {< x, f −1(TB)(x), f −1(IB)(x), f −1(FB)(x) > /x ∈ X} where 

f −1(TB)(x) = TB(f (x)) , f −1(IB)(x) = IB(f (x)) and f −1(FB)(x) = 

FB(f (x)) for all x ∈ X. 

(b) the image of A under f, denoted by f(A) is the fuzzy neutrosophic set in Y defined by 

f(A) = (f(TA ,f(IA ,f(FA )), where for each y ∈ Y. 

f(TA )(y) = {
⋁ TA(x)       if f

−1(y) ≠ ∅x∈f−1(y)

     0                  otherwise                
 

f(IA )(y) = {
⋁ IA(x)       if f

−1(y) ≠ ∅x∈f−1(y)

     0                  otherwise                
 

f(FA )(y) = {
⋁ FA(x)       if f

−1(y) ≠ ∅x∈f−1(y)

     0                  otherwise                
 

 

Proposition 2.7. [2] Let A, Ai(i ∈ I)be fuzzy neutrosophic sets in X let B, 

Bj(j ∈ J)be fuzzy neutrosophic sets in Y and let f : X → Y a mapping. Then 

1. A1 ⊂ A2 implies f (A1) ⊂ f (A2). 

2. B1 ⊂ B2 implies f −1(B1) ⊂ f −1(B2). 

3. A ⊂ f −1(f (A)). If f is injective, then A = f −1(f (A)). 
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4. f(f −1 (B)) ⊂ B. If f is surjective, then f(f −1 (B))=B. 

5. f −1 (⋃Bj) = ⋃ f−1(Bj). 

6. f −1 (⋂Bj) = ⋂ f−1(Bj). 

7. f(⋃Ai) =⋃ f(Ai). 

8. f(⋂Ai) ⊂⋂ f(Ai). 

9. f(1N) = 1N, if f is surjective and f(0N) = 0N. 

10. f−1(1N) = 1N and f−1(0N) = 0N. 

11. [f(A)]c  ⊂  f(Ac) if f is surjective. 

12. f−1(Bc) = [f−1(B)]c 

 

 3       Quadripartitioned Neutrosophic product space 

 

Definition 3.1 . Let p, q, r, s ∈ [0,1] and p+q+r+s ≤ 4. of Quadripartitioned Neutrosophic soft point x(p,q,r,s) 

of X is of quadripartitioned Neutrosophic soft set in X defined by , 

 X(p,q,r,s)(y) =  {
p, q, r, s) if x =  y , for each y ∈  X.

(0,0,1,1)     if   y ≠ x 
 

A  quadripartitioned Neutrosophic point  X(p,q,r,s) is said to belong to an quadripartitioned Neutrosophic 

soft set A = 〈TA , CA, UA, FA〉 in X denoted by  X(p,q,r,s) ∈  A if   

P ≤  TA (x),  q ≤ CA (x),  r ≤ UA (x) and s ≤ FA (x). We denote the set of all  quadripartitioned 

Neutrosophic points in X as FNP(X). 

 

Theorem 3.2. Let A = 〈TA , CA, UA , FA〉 and B = 〈TA , CA, UA , FA〉 be quadripartitioned Neutrosophic set in 

X, then A ⊂ B if and only for each x(p,q,r,s) ∈  A implies x(p,q,r,s) ∈  B. 

 

Proof: Let A ⊆  B and x(p,q,r,s) ∈  A, then P ≤  TA (x)  ≤   TB (x) ,  q ≤ CA (x)  ≤   CB (x)  ,  r ≥ UA (x)  ≥

  UB (x) and s ≥ FA (x) ≥ FB(x) . thus x(p,q,r,s) ∈ B. 

Conversely, take and x∈ X. let p = TA (x),  q = CA (x),  r = UA (x) and s = FA (x).then x(p,q,r,s) is a 

quadripartitioned Neutrosophic point in X and x(p,q,r,s) ∈  A. by the hypothesis, x(p,q,r,s) ∈  B. thus TA = p≤

  TB (x), CA = CB (x), , UA =≥   UB (x) and FA ≥ FB(x).  Hence A ⊆  B. 

 

Theorem 3.3. let A = 〈TA , CA, UA, FA〉 be a quadripartitioned Neutrosophic set in X. then  A = ∪ { x(p,q,r,s): 

x(p,q,r,s) ∈ A}. 
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Definition 3.4. let X be a set and let p,q,r,s ∈  [0,1] with 0 ≤ p+q+r+s ≤ 4. Then the quadripartitioned 

Neutrosophic set C(p,q,r,s) ∈ X is defined by for each x ∈x, C(p,q,r,s)(x) = (p,q,r,s) ie., TC(p,q,r,s)(x) =

p, CC(p,q,r,s)(x) = q,UC(p,q,r,s)(x) = r and FC(p,q,r,s)(x) = s. 

 

Definition 3.5.let X be a non-empty set and let  ℊ ⊂ FNS(X).then ℊ is called a quadripartitioned 

Neutrosophic topology (FNT) on X in the sense of Lowen[69], if it satisfies the following axioms: 

i. For each α, β, γ ∈ [0,1] with α + β + γ ≤ 3, C(α,β,γ) ∈ ℊ 

ii. For any A1,A2∈ ℊ, A1∩A2∈ ℊ 

iii. For any {Ak}k ∈ K ⊂ ℊ, ⋃ ℊk∈K  

 

Definition 3.6. let A be a quadripartitioned Neutrosophic set in a quadripartitioned Neutrosophic topology 

space (X, ℊ) ,then the induced quadripartitioned Neutrosophic topology (IFNT in short) on A is the family 

of quadripartitioned Neutrosophic set in A which are the intersection with A quadripartitioned Neutrosophic 

open sets in X. the IFNT is denoted by ℊA and the pair (A, ℊA) is called a quadripartitioned Neutrosophic 

subspace of (X, ℊ). 

 

Definition 3.7.Let (X, ℊ) and  (Y, 𝔄) be two quadripartitioned Neutrosophic topological spaces. A 

mapping f: (X, ℊ)  →  (Y, ℊ) is said to be quadripartitioned Neutrosophic  continuous if the preimage of 

each quadripartitioned Neutrosophic  set in 𝔄 is a quadripartitioned Neutrosophic  set in ℊ, and f is said to 

be  quadripartitioned Neutrosophic   open if the image of each quadripartitioned Neutrosophic  set in ℊ is 

a quadripartitioned Neutrosophic  set in 𝔄. 

 

Definition 3.8. Let   (A, ℊA) and (B,𝔄A) be a quadripartitioned Neutrosophic subspace of 

quadripartitioned Neutrosophic topological spaces (X, ℊ) and  (Y, 𝔄 )respectively and let f : (X, ℊ)  →  

(Y, ℊ) be a mapping. Then f is a mapping of  (A, ℊA) into (B,𝔄B) if f(A)⊂ B. 

Furthermore f is said to be relatively quadripartitioned Neutrosophic  continuous if for each 

quadripartitioned Neutrosophic  set VB in  𝔄B , the intersection f−1(VB) ∩ A is a quadripartitioned 

Neutrosophic  set in ℊA and f is said to be relatively quadripartitioned Neutrosophic  open if for each 

quadripartitioned Neutrosophic  set UA in ℊA,the image f(UA) is the quadripartitioned Neutrosophic  set 

in  𝔄 B. 

 

Proposition 3.9. Let   (A, ℊA) and (B,𝔄A) be a quadripartitioned Neutrosophic subspace of 

quadripartitioned Neutrosophic topological spaces (X, ℊ) and  (Y, 𝔄 )respectively and let f be a 
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quadripartitioned Neutrosophic  continuous mapping of (X, ℊ) into (Y, 𝔄 ) such that f(A) )⊂ B then f is 

relatively quadripartitioned Neutrosophic  continuous mapping of (A, ℊ) into (B, 𝔄 ). 

Proof: let VB be a quadripartitioned Neutrosophic  set in   𝔄 B.then there exist V ∈ 𝔄 such that VB =  V ∩ B. 

since f is quadripartitioned Neutrosophic  continuous it follows that f−1(V) is a quadripartitioned 

Neutrosophic  set in ℊ. Hence  f−1(VB) ∩ A =  f
−1(VB) ∩  f

−1(B) ∩ A = f−1(V) ∩ A is a quadripartitioned 

Neutrosophic  set  in ℊA. Hence the proof. 

 

Definition 3.10. A bijective mapping f  of a quadripartitioned Neutrosophic topological spaces   (X, ℊ) into 

a quadripartitioned Neutrosophic topological spaces (Y, 𝔄)  is a quadripartitioned Neutrosophic 

homeomorphism iff it is quadripartitioned Neutrosophic continuous and quadripartitioned Neutrosophic 

open. A bijective mapping f of a quadripartitioned Neutrosophic subspace (A, ℊA) of  (X, ℊ)into a 

quadripartitioned Neutrosophic spaces  (B,𝔄B) of (Y, 𝔄) is relative quadripartitioned Neutrosophic 

homeomorphism iff  f[A]=B and f is relatively quadripartitioned Neutrosophic continuous and relatively 

quadripartitioned Neutrosophic open. 

 

Proposition 3.11. Let f be a quadripartitioned Neutrosophic continuous (resp. quadripartitioned 

Neutrosophic open) mapping of a quadripartitioned Neutrosophic space (X, ℊ) into a quadripartitioned 

Neutrosophic space (Y, 𝔄) and g a quadripartitioned Neutrosophic continuous (resp. quadripartitioned 

Neutrosophic open ) mapping of (Y, 𝔄) into a  quadripartitioned Neutrosophic topological spaces (Z, 𝒲). 

Then the composition g∘ f is a quadripartitioned Neutrosophic continuous (resp. quadripartitioned 

Neutrosophic open) mapping of  (X, ℊ) into (Z, 𝒲). 

 

Proof: consider a quadripartitioned Neutrosophic set W in 𝒲, then g−1(W) is quadripartitioned 

Neutrosophic open in 𝔄 (since  g is quadripartitioned Neutrosophic continuous). Let g−1(W) be 

quadripartitioned Neutrosophic open in 𝔄, then (f−1 g−1(W)) =(g ∘ f)−1)(W) is quadripartitioned 

Neutrosophic open in ℊ( since f is quadripartitioned neutrosophic continuous). Hence g∘ f is 

quadripartitioned neutrosophic continuous mapping of  (X, ℊ) into (Z, 𝒲). Similarly we can prove for 

quadripartitioned neutrosophic open mapping. 

Proposition 3.12. Let (A, ℊA) and (B,𝔄B) and (C,𝒲C) be a quadripartitioned Neutrosophic subspace of 

quadripartitioned Neutrosophic topological spaces (X, ℊ) and  (Y, 𝔄 )and (Z, 𝒲)respectively. Let f be a 

relatively quadripartioned neutrosophic continuous (resp. relatively quadripartioned neutrosophic open) 

mapping of  (A, ℊA)  into (B,𝔄B) and g a relatively quadripartioned neutrosophic continuous (resp. 

relatively quadripartioned neutrosophic open) mapping of (B,𝔄B) into (C,𝒲C). Then the composition g∘ f 

is relatively quadripartitioned neutrosophic continuous (resp. relatively quadripartitioned neutrosophic 

open) mapping of (A, ℊC) into (C,𝒲C). 
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Proof: Let WC ∈  𝒲C . Since g is relatively quadripartitioned neutrosophic continuous, g−1(WC) ∩ B∈ 𝔄B. 

Since f is relatively quadripartitioned nuetrosophic  continuous f−1 [g−1(WC) ∩ B]∩A∈ ℊA. Now f−1 

[g−1(WC) ∩ B]∩A= f−1 [g−1(WC) ∩ f
−1(B) ∩ A = (g ∘ f)−1(WC) ∩ f

−1(B) ∩ A = (g ∘ f)−1(WC) ∩  A 

(since f (A) ⊂ B).Thus (g ∘ f)−1(WC) ∩  A ∈  ℊA. Hence g ∘ f is relatively quadripartitioned nuetrosophic 

continuous. 

Let UA ∈ ℊA. Since f is relatively quadripartitioned neutrosophic open, f(UA) ∈ 𝔄B. Since g is relatively 

quadripartitioned neutrosophic open g(f(UA)) = (g ∘ f)(UA). Thus  (g ∘ f)(UA) ∈  𝒲C. Hence g ∘ f is 

relatively quadripartitioned neutrosophic open. 

 

Definition 3.13. Let ℊ be a quadripartitioned neutrosophic topology on X. A subfamily 𝔅  of  ℊ is a base 

for ℊ  iff each member of ℊ can be expressed as the union of members of 𝔅. 

 

Definition 3.14. Let ℊ be a quadripartitioned neutrosophic topology on X and ℊA the induced 

quadripartitioned neutrosophic topology on a quadripartitioned neutrosophic subset of A of X.  A subfamily 

𝔅A of ℊA is a base for ℊA iff each member of ℊA can be expressed as the union of members of 𝔅. 

If 𝔅 is a base for a quadripartitioned neutrosophic topology  ℊ on a set X, then 𝔅A = {U ∩  A ∶  U ∈  ℊ} is 

a base for the induced quadripartitioned nuetrosophic topology  ℊA on the quadripartitioned neutrosophic 

subset A. 

Proposition 3.15. Let  f be a mapping from a quadripartitioned neutrosophic topological space (X, ℊ) to a 

quadriparititioned neutrosophic topological space (Y,𝔘). Let 𝔅 be a base for 𝔘. Then f is a 

quadriparititioned neutrosophic continuous iff for each B ∈ 𝔅 the inverse image f−1(B) is in ℊ. 

Proof: The only if part is obvious. Suppose the given condition is satisfied. Let V ∈ 𝔘, then there exist Vi∈I 

∈  𝔅 such that V = ⋃ Vii∈I  and  f−1(Vi) ∈  ℊ, i∈  I. Hence f−1(V) = f−1(∩ Vi) =∩ f
−1(Vi) ∈. So f is 

quadripartitioned neutrosophic continuous. 

 

Proposition 3.16. Let (A, ℊA), (B,𝔄B), be quadripartitioned neutrosophic  subspaces of quadripartitioned 

neutrosophic topologies (X, ℊ) and  (Y, 𝔄 ) respectively. Let 𝔅 be a base for 𝔄B . Then a mapping f of (A, 

ℊA)into(B,𝔄B) is relatively continuous iff for each B in 𝔅  the intersection  f−1[B] ∩ A is  in ℊA. 

Proof: Straightforward. 

Definition 3.17.Given two quadripartitioned neutrosophic topologies  ℊ1,  ℊ2 on the same set X, then ℊ1is 

said to be finer than ℊ2( or ℊ2 is coarser than ℊ1) if the identity mapping of (X, ℊ1) into (X, ℊ2) is 

quadripartitioned neutrosophic continuous , ie., (X, ℊ2) ⊂  (X,  ℊ1). 

 

Definition 3.18. Let f be a mapping of a set X into a set Y, and let 𝔄 be a quadripartitioned neutrosophic 

topology on Y. Then the family ℊf−1 = {f
−1(U) ∈  FNS(X);U ∈ 𝔄} is called the inverse image of 𝔄 under 
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f.  ℊf−1 is the coarser quadripartitioned neutrosophic topology on X for which f : (X, ℊf−1 ) → (Y,𝔄) is 

quadripartioned neutrosophic continuous. 

 

Definition 3.19. Let f be a mapping of a set X into a set Y, and let ℊ be a quadripartitioned neutrosophic 

topology on X. Then the family 𝔄f = {U ∈  FNS(Y); f−1(U) ∈ ℊ } is called the image of ℊ under f. 𝔄f is 

the finest  quadripartitioned neutrosophic topology on Y for which f : (X, ℊ ) → (Y,𝔄f ) is quadripartioned 

neutrosophic continuous. 

 

Definition 3.20. Given a family {(Xλ, ℊλ)}λ∈⋀ of quadripartitioned neutrosophic topologies and let X = 

∏ Xλλ∈⋀ , let (X, ℊ) a quadripartitioned neutrosophic topological space and let ℊ the coarsest 

quadripartitioned neutrosophic topology on X for which 𝓅λ: (X, ℊ) → ( Xλ, ℊλ) is quadripartitioned 

neutrosophic continuous for each λ ∈ ⋀, where  𝓅λ is the usual projection. Then ℊ is called the 

quadripartitioned neutrosophic product topology on X and denoted by ∏ Xλλ∈⋀  and (X, ℊ) a 

quadripartitioned neutrosophic product space. 

 From the definition 6.2.13 and 6.2.20 we have the following proposition. 

 

Definition 3.21. Let  {(Xλ, ℊλ)}λ∈⋀ be a family of quadripartitioned neutrosophic topological spaces and 

(X, ℊ) the quadripartitioned neutrosophic product space. Then ℊ has a base the set of finite intersections of 

quadripartitioned neutrosophic sets in X of the form 𝓅λ
−1[Uλ] where Uλ ∈ ℊλ for each λ ∈ ⋀. 

 

Definition 3.22. Let {Xi}, i=1,2,…..n be a finite family of sets and for each i=1,2,….n, let Aibe a 

quadripartitioned neutrosophic set in  Xi.We define the product A = ∏ Ai
n
i=1  of the family Ai, i=1,2,…n, as 

the quadripartitioned neutrosophic set in X = ∏ Xi
n
i=1  that has membership function, indeterministic 

function and non-membership function given by for each (x1, x2, …… xn) ∈  X 

                TA(x1, x2, …… xn) = TA1(x1)⋀ TA2(x2)⋀, . . . . . . . ⋀ TAn(xn),  

UA(x1, x2, …… xn) = UA1(x1)⋀ UA2(x2)⋀, . . . . . . . ⋀ UAn(xn),  

CA(x1, x2, …… xn) = CA1(x1)⋁ CA2(x2)⋁, . . . . . . . ⋁CAn(xn) and 

FA(x1, x2, ……xn) = FA1(x1)⋁ FA2(x2)⋁, . . . . . . . ⋁ FAn(xn).  

Remark 3.23. From the definition 6.2.20 and proposition 6.2.21 that if Xi, has quadripartitioned 

neutrosophic topology ℊi, i=1,2,….n, then the quadripartitioned neutrosophic product topology ℊ on X has 

the det of quadripartitioned neutrosophic product spaces of the form ∏ Ui
n
i=1  where Ui ∈ ℊi for each 

i=1,2,…n. 
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Proposition 3.24. Let {Xi}, i = 1,2, . . . . n, be a finite family of sets and let A=∏ Ai
n
i=1 the quadripartitioned 

neutrosophic product space in X = ∏ Xi
n
i=1 , where Ai ∈  FNS(Xi) for each i= 1,2,….n. then 𝓅i(A) ⊂ Ai for 

each i=1,2,…n. 

Proof : Let xi ∈ Xi. Then T𝓅i(A)   (xi) =  𝓅i(TA)(xi) =  ⋁     TA(z1, z2, …… zn) =   

⋁  [TA1(z1)⋀ TA2(z2)⋀, . . . . . . . ⋀ TAn(zn)] 

= ⋀ {⋁ TA1(z1), . . . . . . . ⋁ TAn(zn)} ≤  TAi(xi)zn∈xnz1∈x1

z1,z2,……zn𝓅i
−1(xi) . similarly we can prove   C𝓅i(xi) ≤

 CAi(xi), U𝓅i(xi) ≥  UAi(xi)  and  F𝓅i(xi) ≥  FAi(xi).Hence 𝓅i(A)  ⊂ Ai for each i=1,2,….n. 

 

Proposition 3.25. let {Xi, ℊi}, i = 1,2, . . . . n be a finite family of quadripartitioned neutrosophic topological 

spaces, let (X, ℊ) the quadripartitioned neutrosophic product space and let A=  ∏ Ai
n
i=1  where Ai a 

quadripartitioned neutrosophic set in Xi for each i = 1,2,……n. then the induced quadripartitioned 

neutrosophic topology ℊA on A has a base the set of quadripartitioned neutrosophic spaces of the form 

∏ Úi
n
i=1  where Úi ∈ (ℊi)Ai , i= 1,2,…..n. 

Proof : by the above remark 6.2.23, ℊ has a base 𝔅 ={∏ Ui
n
i=1  : Ui ∈  ℊi, i=1,2,….n}. A base for ℊA is 

therefore by 𝔅A = {(∏ Ui
n
i=1 ) ∩ A ∶  Ui ∈  ℊi, i=1,2,…n. But (∏ Ui

n
i=1 ) ∩ A =  (∏ Ui

n
i=1 ∩ Ai) and Ui ∩ Ai 

∈ (ℊi)Ai  for i = 1,2, . . . . . n. Let Úi =  Ui ∩ Ai for each i= 1,2,…n. 

Then  𝔅A = {∏ Úi
n
i=1 ∶  Úi ∈ (ℊi)Ai , i= 1,2,…..n} and we denote the quadripartitioned neutrosophic 

subspace (A, ℊA) by  ∏ Ai . (ℊi)Ai .
n
i=1  

 

Proposition 3.26. Let {(Xλ, ℊλ)}λ∈⋀ be a family of quadripartitioned neutrosophic topological spaces, let 

(X, ℊ) the quadripartitioned neutrosophic product space, (Y,𝔄) an quadripartitioned neutrosophic 

topological space and let f : (Y,𝔄)→ (X, ℊ) . Then f is quadripartitioned neutrosophic continuous iff 𝓅λ ∘ f 

: (Y,𝔄)→ (Xλ, ℊλ) is quadripartitioned neutrosophic continuous for each λ ∈ ⋀. 

Proof: suppose f : (Y,𝔄)→ (X, ℊ) is quadripartitioned neutrosophic continuous. For each λ ∈ ⋀., let Uλ ∈

ℊλ. But f−1(𝓅λ
−1(Uλ))  =  (𝓅λ ∘ f)

−1(Uλ). Thus (𝓅λ ∘ f)
−1(Uλ) ∈ 𝔄. Hence 𝓅λ ∘ f : (Y,𝔄)→ (Xλ, ℊλ) is 

quadripartitioned neutrosophic continuous. 

Conversely, let the necessary condition hold and let U ∈ ℊ. By proposition 6.2.21, there exist a finite subset 

⋀́ of ⋀ such that U = (⋂ (𝓅λ
−1(Uλ))λ∈⋀́ =f−1(U). so f−1(U) ∈ 𝔄. Hence f is quadripartitioned neutrosophic 

continuous. 

 

Corollary 3.27. Let {(Xλ, ℊλ)}λ∈⋀, {(Yλ, 𝔄λ)}λ∈⋀  be two families of quadripartitioned neutrosophic 

topological spaces and let  (X, ℊ) and  (Y,𝔄) the respectively quadripartitioned neutrosophic  product 

spaces, where X = ∏ Xλλ∈⋀   and Y =∏ Yλ.λ∈⋀  For each λ ∈ ⋀, let  fλ be mapping of (Xλ, ℊλ) into (Yλ, 𝔄λ). 
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Then the product mapping f =∏ fλλ∈⋀  : (X, ℊ) → (Y,𝔄) is quadripartitioned neutrosophic continuous iff fλ 

is quadripartitioned neutrosophic continuous for each λ ∈ ⋀, where f(x)= (fλ(𝓅λ(x)) for each x  ∈  ∏ Xλλ∈⋀ . 

Proof: The  proof is obvious from the above Proposition. 

 

Proposition 3.28. Let (Xi, ℊi)i, i=1,2,….n be a finite family of quadripartitioned neutrosophic topological 

spaces and (X, ℊ) the quadripartitioned neutrosophic  product spaces. For each i= 1,2,…..n, let Ai be a 

quadripartitioned neutrosophic set in  Xi and let A = ∏ Ai
n
i=1  a quadripartitioned neutrosophic set in X. Let 

(Y,𝔄) be a quadripartitioned neutrosophic topological spaces and let B a quadripartitioned neutrosophic set 

in Y, and  f : (B, 𝔄B) → (A, ℊA) is respectively quadripartitioned neutrosophic  continuous iff 𝓅λ ∘ f : (B, 

𝔄B)→ (Ai, (ℊi)Ai) is relatively quadripartitioned neutrosophic continuous  for each i=1,2,….n. 

Proof:  Suppose f : (B, 𝔄B) → (A, ℊA) is relatively quadripartitioned neutrosophic continuous. 𝓅: (X, ℊ) →

 (Xi, ℊi)  is quadripartitioned neutrosophic continuous for each i= 1,2,…n and by Proposition 6.2.24 

𝓅(A)  ⊂  Ai  for each i=1,2,…n. Then by proposition 6.2.9 𝓅λ ∶ (A, ℊA) ) →  (Ai, (ℊi)Ai) is relatively 

quadripartitioned neutrosophic continuous for each i=1,2,….n. Hence  𝓅i ∘ f : (B, 𝔄B)→ (Ai, (ℊi)Ai) is 

relatively quadripartitioned neutrosophic continuous for each i=1,2,….n. conversely, the necessary 

condition holds. Let Ú = U1́ ×. . . . . .× Uń  where Uí ∈  ((ℊi)Ai), i=1,2,…..n. By the Proposition the 6.2.25 

set of Ú forms a base for ℊA and f−1(Ú) ∩ B =  f−1[ 𝓅i
−1(U1́ ) ∩. . . . . . . . . .∩ 𝓅n

−1(Uń )] ∩ B =

⋂ (n
i=1 (𝓅 ∘ f)−1[Ui]́ ∩ B). Since 𝓅i ∘ f : (B, 𝔄B)→ (Ai, (ℊi)Ai) is relatively quadripartitioned neutrosophic 

continuous for each i=1,2,….n, f−1(Ú) ∩ B ∈  𝔄B. Hence by Proposition 6.2.16 f : (B, 𝔄B)→ (A, ℊA) is 

relatively quadripartitioned neutrosophic continuous. 

 

Corollary 3.29.  Let {{Xi, ℊi}, {{Yi, 𝔄i}, i =  1,2, . . . n be two finite families of quadripartitioned 

neutrosophic  topological spaces and (X, ℊ) and  (Y,𝔄) the respective quadripartitioned neutrosophic 

product spaces. For each i=1,2,….n let Ai be a quadripartitioned neutrosophic set in Xi, Bi a 

quadriparititioned neutrosophic set in Yi and fi ∶  (Ai, (ℊi)Ai) → (Bi, (𝔄i)Bi). Let A = ∏ Ai , B =
n
i=1

∏ Bi 
n
i=1 be the quadripartitioned neutrosophic product space in X,Y respectively. Then the product mapping  

f = ∏ fi
n
i=1  ∶  (Ai, (ℊi)Ai) → (Bi, (𝔄i)Bi) is relatively quadripartitioned neutrosophic continuous if fi is 

relatively quadripartitioned neutrosophic continuous for each i=1,2,…n. 

 

Proposition 3.30.  Let {(Xi, ℊi), {(Yi, 𝔄i)}, i =  1,2, . . . n be two finite families of quadripartitioned 

neutrosophic  topological spaces and (X, ℊ) and  (Y,𝔄) the respective quadripartitioned neutrosophic 

product spaces. For each i=1,2,….n, let fi :   (Xi, ℊi) → (Yi, 𝔄i).Then the product mapping f = ∏ fi
n
i=1 ∶ (X, 

ℊ)  →(Y,𝔄) is quadripartitioned neutrosophic open if    fi is quadripartitioned neutrosophic for each 

i=1,2,….n. 
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Proof : Let U be open in ℊ.Let 𝔅 =  {∏ Ui
n
i=1  a quadripartitioned neutrosophic set in X : Ui ∈ ℊi for each 

i=1,2,….n}. Since 𝔅 is a base for ℊ, there is a B́ ⊂  𝔅 such that U = ⋃ B́. Since each member of B́ is the 

form ∏ Ui
n
i=1 , we can consider B́  =  {∏ Uiλ

n
i=1 }λ∈⋀. Then U= ⋃ ∏ Uiλ .

n
i=1λ∈⋀ Let y ∈ Y such that f−1(y)  ≠

 ∅. Then Tf(U)(y) =  f(TU)(y)  =  ⋁ TU(z)z∈f−1(y)  

= ⋁ T⋃ ∏ Uiλ
n
i=1λ∈⋀

(z)z∈f−1(y) = ⋁ ⋁ T∏ Uiλ
n
i=1

(z)λ∈⋀z∈f−1(y)   

=Vλ∈⋀  ∨z1∈f−11(y1). . . . . . . . Vzn∈f−1n(yn)  [TU1λ(z1) ∧. . . . . . .∧ TUnλ(zn)] 

=Vλ∈⋀[ Vz1∈f−11(y1) TU1λ(z1) ∧. . . . . . .∧  Vzn∈f−1n(yn) TUnλ(zn)]  

=Vλ∈⋀[Tf1(U1,λ)
(y1) ∧. . . . . . . .∧ Tfn(Un,λ)

(yn)]  =  ⋁ T∏ Uiλ
n
i=1

(y) = T⋃ ∏ fi(Uiλ)
n
i=1λ∈⋀

(y)λ∈⋀  

  Ff(U)(y) = f(TU)(y) = ⋀ FU(z) = ⋀ F⋃ ∏ Uiλ
n
i=1λ∈⋀

(z) =z∈f−1(y)z∈f−1(y) ⋀ ⋀ F∏ Uiλ
n
i=1

(z)λ∈⋀  z∈f−1(y)  

= ∧λ∈⋀ ∧z1∈f−11(y1). . . . . . . .∧zn∈f−1n(yn)  [FU1λ(z1) ∨. . . . . . .∨ FUnλ(zn)] 

=∧λ∈⋀ [ ∧z1∈f−11(y1)  FU1λ(z1) ∨. . . . . . .∨ ∧zn∈f−1n(yn)  FUnλ(zn)] 

=∧λ∈⋀ [Ff1(U1,λ)
(y1) ∨. . . . . . . .∨ Ffn(Un,λ)

(yn)]  = ⋀ F∏ Uiλ
n
i=1

(y) =λ∈⋀ F⋃ ∏ fi(Uiλ)
n
i=1λ∈⋀

(y). 

Thus f(U) = ⋃ ∏ fi(Uiλ)
n
i=1λ∈⋀ . Since fi is quadripartitioned neutrosophic open for each i=1,2,….n, fi(Uiλ) 

is quadripartitioned neutrosophic open Xi for each i=1,2,….n. Then  ∏ fi(Uiλ)
n
i=1  is quadripartitioned 

neutrosophic open in Y. So ⋃ ∏ fi(Uiλ)
n
i=1λ∈⋀  is a quadripartitioned neutrosophic open in Y. Hence f is 

quadripartitioned neutrosophic open. 

 

Proposition 3.31. Let {(Xi, ℊi), {(Yi, 𝔄i)}, i =  1,2, . . . n be two finite families of quadripartitioned 

neutrosophic  topological spaces and (X, ℊ) and  (Y,𝔄) the respective quadripartitioned neutrosophic 

product spaces. For each i=1,2,….n, let Ai a quadripartitioned neutrosophic set in Xi, Bi a quadripartitioned 

neutrosophic set in Yi and let A = ∏ Ai,
n
i=1  B =∏ Bi

n
i=1  be the quadripartitioned neutrosophic product spaces 

in X,Y respectively. If fi: Ai → Bi is relatively quadripartitioned neutrosophic open for each i=1,2,…n, then 

the product mapping f = ∏ fi
n
i=1  : : (A, ℊA) ) →  (B,𝔄B) is relatively quadripartitioned neutrosophic open. 

Proof : Let 𝔅 = {∏ Ui
n
i=1  a quadripartitioned neutrosophic set in A : Ui  ∈  (ℊi)Ai  for each i=1,2,….n}. 

Then by proposition 6.2.30 , 𝔅 is a base  for ℊA. Let U∈  ℊA. Then there is 𝔅́ ⊂ 𝔅 such that  ⋃𝔅́  = U. We 

can consider 𝔅́ as {∏ Uiλ}
n
i=1 λ∈∧

. Then U=⋃ ∏ Uiλ.
n
i=1λ∈∧  As in the above proposition 6.2.30 we get f(U) = 

⋃ ∏ fi (Uiλ).
n
i=1λ∈∧  Since fi is relatively quadripartitioned neutrosophic open for each i=1,2,….n, f(U)∈ 𝔄B. 

Hence f is relatively quadripartitioned neutrosophic open. 

 

Lemma 3.32. Let (X1, ℊ1), (Y2, 𝔄2) be a quadripartitioned neutrosophic topological spaces. Then the 

constant mapping  f : (X2, ℊ2) ⟶ (X1, ℊ1) given by f(x2)  =  x0 ∈  X1for each x2 ∈  X2, is 

quadripartitioned neutrosophic continuous. 
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Proof: Let  U ∈ ℊ1 and let  x2 ∈  X2. Then Tf−1(U)( x2) = f−1(TU)(x2) = TUf(x2) = TU(x0). Similarly we 

have Cf−1(U)( x2) = f−1(CU)(x2) = CUf(x2) = CU(x0), Uf−1(U)( x2) = UU( x0) and Ff−1(U)( x2) =

FU( x0). Let TU(x0) = α, CU(x0) = β , UU( x0) = γ and FU( x0) = δ. Consider Sα,β,γ,δ. Since U∈

FNS(X1), α + β + γ + δ ≤ 4. Then S(α,β,γ,δ) is quadripartitioned neutrosophic open in X2. Thus  

Tf−1(U)( x2) = α = TS(α,β,γ,δ)( x2), Cf−1(U)( x2) = β = CS(α,β,γ,δ) ( x2), Uf−1(U)( x2) = γ = US(α,β,γ,δ) ( x2) 

and  Ff−1(U)( x2) = δ = FS(α,β,γ,δ) ( x2) implies f−1(U) = S(α,β,γ,δ). So f−1(U) is quadripartitioned 

neutrosophic open in X2. Hence f is  quadripartitioned neutrosophic continuous. 

 

Proposition 3.33. Let (X1, ℊ1), (X2, ℊ2) be a quadripartitioned neutrosophic topological spaces and let  (X, 

ℊ) the quadripartitioned neutrosophic product space. Then for each x1 ∈  X1 the mapping i : (X2, ℊ2) ⟶

(X, ℊ) defined by i(x2) =  (x1, x2) for each x2 ∈  X2is quadripartitioned neutrosophic continuous. 

Proof: By Lemma 6.2.32 the constant mapping i1 ∶  (X2, ℊ2) ⟶ (X1, ℊ) given by i(x2) =  x1for each x2 ∈

 X2is quadripartiioned neutrosophic continuous. Then identity mapping i2 ∶  (X2, ℊ2) ⟶ (X1, ℊ2) is 

quadriopartitioned neutrosophic continuous. Hence by proposition 6.2.26 i is quadripartitioned 

neutrosophic continuous. 

 

Proposition 3.34. Let (X1, ℊ1), (X2, ℊ2) be a quadripartitioned neutrosophic topological spaces and let  (X, 

ℊ) the quadripartitioned neutrosophic product space. Let A1, A2 be quadripartitioned neutrosophic sets in  

X1, X2 respectively and let A the quadripartitioned neutrosophic product space in X. Let  a1 ∈ X1 such that 

TA1(a1) ≥ TA2(a2), CA1(a1) ≥ CA2(x2), UA1(a1) ≤ UA2(x2) and FA1(a1) ≤ FA2(x2) for each x2 ∈  X2. 

Then the mapping i : (A2,  (ℊ2)A2) ⟶( A1, ℊA) given by i(x2) = (a1, x2) for each x2 ∈  X2is relatively 

quadripartitioned neutrosophic continuous. 

Proof : Let (x1, x2) ∈ X.  Then  

  Ti(A2)(x1, x2) = {
⋁ TA2(x2́)x2́∈i

−1(x1,x2)  if i−1(x1, x2) ≠ ∅  

0                 otherwise               
= {
TA2(x2)       if x1 = a1 

0          otherwise   
 

Ci(A2)(x1, x2) = {
⋁ CA2(x2́)x2́∈i

−1(x1,x2)  if i−1(x1, x2) ≠ ∅  

0                 otherwise               
= {
CA2(x2)       if x1 = a1 

0          otherwise   
 

Ui(A2)(x1, x2) = {
⋀ UA2(x2́)x2́∈i

−1(x1,x2)  if i−1(x1, x2) ≠ ∅  

1                 otherwise               
= {
UA2(x2)       if x1 = a1 

1          otherwise   
 

 

Fi(A2)(x1, x2) = {
⋀ FA2(x2́)x2́∈i

−1(x1,x2)  if i−1(x1, x2) ≠ ∅  

1                 otherwise               
= {
FA2(x2)       if x1 = a1 

1          otherwise   
 and TA(x1, x2) =

TA(x1) ∧ TA(x2), CA(x1, x2) = CA(x1) ∧ CA(x2), UA(x1, x2) = UA(x1) ∨ UA(x2) and FA(x1, x2) =

FA(x1) ∨ FA(x2). By the assumption, TA(x1, x2) ≥  TA(x2), CA(x1, x2) ≥  CA(x2), UA(x1, x2) ≤
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 UA(x2) and FA(x1, x2) ≤  FA(x2).  Hence i(A) ⊂ A. The proof of relative continuity of i is similar to the 

proof of quadripartitioned neutrosophic continuity of i in proposition 6.2.33. 
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Abstract: 

 In this paper we introduce the Bipolar 𝜅 − 𝑄 − fuzzy subsets and show that Bipolar 𝜅 − 𝑄 − fuzzy 

Subgroups and Normal Subgroups. Furthermore, over we initiate the Bipolar 𝜅 − 𝑄 − Fuzzy order 

subgroups and Normal subgroups of the various group theoretical proofs.  

 

Key Words: 

 Fuzzy Set (𝐹𝑆), fuzzy subset (𝐹𝑆𝑏) , 𝜅 − 𝑄 −fuzzy subset (𝜅 − 𝑄 − 𝐹𝑆𝑏), fuzzy orders (𝐹𝑂), 

fuzzy group (𝐹𝐺),fuzzy subgroup(𝐹𝑆𝐺), 𝜅 − 𝑄 −fuzzy orders (𝜅 − 𝑄 − 𝐹𝑂), 𝜅 − 𝑄 −fuzzy group(𝜅 −

𝑄 − 𝐹𝐺), 𝜅 − 𝑄 −fuzzy subgroup(𝜅 − 𝑄 − 𝐹𝑆𝐺), 𝜅 −𝑄 −fuzzy normal subgroup(𝜅 − 𝑄 −

𝐹𝑁𝑆𝐺) 𝑎𝑛𝑑  𝜅 − 𝑄 −Cyclic group. 

1. Introduction 

Abou-Zaid S[1] initiated by On generalized characteristic fuzzy subgroups of a finite group in 1991. 

In 1988, Some properties of fuzzy groups developed by Akgul M[2].  Asaad M[3] introduced by the concepts 

of Groups and fuzzy subgroups 1991. Atanassov K T[4], described the notation Intuitionistic fuzzy sets 

1986. In 1981, described the notation of fuzzy groups and level subgroups in Das P S[5]. Lee K J[5 & 6] 

introduced by the new notation of  Bipolar valued fuzzy sub algebras and bipolar fuzzy ideals of BCK/BCI-
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algebras in 2009 and also introduced the concept of Bipolar valued fuzzy sets and their operations. 

Rosenfeld A[14] described the new concept of  Fuzzy groups in 1971.  In 1982, Fuzzy invariant subgroups 

and fuzzy ideals developed by  Liu W J[8]. Jae-Gyeom Kim, Fuzzy orders Relative to fuzzy subgroups 1994. 

In 1984 initated by the concept of Fuzzy Normal subgroups and fuzzy cosets by Mukherjee N P[10]. 

Prasanna[11] et.al.. introduced by the concept of κ − Q −Fuzzy Orders Relative to κ − Q −Fuzzy Subgroups 

and Cyclic group on various fundamental aspects in 2020 and also Fundamental Algebraic Properties on 

𝜅 − 𝑄 − Anti Fuzzy Normed Prime Ideal and 𝜅 − 𝑄 − Anti  Fuzzy Normed Maximal Ideal in 2021[12]. 

Solairaju A and Nagarajan R[13] developed by the  new structure and construction of 𝑄- fuzzy groups in 

2009. Zadeh L A[15] introduced the concept of fuzzy sets 1965. In 2004, Zhang W R[16]  developed the new 

notation of Bipolar logic and bipolar fuzzy logic. Zimmermann H J[17] described by the notation of fuzzy 

set theory and its applications in 1985. 

In this paper we introduce the Bipolar 𝜅 − 𝑄 − fuzzy subsets and show that Bipolar 𝜅 − 𝑄 − fuzzy 

Subgroups and Normal Subgroups. Furthermore, over we initiate the Bipolar 𝜅 − 𝑄 − Fuzzy order 

subgroups and Normal subgroups of the various group theoretical proofs. 

 

2. Preliminaries 

Definition: 2.1[15] 

 If 𝑋 may be a nonempty set, then a function 𝜇:𝑋 → [0,1] may be a 𝐹𝑆𝑏 of 𝑋. 

 

Definition: 2.2[14] 

 Let 𝐺 be a group. A 𝐹𝑆𝑏 𝜇 of 𝐺 may be a 𝐹𝑆𝐺 of 𝐺 if  

(i) 𝜇(𝑥𝑦) ≥ 𝑚𝑖𝑛{𝜇(𝑥), 𝜇(𝑦)} 

(ii) 𝜇(𝑥−1) ≥ 𝜇(𝑥), for all 𝑥, 𝑦 ∈ 𝐺. 

(iii) From this definition, we obviously have 𝜇(𝑥−1) = 𝜇(𝑥), for all 𝑥, 𝑦 ∈ 𝐺. 

 

Definition: 2.3[14] 

Let 𝐺 be a group. A 𝐹𝑆𝐺 𝜇 of 𝐺 is normal in 𝐺 if 𝜇(𝑥𝑦) = (𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝐺. 

 

Definition: 2.4[11] 

Let 𝐺 and 𝑄 be any two nonempty sets and 𝜅 ∈ [0,1] and 𝜇 be a Ǭ − 𝐹𝑆𝑏 of a set 𝐺. The 𝐹𝑆  𝜇 𝜅 of 𝐺 

is called the  𝜅 − 𝑄 − 𝐹𝑆𝑏 of 𝐺 is defined by  

𝜇 𝜅(𝑥, 𝑞) = (𝜇 (𝑥, 𝑞), 𝜅), ∀ 𝑥 ∈ 𝐺 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 
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3. On Algebraic Aspects of Bipolar 𝜿 − 𝑸 − fuzzy Order subgroups and Normal Subgroups 

Definition: 3.1 

 Let 𝐺 and 𝑄 be any two nonempty sets and 𝜅 ∈ [0,1] and 𝐴𝑘  be a 𝑄 − 𝐹𝑆𝑏 of a set 𝐺. The fuzzy set 

𝐴𝜅 of 𝐺 is called the Bipolar  𝜅 − 𝑄 − 𝐹𝑆𝑏 of 𝐺 is defined by  

 

(i) 𝛾𝐴𝜅−(𝜃, 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝜃, 𝑞), 𝜅)} 

(ii) 𝛾𝐴𝜅+(𝜃, 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝜃, 𝑞), 𝜅)}, ∀ 𝜃 ∈ 𝐺 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 

 

Definition: 3.2 

 Let 𝐴𝑘  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺. For a given 𝜃 ∈ 𝐺 and 𝑞 ∈ 𝑄, the positive 

integer 𝑛 such that the following conditions are  

(i) 𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} 

(ii) 𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)}, ∀ 𝜃 ∈ 𝐺 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 

 

Definition: 3.3 

 The above definition of the two conditions is Bipolar 𝜅 − 𝑄-fuzzy order of 𝜃 with reference to 𝐴𝑘is 

𝐹𝑂𝐴𝜅−(𝜃, 𝑞) and 𝐹𝑂𝐴𝜅+(𝜃, 𝑞). If no such 𝑛 exists 𝜃 is infinite Bipolar 𝜅 − 𝑄-fuzzy order reference to 𝐴𝑘 . 

