Cayley Fuzzy Digraph Structure Induced by Groups

Neethu K.T and Anil Kumar V.

(Department of Mathematics, University of Calicut, Malappuram, Kerala 673 635, India)

E-mail: neeethu5@gmail.com, anil@uoc.ac.in

Abstract: In this paper we introduce a class of Cayley fuzzy digraph structure induced by groups. Further many graph properties are expressed in terms of algebraic properties.

Key Words: Fuzzy graph, Cayley digraph structure, vertex transitive graph.

AMS(2010): 05C25, 05C72.

§1. Introduction

Digraph Structure Let \(V \) be a non-empty set and \(S_1, S_2, \ldots, S_k \) are relations on \(V \) which are mutually disjoint, then \(G' = (V, S_1, S_2, \ldots, S_n) \) is a digraph structure. In addition, if \(S_1, S_2, \ldots, S_k \) are symmetric and irreflexive, then \(G' = (V, S_1, S_2, \ldots, S_k) \) is a graph structure, see [2] for details.

Let \(G \) be a group and \(S_1, S_2, \ldots, S_n \) be mutually disjoint subsets of \(G \). Then the Cayley digraph structure of \(G \) with respect to \(S_1, S_2, \ldots, S_n \) is defined as the digraph structure \(X = (G; E_1, E_2, \ldots, E_n) \), where \(E_i = \{(x, y) : x^{-1}y \in S_i \} \) [1]. In case, a digraph structure with only one connection set is the usual Cayley digraph. So a Cayley digraph structure is a generalization of the Cayley digraph.

Fuzzy Digraph Structure Let \(G' = (V, S_1, S_2, \ldots, S_k) \) be a digraph structure and \(\mu, \rho_1, \rho_2, \ldots, \rho_k \) be fuzzy subsets of \(V, S_1, S_2, \ldots, S_k \) respectively such that \(\rho_i(x, y) \leq \mu(x) \wedge \mu(y) \), for all \(x, y \in V \) and \(i = 1, 2, \ldots, k \). Then \(G = (\mu, \rho_1, \rho_2, \ldots, \rho_k) \) is a fuzzy digraph structure of \(G' \) [8], such that \(\rho_i(x, y) \leq \mu(x) \wedge \mu(y) \), for all \(x, y \in V \) and \(i = 1, 2, \ldots, n \). Then \(G = (\mu, \rho_1, \rho_2, \ldots, \rho_n) \) is a fuzzy digraph structure of \(G' \).

Let \(V \) be a non-empty set, \(\mu \) be fuzzy subset of \(V \) and \(R_1, R_2, \ldots, R_n \) be mutually disjoint fuzzy relations on \(\mu \). Then \(G = (\mu, R_1, R_2, \ldots, R_n) \) is a fuzzy digraph structure on \(V \). In case \(\mu = \chi_V \), where \(\chi_V \) is the characteristic function on \(V \), then the fuzzy digraph structure \((\mu, R_1, R_2, \ldots, R_n)\) is simply denoted by \(G = (V; R_1, R_2, \ldots, R_n) \).

A fuzzy digraph structure \(G = (V; R_1, R_2, \ldots, R_n) \) is called (i) trivial if \(R_i \equiv 0 \) for all \(i \), (ii) reflexive if for all \(x \in V, R_i(x, x) = 1 \) for some \(i \), (iii) symmetric if \(R_i = R_i^{-1} \) for all \(i \), (iv) transitive if for every \(i \) and \(j \), \(R_i \wedge R_j \leq R_k \) for some \(k \), (v) a Hasse diagram if for every positive integer \(m \geq 2 \) and for every \(x_1, x_2, \ldots, x_m \) of \(V \) with \(R_i(x_j, x_{j+1}) > 0 \) for all \(j = 0, 1, 2, \ldots, m-1 \), implies \(R_i(x_0, x_m) = 0 \) for all \(i \), and (vi) complete if for any

