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THE PREFACE

This book chapter, Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their
Applications in Decision Analysis, explores the development and importance of these

mathematical approaches in managing uncertainty and imprecision in decision-making.

Fuzzy set theory, pioneered by Lotfi Zadeh in 1965, introduced the concept of partial
membership, moving beyond traditional binary logic to offer a more flexible representation of
ambiguity in real-world problems. Expanding on this, Krassimir Atanassov introduced
intuitionistic fuzzy sets in 1983, incorporating both membership and non-membership degrees for
a more detailed depiction of uncertainty. Later, in 1998, Florentin Smarandache introduced
neutrosophic set theory, which added the concept of indeterminacy, enabling a three-fold
perspective—truth, falsity, and indeterminacy—to better model complex and uncertain scenarios.
The book focuses on the practical applications of these theories in decision-making, demonstrating
how they improve uncertainty modeling and facilitate more effective decision-making across
various fields. By leveraging these frameworks, decision-makers can better navigate complexity,

leading to more accurate and dependable outcomes.

Ultimately, this book highlights the progression from fuzzy to intuitionistic fuzzy to
neutrosophic set theories as a significant advancement in capturing and analyzing uncertainty

within decision-making contexts.

Prof. Dr. Florentin Smarandache
Dr. K. Mohana
(Editors)
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Abstract: In this Chapter, a new tangent and cotangent similarity measures between two Fermatean
Quadripartitioned Neutrosophic [FQN] sets with truth membership, falsity membership, ignorance and
contradiction membership as Neutrosophic component is proposed and its properties are investigated.
Also, the weighted similarity measures are also studied with a decision-making problem.

Keywords: FQN set, Tangent similarity measure, cotangent similarity measure.

1. Introduction

Traditionally, the teaching and learning method uses several exercises fixing, sending and
evaluating ideas and information about a subject. Learning is that the method of getting relative
permanent changes in understanding, attitude, knowledge, information, capability and skill through
expertise. A modification are often set or involuntary, to raised or worse learning. The training method
is an enclosed cognitive event. To assist this teaching and learning method, it is necessary the utilization
of a laptop tool ready to stimulate these changes. Also, it is necessary that it will operate as validation
and serving tool to the college students.

The COVID-19 pandemic has caused important disruption with in the domain of education, that is
considered as essential determinant for economic progress of any country. Even developed countries
are waging a battle against COVID-19 for minimizing the impact on their economy because of
prolonged lockdown. Education sector isn’t an exception, and method of educational delivery has been
grossly affected. There has been unforeseen and impetuous transition from real classroom to on-line
and virtual teaching methodology across the world. There’s an enormous question on the sustainability
of online mode of teaching post-pandemic and its percussions on world education market. Impact of

lockdown on the teaching—Ilearning method has been studied in present paper with the objective to
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assess the quality of online classes and challenges associated with them. The paper proposes about the
benefits of social media in virtual education among College Students

In order to deal with uncertainties, the thought of fuzzy sets and fuzzy set operations was introduced
by Zadeh [17]. The speculation of fuzzy topological space was studied and developed by C.L. Chang
[3]. The paper of Chang sealed the approach for the subsequent growth ofthe various fuzzy
topological ideas. Since then, a lot of attention has been paid to generalize the fundamental ideas of
general topology in fuzzy setting and therefore a contemporary theory of fuzzy topology has been
developed. Atanassov and plenty of researchers [1] worked on intuitionistic fuzzy sets within
the literature. Florentine Smarandache [15] introduced the idea of Neutrosophic set in
1995 that provides the information of neutral thought by introducing the new issue referred to
as uncertainty within the set. Thus neutrosophic set was framed and it includes the parts of truth
membership  function(T), indeterminacy membership ~ function(l), and falsity = membership
function(F) severally. Neutrosophic sets deals with non-normal interval of ]-0 1+[. Pentapartitioned
neutrosophic set and its properties were introduced by Rama Malik and Surpati Pramanik [14]. In this
case, indeterminacy is divided into three components: contradiction, ignorance, and an unknown
membership function. The concept of Fermatean Quadripartitioned Neutrosophic sets s was initiated
by M.Ramya[13].

Similarity measure is an important topic in the current fuzzy, Pythagorean , Neutrosophic and
different hybrid environments. Recently, the improved correlation coefficients of Pentapartitioned
Neutrosophic Pythagorean sets and Quadripartitioned Neutrosophic Pythagorean sets was introduced
by R. Radha and A. Stanis Arul Mary. Pranamik and Mondal [5,6] has also proposed weighted similarity
measures based on tangent function and cotangent function and its application on medical diagnosis. In
this paper, the weighted similarity measures of Tangent and Cotangent functions has been applied to

PNP sets in virtual education during Covid Pandemic.

2. Preliminaries

Definition 2.1 [15]

Let X be a universe. A Neutrosophic set A on X can be defined as follows:
A= {<x,Ty(x),14(x),Fs(x) >:x € X}

Where Ty , 14, F4: U = [0,1] and 0 < T,(x) + I,(x) + F, (x) < 3

Definition 2. 2[9]
Let X be a universe. A Fermatean Quadripartitioned neutrosophic [FQN] set A with neutrosophic
components for A on X is an object of the form

A= {< x,TA,CA, UAJFA > X EX}

2
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Where (T4)3 + (Cy)3 + (Uy)3 + (Fy)3 <2
Here, T,(x) is the truth membership, C,(x) is contradiction membership, U,(x) is ignorance

membership and F,(x) is the false membership.

Definition 2.3 [14]
Let P be a non-empty set. A Pentapartitioned neutrosophic set A over P characterizes each element p in
P a truth -membership function T, , a contradiction membership function C,, an ignorance
membership function G4, unknown membership function U, and a false membership function F, ,
such that for each p in P.

Ta+ Ca+ Go+ U+ F, <5
Definition 2. 4 [9]
The complement of a FQN set A on R Denoted by A€ or A" and is defined as
AC = {< x, F, (), Uy (x),Cq(x), T4(x) >: x € X}

Definition 2.5 [9]

Let A=< x,T,(x),Cs(x),U,(x),Fs(x) > and

B=<x,Tg(x),Cs(x),Ug(x),F g(x) > are FQN sets.

Then

AU B=<x,max (T, (x), Tz (x)), max(C,(x), Cg(x)), min(U,(x), U g(x)), min(F,(x), F5(x)), >
AN B=< xmin(T,(x), Tg(x)), min(C4(x), Cg(x)), max(U, (x), U (x) ), max (Fs(x), F 5(x)) >

Definition 2.6 [9]

A FQON topology on a nonempty set R is a family of a FQN sets in R satisfying the following axioms.
1) 0,1€ 1

2) RynR,etforanyR,,R, €T

3) UR, etforanyR:i€lCct

The complement R* of FQN open set (FQNOS, in short) in FQN topological space [FQNTS] (R,7), is
called a FQN closed set [FQNCS].

3.Tangent and Cotangent Similarity Measures of FQN Sets

Definition 3.1

Let P ={(r, Blp(r),B2p(r),B3p(r),B4p(r)):r € R} and

Q ={(r, B1y(r),B24(r),B3,(r),B4,(r),: v € R} be two Fermatean Quadripartitioned Neutrosophic

numbers with Neutrosophic components. Now tangent similarity function which measures the
3
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similarity between two vectors based only on the direction, ignoring the impact of the distance between
them can be presented as follows

Tron(P,Q) = =37, [1 — tan(Z [|B13(r) — B13 () |+|B23 () — B2} ()| +

|B33 (1) — B33 ()| + | B4 () — B43(m)])]

Theorem 3. 2
The defined tangent similarity measure Troy (P, Q) between FQN set P and Q satisfies the following
properties
1. 0< Tron(P,Q) <1;
2. TFQN(P, Q)=1iffP=Q;
3. TFQN(P; Q)= TFQN(Q' P);
4. IfTisaFQNsetinRandP € Q < T then
Tron (P, T) < Tron(P,Q) and Troy (P, T) < Tren(Q,T).
Proof

1) As the truth membership, contradiction membership, ignorance membership and falsity membership

function of the FQN sets and the value of the tangent function also is within [0,1].

Hence 0< Tron(P,Q) < 1.

2) For any two FQN sets P and Q if P = Q, this implies B1,(r;) = B1,(r;), B2p(1) = B2,(1y),
B3p(r:) = B3y(ry).and B4p(r;) = B4y(ry) .
Hence |B13 (1) — B13(r)| = 0,|B23 () — B2} ()| =

) — B33(r)| = 0 and
|B43(r) — B43 ()| = 0.
Thus Tron(P,Q) = 1.
Conversely, if Tron(P,Q) = 1, then |B13(r;) — B13(ry)| = 0,|B23 () — B23(r)| = 0, |B33 (1) —
33 ()| = 0 and|B43 (r;) — B4} ()| = 0 since tan(0) = 0. So we can write B1,(r;) = B1,(ry),
B2p(r;) = B2y(ry), B3p(1:) = B3,(r;) And B4, (1;) = B4, (ry).
Hence P = Q.
3) The Proof is obvious
4)IfPS Q STthenBlp(r;) < Bly(r) < Blp(ry), B2p(1;) < B2,(r;) < B27(1y),
B3p(r) < B3y(ry) <B37(1), B4p(r;) < B4y(r) <B4r(r),
|B13(r) — B13(r)| < |B13(r) — BL3 ()],
|B13 () — B13(r)| < IB13(ry) — B13(r)],
|B23 (r;) — B23 (r)| < |B23(r;) — B23.(r)|,

4
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|B23 () — B23.(r)| < |B23(r) — B23(r))|,
|B33(r) — B33(r)| < IB33 (1) — B33(1)|,
|B33(ry) — B33(n)| < 1B33(r) — B33(1)|,
|B43 (1) — B4} ()| < [B43 () — B43 (),
|B43(r) — B4 ()| < |B43 (1) — B4 (r)|
Thus,
Tron(P,T) < Tron(P, Q) and Tron (P, T) < Tron(Q,T)

Since tangent function is increasing in the interval [0, %].

Definition 3.3

Let P = {(r, Blp(r),B2p(r),B3p(r),B4p(r)):r € R} and

Q = {(r, B1y(r),B24(r),B34(1),B44(r))(r):r € R} be two FQN with Neutrosophic components.
Now weighted tangent similarity function which measures the similarity between two vectors based

only on the direction, ignoring the impact of the distance between them can be presented as follows
Twron (P, Q) = Xiey wi[l — tan(-[|B13(r) — B13(r)[+|B23 () — B2 (r)| + B33 (r) —
B33 ()| + |B43 () — B4G ()]

Where w; €[0,1],i =0,1,2..n are the weights and X", w; =1. If we take w; =

0,1,2 ...,n,then Typon (P, Q) = Tron (P, Q).

Sk
—
Il

Theorem 3. 4

The defined weighted tangent similarity measure Ty ron (P, Q) between FQN set P and Q satisfies the

following properties
1) 0< Typen(P,Q) <1;
2) Twron(P,Q) =1iffP=Q;
3) TWFQN (P; Q) = TWFQN (Q'P);
4) IfTisaFQNsetinRandP € Q < T then
Twron (P, T) < Twron (P, Q) and Typon (P, T) < Typon (Q,T).
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Proof
1) As the truth membership, contradiction membership, ignorance membership, falsity membership and
the unknown membership function of the FQN sets and the value of the tangent function also is within
[0,1] and where w; € [0,1],i = 0,1,2 ...n are the weights and

tow =1
Hence 0< Tyron(P,Q) < 1.
B3p(r;) = B3p(rpand B4p(r;) = B4, ().

Hence |B1}(r;) — B13(r)| = 0,|B23 () — B2} ()| =

2(r) — B3} (r)| = 0 and
|B43 () — B43(r)| =0.
Thus Tyron (P,Q) = 1.
Conversely, if Tyron(P,Q) =1, then |B13(r)—B13(r)|=0,|B2}(r)— B2}(r)| =0,
|B33 (1) — B33(r))| = 0 and |B43 (r;) — B4} (r,)| = 0 since tan(0) = 0. So we can write B1,(r;) =
B1,y (1), B2p(1;) = B2,(1;), B3p(1;) = B3,(r;)and B4p(1;) = B4y(ry).
Hence P = Q.
3) The Proof is obvious
4)IfPc Q STthenBlp(r;) < Bly(ry) <Blp(1), B2p(r;) < B2,(r) < B27(1y),
B3p(1;) < B3,(r;) <B37(r)and B4p(r;) < B4y(r;) < B4r(r)and X7 w; = 1.
|B13(r) — B13(r)| < IB13(r) — B13 ()|,
|B13(r) — B13(r)| < IB13(ry) — B13(r)],
|B23(r) — B23 ()| < IB23(r,) — B23(1)|,
|B23(ry) — B23 ()| < 1B23 () — B23 (),
|B33(r) — B33()| < IB33(r) — B33(1)I,
|B33(r) — B33 ()| < 1B33(r) — B33 (),
|B43 (ry) — B43 ()| < |B43 () — B4 (1)),
|B43 (1) — B43.(r)| < |B43(r)) — B43.(r)|
Thus,
Twron (P, T) < Twron (P, Q) and Typon (P, T) < Tyron(Q,T)

Since tangent function is increasing in the interval [0, %].

Definition 3.5

Assume that P = {(r, B1p(r), B2p(r), B3p(r),B4p(r)):r € R} and
6
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Q ={(r, B1y(r),B2,(r),B3,(r),B44(r))(r):r € R} are two FON set with dependent Neutrosophic
components. A cotangent similarity measure between two FQN sets P and Q is proposed as follows
COTpon (P, Q) = ;1 , [cot(Z[4 + [B13(r) — BI(r)|+|B23 (1) — B23(r)| + B33 () —

38(r)| + |B43 (1) — B4 ()]

Theorem 3. 6

The cotangent similarity measure COTgoy(P,Q) between FQN set P and Q also satisfies the
following properties

1) 0< COTpoy(P,Q) < 1;

2) COTFQN(P, Q)=1iffP=Q;

3) COTFQN (P,Q) = COTFQN(Q;P);

4) IfTisaPNPsetinRandP < Q < T then

COTpon (P, T) < COTroy(P,Q) and COTyon(P,T) < COTpon(Q,T).

Definition 3.7
Assume that P = {(r, B1,(r), B2p(r), B35 (), B4p(r)):r € R} and

= {(r, Bly(r),B24(r),B3,(1),B44y(r)):r € R} are two FQN numbers as Neutrosophic
components. A weighted cotangent similarity measure between two FQN sets P and Q is proposed as

follows
COTyron(P,Q) = Xy wilcot(-[4 + [B13(r) — B13(r)|+|B23 () — B2 (r)| + B33 (r) -
B33 (r)| + |B43 (1) — B4} (r)))]

Where w; €[0,1],i =0,1,2..n are the weights and X", w; =1. If we take w; =

S|k
—
Il

0,1,2 ..., 1, then COTypon (P, Q) = COTqn (P, Q).

Theorem 3. 8

The weighted cotangent similarity measure COTpyp (P, Q) between PNP set P and Q also satisfies the

following properties

1) 0< COTyron(P,Q) <1;

2) COTypon(P,Q) =1iffP=Q;

3) COTwron (P,Q) = COTWFQN(Q: P);

4) IfTisaPNPsetinRandP < Q < T then

COTypon(P,T) < COTyron(P,Q) and COTypon(P,T) < COTyron(Q,T).
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Proof

1) As the truth membership, contradiction membership, ignorance membership and falsity membership
function of the FQN sets and the value of the tangent function also is within [0,1] and -, w; = 1.
Hence 0< COTypon(P,Q) < 1.

2) For any two FQN sets P and Q if P = Q, this implies B1p(r;) = B1,(1;), B2p(1;) = B2,(1y),
B3p(r) = B3g(r;), B4p(r;) = B4y (ry).

Hence |B13(r;) — B13(r)| = 0,|B23 () — B23(r)| =

2(r) — B33(m)| =0,
|B43 () — B43(r)| =0.
Thus COTyron(P,Q) =1.
Conversely, if Typyp(P,Q) =1, then |B13(r) —B13(r)|=0,|B2}(r;) — B2} ()| =0,
|B33 (1) — B33(r))| = 0 And|B43(r;) — B43(r;)| = 0 since tan(0) = 0. So we can write B1,(r;) =
B1,y (1), B2p(1;) = B2,(1;), B3p(1;) = B3,(1;) and B4p(r;) = B4y(ry).
Hence P = Q.
3) The Proof is obvious
4)IfPc Q STthenBlp(r;) < Bly(ry) <Blp(1), B2p(r;) < B2,(r) < B2 (1),
B3p(r:) = B3,(r;) = B37(1;), B4p(r;) = B4y(r;) = B4r(r;) and X7, w; = 1.
|B13 () — B13(r)| < IB13(r) — B13(1)|,
|B13(r) — B13.()| < IB13 () — B13 (),
|B23 (1) — B23(ry)| < |B2} (1) — B23(r)I,
|B23(r) — B23.(r)| < B2} (r) — B23.(r))|,
|B33 () — B33 (r)| < IB33(r) — B33(1)|,
|B33(r) — B33(r)| < IB33(r) — B33(ry)|,
|B43(r) — B43 ()| < |B43(r,) — B43(1)|,
B4 (ri) — B43(m)| < B4} () — B43 ()
The cotangent function is decreasing function within the interval [0, %].

Hence .7\, w; = 1.
Hence, we can write

COTypon(P,T) < COTywron(P,Q) and COTypon(P,T) < COTyron(Q,T)

4. Decision Making Based on Tangent and Cotangent Similarity Measures
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Let A, A,, ... A, be a discrete set of candidates, C;, C,, .. C,, be the set of criteria for each candidate and
Dy, D,, ...., D, are the alternatives of each candidate. The decision -maker provides the ranking of
alternatives with respect to each candidate. The ranking presents the performance of candidates A;(i =
1,2, ...m) against the criteria C;(j = 1,2 ...,n).The values associated with the alternatives for MADM
problem can be presented in the following decision matrix( see Table 1 and Table 2). The relation
between candidates and attributes are given in Tab 1. The relation between attributes and alternatives

are given in the Tab 2.

Table 1 : The relation between candidates and attributes

Ry ¢y ¢ Cn
A aqq aqz A1n
A, az: a3 arn
Am aml amZ amn
Table 2: The relation between attributes and alternatives
R, D, D, Dy
¢y C11 C12 Cik
G, C21 C22 Cok
Cn Cn1 Cn2 Cnk

Here a;; and c;; are all FQN numbers.

The steps corresponding to FQN number based on tangent and cotangent functions are presented

following steps.

Step 1: Determination of the relation between candidates and attributes

The relation between candidate A; (i = 1,2, ...m) and the attribute C;(j = 1,2 ...n) is presented in Table

3.

Table 3 : The relation between candidates and attributes in terms of FQN sets

¢y

C;

Cn

Al (b1111b211'b311'b411)

(b112lb212' b312r b412)

(b11n,b215, 31, b41y)

AZ (b1211b221'b321'b421)

(b1221b222' b322) b422)

(b12n,b22n, b32n, b42y)
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Am (blmlbzml'bgml'b4m1) (blmvaszJbngJb4‘m2) (blmn’bzmnrbsmnrb4mn)

Table 4 : The relation between attributes and alternatives in terms of FQN sets

Rz D1 DZ oo Dk

C1 | (c1yq,6b244, €311, ¢411) | (€l12,€215, €315, C442) cor | (€14g,€24g, €31y, C41i)
Cy | (b131,0251,b351,b4321) | (€132,6233,¢322, ¢422) coo | (€1gpsC25, €32k, C42r)
Cn (Clnl,Can, C3n1' C4n1) (C1n2vC2n2; C3n2; C4n2) e (Clnk’cznkr C3nkr C4nk)

Step 3: Determination of the relation between attributes and alternatives

Determine the similarity measure between the Tab 3 and Tab 4 using Tron(P,Q) Tywron (P, Q),

COTgon (P, Q) and COTyypon (P, Q).

Step 4: Ranking the alternatives
Ranking the alternatives is prepared based on the descending order of the similarity measures.
Highest value reflects the best alternative.

Step 5: End

5. Application

Higher education institutions have faced various challenges in adapting online education to control the
pandemic spread of COVID. The present work aims to apply similaty measures between social media
and its benefits of students. Let D = {R1, R2, R3} be a set of college student respondents, E =
{YouTube, Facebook, WhatsApp, Blog} be social medias and H = {Communication Tool, Online
Learning, connecting with experts, Global exposure} be its benefits. The solution strategy is to
determine the student regarding the relation between student respondents and its benefits in virtual
education (see Tab 5) and the relation between social media and its benefits in Table 6 . Further we
have calculated Tangent and Cotangent similarity measures can be calculated in Table 7 and 8. Also
the weighted similarity measures of the tangent and cotangent functions of PNP sets be calculated in
Table 9 and 10. w =(0.3,.4,.3)
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Table 5 : (P1) The relation between respondents and benefits in Virtual Education

P1 Online Communication Connecting
Learning Tool with Experts

R1 (0.7,0.2,0.4,0.3) (0.1,0.2,0.4,0.7) (0.4,0.6,0.3,0.6)

R2 (0.3,0.5,0.4,0.6) (0.6,0.5,0.7,0.4) (0.6,0.7,0.3,0.4)

R3 (0.1,0.4,0.3,0.5) (0.6,0.6,0.3,0.4) (0.6,0.1,0.9,0.4)

Table 6: (P2) The relation between social media and its benefits

P2 WhatsApp YouTube Facebook
Online (0.4,0.2,0.3,0.1) | (0.1,0.2,0.3, 0.5) (0.2,0.2,0.3,0.4)
Learning
Communication (0.7,0.2,0.3,0.3) (0.5,0.2,0.3,0.5) (0.7,0.2,0.3,0.2)
Tool
Connecting (0.1,0.2,0.3,0.7) (0.8,0.2.0.3,0.2) (0.6,0.2,0.3,0.4)
with Experts

Table 7: The Tangent Similarity Measure between P1 and P2

Tangent

Similarity WhatsApp YouTube Facebook

Measure

R1 0.8467 0.8430 0.8148

R2 0.8583 0.8792 0.8603

R3 0.8595 0.8791 0.8504

Table 8: The Weighted Tangent Similarity Measure between P1 and P2
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Weighted

Tangent WhatsApp YouTube Facebook
Similarity

Measure

R1 0.8484 0.8409 0.8219
R2 0.8547 0.8647 0.8497
R3 0.8635 0.8961 0.8565

Table 9: The Cotangent Similarity Measure between P1 and P2

Cotangent

Similarity WhatsApp YouTube Facebook

Measure
R1 0.8959 0.8927 0.8504
R2 0.8583 0.8567 0.8195
R3 0.8244 0.8496 0.8092

Table 10: The Weighted Cotangent Similarity Measure between P1 and P2

Weighted

Cotangent WhatsApp YouTube Facebook
Similarity

Measure

R1 0.8977 0.889 0.8587
R2 0.8547 0.8761 0.8185
R3 0.8308 0.8545 0.8207

The highest similarity measures reflect the benefits of social media among College Students. Therefore,
Student R2 and R3 gains knowledge more from YouTube and R1 from WhatsApp.

6. Conclusion

In this paper, we have proposed tangent and cotangent similarity measures for Fermatean
Quadripartitioned Neutrosophic set with Neutrosophic components and proved some of its basic

properties. Furthermore, we have also investigated about the weighted similarity measures in Decision
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Making and illustrated with an example. In future, we can study about the improved similarity measure

for the above set and can be used in Medical Diagnosis, Data mining. Clustering Analysis etc.
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Abstract

In traditional statistics all data are determined and it is used to estimate the mean of the population when
auxiliary information is available. Those estimators often are biased. The main aim is to find the best
estimator for the unknown value of the population mean with minimum variance/mean square error
(MSE). The neutrosophic statistics, generalization of classical statistics deal with indistinct,
indeterminate, uncertain information. The neutrosophic observation is of the form Zy = Z, + Zyly
where Iy € [I,,1I,], Zy € [Z,,Zy]. In this paper neutrosophic linear regression type estimator and
modified neutrosophic linear regression type estimators for estimation of population mean of the study
variable using the known parameters of the auxiliary variable have been proposed. The variance/mean
squared error of the proposed estimators is derived up to first order of approximation. The efficiency of
the proposed neutrosophic linear regression-type estimators is evaluated using natural population and
also by using simulation study. A comparison is also carried out to illustrate the usefulness of proposed

neutrosophic linear regression-type estimators over the classical estimator.
Keywords: Parameters, Auxiliary variable, Regression type, Neutrosophic statistics

1. Introduction
Consider a finite population U = {U,,U,, ..., Uy} of N distinct and identifiable units. Let Yis a study

variable with value Y; measured on U;,i = 1,2,3, ..., N giving a vectorY = {Y;,Y,, ..., Yx}. In general the

1

~-D L, (Y; —Y)? are unknown.

population mean Y = % N .Y; and the population variance S; =

Now, in this article the problem is to estimate the population mean Y on the basis of a random sample
of sizen, selected from the population U with some desirable properties like:
» Unbiasedness / Minimum Bias

» Minimum Variance / Mean squared error(MSE)
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It is often the case that an auxiliary variable X closely related to the study variable Y is available. Then,
one can improve the performance of the estimator of the study variable by using the known values of
the population parameters of the auxiliary variable like Population mean X, Coefficient of variation Cy,
Skewness By, Kurtosis B, etc. For further discussion about ratio estimators and its modification
for estimating population mean one may refer to Al-Omari et al. (2009), Cingi and Kadilar (2009),
Cochran (1940, 1977), Kadilar and Cingi (2004,2005,2006a,2006b), Murthy(1967), Sen (1993), Singh
and Chaudhary (1986), Singh (2003), Singh and Tailor (2003), Singh et al. (2004), Sisodia and Dwivedi
(1981), Sukhatme (1970), Upadhyaya and Singh (1999b) and Yan and Tian (2010).

While the classical method of statistics deals with determinate inference method or  randomness so
that when the data is indeterminate or ambiguous or vague the classical method of estimation would
not give the required result. In that situation neutrosophic statistics gives us promising results. The
neutrosophic statistics is an extension of classical statistics (Indeterminacy is zero). The main difference
between classical and neutrosophic statistics, is the total of number of sample size would not be an
exact number in neutrosophic. In other words, neutrosophic statistics is a set analysis. The probability
distribution of neutrosophic data shall be presented in three curves and they are:

e Probability of event that occur

e Probability of event that do not occur

e Intermediate chance of the event occur or not

For further discussion about neutrosophic statistics one may refer to Smarandache(1998, 2014,2015),
Alblowi et.al (2014), Smarandache and Pramanik(2016), Alhabib(2018), Aslam(2018), Smarandache
et.al (2019), Olgun and Hatip(2020) and Tahir et.al(2021). The following flow chart explains the way

of using proposed methods under neutrosophic statistics

' Data |
|
Determinate Data

Indeterminate Data

Neutrosophic data
(Includes
Indeterminacy)

Fuzzy Data
(Ignore Indeterminacy)

. Study
- \
‘ Positive Negative
Correlated
Ratio Method Product l
method I

Classical method of Ratio and product-type |
estimation

Auxiliary
Variable
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2. Notation and Terminology

Consider a neutrosophic random sample of size ny € [n;, ny], which is drawn from a finite population
of N units (Ty, T, ..., Ty). Let yy (i) is the i*" sample observation of our neutrosophic data, which is of
the form yy (i) € [y,,yy] and similarly for auxiliary variable we have x (i) € [x,,xy] which is
correlated to our study variable. Let ¥ (i) € [y, yy] is mean of neutrosophic variable of interest, and
%y (i) € [, %y]is mean of auxiliary neutrosophic variable. In addition,S2y € [SZy., S2yy] and S2y €
[SZuL, S2yy] are the variance of the neutrosophic set of data. Cyn € [CyNL, CyNU] and Cyy €
[Cixni, Cxnul are neutrosophic coefficients of variation for Y, and X, , respectively. py is the
neutrosophic correlation between Yy and Xy (neutrosophic variables). In addition, B,n) €
[B2cxniy, B2xnuy] IS the neutrosophic coefficient of kurtosis for auxiliary variable Xy. &,y (i) €
[&,1, eyu]and & (i) € [y, &yl are the neutrosophic mean errors.. Similarly, MSE(.) €
[MSE,, MSE] belong to the MSE of neutrosophic sets were also computed for the analysis:

These terms can be computed by the following notations to be used in this article are defined below:

e N — Population Size

. n— Sample Size

e f=n/N, - Sampling Fraction

o 5= %f - Finite Population Correction

e Xy, Yy-Population Totals

e Xy, Yy - Population Means

e Xy, Yy - Sample Totals

e Xy ,yySample Means

* Sxn,Syn — Population Standard Deviations

e Syn = EXy —Xy)(Yy — Yy) — Population Covariance between Xy and Yy

S

o Cyn = S}'{’%&CYN = Y%;: — Co-efficient of Variations

SxyN

e pn= — Co-efficient of Correlation between Xy and Yy

SxNSyN

e [y -Population regression coefficient of Yy on Xy
* lsN = l s (Yin = Y© (Kin — X))

o Bixn = “zz” Skewness of the Auxiliary Variable
e Boxn) = “O;” Kurtosis of the Auxiliary Variable

* Byyn) = LioN 'Kurtosis of the Study Variable

e Myn —Median of the Auxiliary Variable
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e Q,n —First (lower) Quartile of the Auxiliary Variable
e Qg —Third (upper) Quartile of the Auxiliary Variable

e Q,n = Q3 — Q4 Inter-Quartile Range of the Auxiliary Variable

Q3-

2Q1, Semi-Quartile Range of the Auxiliary Variable

e Quan=
e Q= %, Semi-Quartile Average of the Auxiliary Variable

e D,,n — m™Decile of the Auxiliary Variable

e MSE(.) — Mean Squared Error (MSE) of the Estimator

e V(.) — Variancer of the Estimator

e yy - Neutrosophic Simple Random Sampling Without Replacement (SRSWOR) Sample
mean

o ?RN — Neutrosophic Ratio Type Estimator of Y

o ?LRN- Neutrosophic Linear Regression Type Estimator of Y

o ?MLRN]. — i Proposed Modified Neutrosophic Linear regression Type Estimator of ¥

When there is no auxiliary information available, the simplest estimator of population mean is the

sample mean obtained by using simple random sampling without replacement. In case of simple

random sampling without replacement (SRSWOR), the sample mean y, is used to estimate

population mean Y which is an unbiased estimator and its variance is given below:

V(yy) = SS}ZIN 1)

In the presence of an auxiliary variable X and is positively correlated with the study variable Y, Tahir

et.al (2021) has introduced the classical neutrosophic ratio estimator for estimating the population mean

of the study variable as given below:

Xy (2)

i

Yry =

tell

N

The mean squared error of ?RN to the first order of approximation is given below:
MSE(Yan ) = 8Y2(C2y + CZy — 2pnCanCyn) 3)

Motivated by Tahir et.al (2021), neutrosophic linear regression type estimator for estimating population
mean has been proposed. Further improvements shall be made on the neutrosophic linear regression
type estimator by introducing a large number of modified neutrosophic linear regression type estimators
with known neutrosophic Co-efficient of Variation, Kurtosis, Skewness and Population Correlation

Coefficient, First quartile, Third quartile etc of auxiliary variable.

3. Proposed Neutrosophic Linear Regression Type Estimator for Estimating Population Mean

The proposed Neutrosophic linear regression type estimator and its variance are given as
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?LRN = ¥n + BnXy — Xy) 4)
V(Yirn) = 852y (1 - ) (5)
Motivated by Kadilar and Cingi (2004), modified neutrosophic linear regression type estimator has

been proposed for estimating population mean by replacing SRSWOR sample mean y, by regression

estimator Y, gy in Ygy as given below:

?MLRNKC = [yN + BN(XN - )—(N)] [)_)_E_II\\/I] (6)

The mean squared error of the proposed estimators ?MLRNKC have been derived and given below:

MSE () = 3 (RS + 01— 000) o

A class of modified neutrosophic linear regression type estimator using the known parameters of the

auxiliary variable for estimating the neutrosophic population mean of the study variable Yy € [Y , Yy]
have been suggested. The proposed modified neutrosophic linear regression type estimator SA_(MLRNj ,j =

1, ...,36 for estimating the neutrosophic population mean Yy is given below:

(8)

)_(N+(.0]'
XNt w;j

’_Y\MLRN]- = [Fn + BNy — &n)] [

The mean squared error of the proposed estimators \A_(MLRN]. , i=1,2,...,36 have been derived and are

given below:
MSE (?MLRN]-) =6 (RZN]- Sen + Syn(1— 912\1)> (9)
_ Y _ _ _ Cxn _ B2 _ _ PN
where Ry, = Ky @1 = w02 = Bagany » 03 = Baor” O* T G 105 T PN @6 T 0
N _ Pn ~ Baxvy _ ~ Baxvy _ _ Mgy
Wy =—,Wg =5 ,Wg =——,W19 = Bl(XN):wll =——,w1; = Mgy, 013 = T’
PN BZ(XN) PN Bl(xN) xN
Mgn Mgn Mgn
Wiy =5, W5 =5, W16 = —, W17 = QiN, W15 = Q3n, W19 = Qrn, W20 = Qans
B2xN) B1cany PN
_ _ QlN _ Q3N _ QrN _ QdN _ QaN _
wz1 = Qany W32 = C_'0)23 = C_'(U24 = C—'(Dzs = C—'(Dza = C_'(D27 = Din,
XN XN XN xN XN

Wzg = Dan, W29 = D3N, W39 = Dyn, w31 = Dsn, w32 = Den, w33 = Doy, w34 = Dgy;,

w35 = Doy, W36 = Dygn
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Remark 3.1: When the study variable Yy € [Y,Yy] and auxiliary variable Xy € [X,Xy] are
negatively correlated and the population parameters of the auxiliary variable are known, the following
modified neutrosophic regression type variance estimator can be proposed:

)‘(N+u)j

?MLPRN]- = [Iv + Bn Xy — X)) [— ]

XN+wj

4. Efficiency of the Proposed Estimators

Comparing (1) and (8) we have derived (see Appendix A) the condition for which the proposed
modified neutrosophic regression type estimators ‘7MLRN1 ,is more efficient than the neutrosophic

SRSWOR sample mean yy and it is given below:

= _ . S .
MSE (Yuiry,) < V(Fa) if Ry, < PN Eij=12,..,36 (10)

Comparing (2) and (8) we have derived (see Appendix B) the conditions for which the proposed

modified neutrosophic regression type estimators ‘7MLRN1 is more efficient than the neutrosophic ratio

type estimator ?RN and it is given below:

MSE (Yyiry, ) < MSE( Yy ) if ¥y (225250 < Ry, < ¥y (2205 or

SxN SxN

VN (PNC);N —CxN) < RNi < VN (CxN —PNCyN) (12)

XN SxN
5. Numerical Study

The performance of the proposed Neutrosophic Linear Regression type estimator for mean are
compared with that of Neutrosophic SRSWOR sample mean, Neutrosophic ratio type mean estimator
and Modified Neutrosophic Linear Regression type estimator using a natural population. For numerical
study, we have considered the daily stock prices of Samsung Electronics Co., Ltd. from 1% September
2020 to 30™ September 2021 as the neutrosophic variable. We are estimating this low price and high
price interval (Y., Yu) within which the price of the stock lies using daily opening price and closing
price as an neutrosophic auxiliary variable (X, Xu).

The population parameters of the above population are given below:

XL — Opening Price Xu — Closing Price

YL — Low Price Yu— High Price
N=267 n=120 Y. =751.70 Yu=1765.15
X.=758.09 Xu=758.01 SyL= 91.7629 Syu = 93.7754
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Sx.=92.8418
BiyL) = 0.8362
BoyL)= 2.4736
A2 = 2.4708
Qu= 723
D1.=598.6
D3 = 738.8
Ds = 797
D= 818.2
DgL=840

Sxu=92.1824
Biyu) = 0.6983
Boyuy = 2.5296
A2ou = 2.5008
Quu= 725
D1y=596.2
D3u=739

Dsy= 797
D7u= 819
Dou= 840

Bixw) = 0.7859
BaixL) = 2.4808
Cx=0.1225
Md. = 797
QaL= 8235
D2 = 649.8
D4=773.4
DsL=810

DsL= 828
D1oL= 903

Bixuy =0.7934
B2ixuy = 2.5018
Cxu=0.1216
Mdy =797
Qau=821

Dou= 658.2
Dau=773

Dsu= 809
Dsu=826
D1ou= 910

The variance of Neutrosophic SRSWOR sample mean, the MSE of the Neutrosophic Ratio type

estimator and the variance of Neutrosophic Linear Regression estimator for the natural population is

given below:

Table 1: Variance of Neutrosophic SRSWOR sample mean, MSE of the Neutrosophic

Ratio

Type estimator and Variance of Neutrosophic Linear Regression Estimator

Estimators

MSE / Variance

Neutrosophic SRSWOR sample mean, yy

[38.6331,40.3462]

Neutrosophic Ratio Type Estimator, Yy

[0.1185, 0.1966]

YLRN

Neutrosophic Linear Regression Estimator,

[0.1177, 0.1954]

The MSE of the proposed Neutrosophic Modified Linear Regression Type Ratio (NMLRR) estimator

are given below:

Table 2: MSE of the proposed Neutrosophic Modified Linear Regression Type Ratio estimator

Proposed

Neutrosophic Estimators

MSE values

Vorin e [38.9981, 39.9101]
Vurirn, [38.9855, 39.9063]
Vi, [38.7448, 39.6581]
Yy s [38.9930, 39.9139]
Vyrirn, [37.0010, 37.8473]

21



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

Vi [38.8958, 39.8147]
Virirw [38.1752, 39.0729]
Vurirw, [38.9855, 39.9063]
Viirng [38.9568, 39.8773]
Vurirne [38.7445, 39.6575]
Viian g [38.9176, 39.8360]
Vyiirnos [38.6763, 39.5906]
Vyiirn, [9.3561, 9.6330]
Virirn s [0.5393, 0.6203]
Vyiirn s [19.2965, 19.8871]
Vuiian s [7.2306, 7.5409]
Vw1 [9.3419, 9.609]
Viian i [10.3025, 10.5718]
Vyrirn g [9.0490, 9.3482]
VuiLrN 16 [30.4283, 31.4898]
VurLrn 5o [34.3142, 35.3284]
Vuirn,, [9.6449, 9.9313]
Vuiirn [0.6196, 0.6989]
Vurrn s [0.5151, 0.598]
Virirn s [9.0840, 9.7251]
Vurrn s [16.4874, 17.3706]
Vurirn [0.5628, 0.6443]
Vuirn [12.2562, 12.6399]
Vurirn g [11.3893, 11.5739]
Vyrirn o [10.0886, 10.3786]
Vurrn s [9.6430, 9.9313]
Vuiirn sy [9.3561, 9.6330]
VuiLrn s, [9.2035, 9.4889]
VRN s [9.1092, 9.3715]

22



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

Viirn s [8.9984, 9.2905]
A [8.8655, 9.1318]
Ve g [8.2144, 8.3974]

From the last column of Table 1 and 2, we can see that the variance of the Neutrosophic Linear
Regression Estimator is minimum when compared with the variance of SRSWOR sample mean, MSE
of Neutrosophic ratio type estimators and proposed Neutrosophic modified linear regression type ratio
estimators. Hence, the Neutrosophic Linear Regression Estimator is performed better than other

estimators for this available data.

6. Simulation Study

To evaluate more about the efficiency of the proposed neutrosophic estimators, we have undertaken a
simulation study as given below:

For simulating 1000 normal random variates from a Bi-variate normal distribution we took XN
~ NN ([171.2,180.4], [(5.8)?, (6.7)?]) and Yn ~ NN ([76.0, 84.9], [(12.9)%, (17.2)?]). The correlation
coefficient is fixed at value [0.992, 0.996]. Simple random sampling without replacement has been
considered for sample size, n=100.

Variance of Neutrosophic SRSWOR sample mean and the MSE of the Neutrosophic Ratio type
estimator and the variance of Neutrosophic Linear Regression estimator for simulated data are given

below:

Table 4: Variance of Neutrosophic SRSWOR sample mean, MSE of the Neutrosophic Ratio

Type estimator and Variance of Neutrosophic Linear Regression Estimator

Estimators MSE / Variance
Neutrosophic SRSWOR sample mean, yy [1.4962, 2.6599]
Neutrosophic Ratio Type Estimator, Yy [0.9671, 1.7835]

Neutrosophic Linear Regression Estimator,
[0.0238, 0.0212]

YLRN

Table 5 shows the MSE of the proposed Neutrosophic Modified Linear Regression Type Ratio
(NMLRR) estimators.

Table 5: MSE of the proposed neutrosophic modified linear regression type ratio estimators for

p=[0.992,0.996]
23



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in

Decision Analysis

Proposed  Neutrosophic MSE values
Estimators
Yurrrn ke [0.0825, 0.1094]
Yurrn, [0.0825, 0.1093]
Yuirn, [0.0803, 0.1064]
Yurirns [0.0825, 0.1094]
Yuirn, [0.0474, 0.0623]
Yurirn s [0.0818, 0.1084]
Yurrng [0.0665, 0.0879]
Yuirn, [0.0825, 0.1093]
Yuirng [0.0823, 0.1091]
Yurrn [0.0803, 0.1064]
Yurrn 10 [0.0825, 0.1094]
YuLen o, [0.0319, 0.0390]
YuLrn 1, [0.0385, 0.0433]
YuLrn s [0.0239, 0.0213]
YuLen s [0.0585, 0.0716]
VuLrn s [0.0239, 0.0213]
VuLen g [0.0384, 0.0432]
Yureny, [0.0388, 0.0438]
YuLrn g [0.0382, 0.0428]
Yirn o [0.0776, 0.1014]
YuLrn 5 [0.0799, 0.1053]
Yuirn o,y [0.0385, 0.0433]
Yuirn g, [0.0239, 0.0214]
Vuien s [0.0239, 0.0213]
VuiLen 54 [0.0347, 0.0378]
VuiLr e [0.0451, 0.0534]
VurLen 56 [0.0239, 0.0213]
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Vi o [0.0391, 0.0443]
Vaiian 5 [0.0389, 0.0439]
A [0.0388, 0.0437]
AT [0.0387, 0.0435]
Viian s, [0.0385, 0.0433]
Viian s, [0.0384, 0.0431]
A [0.0383, 0.0429]
A [0.0381, 0.0426]
AT [0.0379, 0.0423]
AT [0.0369, 0.0409]

From the above table, the variance of Neutrosophic Linear Regression Estimator is minimum when
comparing with the variance of SRSWOR sample mean, MSE of Neutrosophic ratio type estimators
and proposed Neutrosophic modified linear regression type ratio estimators. So we conclude that the
performance efficiency of the Neutrosophic Linear Regression Estimator is better than the other

estimators.

7. Conclusion:

In this paper a neutrosophic linear regression type estimator and modified neutrosophic linear regression
type estimators for estimating population mean using the known parameters of the auxiliary variable
has been proposed. The mean squared error of the proposed estimators is derived. The performances of
the proposed estimators with that of the neutrosophic SRSWOR sample mean and neutrosophic ratio
type estimator for simulated data and natural population have been assessed. It is observed from the
numerical comparison that the variance of the proposed neutrosophic linear regression type estimator
and MSE of proposed modified neutrosophic linear regression type estimator is less than the variance
of the neutrosophic SRSWOR sample mean and MSE of neutrosophic ratio type estimator. Hence, we
strongly recommend that the proposed neutrosophic linear regression type estimator and modified
neutrosophic linear regression type estimators for the use of practical applications for estimation of

population mean of neutrosophic statistics.
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Abstract:

Decision-making processes often involve selecting the most suitable candidate from a pool of
alternatives, which can be challenging due to uncertainties and subjective criteria. Soft set theory has proven
effective in handling such complexities. In this paper we introduced neutrosophic soft matrices as a
comprehensive frame work for managing uncertain and imprecise data in decision making. Specifically,
we proposed the integration of score matrices within the neutrosophic soft matrix framework to facilitate
the selection of the best candidates. Score matrices provide a structured approach for evaluating candidates
based on multiple criteria, accommodating vague and conflicting information. By incorporating score
matrices into neutrosophic soft matrices, we enhance the decision-making process, enabling a more
comprehensive assessment of candidate suitability. Through case studies and examples, we demonstrate
the practical application of this approach in selecting the best candidate across various domains. Our
research contributes to the advancement of decision-making methodologies, offering a robust tool for

navigating uncertainty and ambiguity in candidate selection processes.

Keywords: Fuzzy soft set, Neutrosophic soft set, Neutrosophic soft matrix, Decision- Making and Score

matrix.

1. Introduction

A multitude of academics utilize various approaches to address uncertainties and challenges in a
variety of fields, such as engineering, business administration, environmental sciences, and medical
sciences. Often, traditional mathematical tools are insufficient to adequately address these issues. To
overcome these obstacles, researchers hunt for other approaches such fuzzy sets, intuitionistic fuzzy sets,
neutrosophic sets, and so forth.

The journey began in 1965 when Lotfi A. Zadeh [16] proposed the groundbreaking fuzzy set theory
to tackle uncertain problems. Subsequently, in 1975, Yang [15] introduced the interval-valued fuzzy set
(IVFS), offering a broader scope than conventional fuzzy sets. In 1982, Pawlak introduced the rough set

theory [12], providing another valuable tool for handling uncertainty. Building upon thesefoundations,
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Atanassov [1] coined the intuitionistic fuzzy set theory in 1983, followed by Florentin Smarandache's [14]
proposal of the neutrosophic fuzzy set in 1995. Molodtsov [11] created the soft set theory in 1999 as a
result, and it is a crucial mathematical tool for handling decision-making issues in ambiguous situations.
The idea of Molodtsov [11] was expanded upon and many foundations of soft sets were defined by Maji et
al. [6] in 2001. Intuitionistic fuzzy soft sets were introduced later in 2004 by Maji et al. [7]. Fuzzy soft
matrices were first proposed in 2010 by Cagman [3].

Neutrosophic soft matrices find applications in various real-world decision-making domains
including, but not limited to engineering, finance, healthcare, and environmental management. They enable
decision-makers to make informed decisions in complex and uncertain environments. Researchers have
developed algorithms and computational techniques for solving decision-making problems using
neutrosophic soft matrices. These algorithms assist in analyzing and processing the information contained
in the matrices to derive optimal or satisfactory solutions.

The main objective of this article is to utilize Neutrosophic soft matrices in decision-making,
supported by a scoring system, to identify top candidates with varied skill sets suitable for specific positions

within the company.

2. Preliminaries
Definition 2.1:[11]

Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of U.
Let A € E. A pair (F,, E) is called a soft set over U, where F, is a mapping given by F,: E—
P(U) Such that F,(e) = ¢ if e¢A. Here F, is called approximate function of the soft set  (F,, E). The set
F,(e) is called e- approximate value set which consist of related objects of the parameter e € E. In other

words, a soft set over U is a parameterized family of subsets of the universe U.

Definition 2.2:[8]
Let U be an initial Universe set and E be the set of parameters. Let A cE . A pair

, A) is called fuzzy soft set over U where F is a mapping given : A—1Y, where enotes the
(F, A) is called fuzzy soft U where F i pping given by F: A—1IY, where IV denotes th

collection of all fuzzy subsets of U.

Definition 2.3:

Let (F4,E) be a fuzzy soft set over U. Then a subset of UxE is uniquely defined by R,={(u,e): e €
A, u €F, ()} which is called relation form of (F,,E). The characteristic function of R, is written by g, :
UXE— [0,1],whereug,(u,e) € [0,1] is the membership value of u € U for eache € U.

If [ 1= pga (u; ,e;), we can define a matrix
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Hi1 Hiz e Han

_|H21 Hoz2 o Hon
[tijlmxn = | S
Hm1  Hm2 Hmn

which is called an m x n soft matrix of the soft set (F4,E) over U. Therefore, we can say that a fuzzy soft

set (F, ,E) is uniquely characterized by the matrix[u;;]»x» and both concepts are interchangeable.

Definition 2.4: [13]
Let U be the Universe of discourse. The neutrosophic set A on the Universe of discourse U is defined as

A={<T 4(X), 1,(X), F 4(X)>: xeU}, where the characteristic functions T,I,F:U—-[0,1] and 0< T+I+F <3 ;
T, I, F are neutrosophic components which defines the degree of membership, the degree of indeterminacy
and the degree of non membership respectively.

Definition 2.5:[4]

Suppose K be a universe with an element in K denoted by f and D be a set of attributes. A neutrosophic
set N over K is characterized by a truthinessT, , indeterminacy 1,4, and a falsity value F, where T 4,14
and F 4are real standard subsets of [0,1]. And fy: D — N(K).

A={(e, {< f, (Ta(), La(f), Fa(f))} >): f € U, e €D, Ta(f), Lo (f), Fa(f) € [0,1]}

There is no restriction on the sum of T,(f), L,(f), F4(f), 0 < T,(f) + L,(f) + F,(f) < 3*

Definition 2.6:[2]
Suppose K = {f1.f2.f3 ...} be the univers and D = {e; ,e;,e; ......} be a set of attributes and A €D. A set
(F ,A) be an NSS over K. Then the subset of KxD is defined as R4 = {(f, e); e€ A, f € F,(e)} which is

the relation form of (F4, D). The truithiness, indeterminacy and falsity value are :

Tg, : KxD—[0,1], Iy, : KxD - [0,1], Fr,:KxD - [01],

Tra(f,e) € [0,1], Izxa(f,e) € [0,1] ,Fra(f,e) € [0,1] are the truithiness , indeterminacy and falsity of
fe Kfor eache e D

If [(Tyj, Lij, Fip)] = [Ti; (fi €, 1ij (i €)), Fij(fi, €)1, then

(T11'111'F11) (T12' 112'F12) (Tlnﬁlln'Fln)

[(T;i) L, Fi ] _ | (T2, 21, F21) (Taz, o2, Fa2) oo (Tan, Ion Fon)
i tiptij)imxn : : : :

(Tml' Iml: le) (Tmz' Imz: sz) e (Tmn' Imn' an)

That's known as an m x n neutrosophic soft matrix over K.
30



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

Definition 2.7: [5]

Suppose A=[(T

ij»1ij, Fij)] € NSMp,, .Then the complement of A is denoted byA" and is defined

as A’= [(Fy;,1—1I;;, T;;)] for alli and j.

Definition 2.8: [10]

If A= [(Tlflalgl Fll_‘]l)] ENSManl B = [(TL?IIEJ Fg)] ENSMmXTlthen

C=[(T§ .15, Ff;)] ENSM,,,, .Then the addition of Aand B as
A+IB

A+B =C = (max (T{,T5), "L, min (F4,Ff)) Viand |

Definition 2.9: [8]

If A=[TAI4, FA1 ENSMypsn, B = [(TE,1E, FE)] ENSMpynthen

C = [(T5.I5, F5)] ENSM ., .Then the subtraction of Aand B as

Definition 2.10: [9]

Let A =[T{.If}, F{j] andB = [(T},I7, F)] be two neutrosophic soft matrices. Then the max-min

produuct of the two neutrosophic soft matrices A and B is denoted as A*B is defined as,

A*B = [ max min ((T/,T), min max (I#}, 1{}), min max (F{},F/})] Viand .

3.Neutrosophic Soft Matrix Theory in Decision Making
Definition 3.1:

Suppose A = [(Tf}, I}, F{})] € NSM,,,. Then Ais called the value of NSM denoted by V(A) and

is defined by V(A) = [(T{} + I} — F{})] for all i and j respectively, where i=1,2,3,...m and j=1,2,3....n.

Definition 3.2:

If A=[(T,1£, F{})] € NSMyy, i, B = [(TS3, 1]}, F})] € NSM,y,,. Then the score matrix of A and B

is denoted by S, 5y and is defined as S, 5y = V(4) — V(B).

Definition 3.3:

If A= [(T{, 1}, F{})] € NSM,, 5, B = [(T.15, F{})] € NSM ., Then, their corresponding value

matrix be V(A),V(B) and their score matrix be S , gy . Then the total score for each ; in U as

si= ), (@-vE)
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Methodology
Take a set U of applicants that are going through interviews to be hired by a corporation for

managerial roles. Let E be a collection of criteria related to the managerial experience of candidates. Two
Neutrosophic Soft Sets (NSS) are established: (F,4, E) over U, which represents candidate selection by field
expert X, and (G, E) over U, which represents candidate selection by field expert Y. Fis a
mapping defined by F: A—IY, and IV signifies the collection of all fuzzy subsets comprising U. The
corresponding NSS (F,, E) and (Gg, E) are represented by matrices A and B. The maximum
membership for the judges' candidate selection process is determined by evaluating A+B,
which is computed by taking the complements (F,, E)° and (Gg, E)° and calculating their corresponding
matrices A° and B°. Additionally, we also compute A° + B°. For each candidate in U, we compute V(A+B),

V(A°+B°), S(a+p),a° +B%)), and the sum of the scores, S;. In order to determine that candidate C; has been

chosen by the judges, we finally find S, = max(S;). Re-evaluating the parameters is the process that is

repeated if S,has more than one value.

4. Algorithm

Step 1 :Provide the Neutrosophic soft sets (F,, E) and (G, E), then derive the corresponding Neutrosophic
soft matrices A and B for (Fy4, E) and (G, E) respectively.

Step 2 :Formulate the complement sets of the Neutrosophic soft sets (F,, E) and

(Gg, E) as (F,, E)° and (Gg, E)° respectively, then derive the corresponding Neutrosophic

soft matrices A° and B° for (F,, E)° and (G, E)° accordingly.

Step 3 :Determine (A+B ), (A°+B °), V(A+B ), V(A°+B °) and S((4+5),ca° +B°))-

Step 4 :Work out the total score S; for each u; in U.

Step 5 :Determine Sx= max(S;).

In conclusion, candidate C;is deemed suitable for the position.

Step 6 :If multiple instances yield the maximum valueSy, continue by reassessing the parameters

and iterating the process.

5. Technology in a Decision-Making Problem
In the context provided, let (F,, E) and (Gg, E) denote two neutrosophic soft sets representing the

selection of four candidates from the universal set U ={C,, C,, C5, C,} by the experts X and Y, respectively.
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Here, E = {e;, e,, e; } represents the set of parameters, symbolising different types of qualities such as
stand for confident, presence of mind and willingness to take risk.

(Fa, B) = {Fa(e1), Falez), F4(e3)}

F4(ey) ={(¢,,0.6,0.2,0.1),(C,,0.4,0.3,0.1),(C5,0.5,0.2,0.2),(C,,0.3,0.5,0.2)}
F,(e;)={(C;,0.4,0.5,0.1),(C,,0.7,0.2,0.1),(C5,0.2,0.4,0.3),(C,,0.2,0.5,0.3)}
F,4(e3)={(C1,0.7,0.1,0.2),(C,,0.5,0.3,0.2),(C5,0.6,0.1,0.2),(C,,0.3,0.5,0.2) }

(Gg, E) ={Gp(e1), Gp(ez), Gp(e3)}

Gg(ey) ={(€4,0.1,0.5,0.2),(C,,0.4,0.3,0.2),(C5,0.6,0.3,0.1),(C4,0.2,0.6,0.1) }

Gg(ey) ={(C1,0.6,0.2,0.1),(C,,0.7,0.2,0.1),(C5,0.5,0.3,0.2),(C,,0.4,0.3,0.2) }
Gg(e3)={(¢,,0.7,0.2,0.1),(C,,0.2,0.5,0.3),(C5,0.4,0.2,0.4),(C,,0.6,0.2,0.2)}

The following neutrosophic fuzzy soft matrices represent these two neutrosophic fuzzy soft sets,

respectively.

€1 €, €3
¢, 1(0.6,0.2,0.1) (0.4,0.5,0.1) (0.7,0.1,0.2)
A= c;1(0.4,0.3,0.1) (0.7,0.2,0.1) (0.5,0.3,0.2)
¢31(0.5,0.2,0.2) (0.2,0.4,0.3) (0.6,0.1,0.2)
€41(0.3,0.5,0.2,) (0.2,0.5,0.3) (0.3,0.5,0.2)

€ =) €3
¢, [(0.1,0.5,0.2) (0.6,0.2,0.1) (0.7,0.2,0.1)
B = ¢, 1(0.4,0.3,0.2) (0.7,0.2,0.1) (0.2,0.5,0.3)
~ ¢31(0.6,0.3,0.1) (0.5,0.3,0.2) (0.4,0.2,0.4)
€4 1(0.2,0.6,0.1) (0.4,0.3,0.2) (0.6,0.2,0.2)

Then the neutrosophic fuzzy soft complement matrices are,

€ =) €;
c; [(0.1,0.8,0.6) (0.1,0.5,0.4) (0.2,0.9,0.7)
A= c;1(0.1,0.7,0.4) (0.1,0.8,0.7) (0.2,0.7,0.5)
T C3 (0.2,0.8,0.5) (0.3,0.6,0.2) (0.2,0.9,0.6)
€41(0.2,0.5,0.3) (0.3,0.5,0.2) (0.2,0.5,0.3)

e =) es
¢, [(0.2,0.5,0.1) (0.1,0.8,0.6) (0.1,0.8,0.7)
5= c;1(0.2,0.7,0.4) (0.1,0.8,0.7) (0.3,0.5,0.2)
e (0.1,0.7,0.6) (0.2,0.7,0.5) (0.3,0.8,0.4)

c

KN

(0.1,0.4,0.2) (0.2,0.7,0.4) (0.2,0.8,0.6)
Following that, we compute the addition matrices.
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€1 € é;

¢; [(0.6,0.35,0.1) (0.6,0.35,0.1) (0.7,0.15,0.1)
(4+B) _C2 (0.4,03,01) (0.7,0.2,0.1) (0.50.4,0.2)
€3((0.6,0.25,0.1) (0.5,0.35,0.2) (0.6,0.15,0.2)
(0.3,0.55,0.1) (0.4,0.4,0.2) (0.6,0.35,0.2)

g)
KN

ey €, €3

¢; [(0.2,0.65,0.1) (0.1,0.65,0.4) (0.2,0.85,0.7)
c2|(0.2,0.7,04) (0.1,0.8,0.7) (0.3,0.6,0.2)
¢31(0.2,0.75,0.5) (0.3,0.65,0.2) (0.3,0.85,0.4)
(0.2,0.65,0.1) (0.1,0.65,0.4) (0.2,0.85,0.7)

(A +B)=

)
NN

€1 €, €3

0.85 0.85 0.75
_c&lo6e 08 07
V(A+B) ~ ¢310.75 0.65 0.55

€410.75 0.6 0.75
e, e, es

¢1[0.75 035 0.35
o poy 62105 02 0.7

+ =
VIA+B) €31045 0.75 0.75
€4106 0.7 0.55

c

[

Compute the score matrix and total score for the selection
€1 €2 €3

¢i[01 05 04
s R 2101 0.6 0.0
((A+B)(A+B D™ ¢3]1 03 —0.1 —0.2

€4+10.15 —-0.1 0.2

€110
0.7
0.0
€4 10.25

The aggregate score for the top-candidate EZ

Upon observing that the second candidate possesses the highest value, we deduce that, based on the

opinions of both experts, candidate c. is chosen for the position.