⇒  𝑂(𝜃, 𝑞) and 𝑂(𝜑, 𝑞) doesn’t imply that of 𝐹𝑂𝐴𝜅−(𝜃, 𝑞), 𝐹𝑂𝐴𝜅−(𝜑, 𝑞) and 𝐹𝑂𝐴𝜅+(𝜃, 𝑞), 𝐹𝑂𝐴𝜅+(𝜑, 𝑞). 

 

Example: 3.3.1  

 Let 𝐺 = {𝑎, 𝑏/𝑎2 = 𝑏2 = 𝑒} be the 4 group. 

Define Bipolar 𝜅 − 𝑄- fuzzy subgroup 𝐴𝑘  of G by 

 𝛾𝐴𝜅−(𝑒, 𝑞) = 𝛾𝐴−((𝑎𝑏, 𝑞), 𝜅) 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝛾𝐴𝜅+(𝑒, 𝑞) = 𝛾𝐴+((𝑎𝑏, 𝑞), 𝜅) = 𝑡𝑜 and  𝛾𝐴𝜅−(𝑎, 𝑞) =

𝛾𝐴−((𝑎, 𝑞), 𝜅) 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜𝛾𝐴𝜅+(𝑎, 𝑞) = 𝛾𝐴+((𝑎, 𝑞), 𝜅) = 𝑡1, Where 𝑡𝑜 > 𝑡1 and 𝑞 ∈ 𝑄.  

Clearly 𝑂(𝑎, 𝑞) = 𝑂(𝑎𝑏, 𝑞) = 2 but 𝐹𝑂𝐴𝜅−(𝑎, 𝑞) =  𝐹𝑂𝐴𝜅+(𝑎, 𝑞) = 2 and 𝐹𝑂𝐴𝜅−(𝑎𝑏, 𝑞) =

 𝐹𝑂𝐴𝜅+(𝑎𝑏, 𝑞) = 1. 

 

Theorem: 3.4 

Let 𝐴𝑘  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup 𝐺. For 𝜃 ∈ 𝐺 and 𝑞 ∈ 𝑄, if  

(i)  𝛾𝐴𝜅−(𝜃
𝑚 , 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)}  

(ii) 𝛾𝐴𝜅+(𝜃
𝑚 , 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)}, for a few integer 𝑚 then 𝐹𝑂𝐴𝜅−(𝜃, 𝑞) 𝑎𝑛𝑑 𝐹𝑂𝐴𝜅+(𝜃, 𝑞) divides 

𝑚. 

Proof: 

Let 𝐹𝑂𝐴𝜅−(𝜃, 𝑞) = 𝐹𝑂𝐴𝜅+(𝜃, 𝑞). 

If there exist integers 𝑠 𝑎𝑛𝑑 𝑡  such that 𝑚 = 𝑛𝑠 + 𝑡, where 0 ≤ 𝑡 < 𝑛 and 𝑞 ∈ 𝑄. 

Then, 

(i)   𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞) =   𝛾𝐴𝜅−(𝜃

𝑚−𝑛𝑠, 𝑞) 

                                        = 𝛾𝐴𝜅−(𝜃
𝑚(𝜃𝑛)−𝑠, 𝑞) 

                                        ≥ 𝑚𝑖𝑛{ 𝛾𝐴−((𝜃
𝑚 , 𝑞), 𝜅), 𝛾𝐴−(((𝜃

𝑛)−𝑠, 𝑞), 𝜅) } 
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                                        ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅), 𝛾𝐴−((𝑒, 𝑞), 𝜅)} 

                   𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞) = 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} 

(ii) 𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞) =   𝛾𝐴𝜅+(𝜃

𝑚−𝑛𝑠, 𝑞) 

                                        = 𝛾𝐴𝜅+(𝜃
𝑚(𝜃𝑛)−𝑠, 𝑞) 

                                       ≤ 𝑚𝑎𝑥{ 𝛾𝐴+((𝜃
𝑚 , 𝑞), 𝜅), 𝛾𝐴+(((𝜃

𝑛)−𝑠, 𝑞), 𝜅) } 

                                       ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅), 𝛾𝐴+((𝑒, 𝑞), 𝜅)} 

             𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞) = 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)} 

 

Hence 𝑡 = 0 by the choice of 𝑛. 

If 𝑂(𝜃, 𝑞)is finite then 𝐹𝑂𝐴𝜅−(𝜃, 𝑞) 𝑎𝑛𝑑 𝐹𝑂𝐴𝜅+(𝜃, 𝑞) is clearly finite from for all Bipolar 𝜅 − 𝑄-fuzzy 

subset 𝐴𝑘  of 𝐺. 

 If 𝑂(𝜃, 𝑞) is infinite then for every positive integer 𝑛 there exists a Bipolar 𝜅 − 𝑄-fuzzy subgroup 

𝛾𝐴𝜅  of 𝐺 such that 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 𝑛. 

 

Theorem: 3.5 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺 and let 𝜃 𝑎𝑛𝑑 𝜑 be two elements of 𝐺 such 

that [𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞), 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜑, 𝑞)] = 1 = [𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃, 𝑞), 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞)] and 𝜃𝜑 = 𝜑𝜃. If 

𝛾𝐴𝜅−(𝜃𝜑, 𝑞) = 𝛾𝐴−((𝑒, 𝑞), 𝜅) and 𝛾𝐴𝜅+(𝜃𝜑, 𝑞) = 𝛾𝐴+((𝑒, 𝑞), 𝜅) then 𝛾𝐴𝜅−(𝜃, 𝑞) = 𝛾𝐴−((𝑒, 𝑞), 𝜅) =

𝛾𝐴𝜅−(𝜑, 𝑞) and 𝛾𝐴𝜅+(𝜃, 𝑞) = 𝛾𝐴+((𝑒, 𝑞), 𝜅) = 𝛾𝐴𝜅+(𝜑, 𝑞). 

Proof: 

 Let 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 𝑛 and 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞) = 𝑚. 

Then  

(i) 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} = {𝛾𝐴𝜅−(𝜃𝜑, 𝑞)} 

≥ {𝛾𝐴𝜅−((𝜃𝜑)
𝑚 , 𝑞)} 

   ≥ {𝛾𝐴𝜅−(𝜃
𝑚𝜑𝑚 , 𝑞)}. 

(ii) 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)} = {𝛾𝐴𝜅+(𝜃𝜑, 𝑞)} 

  ≤ {𝛾𝐴𝜅+(𝜃𝜑)
𝑚 , 𝑞} 

     = {𝛾𝐴𝜅+(𝜃
𝑚𝜑𝑚 , 𝑞)}. 

⇒𝛾𝐴𝜅−(𝜃
𝑚 , 𝑞) = 𝛾𝐴𝜅−(𝜑

𝑚 , 𝑞) = 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} and  

𝛾𝐴𝜅+(𝜃
𝑚 , 𝑞) = 𝛾𝐴𝜅+(𝜑

𝑚 , 𝑞) = 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)} 

Therefore, 𝑛/𝑚  

But (𝑛,𝑚) = 1. If 𝑛 = 1. , 𝑖𝑒 𝛾𝐴𝜅−(𝜃, 𝑞) = 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} = 𝛾𝐴𝜅−(𝜑, 𝑞) and 

 𝛾𝐴𝜅+(𝜃, 𝑞) = 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)} = 𝛾𝐴𝜅+(𝜑, 𝑞). 
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Hence,  

 ⇒ 𝛾𝐴𝜅  is normal the belief 𝜃𝜑 = 𝜑𝜃 may not be omitted. 

 

 Theorem: 3.6 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺. Let 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝑛 − 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞), 

where 𝜃 ∈ 𝐺 and 𝑞 ∈ 𝑄. If 𝑚 may be an integer with 𝑑 = (𝑚, 𝑛) then 𝐹𝑂𝛾𝐴𝑛𝜅−(𝜃
𝑚 , 𝑞) =

𝑛

𝑑
=

𝐹𝑂𝛾𝐴𝑛𝜅+(𝜃
𝑚 , 𝑞). 

Proof: 

 Let 𝐹𝑂𝛾𝐴𝑛𝜅−(𝜃
𝑚 , 𝑞) = 𝐹𝑂𝛾𝐴𝑛𝜅+(𝜃

𝑚 , 𝑞) = 𝑡 

First we have  

(i) 𝛾𝐴𝜅− ((𝜃
𝑚 , 𝑞)

𝑛

𝑑) = 𝛾𝐴𝜅−(𝜃
𝑛𝑝, 𝑞) 

 ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞)} 

 ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)}, ∀ 𝑝 is integer and 𝑞 ∈ 𝑄. 

(ii) 𝛾𝐴𝜅+ ((𝜃
𝑚 , 𝑞)

𝑛

𝑑) = 𝛾𝐴𝜅+(𝜃
𝑛𝑝, 𝑞) 

 ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞)} 

                                ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)}, ∀ 𝑝 is integer and 𝑞 ∈ 𝑄 

Thus 𝑛/𝑑 becomes 𝑑 = (𝑚, 𝑛) there exist integer 𝑖 𝑎𝑛𝑑 𝑗 such that 𝑛𝑖 +𝑚𝑗 = 𝑑. 

Now  

(i) 𝛾𝐴𝜅−(𝜃
𝑡𝑑 , 𝑞) = 𝛾𝐴𝜅−(𝜃

𝑡(𝑛𝑖+𝑚𝑗), 𝑞) 

≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑛)𝑡𝑖(𝜃𝑚)𝑡𝑗 , 𝑞)} 

 ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑛)𝑡𝑖 , 𝑞), 𝛾𝐴𝜅−((𝜃

𝑚)𝑡𝑗 , 𝑞)}} 

 ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑛)𝑡, 𝑞), 𝛾𝐴𝜅−((𝜃

𝑚)𝑡, 𝑞)}} 

                                           = 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅), 𝛾𝐴−((𝑒, 𝑞), 𝜅)}} 

                        = 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)}. 

(ii) 𝛾𝐴𝜅+(𝜃
𝑡𝑑 , 𝑞) = 𝛾𝐴𝜅+(𝜃

𝑡(𝑛𝑖+𝑚𝑗), 𝑞) 

≤ 𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑛)𝑡𝑖(𝜃𝑚)𝑡𝑗 , 𝑞)} 

 ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑛)𝑡𝑖 , 𝑞), 𝛾𝐴𝜅+((𝜃

𝑚)𝑡𝑗 , 𝑞)}} 

 ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑛)𝑡, 𝑞), 𝛾𝐴𝜅+((𝜃

𝑚)𝑡, 𝑞)}} 

                                           = 𝑚𝑎𝑥 {𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅), 𝛾𝐴+((𝑒, 𝑞), 𝜅)}} 

                        = 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)}. 

⇒𝑛/𝑡𝑑., 𝑛/𝑑/𝑡. Consequently 𝑡 = 𝑛𝑑. 
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Theorem: 3.7 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺. Let 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝑛 =  𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞), 

where 𝜃 ∈ 𝐺 and 𝑞 ∈ 𝑄. If 𝑚 may be an integer with (𝑛,𝑚) = 1 then 𝛾𝐴𝜅−(𝜃
𝑚 , 𝑞) = 𝛾𝐴𝜅−(𝜃, 𝑞) and 

𝛾𝐴𝜅+(𝜃
𝑚 , 𝑞) = 𝛾𝐴𝜅+(𝜃, 𝑞). 

Proof: 

 Let (𝑛,𝑚) = 1 there exist 𝑠 and 𝑡 such that 𝑛𝑠 +𝑚𝑡 = 1, ∀ 𝑞 ∈ 𝑄. 

(i) 𝛾𝐴𝜅−(𝜃, 𝑞) = 𝛾𝐴𝜅−(𝜃
𝑛𝑠+𝑚𝑡 , 𝑞) 

                        ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑠 , 𝑞), (𝜃𝑚𝑡 , 𝑞))} 

                  ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−(((𝜃
𝑛)𝑠, 𝑞), ((𝜃𝑚)𝑡 , 𝑞))} 

                        ≥ 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅), 𝛾𝐴𝜅−  (𝜃
𝑚 , 𝑞)}} 

⇒𝛾𝐴𝜅−(𝜃, 𝑞) = 𝑚𝑖𝑛{𝛾𝐴𝜅−  (𝜃
𝑚 , 𝑞)} = 𝛾𝐴𝜅−  (𝜃

𝑚 , 𝑞). 

(ii) 𝛾𝐴𝜅+(𝜃, 𝑞) = 𝛾𝐴𝜅+(𝜃
𝑛𝑠+𝑚𝑡 , 𝑞) 

                        ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑠, 𝑞), (𝜃𝑚𝑡 , 𝑞))} 

                  ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅+(((𝜃
𝑛)𝑠 , 𝑞), ((𝜃𝑚)𝑡, 𝑞))} 

                        ≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅), 𝛾𝐴𝜅+  (𝜃
𝑚 , 𝑞)}} 

⇒𝛾𝐴𝜅+(𝜃, 𝑞) = 𝑚𝑎𝑥{𝛾𝐴𝜅+  (𝜃
𝑚 , 𝑞)} = 𝛾𝐴𝜅+  (𝜃

𝑚 , 𝑞). 

 

Theorem: 3.7 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺. Let 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) =

𝑛 𝑎𝑛𝑑  𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃, 𝑞) = 𝑛, where 𝜃 ∈ 𝐺 and 𝑞 ∈ 𝑄, if 𝑖 = 𝑗(𝑚𝑜𝑑𝑛), where 𝑖, 𝑗 ∈ 𝑍 then 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜃𝑖 , 𝑞) =

𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝑗 , 𝑞) and 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃𝑖 , 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃𝑗 , 𝑞). 

Proof: 

 Let 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝑖 , 𝑞) = 𝑡 = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃𝑖 , 𝑞) and 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝑗 , 𝑞) = 𝑡 = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃𝑗 , 𝑞) = 𝑠 

by the assumption 𝑖 = 𝑗 + 𝑛𝑘 for all integer 𝑘 and 𝑞 ∈ 𝑄 

(i) 𝛾𝐴𝜅−((𝜃
𝑖)
𝑠
, 𝑞) = 𝛾𝐴𝜅−((𝜃

(𝑗+𝑛𝑘))
𝑠
, 𝑞) 

  = 𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑗)
𝑠
(𝜃𝑛)𝑘𝑠 , 𝑞)} 

≥ 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑗)
𝑠
, 𝑞), 𝛾𝐴𝜅−((𝜃

𝑛)𝑘𝑠, 𝑞)}} 

≥ 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅), 𝛾𝐴𝜅−((𝜃
𝑛)𝑠, 𝑞)}} 

≥ 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅), 𝛾𝐴−((𝑒, 𝑞), 𝜅)}} 
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    ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)}. 

                           ⇒𝛾𝐴𝜅−((𝜃
𝑖)
𝑠
, 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} 

(ii) 𝛾𝐴𝜅+((𝜃
𝑖)
𝑠
, 𝑞) = 𝛾𝐴𝜅+((𝜃

(𝑗+𝑛𝑘))
𝑠
, 𝑞) 

  = 𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑗)
𝑠
(𝜃𝑛)𝑘𝑠, 𝑞)} 

≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑗)
𝑠
, 𝑞), 𝛾𝐴𝜅+((𝜃

𝑛)𝑘𝑠, 𝑞)}} 

≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅), 𝛾𝐴𝜅+((𝜃
𝑛)𝑠, 𝑞)}} 

≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅), 𝛾𝐴+((𝑒, 𝑞), 𝜅)}} 

    ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)}. 

                           ⇒𝛾𝐴𝜅+((𝜃
𝑖)
𝑠
, 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)} 

And also 𝑡/𝑠, similarly 𝑠/𝑡. 

Thus we have 𝑡 = 𝑠. 

 

Theorem: 3.8 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺, and let 𝜃 and 𝜑 be element of 𝐺 and 𝑞 ∈

𝑄 there exists 𝜃𝜑 = 𝜑𝜃 and [𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞), 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜑, 𝑞)] = 1 and [𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃, 𝑞), 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞)] =

1. Then 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜃, 𝑞) × 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) and 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃, 𝑞) ×

𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜑, 𝑞). 

Proof:  

 Let 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃𝜑, 𝑞) = 𝑛, 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 𝑠 and  

𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞) = 𝑡 

Then,  

(i) 𝛾𝐴𝜅−((𝜃𝜑)
𝑠𝑡, 𝑞) = 𝛾𝐴𝜅−(𝜃

𝑠𝑡𝜑𝑠𝑡 , 𝑞) 

                                             ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑠)𝑡(𝜑𝑠)𝑡, 𝑞)} 

             ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜃
𝑠)𝑡 , 𝑞), 𝛾𝐴𝜅−((𝜑

𝑠)𝑡, 𝑞)}} 

≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃
𝑠 , 𝑞), 𝛾𝐴𝜅−(𝜑

𝑠, 𝑞)}} 

                                             ≥ 𝑚𝑖𝑛 {𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅), 𝛾𝐴−((𝑒, 𝑞), 𝜅)}} 

                                             ≥ 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} 

Thus 𝑛/𝑠𝑡, 

                ⇒𝛾𝐴𝜅−((𝜃𝜑)
𝑛 , 𝑞) = 𝛾𝐴𝜅−(𝜃

𝑛𝜑𝑛 , 𝑞) 

          = 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)}. 
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(ii) 𝛾𝐴𝜅+((𝜃𝜑)
𝑠𝑡, 𝑞) = 𝛾𝐴𝜅+(𝜃

𝑠𝑡𝜑𝑠𝑡 , 𝑞) 

                                             ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅−((𝜃
𝑠)𝑡(𝜑𝑠)𝑡 , 𝑞)} 

             ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{𝛾𝐴𝜅+((𝜃
𝑠)𝑡 , 𝑞), 𝛾𝐴𝜅+((𝜑

𝑠)𝑡 , 𝑞)}} 

≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃
𝑠, 𝑞), 𝛾𝐴𝜅+(𝜑

𝑠 , 𝑞)}} 

                                             ≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅), 𝛾𝐴+((𝑒, 𝑞), 𝜅)}} 

                                             ≤ 𝑚𝑎𝑥{𝛾𝐴+((𝑒, 𝑞), 𝜅)} 

Besides [𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝑛 , 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜑𝑛 , 𝑞)] = 1 and [𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃𝑛 , 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑𝑛 , 𝑞)] = 1. 

Therefore  

𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞) = 𝛾𝐴𝜅−(𝜑

𝑛 , 𝑞) = 𝑚𝑖𝑛{𝛾𝐴−((𝑒, 𝑞), 𝜅)} and𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞) = 𝛾𝐴𝜅+(𝜑

𝑛 , 𝑞) = 𝑚𝑖𝑛{𝛾𝐴+((𝑒, 𝑞), 𝜅)} 

then both 𝑠 𝑎𝑛𝑑 𝑡 divide on n. 

Therefore 𝑠𝑡/𝑛 because (𝑠, 𝑡) = 1. 

                           ⇒𝑛 = 𝑠𝑡. 

Corollary: 3.8.1 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺, and let 𝜃 and 𝜑 be element of 𝐺 and 𝑞 ∈

𝑄 there exists 𝑂(𝜃𝜑) = 𝑂(𝜑𝜃)=1. Then 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜃, 𝑞) × 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) and 

𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) × 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜑, 𝑞). Since 𝛾𝐴𝜅  is normal subgroup the assumption 𝜃𝜑 =

𝜑𝜃 may not be omitted. 

 

Result: 3.8.2 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-normal fuzzy subgroup of a symmetric group 𝑆4. 

𝛾𝐴𝜅−(𝜃, 𝑞) = 𝛾𝐴𝜅+(𝜃, 𝑞) = {
𝑡𝑜 , 𝑖𝑓 𝜃 = 𝑒
𝑡1, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Where 𝑡𝑜 > 𝑡1 and 𝑞 ∈ 𝑄. 

Now , let 𝜃 = (1,2) and 𝜑 = (1, 2,3) 

Then 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 2  , 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞) = 3,   𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃𝜑, 𝑞) =

𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃𝜑, 𝑞) = 4 and 𝜃𝜑 ≠ 𝜑𝜃. 

 

Theorem: 3.9 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy subgroup of a group 𝐺. For 𝑍 ∈ 𝐺 and 𝑞 ∈ 𝑄. If 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝑍, 𝑞) =

𝑛𝑚 with (𝑛,𝑚) = 1 then there exists 𝜃 and 𝜑 in 𝐺 𝑎𝑛𝑑 𝑞 ∈ 𝑄 such that 𝑍 = 𝜃𝜑 = 𝜑𝜃, 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) =

𝑚 = 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃, 𝑞)  and 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜑, 𝑞) = 𝑛 = 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜑, 𝑞). Furthermore, explain for 𝑍 is exclusive 
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with in the Bipolar 𝜅 − 𝑄-fuzzy grades. If (𝜃, 𝜑), (𝜃1, 𝜑1) and 𝑞 ∈ 𝑄 are such pair then 𝛾𝐴𝜅−(𝜃, 𝑞) =

𝛾𝐴𝜅+(𝜃, 𝑞) = 𝛾𝐴𝜅−(𝜃1, 𝑞) = 𝛾𝐴𝜅+(𝜃1, 𝑞) and 𝛾𝐴𝜅−(𝜑, 𝑞) = 𝛾𝐴𝜅+(𝜑, 𝑞) = 𝛾𝐴𝜅−(𝜑1, 𝑞) = 𝛾𝐴𝜅+(𝜑1, 𝑞). 

Proof: 

 Let (𝑛,𝑚) = 1 there exists integer 𝑠 𝑎𝑛𝑑 𝑡 such that 𝑚𝑠 + 𝑛𝑡 = 1 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 

Here (𝑚, 𝑡) = (𝑛, 𝑠) = 1. 

Let 𝜃 = 𝑍𝑛𝑡 , 𝜑 = 𝑍𝑚𝑠 and 𝑞 ∈ 𝑄. 

Then 𝑍 = 𝜃𝜑 = 𝜑𝜃 by theorem, 

𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝑍𝑛𝑡, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝑍𝑛𝑡, 𝑞) = 𝑚 

and 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) = 𝑛 = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝑍𝑚𝑠, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝑍𝑚𝑠, 𝑞) 

Let (𝜃, 𝜑), (𝜃1, 𝜑1) and 𝑞 ∈ 𝑄 be pair satisfied. 

                           ⇒𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃1, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃1, 𝑞) = 𝑚  

and 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑, 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑1, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑1, 𝑞) = 𝑛 

We obtain  

(i)  𝛾𝐴𝜅−(𝜃, 𝑞) = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃
1−𝑚𝑠, 𝑞)} 

                            = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃
𝑛𝑡 , 𝑞)} 

                       = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃
𝑛𝑡𝜑𝑛𝑡 , 𝑞)} 

                                    = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃𝜑)
𝑛𝑡 , 𝑞} 

                                                ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃
𝑛𝑡 , 𝑞), 𝛾𝐴𝜅−(𝜑

𝑛𝑡 , 𝑞)}} 

                                                = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃1
𝑛𝑡 , 𝑞)} 

                                                  = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃1
1−𝑚𝑠, 𝑞)} 

                       ⇒𝛾𝐴𝜅−(𝜃, 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜃1, 𝑞)}. 

(ii) 𝛾𝐴𝜅+(𝜃, 𝑞) = 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃
1−𝑚𝑠, 𝑞)} 

                         = 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃
𝑛𝑡 , 𝑞)} 

                    = 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃
𝑛𝑡𝜑𝑛𝑡 , 𝑞)} 

                                = 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃𝜑)
𝑛𝑡, 𝑞} 

                                             ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃
𝑛𝑡 , 𝑞), 𝛾𝐴𝜅+(𝜑

𝑛𝑡, 𝑞)}} 

                                             = 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃1
𝑛𝑡 , 𝑞)} 

                                              = 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃1
1−𝑚𝑠, 𝑞)} 

                       ⇒𝛾𝐴𝜅+(𝜃, 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅+(𝜃1, 𝑞)}. 

(iii) 𝛾𝐴𝜅−(𝜑, 𝑞) = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑
1−𝑚𝑠, 𝑞)} 

                            = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑
𝑛𝑡 , 𝑞)} 

                       = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑
𝑛𝑡𝜃𝑛𝑡 , 𝑞)} 
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                                    = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑𝜃)
𝑛𝑡 , 𝑞} 

                                                ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑
𝑛𝑡, 𝑞), 𝛾𝐴𝜅−(𝜃

𝑛𝑡 , 𝑞)}} 

                                                = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑1
𝑛𝑡 , 𝑞)} 

                                                  = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑1
1−𝑚𝑠, 𝑞)} 

                         ⇒𝛾𝐴𝜅−(𝜑, 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑1, 𝑞)}. 

(iv) 𝛾𝐴𝜅−(𝜑, 𝑞) = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑
1−𝑚𝑠 , 𝑞)} 

                            = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑
𝑛𝑡 , 𝑞)} 

                       = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑
𝑛𝑡𝜃𝑛𝑡 , 𝑞)} 

                                    = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑𝜃)
𝑛𝑡 , 𝑞} 

                                                 ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑
𝑛𝑡 , 𝑞), 𝛾𝐴𝜅−(𝜃

𝑛𝑡 , 𝑞)}} 

                                                = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑1
𝑛𝑡, 𝑞)} 

                                                  = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑1
1−𝑚𝑠, 𝑞)} 

                         ⇒𝛾𝐴𝜅−(𝜑, 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑1, 𝑞)}. 

 

Theorem: 3.10 

 Let 𝛾𝐴𝜅  be a Bipolar 𝜅 − 𝑄-fuzzy normal subgroup of a group 𝐺. Then 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) =

𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜑−1𝜃𝜑, 𝑞) and  𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜑−1𝜃𝜑, 𝑞), ∀ 𝜃, 𝜑 ∈ 𝐺 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 

Proof: 

 Let 𝜃,𝜑 ∈ 𝐺 𝑎𝑛𝑑 𝑞 ∈ 𝑄. 

We have  

(i) 𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞) = 𝑚𝑖𝑛{𝛾𝐴𝜅−(𝜑

−1𝜃𝜑, 𝑞)} 

                       ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜑
−1𝜃𝜑)𝑛 , 𝑞)} 

 ⇒𝛾𝐴𝜅−(𝜃
𝑛 , 𝑞) ≥ 𝑚𝑖𝑛{𝛾𝐴𝜅−((𝜑

−1𝜃𝜑)𝑛 , 𝑞)} 

(ii) 𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞) = 𝑚𝑎𝑥{𝛾𝐴𝜅−(𝜑

−1𝜃𝜑, 𝑞)} 

                       ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅−((𝜑
−1𝜃𝜑)𝑛 , 𝑞)} 

⇒𝛾𝐴𝜅+(𝜃
𝑛 , 𝑞) ≤ 𝑚𝑎𝑥{𝛾𝐴𝜅−((𝜑

−1𝜃𝜑)𝑛 , 𝑞)}, ∀ 𝑛 ∈ 𝑍 𝑎𝑛𝑑 𝑞 ∈ 𝑄 

⇒𝐹𝑂𝛾𝐴𝑛
𝜅−(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅−(𝜑−1𝜃𝜑, 𝑞) and 𝐹𝑂𝛾𝐴𝑛
𝜅+(𝜃, 𝑞) = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝜑−1𝜃𝜑, 𝑞) 

⇒𝛾𝐴𝜅  is not normal in 𝐺. 

 

Example: 3.9.1 

 Let 𝜔3 = {𝑎, 𝑏/𝑎
3 = 𝑏3 = 𝑒, 𝑏𝑎 = 𝑎2𝑏} be the group with t elements. 

Now define 𝜅 − 𝑄-fuzzy subgroup of a group 𝛾𝐴𝜅  of 𝜔3 

𝛾𝐴𝜅−(𝜃, 𝑞) = 𝛾𝐴𝜅+(𝜃, 𝑞) = {
𝑡0, 𝑖𝑓 𝜃 ∈ 〈𝑏〉

𝑡1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where 𝑡0 > 𝑡1 and 𝑞 ∈ 𝑄. 

Then 𝑎−1𝑏𝑎 ∈ 〈𝑏〉 and so 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝑏, 𝑞) = 1 = 𝐹𝑂𝛾𝐴𝑛

𝜅+(𝑏, 𝑞) ≠ 𝐹𝑂𝛾𝐴𝑛
𝜅−(𝑎−1𝑏𝑎, 𝑞) =

𝐹𝑂𝛾𝐴𝑛
𝜅+(𝑎−1𝑏𝑎, 𝑞). 

 

4. Conclusion 

In present work, Bipolar 𝜅 − 𝑄 − fuzzy subsets and show that Bipolar 𝜅 − 𝑄 − fuzzy Subgroups 

and Normal Subgroups. Moreover we define the properties of Bipolar 𝜅 − 𝑄 − Fuzzy order subgroups and 

Normal subgroups has been innovated and that we have established several fundamental characteristics of 

this notion. For fresh findings in upcoming research, this notion can be further generalised to intuitionistic 

fuzzy sets, interval valued fuzzy sets, and Doubt bipolar fuzzy sets. 
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Abstract 

 The aim of this paper is to explore neutrosophic soft sets (NSS) in decision making. 

Neutrosophic soft set is a combination of neutrosophic set and soft set. We use neutrosophic soft sets 

on three components (t, f, i) = (truth, falsehood, indeterminacy) to deal with exact state of data in several 

directions.  A decision making method is developed based on neutrosophic soft relations(NSR) related 

to the problems encountered in day-to-day life by married girl students having children is the prime 

focus of the work. The scrutinized women are pursing higher education in the colleges of Coimbatore 

city, Tamil Nadu, India. As an application we provide an algorithm for the decision-making problem 

under neutrosophic soft relation environment by using comparison matrix for the data collected from 

the sample.  

 

Keywords: Soft sets, Neutrosophic sets, Neutrosophic soft sets, neutrosophic soft relation, algorithm, 

decision making. 

 

1. Introduction  

The fuzzy set theory was introduced by L. A. Zadeh [17] in 1965. Many researchers have 

extended the concept of fuzzy set in multi directions. The traditional fuzzy set is characterized by the 

membership value or the grade of membership value. In some real life problems in expert system, belief 

system, information fusion and so on, we must consider the truth-membership as well as the falsity-

membership for proper description of an object in uncertain, ambiguous environment. Intuitionistic 

fuzzy set is introduced by Atanassov [1] is appropriate for such  

a situation. But it does not handle the indeterminate and inconsistent information which exists in belief 

system. F.Smarandache [15] proposed the concept of neutrosophic set which is a mathematical tool for 

handling problems  

involving imprecise, indeterminacy and inconsistent data. Neutrosophic set is the generalization of 

many theory such as; fuzzy set, intuitionistic fuzzy set. 

mailto:radharmat2020@gmail.com
mailto:princy.pjs@gmail.com
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 In 1999, Molodtsov[11] introduced the theory of soft set which is free from the 

parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability theory for 

dealing with uncertainty. Using the concept of soft set theory Maji in 2013 introduced neutrosophic soft 

set [10]. Soft set theory have been expanded by embedding the ideas of fuzzy sets (e.g. [5,4]), 

intuitionistic fuzzy sets (e.g. [3,7,8]), neutrosophic sets (e.g. [9]). Also, many authors studied on 

relations in soft set [2,13], in fuzzy soft set[16] and in intuitionistic fuzzy soft set[6,12]. Presently, work 

on this NSS theory is progressing rapidly in different branches of Mathematics. 

This paper proposes a model for analyzing the supporting factors for student mothers who are 

facing difficulties in everyday life based on neutrosophic soft relations. An illustrative example 

demonstrates the application of proposed decision making method in a real life problem. In section 2, 

we provide the basic definitions of neutrosophic set theory soft set theory and neutrosophic soft set 

theory that are useful for subsequent discussions. In section 3, a decision making method on 

neutrosophic soft sets is established with an example in a real life problem. In section 4, the conclusion 

for the proposed model is given. 

 

2.  Preliminaries 

Definition 2.1 [15] A neutrosophic set A on the universe of discourse X is defined 

as A = {< x, TA(x), IA(x), FA(x) >, x ∈ X}, where T, I, F : X →] -0, 1+ [ and 

-0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. 

From philosophical point of view, the neutrosophic set takes the value from real standard or non-

standard subsets of ]-0, 1+[. But in real life application in scientific and engineering problems it is 

difficult to use neutrosophic set with value from real standard or non-standard subset of ]-0, 1+[. Hence 

we consider the neutrosophic set which takes the value from the subset of [0, 1]. 

 

Definition 2.2 [11] Let U be an initial universe set and E be a set of parameters. Let P( U ) denotes the 

power set of U. Consider a nonempty set A, A ⊂ E. A pair ( F, A ) is called a soft set over U, where F 

is a mapping given by F : A → P(U). 

 

Definition 2.3 [10] Let U be an initial universe set and E be a set of parameters. Consider A ⊂ E. Let 

P( U ) denotes the set of all neutrosophic sets of U. The collection ( F, A ) is termed to be the soft 

neutrosophic set over U, where F is a mapping given by F : A → P(U). 

 

Definition 2.4 [10] Let N1 and N2 be two neutrosophic soft sets over neutrosophic soft universes (U,A) 

and (U,B), respectively.  

(1) N1 is said to be neutrosophic soft subset of N2 if A ⊆ B and 
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 𝑇𝑓𝑁1 (𝑥)
 (u) ≤ 𝑇𝑓𝑁2 (𝑥)

 (u), 𝐼𝑓𝑁1 (𝑥)
(u) ≤ 𝐼𝑓𝑁2 (𝑥)

(u) , 𝐹𝑓𝑁1 (𝑥)
(u) ≥ 𝐹𝑓𝑁2 (𝑥)

 (u), ∀ x ∈ A, u ∈ U. 

(2) N1 and N2 are said to be equal if N1 neutrosophic soft subset of N2 and N2 neutrosophic soft subset 

of N2. 

 

Definition 2.5 [10] Let N1 and N2 be two neutrosophic soft sets over soft universes (U,A) and (U,B), 

respectively,  

(1) The complement of a neutrosophic soft set N1 denoted by 𝑁1
𝐶and is defined by a set valued function 

𝑓𝑁
𝐶  representing a mapping 𝑓𝑁1

𝑐 : E → N(U) 

𝑓𝑁1
𝑐  = {(x,< 𝐹𝑓𝑁1 (𝑥)

(u), 𝐼𝑓𝑁1 (𝑥)
(u), 𝑇𝑓𝑁1 (𝑥)

(u) >) : x ∈ E, u ∈ U}. 

(2) Then the union of N1 and N2 is denoted by N1∪ N2 and is defined by N3(C = A∪ B), where the truth-

membership, indeterminacy-membership and falsity membership of N3 are as follows: ∀ u ∈ U, 

 

 𝑇𝑓𝑁3 (𝑥)
 (u) = 

{
 
 

 
 

    

𝑇𝑓𝑁1 (𝑥)
(𝑢),                                         𝑖𝑓𝑥 ∈  𝐴 −  𝐵

𝑇𝑓𝑁2 (𝑥)
(𝑢),                                          𝑖𝑓𝑥 ∈  𝐵 −  𝐴

max {𝑇𝑓𝑁1 (𝑥)
(𝑢), 𝑇𝑓𝑁1 (𝑥)

(𝑢)} ,      𝑖𝑓𝑥 ∈  𝐴 ∩  𝐵

 

 𝐼𝑓𝑁3 (𝑥)
 (u) = 

{
 
 

 
 

    

𝐼𝑓𝑁1 (𝑥)
(𝑢),                                         𝑖𝑓𝑥 ∈  𝐴 −  𝐵

𝐼𝑓𝑁2 (𝑥)
(𝑢),                                          𝑖𝑓𝑥 ∈  𝐵 −  𝐴

𝐼𝑓𝑁1 (𝑥)
(𝑢) + 𝐼𝑓𝑁2 (𝑥)

(𝑢)

2
                          𝑖𝑓𝑥 ∈  𝐴 ∩  𝐵

 

  𝐹𝑓𝑁3 (𝑥)
 (u) = 

{
 
 

 
 

    

𝐹𝑓𝑁1 (𝑥)
(𝑢),                                         𝑖𝑓𝑥 ∈  𝐴 −  𝐵

𝐹𝑓𝑁2 (𝑥)
(𝑢),                                          𝑖𝑓𝑥 ∈  𝐵 −  𝐴

min {𝐹𝑓𝑁1 (𝑥)
(𝑢), 𝐹𝑓𝑁1 (𝑥)

(𝑢)} ,         𝑖𝑓𝑥 ∈  𝐴 ∩  𝐵

 

 

(3) Then the intersection of N1 and N2 is denoted by N1 ∩N2 and is defined by N3(C = A ∩ B), where 

the truth-membership, indeterminacy-membership  and falsity-membership of N3 are as follows: ∀ u ∈ 

U, 

 𝑇𝑓𝑁3 (𝑥)
(u) = min{ 𝑇𝑓𝑁1 (𝑥)

(u) ,  𝑇𝑓𝑁2 (𝑥)
(u)},  𝐼𝑓𝑁3 (𝑥)

(u) =
( 𝐼𝑓𝑁1 (𝑥)

(𝑢) + 𝐼𝑓𝑁2 (𝑥)
(𝑢)) 

2
 

and   𝐹𝑓𝑁3 (𝑥)
(u) = max{ 𝐹𝑓𝑁1 (𝑥)

(u) ,  𝐹𝑓𝑁2 (𝑥)
(u) }, ∀ x ∈ C 

 

Definition 2.6 [10] Let N1 and N2 be two neutrosophic soft sets over neutrosophic soft universes (U,A) 

and (U,B), respectively. Then the cartesian product of N1 and N2 is denoted by N1 × N2 = N3 is defined 

by  
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N3 = {((x, y), 𝑓𝑁3(x, y)) : (x, y) ∈ A × B}  

where the truth-membership, indeterminacy-membership and falsity-membership of N3 are as follows: 

∀ u ∈ U; ∀ (x, y) ∈ A × B, 

 𝑇𝑓𝑁3 (𝑥,𝑦)
(u) = min{𝑇𝑓𝑁1 (𝑥)

(u) ,  𝑇𝑓𝑁2 (𝑦)
(u)}, 

 𝐼𝑓𝑁3 (𝑥,𝑦)
(u) =

( 𝐼𝑓𝑁1 (𝑥)
(𝑢), 𝐼𝑓𝑁2 (𝑦)

(𝑢)) 

2
    and 

 𝐹𝑓𝑁3 (𝑥,𝑦)
(u) = max{ FfN1 (x)

(u) ,  FfN2 (y)
(u) }. 

 

3. An Application of Neutrosophic Soft Relation in Decision Making Method: 

 Under this section, we construct a decision making by using neutrosophic soft method on relations to 

analyze which factor supports the married girl students having children. 

Now, we present an algorithm to form the decision making based on neutrosophic soft relation. The 

algorithm is as follows: 

Algorithm: 

1) Enter the Neutrosophic Soft 𝑁1 and 𝑁2. 

2) Determine the matrix for the Neutrosophic Soft (relation table I) which corresponds to the  

Cartesian product of the neutrosophic soft sets 𝑁1 and 𝑁2. 

3) Calculate the comparison table using the formula, T+I-F  

4) Choose the greatest numerical value from the comparison table for each row. 

5) Compute the score table in the form,  

 

 (𝑥1, 𝑦1) … … (𝑥𝑛 , 𝑦𝑛) 

Objects ℎ𝑖 … … … 

Greatest 

Numerical 

Value 

… … … … 

 Where 𝑥𝑛 denoted the parameter of 𝑁1 and 𝑦𝑛 denotes the parameter of 𝑁2. 

6) Take the sum of these numerical value from the score table and compute the score of  

each grade. 

7) Find m, for which 𝑠𝑚 = 𝑚𝑎𝑥𝑠𝑗. Then 𝑠𝑚 is the greatest score, if m has more than one values,  

you can choose any one value 𝑠𝑗. 

Now, we use this algorithm to find the best supporting factor in decision making. 
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Example 3.1: Let 𝑈 = {child care, home management, college work support, Moral support and 

financial support} denoted by {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} the set of 5 supporting factors. Now, we consider two 

neutrosophic soft sets  𝑁1 and 𝑁2 over U. Suppose 𝑁1 describes “Student mothers having children of 

age below 5” and 𝑁2 describes “Student mothers having children of age above 5”. 

Let 𝐸1= {𝑥1, 𝑥2, 𝑥3, 𝑥4} ={Changes in family environment, Changes in economic condition, Burdened 

with family responsibility, Changes in academic performance} and 𝐸2= {𝑦1, 𝑦2, 𝑦3, 𝑦4} = {lack of 

concentration in studies, lack in conveyance and time, changes on routine study hours, changes in health 

condition} respectively. Then we find a supporting factor based on the sets of mother’s parameters with 

the help of neutrosophic soft relation decision making method.   

1)  We enter the Neutrosophic Soft 𝑁1 and 𝑁2 as, 

𝑁1 =

{
 
 

 
 𝑥1,

𝑢1

(0.9,0.8,0.5)
,

𝑢2

(0.2,0.7,0.3)
,

𝑢3

(0.4,0.6,0.8)
,

𝑢4

(0.1,0.8,0.5)
,

𝑢5

(0.3,0.8,0.4)

𝑥2,
𝑢1

(0.2,0.9,0.1)
,

𝑢2

(0.5,0.7,0.8)
,

𝑢3

(0.6,0.5,0.3)
,

𝑢4

(0.2,0.8,0.9)
,

𝑢5

(0.1,0.6,0.7)

𝑥3,
𝑢1

(0.7,0.5,0.4)
,

𝑢2

(0.4,0.5,0.5)
,

𝑢3

(0.2,0.4,0.7)
,

𝑢4

(0.8,0.9,0.1)
,

𝑢5

(0.1,0.9,0.7)

𝑥4,
𝑢1

(0.2,0.3,0.3)
,

𝑢2

(0.3,0.9,0.6)
,

𝑢3

(0.4,0.4,0.8)
,

𝑢4

(0.8,0.8,0.1)
,

𝑢5

(0.4,0.6,0.5)}
 
 

 
 

  

                                                      and 

 𝑁2 =

{
 
 

 
 𝑦1,

𝑢1

(0.3,0.7,0.5)
,

𝑢2

(0.2,0.8,0.7)
,

𝑢3

(0.1,0.9,0.8)
,

𝑢4

(0.5,0.8,0.9)
,

𝑢5

(0.3,0.8,0.1)

𝑦2,
𝑢1

(0.4,0.5,0.2)
,

𝑢2

(0.3,0.1,0.9)
,

𝑢3

(0.2,0.6,0.4)
,

𝑢4

(0.5,0.8,0.1)
,

𝑢5

(0.9,0.4,0.9)

𝑦3,
𝑢1

(0.7,0.5,0.4)
,

𝑢2

(0.2,0.5,0.7)
,

𝑢3

(0.8,0.2,0.5)
,

𝑢4

(0.9,0.2,0.4)
,

𝑢5

(0.7,0.9,0.2)

𝑦4,
𝑢1

(0.2,0.4,0.1)
,

𝑢2

(0.4,0.5,0.9)
,

𝑢3

(0.3,0.1,0.7)
,

𝑢4

(0.6,0.9,0.8)
,

𝑢5

(0.2,0.2,0.8)}
 
 

 
 

  

2) In table I, we determine the matrix R for the Neutrosophic Soft  (relation table I) which corresponds 

to the Cartesian product of the neutrosophic soft sets 𝑁1 and 𝑁2 respectively.  