1Received July 12, 2019, Accepted March 6, 2020.
$x, y \in V, R_i(x, y) > 0$, for some $i = 1, 2, \cdots, n$. A walk of length k in a digraph structure is an alternating sequence $W = x_0, e_0, x_1, \cdots, e_k, x_k$, where $e_j = (x_j, x_{j+1})$ and $R_i(e_j) > 0$ for some i. A walk W is called a path if all the vertices are distinct. A weak path is a sequence for the walk W. A walk is called a circuit if its first and last vertices are the same, but no other vertex is repeated. A weak path is a sequence x_1, x_2, \cdots, x_m of distinct vertices of V such that for $j = 1, 2, \cdots, m - 1$, $R_i \vee R_i^{-1}(x_j, x_{j+1}) > 0$ for some $i = 1, 2, \cdots, n$. Distance between two vertices x and y in G is the length of the shortest path from x to y and is denoted by $d(x, y)$. Diameter of the fuzzy digraph structure G, denoted by $d(G)$, is defined by $d(G) = \max_{x,y \in G} d(x, y)$. A fuzzy digraph structure $G = (V; R_1, R_2, \cdots, R_n)$ is called (i) connected (strongly connected) if y is connected to x for all $x, y \in V$, and (ii) weakly connected if any two vertices can be joined by a weak path, that is, the fuzzy digraph structure $G' = (V; R_1 \vee R_1^{-1}, R_2 \vee R_2^{-1}, \cdots, R_n \vee R_n^{-1})$ is connected. A weakly connected fuzzy digraph structure $G = (V; R_1, R_2, \cdots, R_n)$ with out any circuits is called a tree.

The present work is a generalisation of the work in [6] in which Madhavan Namboothiri N.M. et al. introduced a class of Cayley fuzzy graphs induced by groups.

§2. Cayley Fuzzy Digraph Structure

Definition 2.1 Let V be a group and $\nu_1, \nu_2, \cdots, \nu_n$ be mutually disjoint fuzzy subsets of V. Then, Cayley Fuzzy Digraph Structure of V with respect to $\nu_1, \nu_2, \cdots, \nu_n$ is defined as $(V; R_1, R_2, \cdots, R_n)$ where $R_i(x, y) = \nu_i(x^{-1}y)$ and is denoted by CayFD($V; \nu_1, \nu_2, \cdots, \nu_n$). The subsets $\nu_1, \nu_2, \cdots, \nu_n$ are called connection fuzzy subsets of CayFD($V; \nu_1, \nu_2, \cdots, \nu_n$). In case, a Cayley fuzzy digraph structure with only one connection set is usual Cayley fuzzy graph.

Theorem 2.2 $G = \text{CayFD}(V; \nu_1, \nu_2, \cdots, \nu_n)$ is vertex-transitive.

Proof Let a and b be any two arbitrary elements in G. Define $\psi : V \to V$ by $\psi(x) = ba^{-1}x$ for all $x \in V$. Clearly, ψ is a bijection onto itself. Furthermore, we have, for each $x, y \in V$,

\[
R_i(\psi(x), \psi(y)) = R_i(ba^{-1}x, ba^{-1}y) \\
= \nu_i((ba^{-1}x)^{-1}(ba^{-1}y)) \\
= \nu_i(x^{-1}y) = R_i(x, y).
\]

Hence, the proof is complete. \(\square\)

Theorem 2.3 Cayley fuzzy digraph structures are regular.

Proof Let $G = \text{CayFD}(V; \nu_1, \nu_2, \cdots, \nu_n)$ be a cayley fuzzy digraph structure. Let $u, v \in V$. Since Cayley fuzzy digraph structures are vertex transitive, there exist an automorphism say, f on G such that, $f(u) = v$ and $R_i(f(x), f(y)) = R_i(x, y)$ for any $x, y \in V$ and $i = 1, 2, \cdots, n$.
Then the in-degree of u,
\[
\text{ind}(u) = \sum_{x \in V} \sum_{i=1}^{n} R_i(x, u) = \sum_{x \in V} \sum_{i=1}^{n} R_i(f(x), f(u)) = \sum_{x \in V} \sum_{i=1}^{n} R_i(f(x), v) = \sum_{y \in V} \sum_{i=1}^{n} R_i(y, v) = \text{ind}(v).
\]
Similarly, we can prove that $\text{outd}(u) = \text{outd}(v)$. Therefore, G is in-regular and out-regular.

Now to prove that G is regular we just need to show that $\text{ind}(1) = \text{outd}(1)$.
\[
\text{ind}(1) = \sum_{x \in V} \sum_{i=1}^{n} R_i(x, 1) = \sum_{x \in V} \nu_i(x^{-1}) = \sum_{x \in V} \nu_i = \sum_{x \in V} \sum_{i=1}^{n} R_i(1, x) = \text{outd}(1).
\]
Therefore, G is regular. \Box

Theorem 2.4 $G = \text{CayF}_D(V; \nu_1, \nu_2, \cdots, \nu_n)$ is a trivial graph if and only if $\nu_i \equiv 0$ for all i.