Product of Neutrosophic Soft Matrices

Here we have defined the Neutrosophic soft matrices with suitable examples and the matrices

is compared with other existing matrices like Neutrosophic soft matrices, Neutrosophic complement
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matrices, Neutrosophic Square matrices and somebinary operators and so on. The product and

complement of two Neutrosophic Soft Matrices were examined and total score matrices are derived.

Case Study:
Suppose the test results of four candidates C ={c1,c2,c3 and c4} as the universal set where

c1,c2,c3and c4 represents Swathi, Sowndarya, Saranya, Aruna with systems.

Q = {a1, 92, 93, g4, g5} represents the set of parameters, symbolizing different types of
qualities such as standing for confidence, presence of mind, willingness to take risks, communication,
Innovative ideas, and experience leadership respectively. Let the possible qualities relating to the
above posting P ={P1,P2, P3}be Manager, HR, TL.

Suppose that NSS (F, Q) over C, where F is mapping F: Q— gives a collection dan
approximate description of candidate selection in the company.

Algorithm
Stepl:Input Neutrosophic soft set (F,Q) and (G,P) and obtain Neutrosophics of matrices A and B.

Step2: Write the Neutrosophic soft complement set(,) and obtain Neutrosophics
complement matrix B®.

Step3: Compute candidate posting quality A=B.
Step4: Compute the candidate's quality non-posting matrix ABC,
Step 5: Compute V, W.

Step6: Compute the score matrix. ).

Step7:ldentify the maximum score for candidate ci and conclude that candidate ci and conclude that
candidate Cj has the posting Pi.
(F, Q) ={F(q1) ={(c1,0.2,0.8,0.2),(c2,0.6,0.1,0.3), (c3,0.0,0.6,0.4), (c4,0.3,0.4,0.5)}

{F(g2) ={(c1,0.7,0.1,0.2), (c2,0.1,0.8,0.1), (¢3,0.6,0.1,0.4), (¢4,0.5,0.2,0.4)}
{F(g3) ={(c1,0.6,0.1,0.3), (c2,0.4,0.4,0.8), (¢3,0.8,0.1,0.2), (¢4,0.5,0.4,0.1)}
{F(q4) ={(c1,0.1,0.6,0.3), (c2,0.1,0.8,0.2), (¢3,0.6,0.5,0.1), (c4,0.3,0.4,0.4)}
{F(gs) ={(¢1,0.1,0.6,0.2), (¢2,0.1,0.7,0.2), (¢3,0.5,0.3,0.3), (¢4,0.7,0.2,0.1)}

The Neutrosophic soft set is represented by the following Neutrosophic soft matrix to describe the

candidate's qualities relationship.
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01 02 0s Qa Os

(0.2,0.8,0.2) (0.7,0.1,0.2) (0.6,0.1,0.3) (0.1,0.6,0.3) (0.1,0.6,0.2)
(0.6,0.1,0.3) (0.1,0.8,0.1) (0.4,0.4,0.5) (0.1,0.8,0.2) (0.1,0.7,0.2)
(0.0,0.6,0.4) (0.6,0.1,0.4) (0.8,0.1,0.2) (0.6,0.5,0.1) (0.5,0.3,0.3)
(0.3,0.4,0.5) (0.5,0.2,0.4) (0.50.4,0.1) (0.3,0.4,0.4) (0.7,0.2,0.1)
Agalin, let the set Q = {q1, g2, 3, g4, g5} be a universal set where q1, g2, 93,
g4 and g5 represent the qualities confidence, presence of mind, willingness to take risks,

communication, Innovative ideas and experience leadership respectively.
Let the possible qualities relating to the above posting P = {P1, P2, P3} be Manager,

HR,TL.
Suppose that Neutrosophic of the set (G,P) over Q, where G is mapping gives collection of an
approximate description of the selection process of the three postings and their qualities.
(G,P)={G(P1)={(q1,0.3,0.4,0.3),(q2,0.7,0.2,0.4),(93,0.7,0.2,0.3),
(94,0.3,0.4,0.4),(95,0.2,0.7,0.3)}
{G(P2)={(q1,0.6,0.2,0.2),(q2,0.2,0.6,0.3),(q3,0.5,0.4,0.3),
(94,0.7,0.2,0.1),(95,0.1,0.8,0.2)}
{G(P3)={(q1,0.6,0.2,0.3),(q2,0.3,0.5,0.4),(q3,0.1,0.8,0.1),
(94,0.4,0.5,0.3),(5,0.7,0.4,0.2)}

The Neutrosophic soft set can be represented by the following Neutrosophic matrix.

1 2 3
1 [(0.30.4,03) (060202) (0.60.20.3)
(0.7,0.2,04) (0.2,0.60.3) (0.3,0.5,0.4)
B= ; [(0.7,02,03) (0504,0.3) (0.1080.1)
(0.3,04,04) (0.7,0201) (0.4,050.3)
5 [(0.2,0.7,0.3) (0.1,0.8,0.2) (0.7,0.4,0.2)

N

~

Neutrosophic of complement matrix

1 2 3
1 [(030403) (020.20.6) (0.30.206)
, (04,0207) (030602) (040503)
B'=; [(03020.7) (030405) (0.1080.1)
s+ |(04,0403) (0.10207) (030504)
5 1(0.3,07,02) (02080.1) (0.20.4,0.7)

Max-min compositions of two Neutrosophics of matrices will produces the following results. Let

us suppose AxB :[i] <where,
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C11=[max(0.2,0.7,0.6,0.1,0.1),min(0.8,0.2,0.2,0.6,0.7),min(0.3,0.4,0.3,0.4,0.3)
C1=(0.7,0.2,0.3)

C12=[max(0.2,0.2,0.5,0.1,0.1),min(0.8,0.6,0.4,0.6,0.8),min(0.3,0.4,0.3,0.3,0.2)]
C12=(0.5,0.4,0.2)
C13=[max(0.2,0.3,0.1,0.1,0.1),min(0.8,0.5,0.8,0.6,0.6),min(0.3,0.4,0.3,0.3,0.2)]
C13=(0.3,0.5,0.2)
C21=[max(0.3,0.1,0.4,0.1,0.1),min(0.4,0.8,0.4,0.8,0.7),min(0.3,0.4,0.3,0.4,0.3)]
C21=(0.4,0.4,0.3)
C22=[max(0.6,0.1,0.4,0.1,0.1),min(0.2,0.8,0.4,0.8,0.8),min(0.3,0.3,0.5,0.2,0.2)]
C22=(0.6,0.2,0.2)
C23=[max(0.6,0.1,0.1,0.1,0.1),min(0.2,0.8,0.8,0.8,0.7),min(0.3,0.4,0.5,0.3,0.2)]
C23=(0.6,0.2,0.2)
C31=[max(0.0,0.6,0.7,0.3,0.2),min(0.6,0.2,0.2,0.5,0.7),min(0.4,0.4,0.3,0.4,0.3)]
C31=(0.7,0.2,0.3)
C32=[max(0.0,0.2,0.5,0.6,0.1),min(0.6,0.6,0.4,0.5,0.3),min(0.4,0.4,0.3,0.1,0.3)]
C32=(0.6,0.3,0.1)
C33=[max(0.0,0.3,0.1,0.4,0.5),min(0.6,0.5,0.8,0.5,0.4),min(0.4,0.4,0.2,0.3,0.3)]
C33=(0.5,0.4,0.2)
C41=[max(0.3,0.5,0.5,0.3,0.2),min(0.4,0.2,0.4,0.4,0.7),min(0.5,0.4,0.3,0.4,0.3)]
C41=(0.5,0.2,0.3)
C42=[max(0.3,0.2,0.5,0.3,0.7),min(0.4,0.6,0.4,0.4,0.8),min(0.5,0.4,0.3,0.4,0.2)]
C42=(0.5,0.4,0.2)
C43=[max(0.3,0.3,0.1,0.3,0.7),min(0.4,0.5,0.8,0.5,0.4),min(0.5,0.4,0.1,0.4,0.2)]
C43=(0.7,0.4,0.1)

1 2 3
1 [(0.4,0.2,0.2) (0.3,0.4,0.2) (0.1,0.5,0.3)
Then AxB=2 [(0.3,0.4,0.3) (0.3,0.2,0.2) (0.3,0.2,0.3)
3 1(0.4,0.2,03) (0.3,04,0.3) (0.4,0.4,0.2)
4 1(0.4,0.2,02) (0.3,0.4,0.1) (0.4,0.4,0.1)

Hence

1 2 3
1[04 05 0.6
2103 03 0.2
3103 04 0.6

4104 0.6 0.7
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and finally, it is observed that,

1 2 3
1102 02 0.0
2102 03 04

3103 04 0.1
410.0 01 03

6. Conclusion

The literature on Neutrosophic soft matrices, first introduced by Florentine Smarandache in 1995
and expanded by Molodtsov in 1999, reveals multiple methods for decision-making selection processes.
This article compares various Neutrosophic soft matrices operations, including addition, subtraction,
product, union, and intersection, with other existing matrices. It highlights the potential of these matrices
in addressing uncertainties through new operations and demonstrates their application in real-life decision-
making problems. The study underscores the significance of Neutrosophic soft matrices in tackling
uncertainties and facilitating decision-making, presenting a novel solution procedure with practical utility.
It contributes to advancing decision-making techniques in fields requiring uncertainty management,

suggesting broader applications and future exploration.
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Abstract:
In this paper, we define the new notation of Algebraic structures of 9 —T and 9 — M in Doubt Fuzzy

Z —Sub Algebra of Z —Aalgebras. And also defined the 9 — T and ¥ — M in Doubt Fuzzy Z —Ideal of

Z —Algebra and discussed some of their properties in detail by Z —Aalgebras.

Keywords:
Fuzzy Set(FS), Fuzzy Subset(FSb), Doubt Fuzzy Z-ldeal (DFZI), Doubt Fuzzy Z —Sub

Algebra(DFZSA), Doubt Fuzzy 9 — Translation (DF 9 — T), Doubt Fuzzy 9 — Multiplication
(DF 9 — M).
1. Introduction

In 1965, Zadeh L A [14], initiated by the concept of fuzzy sets. Several researchers explored on the
generalization of the notion of fuzzy subset. The study of fuzzy subsets and its applications to various
mathematical contents has given rise to what is now commonly called fuzzy mathematics. Iseki K and
Tanaka S [3], introduced the concept of an introduction to the theory of BCK-algebras in 1978. 1n1980,
Iseki K [4], first introduced the notation on BCl-algebras. Kyoungja Lee, Young Bae Jun and Myung
ImDoh [5], introduced the concept of fuzzy translations and fuzzy multiplication of BCK/BCI-algebras in
2009. Abu Ayub Ansari and Chandramouleeswaran M [1], introduced the concept of fuzzy translation of
fuzzy p — ideals of g —algebras in 2014. In 2014, Priya and Ramachandran T [11], introduced the new
notation of fuzzy translation and multiplication on PS-algebras. Prasanna A, Premkumar M and Ismail
Mohideen S [6] & [7], introduced the concept of fuzzy translation and multiplication on B-algebras in 2018
and also derived from Fuzzy Translation and Fuzzy Multiplication in BG — Algebras in 2019. In 2021,
Premkumar [8] derived the new notation of Algebraic Properties on Fuzzy Translation and Multiplication
in BP— Algebras. Premkumar [9] & [10], introduced the new concept of Algebraic Properties on w — Fuzzy

Translation and Multiplication in BH— Algebras in 2020 and also derived from the concept of
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Characteristics of k — Q — Fuzzy Translation and Fuzzy Multiplication in T-ldeals in T-Algebra in 2022.
Sowmiya[12] & [13] initiated by the concept on Fuzzy Z-ideals in Z-algebras and also Fuzzy Algebraic
Structure in Z-Algebras in 20109.

We define the new notation of Algebraic structures of DFY —T and DFY —M in DFZSA of
Z —Aalgebras. And also defined the DFY —T and DFY —Tin DFZI of Z —Algebra and discussed some of
their properties

2. Preliminaries:
Definition 2.1:

A Z-algebra (®,%,0) be a Z-algebra. A FS A in & with a membership function 3, is said to be a
FZSA of a Z-algebra  if , for all , $ in & the following condition is satisfied
3(t+3) = (3(0) A3B))
Definition 2.2:
A Z-algebra (®,*,0) be a Z-algebra. A FS V in & with a membership function 3, is said to be a
FZI of a Z-algebra o if , for all 1,3 in & the following condition is satisfied
(i) 3(0) = 3(
(i) 3(5) = {(3(F * H A3(®)}

3. Algebraic Structures of 9 — Translation and 9 — Multiplication in Doubt Fuzzy Z-Subalgebra
Let, & be a Z-algebra. For any DFS 3 of &, we define T=1-sup{3(f)/f € &}, unless otherwise we

specified.

Definition: 3.1

Let, 3 be a DFSb of & and 9 € [0, T]. A mapping 3%: & — [0,1] is said to bea DF 9 — T of 3 if it
satisfies 3% = 3(f) + 9, Vrf € ®.

Definition: 3.2
Let, 3 be a DFSb of & and 9 € [0,1]. A mapping 3%:& — [0,1] is saidto bea DF 9 — M of 3 if it
satisfies 3% = 9 3(f), Vf € ®.

Example: 3.2.1
Let o ={0,1,2,3} be the set with the following table.
*101]111]2]3
0Oj]0]1]2]3
111,011
2 |2 |2 |02
313]3]3]0
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Then (&,*,0) is a Z — algebra.
Define DFS 3 is of & by 3(f) = {gg Z:; i 1}
Thus 3 isa DFZSA of X.
Hence T = 1 — sup{3()/f € &} = 1-0.4 = 0.6,
Choose 9 = 0.2 € [0,1] and 9 = 0.3 € [0,1].
Then the mapping 3,,7 : ® — [0,1] is defined by

) 02+04=06 iff#1
doat = {0.2 +03=05 iff=1
Which satisfies 3,,7(f) = 3(f) + 0.2, VI € ®, isa DF 0.2-T.
The mapping y, ;m : & — [0,1] is defined by
- 03x04=012 ifr+1
doaM = {0.3 x03=009 iff=1
Which satisfies 3, ,m(f) = 3(£)(0.3), VY € , is aDF0.3-M.

Theorem: 3.3
If30f & isa DFZSAand 9 € [0,1], thenthe DF 9 — T. 35 (£)of 3 is also a DFZSA of &.
Proof:
Let, £,5 € ® and 9e[0, T]
Then, 3(f*3%) <3 Vv 3

Now,
3 (%) =38 +0
<B@®V I+
=[G +9) v (36 + )]
=3, v ®|vises.
Theorem: 3.4

Let, 3 be a DFSh of & such that the DF 9 — T 3,5 () of 3 is a DFZSA of &, for some 9¢€[0, T], then
3isa DFZSA of &.

Proof:
Assume that EgT(f)is a DFZSA of & for some Ye[0, T]
Letf,§ € @, we have
3E+9 =35 (F+9
<[3 V3 ®
=[BO +9) v (3R) +9)]
= [BMOV 3E]+9
= 3+ )D>[3OV 3®)] VL5 ED
Hence, 3 is DFZSA of .
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Theorem: 3.5

For any DFZSA 3 of & and 9¢[0,1], ifthe DF 9 — M 3" () of 3 is a DFZSA of &.
Proof:

Let 7, § € @ and Y9€[0, T]
Then 3(f * §)>3(f) A 3(3)
Now,
35" (Fx%) = 93(F* %)
<9 [BEV 3]
<[93®) vI3E)]
=[3:" " V3" ®]
=3,"(+9 <3 OV ®)

Therefore, 3" is a DFZSA of &.

Theorem: 3.6
For any DFSB, 3 of & and 9¢[0,1], ifthe DF 9 — M 3, () of 3 is a DFZSA of &, then so in 3.
Proof:
Assume that, 3, () of 3 is a DFZSA of & for some 9€[0,T]
Let f,§ € &, we have
93(F + =3y (F +3)
<[3:" v 3" ®
= [93() v 3(3)]
=9 3@V 3(3)]
= 3(f*3) < 9 3EV 3]
Hence, 3 isa DFZSA of &.

4. Algebraic Structures of 9 — Translation and 9 — Multiplication in Doubt Fuzzy Z-ldeal of Z-
Algebra

Theorem: 4.1
Ifthe DF 9 — T 3, (f) of 3 is a DFZI, then it satisfies the condition 3" (% * (F * §)) < 3, (©).
Proof:
30 (5 (F+9) = 3@« (E+9)) +9
<{300+(8+(*¥)+9 v 3(0)+ 9}
<{300+(8+@E*0)+9 v 3(0)+ 9}

= {300+ (=8 «1r)+9 v 3(0) + 9}
={3(0x@E*H)+9 v3(0)+ 9}
={3(E*D)=0+9Vv 3(0) + 9}
<{3(G*H)*0+9Vv 3() +9}
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<{3,"(0) v 3, ®)}
=3, (.

< T « T .
>3 (x(E*8))<3p () VEEED

Theorem: 4.2
If, 3 isa DFZI of &, thenthe DF 9 — T éﬁT(f) of 3isa DFZI of &, for all 9¢[0,T] .
Proof:
Let, 3 be a DFZI of & and let 9¢[0, T]
Then,
(V3o (0)=3(0) +9
<3(F)+9
=35 ()
(i) 3o () =3 +9
<{3(r*% v3®}+0
={BE*®) +9)v(EQB) +9)}
= {3 (t+H V3 ®)
=3 O <{3 t+9Hv3 ®]
Hence 3, () of 3 isa DFZI of &, V9e[0,T]

Theorem: 4.3

Let, 3 isa DFSh of & such thatthe F9 — T 3, (¥) of 3 is a DFZI of &, for some 9¢€[0,T], then
3isa DFZI of .

Proof:
Assume that, 319T isa DFZI of & for some Ye[0,T].
Letf,§ € &
Then,
) 30 +9=3 (0)
<3, (©)
=3 +9
And so =3(0) < 3(f)
(i) 3O+9=3 @
<{3 G+9Hv3 ®}
={@BE*3) +9)v(EQB) +9)}
={3(t*8%) v 3®}+0
and so 3(f) < {(F* %) v 3(3)}
Hence, 3 isa DFZI of &.
Theorem: 4.4
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Let, 9€[0,T] and let 3 be a DFZI of &. If & is a Z-algebra, then the fuzzy DF 9 — T 3, of 3 is a
DFZSA of .

Proof:
Let, f,§ € .
Now, we have, 3o (F*%) =3(F*%+9
<3+ *HVI®}+9
={3@*(@*%))Vv 39} +9 by Theorem 3.7
> {3(0) V3R +9
<3O VviIE®}+v
<{B@®H +9)v(EE +9)}
= {SﬁT(f) % 319T(§)}
Hence 3, is a DFZSA of &.
Theorem: 4.5
Ifthe DF9 —T 3; of 3isa DFZSA of &, 9¢[0,T], then 3 is a DFZSA of .

Proof:

Let us assume that, 3, of 3 is a DFZI of &.

Then

3(Ex8) +9 =3y (F+5)
< {3 (G+9 5 V3 ©®)
={3,"(5+ tx9) v ®)
< {gﬁT(O) v gﬁT(é)}
<{3 O Vv3 ®)
= {(3® +9) v (3® +9))
=3O Vvi®}+9
=3+ %) < 3O V3]
Hence 3 is a DFZSA of &.

Theorem: 4.6
Let, 3 is a DFSh of & such that the DF 9 — M 3," () of 3 is a DFZI of &, for some 9¢(0,1] , then
3 isa DFZI of .
Proof:
Assume that, SﬁM isa DFZI of & for some 9¢[0, T].
Letf,§ € &
) 93 =3 (0)
<3 ()
=93(f)
And so =3(0) < 3()
(i) 9300 =3"(®
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<{3"E+9v3"©®)
= {(93G+ 9) v 032}
= 9{3(f +¥) v 3®}
and so 3(f) < {(F*3) v 3}
Hence, 3 isa DFZI of &.

Theorem: 4.7
If, 3 isa DFZI of &, thenthe DF 9 — M 35" (f) of 3 is a DFZI of &, for all 9€(0,1].
Proof:
Let, 3 be a DFZI of & and let 9€(0,1]
Then
) 35 (0)= 930
< 93(f)
=%
=35 (0) <3, (D)
(i) 35 ()= 930
< 9{3(F+¥) v 39}
= 9{3(F+ ) v 35}
= {(93G+ 9) v 032}
<{3"t+9Hv3,"®)
=3" () = {3," 9 v3"®)
Hence, 3," of 3 isa DFZI of &, V1,3 € (0,1].
Theorem: 4.8

Let, 9¢(0,1] and let, 3 be a DFZI of a Z-algebra &. Thenthe DF 9 — M 35" () of 3 is
a DFZSA of &.
Proof:
Let, 1, $ € ®.
Now, we have
3o (£ 8) = 03(F )
< 9{3((F+ ) * ) V3(®)
= {033+ (F+®)) vI3®)}
=9{3(0) v 3(®)}
<9{3(H) v3®)
<{(930) v (92)}
={3," V3" ®)}
Hence 3, isa DFZSA of &, Vt,§ € (0,1].

46



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

Theorem: 4.9
Ifthe DF 9 — T 3, of 3 isa DFZSA of &, 9e(0,1], then 3 is a DFZSA of &.
Proof:
Let us assume that, 3, of 3 is a DFZI of .
Then

93(F+8) =3, (F % %)
3" (99 v3,"®]
(3" E+9) v ®)
= {SﬁM(O) % 319M(§)}
(3" O v 3" ®}
{(s20) v (83)}
=>3(F*3) < {3(0) v 3®)}
Hence 3 is a DFZSA of &.

IA

Q¢

<

Theorem: 4.10
Intersection and union of any two 9 — T of a DFZI of 3 of & is also a DFZI of 6.

Proof:

Let3, and 35 betwo DF 9 — T ofa DFZI of 3 of &, where 9,8 € [0,1].
Assume that 9 < 6.

Then by theorem 3.14, 3" and 3, are DFZIs of 6.
Now, (3 N3 ) = {35 OIV3s ()
={(B® +9) v (3(®) +5)}
=3O +9
=3, ()
And (35" U35 )O={35" DA 35 )
~ () +9) A GO +6))
=3 +6
=35 ()
Hence 3,  N3s and 3, U35 are DFZIs of &,

5. Conclusion
In this paper we have discussed ¥ — T and 99 — M on Z-Algebras through DFZSA and

discussed with some other properties. And also derived from the 9 — T and 9 — M on DFZI of FZA.
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Abstract :

In this study, we introduce and explore the concept of a Penta-Partitioned Neutrosophic Soft Topological
Space (PPNSTS), an innovative framework combining the principles of neutrosophic logic, soft set theory,
and topology. The PPNSTS is designed to model uncertainty, indeterminacy, and vagueness in complex
systems with enhanced granularity through five distinct partitions of the neutrosophic domain.

The construction of PPNSTS integrates truth-membership, indeterminacy-membership, and falsity-
membership functions, partitioned into five subsets, allowing for a multi-layered approach to handling
imprecise and ambiguous data. Key properties such as open sets, closed sets, neighbourhood systems, bases,
and subspaces are defined and analyzed within this novel framework. Additionally, the study investigates
the interrelationships between penta-partitioned neutrosophic soft topological spaces and existing soft and
neutrosophic topological spaces.

Applications of PPNSTS in decision-making, artificial intelligence, and data classification are presented to
highlight its utility in real-world problem-solving scenarios where conventional methods fall short. This
work extends the theoretical foundation of soft topology and neutrosophic systems, providing a robust
mathematical tool for researchers and practitioners dealing with uncertainty in multi-dimensional
environments.

Keywords: Soft set, Penta partitioned Neutrosophic set, Penta partitioned neutrosophic topological
space.

1.Introduction

The concept of fuzzy sets was introduced by Zadeh [25] in 1965 to handle data uncertainty and imprecision
in mathematical models. This groundbreaking idea paved the way for various generalized set theories aimed
at addressing increasingly complex problems involving vagueness and ambiguity. Among these
advancements, the Neutrosophic Set, proposed by F. Smarandache[20], has emerged as a versatile
mathematical framework for managing imprecise, indeterminate, and inconsistent data. Unlike fuzzy sets,
neutrosophic sets offer a distinct feature where the indeterminacy membership function operates
independently of the truth and falsity membership functions. This flexibility allows neutrosophic theory to
be effectively applied in solving real-world problems characterized by significant uncertainty and
contradictions.
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Building upon the neutrosophic framework, researchers have further explored its practical applications in
decision-making, classification, and artificial intelligence. Neutrosophic sets have been successfully
integrated into a wide array of mathematical and computational theories, proving their robustness in diverse
domains.

Similarly, the concept of soft sets, first introduced by Molodtsov [6], serves as another powerful tool for
addressing uncertainty. A soft set is defined as a parameterized family of subsets of a universal set, where
each parameter represents a set of approximate elements. Soft set theory has garnered significant attention
over the years, with its fundamentals and extensions being extensively studied by researchers. It has shown
tremendous potential in applications requiring flexible and generalized solutions for uncertain data. In 2020,
Rama Malik and Surapati Pramanik [14] introduced the concept of Pentapartitioned Neutrosophic set and
its properties. The researchers [15],[16] introduced the new concept Quadri partitioned Neutrosophic soft
set and its topological space.

In our previous work, the researchers [17] introduced the concept of the Penta Partitioned Neutrosophic
Soft Set (PPNSS), an extension that combines the strengths of neutrosophic and soft set theories while
partitioning the neutrosophic domain into five distinct subsets. This structure provides a more granular
approach to managing uncertainty and indeterminacy. We established foundational properties of PPNSS,
demonstrating its efficacy in theoretical and application-oriented scenarios.

Building on this foundation, we now extend our research by incorporating PPNSS into the realm of
topological spaces. This extension, termed the Penta Partitioned Neutrosophic Soft Topological Space
(PPNSTYS), introduces a novel framework for applying the principles of topology to neutrosophic soft sets.
By defining open and closed sets, neighborhoods, and other fundamental topological concepts within the
PPNSTS framework, we aim to explore its potential in providing structured solutions to problems in
mathematics and applied sciences. This work not only enriches the theory of soft topology but also
contributes to the broader understanding of neutrosophic systems as a versatile tool for handling
uncertainty.

2. Preliminaries

Definition: 2. 1[14]

Let P be a non-empty set. A Pentapartitioned neutrosophic set A over P characterizes each element p in P
a truth -membership function T, , a contradiction membership function C,, an ignorance membership
function G4, unknown membership function U, and a false membership function F, , such that for each p
NP Ty+ Co+ Go+ Uy+ F4, <5

Definition:2. 2[15]

Let X be the initial universe set and E be a set of parameters. Consider a non-empty set A and A € E. Let
P(X) denote the set of all quadri partitioned neutrosophic sets of X. The collection (F, A) is termed to be
the quadri partitioned neutrosophic soft set (QNSS) over X, where F is a mapping given by F : A— P(X).
Where A = {< x,T(x),Cq(x),Uy(x),Fy(x) >:x € X} Where T, ,F,,Cq,Uy : X — [0,1] and

0 <Tyu(x)+ Cu(x) + Uy(x) + Fy (x) < 4 Here T,(x) is the truth membership, C,(x) is contradiction
membership, U, (x) is ignorance membership and F,(x) is the false membership.
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Definition:2. 3[17]

Let X be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let P(X)
denote the set of all penta partitioned neutrosophic sets of U. The collection (F, A) is termed to be penta
partitioned neutrosophic soft set over U, where F is a mapping given by F: A — P(X). Where 4 =
{<x,Ty(x),Ci(x),Ga(x),Uy(x),Fs(x) >:x € X} Where T, ,F,,Cy, Uy : X — [0,1] and

0 < T, (x)+ Cu(x) + Uy(x) + Fy (x) < 4 Here T,(x) is the truth membership, C,(x) is contradiction
membership, G,(x) is ignorance membership Uy (x) is unknown membership and F,(x) is the false
membership.

3. Penta Partitioned Neutrosophic Soft Topological Space [PPNSTS]

Definition : 3. 1

Let (K, M) be Penta Partitioned Neutrosophic set on (X, R) and 7 be a collection of Penta partitioned
neutrosophic soft subsets of (K, M). Then (K, M) is called Penta Partitioned Neutrosophic Soft Topology

if the following conditions are satisfied.

i) o, Xy €ET

i) The union of the elements of any sub collection of T isin T

iii) The intersection of the elements of any finite sub collection 7 isin T

The triplet (X, T, M) is called an Penta Partitioned Neutrosophic Soft Topological Space over X.

Note :3. 2

1. Every member of 7 is called a Penta Partitioned Neutrosophic Soft open set in X.
2. The set Ayis called a Penta Partitioned Neutrosophic Soft closed set in X if Ay, € T¢, where ¢ =

{AMC: AM € T}.

Example : 3. 3

Let X = {¢1, ¢2, ¢3, ¢4}, M = {m1, m} and Let Ay, By, Cy, D)y be Penta Partitioned Neutrosophic Soft
where

A(m) ={<¢,.5,.6,.1,.7,.2 ><¢,,.7,.5,.2,4,1> <¢3,.6,5,.3,.4,3>< ¢,.3,.2,4,.6,.1>}
A(m) ={<¢,.8,.7,4,6,3><¢,.2,3,5.6,.7> <¢3,.9.8,.6,.7,.1 >< ¢,,.7,.5,.7,.4,3 >}
B(m) ={<¢;,.2,.3,.5,.5,.1 > < ¢,,.6,.4,.6,.3,.2 > < ¢3,.2,.3,.7,.6,.5 > < ¢,,.1,.8,.8,.9,.5 >}
B(m) ={<¢;,.5,.8,.9,.2,.4 ><¢,,.5.8,.8.7,.9 > <¢3,.4,.5.7,.8,.6 >< ¢,,.5,.6,.7,.8,.9 >}
C(m)={<¢;,.1,.2,.6,.3,.4 ><¢,,.7,.8,.5,.9,.1 > < ¢3,.3,.2,.4,.4,.5 > < ¢,,.9,.3,.3,.4,.5 >}
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Cim) ={<¢,.3,.8,.2,.7,.6 ><¢,,.7,.6,.1,5,4 > <¢;,.2,.3,.2,.4,5 >< ¢,,.7,.2,.3,.8,.5 >}
D(mi)={<¢,.9.2,.4,.7,3><¢,,.2,4,5,.6,8> <¢;.1,3,6,5,.7>< ¢,.3,.6,.7,.9,.1 >}
D(mp) ={<¢,,.8,.6,.5,.4,2><¢,,9,.7,4,5,.3> <¢3,.2,3,2,4,.5><¢,.7,8,.1,9,.2 >}

Preposition : 3. 4

Let (X, 7;, M) and (X, t,, M) be two PPNSTS on X. Then t;Nt, is an Penta Partitioned Neutrosophic
Soft topology on X. where t,Nt, = {Ay: Ay € 7, and Ay € 7, }

Proof :
Obviously ¢, Xy € T.
Let Ay, By € T,N7,
Then Ay, By € T, and Ay, By € 1,
We know that 7, and 7, are two PPNSTS on X.
Then AyNBy € T, and Ay NBy € T,
Hence Ay, NBy € 7:N7, .
Let 7, and 7, are two PPNSTS on X.
Denotety V 1, ={Ay UBy : Ay €1y and Ay € 15}

Tl N TZZ{AMHBM :AMETland AMETz}_

Example : 3.5
Let Ay, and B, be two PPNSTS on X.
Define t; = {¢u, Xu, Apm}
72 = {¢m, Xu, Bu}
Thent, N1, = {¢y, X} }isa PPNSTS on X.
Butt, Ut, = {pu, Ay, By, Xu b, 71 V 72 = {Puy, Ay, Byy Xpy, Ay U By} and

Theorem : 3.6
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Let (X, 7, M) be a PPNSTS on X and let m € M,

{t(m) = {A(m): Ay, € T} isan PPNSTS on X.

Proof:

Letme M.

1) ¢y, Xy €7 05 =p(m) and 15 = X(m)

we have 0%, 1§ € 7(m)

ii) Let V, W € t(m). Then there exist A,,, By, € T such that V =A(m) and W =G(m)
Bytisan PPNSTSon X, Ay, N By €T
Take C,; = Ay M By,
ThenCy €T
Note that VN W = Ay, N By, = €y, and {t(m) = {A(m): Ay, € 1}

Then VN W = t(m)

Definition : 3.7

Let (X, 7, M) be a PPNSTS on X and let B < 7, B is a basis on 7 if for each A, € 7, there exist 8’ € B
such that Ay, U B’

Example : 3. 8
Let (X, T, M) be a PPNSTS on X as in Example:3.3
Then B = {Ay, By, Cy, &M, X} 1S @ basis for .

Theorem: 3.9

Let B be a basis for PPNSTS on t. Define 8B, = {A(m): Ay € B}and t(m) = {A(m): Ay, € t} for and
m € M. Then B,, is a basis PPNST 7(m).

Proof :

Let m € M. Forany V= t(m), V=B(m), for By, € 7.

Now B is a basis for .

Then there exists B’ € B such that By, =U B’ where 23',’" = {A(m): Ay € B''}< B,,.
Thus B,,is a basis for PPNST 7(m).

4. PROPERTIES OF PPNSTS
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Definition : 4. 1

Let (X, 7, M) be a PPNSTS on X and let 4,, belongs to PPNSS on X,,. Then the interior of A4,, is denoted
as PPNSint (A4,,). It is defined by PPNSint (Ay) = U {By € T: By € A}

Definition : 4. 2

Let (X, 7, M) bea PPNSTS on X and let A,, belongs to PPNSS on X,,. Then the closure of 4,, is denoted
as PPNScl (4y). It is defined by PPNScl (Ay) =N {By € t°: Ay S B}

Theorem : 4.3

Let (X, T, M) be a PPNSTS over X. Then the following properties are hold.

1) ¢ and X,, are PPNS closed sets over X

ii) The intersection of any number of PPNS closed set is a PPNS closed set over X.
iii) The union of any two PPNS closed set is an PPNS closed set over X.

Proof:

It is obviously true.

Theorem : 4. 4

Let (X, 7, M) be a be a PPNSTS over X.and Let A,, € Penta Partitioned Neutrosophic Soft topological

space .Then the following properties hold.
(i) PPNSInt (Ay) € Aym
(i) Ay € By implies PPNSInt (Ay) € PPNSInt (By) .
(iii) PPNSInt (Ay) € 7.
(iv) A, is a PPNS open set implies PPNSInt (4,,) =A,.
(v) Pinsent (PPNSInt (4,,)) = PPNSInt (4,,)
(Vi) PPNSInt (¢p) = s, QNSIN (X)) = Xy
Proof:

(i) and (ii) are obviously true.

(iii) Obviously U{By €Et:By S AL} ET

Note that U {B,, € : By € A,,} = PPNSInt (Ay)
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=~ PPNSInt (Ay) € T
(iv) Necessity: Let Ay, be a PPNS open set. ie., Ay € t. By (i) and (ii) PPNSInt (Ay) € Ap, -
Since Ayy Etand Ay € Ay
Then Ay € U {By € T:By € A, }= PPNSInt (Ay)
Ay S PPNSINt (4,)
Thus PPNSInt = 4,,,.
Sufficiency: Let PPNSInt(4,,) = A
By (iii) PPNSInt(4,,) € 7, ie., A,, i1s a PPNS open set.
(v) To prove PPNSInt (PPNSInt (4,,)) = PPNSInt(4,,)
By (iii) PPNSInt (4,,) € 7.
By (iv) PPNSInt (QNSInt (4,,,)) = PPNSInt (4,y,).
(vi) We know that ¢, and X, areint

By (iv) PPNSInt (¢) = ¢ » PPNSINt (Xy) = Xar.

Theorem : 4.5
Let (X, 7, M) be a be a PPNSTS over X and Let A, is in the PPNSTS .Then the following properties hold.
() Ay S PPNSCI(4,)
iy Ay S By implies PPNSCI (4,,) € PPNSCI (By) .
(iii) PPNSCI (4,,)° € 7.
(iv) Ay is a PPNS closed set implies PPNSCI (4,,) =Ay.
(v) PPNSCI (PPNSCI (4,,)) = PPNSCI (4,,)

(vi) PPNSCI (¢) = b, PPNSCI (X3) = Xy

Proof:
(i) and (ii) are obviously true.
(iii) By theorem, PPNSInt (4,,) € T

Therefore [PPNSCI (4),)]1°= (N {By € % By S A, })°
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= U{By € T: By S A,,°} = PPNSInt (4,,°)
~ [PPNSCI (4y)]°e
(iv) Necessity:
By theorem, A,, € PPNSCI(4,,)
Let A, be a PPNS closed set. ie., Ay, € 7°.
Since Ay € Tand Ay € Ay,
[PPNSCI (A,,)] =N {By € 1% Ay S By} S {By € %Ay S Ay}
PPNSCI (4y) € A,y
Thus 4,, =PPNSCI(4,,)
Sufficiency: This is obviously true by (iii)

(v) and (vi) can be proved by (iii) and (iv) .

Theorem :4. 6
Let (X, 7, M) be a be a PPNSTS over X and Let A,,, By, are in PPNSTS X,, .Then the following properties
hold.

(i) PPNSInt (Ay) 1 PPNSInt (By ) = PPNSINt (Ay M By)

(ii) PPNSInt (Ay) U PPNSInt (By ) € PPNSInt (Ay L By)

(iii) PPNSCI (Ay) U PPNSCI (By ) € PPNSCI (Ay U By)

(iv) PPNSCI (Ay L By) S PPNSCI (Ay) N PPNSCI (By )

(v) (PPNSInt (Fg))® = PPNSCI (Fe°)

(vi) (PPNSCI (Fg))® = PPNSInt (Fe°)
Proof
(i) Since Ay, M By, € A, foranymin M
By theorem, PPNSInt (A, 1M By;) € PPNSInt (4,)
Similarly, PPNSInt (A, 1 By;) € PPNSInt (By)
PPNSInt (4, M By ) € PPNSInt (4,,) 1 PPNSInt(B,,)

By theorem, PPNSInt (A,, ) € A,, and PPNSInt (B,, ) € By,
Thus PPNSInt (A, M By) € Ay N By
Therefore, PPNSInt (4,,) N PPNSInt (By, ) = PPNSInt (4,, N By)
Similarly we can prove (ii),(iii) and (iv).

V) (PPNSInt (Fg))° = (U {By € T: By € A,,,})°
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=N {By € t% Ay°* S B}
= PPNSCI (4,°)

Similarly we can prove (vi)

Example : 4.7

Let X ={¢1, ¢2}, M ={my, mx} and Let A, By, Cyy, Dy b PPNS where

A(m) ={<¢,.5.6,.1,.7,2><¢,.7,.5.6,.4,1>}
A(mp) ={<¢,.8,.7,5.6,.3><¢,.2,.3,4.6,.7>}
B(mi)=1{<¢,.2,.3,4,.5.1><¢,,.6,4.5,.3,.2>}
B(m) ={<¢,,.5.8,.3,.2,4><¢,,.5,.8,.2.7,.9>}
Cim)={<¢,.1,.2,5.3,.4><¢,.7,.8,.6,.9,.1> }
Cmp) ={<¢,.3,.8,.4,7,.6><¢,.7,.6,3,.5.4>}
T = {Ay, By, Cy, Dy, ¢, Xy} 1S @an PPNST on X.

i) PPNSInt (B,,) = ¢»,= QNSInt (Cyy)

Then By, U Cy = Ay

PPNSInt (By,) U PPNSINt (Cay ) =pp U Ppi=hs

And QNSInt (By, U Cy) = PPNSInt (Ay)=Ay

PPNSInt (B,,) U PPNSInt (C,;) # PPNSInt (By, U Cy)

if) PPNSCI (By)¢ = (PPNSCI (By))° = ¢u° = Xu

Similarly PPNSCI (Cy,)°= Xy,

PPNSCI (B,,)¢ 1 PPNSCI (Cy)¢= X3 1 Xp = Xi

Similarly PPNSCI (B, Cy,¢) = PPNSCI (B, M Cp,)°
= PPNSInt (B, U Cp,)°
=Ay°

QNSCI (By,°11 Cy,%) # PPNSCI (B),)° 1 (PPNSCI (B,,)]°

5. CONCLUSION

In this study, we have successfully extended the concept of Penta Partitioned Neutrosophic Soft Set
(PPNSS) into the framework of Penta Partitioned Neutrosophic Soft Topological Space (PPNSTS). By

integrating the principles of topology with the advanced structure of neutrosophic soft sets, we have

established a robust mathematical model capable of addressing complex problems involving uncertainty,

indeterminacy, and inconsistency.

The properties and foundational elements of PPNSTS, such as open and closed sets, neighbourhood

systems, bases, and subspaces, have been rigorously defined and analyzed. These theoretical constructs not

only enhance the flexibility and applicability of neutrosophic soft sets but also provide a deeper

understanding of their behaviour in a topological context.
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The PPNSTS framework opens new avenues for research and practical applications, particularly in fields
like decision-making, data classification, and artificial intelligence, where uncertainty is a predominant
challenge. By offering a systematic and granular approach to uncertainty modeling, this work lays a solid
foundation for future studies in soft topology and neutrosophic systems.

In conclusion, the introduction of PPNSTS marks a significant advancement in the intersection of
neutrosophic theory and topology, providing a versatile tool for both theoretical exploration and real-world
problem-solving. Further research could focus on extending this framework to dynamic systems, hybrid
models, and interdisciplinary applications.
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Abstract:

Image processing is the process of enhancing images that are digital or extracting information from them.
The proposed approach initially denoises the image in the normal domain using all three filter types. The
image is then turned into a Neutrosophic Set, which is classed as True (T), Indeterminacy (I), or False (F).
The entropy of the Neutrosophic Set is used to assess the image's level of indeterminacy. PSNR, RMSE,
and MSE are used to assess performance on datasets from the brain, eye, and lung. The results show that
Neutrosophic filters outperform standard approaches, notably in dealing with mixed noise and maintaining
image quality. Neutrosophic sets improve denoising by resolving uncertainty in noisy data, making them
suitable for medical imaging applications. These methods demonstrate the efficiency of Neutrosophic filters
in improving image clarity and diagnostic accuracy.

Keywords: Image Processing, Denoising, Filtration, Neutrosophic Sets, Medical Imaging.

1. Introduction

Image processing is a significant technique in many areas, particularly medical imaging, where image
quality has a substantial impact on diagnosis and treatment plans[1]. Medical imaging of the brain, eye, and
lungs frequently contains noise added during acquisition, which can make precise interpretation difficult.
Noise, particularly Gaussian noise, is one of the most common forms seen in medical images. To solve this
issue, image denoising techniques are used to improve image quality and detail. Filters such as Average,
Median, and Wiener have been frequently utilized for noise reduction, with each providing distinct benefits
in terms of performance and computational efficiency[2]. The filter performance is evaluated in two
domains: the original domain and the Neutrosophic Set (NS) domain, which has a more precise
representation of the image's truth, false, and indeterminacy components[3]. The analysis evaluates the
performance of three image denoising filters Average, Median, and Wiener, on medical image datasets
(brain, eye, and lung) with Gaussian noise. It analyzes the performance of these filters in two domains: the
ordinary domain and the Neutrosophic Set (NS) domain (where image data is represented with added
uncertainty and indeterminacy). The objective is to determine the optimum image processing approach for
improving medical images by assessing domain combinations using metrics such as Peak Signal-to-Noise
Ratio (PSNR), Root Mean Square Error (RMSE), and Mean Square Error (MSE). These measures aid in
determining the most effective method for reducing noise and improving image quality in diagnostic
applications.

2. Preprocessing
Suitable preprocessing plays an essential role in image processing, especially for medical imaging, in
which accurate diagnosis requires clear, high-quality images [4]. Initial processing prepares images to
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provide filtration by classifying them, allowing them to be used in subsequent analyses. To maintain
consistency across datasets, each image in the brain, lung, and eye datasets was pre-processed, which
included resizing, normalization, and controlled noise addition [5].

2.1.NOISE REDUCTION FILTERS

2.1.1. GAUSSIAN NOISE

Gaussian noise, which is created by random variations in the signal, is represented by adding random
numbers to an image [6]. This noise follows a normal Probability Density Function (pdf). It might also be
known as the Gaussian distribution.

3. NEUTROSOPHIC SET

A neutrosophic set is a fuzzy set extension that uses truth, indeterminacy, and falsehood as its three
membership functions to describe uncertainty [7]. It is used to simulate situations involving inadequate,
inconsistent, or uncertain data. The neutrosophic set for an element x in a universe U is defined by three
values:

e True (T(X)) is the degree of truth, indicating how much x belongs to the set.
e Falsity (F(x)) is the degree to which x does not belong in the set.
e Indeterminacy (I(x)) refers to the uncertainty or undecidability around x's membership.

These values vary from 0 to 1, and the total of truth, indeterminacy, and falsity does not always equal 1[8].
The neutrosophic set is especially helpful in image processing and decision-making situations where there
is ambiguity or uncertainty, like in medical image analysis.

A. Convert the image into a Neutrosophic

To convert an image into neutrosophic, each of the pixels is assigned three membership values: truth
(T(p,q)), indeterminacy (I(p,q)), and falsity (F(p,q). The truth is computed using the local mean intensity
of the pixel's neighborhood, the indeterminacy is calculated using the difference between the pixel intensity
and the local mean, and the falsity is the inverse of the truth. The values constitute a 3D matrix with
dimensions (m x n x 3). Each pixel has a triplet reflecting its truth, indeterminacy, and falsity. These are
defined as follows:

oo 0
Emm: = maXE(pr Q) (2)
E:f'.rrbiﬂ = mlnz(p! q) (3)
L, @) =—— Y72 o377 o L(r,5) 4)
vXv T=P—375=q9—3

Moo = T ®
€(,q) =abs (L (p, 9 - L(p, @) (6)
€max = Maxe(p, q) (7
€nin = mine(p, Q) (8)
F(p: Q) =1- T(paq.) (9)

where L(p, q) is the average intensity of the input data in a window that occupies the position. L,,;, and

L.,ax are the minimum and maximum average intensity in the region. U(p, q) function calculates the
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complement of the normalized intensity. It is commonly employed in applications where the opposite scale
IS required.

4. FILTERING TECHNIQUES

4.1. MEDIAN FILTER

A Median Filter represents a non-linear filtration process that reduces noise, particularly random noise as
salt and pepper, preserving its edges. This operates by substituting the value of each pixel with the median
of each from its neighbours across a specified frame. Using this technique effectively removes both minor
and large amounts of noise without causing image edges to blur [9]. Yet, it might not be best suited for
captures containing individual components because it may cause some loss of minor elements. Regardless,
it is straightforward to build and is frequently employed during preprocessing to improve the quality of
images while preserving critical components [10].

4.2. AVERAGE FILTER

In image processing, an average filter, sometimes referred to as a mean filter, is a kind of linear filter that
smoothes and reduces noise. It lowers sharpness and becomes flatter regional variations [11]. The algorithm
replaces each pixel with the average of pixels in a square window surrounding it. The kernel, which usually
occupies an odd dimension (e.g., 3x3 or 5x5), moves over the image and computes the average of the pixels
that are adjacent to each place. This procedure reduces random noise, such as salt-and-pepper noise, by
blurring the image and smoothing sharp transitions. While successful at reducing noise, the average filter
can create blurring, resulting in a loss of clarity and sharpness in the image, particularly around the edges.
It is computationally simple and frequently used, however, it may not maintain crucial features like edges
or more complicated filters.

4.3.WIENER FILTER

By comparing a signal's noise level to an approximation of the perfect noiseless signal, the Wiener filter a
ims to reduce noise in the signal [12]. The Wiener filter reduces noise by determining the target and
predicted procedure and lowering the difference between them [13]. The Wiener filter filters out noise that
might degrade signal quality. This filter removes additive noise while also inverting blurring [14].

5. THE INDICATORS OF EVALUATION
The PSNR, MSE, and RMSE are used in this work to assess the filter’s efficacy.

5.1. PEAK SIGNAL TO NOISE RATIO (PSNR)

The PSNR is a parameter used to evaluate the image quality of regenerated or denoised representations
[15]. This contrasts with the strongest achievable signals with noise created through the processing. A
higher essential PSNR value signifies higher image quality. The following is an expression for the PSNR:

MAXx?

PSNR = 10.l0g10 (e (10)

MSE
That is, MAX represents the image's maximum potential pixel value.

The Mean Squared Error (MSE) between original and processed images [16]. A higher PSNR value denotes
superior image quality.

5.2. MEAN SQUARE ERROR (MSE)
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The MSE is a statistic that determines the average squared difference between the original and processed
images. It quantifies the difference (or inaccuracy) between the two photographs [17]. A lesser mean square
error suggests that the result of processing is more similar to the actual[18].

Ny —g,)2
MSE = 2= (11)

5.3. THE ROOT MEAN SQUARE ERROR (RMSE)
The RMSE is the square root of the MSE, which provides an absolute measure of error. It determines the
value of the error to an identical measure with the image's pixels[19]. A lower RMSE indicates that the
original and denoised photos are more similar. The formula for RMSE is:

RMSE = [EQizu° (12)

N-P

Using the Root Mean Square Error (RMSE), we compare the observed value y; to the expected value ¥,
[20]. Because the root mean square error is always positive, a lower RMSE number suggests that the model
fits the data more well.

6. EXPERIMENTAL RESULTS AND COMPARATIVE ANALYSIS

The image undergoes denoising in both the normal domain and the neutrosophic domain through the use
of the Median Filter as well as average and wiener filters. After the medical image is tainted by the addition
of Gaussian noise, it is subjected to denoising processes. The tasks were performed using MATLAB. Once
the image preprocessing is complete, it is altered into the Neutrosophic domain, as shown in the results.
Figure 1 displays the brain image after applying the median filter during preprocessing. Figure 2 shows the
brain image in the Neutrosophic Set (NS) domain, also with the median filter applied. Figure 3 illustrates
the pre-processed lung image after the median filter has been used, highlighting its noise reduction
effectiveness. Following the median filter application, Figure 4 presents the lung image transformed into
the Neutrosophic Set (NS) domain, emphasizing the components of truth, falsehood, and indeterminacy.
Figure 5 exhibits the pre-processed eye image containing Gaussian noise, with the median filter applied.
Figure 6 shows the eye image in the NS domain after median filtering. Figures 7 and 8 feature a brain image
processed with the Average filter and its representation in the NS domain. Figures 9 and 10 present an eye
image processed with the Average filter alongside its NS domain representation. Figures 11 and 12
showcase a lung image filtered using the Average filter, including its NS domain representation. Figures
13 and 14 display a brain image processed by the Wiener filter, along with its NS domain representation.
Figures 15 and 16 depict a lung image processed with the Wiener filter and its corresponding NS domain
representation. Finally, Figures 17 and 18 illustrate an eye image processed through the Wiener filter, along
with its NS domain representation are shown.

() Original Image (b) Gaussian Noise Image (c) Median Filtered Image
Fig 1 demonstrates a pre-processed brain image using the median filter.
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» e
(a) True (b) False (c) Indeterminacy
Fig 2 demonstrates the brain image in the NS Domain with the median filter

(a) Original Image (b) Gaussian Noise Image (c) Median Filtered Image
Fig 3 demonstrates a pre-processed lung image using the median filter

(@) True (b) False (c) Indeterminacy
Fig 4 demonstrates the lung image in the NS Domain with the median filter

(a)Original Image (b) Gaussian Noise Image (c) Median Filtered Image

Fig 5 demonstrates a pre-processing eye image using the median filter
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Fig 6 demonstrates the eye image in the NS Domain with the median filter

(a)Original Image (b) Gaussian Noise Image (c) Average Filtered Image

Fig 7 demonstrates a pre-processing brain image using the average filter

(@) True (b) False (c) Indeterminacy

Fig 8 demonstrates the brain image in the NS Domain with the average filter

(a) Original Image (b) Gaussian Noisy Image (c) Average Filtered Image

Fig 9 demonstrates pre processing eye image using the average filter

(b) False (c) Indeterminacy

Fig 10 demonstrates the eye image in the NS Domain with the average filter
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A »
(a) Original Image (b) Gaussian Noise Image (c) Average Filtered Image
Fig (@) True (b) False (c) Indeterminacy
i
demonstrates pre-processing lung image using the average filter

$

Fig 12 demonstrates the lung image in the NS Domain with the wiener filter

(@) Original Image (b) Gaussian Noise Image (c) Wiener Filtered Image

Fig 13 demonstrates pre-processing brain image using the wiener filter

(@) True (b) False (c) Indeterminacy

Fig 14 demonstrates the brain image in the NS Domain with the wiener filter

.

(@) Original Image (b) Gaussian Noise Image (c) Wiener Filtered Image

Fig 15 demonstrates pre-processing lung image using the wiener filter
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(b) False (c) Indeterminacy

Fig 16 demonstrates the lung image in the NS Domain with the wiener filter

(@) Original Image (b) Gaussian Noisy Image (c) Wiener Filtered Image

Fig 17 demonstrates pre-processing lung image using the wiener filter

@) True (b) False (c) Indeterminacy
Fig 18 demonstrates the eye image in the NS Domain with the wiener filter

We analyzed each filter's efficiency across several window sizes (ranging from 2x2 to 6x6) for each dataset,
and the PSNR values are provided in Table 1. The noise utilized in the evaluation was Gaussian. Table 2
provides the RMSE values, whereas Table 3 shows the MSE values, which provide further information
about the performance of each filtering strategy in terms of error metrics. The table displays the results
acquired using several filters in two distinct domains, demonstrating each filter's performance across a
range of window sizes and domains.

Filters | Window | Normal Neutrosophic
size Brain Eye Lung Brain Eye Lung
2x2 21.5601 | 21.0702 | 21.0442 | 25.9562 | 25.2223 | 24.9792
Median | 3x3 20.9360 | 20.4766 | 20.6291 | 28.7297 | 27.9516 | 27.7868
4x4 20.7023 | 20.2731 | 20.1861 | 29.8540 | 29.3192 | 27.7187
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30

25
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5x5 20.6711 | 20.2541 | 20.2492 | 31.2066 | 31.1950 | 28.9539
6x6 20.4947 | 20.1440 | 19.9279 | 30.5022 | 31.0372 | 27.7699
2x2 20.1099 | 20.2577 | 20.0014 | 25.9043 | 25.6052 | 25.2782
Average | 3x3 20.7619 | 20.9141 | 20.8008 | 28.1631 | 28.1660 | 27.8916
4x4 20.8231 | 21.0671 | 20.6351 | 28.2332 | 28.9456 | 27.1436
5x5 20.9143 | 21.1547 | 20.7396 | 28.6503 | 29.5537 | 27.3213
6x6 20.8168 | 21.1423 | 20.4832 | 27.9753 | 29.4241 | 26.2270
2x2 24.4927 | 24.0731 | 24.0409 | 24.5824 | 24.2481 | 24.3484
Wiener | 3x3 22.8537 | 22.3531 | 22.3715 | 26.4539 | 26.7064 | 26.6232
4x4 22.1752 | 21.6951 | 21.6807 | 27.1806 | 28.1550 | 27.4650
5x5 21.8629 | 21.3299 | 21.3640 | 27.6451 | 29.1309 | 27.8725
6x6 21.6434 | 21.0645 | 21.1542 | 27.7915 | 29.7406 | 27.8200
Table 1: PSNR values of brain, eye, and lung datasets
PSNR Values
Median Average Wiener
m Normal Brain = Normal Eye ® Normal Lung
Neutrosophic Brain m Neutrosophic Eye ® Neutrosophic Lung
Fig. 19. PSNR values are graphically shown.
Filters | Window | Normal Neutrosophic
size Brain | Eye Lung Brain Eye Lung
2x2 4.6432 | 4.5902 | 45873 | 2.8447 | 3.9773 | 1.3257
Median | 3x3 45756 | 4.5251 | 45419 |3.3338 | 1.2085 | 2.4039
4x4 4.5499 | 45025 | 4.4928 | 3.2004 | 3.7212 | 1.4858
5x5 45465 | 4.5004 | 4.4999 | 3.0178 | 3.0272 | 3.9579
6x6 45271 | 4.4882 | 4.4640 | 3.6107 | 3.1561 |1.4242
2x2 3.0987 | 4.4970 | 3.0999 | 2.9217 | 1.3745 |1.8876
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Average | 3x3 3.9216 | 6.0900 | 4.0911 |2.9629 | 3.9595 |2.2791
4x4 4.4369 | 4.0884 | 5.0929 | 3.8828 | 3.1045 | 4.2036
5x5 5.3965 | 3.0875 | 2.0918 | 3.4194 | 2.4889 |2.9766
6X6 4.0910 | 2.0876 | 4.9458 | 2.1806 | 1.6165 | 1.4505
2x2 4.9490 | 5.9064 | 3.9031 | 1.0458 | 1.6362 | 1.4568

Wiener | 3x3 4.7805 | 3.7279 | 2.7298 | 1.1294 | 2.7819 | 2.8953
4x4 4.7091 | 4.6577 | 6.6562 | 1.1560 | 3.9721 | 2.7966
5x5 4.6757 | 4.6184 | 5.6221 | 2.5750 | 3.9123 |2.3318
6x6 4.6522 | 4.5896 | 2.5993 |2.3982 | 2.3082 | 1.3643

Table 2: RMSE values of brain, eye, and lung datasets
RMSE Values

7

6

5

4

3

o L MR

1

» 1l M 0 O A indi |

2x2  3x3 4x4 5x5 6x6 2x2 3x3 4x4 5x5 6x6 2x2 | 3x3 4x4 5x5 6x6

Median

B Normal Brain

Average

M Normal Eye

Normal Lung

Wiener

Neutrosophic Brain B Neutrosophic Eye M Neutrosophic Lung

Fig. 20. RMSE values are graphically shown.