R 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 

(𝑥1, 𝑦1) (0.3,0.75,0.5) (0.2,0.75,0.7) (0.1,0.75,0.8) (0.1,0.8,0.9) (0.3,0.8,0.4)  

(𝑥1, 𝑦2) (0.4,0.65,0.5) (0.2,0.4,0.9) (0.2,0.6,0.8) (0.1,0.8,0.5) (0.3,0.6,0.9) 

(𝑥1, 𝑦3) (0.7,0.65,0.5) (0.2,0.6,0.7) (0.4,0.4,0.8) (0.1,0.5,0.5) (0.3,0.85,0.4) 

(𝑥1, 𝑦4) (0.2,0.6,0.5) (0.2,0.65,0.9) (0.3,0.35,0.8) (0.1,0.85,0.8) (0.2,0.5,0.8) 

(𝑥2, 𝑦1) (0.2,0.8,0.5) (0.2,0.75,0.8) (0.1,0.7,0.8)  (0.2,0.8,0.9) (0.1,0.9,0.9) 

(𝑥2, 𝑦2) (0.2,0.7,0.2) (0.3,0.4,0.9) (0.2,0.55,0.4) (0.2,0.8,0.9) (0.1,0.5,0.9) 

(𝑥2, 𝑦3) (0.2,0.7,0.4) (0.2,0.6,0.8) (0.6,0.35,0.5) (0.2,0.5,0.9) (0.1,0.75,0.7) 

(𝑥2, 𝑦4) (0.2,0.65,0.1) (0.4,0.65,0.9) (0.3,0.3,0.7) (0.2,0.85,0.9) (0.1,0.4,0.8) 

(𝑥3, 𝑦1) (0.3,0.6,0.5) (0.2,0.65,0.7) (0.1,0.65,0.8) (0.5,0.85,0.9) (0.1,0.85,0.7) 

(𝑥3, 𝑦2) (0.4,0.5,0.4) (0.3,0.3,0.9) (0.2,0.5,0.7) (0.5,0.85,0.1) (0.1,0.65,0.9) 
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(𝑥3, 𝑦3) (0.7,0.5,0.4) (0.2,0.5,0.7) (0.2,0.3,0.7) (0.8,0.55,0.4) (0.1,0.9,0.7) 

(𝑥3, 𝑦4) (0.2,0.45,0.4) (0.4,0.55,0.9) (0.2,0.25,0.7) (0.6,0.9,0.8) (0.1,0.55,0.8) 

(𝑥4, 𝑦1) (0.2,0.5,0.5) (0.2,0.85,0.7) (0.1,0.65,0.8) (0.5,0.8,0.9) (0.3,0.7,0.5) 

(𝑥4, 𝑦2) (0.2,0.4,0.3) (0.3,0.5,0.9) (0.2,0.5,0.8) (0.5,0.8,0.1) (0.4,0.5,0.9) 

(𝑥4, 𝑦3) (0.2,0.4,0.4) (0.2,0.7,0.7) (0.4,0.3,0.8) (0.8,0.5,0.4) (0.4,0.75,0.5) 

(𝑥4, 𝑦4) (0.2,0.35,0.3) (0.2,0.75,0.9) (0.3,0.25,0.8) (0.6,0.85,0.8) (0.2,0.4,0.8) 

Table I : Neutrosophic Soft Matrix R (Relation Table) 

3) With the help of Table I, we calculate the comparison table II as follows; 

R 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 

(𝑥1, 𝑦1) 0.55 0.25 0.05 0 0.7 

(𝑥1, 𝑦2) 0.55 -0.3 0 0.4 0 

(𝑥1, 𝑦3) 0.85 0.1 0 0.1 0.75 

(𝑥1, 𝑦4) 0.3 -0.05 -0.15 0.15 -0.1 

(𝑥2, 𝑦1) 0.5 0.15 0 0.1 0.1 

(𝑥2, 𝑦2) 0.7 -0.2 0.35 0.1 -0.3 

(𝑥2, 𝑦3) 0.5 0 0.45 -0.2 0.15 

(𝑥2, 𝑦4) 0.75 0.15 -0.1 0.15 -0.3 

(𝑥3, 𝑦1) 0.4 0.15 -0.05 0.45 0.25 

(𝑥3, 𝑦2) 0.5 -0.3 0 1.25 -0.15 

(𝑥3, 𝑦3) 0.8 0 -0.2 0.95 0.3 

(𝑥3, 𝑦4) 0.25 0.05 -0.25 0.7 -0.15 

(𝑥4, 𝑦1) 0.2 0.35 -0.05 0.4 0.5 

(𝑥4, 𝑦2) 0.3 -0.1 0 1.2 0 

(𝑥4, 𝑦3) 0.2 0.2 -0.1 0.9 0.65 

(𝑥4, 𝑦4) 0.25 0.05 -0.25 0.65 -0.2 

Table II: Comparison Matrix Table. 

4) In Table 3, we choose the greatest numerical value from the comparison table II for each row. 

R 𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 

(𝑥1, 𝑦1) 0.55 0.25 0.05 0 0.7 

(𝑥1, 𝑦2) 0.55 -0.3 0 0.4 0 

(𝑥1, 𝑦3) 0.85 0.1 0 0.1 0.75 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

119  

(𝑥1, 𝑦4) 0.3 -0.05 -0.15 0.15 -0.1 

(𝑥2, 𝑦1) 0.5 0.15 0 0.1 0.1 

(𝑥2, 𝑦2) 0.7 -0.2 0.35 0.1 -0.3 

(𝑥2, 𝑦3) 0.5 0 0.45 -0.2 0.15 

(𝑥2, 𝑦4) 0.75 0.15 -0.1 0.15 -0.3 

(𝑥3, 𝑦1) 0.4 0.15 -0.05 0.45 0.25 

(𝑥3, 𝑦2) 0.5 -0.3 0 1.25 -0.15 

(𝑥3, 𝑦3) 0.8 0 -0.2 0.95 0.3 

(𝑥3, 𝑦4) 0.25 0.05 -0.25 0.7 -0.15 

(𝑥4, 𝑦1) 0.2 0.35 -0.05 0.4 0.5 

(𝑥4, 𝑦2) 0.3 -0.1 0 1.2 0 

(𝑥4, 𝑦3) 0.2 0.2 -0.1 0.9 0.65 

(𝑥4, 𝑦4) 0.25 0.05 -0.25 0.65 -0.2 

Table III 

5) We compute the score table in the following form; 

R (𝑥1, 𝑦1) (𝑥1, 𝑦2) (𝑥1, 𝑦3) (𝑥1, 𝑦4) 

𝑢𝑖 𝑢5 𝑢1 𝑢1 𝑢1 

 0.7 0.55 0.85 0.3 

     

 (𝑥2, 𝑦1) (𝑥2, 𝑦2) (𝑥2, 𝑦3) (𝑥2, 𝑦4) 

 𝑢1 𝑢1 𝑢1 𝑢1 

 0.5 0.7 0.5 0.75 

     

 (𝑥3, 𝑦1) (𝑥3, 𝑦2) (𝑥3, 𝑦3) (𝑥3, 𝑦4) 

 𝑢4 𝑢4 𝑢4 𝑢4 

 0.45 1.25 0.95 0.7 

 (𝑥4, 𝑦1) (𝑥4, 𝑦2) (𝑥4, 𝑦3) (𝑥4, 𝑦4) 

 𝑢5 𝑢4 𝑢4 𝑢4 

 0.5 1.2 0.9 0.65 

Table IV: Score Table 

6) Now, we compute the score of each grade by taking the sum of the numerical value from the score table 

IV.  
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𝑢1: 0.55+0.85+0.3+0.5+0.7+0.5+0.75 = 4.15 

𝑢4: 0.45+1.26+0.95+0.7+1.2+0.9+0.65 = 6.1 

𝑢5: 0.7+0.5 = 1.2 

The score value calculated is neatly tabulated for easy reference. 

 

 

 

 

 

Clearly the maximum score, 𝑠𝑚= 6.1   

Therefore from the obtained maximum value we conclude that Moral Support (u4) is the most needed factor 

expected by the student mothers during their period of study. 

 

4. Conclusion: 

 In this paper we examine the challenges faced by student mothers during their academic period by 

using neutrosophic soft relation. Finally the support they need from family and society to live a peaceful 

and healthy life is found. We use this concept in soft sets considering the fact that the parameters (which 

are words or sentences) are mostly neutrosophic set. The neutrosophic soft relation concept may be applied 

in operations research, data analytics, medical sciences, etc. Industry may adopt this technique to minimize 

the cost of investment and maximize the profit. 
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Abstract: In this paper, the conceptions of an operations and relations on the Cartesian product over 

interval valued intuitionistic fuzzy matrices set are introduced and its some properties are explored. We 

prove some equality based on the operation and the relation over IVIFSs. Finally, we introducing some 

Cartesian formulas x4, x5 in Cartesian product of interval valued intuitionistic fuzzy matrix sets. 

 

Keywords: Fuzzy sets, intuitionistic fuzzy sets (IFS), Cartesian product over intuitionistic fuzzy sets, 

operation, geometric interpretation and interval valued intuitionistic fuzzy set (IVIFS).  

 

1. Introduction 

A lot of operations are introduced and proved over the intuitionistic fuzzy sets and interval valued 

intuitionistic fuzzy sets. In 1994, Atanassov Krassimir T [5] has proposed new operations defined over the 

intuitionistic fuzzy sets. In 2011, Wei, Cui-Ping, Pei Wang, and Yu-Zhong Zhang [24] have been proposed 

“Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications.” and In 

2007, Xu, Zeshui [25] have been proposed “Methods for aggregating interval-valued intuitionistic fuzzy 

information and their application to decision making.”  In 2006, Riecan, Beloslav and Atanassov Krassimir 

T [5] have proposed n-extraction operation over intuitionistic fuzzy sets. In 2012, Parvathi, Rangaswamy, 

Beloslav Riecan, and Krassimir T. Atanassov [16] Have been proposed “Properties of some operations 

defined over intuitionistic fuzzy sets. In 2019, S. Senthilkumar, Eswari Prem, and C. Ragavan [18] have 

proposed Cartesian products over a contrary intuitionistic fuzzy α-translation of H-ideals in division BG-

algebras. In 2008, Liu Q, Ma C, and Zhou X. [14] have proposed on the properties of some intuitionistic 

fuzzy set operators. In 2010, Riecan, Beloslav and Atanassov Krassimir T [2, 3] have proposed operation 

division by n over intuitionistic fuzzy sets. In 2012, Rangaswamy Parvathi, Beloslav Riecan and Atanassov 

Krassimir T [4] have proposed properties of some operations defined over intuitionistic fuzzy sets. In 1989, 

the notion of interval valued intuitionistic fuzzy sets which are a generalization of both intuitionistic fuzzy 

sets and interval valued fuzzy sets and interval valued fuzzy sets were proposed by Atanassov Krassimir T 

and Gargov G [4]. After the introduction of interval valued intuitionistic fuzzy sets, many researchers have 

shown intervals in the interval valued intuitionistic fuzzy set theory and applied it to the various fields. In 

1994, Operators over an interval valued intuitionistic fuzzy sets was proposed by Atanassov Krassimir T 
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mailto:1*sssvm86@gmail.com
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[5]. In 2007, methods for aggregating interval-valued intuitionistic fuzzy information and their application 

to decision making was proposed by Xu, Zeshui [25, 26]. In 2007, some geometric aggression operators 

based on interval valued intuitionistic fuzzy sets and their application to group decision making were 

proposed by Wei, Gui Wu, and Xiao-Rong Wang [21]. In 2012, some results on generalized interval- valued 

intuitionistic fuzzy sets were proposed by Bhowmik, Monoranjan, and Madhumangal pal [6]. In 2013, 

interval valued intuitionistic hesitant fuzzy aggregation operators and their application in group decision 

making were proposed by Zhiming Zhang [32]. In 2014, the new operations over an interval valued 

intuitionistic hesitant fuzzy sets were proposed by Broumi, Said, and Florentine Smarandache [8]. In this 

paper the formula for Cartesian product over interval- valued intuitionistic fuzzy matrix sets are 

investigated. Finally, the Cartesian product of two interval- valued intuitionistic fuzzy matrix sets in was 

derived. 

 

2. Preliminaries 

Definition 2.1: Fuzzy Sets: A fuzzy set is any set that allows its members to have different degree of 

membership   function, having interval [0, 1] 

 

Definition 2.2: Fuzzy Matrix set: Fuzzy matrices play a vital role in scientific development. A Fuzzy matrix 

may be matrix that has its parts from [0, 1]. Consider a matrix  𝐴 = [𝑎𝑖𝑗]3×3 where 𝑎𝑖𝑗 ∈ [0,1], 1 ≤ 𝑗 ≤

𝑛. Then A is a Fuzzy Matrix [FM]. 

 

Definition 2.3: Fuzzy Rectangular Matrix: Let 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛 (𝑚 ≠ 𝑛) where 𝑎𝑖𝑗 ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

𝑗 ≤ 𝑚. then A is a Fuzzy Rectangular Matrix. 

 

Definition 2.4: fuzzy square matrix: Let 𝐴 = [𝑎11𝑎12  ⋯ 𝑎1𝑗   ⋯ 𝑎1𝑛 𝑎21𝑎22  ⋯ 𝑎2𝑗   ⋯ 𝑎2𝑛  ⋮       ⋮       ⋮

    ⋮          ⋮     ⋮  𝑎𝑖1𝑎𝑖2  ⋯ 𝑎𝑖𝑗   ⋯ 𝑎𝑖𝑛  ⋮       ⋮       ⋮    ⋮         ⋮     ⋮  𝑎𝑛1𝑎𝑛2  ⋯ 𝑎𝑛𝑗   ⋯ 𝑎𝑛𝑛 ] .where, 𝑎𝑖𝑗 ∈

[0,1], 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then A is a fuzzy square matrix. 

 

Definition 2.5: fuzzy row matrix: Let A= [𝑎1, 𝑎2, 𝑎3 ,⋯ , 𝑎𝑛] where 𝑎𝑖𝑗 ∈ [0,1], 𝑗 = 1,2, … , 𝑛.Then A is 

called 1 × 𝑛 a fuzzy row matrix or row vector. 

 

Definition 2.6: fuzzy column matrix: Let 𝐴 = [𝑏1 𝑏2      ⋮          𝑏𝑚 ] where 𝑎𝑖[0,1], 𝑖 = 1,2,… , 𝑛.Then A is 

called 𝑚 × 1 a fuzzy column matrix. 
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Definition 2.7: fuzzy diagonal matrix: A Fuzzy square matrix A= [𝑎𝑖𝑗]𝑚×𝑛 is said to fuzzy diagonal matrix. 

If 𝑎𝑖𝑗 = 0 when𝑖 ≠ 𝑗, 𝑎𝑖𝑗 ∈ [0,1],1 ≤ 𝐼. 

 

Definition 2.8: fuzzy relation: A fuzzy relation is the Cartesian product of mathematical fuzzy sets. Two 

fuzzy sets are taken as input; the fuzzy relation is then equal to the cross product of the sets which is created 

by vector multiplication. 

 

Definition 2.9: Cartesian product: Consider two sets A and B. The set of all ordered pairs {𝑎, 𝑏} where 𝑎 ∈

𝐴 & 𝑏 ∈ 𝐵 is called Cartesian product. It is denoted by,  𝐴 × 𝐵 = {(𝑎, 𝑏): (𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵)}. 

 

Definition 2.10: Membership function: The membership function of a fuzzy set A is denoted by 𝜇𝐴,  

𝜇𝐴: 𝐸 → [0,1].The most commonly used range of value of membership function is the unit interval [a, b]. 

 

Definition 2.11: Degree of membership: Membership function for an intuitionistic fuzzy set A on the 

universe of discourse is defined as𝜇𝐴: 𝑋 → [0,1]. where each element X is mapped to a value between 0 

and 1.  The value 𝜇𝐴(𝑥), 𝑥 ∈ 𝑋 is called Membership value or degree of membership function. The most 

commonly used range of value of membership functions is the interval [a, b]. 

 

Definition 2.12: Degree of Non- Membership function: non-membership function for an intuitionistic 

fuzzy set Aon the universe of discourse is defined as 𝜗𝐴 : 𝑋 → [0,1] Where each element X is mapped to a 

value between 0 and 1. The value 𝜇𝐴(𝑥), 𝑥 ∈ 𝑋 is called non-Membership value or degree of non-

Membership function. 

 

Definition 2.13: intuitionistic fuzzy set: An Intuitionistic Fuzzy Set (IFs) A in E is stated as an particular 

of the following form 𝐴 = {< 𝑋, 𝜇𝐴(𝑥), 𝜗𝐴(𝑥) > |𝑥 ∈ 𝐸} Here the functions: 𝜇𝐴: 𝐸 → [0,1] and 𝜗𝐴: 𝐸 →

[0,1]. 

 

Definition 2.14: intuitionistic fuzzy matrix: An intuitionistic fuzzy matrix is a pair of fuzzy matrices, 

namely, a membership and non-membership function which represent positive and negative aspects. The 

concept of intuitionistic fuzzy matrices was introduced by pal et al. 

 

Definition 2.15:  interval valued intuitionistic fuzzy set: An Interval valued intuitionistic fuzzy set A in the 

finite universe X is defined as A= {[ 𝑥, 𝜇𝐴(𝑥),𝛾𝐴(𝑥)]|𝑥𝜖𝑋}. The intervals 𝜇𝐴(𝑥) and𝛾𝐴(𝑥) denote the degree 

of membership function and the degree of non-membership of the element x in the set A.For every 𝑥𝜖 X, 
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𝜇𝐴(𝑥) and 𝛾𝐴(𝑥) are closed intervals and their left and right end points are denoted by𝜇𝐴
𝐿(𝑥), 

𝜇𝐴
𝑅(𝑥), 𝜇𝐴

𝐿 (𝑥)and𝛾𝐴
𝑅(𝑥). Let as denote A = {[ 𝑥,(𝜇𝐴

𝐿(𝑥), 𝜇𝐴
𝑅(𝑥),(𝛾𝐴

𝐿(𝑥), 𝛾𝐴
𝑅(𝑥))]|𝑥𝜖𝑋} where 0 ≤ 𝜇𝐴

𝑅(𝑥) +

𝛾𝐴
𝑅(𝑥) ≤ 1, 𝜇𝐴

𝐿(𝑥) ≥ 0,𝛾𝐴
𝐿(𝑥) ≥ 0. Especially if 𝜇𝐴(𝑥) = 𝜇𝐴

𝐿(𝑥) = 𝜇𝐴
𝑅(𝑥) and 𝛾𝐴(𝑥) =  𝛾𝐴

𝐿(𝑥) = 𝛾𝐴
𝑅(𝑥) then 

the given interval valued intuitionistic fuzzy set A is reduced to an ordinary intuitionistic fuzzy set. 

Definition 2.16: operations on intuitionistic fuzzy sets: Let A and B be two intuitionistic fuzzy sets on the 

universe X. Where, A ={[ 𝑥, 𝜇𝐴(𝑥),𝛾𝐴(𝑥)]|𝑥𝜖𝑋} and B= {[ 𝑥, 𝜇𝐵(𝑥),𝛾𝐵(𝑥)]|𝑥𝜖𝑋}. 

 

Definition 2.17: The five Cartesian products of two IFSs A and B are defined as follows: 

Let A and B are two intuitionistic fuzzy sets of the universes 𝐴𝐸 𝑎𝑛𝑑 𝐵𝐹 , then the Cartesian product of two 

IFSs is defined by the  

The Cartesian product "𝑋4" is defined by 

(𝐴 ×4 𝐵) = {(𝑥, 𝑦), (
[max (𝛼,𝑚𝑖𝑛(𝑖𝑛𝑓𝜇𝐴(𝑥), 𝑖𝑛𝑓𝜇𝐵(𝑥)),max (𝛼,min (𝑠𝑢𝑝𝜇𝐴(𝑥), 𝑠𝑢𝑝𝜇𝐵(𝑥))] 

[𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝑖𝑛𝑓𝛾𝐴(𝑥), 𝑖𝑛𝑓𝛾𝐵(𝑥))  ,𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝑠𝑢𝑝𝛾𝐴(𝑥), 𝑠𝑢𝑝𝛾𝐵(𝑥))] 
) ; 𝑥

∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵} 

The Cartesian product "𝑋5" is defined by 

(𝐴 ×5 𝐵) = {(𝑥, 𝑦), (
[max (𝛼,𝑚𝑎𝑥(𝑖𝑛𝑓𝜇𝐴(𝑥), 𝑖𝑛𝑓𝜇𝐵(𝑥)),max (𝛼,max (𝑠𝑢𝑝𝜇𝐴(𝑥), 𝑠𝑢𝑝𝜇𝐵(𝑥))]

 [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝑖𝑛𝑓𝛾𝐴(𝑥), 𝑖𝑛𝑓𝛾𝐵(𝑥))  ,𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝑠𝑢𝑝𝛾𝐴(𝑥), 𝑠𝑢𝑝𝛾𝐵(𝑥))] 
) ; 𝑥

∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵} 

 

Theorem 2.1: If  𝐴𝐸 and 𝐵𝐹 are two intervals valued intuitionistic fuzzy matrix set, then 𝐴𝐸𝑋4𝐵𝐹 is also 

an interval   valued   intuitionistic fuzzy matrix set. 

Proof: If  𝐴𝐸 =

(
[𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11][𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12][𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13][𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21][𝛼𝐸22 , 𝛽𝐸22]

[𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] 
) 

and 

               𝐵𝐹 =

(
 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11][𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12][𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13][𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22][𝛼𝐹22 , 𝛽𝐹22]

[𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33  
)  

are interval valued intuitionistic fuzzy matrix sets. Then 
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𝐴𝐸𝑋4𝐵𝐹

=

(

 
 

[𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] 

[𝛼𝐸22 , 𝛽𝐸22]

[𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33]

[𝛾𝐸33 , 𝛿𝐸33] )

 
 
𝑋4 

                   

(
[𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11][𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12][𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13][𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22][𝛼𝐹22 , 𝛽𝐹22]

[𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 
) 

𝐴𝐸 ×4 𝐵𝐹 = (𝑋11 𝑋12 𝑋13 𝑋21 𝑋22 𝑋23  𝑋31 𝑋32 𝑋33 ) Where, 

𝑋11 = ([𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ) ×4   

([𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] ) 

𝑋12 = ([𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ) 

×4 (
[𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12]

[𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 
) 

𝑋13 = ([𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ) ×4 

([𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] ) 

𝑋21 = ([𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] [𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ) ×4 

([𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] ) 

𝑋22 = ([𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] [𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ) ×4 

([𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] ) 

𝑋23 = ([𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] [𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ) ×4 

([𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] ) 

𝑋31 = ([𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ) ×4 

([𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] ) 

𝑋32 = ([𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ) ×4  

 ([𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] ) 

𝑋33 = ([𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ) ×4  

([𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] ) 

𝑋11 = [𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] ×4 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] +

[𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] ×4  [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22]+ 

[𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ×4  [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] 
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𝑋12 = [𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] ×4 [𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] +

[𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] ×4  [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]+ 

[𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ×4  [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 

𝑋13 = [𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] ×4 [𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] +

[𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] ×4  [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23]+ 

[𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ×4  [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 

𝑋21 = [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] ×4 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] +

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] ×4  [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹21]+ 

[𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ×4  [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] 

𝑋22 = [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] ×4 [𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] +

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] ×4  [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]+ 

[𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ×4  [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 

𝑋23 = [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] ×4 [𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] +

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] ×4  [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23]+ 

[𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ×4  [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 

𝑋31 = [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] ×4 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] +

[𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] ×4  [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹21]+ 

[𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ×4  [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] 

𝑋32 = [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] ×4 [𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] +

[𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] ×4  [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]+ 

[𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ×4  [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 

𝑋33 = [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] ×4 [𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] +

[𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] ×4  [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23]+ 

[𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ×4  [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 

Now, by applying this 

(𝐴 ×4 𝐵)

= {(𝑥, 𝑦) (
[max (𝛼,𝑚𝑖𝑛(𝑖𝑛𝑓𝜇𝐴(𝑥), 𝑖𝑛𝑓𝜇𝐵(𝑥)),max (𝛼,min (𝑠𝑢𝑝𝜇𝐴(𝑥), 𝑠𝑢𝑝𝜇𝐵(𝑥))] [min (𝛽,max (𝑖𝑛𝑓𝛾𝐴(𝑥), 𝑖𝑛𝑓𝛾𝐵(𝑥))  ,

 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝑠𝑢𝑝𝛾𝐴(𝑥), 𝑠𝑢𝑝𝛾𝐵(𝑥))] 
) ; 𝑥

∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵} 
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𝑋11

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹11)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹11))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹11)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹21)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹31))} 

𝑋12

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹12)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹12))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹12)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹22)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹32))} 

𝑋13

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹13)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹13))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹13)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹23)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹33))} 

𝑋21

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹11)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹11))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹11)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹21)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹31))} 

𝑋22

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹12)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹12))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹12)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹22)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹32))} 

𝑋23

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹13)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹13))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹13)) ]}

+ 
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            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹23)) ]} + 

             {[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹33)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹33))} 

𝑋31

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹11)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹11))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹11)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹21)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸33 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹31))} 

𝑋32

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹12)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹12))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹12)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹22)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸33 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹32))} 

𝑋33

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹13)),𝑚𝑎𝑥 (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹13))][𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹13)) ]}

+ 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹23)) ]} + 

            {[(𝛼,𝑚𝑖𝑛(𝛼𝐸33 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹33))} 

By using A+B= max {A, B} 

𝑋11

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹11)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹11)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹21)) ]  
)

+ 

                      

{[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹31)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹31))} 

𝑋12

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹12)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹22)) ]  
)

+ 

              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹32))} 
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𝑋13

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹13)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹13)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹23)) ]  
)

+ 

               {[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹33)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹33))} 

𝑋21

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹11)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸21 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹11)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹21)) ]  
)

+ 

              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹31))} 

𝑋22

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹12)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸21 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹12)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹22)) ]  
)

+ 

              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹32))} 

𝑋23

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹13)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸21 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹23)) ]  
)

+ 

              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹33))} 

𝑋31

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹11)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹11)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹21)) ]  
)

+ 

              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸33 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹31))} 

𝑋32

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹12)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹12)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹22)) ]  
)

+ 
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              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸33 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹32))} 

𝑋33

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹13)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹23)) ]  
)

+ 

              {[(𝛼,𝑚𝑖𝑛(𝛼𝐸33 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹33))} 

By using A+B+C = max{𝑚𝑎𝑥(𝐴, 𝐵), 𝐶} 

𝑋11 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹11)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 . 𝛿𝐹11)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹21)) ] 
) ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹31)) )

 
 

 

𝑋12 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹12)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹22)) ] 
) ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹32)) )

 
 

 

𝑋13 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸11 , 𝛼𝐹13)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸11 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸11 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸11 , 𝛿𝐹13)) ]

, [(𝛼,𝑚𝑖𝑛(𝛼𝐸12 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸12 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸12 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸12 , 𝛿𝐹23)) ] 
) ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸13 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸13 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸13 , 𝛾𝐹33)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸13 , 𝛿𝐹33)) )

 
 

 

𝑋21 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹11)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸21 . 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹11)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 . 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹21)) ] 
) ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 . 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹31)) )

 
 

 

𝑋22 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹12)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸21 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹22)) ] 
) ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹32)) )
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𝑋23 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸21 , 𝛼𝐹13)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸21 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸21 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸21 , 𝛿𝐹13)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸22 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸22 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸22 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸22 , 𝛿𝐹23)) ] 
) ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸23 , 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸23 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸23 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸23 , 𝛿𝐹33)) )

 
 

 

𝑋31 =Max

(

 
 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹11)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹11)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹11)) ] ,

[(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹21)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹21)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹21)) ] 

) ,

 [(𝛼,𝑚𝑖𝑛(𝛼33, 𝛼𝐹31)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹31)) )

 
 
 

 

𝑋32 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹12)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹12)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹22)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹22)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹22)) ] 
) ,

[(𝛼,𝑚𝑖𝑛(𝛼33, 𝛼𝐹32)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹32)) )

 
 

 

𝑋33 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑖𝑛(𝛼𝐸31 , 𝛼𝐹13)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸31 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛾𝐸31 , 𝛾𝐹13)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸31 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑖𝑛(𝛼𝐸32 , 𝛼𝐹23)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸32 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸32 , 𝛾𝐹23)) , (𝛽,𝑚𝑎𝑥(𝛿𝐸32 , 𝛿𝐹23)) ] 
) ,

[(𝛼,𝑚𝑖𝑛(𝛼33, 𝛼𝐹33)) , (𝛼,𝑚𝑖𝑛(𝛽𝐸33 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑎𝑥(𝛾𝐸33 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑎𝑥(𝛿𝐸33 , 𝛿𝐹33)) )

 
 

 

𝐴𝐸 ×4 𝐵𝐹 = (𝑋11 𝑋12 𝑋13 𝑋21 𝑋22 𝑋23  𝑋31 𝑋32 𝑋33 ). Hence, 𝐴𝐸 ×4 𝐵𝐹 is an interval valued intuitionistic 

fuzzy matrix set. 

Using Python program for 𝐴𝐸 ×4 𝐵𝐹 

#intput the values 

import math 

x=float(input("x=")) 

y=float(input("y=")) 

a_11=float(input("a_11=")) 

b_11=float(input("b_11=")) 

c_11=float(input("c_11=")) 

d_11=float(input("d_11=")) 

e_11=float(input("e_11=")) 

f_11=float(input("f_11=")) 

g_11=float(input("g_11=")) 

h_11=float(input("h_11=")) 
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a_12=float(input("a_12=")) 

b_12=float(input("b_12=")) 

c_12=float(input("c_12=")) 

d_12=float(input("d_12=")) 

e_12=float(input("e_12=")) 

f_12=float(input("f_12=")) 

g_12=float(input("g_12=")) 

h_12=float(input("h_12=")) 

a_13=float(input("a_13=")) 

b_13=float(input("b_13=")) 

c_13=float(input("c_13=")) 

d_13=float(input("d_13=")) 

e_13=float(input("e_13=")) 

f_13=float(input("f_13=")) 

g_13=float(input("g_13=")) 

h_13=float(input("h_13=")) 

a_21=float(input("a_21=")) 

b_21=float(input("b_21=")) 

c_21=float(input("c_21=")) 

d_21=float(input("d_21=")) 

e_21=float(input("e_21=")) 

f_21=float(input("f_21=")) 

g_21=float(input("g_21=")) 

h_21=float(input("h_21=")) 

a_22=float(input("a_22=")) 

b_22=float(input("b_22=")) 

c_22=float(input("c_22=")) 

d_22=float(input("d_22=")) 

e_22=float(input("e_22=")) 

f_22=float(input("f_22=")) 

g_22=float(input("g_22=")) 

h_22=float(input("h_22=")) 

a_23=float(input("a_23=")) 

b_23=float(input("b_23=")) 
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c_23=float(input("c_23=")) 

d_23=float(input("d_23=")) 

e_23=float(input("e_23=")) 

f_23=float(input("f_23=")) 

g_23=float(input("g_23=")) 

h_23=float(input("h_23=")) 

a_31=float(input("a_31=")) 

b_31=float(input("b_31=")) 

c_31=float(input("c_31=")) 

d_31=float(input("d_31=")) 

e_31=float(input("e_31=")) 

f_31=float(input("f_31=")) 

g_31=float(input("g_31=")) 

h_31=float(input("h_31=")) 

a_32=float(input("a_32=")) 

b_32=float(input("b_32=")) 

c_32=float(input("c_32=")) 

d_32=float(input("d_32=")) 

e_32=float(input("e_32=")) 

f_32=float(input("f_32=")) 

g_32=float(input("g_32=")) 

h_32=float(input("h_32=")) 

a_33=float(input("a_33=")) 

b_33=float(input("b_33=")) 

c_33=float(input("c_33=")) 

d_33=float(input("d_33=")) 

e_33=float(input("e_33=")) 

f_33=float(input("f_33=")) 

g_33=float(input("g_33=")) 

h_33=float(input("h_33=")) 

#creating variables for c_11 

a_1=max(x,min(a_11,c_11)) 

a_2=max(x,min(b_11,d_11)) 

a_3=min(y,max(e_11,g_11)) 
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a_4=min(y,max(f_11,h_11)) 

a_5=max(x,min(a_12,c_21)) 

a_6=max(x,min(b_12,d_21)) 

a_7=min(y,max(e_12,g_21)) 

a_8=min(y,max(f_12,h_21)) 

a_9=max(x,min(a_13,c_31)) 

a_10=max(x,min(b_13,d_31)) 

a_11=min(y,max(e_13,g_31)) 

a_12=min(y,max(f_13,h_31)) 

#creating cells 

x_11=[max((max(a_1,a_5)),a_9),max(max(a_2,a_6),a_10)] 

Y_11=[max((max(a_3,a_7)),a_11),max(max(a_4,a_8),a_12)] 

print("C_11=",x_11) 

print("D_11=",Y_11) 

#creating variables for c_12 

b_1=max(x,min(a_11,c_12)) 

b_2=max(x,min(b_11,d_12)) 

b_3=min(y,max(e_11,g_12)) 

b_4=min(y,max(f_11,h_12)) 

b_5=max(x,min(a_12,c_22)) 

b_6=max(x,min(b_12,d_22)) 

b_7=min(y,max(e_12,g_22)) 

b_8=min(y,max(f_12,h_22)) 

b_9=max(x,min(a_13,c_32)) 

b_10=max(x,min(b_13,d_32)) 

b_11=min(y,max(e_13,g_32)) 

b_12=min(y,max(f_13,h_32)) 

#creating cells 

x_12=[max((max(b_1,b_5)),b_9),max(max(b_2,b_6),b_10)] 

Y_12=[max((max(b_3,b_7)),b_11),max(max(b_4,b_8),b_12)] 

print("C_12=",x_12) 

print("D_12=",Y_12) 

#creating variables for c_13 

c_1=max(x,min(a_11,c_13)) 
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c_2=max(x,min(b_11,d_13)) 

c_3=min(y,max(e_11,g_13)) 

c_4=min(y,max(f_11,h_13)) 

c_5=max(x,min(a_12,c_23)) 

c_6=max(x,min(b_12,d_23)) 

c_7=min(y,max(e_12,g_23)) 

c_8=min(y,max(f_12,h_23)) 

c_9=max(x,min(a_13,c_33)) 

c_10=max(x,min(b_13,d_33)) 

c_11=min(y,max(e_13,g_33)) 

c_12=min(y,max(f_13,h_33)) 

#creating cells 

x_13=[max((max(c_1,c_5)),c_9),max(max(c_2,c_6),c_10)] 

Y_13=[max((max(c_3,c_7)),c_11),max(max(c_4,c_8),c_12)] 

print("C_13=",x_13) 

print("D_13=",Y_13) 

#creating variables for c_21 

d_1=max(x,min(a_21,c_11)) 

d_2=max(x,min(b_21,d_11)) 

d_3=min(y,max(e_21,g_11)) 

d_4=min(y,max(f_21,h_11)) 

d_5=max(x,min(a_22,c_21)) 

d_6=max(x,min(b_22,d_21)) 

d_7=min(y,max(e_22,g_21)) 

d_8=min(y,max(f_22,h_21)) 

d_9=max(x,min(a_23,c_31)) 

d_10=max(x,min(b_23,d_31)) 

d_11=min(y,max(e_23,g_31)) 

d_12=min(y,max(f_23,h_31)) 

#creating cells 

x_21=[max((max(d_1,d_5)),d_9),max(max(d_2,d_6),d_10)] 

Y_21=[max((max(d_3,d_7)),d_11),max(max(d_4,d_8),d_12)] 

print("C_21=",x_21) 

print("D_21=",Y_21) 
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#creating variables for c_22 

e_1=max(x,min(a_21,c_12)) 

e_2=max(x,min(b_21,d_12)) 

e_3=min(y,max(e_21,g_12)) 

e_4=min(y,max(f_21,h_12)) 

e_5=max(x,min(a_22,c_22)) 

e_6=max(x,min(b_22,d_22)) 

e_7=min(y,max(e_22,g_22)) 

e_8=min(y,max(f_22,h_22)) 

e_9=max(x,min(a_23,c_32)) 

e_10=max(x,min(b_23,d_32)) 

e_11=min(y,max(e_23,g_32)) 

e_12=min(y,max(f_23,h_32)) 

#creating cells 

x_22=[max((max(e_1,e_5)),e_9),max(max(e_2,e_6),e_10)] 

Y_22=[max((max(e_3,e_7)),e_11),max(max(e_4,e_8),e_12)] 

print("C_22=",x_22) 

print("D_22=",Y_22) 

#creating variables for c_23 

f_1=max(x,min(a_21,c_13)) 

f_2=max(x,min(b_21,d_13)) 

f_3=min(y,max(e_21,g_13)) 

f_4=min(y,max(f_21,h_13)) 

f_5=max(x,min(a_22,c_23)) 

f_6=max(x,min(b_22,d_23)) 

f_7=min(y,max(e_22,g_23)) 

f_8=min(y,max(f_22,h_23)) 

f_9=max(x,min(a_23,c_33)) 

f_10=max(x,min(b_23,d_33)) 

f_11=min(y,max(e_23,g_33)) 

f_12=min(y,max(f_23,h_33)) 

#creating cells 

x_23=[max((max(f_1,f_5)),f_9),max(max(f_2,f_6),f_10)] 

Y_23=[max((max(f_3,f_7)),f_11),max(max(f_4,f_8),f_12)] 
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print("C_23=",x_23) 

print("D_23=",Y_23) 

#creating variables for c_31 

g_1=max(x,min(a_31,c_11)) 

g_2=max(x,min(b_31,d_11)) 

g_3=min(y,max(e_31,g_11)) 

g_4=min(y,max(f_31,h_11)) 

g_5=max(x,min(a_32,c_21)) 

g_6=max(x,min(b_32,d_21)) 

g_7=min(y,max(e_32,g_21)) 

g_8=min(y,max(f_32,h_21)) 

g_9=max(x,min(a_33,c_31)) 

g_10=max(x,min(b_33,d_31)) 

g_11=min(y,max(e_33,g_31)) 

g_12=min(y,max(f_33,h_31)) 

#creating cells 

x_31=[max((max(g_1,g_5)),g_9),max(max(g_2,g_6),g_10)] 

Y_31=[max((max(g_3,g_7)),g_11),max(max(g_4,g_8),g_12)] 

print("C_31=",x_31) 

print("D_31=",Y_31) 

#creating variables for c_31 

h_1=max(x,min(a_31,c_12)) 

h_2=max(x,min(b_31,d_12)) 

h_3=min(y,max(e_31,g_12)) 

h_4=min(y,max(f_31,h_12)) 

h_5=max(x,min(a_32,c_22)) 

h_6=max(x,min(b_32,d_22)) 

h_7=min(y,max(e_32,g_22)) 

h_8=min(y,max(f_32,h_22)) 

h_9=max(x,min(a_33,c_32)) 

h_10=max(x,min(b_33,d_32)) 

h_11=min(y,max(e_33,g_32)) 

h_12=min(y,max(f_33,h_32)) 

#creating cells 
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x_32=[max((max(h_1,h_5)),h_9),max(max(h_2,h_6),h_10)] 

Y_32=[max((max(h_3,h_7)),h_11),max(max(h_4,h_8),h_12)] 

print("C_32=",x_32) 

print("D_32=",Y_32) 

#creating variables for c_33 

i_1=max(x,min(a_31,c_13)) 

i_2=max(x,min(b_31,d_13)) 

i_3=min(y,max(e_31,g_13)) 

i_4=min(y,max(f_31,h_13)) 

i_5=max(x,min(a_32,c_23)) 

i_6=max(x,min(b_32,d_23)) 

i_7=min(y,max(e_32,g_23)) 

i_8=min(y,max(f_32,h_23)) 

i_9=max(x,min(a_33,c_33)) 

i_10=max(x,min(b_33,d_33)) 

i_11=min(y,max(e_33,g_33)) 

i_12=min(y,max(f_33,h_33)) 

#creating cells 

x_33=[max((max(i_1,i_5)),i_9),max(max(i_2,i_6),i_10)] 

Y_33=[max((max(i_3,i_7)),i_11),max(max(i_4,i_8),i_12)] 

print("C_33=",x_33) 

print("D_33=",Y_33) 

Output: 

x=0.04 

y=0.01 

a_11=0.05 

b_11=0.07 

c_11=0.02 

d_11=0.06 

e_11=0.03 

f_11=0.05 

g_11=0.03 

h_11=0.05 

a_12=0.02 
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b_12=0.03 

c_12=0.05 

d_12=0.07 

e_12=0.04 

f_12=0.07 

g_12=0.02 

h_12=0.04 

a_13=0.05 

b_13=0.06 

c_13=0.02 

d_13=0.03 

e_13=0.01 

f_13=0.04 

g_13=0.03 

h_13=0.06 

a_21=0.03 

b_21=0.08 

c_21=0.04 

d_21=0.05 

e_21=0.03 

f_21=0.04 

g_21=0.01 

h_21=0.07 

a_22=0.04 

b_22=0.05 

c_22=0.04 

d_22=0.08 

e_22=0.02 

f_22=0.08 

g_22=0.02 

h_22=0.03 

a_23=0.01 

b_23=0.03 

c_23=0.01 
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d_23=0.04 

e_23=0.04 

f_23=0.07 

g_23=0.03 

h_23=0.08 

a_31=0.04 

b_31=0.06 

c_31=0.02 

d_31=0.03 

e_31=0.03 

f_31=0.09 

g_31=0.02 

h_31=0.05 

a_32=0.01 

b_32=0.02 

c_32=0.01 

d_32=0.03 

e_32=0.05 

f_32=0.07 

g_32=0.05 

h_32=0.06 

a_33=0.02 

b_33=0.03 

c_33=0.03 

d_33=0.07 

e_33=0.08 

f_33=0.09 

g_33=0.01 

h_33=0.05 

C_11= [0.04, 0.06] 

D_11= [0.01, 0.01] 

C_12= [0.04, 0.07] 

D_12= [0.01, 0.01] 

C_13= [0.04, 0.06] 
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D_13= [0.01, 0.01] 

C_21= [0.04, 0.06] 

D_21= [0.01, 0.01] 

C_22= [0.04, 0.05] 

D_22= [0.01, 0.01] 

C_23= [0.04, 0.04] 

D_23= [0.01, 0.01] 

C_31= [0.04, 0.04] 

D_31= [0.01, 0.01] 

C_32= [0.04, 0.04] 

D_32= [0.01, 0.01] 

C_33= [0.04, 0.04] 

D_33= [0.01, 0.01] 

 

Theorem 2.2: If  𝐴𝐸 and 𝐵𝐹 are two intervals valued intuitionistic fuzzy matrix set, then 𝐴𝐸𝑋5𝐵𝐹 is also a 

interval   valued   intuitionistic fuzzy matrix set. 

