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A Counterexample to a Theorem about Orthogonal Latin Squares
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Abstract: We give a counterexample to a theorem of Vadiraja and Shankar about orthog-

onality of Latin squares induced by bivariate polynomials in (Z/nZ)[X,Y ].
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The topic of orthogonal Latin squares has a rich history dating back to Euler. The main result

of a paper by Vadiraja and Shankar asserts that certain Latin squares are orthogonal to one

another. In this note we give a counterexample to this result. We need some preliminaries in

order to state the result.

Let n be a positive integer, write R := Z/nZ, and pick any polynomials f(X,Y ), g(X,Y ) ∈
R[X,Y ]. Let Sf be the n-by-n matrix with rows and columns indexed by 0, 1, 2, · · · , n− 1 and

whose entry in row i and column j is f(i, j). The matrix Sf is called a Latin square if, for each

c ∈ R, each of the polynomials f(X, c) and f(c, Y ) permutes R. If both Sf and Sg are Latin

squares then these Latin squares are orthogonal if, for each choice of u, v ∈ R, there exist unique

i, j ∈ R for which f(i, j) = u and g(i, j) = v. If Sf is a Latin square then we define its “mirror

image” to be Sf̂ where f̂(X,Y ) := f(X,−1−Y ). Note that Sf̂ is the matrix obtained from Sf

by reversing the order of the entries in each row. It is clear that if Sf is a Latin square then

also Sf̂ is a Latin square. In light of this, it is natural to ask when Sf and Sf̂ are orthogonal.

It is easy to see that this never occurs when n is even [1, Theorem 2.3]. Theorem 2.9 of [1] and

Theorem 6.2 of [2] each assert that it always occurs when n is odd.

Theorem A (Vadiraja–Shankar) If n is odd and Sf is a Latin square then Sf and Sf̂ are

orthogonal.

However, Theorem A is not true in general. One counterexample to this conclusion is

f(X,Y ) = −X3Y 2 −X2Y 3 −X2Y + XY 2 + X + Y with n = 5. For, we have

f(X, 0) = X, f(0, Y ) = Y,

f(X, 1) = −(X − 1)3, f(1, Y ) = −Y 3 + 1,

f(X, 2) = X3 + 2, f(2, Y ) = (Y − 2)3,
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f(X, 3) = X3 − 2, f(3, Y ) = (Y + 2)3,

f(X, 4) = −(X + 1)3, f(4, Y ) = −Y 3 − 1.

Since X3 permutes Z/5Z, we see that Sf is a Latin square. But f(0, 0) = 0 = f(−1,−1)

and

f̂(0, 0) = f(0,−1) = −1 = f(−1, 0) = f̂(−1,−1),

so that each of the pairs (i, j) = (0, 0) and (i, j) = (−1,−1) satisfies f(i, j) = 0 and f̂(i, j) = −1.

It follows that Sf and Sf̂ are not orthogonal. This concludes the proof that Theorem A is false.

In light of this counterexample, it is natural to reexamine the published proofs of Theorem

A. The proof of Theorem 2.9 in [1] consists of restating the orthogonality condition (incorrectly)

as pairwise distinctness of the pairs
(
f(i, j), f(−1 − i, j)

)
with i, j ∈ R, and then asserting

without further justification that this distinctness follows from Sf being a Latin square.

The proof of Theorem 6.2 in [2] notes that there are n2 distinct triples
(
i, j, f(i, j)

)
with

i, j ∈ R, and also n2 distinct triples
(
−1 − i, j, f(i, j)

)
with i, j ∈ R, and then asserts orthog-

onality without further justification. Thus, the mistake in the proofs of both [1] and [2] is

that the conclusion of Theorem A was claimed to follow at once from the hypothesis after an

immediate reformulation, when in fact the hypothesis does not imply the conclusion.
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