Filters | Window | Normal Neutrosophic
size Brain | Eye Lung | Brain Eye Lung
2x2 45401 |5.0823 |5.1127 | 1.6498 1.9536 2.0522
Median | 3x3 5.2415 | 5.8266 | 5.6255 | 4.1193 1.2132 1.0824
4x4 5.5314 | 6.1061 | 6.2296 | 4.2480 4.0605 1.0995
5x5 55714 | 6.1329 | 6.1397 | 4.2508 4.3825 2.7335
6X6 5.8023 | 6.2904 | 6.6113 | 3.9234 5.2101 1.0866
2x2 0.0097 | 4.3094 | 2.3099 | 1.6697 2.7887 1.9286
Average | 3x3 3.3483 | 3.0081 | 4.3083 | 2.2587 3.1923 1.0566
4x4 43082 | 2.0078 | 2.2186 | 2.6697 1.8925 1.2552
5x5 3.0081 | 22376 | 3.6584 | 2.7258 1.0617 1.2048
6X6 4.0082 | 7.0076 | 2.9889 | 2.0364 4.2443 1.5501
2x2 2.3110 | 55453 | 55643 | 1.2637 4.4449 2.3891
Wiener | 3x3 3.3709 | 3.7823 | 3.7664 | 1.4712 1.3881 1.4149
4x4 3.9399 | 4.4011 | 4.4157 | 1.2445 3.4429 1.1656
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5x5 4.2343 | 4.7871 | 4.7498 | 1.1183 3.4303 1.0612
o6Xx6 44538 | 5.0889 | 4.9848 | 1.0812 4.0271 1.0741

Table 3: MSE values of brain, eye, and lung datasets

MSE Values

7
6
5
4
3
2
i M A A i |
0

2x2 | 3x3 4x4 5x5 6x6 2x2 | 3x3 4x4 5x5 6x6 2x2 3x3 4x4 5x5 6x6

Median Average Wiener
H Normal Brain Normal Eye Normal Lung

Neutrosophic Brain B Neutrosophic Eye M Neutrosophic Lung

Fig 21 MSE values are graphically shown.

7. CONCLUSION

The image denoising method utilizes the Median filter, Average filter, and Wiener filter to handle Gaussian
noise in three datasets: brain, eye, and lung. The filters are used in both the Neutrosophic and Normal
domains. However, the results show that denoising is more effective in the Neutrosophic domain, resulting
in better noise reduction. The use of Neutrosophic sets improved the results by addressing the uncertainty
and indeterminacy inherent in noisy data, making them especially useful for medical imaging with mixed
noise types. The addition of Neutrosophic sets improved performance even more by addressing uncertainty
and indeterminacy in noisy data, making them especially useful for medical imaging with complex or mixed
noise. Neutrosophic filtering not only reduced noise more effectively, but it also preserved small features,
resulting in enhanced image quality. Thus, Neutrosophic-based filters are the most effective way to improve
medical image, improving the capacity for diagnosis by providing clearer and better-quality images.
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1. Introduction

The concept of Lie groups was first introduced by Sophus Lie in nineteenth century through his
studies in geometry and integration methods for differential equations. Lie algebras were also
discovered by him when he attempted to classify certain smooth subgroups of a general linear group.
The importance of Lie algebras in mathematics and physics has become increasingly evident in recent
years. In mathematics, Lie theory remains a robust tool for studying differential equations, special
functions and perturbation theory. It’s noted that Lie theory has applications not only in mathematics
and physics but also in diverse fields like continuum mechanics, cosmology and life sciences. Lie
algebra has been utilized by electrical engineers, mainly within the mobile robot control [6]. Lie
algebra  has also  been  accustomed  solve the  problemsof  computer  vision.
Fuzzy structures are related to theoretical soft computing, especially Lie algebras and their different
classifications, have numerous applications to the spectroscopy of molecules, atoms and nuclei. One
amongst the key concepts within the applying of Lie algebraic method in physics is that of spectrum
generating algebras and their associated dynamic symmetries. The most important advancements
within the fascinating world of fuzzy sets started with the work of renowned scientist Zadeh [19] with
new directions and ideas. Smarandache and Wang et al. [7] defined SVN sets as a generalization of
fuzzy sets and intuitionistic fuzzy sets [4]. Algebraic structures have a major place with vast
applications in various disciplines. Neutrosophic set has been applied to algebraic structures.

Fuzzification of Lie algebras has been discussed in [1-3]. The idea of single valued neutrosophic Lie
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algebra was investigated by Muhammad Akram, Hina Gulzar and Kar Ping Shum[8]. Pentapartitioned
neutrosophic set and its properties were introduced by Rama Malik and Surpati Pramanik [17]. During
this case, indeterminacy is split into three components: contradiction, ignorance, and an unknown
membership function. We have now extended our research during this Pentapartitioned neutrosophic
set as a space. Also we introduced the concept of Fermatean Quadripartitioned Neutrosophic set and
establish variety of its properties in our previous work. During this paper, we apply the notion of
Fermatean Quadripartitioned Neutrosophic (FQN) sets to Lie algebras.

In this paper, We develop the concepts of FQN Lie subalgebras and investigated some of its
properties. Furthermore, we have also studied the concept of FQN Lie ideals. We describe some

interesting results of FQN Lie ideals.

2. Preliminaries

In this section, we first review some elementary aspects that are necessary for this paper. A
Lie algebra[1] is a vector space L over a field F (equal to R or C) on which L XL — L denoted
by (X, y) — [X, y] is defined satisfying the following axioms:

(L1) [x, y] is bilinear,

(L2) [x,x] =0forall x € L,

(L3) [, ], 2] +[Iy, z], X] + [[z, X], y] =0 for all x, y, z € L (Jacobi identity).

Throughout this paper, L is a Lie algebra and F is a field. We note that the multiplication

in a Lie algebra is not associative, i.e., it is not true in general that [[X, y], z] = [X, [y, z]]. But it

is anti-commutative, i.e., [x, y] = —[y, X]. A subspace H of L closed under [ -, - ] will be called a

Lie subalgebra.

A fuzzy set p: L — [0, 1] is called a fuzzy Lie ideal [1] of L if
(a) p(x +y) = min{p(x), u(y)},

(b) p(ax) = u(x),

() u([x, yD 2 u(x)

hold forall x, y e Land a € F.

Definition: 2. 1[10]

Let R be a space of points(objects). A Fermatean Quadripartitioned Neutrosophic (FQN) set on a non-
empty R is characterized by truth membership function A1: R — [0, 1], contradiction membership function
A2: R — [0, 1], ignorance membership function A3: R — [0, 1] and false membership function A4: R —
[0, 1].
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Thus, R = {<r, AL(r), A2(r), A3(r),Ad4 (r)>} satisfies with the following conditions
(A1)3+(A2)3+(A3)3+(A4)3 <2.

Definition: 2.2 [8]
An SVN set N = (TN, IN, FN) on Lie algebra L is called an SVN Lie subalgebra
if the following conditions are satisfied:
(1) TN(x +y) > min(TN(x), TN(y)), IN(X +y) > min(IN(x), IN(y)) and
FN(x +y) < max(FN(x), FN(y)),
(2) TN(ax) > TN(X), IN(ax) > IN(x) and FN(ax) < FN(x),
(3) TN([x, y]) = min{TN(x), TN(Y)}, IN([x, y]) = min{IN(x), IN(y)} and FN([x, y]) <
max{FN(x), FN(y)}

forallx,ye Land a € F.

Definition: 2.3 [8]

A SVN set N= (TN, IN, FN) on L is called an SVN Lie ideal if it satisfies
the conditions (1), (2) and the following additional condition:
Single-valued Neutrosophic Lie algebras

(1) TN(IX, yI) = TN(x), IN([X, y]) = IN(x) and FN([x, y]) <FN(x)

forall x,y € L.

From (2) it follows that:

(2) TN(0) = TN(x), IN(0) > IN(x), FN(0) < FN(x),

(3) TN(—X) = TN(x), IN(=x) = IN(X), FN(—x) < FN(x).

3. Fermatean Quadripartitioned Neutrosophic Lie subalgebra
We define here Fermatean Quadripartitioned Neutrosophic (FQN) Lie subalgebras and Fermatean

Quadripartitioned Neutrosophic Lie ideal.

Definition : 3.1
A FQN set R = (Alg, A2Rr, A3Rr, AdRr) is called an FQN Lie subalgebra £ if the following conditions are

satisfied:
1) Alr(a+b)=min(Alr(a), Alr (b)), A2r (a + b) = min (A2r (a), A2r (b)).
A3r (a+Db) <max (A3r (a), A3r (b)), Adr (a + b) < max (Adr (a), Adr (b)).
2) Alr (Ba) = Alr (a), A2r (Ba) = A2r (a), A3r (Ba) <A3r (a), Adr (Ba) < Adr (a) and
3) Alr([a, b]) = min (Alr (a), Alr (b)), A2r ([a, b]) = min (A2r (a), A2k (b)),

74



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

A3R ([a, b]) < max (A3r (a), A3r (b)), Adr ([a, b]) < max (Adr (), Adr (D)).
Foralla,be Land f € F .

Definition: 3.2
A FON set R = (AlRr, A2Rr, A3Rr, Adr)on L is called an FQN Lie ideal if it satisfies the following
conditions (1) and (2) and the following additional conditions:

1) Alr([a, b]) = Alr(a), A2r ([a, b]) = A2r (a), A3r ([a, b]) < A3r (a) and

a. Adr([a b]) <Adr(a)
From (2), it follows that:
2) Alr(0)=Alr (@), A2r (0) = A2r (a), A3r (0) <A3Rr (a) and Adr (0) < Adr (a)
3) Alr(-a)=Alr(a), A2r(-a) = A2r (a), A3r (-a) <A3r (a) and A4r (- a) < A4 (a).

Proposition: 3.3
Every FQN Lie ideal is an FQN Lie subalgebra.

We note here that the converse of the above proposition does not hold in general as it can be seen in the

following example.

Example: 3.4

Consider F = R. Let L=R3={(a, b, ¢): a, b, c € R } be the set of all three-dimensional real vectors which
forms a FQN Lie algebra and define

RIXR3 > R3

[a, b] = axDh,

Where X is the usual cross product. We define an FQN set R = (Alr, A2r, A3Rr, Ad4Rr) : R3 - [0,1] x [0,1]
x [0,1] x [0,1] by

1, ifa=b=c=0,
Alr(a, b,c)=403, ifa #0,b=c =0,
0, otherwise
1, ifa=b=c=0,
A2r(a,b,c)=40.2, ifa #0,b=c =0,
0, otherwise
0, ifa=b=c=0,
A3r(a,b,c)=405, ifa #0,b=c=0,
1, otherwise
0, ifa=b=c=0,
Adr(a,b,c)=403, ifa #0,b=c=0

1, otherwise
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ThenR = (AlRr, A2Rr, A3Rr, AdRr) is an FQN Lie subalgebra of £ butR =(Alr, A2r,A3Rr,AdRr) Isnot
an FQN Lie ideal of £ since

Alr ([1,0,0) (1,1,1)]) =A1r (0,-1,1) =0,

A2r ([1,0,0) (1,1,1)]) =A2r (0,-1,1) =0,

A3r ([1,0,0) (1,1,1)]) =A3r (0,-1,1) = 1,

A4r ([1,0,0) (1,1,1)]) =A4r(0,-1,1) =1

Alr (1,0,0) = 0.2, A2r (1,0,0) = 0.3, A3r (1,0,0) = 0.5, Adr (1,0,0) = 0.3.
That is,

Alr ([1,0,0) (1,L1)]) £ ALr (1,0,0),
A2k ([1,0,0) (L,L1)]) £ A2k (1,0,0),
A3r ([1,0,0) (1,1,1)]) £ A3r (1, 0,0),
Adr ([1,0,0) (1,1,1)]) £ Adr (1,0,0)

Proposition: 3.5

If R is an FQN Lie ideal of £, then

1) Alr(0) > Alr(a), A2r (0) > A2r (a), A3r (0) <A3Rr (a), Adr (0) < Adr (3).
2) Alr ([a, b]) = max {Alr (a), Alr (b)},

3) A2k ([a, b]) = max {A2r (a), A2r (b)},

4) A3Rr ([a, b]) < min {A3r (a), A3r ()},

5) Adr ([a, b]) <min {A4dr (a), Adr (D)},

6) Alr([a b]) =Alr(-[b, a]) = Alr ([b, a]),
7) A2r([a, b]) = A2r (- [b, a]) = A2r ([b, a]),
8) A3r([a, b]) = A3r (- [b, a]) = A3r ([b, a]),
9) A4dr([a b])=Adr(-[b,a]) =Adr([b, a])
Foralla,b € L.

Proof:

The proof follows from Definition 3.2.

Proposition: 3.6
If{Ri:ieJ} isafamily of FQN Lie algebra of £, then N Ri= ( A Alri A A2Rri VA3Rri VA4 ) is an FQN
Lie ideal of £ where,
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AAlgi(@)=inf{AAlri(@):i€], ae L},
AA2Ri (@) =inf{AA2ri(d):i€], ae L},
VA3Ri(a) =sup{VA3ri(a):i€e], ae L},
VA4Rri (@) =sup{vA4ri(a):i€e], ae L}
Proof:

The proof follows from definition 3.2

Definition: 3.7

Let R=(AlRr, A2Rr, A3Rr, Adr) be an FQN Lie subalgebra of £ and let (a,f,v,6)[0,1] X [0,1] X [0,1]
X[0,1]witha + f +y + 6 < 2. Then level subset of R is defined as

R@BYS9) = f qeL: Al(d) > a ,A2(d) > B,A3(@) <y,A4(d) <6

are called (a, B, v, 6) level subsets of FQN set R. The set of all (a, 8, y, 6) € Im(ALr) X Im(A2r) X IM(A3R)
X Im(A4g) suchthat @ + 8 + y + § < 2 is known as image of R = (Alr, A2r, A3R, AdR).

Note :

R@BY®) ={geL: Al(a) > a ,A2(d) > B, A3(a) <y,A4(a) <4§},

R@BY®) =faeL: Al(d) = a}N{aeL: A2(d) = B} N {aeL: A3(d) <y}Nn{aeL:A4(a) <5} },
R@BY¥.8) = U(Al(a),a) N U'(A2(a), B) N L(A3(a),y) N L'( A4(a),d).

Theorem: 3.8

An FQN set R = (Algr, A2Rr, A3r, Ad4Rr) of £ isan FQN lie ideal of £ iff R(®F¥:%) is a FQN Lie ideal of
L for every (a, 8,y,6) [0,1] X [0,1] X [0,1] X [0,1]]witha+ B +y+ 5 < 2.

Proposition: 3.9
Let R = (AlR, A2Rr, A3Rr, A4Rr) be an FON Lie ideal of £ and (r1, s1, t1, u1), (r2, sz, t2, U2) € Im(Alg) X
IM(A2r) X IM(A3g) X IM(Adg) with i+ si+ti + Ui < 2 fori=1,2. Then £V = pU2S2202) g apg

only if (r1, s1, t1, Uz) = (2, S2, tz, U2).

Theorem: 3.10

Let KopcKicK2cKa......... c K= L be achain of FQN Lie ideals of a FQN Lie algebra £. Then there
exists an FQN ideal Alr of L for which level subsets U(Al(a),x),U'(A2(a),p),
L(A3(a),y) and L'( A 4(a), §) coincide with this chain.
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Proof
Let{rk:k=0,1,2...,n}, {sk:k=0,1,....n} and {tx: k=0,1,2...n}, {uk: k=0,1,2...n}, {vit k=0,1,2...n}be
finite decreasing and increasing sequences in [0,1]. Let R = (AlR, A2r, A3Rr, Adr,A5R) be a FQN set in
L defined by Al r(Ko) =10, A2r(Ko) =50, A3r(Ko) =to, Adr(Ko) = Uy,
A5Rr(Ko) = Vo, ALr(KiK 11) = 11, A2r(KI\K 1.1) = 51, A3r(Ki:K 11) = t1, Adr(KNK 11) = U1 K|
Alr (@a+b)=rk=min{Alr (a), Alr (b)},
A2r (a+b)=>sk=min {A2r (a), A2r (b)},
A3Rr (a+b) <tk=max {A3r (a), A3r (b)},
Adr (a+b) <uk=max {Adr (a), Adr (b)}.
Alr (aa) >rk=Alr (a), A2r (@d) = sk=A2r (a), A3r (aa) < tk=A3Rr (a),
AdRr (aa) S uk=A4R ().
Alr ([a,b]) >r«k=Alr (a), A2r ([a, b]) =sk=A2r (a), A3r ([a, b]) <tk=A3r (a),
Adr ([a, b]) < uk=Adr ().
Fori>j, ifaeKi\Kizandbe Kj\Kji,then Alr (@) =ri=Alr (b), A2r (a) =si = A2r (b),
A3r (@) =tj=A3r (b), Adr(d) =uj=A4Rr (b) and a +b, aa, [a, b] € K. Thus
Alr (a+b)>ri=min {Alr (a), Alr (b)},
A2r (a+b)=>si=min {A2r (a), A2k (b)},
A3r(a+b) < tj=max {A3r (a), A3r (b)},
Adr(@a+b)<uj=max {Adr (a), Adr (b)}
Alr (aa) >ri=Alr(a), A2r (@d) = si=A2r (a), A3r (@d) <tj=A3Rr (a),
AdRr (aa) <uj=Adr (a).
Alr ([a,b]) >ri=Alr (a), A2r ([a, b]) =si=A2r (a), A3r ([a, b]) <tj= A3Rr (3),
Adr ([a, b]) <uj=Adr(a).
Thus, we conclude that R = (Alr, A2Rr, A3r, AdRr) isan FQN Lie ideal of a FQN Lie algebra £ and
all its non-empty level subsets are FQN Lie ideals.
Since Im(ALr) ={ro,ry,r2.....tn 3, IM(A2gr) ={S0,51,S2......8n },
Im (A3R) ={to, t1,t2.....tn },
Im (A4Rr) ={uo, U1 U2.....,un } level subsets of R forms chains:
U(Alr,ro) C UALR,r1)C ....c U(Alg, o) =L,
U(A2r,S0) € U(A2R,S1) C ....c U(A2Rr, Sn) =L,
L(A3r,to) C L(A3R,t1)C ... C L(A3r,tn) =L,
L’(Adr,uo)c L’(Adr,u1)C ....C L'(Adr,un) =LL,
Respectively. Indeed

UAlr,ro)={a€ L:Alr(@) =>ro} =Ko,
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U’(A2r,S0)={a€ L:A2r(a) =SS0} =Ko,

L(A3r,to)={a€ L:A3r @) <to}=Ko,

L’(Adr,uo)={a€ L:Adr(@)<Uuo}=Ko..

We prove that

U(Alr,r))=U(A2r,S1) =L(A3Rr,t)=L"(Ad4r,u) =K for0<I<n.

Clearly, K1 € U(Alr, ri), Ki€ U(A2r,s1), KI €S L(A3Rr,t1), KIS L(Adr, Ul).

Ifa€e U(ALlr, ri),then Alr (@) >rjand fora & K;, forj > I. Hence ALlr(a) €{ro,raro.....r1 },
Which implies a € K ; for some j < I. Since K; c K ,it follows that a € K | .Consequently,
U(Alr,r))=K,;forsome0 <l <n.

Ifae U(A2r,S1),then A2r (a) =s1and fora¢ K, for j> I. Hence A2r(a) €{So,S1,52......81 },
Which implies a € K ; for some j < I. Since K; c K ,it follows that a € K | .Consequently,
U’(A2r,s)=K, forsome0 <I<n.

Ifae L(A3r,t1),then A3r(a) <tiand fora¢ Km, form > I|. Hence A3r(a) € {to,t1,t2......t1 },
Which implies a € K mfor some m < I. Since Km c K it follows that a € K| . Consequently,
L(A3r,t)) =K, forsome0 <l <n.

Ifa€L’(A4r, u),then Adr (a) < ujand fora & K ,for m>l. Hence A4 r(a)e{uo, U 1U2.....,ur },
Which implies a € K, for some m <. Since K € K ,it follows that a € K .

Consequently, L’(Ad4r,u) =K, forsome0 <l <n.

This completes the proof.

Theorem: 3.11

IfR=(AlRr, A2Rr, A3Rr, AdRr) isan FON Lie ideal of a FQN Lie algebra £, then
Alr(a) =sup{re[0,1]\ae U(Alr, 1},

A2r (@) =sup{se[0,1]\ae U (A2r, 9)},

A3r (@) =inf{t € [0,1]\a € L(A3Rr, 1)},
Adr(a)=inf{ue[0,1]\aeL’(Adr, u)}.

Foreverya e L.

Proof

The proof follows from definition 3.2.

Definition:3.12
Let f be a map from aset Litoaset L. IfR1 = (AlRry, A2Rr1, A3Rry, AdRr1) and
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R2 = (AlRrz, A2Rr2, A3R2, Adr2) are FQN sets in L1 and L, respectively, then the preimage of R2 under f,
denoted by f~ 1(R2), is a FQN set defined by

fTHR2) = (f " (Alre), f~'(A2r2), f~ (A3R2), f~ (AdR2)).

Theorem: 3.13

Let f: L1 — L be an onto homomorphisms of Lie algebras. If R2 = (Al r2, A2r2, A3Rr2, AdRr2) isa FQN
Lie ideal of £, then the preimage

fTHR2) =(f~Y(Alre), f~(A2r2), f~ *(A3Rr2), f~ *(AdRre)) under fis a FQN Lie ideal of L; .

Proof

The proof follows from definition 3.2 and 3.12

Theorem: 3.14

Let f: L1 — L, be an epimorphisms of FQN Lie algebras. If R1 = (Al r1, A2Rr1, A3r1, Adr1) isa FQN
Lie ideal of £,, then the preimage £~ *((R1)€) = (f~ *(R1))®

Proof

The proof follows from definition 3.2 and 3.12.

Theorem: 3.15

Let f: L1 — L be an epimorphisms of FQN Lie algebras. If R1 = (Al r1, A2r1, A3Rr1, A4r1,A5R1) is a
FQN Lie ideal of £, and R2 = (Alre, A2r2, A3Rr2, Adr2,A5R0) is the preimage of R1 = (Al Ry, A2r1, A3
r1, Adr1, A5r1) under f. Then R2 is a FQN Lie ideal of £; .

Proof

The proof follows from definition 3.2 and 3.12.

Definition: 3.16

Let £1and £, be two FQN Lie algebras and f be a mapping of £; into £o.

If R1 = (AlRr1, A2Rr1, A3R1, Adr1) isa FQN set of £y, then the image of R1 under f is the FQN set in £
defined by

SUPgef-1py Alri (@), if f~1(b) #0,

f(Alri)(b) = 0, otherwise
SUPaer-1vy A2r1(@), if (D) # 0,
f(A2 r1)(b) = Pacs (b)() ziherwijscef )
infaer-10 A3k (a), if f71(b) %0,
f(A3ra)(b) = | " aer @ I;ltherwiiz )
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infaer-1p) Adri(a), if f~1(b) #0

f(Ad r1)(b) = { 1, otherwise

foreachb € £,

Theorem: 3.17

Let f: L1 — L, be an epimorphisms of FQN Lie algebras. If R1 = (Al r1, A2Rr1, A3r1, Adr1) isa FQN
Lie ideal of L1, then f(R1) is a FQN Lie ideal of L.

Proof

The proof follows from definition 3.2 and 3.16.

Definition: 3.18
Let f: L1 — L> be an homomorphisms of FQN Lie algebras, For any FON set, If R = (Al R, A2Rr, A3r,

A4R) is a FQN Lie ideal of £, we define a PN set Rf = (41%, A2, 43%, 44%, ) in £ by

A1§ (@) = Alr (f(a)), A2§ (@) = A2r (f(a)), A3§ (@) = A3r (f(a)), A4§ (@) = Adr (f(a)), for all a
eL;.
Lemma: 3.19

Let f: L1 — L be an homomorphisms of FQN Lie algebras, If R = (Al r, A2r, A3r, AdR) isa FQN Lie
ideal of £z, then Rf = (1%, 42!, 43", A4)) is a FQN Lie ideal in £ .

Proof

Leta,be L1 and B € F . Then

A1f (a+b) = Alg (fla+ b)) = Alr (f(a) + f(b)) = min{ Alr (f(a)), AL (f(b))} = min{A1%(a), A1f (b)},
A2f (a+b)=A2g (f(a+ b)) = A2r (f(a) + f(b)) = min{ A2r (f(a)), A2r (f(b))} = min{A2£ (a), A2£ (b)},
A3f (a+b) = A3 (fla+ b)) = A3r (f(a) + f(b)) < min{ A3r (f(a)), A3r (f(b))} = min{A3%(a), A3L (b)},
A4f (a+Db) = Adr (fla+ b)) = Adr (f(a) + f(b)) < min{ Adr (f(a)), Adr (f(b))} = min{A4L(a), A4L (b)}.
Alg (Ba)=Alr (f(B ) = Alr (B f(2)) = Alr (f(a)) = A1}(a),

A2q (Ba) = A2r (f(B a) = A2r (B f(2)) = A2r (f(a)) = A2}(a),

A3g (Ba) = A3r (f(B a) = A3r (B f(2)) < A3r (f(a) = A3%(a),

A4p (Ba) = Adr (f(B ) = Adr (B f(2)) < Adr (f(a)) = A4R(a).

Similarly,

A1 ([a, b]) = Alr (f[a b]) = Alg ([ f(a), f(b]) = ALr (f(a)) = A1}(a),

A2 ([, b]) = A2r (f([ a,b]) = A2r ([f(a), f(b)]) = A2 (f(a)) = AZR(a),

A3 ([ b]) = A3r (f([a, b]) = A3 ([f(a), f(b)]) < A3 (f(a)) = A3R(a),
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A4£{ ([a, b]) = Adr (f([a, b]) = Adr ([f(a), f(b)]) < Adr (f(a)) = A4§(a).
This proves that Rf = A1’ AZ{Z, A3£, A4f2 ) is a FQN Lie ideal in £; .

We now characterize the FQN Lie ideals of Lie algebras.

Theorem: 3.20

Let f: L1 — £ be an epimorphisms of FQN Lie algebras. Then Rf = (414, AZ‘;, A3£, A4£ ) isa FON
Lie ideal in £1 iff R = (AlRr, A2Rr, A3Rr, AdR) isa FON Lie ideal of £,.

Definition: 3.21

Let R = (Algr, A2Rr, A3Rr, AdRr) be a FQN Lie ideal in £. Define a inductively a sequences of FQN Lie
ideals in £ by R® = R, R = [R%,R°], R = [R},R!]...... R® = [R™"1, R 1].

R" is called the n th derived FQN Lie ideal of £. AseriesR® 2 R1 2 R? 2.....2 R™ 2 --is called derived
series of a FQN Lie ideal R in £.

Definition: 3.22
A FON Lie ideal R in is called a solvable FQN Lie ideal, if there exists a positive integer n such that

R° 2R! 2 R? 2....2 R"=(0,0,0).

Theorem: 3.23
Homomorphic images of solvable FQN Lie ideals are solvable FQN Lie ideals.
Proof
Let f: £1 — Lo be homomorphisms of FQN Lie algebras. Suppose that R = (Algr, A2r, A3Rr, AdR) isa
FON Lie ideal of £;. We prove by induction on n that f(R™) 2 [f(R)]", where n is any positive integer.
First we claim that f([R, A]) 2 [f(R), f(R)]. Lety € £,. Then
f(<<Alr, Alr>>)(y) = sup { <<Alg, Alr >>(y)\f(x) = y}

= sup{sup{min(Alr(a), Alr(b))\a, b € £4,[a, b] = x, f(x) = y}}

= sup{min(Alr(a), Alr(b))\a, b € £4,[a, b] =%, f(x) = y}}

= sup{min(Alr(a), Alr(b))\a, b € £4,,[f(a), f(b)] = x}

= sup{min(Alr(a), Alr(b))\a, b € £4,f(a) = u, f(b) = v,[u, v] = y}}

=sUp{mMIN(SUp 4e-1¢yy ALR(R), MIN(SUP e -1,y ALR(D\[U, V] = ¥}

= sup{min{f(A1Rr)(u),f(A1R)(V))\[u, V] =y}

= <<f(AlRr), {(A1r)>>(y),
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f(<<A2Rr, A2 >>)(y) = sup { <<A2R, A2r >>(Y)\f(X) = y}
= sup{sup{min(A2 r(a), A2r(b))\a, b € L4,[a, b] = X, f(X) = y}}
= sup{min(A2 r(a), A2r(b))\a, b € L4,,[a, b] = x, f(X) = y}}
= sup{min(A2r(a), A2r(b))\a, b € L4,,[f(a), f(b)] = x}
= sup{min(A2r(a), A2r(b))\a, b € L4,,f(a) = u, f(b) = v,[u, V] = y}}
2sup{Min(Sup ge -1,y AZRr(2), MIN(SUPpe -1,y AZrR(D\[U, V] = y}
= sup{min{f(A2 r)(u),f(A2r)(V))\[u, V] = y}
= << f(A2R), f(A2 r)>>(y),

f(<<A3Rr, A3r >>)(y) = inf { <<A3Rr, A3Rr >>(Y)\f(X) = y}
= inf{inf{max(A3r(a), A3r(b))\a, b € L4,,[a, b] = %, f(X) = y}}
= inf{max(A3r(a), A3r(b))\a, b € £4,[a, b] =x, f(X) = y}}
= inf {max(A3r(a), A3r(b))\a, b € £4,[f(a), f(b)] = x}
= inf{max(A3r(a), A3r(b))\a, b € £4,f(a) = u, f(b) = v,[u, v] = y}}
<inf{max(inf,¢¢-1,y A3r(a), min(infyce-1.,) ASrR(O)\[U, V] = y}
= inf{max{f(A3r)(u),f(A3 r)(V))\[u, V] = y}
= << f(A3R), f(A3Rr)>>(Y),

f(<<Adr, Adr >>)(y) = inf { <<AdR, Adr >>(Y)\f(X) = y}

= inf{inf{max(A4r(a), Adr(b))\a, b € £L,,[a, b] = %, f(X) =y}}

= inf{max(A4 r(a), Adr(b))\a, b € £4,[a, b] = x, f(X) = y}}

= inf {max(A4 r(a), Adr(b))\a, b € £4,[f(2), f(b)] = x}

= inf{max(A4 r(a), Adr(b))\a, b € L4,f(a) = u, f(b) = v,[u, V] = y}}
<inf{max(inf,c¢-1.,) A4r(@), min(infy,ce-1.,) A4r(O)\[U, V] =y}
= inf{max{f(A4 r)(u),f(A4 r)(V))\[u, V] = v}

= << f(A4R), (A4 Rr)>>(y),

Thus f([R, R]) 2 f(<<A,A>>) 2 <<f(R), f(R)>>=[f(R), f(R)].
Now for n > 1, we get f(R™) = f([R™1, R*"1]) 2 [f(R™"1), f(R™1)].

This completes the proof.

Definition: 3.24
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Let R =(Alr, A2r, A3Rr, Adr) be a FQN Lie ideal in £. We define a inductively a sequences of FQN Lie
ideals in £ by Ry=R, R; =[R,Rg], R2=[R,R4] ....R,, = [R,R,,_1]. A series

Ry 2R 2R, 2....2 R, 2 --is called descending central series of a FQN Lie ideal R in L.

Definition: 3.25
An FON Lie ideal R is called a nilpotent FQN Lie ideal in £, if there exists a positive integer n such that
Ry 2R, 2R, 2....2 R,=(0,0,0).

Theorem: 3.26
Homomorphic image of a nilpotent FQN Lie ideal is a nilpotent FQN Lie ideal.

Proof: It is obvious

Theorem: 3.27
Let K be a FQN Lie ideal of a FQN Lie algebra £. If R = (Alr, A2r, A3r, Adr) is a FQN Lie ideal of
L, then the FQN set *R = (*AlRr, *A2R, *A3Rr, *AdR) of L /K defined by
*Alr(a + K) = supyeg Alg(a + x),
*A2r(a + K) = supyekx A2g(a + x),
*A3r(a+ K) = inf,cx A3g(a +x),
*Adr(a+K) =inf,cx Adg(a +x)
is a FQN Lie ideal of the quotient FQN Lie algebra £ /K of £ with respect to K.
Proof
Clearly, *R is defined. Let x + K, y + K € £/ K. Then
FALR((x + K) + (y + K)) = *Alr((x +y) + K)
= sup,ex Alg((x +y) +2),

= SuP,—siiex ALR((X +Y) + (s +1)),

> supgex Min{Alg(x +s),Alg(y + t)},

=min { supseg Alg(X + s),supex Alg(y +t)},

= min{* Alg(x +s), * Alg(y + 1)},

*ALr(B(X + K) = *Alr(BX + K) = sup,cx Alg(Bx + z) = sup,cg Alg(x + z)=*Alr(X + K).

*AlRr([x + K, *Alr(a + K) = supyeg ALr(a + X),y + K]) =*Alr([x, y] + K) = sup,ex Alg([x,y] +2) =
sup,ex Alg([x,y] + z)=*Alr(X + K).

Thus *Alr isa FQN Lie ideal of £/ K. In a similar way, we can verify that *A2r, *A3r, *A4r FQN Lie

ideals of £ /K. Hence *R = (*AlR, *A2R, *A3Rr, *AdR) isa FQN Lie ideal of
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LI/K

Theorem: 3.28
Let K be a FQN Lie ideal of a FQN Lie algebra £. Then there is a one-to=one correspondence between the
set of FQN Lie ideals R = (Alr, A2Rr, A3r, Ad4Rr) of £ such that R(0) = A(s) for all s € K and the set of
all FQN Lie ideals *R = (*Alg, *A2Rr, *A3r, *Adr) of L /K.
Proof
Let R =(Algr, A2Rr, A3Rr, A4Rr) be FQN Lie ideal of £. Using Theorem 3.27, we prove that
*AlR, *A2R, *A3Rr, *Adr,*A5r defined by
*Alr(a+ K) = supyekx Alr(a + X),
*A2Rr(a + K) = sup,cg A2r(a + X),
*A3r(a + K) = inf,cg A3r(a + X),
*Adr(a + K) = infyex Adr(@ + X)
are FQN Lie ideals of £ /K. Since A1r(0) = ALr(s), A2r(0) = A2r(S), A3r(0) = A3R(S),
A4Rr(0) = AdRr(s) forall s e K,
AlRg(a+s) = min(Alr(a), Alr(s)) = Alr(a),
A2Rr(a+s) = min(A2r(a), A2r(s)) = A2r(a),
A3Rr(a+s) < max(A3r(a), A3r(s)) = A3r(a),
A4 Rr(a+s) < max(Adr(a), Adr(s)) = Adr(a).
Again,
Alr(@) = Alr(a+s-s)=min(Alr(a+s), ALr(s)) = Alr(a +s),
A2r(@) = A2r(a+s-5s) = min(A2r(a +s), A2r(s)) = A2r(a + s),
A3r(@) = A3r(a+s-5s) < max(A3r(a+s), A3r(s)) = A3r(a + ),
Adr(a) = Adr(a+s-s) < max(Adr(@+s), Adr(s)) = Adr(a+s).
Thus R(a + s) = R(a) for all s € K. Hence the correspondence R — *R is one- to -one. Let *R be a FQN Lie
ideal of £/ K and define a FQN set R = (Alr, A2r, A3r, A4Rr) in £ by
Algr(a) =* Algr(a +K),A2r(a) = * A2r(a +K), A3r(a) = * A3Rr(a +K), Ad4r(a) = * Adr(a +K)
For a, b € £, we have
Algr(a+b)=*Alr((a+b) +K) =* Alr((a +K) + (b + K))

> min{*Alr(a + K), *Alr(b + K)},

=min{ Alr(a), Alr(b)},
Alr(Ba) = * Alr(Ba +K) = * Alr(a +K) = Alr(a),
Alr([a, b]) =* Alg([a, b] +K) =* Alg([a + K, b + K])

>* Alr(a +K) = Alr(a).
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Thus Alr is a FON lie ideal of £. In a similar way, we can verify that A2 r, A3rand A4r are FQN Lie
ideals of £.Hence R = (Alr, A2r,A3R, AdRr) isa FQN Lie ideal of £ .

Note that Algr(a) = * Algr(a +K),A2r(a) = * A2r(a +K), A3r(a) = * A3r(a +K), A4 r(a) = * A4 r(a +K).
For ae K, which shows that R(a) = R(0) for all ae K.This completes the proof.

4. Conclusion

In this article, we have discussed above FQN Lie subalgebra and FQN Lie ideals of a FQN Lie Algebra.
We have also investigated some of its properties of Fermatean Quadripartitioned Neutrosophic Lie ideals.
In future, we are Planned to study on Lie rings. We may also develop for heptapartitioned neutrosophic sets
and other hybrid sets.
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Abstract:

In this paper we introduce the concept of quadripartitioned neutrosophic product
spaces and investigate some of their properties.

Keywords : Fuzzy Neutrosophic set, Fuzzy Neutrosophic topological space and
Fuzzy Neutrosophic product space.

1 Introduction

The concept of neutrosophic set was introduced by Smarnandache [28, 29]. The traditional
neutrosophic sets is characterized by the truth value, indeterminate value and false value.
Neutrosophic set is a mathematically tool for handling problems involving imprecise,
indeterminacy inconsistent data and inconsistent information which exits in belief system. The
concept of neutrosophic set which overcomes the inherent difficulties that existed in fuzzy sets
and intuitionistic fuzzy sets. Following this, the neutrosophic sets are explored to differ- ent
heights in all fields of science and engineering. A.A.Salama [9] - [26]applied neutrosphic set in
various prospects. Many researchers [3, 4, 5, 6, 7, 8, 30] applied the concept of fuzzy sets and
intuitionistic fuzzy sets to topologies. In this paper we initiate the concept of fuzzy neutrosophic

product and some of its properties are discussed.

2 Preliminary Notes

Definition 2.1. [1] A Fuzzy Neutrosophic set A on the universe of discourse X is defined as A =
(X, Ta(X), la(X), Fa(X)), xe X where T, I,F : X —— [0, 1] and 0< Ta(X) + la(X) + Fa(X) < 3.
Definition 2.2. [1] Let X be a non empty set, and A = (X, Ta(X), la(X), Fa(X)), B = (X, Tge(X),
Is(X), Fe(x)) are fuzzy neutrosophic sets. Then A is a subset of B if V X € X, Ta(x) <
Ts(X), Ia(X) < I(X)), FA(x) = Fa(X)).

Definition 2.3. [1] Let X be a non-empty set, and A = (X, Ta(X), la(X), Fa(x)),
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B = (X, Ts(X), Is(X), Fe(X)) are fuzzy neutrosophic sets. Then
A U B = (x, max(Ta(x), Ta(x)), max(la(x), 1s(x)), min(Fa(x), Fe(x)))
AN B = (X, min(Ta(x), Te(x)), min(la(x), Is(x)), max(Fa(x), Fe(x)))

Definition 2.4. [1] A Fuzzy neutrosophic set A over the non-empty set X is said to be empty
fuzzy neutrosophic set if Ta(X) =0, 1a(x) =0,Fa(x) = 1,V x& X. It is denoted by On.
A Fuzzy neutrosophic set A over the non-empty set X is said to be universe fuzzy

neutrosophic set if Ta(x) = 1, Ia(X) = 1,Fa(X) = 0, x € X. It is de- noted by 1.

Definition 2.5. [1] The complement of Fuzzy neutrosophic set A denoted by

A° and is defined as

A (X) E(X, Tac (X) = Fa(X),1aCc (X) =1 —1a(X), FAC (X) = Ta(X))

Definition 2.6. [2] Let X and Y be a non-empty sets and let f be a map- ping from a set

X toaset Y. Let A = {(x, Ta(X), la(X), Fa(x)) /x € X} , B={(y, Te(y), Is(y), Fe(y))

/y € Y } be fuzzy neutrosophic set in X and Y respectively,

(@) then the preimage of B under f denoted by £ 1(B) is the fuzzy neutrosophic set in X
defined by

fl1={<x f Y (Te)X), f (Is)X), f (Fe)(X) > /x € X} where

f1(Te)(X) = Te(f(x)) , F'(s)(X) = Is(f(x)) and f'(Fe)(X) =

Fe(f(x)) for all x € X.

(b) the image of A under f, denoted by f(A) is the fuzzy neutrosophic set in Y defined by

f(A) = (f(Ta,f(1a ,f(FA)), where for eachy € Y.

f(Ta)y) = {VXEf‘l(y) Ta(x) iff'@y)#0

0 otherwise
0 otherwise

(Fa) = { Ve Fald if710) %0
0 otherwise

Proposition 2.7. [2] Let A, Ai(i € I)be fuzzy neutrosophic sets in X let B,
Bj(j € J)be fuzzy neutrosophic sets in Y and let f : X — Y a mapping. Then
1. Aic Az implies f(A1) c f(A2).

2. B1c B;implies f1(B1) c f1(By).

3. Ac f(f(A)). If fis injective, then A = f1(f(A)).
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4. f(f1(B)) c B. If fis surjective, then f(f 1 (B))=B.
5. F1(UB) =Uf"1(B).

f1(NB) =nf1(B).

f(UA) =U f(A).

f(NA) cNf(A).

f(1y) = 1y, iffis surjective and f(Oy) = Oy.

10. f~1(1y) = 1y and £~ 1 (0y) = Oy.

11. [fCA)]€ < f(A®) if fis surjective.

12. f71(B) = [f~1(B)]°¢

L 00 N o

3 Quadripartitioned Neutrosophic product space

Definition 3.1 . Letp, g, 1, s € [0,1] and p+q+r+s < 4. of Quadripartitioned Neutrosophic soft point X(p,q.s)
of X is of quadripartitioned Neutrosophic soft set in X defined by ,

X _ {p,q,r,s) ifx =y, foreachy € X.
pars () = 001,1) if y#x

A quadripartitioned Neutrosophic point X, 4 ) is said to belong to an quadripartitioned Neutrosophic
soft set A=(T,,Cy, Uy, Fa) in X denoted by Xpqrs) € Aif

P < Ta(x),qg<Ci(x),r <U,(x)ands < Fy (x). We denote the set of all quadripartitioned
Neutrosophic points in X as FNP(X).

Theorem 3.2. Let A =(Ty,Ca,Up, Fa) and B = (T, , Ca, Uy, F4) be quadripartitioned Neutrosophic set in

X, then A c B if and only for each Xpqrs) € A implies Xp,qrs) € B.

Proof: Let A € B and Xpgrs) € A;ithenP < Ty (x) < Tg(X), q<Ci(x) < Cg®) , r =2 Uy (x) =
Ug (x) and s = F, (x) = Fg(x) . thus X(p,qr,s) € B.

Conversely, take and xe X. let p = Ta (X), q =Ca (x), r = U, (X) and s = F, (x).then Xpqrs) IS a

quadripartitioned Neutrosophic point in X and X,qrs € A. by the hypothesis, Xpqrs) € B.thus Ty = p<
Tg (x),Ca = Cg (%), ,Upy == Up(x) and Fp = Fg(x). Hence A S B.

Theorem 3.3. let A =(T,,Ca, Ua, Fa) be a quadripartitioned Neutrosophic set in X. then A = U { Xp.qr.9):
X(p.ars) € A}.
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Definition 3.4. let X be a set and let p,q,r,s € [0,1] with 0 < ptq+rts < 4. Then the quadripartitioned

Neutrosophic set Cpary € Xis defined by for each x€X, Cpqrs(X) = (p.0.18) fe., Te, o =

P, Cc(p,q,r,s)(x) = q'UC(p,q,r,s)(X) =rand Fc(p,q,r,s)(x) =Ss.

Definition 3.5.let X be a non-empty set and let g < FNS(X).then g is called a quadripartitioned
Neutrosophic topology (FNT) on X in the sense of Lowen[69], if it satisfies the following axioms:
I. Foreacha,fB,y € [0,1]witha+B+y <3,Ciupy) €7
il.  Forany A, A€ g, AINAE g
iii.  Forany {Ac}kek € ¢, Uxek ¢

Definition 3.6. let A be a quadripartitioned Neutrosophic set in a quadripartitioned Neutrosophic topology
space (X, ¢) ,then the induced quadripartitioned Neutrosophic topology (IFNT in short) on A is the family
of quadripartitioned Neutrosophic set in A which are the intersection with A quadripartitioned Neutrosophic
open sets in X. the IFNT is denoted by g, and the pair (A, g¢4) is called a quadripartitioned Neutrosophic
subspace of (X, g).

Definition 3.7.Let (X, g¢)and (Y, &) be two quadripartitioned Neutrosophic topological spaces. A
mapping : (X, g¢) — (Y, ¢) is said to be quadripartitioned Neutrosophic continuous if the preimage of
each quadripartitioned Neutrosophic set in 2 is a quadripartitioned Neutrosophic set in g, and f is said to
be quadripartitioned Neutrosophic open if the image of each quadripartitioned Neutrosophic set in g is

a quadripartitioned Neutrosophic set in 2.

Definition 3.8. Let (A, ga)and (B,U,) be a quadripartitioned Neutrosophic subspace of
quadripartitioned Neutrosophic topological spaces (X, ¢) and (Y, 2 )respectively and let f: (X, g¢) —
(Y, ¢) be a mapping. Then f is a mapping of (A, g,) into (B, Up) if f(A)c B.

Furthermore f is said to be relatively quadripartitioned Neutrosophic  continuous if for each
quadripartitioned Neutrosophic set Vg in A , the intersection f~1(Vg) N A is a quadripartitioned
Neutrosophic set in g, and fis said to be relatively quadripartitioned Neutrosophic open if for each
quadripartitioned Neutrosophic set U, in g,,the image f(U,) is the quadripartitioned Neutrosophic set

in Ag.

Proposition 3.9. Let (A, ga)and (B,A,) be a quadripartitioned Neutrosophic subspace of
quadripartitioned Neutrosophic topological spaces (X, g)and (Y, & )respectively and let f be a
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quadripartitioned Neutrosophic continuous mapping of (X, g¢) into (Y, 2 ) such that f(A) )< B then fis
relatively quadripartitioned Neutrosophic continuous mapping of (A, ¢) into (B, & ).

Proof: let Vi be a quadripartitioned Neutrosophic setin 2 g.then there exist V € U such that Vg = V n B.
since f is quadripartitioned Neutrosophic continuous it follows that f~*(V)is a quadripartitioned
Neutrosophic seting.Hence f~1(Vg) N A = f~1(Vg) n f~1(B)n A = f~1(V) n A is a quadripartitioned

Neutrosophic set in g,. Hence the proof.

Definition 3.10. A bijective mapping f of a quadripartitioned Neutrosophic topological spaces (X, g) into
a quadripartitioned Neutrosophic topological spaces (Y, €A) is a quadripartitioned Neutrosophic
homeomorphism iff it is quadripartitioned Neutrosophic continuous and quadripartitioned Neutrosophic
open. A bijective mapping f of a quadripartitioned Neutrosophic subspace (A, ga) of (X, g)into a
quadripartitioned Neutrosophic spaces (B,g) of (Y, A) is relative quadripartitioned Neutrosophic
homeomorphism iff f{A]=B and f is relatively quadripartitioned Neutrosophic continuous and relatively

quadripartitioned Neutrosophic open.

Proposition 3.11. Let f be a quadripartitioned Neutrosophic continuous (resp. quadripartitioned
Neutrosophic open) mapping of a quadripartitioned Neutrosophic space (X, ¢) into a quadripartitioned
Neutrosophic space (Y, ) and g a quadripartitioned Neutrosophic continuous (resp. quadripartitioned
Neutrosophic open ) mapping of (Y, ) into a quadripartitioned Neutrosophic topological spaces (Z, W).
Then the composition gof is a quadripartitioned Neutrosophic continuous (resp. quadripartitioned

Neutrosophic open) mapping of (X, g) into (Z, W).

Proof: consider a quadripartitioned Neutrosophic set W in W, then g~%(W) is quadripartitioned
Neutrosophic open in € (since g is quadripartitioned Neutrosophic continuous). Let g=*(W) be
quadripartitioned Neutrosophic open in 2, then (f~1 g=}(W)) =(go f)~1)(W) is quadripartitioned
Neutrosophic open in g( since f is quadripartitioned neutrosophic continuous). Hence gof is
quadripartitioned neutrosophic continuous mapping of (X, g) into (Z, W). Similarly we can prove for
quadripartitioned neutrosophic open mapping.

Proposition 3.12. Let (A, ga) and (B,2) and (C, W) be a quadripartitioned Neutrosophic subspace of
quadripartitioned Neutrosophic topological spaces (X, g¢) and (Y, & )and (Z, W)respectively. Let f be a
relatively quadripartioned neutrosophic continuous (resp. relatively quadripartioned neutrosophic open)
mapping of (A, g,) into (B,Ug) and g a relatively quadripartioned neutrosophic continuous (resp.
relatively quadripartioned neutrosophic open) mapping of (B, ) into (C, W¢.). Then the composition go f
is relatively quadripartitioned neutrosophic continuous (resp. relatively quadripartitioned neutrosophic
open) mapping of (A, g¢) into (C, W).
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Proof: Let W € W, . Since g is relatively quadripartitioned neutrosophic continuous, g~ (W) N BE U.
Since f is relatively quadripartitioned nuetrosophic continuous =1 [g=}(W¢) N B]NAE g4. Now f~1
[g7'(We) N BInA= 7 [g7H(We) N f1B)NA=(ge (W) N 1 (B)NA=(ge D) (W) N A
(since f (A) € B).Thus (go)"1(W:) N A € g,. Hence g o f is relatively quadripartitioned nuetrosophic
continuous.

Let Uy € ga. Since f is relatively quadripartitioned neutrosophic open, f(U,) € Ug. Since g is relatively
quadripartitioned neutrosophic open g(f(Up)) = (gof)(Ua). Thus (geo f)(Uy) € We. Hence gof is
relatively quadripartitioned neutrosophic open.

Definition 3.13. Let g be a quadripartitioned neutrosophic topology on X. A subfamily 8 of g is a base

for g iff each member of g can be expressed as the union of members of B.

Definition 3.14. Let g be a quadripartitioned neutrosophic topology on X and g, the induced
quadripartitioned neutrosophic topology on a quadripartitioned neutrosophic subset of A of X. A subfamily
B, of g, is a base for g, iff each member of g, can be expressed as the union of members of B.

If B is a base for a quadripartitioned neutrosophic topology g onaset X,then B, ={UnN A: U€E g}is
a base for the induced quadripartitioned nuetrosophic topology g, on the quadripartitioned neutrosophic
subset A.

Proposition 3.15. Let f be a mapping from a quadripartitioned neutrosophic topological space (X, ¢) to a
quadriparititioned neutrosophic topological space (Y,U). Let B be a base for U. Then f is a
quadriparititioned neutrosophic continuous iff for each B € B the inverse image f~1(B) is in g.

Proof: The only if part is obvious. Suppose the given condition is satisfied. Let V € U, then there exist Vi¢;
€ B such that V = UiV and f71(V;) € g, i€ L. Hence f~1(V) =f"1(nV,) =nf"1(V;) €.So f is

quadripartitioned neutrosophic continuous.

Proposition 3.16. Let (A, g), (B,Up), be quadripartitioned neutrosophic subspaces of quadripartitioned
neutrosophic topologies (X, g¢) and (Y, 2 ) respectively. Let B be a base for 2. Then a mapping f of (A,
ga)into(B, Ay) is relatively continuous iff for each B in B the intersection f~1[B] N A'is in g,.

Proof: Straightforward.

Definition 3.17.Given two quadripartitioned neutrosophic topologies g, g, on the same set X, then g, is
said to be finer than g,( or g, is coarser than g,) if the identity mapping of (X, g,) into (X, g,) is

quadripartitioned neutrosophic continuous, ie., (X, g,) € (X, ¢1).

Definition 3.18. Let f be a mapping of a set X into a set Y, and let 2 be a quadripartitioned neutrosophic

topology on Y. Then the family g1 = {f~1(U) € FNS(X); U € U} is called the inverse image of 2 under
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f. ge1is the coarser quadripartitioned neutrosophic topology on X for which f: (X, g¢1) = (Y, ) is

quadripartioned neutrosophic continuous.

Definition 3.19. Let f be a mapping of a set X into a set Y, and let g be a quadripartitioned neutrosophic
topology on X. Then the family 2 = {U € FNS(Y);f~1(U) € g } is called the image of ¢ under f. U is
the finest quadripartitioned neutrosophic topology on'Y for which f: (X, ¢ ) = (Y, ;) is quadripartioned

neutrosophic continuous.

Definition 3.20. Given a family {(X,, g,) hen Of quadripartitioned neutrosophic topologies and let X =
[LepXi, let (X, ¢) a quadripartitioned neutrosophic topological space and let g the coarsest
quadripartitioned neutrosophic topology on X for which p,: (X,¢) = (X;, ¢)) Is quadripartitioned
neutrosophic continuous for each A € A, where p, is the usual projection. Then g is called the
quadripartitioned neutrosophic product topology on X and denoted by [[,eaX, and (X, g¢) a
quadripartitioned neutrosophic product space.

From the definition 6.2.13 and 6.2.20 we have the following proposition.

Definition 3.21. Let {(X,, g2)}en be a family of quadripartitioned neutrosophic topological spaces and
(X, ¢) the quadripartitioned neutrosophic product space. Then g has a base the set of finite intersections of

quadripartitioned neutrosophic sets in X of the form p, "1[U,] where U, € g, for each A € A.

Definition 3.22. Let {X;},i=1,2,.....n be a finite family of sets and for each i=1,2,....n, let A;be a
quadripartitioned neutrosophic set in X;.We define the product A = []iL, A; of the family 4;, i=1,2,...n, as

the quadripartitioned neutrosophic set in X = []L, X; that has membership function, indeterministic

function and non-membership function given by for each (x4, x5, ... ... Xp) € X
Ta (X1, X2, cen e Xn) = Ta1r XOA Taz (XA, ..o oo A Tan(x4),
Upa (X1, X2, ce e Xn) = Uat X)DA U (XA, ... ... AUan(xn),
Ca (X1, Xg, cenen Xn) = Ca1 (X1)V Caz (X2)V,....... VCan(x,) and
Fa(Xq,X2, e e Xn) = Fa1(X1))V Faz (X2)V,....... V Fan(Xp)-

Remark 3.23. From the definition 6.2.20 and proposition 6.2.21 that if X;, has quadripartitioned
neutrosophic topology g;, i=1,2,....n, then the quadripartitioned neutrosophic product topology ¢ on X has
the det of quadripartitioned neutrosophic product spaces of the form []iL, U; where U; € g; for each

=1,2,...n.
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Proposition 3.24. Let {X;},i = 1,2,....n, be a finite family of sets and let A=[[iL, A;the quadripartitioned
neutrosophic product space in X = []L, X;, where A; € FNS(X;) for each i= 1,2,....n. then p;(A) c A; for

each i=1,2,...n.

Proof : Let x;€X;. Then T,,i(A) x) = pi(TH) =V Ta(Z1,22, v oo Z,) =
V [TAl (Zl)/\ TA2 (Zz)/\, ....... /\ TAn (Zn)]
= NP2 I (%) {Vz,ex, Ta1 (1), 0. on Vzex, Tan(Zn)} < Tai(x;). similarly we can prove C,;i(x;) <

CAi(Xi)iUgai(Xi) = UAi (Xi) and F;?i(xi) > FAi(Xi).Hence #71(A) C Ai for each i=1,2,....n.

Proposition 3.25. let {X;, ¢i},1 = 1,2,....n be a finite family of quadripartitioned neutrosophic topological
spaces, let (X, g) the quadripartitioned neutrosophic product space and let A= []iL; A; where A; a
quadripartitioned neutrosophic set in X; for each i = 1,2,...... n. then the induced quadripartitioned
neutrosophic topology ¢, on A has a base the set of quadripartitioned neutrosophic spaces of the form
L, U; where U; € (g1)a, i= 1.2,....0.

Proof : by the above remark 6.2.23, g has a base 8 ={[[IL, U; : U; € g;, i=1,2,....n}. A base for g, is
therefore by B, = {(IIL,U) NA: U; € g4 i=1.2,...n. But [[L,U) NA = (J[L,U; nA;) and U; N A4
€ (gi)a; fori=12,..... n. Let U; = U; N A, for each i=1,2,...n.

Then B, ={[1",U;: U; € (¢i)a;,i= 1,2,....n} and we denote the quadripartitioned neutrosophic

subspace (A, ga) by TTL; A; - (gi)a,

Proposition 3.26. Let {(X;, ¢2) hhep be a family of quadripartitioned neutrosophic topological spaces, let
(X, ¢g) the quadripartitioned neutrosophic product space, (Y,2) an quadripartitioned neutrosophic
topological space and let f: (Y,2)— (X,¢) . Then f is quadripartitioned neutrosophic continuous iff p, o f
(Y, ”A)— (X,, ¢) is quadripartitioned neutrosophic continuous for each A € A.