Proof By definition, G is trivial if and only if $R_i \equiv 0$ for all i. This implies that $\nu_i \equiv 0$ for all i. \Box

Theorem 2.5 $G = \text{CayF}_D(V; \nu_1, \nu_2, \cdots, \nu_n)$ is reflexive if and only if $\nu_i(1) = 1$ for some i.

Proof Assume that $G = \text{CayF}_D(V; \nu_1, \nu_2, \cdots, \nu_n)$ is reflexive. Then for every $x \in V$, $R_i(x, x) = 1$ for some i. This implies that $\nu_i(x^{-1}x) = \nu_i(1) = 1$ for some i.

Conversely, let $\nu_i(1) = 1$ for some i, say $i = k$. This implies that for each $x \in V$, $R_k(x, x) = \nu_k(x^{-1}x) = \nu_k(1) = 1$. That is G is reflexive. \Box

Theorem 2.6 $G = \text{CayF}_D(V; \nu_1, \nu_2, \cdots, \nu_n)$ is symmetric if and only if $\nu_i(x) = \nu_i(x^{-1})$ for all $x \in V$, $i = 1, 2, \cdots, n$.

Proof Suppose that G is symmetric. Then for any $x \in V$,
\[
\nu_i(x) = \nu(x^{-1}x^2) = R_i(x, x^2) = R_i^{-1}(x, x^2) = R_i(x^2, x) = \nu_i(x^{-1}x^{-1}x) = \nu_i(x^{-1}).
\]
Therefore, $\nu_i(x) = \nu_i(x^{-1})$.

Conversely, suppose that $\nu_i(x) = \nu_i(x^{-1})$ for all $x \in V$. Then for any $x, y \in V$, $R_i(x, y) = \nu_i(x^{-1}y) = \nu_i((x^{-1}y)^{-1}) = \nu_i(y^{-1}x) = R_i(y, x)$. This implies that, R is symmetric. Hence the proof is complete. \Box

Theorem 2.7 $G = \text{CayF}_D(V; \nu_1, \nu_2, \cdots, \nu_n)$ is transitive if and only if for every i, j and for
any \(x, y \in V, \nu_i(x) \land \nu_j(y) \leq \nu_k(xy) \) for some \(k \).

Proof First assume that \(G \) is transitive. That is, for every \(i, j, R_i \circ R_j \leq R_k \) for some \(k \). For \(x, y \in V, \)

\[
\begin{align*}
\nu_i(x) \land \nu_j(y) & \leq \lor \{\nu_i(z) \land \nu_j(z^{-1}(xy)) : z \in V\} \\
& = \lor \{R_i(1, z) \land R_j(z, xy) : z \in V\} \\
& = R_i \circ R_j(1, xy) \\
& \leq R_k(1, xy).
\end{align*}
\]

That is, \(\nu_i(x) \land \nu_j(y) \leq \nu_k(xy) \) for some \(k \).

Now let for any \(x, y \in V \) and \(i, j, \nu_i(x) \land \nu_j(y) \leq \nu_k(xy) \) for some \(k \). Then,

\[
(R_i \circ R_j)(x, y) = \lor \{R_i(x, z) \land R_j(z, y) : z \in V\} \\
= \lor \{\nu_i(x^{-1}z) \land \nu_j(z^{-1}y) : z \in V\} \\
\leq \lor \{\nu_k((x^{-1}z)(z^{-1}y)) : z \in V\} \\
= \nu_k(x^{-1}y) = R_k(x, y).
\]

Thus, \(R_i \circ R_j \leq R_k \) for some \(k \). This completes the proof. \(\square \)

Theorem 2.8 \(G = CayF_D(V; \nu_1, \nu_2, \cdots, \nu_n) \) is complete if and only if \(\cup \nu_{i0}^+ = V \).