Proof: If  𝐴𝐸 =

(
[𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11][𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12][𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13][𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21][𝛼𝐸22 , 𝛽𝐸22]

[𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] 
) 

and 

                 𝐵𝐹 =

(
[𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11][𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12][𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13][𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22][𝛼𝐹22 , 𝛽𝐹22]

[𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33  
)  

are interval valued intuitionistic fuzzy matrix sets. Then 

𝐴𝐸𝑋5𝐵𝐹

= (
[𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] 

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] 
)𝑋5 

                    

(
[𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11][𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12][𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13][𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22]

[𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33  
) 

𝐴𝐸 ×5 𝐵𝐹 = (𝑋11 𝑋12 𝑋13 𝑋21 𝑋22 𝑋23 𝑋31 𝑋32 𝑋33 )  Where, 

𝑋11 = ([𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ) ×5   

([𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] ) 

𝑋12

= ([𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ) ×5 (
[𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12][𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]

[𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 
) 
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𝑋13 = ([𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] [𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] [𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ) ×5 

([𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] ) 

𝑋21 = ([𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] [𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ) ×5 

([𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] ) 

𝑋22 = ([𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] [𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ) ×5 

([𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] ) 

𝑋23 = ([𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] [𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] [𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ) ×5 

([𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] ) 

𝑋31 = ([𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ) ×5 

([𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22] [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] ) 

𝑋32 = ([𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ) ×5  

 ([𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22] [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] ) 

𝑋33 = ([𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] [𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] [𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ) ×5  

([𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23] [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] ) 

𝑋11 = [𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] ×5 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] +

[𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] ×5  [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹22]+ 

[𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ×5  [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] 

𝑋12 = [𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] ×5 [𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] +

[𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] ×5  [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]+ 

[𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ×5  [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 

𝑋13 = [𝛼𝐸11 , 𝛽𝐸11][𝛾𝐸11 , 𝛿𝐸11] ×5 [𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] +

[𝛼𝐸12 , 𝛽𝐸12][𝛾𝐸12 , 𝛿𝐸12] ×5  [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23]+ 

[𝛼𝐸13 , 𝛽𝐸13][𝛾𝐸13 , 𝛿𝐸13] ×5  [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 

𝑋21 = [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] ×5 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] +

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] ×5  [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹21]+ 

[𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ×5  [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] 

𝑋22 = [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] ×5 [𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] +

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] ×5  [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]+ 

[𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ×5  [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 
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𝑋23 = [𝛼𝐸21 , 𝛽𝐸21][𝛾𝐸21 , 𝛿𝐸21] ×5 [𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] +

[𝛼𝐸22 , 𝛽𝐸22][𝛾𝐸22 , 𝛿𝐸22] ×5  [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23]+ 

[𝛼𝐸23 , 𝛽𝐸23][𝛾𝐸23 , 𝛿𝐸23] ×5  [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 

𝑋31 = [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] ×5 [𝛼𝐹11 , 𝛽𝐹11][𝛾𝐹11 , 𝛿𝐹11] +

[𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] ×5  [𝛼𝐹21 , 𝛽𝐹21][𝛾𝐹21 , 𝛿𝐹21]+ 

[𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ×5  [𝛼𝐹31 , 𝛽𝐹31][𝛾𝐹31 , 𝛿𝐹31] 

𝑋32 = [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] ×5 [𝛼𝐹12 , 𝛽𝐹12][𝛾𝐹12 , 𝛿𝐹12] +

[𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] ×5  [𝛼𝐹22 , 𝛽𝐹22][𝛾𝐹22 , 𝛿𝐹22]+ 

[𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ×5  [𝛼𝐹32 , 𝛽𝐹32][𝛾𝐹32 , 𝛿𝐹32] 

𝑋33 = [𝛼𝐸31 , 𝛽𝐸31][𝛾𝐸31 , 𝛿𝐸31] ×5 [𝛼𝐹13 , 𝛽𝐹13][𝛾𝐹13 , 𝛿𝐹13] +

[𝛼𝐸32 , 𝛽𝐸32][𝛾𝐸32 , 𝛿𝐸32] ×5  [𝛼𝐹23 , 𝛽𝐹23][𝛾𝐹23 , 𝛿𝐹23]+ 

[𝛼𝐸33 , 𝛽𝐸33][𝛾𝐸33 , 𝛿𝐸33] ×5  [𝛼𝐹33 , 𝛽𝐹33][𝛾𝐹33 , 𝛿𝐹33] 

Now, by applying this 

(𝐴 ×5 𝐵) = {(𝑥, 𝑦) (
[max (𝛼,𝑚𝑎𝑥(𝑖𝑛𝑓𝜇𝐴(𝑥), 𝑖𝑛𝑓𝜇𝐵(𝑥)),max (𝛼,max (𝑠𝑢𝑝𝜇𝐴(𝑥), 𝑠𝑢𝑝𝜇𝐵(𝑥))] 

[𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝑖𝑛𝑓𝛾𝐴(𝑥), 𝑖𝑛𝑓𝛾𝐵(𝑥))  ,𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝑠𝑢𝑝𝛾𝐴(𝑥), 𝑠𝑢𝑝𝛾𝐵(𝑥))] 
) ; 𝑥

∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵} 

𝑋11 = {
[max (𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹11)),max (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹11))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹11)) ,

(𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹11)) ]
} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹21)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹31))} 

𝑋12

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹12)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹12))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹12)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹22)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹32))} 

𝑋13

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹13)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹13))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹13)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹23)) ]} + 
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            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹33))} 

𝑋21

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹11)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹11))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹11)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹21)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹31))} 

𝑋22

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹12)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹12))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹12)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹22)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹32))} 

𝑋23

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹13)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹13))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹13)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹23)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹33))} 

𝑋31

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹11)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹11))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹11)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹21)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸33 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹31))} 

𝑋32

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹12)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹12))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹12)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹22)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸33 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹32))} 
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𝑋33

= {[𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹13)),𝑚𝑎𝑥 (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹13))][𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹13)) ]}

+ 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹23)) ]} + 

            {[(𝛼,𝑚𝑎𝑥(𝛼𝐸33 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹33))} 

By using A+B = max {A, B} 

𝑋11

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹11)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹11)) ]

, [(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹21)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹31))} 

𝑋12

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹12)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹22)) ]  
)

+ 

                     

{[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹32))} 

𝑋13

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹13)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹13)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹23)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹33))} 

𝑋21

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹11)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸21 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹11)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹21)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹31))} 
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𝑋22

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹12)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸21 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹12)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹22)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹32))} 

𝑋23

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹13)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸21 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹23)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹33))} 

𝑋31

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹11)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹11)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹21)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸33 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹31))} 

𝑋32

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹12)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹12)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹22)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸33 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹32))} 

𝑋33

= 𝑚𝑎𝑥(
[(𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹13)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹23)) ]  
)

+ 

                        {[(𝛼,𝑚𝑎𝑥(𝛼𝐸33 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹33))} 

By using A+B+C = max{𝑚𝑎𝑥(𝐴, 𝐵), 𝐶} 
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𝑋11 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹11)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 . 𝛿𝐹11)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹21)) ] 
) ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹31)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹31)) )

 
 

 

𝑋12 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹12)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹22)) ] 
) ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹32)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹32)) )

 
 

 

𝑋13 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸11 , 𝛼𝐹13)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸11 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸11 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸11 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸12 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸12 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸12 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸12 , 𝛿𝐹23)) ] 
) ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸13 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸13 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸13 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸13 , 𝛿𝐹33)) )

 
 

 

𝑋21 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹11)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸21 . 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹11)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 . 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹21)) ] 
) ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 . 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹31)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹31)) )

 
 

 

𝑋22 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹12)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸21 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹12)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹22)) ] 
) ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹32)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹32)) )

 
 

 

𝑋23 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸21 , 𝛼𝐹13)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸21 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸21 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸21 , 𝛿𝐹13)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸22 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸22 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸22 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸22 , 𝛿𝐹23)) ] 
) ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸23 , 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸23 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸23 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸23 , 𝛿𝐹33)) )

 
 

 

𝑋31 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹11)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹11)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹11)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹11)) ] ,

 [(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹21)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹21)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹21)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹21)) ] 
) ,

[(𝛼,𝑚𝑎𝑥(𝛼33, 𝛼𝐹31)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹31)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹31)) ,𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹31)) )
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𝑋32 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹12)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹12)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹12)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹12)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹22)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹22)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹22)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹22)) ] 
) ,

 [(𝛼,𝑚𝑎𝑥(𝛼33, 𝛼𝐹32)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹32)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹32)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹32)) )

 
 

 

𝑋33 =Max

(

 
 𝑚𝑎𝑥(

[(𝛼,𝑚𝑎𝑥(𝛼𝐸31 , 𝛼𝐹13)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸31 , 𝛽𝐹13)) ] [𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛾𝐸31 , 𝛾𝐹13)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸31 , 𝛿𝐹13)) ] ,

[(𝛼,𝑚𝑎𝑥(𝛼𝐸32 , 𝛼𝐹23)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸32 , 𝛽𝐹23)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸32 , 𝛾𝐹23)) , (𝛽,𝑚𝑖𝑛(𝛿𝐸32 , 𝛿𝐹23)) ] 
) ,

 [(𝛼,𝑚𝑎𝑥(𝛼33, 𝛼𝐹33)) , (𝛼,𝑚𝑎𝑥(𝛽𝐸33 , 𝛽𝐹33)) ] [(𝛽,𝑚𝑖𝑛(𝛾𝐸33 , 𝛾𝐹33)) , 𝑚𝑖𝑛 (𝛽,𝑚𝑖𝑛(𝛿𝐸33 , 𝛿𝐹33)) )

 
 

 

𝐴𝐸 ×5 𝐵𝐹 = (𝑋11 𝑋12 𝑋13 𝑋21 𝑋22 𝑋23  𝑋31 𝑋32 𝑋33 ). Hence, 𝐴𝐸 ×5 𝐵𝐹 is an interval valued intuitionistic 

fuzzy matrix set. 

Using Python program for 𝐴𝐸 ×5 𝐵𝐹 

#intput the values 

import math 

x=float(input("x=")) 

y=float(input("y=")) 

a_11=float(input("a_11=")) 

b_11=float(input("b_11=")) 

c_11=float(input("c_11=")) 

d_11=float(input("d_11=")) 

e_11=float(input("e_11=")) 

f_11=float(input("f_11=")) 

g_11=float(input("g_11=")) 

h_11=float(input("h_11=")) 

a_12=float(input("a_12=")) 

b_12=float(input("b_12=")) 

c_12=float(input("c_12=")) 

d_12=float(input("d_12=")) 

e_12=float(input("e_12=")) 

f_12=float(input("f_12=")) 

g_12=float(input("g_12=")) 

h_12=float(input("h_12=")) 

a_13=float(input("a_13=")) 

b_13=float(input("b_13=")) 
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c_13=float(input("c_13=")) 

d_13=float(input("d_13=")) 

e_13=float(input("e_13=")) 

f_13=float(input("f_13=")) 

g_13=float(input("g_13=")) 

h_13=float(input("h_13=")) 

a_21=float(input("a_21=")) 

b_21=float(input("b_21=")) 

c_21=float(input("c_21=")) 

d_21=float(input("d_21=")) 

e_21=float(input("e_21=")) 

f_21=float(input("f_21=")) 

g_21=float(input("g_21=")) 

h_21=float(input("h_21=")) 

a_22=float(input("a_22=")) 

b_22=float(input("b_22=")) 

c_22=float(input("c_22=")) 

d_22=float(input("d_22=")) 

e_22=float(input("e_22=")) 

f_22=float(input("f_22=")) 

g_22=float(input("g_22=")) 

h_22=float(input("h_22=")) 

a_23=float(input("a_23=")) 

b_23=float(input("b_23=")) 

c_23=float(input("c_23=")) 

d_23=float(input("d_23=")) 

e_23=float(input("e_23=")) 

f_23=float(input("f_23=")) 

g_23=float(input("g_23=")) 

h_23=float(input("h_23=")) 

a_31=float(input("a_31=")) 

b_31=float(input("b_31=")) 

c_31=float(input("c_31=")) 

d_31=float(input("d_31=")) 
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e_31=float(input("e_31=")) 

f_31=float(input("f_31=")) 

g_31=float(input("g_31=")) 

h_31=float(input("h_31=")) 

a_32=float(input("a_32=")) 

b_32=float(input("b_32=")) 

c_32=float(input("c_32=")) 

d_32=float(input("d_32=")) 

e_32=float(input("e_32=")) 

f_32=float(input("f_32=")) 

g_32=float(input("g_32=")) 

h_32=float(input("h_32=")) 

a_33=float(input("a_33=")) 

b_33=float(input("b_33=")) 

c_33=float(input("c_33=")) 

d_33=float(input("d_33=")) 

e_33=float(input("e_33=")) 

f_33=float(input("f_33=")) 

g_33=float(input("g_33=")) 

h_33=float(input("h_33=")) 

#creating variables for c_11 

a_1=max(x,max(a_11,c_11)) 

a_2=max(x,max(b_11,d_11)) 

a_3=min(y,min(e_11,g_11)) 

a_4=min(y,min(f_11,h_11)) 

a_5=max(x,max(a_12,c_21)) 

a_6=max(x,max(b_12,d_21)) 

a_7=min(y,min(e_12,g_21)) 

a_8=min(y,min(f_12,h_21)) 

a_9=max(x,max(a_13,c_31)) 

a_10=max(x,max(b_13,d_31)) 

a_11=min(y,min(e_13,g_31)) 

a_12=min(y,min(f_13,h_31)) 

#creating cells 
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x_11=[max((max(a_1,a_5)),a_9),max(max(a_2,a_6),a_10)] 

Y_11=[max((max(a_3,a_7)),a_11),max(max(a_4,a_8),a_12)] 

print("C_11=",x_11) 

print("D_11=",Y_11) 

#creating variables for c_12 

b_1=max(x,max(a_11,c_12)) 

b_2=max(x,max(b_11,d_12)) 

b_3=min(y,min(e_11,g_12)) 

b_4=min(y,min(f_11,h_12)) 

b_5=max(x,max(a_12,c_22)) 

b_6=max(x,max(b_12,d_22)) 

b_7=min(y,min(e_12,g_22)) 

b_8=min(y,min(f_12,h_22)) 

b_9=max(x,max(a_13,c_32)) 

b_10=max(x,max(b_13,d_32)) 

b_11=min(y,min(e_13,g_32)) 

b_12=min(y,min(f_13,h_32)) 

#creating cells 

x_12=[max((max(b_1,b_5)),b_9),max(max(b_2,b_6),b_10)] 

Y_12=[max((max(b_3,b_7)),b_11),max(max(b_4,b_8),b_12)] 

print("C_12=",x_12) 

print("D_12=",Y_12) 

#creating variables for c_13 

c_1=max(x,max(a_11,c_13)) 

c_2=max(x,max(b_11,d_13)) 

c_3=min(y,min(e_11,g_13)) 

c_4=min(y,min(f_11,h_13)) 

c_5=max(x,max(a_12,c_23)) 

c_6=max(x,max(b_12,d_23)) 

c_7=min(y,min(e_12,g_23)) 

c_8=min(y,min(f_12,h_23)) 

c_9=max(x,max(a_13,c_33)) 

c_10=max(x,max(b_13,d_33)) 

c_11=min(y,min(e_13,g_33)) 
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c_12=min(y,min(f_13,h_33)) 

#creating cells 

x_13=[max((max(c_1,c_5)),c_9),max(max(c_2,c_6),c_10)] 

Y_13=[max((max(c_3,c_7)),c_11),max(max(c_4,c_8),c_12)] 

print("C_13=",x_13) 

print("D_13=",Y_13) 

#creating variables for c_21 

d_1=max(x,max(a_21,c_11)) 

d_2=max(x,max(b_21,d_11)) 

d_3=min(y,min(e_21,g_11)) 

d_4=min(y,min(f_21,h_11)) 

d_5=max(x,max(a_22,c_21)) 

d_6=max(x,max(b_22,d_21)) 

d_7=min(y,min(e_22,g_21)) 

d_8=min(y,min(f_22,h_21)) 

d_9=max(x,max(a_23,c_31)) 

d_10=max(x,max(b_23,d_31)) 

d_11=min(y,min(e_23,g_31)) 

d_12=min(y,min(f_23,h_31)) 

#creating cells 

x_21=[max((max(d_1,d_5)),d_9),max(max(d_2,d_6),d_10)] 

Y_21=[max((max(d_3,d_7)),d_11),max(max(d_4,d_8),d_12)] 

print("C_21=",x_21) 

print("D_21=",Y_21) 

#creating variables for c_22 

e_1=max(x,max(a_21,c_12)) 

e_2=max(x,max(b_21,d_12)) 

e_3=min(y,min(e_21,g_12)) 

e_4=min(y,min(f_21,h_12)) 

e_5=max(x,max(a_22,c_22)) 

e_6=max(x,max(b_22,d_22)) 

e_7=min(y,min(e_22,g_22)) 

e_8=min(y,min(f_22,h_22)) 

e_9=max(x,max(a_23,c_32)) 
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e_10=max(x,max(b_23,d_32)) 

e_11=min(y,min(e_23,g_32)) 

e_12=min(y,min(f_23,h_32)) 

#creating cells 

x_22=[max((max(e_1,e_5)),e_9),max(max(e_2,e_6),e_10)] 

Y_22=[max((max(e_3,e_7)),e_11),max(max(e_4,e_8),e_12)] 

print("C_22=",x_22) 

print("D_22=",Y_22) 

#creating variables for c_23 

f_1=max(x,max(a_21,c_13)) 

f_2=max(x,max(b_21,d_13)) 

f_3=min(y,min(e_21,g_13)) 

f_4=min(y,min(f_21,h_13)) 

f_5=max(x,max(a_22,c_23)) 

f_6=max(x,max(b_22,d_23)) 

f_7=min(y,min(e_22,g_23)) 

f_8=min(y,min(f_22,h_23)) 

f_9=max(x,max(a_23,c_33)) 

f_10=max(x,max(b_23,d_33)) 

f_11=min(y,min(e_23,g_33)) 

f_12=min(y,min(f_23,h_33)) 

#creating cells 

x_23=[max((max(f_1,f_5)),f_9),max(max(f_2,f_6),f_10)] 

Y_23=[max((max(f_3,f_7)),f_11),max(max(f_4,f_8),f_12)] 

print("C_23=",x_23) 

print("D_23=",Y_23) 

#creating variables for c_31 

g_1=max(x,max(a_31,c_11)) 

g_2=max(x,max(b_31,d_11)) 

g_3=min(y,min(e_31,g_11)) 

g_4=min(y,min(f_31,h_11)) 

g_5=max(x,max(a_32,c_21)) 

g_6=max(x,max(b_32,d_21)) 

g_7=min(y,min(e_32,g_21)) 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

155  

g_8=min(y,min(f_32,h_21)) 

g_9=max(x,max(a_33,c_31)) 

g_10=max(x,max(b_33,d_31)) 

g_11=min(y,min(e_33,g_31)) 

g_12=min(y,min(f_33,h_31)) 

#creating cells 

x_31=[max((max(g_1,g_5)),g_9),max(max(g_2,g_6),g_10)] 

Y_31=[max((max(g_3,g_7)),g_11),max(max(g_4,g_8),g_12)] 

print("C_31=",x_31) 

print("D_31=",Y_31) 

#creating variables for c_32 

h_1=max(x,max(a_31,c_12)) 

h_2=max(x,max(b_31,d_12)) 

h_3=min(y,min(e_31,g_12)) 

h_4=min(y,min(f_31,h_12)) 

h_5=max(x,max(a_32,c_22)) 

h_6=max(x,max(b_32,d_22)) 

h_7=min(y,min(e_32,g_22)) 

h_8=min(y,min(f_32,h_22)) 

h_9=max(x,max(a_33,c_32)) 

h_10=max(x,max(b_33,d_32)) 

h_11=min(y,min(e_33,g_32)) 

h_12=min(y,min(f_33,h_32)) 

#creating cells 

x_32=[max((max(h_1,h_5)),h_9),max(max(h_2,h_6),h_10)] 

Y_32=[max((max(h_3,h_7)),h_11),max(max(h_4,h_8),h_12)] 

print("C_32=",x_32) 

print("D_32=",Y_32) 

#creating variables for c_33 

i_1=max(x,max(a_31,c_13)) 

i_2=max(x,max(b_31,d_13)) 

i_3=min(y,min(e_31,g_13)) 

i_4=min(y,min(f_31,h_13)) 

i_5=max(x,max(a_32,c_23)) 
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i_6=max(x,max(b_32,d_23)) 

i_7=min(y,min(e_32,g_23)) 

i_8=min(y,min(f_32,h_23)) 

i_9=max(x,max(a_33,c_33)) 

i_10=max(x,max(b_33,d_33)) 

i_11=min(y,min(e_33,g_33)) 

i_12=min(y,min(f_33,h_33)) 

#creating cells 

x_33=[max((max(i_1,i_5)),i_9),max(max(i_2,i_6),i_10)] 

Y_33=[max((max(i_3,i_7)),i_11),max(max(i_4,i_8),i_12)] 

print("C_33=",x_33) 

print("D_33=",Y_33) 

Output: 

x=0.04 

y=0.01 

a_11=0.05 

b_11=0.07 

c_11=0.02 

d_11=0.06 

e_11=0.03 

f_11=0.05 

g_11=0.03 

h_11=0.05 

a_12=0.02 

b_12=0.03 

c_12=0.05 

d_12=0.07 

e_12=0.04 

f_12=0.07 

g_12=0.02 

h_12=0.04 

a_13=0.05 

b_13=0.06 

c_13=0.02 
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d_13=0.03 

e_13=0.01 

f_13=0.04 

g_13=0.03 

h_13=0.06 

a_21=0.03 

b_21=0.08 

c_21=0.04 

d_21=0.05 

e_21=0.03 

f_21=0.04 

g_21=0.01 

h_21=0.07 

a_22=0.04 

b_22=0.05 

c_22=0.04 

d_22=0.08 

e_22=0.02 

f_22=0.08 

g_22=0.02 

h_22=0.03 

a_23=0.01 

b_23=0.03 

c_23=0.01 

d_23=0.04 

e_23=0.04 

f_23=0.07 

g_23=0.03 

h_23=0.08 

a_31=0.04 

b_31=0.06 

c_31=0.02 

d_31=0.03 

e_31=0.03 
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f_31=0.09 

g_31=0.02 

h_31=0.05 

a_32=0.01 

b_32=0.02 

c_32=0.01 

d_32=0.03 

e_32=0.05 

f_32=0.07 

g_32=0.05 

h_32=0.06 

a_33=0.02 

b_33=0.03 

c_33=0.03 

d_33=0.07 

e_33=0.08 

f_33=0.09 

g_33=0.01 

h_33=0.05 

C_11= [0.05, 0.07] 

D_11= [0.01, 0.01] 

C_12= [0.05, 0.08] 

D_12= [0.01, 0.01] 

C_13= [0.05, 0.07] 

D_13= [0.01, 0.01] 

C_21= [0.04, 0.08] 

D_21= [0.01, 0.01] 

C_22= [0.04, 0.08] 

D_22= [0.01, 0.01] 

C_23= [0.04, 0.08] 

D_23= [0.01, 0.01] 

C_31= [0.04, 0.06] 

D_31= [0.01, 0.01] 

C_32= [0.04, 0.08] 
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D_32= [0.01, 0.01] 

C_33= [0.04, 0.07] 

D_33= [0.01, 0.01] 

 

Conclusion:  

In this chapter, we represent an interval- valued intuitionistic fuzzy matrix sets [IVIFMs] as the 

Cartesian product of its membership and non-membership matrices. We introduce " ×4, " ×5 ”  of Cartesian 

product over interval- valued intuitionistic fuzzy matrix sets. A new interval- valued intuitionistic fuzzy 

matrix sets generated by the use of the Cartesian product of two interval- valued intuitionistic fuzzy matrix 

sets. 
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Abstract 

In this research work, we explain parameter fuzzy Intuitionistic soft sets and various characteristic 

rules. After we bring together parameter fuzzy Intuitionistic soft sets and some theorems, and also on 

selection taking intuitionistic fuzzy soft set followed by given some numerical examples. 

 

Keywords: Fuzzy sets, fuzzy soft set, Intuitionistic soft set, Parameter Intuitionistic soft set, Selection 

taking.  

 

1. Introduction:  

Many fields deal with uncertain data that may not be successfully modeled by classical mathematics, 

probability theory,[26] L.A. Zadeh, provided the concept of  Fuzzy sets , [23] Z. Pawlak gave the 

concept  Rough sets. Molodtsov [21] in 1999 introduced new concept so soft set that is added Common 

Universe show off uncertainty and vagueness. After [18,19] Maji et al.make known to many operations of 

soft sets. [4,5] Ali etal. gave more or less different novel thinking like that , and extended for 2 soft fuzzy 

sets after [24] were developed the hypothetical part of the soft set procedures. And [19] present the idea of 

soft fuzzy set, well-stated a soft fuzzy set and all are delivered the uses of soft fuzzy set in selection taking 

difficult. In [19] Gave Soft structures of fuzzy algebra properties like rings, modules, fields, By putting on 

these senses, the uses of the set idea should have well-thought-out additional.  Cagman et.al [10-13] 

thoughtful the soft set selection taking and also gave use of soft set in selection takes. Chen et al. [14], talk 

over the parameterization method. A suitable technique to soft set up on best making. The resolve of this 

work is to combine the intuitionistic fuzzy sets[6,8]. [15] A flexible method to soft set uses. This research 

work Intuitionistic fuzzy set and selection taking. [6]   in 1986 introduce the notion of  ,[2] M. Agarwal, 

K.K. Biswas presented the global intuitionistic  fuzzy set  with uses in selection taking,[5][1] U. Acar, gave 

the concept of soft groups, [25] Y. Yang, gave the idea of decision-making [16],[17] gave more application 

of fuzzy soft set,[20][22] gave more uses with decision making, [8] gave the rough guide of the soft group 

and [9] gave the application of well-adjusted result of a  soft set constructed selection taking,[3] gave soft 

set and soft group based on this concept in this paper using  parameter  and its application.  

 

2. Preliminary 

In this portion, we define the elementary definition of a set soft theory fuzzy, intuitionistic fuzzy set 

theory. 

Definition. 2.1. [21] Consider 𝐶  is a Common set, and the power set is 𝑃(𝐶) over 𝐶 and 𝐾  is a parameter 

set. A soft set 𝑆  along with 𝐶 is a set stated by a mapping  𝑔𝑠: 𝐾 → 𝑃(𝐶) , therefore this van be stated by  

𝑆 = {(𝑟, 𝑔𝑆(𝑟)): 𝑟 ∈ 𝐾}.  Were 𝑔𝑆  be the come close to the value of the set 𝑆 and 𝑔𝑆(𝑟)  be the 𝑎 come 

close to the value  of ∈ 𝐾 . Clearly that if 𝑔𝑆(𝑟) = ∅,then the object (𝑟, 𝑔𝑆(𝑟)) is not looked in 𝑆.      
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Example. 2.2 [21]Consider 𝐶 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}  be the four apartments under consideration in a broker and 

𝐾 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} be the parameters set, where 𝑒𝑗(𝑗 = 1,2,3,4)  assigned for ‘’Security’’, ‘’Expensive’’, 

‘’Average rate ‘’, ‘’Costly’’, respectively. A purchaser to choose a apartments from apartment Manager  

can build a soft set 𝑆  that refer to the typical of apartments allowing to individual choose. Consider 

𝑔𝑆(𝑡1) = {𝑟1, 𝑟2, 𝑟3} ,𝑔𝑆(𝑡2) = {𝑟2, 𝑟4}, 𝑔𝑆(𝑡3) = ∅, 𝑔𝑠(𝑡4) = 𝐶   therefore the soft-set 𝑆 can be written 

as 𝑆 = {(𝑡1, {𝑟1, 𝑟2, 𝑟3}), (𝑡2, {𝑟2, 𝑟4}), (𝑡4, 𝐶)} . 

              

Definition.2.3.[26] let 𝐴 be set and  𝐾 be a common set  then the fuzzy set 𝐴   over  𝐾  be a function stated 

as below  

𝐴 = {(𝑟, 𝜇𝐴 (𝑟)): 𝑟 ∈ 𝐾 , where  𝜇𝐴: 𝐾 → [0,1] . Here 𝑎 is membership value of 𝐴, also 𝜇𝐴(𝑟) is value of 

membership of 𝑟 ∈ 𝐾,the grad represent them degree of 𝑟 ∈ 𝐴.   

 

Definition.2.4. [11] Let 𝑋 be a set and 𝐾 is a common set and an intuitionistic fuzzy set  𝑋 on  𝐾 can be 

stated as below ` 

𝑋 = {𝑎, 𝜇𝑋(𝑎), 𝜂𝑋(𝑎): 𝑎 ∈ 𝐾}  

Here 𝜇𝑋: 𝐾 → 𝐼 and 𝜂𝑋: 𝐾 → 𝐼 such that  0 ≤ 𝜇𝑋(𝑟) ≤ 1,0 ≤ 𝜂𝑋(𝑟) ≤ 1,𝑟 ∈ 𝐾. Here,𝜇𝑋(𝑟) and 𝜂𝑋(𝑟) is 

the value of membership and not a membership of the member 𝑟, respectively.  

If 𝑋 and 𝑌 be two 𝐼𝐹𝑆 on 𝐾, then  

(1) 𝑋 ⊂ 𝑌 ⇔ 𝜇𝑋(𝑟) ≤ 𝜂𝑌(𝑟) and 𝜇𝑋(𝑟) ≥ 𝜂𝑌(𝑟) for ∀𝑟 ∈ 𝐾 

(2) 𝑋 = 𝑌 ⇔ 𝜇𝑋(𝑟) = 𝜂𝑌(𝑟) and 𝜇𝑋(𝑟) = 𝜂𝑌(𝑟) for ∀𝑟 ∈ 𝐾 

(3) 𝑋𝑐 = {𝑟, 𝜇𝑋(𝑟), 𝜂𝑌(𝑟): 𝑟 ∈ 𝐾} 

(4) 𝑋∐𝑌 = { 𝑟, ⋁(𝜇𝑋(𝑟), 𝜇𝑌(𝑟)),∧ (𝜂𝑋(𝑟), 𝜂𝑌(𝑟)): 𝑟 ∈ 𝐾}, 

(5) 𝑋 ⋒ 𝑌 = {𝑟, ⋀(𝜇𝑋(𝑟), 𝜇𝑌(𝑟)), ⋁(𝜂𝑋(𝑟), 𝜂𝑌(𝑟)) ∶ 𝑟 ∈ 𝐾}. 

 

Definition .2.5.[11] The universe 𝐶 and 𝑃𝐶  be power set of 𝐶,and let parameter set 𝐾 and 𝐴 be a 𝐹𝑆 with 

𝐾.then a parameter 𝐹𝑆 set (𝑔𝐴, 𝐾) on the common set 𝐶 is stated below  

(𝑔𝐴, 𝐾) = {(𝜇𝐴(𝑟)/𝑟, 𝑓𝐴(𝑟)) ∶ 𝑟 ∈ 𝐾}  

Where 𝜇𝐴: 𝐾 → 𝐼 and 𝑔𝐴: 𝐾 → 𝑃𝐶  such that 𝑔𝐴(𝑟) = ∅ if𝜇𝐴(𝑟) = 0. Now 𝑔𝐴 is approximate value and 𝜇𝐴 

is membership value of parameter fuzzy soft set.  

 

Example: 2. 6[11] Consider 𝐶 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9} be a common set and 𝐾 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} be 

the parameters if 𝐴 = {(𝑡1,
7

10
) , (𝑡2,

5

10
) , (𝑡3,

6

10
) , (𝑡4,

9

10
)}  be the 𝐹𝑆 over 𝐾, therefore the parameter fuzzy 

soft set  

(𝑔𝐴, 𝐾) = {(𝑡1,
7

10
) , {𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟7}), (𝑟2,

5

10
) , {𝑟4, 𝑟, 𝑟7}) , (𝑡3,

6

10
), {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟9}), 

(𝑡4,
9

10
), {𝑟1, 𝑟2, 𝑟, 𝑟8})}          

3. Parameter fuzzy intuitionistic soft sets 

In below section we have to see the procedures on parameter intuitionistic soft fuzzy sets.  

Definition: 3.1.The Common set  𝐶 and 𝑃𝐶  be the PS, 𝐾 is the parameter set and 𝑁 be an intuitionistic 

fuzzy set over𝐾. An Intuitionistic parameter fuzzy soft sets 𝐶𝑁 over 𝐶 is stated as follows  

𝐶𝑁 = {((𝑟, 𝛾𝑁(𝑟), 𝛿𝑁(𝑟)) , 𝑔𝑁(𝑟): 𝑟 ∈ 𝐾} 
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Where𝛾𝑁 : 𝐾 → 𝐼,𝛿𝑁: 𝐾 → [0,1] and 𝑔𝑁: 𝐾 → [0,1] along with the property 𝑔𝑁(𝑟) = ∅ and 𝛾𝑁(𝑟) = 0 and 

𝛿𝑁(𝑟) = 1, where 𝛾𝑁and 𝛿𝑁 membership and not a membership 𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑜𝑛𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑧𝑧𝑦  soft set. The value 

𝛾𝑁(𝑟) and 𝛿𝑁(𝑟) is the value of significance and insignificance of the parameter ′′𝑟′′ 

Clearly, every usual parameter set can be written as below  

 ∐𝑁 = {(𝑟, 𝛾𝑁(𝑟), 1 − 𝛾𝑁(𝑟)), 𝑔𝑁(𝑟): 𝑟 ∈ 𝐾}, clearly 𝐹𝐹𝐼𝑆𝑆 over 𝐶 and it is symbolized by 𝐹𝐹𝐼𝑆𝑆(𝐶). 

 

Definition.3.2. Take∐𝑁 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).𝛾𝑁(𝑟) = 0 And𝛿𝑁(𝑟) = 1,∀𝑟 ∈ 𝐾, therefore ∐𝑁 is said to be 

parameter  fuzzy intuitionistic empty set and it is denoted ∐∅. 

 

Definition.3.3. Let∐𝑁 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).𝛾𝑁(𝑟) = 0 And 𝛿𝑁(𝑟) = 1,∀𝑟 ∈ 𝐾 and 𝑔𝑁(𝑟) = 𝐶 therefore ∐𝑁 is 

said to be parameter fuzzy intuitionistic common set and it is denoted ∐𝐾̃. 

 

Example. 3. 4 Consider the common set𝐶 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5 }, and parameter set 𝐾 = {𝑡2, 𝑡2, 𝑡3},if  

𝑁 = {(𝑡1,
2

10
,
5

10
) , (𝑡2,

5

10
,
5

10
) , (𝑡3,

6

10
,
3

10
)} , And 𝑔𝑁(𝑟1) = {𝑟2, 𝑟4}, 𝑔𝑁(𝑟2) = {∅}, 

𝑔𝑁(𝑟3) = {𝐶}. Therefore the 𝐹𝐹𝐼𝑆𝑆 ∐𝑁  can be written as follows  

∐𝑁 = {((𝑡1,
2

10
,
5

10
) , {𝑟2, 𝑟4}) , (𝑡2,

5

10
,
5

10
) , {∅}), (𝑡3,

6

10
,
3

10
) , {𝐶})}      

𝐴 = {(𝑟1, 0,1), (𝑟2, 0,1), (𝑟3, 0,1), (𝑟4, 0,1)}, then the 𝐹𝐹𝐼𝑆𝑆 ∐𝐴 is empty. If 𝐵 =

{(𝑟1, 0,1), (𝑟2, 0,1), (𝑟3, 0,1), (𝑟4, 0,1)} and 𝑔𝐵(𝑟1) = 𝐶, 𝑔𝐵(𝑟2) = 𝐶, 𝑔𝐵(𝑟3) = 𝐶, 𝑔𝐵(𝑟4) = 𝐶      then 

the 𝐹𝐹𝐼𝑆 common parameter fuzzy soft set.   

 

Definition 3.5. Let∐𝐴, ∐𝐵 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then ∐𝐴 parameter fuzzy intuitionistic soft subset of∐𝐵, and is 

denoted by ∐𝐵 ⊇ ∐𝐴 iff ⇔ if𝛾𝑁(𝑟) ≤ 𝛾𝐴(𝑟),𝛿𝑁(𝑟) ≥ 𝛿𝐴(𝑟) and 𝑔𝐿(𝑟) ⊇ 𝑔𝑁(𝑟), ∀ 𝑟 ∈ 𝐾.  

 

Remark 3. 6. ∐𝐴 ⊇ ∐𝑁 Which not given all members of ∐𝑁 is a member of ∐𝐴 as in the meaning of usual 

subset. Consider 𝐶 = {𝑟1, 𝑟2, 𝑟3, 𝑟4} is a common set of items and 𝐾 = {𝑡1, 𝑡2, 𝑡3}is a set of parameters. If 

𝑁 = {𝑡1,
4

10
,
6

10
} and 

 𝐴 = ({𝑡1,
5

10
,
5

10
} , {𝑡3,

4

10
,
5

10
}), and 

 ∐𝑁 = {(𝑡1,
4

10
,
6

10
) , {𝑎2, 𝑟4})},  

∐𝐴 = {(𝑡1,
5

10
,
5

10
) {𝑟2, 𝑟3, 𝑟4}), (𝑡3,

4

10
,
5

10
) , {𝑟1, 𝑟5})}, ∀ 𝑡 ∈ 𝐾, 

 𝛾𝐴(𝑟) ≥ 𝛾𝑁(𝑟), 𝛿𝑁(𝑟) ≤ 𝛿𝐴(𝑟) And ∐𝐴(𝑟) ⊇ ∐𝑁(𝑟) is suitable.Therfore∐𝐴 ⊇̃ ∐𝑁. It is understandable 

that ((𝑡1,
4

10
,
6

10
) , {𝑟2, 𝑟4}) ∈ ∐𝑁 but ((𝑡1,

4

10
,
6

10
) , {𝑟2, 𝑟4}) ∉ ∐𝐴. 

 

Theorem 3. 7. Let∐𝑁, ∐𝐾̃ ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then  

(a) ∐𝑁 ⊆ ∐𝐾̃  

(b) ∐∅ ⊆ ∐𝑁 

(c) ∐𝑁 ⊆ ∐𝑁 

Proof: The above properties of   ⊆ and above definition trivially true.  

 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

165  

Definition3.8.∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). After ∐𝑁 and ∐𝐴 parameter fuzzy intuitionistic soft- equal, write by 

∐𝑁 = ∐𝐴 ⇔ 𝛾𝑁(𝑟) = 𝛾𝐴(𝑟), 𝛿𝑁(𝑟) = 𝛿𝐴(𝑟) and 𝑔𝑁(𝑟) = 𝑔𝐴(𝑟), ∀𝑟 ∈ 𝐾. 

Theorem 3.2 Let ∐𝑁, ∐𝐴, ∐𝐹 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶)Then  

(a) ∐𝑁 = ∐𝐴 and ∐𝐴 = ∐𝐹  iff ∐𝑁 = ∐𝐹 

(b) ∐𝑁 ⊆ ∐𝐴 and ∐𝐴 ⊆ ∐𝐹iff ∐𝑁 = ∐𝐴 

(c) ∐𝑁 ⊆ ∐𝐴 and ∐𝐴 ⊆ ∐𝐹  which implies∐𝑁 = ∐𝐹. 

Proof: The above properties of ≡ and ⊆ is true form definition 3.4 and 3.5 

 

Definition.3.9.∐𝑁 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then parameter fuzzy intuitionistic soft complement set is stated as below  

∐𝑁 
′ = {(𝑎, 𝛾𝑁(𝑎), 𝛿𝑁(𝑎)) , 𝑔𝑁

′(𝑎)): 𝑎 ∈ 𝐾}.  

 

Theorem 3.10 If ∐𝑁 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then  

(a) (∐𝑁
′)′ = ∐𝑁 

(b) ∐∅
′ = ∐𝐾̃ 

(c) ∐𝐾̃
′ = ∐∅ 

Proof: Let ∐𝐾 = {(𝑟, 1,0), 𝐶) ∶for all 𝑟 ∈ 𝐾.  by definition 3.6  

∐𝐾̃
′ = {(𝑟, 0,1), 𝐶): For all 𝑟 ∈ 𝐾} = ∐∅ in same way we can prove (a) and (b)  

 

Definition.3.11.If ∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then parameter fuzzy intuitionistic soft union set is stated as 

below  

∐𝑁 ⊔∐𝐴 = {((𝑟, ⋁(𝛾𝑁(𝑟)) , 𝛿𝐴(𝑟)), ⋀(𝛿𝑁(𝑟), 𝛿𝐴(𝑟))) , 𝑔𝑁⊔𝐴(𝑎)) : 𝑎 ∈ 𝐾} 

Theorem.3.12 Let ∐𝑁, ∐𝐴, ∐𝐹 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).  then  

(a) ∐𝑁 ⊔∐𝑁 = ∐𝑁 

(b) ∐𝑁 ⊔∐∅ = ∐𝑁  

(c) ∐𝑁 ⊔∐𝐾 = ∐𝐾 

(d) ∐𝑁 ⊔∐𝐴 = ∐𝐴 ⊔∐𝑁 

(e) ∐𝑁 ⊔ (∐𝐴 ⊔∐𝐹) = (∐𝑁 ⊔∐𝐴) ⊔ ∐𝐹 . 

Proof: Definition 3.2, 3.3, 3.5 and 3.7 help to see their proof of equality.  

 

Definition.3.13. If ∐𝑁 , ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then parameter fuzzy intuitionistic soft intersection set is stated 

as below  

∐𝑁 ⊓∐𝐴 = {((𝑎, ⋀(𝛾𝑁(𝑎)) , 𝛿𝐴(𝑎)), ⋁(𝛿𝑁(𝑎), 𝛿𝐴(𝑎))) , 𝑔𝑁⊓𝐴(𝑎)) : 𝑎 ∈ 𝐾} 

 

Theorem.3.12. Let ∐𝑁, ∐𝐴, ∐𝐹 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).  then  

(a) ∐𝑁 ⊓∐𝑁 = ∐𝑁 

(b) ∐𝑁 ⊓∐∅ = ∐𝑁  

(c) ∐𝑁 ⊓∐𝐾 = ∐𝐾 

(d) ∐𝑁 ⊓∐𝐴 = ∐𝐴 ⊓∐𝑁 

(e) ∐𝑁 ⊓ (∐𝐴 ⊓∐𝐹) = (∐𝑁 ⊓∐𝐴) ⊓ ∐𝐹 . 

Proof: Definition 3.2, 3.3, 3.5 and 3.8 help to see their proof of equality.  
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Remark. 3.13 Let ∐𝑁 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). If ∐𝑁  ≠ ∐∅  or∐𝑁 ≠ ∐𝐾 , then ∐𝑁 ⊔∐𝑁
′ ≠ ∐𝐾 and ∐𝑁 ⊓∐𝐾

′ ≠

∐∅. For instance, consider 𝐶 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}  be the common set of item and 𝐾 = {𝑡1, 𝑡2}  be the set of 

parameters. If 𝑁 = {(𝑡1,
4

10
,
6

10
) , (𝑡2,

5

10
,
5

10
)} ,and  

∐𝑁 = {((𝑡1,
4

10
,
6

10
) , {𝑟2, 𝑟4})} , {((𝑡2,

5

10
,
5

10
) , {𝑟2, 𝑟3, 𝑟4})} , Therefore  

𝑁′ = {(𝑡1,
4

10
,
6

10
) , (𝑡2,

5

10
,
5

10
)} And 

 ∐𝑁
′ = {((𝑡1,

6

10
,
4

10
) , {𝑡1, 𝑡3})} , {(𝑡2,

5

10
,
5

10
) {𝑟1}}, since  

∐𝑁 ⊔∐𝑁
′ = {((𝑡1,

6

10
,
4

10
) , {𝐶})} , {(𝑡2,

5

10
,
5

10
) , {𝐶}} ≠ ∐𝐾 , 

∐𝑁 ⊓∐𝑁
′ = {((𝑡1,

4

10
,
6

10
) , {∅})} , {(𝑡2,

5

10
,
5

10
) , {∅}} ≠ ∐∅.  

 

Theorem.3.14 Let ∐𝑁, ∐𝐴, ∐𝐹 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).  then  

(a) ∐𝑁 ⊔̃ (∐𝐴 ⊔̃ ∐𝐹) = (∐𝑁 ⊔̃  ∐𝐴) ⊓̃ (∐𝑁 ⊔̃  ∐𝐹)  

(b) ∐𝑁 ⊓̃ (∐𝐴 ⊔̃ ∐𝐹) = (∐𝑁 ⊓⊓̃ ∐𝐴) ⊔̃ (∐𝑁 ⊓̃  ∐𝐹)  

Proof: Definition 3.7 and 3.8 we can easily made the proof. 