Proof: suppose f: (Y, )= (X, ¢) is quadripartitioned neutrosophic continuous. For each A € A., let U, €
ga BULfTH (a1 (Ua)) = (@a° 71 (UD). Thus (pa o )71 (Up) € A Hence py o f & (Y, A)— (Xp, g) s
quadripartitioned neutrosophic continuous.

Conversely, let the necessary condition hold and let U € g. By proposition 6.2.21, there exist a finite subset
A of A such that U = (N, c4(22 "1 (Un)=f~1(U). so f~1(U) € A. Hence f is quadripartitioned neutrosophic

continuous.

Corollary 3.27. Let {(X5, 20) hen {(Yo, L) ep be two families of quadripartitioned neutrosophic
topological spaces and let (X, g¢) and (Y,2) the respectively quadripartitioned neutrosophic product

spaces, where X = [[hepa X5 and Y =]]ep Ya. For each A € A, let £, be mapping of (X3, ¢;) into (Y, Uy).
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Then the product mapping f=[L,ex fy : (X, ¢) — (Y,2) is quadripartitioned neutrosophic continuous iff f,
is quadripartitioned neutrosophic continuous for each A € A, where f(x)= (fy (p(x)) for eachx € [ep Xs.

Proof: The proof is obvious from the above Proposition.

Proposition 3.28. Let (X;, ¢i)i, i=1,2,....n be a finite family of quadripartitioned neutrosophic topological
spaces and (X, ¢) the quadripartitioned neutrosophic product spaces. For each i= 1,2,.....n, let A; be a
quadripartitioned neutrosophic set in X; and let A = []iL, A; a quadripartitioned neutrosophic set in X. Let
(Y,2) be a quadripartitioned neutrosophic topological spaces and let B a quadripartitioned neutrosophic set
inY,and f: (B, Ag) = (A, g,) is respectively quadripartitioned neutrosophic continuous iff p, o f : (B,
Ag)— (Aj, (¢1)a,) is relatively quadripartitioned neutrosophic continuous for each i=1,2,....n.

Proof: Suppose f: (B, UAg) — (A, g¢4) is relatively quadripartitioned neutrosophic continuous. p: (X,¢) —
(Xj, ¢i) is quadripartitioned neutrosophic continuous for each i= 1,2,...n and by Proposition 6.2.24
»(A) c A; for each i=1,2,...n. Then by proposition 6.2.9 p; : (A,ga)) = (A (g1)a,) is relatively
quadripartitioned neutrosophic continuous for each i=1,2,....n. Hence p;of : (B, Ug)—> (A, (gi)a,) IS
relatively quadripartitioned neutrosophic continuous for each i=1,2,....n. conversely, the necessary
condition holds. Let U = U, x...... x U, where U, € ((¢1)a,), iF1,2,.....n. By the Proposition the 6.2.25
set of U forms a base for g, and f~(0)NB= f [ p "t U)N.......... Nnp, '(U)]NB=
NP, ((p o H~IU,] N B). Since p; o f: (B, Ag)—~ (A, (g1)a,) is relatively quadripartitioned neutrosophic
continuous for each i=1,2,....n, f~1(0) N B € Ug. Hence by Proposition 6.2.16 f : (B, g)— (A, g4) is

relatively quadripartitioned neutrosophic continuous.

Corollary 3.29. Let {{X;, i}, {{Y;, %}, i = 1,2,...n be two finite families of quadripartitioned
neutrosophic topological spaces and (X, g) and (Y,) the respective quadripartitioned neutrosophic
product spaces. For each i=1,2,....n let A; be a quadripartitioned neutrosophic set in X;, B; a
quadriparititioned neutrosophic set in Y; and f;: (Aj, (gi)a,) = (B, (Wp)g,). Let A = [[L;A,B=

iL, B; be the quadripartitioned neutrosophic product space in X,Y respectively. Then the product mapping
=TIt ¢ (A (g1)a;) = (Bi, (Uj)g,) is relatively quadripartitioned neutrosophic continuous if f; is

relatively quadripartitioned neutrosophic continuous for each i=1,2,...n.

Proposition 3.30. Let {(X;,¢i),{(Y, ¥}, i = 1,2,...n be two finite families of quadripartitioned
neutrosophic topological spaces and (X, g) and (Y,) the respective quadripartitioned neutrosophic
product spaces. For each i=1,2,....n, let f; :  (Xj, gi) = (Y;, ¥;).Then the product mapping f = [T, f; : (X,
g) —(Y, ) is quadripartitioned neutrosophic open if  f; is quadripartitioned neutrosophic for each

=1,2,....n.
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Proof : Let U be open in g.Let B = {[[iL, U; a quadripartitioned neutrosophic set in X : U; € g; for each
i=1,2,....n}. Since B is a base for g, there is a B = B such that U = U B. Since each member of B is the
form [T, U;, we can consider B = {1, U }aepn. Then U= Ujep [T, U Let y € Y such that £~ (y) #
@. Then Teyy (v) = f(Ty)(¥) = Vaer1(y) Tu(2)

= Vaer1(y) Tupenmi, uin (2) = Vazer1(y) Vaen Trn vy, (2)

:VAE/\ Vzlef—ll(yl) ........ Vznef—ln(yn) [TUl}\ (Zl) VAV N TUnK (Zn)]
=Vaenl Voer1,yy) Tugy (Z) A A Vet (yn) Tupy (Zn)]
:V}\E/\ [Tfl(Ul';\) (Y1) AV A Tfn(Un'}\) (Yn)] = V}\E/\ Tl_[?=1 Ujp (Y) = TU}\.E/\ H?:l fi(Uin) (Y)

Fruy (V) = f(Tu) (V) = Azer1(y) Fu(2) = Azer1(y) Fupen i, i (2) = Azer-1y) Maen Frp, vy, (2)

= A?\E/\ AZ1Ef_11(Y1) ........ /\Znef—ln(yn) [FUl}\ (Zl) V....... \% FUnl (Zn)]
=Men [ Azertyyy) Fu(Z) Voo, V Azper (yn) Fupy (Zn)]
=A)\E/\ [Ffl(Ul,l) (Y1) Voo \% an(Un,)\) (Yn)] = /\}\.E/\ Fn?zl Uir (Y) = FUAEA H{l=1fi(Ui7\) (Y)

Thus f(U) = Upep [T, fi(Uin). Since f; is quadripartitioned neutrosophic open for each i=1,2,....n, f;(Uj)
is quadripartitioned neutrosophic open X; for each i=1,2,....n. Then [[i,f;(U;,) is quadripartitioned
neutrosophic open in Y. So Ujep iz fi(U;p) is a quadripartitioned neutrosophic open in Y. Hence f is

quadripartitioned neutrosophic open.

Proposition 3.31. Let {(Xj,2i),{(Y; %)}, i = 1,2,...n be two finite families of quadripartitioned
neutrosophic topological spaces and (X, g) and (Y,) the respective quadripartitioned neutrosophic
product spaces. For each i=1,2,....n, let A; a quadripartitioned neutrosophic set in X;, B; a quadripartitioned
neutrosophic set in Y; and let A =[], A;, B =[]{L, B; be the quadripartitioned neutrosophic product spaces
in X,Y respectively. If f;: A; — B; is relatively quadripartitioned neutrosophic open for each i=1,2,...n, then
the product mapping f=JIL, f;: : (A,ga) ) = (B,Up) is relatively quadripartitioned neutrosophic open.

Proof : Let B = {[[iL, U; a quadripartitioned neutrosophic set in A : U; € (g;)a, for each i=1,2,....n}.
Then by proposition 6.2.30, B is a base for g,. Let UE g,. Then there is 8 c Bsuchthat UB = U. We
can consider B as {I], Uirdycn- Then U=Uxen ITiL; Uiy As in the above proposition 6.2.30 we get f(U) =
UaenITiz fi (Ujp). Since f; is relatively quadripartitioned neutrosophic open for each i=1,2,....n, f{lU)€ Up.

Hence f is relatively quadripartitioned neutrosophic open.

Lemma 3.32. Let (X4,41),(Y,,U,) be a quadripartitioned neutrosophic topological spaces. Then the
constant mapping f : (X,,¢,) — (X1,¢1) given by f(x,) = x, € X for each x, € X,, is

quadripartitioned neutrosophic continuous.

97



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

Proof: Let U € g, and let x;, € X;. Then Te-1y(x2) = f71(Ty) (x2) = Tyf(x3) = Ty(X,). Similarly we
have  Ce-1(y)(X2) = f=1(Cy) (x2) = Cyf(xz) = Cy(Xo), U1y (X2) = Uy(Xe) and  Feiyy(xz) =
Fy(xo). Let Ty(x¢) =, Cy(Xo) =PB,Uy(%e) =yandFy(x0) =6. Consider Syg,s. Since UE
FNS(X;),a+B+y+6<4. Then Syg,s Is quadripartitioned neutrosophic open in X,. Thus
Ty (x2) = a=Ts oo (%2), Cery(%2) = B =Cs 5.5 (X2),  Uprn(%2) =7 = Us oo (X2)
and  Fr1yy(xp) =8 =Fs ;.o (Xp) implies £71(U) = S(epys). So f71(U) is quadripartitioned

neutrosophic open in X,. Hence fis quadripartitioned neutrosophic continuous.

Proposition 3.33. Let (X4, ¢1), (X5, ¢,) be a quadripartitioned neutrosophic topological spaces and let (X,
g) the quadripartitioned neutrosophic product space. Then for each x; € X; the mapping i : (X;, g,) —
(X, ¢) defined by i(x,) = (x4,X,) for each x, € X,is quadripartitioned neutrosophic continuous.

Proof: By Lemma 6.2.32 the constant mapping i; : (X, ¢,) — (X1,¢) given by i(x,) = x,for eachx, €
X,is quadripartiioned neutrosophic continuous. Then identity mapping i, : (X3, ¢2) — (X1,¢2) IS
quadriopartitioned neutrosophic continuous. Hence by proposition 6.2.26 i is quadripartitioned

neutrosophic continuous.

Proposition 3.34. Let (X4, ¢1), (X5, ¢,) be a quadripartitioned neutrosophic topological spaces and let (X,
g) the quadripartitioned neutrosophic product space. Let A;, A, be quadripartitioned neutrosophic sets in
X1, X, respectively and let A the quadripartitioned neutrosophic product space in X. Let a; € X; such that
Ta, (a1) = Ty, (a2),Ca, (@1) = Cy,(X2), Uy, (a1) < Uy, (xz) and Fy (a1) < Fu,(x;) for each x, € X,.
Then the mapping i : (Az, (¢2)a,) —( A1,ga) given by i(x;) = (ay, xp) for each x, € X,is relatively
quadripartitioned neutrosophic continuous.

Proof : Let (x4,x,) € X. Then

VX’in_l(Xl,Xz) TAZ (X,Z) lf 1_1(X1:X2) i ® — {TAZ (XZ) lfxl = al

T: X1, X = {
i(az) (X1, X2) 0 otherwise 0 otherwise

C. A (X X ) — {V)('ZEi_l(Xl,Xz) CAZ (X,Z) ifi—l(xli XZ) * ® — {CAZ (XZ) lfxl = al
I(Az) V7 %2 0 otherwise 0 otherwise

/\X,zei_l(Xl,Xz) UAZ (XIZ) lf i—l(xll XZ) i @ - {UAZ (XZ) lfxl = al

U; X1,X ={
i(Ag) (X1,X2) 1 otherwise 1 otherwise

F_ A (X X ) — {AXZEi_l(Xl,Xz) FAZ (XIZ) lf i—l(xl' X2) i @ - {FAZ (XZ) lfxl = al
I(Az) V7 72 1 otherwise 1 otherwise

Ta(x1) A Ta(X2), Ca(X1,X2) = Co(X1) ACa(X2), Ua(X1,X2) = Up(X1) V Ua(Xz) and Fa(x1,X2) =
Fa(x1) VFaA(x2). By the assumption, Ta(x1,Xp) = Ta(Xz), Ca(X1,X2) = Ca(X2), Up(X1,X3) <

and TA(Xl’ Xz) =
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Ua(x2) and Fo(X4,X;) < Fa(x3). Hence i(A) c A. The proof of relative continuity of i is similar to the

proof of quadripartitioned neutrosophic continuity of i in proposition 6.2.33.
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Abstract:
In this paper we introduce the Bipolar k — Q — fuzzy subsets and show that Bipolar k — Q — fuzzy

Subgroups and Normal Subgroups. Furthermore, over we initiate the Bipolar x — Q — Fuzzy order

subgroups and Normal subgroups of the various group theoretical proofs.

Key Words:

Fuzzy Set (FS), fuzzy subset (FSb) , k — Q —fuzzy subset (x — Q — FSb), fuzzy orders (FO),
fuzzy group (FG),fuzzy subgroup(FSG), k — Q —fuzzy orders (xk — Q — FO), k — Q —fuzzy group(x —
Q — FG),kx — Q —fuzzy  subgroup(k —Q — FSG),xk  —Q —fuzzy  normal  subgroup(x — Q —
FNSG) and k — Q —Cyclic group.

1. Introduction

Abou-Zaid S initiated by On generalized characteristic fuzzy subgroups of a finite group in 1991.
In 1988, Some properties of fuzzy groups developed by Akgul M2, Asaad ME! introduced by the concepts
of Groups and fuzzy subgroups 1991. Atanassov K T[4l described the notation Intuitionistic fuzzy sets
1986. In 1981, described the notation of fuzzy groups and level subgroups in Das P SBI. Lee K JI &8l

introduced by the new notation of Bipolar valued fuzzy sub algebras and bipolar fuzzy ideals of BCK/BCI-
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algebras in 2009 and also introduced the concept of Bipolar valued fuzzy sets and their operations.
Rosenfeld A described the new concept of Fuzzy groups in 1971. In 1982, Fuzzy invariant subgroups
and fuzzy ideals developed by Liu W JB®. Jae-Gyeom Kim, Fuzzy orders Relative to fuzzy subgroups 1994.
In 1984 initated by the concept of Fuzzy Normal subgroups and fuzzy cosets by Mukherjee N PO,
Prasannal*!! et.al.. introduced by the concept of k — Q —Fuzzy Orders Relative to k — Q —Fuzzy Subgroups
and Cyclic group on various fundamental aspects in 2020 and also Fundamental Algebraic Properties on
k — Q — Anti Fuzzy Normed Prime Ideal and x — Q — Anti Fuzzy Normed Maximal Ideal in 202112,
Solairaju A and Nagarajan Rl developed by the new structure and construction of Q- fuzzy groups in
2009. Zadeh L A introduced the concept of fuzzy sets 1965. In 2004, Zhang W Rl developed the new
notation of Bipolar logic and bipolar fuzzy logic. Zimmermann H JI71 described by the notation of fuzzy
set theory and its applications in 1985.

In this paper we introduce the Bipolar k — Q — fuzzy subsets and show that Bipolar k — Q — fuzzy
Subgroups and Normal Subgroups. Furthermore, over we initiate the Bipolar x — Q — Fuzzy order
subgroups and Normal subgroups of the various group theoretical proofs.

2. Preliminaries
Definition: 2.1[15]

If X may be a nonempty set, then a function u: X — [0,1] may be a FSb of X.

Definition: 2.2[14]
Let G be a group. A FSbh u of G may be a FSG of G if

() ply) = minfulx), u(v)}
(i)  ulx™) = pulx), forall x,y € G.

(iii)  From this definition, we obviously have u(x~1) = u(x), forall x, y € G.

Definition: 2.3[14]
Let G be a group. A FSG u of G isnormal in G if u(xy) = (yx) forall x,y € G.

Definition: 2.4[11]
Let G and Q be any two nonempty sets and x € [0,1] and ube a Q — FSh of aset G. The FS u* of G
is called the k — Q — FSb of G is defined by

pnex,q) = (u(x,q),x),Vx€Gandq € Q.
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3. On Algebraic Aspects of Bipolar k — Q — fuzzy Order subgroups and Normal Subgroups
Definition: 3.1

Let G and Q be any two nonempty sets and k € [0,1] and A* be a Q — FSh of a set G. The fuzzy set
A* of G is called the Bipolar k — Q — FSb of G is defined by

() yae-(6,q) = min{y,-((6, ), x)}
(i) yaer(8,q) < max{y,+((6,9),x)}, V6 € Gand q € Q.

Definition: 3.2
Let A* be a Bipolar k — Q-fuzzy subgroup of a group G. For agiven 8 € G and g € Q, the positive
integer n such that the following conditions are
(i) ya-(6™q) = min{y,-((e, q), )}
(i) yaer (8™ q) < max{y,+((e,q),x)}, V0 € G and q € Q.

Definition: 3.3

The above definition of the two conditions is Bipolar k — Q-fuzzy order of 8 with reference to A¥is
FO - (0, q) and FO 4+(8, q). If no such n exists @ is infinite Bipolar k — Q-fuzzy order reference to A*.
= 0(6,q) and 0(¢, q) doesn’t imply that of FO 4«-(8, q), FO 4c- (¢, q) and FO 4+ (0, q), FO 4+ (@, q).

Example: 3.3.1

Let G = {a,b/a? = b? = e} be the 4 group.
Define Bipolar K — Q- fuzzy subgroup A¥ of G by
vae-(e,q) = yA—((ab, q), K) and equal to y+(e,q) = yA+((ab, C[),K') =t, and Yae-(a,q) =

va-((a, @), k) and equal toy e+ (a, q) = y4+((a, q), k) = t;, Where t, > t, and q € Q.
Clearly 0(a,q) = 0(ab,q) =2 but FOu-(a,q) = FOu+(a,q) =2 and FOu«(ab,q) =
FO e+ (ab,q) = 1.

Theorem: 3.4
Let A* be a Bipolar k — Q-fuzzy subgroup G. For 8 € G and q € Q, if
(i) yae-(0™,q) = min{)/A- ((e, q), K)}
(ii) y4c+ (6™, @) < max{y,+((e, q),x)}, for a few integer m then FO 4~ (6, q) and FO 4+(8, q) divides
m.
Proof:
Let FOx-(0,q) = FO4+(8,q).
If there exist integers s and t suchthatm = ns +t,where 0 <t <nandq € Q.
Then,
(1) Ya-(0",q) = yae-(6™7T,q)
= ya-(6™(0")75, q)
> min{ Ya- ((Qm' q), K)' Ya- (((‘9")_5; q), K) }
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> min{y,-((e,q), k), va-((e, 9), x)}
Yae- (0™, q) = min{y,-((e, q), k)}
(i) yu+ (0", q) = Y+ (0™, q)
= Yac+(0™(0™)7%, q)
< max{y,+((6™ ), x), v+ ((6™ 75, 9), k) }
< max{y+((e,q), k), ya+((e,q), x)}
Yae+ (0™, q) = max{y ,+((e, q),x)}

Hence t = 0 by the choice of n.
If 0(6, q)is finite then FO,«-(6,q) and FO+(60, q) is clearly finite from for all Bipolar x — Q-fuzzy
subset A of G.

If 0(6, q) is infinite then for every positive integer n there exists a Bipolar k — Q-fuzzy subgroup
y4< Of G such that FO,, « (6,q) = FOVAnH (6,q9) =n.

Theorem: 3.5
Let y 4« be a Bipolar k — Q-fuzzy subgroup of a group G and let 8 and ¢ be two elements of G such
that  [FO,, «(6,9),FO,, «(9,9)| =1=F0,, «(6,9),F0,, x+(p,@)| and 69 =¢6. If
Ya-(00,@) = va-((e,q), k) and vt (09, q) = y4+((e,q),x) then yu-(8,q) = ya-((e,q),x) =
Yae- (0, q) and y e+ (8, q) = y4+((e, @), k) = yue+ (9, Q).
Proof:
Let FO,, «-(6,9) = FO,, «+(6,q) =nand FO,, x-(p,q) = FO,, +(p,q) =m.
Then
(i)  minfya-((e, @), k)} = {yae- (09, )}
= {yae-((00)™, @)}
= {yae-(0M9™, q)}.
(i) max{y,((e,q),x)} = (yaet (09, 9)}
< {yae+ ()™, q}
= {yae+ (™0™, q)}.
=Va-(0™,q) = yax-(9™, q) = min{y,-((e, q),x)} and
Yaer (0™, q) = Y aer (9™, @) = max{y+ ((e, ), )}
Therefore, n/m
But (n,m) = 1. If n = 1., ie y,c- (8, q) = min{y,-((e, @), k)} = yac- (o, q) and

Va8, q) = max{y,+((e, @), x)} = yae+ (0, ).
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Hence,

= Y4« IS normal the belief 8¢ = @O may not be omitted.

Theorem: 3.6
Let y 4« be a Bipolar k — Q-fuzzy subgroup ofagroup G. Let FO,,, «- (6,9) =n— FoO,, 6,9),

where 6 € G and q € Q. If m may be an integer with d = (m,n) then FOy, (6™ q) =2=

FOy, «+ (0™, q).
Proof:
Let FOy,,«-(0™,q) = FOy, «+(8™,q) =t
First we have
M) yae (0™ @) = (6™, q)
> min{y - (67, q)}
> min{y,-((e,q),x)}, ¥ p is integer and q € Q.
(i) yaer (0™, @)2) = yacr (677, q)
< max{y+(0™, q)}
< max{y,+((e,q),x)}, v p is integer and q € Q
Thus n/d becomes d = (m, n) there exist integer i and j such that n; + m; = d.

Now

() ya-(8,q) = yu- (850 q)
> minfy s~ ((6™)(6™)Y, q)}
> min{min{y ye- (6™, @), y4e- (6™, )}
> min{min{y y- (6™, @), yae- (6™, )}
= min{min{y,-((e, ), ), ya-((e, 0), )}
= min{y,-((e, q),x)}.

(i) yaer(07,q) = yer (850, q)
< max{y e+ (™6™, )}
< max{max{y e+ (6™, @), y e+ (6™, @)}
< max{max{y z+ (O™, ), yae+ (6™, )3}
= max {max{yA+ ((e, ), x), va+((e, q), K)}}

= max{yA+((e, q), K)}
=n/td., n/d/t. Consequently t = nd.
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Theorem: 3.7
Lety,4« be a Bipolar « — Q-fuzzy subgroup of agroup G. Let FO,, «-(8,q) =n = FO,, «(8,q),
where 6 € G and q € Q. If m may be an integer with (n,m) = 1 then y - (8™,q) = y-(0,q) and
Yact (0™, @) = ¥ e+ (6, Q).
Proof:
Let (n,m) = 1 there exist s and t such that ns + mt = 1,V q € Q.
(i) Yax-(6,q) = yae-(87, q)
> min{y - ((6%,9), (6™, q))}
> min{y ye- (((6™)°, @), (6™, ¢))}
> min {min{yA—((e, Q). k), Yac- (6™, Q)}}
=Yae-(6,q) = minfy - (0™, q)} = yae- (0™, q).
(i) ya+(6,q) = yacr (6™, q)
< max{y+((6°5,q), (6™, )}
< max{y e+ (((6™)°%, ), (6™, )}
< max {max{)/p((e, q), k), v+ (O™, Q)}}

=Y+ (0,q) = max{y e+ (0™,q)} = yaer (6™, q).

Theorem: 3.7
Let y, be a Bipolar x — Q-fuzzy subgroup of a group G. Let FO),Anx-(H,q) =
nand FO,, x+(6,q) = n,where 6 € Gand q € Q, ifi = j(modn), where i, j € Z then FOYAnx-(Hi,q) =
FO,, «(67,q) and FO,, «(6',q) = FO,, x+(6/,q).
Proof:
Let FO,, «(6',q) =t =FO,, x+(6',q)and FO,, «-(6/,q) =t = FO,, x+(6/,q) =
by the assumption i = j + nk for all integer k and q € Q
M ra-((6")"9) = ya-((690)',q)
= min{y - ((67) (6™)*,q)}
> min {min{yAx— ((07)°,q), vae- (8™, q)}}
> min {min{yA— ((e,q), k), yae-((6™)°, q)}}

> min {min{yA— ((6, q), K); Ya- ((e, Q), K)}}
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> min{y,-((e,q),x)}.
=y ((6%)", q) = minfy,-((e, @), 1)}
(i) v ((67)",9) = yaer (697, q)
= max{y+ ((67) (6™, q)}
< max {max{yw+ (7)), yare (6™, )}
< max {max{y,+ ((e, @), ), yuer (6™, )}

< max {max{yA+ ((e, Q) K), Vat ((& ), K)}}
< max{yp((e; Q) K)}

=>y0e+((6Y)°, q) < max{y,+((e, q), )}
And also t/s, similarly s/t.

Thus we have t = s.

Theorem: 3.8
Let y,« be a Bipolar k — Q-fuzzy subgroup of a group G, and let 8 and ¢ be element of G and q €
Q there exists 8¢ = @6 and [FO],Anx— (H,q),FOVAnx— (o, q)] =1 and [FO),AHH (e,q),FOYAnx+ ((p,q)] =
1. Then FO,, «(6¢,q) = FO,, «-(6,q) X FO,, x-(¢,q) and FO,, x+(09,q) = FO,, «+(6,q) X
FO,, (¢, q).
Proof:
Let FO,, «-(0¢,q) = FO,, x+(8¢,q) =n, FO,, x-(6,q) = FO,, x+(6,q) = s and
FOy, ~(9,q) = FO,, x(p,q) =t
Then,
) va—((89)%, @) = yae- (059", )
> minfy - ((6°)*(¢*)", )}
> min{min{y z-((6°)", @), vax- ((9*)", )}
> min{min{y 4= (6%, @), yax- (9%, 0)}}
> min {min{yA— ((e, Q),K), Va- ((e, q), K)}}
> min{y,-((e, q), x)}
Thus n/st,
=yae-((09)", q) = Y- (679", q)
= min{y,-((e,q),x)}.
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(i) var((09)%, @) = yuet (050", q)
< max{ys((6°)'(¢°)", q)}
< max{max{y g+ ((6°)%, @), v ax+ ((@*)", )3}
< max{max{y g+ (6%, q), v+ (9%, 03}

< max {max{yA+ ((e, ), x), va+((e, q), K)}}

< max{y,+((e, q),x)}
Besides [FoyAnK_(en' q) = FoyAnK_Qpn,q)] =1and [FOYAnH(en,q) = FOyAn;c+(§0n,Q)] = 1.
Therefore
Yae- (0™, q) = yue- (@™, q) = min{y,-((e, q),k)} andy e+ (6™, @) = yue+ (9™, q) = min{y,+((e, q), )}
then both s and t divide on n.
Therefore st /n because (s,t) = 1.

=n = st.
Corollary: 3.8.1
Let y,« be a Bipolar k — Q-fuzzy subgroup of a group G, and let 8 and ¢ be element of G and q €

Q there exists 0(8¢) = 0(pH)=1. Then FO,, - (B, q) = FO,, « (8,q) x FOy, (p,q) and
FO,, w+ (B, q) = FO,, w+ (0,q) x FO,, (¢, q). Since y4« is normal subgroup the assumption 8¢ =

@6 may not be omitted.

Result: 3.8.2
Let y,« be a Bipolar k — Q-normal fuzzy subgroup of a symmetric group S,.

_ [ to, ife=e
Vae(6,9) =y e+ (6,9) = {tl, if otherwise
Where t, > t; and q € Q.
Now, let 8 = (1,2) and ¢ = (1,2,3)
Then FO,, x-(8,q) = FO,, x+(0,q) =2 , FO,, x-(9,q) = FO,, x+(p,q) =3, FO,, «(0¢,q) =

FO,, r+ (Bp,q) =4 and O + 0.

Theorem: 3.9
Let y,« be a Bipolar k — Q-fuzzy subgroup of a group G. For Z € G and q € Q. IfFOYAnx-(Z,q) =

nm with (n,m) = 1 then there exists 8 and ¢ in G and q € Q such that Z = ¢ = ®0,F0,, x 0,q9) =

m= FOVAnK+ (6,q) and FO,, x- (p,q) =n= FO.VAnK+ (@, q). Furthermore, explain for Z is exclusive
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with in the Bipolar k — Q-fuzzy grades. If (0, ¢),(6,,¢,) and q € Q are such pair then y«-(8,q) =

Yaer(0,q) = Yae-(01,q) = Y ax+ (601, @) and yax- (@, q) = v qx+ (@, @) = Vax- (@1, @) = Vet (@1, Q).
Proof:

Let (n,m) = 1 there exists integer s and t such that ms + nt = 1 and q € Q.
Here (m,t) = (n,s) = 1.
Letd = Z",p = Z™ and q € Q.
Then Z = 6¢ = @08 by theorem,

FOVAnK—(B, q) = FO],Anm(H, q) = FOVAnx—(Z"t,q) = FOyAnH(Z"t,q) =m
and FOVAnK—(go, q) =n= FO],AnH((p, q) = FOVAnx—(ZmS,q) = FO),Anx+(Zm5,q)
Let (0, ), (04, 9,) and g € Q be pair satisfied.

=>F0yAnx—(0, q) = FOVAnK+(9, q) = FOYAnx—(Hl, q) = FO),Anx+(91,q) =m
and FO,, x-(9,q) = FO,, «+(9,q) = FOy, x-(¢1,q) = FO,, x+(p1,q) =n
We obtain
(i) Yae-(6,q) = min{y - (6'"™, q)}
= min{y (0™, q)}
= min{y,«- (0™ 9™, q)}
= min{y - (69)™, q}
> min{min{y ye- (0™, @), yac- (@™, )}
= min{y - (6,"",q)}
= min{y«-(6,"7", q)}
=>Yae-(0,q) = min{y 4<- (01, )}
(i) yax+(6,q) = max{y .+ (67, q)}
= max{y e+ (6™, )}
= max{y .+ (6" 9™, q)}
= max{y <+ (0p)"™, q}
< max{max{y g+ (6™, @), y ax+ (@™, @)}
= max{y«+(6:"",q)}
= max{y+ (0,7, q)}
Sy +(0,q) < max{y+(04,q)}.
(i) yae-(@, @) = min{yx- ('™, @)}
= min{y (™, @)}
= min{y - (@™ 6™, q)}
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= min{y - (06)™, q}
> min{min{y - (@™, @), v~ (0™, q)}}
= min{y - (p,™, q)}
= min{y - (9,'"™, q)}
>y ae- (@, @) = min{y (94, )}
(iv)  vae-(9,q) = max{y - ('™, q)}
= max{ys- (@™, )}
= max{y (™0™, q)}
= max{y - (0™, q}
< max{max{y y- (@™, q), yax- (6™, q)}}
= max{ys- (9", q)}
= max{ys- (o, "™, q)}
=>yac- (@, q) < max{yx- (91, Q}.

Theorem: 3.10

Let y,« be a Bipolar k — Q-fuzzy normal subgroup of a group G. Then FO,, x- 0,9) =
FO],Anx—((p‘lﬁ(p, q) and FO],AnH(H,q) = FOVAnH((p‘lH(p, q),V0,p €Gandq € Q.
Proof:

Letd,9p € G and q € Q.

We have
() yae-(0",@) = min{y (0™ 00, )}
= min{y - (9~ 09)"™, )}
=Yae- (0", @) = min{y - (9~ 09)", @)}
(i) yaer (8", @) = max{ya-(9~'0¢,q)}
< max{y (o~ 09)", O}
=Y+ (07, @) < max{ye-((9™1090)", @)}, Vn € Zand q € Q
=F0,, «~(0,q) = FO,, x- (p~18¢,q) and FO,, r+ 0,q9) = FO,, «+ (p~10¢,q)

=y« IS not normal in G.

Example: 3.9.1

Let w; = {a,b/a® = b3 = e,ba = a?b} be the group with t elements.
Now define k — Q-fuzzy subgroup of a group y 4« of w5

to, if 6 € (b)

Yae=(6,q9) = yac+(6,q) = {tl, otherwise
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Where t, > t; and q € Q.
Then a~'ba € (b) and S0 FOVAnx—(b,q) =1= FO),Anx+(b,q) * FO),Anx—(a‘lba,q) =

FO,, «+ (a 1ba,q).

4. Conclusion

In present work, Bipolar k — Q — fuzzy subsets and show that Bipolar k — Q@ — fuzzy Subgroups
and Normal Subgroups. Moreover we define the properties of Bipolar k — Q — Fuzzy order subgroups and
Normal subgroups has been innovated and that we have established several fundamental characteristics of
this notion. For fresh findings in upcoming research, this notion can be further generalised to intuitionistic
fuzzy sets, interval valued fuzzy sets, and Doubt bipolar fuzzy sets.
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Abstract

The aim of this paper is to explore neutrosophic soft sets (NSS) in decision making.
Neutrosophic soft set is a combination of neutrosophic set and soft set. We use neutrosophic soft sets
on three components (t, f, i) = (truth, falsehood, indeterminacy) to deal with exact state of data in several
directions. A decision making method is developed based on neutrosophic soft relations(NSR) related
to the problems encountered in day-to-day life by married girl students having children is the prime
focus of the work. The scrutinized women are pursing higher education in the colleges of Coimbatore
city, Tamil Nadu, India. As an application we provide an algorithm for the decision-making problem
under neutrosophic soft relation environment by using comparison matrix for the data collected from

the sample.

Keywords: Soft sets, Neutrosophic sets, Neutrosophic soft sets, neutrosophic soft relation, algorithm,

decision making.

1. Introduction

The fuzzy set theory was introduced by L. A. Zadeh [17] in 1965. Many researchers have
extended the concept of fuzzy set in multi directions. The traditional fuzzy set is characterized by the
membership value or the grade of membership value. In some real life problems in expert system, belief
system, information fusion and so on, we must consider the truth-membership as well as the falsity-
membership for proper description of an object in uncertain, ambiguous environment. Intuitionistic
fuzzy set is introduced by Atanassov [1] is appropriate for such
a situation. But it does not handle the indeterminate and inconsistent information which exists in belief
system. F.Smarandache [15] proposed the concept of neutrosophic set which is a mathematical tool for
handling problems
involving imprecise, indeterminacy and inconsistent data. Neutrosophic set is the generalization of

many theory such as; fuzzy set, intuitionistic fuzzy set.
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In 1999, Molodtsov[11l] introduced the theory of soft set which is free from the
parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability theory for
dealing with uncertainty. Using the concept of soft set theory Maji in 2013 introduced neutrosophic soft
set [10]. Soft set theory have been expanded by embedding the ideas of fuzzy sets (e.g. [5.,4]),
intuitionistic fuzzy sets (e.g. [3,7,8]), neutrosophic sets (e.g. [9]). Also, many authors studied on
relations in soft set [2,13], in fuzzy soft set[16] and in intuitionistic fuzzy soft set[6,12]. Presently, work
on this NSS theory is progressing rapidly in different branches of Mathematics.

This paper proposes a model for analyzing the supporting factors for student mothers who are
facing difficulties in everyday life based on neutrosophic soft relations. An illustrative example
demonstrates the application of proposed decision making method in a real life problem. In section 2,
we provide the basic definitions of neutrosophic set theory soft set theory and neutrosophic soft set
theory that are useful for subsequent discussions. In section 3, a decision making method on
neutrosophic soft sets is established with an example in a real life problem. In section 4, the conclusion

for the proposed model is given.

2. Preliminaries

Definition 2.1 [15] A neutrosophic set A on the universe of discourse X is defined

as A = {< x, Ta(x), 1a(x), Fa(x) >, x € X}, where T, I, F: X -] "0, 1*[ and

0 < Ta(x) + 1a(x) + Fa(x) < 37,

From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]°0, 1*[. But in real life application in scientific and engineering problems it is
difficult to use neutrosophic set with value from real standard or non-standard subset of ]°0, 1*[. Hence

we consider the neutrosophic set which takes the value from the subset of [0, 1].

Definition 2.2 [11] Let U be an initial universe set and E be a set of parameters. Let P( U ) denotes the
power set of U. Consider a nonempty set A, A c E. A pair (F, A) is called a soft set over U, where F

is a mapping given by F: A - P(U).

Definition 2.3 [10] Let U be an initial universe set and E be a set of parameters. Consider A c E. Let
P( U ) denotes the set of all neutrosophic sets of U. The collection ( F, A) is termed to be the soft

neutrosophic set over U, where F is a mapping given by F : A — P(U).

Definition 2.4 [10] Let N1 and N2 be two neutrosophic soft sets over neutrosophic soft universes (U,A)
and (U,B), respectively.
(1) Ny is said to be neutrosophic soft subset of N, if A €B and
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Tle w (u) STsz - (w), Ile (x)(u) SIsz - (w) ,Fle - (w) ZFfN2 - (W), ¥x €A, u el.

(2) N1 and N2 are said to be equal if N1 neutrosophic soft subset of N> and N2 neutrosophic soft subset
of Na.

Definition 2.5 [10] Let Ny and N2 be two neutrosophic soft sets over soft universes (U,A) and (U,B),
respectively,

(1) The complement of a neutrosophic soft set N1 denoted by N and is defined by a set valued function
fx representing a mapping fy. : £ — N(U)

fu, ={x.< Ffm (x)(u)’ Ifm (x)(u)’ Tfm (x)(u) >):x €E,u €U}

(2) Then the union of N1 and N2 is denoted by N1 U N2 and is defined by N3(C = AU B), where the truth-
membership, indeterminacy-membership and falsity membership of N3 are as follows: v'u €U,

Tle(x) (w), ifx € A—B
Tsz (x)(u), ifx € B—A

maX{Tle “ (u),TfN1 “ (u)}, ifx €e AnB

-
2
w
=
x
<
—~
o=
~
1

——— —_—

Ile(x)(u), ifx € A—B
)= Isz(x) (w), ifx € B —A
3 I W +1 W
f f
eYe : T2 ift € AN B
I{ Fry, (x)(u), ifx €e A—B
Fry <>(U):4 Fsz(x)(u), ifx € B —A
3(x
| ) ,
k min {Fle “ (u),FfN1 “ (u)}, ifx €e AnB

(3) Then the intersection of N1 and N2 is denoted by N1 N2 and is defined by N3(C = 4 N B), where

the truth-membership, indeterminacy-membership and falsity-membership of N3 are as follows: v'u €
U,

Upy, @+ gy (@)
. _ (%) 2 (x)
TfN3 (x)(u) =min{ Tle (x)(u) , Tsz (x)(u)}, IfN3 . (u) = .

and FfN3 . (u) = max{ Fle . (u), Fsz . (W} vxecC

Definition 2.6 [10] Let N1 and N2 be two neutrosophic soft sets over neutrosophic soft universes (U,A)

and (U,B), respectively. Then the cartesian product of N1 and Nz is denoted by N1 % N2 = Nz is defined
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Na = {((x, ¥), fw; (X, ¥)) : (x, y) EA x B}

where the truth-membership, indeterminacy-membership and falsity-membership of N3 are as follows:
Yueu; ¥(x,y) €A xB,

TfN3 o) (U) = mln{Tle 0 (U) , TfN2 ) (U)},

(g O,y ()
(U) - 1(x) - 2 (y) and

I
I3 ()

N5 () (u) = max{ Fle . (u), FfN2 . (u) }.

3. An Application of Neutrosophic Soft Relation in Decision Making Method:
Under this section, we construct a decision making by using neutrosophic soft method on relations to
analyze which factor supports the married girl students having children.
Now, we present an algorithm to form the decision making based on neutrosophic soft relation. The
algorithm is as follows:
Algorithm:
1) Enter the Neutrosophic Soft N; and N,.
2) Determine the matrix for the Neutrosophic Soft (relation table 1) which corresponds to the
Cartesian product of the neutrosophic soft sets N; and N,.
3) Calculate the comparison table using the formula, T+I-F
4) Choose the greatest numerical value from the comparison table for each row.

5) Compute the score table in the form,

(%1, 1) (X0, Yn)
Objects h;
Greatest
Numerical
Value

Where x,, denoted the parameter of N; and y,, denotes the parameter of N,.
6) Take the sum of these numerical value from the score table and compute the score of
each grade.

7) Find m, for which s, = maxs;. Then s, is the greatest score, if m has more than one values,
you can choose any one value s;.

Now, we use this algorithm to find the best supporting factor in decision making.
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Example 3.1: Let U = {child care, home management, college work support, Moral support and
financial support} denoted by {u,, u,, us, uy, us} the set of 5 supporting factors. Now, we consider two
neutrosophic soft sets N; and N, over U. Suppose N; describes “Student mothers having children of
age below 5” and N, describes “Student mothers having children of age above 5”.

Let E;= {x, x5, x5, x,} ={Changes in family environment, Changes in economic condition, Burdened
with family responsibility, Changes in academic performance} and E,= {y;,¥,,¥s, Va} = {lack of
concentration in studies, lack in conveyance and time, changes on routine study hours, changes in health
condition} respectively. Then we find a supporting factor based on the sets of mother’s parameters with
the help of neutrosophic soft relation decision making method.

1) We enter the Neutrosophic Soft N; and N, as,

(X Uug Uz usz Uy Us \
17(0.9,0.8,0.5) ’ (0.2,0.7,0.3) ’ (0.4,0.6,0.8) ’ (0.1,0.8,0.5) ’ (0.3,0.8,0.4)
x Uug Uz usz Uy Us
N. = 27.(0.2,0.9,0.1)’ (0.5,0.7,0.8) ’ (0.6,0.5,0.3) ’ (0.2,0.8,0.9) ’ (0.1,0.6,0.7)
1= 9 x Uuq Uy Uz Uy Usg (
37(0.7,0.5,0.4) ’ (0.4,0.5,0.5) ’ (0.2,0.4,0.7) ’ (0.8,0.9,0.1) ’ (0.1,0.9,0.7)
Uug Uz usz Uy Us

X
\""4 (0.2,0.3,0.3) ’ (0.3,0.9,0.6) ’ (0.4,0.4,0.8) ’ (0.8,0.8,0.1) ’ (0.4,0.6,0.5)

and
(y Uuq Uy Us Uy Us \
170.3,0.7,0.5) ’ (0.2,0.8,0.7) ’ (0.1,0.9,0.8) ’ (0.5,0.8,0.9) ’ (0.3,0.8,0.1)
Uux Uz usz Uy Us
N, = Y2 (0.4,0.5,0.2) ’ (0.3,0.1,0.9) ’ (0.2,0.6,0.4) ’ (0.5,0.8,0.1) ’ (0.9,0.4,0.9) |
2 = < Uy Uy Us Uy Usg
Y3 (0.7,0.5,0.4) ’ (0.2,0.5,0.7) ’ (0.8,0.2,0.5) ’ (0.9,0.2,0.4) ’ (0.7,0.9,0.2)
Uug U usz Uy Us
ky‘*’(oz0401)'(040509)’(030107)’(060908)‘(ozozos)J

2) Intable I, we determine the matrix R for the Neutrosophic Soft (relation table 1) which corresponds

to the Cartesian product of the neutrosophic soft sets N; and N, respectively.

R Uy U, Us Uy Usg
(x1,y1) | (0.3,0.75,0.5) | (0.2,0.75,0.7) | (0.1,0.75,0.8) | (0.1,0.8,0.9) | (0.3,0.8,0.4)
(x1,y,) | (0.4,0.65,0.5) | (0.2,0.4,0.9) (0.2,0.6,0.8) (0.1,0.8,0.5) |(0.3,0.6,0.9)
(x1,y3) | (0.7,0.65,0.5) | (0.2,0.6,0.7) (0.4,0.4,0.8) (0.1,0.5,0.5) |(0.3,0.85,0.4)
(x1,v4) | (0.2,0.6,0.5) | (0.2,0.65,0.9) | (0.3,0.35,0.8) | (0.1,0.85,0.8) | (0.2,0.5,0.8)
(x2,y1)1(0.2,0.8,0.5) | (0.2,0.75,0.8) | (0.1,0.7,0.8) (0.2,0.8,0.9) | (0.1,0.9,0.9)
(x2,¥2)1](0.2,0.7,0.2) | (0.3,0.4,0.9) (0.2,0.55,0.4) |(0.2,0.8,0.9) |(0.1,0.5,0.9)
(x2,¥3)] (0.2,0.7,0.4) | (0.2,0.6,0.8) (0.6,0.35,0.5) |(0.2,0.5,0.9) | (0.1,0.75,0.7)
(x2,y4) 1 (0.2,0.65,0.1) | (0.4,0.65,0.9) | (0.3,0.3,0.7) (0.2,0.85,0.9) | (0.1,0.4,0.8)
(x3,¥1)| (0.3,0.6,0.5) | (0.2,0.65,0.7) | (0.1,0.65,0.8) | (0.5,0.85,0.9) | (0.1,0.85,0.7)
(x3,¥2)| (0.4,05,0.4) | (0.3,0.3,0.9) (0.2,0.5,0.7) (0.5,0.85,0.1) | (0.1,0.65,0.9)
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(xs,v5)| (0.7,05,04) |(0.2,050.7) |(0.2,0.3,0.7) |(0.8,0.550.4) | (0.1,0.9,0.7)

(x3,y4)| (0.2,0.45,0.4) | (0.4,0.55,0.9) | (0.2,0.25,0.7) | (0.6,0.9,0.8) | (0.1,0.55,0.8)

(x4,y1)] (0.2,05,0.5) | (0.2,0.85,0.7) | (0.1,0.65,0.8) | (0.5,0.8,0.9) | (0.3,0.7,0.5)

(x4,y2)] (0.2,0.4,0.3) |(0.3,0.5,0.9) |(0.2,05,0.8) |(0.50.8,0.1) |(0.4,0.50.9)

(x4, v5)| (0.2,0.4,04) |(0.2,0.7,0.7) |(0.4,0.3,08) |(0.8,0.50.4) |(0.4,0.750.5)

(x4,4) ]| (0.2,0.35,0.3) | (0.2,0.75,0.9) | (0.3,0.25,0.8) | (0.6,0.85,0.8) | (0.2,0.4,0.8)

Table | : Neutrosophic Soft Matrix R (Relation Table)
3) With the help of Table I, we calculate the comparison table Il as follows;

R Uy U, Us Uy Us
(x1, 1) 0.55 0.25 0.05 0 0.7
(x1,¥2) 0.55 -0.3 0 0.4 0
(x1,¥3) 0.85 0.1 0 0.1 0.75
(x1,Ys) 0.3 -0.05 -0.15 0.15 -0.1
(x5, 1) 0.5 0.15 0 0.1 0.1
(x5, V5) 0.7 -0.2 0.35 0.1 -0.3
(x5, V3) 0.5 0 0.45 -0.2 0.15
(s, Va) 0.75 0.15 -0.1 0.15 -0.3
(x3,1) 0.4 0.15 -0.05 0.45 0.25
(x3,V5) 0.5 -0.3 0 1.25 -0.15
(x3,V3) 0.8 0 -0.2 0.95 0.3
(X3, Va) 0.25 0.05 -0.25 0.7 -0.15
(X4 V1) 0.2 0.35 -0.05 0.4 0.5
(X4, V2) 0.3 -0.1 0 1.2 0
(X4, V3) 0.2 0.2 -0.1 0.9 0.65
(X4, Va) 0.25 0.05 -0.25 0.65 -0.2

Table 11: Comparison Matrix Table.

4) In Table 3, we choose the greatest numerical value from the comparison table 11 for each row.

R Uy U, Us Uy Usg
(X1, y1) 0.55 0.25 0.05 0 0.7
(x1,¥2) 0.55 -0.3 0 0.4 0
(x1,¥3) 0.85 0.1 0 0.1 0.75
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(X1,Y4) 0.3 -0.05 -0.15 0.15 -0.1
(x2,y1) 0.5 0.15 0 0.1 0.1
(x2,¥2) 0.7 -0.2 0.35 0.1 -0.3
(x2,¥3) 0.5 0 0.45 -0.2 0.15
(X2, ¥4) 0.75 0.15 -0.1 0.15 -0.3
(x3,51) 0.4 0.15 -0.05 0.45 0.25
(x3,¥2) 0.5 -0.3 0 1.25 -0.15
(x3,¥3) 0.8 0 -0.2 0.95 0.3
(x3,Y4) 0.25 0.05 -0.25 0.7 -0.15
(%4, y1) 0.2 0.35 -0.05 0.4 0.5
(X4, ¥2) 0.3 -0.1 0 1.2 0
(%4, y3) 0.2 0.2 -0.1 0.9 0.65
(%4, Ys) 0.25 0.05 -0.25 0.65 -0.2
Table 111
5) We compute the score table in the following form;
R (x1, Y1) (x1,¥2) (x1,¥3) (%1, Ya)
Ui Us Uy Uq Uq
0.7 0.55 0.85 0.3
(x2,¥1) (x2,¥2) (x2,¥3) (%2, ¥a)
U, U, U, uq
0.5 0.7 0.5 0.75
(x3,y1) (x3,52) (x3,73) | (x3,%)
Uy Uy Uy Uy
0.45 1.25 0.95 0.7
(x4, y1) (x4, 52) (x4 ¥3) | (Xa,¥)
Us Uy Uy Uy
0.5 1.2 0.9 0.65

Table 1V: Score Table

6) Now, we compute the score of each grade by taking the sum of the numerical value from the score table

V.
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u,: 0.55+0.85+0.3+0.5+0.7+0.5+0.75 = 4.15
u,: 0.45+1.26+0.95+0.7+1.2+0.9+0.65 = 6.1
us: 0.740.5=1.2
The score value calculated is neatly tabulated for easy reference.

R Score
Moral support (u,) 4.61
Child care (uy) 6.1
Financial Support (us) 1.2

Clearly the maximum score, s,,= 6.1
Therefore from the obtained maximum value we conclude that Moral Support (us) is the most needed factor
expected by the student mothers during their period of study.

4. Conclusion:

In this paper we examine the challenges faced by student mothers during their academic period by
using neutrosophic soft relation. Finally the support they need from family and society to live a peaceful
and healthy life is found. We use this concept in soft sets considering the fact that the parameters (which
are words or sentences) are mostly neutrosophic set. The neutrosophic soft relation concept may be applied
in operations research, data analytics, medical sciences, etc. Industry may adopt this technique to minimize

the cost of investment and maximize the profit.
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Abstract: In this paper, the conceptions of an operations and relations on the Cartesian product over
interval valued intuitionistic fuzzy matrices set are introduced and its some properties are explored. We
prove some equality based on the operation and the relation over IVIFSs. Finally, we introducing some

Cartesian formulas xs, xs in Cartesian product of interval valued intuitionistic fuzzy matrix sets.

Keywords: Fuzzy sets, intuitionistic fuzzy sets (IFS), Cartesian product over intuitionistic fuzzy sets,
operation, geometric interpretation and interval valued intuitionistic fuzzy set (IVIFS).

1. Introduction

A lot of operations are introduced and proved over the intuitionistic fuzzy sets and interval valued
intuitionistic fuzzy sets. In 1994, Atanassov Krassimir T [5] has proposed new operations defined over the
intuitionistic fuzzy sets. In 2011, Wei, Cui-Ping, Pei Wang, and Yu-Zhong Zhang [24] have been proposed
“Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications.” and In
2007, Xu, Zeshui [25] have been proposed “Methods for aggregating interval-valued intuitionistic fuzzy
information and their application to decision making.” In 2006, Riecan, Beloslav and Atanassov Krassimir
T [5] have proposed n-extraction operation over intuitionistic fuzzy sets. In 2012, Parvathi, Rangaswamy,
Beloslav Riecan, and Krassimir T. Atanassov [16] Have been proposed “Properties of some operations
defined over intuitionistic fuzzy sets. In 2019, S. Senthilkumar, Eswari Prem, and C. Ragavan [18] have
proposed Cartesian products over a contrary intuitionistic fuzzy a-translation of H-ideals in division BG-
algebras. In 2008, Liu Q, Ma C, and Zhou X. [14] have proposed on the properties of some intuitionistic
fuzzy set operators. In 2010, Riecan, Beloslav and Atanassov Krassimir T [2, 3] have proposed operation
division by n over intuitionistic fuzzy sets. In 2012, Rangaswamy Parvathi, Beloslav Riecan and Atanassov
Krassimir T [4] have proposed properties of some operations defined over intuitionistic fuzzy sets. In 1989,
the notion of interval valued intuitionistic fuzzy sets which are a generalization of both intuitionistic fuzzy
sets and interval valued fuzzy sets and interval valued fuzzy sets were proposed by Atanassov Krassimir T
and Gargov G [4]. After the introduction of interval valued intuitionistic fuzzy sets, many researchers have
shown intervals in the interval valued intuitionistic fuzzy set theory and applied it to the various fields. In

1994, Operators over an interval valued intuitionistic fuzzy sets was proposed by Atanassov Krassimir T
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[5]. In 2007, methods for aggregating interval-valued intuitionistic fuzzy information and their application
to decision making was proposed by Xu, Zeshui [25, 26]. In 2007, some geometric aggression operators
based on interval valued intuitionistic fuzzy sets and their application to group decision making were
proposed by Wei, Gui Wu, and Xiao-Rong Wang [21]. In 2012, some results on generalized interval- valued
intuitionistic fuzzy sets were proposed by Bhowmik, Monoranjan, and Madhumangal pal [6]. In 2013,
interval valued intuitionistic hesitant fuzzy aggregation operators and their application in group decision
making were proposed by Zhiming Zhang [32]. In 2014, the new operations over an interval valued
intuitionistic hesitant fuzzy sets were proposed by Broumi, Said, and Florentine Smarandache [8]. In this
paper the formula for Cartesian product over interval- valued intuitionistic fuzzy matrix sets are
investigated. Finally, the Cartesian product of two interval- valued intuitionistic fuzzy matrix sets in was

derived.

2. Preliminaries
Definition 2.1: Fuzzy Sets: A fuzzy set is any set that allows its members to have different degree of
membership function, having interval [0, 1]

Definition 2.2: Fuzzy Matrix set: Fuzzy matrices play a vital role in scientific development. A Fuzzy matrix
may be matrix that has its parts from [0, 1]. Consider a matrix A = [a;;]3x3 Where a;; € [0,1],1 < <

n. Then A is a Fuzzy Matrix [FM].

Definition 2.3: Fuzzy Rectangular Matrix: Let A = [a;;];nxn (M # n) Where a;; € [0,1],1<i<n, 1<

j < m.then A is a Fuzzy Rectangular Matrix.
Definition 2.4: fuzzy square matrix: Let A = [a11a12 “tQpj ottt Qpp Qg1+ Gpj ** gy
PapQp Qo Qi B Pl Qulpg vt Gyj v ann] .where, q;; €

[0,1],1 < i,j < n. Then A is a fuzzy square matrix.

Definition 2.5: fuzzy row matrix: Let A= [a,,a,,a3,-,a,] where a;; € [0,1],j = 1,2,...,n.Then A is

called 1 x n a fuzzy row matrix or row vector.

Definition 2.6: fuzzy column matrix: Let A = [b; b, b,, ] where q;[0,1],i = 1,2, ...,n.Then A is

called m x 1 a fuzzy column matrix.
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Definition 2.7: fuzzy diagonal matrix: A Fuzzy square matrix A= [aif]mxn Is said to fuzzy diagonal matrix.

If ajj = 0 wheni ?':j, aij € [0,1],1 <l

Definition 2.8: fuzzy relation: A fuzzy relation is the Cartesian product of mathematical fuzzy sets. Two
fuzzy sets are taken as input; the fuzzy relation is then equal to the cross product of the sets which is created

by vector multiplication.

Definition 2.9: Cartesian product: Consider two sets A and B. The set of all ordered pairs {a, b} where a €
A & b € B is called Cartesian product. It is denoted by, A X B = {(a,b): (a € Aand b € B)}.

Definition 2.10: Membership function: The membership function of a fuzzy set A is denoted by u,,

pa: E — [0,1].The most commonly used range of value of membership function is the unit interval [a, b].

Definition 2.11: Degree of membership: Membership function for an intuitionistic fuzzy set A on the
universe of discourse is defined asu,: X — [0,1]. where each element X is mapped to a value between 0
and 1. The value u,(x),x € X is called Membership value or degree of membership function. The most

commonly used range of value of membership functions is the interval [a, b].

Definition 2.12: Degree of Non- Membership function: non-membership function for an intuitionistic
fuzzy set Aon the universe of discourse is defined as 9, : X - [0,1] Where each element X is mapped to a
value between 0 and 1. The value u,(x),x € X is called non-Membership value or degree of non-

Membership function.

Definition 2.13: intuitionistic fuzzy set: An Intuitionistic Fuzzy Set (IFs) A in E is stated as an particular
of the following form A = {< X, u,(x),9,(x) > |x € E} Here the functions: u,:E — [0,1] and 9,: E —
[0,1].

Definition 2.14: intuitionistic fuzzy matrix: An intuitionistic fuzzy matrix is a pair of fuzzy matrices,
namely, a membership and non-membership function which represent positive and negative aspects. The

concept of intuitionistic fuzzy matrices was introduced by pal et al.

Definition 2.15: interval valued intuitionistic fuzzy set: An Interval valued intuitionistic fuzzy set A in the
finite universe X is defined as A= {[ x, u4(x),y4(x)]|xeX}. The intervals u,(x) andy, (x) denote the degree

of membership function and the degree of non-membership of the element x in the set A.For every xe X,
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ps(x) and y,(x) are closed intervals and their left and right end points are denoted byuk(x),
ph (), i (x)andy £ (x). Let as denote A = {[ x,(u5(x), i (0),(v4 (x), ¥£ (x))]|xeX} where 0 < pf (x) +
& (x) < 1, u5(x) 20,4 (x) = 0. Especially if p,(x) = pj(x) = pj (x) and y4(x) = y4i(x) =y (x) then
the given interval valued intuitionistic fuzzy set A is reduced to an ordinary intuitionistic fuzzy set.
Definition 2.16: operations on intuitionistic fuzzy sets: Let A and B be two intuitionistic fuzzy sets on the
universe X. Where, A ={[ x, us(x),y4(x)]|xeX} and B= {[ x, ug (x),y5 (x)]|xeX}.