Proof First assume that \(G \) is complete. That is \(\cup \nu_{i0}^+ = V \times V. \) Clearly, \(\cup \nu_{i0}^+ \subseteq V \). Now let \(x \in V. \) Then \((1, x) \in \cup \nu_{i0}^+ \) for some \(i. \) That is, \(R_i(1, x) \geq 0, \) which implies, \(\nu_i(x) \geq 0. \) Thus, \(x \in \cup \nu_{i0}^+ \). Therefore, \(V \subseteq \cup \nu_{i0}^+ \). That is, \(\cup \nu_{i0}^+ = V. \)

Conversely, assume \(\cup \nu_{i0}^+ = V. \) Let \((x, y) \in V \times V. \) Then \(x, y \in V \Rightarrow x^{-1}y \in V \Rightarrow x^{-1}y \in \cup \nu_{i0}^+ \Rightarrow x^{-1}y \in \nu_{i0}^+ \) for some \(i. \) Then, \(\nu_i(x^{-1}y) \geq 0. \) That is, \(R_i(x, y) \geq 0 \) which implies \((x, y) \in \cup \nu_{i0}^+. \) Hence, \(V \times V \subseteq \cup \nu_{i0}^+. \) Therefore,

\[
\bigcup \nu_{i0}^+ = V \times V.
\]

This completes the proof. \(\square \)

Let \(A_k \) be the set of all elements \(x \in V \) of the form \(x = x_1x_2 \cdots x_k \), where \(x_j \in \nu_{i0}^+ \) for some \(i = 1, 2, \cdots, n. \) Then \([\vartheta] \) is defined as \([\vartheta] = \bigcup_{k=1}^{n} A_k. \) Let \(B_k \) be the set of all elements \(y \in V \) of the form \(y = y_1y_2 \cdots y_k \), where \(y_j \in (\nu_i \land \nu_i^{-1})_{0}^+ \) for some \(i = 1, 2, \cdots, n. \) Then \([[\vartheta]] \) is defined as \([[\vartheta]] = \bigcup_{k=1}^{n} B_k. \)

Theorem 2.9 \(G = CayF_D(V; \nu_1, \nu_2, \cdots, \nu_n) \) is connected if and only if \(V = [\vartheta]. \)

Proof First assume that \(G = CayF_D(V; \nu_1, \nu_2, \cdots, \nu_n) \) is connected. Clearly, \([\vartheta] \subseteq V. \) Now let \(x \in V. \) Then there exists a path from 1 to \(x \) say, \((1, y_1, y_2, \cdots, y_k = x). \) Then, for
some i, $R_i(1,y_l) > 0$, that is, $y_l \in \nu_i^{+}_{i,0}$. Also, $y_{j-1}^{-1}y_j \in \nu_i^{+}_{i,0}$ for $j = 2, 3, \ldots, k$. This implies that $x \in A_k$, since, $x = (1,y_l)(y_1^{-1}y_2)(y_2^{-1}y_3) \cdots (y_k^{-1}y_k)$. Therefore, $x \in \bigcup_{k=1}^{n} A_k = [\nu]$. Hence, $V = [\nu]$.

Conversely, assume that $V = [\nu]$. Let $x, y \in V$. Then $z = x^{-1}y \in V$, implies, $z \in [\nu] = \bigcup_{k=1}^{n} A_k$. Then $z = z_1z_2 \cdots z_k$. Then $1, z_1, z_1z_2, \ldots, z_1z_2 \cdots z_k = z$ is a path from 1 to z. Then $x, xz_1, xz_1z_2, \ldots, xz_1z_2 \cdots z_k = xz = y$ is a path from x to y, implies G is connected. This completes the proof. □

Theorem 2.10 $G = \text{CayF}_{D}(V; \nu_1, \nu_2, \ldots, \nu_n)$ is weakly connected if and only if $V = [[\nu]]$.

Proof Assume G be weakly connected. Clearly, $[[\nu]] \subseteq V$. Let $x \in V$. Then there exist a weak path say, $1, x_1, x_2, \ldots, x_k = x$ from 1 to x. Then, $1x_1 \in (\nu_1 \lor \nu_1^{-1})^+_0$, $x_1^{-1}x_2 \in (\nu_2 \lor \nu_2^{-1})^+_0, \ldots, x_{k-1}^{-1}x_k \in (\nu_k \lor \nu_k^{-1})^+_0$, which clearly implies that $x \in \bigcup_{k} B_k = [[\nu]]$.

Hence, $V \subseteq [[\nu]]$.