 

Theorem 3.15. Let ∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).  then the De Morgan’s laws are true  

(a) (∐𝑁 ⊔̃ ∐𝐴)
′ = ∐𝑁

′ ⊓̃ ∐𝐴
′
 

(b) (∐𝑁 ⊓̃ ∐𝐴)
′ = ∐𝑁

′ ⊔̃ ∐𝐴
′
 

Proof: Definition 3.6, 3.7 and 3.8we can easily prove the proof. 

 

Definition.3.16. Let ∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Therefore the max-sum of ∐𝑁 and ∐𝐴 and it is denoted 

by∐𝑁⋁
𝑚𝑎𝑥∐𝐴 , stated as ∐𝑁⋁

𝑚𝑎𝑥∐𝐴 = {((𝑟, 𝛾𝑁(𝑟)⨁𝛾𝐴(𝑟) − 𝛾𝑁(𝑟)𝛾𝐴(𝑟), 𝛿𝑁(𝑟)𝛿𝐴(𝑟)), 𝑔𝑁⊔𝐴(𝑟))} : 𝑟 ∈

𝐾} Where 𝑔𝑁⊔𝐴(𝑟) = 𝑔𝑁(𝑟) ⊔ 𝑔𝐴(𝑟). 

 

Definition.3.17.Let∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Therefore the min-sum of ∐𝑁 and ∐𝐴 and it is denoted by 

∐𝑁⋀
𝑚𝑖𝑛∐𝐴 , stated as ∐𝑁⋀

𝑚𝑖𝑛 ∐𝐴 = {((𝑟, 𝛾𝑁(𝑟)⨁𝛾𝐴(𝑟)⊝ 𝛾𝑁(𝑟)𝛾𝐴(𝑟), 𝛿𝑁(𝑟)𝛿𝐴(𝑟)), 𝑔𝑁⊓𝐴(𝑟))} : 𝑟 ∈

𝐾} Where 𝑔𝑁⊓𝐴(𝑟) = 𝑔𝑁(𝑟) ⊓ 𝑔𝐴(𝑟). 

 

Theorem .3.18 Let ∐𝑁, ∐𝐴, ∐𝐹 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).  Then 

(a) ∐𝑁⋁
𝑚𝑎𝑥∐∅ = ∐𝑁 

(b) ∐𝑁⋁
𝑚𝑎𝑥∐𝐾 = ∐𝐾  

(c) ∐𝑁⋁
𝑚𝑎𝑥∐𝐴 = ∐𝐴⋁

𝑚𝑎𝑥∐𝑁  

(d) ∐𝑁⋀
𝑚𝑖𝑛∐𝐴 = ∐𝑁⋀

𝑚𝑖𝑛∐𝐴 

(e) (∐𝑁⋁
𝑚𝑎𝑥∐𝐴)⋁

𝑚𝑎𝑥∐𝐹 = ∐𝐴⋁
𝑚𝑎𝑥(∐𝐴⋁

𝑚𝑎𝑥∐𝐹) 

(f) (∐𝑁⋀
𝑚𝑖𝑛∐𝐴)⋀

𝑚𝑖𝑛∐𝐹 = ∐𝐴⋀
𝑚𝑖𝑛(∐𝐴⋀

𝑚𝑖𝑛∐𝐹). 

 Proof: Definition 3.2, 3.3 and 3.10 we can easily prove the proof. 

 

Definition.3.19.Let ∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then the max-product of ∐𝑁 and ∐𝐴, and it is denoted by 

∐𝑁⋀
𝑚𝑎𝑥∐𝐴 and is stated as  

∐𝑁⋁
𝑚𝑎𝑥 ∐𝐴 = {((𝑟, 𝛾𝑁(𝑟)𝛾𝐴(𝑟), 𝛿𝑁(𝑟)⨁𝛿𝐴(𝑟)⊝ 𝛿𝑁(𝑟)𝛿𝐴(𝑟)), 𝑔𝑁⊔𝐴(𝑟))} : 𝑟 ∈ 𝐾}  
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Where 𝑔𝑁⊔𝐴(𝑟) = 𝑔𝑁(𝑟) ⊔ 𝑔𝐴(𝑟). 

 

Definition.3.20.Let ∐𝑁, ∐𝐴 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶). Then the min-product of ∐𝑁 and∐𝐴, and it is denoted by 

∐𝑁⋀
𝑚𝑎𝑥∐𝐴 and is stated as  

∐𝑁⋁
𝑚𝑖𝑛 ∐𝐴 = {((𝑟, 𝛾𝑁(𝑟)𝛾𝐴(𝑟), 𝛿𝑁(𝑟)⨁𝛿𝐴(𝑟)⊝ 𝛿𝑁(𝑟)𝛿𝐴(𝑟)), 𝑔𝑁⊓𝐴(𝑟))} : 𝑟 ∈ 𝐾}  

Where 𝑔𝑁⊔𝐴(𝑟) = 𝑔𝑁(𝑟) ⊓ 𝑔𝐴(𝑟). 

 

Theorem.3.21 Let ∐𝑁, ∐𝐴, ∐𝐹 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶).  Then 

(a) ∐𝑁⋀
𝑚𝑖𝑛∐∅ = ∐𝑁 

(b) ∐𝑁⋀
𝑚𝑖𝑛∐𝐾 = ∐𝐾  

(c) ∐𝑁⋀
𝑚𝑖𝑛∐𝐴 = ∐𝐴⋀

𝑚𝑖𝑛∐𝑁  

(d) ∐𝑁⋀
𝑚𝑖𝑛∐𝐴 = ∐𝑁⋀

𝑚𝑖𝑛∐𝐴 

(e) (∐𝑁⋀
𝑚𝑖𝑛∐𝐴)⋀

𝑚𝑖𝑛∐𝐹 = ∐𝐴⋀
𝑚𝑖𝑛(∐𝐴⋀

𝑚𝑖𝑛∐𝐹) 

(f) (∐𝑁⋁
𝑚𝑎𝑥∐𝐴)⋁

𝑚𝑎𝑥∐𝐹 = ∐𝐴⋁
𝑚𝑎𝑥(∐𝐴⋁

𝑚𝑎𝑥∐𝐹). 

Proof: Definition 3.2, 3.3 and 3.12 we can easily made the prove their inequality. 

 

4. Selection taking Intuitionistic fuzzy soft set  

  In this division, stated a decreased parameter intuitionistic fuzzy soft set creates an intuitionistic fuzzy soft 

set from an intuitionistic fuzzy soft set. We then have stated a decreased fuzzy set of a parameter fuzzy 

intuitionistic fuzzy set that creates a fuzzy set from a parameter intuitionistic fuzzy soft set. These set nearby 

a flexible move toward intuitionistic fuzzy soft sets created on selection-taking problems. 

 

Definition .4.1. Take  ∐𝑁 is a𝐹𝐹𝐼𝑆𝑆. Then a decreased 𝐼𝐹𝑆 of ∐𝑁, denoted by 𝑁𝑑𝑖𝑓𝑠 ,stated as below 

𝑁𝑑𝑖𝑓𝑠 = {(𝑟, 𝛾𝑁
𝑑𝑖𝑓𝑠(𝑟), 𝛿𝑁

𝑑𝑖𝑓𝑠(𝑟)) : 𝑟 ∈ 𝐶} , where 

𝛾𝑁
𝑑𝑖𝑓𝑠 : 𝐶 → 𝐼, 𝛾𝑁

𝑑𝑖𝑓𝑠(𝑎) =
1

|𝐶| ∑𝑡∈𝐾,𝑟∈𝐶 𝛾𝑁(𝑡)𝜓𝑔𝑁(𝑡)(𝑟)
  

𝛿𝑁
𝑑𝑖𝑓𝑠 : 𝐶 → 𝐼, 𝛿𝑁

𝑑𝑖𝑓𝑠(𝑟) =
1

|𝐶| ∑𝑡∈𝐾,𝑟∈𝐶 𝛿𝑁(𝑡)𝜓𝑔𝑁(𝑡)(𝑟)
  

Where 𝛾𝑁
𝑑𝑖𝑓𝑠  and 𝛿𝑁

𝑑𝑖𝑓𝑠
 are said to be decreased set-notation of 𝑁𝑑𝑖𝑓𝑠 .It is evident that 𝑁𝑑𝑖𝑓𝑠  is an 𝐼𝐹𝑆 

over 𝐶. 

 

Definition.4.2.If ∐𝑁 ∈ 𝐹𝐹𝐼𝑆𝑆(𝐶) and 𝑁𝑑𝑖𝑓𝑠 be decreased intuitionistic fuzzy of ∐𝑁.Then a fuzzy 

decreased set of 𝑁𝑑𝑖𝑓𝑠  be a fuzzy set under 𝐶.Symbolized by 𝑁𝑓𝑑  and stated below  

𝑁𝑓𝑑 = {(𝑟, 𝜈𝑓𝑑(𝑟): 𝑟 ∈ 𝐶} , where 𝜈𝑓𝑑 : 𝐶 → 𝐼, 𝜈𝑓𝑑(𝑟) = 𝛾𝑓𝑑(𝑟) (1 − 𝛿𝑓𝑑(𝑟)). 

Now, we make a 𝐹𝐹𝐼𝑆𝑆 selection taking modal by the subsequent to produce a selection fuzzy set.    

Selection taking Now, we make a selection-taking technique by the succeeding procedure to yield a 

selection set from an ordinary set of replacements. Therefore selection taker:  

(a) Create a possible intuitionistic fuzzy sets over the parameter set based on a selection client who is a 

specialist.  

(b) Creates a parameter fuzzy intuitionistic fuzzy set  ∐𝑁 over the different set 𝐶 over on a   selection taker. 

(c) Find the decreases fuzzy intuitionistic set 𝑁𝑑𝑖𝑓𝑠  of 𝑁𝑓𝑑  

(d)  Find the fuzzy decreases set 𝑁𝑓𝑑of𝑁𝑑𝑖𝑓𝑠 . 
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(e) Select the parameter of 𝑁𝑓𝑑  that has highest membership value. Now, we can see the example. 

 

Example: 4. 3 Assume that a firm fills a manager position. There are five applicants who assign in order.  

 

Example. 4. 4. Assume that an administrative center requirements to positing a place. There are 5 applicants 

who fill in an application in order to apply officially for the place. There is a selection taker (ST) that is 

from the branch of HR. He wants to interview the applicants, but it is very hard to create all of them. Hence, 

by the fuzzy parameter Intuitionistic soft selection taker process, the total of applicants is decreased to a 

proper one. Think that the set of applicants 𝐶 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5} which may be assign the parameter set 𝐾 =

{𝑡1, 𝑡2, 𝑡3, 𝑡4}, which is ′′𝑡1 =knowledge ‘’𝑡2= mature ‘’𝑡3 =technical experimentation ‘’𝑡4 = training 

person‘’. 

Now we use the following steps  

(a)  Consider that selection taker constructs a feasible fuzzy intuitionistic  subsets 𝑁 along with 

parameter set 𝐾 as; 

𝑁 = {(𝑡1,
7

10
,
3

10
) , (𝑡2,

2

10
,
5

10
) , (𝑡3,

5

10
,
5

10
) , (𝑡4,

6

10
,
3

10
)}. 

(b) Selection taker  constructs an parameter fuzzy intuitionistic soft set ∐𝑁 along with alternatives set 

𝐶 

 ∐𝑁 = {((𝑡1,
7

10
,
3

10
) , {𝑟1, 𝑟2, 𝑟4})} , {(𝑡2,

2

10
,
5

10
) , {𝐶}} , {(𝑡3,

5

10
,
5

10
) {𝑟1, 𝑟2, 𝑟4}},{(𝑡4,

6

10
,
3

10
) , {𝑟2, 𝑟3}}. 

(c) Selection taker  finds  the decreased fuzzy intuitionistic  set 𝑁𝑑𝑖𝑓𝑠  of ∐𝑁 

𝑁𝑑𝑖𝑓𝑠 = {((𝑟1,
28

100
,
26

100
) , (𝑟2,

40

100
,
32

100
) , (𝑟3,

16

100
,
16

100
) , (𝑟4,

28

100
,
32

100
) , (𝑟5,

4

100
,
10

100
))}.  

(d) Selection taker finds the decreased  fuzzy set 𝑁𝑓𝑑  of𝑁𝑑𝑖𝑓𝑠  

𝑁𝑓𝑑 = {(𝑟1,
2072

10000
) , (𝑟2,

2720

10000
) , (𝑟3,

1344

10000
) , (𝑟4,

1904

10000
) , (𝑟4,

360

10000
)}.  

(e) In conclusion, selection chooses  𝑟2  for the place from 𝑁𝑓𝑑  since it has the highest value  
2720

10000
 

along with the others. 

 

  5. Conclusion 

        In this work, we learn the Atanassov concept of intuitionistic fuzzy sets and we stated their choice of 

procedures and a few outcomes. Then, we presented the technique of selection taking on the parameter 

fuzzy intuitionistic fuzzy soft set theory. We also give an illustration that established the selection-taking 

methods. It can be applied to problems in so many areas. 
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Abstract: This study is to introduce a Cartesian product structure into the social choice theoretical 

framework. We believe that a Cartesian product structure is a relevant way to describe individual rights in 

the social choice theory since it discriminates the personal attribute comprised in each social state. First, 

we define some conceptional and formal tools related to the Cartesian product structure. Then apply these 

notions to Gibbard’s paradox and to Sen’s impossibility of a Paretian liberal. Finally, we analyze the 

advantages of our approach to other solutions projected in the literary study for both impossibility theorems. 

 

Keywords: Cartesian product, social choice, impossibility. 

 

1 Introduction 

In 1970, Sen introduced this concept into the social choice theoretical framework with a 

condition of liberalism based on the notion of decisiveness individuals must be decisive – their 

preferences must be acknowledged by society over some pairs of social states, which belong to their 

private sphere. Sen shows that this condition of liberalism and a weak Pareto principle lead to an 

impossibility of social choice: it is the impossibility of a Paretian liberal. But Sen’s formal analysis 

does not need to distinguish between decisive pairs that enable an individual to take decisions that are 

“personal” to her and those that are not. He uses a Cartesian product structure to describe individual 

rights and points out the internal inconsistency caused by an extended condition of liberalism. This 

result is called Gibbard’s paradox or Gibbard’s First Libertarian Claim. Besides, Gibbard shows that 

his paradox arises only if individuals express conditional preferences. In other words, an individual 

expresses conditional preferences if her preferences depend on those of another individual. For 

example, Nikita is said to have conditional preferences if her desire is to wear a dress of the same color 

as Nisha’s. On the contrary, if Nisha’s desire is to differentiate from Nikita, it leads to Gibbard’s 

paradox. Gibbard stresses that his paradox does not arise if unconditional preferences only are 

acknowledged by society.  

This topic gave rise to many debates and attempts to develop new tools to take individual rights into 

account and to solve Gibbard’s and Sen’s para- doxes. This article is to introduce a Cartesian product 

structure on social states and to examine if new possibility results can be developed.  
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But a Cartesian product structure is inadequate in itself in order to deal with both impossibility results. It 

is necessary to determine a relevant way to take into account the implementation of these individual rights 

thus clarified.  

 

2 Some conceptual and formal tools related to the Cartesian product structure 

Let M = {1, 2, ..., n} be the finite set of individuals, which is society (n ≥ 2).With a Cartesian 

product structure on social states, each individual is a set X of personal features, this set being the same 

for all individuals. X is a finite set, where |X| ≥ 2. A social state is a n-list (x1, x2, ..., xn) of personal 

features of the world, where xi ∈ X, ∀ i ∈ M . The set of all social states Xn is given by Xn = X × X × 

... × X. Each individual i ∈ M has a binary relation ≥i on Xn, which is a linear ordering. A collective 

choice rule f specifies a social preference relation for each d : ≥= f (d) . If ≥ is a complete pre-ordering 

for all d in the domain, f is a “social welfare function” . Here, f is called a “social decision function”. 

For any i ∈ M and any x = (x1, ..., xi−1, xi, xi+1, ..., xn) ∈ Xn, x−i = (x1, ..., xi−1, xi+1, ...,xn), where x−i ∈ Xn 

. If xi ∈ X and a−i = (a1, ..., ai−1, ai+1, ..., an) ∈ 𝑥𝑛−𝑖
, then (xi; a−i) = (a1, ..., ai−1, xi, ai+1, ..., an). The personal 

sphere of individual i is the family of sets {Di(a−i)}a−i∈Xn where Di(a−i) is defined as Di(a−i) = {x ∈ Xn 

| x−i = a−i} As stated in our introduction, the difficulty we face with the problem of individual rights in 

the social choice theory is less analytical than conceptual. Consequently, it is crucial to find out first 

which values could be wished by the members of society and how they can be secured. 

 

Definition: 2.1  Strong and Light preferences For any x, y ∈ Xn, for any j ∈ M, if x >j y and if there 

exists at least one z ∈ Xn such that x >j z and z >j y, then individual j strongly prefers x toy: it will be 

denoted by T [x >j y] = S. If x >j y but if such a social state z does not exist, individual j lightly prefers 

x to y: it is denoted by T [x >j y] = L.For example, let us consider the following individual linear 

ordering Xn = {x, y, z, w} and x >j w >j z >j y. By transitivity, x >j y. We then obtain T [x >j y] = S. 

However, if x >j y >j w >j z, T [x >j y] = L. 

 

Definition: 2.2 Set of Invasive Options For a given d, the set Yj is com- posed of all social states for 

which the individual j has a preference which goes against a preference of another individual i /= j in 

her personal sphere is𝑌𝑗(𝑎−𝑖)={𝑦 ∈ 𝐷𝑖(𝑎−𝑖)|𝑇[𝑥 >𝑗 𝑦] = 𝑆 for at least one 𝑥 ∈ 𝐷𝑖(𝑎−𝑖) such that 

𝑦 >𝑖 𝑥} and 𝑌𝑗=⋃𝑖≠𝑗⋃𝑎−𝑖∈𝑥𝑛−𝑖
𝑌𝑗(𝑎−𝑖).For example, consider two individuals 1 and 2 and X = {p, q}. 

Thus, Xn = {(p, q), (q, p), (p, p), (q, q)}. Suppose that individual 1 has the following linear ordering (p, 

p) >1 (q, p) >1 (q, q) >1 (p, q). Suppose moreover that (p, q) >2 (p, p) and (q, q) >2 (q, p). Hence, (p, q), 

(p, p) ∈ D2(p) 

and T [(p, p) >1 (p, q)] = S, Y1(p) = {(p, q)}.  And since (q, q), (q, p) ∈ 
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D2(q) and T [(q, p) >1 (q, q)] = L, Y1(q) = ∅. Finally, Y1 = {(p, q)}. But, if (p, p) >1 (q, p) >1 (p, q) >1 

(q, q), all other things remaining equal, then Y1 = {(p, q), (q, q)} since T [(q, p) >1 (q, q)] = S.Sen’s and 

Gibbard’s theorems can now be presented and some possibility results be proposed thanks to the 

exclusion of invasive preferences. 

Solution to Gibbard’s paradox: It is based on an extended interpretation of the concept of personal 

sphere, every individual should be decisive over all pairs of social states, which differ only in her 

personal feature. Gibbard suggests the following claim  First Libertarian Claim: For any x, y ∈ Xn, 

for any i ∈ N, for any a−i ∈ Xn , if x, y ∈ Di(a−i) and x >i y, then x > y. Moreover, the collective choice 

rule f should respect the condition of unrestricted domain. 

Second Unrestricted domain: The domain of f includes all logically possible n-lists of individual 

linear orderings.  

Preference Modification  Yk = ∅, ∀ t ∈ T where T ⊆ N and |T| ≥ n − 1. 

 

Theorem 2.3There exists a SDF satisfying conditions PM1 and GL. 

Proof The theorem is proved by constructing a SDF, which gives each person i an appropriate special 

voice on her feature. Let R be the relation between x and y, (∃i)[x, y ∈ Di(a−i) and x >i y]. Let ≥= f (d) 

be generated from Q in the following manner ∀ x, y ∈ Xn : x ≥ y ⇐⇒ ¬(yRx). Firstly, we prove that 

whenever yRx, y > x. Suppose that ¬(y> x). Hence x ≥ y and from the construction of f , we have 

¬(yRx). Then, from ¬(y>x), it followed that ¬(yRx); therefore, if yRx, we obtain y > x as declared. 

Secondly, we show that f satisfies GL, then xRy. Therefore, x > y, and hence f satisfies GL. Now, 

consider the individual, which is responsible for the step x1Rx2 and call her individual j. Then, x1 >j x
2. 

Individual j is necessarily responsible for another step of the cycle xι−1Rxι, with ι = 4, ..., 𝜎  so that 

cycle 0 can exist. Hence, xι−1 >j xι. Suppose that x1 >j xι−1. From xι to 𝑥𝜎 , steps originating from 

individuals i /= j or from individual j follow each other. In every case, we cannot obtain𝑥𝜎 >j x
ι−1 so 

that Yj can be empty. We necessarily have xι−1 >j 𝑥𝜎. Therefore, the step 𝑥𝜎 Qx1 necessarily comes 

from an individual i /= j. Hence, T [x1 >j 𝑥𝜎 ] = S and Yj is nonempty. If xι−1 >j x
1, we can prove that 

Yj is nonempty according to the same line of reasoning. 

 

Finally, we showed that if individual j is involved in cycle 0, her set of invasive options is nonempty. 

But the same conclusion remains for any individual involved in such a cycle.  

 

 

Theorem 2.4  There exists a SDF satisfying conditions PM2, P, and GL’. 

Proof Let R be the relation between x and y, (∃j) x, y ∈ Dj(a−j), x >j y and xjpjyj or (∀ i) x >i y, ∀ x, y ∈ Xn 

: x ≥ y ⇐⇒ ¬(yRx). From the way Q is defined, it is obvious that f satisfies conditions P and GL’. Next, 
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l n 
we check that f is really a SDF, i.e., f is complete and acyclic. Since R is an asymmetric relation, f is 

necessarily complete. It remains to be shown that f is acyclic. Suppose there is a cycle 0, x1Rx2, ..., 𝑥𝜎−1R𝑥𝜎 

, 𝑥𝜎 Rx1 where x1,…,𝑥𝜎 belong to Xn (for the subscripts, we shall use mod τ arithmetic, so that 1 — 1 = 𝜎 

and 𝜎 + 1 = 1. Variables ι and κ will range from 1 to 𝜎 ). Hence at least two steps originating from condition 

GL’ for two distinct individuals and one step initiating from condition P main to such a cycle. Now, consider 

xι−1Qxι. We get either (∀ i) xι−1 >i x
ι or ¬(∀ i) xι−1 >i x

ι and (∃ j) xι−1, xι ∈ Dj(a−j), x
ι−1 >j x

ι and xι−1pjxι. We 

consider two individuals j and l: each of them is responsible for a step of cycle 0 proceeding from condition 

GL’. Then there is a ι such that xι−1, xι ∈ Dj(a−j), x
ι−1 >j x

ι and xι−1pjx
ι and such that (∀ i) xι >i x

ι+1. Hence, 

we get: xι−1 >j x
ι and xι >j x

ι+1. In addition, individual l is involved in the cycle as well. There is a κ such 

that xκ, xκ+1 ∈ Dl(a−l), x
κ >l x

κ+1. and xκplx
κ+1. Suppose that κ + 1 = ι-1, in other words, the step xκRxι−1 

originates from condition GL’. It should be noted that this step can proceed from condition P, but this does 

not modify our proof. There is somewhere in the cycle a step originating from condition GL and from an 

individual different from j. For individual j, we have either xκ >j x
ι−1 or xι−1 >j x

κ with T [xι−1 >j x
κ] = L so 

that Yj can be empty. In both cases, T [xκ >j x
ι+1] = S. Then, in cycle 0, from xι+1 to xκ, steps necessarily 

come from condition GL’. Hence, the set Yj is nonempty since j necessarily expresses at least one strong 

preference against a preference of another individual’s protected sphere in the following subpart of cycle 0 

xι+1Rxι+2, ..., xκRxι−1. The second stage of the proof requires to rely on the Cartesian product structure. 

Suppose that an individual m is involved in cycle 0 only in steps originating from condition P. According 

to (1), we get: xι >m xι+1. For individual m, we could have xι >m xι−1 and T [xι >m xι−1] = L, xι−1 >m xκ and T 

[xι−1 >m xκ] = L, if all steps from xι+1 to xκ proceed from condition GL’. In every other case, Ym is nonempty. 

In order to complete this proof, we show that m’s above preferences necessarily imply a non- empty set 

Ym. For individual j, recall that xι−1 >j x
ι, xι−1, xι ∈ Dj(a−j) and xι−1pjx

ι. For individual l, xκ >l x
ι−1, xκ, xι−1 ∈ 

Dl(a−l) and xκplx
ι−1. Let xι−1 = (x1, ..., xj, ..., xl, ..., xn), xι = (x1, ..., xj∗ , ..., xl, ..., xn) and xκ = (x1, ..., xj, ..., 

xl∗ , ..., xn). Since individuals j and l have to express uncondi- tional preferences, we obtain (x1, ..., xj, ..., 

xl∗ , ..., xn) > (x1, ..., xj∗ , ..., xl∗ 
, ...,xn) and (x1, ..., xj∗ , ..., xl∗ , ..., xn) > (x1, ..., xj∗ , ..., xl, ..., xn). But (x1, 

..., xj,..., xl∗ , ..., xn) = xκ and (x1, ..., xj∗ , ..., xl, ..., z ) = xι. Let x∗ be the social state (x1, ..., xj∗ , ..., xl∗ , ..., 

xn). Therefore, Ym is nonempty since individual m necessarily expresses at least one strong preference 

against a preference of individuals j or l in their protected sphere. Hence cycles cannot occur. 

3.Conclusion 

The aim of the article is to devise a reliable way of overcoming two impossibility results developed 

into a social choice theoretical context, which makes it possible to take individual rights into account 
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properly. Some conceptual and formal tools are developed so that the private sphere can be protected 

from aggressive preferences. The Cartesian product structure matters since it provides improved results. 
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Abstract 

This paper, the notions of an operations and relations on the Cartesian product over two fuzzy 

matrices set are introduced and its some properties are explored. We prove some equality based on the 

operation and the relation over FSs. Finally, we introducing some Cartesian formulas x4, x5 in Cartesian 

product over two fuzzy matrixes sets. 

 

Keyword: Fuzzy matrix, Cartesian product over fuzzy matrix. 

 

1. Introduction: The theory of fuzzy sets (FS) introduction by Zadeh [42] has showed meaningful 

application in many fields of studies. A fuzzy matrix with element having values in closed interval [0, 1]. 

R.H. Kim and F.W. Roush [19] has introduced the concept of F.W. The concept of intuitionistic fuzzy sets 

proposed by Atanassov is a generalization of FS. He has introduced a non-membership grade, in addition 

to the membership grade, thus allowing an aspect of uncertainty in the membership grade [2]. The IFS 

(Intuitionistic Fuzzy Set) theory introduced by K.T. Atanassov [3] is interesting and useful to problem 

solving. The ideas of IFS were developed in later [4, 5]. Structures on Intuitionistic Fuzzy Relations, Fuzzy 

Set and System [7]. The IFS has captured much attention from researchers in various fields and many 

achievements have been made, such as entropy measure of IFS [8, 22, 30, 32, and 41]. Distance or similarly 

measure between IFSs [11, 20, 28, 37]. Some operations on intuitionistic Fuzzy sets, Fuzzy Set and System 

[29]. In recent years the IFS theory has been applied in medical diagnosis [9]. Using the concept of IFS, Im 

et al [14,15] studied Intuitionistic Fuzzy Matrix (IFM). The decision has been taken by measuring the 

smallest Euclidean distance between a person and a society. Many real-world decision-making problems 

such as academic career of the students, high school determination problem, medical problem, student 

performance determination of a course, career determination problem, career determinations etc. have been 

carried out by various researchers by using intuitionistic fuzzy Set [31]. intuitionistic fuzzy matrix, Notes 

on Intuitionistic Fuzzy Sets [26]. In research was carried out on how a transitive IFM decomposed into a 

sum of nilpotent IFM and symmetric IFM by Jeong et al [16]. Distance Measure between intuitionistic 

Fuzzy Sets [36]. Note on some operations on intuitionistic fuzzy sets, fuzzy sets and System [43]. 

Aggregation operations of IFS [34, 38, 40]. The concept of upper cut sets and lower cuts of IFSs are given 

by [21]. “On some properties of one Cartesian product over intuitionistic fuzzy sets”, Notes on Intuitionistic 

Fuzzy Sets [6]. Intuitionistic Fuzzy Relations Equation, Advances in Fuzzy Mathematics [23]. He worked 

on IFSs and they also discussed the decomposition theorem, representation theorem of IFSs by using cut 
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sets (𝛼, 𝛼′) -cut of IFMs [33]. Decomposition theorems of an Intuitionistic Fuzzy Sets, Notes on 

Intuitionistic Fuzzy Sets [17]. [39] studied intuitionistic Fuzzy Value and also IFMs. He defined 

intuitionistic fuzzy similarly relation and also utilizes it in clustering analysis, “intuitionistic Fuzzy Sets 

and its Application in Students Performance Determination of a Course via Normalized Euclidean Distance 

Method” [39]. Have contributed significantly for the development of cut sets [10, 13]. Representation and 

Decomposition of an intuitionistic Fuzzy Matrix using some (𝛼, 𝛼′) -Cuts [24]. Decomposed an IFMs into 

product of idempotent [25].” Application of intuitionistic Fuzzy Sets in the Academic Career of the 

Students” [18]. 

 

2. Preliminaries 

Definition 2.1: Fuzzy sets:  A fuzzy set is any set that allows its members to have different degree of 

membership function, having interval [0, 1]. 

 

Definition 2.2: Fuzzy matrix set: Fuzzy matrices play a vital role in scientific development. A Fuzzy 

matrix may be matrix that has its parts from [0, 1]. Consider a matrix  𝐴 = [𝑎𝑖𝑗]3×3 where 𝑎𝑖𝑗 ∈ [0,1], 1 ≤

𝑗 ≤ 𝑛. Then A is a Fuzzy Matrix [FM]. 

 

Definition 2.3: Fuzzy rectangular matrix: Let 𝐴 = [𝑎𝑖𝑗]𝑚×𝑛 (𝑚 ≠ 𝑛) where 𝑎𝑖𝑗 ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤

𝑗 ≤ 𝑚. Then A is a Fuzzy Rectangular Matrix. 

 

Definition 2.4: Fuzzy square matrix 

Let 𝐴 =

[
 
 
 
 
 
𝑎11𝑎12  ⋯ 𝑎1𝑗   ⋯ 𝑎1𝑛
𝑎21𝑎22  ⋯ 𝑎2𝑗   ⋯ 𝑎2𝑛
⋮       ⋮       ⋮    ⋮          ⋮     ⋮
𝑎𝑖1𝑎𝑖2  ⋯ 𝑎𝑖𝑗   ⋯ 𝑎𝑖𝑛
⋮       ⋮       ⋮    ⋮         ⋮     ⋮
𝑎𝑛1𝑎𝑛2  ⋯ 𝑎𝑛𝑗   ⋯ 𝑎𝑛𝑛]

 
 
 
 
 

 Where,  𝑎𝑖𝑗 ∈ [0,1], 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then A is a fuzzy square matrix. 

 

Definition 2.5: Fuzzy row matrix: Let A= [𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛] where 𝑎𝑖𝑗 ∈ [0,1] , 𝑗 = 1,2,… , 𝑛.Then A is 

called 1 × 𝑛 a fuzzy row matrix or row vector. 

Definition 2.6: Fuzzy column matrix: Let 𝐴 = [

𝑏1
𝑏2
    ⋮     
   𝑏𝑚

] where 𝑎𝑖[0,1], 𝑖 = 1,2, … , 𝑛.Then A is called 𝑚 ×

1 a fuzzy column matrix. 

Definition 2.7: Fuzzy diagonal matrix: A Fuzzy square matrix A= [𝑎𝑖𝑗]𝑚×𝑛 is said to fuzzy diagonal 

matrix. If 𝑎𝑖𝑗 = 0 when                            𝑖 ≠ 𝑗, 𝑎𝑖𝑗[0,1], 1 ≤ 𝐼 . 
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Definition 2.8: Fuzzy relation:  A fuzzy relation is the Cartesian product of mathematical fuzzy sets. Two 

fuzzy sets are taken as input; the fuzzy relation is then equal to the cross product of the sets which is created 

by vector multiplication 

 

Definition 2.9:  Cartesian Products: Consider two sets A and B. The set of all ordered pairs {a, b} where 

a𝜖𝐴  & 𝑏𝜖𝐵 is called cartesian product. It is denoted by 𝐴 × 𝐵. 𝐴 × 𝐵 = {(𝑎, 𝑏): 𝑎𝜖𝐴 𝑎𝑛𝑑 𝑏𝜖𝐵} 

 

Definition 2.10: Membership Function: The membership function of a fuzzy set A is denoted by  𝜇𝐴, 

𝜇𝐴: 𝐸 → [0,1]. The most commonly used range of value of membership function is the unit interval [𝑎, 𝑏]. 

 

Definition 2.11: Degree of membership function: Membership function for an intuitionistic fuzzy set A 

on the universe of discourse is defined as  𝜇𝐴: 𝑋 → [0,1],Where each element X is mapped to a value 

between 0 and 1. The value 𝜇𝐴(𝑥), 𝑥 ∈ 𝑋 is called Membership value or degree of membership function. 

The most commonly used range of value of membership function is the unit interval [𝑎, 𝑏]. 

 

Definition 2.12: Degree of non-membership Function: Non-Membership function for an intuitionistic 

fuzzy set A on the universe of discourse is defined as 𝜗𝐴: 𝑋 → [0,1],Where each element X is, mapped to a 

value between 0 and 1. The value 𝜗𝐴(𝑥), 𝑥𝜖𝑋 is called non-membership value or degree of non-

membership function. 

 

Definition 2.13: Intuitionistic fuzzy set: An Intuitionistic Fuzzy Set (IFs) A in E is defined as an object 

of the following form     𝐴 = {< 𝑋, 𝜇𝐴(𝑥), 𝜗𝐴(𝑥) >\𝑥 ∈ 𝐸} Where the functions: 𝜇𝐴: 𝐸 → [0,1] 

and 𝜗𝐴: 𝐸 → [0,1]. 

 

Definition 2.14: Intuitionistic fuzzy matrix:  An intuitionistic fuzzy matrix is a pair of fuzzy matrices, 

namely, a membership and non-membership function which represent positive and negative aspects. The 

concept of intuitionistic fuzzy matrices was introduced by pa le tal. 

 

Definition 2.15: Operations on intuitionistic fuzzy sets: Let A and B be two intuitionistic fuzzy sets on 

the universe X. Where,  A ={[ 𝑥, 𝜇𝐴(𝑥),𝛾𝐴(𝑥)]|𝑥𝜖𝑋} and B= {[ 𝑥, 𝜇𝐵(𝑥),𝛾𝐵(𝑥)]|𝑥𝜖𝑋}. 

 

Definition 2.16: The five Cartesian products of two IFSs A and B are defined as follows: Let A and B are 

two intuitionistic fuzzy sets of the universes 𝐴𝐸 𝑎𝑛𝑑 𝐵𝐹, then the Cartesian product of two IFSs is defined 

by 
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The Cartesian product " ×4 " is defined by 

Α ×4 𝐵 = {((𝑥, 𝑦) , 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) , 𝑚𝑎𝑥(𝜆𝐴(𝑥), 𝜆𝐵(𝑦))): 𝑥𝜖𝐸1, 𝑎𝑛𝑑 𝑦𝜖𝐸2}. 

The Cartesian product " ×5 " is defined by 

Α ×5 𝐵 = {((𝑥, 𝑦) , 𝑚𝑎𝑥(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) , 𝑚𝑖𝑛(𝜆𝐴(𝑥), 𝜆𝐵(𝑦))): 𝑥𝜖𝐸1, 𝑎𝑛𝑑 𝑦𝜖𝐸2}. 

 

Theorem 3.1: If 𝐴𝐸̅̅̅̅  and 𝐵𝐹̅̅̅̅  are two intuitionistic fuzzy matrices set, then  𝐴𝐸̅̅̅̅ ×4 𝐵𝐹̅̅̅̅  is also an intuitionistic 

fuzzy matrix set.  

Proof: If   𝐴𝐸̅̅ ̅̅   =  (

[𝜇𝐸11̅̅ ̅̅ ̅ , 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅ , 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅ , 𝜆𝐸13
̅̅ ̅̅ ̅]

[𝜇𝐸21̅̅ ̅̅ ̅ , 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅ , 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅ , 𝜆𝐸23
̅̅ ̅̅ ̅]

[𝜇𝐸31̅̅ ̅̅ ̅ , 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅ , 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅ , 𝜆𝐸33
̅̅ ̅̅ ̅]

) and        𝐵𝐹 ̅̅ ̅̅ =

(

[𝜇𝐹11̅̅ ̅̅ ̅ , 𝜆𝐹11
̅̅ ̅̅ ̅] [𝜇𝐹12̅̅ ̅̅ ̅ , 𝜆𝐹12

̅̅ ̅̅ ̅] [𝜇𝐹13̅̅ ̅̅ ̅ , 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅ , 𝜆𝐹21
̅̅ ̅̅ ̅] [𝜇𝐹22̅̅ ̅̅ ̅ , 𝜆𝐹22

̅̅ ̅̅ ̅] [𝜇𝐹23̅̅ ̅̅ ̅ , 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅ , 𝜆𝐹31
̅̅ ̅̅ ̅] [𝜇𝐹32̅̅ ̅̅ ̅ , 𝜆𝐹32

̅̅ ̅̅ ̅] [𝜇𝐹33̅̅ ̅̅ ̅ , 𝜆𝐹33
̅̅ ̅̅ ̅]

) are two intuitionistic fuzzy matrix sets.Thus  𝐴𝐸̅̅̅̅ ×4 𝐵𝐹̅̅̅̅ ,  

𝐴𝐸̅̅̅̅ ×4 𝐵𝐹̅̅̅̅     =

(

[𝜇𝐸11̅̅ ̅̅ ̅ , 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅ , 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅ , 𝜆𝐸13
̅̅ ̅̅ ̅]

[𝜇𝐸21̅̅ ̅̅ ̅ , 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅ , 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅ , 𝜆𝐸23
̅̅ ̅̅ ̅]

[𝜇𝐸31̅̅ ̅̅ ̅ , 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅ , 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅ , 𝜆𝐸33
̅̅ ̅̅ ̅]

) ×4 (

[𝜇𝐹11̅̅ ̅̅ ̅ , 𝜆𝐹11
̅̅ ̅̅ ̅] [𝜇𝐹12̅̅ ̅̅ ̅ , 𝜆𝐹12

̅̅ ̅̅ ̅] [𝜇𝐹13̅̅ ̅̅ ̅ , 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅ , 𝜆𝐹21
̅̅ ̅̅ ̅] [𝜇𝐹22̅̅ ̅̅ ̅ , 𝜆𝐹22

̅̅ ̅̅ ̅] [𝜇𝐹23̅̅ ̅̅ ̅ , 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅ , 𝜆𝐹31
̅̅ ̅̅ ̅] [𝜇𝐹32̅̅ ̅̅ ̅ , 𝜆𝐹32

̅̅ ̅̅ ̅] [𝜇𝐹33̅̅ ̅̅ ̅ , 𝜆𝐹33
̅̅ ̅̅ ̅]

)   

 𝐴𝐸̅̅̅̅ ×4 𝐵𝐹̅̅̅̅ = (
𝑋11 𝑋12 𝑋13
𝑋21 𝑋22 𝑋23
𝑋31 𝑋32 𝑋33

) Where, 

𝑋11 = ([𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31
̅̅ ̅̅ ̅]

)  

𝑋12 = ([𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅]

[𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅]

[𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32
̅̅ ̅̅ ̅]

) 

𝑋13 = ([𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33
̅̅ ̅̅ ̅]

) 

𝑋21 = ([𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31
̅̅ ̅̅ ̅]

) 

𝑋22 = ([𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅]

[𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅]

[𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32
̅̅ ̅̅ ̅]

) 
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𝑋23 = ([𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33
̅̅ ̅̅ ̅]

) 

𝑋31 = ([𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31
̅̅ ̅̅ ̅]

) 

𝑋32 = ([𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅]

[𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅]

[𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32
̅̅ ̅̅ ̅]

) 

𝑋33 = ([𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅]) ×4 (

[𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33
̅̅ ̅̅ ̅]

) 

𝑋11 = [𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] ×4 [𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅] + [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12
̅̅ ̅̅ ̅] ×4 [𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅] + [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅] ×4 [𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅]      

𝑋12 = [𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] ×4 [𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅] + [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12
̅̅ ̅̅ ̅] ×4 [𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅] + [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅] ×4 [𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅] 

𝑋13 = [𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] ×4 [𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅] + [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12
̅̅ ̅̅ ̅] ×4 [𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅] + [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅] ×4 [𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅] 

𝑋21 = [𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] ×4 [𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅] + [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22
̅̅ ̅̅ ̅] ×4 [𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅] + [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅] ×4 [𝜇𝐹31 ,𝜆𝐹31̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

𝑋22 = [𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] ×4 [𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅] + [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22
̅̅ ̅̅ ̅] ×4 [𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅] + [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅] ×4 [𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅] 

𝑋23 = [𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] ×4 [𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅] + [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22
̅̅ ̅̅ ̅] ×4 [𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅] + [𝜇23̅̅ ̅̅ , 𝜆𝐸23
̅̅ ̅̅ ̅] ×4 [𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅] 

𝑋31 = [𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] ×4 [𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅] + [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32
̅̅ ̅̅ ̅] ×4 [𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅] + [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅] ×4 [𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅] 

𝑋32 = [𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] ×4 [𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅] + [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32
̅̅ ̅̅ ̅] ×4 [𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅] + [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅] ×4 [𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅] 

𝑋33 = [𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] ×4 [𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅] + [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32
̅̅ ̅̅ ̅] ×4 [𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅] + [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅] ×4 [𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅] 

Now, by applying this Α ×4 𝐵 = {((𝑥, 𝑦) , 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) , 𝑚𝑎𝑥(𝜆𝐴(𝑥), 𝜆𝐵(𝑦))): 𝑥𝜖𝐸1, 𝑎𝑛𝑑 𝑦𝜖𝐸2}. 

𝑋11 = [𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)] 

+[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋12 = [𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)] 

+[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

𝑋13 = [𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)] 

+[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

𝑋21 = [𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)] 

+[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋22 = [𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]  +

[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

180  

𝑋23 = [𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)] +

[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

𝑋31 = [𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]  +

[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋32 = [𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)] 

+[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

𝑋33 = [𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)]+[𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)] +

[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

By using, Α + Β + 𝐶 = 𝑚𝑎𝑥(Α, Β) +𝐶 

 𝑋11 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]] 

+[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

 𝑋12 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]]  +

[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

 𝑋13 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]] +

[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

 𝑋21 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]]  +

[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

 𝑋22 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]]   

+[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

 𝑋23 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]]  

+[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

 𝑋31 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]]  

+[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

 𝑋32 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]]   

+[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

 𝑋33 = 𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]]  

+[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

By using, Α + Β + 𝐶 = 𝑚𝑎𝑥{𝑚𝑎𝑥(Α, Β), 𝐶}  
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 𝑋11 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11

̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸12

̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)]
} 

 𝑋12 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11

̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸12

̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]
} 

 𝑋13 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸11

̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸12

̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)]
} 

 𝑋21 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21

̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸22

̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)]
} 

 𝑋22 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21

̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸22

̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]
} 

 𝑋23 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸21

̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸22

̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)]
} 

 𝑋31 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31

̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸32

̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)]
} 

 𝑋32 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31

̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸32

̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]
} 

 𝑋33 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑖𝑛(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸31

̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅)], [𝑚𝑖𝑛(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑎𝑥(𝜆𝐸32

̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅)]] ,

[𝑚𝑖𝑛(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑎𝑥(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)]
} 

 𝐴𝐸̅̅̅̅ ×4 𝐵𝐹̅̅̅̅ = (
𝑋11 𝑋12 𝑋13
𝑋21 𝑋22 𝑋23
𝑋31 𝑋32 𝑋33

). Hence, 𝐴𝐸̅̅̅̅ ×4 𝐵𝐹̅̅̅̅  is an intuitionistic fuzzy matrix set. 