Definition 2.17: The five Cartesian products of two IFSs A and B are defined as follows:

Let A and B are two intuitionistic fuzzy sets of the universes A; and B, then the Cartesian product of two
IFSs is defined by the

The Cartesian product "X," is defined by

)

(A%, B) = {(x ») < [max(a, min(infu, (x), infug(x)), max(a, min(supp, (x), supps (x))] )
' T\ [min(B, max (infy,(x), infyg(x)) ,min(B, max(supy,(x), supyg (x))]

EAandyEB}

The Cartesian product "Xs" is defined by

)

U B) = {(x ) <[maX(a, max(inf u, (x), inf g (x)), max(a, max(supp (x), suppg (x))]>
° 72\ [min(B, min(infy(x), infyg (x)) , min(B, min(supy, (x), supys (x))]

EAandyEB}

Theorem 2.1: If Ay and By are two intervals valued intuitionistic fuzzy matrix set, then Az X,By is also

an interval valued intuitionistic fuzzy matrix set.

Proof: If Ay =

( [0(511, 3511] [)/En' 6511] [aE12‘ 'BE1z] [)/E12' 5512] [0{513, '8513] [)/E13 ’ 6513] [aEzﬂ ﬁEz1] [yEu’ 6521] [aEzz’ ﬂEzz] >
[yEzz’ 6522] [a523’ BEZ3] [)/E23' 6523] [aE31' '8531] [VE31’ 5531] [aE32’ 18532] [VE32’ 6532] [a533’ ﬁE33] [VE33’ 6533]

and

BF =

( [aFn’ ﬁFn] [YF11’ 6F11] [aF12' ﬁFn] [)/F12' 6F12] [aF13' '8F13] [yF13 ’ 8F13] [aF21’ ﬁFn] [YF21’ 6F22] [anz’ ﬁFzz] )
[szz’ 6F22] [aF23' BF23] [)/F23' 6F23] [aF31' '8F31] [)/F31' 5F31] [aF32’ 'BF32] [YFaz’ 6F32] [aF33’ ﬁF33] [YF33’ 6F33

are interval valued intuitionistic fuzzy matrix sets. Then
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ApX4Br
/[QEM» BEM] [)/Ell' 6511] [aElz' ,8512] [YElz; 5512] [aEly 3513] [YE13J 6E13] [aE21rﬁE21] [VE21r 51521] \
= | |k, Be,, | | x
\[VEZZ» 5}522] [aE23'ﬁE23][)/E23'6E23] [aE31J,8E31][yE31J 5531] [aE3z»ﬁE32][VE32,5E32] [aE33rﬁE33]/ !
[7533; 5533]

( [aFn’ ﬁFn] [YFn’ 6F11] [aF12' BF12] [YF12' 6F12] [aF13’ '8F13] [YF13’ 6F13] [aF21’ '8F21] [VF21’ 6F22] [anz ’ BFzz] )
[szz' 6F22] [ans' ﬁF23] [szs' 6F23] [anﬂ '8F21] [YF21’ 6F22] [anz’ .8F32] [VF32: 6F32] [aF33’ ﬁF33] [VF33: 6F33]

Ap X4 Bp = (X171 X15 X153 X351 X5 X553 X531 X35 X33 ) Where,

X1 = ([@eyy) Bey, Ve 86, ] (@81 Bepo ) [Vers S5, ] (@0 Bey I [Vers 8515] ) X4
(laryy Bry | ey 8y (@m0 Bry | Ve 85, ] [y Bry | (Vg 61,1 )

X1z = ([g,, Bey, | [Vesy 05 ) (@51, Bep [V, 05, ] (@0 Bey | [Versr 8,s] )

% ( [aFu’ '8F12] [YF12’ 6F12] >
! [anz’ 'BFzz] [szz’ 5F22] [aF32’ 'BF32] [YF32’ 6F32]

X1z = ([, Bey Ve 86y @81y Ben, [VEr 08, ] [0y, Beya | [Very) 86,a] ) X4
(laryr Brya | ryer 8] @80 Bes | Vo) 85, ] (@ By | (Vs 1] )

Xo1 = ([@8,00 Besu [Verss bsn ] [ @y B | [VErss 8y ) [y Besa | Vs O] ) Xa
(laryy Bry | ey 8y @m0 Bey | Ve 85,1 [y Bry ¥y 61,1 )

X2z = ([@b,00 Besu [Verss bsn] [ @3 Brs | [Verss 85y ) [y Besa | Vs O] ) Xa
([@ryy» Bryy ) [Verys 8] [ @8y By Vg 85, ) [y Bryy ) Ve B )

Xy3 = ([e,0, Bey, ) [Verns 5,0) [0 By [Veras 85,0 ) [y By | [Viesss 855) ) X
([@rys Brys ) [Verys O] [ @y By | Vs Ors ] [y Brys ) [V S )

X31 = ([@gy0 Beay | [Ves rsn | [ @8y Broo (Ve 85y ) [0 Besa | [VEsy» G2 ] ) Xa
(lary Bry | ey 87y 1 [@ryy s Bey [ Ve, 85,0 ) [y Brsy | [Vrsys 61,1 )

X3z = ([@g,0 Beay [Ves ks | [ @8y Brso [V 85, ) (@50 Besa | [VEsys G2 ] ) Xa
(lary Br | ey 87, (@80 Beyy [ Ve 85,0 ) (@ Br | (Vg 6r3,] )

X33 = ([@gy0 Beay [ [Ves rsn | [ @80y Brso [Veys 85y ) (@50 Besa | [VEsy» G2 ] ) Xa
(lary Br | ey 87, [@rys0 Brys [ Ve 85, ) (@ Bro | (Vs 61231 )

Xi1 = (g, Bey, Ve 85 ) Xa [@ryy, Beyy Ve 85, +

(e, Be, Vs 85, ] Xa [@ryys Bry (Ve 81y, |+

[aE13' 18513] [)/E13' 6513] X4 [aF31’ '81‘"31] [VF31’ 6F31]

126



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in

Decision Analysis

X1z = [ag,,, Be, Ve 66, ) ¥a [@ryy By |[Vry O] +
e, Be,, | [VEr 85, X4 |@ryy) Bry, |V 85, 1+

|k, Bey Ve Sk, Xa |y By, Ve, O, ]
X1z = [ag,,. Bey, Ve 06, | Xa [@rys Brys | [Vers Ors] +
e, Bey, (Ve 86, Xa [@ryy) Brys Ve S5, ]+

(g, Bry, ) [VErsr 05 ] ¥a [@rsys Brys | [Vegs) Ors]
Xo1 = 5,0, Beyy Vg 05y ] Xa [@ryy Beyy Ve 870 +
e, Be, [VEsr 85,0 Xa [ @hyys Bry |V Sr ]+

|k, Beya | [Viea S5, | Xa sy By, I[vesy s O, ]
Xoz = @i, Be,, | [Veps Oy | Xa [@ryys By [V Oryy ) +
e, Be, [VEsr 85,0 Xa [@hyys Bry, |V S5, 1+

e, Beya | [Viera S5, | Xa [ @rsy By, Ve O, ]
Xo3 = [@g,. Bey [V On ) Xa [@rys Brny | [Vins S5y +
e, Be, [VEsr 85,0 X [@hysy Brys |V Srs 1+

(@8, By Vs Oks | Xa [y Brya |[Visyr O]
Xa1 = [ey, Bey [Vesr 85ss) Xa (e By, [V, Or ] +
e, Beo, [VEsy 6., Xa [@hyy) Bry |V Srn ]+

ey Bey | [Visy Oy ) Xa [@rys Bry [V Oy,
X33 = [ey, Bey [Vesr 85ss) Xa (e Beyy |[Virgr Ory) +
e, Bey ) Vi 05sy) Xa [@hys Bry [V Oy, |+

ey Bey | [Visy 05y ) Xa [@rys Bey [V O,
X33 = [@p,, Beg, [V 05y ) X [@riy0 Bry | [Vria 85, ] +
e, Be, Vs 85, ] Xa [@ryss Broy (Ve O, 1+

[aE33' '8533] [)/E33’ 5533] X4 [ans’ 'BFss] [VF33’ 5F33]
Now, by applying this
(A%, B)

_ {(x,y) <[max(a, min(inqu(x), infug (x)), max(a, min(supp,(x), suppg (x))] [min(B, max(infy,(x), infyg(x)) ');x

min(B, max(supy,(x), supyz (x))]

EAandyEB}
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X11
= {[max(a, min(agll, aFn))' max(a, min(ﬂEn; ,BFM))] [min (ﬁ; max(}’Eu' VFH)) ) (ﬁ' max(c?En, 6F11)) ]}
+
{|(a.min(az,,, ar,)) . (@ min(Bs,, Br,,)) | (B max(ve,, vr,,)) » (B max(8s,,.6r,)) 1} +
{[(a, min(ocElS,aF31)) ,(a,min(ﬁEm,ﬁFSl)) ] [(ﬁ, max(yEl3,yF31)) ,min(ﬁ,max((SEB,dFsl))}
X12
= {[max(a, min(aEn, a,:lz)), max(a, min(ﬁEn; ,BF12>)] [min (.3: max(yEn, VF12)) ’ ('B' max(&En’ 6F12)) ]}
+
{[(a, min(aElz, anz)) ,(a, min([)’Elz,ﬁFzz)) ] [(,B, maX()/Elz,VFZZ)) ) (ﬁ:max(5512,5pzz)) ]} +
{[(a, min(aE13,aF32)) ,(a, min(,[)’E13,ﬁF32)) ] [(ﬁ, maX(Y513,VF32)) ,min(ﬁ.max(5513,5psz))}
X3
= {[max(a, min(aEn, ap13)), max(a, min(ﬁEn: :BF13))] [min (.3: max(yEn, yFlS)) , ('B' max(55n, 5F13)) ]}
+
{[(a, min(aElz, aF23)) ,(a, min(ﬁElz,ﬁF23)) ] [(,B, maX()/Elz,szg)) ,(ﬁ,max(5512,5ng)) ]} +
{[(0(, min(aE13’ aF33)) ’ (a' min(ﬁEm’ 'BF33)) ] [(,8, max(YEm’ yFss)) ’ min(ﬁ’ max(5E13’ 61’33))}
X1
= {[max(a, min(a521, apll)), max(a, min(,BEll, :BFn))] [min (,3» max(yEznyn)) ) (B' max(6E21, 6F11)) ]}
+
{[(a, min(aEzz, aF21)) ,(a, min(ﬁEzz,ﬁF21)) ] [(,B, max()/Ezz,VF21)) '(B,max(5gzz,6F21)) ]} +
{[(a; min(aE23, aF31)) ’ (0{, min(rBEm' IBF31)) ] [(,8, max()/Ezs’ VF31)) ’ min(ﬁ’ max(SEzg’ 6F31))}
XZZ
= {[max(a, min(aEZl, aplz)). max(a, min(,BEn» .BFlz))] [min (,3: max(yE21’yF12)) : (ﬁ' max(6521, 6F12)) ]}
+
{[(a'min(aEzz' anz)) ’ (a' min('BEzz' IBFZZ)) ] [('B’ max(YEZZ'yFZZ)) ’ (ﬁ,max(6522, 6F22)) ]} *
{[(a' min(a:523, ang)) ’ (a' min('BEzs' IBFsz)) ] [('B, max(YEza’ VF32)) ,min(p, max(6523’ 6F32))}
X23

= {[max(a, min(aEZl, ar, , )), max(a, min(ﬁEn, ,BFB))] [min (,8, max(y521, YFys )) , (ﬁ, max(SEZI, OF,, )) ]}
+
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{[(a,min(aEzz, aFZS)) ,(a,min(ﬁEzz,ﬂFZS)) ] [(ﬁ, max(yEzz,}/F23)) ,(ﬁ,max(6522,5pz3)) ]} +
{[(a,min(aEzs,aFSS)) ,(a,min(ﬁEzs,ﬂFSS)) ] [(ﬁ, max(yEZS,yF33)) ,min(f, max(5523,5p33))}
X31
- {[max(a, min(ag,,, ag,, ), max(a, min(Be,,, Br,, )] [min (,8, max(yE31,yFn)) , (ﬁ, max(8g,,, 6F11)) ]}
+
{[(a, min(aESz, aF21)) ,(a,min(,3532,ﬁp21)) ] [(ﬁ; max(VEsz'VFu)) ) (ﬁ,max(6532,5F21)) ]} +
{[(a, min(aE33,aF31)) ,(a, min(,[)’E33,ﬁF31)) ] [(ﬁ, maX(YE33,VF31)) ,min(ﬁ.max(5533,5p31))}
X32
= {[max(a, min(a531, ar,,)), max(a, min(ﬁE31» Br,, D1 [min (.3: max(yE31, yFlZ)) 2 ('B' max(@Esl, 6F12)) ]}
+
{[(a, min(aE32, anz)) ,(a, min(ﬁE32,ﬁFZZ)) ] [(,B, maX()/E32,VF22)) ,(,B,max(5532,5pzz)) ]} +
{[(a, min(aE33,aF32)) ,(a, min(ﬁE33,,8F32)) ] [(,[3, maX()/E33,VF32)) ,min(ﬁ,max(5533,5psz))}
X33
= {[max(a, min(ag,,, ar,, ), max(a, min(Beg,,, Br,, )] [min (,3, max(VEgl,VFlg)) ) (B' max(8g,,, 5F13)) ]}
+
{[(a, min(aE32, aF23)) ,(a, min(ﬁE32,ﬁFZ3)) ] [(,B, maX()/Egz,szg)) ,(ﬁ,max(5532,5ng)) ]} +
{[(a: min(aE33, aF33)) ’ (a' min(ﬁE33' 'BF33)) ] [(,3, max(YEss’ yFss)) ’ min(ﬁ’ max(SEaa’ 61’33))}
By using A+B= max {A, B}
Xll
= max <[(a,min(a511, aFn)) ’ (a, min('BEll"BFll)) ] [min (’B’max(yEll'ypll)) ' (ﬁ’ max(&gll’ 6F11)) ]’>

[(a, min(aElz: aF21)) ) (CZ, min(ﬁElzi :8F21)) ] [(,8! max(yElz' yF21)) ’ (ﬁ' max(6512’ 6F21)) ]
+

{[(a, min(a513,ap31)) ,(a,min(ﬁE]_SIﬁFgl)) ] [(,B, max(yElg,ngl)) ,min(ﬁ,max(6E13,6F31))}

X12

. ([(a:,min(aEn, aplz)) ,(a,min(ﬁEll,ﬁplz)) ] [min (,B,max(yEn,yFlz)) , (ﬁ, max(6511,6plz)) ],>
[(a,min(aglz,apzz)) ,(a,min(ﬁElz,,b’Fzz)) ] [(ﬁ, max(yElz,yFZZ)) ,(ﬁ,max(6512,6F22))]

+

{[(O!, min(aEm' A3, )) ’ (a' min(ﬁEm' 'BFsz)) ] [(,3, max(YEm 1 VEs, )) ,min(p, max(6513’ 6F32 ))}
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X13

[(a,min(a,;n, aFlS)) ,(a,min(ﬁEn,ﬂFm)) ] [min (ﬁ, max(yEu,yFB)) ) (ﬁ, max(dEn,dFm)) ]
= max
[(a, min(ag,,, apzs)) ) (a,min(ﬂglz, ,3F23)) ] [(ﬁ, max(yElz,yFZS)) , (ﬁ, max(0g,,, 6F23)) ]
+
{[(a,min(a513,ap33)) ,(a,min(,3513;ﬁF33)) ] [(ﬁ, max(y513,yp33)) ,min(B, max(6E13:6F33))}
X21
o [(a,min(a521, aFn)) ,(a,min(,8521,ﬁF11)) ] [min (,8, max(yEm,yFn)) , (ﬁ, max((SEm,(SFn)) ],
[(a,min(agzz,aF21)) ,(a, min(ﬁgzz,ﬁpn)) ] [(ﬁ, max(yEzz,yF21)) ,(ﬁ, max((SEzz,(SFm))]
+
{[(a,min(a523,aF31)) ,(a, min(ﬁEz3»ﬁF31>) ] [(ﬁ, max()/523:)/p31)) ,min(ﬁ,max((SEzs,(SFsl))}
X22
o [(a,min(a521, aplz)) ,(a, min(ﬁE21,ﬁF12)) ] [min (,B, max(yEZl,yFn)) , (,B, max((SEZl,SFlZ)) ],
[(a,min(agzz,apzz)) ,(a, min(ﬁgzz,ﬁpzz)) ] [(ﬁ, max(yEzz,yFZZ)) ,(ﬁ, max((SEZZ,(SFZZ))]
+
{[(a,min(a523,ap3z)) ,(a, min(ﬁE23lﬁF32)) ] [(,B, max(yEzg,yFBZ)) ,min(ﬁ,max(dEzs,SFsz))}
X3
_(Namin(an @) (amin(Be,, 8e,)) | fmin (8.max(re, ve,). (8.max(86,0.65,)) ]
[(a,min(agzz,apz3)) ,(a, min(ﬁgzz»ﬁFz3)) ] [(,B, max(]/Ezz,]/Fzg)) ,(B,max(6E22,6F23))]
+
{[(a,min(a523,ap33)) ,(a, min(ﬁ523;ﬁF33)) ] [(,B, max(yEzg,]/Fgg)) ,min(ﬁ,max(6E23,6F33))}
X31
= max [(a, min(aE31' aFll)) ’ (0{, min(ﬁEﬂ' 'BFll)) ] [min ('B’ max(VEBl’ yF11)) ’ (ﬁ’ max(6531’ 6F11)) ] ’
[(a,min(a532, aFZl)) ’ (0{, min('BE”' 'BFZl)) ] [('B' max(yEBZ’yFu)) ! (ﬁ’max(SEgz’ 6F21)) ]
+
{[(a,min(a533,ap31)) ,(a,min(ﬁ533lﬁF31)) ] [(,B, max(yE33,yF31)) ,min(ﬁ,max(6533,6p31))}
X32
o [(a,min(a531, aplz)) ,(a,min(ﬁgn,ﬁplz)) ] [min (ﬁ,max(yE31,yF12)) , (ﬁ, max(6531,6plz)) ]
[(a' min(aEsz' anz)) ’ (a'min('b)Esz' '81‘"22)) ] [(,3, max(yEn'szz)) ’ (ﬁ' max(6E32r 6F22)) ]
+

130



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

{[(a,min(aESS,anz)) ,(a,min(ﬁESS,ﬂFSZ)) ] [(ﬁ, max(yE33,yF32)) ,min(ﬁ,max(c?Ess,dFsz))}

X33

o <[(a,min(ab~31, aFlS)) ,(a,min(6531,,[3p13)) ] [min (ﬁ, max(yE31,yF13)) , (ﬁ, max(dESl,dFm)) ]

[(a,min(aESz,aFZS)) ,(a,min(ﬁEsz,ﬁFzs)) ] [(ﬁ, max(yE32,yF23)) ,(ﬁ,max((SEsz,(SFzs))]
+

{[(a,min(aESS,aFSS)) ,(a,min(ﬁEss,ﬁFSS)) ] [(ﬁ, max(yE33,yF33)) ,min(ﬂ,max((SEss,(SFss))}

By using A+B+C = max{max (4, B), C}
X1 =Max
[ <[(a,min(a511,aFn)) (@ min(Be,,. Br,)) | [min (8. max (v, v,)), (8. max(8s,- 8r,))
(e min(az, ar,,)) , (@ min(Be,, Br,,)) || (B max(ve,, ve,,)) » (B max(6e,,,6r,,))
\ (e min(az,,, ar,,)) , (. min(Be,,. Br,.)) | [(B.max(ve,, vr,))  min(8, max(6,,, 5F31))
X1, =Max
[ <[(a,min(agn,am)) (@ min(Bz,, Br,,)) | [min (8. max(ve,,, vr,)) (B, max(8g,,, 6,))
(. min(az,,, ar,,)) . (@ min(Be,,. Br,,)) || (B max(ve,, v5,,)) . (B.max (e, 65,))
\ (e min(az,,, ar,,)) , (@ min(Be,,. Br,,)) | [(B.max(ve,, vr,))  min(8, max(6,,, 6F32))
X3 =Max
[ <[(a,min(agn,aag)) (@ min(Be,,. Br,) ) | [min (8. max (v, vr,)), (B, max(8s,, 8r,,)
(e min(az,, ar,,)) . (@ min(Be,, Br,,)) || (B max (Ve v5,,)) . (B, max (g, 65,,))
\ (e min(ag,,, ar,)) (@ min(Be,, Br,)) | (B max(vey ves,)) smin(B, max(8,,, 6r,,))
X,; =Max
[ ([(a,min(aE21.aF11)) (@ min(Be,,-Br,,)) | [min (8. max(ve,,.vs,)), (8, max(6,,, 6r,))
(. min(az,, ar,,)) . (@ min(Be,,-Br,,)) || (B max(ve,, v5,,)) . (B.max (e, 65,))
\ |(e.min(az,,, ar,,)) , (@ min(Be,,-Br,)) | (8. max(vs,, vr,)) ,min(8, max(s,,, 6p31))
X,, =Max
[ <[(a.min(a521,aF12)) (@ min(Be,y Br.,)) | [min (8, max(ve,,, ve,) ) (8, max(8,,, 6r,))
(. min(az,, ar,,)) . (@ min(Be,,. Br,,)) || (B max(ve,, v5,,)) (B, max (e, 65,))
(e min(ag,, ar,)) . (& min(Be,, Br,) ) | (8 max (v, Ve,))  min(B, max(8g,,, 8, )
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X23 =|V|8.X

/ [(a,min(a521, aFlS)) ,(a,min(ﬁEn,ﬂFm)) ] [min (ﬁ, max(yEu,yFB)) , (ﬁ, max(c?EZl, 6F13)) ] \

max )

| [(a;min(ab"zz; aF23)) ) (a' ‘min(ﬂEzz, ,81?23)) ] [(ﬁ; max(VEZZ'VFB)) ) (ﬁv max(6Ezzr 6F23)) ] |

\ [(a,min(aEZS,aFSS)) ,(a,min(,@Ezs,ﬁFSS)) ] [(ﬁ, max(yEzs,yF”)) ,min(B, max(6E2316F33)) /

X31 =Max

/ <[(a,min(a531, aFn)) ,(a,min(,8531,ﬁF11)) ] [min (,8, max(yE31,yFu)) , (ﬁ, max((SEsl,(SFn)) ],>
max

| [(a,min(a532,aF21)) ,(a,min(ﬁ532,ﬁF21)) ] [(ﬁ, max(yE32,yF21)) ,(,B, max(6532,6F21))]

\ [(a,min(agg,aF31)) ,(a, min(,[)’E33,ﬁF31)) ] [(ﬁ, max(yE33,yF31)) ,min(ﬁ,max(&Ess,(SFsl))

X3, =Max

/ [(a,min(a531, aFlZ)) ,(a, min(,[)’E31,ﬁF12)) ] [min (,8, max(yE31,yF12)) , (,8, max(6531, 6F12)) ],
max )

| [(a,min(aE32,aF22)) ,(a, min(ﬁE32,ﬁFZZ)) ] [(ﬁ, max(yE32,yF22)) ,(ﬁ, max((SEsz,SFZZ))]

|
/

\ [(a,min(a33,aF32)) ,(a, min(ﬁE33,ﬁF32)) ] [(ﬁ, max(yE33,yF32)) ,min(f, max(5E33:5F32))

\
_ )
\
)

/max <[(a,min(a531, ap13)) ) (a, min(ﬁE31,ﬁF13)) ] [min (,B, max(yEBl,yFB)) , (B, max(dESl, 5F13)) ],>
| [(a,min(a532, apz3)) ,(a, min(ﬁE32,ﬁFz3)) ] [([3 max(yEgz,szg)) '(ﬁ, max(5E32v5F23))] ,
\ [(a,min(ass,ap33)) ,(a, min(ﬁE33,,8F33)) ] [(,B, max(y533,yF33)) ,min(p, max(5E33,5F33))

Ag X4 Bp = (X131 X12 X13 X21 X532 Xa3 X31 X32 X33 ). Hence, Ag X, By is an interval valued intuitionistic
fuzzy matrix set.

Using Python program for Az X, Bg

#intput the values

import math

x=Ffloat(input("x="))

y=float(input("'y="))

a_l1=float(input("a_11="))

b_11=float(input("b_11="))

c_11=float(input("c_11="))

d_11=float(input("d_11="))

e_11=float(input("e_11="))

f_11=float(input('f_11="))

g_11=float(input("g_11="))

h_11=float(input("h_11="))

132



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in

Decision Analysis

a_12=float(input("a_12="))
b_12=float(input("b_12="))
c¢_12=float(input("c_12="))
d_12=float(input("'d_12="))
e_12=float(input("e_12="))
f_12=float(input("f_12="))

g_12=float(input(""g_12="))
h_12=float(input(""h_12="))
a_13=float(input("a_13="))
b_13=float(input("b_13="))
c_13=float(input("c_13="))
d_13=float(input("'d_13="))
e_13=float(input("e_13="))
f_13=float(input("f_13="))

g_13=float(input(""g_13="))
h_13=float(input(""h_13="))
a_21=float(input("a_21="))
b_21=float(input("b_21="))
c_21=float(input("c_21="))
d_21=float(input("d_21="))
e_21=float(input("e_21="))
f_21=float(input("f_21="))

g_21=float(input("g_21="))
h_21=float(input("h_21="))
a_22=float(input("a_22="))
b_22=float(input("b_22="))
c_22=float(input("c_22="))
d_22=float(input("d_22="))
e_22=float(input("e_22="))
f 22=float(input("f_22="))

g_22=float(input("'g_22="))
h_22=float(input(""h_22="))
a_23=float(input("a_23="))
b_23=float(input(""b_23="))
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c_23=float(input("c_23="))
d_23=float(input(*d_23="))
e_23=float(input("e_23="))
f_23=float(input("f_23="))
g_23=float(input("'g_23="))
h_23=float(input("h_23="))
a_31=float(input("a_31="))
b_31=float(input(""b_31="))
c_31=float(input("c_31="))
d_31=float(input(*d_31="))
e_31=float(input("e_31="))
f_31=float(input("f_31="))
g_31=float(input(""g_31="))
h_31=float(input("h_31="))
a_32=float(input("a_32="))
b_32=float(input("'b_32="))
c_32=float(input("c_32="))
d_32=float(input(*d_32="))
e_32=float(input("e_32="))
f_32=float(input("f_32="))
g_32=float(input("g_32="))
h_32=float(input("h_32="))
a_33=float(input("a_33="))
b_33=float(input("b_33="))
¢_33=float(input(*“c_33="))
d_33=float(input("'d_33="))
e_33=float(input("e_33="))
f_33=float(input("f_33="))
g_33=float(input("'g_33="))
h_33=float(input("h_33="))
#creating variables for c_11
a_l=max(x,min(a_11,c_11))
a_2=max(x,min(b_11,d_11))
a_3=min(y,max(e_11,g_11))
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a_4=min(y,max(f_11,h_11))
a_5=max(x,min(a_12,c_21))
a_6=max(x,min(b_12,d_21))
a_7=min(y,max(e_12,g_21))
a_8=min(y,max(f_12,h_21))
a_9=max(x,min(a_13,c_31))
a_10=max(x,min(b_13,d_31))
a_l11=min(y,max(e_13,g_31))
a_12=min(y,max(f_13,h_31))

#creating cells

x_11=[max((max(a_1,a_5)),a_9),max(max(a_2,a_6),a_10)]
Y _11=[max((max(a_3,a_7)),a_11),max(max(a_4,a 8),a 12)]

print("C_11=",x_11)
print("D_11="Y_11)
#creating variables for ¢_12
b_1=max(x,min(a_11,c_12))
b_2=max(x,min(b_11,d 12))
b_3=min(y,max(e_11,g_12))
b_4=min(y,max(f_11,h _12))
b_5=max(x,min(a_12,c_22))
b_6=max(x,min(b_12,d 22))
b_7=min(y,max(e_12,9_22))
b_8=min(y,max(f_12,h 22))
b_9=max(x,min(a_13,c_32))
b_10=max(x,min(b_13,d_32))
b_11=min(y,max(e_13,g_32))
b_12=min(y,max(f_13,h_32))

#creating cells

x_12=[max((max(b_1,b _5)),b_9),max(max(b_2,b 6),b 10)]
Y _12=[max((max(b_3,b_7)),b_11),max(max(b_4,b_8),b 12)]

print("C_12=",x_12)
print("D_12=")Y_12)
#creating variables for c_13

¢_l=max(x,min(a_11,c_13))
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c_2=max(x,min(b_11,d_13))

¢_3=min(y,max(e_11,g_13))

c_4=min(y,max(f_11,h_13))

¢_5=max(x,min(a_12,c_23))

c_6=max(x,min(b_12,d_23))

c_7=min(y,max(e_12,9_23))

¢_8=min(y,max(f_12,h_23))

c_9=max(x,min(a_13,c_33))

¢_10=max(x,min(b_13,d_33))
c_11=min(y,max(e_13,g9_33))
c_12=min(y,max(f_13,h_33))

#creating cells
x_13=[max((max(c_1,c_5)),c_9),max(max(c_2,c_6),c_10)]
Y _13=[max((max(c_3,c_7)),c_11),max(max(c_4,c_8),c_12)]
print("C_13=",x_13)

print("D_13=",Y_13)

#creating variables for ¢_21

d_1=max(x,min(a_21,c_11))

d_2=max(x,min(b_21,d_11))

d_3=min(y,max(e_21,g_11))

d_4=min(y,max(f_21,h_11))

d_5=max(x,min(a_22,c_21))

d_6=max(x,min(b_22,d_21))

d_7=min(y,max(e_22,g_21))

d_8=min(y,max(f_22,h_21))

d_9=max(x,min(a_23,c_31))
d_10=max(x,min(b_23,d_31))
d_11=min(y,max(e_23,g9_31))

d_12=min(y,max(f 23,h_31))

#creating cells
x_21=[max((max(d_1,d_5)),d_9),max(max(d_2,d _6),d 10)]
Y _21=[max((max(d_3,d_7)),d_11),max(max(d_4,d_8),d _12)]
print("C_21=",x_21)

print("D_21=",Y_21)
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#creating variables for ¢c_22

e_l=max(x,min(a_21,c_12))
e_2=max(x,min(b_21,d_12))
e_3=min(y,max(e_21,9_12))
e_4=min(y,max(f_21,h_12))
e_5=max(x,min(a_22,c_22))
e_6=max(x,min(b_22,d_22))
e_7=min(y,max(e_22,9_22))
e_8=min(y,max(f_22,h_22))

e_9=max(x,min(a_23,c_32))

e_10=max(x,min(b_23,d_32))

e_11=min(y,max(e_23,g9_32))
e_12=min(y,max(f_23,h_32))

#creating cells

x_22=[max((max(e_1,e_5)),e_9),max(max(e_2,e_6),e_10)]
Y_22=[max((max(e_3,e_7)),e_11),max(max(e_4,e 8),e_12)]

print("C_22=",x_22)
print("D_22="Y_22)
#creating variables for ¢_23

f 1=max(x,min(a_21,c_13))
f 2=max(x,min(b_21,d_13))
f_3=min(y,max(e_21,9_13))
f_4=min(y,max(f_21,h_13))
f 5=max(x,min(a_22,c_23))
f 6=max(x,min(b_22,d_23))
f_7=min(y,max(e_22,9_23))
f 8=min(y,max(f_22,h_23))
f 9=max(x,min(a_23,c_33))
f_10=max(x,min(b_23,d 33))
f 11=min(y,max(e_23,g9_33))
f 12=min(y,max(f_23,h_33))

#creating cells

X_23=[max((max(f_1,f 5)),f 9),max(max(f_2,f 6),f 10)]
Y _23=[max((max(f_3,f _7)),f 11),max(max(f_4,f 8),f 12)]
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print("C_23=",x_23)
print("D_23=",Y_23)
#creating variables for ¢c_31
g_l=max(x,min(a_31,c_11))
g_2=max(x,min(b_31,d_11))
g_3=min(y,max(e_31,g_11))
g_4=min(y,max(f_31,h_11))
g_5=max(x,min(a_32,c_21))
g_6=max(x,min(b_32,d_21))
g_7=min(y,max(e_32,g_21))
g_8=min(y,max(f_32,h_21))
g_9=max(x,min(a_33,c_31))
g_10=max(x,min(b_33,d_31))
g_11=min(y,max(e_33,g_31))
g_12=min(y,max(f_33,h_31))

#creating cells

x_31=[max((max(g_1,9_5)),g_9),max(max(g_2,9_6),9_10)]
Y _31=[max((max(g_3,9_7)),9_11),max(max(g_4,9_8),9_12)]

print("C_31=",x_31)
print("D_31=",Y_31)
#creating variables for ¢_31
h_1=max(x,min(a_31,c_12))
h_2=max(x,min(b_31,d _12))
h_3=min(y,max(e_31,g_12))
h_4=min(y,max(f_31,h_12))
h_5=max(x,min(a_32,c_22))
h_6=max(x,min(b_32,d 22))
h_7=min(y,max(e_32,9_22))
h_8=min(y,max(f_32,h _22))
h_9=max(x,min(a_33,c_32))
h_10=max(x,min(b_33,d_32))
h_11=min(y,max(e_33,9_32))
h_12=min(y,max(f_33,h_32))

#creating cells
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x_32=[max((max(h_1,h_5)),h_9),max(max(h_2,h_6),h_10)]
Y _32=[max((max(h_3,h_7)),h_11),max(max(h_4,h_8),h_12)]
print("C_32=",x_32)

print("D_32="Y_32)

#creating variables for c_33

i_1=max(x,min(a_31,c_13))
i_2=max(x,min(b_31,d_13))
i_3=min(y,max(e_31,g_13))
i_4=min(y,max(f_31,h_13))

i_5=max(x,min(a_32,c_23))
i_6=max(x,min(b_32,d_23))
i_7=min(y,max(e_32,g_23))
i_8=min(y,max(f_32,h_23))

i_9=max(x,min(a_33,c_33))
i_10=max(x,min(b_33,d_33))
i_11=min(y,max(e_33,9_33))
i_12=min(y,max(f_33,h_33))

#creating cells
x_33=[max((max(i_1,i_5)),i_9),max(max(i_2,i_6),i_10)]
Y _33=[max((max(i_3,i_7)),i_11),max(max(i_4,i_8),i_12)]
print("C_33=",x_33)

print("D_33=",Y_33)

Output:

x=0.04

y=0.01

a_11=0.05

b 11=0.07

c_11=0.02

d 11=0.06

e 11=0.03

f 11=0.05

g 11=0.03

h_11=0.05

a_12=0.02

139



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in

Decision Analysis

b_12=0.03
c_12=0.05
d_12=0.07
e 12=0.04
f 12=0.07
g_12=0.02
h_12=0.04
a_13=0.05
b_13=0.06
¢ 13=0.02
d_13=0.03
e 13=0.01
f 13=0.04
g_13=0.03
h_13=0.06
a_21=0.03
b 21=0.08
c 21=0.04
d_21=0.05
e 21=0.03
f 21=0.04
g 21=0.01
h_21=0.07
a_22=0.04
b 22=0.05
c_22=0.04
d 22=0.08
e 22=0.02
f 22=0.08
g 22=0.02
h_22=0.03
a_23=0.01
b_23=0.03
c_23=0.01
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d_23=0.04
e 23=0.04
f 23=0.07
g.23=0.03
h_23=0.08
a_31=0.04
b_31=0.06
c_31=0.02
d_31=0.03
e 31=0.03
f 31=0.09
g_31=0.02
h_31=0.05
a_32=0.01
b_32=0.02
¢ _32=0.01
d_32=0.03
e 32=0.05
f 32=0.07
g 32=0.05
h_32=0.06
a_33=0.02
b_33=0.03
c_33=0.03
d_33=0.07
e 33=0.08
f 33=0.09
g 33=0.01
h_33=0.05
C_11=1[0.04, 0.06]
D 11=[0.01, 0.01]
C_12=1[0.04, 0.07]
D_12=[0.01, 0.01]
C_13=[0.04, 0.06]
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D_13=[0.01, 0.01]
C_21=[0.04, 0.06]
D_21=[0.01, 0.01]
C_22=[0.04, 0.05]
D_22=[0.01, 0.01]
C_23=[0.04, 0.04]
D_23=[0.01, 0.01]
C_31=[0.04, 0.04]
D_31=[0.01, 0.01]
C_32=[0.04, 0.04]
D_32=[0.01, 0.01]
C_33=[0.04, 0.04]
D_33=[0.01, 0.01]

Theorem 2.2: If A and By are two intervals valued intuitionistic fuzzy matrix set, then Az X<Bp is also a
interval valued intuitionistic fuzzy matrix set.

Proof: If Ap =
( [05511: :BEH] [VEH' 5511] [aEu' :BElz] [VElz: 5512] [a513: ,3513] [yE131 5513] [aE21' 5}521] [VEZl' 51321] [“EZZ’ .BEZZ] >
[VEZZ' 51522] [aEzy :8E23] [YEB' 51523] [‘)—’E31: :BE31] [VE31: 5531] [aE321 .31532] [VEgz’ 5532] [“Egg, BEgg] [VEgg’ 5533]

and
Br =
( [aFn: .BFH] [VFH» 5F11] [aFlzl 51:12] [)/Flz: 51:12] [aF13» ,31:13] [YF13: 5F13] [aF21' ,BF21] [szy 5F22] [anzi ﬁFzz] )
[VFyz OFys [aFB» :8F23] [VFysr OFys ] [aF311 .31:31] [VFsyr OFs, ] [aF32» .31:32] [VFsy OFs, ] [“Fgg, ﬁFgg] [VFys OFss
are interval valued intuitionistic fuzzy matrix sets. Then
ApXsBp

— ( [aEn’ﬂEu][yEu’dEu] [a512’ﬁ512][)/512’ 6512] [a513"8513][y’513’5513] [a521"8521][y521'6521] )
- 5
[aEzz’ﬂEzz][YEzz’dEzz] [aEZB’ﬂEZB][YEZB’SEZB] [a531’ﬁ531][)/531’5531] [(1532,,8532][}/532,5532] [d533,ﬁ533][]/533,5533]

( [‘ZFH: ,31«"11] [VFH; 5F11] [O‘Flz' ,31:12] [VFIZ' 51«"12] [“Flyﬁm] [VF13: 51«"13] [“F21:,3F21] [yFu: 5F22] )
[k, By Vs 5, (@ B | Vs 8] (@0 By W 8520] [y B |V O] (@ B 1y 8
Ag X5 By = (X141 X153 X135 X201 Xop Xo3 X34 X35 X33 ) Where,

X1 = ([aEu:ﬁEu][YEn:SEn] [0‘512:[3512][)’512'5512] [“513'5513][)’513:5513] ) Xs

([aFu'ﬂFu][yFu'(SFu] [aF21'ﬁF21][yF21'6F22] [aFgllﬁF31][yF31'6F31])

X1z

[YF12' 6F12] [anz' ﬁFzz] []/Fzz‘ 6F22])

[y, Br, |
= ([aEu’ﬁEu][YEu’(sEu] [a512’ﬁElz][yElz’6512] [aE13’ﬁE13][yE13'5513] ) X5 < fiz [aF32'ﬁF32][yF32' 5F32]
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X153 = ([@eyy) Bey, Ve Oesn] [@Es Bepo ) [Vers 06, ] (@810 Bey [VEss 8815] ) Xs
(laryr Br | ey 87, [@re0 Brs | Vo) 85, ) (@ Bros | (Vs Sr22] )
X1 = (@8, Beys Vs O8] [ @8z Beso |[VErsr 08z ) (@500 Brsy Vs O8] ) Xs
(laryy Bry |y 87y (@m0 Bey | Ve 85, ] [y Bryy | [Vrsys 6101 )
X22 = ([@8y00 Beyu Vs O8] [ @8y Beso |[VErss O8s ) [@sg Besy | [VEss s O52s] ) Xs
(lary Br | ey 87,5 ) @80 Bey | Ve 85, ] (@ B | (Vg 6r3,] )
X2z = ([@ky00 Beys Vs O8] [ @8y Beso |[VErss O8s ) [@5sg Besy Vs O525] ) Xs
(laryr Brya | ey 8] @m0 Brs | [Vess 85, ] (@ Brya | (Vs 7] )
X31 = ([@ry0 Beg, | [Vesy Ok, | [@Esys Beso |[Vessr 08z ] [@ess Brsy Vs 82s5] ) Xs
(laryy Bry | ey 8y @m0 Bey | Ve 85,1 [y Bryy | [Vrsys 61,1 )
X3z = ([@gy00 Begy | [Vesy 85, | [@Esys Besy [Vessr 08z ] [@5sg Bray Vs O555] ) Xs
([ Br | ey 8r,5) (@80 Bry | Ve 85, ] (@ B | (Vs 6r,,] )

X33 = ([a531’ﬁ531][YE31’ 5531] [a532‘18532][y532’ 5532] [aEss"BEss][yEss’5533] ) Xs

(laryr Brya | Vryar 87, ) @m0 Brs | Vo) 85, ] (@ By | (Vs 6r3a] )
Xi1 = g, Bey, | [Vens 85ns ] X5 [@rss Bey Vs 85y ] +
(e, Be, | [Vey 06, ] X5 [@ryys Bry (Ve Oy, |+

@ty By, [VErer Oy | X5 [y Bryy |V O ]
X1z = g, Beyy | [Vens 85ns ] Xs [@ryys Bev, | [Virg S5y ] +
e, B, Vs 850 X5 [@rys Beyy Vg 85 1+

e, Be,s ) [Verss S50 ) Xs [ @rys By, | [V S, ]
Xi3 = g, Beyy | [Vens 85ns ] Xs [@rygs Bev | [Virss S5 ] +
e, Be, Vs 85,0 X5 [@ryys Broy (Ve 8,0 1+

e, Be, | [Vers 0 85, ] X5 [@rys Bey [V, 65,0
X1 = [@g,, Bey, Ve 05y ) X5 [@ryys Bry | [Vry 85,y | +
e, Be, Vs 8, ] X5 [@rys Bry (Ve Oy, |+

e, Be,o | [Viss 8, ] X5 [rys Bey [ [V O,
X2z = [@g,y, Bey, [V 05y ) X5 [@ryy0 Bryy | [V O5,, ] +
e, Be, Vs 85, ] X5 [@ryys Bry (Ve O,y |+

[aEzs' 18523] [)/Ezs' 5523] X5 [aF32’ '81‘"32] [yFsz’ 6F32]

143



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

X2z = [@g,, Bey, Vs Oy | X5 [@ryy0 Bryy | [Vria Or, ] +
e, Be,, [VEsr 85,0 X5 |@hysy Brys Ve Ors ]+

|k, Bey | [Via Sk, | X5 |y Brso Ve O]
Xa1 = [@py0 Bey, Ve 05y | X5 [@ryy) Bry | Ve Br,, | +
e, Bes, [VEsr 86,1 X5 [@ryys Bry |V Or, ]+

@y Beyy | VEss s 08z ] X5 [@hsys Broy I 1VEy OF |
X3z = [@py0 Bey, [V 05y | X5 [@ryy0 Bryy | [Vry) Or,, ] +
e, Bes [VEsr 86,1 X5 [@ryy) Bry, Ve S5, 1+

|k, Besa | [Viss SEs| X5 [@rsy By, Ve O, ]
Xa3 = [@gy, Beg, Vi 0501 ) Xs [@rs Brvy | [Ving S5y ] +
e, Beo, [VEsyr 86,01 X5 [@rys) Brys [V Or, 1+

[a533’ 18533] [YE33' 61533] Xs [aF33‘ .BF33] [VF33’ 6F33]
Now, by applying this

)

Ux. B) = {(x ) ([maX(a, max (inf u, (x), inf s (x)), max(a, maX(supuA(x),supuB(x))]>
° "7\ [min(B, min(infya(x), infys (x)) ,min(B, min(supy,(x), supys (x))]

EAandyEB}

¥ - [max(a, max(aEll, apll)), max(a, max(,BEll, ,BFM))][min (B, min(yEH,yFH)), N
" (,3, 777'1.7,1(65'11' 6F11)) ]

{[(a, max(aElz,aF21)) ,(a, max(ﬁElz,ﬁF21)) ] [(,B, min()/Elz,VF21)) ’(ﬁ, min(5512,5p21)) ]} +

{[(a: max(a513, aF31)) ’ (a' max(:BEm' 'BF31)) ] [(,3, min(YEm’ VF31)) ’ min(ﬁ’ min(6E13’ 61’31))}
XlZ

= {[max(a, max(aEll, aplz)), max(a, max(,b’Ell, ,8,:12))] [min (,6’, min(yEll,yplz)) , (ﬁ, min(SEn, 6F12)) ]}
+
{[(a' max(aEn' anz)) ’ (a' max('BEn' 'BFZZ)) ] [('B, min(YEu’ szz)) ’ (ﬁ' min(6512’ 6F22)) ]} +
{[(a' max(aEm' aF32)) ’ (a' max(lBE13' 'BF32)) ] [('B, min(YEm’ y”az)) ,min(p, min(6513’ 6F32))}
X3
= {[max(a, max(aEn, apls)), max(a, max(,b’En, ,BFB))] [min (,8, min(yEn,yFB)) , (ﬁ, min(SEn, 6,,-13)) ]}
+
{[(O!, max(aEn' ans)) ’ (a' max(l[))Eu' 'BFzs)) ] [(,3, min(YEu’ szs)) ’ (B' min(6512’ 6F23)) ]} +
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{[(a, max(aElS,aFSS)) ,(a, max(ﬁElS,ﬂF33)) ] [(ﬁ, min(yElS,yFSS)) ,min(p, min(6513,6F33))}
X21

= {[max(a, max(az,,, @, )), max(a, max(Bg,,, e, Nllmin (8, min(ve,,, ve,,)) , (8, min(8,,, 6r,,)) 1}
.
{[(emax(as,, ar,,)) , (e max(Be,,. Br,,)) | (B min(vs,, vs,,)) . (B, min(8s,,, 85,)) 1} +
{|(«.max(as,,. ar,)) , (e max(Bs,,. Br,,)) | (B min(ys,, ¥s,)) - min(B, min(s,,, 6z, ))}
Xz2
= {[max(a, max(ag,,, ar,,)), max(e, max(Bg,,., Br, D1min (B, min(v,,, vr,) ) (B, min(6s,,, 6r,)) 1}
.
{[(a-max(az,, az,)) , (@ max(Be,,. Br,,)) | (B min(ve,,. vr,,)) . (B, min(6s,,.6r,)) 1} +
{[(a-max(az, ar,,)) (@ max(Be,,, Br,,)) | (B min(vey ve,)) min(B, min(8s,,, 5¢,))}
Xas
= {[max(a, max(ag,,, ar,,)), max(e, max(Bg,,. Br, D1min (B, min(ve,,, ve,) ) (B, min(6s,,, 6r,)) 1}
.
([(cmax(er,, an,))  (amar(Bey Be)) [ (8. min(re, vi,)) (B (5 00,)) 1} +
{[(a.max(as,,, ar,)) . (e max(Bs,q, Br,)) | (B, min(ye,, Ve, ))  min(s, min(8g,,, 8s,,)))}
Xay
= {[max(a, max(az,,, ar,, ), max(@, max(Bg,,, By, N[min (8, min(vz,,, vr,) ), (B, min(8s,,. 65,)) 1}
.
{|(a.max(az,,, az,)) . (e max(Be,,. Br,,)) | (8. min(Vs,, ve,)) . (B min(8g,,, 65,)) 1} +
{[(a,max(as,,, ar,)) . (e max(Be,,, Br,)) | (B min(ye,, v,))  min(s, min(8g,,, 8s,,)))}
Xs»
= {[max(a, max(az,,, az,)), max(a,max(Bg,,, Br,, ) lmin (B, min(vs,,, ve,,)) , (B, min(8s,,, 8r,)) 1}
.

{[(a' max(aEsz' anz)) ’ (a' max('BEsz' 'BFZZ)) ] [('B, min(YE32’ szz)) ’ (ﬁ' min(6532’ 6F22)) ]} +
{[(a' max(aEss' anz)) ’ (a' max(lBEss' 181732)) ] [('B, min(YEss’ y”sz)) ,min(p, min(6533’ 6F32))}
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X33
= {[max(a, max(aESl, aFlS)), max(q, max(,[?E31, ,BFB))] [min (ﬁ, min(yESl,yFB)) , (ﬁ, min(c?Esl, 6F13)) ]}
+

{[(a, max(aESz,aFZS)) ,(a, max(ﬁEsz,ﬁFZS)) ] [(ﬁ, min(yE32,yF23)) , (ﬁ, min(6532,6F23)) ]} +

{[(a, max(aESS,aFSS)) ,(a, max(ﬁE33u8F33)) ] [(ﬁ, min(yE33,yF33)) ,min(pS, min(6E33:6F33))}
By using A+B = max {A, B}
X11

[(a, max(aEn,aFn)) ,(a, max(ﬁEn,,BFn)) ] [min (,8, min(yEu,yFu)) , (,B,min((SEn,(SFn)) ]
= max

,[(a, max(aElZ,aFm)) ,(a, max(ﬁElz,ﬁFm)) ] [(ﬁ, min(yElZ,yFm)) ,(ﬁ,min(6512,6F21))]
+

{[(a,max(a513,aF3l)) ,(a,max(ﬁE13,,8F31)) ] [(ﬁ, min(yEB,ngl)) ,min(ﬁ,min((SEls,(SFsl))}
X12

[(a, max(ag, ,, aFlZ)) ,(a, max(ﬁEn,ﬁplz)) ] [min (,B, min(yEn,yFn)) , (,B,min((SEn,(SFlz)) ],
= max
[(a, max(aElz,anz)) ,(a, max(ﬁElz,ﬁFZZ)) ] [(,B, min(yElz,yFZZ)) ,(B, min(5E12,5p22))]
+

{[(0(, max(aE13’ ang)) ’ (a' max(ﬁEm’ 'BF32)) ] [(ﬁ' min(y513, YF32)) ’ min(ﬁ’ min(5513’ 6F32))}
X13

_(Nwmar(as,an,) (emax(B, 80,)) | [min (8.minGrey, vi,). (B min(56,0.65,)) ]
[(a, max(aElz, anz)) ’ (a, max('BElz' :BF23)) ] [(,B» min(yElzﬂszg)) ) (ﬁ, min(6E12, 5p23)) ]
+

{[(a: max(a513, aF33)) ’ (CZ, max(lBE13' IBF33)) ] [(IB’ min(yEm’ yFss)) ’ min(ﬁ’ min(6513’ 6F33))}
X21

[(a' max(aEzﬂ aF11)) ’ (a' max(IBEzﬂ IBFn)) ] [min (,3, min(YEzﬂ y”n)) ’ (ﬁ' min(6521’ 6F11)) ] ’
= max
[(a' max(aEzz' aF21)) ’ (a' max(lBEzz' '8F21)) ] [(IB' min(YEzz’ YF21)) ’ (ﬁ' min(6522’ 6F21)) ]
+

{[(a' max(a523, aFg]_)) ) (a' max(IBEzs' ,31:31)) ] [(IB' min(YEza’ YF31)) ,min(B, min(6523’ 61’31))}
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X22

e <[(a, max(ag,,, aFlZ)) ) (a, max(,BEn,ﬂplz)) ] [min (ﬁ, min(y521,yF12)) ) (ﬁ'min(dEzdelz)) ])
[(a, max(ag,,, apzz)) , (a, max (B, ,BFZZ)) ] [(ﬁ, min(ygzz,ypzz)) ,(ﬁ,min(dEzz, 6F22)) ]
n
{[(“' max(aEzs'aF32)) ,(a, max(ﬁEzyﬁFsz)) ] [(ﬁ, min(ygz3,yp32)) ,min(ﬁ,min((SEzs,(SFsz))}
X23
o <[(a, max(ag,,, ocF13)) ) (a, max(ﬁ521,ﬁF13)) ] [min (ﬁ, min(yEm,yFB)) ) (ﬁ:min(5521,5pl3)) ],>
[(a, max(ag,,, aF23)) , (a, max(,BEzz;,BF23)) ] [(ﬁ, min(yg,,, yF23)) , (ﬁ, min(8g,,, 6F23)) ]
n
{[(a, max(ag,,, aF33)) ) (a, max(ﬁgzyﬁF”)) ] [(ﬁ, min(yg,,, yF33)) ,min(B, min(8g,,, 5F33))}
X3
o <[(a, max(ag,,, ar,)) (e max(Bs,, br,,) ) | [min (B min(vs, ¥r,)), (B.min(8z,,,65,)) ])
(omsConrn) (s 0} | (300 (050
n
{[(a» max(dsg,,, ap31)) : (a: max(ﬁ533,ﬁp31)) ] [(B, min(yEgg,ypgl)) ,min(B, min(8,,, 5F31))}
X32
o <[(a, max(ag,,, ar,)) (@ max(Be,, Br,)) | [min (B, min(ve,,, ve,)), (8. min(ss,,,6r,)) | )
(0 max(as,,, az,)) . (e max(Bs,,, Br,,) ) | (B min(Vs, vi,)) - (B, min(85,,,85,)) ]
n
{[(“ max(az,;, “Fsz)) ’ (“l max (B, ﬁp32)) ] [(B, min(vg,,, Vpgz)) ,min(B, min(8,,, 5F32))}
X33
o ([(“ max(ag,,, ar,)) (e max(Bz,,, br,,) ) | [min (B min(vs,, ¥r,)), (B, min(8g,,,65,)) ] )
(e max(as,, ar,,)) . (@ max(Be,, Br,)) | (B min(Ve, ve,)) o (B min(8g,,,65,)) ]
n
{[(emax(az, ar,,)) . (e max(Be,, r.,)) | (B min(Vey, vr,) ) min(B,min(8g,,, 6, )}
By using A+B+C = max{max(4, B), C}
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X11 =|V|8.X

/ [(a, max(aEn,aFn)) ,(a, max(,BEn,,BFn)) ] [min (ﬁ, min(yEu,yFu)) (ﬁ mm(c?E11 6F11
max

[(a, max(aElZ,aF21)) ,(a, max(,BElz,,BFn)) ] [(ﬁ, min(yElz,yFu)) (ﬁ mm(c?E12 6F21
\ [(a, max(aElS,aF31)) ,(a, max(ﬁElS,ﬁFm)) ] [(ﬁ, min(yEl3,yF31)) min(p, mm(dE13 6F31))
X, =Max

/ [(a, max(aEn,aFu)) ,(a, max(ﬁEn,ﬁFlz)) ] [min (,8, min(yEu,yFlz)) (ﬁ mm((SEn 6F12
max

[(a, max(aElz,aFZZ)) ,(a, max(ﬁElz,ﬁFzz)) ] [(ﬁ, min(yElz,yFZZ)) (ﬁ mm((SElz 6F22
\ [(a, max(a513,aF32)) ,(a, max([)’513,,8F32)) ] [(ﬁ, min(y513,yp32)) ,min(f, mm((SE13 6F32))
X3 =Max

/ [(a, max(aEn,aFB)) ,(a, max(ﬁEn,ﬁFB)) ] [min (,8, min(yEu,yFB)) (,8 mm((SE11 6F13
max

[(a, max(aElZ,aFB)) ,(a, max(ﬁElz,ﬁF23)) ] [(ﬁ, min(yElZ,yFB)) (,8 an((SElZ 5F23
\ [(a, max(a513,aF33)) ,(a, max(ﬁE131:8F33)) ] [(ﬁ, min(y513,yp33)) min(B, min(8g,,, 5F33))
X,1 =Max

h)
I
/
1)
|
/
)
I
/
[ <[(a, max(ag,, ar,)) , (@ max(Bs,,. Br,,)) | [min (B, min(ve,,, vr,) ), (8, min(8s,,. 6,)) ) )
(e max(as,, ar,,)) (@ max(Be,, Be,,)) | [(B min(ve, ve)) - (B min(8e,,.65,)) | ) |
\ [(a, max(aE23,aF31)) ,(a, max(ﬁgz3-ﬁp31)) ] [(B, min(yEZB,ypgl)) ,min(B, min(8g,,, 5p31)) /
X5, =Max
[ <[(a, max(az,,, ar,)) . (@max(Bs,,, Br,,)) | [min (B min(rs,,, ve,)) (8. min(8s,,.85,)) ) )
(e max(ae,,, r,)) . (€ max(Be,y, Be,)) | [(B.min(ve, ven) ) o (B min(8s,,,65,)) | )|
\ (e max(as,,, ar,)) , (e max(Bs,y, Br,,)) | (B min(vs,, ¥,))  min(s, min(6p,,, é‘pgz)) /
X,3 =Max
[ ([(a, max(az,,, ar,)) . (@max(Bs,,, Br,,)) | [min (B min(rs,,, ve,)) (8. min(85,,.85,)) ) \
(e max(ae,,, ar,,)) . (€ max(Be,y, Be,)) | [(B.min(vesy ve) ) - (Bmin(s,,.65.)) | )|
\ (0 max(ag,,, ax,)) . (e max(Bs,y, Br,)) | (B min(s,, Ve, ))  min(B, min(8g,,, 6p33)) /
X3, =Max
[ <[(a. max(ag,,, @) ) (€ max(Be,,, Be,,)) | [min (8. min(ve, ve,) ). (B, min(8z,,, 6r,,)) ) )
(. max(ae,,, ar,)) . (@ max(Be,,, Be,,)) | [(8 min(re, ve,)) - (B min(8e,, 65,))
(e max(ass, ar,,)) (@ max(Bs,,, Br,,)) | 1B min(vey vey,)) s min(g, min(8s,,, 8s,,)) )
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X32 =|V|8.X

/ [(a, max(aESl, aFlZ)) ,(a, max([3531,[3p12)) ] [min (ﬁ, min(yE31'yF12)) ) (ﬁ, min(5531r 6F12)) ]

max ,
[(a' max(aEsz' anz)) ’ ((X, max(lgEsz’ ﬂFzz)) ] [(ﬁ’ min(yEéz’ szz)) ’ (ﬁ’ min(dEsz’ 6F22)) ]

\ [(a, max(agg,aFSZ)) ,(a, max(ﬁE33;ﬁF32)) ] [(ﬁ, min(yE33,yF32)) ,min(ﬁ,min((SEss,(SFsz))

\l
_ :
\l
:

/max <[(a, max(ag,,, aFlS)) ,(a, max(ﬁE31’ﬁF13)) ] [min (ﬁ, min(yE31,yF13)) , (ﬁ, min(Sg,,, 6F13)) ],)
[(a, maX(aESZ,aFZS)) ,(a, max(,BE32;,8F23)) ] [(ﬁ, min(yEsz,szs)) ,(ﬁ, min(6E32’6F23)) ] )

\ [(a, maX(a33,aF33)) ,(a, maX([)’E33;ﬁF33)) ] [(ﬁ, min(y533,yp33)) ,min(ﬁ,min(&Ess,(SFss))

Ag X5 Bp = (X153 X125 X13 X21 X532 Xa3 X31 X332 X33 ). Hence, Ag X5 By is an interval valued intuitionistic

fuzzy matrix set.