Conversely, assume that $V = [[\nu]]$. Let $x, y \in V$, implies $z = x^{-1}y \in V$. Therefore, $z \in [[\nu]]$. Then there exist elements $z_j \in (\nu_j \lor \nu_j^{-1})^+_0$, $j = 1, 2, \ldots, k$, such that $z = z_1z_2 \cdots z_k$, for some $k \in \{1, 2, \ldots, n\}$. Then $1, z_1, z_1z_2, \ldots, z_1z_2 \cdots z_k = z$ is a weak path from 1 to z and hence $x, xz_1, xz_1z_2, \ldots, xz_1z_2 \cdots z_k = xz = y$ is a weak path from x to y. Therefore, G is weakly connected. This completes the proof. □

Theorem 2.11 $G = \text{CayF}_{D}(V; \nu_1, \nu_2, \ldots, \nu_n)$ is partially ordered if and only if

(i) $\nu_i(1) = 1$ for some i;

(ii) for every i, j and for any $x, y \in V$, $\nu_i(x) \land \nu_j(y) \leq \nu_k(xy)$ for some k;

(iii) $\{x : \nu(x) = \nu(x^{-1})\} = \{1\}$ for all $i = 1, 2, \ldots, n$.

Theorem 2.12 $G = \text{CayF}_{D}(V; \nu_1, \nu_2, \ldots, \nu_n)$ is quasi-ordered if and only if

(i) $\nu_i(1) = 1$ for some i;

(ii) for every i, j and for any $x, y \in V$, $\nu_i(x) \land \nu_j(y) \leq \nu_k(xy)$ for some k.

Theorem 2.13 $G = \text{CayF}_{D}(V; \nu_1, \nu_2, \ldots, \nu_n)$ is a Hasse diagram if and only if G is connected and $\nu_k(x_1x_2 \cdots x_m) = 0$, $k = 1, 2, \ldots, n$, for any collection x_1, x_2, \ldots, x_m of vertices in V with $m \geq 2$ and $\nu_i(x_j) > 0$ for $j = 1, 2, \ldots, m$.

Proof Suppose G is a Hasse diagram. Since $\nu_{i,j}(x_j) > 0$ for $j = 1, 2, \ldots, m$, $(1, x_1, x_1x_2, \ldots, x_1x_2 \cdots x_m)$ is a path from 1 to $x_1x_2 \cdots x_m$. Now since G is a Hasse diagram, $R_k(1, x_1x_2 \cdots x_m) = 0$ for all k. Therefore $\nu_k(x_1x_2 \cdots x_m) = 0$ for all $k = 1, 2, \ldots, n$.

Conversely suppose, G is connected and $\nu_k(x_1x_2 \cdots x_m) = 0$, $k = 1, 2, \ldots, n$, for any collection x_1, x_2, \ldots, x_m of vertices in V with $m \geq 2$ and $\nu_i(x_j) > 0$ for $j = 1, 2, \ldots, m$. Let
(x_0, x_1, \ldots, x_m) be a path in G from x_1 to x_m, m \geq 2. Then R_i(x_0, x_1) > 0, R_k(x_1, x_2) > 0, \ldots, R_m(x_{m-1}, x_m) > 0 which implies, \nu_1(x_0^{-1}x_1) > 0, \nu_2(x_1^{-1}x_2) > 0, \ldots, \nu_m(x_{m-1}^{-1}x_m) > 0. Thus, by assumption, \nu_k(x_0^{-1}x_1x_1^{-1}x_2x_2^{-1}x_3 \cdots x_{m-1}^{-1}x_m) = \nu_k(x_0^{-1}x_m) = 0. Therefore, R_k(x_0, x_m) = 0 for all k = 1, 2, \ldots, n. Hence, G is a Hasse diagram. This completes the proof.

Theorem 2.14 For k = 1, 2, \ldots, n, let A_k be the set of all products of the form \nu_1, \nu_2, \ldots, \nu_k = \{x_1x_2 \cdots x_k : x_j \in \nu_j^+, j = 1, 2, \ldots, k\}. If G = CayF_D(V; \nu_1, \nu_2, \ldots, \nu_n) has finite diameter, then the diameter of G is the least positive integer m such that

\[G = \bigcup_{A \in A_m} A. \]

Theorem 2.15 G = CayF_D(V; \nu_1, \nu_2, \ldots, \nu_n) is a tree if and only if V = [[\vartheta]] and 1 \notin [\vartheta].