Python program for  𝑨𝑬̅̅ ̅̅ ×𝟒 𝑩𝑭̅̅ ̅̅  

#input the values 

a_11=float(input("a_11=")) 

b_11=float(input("b_11=")) 

c_11=float(input("c_11=")) 

d_11=float(input("d_11=")) 

a_12=float(input("a_12=")) 

b_12=float(input("b_12=")) 

c_12=float(input("c_12=")) 

d_12=float(input("d_12=")) 

a_13=float(input("a_13=")) 

b_13=float(input("b_13=")) 
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c_13=float(input("c_13=")) 

d_13=float(input("d_13=")) 

a_21=float(input("a_21=")) 

b_21=float(input("b_21=")) 

c_21=float(input("c_21=")) 

d_21=float(input("d_21=")) 

a_22=float(input("a_22=")) 

b_22=float(input("b_22=")) 

c_22=float(input("c_22=")) 

d_22=float(input("d_22=")) 

a_23=float(input("a_23=")) 

b_23=float(input("b_23=")) 

c_23=float(input("c_23=")) 

d_23=float(input("d_23=")) 

a_31=float(input("a_31=")) 

b_31=float(input("b_31=")) 

c_31=float(input("c_31=")) 

d_31=float(input("d_31=")) 

a_32=float(input("a_32=")) 

b_32=float(input("b_32=")) 

c_32=float(input("c_32=")) 

d_32=float(input("d_32=")) 

a_33=float(input("a_33=")) 

b_33=float(input("b_33=")) 

c_33=float(input("c_33=")) 

d_33=float(input("d_33=")) 

#creating variables for c_11 

a_1=min(a_11,c_11) 

a_2=max(b_11,d_11) 

a_3=min(a_12,c_21) 

a_4=max(b_12,d_21) 

a_5=min(a_13,c_31) 

a_6=max(b_13,d_31) 

#creating cells 
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x_11=[max((max(a_1,a_3)),a_5),max(max(a_2,a_4),a_6)] 

print("c_11=",x_11) 

#creating variables for c_12 

b_1=min(a_11,c_12) 

b_2=max(b_11,d_12) 

b_3=min(a_12,c_22) 

b_4=max(b_12,d_22) 

b_5=min(a_13,c_32) 

b_6=max(b_13,d_32) 

#creating cells 

x_12=[max((max(b_1,b_3)),b_5),max(max(b_2,b_4),b_6)] 

print("c_12=",x_12) 

#creating variables for c_13 

c_1=min(a_11,c_13) 

c_2=max(b_11,d_13) 

c_3=min(a_12,c_23) 

c_4=max(b_12,d_23) 

c_5=min(a_13,c_33) 

c_6=max(b_13,d_33) 

#creating cells 

x_13=[max((max(c_1,c_3)),c_5),max(max(c_2,c_4),c_6)] 

print("c_13=",x_13) 

#creating variables for c_21 

d_1=min(a_21,c_11) 

d_2=max(b_21,d_11) 

d_3=min(a_22,c_21) 

d_4=max(b_22,d_21) 

d_5=min(a_23,c_31) 

d_6=max(b_23,d_31) 

#creating cells 

x_21=[max((max(d_1,d_3)),d_5),max(max(d_2,d_4),d_6)] 

print("c_21=",x_21) 

#creating variables for c_22 

e_1=min(a_21,c_12) 
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e_2=max(b_21,d_12) 

e_3=min(a_22,c_22) 

e_4=max(b_22,d_22) 

e_5=min(a_23,c_32) 

e_6=max(b_23,d_32) 

#creating cells 

x_22=[max((max(e_1,e_3)),e_5),max(max(e_2,e_4),e_6)] 

print("c_22=",x_22) 

#creating variables for c_23 

f_1=min(a_21,c_13) 

f_2=max(b_21,d_13) 

f_3=min(a_22,c_23) 

f_4=max(b_22,d_23) 

f_5=min(a_23,c_33) 

f_6=max(b_23,d_33) 

#creating cells 

x_23=[max((max(f_1,f_3)),f_5),max(max(f_2,f_4),f_6)] 

print("c_23=",x_23) 

#creating variables for c_31 

g_1=min(a_31,c_11) 

g_2=max(b_31,d_11) 

g_3=min(a_32,c_21) 

g_4=max(b_32,d_21) 

g_5=min(a_33,c_31) 

g_6=max(b_33,d_31) 

#creating cells 

x_31=[max((max(g_1,g_3)),g_5),max(max(g_2,g_4),g_6)] 

print("c_31=",x_31) 

#creating variables for c_32 

h_1=min(a_31,c_12) 

h_2=max(b_31,d_12) 

h_3=min(a_32,c_22) 

h_4=max(b_32,d_22) 

h_5=min(a_33,c_32) 
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h_6=max(b_33,d_32) 

#creating cells 

x_32=[max((max(h_1,h_3)),h_5),max(max(h_2,h_4),h_6)] 

print("c_32=",x_32) 

#creating variables for c_33 

i_1=min(a_31,c_13) 

i_2=max(b_31,d_13) 

i_3=min(a_32,c_23) 

i_4=max(b_32,d_23) 

i_5=min(a_33,c_33) 

i_6=max(b_33,d_33) 

#creating cells 

x_33=[max((max(i_1,i_3)),i_5),max(max(i_2,i_4),i_6)] 

print("c_33=",x_33) 

Output:  

a_11=0.4 

b_11=0.6 

c_11=0.3 

d_11=0.6 

a_12=0.4 

b_12=0.5 

c_12=0.3 

d_12=0.7 

a_13=0.3 

b_13=0.6 

c_13=0.2 

d_13=0.4 

a_21=0.2 

b_21=0.8 

c_21=0.4 

d_21=0.6 

a_22=0.3 

b_22=0.7 

c_22=0.4 
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d_22=0.5 

a_23=0 

b_23=1 

c_23=0.2 

d_23=0.7 

a_31=0.2 

b_31=0.4 

c_31=0.2 

d_31=0.8 

a_32=0.3 

b_32=0.4 

c_32=0.2 

d_32=0.4 

a_33=0.2 

b_33=0.7 

c_33=0.3 

d_33=0.4 

c_11= [0.4, 0.8] 

c_12= [0.4, 0.7] 

c_13= [0.3, 0.7] 

c_21= [0.3, 1.0] 

c_22= [0.3, 1.0] 

c_23= [0.2, 1.0] 

c_31= [0.3, 0.8] 

c_32= [0.3, 0.7] 

c_33= [0.2, 0.7] 

 

Theorem 3.2: If 𝐴𝐸̅̅̅̅  and 𝐵𝐹̅̅̅̅  are two intuitionistic fuzzy matrix set, then  𝐴𝐸̅̅̅̅ ×5 𝐵𝐹̅̅̅̅  is also an intuitionistic 

fuzzy matrix set .  

Proof: If   𝐴𝐸̅̅ ̅̅   =  (

[𝜇𝐸11̅̅ ̅̅ ̅ , 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅ , 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅ , 𝜆𝐸13
̅̅ ̅̅ ̅]

[𝜇𝐸21̅̅ ̅̅ ̅ , 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅ , 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅ , 𝜆𝐸23
̅̅ ̅̅ ̅]

[𝜇𝐸31̅̅ ̅̅ ̅ , 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅ , 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅ , 𝜆𝐸33
̅̅ ̅̅ ̅]

) and  
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      𝐵𝐹̅̅̅̅  = (

[𝜇𝐹11̅̅ ̅̅ ̅ , 𝜆𝐹11
̅̅ ̅̅ ̅] [𝜇𝐹12̅̅ ̅̅ ̅ , 𝜆𝐹12

̅̅ ̅̅ ̅] [𝜇𝐹13̅̅ ̅̅ ̅ , 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅ , 𝜆𝐹21
̅̅ ̅̅ ̅] [𝜇𝐹22̅̅ ̅̅ ̅ , 𝜆𝐹22

̅̅ ̅̅ ̅] [𝜇𝐹23̅̅ ̅̅ ̅ , 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅ , 𝜆𝐹31
̅̅ ̅̅ ̅] [𝜇𝐹32̅̅ ̅̅ ̅ , 𝜆𝐹32

̅̅ ̅̅ ̅] [𝜇𝐹33̅̅ ̅̅ ̅ , 𝜆𝐹33
̅̅ ̅̅ ̅]

) are two intuitionistic fuzzy matrix sets. Thus  

𝐴𝐸̅̅̅̅ ×5 𝐵𝐹̅̅̅̅ ,  

𝐴𝐸̅̅̅̅ ×5 𝐵𝐹̅̅̅̅   =

(

[𝜇𝐸11̅̅ ̅̅ ̅ , 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅ , 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅ , 𝜆𝐸13
̅̅ ̅̅ ̅]

[𝜇𝐸21̅̅ ̅̅ ̅ , 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅ , 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅ , 𝜆𝐸23
̅̅ ̅̅ ̅]

[𝜇𝐸31̅̅ ̅̅ ̅ , 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅ , 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅ , 𝜆𝐸33
̅̅ ̅̅ ̅]

) ×5 (

[𝜇𝐹11̅̅ ̅̅ ̅ , 𝜆𝐹11
̅̅ ̅̅ ̅] [𝜇𝐹12̅̅ ̅̅ ̅ , 𝜆𝐹12

̅̅ ̅̅ ̅] [𝜇𝐹13̅̅ ̅̅ ̅ , 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅ , 𝜆𝐹21
̅̅ ̅̅ ̅] [𝜇𝐹22̅̅ ̅̅ ̅ , 𝜆𝐹22

̅̅ ̅̅ ̅] [𝜇𝐹23̅̅ ̅̅ ̅ , 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅ , 𝜆𝐹31
̅̅ ̅̅ ̅] [𝜇𝐹32̅̅ ̅̅ ̅ , 𝜆𝐹32

̅̅ ̅̅ ̅] [𝜇𝐹33̅̅ ̅̅ ̅ , 𝜆𝐹33
̅̅ ̅̅ ̅]

)   

 𝐴𝐸̅̅̅̅ ×5 𝐵𝐹̅̅̅̅ = (
𝑋11 𝑋12 𝑋13
𝑋21 𝑋22 𝑋23
𝑋31 𝑋32 𝑋33

) Where, 

𝑋11 = ([𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31
̅̅ ̅̅ ̅]

)  

𝑋12 = ([𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅]

[𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅]

[𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32
̅̅ ̅̅ ̅]

) 

𝑋13 = ([𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12

̅̅ ̅̅ ̅] [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33
̅̅ ̅̅ ̅]

) 

𝑋21 = ([𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31
̅̅ ̅̅ ̅]

) 

𝑋22 = ([𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅]

[𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅]

[𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32
̅̅ ̅̅ ̅]

) 

𝑋23 = ([𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22

̅̅ ̅̅ ̅] [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33
̅̅ ̅̅ ̅]

) 

𝑋31 = ([𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅]

[𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅]

[𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31
̅̅ ̅̅ ̅]

) 

𝑋32 = ([𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅]

[𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅]

[𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32
̅̅ ̅̅ ̅]

) 
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𝑋33 = ([𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32

̅̅ ̅̅ ̅] [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅]) ×5 (

[𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅]

[𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅]

[𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33
̅̅ ̅̅ ̅]

) 

𝑋11 = [𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] ×5 [𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅] + [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12
̅̅ ̅̅ ̅] ×5 [𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅] + [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅] ×5 [𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅]      

𝑋12 = [𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] ×5 [𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅] + [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12
̅̅ ̅̅ ̅] ×5 [𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅] + [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅] ×5 [𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅] 

𝑋13 = [𝜇𝐸11̅̅ ̅̅ ̅, 𝜆𝐸11
̅̅ ̅̅ ̅] ×5 [𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅] + [𝜇𝐸12̅̅ ̅̅ ̅, 𝜆𝐸12
̅̅ ̅̅ ̅] ×5 [𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅] + [𝜇𝐸13̅̅ ̅̅ ̅, 𝜆𝐸13
̅̅ ̅̅ ̅] ×5 [𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅] 

𝑋21 = [𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] ×5 [𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅] + [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22
̅̅ ̅̅ ̅] ×5 [𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅] + [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅] ×5 [𝜇𝐹31 ,𝜆𝐹31̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

𝑋22 = [𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] ×5 [𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅] + [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22
̅̅ ̅̅ ̅] ×5 [𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅] + [𝜇𝐸23̅̅ ̅̅ ̅, 𝜆𝐸23
̅̅ ̅̅ ̅] ×5 [𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅] 

𝑋23 = [𝜇𝐸21̅̅ ̅̅ ̅, 𝜆𝐸21
̅̅ ̅̅ ̅] ×5 [𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅] + [𝜇𝐸22̅̅ ̅̅ ̅, 𝜆𝐸22
̅̅ ̅̅ ̅] ×5 [𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅] + [𝜇23̅̅ ̅̅ , 𝜆𝐸23
̅̅ ̅̅ ̅] ×5 [𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅] 

𝑋31 = [𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] ×5 [𝜇𝐹11̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅] + [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32
̅̅ ̅̅ ̅] ×5 [𝜇𝐹21̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅] + [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅] ×5 [𝜇𝐹31̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅] 

𝑋32 = [𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] ×5 [𝜇𝐹12̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅] + [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32
̅̅ ̅̅ ̅] ×5 [𝜇𝐹22̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅] + [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅] ×5 [𝜇𝐹32̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅] 

𝑋33 = [𝜇𝐸31̅̅ ̅̅ ̅, 𝜆𝐸31
̅̅ ̅̅ ̅] ×5 [𝜇𝐹13̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅] + [𝜇𝐸32̅̅ ̅̅ ̅, 𝜆𝐸32
̅̅ ̅̅ ̅] ×5 [𝜇𝐹23̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅] + [𝜇𝐸33̅̅ ̅̅ ̅, 𝜆𝐸33
̅̅ ̅̅ ̅] ×5 [𝜇𝐹33̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅] 

Now, by applying this Α 𝑋5𝐵 = {((𝑥, 𝑦) , 𝑚𝑎𝑥(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) , 𝑚𝑖𝑛(𝜆𝐴(𝑥), 𝜆𝐵(𝑦))): 𝑥𝜖𝐸1, 𝑎𝑛𝑑 𝑦𝜖𝐸2}. 

𝑋11 = [𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]  +

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋12 = [𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)] +

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

𝑋13 = [𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)] +

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

𝑋21 = [𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]  

+[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋22 = [𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)] +

[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

𝑋23 = [𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)] +

[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

𝑋31 = [𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]  +

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋32 = [𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)] 

+[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

𝑋33 = [𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)]+[𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)] +

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 
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 𝑋11 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]] +

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

𝑋12 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]]  +

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]           

 𝑋13 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]] 

+[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)]             

 𝑋21 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]] 

+[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

 𝑋22 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]] +

[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

 𝑋23 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]] 

+[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

𝑋31 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹11

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹21

̅̅ ̅̅ ̅)]] 

+[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)] 

 𝑋32 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹12

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹22

̅̅ ̅̅ ̅)]] +

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)] 

 𝑋33 = 𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]] +

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

By using, Α + Β + 𝐶 = 𝑚𝑎𝑥{𝑚𝑎𝑥(Α, Β), 𝐶} 

𝑋11 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸11

̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸12

̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)]
} 

𝑋12 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸11

̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸12

̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]
} 

𝑋13 = 𝑚𝑎𝑥 {𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸11̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸11
̅̅ ̅̅ ̅, 𝜆𝐹13

̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸12̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸12
̅̅ ̅̅ ̅, 𝜆𝐹23

̅̅ ̅̅ ̅)]]}, 

[𝑚𝑎𝑥(𝜇𝐸13̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸13
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)] 

𝑋21 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21

̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22

̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)]
} 
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𝑋22 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21

̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22

̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]
} 

𝑋23 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸21̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸21

̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸22̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸22

̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸23̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸23
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)]
} 

𝑋31 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹11̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31

̅̅ ̅̅ ̅, 𝜆𝐹11
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹21̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32

̅̅ ̅̅ ̅, 𝜆𝐹21
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹31̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹31

̅̅ ̅̅ ̅)]
} 

𝑋32 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹12̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸31

̅̅ ̅̅ ̅, 𝜆𝐹12
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹22̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32

̅̅ ̅̅ ̅, 𝜆𝐹22
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹32̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹32

̅̅ ̅̅ ̅)]
} 

  𝑋33 = 𝑚𝑎𝑥 {
𝑚𝑎𝑥 [[𝑚𝑎𝑥(𝜇𝐸31̅̅ ̅̅ ̅, 𝜇𝐹13̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸31

̅̅ ̅̅ ̅, 𝜆𝐹13
̅̅ ̅̅ ̅)], [𝑚𝑎𝑥(𝜇𝐸32̅̅ ̅̅ ̅, 𝜇𝐹23̅̅ ̅̅ ̅), 𝑚𝑖𝑛(𝜆𝐸32

̅̅ ̅̅ ̅, 𝜆𝐹23
̅̅ ̅̅ ̅)]] ,

[𝑚𝑎𝑥(𝜇𝐸33̅̅ ̅̅ ̅, 𝜇𝐹33̅̅ ̅̅ ̅),𝑚𝑖𝑛(𝜆𝐸33
̅̅ ̅̅ ̅, 𝜆𝐹33

̅̅ ̅̅ ̅)]
}  

 𝐴𝐸̅̅̅̅ ×5 𝐵𝐹̅̅̅̅ = (
𝑋11 𝑋12 𝑋13
𝑋21 𝑋22 𝑋23
𝑋31 𝑋32 𝑋33

).  Hence,  𝐴𝐸̅̅̅̅ ×5 𝐵𝐹̅̅̅̅  is an intuitionistic fuzzy matrix set.. 

Python program for 𝑨𝑬̅̅ ̅̅ ×𝟓 𝑩𝑭̅̅ ̅̅  

#input the values 

a_11=float(input("a_11=")) 

b_11=float(input("b_11=")) 

c_11=float(input("c_11=")) 

d_11=float(input("d_11=")) 

a_12=float(input("a_12=")) 

b_12=float(input("b_12=")) 

c_12=float(input("c_12=")) 

d_12=float(input("d_12=")) 

a_13=float(input("a_13=")) 

b_13=float(input("b_13=")) 

c_13=float(input("c_13=")) 

d_13=float(input("d_13=")) 

a_21=float(input("a_21=")) 

b_21=float(input("b_21=")) 

c_21=float(input("c_21=")) 

d_21=float(input("d_21=")) 

a_22=float(input("a_22=")) 

b_22=float(input("b_22=")) 

c_22=float(input("c_22=")) 
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d_22=float(input("d_22=")) 

a_23=float(input("a_23=")) 

b_23=float(input("b_23=")) 

c_23=float(input("c_23=")) 

d_23=float(input("d_23=")) 

a_31=float(input("a_31=")) 

b_31=float(input("b_31=")) 

c_31=float(input("c_31=")) 

d_31=float(input("d_31=")) 

a_32=float(input("a_32=")) 

b_32=float(input("b_32=")) 

c_32=float(input("c_32=")) 

d_32=float(input("d_32=")) 

a_33=float(input("a_33=")) 

b_33=float(input("b_33=")) 

c_33=float(input("c_33=")) 

d_33=float(input("d_33=")) 

#creating variables for c_11 

a_1=2*((a_11*c_11)/(a_11+c_11)) 

a_2=2*((b_11*d_11)/(b_11+d_11)) 

a_3=2*((a_12*c_21)/(a_12+c_21)) 

a_4=2*((b_12*d_21)/(b_12+d_21)) 

a_5=2*((a_13*c_31)/(a_13+c_31)) 

a_6=2*((b_13*d_31)/(b_13+d_31)) 

#creating cells 

x_11=[max((max(a_1, a_3)),a_5),max(max(a_2,a_4),a_6)] 

print("c_11=", x_11) 

#creating variables for c_12 

b_1=2*((a_11*c_12)/(a_11+c_12)) 

b_2=2*((b_11*d_12)/(b_11+d_12)) 

b_3=2*((a_12*c_22)/(a_12+c_22)) 

b_4=2*((b_12*d_22)/(b_12+d_22)) 

b_5=2*((a_13*c_32)/(a_13+c_32)) 

b_6=2*((b_13*d_32)/(b_13+d_32)) 
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#creating cells 

x_12=[max((max(b_1,b_3)),b_5),max(max(b_2,b_4),b_6)] 

print("c_12=",x_12) 

#creating variables for c_13 

c_1=2*((a_11*c_13)/(a_11+c_13)) 

c_2=2*((b_11*d_13)/(b_11+d_13)) 

c_3=2*((a_12*c_23)/(a_12+c_23)) 

c_4=2*((b_12*d_23)/(b_12+d_23)) 

c_5=2*((a_13*c_33)/(a_13+c_33)) 

c_6=2*((b_13*d_33)/(b_13+d_33)) 

#creating cells 

x_13=[max((max(c_1,c_3)),c_5),max(max(c_2,c_4),c_6)] 

print("c_13=",x_13) 

#creating variables for c_21 

d_1=2*((a_21*c_11)/(a_21+c_11)) 

d_2=2*((b_21*d_11)/(b_21+d_11)) 

d_3=2*((a_22*c_21)/(a_22+c_21)) 

d_4=2*((b_22*d_21)/(b_22+d_21)) 

d_5=2*((a_23*c_31)/(a_23+c_31)) 

d_6=2*((b_23*d_31)/(b_23+d_31)) 

#creating cells 

x_21=[max((max(d_1,d_3)),d_5),max(max(d_2,d_4),d_6)] 

print("c_21=",x_21) 

#creating variables for c_22 

e_1=2*((a_21*c_12)/(a_21+c_12)) 

e_2=2*((b_21*d_12)/(b_21+d_12)) 

e_3=2*((a_22*c_22)/(a_22+c_22)) 

e_4=2*((b_22*d_22)/(b_22+d_22)) 

e_5=2*((a_23*c_32)/(a_23+c_32)) 

e_6=2*((b_23*d_32)/(b_23+d_32)) 

#creating cells 

x_22=[max((max(e_1,e_3)),e_5),max(max(e_2,e_4),e_6)] 

print("c_22=",x_22) 

#creating variables for c_23 
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f_1=2*((a_21*c_13)/(a_21+c_13)) 

f_2=2*((b_21*d_13)/(b_21+d_13)) 

f_3=2*((a_22*c_23)/(a_22+c_23)) 

f_4=2*((b_22*d_23)/(b_22+d_23)) 

f_5=2*((a_23*c_33)/(a_23+c_33)) 

f_6=2*((b_23*d_33)/(b_23+d_33)) 

#creating cells 

x_23=[max((max(f_1,f_3)),f_5),max(max(f_2,f_4),f_6)] 

print("c_23=",x_23) 

#creating variables for c_31 

g_1=2*((a_31*c_11)/(a_31+c_11)) 

g_2=2*((b_31*d_11)/(b_31+d_11)) 

g_3=2*((a_32*c_21)/(a_32+c_21)) 

g_4=2*((b_32*d_21)/(b_32+d_21)) 

g_5=2*((a_33*c_31)/(a_33+c_31)) 

g_6=2*((b_33*d_31)/(b_33+d_31)) 

#creating cells 

x_31=[max((max(g_1,g_3)),g_5),max(max(g_2,g_4),g_6)] 

print("c_31=",x_31) 

#creating variables for c_32 

h_1=2*((a_31*c_12)/(a_31+c_12)) 

h_2=2*((b_31*d_12)/(b_31+d_12)) 

h_3=2*((a_32*c_22)/(a_32+c_22)) 

h_4=2*((b_32*d_22)/(b_32+d_22)) 

h_5=2*((a_33*c_32)/(a_33+c_32)) 

h_6=2*((b_33*d_32)/(b_33+d_32)) 

#creating cells 

x_32=[max((max(h_1,h_3)),h_5),max(max(h_2,h_4),h_6)] 

print("c_32=",x_32) 

#creating variables for c_33 

i_1=2*((a_31*c_13)/(a_31+c_13)) 

i_2=2*((b_31*d_13)/(b_31+d_13)) 

i_3=2*((a_32*c_23)/(a_32+c_23)) 

i_4=2*((b_32*d_23)/(b_32+d_23)) 
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i_5=2*((a_33*c_33)/(a_33+c_33)) 

i_6=2*((b_33*d_33)/(b_33+d_33)) 

#creating cells 

x_33=[max((max(i_1,i_3)),i_5),max(max(i_2,i_4),i_6)] 

print("c_33=",x_33) 

Output: 

a_11=0.4 

b_11=0.6 

c_11=0.3 

d_11=0.6 

a_12=0.4 

b_12=0.5 

c_12=0.3 

d_12=0.7 

a_13=0.3 

b_13=0.6 

c_13=0.2 

d_13=0.4 

a_21=0.2 

b_21=0.8 

c_21=0.4 

d_21=0.6 

a_22=0.3 

b_22=0.7 

c_22=0.4 

d_22=0.5 

a_23=0 

b_23=1 

c_23=0.2 

d_23=0.7 

a_31=0.2 

b_31=0.4 

c_31=0.2 

d_31=0.8 
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a_32=0.3 

b_32=0.4 

c_32=0.2 

d_32=0.4 

a_33=0.2 

b_33=0.7 

c_33=0.3 

d_33=0.4 

c_11= [0.4, 0.6] 

c_12= [0.4, 0.6] 

c_13= [0.4, 0.5] 

c_21= [0.4, 0.8] 

c_22= [0.4, 0.7] 

c_23= [0.3, 0.7] 

c_31= [0.4, 0.7] 

c_32= [0.4, 0.4] 

c_33= [0.3, 0.4] 

Conclusion: In this paper, we represent an intuitionistic fuzzy matrix set (IFMs) as the Cartesian product 

of its membership and non-membership matrices. We introduce  ʺ ×1 ʺ, ʺ ×2 ʺ, ʺ ×3 ʺ, ʺ ×4 ʺ, ʺ ×5 ʺ of 

Cartesian product over intuitionistic fuzzy matrix sets. A new intuitionistic fuzzy matrix sets can be 

generated by the use of the Cartesian product of two intuitionistic fuzzy matrix sets. 
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                                        Abstract  
      In this paper we derive the notion of quadripartitioned neutrosophic topological 

group on d-algebra and using d-algebra as a tool we present the features of 

quadripartitioned neutrosophic BCK-ideal, d-algebra and quick ideals of d-algebra and 

its topological group structure. 

 

Keywords : Fuzzy Neutrosophic set, Fuzzy Neutrosophic topological space, 

Quadripartitioned Neutrosophic set and Fuzzy Neutrosophic product space. 

 

1   Introduction 

The concept of neutrosophic set was introduced by Smarnandache [28, 29]. The traditional neutrosophic 

sets is characterized by the truth value, indeterminate value and false value. Neutrosophic set is a 

mathematically tool for handling problems involving imprecise, indeterminacy inconsistent data and 

inconsistent information which exits in belief system. The concept of neutrosophic set which 

overcomes the inherent difficulties that existed in fuzzy sets and intuitionistic fuzzy sets. 

2    Preliminary Notes 

 

Definition 2.1. [1] A Fuzzy neutrosophic set A over the non-empty set X is said to 

be empty fuzzy neutrosophic set if TA(x) = 0, IA(x) = 0,FA(x) = 1,∀ x 

∈ X. It is denoted by 0N . 

A Fuzzy neutrosophic set A over the non-empty set X is said to be universe fuzzy 

neutrosophic set if TA(x) = 1, IA(x) = 1,FA(x) = 0,∀ x ∈ X. It is de- noted by 1N . 

 

3. QUADRIPARTITIONED NEUTROSOPHIC TOPOLOGICAL GROUP ON d-ALGEBRAS 

In this section we derive the notion of quadripartitioned neutrosophic sets on d-algebra and using d-algebra 

as a tool we present the featured of quadripartitioned neutrosophic BCK-ideal, d-ideal and quick ideals of 

d-algebra and its topological group structures. 

 

mailto:lydiab12022000@gamil.com


Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

200  

Definition 3.1. Let X be a d-algebra. An quadripartitioned neutrosophic set D=<x,TD, CD, UD,FD > in X is 

called an quadripartitioned neutrosophic d-algebra if it satisfies TD(x ∗ y) ≥

min(TD(x),TD(y)), CD(x, y) ≥ min(CD(x), CD(y)), UD(x ∗ y) ≤ max(UD(x), UD(y)) and FD(x ∗ y) ≤

max(FD(x), FD(y)) for all x,y ∈ X. 

 

Example 3.2. consider a d-algebra X={0,a,b,c} with the following Cayley table. 

∗ 0 a b c
0 0 0 0 0
a a 0 0 b
b b b 0 0
c c c c 0

 

Let D=<x, TD, CD , UD,FD> be an quadripartitoned neutrosophic set in X defined by  

 TD(0) = TD(a) = 0.8, TD(b) = TD(c) = 0.3 

 CD(0) = CD(a) = 0.75, CD(b) = CD(c) = 0.15 

 UD(0) = UD(a) = 0.03, UD(b) = UD(c) = 0.08 

 FD(0) = FD(a) = 0.03, FD(b) = FD(c) = 0.08 

Then D=<x, TD, CD , UD,FD> be an quadripartitoned neutrosophic d-algebra. 

 

Example 3.3. Consider a d-algebra X={0,a,b,c} with the following Cayley table. 

   

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 0
c c c a 0

 

Let D=<x, TD, CD , UD,FD> be an quadripartitoned neutrosophic set in X defined by  

 TD(0) = TD(a) = TD(c) = α1, TD(b) = α2 

 CD(0) = CD(a) = CD(c) = β1, CD(b) = β2 

 UD(0) = UD(a) = UD(c) = γ1, UD(b) = γ2 

 FD(0) = FD(a) = FD(c) = δ1FD(b) = δ2 

Where α1 > α2 , β1 > β2, γ1 <   γ2 and δ1 <   δ2 and αi + βi + γi + δi  ∈ [0,4] for  i=1,2. Then D=<x, 

TD, CD, UD,FD> be an quadripartitoned neutrosophic d-algebra. 

 

Proposition 3.4. If a quadripartitioned neutrosophic set D= < x, TD, CD, UD,FD> in X a quadripartitioned 

neutrosophic d-algebra of X, then TD(0) ≥ TD(x), CD(0) ≥ CD(x), UD(0) ≤ UD(x) and FD(0) ≤ FD(x), 

for all x,y ∈ X. 

Proof: Let x∈ X. Then TD(0) = TD(x ∗ y) ≥ min(TD(x), TD(x)) = TD(x) 

CD(0) = CD(x ∗ y) ≥ min(CD(x), CD(x)) = CD(x), 

UD(0) = UD(x ∗ y) ≤ max(UD(x), UD(y)) = UD(x) 

FD(0) = FD(x ∗ y) ≤ max(FD(x), FD(y)) = FD(x) 

 

Theorem 3.5. If {Dk/k ∈ K} is an arbitrary family of quadripartitioned neutrosophic  d-algebra of X, then 

∩ Dk is a quadripartitioned neutrosophic d-algebra of X where ∩ Dk =< x,∧ TDk ,∧ CDk ,∨ UDk ,∨ FDk >/x ∈

X. 

Proof : Let x,y∈X. Then  
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 ∧ TDk(x ∗ y) ≥∧ (min{TDk(x), TDk(y)} = (min{∧ TDk(x),∧ TDk(y)} 

 ∧ CDk(x ∗ y) ≥∧ (min{CDk(x), CDk(y)} = (min{∧ CDk(x),∧ CDk(y)} 

 ∨ UDk(x ∗ y) ≤∨ (max{UDk(x), UDk(y)} = (max{∨ UDk(x),∨ UDk(y)} 

 ∨ FDk(x ∗ y) ≤∨ (max{FDk(x), FDk(y)} = (max{∨ FDk(x),∨ FDk(y)} 

Hence ∩ Dk =< x,∧ TDk ,∧ CDk ,∨ UDk ,∨ FDk >/x ∈ X is a quadripartitiomed neutrosophic d-algebra of X. 

 

Theorem 3.6. If  a quadripartitioned neutrosophic set D= < x, TD, CD, UD,FD> in X a quadripartitioned 

neutrosophic d-algebra of X, then the sets  XT =  {x ∈ X/TD(x) = TD(0)}, XC = {x ∈ X/CD(x) = CD(0)}, 

XU = {x ∈ X/UD(x) = UD(0)} and XF = {x ∈ X/FD(x) = FD(0)} are d-subalgebras of X. 

Proof: Let x,y∈ XT. Then TD(x) = TD(0) = TD(y) and TD(x ∗ y) ≥ min(TD(x), TD(y)) = TD(0). By using 

the proposition 6.4.4, we have TD(x ∗ y) = TD(0) implies x ∗ y ∈ XT. similarly we can prove for XC, XU 

and XF. 

 

Definition 3.7. Let D=<x, TD, CD, UD,FD> be an quadripartitoned neutrosophic set in X and let 𝛼, 𝛽, 𝛾, 𝛿 ∈

[0,1]. Then the set 𝐿(TD, 𝛼) = {x ∈ X/TD(x) ≥ α}, 

𝑀(CD, 𝛽) = {x ∈ X/CD(x) ≥ β}, 𝑁(UD, 𝛾) = {x ∈ X/UD(x) ≤ γ}, 𝑃(FD, 𝛿) = {x ∈ X/FD(x) ≤ δ} are 

called T-level 𝛼 −cut ,C-level β −cut,U-level 𝛾 −cut and F-level 𝛿 −cut respectively of D. 

 

Theorem 3.8. If a quadripartitioned neutrosophic set D= < x, TD , CD, UD,FD> in X a quadripartitioned 

neutrosophic d-algebra of X, then the T-level 𝛼 −cut ,C-level β −cut,U-level 𝛾 −cut and F-level 𝛿 −cut 

are d-algebra of X for every 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0,1] 

Proof: Let x,y∈ 𝐿(TD, 𝛼). Then TD(x) ≥ α andTD(y) ≥ α. It follows that TD(x ∗ y) ≥

min(TD(x), TD(y)) = α so that x ∗ y ∈  𝐿(TD, 𝛼). Hence 𝐿(TD, 𝛼) is ad-algebra of X. Similarly we can 

prove that 𝑀(CD, 𝛽), 𝑁(UD , 𝛾) and 𝑃(FD, 𝛿) is a d- algebra of X. 

 

Theorem 3.9. Let D=<x, TD, CD, UD,FD> be an quadripartitoned neutrosophic set in X such that sets 

𝐿(TD, 𝛼),𝑀(CD, 𝛽), 𝑁(UD , 𝛾) and 𝑃(FD, 𝛿) are d-algebra of X. Then D =< 𝑥, TD, CD , UD,FD> is a 

quadripartitoned neutrosophic d-algebra of X. 

Proof: Assume that there exist x0, y0 ∈ 𝑋 such that   TD(x0 ∗ y0) < min(TD(x0), TD(y0)) 

Let α0 =
1

2
[TD(x0 ∗ y0) +  min(TD(x0), TD(y0))] then  

 TD(x0 ∗ y0) < α0 <  min(TD(x0), TD(y0)) and so x0 ∗ y0 ∉ 𝑈(TD, α0) but x0 ∗ y0 ∈ 𝑈(TD, α0). This is a 

contradiction and therefore TD(x ∗ y) ≥ min(TD(x), TD(y)). Similarly we prove CD(x ∗ y) ≥

min(CD(x), CD(x)). Now suppose that FD(x0 ∗ y0) > 𝑚𝑎𝑥 (FD(x0), FD(y0)) Let δ0 =
1

2
[FD(x0 ∗ y0) +

 max(FD(x0), FD(y0))] then max(FD(x0), FD(y0)) < δ0 < FD(x0 ∗ y0) and so x0 ∗ y0 ∉ 𝑈(FD, 𝛿0) but 

x0 ∗ y0 ∈ 𝑈(FD, δ0).  This is a contradiction and therefore FD(x ∗ y) ≤ max(FD(x), FD(y)) for all x,y∈X , 

Hence the proof. 

 

Theorem 3.10. Any d-algebra of X can be realized as T-level α −cut ,C-level β −cut,U-level γ −cut and 

F-level δ −cut d-algebra of some quadripartitioned neutrosophic d-algebra of X. 

Proof: Let S be a d-algebra of X. Let TD, CD, UD and FD in X are defined as TD(x) = {
α,                  if x ∈ S  
0,         otherwise    

, 

CD(x) = {
β,              if x ∈ S  
0,          otherwise    

, UD(x) = {
γ,                  if x ∈ S  
1,         otherwise    

and FD(x) = {
δ,                  if x ∈ S  
1,         otherwise    

, for all 
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x ∈ X Where  α, β, γ and δ are fixed numbers in (0,1) such that α + β + γ + δ < 4. Let x,y∈ X. If x,y∈ S , 

then x ∗ y ∈ S. Hence TD(x ∗ y) = TD(x) = TD(y) = α and TD(x ∗ y) ≥ min{TD(x), TD(y)},CD(x ∗ y) =

CD(x) = CD(y) = β, CD(x ∗ y) ≥ min{CD(x), CD(y)}and UD(x ∗ y) = UD(x) = UD(y) = γ and UD(x ∗

y) ≤ min{UD(x), UD(y)}, and FD(x ∗ y) = FD(x) = FD(y) = δ and FD(x ∗ y) ≤ min{FD(x), FD(y)}. 

If x,y∉ S then TD(x) =  TD(y) = 0, CD(x) = CD(y) = 0, UD(x) = UD(y) = 0 and FD(x) = FD(y) = 0. 

Then TD(x ∗ y) ≥ min{TD(x), TD(y)} = 0, CD(x ∗ y) ≥ min{CD(x), CD(y)} = 0,UD(x ∗ y) ≤

max{UD(x), UD(y)} = 0 andFD(x ∗ y) ≤ max{FD(x), FD(y)} = 0. If almost one of x,y∈ S then atleast one 

of   TD(x) and TD(y) is equal to one. Therefore TD(x ∗ y) ≥ 0 = min{TD(x), TD(y)}, CD(x ∗ y) ≥ 0 =

min{CD(x), CD(y)},UD(x ∗ y) ≤ 1 = max{UD(x), UD(y)} and FD(x ∗ y) ≤ 1 = max{FD(x), FD(y)}. hence 

D=<x, TD, CD, UD,FD> is a quadripartitioned neutrosophic d-algebra of X. 

 

Theorem 3.11. Let f be a d-homomorphism of ad-algebra X into a d-algebra Y and D a quadripartitioned 

neutrosophic d-algebra of Y. Then 𝑓−1(𝐷) is a quadripartitioned neutrosophic d-algebra of X. 

Proof: For any x,y∈ X we have f−1(TD(x ∗ y) = TD(f(x ∗ y)) = TD[f(X) ∗ f(y)] ≥

min[TD(𝑓(x)), TD𝑓((y))] = 𝑚𝑖𝑛[f−1(TD(𝑥)), f
−1(TD(𝑦))]. Similarly we can show that  

 f−1(CD(x ∗ y) ≥  𝑚𝑖𝑛[f−1(CD(𝑥)), f
−1(CD(𝑦))] 

 f−1(UD(x ∗ y) ≤  𝑚𝑎𝑥 [f−1(UD(𝑥)), f
−1(UD(𝑦))] and 

 f−1(FD(x ∗ y) ≤  𝑚𝑎𝑥[f
−1(FD(𝑥)), f

−1(FD(𝑦))]. Hence 𝑓−1(𝐷) is a quadripartitioned neutrosophic d-

algebra of X. 

 

Definition 3.12. Let X be ad-algebra. A quadripartitioned neutrosophic set  

D =< 𝑥, TD, CD, UD,FD> in X is called a quadripartiitoned neutrosophic BCK-ideal of X if it satisfies  

i. For all x ∈ X, TD(0) ≥  TD(𝑥), CD(0) ≥ CD(𝑥), UD(0) ≤ UD(𝑥), FD(0) ≤ FD(𝑥) 

ii. For all x ∈ X, TD(𝑥) ≥ min{TD(x ∗ y), TD(𝑦)}, CD(𝑥) ≥ min{CD(x ∗ y), CD(𝑦)}, UD(𝑥) ≤

 𝑚𝑎𝑥 {UD(x ∗ y), UD(𝑦)} and FD(𝑥) ≤  𝑚𝑎𝑥 {FD(x ∗ y), FD(𝑦)}. 

A quadripartitioned neutrosophic set D =< 𝑥, TD, CD, UD,FD> in X is called a quadripartiitoned 

neutrosophic d-ideal of X if it satisfies (ii) and  

iii. For all x ∈ X, TD(x ∗ y) ≥ TD(𝑥), CD(x ∗ y) ≥ CD(𝑥), UD(x ∗ y) ≤ UD(𝑥) and FD(x ∗ y) ≤ FD(𝑥). 

A quadripartitioned neutrosophic set D =< 𝑥, TD, CD, UD,FD> in X is called a quadripartiitoned 

neutrosophic d-ideal of X if it satisfies (i) and  

iv. For all x ∈ X, with x ∗ y ≠ 0,min{TD(x), TD(y)} ≥ CD(x ∗ y), min{CD(x), CD(y)} ≥

CD(x ∗ y),max{UD(x), UD(y)} ≤ UD(x ∗ y) and max{FD(x), FD(y)} ≤ FD(x ∗ y) 

 

Example 3.13. Let X={0,a,b,c,d} be a d-algebra which is not BCK-algebra with the following Cayley table. 

  

∗ 0 a b c 𝑑
0 0 0 0 0 0
a a 0 0 a 0
b b b 0 0 𝑏
c c c c 0 0
𝑑 𝑑 𝑐 𝑐 𝑎 0

 

Let D =< 𝑥, TD , CD, UD,FD> be a quadripartitioned neutrosophic  set in X defined by TD(c) =

0.03, TD(x) = 0.5, CD(c) = 0.12, CD(x) = 0.6, UD(c) = 0.4, UD(x) = 0.22 and FD(c) = 0.3, FD(x) =

0.24, for x≠c. 
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Then D =< 𝑥, TD, CD, UD,FD>  is a quadripartitioned neutrosophic BCK-ideal of X which is not a 

quadripatitioned neutrosophic d-ideal of X. 

Since TD(d ∗ c) = TD(c) = 0.03 ≤ TD(𝑑) = 0.5, CD(d ∗ c) = CD(c) = 0.12 ≤ TD(𝑑) =

0.6, UD(d ∗ c) = U(c) = 0.4 ≥ UD(𝑑) = 0.22 and FD(d ∗ c) = F(c) = 0.3 ≥ FD(𝑑) = 0.24. 

 

Example 3.15. Let X={0,a,b,c} be a d-algebra with the following Cayley table. 

∗ 0 a b c
0 0 0 0 0
a a 0 0 c
b b b 0 0
c c 0 b 0

 

Let D =< 𝑥, TD , CD, UD,FD> be a quadripartitioned neutrosophic  set in X defined by TD(b) =

0.4, TD(x) = 0.7, CD(b) = 0.23, CD(x) = 0.6, UD(b) = 0.6, UD(x) = 0.14 𝑎𝑛𝑑 FD(b) = 0.2, FD(x) =

0.12, for x≠b. Then D =< 𝑥, TD, CD, UD,FD>  is a quadripartitioned neutrosophic quick -ideal of X 

which is not a quadripatitioned neutrosophic  BCK-ideal of X. 