Using Python program for Az X< Bg

#intput the values

import math

x=Ffloat(input("'x="))

y=float(input("y="))

a_11=float(input("a_11="))

b_11=float(input("b_11="))

c_11=float(input("c_11="))

d_11=float(input("d_11="))

e_11=float(input("e_11="))

f_11=float(input("f_11="))

g_11=float(input("g_11="))

h_11=float(input("h_11="))

a_12=float(input("a_12="))

b_12=float(input("b_12="))

c_12=float(input("c_12="))

d_12=float(input("d_12="))

e_12=float(input("e_12="))

f_12=float(input("f_12="))

g_12=float(input("g_12="))

h_12=float(input(""h_12="))

a_13=float(input("a_13="))

b_13=float(input(""b_13="))
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c_13=float(input("c_13="))
d_13=float(input(*d_13="))
e_13=float(input("e_13="))
f_13=float(input("f_13="))

g_13=float(input("'g_13="))
h_13=float(input("h_13="))
a_21=float(input("a_21="))
b_21=float(input(""b_21="))
c_21=float(input("c_21="))
d_21=float(input(*d_21="))
e_21=float(input("e_21="))
f_21=float(input("f_21="))

g_21=float(input(""g_21="))
h_21=float(input("h_21="))
a_22=float(input("a_22="))
b_22=float(input("'b_22="))
c_22=float(input("c_22="))
d_22=float(input(*d_22="))
e_22=float(input("e_22="))
f 22=float(input("f_22="))

g_22=float(input("g_22="))
h_22=float(input("h_22="))
a_23=float(input("a_23="))
b_23=float(input("b_23="))
c_23=float(input(“c_23="))
d_23=float(input("'d_23="))
e_23=float(input("e_23="))
f_23=float(input("f_23="))

g_23=float(input("'g_23="))
h_23=float(input("h_23="))
a_31=float(input("a_31="))
b_31=float(input(""b_31="))
c_31=float(input("c_31="))
d_31=float(input(*d_31="))
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e_31=float(input(*'e_31="))
f_31=float(input("f_31="))

g_31=float(input(*g_31="))
h_31=float(input("h_31="))
a_32=float(input("a_32="))
b_32=float(input(""b_32="))
c_32=float(input("c_32="))
d_32=float(input(*d_32="))
e_32=float(input("e_32="))
f_32=float(input("f_32="))

g_32=float(input(*"g_32="))
h_32=float(input(""h_32="))
a_33=float(input("a_33="))
b_33=float(input(""b_33="))
c_33=float(input("c_33="))
d_33=float(input(*d_33="))
e_33=float(input("e_33="))
f_33=float(input("f_33="))

g_33=float(input(*g_33="))
h_33=float(input("h_33="))

#creating variables for ¢_11

a_l=max(x,max(a_11,c_11))
a_2=max(x,max(b_11,d _11))

a_3=min(y,min(e_11,g_11))
a_4=min(y,min(f_11,h_11))

a_b=max(x,max(a_12,c_21))
a_6=max(x,max(b_12,d_21))

a_7=min(y,min(e_12,g_21))
a_8=min(y,min(f_12,h_21))

a_9=max(x,max(a_13,c_31))
a_10=max(x,max(b_13,d_31))
a_11=min(y,min(e_13,g_31))
a_12=min(y,min(f_13,h_31))

#creating cells
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x_11=[max((max(a_1,a_5)),a_9),max(max(a_2,a_6),a_10)]
Y_11=[max((max(a_3,a_7)),a_11),max(max(a_4,a 8),a_12)]
print("C_11=",x_11)

print("D_11="Y_11)

#creating variables for ¢c_12

b_1=max(x,max(a_11,c_12))

b_2=max(x,max(b_11,d_12))

b_3=min(y,min(e_11,g_12))

b_4=min(y,min(f_11,h_12))

b_5=max(x,max(a_12,c_22))

b_6=max(x,max(b_12,d_22))

b_7=min(y,min(e_12,g_22))

b_8=min(y,min(f_12,h_22))

b_9=max(x,max(a_13,c_32))
b_10=max(x,max(b_13,d_32))
b_11=min(y,min(e_13,9_32))
b_12=min(y,min(f_13,h_32))

#creating cells
x_12=[max((max(b_1,b_5)),b_9),max(max(b_2,b _6),b 10)]
Y _12=[max((max(b_3,b_7)),b_11),max(max(b_4,b_8),b 12)]
print("C_12=",x_12)

print("D_12="Y_12)

#creating variables for c_13

c_1=max(x,max(a_11,c_13))

c_2=max(x,max(b_11,d _13))

¢_3=min(y,min(e_11,g9_13))

c_4=min(y,min(f_11,h_13))

c_5=max(x,max(a_12,c_23))

c_6=max(x,max(b_12,d_23))

c_7=min(y,min(e_12,9_23))

¢_8=min(y,min(f_12,h_23))

¢_9=max(x,max(a_13,c_33))
¢_10=max(x,max(b_13,d_33))
¢_11=min(y,min(e_13,g_33))
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¢_12=min(y,min(f_13,h_33))

#creating cells
x_13=[max((max(c_1,c_5)),c_9),max(max(c_2,c_6),c_10)]
Y _13=[max((max(c_3,c_7)),c_11),max(max(c_4,c_8),c_12)]
print("C_13=",x_13)

print("D_13=",Y_13)

#creating variables for ¢_21

d_1=max(x,max(a_21,c_11))

d_2=max(x,max(b_21,d_11))

d_3=min(y,min(e_21,g_11))

d_4=min(y,min(f_21,h_11))

d_5=max(x,max(a_22,c_21))

d_6=max(x,max(b_22,d_21))

d_7=min(y,min(e_22,g_21))

d_8=min(y,min(f_22,h_21))

d_9=max(x,max(a_23,c_31))
d_10=max(x,max(b_23,d_31))
d_11=min(y,min(e_23,g_31))
d_12=min(y,min(f_23,h_31))

#creating cells
x_21=[max((max(d_1,d_5)),d_9),max(max(d_2,d _6),d 10)]
Y _21=[max((max(d_3,d_7)),d _11),max(max(d_4,d_8),d_12)]
print("C_21=",x_21)

print("D_21=",Y_21)

#creating variables for ¢_22

e_1=max(x,max(a_21,c_12))

e_2=max(x,max(b_21,d_12))

e_3=min(y,min(e_21,9_12))

e_4=min(y,min(f_21,h_12))

e_5=max(x,max(a_22,c_22))

e_6=max(x,max(b_22,d_22))

e_7=min(y,min(e_22,9_22))

e_8=min(y,min(f_22,h_22))

e_9=max(x,max(a_23,c_32))
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e_10=max(x,max(b_23,d_32))
e_11=min(y,min(e_23,g_32))
e_12=min(y,min(f_23,h_32))

#creating cells
x_22=[max((max(e_1,e_5)),e_9),max(max(e_2,e_6),e_10)]
Y_22=[max((max(e_3,e_7)),e_11),max(max(e_4,e_8),e_12)]
print("C_22=",x_22)

print("D_22=")Y_22)

#creating variables for c_23

f_1=max(x,max(a_21,c_13))
f_2=max(x,max(b_21,d_13))
f_3=min(y,min(e_21,g_13))

f_4=min(y,min(f_21,h_13))

f_5=max(x,max(a_22,c_23))
f_6=max(x,max(b_22,d_23))
f_7=min(y,min(e_22,9_23))

f_8=min(y,min(f_22,h_23))

f_9=max(x,max(a_23,c_33))
f_10=max(x,max(b_23,d_33))

f 11=min(y,min(e_23,g9_33))
f_12=min(y,min(f_23,h_33))

#creating cells
x_23=[max((max(f_1,f 5)),f 9),max(max(f _2,f 6),f 10)]
Y _23=[max((max(f_3,f 7)),f 11),max(max(f_4,f 8),f 12)]
print("C_23=",x_23)

print("D_23=",Y_23)

#creating variables for ¢_31

g_l=max(x,max(a_31,c_11))
g_2=max(x,max(b_31,d 11))
g_3=min(y,min(e_31,g_11))

g_4=min(y,min(f_31,h_11))
g_5=max(x,max(a_32,c_21))
g_6=max(x,max(b_32,d_21))
g_7=min(y,min(e_32,g_21))
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g_8=min(y,min(f_32,h_21))

g_9=max(x,max(a_33,c_31))
g_10=max(x,max(b_33,d_31))
g_11=min(y,min(e_33,g_31))

g_12=min(y,min(f_33,h_31))

#creating cells
x_31=[max((max(g_1,9_5)),0_9),max(max(g_2,9_6),9_10)]
Y _31=[max((max(g_3,9_7)),0_11),max(max(g_4,9_8),9_12)]
print("C_31=",x_31)

print("D_31=",Y_31)

#creating variables for ¢_32

h_1=max(x,max(a_31,c_12))

h_2=max(x,max(b_31,d_12))

h_3=min(y,min(e_31,9_12))

h_4=min(y,min(f_31,h_12))

h_5=max(x,max(a_32,c_22))

h_6=max(x,max(b_32,d_22))

h_7=min(y,min(e_32,g_22))

h_8=min(y,min(f_32,h_22))

h_9=max(x,max(a_33,c_32))

h_10=max(x,max(b_33,d_32))
h_11=min(y,min(e_33,9_32))

h_12=min(y,min(f_33,h_32))

#creating cells
x_32=[max((max(h_1,h_5)),h_9),max(max(h_2,h 6),h 10)]
Y _32=[max((max(h_3,h_7)),h_11),max(max(h_4,h_8),h_12)]
print("C_32=",x_32)

print("D_32=",Y_32)

#creating variables for ¢_33

i_1=max(x,max(a_31,c_13))

i_2=max(x,max(b_31,d 13))

i_3=min(y,min(e_31,9_13))

i_4=min(y,min(f_31,h_13))

I_5=max(x,max(a_32,c_23))
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I_6=max(x,max(b_32,d_23))
i_7=min(y,min(e_32,g_23))
i_8=min(y,min(f_32,h_23))
I_9=max(x,max(a_33,c_33))
i_10=max(x,max(b_33,d_33))
i_11=min(y,min(e_33,g_33))
i_12=min(y,min(f_33,h_33))

#creating cells

x_33=[max((max(i_1,i_5)),i_9),max(max(i_2,i_6),i_10)]
Y _33=[max((max(i_3,i_7)),i_11),max(max(i_4,i_8),i_12)]

print("C_33=",x_33)
print("D_33=",Y_33)
Output:
x=0.04
y=0.01
a_11=0.05
b 11=0.07
c 11=0.02
d_11=0.06
e 11=0.03
f 11=0.05
g 11=0.03
h_11=0.05
a_12=0.02
b 12=0.03
¢ _12=0.05
d 12=0.07
e 12=0.04
f 12=0.07
g 12=0.02
h_12=0.04
a_13=0.05
b_13=0.06
c_13=0.02
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d_13=0.03
e 13=0.01
f 13=0.04
g_13=0.03
h_13=0.06
a_21=0.03
b_21=0.08
c_21=0.04
d_21=0.05
e 21=0.03
f 21=0.04
g_21=0.01
h_21=0.07
a_22=0.04
b_22=0.05
c_22=0.04
d_22=0.08
e 22=0.02
f 22=0.08
g 22=0.02
h_22=0.03
a_23=0.01
b _23=0.03
c_23=0.01
d_23=0.04
e 23=0.04
f 23=0.07
g 23=0.03
h_23=0.08
a_31=0.04
b _31=0.06
c_31=0.02
d 31=0.03
e 31=0.03
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f 31=0.09
g_31=0.02
h_31=0.05
a_32=0.01
b_32=0.02
c_32=0.01
d_32=0.03
e_32=0.05
f 32=0.07
g_32=0.05
h_32=0.06
a_33=0.02
b_33=0.03
c_33=0.03
d_33=0.07
e_33=0.08
f 33=0.09
g_33=0.01
h_33=0.05
C_11=1[0.05, 0.07]
D_11=[0.01, 0.01]
C_12=1[0.05, 0.08]
D_12=[0.01, 0.01]
C_13=1[0.05, 0.07]
D_13=[0.01, 0.01]
C_21=1[0.04, 0.08]
D_21=[0.01, 0.01]
C_22=1[0.04, 0.08]
D_22=[0.01, 0.01]
C_23=1[0.04, 0.08]
D_23=[0.01, 0.01]
C_31=1[0.04, 0.06]
D_31=[0.01, 0.01]
C_32=1[0.04, 0.08]
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D_32=[0.01, 0.01]
C_33=1[0.04, 0.07]
D_33=[0.01, 0.01]

Conclusion:

In this chapter, we represent an interval- valued intuitionistic fuzzy matrix sets [IVIFMs] as the
Cartesian product of its membership and non-membership matrices. We introduce " x, " X5 ” of Cartesian
product over interval- valued intuitionistic fuzzy matrix sets. A new interval- valued intuitionistic fuzzy
matrix sets generated by the use of the Cartesian product of two interval- valued intuitionistic fuzzy matrix
sets.
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Abstract

In this research work, we explain parameter fuzzy Intuitionistic soft sets and various characteristic
rules. After we bring together parameter fuzzy Intuitionistic soft sets and some theorems, and also on
selection taking intuitionistic fuzzy soft set followed by given some numerical examples.

Keywords: Fuzzy sets, fuzzy soft set, Intuitionistic soft set, Parameter Intuitionistic soft set, Selection
taking.

1. Introduction:

Many fields deal with uncertain data that may not be successfully modeled by classical mathematics,
probability theory,[26] L.A. Zadeh, provided the concept of Fuzzy sets , [23] Z. Pawlak gave the
concept Rough sets. Molodtsov [21] in 1999 introduced new concept so soft set that is added Common
Universe show off uncertainty and vagueness. After [18,19] Maji et al. make known to many operations of
soft sets. [4,5] Ali etal. gave more or less different novel thinking like that , and extended for 2 soft fuzzy
sets after [24] were developed the hypothetical part of the soft set procedures. And [19] present the idea of
soft fuzzy set, well-stated a soft fuzzy set and all are delivered the uses of soft fuzzy set in selection taking
difficult. In [19] Gave Soft structures of fuzzy algebra properties like rings, modules, fields, By putting on
these senses, the uses of the set idea should have well-thought-out additional. Cagman et.al [10-13]
thoughtful the soft set selection taking and also gave use of soft set in selection takes. Chen et al. [14], talk
over the parameterization method. A suitable technique to soft set up on best making. The resolve of this
work is to combine the intuitionistic fuzzy sets[6,8]. [15] A flexible method to soft set uses. This research
work Intuitionistic fuzzy set and selection taking. [6] in 1986 introduce the notion of ,[2] M. Agarwal,
K.K. Biswas presented the global intuitionistic fuzzy set with uses in selection taking,[5][1] U. Acar, gave
the concept of soft groups, [25] Y. Yang, gave the idea of decision-making [16],[17] gave more application
of fuzzy soft set,[20][22] gave more uses with decision making, [8] gave the rough guide of the soft group
and [9] gave the application of well-adjusted result of a soft set constructed selection taking,[3] gave soft
set and soft group based on this concept in this paper using parameter and its application.

2. Preliminary

In this portion, we define the elementary definition of a set soft theory fuzzy, intuitionistic fuzzy set
theory.
Definition. 2.1. [21] Consider C is a Common set, and the power set is P(C) over C and K is a parameter
set. A soft set S along with C is a set stated by a mapping g,: K — P(C) , therefore this van be stated by
S ={(r,gs(m):r € K}. Were g5 be the come close to the value of the set S and gs(r) be the a come

close to the value of € K . Clearly that if gs(r) = @,then the object (r, gs(r)) is not looked in S.
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Example. 2.2 [21]Consider C = {ry, 15, 13,74} be the four apartments under consideration in a broker and
K = {t;, t;,t3,t,} be the parameters set, where e;(j = 1,2,3,4) assigned for “’Security’’, “’Expensive”’,
“’Average rate *’, “’Costly’’, respectively. A purchaser to choose a apartments from apartment Manager
can build a soft set S that refer to the typical of apartments allowing to individual choose. Consider
gs(ty) = {ry,ry, 13} ,gs(ty) = {ry, 1}, gs(t3) = @, gs(t,) = C  therefore the soft-set S can be written
as S = {(ty, {r1, 15, 13}), (2, {rz, 1)), (84, O}

Definition.2.3.[26] let A be set and K be a common set then the fuzzy set A over K be a function stated
as below

A={(r,u, (r)):r € K ,where p,:K — [0,1] . Here a is membership value of A, also p,(r) is value of
membership of » € K the grad represent them degree of r € A.

Definition.2.4. [11] Let X be a set and K is a common set and an intuitionistic fuzzy set X on K can be
stated as below °
X ={a,ux(a),nx(a):a € K}
Here uy: K —» I and ny: K — I such that 0 < uy(r) < 1,0 < nx(r) < 1,r € K. Here,ux (r) and nx(r) is
the value of membership and not a membership of the member r, respectively.
If X and Y be two IFS on K, then

1) XcY o ux() <ny(r)and ux(r) = ny(r) forvr e K

(2) X =Y © ux(r) =ny(r) and pux(r) = ny(r) for vr € K

(3) X¢ ={r,ux(r),ny(r):r € K}

(@) XLIY = {7, V(i (), sy (D) A (), my (1):7 € K3,

5) X MY = {r, AQux (), uy ™)), V(nx (), ny (1)) : 7 € K}

Definition .2.5.[11] The universe C and P¢ be power set of C,and let parameter set K and A be a FS with
K .then a parameter FS set (g4, K) on the common set C is stated below

(Ga K) = {(ua (M) /7, fa(r)) : 7 €K}
Where p,: K - Iand g4: K - P€ suchthat g,(r) = @ ifu,(r) = 0. Now g, is approximate value and p,
is membership value of parameter fuzzy soft set.

Example: 2. 6[11] Consider C = {ry, 15,73, 74,75, 76, 77,15, To} De @ common set and K = {t,, t,, t5, t,} be

the parameters if A = {(tli) (tz, %) (tg, %) (t4, 19—0)} be the F'S over K, therefore the parameter fuzzy

soft set

7 5 6
(ga, K) = {(tp E) AT 3,7, Ts, 7”7})' (7”2' E) A1 1,17}, (L3, E)' {r1, 12,713,710, 79}),

9
(ts E)' {ri,m,1,18})}

3. Parameter fuzzy intuitionistic soft sets

In below section we have to see the procedures on parameter intuitionistic soft fuzzy sets.

Definition: 3.1.The Common set € and P¢ be the PS, K is the parameter set and N be an intuitionistic
fuzzy set overK. An Intuitionistic parameter fuzzy soft sets C over C is stated as follows

Cy = {((r,yn(),0n()) , gn(r):T €K}
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Whereyy: K — [,6y: K - [0,1] and gy: K — [0,1] along with the property gy (r) = @ and y,(r) = 0 and
Sy (r) = 1, where yyand §, membership and not a membership intuitionistic fuzzy soft set. The value
yn () and &y (r) is the value of significance and insignificance of the parameter "'r"’

Clearly, every usual parameter set can be written as below
Ly ={(r,yn@), 1 —yy(@)), gn():7 € K}, clearly FFISS over C and it is symbolized by FFISS(C).

Definition.3.2. Take|[y € FFISS(C).yn(r) =0 AndSy(r) = 1,vr € K, therefore []y is said to be
parameter fuzzy intuitionistic empty set and it is denoted [[.

Definition.3.3. Let][[y € FFISS(C).yy(r) =0 And §y(r) = 1,vr € K and gy (r) = C therefore []y is
said to be parameter fuzzy intuitionistic common set and it is denoted | ] z.

Example. 3. 4 Consider the common setC = {ry, 1,73, 74,75 }, and parameter set K = {t,, t,, t3},if

N = {(tp 5) (tz' 5) (t < )} And gy () = {r, 1u}, gn (r2) = {0},

10’ 10 10’ 10 3710’10
gn (r3) = {C}. Therefore the FFISS [[y can be written as follows

v = {<(t1' 120 150> {Tz’r“}) (tz’ 150 10) @), (t3’10 10) D

A =1{(r,0,1),(r,0,1),(r5,0,1),(r,,0,1)}, then the FFISS [, is empty. If B=
{(rly 0;1)) (rZI 011)) (T'3, 0;1); (r4-1 011)} and gB(rl) = C, gB(rZ) = C’ gB(rS) = C’ gB(rAl-) = C then
the FFIS common parameter fuzzy soft set.

Definition 3.5. Let][4, ][Iz € FFISS(C). Then ][], parameter fuzzy intuitionistic soft subset of[ ]z, and is
denoted by [[5 2 [14 iff © ifyy(r) < ya(r),6n(r) = 6,4(r) and g, (r) 2 gy(r),V r € K.

Remark 3. 6. ][4 2 [Ix Which not given all members of [ ], is a member of [ ], as in the meaning of usual
subset. Consider C = {ry,1,,713,1,} IS @a common set of items and K = {t;, t,, t3}is a set of parameters. If

N = {tl’m 10} and

A= ({tl’ 10’ 150} {t3‘ 10’ 150}) and

Uy = {(to =) {az D)}

5 5 4 5
= {( Lo’ 10) {ry,13,14}), (ts: 10 10) {rursPhVeeKk,
Ya(™) = yu(r),8n(1r) < 6,4(r) And [[4(r) 2 [In(r) is suitable. Therfore[ [, 3 [[y. It is understandable
that ((tl,%,%),{rz,n}) € ] but ((tl, , ) {rz,r4}> & 114

10° 10

Theorem 3. 7. Let] [y, [ Iz € FFISS(C). Then
(@) Ly < Uz
(b) Ip <
(©) L € Lx

Proof: The above properties of < and above definition trivially true.
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Definition3.8.] [y, [14 € FFISS(C). After [y and [], parameter fuzzy intuitionistic soft- equal, write by
Hy =Ha e vn@) =ya(r), 6y(r) = 6,(r) and gy (r) = ga(r), Vr € K.
Theorem 3.2 Let [y, [1a, L1z € FFISS(C)Then
(@ Uy =Haand [14 = [r iff [Iy = r
(b) [y € [a and [14 < Fiff [Iy = 14
©) LIv € 11aand [14 € [Ir which implies] [y = L.
Proof: The above properties of = and < is true form definition 3.4 and 3.5

Definition.3.9.][y € FFISS(C). Then parameter fuzzy intuitionistic soft complement set is stated as below
]—[N = {(a, )/N(a); (SN(CL)) ,gN'(a)): ae€ K}

Theorem 3.10 If [[y € FFISS(C). Then

(@ (Un)' =1n
(0) II" = Ix
() Lr" = 1o

Proof: Let [[x = {(r, 1,0),C) :for all r € K. by definition 3.6
Iz = {(r,0,1),C): Forall r € K} = [, in same way we can prove (a) and (b)

Definition.3.11.1f [ [y, ][4 € FFISS(C). Then parameter fuzzy intuitionistic soft union set is stated as
below

[y Ulla= {((7”: V()/N (), 5A(7”)),/\(5N(7”), 5,4(7”))) ’gNI_IA(a)) ra € K}

Theorem.3.12 Let [ [y, [l LIr € FFISS(C). then
(@ Ly Uy =~
(b) U b g = Ln
(©) Uy Uk = Lk
(d) Uy U la = Ha U n
(e) Iy u (IIa u I = (Uy U 4 U Lp.
Proof: Definition 3.2, 3.3, 3.5 and 3.7 help to see their proof of equality.

Definition.3.13. If [[y , |1, € FFISS(C). Then parameter fuzzy intuitionistic soft intersection set is stated
as below

L 11 1L = {(((@ A @), 8, (@), V(84(@), 84(@))). guna(@)) 0 € K

Theorem.3.12. Let [y, 114, 11r € FFISS(C). then
@ v N1y =1~
(b) v N 1p = Ln
(©) Uy Nk = Lk
(d) Uy N s = Ha 1w
(e) LIy N (a N 1) = (Unx 1 L) N g
Proof: Definition 3.2, 3.3, 3.5 and 3.8 help to see their proof of equality.
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Remark. 3.13 Let[[y € FFISS(C). If [Iy # 1Is oflly # Ik, then [Iy U TIy" # Ik and [Iy N 11k #
1. For instance, consider C = {ry,1,,13,7,} be the common set of item and K = {t;,t,} be the set of

parameters. If N = {(tl, 6) (tz, > 5)} and

10’ 10 10’ 10

Iy = {((tl, 5 10) {rz,r4}>} {((tz,w 10) {rz,r3,r4})},Therefore
N’ = {(t 110 1%) (tz' 10’ 10)} And
Ly = {((tl’ 10’ 10) tt, t3})} {(tz’ 10’ 10) {Tl}} since
I ully' = {((65.2). @)} {(6 2. 2) 0} # 1k,
}

o' ={((62.2) 0} {(2.2) . 0 2 11,

Theorem.3.14 Let [ [y, L1, LIr € FFISS(C). then
(@) Ly O (Ua O = Uy O I1a) 7 (Uy O L#)
(b) Ln 1 (s 8 L) = (U 0 [a) O @y 7 L)

Proof: Definition 3.7 and 3.8 we can easily made the proof.

Theorem 3.15. Let [[y, ][4 € FFISS(C). then the De Morgan’s laws are true
@ (Uy OLL)" =1y 1
(b) (Un A = ]_[N, o ]_[A,

Proof: Definition 3.6, 3.7 and 3.8we can easily prove the proof.

Definition.3.16. Let]]y,[]4 € FFISS(C). Therefore the max-sum of [Jy and J[, and it is denoted
byl InV™**] 14, stated as [ [y V™14 = {((7": Yn(r)®ya(r) — YN(r)yA(r)’5N(r)5A(r))’gNLIA(r))} re
K} Where gya(r) = gy(r) U ga(r).

Definition.3.17.Let] [y, [14 € FFISS(C). Therefore the min-sum of [Jy and ][], and it is denoted by
]_[N/\min]_[A , Stated as ]_[N/\mm [a= {((T: Yn(®ya(r) © vy (r)VA(T),5N(T)5A(T))'9NHA(7”))}:r €
K} Where gyna(r) = gy(r) N ga(r).

Theorem .3.18 Let [y, 114,11 € FFISS(C). Then
(@ UnV™* g = L
(b) LnV™ 1k = Lk
(©) HnV™ 4 = HaV™**1x
(d) OnA™" 14 = UnA™ 14
() MxV™HIV™ ™ Ur = V™™ (aV™** L F)
(0 LA™ HOA™ U = HaA™™ (LA™ 1 F)-

Proof: Definition 3.2, 3.3 and 3.10 we can easily prove the proof.

Definition.3.19.Let [[y, ][] € FFISS(C). Then the max-product of J[y and []4, and it is denoted by
LINA™**] ] 4 and is stated as

V™ LLa = {((r 7w 74 (), 83 (@81(1) © Sy ()I84(1)), gvua()) }:7 € K3
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Where gyua(r) = gy(r) U g4 (r).

Definition.3.20.Let [[y,]]4 € FFISS(C). Then the min-product of [[y and]]4, and it is denoted by
LINA™**] 14 and is stated as

V™ s = {((r vw 740, 85 (B8, (1) © 63 (1)84(1)), gana () }: 7 € K}
Where gyua(r) = gy(r) 1 ga(m).

Theorem.3.21 Let [ [y, Lla, LIr € FFISS(C). Then
@) [InA™™ 1 = Ln
(b) ]_[N/\min]_[K = [k
(©) LINA™™[1a = LLaA™ 1y
(d) ]_[N/\min]_[A = ]_[N/\min]_[A
€ (A HIA™ r = HaA™™ (LA™ 1 F)
(A UV UIV™*Ur = HaV™* TaV"™ rF)-

Proof: Definition 3.2, 3.3 and 3.12 we can easily made the prove their inequality.

4. Selection taking Intuitionistic fuzzy soft set
In this division, stated a decreased parameter intuitionistic fuzzy soft set creates an intuitionistic fuzzy soft

set from an intuitionistic fuzzy soft set. We then have stated a decreased fuzzy set of a parameter fuzzy
intuitionistic fuzzy set that creates a fuzzy set from a parameter intuitionistic fuzzy soft set. These set nearby

a flexible move toward intuitionistic fuzzy soft sets created on selection-taking problems.

Definition .4.1. Take []y is aFFISS. Then a decreased IFS of [ [, denoted by N 4/S stated as below
Naifs = {(r, Y (1), SNdifS(r)) ‘r € C} , where

difS:C—>I, difs a) = 1
YN W (@) =g YN OWg 0™
1

IC1 Xtk rec ONOY gy ) (M)
Where y, %S and 6,%/* are said to be decreased set-notation of NS |t is evident that NS is an IFS
over C.

Definition.4.2.1f [[y € FFISS(C) and N%/Sbe decreased intuitionistic fuzzy of [[y.Then a fuzzy
decreased set of N9/s be a fuzzy set under C.Symbolized by N4 and stated below

N4 = {(r,v/e(r):r € C}, where v/4: C > [,v/4(r) = y/4(r) (1 _ 6fd(r)).

Now, we make a FFISS selection taking modal by the subsequent to produce a selection fuzzy set.
Selection taking Now, we make a selection-taking technique by the succeeding procedure to yield a

selection set from an ordinary set of replacements. Therefore selection taker:

(a) Create a possible intuitionistic fuzzy sets over the parameter set based on a selection client who is a
specialist.

(b) Creates a parameter fuzzy intuitionistic fuzzy set |]y over the different set C over ona selection taker.

(c) Find the decreases fuzzy intuitionistic set N of N/¢

(d) Find the fuzzy decreases set N/¢ofN 43,
167



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

(e) Select the parameter of N/¢ that has highest membership value. Now, we can see the example.
Example: 4. 3 Assume that a firm fills a manager position. There are five applicants who assign in order.

Example. 4. 4. Assume that an administrative center requirements to positing a place. There are 5 applicants
who fill in an application in order to apply officially for the place. There is a selection taker (ST) that is
from the branch of HR. He wants to interview the applicants, but it is very hard to create all of them. Hence,
by the fuzzy parameter Intuitionistic soft selection taker process, the total of applicants is decreased to a
proper one. Think that the set of applicants C = {ry, 1y, 13, 14, 75} Which may be assign the parameter set K =
{t1,t,, t5, ty}, which is "'t; =knowledge ¢’t,= mature ‘’t; =technical experimentation ‘’t, = training
person®’.

Now we use the following steps
(a) Consider that selection taker constructs a feasible fuzzy intuitionistic subsets N along with
parameter set K as;

7 3 2 5 5 5 6 3
V={(t55 ) (em) () (o)}
(b) Selection taker constructs an parameter fuzzy intuitionistic soft set [ [, along with alternatives set
C

= () o 210 (0 2 i) )

(c) Selection taker finds the decreased fuzzy intuitionistic set N4 of [[

NS — ( 28 26)( 40 32)( 16 16)( 28 32)( 4 10)
~1\\" 100’100/’ 100’100/’ \"* 100’ 100/’ "* 100’ 100/’ \"> 100" 100/ / |"

(d) Selection taker finds the decreased fuzzy set N/¢ of N 4ifs

Nfd—{( 2072) ( 2720) ( 1344) ( 1904) ( 360 )}
~ 1\"70000/’ \"*10000/’ \"* 10000/’ \"* 10000/’ \"* 10000/

(e) In conclusion, selection chooses 7, for the place from N/¢ since it has the highest value

2720
10000
along with the others.

5. Conclusion
In this work, we learn the Atanassov concept of intuitionistic fuzzy sets and we stated their choice of

procedures and a few outcomes. Then, we presented the technique of selection taking on the parameter
fuzzy intuitionistic fuzzy soft set theory. We also give an illustration that established the selection-taking

methods. It can be applied to problems in so many areas.
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Abstract: This study is to introduce a Cartesian product structure into the social choice theoretical
framework. We believe that a Cartesian product structure is a relevant way to describe individual rights in
the social choice theory since it discriminates the personal attribute comprised in each social state. First,
we define some conceptional and formal tools related to the Cartesian product structure. Then apply these
notions to Gibbard’s paradox and to Sen’s impossibility of a Paretian liberal. Finally, we analyze the

advantages of our approach to other solutions projected in the literary study for both impossibility theorems.

Keywords: Cartesian product, social choice, impossibility.

1 Introduction

In 1970, Sen introduced this concept into the social choice theoretical framework with a
condition of liberalism based on the notion of decisiveness individuals must be decisive — their
preferences must be acknowledged by society over some pairs of social states, which belong to their
private sphere. Sen shows that this condition of liberalism and a weak Pareto principle lead to an
impossibility of social choice: it is the impossibility of a Paretian liberal. But Sen’s formal analysis
does not need to distinguish between decisive pairs that enable an individual to take decisions that are
“personal” to her and those that are not. He uses a Cartesian product structure to describe individual
rights and points out the internal inconsistency caused by an extended condition of liberalism. This
result is called Gibbard’s paradox or Gibbard’s First Libertarian Claim. Besides, Gibbard shows that
his paradox arises only if individuals express conditional preferences. In other words, an individual
expresses conditional preferences if her preferences depend on those of another individual. For
example, Nikita is said to have conditional preferences if her desire is to wear a dress of the same color
as Nisha’s. On the contrary, if Nisha’s desire is to differentiate from Nikita, it leads to Gibbard’s
paradox. Gibbard stresses that his paradox does not arise if unconditional preferences only are
acknowledged by society.
This topic gave rise to many debates and attempts to develop new tools to take individual rights into
account and to solve Gibbard’s and Sen’s para- doxes. This article is to introduce a Cartesian product

structure on social states and to examine if new possibility results can be developed.

170


mailto:2ragavanshana@gmail.com
mailto:1saraswathiamutha@gmail.com
mailto:sssvm86@gmail.com3
mailto:sssvm86@gmail.com3
mailto:sjaisan18@gmail.com4
mailto:sjaisan18@gmail.com4
mailto:venji86@gmail.com5
mailto:venji86@gmail.com5

Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

But a Cartesian product structure is inadequate in itself in order to deal with both impossibility results. It
IS necessary to determine a relevant way to take into account the implementation of these individual rights

thus clarified.

2 Some conceptual and formal tools related to the Cartesian product structure

Let M = {1, 2, ..., n} be the finite set of individuals, which is society (n > 2).With a Cartesian
product structure on social states, each individual is a set X of personal features, this set being the same
for all individuals. X is a finite set, where |X| > 2. A social state is a n-list (X1, Xo, ..., Xn) Of personal
features of the world, where x; € X, V i € M . The set of all social states X" is given by X" = X x X x
.. x X, Each individual i € M has a binary relation >j on X", which is a linear ordering. A collective
choice rule f specifies a social preference relation for each d : >= f(d) . If > is a complete pre-ordering
for all d in the domain, f is a “social welfare function” . Here, fis called a “social decision function”.
Foranyi € M and any X = (X1, ..., Xi-1, Xi, Xi+1, .-, Xn) € X", X5i = (X1, ..., Xi-1, Xi+1, ...,Xn), Where x-; € X"

Jfxie Xand a-; = (ay, ..., @i-1, @i+1, ..., an) € x™_; then (xi; a-) = (ay, ..., &1, Xi, ai+1, ..., an). The personal
sphere of individual i is the family of sets {Di(a-i)}a—i€Xn where Di(a-i) is defined as Di(a-i) = {x € X"

| x-i = a-i} As stated in our introduction, the difficulty we face with the problem of individual rights in
the social choice theory is less analytical than conceptual. Consequently, it is crucial to find out first
which values could be wished by the members of society and how they can be secured.

Definition: 2.1 Strong and Light preferences For any x, y € X", for any j € M, if x >j y and if there
exists at least one z € X" such that x >j z and z >; y, then individual j strongly prefers x toy: it will be
denoted by T [x > y] = S. If x >j y but if such a social state z does not exist, individual j lightly prefers
X to y: it is denoted by T [x >; y] = L.For example, let us consider the following individual linear
ordering X" = {x, y, z, w} and x >; w >j z >; y. By transitivity, X >j y. We then obtain T [x >;y] = S.

However, if x >jy>w >z, T [x>jy] = L.

Definition: 2.2 Set of Invasive Options For a given d, the set Yj is com- posed of all social states for
which the individual j has a preference which goes against a preference of another individual i /= j in

her personal sphere isY;(a_;)={y € D;(a_;)|T[x >; y] =S for at least one x € D;(a_;) such that
y >; x} and Y;=UijUa_,_n Yi(a_;).For example, consider two individuals 1 and 2 and X = {p, q}.
Thus, X" = {(p, 9), (@, p), (p, P), (0, 9)}. Suppose that individual 1 has the following linear ordering (p,

p) >1(q, p) >1 (g, q) >1 (p, q). Suppose moreover that (p, ) >2 (p, p) and (g, q) >2 (q, p). Hence, (p, 9),
(p, p) € D2(p)
and T [(p, p) >1 (p, @)] =S, Y1(p) = {(p, @)} And since (q, q), (4, p) €
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D2(q) and T [(a, p) >1 (0, )] = L, Y1(q) = @. Finally, Y1 = {(p, @)} But, if (p, p) >1 (0, p) >1 (P, 0) >1
(g, 9), all other things remaining equal, then Y1 = {(p, 9), (9, q)} since T [(q, p) >1 (9, q)] = S.Sen’s and
Gibbard’s theorems can now be presented and some possibility results be proposed thanks to the
exclusion of invasive preferences.

Solution to Gibbard’s paradox: It is based on an extended interpretation of the concept of personal
sphere, every individual should be decisive over all pairs of social states, which differ only in her
personal feature. Gibbard suggests the following claim First Libertarian Claim: For any X, y € X",
forany i € N, for any a-; € X", if x, y € Di(a-i) and x > y, then x > y. Moreover, the collective choice
rule f should respect the condition of unrestricted domain.

Second Unrestricted domain: The domain of f includes all logically possible n-lists of individual
linear orderings.

Preference Modification Yk=0,vte Twhere TS Nand |T|>n— 1.

Theorem 2.3There exists a SDF satisfying conditions PM1 and GL.

Proof The theorem is proved by constructing a SDF, which gives each person i an appropriate special
voice on her feature. Let R be the relation between x and y, (3i)[X, y € Di(a-) and x >j y]. Let >= f (d)
be generated from Q in the following manner v x, y € X" : x > y &= =(yRX). Firstly, we prove that
whenever yRx, y > x. Suppose that —=(y> x). Hence x > y and from the construction of f, we have
=(yRx). Then, from =(y>x), it followed that -(yRx); therefore, if yRx, we obtain y > x as declared.
Secondly, we show that f satisfies GL, then xRy. Therefore, x >y, and hence f satisfies GL. Now,
consider the individual, which is responsible for the step x'Rx? and call her individual j. Then, x* >j x2.
Individual j is necessarily responsible for another step of the cycle X" 'Rx, with 1 =4, ..., ¢ so that
cycle 0 can exist. Hence, X! > x'. Suppose that x! >j x*!. From x* to x? , steps originating from
individuals i /= j or from individual j follow each other. In every case, we cannot obtainx? >j X! so
that Y; can be empty. We necessarily have x! >j x°. Therefore, the step x Qx! necessarily comes
from an individual i /= j. Hence, T [x! >j x° ] = S and Y;j is nonempty. If x"! >; x}, we can prove that

Y; is nonempty according to the same line of reasoning.

Finally, we showed that if individual j is involved in cycle 0, her set of invasive options is nonempty.

But the same conclusion remains for any individual involved in such a cycle.

Theorem 2.4 There exists a SDF satisfying conditions PM2, P, and GL’.
Proof Let R be the relation between x and y, (3j) X, y € Dj(a-j), X >j y and xjpjyj or (Vi) x>y, V x, y € X"
1 X >y &€= 1(YRX). From the way Q is defined, it is obvious that f satisfies conditions P and GL’. Next,
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we check that f is really a SDF, i.e., f i complete and acyclic. Since R is an asymmetric relation, f is
necessarily complete. It remains to be shown that f is acyclic. Suppose there is a cycle 0, x!Rx?, ..., x° 'Rx?
, x7 Rxtwhere x%,...,x? belong to X" (for the subscripts, we shall use mod t arithmetic, so that 1 —1=¢
and o + 1 = 1. Variables 1 and k will range from 1 to ¢ ). Hence at least two steps originating from condition

GL’ for two distinct individuals and one step initiating from condition P main to such a cycle. Now, consider
X"1QX'. We get either (¥ i) X' >i ' or =(V i) X' > x"and (3 jj x" !, x' € Dj(aj), X" ' >j x"and x1—1pjxt, We

consider two individuals j and I: each of them is responsible for a step of cycle 0 proceeding from condition
GL’. Then there is a 1 such that x'"!, X' € Dj(a-j), X" >j x* and x* 'pjx* and such that (V i) x' > x'"1. Hence,
we get: X! >j x' and X' >j x**!. In addition, individual I is involved in the cycle as well. There is a k such
that X<, X! € Dy(a1), x* > X< and x*pix“*!. Suppose that « + 1 = 1-1, in other words, the step X*Rx"!
originates from condition GL’. It should be noted that this step can proceed from condition P, but this does
not modify our proof. There is somewhere in the cycle a step originating from condition GL and from an
individual different from j. For individual j, we have either x* >; x! or x*! >j x* with T [x"! >j x*] = L so
that Y;j can be empty. In both cases, T [x* >j x*!] = S. Then, in cycle 0, from x**! to x*, steps necessarily
come from condition GL’. Hence, the set Yj is nonempty since j necessarily expresses at least one strong
preference against a preference of another individual’s protected sphere in the following subpart of cycle 0
XHRx2, ..., X"Rx"!. The second stage of the proof requires to rely on the Cartesian product structure.
Suppose that an individual m is involved in cycle 0 only in steps originating from condition P. According
to (1), we get: X' >m X1, For individual m, we could have X' >m X 'and T [X >m X" '] =L, X" ! > x“and T
[x7!>m x<] =L, if all steps from x*"! to x* proceed from condition GL’. In every other case, Ym is nonempty.
In order to complete this proof, we show that m’s above preferences necessarily imply a non- empty set

Ym. For individual j, recall that X! > x, !, x € Dj(a-j) and x* 'pjx". For individual I, x* > x*!, x<, x! €

Di(a-1) and xpix ", Let X' = (x, oo, o, X XT), X = (L L ) L xM) and xE = (0 L X
xX* | ..., x"). Since individuals j and | have to express uncondi- tional preferences, we obtain (x%, ..., X, ...,
X x> O, )X ox) and O, LT )X X)) > (X L XD, But (X
XX x) = xR and (X .., XF L X L, 2 ) = X4 Let x be the social state (X, ..., x*, . X L

x"). Therefore, Ym is nonempty since individual m necessarily expresses at least one strong preference
against a preference of individuals j or I in their protected sphere. Hence cycles cannot occur.
3.Conclusion

The aim of the article is to devise a reliable way of overcoming two impossibility results developed

into a social choice theoretical context, which makes it possible to take individual rights into account
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properly. Some conceptual and formal tools are developed so that the private sphere can be protected

from aggressive preferences. The Cartesian product structure matters since it provides improved results.
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Abstract

This paper, the notions of an operations and relations on the Cartesian product over two fuzzy
matrices set are introduced and its some properties are explored. We prove some equality based on the
operation and the relation over FSs. Finally, we introducing some Cartesian formulas X4, Xs in Cartesian

product over two fuzzy matrixes sets.

Keyword: Fuzzy matrix, Cartesian product over fuzzy matrix.

1. Introduction: The theory of fuzzy sets (FS) introduction by Zadeh [42] has showed meaningful
application in many fields of studies. A fuzzy matrix with element having values in closed interval [0, 1].
R.H. Kim and F.W. Roush [19] has introduced the concept of F.W. The concept of intuitionistic fuzzy sets
proposed by Atanassov is a generalization of FS. He has introduced a non-membership grade, in addition
to the membership grade, thus allowing an aspect of uncertainty in the membership grade [2]. The IFS
(Intuitionistic Fuzzy Set) theory introduced by K.T. Atanassov [3] is interesting and useful to problem
solving. The ideas of IFS were developed in later [4, 5]. Structures on Intuitionistic Fuzzy Relations, Fuzzy
Set and System [7]. The IFS has captured much attention from researchers in various fields and many
achievements have been made, such as entropy measure of IFS [8, 22, 30, 32, and 41]. Distance or similarly
measure between IFSs [11, 20, 28, 37]. Some operations on intuitionistic Fuzzy sets, Fuzzy Set and System
[29]. In recent years the IFS theory has been applied in medical diagnosis [9]. Using the concept of IFS, Im
et al [14,15] studied Intuitionistic Fuzzy Matrix (IFM). The decision has been taken by measuring the
smallest Euclidean distance between a person and a society. Many real-world decision-making problems
such as academic career of the students, high school determination problem, medical problem, student
performance determination of a course, career determination problem, career determinations etc. have been
carried out by various researchers by using intuitionistic fuzzy Set [31]. intuitionistic fuzzy matrix, Notes
on Intuitionistic Fuzzy Sets [26]. In research was carried out on how a transitive IFM decomposed into a
sum of nilpotent IFM and symmetric IFM by Jeong et al [16]. Distance Measure between intuitionistic
Fuzzy Sets [36]. Note on some operations on intuitionistic fuzzy sets, fuzzy sets and System [43].
Aggregation operations of IFS [34, 38, 40]. The concept of upper cut sets and lower cuts of IFSs are given
by [21]. “On some properties of one Cartesian product over intuitionistic fuzzy sets”, Notes on Intuitionistic
Fuzzy Sets [6]. Intuitionistic Fuzzy Relations Equation, Advances in Fuzzy Mathematics [23]. He worked

on IFSs and they also discussed the decomposition theorem, representation theorem of IFSs by using cut
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sets (a,a’) -cut of IFMs [33]. Decomposition theorems of an Intuitionistic Fuzzy Sets, Notes on
Intuitionistic Fuzzy Sets [17]. [39] studied intuitionistic Fuzzy Value and also IFMs. He defined
intuitionistic fuzzy similarly relation and also utilizes it in clustering analysis, “intuitionistic Fuzzy Sets
and its Application in Students Performance Determination of a Course via Normalized Euclidean Distance
Method” [39]. Have contributed significantly for the development of cut sets [10, 13]. Representation and
Decomposition of an intuitionistic Fuzzy Matrix using some (a, a’) -Cuts [24]. Decomposed an IFMs into
product of idempotent [25].” Application of intuitionistic Fuzzy Sets in the Academic Career of the
Students™ [18].

2. Preliminaries

Definition 2.1: Fuzzy sets: A fuzzy set is any set that allows its members to have different degree of
membership function, having interval [0, 1].

Definition 2.2: Fuzzy matrix set: Fuzzy matrices play a vital role in scientific development. A Fuzzy
matrix may be matrix that has its parts from [0, 1]. Consider a matrix A = [a;;]3x3 Where a;; € [0,1],1 <

j < n.Then A is a Fuzzy Matrix [FM].

Definition 2.3: Fuzzy rectangular matrix: Let A = [a;;],nxn (m # n) where a;; € [0,1],1 <i<n, 1<

j < m.Then A is a Fuzzy Rectangular Matrix.

Definition 2.4: Fuzzy square matrix

_a11a12 cee alj cee aln_
Ap103p = Azj - Qop
letA={ ., . . . — "1Where, a;; € [0,1],1 <i,j < n. Then A is a fuzzy square matrix.
Qg - ay - Qg iy €101] J y s
[ Ap1Apz " Apj " App

Definition 2.5: Fuzzy row matrix: Let A= [a1, A2, a3, -+, a, ] where a;; € [0,1], j = 1,2,...,n.Then A'is
called 1 x n a fuzzy row matrix or row vector.
b
Definition 2.6: Fuzzy column matrix: Let A = l?z where a;[0,1],i = 1,2, ...,n.Then A is called m x
b
1 a fuzzy column matrix.
Definition 2.7: Fuzzy diagonal matrix: A Fuzzy square matrix A= [aif]mxn is said to fuzzy diagonal
matrix. If a;; = 0 when i#ja;01],1<1.
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Definition 2.8: Fuzzy relation: A fuzzy relation is the Cartesian product of mathematical fuzzy sets. Two
fuzzy sets are taken as input; the fuzzy relation is then equal to the cross product of the sets which is created

by vector multiplication

Definition 2.9: Cartesian Products: Consider two sets A and B. The set of all ordered pairs {a, b} where
acA & beB is called cartesian product. It is denoted by A X B. A X B = {(a, b): aeA and beB}

Definition 2.10: Membership Function: The membership function of a fuzzy set A is denoted by g,

pa: E - [0,1]. The most commonly used range of value of membership function is the unit interval [a, b].

Definition 2.11: Degree of membership function: Membership function for an intuitionistic fuzzy set A
on the universe of discourse is defined as u,:X — [0,1],Where each element X is mapped to a value
between 0 and 1. The value p,(x),x € X is called Membership value or degree of membership function.

The most commonly used range of value of membership function is the unit interval [a, b].

Definition 2.12: Degree of non-membership Function: Non-Membership function for an intuitionistic
fuzzy set A on the universe of discourse is defined as 9,: X — [0,1],Where each element X is, mapped to a
value between 0 and 1. The value 9,(x), xeX is called non-membership value or degree of non-

membership function.

Definition 2.13: Intuitionistic fuzzy set: An Intuitionistic Fuzzy Set (IFs) A in E is defined as an object
of the following form A={< X, uy(x),9,(x) >\x € E} Where the functions: u,:E — [0,1]
and 9,: E - [0,1].

Definition 2.14: Intuitionistic fuzzy matrix: An intuitionistic fuzzy matrix is a pair of fuzzy matrices,
namely, a membership and non-membership function which represent positive and negative aspects. The

concept of intuitionistic fuzzy matrices was introduced by pa le tal.

Definition 2.15: Operations on intuitionistic fuzzy sets: Let A and B be two intuitionistic fuzzy sets on
the universe X. Where, A ={[ x, us(x),y4(x)]lxeX} and B= {[ x, ug (x),y5 (x)]1xeX}.

Definition 2.16: The five Cartesian products of two IFSs A and B are defined as follows: Let A and B are

two intuitionistic fuzzy sets of the universes Az and By, then the Cartesian product of two IFSs is defined

by
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The Cartesian product " x, " is defined by

A x4 B={((x,y), min(ua(x),us (), max(1,4(x), A5(y))): x€Ey, and yeE,}.

The Cartesian product " x5 " is defined by

A x5 B ={((x,y), max(us(x), up(y)), min(Aa(x), 1 (»))): x€Ey, and yeE,}.

Theorem 3.1: If A; and B are two intuitionistic fuzzy matrices set, then Az x, By is also an intuitionistic

fuzzy matrix set.