Definition 2.16 Let (S, *) be a semigroup. Let A be a fuzzy subset of S. Then A is said to be fuzzy sub-semigroup of S if for all a, b \in S, A(ab) \geq A(a) \wedge A(b).

Definition 2.17 Let (S, *) be a semigroup and let \nu_1, \nu_2, \ldots, \nu_n be mutually disjoint fuzzy subsets of S. The fuzzy sub-semigroup generated by \nu_1, \nu_2, \ldots, \nu_n is the smallest fuzzy sub-semigroup of S which contains \nu_1, \nu_2, \ldots, \nu_n. Let us denote it by \langle \nu_{(12\cdots n)} \rangle.

Theorem 2.18 Let (S, *) be a semigroup and let \nu_1, \nu_2, \ldots, \nu_n be mutually disjoint fuzzy subsets of S. Then the fuzzy subset \langle \nu_{(12\cdots n)} \rangle is precisely given by \langle \nu_{(12\cdots n)} \rangle(x) = \bigvee \{\nu_{j_1}(x_1) \wedge \nu_{j_2}(x_2) \wedge \ldots \wedge \nu_{j_k}(x_k) : x = x_1x_2 \cdots x_k with a finite positive integer k, x_i \in S and \nu_{j_i}(x_i) > 0 for some j_i = 1, 2, \ldots, n\} for any x \in S.

Proof Let \nu' be the fuzzy subset of V defined by \nu'(x) = \bigvee \{\nu_{j_1}(x_1) \wedge \nu_{j_2}(x_2) \wedge \ldots \wedge \nu_{j_m}(x_m) : x = x_1x_2x_3 \cdots x_m, x_j \in \nu_{j_i}^+, m \in \{1, 2, 3, \ldots, n\}\} for any x \in V. If y \in V, by definition of \nu', it is clear that \nu'(y) \geq \nu_{j_k}(y) where j_k \in \{1, 2, \ldots, n\} and \nu_{j_k}(y) \geq 0. Thus, we have \nu_{j_k} \leq \nu' for all j_k. This implies that \nu' contains \nu_1, \nu_2, \ldots, \nu_n. Let x, y \in V. If \nu_{j_k}(x) = 0 or \nu_{j_k}(y) = 0, then \nu_{j_k}(x) \wedge \nu_{j_k}(y) = 0. Then, \nu'(xy) \geq \nu_{j_k}(x) \wedge \nu_{j_k}(y). Again, if \nu_{j_k}(x) \neq 0 and \nu_{j_k}(y) \neq 0, then by definition of \nu', we have \nu'(xy) \geq \nu_{j_k}(x) \wedge \nu_{j_k}(y). Hence \nu' is a fuzzy subsemigroup of V containing \nu_i, i \in \{1, 2, \ldots, n\}. Now let A be any fuzzy subsemigroup of V containing \nu_i, i \in \{1, 2, \ldots, n\}. Then, for any x \in V with x = x_1x_2x_3 \cdots x_m, x_i \in \nu_{j_i}^+, for i = 1, 2, \ldots, n, m \in \{1, 2, 3, \ldots, n\} we have A(x) \geq A(x_1) \wedge A(x_2) \wedge \cdots \wedge A(x_m) \geq \nu_{j_1}(x_1) \wedge \nu_{j_2}(x_2) \wedge \cdots \wedge \nu_{j_m}(x_m), which implies that A(x) \geq \bigvee \{\nu_{j_1}(x_1) \wedge \nu_{j_2}(x_2) \wedge \ldots \wedge \nu_{j_m}(x_m) : x = x_1x_2x_3 \cdots x_m, x_j \in \nu_{j_i}^+, m \in \{1, 2, 3, \ldots, n\}\} for j_i \in \{1, 2, \ldots, n\} for any x \in V. Therefore, A(x) \geq \nu'(x) for all x \in V. Thus, \nu' = \langle \nu_{(12\cdots n)} \rangle. That is, \langle \nu_{(12\cdots n)} \rangle(x) = \bigvee \{\nu_{j_1}(x_1) \wedge \nu_{j_2}(x_2) \wedge \ldots \wedge \nu_{j_m}(x_m) : x = x_1x_2x_3 \cdots x_m, x_j \in \nu_{j_i}^+, m \in \{1, 2, 3, \ldots, n\}\} for any x \in V.

References