Since TD(b) = 0.4 ≤  min{TD(b ∗ c) = TD(0), TD(c)} = 0.7, CD(b) = 0.23 ≤  min{CD(b ∗ c) =

CD(0), CD(c)} = 0.6 , UD(b) = 0.6 ≥  max{UD(b ∗ c) = UD(0), UD(c)} = 0.14 and FD(b) = 0.2 ≥

 max{FD(b ∗ c) = FD(0), FD(c)} = 0.12. Also D is a quadriparititioned neutrosophic d-algebra. 

 

Example 3.16. Let X={0,1,2,3} be ad-algebra with the following Cayley table. 

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 2
2 2 2 0 0
3 3 3 3 0

 

Let D =< 𝑥, TD , CD, UD,FD> be a quadripartitioned neutrosophic  set in X defined by  TD(3) =

0.2, TD(x) = 0.8, CD(3) = 0.3, CD(x) = 0.7, UD(b) = 0.06, UD(x) = 0.02 𝑎𝑛𝑑 FD(b) = 0.08, FD(x) =

0.01, for x≠3. Then D =< 𝑥, TD, CD, UD,FD>  is a quadripartitioned neutrosophic BCK -ideal of X which 

is not a quadripatitioned neutrosophic  quick-ideal of X. 

Since 1 ∗ 3 = 2 ≠ 0, min{TD(1), TD(3)} = 0.2 < TD(1 ∗ 3) = TD(2) = 0.8, min{CD(1), CD(3)} =

0.3 < CD(1 ∗ 3) = CD(2) = 0.7,max{UD(1),UD(3)} = 0.06 > UD(1 ∗ 3) = UD(2) = 0.02 and 

max{FD(1), FD(3)} = 0.08 > FD(1 ∗ 3) = FD(2) = 0.01. 

 

Example 3.17. Let X={0,1,2,3} be ad-algebra with the following Cayley table. 

   

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 2
2 2 2 0 0
3 3 0 2 0

 

Let D =< 𝑥, TD , CD, UD,FD> be a quadripartitioned neutrosophic  set in X defined by  TD(2) =

0.4, TD(x) = 0.7, CD(2) = 0.3, CD(x) = 0.8, UD(b) = 0.06, UD(x) = 0.01 𝑎𝑛𝑑 FD(b) = 0.07, FD(x) =

0.02, for x≠2. Then 

 D =< 𝑥, TD, CD , UD,FD>  is a quadripartitioned neutrosophic quick -ideal of X but  not a quadripatitioned 

neutrosophic  d-algebra of X. 

Since TD(1 ∗ 3) = TD(2) = 0.4 < min{TD(1), TD(3)} = 0.7, CD(1 ∗ 3) = CD(2) = 0.3 <

min{CD(1), CD(3)} = 0.8, UD(1 ∗ 3) = UD(2) = 0.01 > max{UD(1), UD(3)} = 0.06 and FD(1 ∗ 3) =
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FD(2) = 0.07 > max{FD(1), FD(3)} = 0.02. Also D =< 𝑥, TD, CD, UD,FD>   is not a quadripartitioned 

neutrosophic  BCK-ideal of X. Since TD(2) = 0.4 < min{TD(2 ∗ 3) = TD(0),TD(3)} = 0.7, CD(2) =

0.2 < min{CD(2 ∗ 3) = CD(0), CD(3)} = 0.8, UD(2) = 0.06 > max{UD(2 ∗ 3) = UD(0), UD(3)} =

0.01 and FD(2) = 0.07 > max{FD(2 ∗ 3) = FD(0), FD(3)} = 0.02. 

 

Theorem 3.18. Let D =< 𝑥, TD, CD , UD,FD>  by a quadripartitioned neutrosophic BCK -ideal of  a d-

algebra X. Then  

i. TD, CD are order reversing. 

ii. x ∗ y ≤ z implies TD(x ∗ y) ≥ TD(z), CD(x ∗ y) ≥ CD(z), UD(x ∗ y) ≤ UD(z) and 

FD(x ∗ y) ≤ FD(z) for all x,y,z∈X. 

Proof:   

i. Let x,y∈ X with x ≤ y, then x ∗ y=0. Hence TD(x) ≥ min{TD(x ∗ y), TD(y)} =

𝑚𝑖𝑛{TD(0),TD(y)} = TD(y). Thus TD(x) ≥ TD(y). Similarly we can prove that CD is order 

reversing.  

ii. Proof is obvious. 

 

Theorem 3.19. Let D =< 𝑥, TD, CD , UD,FD>  by a quadripartitioned neutrosophic BCK -ideal of  a d-

algebra X. Then x ∗ y ≤ z implies TD(x) ≥ min{TD(y), TD(z)}, CD(x) ≥ min{CD(y), CD(z)}, UD(x) ≤

max{UD(y), UD(z)} and FD(x) ≤ max{FD(y), FD(z)} for x,y,z∈X. 

Proof: Let x,y,z∈X such that x ∗ y ≤ z. Then (x ∗ y) ∗ z = 0. Hence TD(x ∗ y) ≥ min {TD( (x ∗ y) ∗

z), TD(z)} = 𝑚𝑖𝑛{TD(0), TD(z)} = TD(z). Therefore we have TD(x) ≥ 𝑚𝑖𝑛 {TD( (x ∗ y), TD(y)} ≥

min{TD(z), TD(y)}. Thus TD(x) ≥ min{TD(y), TD(z)}. in the similar way we obtain CD(x) ≥ 

𝑚𝑖𝑛{CD(y), CD(z)},UD(x) ≤ max{UD(y), UD(z)}𝑎𝑛𝑑 FD(x) ≤ max{FD(y), FD(z)}. 

 

Theorem 3.20. If {𝐷𝑖/𝑖 ∈∧} be an arbitrary family of quadripartiitoned neutrosophic quick ideal of a d-

algebra X, then ∩ 𝐷𝑖 is a quadripartitioned neutrosophic quick ideal of X where ∩ 𝐷𝑖 = {< 𝑥,∧ TD𝑖(𝑥),∧

CD𝑖(𝑥),∧ UD𝑖(𝑥),∧ FD𝑖(𝑥) >/x ∈ X }. 

 

Theorem 3.21. If a quadripatitioned neutrosophic set D =< 𝑥, TD, CD, UD,FD>  in X is a quadripartitioned 

neutrosophic quick ideal of a d-algebra X, then the  T-level 𝛼 −cut ,C-level β −cut,U-level 𝛾 −cut and 

F-level 𝛿 −cut of D are quick ideal of X for each  𝛼, β, 𝛾, 𝛿 ∈ [0,1] 

 

Theorem 3.22. Let D =< 𝑥, TD, CD , UD,FD>  be a quadripartitioned neutrosophic set in X such that the 

sets 𝐿(TD, 𝛼), 𝑀(CD, 𝛽), 𝑁(UD, 𝛾) and 𝑃(FD, 𝛿) are quick ideals of X. Then D =< 𝑥, TD, CD, UD,FD>  is 

a quadripartitioned neutrosophic quick ideal of X. 

 

Theorem 3.23. Any quick ideal of a d-algebra X can be realized as T-level 𝛼 −cut ,C-level β −cut,U-

level 𝛾 −cut and F-level 𝛿 −cut  d-algebras of some quadripartitioned neutrosophic quick ideal of X. 

Proof: Let S be quick ideal of X. Let TD, CD, UD 𝑎𝑛𝑑 FD in X are defined as  

 TD(𝑥) = {

𝛼1,                  if x ∈ S  
   

𝛼2
  

,         otherwise    

, CD(𝑥) = {

𝛽1,                  if x ∈ S  
   

𝛽2
  

,         otherwise    

, 
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 UD(𝑥) = {

𝛾1,                  if x ∈ S  
   

𝛾2
  

,         otherwise    

, FD(𝑥) = {

𝛿1,                  if x ∈ S  
   

𝛿2
  

,         otherwise    

, for all x ∈ X where 𝛼𝑖 + 𝛽𝑖 + 𝛾𝑖 +

𝛿𝑖 < 4 for i=1,2. 

Let 0 ∈ S , we have TD(0) = 𝛼1, CD(0) =  𝛽1, UD(0) = 𝛾1 and FD(0) = 𝛿1. Hence TD(0) ≥

 TD(𝑥), CD(0) ≥ CD(𝑥), UD(0) ≤ UD(𝑥) and FD(0) ≤  FD(𝑥), for all x ∈ X.  

Let x, y ∈ X with x ∗ y ≠ 0. If x ∗ y ∈ S then x, y ∈ S. 

Hence TD( x ∗ y) = 𝑚𝑖𝑛{TD(𝑥), TD(𝑦)}, CD( x ∗ y) = 𝑚𝑖𝑛{CD(𝑥), CD(𝑦)}, UD( x ∗ y) =

𝑚𝑎𝑥{UD(𝑥), UD(𝑦)} 𝑎𝑛𝑑 FD( x ∗ y) = 𝑚𝑎𝑥{FD(𝑥), FD(𝑦)}. If x ∗ y ∉ S, then TD( x ∗ y) =  𝛼2, CD( x ∗

y) = 𝛽2, UD( x ∗ y) = 𝛾2 and FD( x ∗ y) = 𝛿2. 

Hence 𝛼2 = TD( x ∗ y) ≤ 𝑚𝑖𝑛{TD(𝑥), TD(𝑦)}, 𝛽2 = CD( x ∗ y) ≤  𝑚𝑖𝑛{TD(𝑥), TD(𝑦)}, 𝛾2 = UD( x ∗

y) ≥ 𝑚𝑎𝑥{UD(𝑥), UD(𝑦)}  and 𝛿2 = FD( x ∗ y) ≥ 𝑚𝑎𝑥{UD(𝑥), UD(𝑦)}. Hence D =< 𝑥, TD, CD, UD,FD>  

is a quadripartitioned neutrosophic quick ideal of X. 

 

Proposition 3.24. Let (D,𝜏𝐷) and (B, 𝜎𝐷) be quadripartitioned neutrosophic subspace of quadripatitioned 

neutrosophic topological spaces (X,𝜏) and (Y,𝜎) respectively and let f be a quadripartitioned 

neutrosophic continuous mapping of X into Y such that f(D)⊂ B. 

Proof: Let 𝑉𝐵  be a quadripartitioned neutrosophic set in 𝜎𝐵.then there exist V∈ 𝜎 such that 𝑉𝐵 = 𝑉 ∩ 𝐵. 

since f is quadripartitioned neutrosophic continuous it follows that 𝑓−1(V) is a quadripartitioned 

neutrosophic set in 𝜏. Hence 𝑓−1(𝑉𝐵) ∩ 𝐷 = 𝑓
−1(𝑉 ∩ 𝐵) ∩ 𝐷 = 𝑓−1(𝑉) ∩ 𝑓−1(𝐵) ∩ 𝐷 = 𝑓−1(𝑉) ∩ 𝐷 

is a quadripartitioned neutrosophic set in 𝜏𝐷. Hence the proof.  

Note: for any d-algebra X and any element the right translation of X is defined by 𝑅𝑎(𝑥) =  x ∗ a for all 

x ∈ X. and𝑅𝑥(0) = 0 = 𝑅𝑥(𝑥). 

 

Definition 3.25. Let X be a d-algebra, 𝜏 is quadripartitioned neutrosophic topology on X and Y a 

quadripartitioned neutrosophic d-algebra with IFNT 𝜏𝐷. Then D is called a quadripartitioned 

neutrosophic topological d- algebra if for each 𝑎 ∈ 𝑋, the mapping 𝑅𝑎: (𝐷, 𝜏𝐷) → (𝐷, 𝜏𝐷) defined be  

𝑅𝑎(𝑥) =  x ∗ a for all x ∈ X, is relatively quadripartitioned neutrosophic continuous. 

 

Theorem 3.26. Given d-algebra X and Y and a d-homomorphism f:X→Y, let 𝜏 and 𝜎 be the 

quadripartitioned neutrosophic topologies on X and Y respectively such that  𝜏 = 𝑓−1(𝜎). If B is a 

quadripartitioned neutrosophic topological d-algebra in Y, then 𝑓−1(𝐵) is a quadripartitioned 

neutrsophic topological d-algebra in X. 

Proof: Let  𝑎 ∈ 𝑋 and let U be a quadripartitioned neutrosophic set in 𝜏𝑓−1(𝐵). Since f is a 

quadripartitioned neutrosophic mapping of  (X,𝜏) into (Y,𝜎), By proposition 3.24 f is relatively 

quadripartitioned neutrosophic continuous mapping of (𝑓−1(𝐵), 𝜏𝑓−1(𝐵)) into (B, 𝜏𝐵). Note that there 

exist a quadripartitioned neutrosophic set V in  𝜏𝐵 such that 𝑓−1(𝑉) = 𝑈. Then T𝑅𝑎−1(𝑈)(𝑥) =  TU(x ∗

a) = T𝑓−1(𝑉)(x ∗ a) = TV(𝑓(x ∗ a)) = TV(𝑓(x) ∗ f(a)). Similarly we obtain C𝑓−1(𝑉)(x ∗ a) =  CV(𝑓(x) ∗

f(a)), U𝑓−1(𝑉)(x ∗ a) =  UV(𝑓(x) ∗ f(a)) and F𝑓−1(𝑉)(x ∗ a) =  FV(𝑓(x) ∗ f(a)). Since B is a 

quadripartitioned neutrosophic topological d-algebra in Y, then the mapping 𝑅𝑎 = (𝐵, 𝜎𝐵) → (𝐵, 𝜎𝐵) is 

relatively quadripartitioned neutrosophic continuous for each 𝑏 ∈ 𝑌. Hence T𝑅𝑎−1(𝑈)(𝑥) = TV(𝑓(x) ∗

f(a)) = TV(𝑅𝑓(𝑎)(f(x)) = T𝑅𝑓(𝑎)(𝑉)−1(𝑓(𝑥)) =  T𝑓−1(𝑅𝑎−1)(𝑉)(𝑥) similarly we get C𝑅𝑎−1(𝑈)(𝑥) =

C𝑓−1(𝑅𝑎−1)(𝑉)(𝑥), U𝑅𝑎−1(𝑈)(𝑥) = U𝑓−1(𝑅𝑎−1)(𝑉)(𝑥)and F𝑅𝑎−1(𝑈)(𝑥) = F𝑓−1(𝑅𝑎−1)(𝑉)(𝑥) which implies 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

206  

𝑅𝑎
−1(𝑈) = 𝑓−1(𝑅𝑎

−1)(𝑉)) so that 𝑅𝑎
−1(𝑈) ∩ 𝑓−1(𝐵) = 𝑓−1[𝑅𝑓(𝑎)

−1(𝑉)] ∩ 𝑓−1(𝐵) is a 

quadripartitioned neutrosophic set in 𝜏𝑓−1(𝐵). Hence the proof. 

 

Theorem 3.27. Given d-algebras X and Y and a d-isomorphism f of X onto Y, Let 𝜏 and 𝜎 be the 

quadrioartitioned neutrosophic topologies on X and Y respectively such that f(𝜏) = 𝜎. If D is a 

quadripartitioned neutrosophic topological d-algebra in X, then f(D) is a quadripartitioned neutrosophic 

topological d-algebra in Y. 

Proof: Consider the mapping 𝑅𝑏: (𝑓(𝐷), 𝜎𝑓(𝐷)) →: (𝑓(𝐷), 𝜎𝑓(𝐷)). Then we can prove that it is relatively 

quadripartitioned neutrosophic continuous for each 𝑏 ∈ 𝑌. Let UD be a quadripartitioned neutrosophic 

set in 𝜏𝐷, then there exist a quadripartitioned neutrosophic set U in 𝜏 such that UD = 𝑈 ∩ 𝐷. Since f is 

one-one it follows that f(UD)=f(𝑈 ∩ 𝐷)=f(U) ∩ f(D) which is a quadripartitioned neutrosophic set in 

𝜎𝑓(𝐷). This shows that f is relatively quadripartitioned neutrosophic open. Let V𝑓(𝐷) be a quadripartitioned 

neutrosophic set in 𝜎𝑓(𝐷). Since f is onto, for each 𝑏 ∈ 𝑌 there exist 𝑎 ∈ 𝑋 such that b = f(a). Hence  

T𝑓−1(𝑅𝑏−1(V𝑓(𝐷)))(𝑥) = T𝑓−1(𝑅𝑓(𝑎)−1(V𝑓(𝐷)))(𝑥) = T𝑅𝑓(𝑎)−1V𝑓(𝐷)(𝑓(𝑥)) = TV𝑓(𝐷)(𝑅𝑓(𝑎)𝑓(𝑥)) =

TV𝑓(𝐷)(𝑓(𝑥)  ∗ f(a)) = TV𝑓(𝐷)(𝑓(𝑥 ∗ a)) = T𝑓−1(V𝑓(𝐷))(𝑥 ∗ a) = T𝑓−1(V𝑓(𝐷))(𝑅𝑎(𝑥)) =

T𝑅𝑎−1(𝑓−1(V𝑓(𝐷)))(𝑥). similarly we prove that C𝑓−1(𝑅𝑏−1(V𝑓(𝐷)))(𝑥) = C𝑅𝑎−1(𝑓−1(V𝑓(𝐷)))(𝑥), 

U𝑓−1(𝑅𝑏−1(V𝑓(𝐷)))(𝑥) = U𝑅𝑎−1(𝑓−1(V𝑓(𝐷)))(𝑥) and F𝑓−1(𝑅𝑏−1(V𝑓(𝐷)))(𝑥)= F𝑅𝑎−1(𝑓−1(V𝑓(𝐷)))(𝑥). By 

hypothesis 𝑅𝑎 is a relatively quadripartitioned neutrosophic continuous mapping from (𝐷, 𝜏𝐷) 𝑡𝑜 (𝐷, 𝜏𝐷) 

and f is a relatively quadripartitioned neutrosophic continuous mapping from (𝐷, 𝜏𝐷) 𝑡𝑜(𝑓(𝐷), 𝜎𝑓(𝐷)). 

Hence 𝑓−1(𝑅𝑏
−1(V𝑓(𝐷)) ∩ 𝐷 = 𝑅𝑏

−1(V𝑓(𝐷)) ∩ 𝐷 is open in 𝜏𝐷. Since f is relatively quadripartitioned 

neutrosophic open, 𝑓(𝑓−1(𝑅𝑏
−1(V𝑓(𝐷)) ∩ 𝐷) =  𝑅𝑏

−1(V𝑓(𝐷)) ∩ 𝑓(𝐷) is a open in 𝜎𝑓(𝐷). Hence the proof.  
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Abstract:. The main purpose of this paper is to study the similarity and entropy of Neutrosophic Vague 

sets with multi-attribute decision-making. We propose the axiomatic definitions of the similarity measure 

and entropy of the neutrosophic vague set (NVS).Finally we apply these measures in a Multi-Attribute 

decision making problem. 

 

 Keywords: Neutrosophic Vague sets; Inclusion relation in NVS; similarity measure; entropy. 

 

 1.Introduction: Zadeh [9] put forward the theory of fuzzy sets in 1965, which is an effective method to 

deal with fuzzy information, but only limited to the truth-membership function. In actual decision-making, 

because of the fuzziness of people’s thinking and the complexity of objective things, it is difficult for 

decision-makers to evaluate only through truth-membership function. On this basis, Atanassov [2] proposed 

an intuitionistic fuzzy set, and added a falsity-membership function to the fuzzy set to represent uncertain 

information. That is to say, the intuitionistic fuzzy concentration has both truth-membership function TA(x) 

and falsity-membership function FA(x), and TA(x), FA(x) ∈ [0, 1], 0 ≤ TA(x) + FA(x) ≤ 1.. The correlation 

coefficients and weighted correlation coefficients of single-valued neutrosophic sets are proposed by Ye 

[11]. It is proved that the cosine similarity under singular concentration is a special case of the correlation 

coefficients. Furthermore, a single-valued neutrosophic cross-entropy measurement method is proposed 

and applied to multi-attribute decision-making in single-valued neutrosophic environment. Chi and Liu [3] 

applied a TOPSIS (The Order Performance technique based on Similarity to Ideal Solution) method to 

classify interval neutrosophic multi-attribute decision-making problems to alternative levels. further 

proposed the comparison rules on the basis of truth-membership function, et al.  Garg developed an entropy 

measure under IVIFSs and used the proposed measure in solving MCDM with unknown attribute weights., 

 Smarandache  proposed a neutrosopic set (NS) which is the three components of truth, indeterminacy, and 

falsity degrees and that can be denoted as T,I,F respectively. NS is characterized independently and the 

ranges of functions T,I,F are in form of real standard and the nonstandard interval [0- ,1+[  which cannot be 

used in real applications. Therefore, Wang et al. [6] proposed single valued neutrosophic set (SVNS) where 

the truth membership degree, indeterminacy-membership degree, and falsity-membership degree in form 

of real standard interval. Alkhazaleh [10], introduced a neutrosophic vague set (NV) by incorporating the 

features of SVNS and vague set . Besides that, he also defined several operators for NV and proved related 
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properties. NV has played a significant role in the uncertain information system. In certain NV sets, the 

degree of truth, falsity, and indeterminacy of a given statement cannot be strictly described in real-world 

contexts, but it is instead denoted by several possible interval values. In 1972, De Luca and Termin gave 

the axiomatization definition of fuzzy entropy to characterize the degree of uncertainty [11]. Similarity is 

mainly used to estimate the degree of similarity between two objects. Wang [3] proposes the definition of 

similarity based on distance. 

The main purpose of this paper is to study the similarity and entropy of Neutrosophic Vague sets with 

multi-attribute decision-making. We propose the axiomatic definitions of the similarity measure and 

entropy of the neutrosophic vague set (NVS) Based on the Hamming distance, cosine function and 

cotangent function, some new similarity measures and entropies of NVS are constructed. 

 

 2. Preliminaries: 

 In this section, we recall some fundamental notions and properties related to an Neutrosophic vague set. 

 

Definition 2.1. [5]   Let X be an object set and x be an element in the object set X.   A neutrosophic set A 

of X can be expressed as  A = {[x,(TA(x), IA(x), FA(x))]|x ∈ X}, where ,(TA(x), IA(x), FA(x) are real standard 

or nonstandard subsets of ]0 −, 1+[  which represent truth-membership, indeterminacy-membership, and 

falsity-membership respectively, 0 − ≤ TA(x) + IA(x) + FA(x) ≤ 3 +. 

 

Definition 2.2 : [1] A neutrosophic vague set ANV (NVS in short) on the universe of discourse X  be written 

as ANV = {〈x, 𝑇𝐴𝑁𝑉(𝑥), 𝐼𝐴𝑁𝑉(𝑥), 𝐹𝐴𝑁𝑉(𝑥)〉, 𝑥 ∈ 𝕏}, whose truth-membership, indeterminacy-membership and 

falsity-membership function is defined as 

 𝑇𝐴𝑁𝑉(𝑥) = [ 𝑇−(𝑥), 𝑇+(𝑥) ], 𝐼𝐴𝑁𝑉(𝑥) = [ 𝐼−(𝑥), 𝐼+(𝑥) ],]and 𝐹𝐴𝑁𝑉(𝑥) = [ 𝐹−(𝑥), 𝐹+(𝑥) ], 

where𝑇+(𝑥) = 1 − 𝐹−(𝑥), 𝐹+(𝑥)   = 1− 𝑇−(𝑥) and 0 ≤ 𝑇−(𝑥))+ 𝐼−(𝑥)  +𝐹−(𝑥)  ≤ 2.  

Definition 2.3: [1]   The complement of NVS ANV is denoted by 𝐴𝑁𝑉
𝐶  and it is given by 

 𝑇𝐴𝑁𝑉
𝐶  = [ 1− 𝑇+(𝑥),1− 𝑇−(𝑥)] 

  𝐼𝐴𝑁𝑉
𝐶  = [ 1− 𝐼+(𝑥), 1− 𝐼−(𝑥)] 

 𝑇𝐴𝑁𝑉
𝐶  = [ 1− 𝐹+(𝑥), 1− 𝐹−(𝑥)], 

 

3. Similarity and Entropy of Neutrosophic Vague Sets 

   Let D∗ = {x|x = ([𝑥1
− , 𝑥1

+] , ([𝑥2
− , 𝑥2

+], ([𝑥3
− , 𝑥3

+]   be the set of Neutrosophic vague values. 

 

Definition 3.1: 

 Letting S: D* × D* → [0, 1], the real function S is a similarity interval Neutrosophic vague values x and 

y, if S satisfies the following conditions: 

 (P1) 0 ≤ S(x, y) ≤ 1; 

 (P2) S(x, y) = 1 if and only if x = y; 

 (P3) S(x, y) = S(y, x); 

 (P4) For all x, y, z ∈ D* , if x ≤ y ≤ z, then S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z).  
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Definition 3.2: Let A and B be two Neutrosophic Vague Sets in the universe X, if  A ⊆ B if and only if  x 

∈ X, (TA(x) < TB(x), FA(x) < FB(x)), or (TA(x) = TB(x), FA(x) ≥ FB(x)), or (TA(x) = TB(x), FA(x) = FB(x) and 

IA(x) > IB(x)). 

 

Definition 3.3: Let x =([𝑥1
− , 𝑥1

+] , ([𝑥2
− , 𝑥2

+], ([𝑥3
− , 𝑥3

+]   ]), y = ([𝑦1
− , 𝑦1

+] , ([𝑦2
− , 𝑦2

+], (𝑦3
− , 𝑦3

+]   ]    be 

the  neutrosophic vague values. x ≤y if and only if one of the     following three conditions is true: 

 (1) [𝑥1
− , 𝑥1

+] < [𝑦1
− , 𝑦1

+]  and [𝑥3
− , 𝑥3

+] ≥[𝑦3
− , 𝑦3

+] 

 (2) [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+] and [𝑥3
− , 𝑥3

+]   ] > [𝑦3
− , 𝑦3

+]  

 (3) [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+]  ] and [𝑥3
− , 𝑥3

+]    [𝑦3
− , 𝑦3

+] and [𝑥2
− , 𝑥2

+] ≥ [𝑦2
− , 𝑦2

+].  

 Let A, B be the two Neutrosophic vague sets, A ⊆ B if and only if one of the following three conditions is 

true:  

(1)   [𝑇𝐴
−(x) , 𝑇𝐴

+(x)] < [𝑇𝐵
−(x) , 𝑇𝐵

+(x)] and [𝐹𝐴
−(x) , 𝐹𝐴

+(x)] ≥[ 𝐹𝐵
−(x) , 𝐹𝐵

+(x)]; 

 (2)  [𝑇𝐴
−(x) , 𝑇𝐴

+(x)] =[𝑇𝐵
−(x) , 𝑇𝐵

+(x)] and [𝐹𝐴
−(x) , 𝐹𝐴

+(x)] > [𝐹𝐵
−(x) , 𝐹𝐵

+(x)]; 

 (3)  [𝑇𝐴
−(x) , 𝑇𝐴

+(x) ]= [𝑇𝐵
−(x) , 𝑇𝐵

+(x)] and [𝐹𝐴
−(x) , 𝐹𝐴

+(x)] = 𝐹𝐵
−(x) , 𝐹𝐵

+(x)]; and  

        [𝐼𝐴
−(x) , 𝐼𝐴

+(x)] ≥[ 𝐼𝐵
−(x) , 𝐼𝐵

+(x)]; 

 

 

Definition 3.4: Let x =([𝑥1
− , 𝑥1

+] , ([𝑥2
− , 𝑥2

+], ([𝑥3
− , 𝑥3

+]  , y = ([𝑦1
− , 𝑦1

+] , ([𝑦2
− , 𝑦2

+], ([𝑦3
− , 𝑦3

+]     

We define the following similarity 

S(x,y) 

={  
1 −

|𝑥2
− − 𝑦2

− |+|𝑥2
+ − 𝑦2

+| 

4
                                        [𝑥1

− , 𝑥1
+] =   [𝑦1

− , 𝑦1
+], [𝑥3

− , 𝑥3
+] =    [𝑦3

− , 𝑦3
+]       

4−|𝑥1
− − 𝑦1

−|−|𝑥1
+ − 𝑦1

+|−|𝑥3
− − 𝑦3

−|−|𝑥3
+ − 𝑦3

+|

8
               𝑒𝑙𝑠𝑒                                                                         

→ (1) 

 

Theorem 3.5. S(x, y) defined in formula (1) is a similarity between x and y. 

 Proof. 

 Let x =([𝑥1
− , 𝑥1

+] , ([𝑥2
− , 𝑥2

+], ([𝑥3
− , 𝑥3

+]   ∈ D∗ , y =([𝑦1
− , 𝑦1

+] , ([𝑦2
− , 𝑦2

+], ([𝑦3
− , 𝑦3

+]   ∈ D∗ , 

 if [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+] and [𝑥3
− , 𝑥3

+] = [𝑦3
− , 𝑦3

+]    ,then S(x,y)= 1 −
|𝑥2
− − 𝑦2

− |+|𝑥2
+ − 𝑦2

+| 

4
, so 0.5≤S(x,y) ≤1; 

If [𝑥1
− , 𝑥1

+] ≠  [𝑦1
− , 𝑦1

+] and [𝑥3
− , 𝑥3

+] ≠ [𝑦3
− , 𝑦3

+]    ,then S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
 

    So 0 ≤ S(x,y) ≤0.5 

 

  (P1)  Obviously, 0 ≤ S(x, y) ≤ 1. 

  (P2)  S(x, y) = 1, if and only if S(x, y) = 1 −
|𝑥2
− − 𝑦2

− |+|𝑥2
+ − 𝑦2

+| 

4
 if and only if [𝑥1

− , 𝑥1
+]= [𝑦1

− , 𝑦1
+]  

            and   [𝑥3
− , 𝑥3

+] = [𝑦3
− , 𝑦3

+]    and [𝑥2
− , 𝑥2

+] = [𝑦2
− , 𝑦2

+] . 

  (P3) Obviously, S(x, y) = S(y, x). 

  (P4)  Let    X=([𝑥1
− , 𝑥1

+] , [𝑥2
− , 𝑥2

+], [𝑥3
− , 𝑥3

+] )  ,Y=( [𝑦1
− , 𝑦1

+] , [𝑦2
− , 𝑦2

+], [𝑦3
− , 𝑦3

+] ) , 

              Z=([𝑧1
− , 𝑧1

+],[𝑧2
− , 𝑧2

+], ([𝑧3
− , 𝑧3

+]). and x ≤ y ≤ z, then 
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1) If  [𝑥1
− , 𝑥1

+]< [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] ≥ [𝑦3
− , 𝑦3

+]   and  [𝑦1
− , 𝑦1

+]< [𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+]   ≥   [𝑧3
− , 𝑧3

+], 

           so  S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
,S(y,z)= 

4−|𝑦1
− − 𝑧1

−|−|𝑦1
+ − 𝑧1

+|−|𝑦3
− − 𝑧3

−|−|𝑦3
+ − 𝑧3

+|

8
 

              S(X ,Z)= 
4−|𝑥1

− − 𝑧1
−|−|𝑥1

+ − 𝑧1
+|−|𝑥3

− − 𝑧3
−|−|𝑥3

+ − 𝑧3
+|

8
  ,Also because [𝑥1

− , 𝑥1
+]< [𝑦1

− , 𝑦1
+]< [𝑧1

− , 𝑧1
+],                   

               [𝑥3
− , 𝑥3

+] ≥ [𝑦3
− , 𝑦3

+]   ≥   [𝑧3
− , 𝑧3

+],so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z) 

 

       2)   If  [𝑥1
− , 𝑥1

+]< [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] ≥ [𝑦3
− , 𝑦3

+]   and  [𝑦1
−,𝑦1

+]=[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+]  >   [𝑧3
− , 𝑧3

+] ,so  

                   S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
,S(y,z)= 

4−|𝑦1
− − 𝑧1

−|−|𝑦1
+ − 𝑧1

+|−|𝑦3
− − 𝑧3

−|−|𝑦3
+ − 𝑧3

+|

8
, 

                 S(X ,Z)= 
4−|𝑥1

− − 𝑧1
−|−|𝑥1

+ − 𝑧1
+|−|𝑥3

− − 𝑧3
−|−|𝑥3

+ − 𝑧3
+|

8
  , Also because [𝑥1

− , 𝑥1
+]<[𝑦1

− , 𝑦1
+]= [𝑧1

− , 𝑧1
+],      

        [𝑥3
− , 𝑥3

+] ≥ [𝑦3
− , 𝑦3

+]  > [𝑧3
− , 𝑧3

+],so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z). 

 

3) If  [𝑥1
− , 𝑥1

+]< [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] ≥ [𝑦3
− , 𝑦3

+]   and  [𝑦1
−,𝑦1

+]=[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+] =  

         [𝑧3
− , 𝑧3

+] , [𝑦2
− , 𝑦2

+]   ≥    [𝑧2
− , 𝑧2

+] ,so S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
, 

          S(y,z)=1 −
|𝑦2
−  − 𝑧2

− |+|𝑦2
+ − 𝑧2

+| 

4
 , S(x, z) =  

4−|𝑥1
− − 𝑧1

−|−|𝑥1
+ − 𝑧1

+|−|𝑥3
− − 𝑧3

−|−|𝑥3
+ − 𝑧3

+|

8
 

        Also because [𝑥1
− , 𝑥1

+]<[𝑦1
− , 𝑦1

+]= [𝑧1
− , 𝑧1

+], [𝑥3
− , 𝑥3

+] ≥ [𝑦3
− , 𝑦3

+] = [𝑧3
− , 𝑧3

+], [𝑦2
− , 𝑦2

+]  ≥

   [𝑧2
− , 𝑧2

+] 

        so   S(x, z) ≤ S(x, y), S(x, z)<0.5 ≤ S(y, z). 

 

4) If  [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] > [𝑦3
− , 𝑦3

+]   and  [𝑦1
−,𝑦1

+]<[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+]  ≥  [𝑧3
− , 𝑧3

+]  , 

      so S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
, 

S(y,z)= 
4−|𝑦1

−  − 𝑧1
−|−|𝑦1

+ − 𝑧1
+|−|𝑦3

− − 𝑧3
−|−|𝑦3

+ − 𝑧3
+|

8
, S(x, z) =  

4−|𝑥1
− − 𝑧1

−|−|𝑥1
+ − 𝑧1

+|−|𝑥3
− − 𝑧3

−|−|𝑥3
+ − 𝑧3

+|

8
, 

 

Also because [𝑥1
− , 𝑥1

+]=[𝑦1
− , 𝑦1

+]< [𝑧1
− , 𝑧1

+], [𝑥3
− , 𝑥3

+]> [𝑦3
− , 𝑦3

+]  ≥ [𝑧3
− , 𝑧3

+],so S(x, z) ≤ S(x, 

y), S(x, z) ≤ S(y, z). 

 

5) If  [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] > [𝑦3
− , 𝑦3

+]   and  [𝑦1
−,𝑦1

+]=[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+] >  [𝑧3
− , 𝑧3

+]  ,  

      so S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
, S(y,z)= 

4−|𝑦1
− − 𝑧1

−|−|𝑦1
+ − 𝑧1

+|−|𝑦3
− − 𝑧3

−|−|𝑦3
+ − 𝑧3

+|

8
, 

S(X ,Z)= 
4−|𝑥1

− − 𝑧1
−|−|𝑥1

+ − 𝑧1
+|−|𝑥3

− − 𝑧3
−|−|𝑥3

+ − 𝑧3
+|

8
 ,Also because [𝑥1

− , 𝑥1
+]=[𝑦1

− , 𝑦1
+]= [𝑧1

− , 𝑧1
+],  

 

[𝑥3
− , 𝑥3

+]> [𝑦3
− , 𝑦3

+] > [𝑧3
− , 𝑧3

+],so S(x, z) ≤ S(x, y), S(x, z) ≤ S(y, z). 

 

6) If  [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] > [𝑦3
− , 𝑦3

+]   and  [𝑦1
−,𝑦1

+]=[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+] =  

        [𝑧3
− , 𝑧3

+] , [𝑦2
− , 𝑦2

+]   ≥    [𝑧2
− , 𝑧2

+] ,so S(x,y)= 
4−|𝑥1

− − 𝑦1
−|−|𝑥1

+ − 𝑦1
+|−|𝑥3

− − 𝑦3
−|−|𝑥3

+ − 𝑦3
+|

8
, 

S(y,z)=1 −
|𝑦2
−  − 𝑧2

− |+|𝑦2
+ − 𝑧2

+| 

4
 , S(x, z) =  

4−|𝑥1
− − 𝑧1

−|−|𝑥1
+ − 𝑧1

+|−|𝑥3
− − 𝑧3

−|−|𝑥3
+ − 𝑧3

+|

8
, 

 

Also because [𝑥1
− , 𝑥1

+]=[𝑦1
− , 𝑦1

+]= [𝑧1
− , 𝑧1

+], [𝑥3
− , 𝑥3

+]>[𝑦3
− , 𝑦3

+] = [𝑧3
− , 𝑧3

+], [𝑦2
− , 𝑦2

+] 
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 ≥    [𝑧2
− , 𝑧2

+]  so, S(x, z) ≤ S(x, y), S(x, z)<0.5 ≤ S(y, z). 

 

7)  If  [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] = [𝑦3
− , 𝑦3

+], , [𝑥2
− , 𝑥2

+]   ≥    [𝑦2
− , 𝑦2

+]   and   

               [𝑦1
−,𝑦1

+]<[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+] >   [𝑧3
− , 𝑧3

+],so S(x, y)= 1 −
|𝑥2
− − 𝑦2

− |+|𝑥2
+ − 𝑦2

+| 

4
,           

               S(y,z)= 
4−|𝑦1

− − 𝑧1
−|−|𝑦1

+ − 𝑧1
+|−|𝑦3

− − 𝑧3
−|−|𝑦3

+ − 𝑧3
+|

8
, S(X ,Z)= 

4−|𝑥1
− − 𝑧1

−|−|𝑥1
+ − 𝑧1

+|−|𝑥3
− − 𝑧3

−|−|𝑥3
+ − 𝑧3

+|

8
 

    

         Also because [𝑥1
− ,   𝑥1

+]=[𝑦1
− , 𝑦1

+]< [𝑧1
− , 𝑧1

+], [𝑥3
− , 𝑥3

+]=[𝑦3
− , 𝑦3

+] > [𝑧3
− , 𝑧3

+], [𝑥2
− , 𝑥2

+] >     

          [𝑦2
− , 𝑦2

+]. 𝑆o S(x, z) <0.5≤S(x, y), S(x, z) ≤ S(y, z). 

 

8)   If  [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] = [𝑦3
− , 𝑦3

+], , [𝑥2
− , 𝑥2

+]   ≥    [𝑦2
− , 𝑦2

+]   and  

              [𝑦1
−,𝑦1

+]=[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+] >    [𝑧3
− , 𝑧3

+],  so S(x, y)= 1 −
|𝑥2
− − 𝑦2

− |+|𝑥2
+ − 𝑦2

+| 

4
 

              S(y,z)= 
4−|𝑦1

−  − 𝑧1
−|−|𝑦1

+ − 𝑧1
+|−|𝑦3

− − 𝑧3
−|−|𝑦3

+ − 𝑧3
+|

8
, S(X ,Z)=  

4−|𝑥1
− − 𝑧1

−|−|𝑥1
+ − 𝑧1

+|−|𝑥3
− − 𝑧3

−|−|𝑥3
+ − 𝑧3

+|

8
, 

             Also because [𝑥1
− , 𝑥1

+]=[𝑦1
− , 𝑦1

+]= [𝑧1
− , 𝑧1

+], [𝑥3
− , 𝑥3

+]=[𝑦3
− , 𝑦3

+] > [𝑧3
− , 𝑧3

+], [𝑥2
− , 𝑥2

+] ≥

               [𝑦2
− , 𝑦2

+].   𝑆o S(x, z) <0.5≤S(x, y), S(x, z) ≤ S(y, z). 

 

9)  If  [𝑥1
− , 𝑥1

+]= [𝑦1
− , 𝑦1

+], [𝑥3
− , 𝑥3

+] = [𝑦3
− , 𝑦3

+], , [𝑥2
− , 𝑥2

+]   ≥    [𝑦2
− , 𝑦2

+]   and    

                [𝑦1
−,𝑦1

+]=[𝑧1
− , 𝑧1

+], [𝑦3
− , 𝑦3

+] =  [𝑧3
− , 𝑧3

+][𝑦2
− , 𝑦2

+] ≥    [𝑧2
− , 𝑧2

+],    

       So S(x, y)= 1 −
|𝑥2
− − 𝑦2

− |+|𝑥2
+ − 𝑦2

+| 

4
,  S(y, z) = 1 −

|𝑦2
− − 𝑧2

− |+|𝑦2
+ − 𝑧2

+| 

4
  

             S(x, z) =  1 −
|𝑥2
− − 𝑧2

− |+|𝑥2
+ − 𝑧2

+| 

4
 , Also because [𝑥1

− , 𝑥1
+]=[𝑦1

− , 𝑦1
+]= [𝑧1

− , 𝑧1
+],  

             [𝑥3
− , 𝑥3

+]=[𝑦3
− , 𝑦3

+] = [𝑧3
− , 𝑧3

+], [𝑥2
− , 𝑥2

+] ≥    [𝑦2
− , 𝑦2

+] ≥    [𝑧2
− , 𝑧2

+]   

                 so S(x, z) <0.5≤S(x, y), S(x, z) ≤ S(y, z). 

 Therefore, defined in formula (1)  a similarity between x and y is defined. 

 

Entropy of Neutrosophic vague Value  

Since entropy is also an important means in the analysis of uncertainty information, we give the concept of 

entropy of Neutrosophic vague value. 

 

Definition 3.6: Letting E: D* → [0, 1], the real function E is an entropy of neutrosophic vague value, if  E 

satisfies the following conditions: 

(N1) E(x) = 0 if and only if [𝑥1
− , 𝑥1

+ ] = [0, 0] or [1, 1] and[𝑥3
− , 𝑥3

+] = [0, 0] or [1, 1];  

(N2) E(x) = 1 if and only if [[𝑥1
− , 𝑥1

+] = [𝑥2
− , 𝑥2

+] = [𝑥3
− , 𝑥3

+] = [0.5, 0.5]; 

(N3) E(x) = E(xc ); 

(N4)  Let  x =([𝑥1
− , 𝑥1

+] , ([𝑥2
− , 𝑥2

+], ([𝑥3
− , 𝑥3

+] ∈ 𝐷∗ , y=[𝑦1
− , 𝑦1

+],[𝑦2
− , 𝑦2

+], [𝑦3
− , 𝑦3

+] ∈ 𝐷∗then  

  yc= ([𝑦3
− , 𝑦3

+ ], [1 −𝑦2
+,1 −𝑦2

−  ], [𝑦1
− , 𝑦1

+] , E(x)≤ E(y), that is more ambiguous than y,                                  

if x ≤ y, when y ≤yc , or if y ≤ x, when yc ≤ y, because Entropy is usually calculated by  the similarity of x 

and xc , so we define the following entropy 
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E(x)=S(x,xc)= {    
1 −

|2𝑥2
− − 1 |+|2𝑥2

+ − 1| 

4
                            [𝑥1

− , 𝑥1
+] = [𝑥3

− , 𝑥3
+] = [ 0.5,0.5]      

4−2|𝑥1
− − 𝑥3

−|−2|𝑥1
+−  𝑥3

+|

8
                              𝑒𝑙𝑠𝑒                                                                 

→ (2) 

 

Theorem 3. 7 E(x) defined as (2) is an entropy of x 

    Proof:  If [𝑥1
− , 𝑥1

+] = [𝑥3
−  , 𝑥3

+] = [ 0.5,0.5]  , 𝑡ℎ𝑒𝑛 𝐸(𝑥) = 1 −
|2𝑥2

− − 1 |+|2𝑥2
+ − 1| 

4
  

so 0.5 ≤  E(x) ≤  1;  otherwise, E(x) =
4 − 2|𝑥

1
−  −  𝑥3

−|−2|𝑥1
+ −  𝑥3

+|

8
 , so 0 ≤  E(x)  ≤  0.5. 