[.UE11 ’ AEM] [HE12 ) AElz] [M513 )
Proof: If Ay = [.UE21 ) 1521] [HEZZ ) AEZZ] [.uE23 )
[.UE31 ’ AE31] [HE32 ) AE32] [ME33 )
[:an ) /1F11] [.uF12 ) /11?12] [.U'F13 ’ AF13]
[#F21 AFM] [l«lF22
[#F31 AF31] [l«lF32 ) /11?32] [.UF33 ) AF33]
Ap X4 B
[ME11 ) AEH] [E' /1512] [H513 ) AE13] [HF11 ) AFM] [
g B e B e P ) DA O e P |
7 R 1 = B P [ s Ae] |
o X111 X2 X3
Ap X4 Bp = <X21 X22 Xzs) Where,
X31 X3 Xs3

X1 = ([E»E] [E'E] [E'ED X4

Xz = ([WHJE] [E'E] [WB'ED Xy

Xi3 = ([Fepo Ae | [Feg Aes]  [Feg Ass]) X4

Xo1 = (e A | [Py Ayy] gy Asys)) Xa

Xoz = ([Feyy A5y ] [Py ] [Rige As]) Xa

['uF11’ AF11]
['uF21’ AF21]
['uF31’ AF31]

[Wu’ AF12]
[sz’ AFzz]
[Ws'z’ AF32]

[y 21, ]
<[W23 Ay

['uF33’ AF33]

['an’ AF11]
['uF21’ AF21]
['uF31’ AF31]

[E’ AF12]
[E’ AFzz]
[E’ AFsz]
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’ AFsz] [Wss ’

, A6, |Bry s 2ry,] | are two intuitionistic fuzzy matrix sets. Thus Ay X, By,
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['uF13’ AF13]
['qus’ AFzs]
['qus’ AFss]

X3 = ([E’E] [l’LEzz'/lEzz] [HEzs'/lEzs ) X4

['qul’ AFBl]

['uF12’ AF12]
['quz’ AFzz]
['uF32’ AF32]

X3z = ([/1531,/1531] ['uE32'/1532] ['uE33'AEssD X4

[MF11’/1F11]
X31 = (['uEsl’/lEsl] ['uE32'/1532] [ME33'AE33D X4 [HF21’/1F21]

[HF13’/1F13]
X33 = ([/1531 /1531] [E’ /1532] [E’AEwD X4 [Fzy AF23]
[HF33’/1F33]

HEy ;> 1511 X4 Wn’ E] + [le’ E] X4 [Wm‘ ﬁu] + [“513’E] X4 [Wm’ E]

= [z,
=

Hery Amny | Xa (e Ar | + (B Am, | Xa [Hry Ay | + (s Aris ] Xa [Frys Ay, ]

[uEn Aeg ] Xa By Ary ) + (e 261, ) ¥a (B Arys) + [BErys by, | Xa [y Arss

X1 = HE, /1521 X4 Wn'ﬁn] + [E’Fzz] X4 [sz E] + [E’E] X4 ['qupa]

A %o By A, ] + [y A, | X4 (B Ay, ) + (230 Ay, | Xa [Ty, AR

g, | %a [

g, | %a [

g, | %a [

g | %o [

Fyy Ay | %a (A A, | + [y Ay, | Xa [y Ay | + [Firgs Ay | Xa [y 2, |

g, | Xa [

Xs1 = [y Agy, | X [y, 2e, | + [Fmy A, | % [ AR, | + e Aes ] %o [ 2,
g, | x4 [

[z
= [Fe,,
= [
[z
= [, Ay, | %4 [Bry 26, | + (e Aes, ) %4 [y AR, | + RS ARy, | X4 [BRy 2, )

X33 = [,y Amy, | X [y, Aes ] + [Fmy Ams, | %o B, A, ] + [HEss Aes ] %o [P, 2]

Now, by applying this A x, B = {((x,y), min(us(x),us (), max(A4(x), A5(¥))): xeEy, and yeE,}.
X11 = [min(fg,,, Tr, ), max(Ag,,, A, )|+ [min(fz,,, B, ), max(Ag,,, Ar,, )]

+[min(fz,;, B, ), max (e, Ar,, )]

X15 = [min(fig,,, Ty, ), max(Ag,, A, ) |+ [min(fg,,, B, ), max(Ag,,, r,,)|

+[min(fe;, r;, ), max (e, Ar,, )|

X13 = [min(@z,,, ir,, ), max(Ae,,, Ar,, ) |+ [min(iz,,, B,y ) max (s, 2s,,)]

+[min(fe,;, r, ), max (e, Ar,, )|

Xo1 = [min(fis,,, fr,, ), max(Ag,,, A, ) |+ [min(iis,,, B, ) max(2s,,, 2s,, )]

+[min(@z,,, ir, ), max(As,,, Ar,)]

Xy, = [min(fis,,, iy, ) max(Ag,,, Ap, ) [+ [min(iz,,, 7r,, ), max(2s,,, 2r,,)| +

[min(fis,,, ir,, ) max(Ag,,, 2r,, )]

179



Fuzzy, Intuitionis

tic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

X3 = [min(ig,,, Ty, ) max(Ag,,, Ar,, ) [¥[min(is,,, ix,, ),
[min(#g,,, Br,, ), max(g,,, Ar,, )|
X3y = [min(fg,,, Ty, ) max(Ag,,, Ar, ) [¥[min(is,;, @x,,),

fmin (s ) ey 7,

max (e, Ar, )| +

max (e, Ar,,)| +

Xz = |[min(Be,,, B, ) max(Ze,, Ar,, ) [ [min(Be,,, Bry,), max(Ae,,, 2,,)]

i (5 ) max (T )

X3 = [min(Be,,, By ) max(Ae,,, Ar,, ) [ [min(B,,, Bry;) max(Ag,,, 2r,,)] +

fmin (i ) max (g 7|

By using, A+ B + C = max(A,B) +C

X1, = max [[min(m, Wn), max(AEn,AFn)], [min(m,

min (i, ) max (T )|

X1, = max [[min(m, Wu), max(E, E)], [min(@,

fmin (7 ) max (g 7|

Xis = max [ [min 7 ), max (R, i) [min(iz,

[min(ig,,, Br,, ), max(2g,,, Ar,, )|

Xo1 = max [[min iz, ), max (R, ) [miniz,

[min(itg,,, Br,, ), max(2g,,, Ar,, )|

Xoz = max [[min iz, ), max (R, ) [miniz

+[min(fiz,,, fr, ) max(Ag,,, Ar,, )]

Xos = max [[min iz, ), max (g, T [miniz,

+[min(tiz,,, fr, ), max(Ag,,, Ar,, )]

Xs1 = masx [[min (s, ), max (R, T [miniz,

+[min(is,,, g, ), max(Ag,,, 2r,, )|

Xss = max | [min( ), max(Tay, A [min (i,

+[min(is,,, s, ), max (A, 2r,, )|

Xss = max | [min( ), max (T, A, [min(ze,

+[min(Hs,;, By ), max(Ag,, 2]
By using, A + B + C = max{max(A,B),C}
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i) max(Zg,,, A, | +

i) max(Zg,,, A, )| +

) max(Te,,, 7r,,)]| +
i), max(As,, 2, )|
i), max (A, 2, )|
i), max(As,,, 2, )|

ir, ) max(As,,, 2s,, )|

Ty ) max(Ag,,, Ar,, )|



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

X114 = max

X1, = max

Xi3 = max

X5, = max 3

X5, = max 3

X,3 = max 3

X371 = max 3

X3, = max 3

X33 = max 3

Ap X4 Bp =

max |[min(fiz,;, Try ), max (e, Zn,,)], [min(fiz,, imy;), max (g, Zsy,)] |

[min(@tg,;, e, ), max(Ag,,, Ar,, )|

max | [min(#z,, ey, ) max (Fz,,, A, ), [min(is,, ey,) max (2, 7m, )| |

fmin (G ) max (g 7|

max [[mln(m' WB)' max (/1511’ /11‘13)]’ [mln(m’ Wzs)’ max (E’ E)” ’

i (G ) max (g 7|

max |[min(fig,;, Tr, ), max (e, Ze,,) ), [min(fizy,, imy;), max(Ag,,, Zsy,)] |

[min(Fz,;, By ) max(Ze,, 2, )|

max |[min(fig,;, Tr, ), max (e, Zey,) ), [min(fizy,, ey, ), max(Ag,,, Zsy,)] |
[min(#z,,, i, ), max(Ag,,, Ar, )]

max [[mln(E' Wn)’ max (1521’ AF13)]' [mln(E‘ Wzs)’ max(E’ E)” de
[min(@z,;, fr,;) max(1e,,. Ar,,)]

max [[min (i, 72) max (s, A i (e ) a2 )
i (7 ) max (R )

max |[min(iig,;, Tr, ), max (e, Zey,) ), [min(fis,, iy, ), max(g,,, Zsy,)] | |
[min(@g,,, Br,,), max(Ag,,, Ar,, )]

max | [min(fg, i, ), max (A, Ay, )], [min(fe;, Biyg) max (2, 75,1 )
[min(f,s, By ) max(Ze,, A, )|

X111 X1z Xi3 _
X1 Xy Xz3 ). Hence, Ay X, Bp is an intuitionistic fuzzy matrix set.
X31 X32 X33

Python program for Ag x, Bp

#input the values

a_l1=float(input(“a_11="))
b_11=float(input("b_11="))
c_11=float(input("c_11="))
d_11=float(input("d_11="))
a_l12=float(input("a_12="))
b_12=float(input("b_12="))
c_12=float(input("c_12="))
d_12=float(input(*"d_12="))
a_13=float(input("a_13="))
b_13=float(input(""b_13="))
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c_13=float(input("c_13="))
d_13=float(input(*d_13="))
a_21=float(input("a_21="))
b_21=float(input("b_21="))
c_21=float(input("c_21="))
d_21=float(input(*d_21="))
a_22=float(input("a_22="))
b_22=float(input("'b_22="))
c_22=float(input("c_22="))
d_22=float(input(*d_22="))
a_23=float(input("a_23="))
b_23=float(input("'b_23="))
c_23=float(input("c_23="))
d_23=float(input("'d_23="))
a_31=float(input("a_31="))
b_31=float(input("b_31="))
c_31=float(input("c_31="))
d_31=float(input(*d_31="))
a_32=float(input("a_32="))
b_32=float(input("b_32="))
c_32=float(input("c_32="))
d_32=float(input("'d_32="))
a_33=float(input("a_33="))
b_33=float(input("b_33="))
¢_33=float(input(*“c_33="))
d_33=float(input("'d_33="))
#creating variables for c_11
a_l=min(a_11,c_11)

a_2=max(b_11,d_11)

a_3=min(a_12,c_21)

a_4=max(b_12,d_21)

a_5=min(a_13,c_31)

a_6=max(b_13,d_31)

#creating cells
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x_11=[max((max(a_1,a_3)),a_5),max(max(a_2,a_4),a_6)]
print("c_11=",x_11)

#creating variables for ¢c_12

b _1=min(a_11,c_12)

b_2=max(b_11,d_12)

b_3=min(a_12,c_22)

b_4=max(b_12,d_22)

b_5=min(a_13,c_32)

b_6=max(b_13,d_32)

#creating cells
x_12=[max((max(b_1,b_3)),b_5),max(max(b_2,b_4),b_6)]
print("c_12=",x_12)

#creating variables for c_13

c_1=min(a_11,c_13)

c_2=max(b_11,d_13)

c_3=min(a_12,c_23)

c_4=max(b_12,d_23)

¢_5=min(a_13,c_33)

c_6=max(b_13,d_33)

#creating cells
x_13=[max((max(c_1,c_3)),c_5),max(max(c_2,c_4),c_6)]
print("c_13=",x_13)

#creating variables for ¢_21

d 1=min(a_21,c_11)

d 2=max(b_21,d 11)

d 3=min(a_22,c_21)

d 4=max(b_22,d _21)

d 5=min(a_23,c_31)

d 6=max(b_23,d _31)

#creating cells
x_21=[max((max(d_1,d_3)),d_5),max(max(d_2,d_4),d_6)]
print("c_21=",x 21)

#creating variables for ¢_22

e 1=min(a_21,c_12)
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e _2=max(b_21,d_12)
e_3=min(a_22,c_22)
e_4=max(b_22,d_22)
e_5=min(a_23,c_32)
e_6=max(b_23,d_32)
#creating cells
x_22=[max((max(e_1,e_3)),e_5),max(max(e_2,e_4),e_6)]
print("c_22=",x_22)
#creating variables for c_23
f 1=min(a_21,c_13)

f 2=max(b_21,d_13)

f 3=min(a_22,c_23)

f 4=max(b_22,d_23)
f_5=min(a_23,c_33)

f 6=max(b_23,d_33)
#creating cells
x_23=[max((max(f_1,f 3)),f 5),max(max(f _2,f 4),f 6)]
print("c_23=",x_23)
#creating variables for ¢_31
g_l=min(a_31,c_11)
g_2=max(b_31,d _11)
g_3=min(a_32,c_21)
g_4=max(b_32,d_21)
g_5=min(a_33,c_31)
g_6=max(b_33,d_31)
#creating cells
x_31=[max((max(g_1,9_3)),9_5),max(max(g_2,9_4),9_6)]
print("c_31=",x_31)
#creating variables for ¢_32
h_1=min(a_31,c_12)
h_2=max(b_31,d_12)
h_3=min(a_32,c_22)
h_4=max(b_32,d_22)
h_5=min(a_33,c_32)
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h_6=max(b_33,d_32)
#creating cells
x_32=[max((max(h_1,h_3)),h_5),max(max(h_2,h_4),h_6)]
print(""c_32=",x_32)
#creating variables for c_33
i_1=min(a_31,c_13)
i_2=max(b_31,d_13)
i_3=min(a_32,c_23)
i_4=max(b_32,d_23)
i_5=min(a_33,c_33)
i_6=max(b_33,d_33)
#creating cells
x_33=[max((max(i_1,i_3)),i_5),max(max(i_2,i_4),i_6)]
print("c_33=",x_33)
Output:

a_11=0.4

b 11=0.6

c 11=0.3

d 11=0.6

a_12=0.4

b 12=0.5

c 12=0.3

d 12=0.7

a_13=0.3

b 13=0.6

c 13=0.2

d 13=0.4

a_21=0.2

b 21=0.8

c 21=0.4

d 21=0.6

a_22=0.3

b 22=0.7

c_22=0.4

185



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in

Decision Analysis

d 22=0.5
a_23=0

b 23=1
c_23=0.2
d_23=0.7
a_31=0.2

b 31=0.4

c 31=0.2
d_31=0.8
a_32=0.3
b_32=0.4
c_32=0.2
d_32=04
a_33=0.2
b_33=0.7

c 33=0.3
d_33=0.4

c 11=[0.4, 0.8]
c 12=[0.4,0.7]
¢ 13=[0.3,0.7]
¢ 21=[0.3, 1.0]
¢ 22=[0.3, 1.0]
¢ 23=[0.2, 1.0]
¢ 31=[0.3,0.8]
¢ 32=[0.3,0.7]
¢ 33=[0.2,0.7]

Theorem 3.2: If Az and By are two intuitionistic fuzzy matrix set, then Az X By is also an intuitionistic

fuzzy matrix set .

['uEn ’
Proof: If A; = | [Fg,

[#531 ’

/1512] ['uE13 ’ AEl]
/1522] ['uEzs ’ /1523] and
/1532] ['uEss ’ /1533]
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X11 = ([E' /1511] [E’ E] ['u'E13’AEl3]> X5

Xo3 = ([E'AEZJ

HEs; ) /1531]

AF12] [HF13 ’ /11‘13]
25,1 |Fm.» 2m,] | are two intuitionistic fuzzy matrix sets. Thus

AFSZ] [HF33 ’ K]

HEy ;5 » AE13] ['an ’ AFn] ['uF12 ’ /1F12] [nuF13 ’ /1F13]
ME,; » E] Xs [Wm; /1F21] [.quz ) /1F22] [.UF23 ) /11:23]
HE3s » 1533] ['uF31 ’ AF31] [nuF32 ’ /1F32] [.uF33 ’ /1F33]

) Where,

['u'Fu’ AFll]
['u'F21’ AF21]
[“F31‘AF31]

[‘uF12‘ ﬂ'1;'12]
[‘quz‘ ﬂ'Fzz]
[‘uF32‘ AF32]

[/,1513, E]) Xs

[WB‘ AF13]
[Wzy AF23]
[W33‘ AF33]

[E'ED Xs

[Wn‘ AF11]
[Wzﬂ AF21]
[Wn’ AF31]

(
(
(
(
(
(
(

[E’ /1523]) X5

['quz’ AFzz]
['uF32’ AF32]

['uEz3’ E]) X5

[Wm’ AF13]
[Wzy AF23]
[WR’ AF33]

[E’E]) X5

['an’ AF11]
['uF21’ AF21]
['uF31’ AF31]

['uEss' /1533]) X5

['uF12’ AF12]
['quz’ AFzz]
['uF32’ AFsz]

[#533' K33]) X5
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L L L [HF13’/1F13]
X33 = ([Fe Aess | e Ars, ] [P s ]) Xs | [y Ar)
[HF33’/1F33]

X11 = [y A | X5 [Brg Ay | + Ry 25| X5 (B Ary | + [BEr e | X5 [Bry A, |

|
X1z = [Beyy 26y ) X5 [Hry 26y, | + [HE Ae, | ¥s (e Ary, | + [ Az, | Xs [Bey» AR, ]
75,

X3 = 'uEll’/lEll Xs E’E] + [E‘E] X5 [FZS’E] + [ME13’E] X5 [W%’?ss]

ey Ay,) Xs [y o) + [y 2] Xs [y Aryy) + [y Aege) Xs |

Xo2 = [Fgyy Ak, | ¥s [Brgs Ars )] + By Ay, | Xs (B Ay, | + [y Ass | X [y AR, ]

X31

Hey 0 Apsy ) Xs [Hry Ay, | + (B Apsy | Xs [Hryy Aryy | + [Hreys Arss ] X5 [Hrsys Ay,

Ze | %s |
Ixs ]
Ze | %s |
Aoy | %s |
Aoy | %s |
Aoy | %s |
Zea | %s |
Ao | %s |

=
[zr
= fgy, A6, | X5 [y, Ary, | + By Ay, | X5 (B Ay, ) + (P23, Ay, | X5 [y AR,
[
[zr

Xs2 = |Fig,,, AEM Xs [frgs Arys ] + [BEsy A, | Xs [Ty Ay | + [y Arss | Xs (B AR, ]

Xs3 = [y Aps, | Xs [Brngs Arry | + [Fy Ay | Xs (B Aryy | + [Hny) Ay | X [y gy ]

Now, by applying this A X;B = {((x,y), max(,uA(x),,uB (y)) , min(A4(x), Ag(¥))): xeE,, and yeE,}.

X1y = [max(#g,,, T, ) min(Ag,,, Ar,, ) | +[max (G, Bry, ), min(Ag,,, 2r, )] +
[max(@tz;, i, ) min(Ag, ,, Ap, )|

X1, = [max(@e,,, fir, ) min(Ag,,, A, ) |+ [max(@ie,, i, ), min(g, ,, Ar,, )| +
[max(@iz;, iir,,) min(Ag, ,, Ar, )|

X13 = [max(@e,,, fir, ) min(Ag,,, Ap,, ) |+ [max(@e,, i, ), min(Ag, ,, Ar,, )| +
[max(@iz;, fir,,) min(Ag, ,, Ar,,)|

Xp1 = [max(fig,,, gy, ) min(Ag,,, Ar,, ) [+ [max(@is,,, i, ), min(Ag, ,, r,, )|
+[max(fiz,,, ir,, ), min(2s,,, Ar,, )|

Xz, = [max(Wig,,, fir,, ), min(Ag,,, Ar,,) [+ [max(@is,,, i, ), min(Ag, . Ar,, )| +
[max(@iE,, fir;, ) min(Ag,,, Ar,, )|

Xp3 = [max(Wig,,, fir,, ), min(Ag,,, Ar,, ) [+ [max(@is,,, i, ), min(g, . r,, )| +
[max (&g, fir,, ) min(Ag, ,, Ar,,)|

X31 = [max(Wg,,, fir,, ) min(Ag,,, A, ) [+[max(fz,,, Br,, ) min(2,,, Ar,, )| +
[max(@ie;, fir,, ) min(Ag,,, Ar, )|

X3, = [max(fig,,, ey, ), min(Ag,,, A, ) |+ [max(fiz,;, ir,, ), min(2s,,, 2s,,)]
+max (Fg,;, sy, ), min(Ag, . Ar,, )]

X33 = [max(fig,,, Bry, ), min(Ag,,, A, ) [+ [max (s, iy, ) min(2s,,, 2s,,) ] +

[max (g, Bry, ), min(g,,, A5, )]
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By using, A+ B + C = max(A,B) +C

X,y = max |[max (g, By ), min (g, Ar,, )], [max (e, iy ), min(Ae,,, 2, )] | +
[max(@tz;, 7ir,, ) min(Ag, ;. Ar, )|

Xy, = max |[max (g, Ty ), min(Ae,,, Ay, )], [max (e, iy ) min(Aey,. 27, ) 1| +

(i ) min (g 7,

X1z = max |[max (g, Brry) min(Ae,,, 2, )], [max(s, B ), min(Ts,, Ay )|

x5 ) min (T )

Xg1 = max | [max(7e,, Ty ) min(Ae,,, 2, ), [max (7, iy ), min(ey,, 27, )|
+[max(Fg,,, B, ), min(g, . 2., )|

Xy = max | [max(fig,,, Te,), min(Ag,,, Ar,,)], [max(iiz,,, ey, ) min(g,,, s, )] | +
[max(Fz,,, By, ), min(Ag,,, A, )|

Xy3 = max |[max(7g,, ey, min(Ag,,, Zey, )|, [max (@, ey, ), min(Ag,,, 2y, )|
+[max (Fg,,, Br, ), min(Ag,,, 2., )|

Xa1 = max |[max(iig,,, Ty, ), min(Agy,, A, )| [max (i, iy, ), min(g,,, 2, )|
+[max(fiz,;, ir, ), min(2e,,, Ar,,)|

Xy, = max |[max(@g,,, e, ), min(Ag,,, Ze,,)], [max(#;, ey, ), min(g,,, Zs,, )] +

[max (B, Bey,), min(2e,, A, )]

Xs5 = max|[max(@g;, Bry), min(Z,,, 2, [max (e, By ), min(Zg,y, 72, | +

[max (e, ey, ), min(Ag,,, Ar,, )]
By using, A + B + C = max{max(A,B),C}

%oy = mase )" (Imax(e s ) min(Ae,,, An, )} [max(e,, e min(2s,,, 2s, )1 |

[max(#e, Bey,), min(Ze,, 2, )]

X,y = mase )" (Imax(e s i) min(Ae,,, An, )] [max(e,, e, ) min(2s,,, 2r, )1 ||

[max(wz;, Bry,), min(Ag,,, Ar,, )]

Xy5 = max {max |[max(#iz,;, Gy ) min(Ag,,, Zey, ), [max(fiz,,, fimy ) min(As,,, Zsy, )]}

[max(@z,,, By, ), min(Ag,,, A, )|

max |[max(iig,;, i, ) min(As,,, Zey, )], [max (i, iy, ) min(Ag,, 25, |

X51 = max -
[max(Fg,,, B, ), min(Ag,,, As,, )|
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Xy, = max -
|max(F,,, By, ), min(Ag,,, 2., )|

X,3 = max -
[max(@, Wss), min(/1523, /1F33)]

X371 = max -
[max(@, Wsl), min(/1533, /1F31)]

X3, = max

(T ) min(sy 7,

Yo — ma 10 | max(e 7). min(ae, 26, [max(, ), min(e,. 2,1
[max(ﬁw’ Fw)’ min(/1533’ AF33)]

. _ X11 X12 X13 - _
Ap Xs Bp = | X31 Xy Xp3 |. Hence, Ag Xs B is an intuitionistic fuzzy matrix set..
X31 X32 X33

Python program for Ag x5 B
#input the values
a_11=float(input("a_11="))
b_11=float(input("b_11="))
c_11=float(input("c_11="))
d_11=float(input("d_11="))
a_12=float(input("a_12="))
b_12=float(input("b_12="))
c_12=float(input("c_12="))
d_12=float(input("'d_12="))
a_13=float(input("a_13="))
b_13=float(input("'b_13="))
c_13=float(input(“c_13="))
d_13=float(input("d_13="))
a_21=float(input("a_21="))
b_21=float(input("b_21="))
c_21=float(input("c_21="))
d_21=float(input(*"d_21="))
a_22=float(input("a_22="))
b_22=float(input(""b_22="))

c_22=float(input("c_22="))
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d_22=float(input("d_22="))
a_23=float(input("a_23="))
b_23=float(input(""b_23="))
c_23=float(input("c_23="))
d_23=float(input("'d_23="))
a_31=float(input("a_31="))
b_31=float(input(""b_31="))
c_31=float(input("c_31="))
d_31=float(input(*d_31="))
a_32=float(input("a_32="))
b_32=float(input(""b_32="))
c_32=float(input("c_32="))
d_32=float(input(*d_32="))
a_33=float(input("a_33="))
b_33=float(input(""b_33="))
c_33=float(input("c_33="))
d_33=float(input("d_33="))

#creating variables for ¢c_11

a_1=2*((a_11*c_11)/(a_11+c_11))
a_2=2*((b_11*d_11)/(b_11+d_11))
a_3=2*((a_12*c_21)/(a_12+c_21))
a_4=2*((b_12*d_21)/(b_12+d_21))
a_5=2*((a_13*c_31)/(a_13+c_31))
a_6=2*((b_13*d_31)/(b_13+d_31))

#creating cells

x_11=[max((max(a_1, a_3)),a_5),max(max(a_2,a_4),a_6)]

print("c_11=", x_11)

#creating variables for ¢_12

b 1=2*((a_11*c_12)/(a_11+c_12))
b_2=2*((b_11*d_12)/(b_11+d_12))
b _3=2%((a_12*c_22)/(a_12+c_22))
b_4=2*((b_12*d_22)/(b_12+d_22))
b 5=2*((a_13*c_32)/(a_13+c_32))
b_6=2*((b_13*d_32)/(b_13+d_32))
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#creating cells
x_12=[max((max(b_1,b_3)),b_5),max(max(b_2,b_4),b_6)]
print(c_12=",x_12)

#creating variables for c_13
c_1=2*((a_11*c_13)/(a_11+c_13))
c_2=2*((b_11*d_13)/(b_11+d_13))
c_3=2*((a_12*c_23)/(a_12+c_23))
c_4=2*((b_12*d_23)/(b_12+d_23))
c_5=2*((a_13*c_33)/(a_13+c_33))
c_6=2*((b_13*d_33)/(b_13+d_33))

#creating cells
x_13=[max((max(c_1,c_3)),c_5),max(max(c_2,c_4),c_6)]
print("c_13=",x_13)

#creating variables for ¢_21

d 1=2*((a_21*c_11)/(a_21+c_11))
d_2=2*((b_21*d_11)/(b_21+d_11))
d_3=2*((a_22*c_21)/(a_22+c_21))
d_4=2*((b_22*d_21)/(b_22+d_21))
d_5=2*((a_23*c_31)/(a_23+c_31))
d_6=2*((b_23*d_31)/(b_23+d_31))

#creating cells
x_21=[max((max(d_1,d_3)),d_5),max(max(d_2,d_4),d _6)]
print(c_21=",x _21)

#creating variables for ¢_22

e 1=2*((a_21*c_12)/(a_21+c_12))

e _2=2*((b_21*d_12)/(b_21+d_12))

e 3=2*((a_22*c_22)/(a_22+c_22))
e_4=2*((b_22*d_22)/(b_22+d_22))

e 5=2*((a_23*c_32)/(a_23+c_32))
e_6=2*((b_23*d_32)/(b_23+d_32))

#creating cells
X_22=[max((max(e_1,e_3)),e_5),max(max(e_2,e_4),e 6)]
print(c_22=",x_22)

#creating variables for ¢c_23
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f 1=2*((a_21*c_13)/(a_21+c_13))
f_2=2*((b_21*d_13)/(b_21+d_13))
f_3=2*((a_22*c_23)/(a_22+c_23))
f_4=2*((b_22*d_23)/(b_22+d_23))
f 5=2*((a_23*c_33)/(a_23+c_33))
f_6=2*((b_23*d_33)/(b_23+d_33))
#creating cells
x_23=[max((max(f_1,f 3)),f 5),max(max(f_2,f 4),f 6)]
print("c_23=",x_23)

#creating variables for ¢_31
g_1=2*((a_31*c_11)/(a_31+c_11))
g_2=2*((b_31*d_11)/(b_31+d_11))
g_3=2*((a_32*c_21)/(a_32+c_21))
g_4=2*((b_32*d_21)/(b_32+d_21))
g_5=2*((a_33*c_31)/(a_33+c_31))
g_6=2*((b_33*d_31)/(b_33+d_31))
#creating cells
x_31=[max((max(g_1,9_3)),9_5),max(max(g_2,9_4),g9_6)]
print("c_31=",x_31)

#creating variables for ¢_32
h_1=2*((a_31*c_12)/(a_31+c_12))
h_2=2*((b_31*d_12)/(b_31+d_12))
h_3=2%((a_32*c_22)/(a_32+c_22))
h_4=2*((b_32*d_22)/(b_32+d_22))
h_5=2*((a_33*c_32)/(a_33+c_32))
h_6=2*((b_33*d_32)/(b_33+d_32))
#creating cells
x_32=[max((max(h_1,h_3)),h_5),max(max(h_2,h_4),h_6)]
print(""c_32=",x_32)

#creating variables for ¢_33
i_1=2*((a_31*c_13)/(a_31+c_13))
i_2=2*((b_31*d_13)/(b_31+d_13))
i_3=2*((a_32*c_23)/(a_32+c_23))
i_4=2*((b_32*d_23)/(b_32+d_23))
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i_5=2*((a_33*c_33)/(a_33+c_33))
i_6=2*((b_33*d_33)/(b_33+d_33))
#creating cells
x_33=[max((max(i_1,i_3)),i_5),max(max(i_2,i_4),i_6)]
print("c_33=",x_33)
Output:

a_11=0.4

b_11=0.6

c_11=0.3

d_11=0.6

a_12=0.4

b_12=0.5

c_12=0.3

d 12=0.7

a_13=0.3

b 13=0.6

c 13=0.2

d_13=0.4

a_21=0.2

b 21=0.8

c 21=0.4

d 21=0.6

a_22=0.3

b 22=0.7

c 22=0.4

d 22=0.5

a_23=0

b 23=1

c 23=0.2

d 23=0.7

a_31=0.2

b 31=0.4

c 31=0.2

d 31=0.8
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a_32=0.3

b_32=0.4

c_32=0.2

d_32=0.4

a_33=0.2

b_33=0.7

c_33=0.3

d_33=0.4

c_11=[0.4, 0.6]

c_12=[0.4, 0.6]

c_13=1[0.4,0.5]

c_21=[0.4,0.8]

c_22=[0.4,0.7]

c_23=1[0.3,0.7]

c_31=[0.4,0.7]

c_32=[0.4, 0.4]

¢ _33=[0.3,0.4]

Conclusion: In this paper, we represent an intuitionistic fuzzy matrix set (IFMs) as the Cartesian product
of its membership and non-membership matrices. We introduce " x;"," X, "," X3 "," X, "," Xg" of
Cartesian product over intuitionistic fuzzy matrix sets. A new intuitionistic fuzzy matrix sets can be

generated by the use of the Cartesian product of two intuitionistic fuzzy matrix sets.
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Abstract
In this paper we derive the notion of quadripartitioned neutrosophic topological

group on d-algebra and using d-algebra as a tool we present the features of
quadripartitioned neutrosophic BCK-ideal, d-algebra and quick ideals of d-algebra and

its topological group structure.

Keywords : Fuzzy Neutrosophic set, Fuzzy Neutrosophic topological space,

Quadripartitioned Neutrosophic set and Fuzzy Neutrosophic product space.

1 Introduction
The concept of neutrosophic set was introduced by Smarnandache [28, 29]. The traditional neutrosophic
sets is characterized by the truth value, indeterminate value and false value. Neutrosophic set is a

mathematically tool for handling problems involving imprecise, indeterminacy inconsistent data and

inconsistent information which exits in belief system. The concept of neutrosophic set which

overcomes the inherent difficulties that existed in fuzzy sets and intuitionistic fuzzy sets.

2 Preliminary Notes

Definition 2.1. [1] A Fuzzy neutrosophic set A over the non-empty set X is said to
be empty fuzzy neutrosophic set if Ta(x) =0, Ia(x) = 0,Fa(x) = 1,V X

€ X. It is denoted by On.
A Fuzzy neutrosophic set A over the non-empty set X is said to be universe fuzzy
neutrosophic set if Ta(x) = 1, Ia(X) = 1,Fa(x) = 0,V x € X. It is de- noted by 1n.

3. QUADRIPARTITIONED NEUTROSOPHIC TOPOLOGICAL GROUP ON d-ALGEBRAS

In this section we derive the notion of quadripartitioned neutrosophic sets on d-algebra and using d-algebra
as a tool we present the featured of quadripartitioned neutrosophic BCK-ideal, d-ideal and quick ideals of
d-algebra and its topological group structures.
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Definition 3.1. Let X be a d-algebra. An quadripartitioned neutrosophic set D=<x,Tp, Cp, Up Fp > in X'is
called an  quadripartitioned  neutrosophic  d-algebra  if it  satisfies Tp(x*xy) =

min(Tp (), Tp (¥)), Cp (%, y) = min(Cp(x), Cp(¥)), Up (x *y) < max(Up(x), Up(y)) and Fp(x*y) <
max(Fp(x), Fp(y)) for all x,y € X.

Example 3.2. consider a d-algebra X={0,a,b,c} with the following Cayley table.

*x 0 a b c
0O 0 0 0 O
a a 0 0 b
b b b 0 0
c ¢c ¢c c¢c O

Let D=<x, Tp, Cp, Up Fp> be an quadripartitoned neutrosophic set in X defined by
Tp(0) = Tp(a) = 0.8, Tp(b) = Tp(c) = 0.3

Cp(0) = Cp(a) = 0.75,Cp(b) = Cp(c) = 0.15

Up(0) = Up(a) = 0.03,Up(b) = Up(c) = 0.08

Fp(0) = Fp(a) = 0.03,Fp(b) = Fp(c) = 0.08

Then D=<Xx, Tp, Cp, Up Fp> be an quadripartitoned neutrosophic d-algebra.

Example 3.3. Consider a d-algebra X={0,a,b,c} with the following Cayley table.

* 0 a b c
0O 0 0 0 O
a a 0 0 a
b b b 0 0
c ¢c c a 0

Let D=<x, Tp, Cp, Up Fp> be an quadripartitoned neutrosophic set in X defined by

Tp(0) = Tp(a) = Tp(c) = ay, Tp(b) = a;

Cp(0) = Cp(a) = Cp(c) = B4,Cp(b) = B,

Up(0) = Up(a) = Up(c) =v1,Up(b) =,

Fp(0) = Fp(a) = Fp(c) = 6;Fp(b) =8,

Where o; >y, B1 > B2, V1 < vzand 8, < 8, and o + B; + v; + 6 € [0,4] for i=1,2. Then D=<x,
Tp, Cp, Up Fp> be an quadripartitoned neutrosophic d-algebra.

Proposition 3.4. If a quadripartitioned neutrosophic set D= < x, Tp, Cp, Up Fp> in X a quadripartitioned
neutrosophic d-algebra of X, then Tp(0) = Tp(x), Cp(0) = Cp(x), Up(0) < Up(x) and Fp(0) < Fp(x),
for all x,y € X.
Proof: Let x€ X. Then Tp(0) = Tp(x * y) = min(Tp(x), Tp(x)) = Tp(x)

Cp(0) =Cpx*y) = min(CD(X).CD(X)) = Cp(x),

Up(0) = Up(x*y) < maX(UD(X); UD(Y)) = Up(x)

Fp(0) = Fp(x *y) < max(Fp(x), Fp(y)) = Fp(x)

Theorem 3.5. If {D/k € K} is an arbitrary family of quadripartitioned neutrosophic d-algebra of X, then
N Dy is a quadripartitioned neutrosophic d-algebra of X where N Dy, =< x,A Tp,A Cp,,V Up,,V Fp, >/x €
X.
Proof : Let x,yeX. Then
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ATp, (x*y) 2A (min{Tp, (x), Tp, ()} = (min{A Tp, (x),A Tp, (¥)}

A Cp, (x *y) 2A (min{Cp, (x), Cp, (¥)} = (min{A Cp, (x),A Cp, (¥)}

V Up, (x *y) <V (max{Up, (x), Up, (y)} = (max{Vv Up, (x),v Up, (¥)}

V Fp, (x *y) <V (max{Fp, (x), Fp, (y)} = (max{V Fp, (x),v Fp, (y)}

Hence N Dy =< x,A Tp,A Cp,,V Up,,V Fp, >/x € X is a quadripartitiomed neutrosophic d-algebra of X.

Theorem 3.6. If a quadripartitioned neutrosophic set D= < x, Tp, Cp, Up Fp> in X a quadripartitioned
neutrosophic d-algebra of X, then the sets Xt = {x € X/Tp(x) = Tp(0)}, X¢c = {x € X/Cp(x) = Cp(0)},
Xy = {x € X/Up(x) = Up(0)}and Xz = {x € X/Fp(x) = Fp(0)} are d-subalgebras of X.

Proof: Let x,y€ X1. Then Tp (x) = Tp(0) = Tp(y) and Tp(x * y) = min(Tp(x), Tp(y)) = Tp(0). By using
the proposition 6.4.4, we have Tp(x *y) = Tp(0) implies x * y € X. similarly we can prove for X¢, Xy
and Xg.

Definition 3.7. Let D=<x, Tp, Cp, Up Fp> be an quadripartitoned neutrosophic set in X and let o, 5,7,6 €
[0,1]. Then the set L(Tp, @) = {x € X/Tp(x) = o},

M(Cp,B) = {x € X/Cp(x) = BLN(Up,¥) = {x € X/Up(x) < Y}, P(Fp,8) = {x € X/Fp(x) <8} are
called T-level a —cut ,C-level B —cut,U-level y —cut and F-level § —cut respectively of D.

Theorem 3.8. If a quadripartitioned neutrosophic set D= < x, Tp, Cp, Up Fp> in X a quadripartitioned
neutrosophic d-algebra of X, then the T-level a —cut ,C-level 8 —cut,U-level y —cut and F-level § —cut
are d-algebra of X for every a, 8,v,6 € [0,1]

Proof: Let x,y€ L(Tp,a). Then Tp(x) =a andTp(y)=a. It follows that Tp(x*y) =
min(Tp(x), Tp(y)) = « so that x *y € L(Tp, &). Hence L(Tp, ) is ad-algebra of X. Similarly we can
prove that M(Cp, 8), N(Up,y) and P(Fp, ) is a d- algebra of X.

Theorem 3.9. Let D=<x, Tp, Cp, Up Fp> be an quadripartitoned neutrosophic set in X such that sets
L(Tp,a),M(Cp,B), N(Up,y) and P(Fp,d) are d-algebra of X. Then D =< x,Tp,Cp,Up Fp> is a
quadripartitoned neutrosophic d-algebra of X.

Proof: Assume that there exist xo,y, € X such that Tp (X, * yo) < min(Tp(xo), Tp(yo))

Let ap = - [Tp (xo * Yo) + min(Tp(xo), Tp(yo))] then

Tp (Xo * o) < &g < min(Tp(xo), Tp(¥o)) and so x, * yo & U(Tp, &) but X, * yo € U(Tp, &). This is a
contradiction and therefore Tp(x *y) = min(Tp(x), Tp(y)). Similarly we prove Cp(x*y) >
min(CD(x), Cp (X)). Now suppose that Fp(x, * yo) > max (FD(XO),FD(yO)) Let 6, = %[FD(X0 * Vo) +
max(Fp (xo), Fp(y0))] then max(Fp(x), Fp(vo)) < 8¢ < Fp(xq *yo) and sox, *y, & U(Fp,8,) but

Xo * Vo € U(Fp,8y). This is a contradiction and therefore F(x * y) < max(Fp(x), Fp(y)) for all x,yeX,
Hence the proof.

Theorem 3.10. Any d-algebra of X can be realized as T-level a —cut ,C-level  —cut,U-level y —cut and
F-level 6 —cut d-algebra of some quadripartitioned neutrosophic d-algebra of X.

Proof: Let S be a d-algebra of X. Let Tp, Cp, Up and Fp, in X are defined as Tp (x) = {a’ ifx €5

0, otherwise '’
(B ifx €8S _{y, ifx €8S _{8, ifx €8S
Cp(x) = {O, otherwise '’ Up(x) = 1, otherwise and Fp(x) = 1, otherwise '’ for all
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x € X Where «, 3,y and & are fixed numbers in (0,1) such that a« + B + y + 8 < 4. Let x,ye X. IfX,ye S,
then x xy € S. Hence Tp(x*y) = Tp(x) = Tp(y) = a and Tp(x *y) = min{Tp(x), Tp(y)},Cp (x *xy) =
Cp(x) = Cp(y) =B, Cp(x*y) = min{Cp(x),Cp(y)}and Up(x *y) = Up(x) = Up(y) =y and Up(x *
y) < min{Up(x), Up(y)}, and Fp(x * y) = Fp(x) = Fp(y) = 6 and Fp(x * y) < min{Fp(x), Fp(y)}.

If x,y¢ S then Tp(x) = Tp(y) = 0,Cp(x) = Cp(y) = 0,Up(x) = Up(y) =0 and Fp(x) = Fp(y) = 0.
Then Tp(x * y) = min{Tp (x), Tp(y)} = 0, Cp(x*y) = min{Cp(x),Cp(y)} = 0,Up(xxy) <
max{Up(x),Up(y)} = 0 andFp(x * y) < max{Fp(x), Fp(y)} = 0. If almost one of x,y€ S then atleast one
of Tp(x) and Tp(y) is equal to one. Therefore Tp(x *y) = 0 = min{Tp(x), Tp(y)},Cp(x*xy) =0 =
min{Cp (x), Cp(y)},Up(x *y) < 1 = max{Up(x), Up(y)}and Fp(x x y) < 1 = max{Fp(x), Fp(y)}. hence
D=<x, Tp, Cp, Up Fp> is a quadripartitioned neutrosophic d-algebra of X.

Theorem 3.11. Let f be a d-homomorphism of ad-algebra X into a d-algebra Y and D a quadripartitioned
neutrosophic d-algebra of Y. Then f~1(D) is a quadripartitioned neutrosophic d-algebra of X.

Proof: For any xye X we have ([ I(Tp(xx*y)=Ty(f(x*y))=Tp[f(X)*f(y)]=
min[Tp (f (%)), Tp f ((y))] = min[f~1(Tp (x)), f~1(Tp (y))]. Similarly we can show that

f=1(Cp(xxy) = min[f~(Cp(x)),f(Cpo ()]

f=1(Up(x *y) < max [f~ (Up(x)),f(Up(¥))] and

f~1(Fp(x *y) < max[f~1(Fp(x)),f"1(Fp(y))]. Hence f~1(D) is a quadripartitioned neutrosophic d-
algebra of X.

Definition 3.12. Let X be ad-algebra. A quadripartitioned neutrosophic set
D =< x, Tp, Cp, Up Fp> in X is called a quadripartiitoned neutrosophic BCK-ideal of X if it satisfies
i.  Forallx e X, Tp(0) = Tp(x),Cp(0) = Cp(x),Up(0) < Up(x),Fp(0) < Fp(x)
ii. Forallxe X, Tp(x) = min{Ty(x *y), Tp(y)}, Cp(x) = min{Cp(x *y), Cp ()}, Up (x) <
max {Up (x *y), Up(y)} and Fp (x) < max {Fp(x *y), Fp (3)}.
A quadripartitioned neutrosophic set D =< x,Tp,Cp, Up Fp> in X is called a quadripartiitoned
neutrosophic d-ideal of X if it satisfies (ii) and
iii.  Forallxe X, Tp(x*y) = Tp(x),Cp(x*y) = Cp(x), Up(x*y) < Up(x) and Fp(x *xy) < Fp(x).
A quadripartitioned neutrosophic set D =< x, T, Cp, Up Fp> in X is called a quadripartiitoned
neutrosophic d-ideal of X if it satisfies (i) and
iv.  Forallx € X, withx * y # 0, min{Tp(x), Tp(y)} = Cp(x * y), min{Cp(x), Cp(y)} =
Cp(x * y), max{Up(x), Up(y)} < Up(x * y) and max{Fp(x), Fp(y)} < Fp(x *xy)

Example 3.13. Let X={0,a,b,c,d} be a d-algebra which is not BCK-algebra with the following Cayley table.

O T L O
0O T L OO
0O o oo w
n oo oo
SO O n
SO T O O

d d ¢ c a
Let D =< x, Tp, Cp, Up, Fp> be a quadripartitioned neutrosophic set in X defined by Tp(c) =

0.03, Tp(x) = 0.5,Cp(c) = 0.12,Cp(x) = 0.6, Up(c) = 0.4,Up(x) = 0.22 and Fp(c) = 0.3,Fp(x) =
0.24, for x=c.
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Then D =< x, Tp, Cp, Up Fp> is a quadripartitioned neutrosophic BCK-ideal of X which is not a
quadripatitioned neutrosophic d-ideal of X.

Since Tp(d * ¢) = Tp(c) = 0.03 < Tp(d) = 0.5,Cp(d *c) = Cp(c) =0.12 < Tp(d) =
0.6,Up(d *c) = U(c) = 0.4 > Up(d) = 0.22 and Fp(d * ¢) = F(c) = 0.3 > Fp(d) = 0.24.

Example 3.15. Let X={0,a,b,c} be a d-algebra with the following Cayley table.
0 a b
0
0
0
b 0

Let D =< x, Tp, Cp, Up Fp> be a quadripartitioned neutrosophic set in X defined by Ty (b) =

0.4, Tp(x) = 0.7, Cp(b) = 0.23,Cp(x) = 0.6,Up(b) = 0.6, Up(x) = 0.14 and Fp(b) = 0.2, Fp(x) =
0.12, for x#b. Then D =< x, Tp, Cp, Up Fp> is a quadripartitioned neutrosophic quick -ideal of X
which is not a quadripatitioned neutrosophic BCK-ideal of X.

Since Tp(b) = 0.4 < min{Ty(b * ¢) = Tp(0), Tp(c)} = 0.7,Cp(b) = 0.23 < min{Cp(b*c) =
Cp(0),Cp(c)} = 0.6, Up(b) = 0.6 = max{Up(b *c) = Up(0),Up(c)} = 0.14 and Fp(b) = 0.2 >
max{Fp(b * ¢) = Fp(0),Fp(c)} = 0.12. Also D is a quadriparititioned neutrosophic d-algebra.

a0 T v O %
a0 o Lo o
O T O© O
SN ©n

Example 3.16. Let X={0,1,2,3} be ad-algebra with the following Cayley table.

N = O %
N = OO
N O O
SO ON
ONO W

333 3 0

Let D =< x, Tp, Cp, Up Fp> be a quadripartitioned neutrosophic set in X defined by Tp(3) =
0.2, Tp(x) = 0.8, Cp(3) = 0.3,Cp(x) = 0.7, Up(b) = 0.06,Up(x) = 0.02 and Fp(b) = 0.08,Fp(x) =
0.01, for x#3. Then D =< x, Tp, Cp, Up Fp> is a quadripartitioned neutrosophic BCK -ideal of X which
is not a quadripatitioned neutrosophic quick-ideal of X.
Since 1+3=2=%0, min{Tp(1),Tp(3)} = 0.2 < Tp(1 *3) = Tp(2) = 0.8, min{Cp(1),Cp(3)} =
0.3 < Cp(1*3) =Cp(2) = 0.7, max{Up (1), Up(3)} = 0.06 > Up(1 *3) = Up(2) = 0.02 and
max{Fp (1), Fp(3)} = 0.08 > Fp(1 % 3) = Fp(2) = 0.01.

Example 3.17. Let X={0,1,2,3} be ad-algebra with the following Cayley table.

N = O %
N = O O
N O O
S o OoOoN
OoONO W

33 020

Let D =< x,Tp, Cp, Up Fp> be a quadripartitioned neutrosophic set in X defined by Tp(2) =
0.4, Tp(x) = 0.7, Cp(2) = 0.3,Cp(x) = 0.8,Up(b) = 0.06,Up(x) = 0.01 and Fp(b) = 0.07,Fp(x) =
0.02, for x+2. Then

D =< x, Tp, Cp, Up Fp> is a quadripartitioned neutrosophic quick -ideal of X but not a quadripatitioned
neutrosophic d-algebra of X.

Since Tp(1*3)=Tp(2) =04 <min{Tp(1),Tp(3)}=0.7, Cp(1x3)=Cp(2)=03 <
min{Cp(1),Cp(3)} = 0.8,Up(1 *3) = Up(2) = 0.01 > max{Up(1),Up(3)} = 0.06 and F(1*3) =
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Fp(2) = 0.07 > max{Fp(1),Fp(3)} = 0.02. Also D =< x, Tp, Cp, Up Fp> is not a quadripartitioned
neutrosophic BCK-ideal of X. Since Tp(2) = 0.4 < min{Ty(2 * 3) = Tp(0), T (3)} = 0.7, Cp(2) =
0.2 < min{Cp(2 * 3) = Cp(0),Cp(3)} = 0.8,Up(2) = 0.06 > max{Up(2 *3) = Up(0),Up(3)} =
0.01 and Fp(2) = 0.07 > max{Fp(2 * 3) = Fp(0), Fp(3)} = 0.02.

Theorem 3.18. Let D =< x, Tp, Cp, Up Fp> by a quadripartitioned neutrosophic BCK -ideal of a d-
algebra X. Then
I.  Tp,Cp are order reversing.
ii. xxy<zimplies Tp(x *xy) = Tp(z),Cp(x*y) = Cp(z), Up(x *xy) < Up(z) and
Fp(x *xy) < Fp(z) for all x,y,zeX.
Proof:
i.  Letxye X with x <y, then x * y=0. Hence Tp(x) = min{Tp(x *y), Tp(y)} =
min{Tp(0), Tp(y)} = Tp(y). Thus Tp(x) = Tp(y). Similarly we can prove that Cy, is order
reversing.
ii.  Proof is obvious.

Theorem 3.19. Let D =< x, Tp, Cp, Up Fp> by a quadripartitioned neutrosophic BCK -ideal of a d-
algebra X. Then x *y < z implies Tp(x) = min{Tp(y), Tp(2)}, Cp(x) = min{Cp(y), Cp(2)},Up(x) <
max{Up(y), Up(z)} and Fp(x) < max{Fp(y), Fp(z)} for x,y,zeX.

Proof: Let x,y,zeX such that x *y < z. Then (x*y) *z = 0. Hence Tp(x *y) = min {Tp( (x *y) *
z), Tp(z)} = min{Ty(0), Tp(z)} = Tp(z). Therefore we have Tp(x) = min {Tp( (x*y), Tp(y)} =
min{Ty(z), Tp(y)}. Thus Tp(x) = min{Ty(y), Tp(z)}. in the similar way we obtain Cp(x) =
min{Cp(y),Cp(2)},Up(x) < max{Up(y), Up(z)}and Fp(x) < max{Fp(y),Fp(z)}.

Theorem 3.20. If {D; /i €A} be an arbitrary family of quadripartiitoned neutrosophic quick ideal of a d-
algebra X, then N D; is a quadripartitioned neutrosophic quick ideal of X where N D; = {< x,A Tp, (x),A

Cp;(x),A Up,;(x),AFp,;(x) >/x € X }.

Theorem 3.21. If a quadripatitioned neutrosophic set D =< x, Tp, Cp, Up Fp> in X is a quadripartitioned
neutrosophic quick ideal of a d-algebra X, then the T-level a« —cut ,C-level g —cut,U-level y —cut and
F-level § —cut of D are quick ideal of X for each «,f,y, § € [0,1]

Theorem 3.22. Let D =< x, Tp, Cp, Up Fp> be a quadripartitioned neutrosophic set in X such that the
sets L(Tp, ), M(Cp, ), N(Up,y) and P(Fp, §) are quick ideals of X. Then D =< x, Ty, Cp, Up Fp> is
a quadripartitioned neutrosophic quick ideal of X.

Theorem 3.23. Any quick ideal of a d-algebra X can be realized as T-level a —cut ,C-level B —cut,U-
level y —cut and F-level § —cut d-algebras of some quadripartitioned neutrosophic quick ideal of X.
Proof: Let S be quick ideal of X. Let Tp, Cp, Up and Fp in X are defined as

aq, ifx €8S B, ifx €S

Tp(x) = , Cp(x) = )
az, otherwise .32, otherwise
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Y1, ifx €S 61, ifx €S

Up(x) = , Fp(x) = ,forall x € Xwhere a; + ; +y; +
Y2, otherwise 52, otherwise

6; < 4 fori=1,2.

Let 0 €S, we have Tp(0)=ay,Ch(0) = B4,Up(0) =y; and Fp(0) =6;. Hence Tp(0) =
Tp(x),Cp(0) = Cp(x),Up(0) < Up(x) and Fp(0) < Fp(x), for all x € X.

Letx,y € Xwithx*y # 0. Ifx*y € Sthenx,y € S.

Hence Tp(x *y) = min{Tp(x), Tp(¥)}, Cp(x * y) = min{Cp(x),Cp(¥)}, Up(x *y) =
max{Up(x),Up(y)} and Fp(x *y) = max{Fp(x),Fp(y)}. Ifxxy &S, then Tp(x*y) = a,, Cp(x *
y) = B2, Up(x*y) =y, and Fp(x xy) = §5.

Hence a, = Tp(x*y) < min{Tp(x), Tp(¥)} B2 = Cp(x*y) < min{Tp(x), Tp(¥)},¥2 = Up(x *
y) = max{Up(x),Up(y)} and 6, = Fp(x *xy) = max{Up(x), Up(y)}. Hence D =< x, Tp, Cp, Up Fp>
is a quadripartitioned neutrosophic quick ideal of X.

Proposition 3.24. Let (D,t) and (B, op) be quadripartitioned neutrosophic subspace of quadripatitioned
neutrosophic topological spaces (X,r) and (Y,o) respectively and let f be a quadripartitioned
neutrosophic continuous mapping of X into Y such that f(D)c B.

Proof: Let Vz be a quadripartitioned neutrosophic set in oz .then there exist V€ o such that V; =V n B.
since f is quadripartitioned neutrosophic continuous it follows that f~*(V) is a quadripartitioned
neutrosophic setinz.Hence f~1(Vgp) nD = f~Y(VNnB) nD = f 1 WV)nf1B)ND=f1V)nD
is a quadripartitioned neutrosophic set in 7. Hence the proof.

Note: for any d-algebra X and any element the right translation of X is defined by R,(x) = x x a for all
x € X. andR,.(0) = 0 = R, (x).

Definition 3.25. Let X be a d-algebra, 7 is quadripartitioned neutrosophic topology on X and Y a
quadripartitioned neutrosophic d-algebra with IFNT t,. Then D is called a quadripartitioned
neutrosophic topological d- algebra if for each a € X, the mapping R,: (D, tp) — (D, tp) defined be
R,(x) = x=*aforall x € X, is relatively quadripartitioned neutrosophic continuous.

Theorem 3.26. Given d-algebra X and Y and a d-homomorphism f:X-Y, let T and o be the
quadripartitioned neutrosophic topologies on X and Y respectively such that 7= f~1(0). If B is a
quadripartitioned neutrosophic topological d-algebra in Y, then f~1(B) is a quadripartitioned
neutrsophic topological d-algebra in X.

Proof: Let a€X and let U be a quadripartitioned neutrosophic set in 7s-15). Since f is a
quadripartitioned neutrosophic mapping of (X,7) into (Y,o), By proposition 3.24 f is relatively
quadripartitioned neutrosophic continuous mapping of (f ' (B), 7¢-15)) into (B, 7). Note that there

exist a quadripartitioned neutrosophic set V in 75 such that f~1(V) = U. Then Ty _-1(4y(x) = Ty(x *
a) = Te-1y(x*x @) = Ty(f(x * a)) = Ty(f (%) * f(a)). Similarly we obtain C¢-1y)(x xa) = Cy(f(x) *
f(@)), Uprgy(x*xa) = Uy(f(x) *f(a)) and Fr-1)(x*a) = Fy(f(x) *xf(a)). Since B is a
quadripartitioned neutrosophic topological d-algebra in Y, then the mapping R, = (B,0) — (B, 03) is
relatively quadripartitioned neutrosophic continuous for each b € Y. Hence Ty -1y (x) = Ty(f(x) *
@) = Ty (Ry(ay () = Tayy -1 (F()) = Troiga,-1yp () similarly  we  get  Cp -1y (x) =
Cr1ra 1 ) Upm1wy (1) = Up=a gty ()N Fr -1y (%) = Fy-a g, -1y (¥) Which implies
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R, '(U) =f""(R, (V) so that R, ()N f7'(B)=f""[Rey (NINf'(B) is a
quadripartitioned neutrosophic set in 7.-15y. Hence the proof.

Theorem 3.27. Given d-algebras X and Y and a d-isomorphism f of X onto Y, Let 7 and o be the
quadrioartitioned neutrosophic topologies on X and Y respectively such that f(z) = o. If D is a
quadripartitioned neutrosophic topological d-algebra in X, then f(D) is a quadripartitioned neutrosophic
topological d-algebra in Y.

Proof: Consider the mapping Ry: (f (D), o5(p)) —: (f (D), o5(p))- Then we can prove that it is relatively

quadripartitioned neutrosophic continuous for each b € Y. Let Uy be a quadripartitioned neutrosophic
set in T, then there exist a quadripartitioned neutrosophic set U in 7 such that Up = U n D. Since f is
one-one it follows that f(Up)=f(U n D)=f(U) n (D) which is a quadripartitioned neutrosophic set in
orpy- This shows that f is relatively quadripartitioned neutrosophic open. Let V() be a quadripartitioned
neutrosophic set in oy (py. Since f is onto, for each b € Y there exist a € X such that b = f(a). Hence

Tf_l(Rb_l(Vf(D))) (%) = Tf—l(Rf(a)—l(vﬂD))) (%) = TRf(a)—lvf(D) () = va(D) (Rryf (%)) =

Ty, (F () *£(@) =Ty, (f(x *a)) = Tf—l(vf(D))(x *a) = Tr1 vy (Ra (%)) =

TRa-l(f_1(Vf(D))) (x). similarly we prove that Cf-l(Rb—1(VﬂD))) (x) = CRa—l(f—l(Vf(D)))(X),
Ur-1Ry v () = Urtrivppm ®) @A Feoagp -1y, 3y ()= Fro-iem1qv, 9 (%) By
hypothesis R, is a relatively quadripartitioned neutrosophic continuous mapping from (D, tp) to (D, tp)
and f is a relatively quadripartitioned neutrosophic continuous mapping from (D, tp) to(f (D), o7 (p))-

Hence f‘l(Rb"l(Vf(D)) NnD = Rb"l(Vf(D)) N D is open in tp. Since f is relatively quadripartitioned
neutrosophic open, f(f‘l(Rb"l(Vf(D)) NnD)= Rb"l(Vf(D)) N f (D) isaopen in oy ). Hence the proof.
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Abstract:. The main purpose of this paper is to study the similarity and entropy of Neutrosophic Vague
sets with multi-attribute decision-making. We propose the axiomatic definitions of the similarity measure
and entropy of the neutrosophic vague set (NVS).Finally we apply these measures in a Multi-Attribute
decision making problem.

Keywords: Neutrosophic Vague sets; Inclusion relation in NVS; similarity measure; entropy.

1.Introduction: Zadeh [9] put forward the theory of fuzzy sets in 1965, which is an effective method to
deal with fuzzy information, but only limited to the truth-membership function. In actual decision-making,
because of the fuzziness of people’s thinking and the complexity of objective things, it is difficult for
decision-makers to evaluate only through truth-membership function. On this basis, Atanassov [2] proposed
an intuitionistic fuzzy set, and added a falsity-membership function to the fuzzy set to represent uncertain
information. That is to say, the intuitionistic fuzzy concentration has both truth-membership function Ta(x)
and falsity-membership function Fa(x), and Ta(x), Fa(x) € [0, 1], 0 < Ta(X) + Fa(x) < 1.. The correlation
coefficients and weighted correlation coefficients of single-valued neutrosophic sets are proposed by Ye
[11]. It is proved that the cosine similarity under singular concentration is a special case of the correlation
coefficients. Furthermore, a single-valued neutrosophic cross-entropy measurement method is proposed
and applied to multi-attribute decision-making in single-valued neutrosophic environment. Chi and Liu [3]
applied a TOPSIS (The Order Performance technique based on Similarity to Ideal Solution) method to
classify interval neutrosophic multi-attribute decision-making problems to alternative levels. further
proposed the comparison rules on the basis of truth-membership function, et al. Garg developed an entropy
measure under IVIFSs and used the proposed measure in solving MCDM with unknown attribute weights.,
Smarandache proposed a neutrosopic set (NS) which is the three components of truth, indeterminacy, and
falsity degrees and that can be denoted as T,I,F respectively. NS is characterized independently and the
ranges of functions T,1,F are in form of real standard and the nonstandard interval [0~,1+[ which cannot be
used in real applications. Therefore, Wang et al. [6] proposed single valued neutrosophic set (SVNS) where
the truth membership degree, indeterminacy-membership degree, and falsity-membership degree in form
of real standard interval. Alkhazaleh [10], introduced a neutrosophic vague set (NV) by incorporating the
features of SVNS and vague set . Besides that, he also defined several operators for NV and proved related

208



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

properties. NV has played a significant role in the uncertain information system. In certain NV sets, the
degree of truth, falsity, and indeterminacy of a given statement cannot be strictly described in real-world
contexts, but it is instead denoted by several possible interval values. In 1972, De Luca and Termin gave
the axiomatization definition of fuzzy entropy to characterize the degree of uncertainty [11]. Similarity is
mainly used to estimate the degree of similarity between two objects. Wang [3] proposes the definition of
similarity based on distance.

The main purpose of this paper is to study the similarity and entropy of Neutrosophic Vague sets with
multi-attribute decision-making. We propose the axiomatic definitions of the similarity measure and
entropy of the neutrosophic vague set (NVS) Based on the Hamming distance, cosine function and
cotangent function, some new similarity measures and entropies of NVS are constructed.

2. Preliminaries:
In this section, we recall some fundamental notions and properties related to an Neutrosophic vague set.

Definition 2.1. [5] Let X be an object set and x be an element in the object set X. A neutrosophic set A
of X can be expressed as A = {[X,(Ta(x), 1a(X), Fa(x))]|x € X}, where ,(Ta(x), 1a(x), Fa(x) are real standard
or nonstandard subsets of J0 —, 1+[ which represent truth-membership, indeterminacy-membership, and
falsity-membership respectively, 0 — < TA(x) + IA(x) + FA(x) <3 +.

Definition 2.2 : [1] A neutrosophic vague set Anv (NVS in short) on the universe of discourse X be written
as Anv = {(x, Ty, (%), L4, (), Fa,, (%)), x € X}, whose truth-membership, indeterminacy-membership and
falsity-membership function is defined as
Tany () = [T7(x), TH(x) 1, Lay, (%) = [17(x), I7(x) 1.]Jand Fyp,, (x) = [F(x), F*(x) ],
whereT*(x) =1-F~(x),F*(x) =1-T (x)and 0 <T~(x))+ 1 (x) +F~(x) <2.
Definition 2.3: [1] The complement of NVS Ay is denoted by A%, and it is given by

> TfNV =[1-T*(x),1-T~(x)]

> IfNV =[1-1*(x), 1-1~(x)]

> TfNV =[1-F*(x), 1- F~(x)],

3. Similarity and Entropy of Neutrosophic Vague Sets
Let Dx = {x|x = ([x1 , x], ([x5 , x5], ([x3 ,x3] be the set of Neutrosophic vague values.