     (N1)   E(x) = 0 if and only if[[𝑥1
− , 𝑥1

+ ] = 1and [𝑥3
− , 𝑥3

+] =1,also because  

                [𝑥1
− , 𝑥1

+][0.1] 𝑎𝑛𝑑 [𝑥3
− , 𝑥3

+]∈ [0.1], so [𝑥1
− , 𝑥1

+ ] = [0, 0] or [1, 1] and[𝑥1
− , 𝑥1

+] =               

               [1,1]or [0,0]; 

     (N2)   Obviously E(x) = 1 if and only if [[𝑥1
− , 𝑥1

+] = [𝑥2
− , 𝑥2

+] = [𝑥3
− , 𝑥3

+] = [0.5, 0.5]; 

     (N3)  Obviously  E(x) = E(xc ); 

     (N4)   Let  x =([𝑥1
− , 𝑥1

+] , ([𝑥2
− , 𝑥2

+], ([𝑥3
− , 𝑥3

+] ∈ 𝐷∗ ,   ,y=[𝑦1
− , 𝑦1

+] , 

               [𝑦2
− ,  𝑦2

+], ([𝑦3
− , 𝑦3

+] ∈ 𝐷∗    , then y= ([𝑦3
− , 𝑦3

+ ], [1 −𝑦2
+, 1 −𝑦2

−  ], [𝑦1
− , 𝑦1

+] , 

            if x ≤ y, when  y ≤ yc, because 

E(x)=    {    
1 −

|2𝑥2
− − 1 |+|2𝑥2

+ − 1| 

4
                            [𝑥1

− , 𝑥1
+] = [𝑥3

− , 𝑥3
+] = [ 0.5,0.5]      

4−2|𝑥1
− − 𝑥3

−|−2|𝑥1
+−  𝑥3

+|

8
                              𝑒𝑙𝑠𝑒                                                                 

          

 

 

E(y)= {    
1 −

|2𝑦2
− − 1 |+|2𝑦2

+ − 1| 

4
                            [𝑥1

− , 𝑥1
+] = [𝑥3

− , 𝑥3
+] = [ 0.5,0.5]      

4−2|𝑦1
− − 𝑦3

−|−2|𝑦1
+−  𝑦3

+|

8
                              𝑒𝑙𝑠𝑒                                                                 

 

 

1) If [𝑦1
− , 𝑦1

+] < [𝑦3
− , 𝑦3

+][, 𝑦3
− , 𝑦3

+] ≥ [𝑦1
− , 𝑦1

+] and [𝑥1
− , 𝑥1

+] < [𝑦1
− , 𝑦1

+],[ 𝑥3
− , 𝑥3

+] ≥ 

              [𝑦3
− , 𝑦3

+], 𝑠𝑜  [𝑥1
− , 𝑥1

+] < [𝑦1
− , 𝑦1

+]< [𝑦3
− , 𝑦3

+] ≤   [  𝑥3
− , 𝑥3

+], therefore [ 𝑥1
− , 𝑥3

−] ≥                 [𝑦1
− , 𝑦3

−],     [ 𝑥1
+ , 𝑥3

+] ≥

 [𝑦1
+ , 𝑦3

+] also because ,E(x)=
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
  

             𝐸(𝑦) =
4−2|𝑦1

− − 𝑦3
−|−2|𝑦1

+ − 𝑦3
+|

8
, 𝑠𝑜 𝐸(𝑥) ≤ 𝐸(𝑦). 

 

2)  If [𝑦1
− , 𝑦1

+] < [𝑦3
− , 𝑦3

+][, 𝑦3
− , 𝑦3

+] ≥ [𝑦1
− , 𝑦1

+] and [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+],[ 𝑥3
− , 𝑥3

+] > 

               [𝑦3
− , 𝑦3

+], 𝑠𝑜  [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+]< [𝑦3
− , 𝑦3

+] ≤   [  𝑥3
− , 𝑥3

+], therefore 

                  [ 𝑥1
− , 𝑥3

−] ≥  [𝑦1
− , 𝑦3

−], [ 𝑥1
+ , 𝑥3

+] ≥  [𝑦1
+ , 𝑦3

+]  also because 

        E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
, 𝐸(𝑦) =

4−2|𝑦1
− − 𝑦3

−|−2|𝑦1
+ − 𝑦3

+|

8
  𝑠𝑜 𝐸(𝑥) ≤ 𝐸(𝑦). 

 

3)   If [𝑦1
− , 𝑦1

+] < [𝑦3
− , 𝑦3

+],[ 𝑦3
− , 𝑦3

+] ≥ [𝑦1
− , 𝑦1

+] and [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+],[ 𝑥3
− , 𝑥3

+] = 

     [𝑦3
− , 𝑦3

+], [ 𝑥2
− , 𝑥2

+] =  [𝑦2
− , 𝑦2

+]  𝑠𝑜  [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+]< [𝑦3
− , 𝑦3

+] = 

     [  𝑥3
− , 𝑥3

+],therefore [ 𝑥1
− , 𝑥3

−] ≥  [𝑦1
− , 𝑦3

−], [ 𝑥1
+  , 𝑥3

+] ≥  [𝑦1
+ , 𝑦3

+] also because          

     E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
, 𝐸(𝑦) =

4−2|𝑦1
− − 𝑦3

−|−2|𝑦1
+ − 𝑦3

+|

8
, 𝑠𝑜 𝐸(𝑥) ≤ 𝐸(𝑦). 
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      4) If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+][, 𝑦3
− , 𝑦3

+] > [𝑦1
− , 𝑦1

+] contradiction 

 

     5)  If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+], [𝑦2
− , 𝑦2

+] ≥ [1 − 𝑦2
+, 1 − 𝑦1

−]𝑎𝑛𝑑 [𝑥1
− , 𝑥1

+] < 

           [𝑦1
− , 𝑦1

+],[ 𝑥3
− , 𝑥3

+] ≥  [𝑦3
− , 𝑦3

+], 𝑠𝑜  [𝑥1
− , 𝑥1

+] < [𝑦1
− , 𝑦1

+]= [𝑦3
− , 𝑦3

+] ≤   [  𝑥3
− , 𝑥3

+], 

         If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+] = [0.5,0.5],   then  E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
, 

     𝐸(𝑦) = 1 −
|2𝑦2

− − 1 |+|2𝑦2
+ − 1| 

4
, 𝑠𝑜 𝐸(𝑥) < 0.5 ≤ 𝐸(𝑦).  

 If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+]≠   [0.5,0.5], then E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
,                                             𝐸(𝑦) =

4−2|𝑦1
− − 𝑦3

−|−2|𝑦1
+ − 𝑦3

+|

8
,  then[ 𝑥1

− , 𝑥3
−] ≥  [𝑦1

− , 𝑦3
−] = 0 , [ 𝑥1

+ , 𝑥3
+] ≥  [𝑦1

+ , 𝑦3
+]=0,  

so 𝐸(𝑥) ≤ 𝐸(𝑦) 

 

       6)  If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+], [𝑦2
− , 𝑦2

+] ≥  [1 − 𝑦2
+, 1 − 𝑦1

−]𝑎𝑛𝑑 [𝑥1
− , 𝑥1

+] = 

           [𝑦1
− , 𝑦1

+],[ 𝑥3
− , 𝑥3

+] >  [𝑦3
− , 𝑦3

+], 𝑠𝑜  [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+]= [𝑦3
− , 𝑦3

+] < [  𝑥3
−  , 𝑥3

+],  

          If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+] = [0.5,0.5], 𝑡ℎ𝑒𝑛 E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
, 

    𝐸(𝑦) = 1 −
|2𝑦2

− − 1 |+|2𝑦2
+ − 1| 

4
, 𝑠𝑜 𝐸(𝑥) < 0.5 ≤ 𝐸(𝑦).  

  If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+]≠ [0.5,0.5], then E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
, 𝐸(𝑦) =

4−2|𝑦1
− − 𝑦3

−|−2|𝑦1
+ − 𝑦3

+|

8
 

             then [ 𝑥1
− , 𝑥3

−] ≥  [𝑦1
− , 𝑦3

−] = 0 , [ 𝑥1
+  , 𝑥3

+] ≥  [𝑦1
+ , 𝑦3

+] =0 ,so 𝐸(𝑥) ≤ 𝐸(𝑦). 

 

 7)  If [𝑦1
− , 𝑦1

+] = [𝑦3
− , 𝑦3

+], [𝑦2
− , 𝑦2

+] ≥  [1 − 𝑦2
+, 1 − 𝑦1

−]𝑎𝑛𝑑 [𝑥1
− , 𝑥1

+] = 

     [𝑦1
− , 𝑦1

+],[ 𝑥3
− , 𝑥3

+] =  [𝑦3
− , 𝑦3

+], [𝑥2
− , 𝑥2

+] ≥ [𝑦2
− , 𝑦2

+], so if [𝑥1
− , 𝑥1

+] = 

       [𝑦1
− , 𝑦1

+]= [𝑦3
− , 𝑦3

+] = [  𝑥3
−  , 𝑥3

+] = [0.5,0.5] , 𝑡ℎ𝑒𝑛   

       E(x)=1− 
|2𝑥2

− − 1 |+|2𝑥2
+ − 1| 

4
, , 𝐸(𝑦) = 1 −

|2𝑦2
− − 1 |+|2𝑦2

+ − 1| 

4
  , also because   [𝑥2

− , 𝑥2
+] ≥     [𝑦2

− , 𝑦2
+],    

          𝑠𝑜 𝐸(𝑥) < 0.5 ≤ 𝐸(𝑦). 

                If [𝑥1
− , 𝑥1

+] = [𝑦1
− , 𝑦1

+]= [𝑦3
− , 𝑦3

+] = [  𝑥3
− , 𝑥3

+] ≠ [0.5,0.5] then 

      E(x)= 
4−2|𝑥1

− − 𝑥3
−|−2|𝑥1

+ − 𝑥3
+|

8
, 𝐸(𝑦) =

4−2|𝑦1
− − 𝑦3

−|−2|𝑦1
+ − 𝑦3

+|

8
,then[ 𝑥1

− , 𝑥3
−] =  [𝑦1

− , 𝑦3
−] = 0 , [ 𝑥1

+ , 𝑥3
+] =         [𝑦1

+ , 𝑦3
+] 

=0,so 𝐸(𝑥) ≤ 𝐸(𝑦). 

   As the same reason, we can easily get the conclusion that if y ≤x, when yc≤y, then  E(x) ≤ E(y).  

  Therefore, as defined in formula (2), an entropy is defined. 

  

    4. New Similarity and Entropy of Neutrosophic vague Sets 

Definition 4.1 : Let A, B be the two Neutrosophic vague sets, the real function S is a similarity 

between Neutrosophic vague sets A and B, if S satisfies the following conditions:  

(P1)  0 ≤ S(A, B) ≤ 1;  

(P2)  S(A, B) = 1 if and only if A = B;  

(P3)  S(A, B) = S(B, A); 

(P4)  For all A, B, C ∈ NVSs, if A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B), S(A, C) ≤ S(B, C). 

 

Definition 4.2: Let A be the an Neutrosophic vague set, the real function E is the entropy of 

Neutrosophic vague  sets, if E satisfies the following conditions: 

 (N1) E(A) = 0 if and only if [ 𝑇𝐴
− , 𝑇𝐴

+] = [0, 0]or[1, 1], [𝐹𝐴
− , 𝐹𝐴

+] = [0, 0]or[1, 1]; 

 (N2) E(A) = 1 if and only if [𝑇𝐴
− , 𝑇𝐴

+ ] = [𝐼𝐴
− , 𝐼𝐴

+ ] = [𝐹𝐴
− , 𝐹𝐴

+ ] = [0.5, 0.5]; 
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 (N3) E(A) = E(AC); 

(N4) Let A, B be the two neutrosophic vague sets, E(A) ≤ E(B), that is, B is more ambiguous than A, 

if A ⊆ B, when B ⊆ B c , or B ⊆A, when Bc ⊆B. 

            By aggregating the similarities and entropies of Neutrosophic vague values, we have the 

following similarity and entropy of Neutrosophic vague sets.  

 

Theorem 4.3. Let X = {x1, x2, ...xn} be an Neutrosophic vague set, s : D* × D* → [0, 1] is the 

similarity of  neutrosophic vague sets, ∀A, B ⊆ X, the similarity S of A and B is defined as follows: 

                      S(A, B) =  
1

𝑛
∑ s(A(𝑥𝑖), B(𝑥𝑖)).
𝑛
𝑖=1              ……..(3) 

     Theorem 4.4.  Let X = {x1, x2, ...xn} be an Neutrosophic vague set,  e : D* → [0, 1]  

     is the entropy of  neutrosophic vague sets, ∀A,B ⊆ X, the entropy E of A is defined as      

     follows: 

                             E(A) = 
1

𝑛
∑ e(A(xi)𝑛
𝑖=1  

      If the weights W = (w1, w2, ..., wn) is added, wi ∈ [0, 1] and ∑ 𝑊𝑖
𝑛
𝑖=1 = 1, then  

      the similarities of A and B and the entropy of A  are defined as follows: 

                              S(A, B)= 
1

𝑛
∑ 𝑤𝑖.s(A(𝑥𝑖), B(𝑥𝑖)).
𝑛
𝑖=1  

                              E(A) = 
1

𝑛
∑ 𝑤𝑖 . e(A(xi)
𝑛
𝑖=1 ). 

 

5. Multi-Attributes Decision Making Based on a New Similarity Measure  

        Suppose that there is a group with four possible alternatives to invest: (1) A1 is a food company; (2) 

A2 is a car company; (3) A3 is a weapons company; (4) A4 is a computer company. Investment companies 

must make decisions based on three criteria: (1) C1 is growth analysis; (2) C2 is risk analysis; and (3) C3 is 

a environmental impact analysis. By using Neutrosphic vague information, decision makers evaluated four 

possible alternatives based on the above three criteria and the evaluation are expressed as three neutrosophic 

vague sets (Table 1) 

 

Table 1: The evaluation of Alternative 

 

 

  

    

 

 

 

 

 

 

 

 

 

            C1                  C2                         C3 

    A1                                           

([0.2,0.7], [0.2,0.4], [0.3,0.8])                                                               

 

([0.0,0.2], [0.8,0.9], [0.8,1]) 

 

([0.3,0.4], [0.6,0.8], [0.6,0.7]) 

 

A2 

 

([0.1,0.5], [0.5,0.7], [0.5,0.9]) 

 

([0.4,0.5], [0.3,0.7], [0.5,0.6]) 

 

([0.5,1], [0.3,0.5], [0.0,0.5]) 

 

A3 

 

([0.1,0.3], [0.2,0.4],[0.7,0.9]) 

 

([0.3,0.9], [0.5,0.8], [0.1,0.7]) 

 

([0.5,0.8], [0.5,0.8], [0.2,0.5]) 

 

A4 

 

([0.4,0.6], [0.1,0.4],[0.4,0.6]) 

 

([0.2,0.8], [0.7,0.9], [0.2,0.8]) 

 

([0.1,0.7], [0.7,0.9], [0.3,0.9]) 
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 We use the newly proposed similarity and entropy to get the best alternative. The best choice is  

A = ([1, 1], [1, 1], [0, 0]). For convenience, we use Aij that indicates the Neutrosophic Vague value in line 

i column j. It is available from (1),  

S(A11, A) = 0.225, S(A12, A) = 0.05, S(A13, A) = 0.175, 

S(A21, A) = 0.15, S(A22, A) = 0.225, S(A23, A) = 0.0.375,    

S(A31, A) = 0.1, S(A32, A) = 0.3, S(A33, A) = 0.325, 

S(A41, A) = 0.25, S(A42, A) = 0.3, S(A43, A) = 0.575.  

Thus, by (3), we can obtain that   S(A1, A) ≈0.15, for the same reason, we can obtain that S(A2, A) ≈ 0.25,  

S(A3, A) ≈ 0.241,   S(A4, A) ≈ 0.375. Therefore, S(A4, A) > S(A2, A) > S(A3, A) > S(A1, A), so A4 is the 

best choice. 

  

 6. Conclusions  

In this paper, we have introduced novel similarity and entropy measures for Neutrosophic Vague Sets 

(NVS) and applied them to multi-attribute decision-making problems. The newly proposed measures 

effectively handle the uncertainty and ambiguity present in real-world decision-making environments, 

making them more suitable for complex systems where decision attributes are not crisply defined. 
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Abstract 

This paper presents a Neutrosophic Vague approach to solving transportation problem using Trapezoidal 

Neutrosophic Vague Numbers (NVTNVN). By incorporating degrees of truth, indeterminacy, and falsity, 

NVTNVN effectively model uncertainty in transportation data. We develop an algorithm to optimize 

transportation costs under vague conditions, demonstrated through practical examples and we find the 

transportation cost using Modified distribution method (MODI), also we compare the initial basic feasible 

solution using the method of Vogel’s approximation method, least cost method and North west method. 

 

Keywords: Neutrosophic Vague approach, Trapezoidal Neutrosophic vague numbers, Neutrosophic vague 

transportation problem, Modified distribution method. 

 

1.Introduction: 

Fuzzy set was introduced by Zadeh in the year 1965 [11], According to its definition, it is a set where each 

member is represented along with a membership grade, which is represented by a real integer in a closed 

interval ranging from 0 to 1.Neutosopic sets, which consider truth, falsity, and indeterminacy as three 

distinct components, are a generalization of both fuzzy and intuitionistic sets and it was presented by F. 

Smarandache in 1998 [10].Each components can take values from the real interval [0, 1] .In a Neutrosophic 

set, where they are not necessarily dependent on one another and may differ independently. The 

Transportation problem was introduced by Frank L. Hitchcock developed it in 1941[4]. It is a special case 

of linear programming problem that involves determining the best cost-effective way to distribute a product 

from multiple suppliers to multiple consumers while reducing total transportation costs. A vague set is a 

generalization of the traditional fuzzy set, introduced to handle uncertainty in a more flexible way. These 

numbers are used to handle incomplete information when we don't have complete confidence. They 

represent the degree to which an element is definitely true and definitely false, respectively. Vague sets 

were introduced by Gau and Buehrer in the late 1990s as an extension of fuzzy sets. A numerical 

representation obtained from fuzzy sets is called a vague number. It is described as a number that has two 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

218  

bounds, an upper bound and a lower bound, that indicate the range that the true value is most likely to fall 

inside. The fuzzy number provides a more understandable means of expressing uncertainty in 

computational and practical applications, and is particularly helpful when working with incorrect or 

incomplete numerical data. A Neutrosophic vague number (NVN) is a concept in Neutrosophic logic and 

set theory, which deals with uncertainty, vagueness, and indeterminacy in decision-making processes.  

                        In this paper, we solved the transportation problem using trapezoidal Neutrosophic vague 

numbers, and we focus to solve the transportation problem using the method of Modified distribution 

method, The Modified distribution method also known as the Modified minimum cost method. It is an 

efficient method for finding the optimal solution for minimizing the cost of transportation goods from 

multiple sources to multiple destinations, and we compare the initial basic feasible solution using the 

method of Vogel’s approximation method, north west method, and least cost method. Our goal is to identify 

the strategy that will reduce the total cost of transportation among the three approaches, and we compare 

these strategies to see which is the least expensive and find the optimality. 

 

2.Preliminaries: 

Definition 2.1[8]: Let X be the universe. Neutrosophic set A in X is characterized by a membership 

 grade 𝑇𝐴, indeterminancy grade 𝐼𝐴 and non-membership grade  𝐹𝐴, 

where, 𝑇𝐴:X→[0,1], 𝐼𝐴:X→[0,1],  𝐹𝐴:X→[0,1]. It can be written as A={(x,𝑇𝐴(x),𝐼𝐴(x),𝐹𝐴(x)/x𝜖X, satisfying 

0≤ 𝑇𝐴(x) +𝐼𝐴(x)+ 𝐹𝐴(x)≤3. 

 

Definition 2.2[5]:   A Vague set A on a non empty set X is a pair (𝑇𝐴,𝐹𝐴), where 𝑇𝐴:X→ [0,1] and 𝐹𝐴:X→

[0,1] are true membership and false membership functions, respectively, such that 

 0≤ 𝑇𝐴(𝑥) + 𝐹𝐴(𝑥) ≤1 for any x∈ 𝑋. Let X and Y be non -empty sets. A Vague relation R of X to Y is a 

Vague set R on X×Y That is R= (𝑇𝐴,𝐹𝐴),where 𝑇𝑅:X×Y→ [0,1],𝐹𝑅: X×Y→ [0,1] and satisfy the 

condition:0≤ 𝑇𝑅(x,y) +𝐹𝑅(x,y)≤1 for any x,y∈X. 

 

Definiton2.3[5]: A Neutrosophic Vague set 𝐴𝑁𝑉  on the universe of discourse X be written as 

                         𝐴𝑁𝑉 ={〈𝑥, 𝑇̂𝐴𝑁𝑉 (𝑥), 𝐼𝐴𝑁𝑉 (𝑥), 𝐹̂𝐴𝑁𝑉 (𝑥), 𝑥 ∈ 𝑋〉}, 

whose truth-membership, indeterminacy-membership, falsity-membership function is defined as 

 𝑇̂𝐴𝑁𝑉 (𝑥) = [𝑇
−(𝑥),𝑇+(𝑥)], 𝐼𝐴𝑁𝑉  (𝑥) = [𝐼

−(𝑥), 𝐼+(𝑥)] and , 𝐹̂𝐴𝑁𝑉 (𝑥) = [𝐹
−(𝑥), 𝐹+(𝑥)], 

Where, 𝑇+(𝑥) = 1 − 𝐹−(𝑥), 𝐹+(𝑥) = 1 − 𝑇−(𝑥),and0≤ 𝑇−(𝑥) + 𝐼−(𝑥) + 𝐹−(𝑥) ≤ 23:  
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3. Trapezoidal Neutrosophic Vague Number: Let N be a trapezoidal Neutrosophic vague number in the 

set of real numbers with the truth, indeterminacy and falsity membership functions are defined by  

𝑇𝑁𝐿  (𝑋) =

{
 
 

 
 
(𝑥−𝑎)𝑡𝑁

𝑏−𝑎
,     𝑎 ≤ 𝑥 ≤ 𝑏  

𝑡𝑁 ,              𝑏 ≤ 𝑥 ≤ 𝑐    
(𝑑−𝑥)𝑡𝑁

𝑑−𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             𝑇𝑁𝑈  (𝑋) =

{
 
 

 
 
(𝑥−𝑎)𝑡𝑁

𝑏−𝑎
,     𝑎 ≤ 𝑥 ≤ 𝑏  

𝑡𝑁 ,              𝑏 ≤ 𝑥 ≤ 𝑐    
(𝑑−𝑥)𝑡𝑁

𝑑−𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐼𝑁𝐿  (𝑋) =

{
 
 

 
 

𝑏−𝑥+(𝑥−𝑎)𝑖𝑁

𝑏−𝑎
,     𝑎 ≤ 𝑥 ≤ 𝑏  

𝑖𝑁 ,                        𝑏 ≤ 𝑥 ≤ 𝑐    
𝑥−𝑐+(𝑑−𝑥)𝑖𝑁

𝑑−𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     𝐼𝑁𝑈  (𝑋) =

{
 
 

 
 

𝑏−𝑥+(𝑥−𝑎)𝑖𝑁

𝑏−𝑎
,     𝑎 ≤ 𝑥 ≤ 𝑏  

𝑖𝑁 ,                        𝑏 ≤ 𝑥 ≤ 𝑐    
𝑥−𝑐+(𝑑−𝑥)𝑖𝑁

𝑑−𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              

𝐹𝑁𝐿  (𝑋) =

{
 
 

 
 

𝑏−𝑥+(𝑥−𝑎)𝑓𝑁

𝑏−𝑎
,     𝑎 ≤ 𝑥 ≤ 𝑏  

𝑓𝑁 ,                        𝑏 ≤ 𝑥 ≤ 𝑐    
𝑥−𝑐+(𝑑−𝑥)𝑓𝑁

𝑑−𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   𝐹𝑁𝑈(𝑋) =

{
 
 

 
 

𝑏−𝑥+(𝑥−𝑎)𝑓𝑁

𝑏−𝑎
,     𝑎 ≤ 𝑥 ≤ 𝑏  

𝑓𝑁 ,                        𝑏 ≤ 𝑥 ≤ 𝑐    
𝑥−𝑐+(𝑑−𝑥)𝑓𝑁

𝑑−𝑐
,    𝑐 ≤ 𝑥 ≤ 𝑑

0 ,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

4.The Transportation Problem: 

The Transportation Problem is mathematically formulated as follows. 

       Minimize 

                                 Z=∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 ,
𝑛
𝑗=1

𝑚
𝑖=1  

Where, 

∑ 𝑥𝑖𝑗=
𝑛
𝑗=1 𝑎𝑖; i=1,2, 3,……n, 

∑ 𝑥𝑖𝑗
𝑚
𝑖=1  =𝑏𝑗; j=1,2, 3,.m , 𝑥𝑖𝑗 ≥0 for all i and j. 

If ∑ 𝑥𝑖𝑗=𝑎𝑖
𝑛
𝑗=1  =∑ 𝑥𝑖𝑗

𝑚
𝑖=1  =𝑏𝑗; where i=1, 2, m; j=1, 2,….n, then the transportation issue is a balanced 

Neutrosophic     one. if it isn’t balanced. Use a dummy row or dummy column to balance it. The goal of a 

Neutrosophic transportation challenge is to move goods with uncertain transported units from source to 

destination the lowest possible cost. 

The notation of the Transportation Problem is 

m is the total number of supplies(sources) 

n is the total number of demands(destinations)  

𝑎𝑖 is the amount of supply at source i 

𝑏𝑗is the amount of demand at destination j 

𝑐𝑖𝑗is the transpotation cost from supply i to demand j 
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𝑥𝑖𝑗 is the amount to be shipped to be from source i to destination j. 

4.1: Algorithms: 

 

Vogel’s approximation method: 

Step 1: Calculate Row and Column Penalties: For each row and column, find the two lowest transportation 

costs. Compute the penalty as the difference between them. 

 

Step 2: Identify the Highest Penalty: Select the row or column with the largest penalty, as this represents 

the area where ignoring cost would be most expensive. 

 

Step 3: Allocate as Much as Possible: In the chosen row/column, allocate as much as possible to the lowest-

cost cell (subject to supply and demand constraints). Adjust supply and demand by subtracting the allocated 

amount 

 

Step 4: Eliminate the Satisfied Row/Column: If supply or demand is fulfilled (becomes zero), eliminate 

that row or column from further consideration. 

 

Step 5: Repeat Steps 1-4 until all supplies and demands are allocated. 

 

North west corner method 

Step 1: first we select the north-west corner cell of the transportation matrix and find the lowest value of 

supply or demand. 

 

 Step 2: Subtract the minimal value from each row and column. If the supply is zero, strike that row and go 

to the next cell. If the demand is zero, strike that column and go to the next cell. If both supply and demand 

are zero, strike both rows and columns before proceeding diagonally to the next cell.  

 

Step 3: Repeat the process until all supply and demand variables are zero. 

 

Least cost method: 

Step 1: Select the cell with the lowest unit cost and assign as much as possible. 
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 Step 2: Subtract the maximum value from supply and demand. If the supply is zero, cross (strike) that row; 

if the demand is zero, cross that column. If the minimum unit cost cell is not unique, choose the cell with 

the highest potential allocation.  

 

Step 3: Repeat these steps for all uncrossed (unstriked) rows and columns until all supply and demand 

numbers equal 0. 

 

Modified distribution method: 

Step 1: Determine an initial basic feasible solution using one of the three methods: NWCM, LCM, or 

VAM. 

 

 Step 2: Determine 𝑢𝑖 and 𝑣𝑗  for rows and columns. assign 0 to 𝑢𝑖 or 𝑣𝑗,where the maximum number of 

allocations in a row or column, respectively. For all occupied cells, use the formula  𝑐𝑖𝑗  = 𝑢𝑖 + 𝑣𝑗. 

 

Step 3: For each unoccupied cell, calculate  𝑑𝑖𝑗 = 𝑐𝑖𝑗 – (𝑢𝑖 + 𝑣𝑗). 

 

Step 4: Check the symbol of 𝑑𝑖𝑗. a. If 𝑑𝑖𝑗 > 0, the current basic viable solution is optimal, and the method 

should be stopped.  If 𝑑𝑖𝑗 =0, an alternative solution exists with a different set allocation but the same 

transportation cost. Now, stop this procedure. b. If 𝑑𝑖𝑗 < 0, then the given solution is not an optimal solution. 

 

Step 5: select the unoccupied cell with the greatest negative value of 𝑑𝑖𝑗. 

 

Step 6: Create a closed path (or loop) from the unoccupied cell. The right angle turn in this path is allowed 

only at occupied cells and the original unoccupied cell. Mark the (+) and (-) signs alternately in each corner, 

beginning with the original unoccupied cell. 

 

 Step-7: 1. Choose the minimum value from the cells marked with (-) sign of the closed path. Assign this 

value to the selected unoccupied cell. Enter this value into the other occupied cells marked with a (+) sign. 

Subtract this value from the other occupied cells marked with the (-) symbol.  

 

Step 8: Repeat steps 2-7 until the ideal solution is reached. This process ends when all 𝑑𝑖𝑗 ≥ 0 for 

unoccupied cells. 
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5.Application: 

 

A corporation has three warehouses (A, B and C) that sell goods to four retail locations (1,2,3 and 4). The 

corporation wants to minimize the total transportation cost and the monthly supply capacity of each 

warehouse and demand for each retail store are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conversion for the A Neutrosophic vague transportation problem into its crisp transportation 

problem 

Here we use the score function for Trapezoidal Neutrosophic Vague Numbers. Also, for solving   

A transportation problem using Trapezoidal Neutrosophic Vague Numbers. 

Let 𝐴𝑁= {(𝑎1,𝑎2,𝑎3, 𝑎4;[𝑇𝐴
𝐿,𝑇𝐴

𝑈],[𝐼𝐴
𝐿,𝐼𝐴

𝑈],[𝐹𝐴
𝐿,𝐹𝐴

𝑈]};𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4be trapezoidal Neutrosophic vague 

number. Then the centre of gravity (COG) in R is  

COG(R) ={
𝑎 𝑖𝑓 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4

(
1

4
) [𝑎1 + 𝑎2 + 𝑎3 + 𝑎4], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Score function S (𝐴𝑁) = COG(R)× (
1

4
) [2 + 𝑇𝑢 + 𝑇𝑙 − 2𝐼𝑈 − 2𝐼𝑙 − 𝐹𝑢 − 𝐹𝑙] ⟶ (1) 

 1 

 

2 

 

3 

 

4 

 

Supply 

 

A 

 

  (10,12,14,16)  

     [0.4,0.5] 

     [0.1,0.2] 

     [0.5,0.6]                              

  (3,4,5,6) 

  [0.6,0.8] 

  [0.5,0.7] 

  [0.2,0.4] 

 (8,9,10,11)  

   [0.5,0.8] 

   [0.1,0.3] 

   [0.2,0.5] 

 

   (1,2,3,4) 

   [0.5,0.7] 

   [0.1,0.3] 

   [0.3,0.5] 

26 

B 

 

    (6,7,8,9) 

    [0.5,0.6] 

    [0.2,0.5] 

    [0.4,0.5] 

(10,11,12,13) 

     [0.5,0.7] 

     [0.1,0.2] 

     [0.3,0.5] 

(11,13,15,17) 

    [0.6,0.8] 

    [0.1,0.8] 

    [0.2,0.4] 

(9,10,11,12) 

    [0.6,0.8] 

    [0.1,0.2] 

    [0.2,0.4] 

 

28 

C 

 

   (5,7,9,11) 

    [0.1,0.9] 

    [0.4,0.5] 

    [0.1,0.9] 

    (2,4,6,8) 

    [0.4,0.7] 

    [0.2,0.3] 

    [0.3,0.6] 

    (4,6,8,10) 

     [0.6,0.7] 

     [0.1,0.8] 

     [0.3,0.4] 

   (7,8,9,10) 

   [0.6,0.7] 

   [0,0.2] 

   [0.3,0.4]  

   

22 

       Demand          10        29         16         21 Balanced 



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in 

Decision Analysis 

 

223  

                                   =    (
1

4
)[10+12+14+16] =13 

                                   =    13 ×(
1

4
) [2 + 0.4 + 0.5 − 2(0.2) − 2(0.1) − 0.5 − 0.6] 

                                   =    3.9    

which is approximately equal to 4. 

we convert the Neutrosophic vague transportation problem into its crisp model by using (1): 

                                   Crisp Transportation Table 

Optimal solution:  

Modified distribution method 

The Transportation problem can be solved in two steps. The first phase involves determining the initial 

basic feasible solution. There are three ways for determining an initial basic workable solution:  

1. Northwest Corner Method 

2. Least Cost Method  

3. Vogel’s Approximation Method 

and the second phase involves optimization of the initial basic feasible solution. 

In this problem we compare the initial feasible solution from each method in terms of total transportation 

cost and optimality. 

Phase 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial basic feasible solution: 

         𝐷1 𝐷2 𝐷3        𝐷4    Supply 

      𝑆1         4           0          4         1       26 

      𝑆2         2           5          4         6       28 

      𝑆3         0           2          1         5       22 

    Demand        10          29         16        21 Balanced 
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1.Northwest Corner Method 

 

 

 

 

 

 

 

 

 

 

 

 

The minimum total transportation cost = 4×10 + 0× 16 + 5×13 + 4×15 + 1×1 + 5×21 = 271. 

 

2. Least Cost Method  

 

 

 

 

 

 

 

 

 

 

 

The minimum total transportation cost = 0×26 + 5× 3 + 4×4 + 6×21 + 0× 10 + 1× 12 =169 

3. Vogel’s Approximation Method 

The minimum total transportation cost = 0×5 + 1×21 + 2×10 + 5×18 + 2×6 + 1×16 = 159 

The number of allocated cells = 6 is equal to m + n -1 = 3+4-1 = 6  

∴ This solution is non – degenerate. 

 

         𝐷1 𝐷2 𝐷3        𝐷4    Supply 

      𝑆1   4          0             4            1       26 

      𝑆2              2 5   4             6       28 

      𝑆3             0              2  1   5       22 

    Demand        10          29         16        21 Balanced 

         𝐷1 𝐷2 𝐷3        𝐷4    Supply 

      𝑆1             4  0             4              1       26 

      𝑆2              2   5    4  6       28 

      𝑆3   0              2  1                5       22 

    Demand        10          29         16        21 Balanced 

10

70

00 

16

00 

 

1 21

11

1 

15 13 

26

00 

 
3 4 21 

10 12 
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Phase 2: 

 

 

 

 

 

 

 

 

 

 

 

 

optimality test: 

Iteration-1  

         𝐷1 𝐷2 𝐷3        𝐷4    Supply 

      𝑆1            4  0            4 1       26 

      𝑆2 2   5              4                 6       28 

      𝑆3            0  2 1                5       22 

    Demand        10          29         16        21 Balanced 

         𝐷1 𝐷2 𝐷3        𝐷4    

Supply 

 𝑢𝑖   

      𝑆1           

4  

 0            

4 

1       26 𝑢1  = 

-2 

      𝑆2 2   5              

4 

                

6 

      28 𝑢2 = 

3 

 

      𝑆3           

0 

 2 1                

5 

      22 𝑢3 = 

0 

       

    Demand         10           29         16        21   

𝑣𝑗 𝑣1 = -1 

 

v2 = 2 𝑣3 = 1 

 

𝑣4 = 3 

 

  

5 

 

21 

10 

6 16 

5 

 

 

 

 

 

18 

21 

10 

6 16 

7 

 

5 

 

 

 

 

 

 

0 0 

 

 

1 2 
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 Iteration-2: 

Since all 𝑑𝑖𝑗 ≥ 0. 

So, the final optimal solution is arrived. 

                                                       Optimal solution 

 

 

 

 

 

 

 

 

 

 

 

 The minimum total transportation cost = 0×5 + 1×21 + 2×10 + 5×18 + 2×6 + 1×16 = 159 

6.Comparision: 

As a result, the Vogel’s Approximation Method (VAM) offers an initial solution that is more effective and 

economical than the North-West Corner and Least Cost approaches. Usually, VAM reduces transportation 

         𝐷1 𝐷2 𝐷3        𝐷4    Supply  𝑢𝑖   

      𝑆1            4  0            4 1       26 𝑢1  = -2 

      𝑆2 2   5              4                 6       28 𝑢2 = 3 

 

      𝑆3           0  2 1                5       22 𝑢3 = 0 

 

    Demand         10           29         16        21   

𝑣𝑗 𝑣1 = -1 

 

v2 = 2 𝑣3 = 1 

 

𝑣4 =3 

 

  

         𝐷1 𝐷2 𝐷3        𝐷4    Supply 

      𝑆1            4  0            4 1       26 

      𝑆2 2   5              4                 6       28 

      𝑆3            0  2 1                5       22 

    Demand        10          29         16        21 Balanced 

5 

 

18 

21 

10 

6 16 

5 

 

18 

21 

10 

6 16 
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costs and eliminates the need for additional optimization by taking into account both cost and supply-

demand penalties. Its balanced approach gives it to minimize overall transportation costs better, providing 

a more ideal solution for supply chain management and logistics. 

6.Conclusion: 

In operations research, the transportation problem is a specific kind of optimization problem where the goal 

is to find the most economical way to distribute a product from multiple suppliers (or sources) to multiple 

consumers (or destinations) while minimizing the overall cost of transportation. This paper addresses a 

transportation problem model under trapezoidal Neutrosophic Vague Numbers, and stepwise numerical 

applications are used to explain and prove the performance of the transportation problem. These kinds of 

new findings will help to get the best optimal decision for the transportation problem using a Neutrosophic 

Vague approach. 
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---------·------
, ______-----· ----

This book explores the development and importance of these mathematical

approaches in managing uncertainty and imprecision in decision-making, and 

focuses on the practical applications of these theories in decision-making, 

demonstrating how they improve uncertainty modeling and facilitate more 

effective decision-making across various fields. By leveraging these 

frameworks, decision-makers can better navigate complexity, leading to more 

accurate and dependable outcomes. Ultimately, it  highlights the progression

from fuzzy to intuitionistic fuzzy to neutrosophic set theories as a significant 

advancement in capturing and analyzing uncertainty within decision-making 

contexts. 
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	= min { ,𝐬𝐮𝐩-𝐬∈𝐊.  ,𝐀𝟏-𝐑.(𝐱+𝐬),,𝐬𝐮𝐩-𝐭∈𝐊.  ,𝐀𝟏-𝐑.(𝐲+𝐭)},
	= min{,∗𝐀𝟏-𝐑.,𝒙+𝒔., ,∗𝐀𝟏-𝐑.(𝒚+𝒕)},
	*A1 R(𝜷(x + K) = *A1 R(𝜷x + K) = ,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,𝛃𝐱+𝐳.≥,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,𝐱+𝐳.=*A1 R(x + K).
	*A1 R([x + K, *A1 R(a + K) = ,𝐬𝐮𝐩-𝐱∈𝐊. A1 R(a + x),y + K]) = *A1 R([x , y] + K) = ,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,[𝐱,𝐲]+𝐳.≥,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,,𝐱,𝐲.+𝐳.=*A1 R(x + K).
	Thus *A1 R is a FQN Lie ideal of 𝓛/ K. In a similar way, we can verify that  *A2 R, *A3 R , *A4 R  FQN Lie ideals of  𝓛 /K. Hence *R = (*A1 R, *A2 R, *A3 R , *A4 R ) is a FQN Lie ideal of
	𝓛 /K
	Theorem: 3.28
	Let K be a FQN Lie ideal of a FQN Lie algebra 𝓛. Then there is a one-to=one correspondence between the set of FQN Lie ideals R = (A1 R, A2 R, A3 R , A4 R ) of 𝓛 such that R(0) = A(s) for all s ∈ K and the set of all FQN Lie ideals *R = (*A1 R, *A2 R...
	Proof (3)
	Let R = (A1 R, A2 R, A3 R , A4 R ) be FQN Lie ideal of 𝓛. Using Theorem 3.27, we prove that
	*A1 R, *A2 R, *A3 R , *A4 R ,*A5 R defined by
	*A1 R(a + K) = ,𝐬𝐮𝐩-𝐱∈𝐊. A1 R(a + x),
	*A2 R(a + K) =, 𝐬𝐮𝐩-𝐱∈𝐊. A2 R(a + x),
	*A3 R(a + K) = ,𝐢𝐧𝐟-𝐱∈𝐊. A3 R(a + x),
	*A4 R(a + K) =, 𝒊𝒏𝒇-𝐱∈𝐊. A4 R(a + x)
	are FQN Lie ideals of 𝓛 /K. Since A1 R(0) = A1 R(s), A2 R(0) = A2 R(s), A3 R(0) = A3 R(s),
	A4 R(0) = A4 R(s) for all s ∈ K,
	A1 R(a + s) ≥ min(A1 R(a), A1 R(s)) = A1 R(a),
	A2 R(a + s) ≥ min(A2 R(a), A2 R(s)) = A2 R(a),
	A3 R(a + s) ≤ max(A3 R(a), A3 R(s)) = A3 R(a),
	A4 R(a + s) ≤ max(A4 R(a), A4 R(s)) = A4 R(a).
	Again,
	A1 R(a) = A1 R(a + s - s) ≥ min(A1 R(a + s), A1 R(s)) = A1 R(a + s),
	A2 R(a) = A2 R(a + s - s) ≥ min(A2 R(a + s), A2 R(s)) = A2 R(a + s),
	A3 R(a) = A3 R(a + s - s) ≤ max(A3 R(a + s), A3 R(s)) = A3 R(a + s),
	A4 R(a) = A4 R(a + s - s) ≤ max(A4 R(a + s), A4 R(s)) = A4 R(a + s).
	Thus R(a + s) = R(a) for all s ∈ K. Hence the correspondence R → *R is one- to -one. Let *R be a FQN Lie ideal of 𝓛 / K and define a FQN set R = (A1 R, A2 R, A3 R , A4 R ) in 𝓛 by
	A1 R(a) = * A1 R(a +K),A2 R(a) = * A2 R(a +K), A3 R(a) = * A3 R(a +K), A4 R(a) = * A4 R(a +K)
	For a, b ∈ 𝓛, we have
	A1 R(a + b) = *A1 R((a + b) +K) = * A1 R((a +K) + (b + K))
	≥ min{*A1 R(a + K), *A1 R(b + K)} ,
	= min { A1 R(a ), A1 R(b)},
	A1 R(𝜷a) = * A1 R(𝜷a +K) ≥ * A1 R(a +K) = A1 R(a),
	A1 R([a, b]) = * A1 R([a, b] +K) = * A1 R([a + K, b + K])
	≥ * A1 R(a +K) = A1 R(a ).
	Thus A1 R is a FQN lie ideal of 𝓛. In a similar way, we  can verify that A2 R, A3 R and A4 R  are FQN  Lie ideals of  𝓛 . Hence R = (A1 R, A2 R,A3 R , A4 R ) is a FQN Lie ideal of 𝓛 .
	Note that A1 R(a) = * A1 R(a +K),A2 R(a) = * A2 R(a +K), A3 R(a) = * A3 R(a +K), A4 R(a) = * A4 R(a +K). For a∈𝐊, which shows that R(a) = R(0) for all a∈𝐊.This completes the proof.
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