Definition 3.1:

Letting S: D* x D* — [0, 1], the real function S is a similarity interval Neutrosophic vague values x and
y, If S satisfies the following conditions:

(P 0<S(x,y) <1,

(P2) S(x,y) =1ifand only if x =y;

(P3) S(x, y) = S(y, x);

(P4) For all x, y, z € D*, if x <y < z, then S(X, z) < S(x, y), S(x, z) < S(y, 2).
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Definition 3.2: Let A and B be two Neutrosophic Vague Sets in the universe X, if A € B ifand only if x
€ X, (Ta(x) < Ta(X), Fa(X) < Fg(x)), or (Ta(x) = Ta(x), Fa(x) > Fg(x)), or (Ta(X) = Ta(x), Fa(x) = Fs(x) and
1A(X) > 18(X)).

Definition 3.3: Let x =([xy , x1], ([xz , x31, ([x3,x3] D.y=(ys .1, (bvz . ¥ 1. (5 ,¥5] 1 be
the neutrosophic vague values. x <y if and only if one ofthe  following three conditions is true:
(@) [er 21 <Dyr . ¥f] and [x3, %3] 2[ys ,¥3]
) [xr  x{1=D1 ,yfland [x3,x3] 1>[ys,¥5]
@) [xr  x{1=D1 ,¥f] Tand [x3,x3] [ys,ysland [xz , x31>=[yz , ¥7 ]
Let A, B be the two Neutrosophic vague sets, A € B if and only if one of the following three conditions is
true:
(1) [Ta(®), TL ] < [Tz (x), T5 ()] and [Fr (), Fi ()] 2[ F5 (X) , F5 (X)];
) [Tr(X), TS 9] =[T5 () , Tg (¥)] and [F (x) , F4(X)] > [F5 (X) , F5 (X)];
@) [Ta(X), T4 () 1= [T (), T5 (¥)] and [Fr (), F5 ()] = F5 (X) , F5 (X)]; and
[0, 13 (0] =[ 15 (%), I5 ()]

Definition 3.4: Let x =([x , 1], ([xz , 23], ([x3,x3] .y = (v . y11. (b2 . 271 (lys , v3]
We define the following similarity

sxy)

{ i [xi %1 = [y, x5, %31 = [y3,¥4]

4
- .- +_ o+ - .- + 4
4=x7 —yrl=|xf - yi|=1x3 - y3l-1xd - ¥3 |
8

- (1)

else

Theorem 3.5. S(x, y) defined in formula (1) is a similarity between x and y.
Proof.

Let x=(xi , t1, (b7, %31, (b5 %3] €D,y =i %71, (7 971 (v ,¥i] €D,

if (v, xf1= [y il and [xs 23] =[5, y5]  then S(xy)= 1 — E2=22 HE 2021 o6 0.5<5(xy) <1
= — A — + _ Lt I + _ .+

If [, 7] % [, yiland [x5 23] # s ,y3]  then S(xy)= 2= lobd —oi |2k —yalobed - i

8
So 0 < S(x,y) <0.5

(P1) Obviously, 0 <S(x,y) <1.

(P2) S(x,y) =1, ifand only if S(x, y) = 1 — “2=222 =% L if and only if [x7 , x{1= [y] , yi]
and [x3,x3]1=[ys,ys] and[x;,x;1=[y; ¥ ].

(P3) Obviously, S(x, y) = S(y, X).

(P4) Let X=(lxi ,xi], [xz 5] (x5, x51) Y=(ly1 .y, vz ¥7 L Iyvs L v3 1)
Z=([z{ , z{1[z5 , 23], (25 , 2§ ]). and x < y <z, then
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) If [xy, x1<[yr  yi ] x5, 2312 [ys . v3] and [y; , yfI<[zi .z 1. [ys ,y3] = [z3,237],

s0 S(xy)= 2B yil=lxd -y |=1x5 — y3i-iad —y;|,s(y,z): 4-lyy =z |=|yf —szi—ly; — 23 |-|ys - 23|
4—|x7 - z7|-|xf =zt |-1x3 — 23 |- |xF -
S(X,Z)= | 1 1| | 1 1El 3 3 | 3

[x3,x31=[ys ,¥5] = [z3,25],50 S(x, 2) <S(x, y), S(x, 2) < S(y, 2)

+
% | JAlso because [x1 , x <[y, vi1<[z1 , z],

2) If [xl_ 1x;-]< [yl_ ,3’1+], [xg_ ;X;] 2 [J’g,_ ;y;] and [3’1_a}’1+]:[Z1_ 'Zil-]’ [y3— ry;-] > [23— ,Z;-] ,SO
S(xy)= 4—|x1‘—y{l—lxir—yfl-lxg‘—yg,‘l—lx;r—y;rl,s(y,z): a—|y7 - z7|-|ys —zfgl—lyg‘ — 23 |-1y3 - 73|

)

- - +_ 4 - - +_ o+
4—|xy —z7 |- |x7 - zi|-|x3 — z3|—|x3 — z7 |

S(x 2= .
[x3,x31=[ys ,¥3] > [25, 231,50 S(x, 2) < S(x, y), S(x, 2) < S(y, 2).

, Also because [x7 , x{1<[yr , ¥if1=[z1 , z{],

) If [x1 , xI<[yr ,yi ] [x3,x31 = [ys ,¥3] and [yr.yf 1=z , 2], vz .y3] =

dv= — v vt — v — T et At
[zg_,zgr] [yz_,y;] > [z7,25] 50 S(X,y):4 P 2 3/18| lx3 = y31-|x3 2|
S(y,z)=1 — 22 =% ':'YZ “71S(x,2) = 4—'xI-ZII-Ix1—218| x5 - 251l - 74|
Also because [x7 , x{I<[yr , ¥{1= [z1 , 2], [x3,x3]1= D3, y31=[23,2] [yz . y5] =

(25 ,25]
S0 S(x, z) <S(x,y), S(x, 2)<0.5 < S(y, z).
4N g, x 1= r v ] [ 231> Ivs 31 and [yr i <lzr 20 ] bvs 3] = (25,251,

- - +_ o+ - .- +_ o+
4=lxg = yil=|xd =y |=lxs - y3l-1x3 -3

so S(X,y)= . :

_4-lyi —zil=lvi - 2T |-lys - zsl-lyd - Z3) 4—|xy =27 =[x — 2 |-lxg - zz|=Ixg — 23
S(y,z)_ 1 1 | 1 1| 3 3 3 3 S(X Z) — 1 1 | 1 1| 3 3 3 3

8 i ’ 8

Also because [x1 , x{|=[y; , y{1<[z1 , 2], [x3 ., x3]> [ys , ¥5'] = [25, 231,50 S(x, 2) < S(x,
¥)» S(x, 2) < 8(y, 2).

5) If [xy  xf 1= [yr » yi) [x3, 231> vz, w31 and [yr yi' 1=z, 2], vs L y3 ] > lz3, 23]

4l — v l=|xF — vFl—lxs — vo =[xt — vt sy — gz =yt — 2t lvT =z = |yF — 2T
SO S(X,y): [x1 —y1| |x1 Y18| lx3 —y3 |-|x3 y3|,S(y,Z): ly:y —z1| |3’1 218| lys —z3|-ly3 —z3 |

dv— — =1t ot v — ot _ STt
S(x zy= IS SR A Ao because [ x{ 1=Dvi vi )= [ 74

[x3,x31> [y3,y3]1 > [25,23],50 S(x, ) <S(x, y), S(x, 2) < S(y, 2).

6) If [xr, x]=[yr ,¥') [x3,x3]1>[ys .,y ] and [yr .y 1=lzr .27 ) [ys ,ys ] =

- - o+ - .- +_ o+
X1 —yil=lxd = o [=lxs - y3l=1x3 - y3 |

25,231, [y;,y;] > [z5,27] .50 S(xy)="=

T + delx — 27 =lxt — zF|—lxs — zT|—lxT — 22
S(y,Z) 1— -z | |y -z ,S(X,Z) — |xy — 2z | |x1 Z1| |x3 — z3 |=|x3 Z3|’

4 8

Also because [x1 , x{|=[ys , yi 1= [z1 . 2], [x3 . x31>[ys . 3] = 23, 23], [yz . y7 ]
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> [z;,zF] s0, S(x, z) < S(X, y), S(x, 2)<0.5 < S(y, 2).

7 I [xy 2 1=y v L Ixs . x31=[vs ,y3 ). [x2 23] = [y;,y5] and

- - + +
X3 — Yz |+lxz -5 |

_ _ _ _ _ |
[vi vi1<lzy . 2z{), vz ,¥31 > [z3,23],50 S(X, y)=1— 2 .
_4-lyr —zil-|yd -z |-lys - z5|-lys - 23] _ 4-lxr —zp|=|xf -z |-Ixg - z5 |- Ixd - 23
S(y,Z)— 8 ’ S(X Z)= 8

Also because [x1 , xi1=[yr . yi1<lzr .z ], [x3 . x31=lys , ¥3] > 23 ,z3], [x7 , 7] >
[ys ,v5].50 S(X, z) <0.5<S(x, y), S(x, z) < S(y, z).

8) If [xy x{1=[yi . yi] [x3.x31=[ys.¥5).[x2,x5] = [y;,y;] and

R +_ o+
ot el 21 s 31> [25,23], 50 S(x, y)= 1 — B2 e =]

_4-lyr —zi |-y - 2| -lys - z31-lys - z3| 4—|x7 —z7 |-|xf - zF|-|x5 — z5 |- |xF - 2|
S(y.z)= . , S(x 2= 5

Also because [x7 ., x{1=[yi . ¥{1= [z . 2z [x3,x31=ly; . y31> [z5 23], [x7 2§12
[ys ,y5]. S0 S(x, 2) <0.5<S(x, y), S(x, 2) < S(y, 2).

)

9) If [xy ,x1=[yr ¥ [x3,x31=[ys . ¥5).[x2 ., x5]1 = [y;.,y;] and

i yil=lzr 2() s ys] = 25, 23810y2 ,v7 12 Mz, 250,
1 _ X —yo |+lxz —yo | —1_ v -z |*+lyy —z7|

So S(x,y)=1 . , S(y,2) =1 .

2 =25 |+Ix3 —

_q1_x
S(x,z) =1 .

[x3.x31=lys 3] = [z3 23], [x7 . x31 = [yz.y7]12 [z7,2]]
50 S(X, z) <0.5<S(x, y), S(X, z) <S(y, z).
Therefore, defined in formula (1) a similarity between x and y is defined.

+
2l Also because [x] , xF1=[yi , yi1= [z, 7],

Entropy of Neutrosophic vague Value
Since entropy is also an important means in the analysis of uncertainty information, we give the concept of

entropy of Neutrosophic vague value.

Definition 3.6: Letting E: D* — [0, 1], the real function E is an entropy of neutrosophic vague value, if E
satisfies the following conditions:
(N1) E(x) =0 ifand only if [x; , x{ 1=[0, 0] or [1, 1] and[x5 ,x3] =[O0, O] or [1, 1];
(N2) E(x) = 1 if and only if [x] , x}]1=[x5 ,x}] = [x5 ,x]=[0.5, 0.5];
(N3) E(x) =E(X°);
(N4) Let x=([x1 ,x{], ([xz , 23], ([x3 ,x3] € D", y=[yr , ¥ .lyz . ¥3].[ys ,¥3] € D"then
Y= ([ys,y35 1,11 —v5.1-y; 1. [yi,y{], E(X)< E(y), that is more ambiguous than y,
if x <y, when y <y°, or if y < x, when y® <y, because Entropy is usually calculated by the similarity of x
and x°, so we define the following entropy

212



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

|2x37 — 1 |+]2xF — 1]

[x7,xf]=[x3,x¥] =[0.5,0.5]
E(X):S(X’XC): { 4-2|xy —xs_l—zlx}_ x| n 2 - (2)

else

8

Theorem 3. 7 E(X) defined as (2) is an entropy of x
Proof: If [x;,x#] = [x3,x{] = [0.5,05] ,then E(x) = 1 — 2212 —11 ‘1':'”? ~ 1
4 -2lx7 — x3|-2]xf — xF|

s0 0.5 < E(x) £ 1; otherwise, E(x) = L . ,s00 < E(x) < 0.5.

(N1) E(x)=0ifandonly if[[x] , x{ ] =1and [x3 ,x3] =1,also because
[x7,x7]1[0.1] and [x3 ,x3]€ [0.1], s0 [x1 , x{ 1=1[0, 0] or [1, 1] and[x] ,x{] =
[1,1]or [0,0];
(N2) Obviously E(x) = 1 ifand only if [[x] , x{] =[x3 ,x5] =[x3,x3F] =[0.5, 0.5];
(N3) Obviously E(x) = E(x®);
(N4) Let x=([x1 , x{], ([x7 . x3], ([x3 ,x3]1 € D*, \y=[y1 . ¥{],
vz, y71.(lys .51 €D theny=([ys ,¥5 1. [1 vz, 1 ¥z 1 [yr , ¥(],
if x <y, when y <y°¢ because

- +_
1 _W [x7, %] = [x3, %3] = [0.5,0.5]
E(X)_ 4-2|x] —x§|—2|x1—_ x§'| l
- eLse

1 2oty

E(y)= !

— — + +
4_2|y1 _Y3|_2|y1_ y3|
8

[x7,x7] = [x3,x§] =[0.5,05]

else

1) i,y <lys.y3lLys.y31 = [yr,yiland [x7, %] < [y7,yi10x5 x5 ] =

[y3,y3l so [xr, x] <[yr,yil<lys,yil< [ x3,x3] therefore [x;,x3] = biysl [ x3]=

4-2|x7 - x5 |-2Ixf - xF
[yf ,y] also because ,E(x)=—2 x38| g — 3|

_ - T + _ 1
E(y) = 2B 2 6 p(x) < E(y).

2) IWlyr,yf1<lys.y3lLys ysl =yr,yfland [x7,xf] = [y7,yf1lx3 ,x3] >

ys,¥3] so [x7,xf] =[yr,¥f1<lys,yil < [ x3,x3], therefore
[x7,x3]1= [yr,ys] [xf,x$1= [yi,y3F] also because

o= — ||y _ v — o= | vF
E(X):4 2|x] X38| 2|x] X3|,E(y)=4 2|yy J’38| 2|ly7 —y3l SOE(X) SE(}/)

3) Wlyr yil<lys,yillys,ys1= [y, yiland [x;,xf] = [yr .,y Llx3, %3] =
vz, ¥3l[x7,x51= [y;,¥5] so [x7,x] = [yr . ¥f1<lys.yil =
[ x3,x3]therefore [x7 ,x3]1 = [yr,y3], [x{,x3]= [yi,y5]also because

_ = T + _ .t _ - o + _ 71
E(X):4 2|x3 x38| 2|xf xgl’E(y):4— 2|y1 y38| 2|y{ y3|,soE(x)SE(y).
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) If[y7,yf]1=[ys,¥71l.¥3s ,¥3]1 > [y1 ,y:] contradiction

5 If [y ,yf1=1[ys,¥3Llyz,y;1=2[1- y3,1—yrland [x7 ,x{] <
iy Llxs 23] = [ys,y3]so [xg,xf ] < [yr v 1= v ydl < [ x5 ,x7],

4-2|x7 —x3|-2lxF —x3|

If [y ,yi1 = [y ,¥§] = [0.5,05], then E()= . :
EG) =1 —w, so E(x) < 0.5 < E(y).
_ - +_ .+
If [y %71 = [y, ¥31# [05,0.5], then E(x)= 2=l -] E() =

4-2lyy —y3l-2lyf - y7| then[
8 b

so E(x) < E(y)

x1,x31= [yr,y31=0,[xf,x3]1 = [y{,y5]=0,

6) If[yr,yil=1[ys. ¥l lys,y31= [1- y$,1—yrland [x7 ,x{] =
i yiLlxs 231> [ys,y5] so [x7,xf]1 = [yr . y7 1= vz, 31 <[ x5 ,x3],

4-2|x7 —x3|-2]x7 — x3|
L

If [y, y7] = [y3 ¥4 = [05,0.5], then E(= .

E(y)=1-2221E =0 6 £ (x) < 0.5 < E(y).

It [y, v¢] = s y31% [0.5,0.5], then E()= =2 =412 ) gy

4-2ly1 —y3l-2lyf - y3|
8

then [xi,x3]1= [yr,y31=0,[xf ,x3] = [y{,y3]1=0,50 E(x) < E(y).

7) Wy, yil=[yi.yil vz y51= [1— y§,1—yrland [x7 ,x{] =
i,y Llxs %3] = [y, y3] [x2 ., x31 = [yz ,y2 ] soif [x7 ,x{] =
i, y71=lys.y3]1=1[ x5 ,x5] =[0.5,0.5] ,then

- +_ - _ +_
E(x)=1— W,,E(y) =1 —W ,also because [x; ,x5]= [y ,y7],

so E(x) < 0.5 < E(y).
If[xr,xf] = [yr,y1=lys ,y31=1[ x5, x3] # [0.5,0.5] then

_ = T + _ .t _ Sl + _ .1
E(= 2 A =X p(y) = SN I K hen[ xp ,x3] = [y, y5] =0, [xf a3l = [yf,yi]

=0,50 E(x) < E(y).
As the same reason, we can easily get the conclusion that if y <x, when y°<y, then E(x) < E(y).

Therefore, as defined in formula (2), an entropy is defined.

4. New Similarity and Entropy of Neutrosophic vague Sets
Definition 4.1 : Let A, B be the two Neutrosophic vague sets, the real function S is a similarity

between Neutrosophic vague sets A and B, if S satisfies the following conditions:

(P1) 0<S(A,B)<1;

(P2) S(A,B)=1ifandonlyif A=B;

(P3) S(A, B)=S(B, A);

(P4) Forall A, B, C e NVSs, if A< B c C, then S(A, C) <S(A, B), S(A, C) <S(B, C).

Definition 4.2: Let A be the an Neutrosophic vague set, the real function E is the entropy of
Neutrosophic vague sets, if E satisfies the following conditions:

(N1) E(A) =0ifand only if [ T, , T, =[O0, OJor[1, 1], [F. , FS] =[O, OJor[1, 1];
(N2)E(A)=1ifandonly if [Ty , TS 1=1[I; ,I; 1=[Fsi ,F; 1=[0.5, 0.5];
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(N3) E(A) = E(A%);

(N4) Let A, B be the two neutrosophic vague sets, E(A) < E(B), that is, B is more ambiguous than A,

if A< B,whenB € Bc, or BCA, when B® cB.
By aggregating the similarities and entropies of Neutrosophic vague values, we have the
following similarity and entropy of Neutrosophic vague sets.

Theorem 4.3. Let X = {x1, X2, ...Xn} be an Neutrosophic vague set, s: D" x D" — [0, 1] is the

similarity of neutrosophic vague sets, VA, B € X, the similarity S of A and B is defined as follows:

S(A, B) = % ns(A(x), B(x). (3)

Theorem 4.4. Let X = {1, X2, ...Xn} be an Neutrosophic vague set, e : D" — [0, 1]
is the entropy of neutrosophic vague sets, YA,B € X, the entropy E of A is defined as

follows:

E(A) =~ X1, e(A(xi)

If the weights W = (w1, Wy, ..., Wy) is added, w; € [0, 1] and Y7, W;= 1, then
the similarities of A and B and the entropy of A are defined as follows:

S(A, B)=~ X1, w; s(A(x,), B(x)).
E(A) = =37, ;. e(A(xD)).

5. Multi-Attributes Decision Making Based on a New Similarity Measure

Suppose that there is a group with four possible alternatives to invest: (1) A is a food company; (2)
Az is a car company; (3) Az is a weapons company; (4) A4 is a computer company. Investment companies
must make decisions based on three criteria: (1) C: is growth analysis; (2) C: is risk analysis; and (3) Csis
a environmental impact analysis. By using Neutrosphic vague information, decision makers evaluated four
possible alternatives based on the above three criteria and the evaluation are expressed as three neutrosophic

vague sets (Table 1)

Table 1: The evaluation of Alternative

C:

C>

Aq

([0.2,0.7], [0.2,0.4], [0.3,0.8])

([0.0,0.2], [0.8,0.9], [0.8,1])

([0.3,0.4], [0.6,0.8], [0.6,0.7])

([0.1,0.5], [0.5,0.7], [0.5,0.9])

([0.4,0.5], [0.3,0.7], [0.5,0.6])

([0.5,1], [0.3,0.5], [0.0,0.5])

As

([0.1,0.3], [0.2,0.4],[0.7,0.9])

([0.3,0.9], [0.5,0.8], [0.1,0.7])

([0.5,0.8], [0.5,0.8], [0.2,0.5])

Ay

([0.4,0.6], [0.1,0.4],[0.4,0.6])

([0.2,0.8], [0.7,0.9], [0.2,0.8])

([0.1,0.7], [0.7,0.9], [0.3,0.9])
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We use the newly proposed similarity and entropy to get the best alternative. The best choice is

A=([1, 1], [1, 1], [O, Q]). For convenience, we use Ajj that indicates the Neutrosophic VVague value in line
i column j. It is available from (1),

S(A11, A) =0.225, S(A12, A) =0.05, S(A3, A) =0.175,

S(A21, A) = 0.15, S(A22, A) = 0.225, S(Az3, A) = 0.0.375,

S(As1, A) = 0.1, S(As2, A) = 0.3, S(As3, A) = 0.325,

S(Au1, A) = 0.25, S(As2, A) = 0.3, S(Auss3, A) = 0.575.

Thus, by (3), we can obtain that S(Az, A) ~0.15, for the same reason, we can obtain that S(A2, A) =~ 0.25,
S(As, A) = 0.241, S(As4, A) = 0.375. Therefore, S(As, A) > S(Az, A) > S(As, A) > S(A1, A), so A4 is the
best choice.

6. Conclusions

In this paper, we have introduced novel similarity and entropy measures for Neutrosophic Vague Sets
(NVS) and applied them to multi-attribute decision-making problems. The newly proposed measures
effectively handle the uncertainty and ambiguity present in real-world decision-making environments,
making them more suitable for complex systems where decision attributes are not crisply defined.

Reference:

1. Alkhazaleh S, Neutrosophic vague set theory, Critical Review, 10 (2015), 29-39.

2. Atanassov, K.T. Intuitionistic. Fuzzy Sets Syst. 1986, 20, 87-96.

3. Chi, P.P.; Liu, P.D. An extended TOPSIS method for multiple attribute decision-  making
problems based on interval neutrosophic set. Neutrosophic Sets Syst. 2013, 1, 63-70.

4. Sahin, R. Cross-entropy measure on interval neutrosophic sets and its applications in multicriteria
decision-making. Neural Comput. Appl. 2017, 28, 1177-1187.

5. Smarandache, F. Neutrosophic: Neutrosophic Probability, Set and Logic; American Researcher
Press: Rehoboth, DE, USA, 1999.

6. Ye, J. Multicriteria group decision-making method using the distance-based similarity measures
between intuitionistic trapezoidal fuzzy numbers. Int. J. Gen. Syst. 2012, 41, 729-739.

7. Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria
decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165-172.

8. Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria
decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165-172.

9. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353.

10. Zhang, X.H.; Bo, C.X.; Smarandache, F.; Park, C. New operations of totally dependent-
neutrosophic sets and totally dependent-neutrosophic soft sets. Symmetry 2018, 10, 187.

11. Zhang, X.H.; Bo, C.X.; Smarandache, F.; Dai, J.H. New inclusion relation of neutrosophic sets
with applications and related lattice structure. Int. J. Mach. Learn. Cybern. 2018.

216



Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in
Decision Analysis

A NEUTROSOPHIC VAGUE APPROACH TO THE TRANSPORTATION PROBLEM USING
TRAPEZOIDAL NEUTROSOPHIC VAGUE NUMBERS
R. Liji Catharint, Dr.K. Mohana?

PG Student, Department of Mathematics, Nirmala College for Women, Coimbatore.

Email: lijijesusl2@gmail.com

2Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore.
Email: riyarajul116@gmail.com

Abstract
This paper presents a Neutrosophic VVague approach to solving transportation problem using Trapezoidal

Neutrosophic Vague Numbers (NVTNVN). By incorporating degrees of truth, indeterminacy, and falsity,
NVTNVN effectively model uncertainty in transportation data. We develop an algorithm to optimize
transportation costs under vague conditions, demonstrated through practical examples and we find the
transportation cost using Modified distribution method (MODI), also we compare the initial basic feasible

solution using the method of Vogel’s approximation method, least cost method and North west method.

Keywords: Neutrosophic VVague approach, Trapezoidal Neutrosophic vague numbers, Neutrosophic vague

transportation problem, Modified distribution method.

1.Introduction:

Fuzzy set was introduced by Zadeh in the year 1965 [11], According to its definition, it is a set where each
member is represented along with a membership grade, which is represented by a real integer in a closed
interval ranging from O to 1.Neutosopic sets, which consider truth, falsity, and indeterminacy as three
distinct components, are a generalization of both fuzzy and intuitionistic sets and it was presented by F.
Smarandache in 1998 [10].Each components can take values from the real interval [0, 1] .In a Neutrosophic
set, where they are not necessarily dependent on one another and may differ independently. The
Transportation problem was introduced by Frank L. Hitchcock developed it in 1941[4]. It is a special case
of linear programming problem that involves determining the best cost-effective way to distribute a product
from multiple suppliers to multiple consumers while reducing total transportation costs. A vague set is a
generalization of the traditional fuzzy set, introduced to handle uncertainty in a more flexible way. These
numbers are used to handle incomplete information when we don't have complete confidence. They
represent the degree to which an element is definitely true and definitely false, respectively. Vague sets
were introduced by Gau and Buehrer in the late 1990s as an extension of fuzzy sets. A numerical

representation obtained from fuzzy sets is called a vague number. It is described as a number that has two
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bounds, an upper bound and a lower bound, that indicate the range that the true value is most likely to fall
inside. The fuzzy number provides a more understandable means of expressing uncertainty in
computational and practical applications, and is particularly helpful when working with incorrect or
incomplete numerical data. A Neutrosophic vague number (NVN) is a concept in Neutrosophic logic and
set theory, which deals with uncertainty, vagueness, and indeterminacy in decision-making processes.

In this paper, we solved the transportation problem using trapezoidal Neutrosophic vague
numbers, and we focus to solve the transportation problem using the method of Modified distribution
method, The Modified distribution method also known as the Modified minimum cost method. It is an
efficient method for finding the optimal solution for minimizing the cost of transportation goods from
multiple sources to multiple destinations, and we compare the initial basic feasible solution using the
method of Vogel’s approximation method, north west method, and least cost method. Our goal is to identify
the strategy that will reduce the total cost of transportation among the three approaches, and we compare

these strategies to see which is the least expensive and find the optimality.

2.Preliminaries:

Definition 2.1[8]: Let X be the universe. Neutrosophic set A in X is characterized by a membership

grade T,, indeterminancy grade I, and non-membership grade F,,

where, T,:X—[0,1], I,:X—-[0,1], F4:X—-[0,1]. It can be written as A={(X, T4(X),14(X),F4(X)/xeX, satisfying
0< T4(X) +1,(X)+ F4(X)<3.

Definition 2.2[5]: A Vague set A on a non empty set X is a pair (T,F,), where T,:X— [0,1] and F,:X—
[0,1] are true membership and false membership functions, respectively, such that

0< T4(x) + F,(x) <1 for any x€ X. Let X and Y be non -empty sets. A Vague relation R of X to Y is a
Vague set R on XXY That is R= (T4,F,),where Tp:XxXY—- [0,1],Fz: XxY—- [0,1] and satisfy the
condition:0< Tx(X,y) +Fz(X,y)<1 for any x,yeX.

Definiton2.3[5]: A Neutrosophic Vague set A, on the universe of discourse X be written as

Apny :{(x, TANV (x),fANV (x),ﬁANV (x),x € X)},

whose truth-membership, indeterminacy-membership, falsity-membership function is defined as
Tapy ) = [T~ (), T (0], Lay, () = [I~ (), I* ()] and , Ey,, (x) = [F~(x), F*(x)],
Where, T*(x) =1—F (x),Ft(x) =1—-T"(x),and0O< T~ (x) + I " (x) + F~(x) < 23:
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3. Trapezoidal Neutrosophic Vague Number: Let N be a trapezoidal Neutrosophic vague number in the

set of real numbers with the truth, indeterminacy and falsity membership functions are defined by

If% a<x<h f("“)t”, a<x<h
TL(X)—VN' b<x<c x) = 4t,\,, b<x<c
N — ) @ Tyu (a x)tN
| . C <x<d I , c<x<d
k 0, otherwise k otherwise
f bx';(w’ a<x<bh If b“b(w a<x<bh
a —-a
<x< 1 <x<
INL (X 4 l x—c+(d—x)iy pEx=c INU (X) = 4 le’ c+(d—x)in bEx=c
| T' CSXSd | d—c , CSXSd
k 0, otherwise k 0, otherwise
I{b x+b(x a)fN' a<x<bh I(b x+b(x—a)fN’ a<x<bh
a —-a
< < <x<
NL (X = 4fx c+(d-x)fn bExsc FNU(X) = ngx’ c+(d-x)fn bex=c
| =0V c<x<d | , csx<d
k d—c k d—c
0, otherwise 0, otherwise

4.The Transportation Problem:

The Transportation Problem is mathematically formulated as follows.

Minimize
Z= Z 121 1Cl]xl]
Where,
Yioixg=ap =12, 3,0 n,

X%y x5 =bj; j=1,2, 3,.m, x;; =0 for all i and j.

If Y01 xij-a; =Xi%; xij =bj; where i=1, 2, m; j=1, 2,....n, then the transportation issue is a balanced
Neutrosophic  one. if it isn’t balanced. Use a dummy row or dummy column to balance it. The goal of a
Neutrosophic transportation challenge is to move goods with uncertain transported units from source to
destination the lowest possible cost.

The notation of the Transportation Problem is

m is the total number of supplies(sources)

n is the total number of demands(destinations)

a; is the amount of supply at source i

b;is the amount of demand at destination j

c;jis the transpotation cost from supply i to demand j
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x;;j is the amount to be shipped to be from source i to destination j.

4.1: Algorithms:

Vogel’s approximation method:
Step 1: Calculate Row and Column Penalties: For each row and column, find the two lowest transportation
costs. Compute the penalty as the difference between them.

Step 2: Identify the Highest Penalty: Select the row or column with the largest penalty, as this represents

the area where ignoring cost would be most expensive.
Step 3: Allocate as Much as Possible: In the chosen row/column, allocate as much as possible to the lowest-
cost cell (subject to supply and demand constraints). Adjust supply and demand by subtracting the allocated

amount

Step 4: Eliminate the Satisfied Row/Column: If supply or demand is fulfilled (becomes zero), eliminate

that row or column from further consideration.

Step 5: Repeat Steps 1-4 until all supplies and demands are allocated.

North west corner method

Step 1: first we select the north-west corner cell of the transportation matrix and find the lowest value of
supply or demand.

Step 2: Subtract the minimal value from each row and column. If the supply is zero, strike that row and go
to the next cell. If the demand is zero, strike that column and go to the next cell. If both supply and demand
are zero, strike both rows and columns before proceeding diagonally to the next cell.

Step 3: Repeat the process until all supply and demand variables are zero.

Least cost method:

Step 1: Select the cell with the lowest unit cost and assign as much as possible.
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Step 2: Subtract the maximum value from supply and demand. If the supply is zero, cross (strike) that row;
if the demand is zero, cross that column. If the minimum unit cost cell is not unique, choose the cell with

the highest potential allocation.

Step 3: Repeat these steps for all uncrossed (unstriked) rows and columns until all supply and demand

numbers equal 0.

Modified distribution method:
Step 1: Determine an initial basic feasible solution using one of the three methods: NWCM, LCM, or
VAM.

Step 2: Determine u; and v; for rows and columns. assign 0 to u; or v;,where the maximum number of

allocations in a row or column, respectively. For all occupied cells, use the formula ¢;; =u; + v;.

Step 3: For each unoccupied cell, calculate d;; = ¢;; — (u; + v;).

Step 4: Check the symbol of d;;. a. If d;; > 0, the current basic viable solution is optimal, and the method
should be stopped. If d;; =0, an alternative solution exists with a different set allocation but the same

transportation cost. Now, stop this procedure. b. If d;; <0, then the given solution is not an optimal solution.
Step 5: select the unoccupied cell with the greatest negative value of d;;.

Step 6: Create a closed path (or loop) from the unoccupied cell. The right angle turn in this path is allowed
only at occupied cells and the original unoccupied cell. Mark the (+) and (-) signs alternately in each corner,
beginning with the original unoccupied cell.

Step-7: 1. Choose the minimum value from the cells marked with (-) sign of the closed path. Assign this
value to the selected unoccupied cell. Enter this value into the other occupied cells marked with a (+) sign.

Subtract this value from the other occupied cells marked with the (-) symbol.

Step 8: Repeat steps 2-7 until the ideal solution is reached. This process ends when all d;; > 0 for

unoccupied cells.
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5.Application:

A corporation has three warehouses (A, B and C) that sell goods to four retail locations (1,2,3 and 4). The

corporation wants to minimize the total transportation cost and the monthly supply capacity of each

warehouse and demand for each retail store are as follows:

1 2 3 4 Supply
A (10,12,14,16) (3,4,5,6) (8,9,10,11) (1,2,3,4) |26
[0.4,0.5] [0.6,0.8] [0.5,0.8] [0.5,0.7]
[0.1,0.2] [0.5,0.7] [0.1,0.3] [0.1,0.3]
[0.5,0.6] [0.2,0.4] [0.2,0.5] [0.3,0.5]
B (6,7,8,9) (10,11,12,13) | (11,13,15,17) | (9,10,11,12) | 28
[0.5,0.6] [0.5,0.7] [0.6,0.8] [0.6,0.8]
[0.2,0.5] [0.1,0.2] [0.1,0.8] [0.1,0.2]
[0.4,0.5] [0.3,0.5] [0.2,0.4] [0.2,0.4]
C (5,7,9,11) (2,4,6,8) (4,6,8,10) (7,8,9,10) | 22
[0.1,0.9] [0.4,0.7] [0.6,0.7] [0.6,0.7]
[0.4,0.5] [0.2,0.3] [0.1,0.8] [0,0.2]
[0.1,0.9] [0.3,0.6] [0.3,0.4] [0.3,0.4]
Demand 10 29 16 21 Balanced

Conversion for the A Neutrosophic vague transportation problem into its crisp transportation

problem

Here we use the score function for Trapezoidal Neutrosophic Vague Numbers. Also, for solving

A transportation problem using Trapezoidal Neutrosophic Vague Numbers.

Let Ay= {(ayaz,a3, ag;[T4 TAL UL LI FL FE 1 a0 < a; < as < agbe trapezoidal Neutrosophic vague

number. Then the centre of gravity (COG) inR is

COG(R) :{(l) [

Score function S (4y) = COG(R)x G) [24T*+T =21V = 2I'— F* —F'] — (1)

aifa, =a, =a3; =a,

a, + a, + as + a,], otherwise
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(3)r10+12+14+16] =13

1
4

13x(3) [2 + 0.4 + 05 — 2(0.2) — 2(0.1) — 0.5 — 0.6]

= 39
which is approximately equal to 4.
we convert the Neutrosophic vague transportation problem into its crisp model by using (1):

Crisp Transportation Table

Optimal solution:
Modified distribution method
The Transportation problem can be solved in two steps. The first phase involves determining the initial
basic feasible solution. There are three ways for determining an initial basic workable solution:
1. Northwest Corner Method
2. Least Cost Method
3. Vogel’s Approximation Method
and the second phase involves optimization of the initial basic feasible solution.
In this problem we compare the initial feasible solution from each method in terms of total transportation

cost and optimality.

Phase 1:
D, D, D, D, Supply
S, 4 0 4 1 26
S, 2 5 4 6 28
S, 0 2 1 5 22
Demand 10 29 16 21 Balanced

Initial basic feasible solution:
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1.Northwest Corner Method

D, D, D, D, Supply
S 10 16 0 4 26
52 13 |° 5 | 4 28
S3 2 1 1 21 22
Demand 10 29 16 21 Balanced

The minimum total transportation cost = 4x10 + 0x 16 + 5x13 + 4x15 + 1x1 + 5x21 = 271,

2. Least Cost Method

D, D, Ds D, Supply
S, e | O 4 26
S . | 5 R ’1 28
S, 10 2 o] 1 22
Demand 10 29 16 21 Balanced

The minimum total transportation cost = 0x26 + 5x 3 + 4x4 + 6x21 + 0x 10 + 1x 12 =169

3. Vogel’s Approximation Method

The minimum total transportation cost = 0x5 + 1x21 + 2x10 + 5x18 + 2x6 + 1x16 = 159

The number of allocated cells=6 isequaltom+n-1=3+4-1=6

=~ This solution is non — degenerate.

224




Fuzzy, Intuitionistic, and Neutrosophic Set Theories and Their Applications in

Decision Analysis

Phase 2:
D, D, Ds D, Supply
4 4 2
S 5 0 21 6
S, 10 2 5 4 28
S3 0 6 2 16 1 22
Demand 10 29 16 21 Balanced
optimality test:
Iteration-1
D, D, Ds D, U;
Supply
S1 7 S 0 S 21 26 U =
4 4 -2
SZ 10 2 19 5 0 N 28 U, =
4 3
53 1 6 2 1A 1 2 22 Uz =
0 0
Demand 10 29 16 21
U] U]_:'l V2: 173:1 174:3
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D, D, Dy D, Supply | w;
S, 4 5 | O 4 1 |1 26 |u;=-2
S, 10 | 2 18 5 4 6 28 u, =3
Ss 0 6 2 16 1 5 22 u; =0
Demand 10 29 16 21
V; v, =-1 V2=2 vy3=1 v, =3

Iteration-2:
Since all d;; = 0.
So, the final optimal solution is arrived.
Optimal solution

D, D, Ds D, Supply
S, 4 5 | 0 4 0 | 1 26
S, 10 | 2 18| 5 4 6 28
S5 0 6 | 2 16 |1 5 22
Demand 10 29 16 21 Balanced

The minimum total transportation cost = 0x5 + 1x21 + 2x10 + 5x18 + 2x6 + 1x16 = 159

6.Comparision:
As a result, the Vogel’s Approximation Method (VAM) offers an initial solution that is more effective and

economical than the North-West Corner and Least Cost approaches. Usually, VAM reduces transportation
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costs and eliminates the need for additional optimization by taking into account both cost and supply-

demand penalties. Its balanced approach gives it to minimize overall transportation costs better, providing

a more ideal solution for supply chain management and logistics.

6.Conclusion:

In operations research, the transportation problem is a specific kind of optimization problem where the goal

is to find the most economical way to distribute a product from multiple suppliers (or sources) to multiple

consumers (or destinations) while minimizing the overall cost of transportation. This paper addresses a

transportation problem model under trapezoidal Neutrosophic Vague Numbers, and stepwise numerical

applications are used to explain and prove the performance of the transportation problem. These kinds of
new findings will help to get the best optimal decision for the transportation problem using a Neutrosophic

Vague approach.
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	,𝐀𝟏-𝐑-𝐟. (a + b) = A1 R (f(a + b)) = A1 R (f(a) + f(b)) ≥ min{ A1 R (f(a)), A1 R (f(b))} = min{,𝐀𝟏-𝐑-𝐟.(a), ,𝐀𝟏-𝐑-𝐟. (b)},
	,𝐀𝟐-𝐑-𝐟. (a + b) = A2 R (f(a + b)) = A2 R (f(a) + f(b)) ≥ min{ A2 R (f(a)), A2 R (f(b))} = min{,𝑨𝟐-𝑹-𝒇. (a), ,𝑨𝟐-𝑹-𝒇. (b)},
	,𝐀𝟑-𝐑-𝐟. (a + b) = A3 R (f(a + b)) = A3 R (f(a) + f(b)) ≤ min{ A3 R (f(a)), A3 R (f(b))} = min{,𝐀𝟑-𝐑-𝐟.(a), ,𝐀𝟑-𝐑-𝐟. (b)},
	,𝐀𝟒-𝐑-𝐟. (a + b) = A4 R (f(a + b)) = A4 R (f(a) + f(b)) ≤ min{ A4 R (f(a)), A4 R (f(b))} = min{,𝐀𝟒-𝐑-𝐟.(a), ,𝐀𝟒-𝐑-𝐟. (b)}.
	,𝐀𝟏-𝐑-𝐟. (𝛃 a) = A1 R (f(𝛃 a)) = A1 R (𝛃 f(a)) ≥ A1 R (f(a)) = ,𝐀𝟏-𝐑-𝐟.(a),
	,𝐀𝟐-𝐑-𝐟. (𝛃 a) = A2 R (f(𝛃 a)) = A2 R (𝛃 f(a)) ≥ A2 R (f(a)) = ,𝐀𝟐-𝐑-𝐟.(a),
	,𝐀𝟑-𝐑-𝐟. (𝛃 a) = A3 R (f(𝛃 a)) = A3 R (𝛃 f(a)) ≤ A3 R (f(a)) = ,𝐀𝟑-𝐑-𝐟.(a),
	,𝐀𝟒-𝐑-𝐟. (𝛃 a) = A4 R (f(𝛃 a)) = A4 R (𝛃 f(a)) ≤ A4 R (f(a)) = ,𝐀𝟒-𝐑-𝐟.(a).
	Similarly,
	,𝐀𝟏-𝐑-𝐟. ([a, b]) = A1 R (f[ a, b]) = A1 R ([ f(a), f(b]) ≥ A1 R (f(a)) = ,𝐀𝟏-𝐑-𝐟.(a),
	,𝐀𝟐-𝐑-𝐟. ([ a, b]) = A2 R (f([ a,b]) = A2 R ( [f(a), f(b)]) ≥ A2 R (f(a)) = ,𝐀𝟐-𝐑-𝐟.(a),
	,𝐀𝟑-𝐑-𝐟. ([ a, b]) = A3 R (f([a, b]) = A3 R ([f(a), f(b)]) ≤ A3 R (f(a)) = ,𝐀𝟑-𝐑-𝐟.(a),
	,𝐀𝟒-𝐑-𝐟. ([ a, b]) = A4 R (f([a, b]) = A4 R ([f(a), f(b)]) ≤ A4 R (f(a)) = ,𝐀𝟒-𝐑-𝐟.(a).
	This proves that ,𝑹-𝒇.= (,𝑨𝟏-𝑹-𝒇., ,𝑨𝟐-𝑹-𝒇., ,𝑨𝟑-𝑹-𝒇., ,𝑨𝟒-𝑹-𝒇. ) is a FQN Lie ideal in 𝓛1 .
	We now characterize the FQN Lie ideals of Lie algebras.
	Theorem: 3.20
	Let f : 𝓛1  → 𝓛2 be an epimorphisms of FQN Lie algebras. Then ,𝑹-𝒇.= (,𝑨𝟏-𝑹-𝒇., ,𝑨𝟐-𝑹-𝒇., ,𝑨𝟑-𝑹-𝒇., ,𝑨𝟒-𝑹-𝒇.  ) is a FQN Lie ideal in 𝓛1 iff R = (A1 R, A2 R, A3 R , A4 R) is a FQN Lie ideal of 𝓛2.
	Definition: 3.21
	Let R = (A1 R, A2 R, A3 R , A4 R ) be a FQN Lie ideal in 𝓛. Define a inductively a sequences of FQN Lie ideals in 𝓛 by ,𝐑-𝟎. = R, ,𝐑-𝟏. = [,𝐑-𝟎., ,𝐑-𝟎.], ,𝐑-𝟐. = [,𝐑-𝟏., ,𝐑-𝟏.],….. ,𝑹-𝐧. = [,𝑹-𝐧−𝟏., ,𝐑-𝐧−𝟏.].
	,𝑹-𝐧. is called the n th derived FQN Lie ideal of 𝓛. A series ,𝑹-𝟎. ⊇ ,𝐑-𝟏.⊇ ,𝐑-𝟐. ⊇…..⊇ ,𝑹-𝐧.⊇…is called derived series of a FQN Lie ideal R in 𝓛.
	Definition: 3.22
	A FQN Lie ideal R in is called a solvable FQN Lie ideal, if there exists a positive integer n such that
	,𝑹-𝟎. ⊇ ,𝐑-𝟏.⊇ ,𝐑-𝟐.⊇…..⊇ ,𝑹-𝐧. = (0,0,0).
	Theorem: 3.23
	Homomorphic images of solvable FQN Lie ideals are solvable FQN Lie ideals.
	Proof (1)
	Let f : 𝓛1  → 𝓛2 be homomorphisms of FQN Lie algebras. Suppose that R = (A1 R, A2 R, A3 R , A4 R) is a FQN Lie ideal of ,𝓛-𝟏.. We prove by induction on n that f(,𝑹-𝒏.) ⊇[𝒇,𝑹.,]-𝒏., where n is any positive integer. First we claim that f([R, A]...
	f(<<A1 R , A1 R >>)(y) = sup { <<A1 R, A1 R >>(y)\f(x) = y}
	= sup{sup{min(A1 R(a), A1 R(b))\a, b ∈,𝓛-𝟏.,[a, b] = x, f(x) = y}}
	= sup{min(A1 R(a), A1 R(b))\a, b ∈,𝓛-𝟏.,,[a, b] = x, f(x) = y}}
	= sup{min(A1 R(a), A1 R(b))\a, b ∈,𝓛-𝟏.,,[f(a), f(b)] = x}
	= sup{min(A1 R(a), A1 R(b))\a, b ∈,𝓛-𝟏.,f(a) = u, f(b) = v,[u, v] = y}}
	≥sup{min(su,𝒑-𝒂∈,𝒇-−𝟏.,𝒖.. A1 R(a), min(su,𝒑-𝒃∈,𝒇-−𝟏.,𝒗.. A1 R(b)\[u, v] = y}
	= sup{min{f(A1 R)(u),f(A1 R)(v))\[u, v] = y}
	= << f(A1 R), f(A1 R)>>(y),
	f(<<A2 R , A2 R >>)(y) = sup { <<A2 R, A2 R >>(y)\f(x) = y}
	= sup{sup{min(A2 R(a), A2 R(b))\a, b ∈,𝓛-𝟏.,[a, b] = x, f(x) = y}}
	= sup{min(A2 R(a), A2 R(b))\a, b ∈,𝓛-𝟏.,,[a, b] = x, f(x) = y}}
	= sup{min(A2 R(a), A2 R(b))\a, b ∈,𝓛-𝟏.,,[f(a), f(b)] = x}
	= sup{min(A2 R(a), A2 R(b))\a, b ∈,𝓛-𝟏.,,f(a) = u, f(b) = v,[u, v] = y}}
	≥sup{min(su,𝒑-𝒂∈,𝒇-−𝟏.,𝒖.. A2 R(a), min(su,𝒑-𝒃∈,𝒇-−𝟏.,𝒗.. A2 R(b)\[u, v] = y}
	= sup{min{f(A2 R)(u),f(A2 R)(v))\[u, v] = y}
	= << f(A2 R), f(A2 R)>>(y),
	f(<<A3 R , A3 R >>)(y) = inf { <<A3 R, A3 R >>(y)\f(x) = y}
	= inf{inf{max(A3 R(a), A3 R(b))\a, b ∈,𝓛-𝟏.,,[a, b] = x, f(x) = y}}
	= inf{max(A3 R(a), A3 R(b))\a, b ∈,𝓛-𝟏.,[a, b] = x, f(x) = y}}
	= inf {max(A3 R(a), A3 R(b))\a, b ∈,𝓛-𝟏.,[f(a), f(b)] = x}
	= inf{max(A3 R(a), A3 R(b))\a, b ∈,𝓛-𝟏.,f(a) = u, f(b) = v,[u, v] = y}}
	≤inf{max(in,𝐟-𝐚∈,𝐟-−𝟏.,𝐮.. A3 R(a), min(in,𝐟-𝐛∈,𝐟-−𝟏.,𝐯.. A3 R(b)\[u, v] = y}
	= inf{max{f(A3 R)(u),f(A3 R)(v))\[u, v] = y}
	= << f(A3 R), f(A3 R)>>(y),
	f(<<A4 R , A4 R >>)(y) = inf { <<A4 R, A4 R >>(y)\f(x) = y}
	= inf{inf{max(A4R(a), A4 R(b))\a, b ∈,𝓛-𝟏.,[a, b] = x, f(x) = y}}
	= inf{max(A4 R(a), A4 R(b))\a, b ∈,𝓛-𝟏.,[a, b] = x, f(x) = y}}
	= inf {max(A4 R(a), A4 R(b))\a, b ∈,𝓛-𝟏.,[f(a), f(b)] = x}
	= inf{max(A4 R(a), A4 R(b))\a, b ∈,𝓛-𝟏.,f(a) = u, f(b) = v,[u, v] = y}}
	≤inf{max(in,𝐟-𝐚∈,𝐟-−𝟏.,𝐮.. A4 R(a), min(in,𝐟-𝐛∈,𝐟-−𝟏.,𝐯.. A4 R(b)\[u, v] = y}
	= inf{max{f(A4 R)(u),f(A4 R)(v))\[u, v] = y}
	= << f(A4 R), f(A4 R)>>(y),
	Thus f([R, R]) ⊇ f(<<A,A>>) ⊇ <<f( R ), f( R )>> = [f( R ), f( R )].
	Now for n > 1, we get f(,𝑹-𝒏.) = f([,𝑹-𝒏−𝟏., ,𝑹-𝒏−𝟏.]) ⊇ [f(,𝑹-𝒏−𝟏.), f(,𝑹-𝒏−𝟏.)].
	This completes the proof.
	Definition: 3.24
	Let R = (A1 R, A2 R, A3 R , A4 R ) be a FQN Lie ideal in 𝓛. We define a inductively a sequences of FQN Lie ideals in 𝓛 by ,𝐑-𝟎.= R, ,𝐑-𝟏. = [R, ,𝐑-𝟎.], ,𝑹-𝟐.= [,𝑹, 𝑹-𝟏.]….,𝐑-𝐧. = [𝐑,,𝐑-𝐧−𝟏.]. A series
	,𝑹-𝟎.  ⊇ ,𝑹-𝟏.⊇ ,𝑹-𝟐. ⊇…..⊇ ,𝑹-𝒏.⊇…is called descending central  series of a FQN Lie ideal R in 𝓛.
	Definition: 3.25
	An FQN Lie ideal R is called a nilpotent FQN Lie ideal in 𝓛 , if there exists a positive integer n such that ,𝑹-𝟎.  ⊇ ,𝑹-𝟏.⊇ ,𝑹-𝟐. ⊇…..⊇ ,𝑹-𝒏.= (0,0,0).
	Theorem: 3.26
	Homomorphic image of a nilpotent FQN Lie ideal is a nilpotent FQN Lie ideal.
	Proof: It is obvious
	Theorem: 3.27
	Let K be a FQN Lie ideal of a FQN Lie algebra 𝓛. If R = (A1 R, A2 R, A3 R , A4 R ) is  a FQN Lie ideal of 𝓛, then the FQN set *R = (*A1 R, *A2 R, *A3 R , *A4 R) of  𝓛 /K defined by
	*A1 R(a + K) = ,𝐬𝐮𝐩-𝐱∈𝐊. ,𝐀𝟏-𝐑.,𝐚+𝐱.,
	*A2 R(a + K) = ,𝐬𝐮𝐩-𝐱∈𝐊. ,𝐀𝟐-𝐑.,𝐚+𝐱.,
	*A3 R(a + K) = ,𝒊𝒏𝒇-𝒙∈𝑲. ,𝑨𝟑-𝑹.,𝐚+𝐱.,
	*A4 R(a + K) = ,𝒊𝒏𝒇-𝒙∈𝑲. ,𝑨𝟒-𝑹.,𝐚+𝐱.
	is a FQN Lie ideal of the quotient FQN Lie algebra 𝓛 /K of 𝓛 with respect to K.
	Proof (2)
	Clearly, *R is defined. Let x + K, y + K ∈𝓛/ K. Then
	*A1 R((x + K) + (y + K)) = *A1 R((x + y) + K)
	= ,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,,𝐱+𝐲.+𝐳.,
	= ,𝐬𝐮𝐩-𝐳=𝐬+𝐭∈𝐊. ,𝐀𝟏-𝐑.,,𝐱+𝐲.+(𝐬+𝐭).,
	≥,𝐬𝐮𝐩-𝐬,𝐭∈𝐊. ,𝐦𝐢𝐧⁡{𝐀𝟏-𝐑.,𝐱+𝐬),,𝐀𝟏-𝐑.(𝐲+𝐭.},
	= min { ,𝐬𝐮𝐩-𝐬∈𝐊.  ,𝐀𝟏-𝐑.(𝐱+𝐬),,𝐬𝐮𝐩-𝐭∈𝐊.  ,𝐀𝟏-𝐑.(𝐲+𝐭)},
	= min{,∗𝐀𝟏-𝐑.,𝒙+𝒔., ,∗𝐀𝟏-𝐑.(𝒚+𝒕)},
	*A1 R(𝜷(x + K) = *A1 R(𝜷x + K) = ,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,𝛃𝐱+𝐳.≥,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,𝐱+𝐳.=*A1 R(x + K).
	*A1 R([x + K, *A1 R(a + K) = ,𝐬𝐮𝐩-𝐱∈𝐊. A1 R(a + x),y + K]) = *A1 R([x , y] + K) = ,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,[𝐱,𝐲]+𝐳.≥,𝐬𝐮𝐩-𝐳∈𝐊. ,𝐀𝟏-𝐑.,,𝐱,𝐲.+𝐳.=*A1 R(x + K).
	Thus *A1 R is a FQN Lie ideal of 𝓛/ K. In a similar way, we can verify that  *A2 R, *A3 R , *A4 R  FQN Lie ideals of  𝓛 /K. Hence *R = (*A1 R, *A2 R, *A3 R , *A4 R ) is a FQN Lie ideal of
	𝓛 /K
	Theorem: 3.28
	Let K be a FQN Lie ideal of a FQN Lie algebra 𝓛. Then there is a one-to=one correspondence between the set of FQN Lie ideals R = (A1 R, A2 R, A3 R , A4 R ) of 𝓛 such that R(0) = A(s) for all s ∈ K and the set of all FQN Lie ideals *R = (*A1 R, *A2 R...
	Proof (3)
	Let R = (A1 R, A2 R, A3 R , A4 R ) be FQN Lie ideal of 𝓛. Using Theorem 3.27, we prove that
	*A1 R, *A2 R, *A3 R , *A4 R ,*A5 R defined by
	*A1 R(a + K) = ,𝐬𝐮𝐩-𝐱∈𝐊. A1 R(a + x),
	*A2 R(a + K) =, 𝐬𝐮𝐩-𝐱∈𝐊. A2 R(a + x),
	*A3 R(a + K) = ,𝐢𝐧𝐟-𝐱∈𝐊. A3 R(a + x),
	*A4 R(a + K) =, 𝒊𝒏𝒇-𝐱∈𝐊. A4 R(a + x)
	are FQN Lie ideals of 𝓛 /K. Since A1 R(0) = A1 R(s), A2 R(0) = A2 R(s), A3 R(0) = A3 R(s),
	A4 R(0) = A4 R(s) for all s ∈ K,
	A1 R(a + s) ≥ min(A1 R(a), A1 R(s)) = A1 R(a),
	A2 R(a + s) ≥ min(A2 R(a), A2 R(s)) = A2 R(a),
	A3 R(a + s) ≤ max(A3 R(a), A3 R(s)) = A3 R(a),
	A4 R(a + s) ≤ max(A4 R(a), A4 R(s)) = A4 R(a).
	Again,
	A1 R(a) = A1 R(a + s - s) ≥ min(A1 R(a + s), A1 R(s)) = A1 R(a + s),
	A2 R(a) = A2 R(a + s - s) ≥ min(A2 R(a + s), A2 R(s)) = A2 R(a + s),
	A3 R(a) = A3 R(a + s - s) ≤ max(A3 R(a + s), A3 R(s)) = A3 R(a + s),
	A4 R(a) = A4 R(a + s - s) ≤ max(A4 R(a + s), A4 R(s)) = A4 R(a + s).
	Thus R(a + s) = R(a) for all s ∈ K. Hence the correspondence R → *R is one- to -one. Let *R be a FQN Lie ideal of 𝓛 / K and define a FQN set R = (A1 R, A2 R, A3 R , A4 R ) in 𝓛 by
	A1 R(a) = * A1 R(a +K),A2 R(a) = * A2 R(a +K), A3 R(a) = * A3 R(a +K), A4 R(a) = * A4 R(a +K)
	For a, b ∈ 𝓛, we have
	A1 R(a + b) = *A1 R((a + b) +K) = * A1 R((a +K) + (b + K))
	≥ min{*A1 R(a + K), *A1 R(b + K)} ,
	= min { A1 R(a ), A1 R(b)},
	A1 R(𝜷a) = * A1 R(𝜷a +K) ≥ * A1 R(a +K) = A1 R(a),
	A1 R([a, b]) = * A1 R([a, b] +K) = * A1 R([a + K, b + K])
	≥ * A1 R(a +K) = A1 R(a ).
	Thus A1 R is a FQN lie ideal of 𝓛. In a similar way, we  can verify that A2 R, A3 R and A4 R  are FQN  Lie ideals of  𝓛 . Hence R = (A1 R, A2 R,A3 R , A4 R ) is a FQN Lie ideal of 𝓛 .
	Note that A1 R(a) = * A1 R(a +K),A2 R(a) = * A2 R(a +K), A3 R(a) = * A3 R(a +K), A4 R(a) = * A4 R(a +K). For a∈𝐊, which shows that R(a) = R(0) for all a∈𝐊.This completes the proof.
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