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Abstract: The goal of this article is to study conformal Yamabe soliton and conformal

gradient Yamabe soliton on the para-Kenmotsu manifold. Firstly, we have proved some

results of para-Kenmotsu manifold when its admit conformal Yamabe soliton. Later, we

have worked on conformal gradient Yamabe soliton on the para-Kenmotsu manifold.
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§1. Introduction

The concept of Yamabe flow was introduced by Hamilton [9] in order to produce Yamabe metrics

on compact Riemannian manifolds. The evaluation of the metric g0 in time t to g = g(t) using

the equation is known as Yamabe flow. The equation of this is

∂

∂t
g(t) = −r(t)g(t), g(0) = 0, t ≥ 0,

where r is the scalar curvature of the Riemannian metric g. In dimension 2, the Yamabe flow

is similar to the Ricci flow. However, the Yamabe flow and the Ricci flow exhibit distinct

behaviors at higher dimensions. The Yamabe soliton [1] is a specific solution of the Yamabe

flow that moves via a homothetic family of one-parameter difeomorphisms, much like the Ricci

soliton [9]. The equation of the Yamabe soliton is

1

2
LXg = (r − λ)g,

where LX is the Lie derivative along the vector field X. Many researches have studied on

Yamabe soliton such as [5, 6, 8, 11, 17] and many others.

In 2021, Roy, Dey and Bhattacharyya [13] generalized the notation of Yamabe solition and
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they introduced conformal Yamabe soliton which is

(LXg)(U, V ) =
[
2r − 2λ+

(
p+

2

n

)]
g(U, V ), (0.1)

where LX denotes the Lie derivative along X, r is the scalar curvature, λ is a constant and p

is the time dependent scalar field. λ < 0, λ = 0 and λ > 0 confirmed that conformal Yamabe

soliton is expanding, steady and shrinking respectively.

When a smooth function f ’s gradient is represented by X, it can be substituted by Df

to create the conformal gradient Yamabe soliton, for which the equation (1.1) takes on the

following form

∇2f =
{
r − λ+ (p+

2

n
)
}
, (1.1)

where, ∇2f is the Hessian of f and this defined as Hessf (U, V ) = g(∇UDf, V ), D denotes the

gradient [1] operator.

This paper is constructed as follows:

After a brief introduction, we have covered some necessary results of para-Kenmotsu man-

ifold in section two. In section 3, we have worked on conformal Yamabe soliton on para-

Kenmotsu manifold. Here we have proved that the scalar r curvature is dependent on p, the

soliton vector field X and the Reeb vector field ξ are Killing, X is constant multiple of ξ, the

soliton is shrinking, steady and expanding if p > 34
3 , p = 34

3 and p < 34
3 respectively and some

other results are also proved. In section 4, we have worked on conformal gradient Yamabe

soliton.

§2. Preliminaries

An n− dimensional smooth manifold Mn is said to be an almost para-contact manifold ([3],

[10], [12]) if it admits an (1, 1) tensor field φ, a unit vector field ξ, the smooth 1-form η and the

pseudo-Riemannian metric g such that

φ2U = U − η(U)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (2.1)

g(U, ξ) = η(U), (2.2)

g(ξ, ξ) = 1, (2.3)

g(φU, φV ) = −g(U, V ) + η(U)η(V ), (2.4)

for ∀U, V ∈ χ(M), where χ(M) denotes Lie algebra of smooth vector fields on M .

dη(U, V ) = g(U, φV ), (2.5)

for every U, V ∈ χ(M).
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An almost para-contact metric manifold is said to be paraKenmotsu manifold if it satisfies

(∇Uφ)V = g(φU, V )− η(V )φU, (2.6)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian metric g.

Moreover, in a para-Kenmotsu manifold, we have the following relations [7]

∇Uξ = U − η(U)ξ, (2.7)

(∇Uη)V = g(U, V )− η(U)η(V ), (2.8)

R(U, V )ξ = η(U)V − η(V )U, (2.9)

R(ξ, U)V = η(V )U − g(U, V )ξ, (2.10)

R(ξ, U)ξ = U − η(U)ξ,

S(U, ξ) = −(n− 1)η(U), (2.11)

where Q and R denotes the Ricci operator and the Riemann curvature tensor respectively and

g(QU, V ) = S(U, V ).

It’s known that the Ricci tensor of a 3−dimensional para-Kenmotsu manifold is

S(U, V ) =
1

2

[
(r + 2)g(U, V )− (r − 6)η(U)η(V )]. (2.12)

Several authors have studied on para-Kenmotsu manifold such as [2, 14, 15, 16] and many

others.

§3. Conformal Yamabe Soliton

Theorem 3.1 If a para-Kenmotsu manifold Mn admits conformal Yamabe soliton (g, ξ, λ, p),

then the scalar curvature is dependent on p and the Reeb vector field ξ is Killing.

Proof If ξ is the Reeb vector field then

(Lξg)(U, V ) = g(∇Uξ, V ) + g(U,∇V ξ).

Using (2.7) in the above equation and then applying (2.2), we get

(Lξg)(U, V ) = 2[g(U, V )− η(U)η(V )]. (3.1)

Again from equation (1.1), we have

(Lξg)(U, V ) =
[
2r − 2λ+

(
p+

2

n

)]
g(U, V ). (3.2)
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Equating (3.1) and (3.2), we get[
2r − 2λ+

(
p+

2

n

)]
g(U, V ) = 2[g(U, V )− η(U)η(V )]. (3.3)

Substituting ξ in the place of V in the previous equation, we get[
2r − 2λ+

(
p+

2

n

)]
η(U) = 0. (3.4)

Since η(U) 6= 0, it gives

r = λ−
(p

2
+

1

n

)
, (3.5)

where λ is a constant so, the scalar curvature r is dependent on p.

Using (3.5) in (3.2), we get (Lξg) = 0. Hence, the Reeb vector field ξ is Killing. �

Theorem 3.2 Let a 3−dimensional para-Kenmotsu manifold M3 admits conformal Yamabe

soliton (g, ξ, λ, p), ξ being the Reeb vector field and if the manifold is Ricci symmetric, then

6λ− 3p = −34.

Proof Using (3.5) in (2.12) for 3−dimensional, we obtain

S(U, V ) =
1

2

[{
λ−

(p
2

+
1

3

)
+ 2
}
g(U, V )

−
{
λ−

(p
2

+
1

3

)
+ 6
}
η(U)η(V )

]
. (3.6)

Taking covariant derivative of the above equation along Z, we get

(∇ZS)(U, V ) = −1

2

[{
λ−

(p
2

+
1

3

)
+ 6
}

×
{
η(U)(∇Zη)V + η(V )(∇Zη)U

]
. (3.7)

The manifold is Ricci symmetric i,e, (∇ZS)(U, V ) = 0, then from (3.7), we get{
λ−

(p
2

+
1

3

)
+ 6
}{

η(U)(∇Zη)V + η(V )(∇Zη)U
}

= 0. (3.8)

Applying (2.8), in the foregoing equation (3.8), we obtain{
λ−

(p
2

+
1

3

)
+ 6
}{

g(φU, φV
}

= 0. (3.9)

Since g(φU, φV ) 6= 0, it yields

λ−
(p

2
+

1

3

)
+ 6 = 0,
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Hence, from the above

6λ− 3p = −34. (3.10)

This completes the proof. �

Corollary 3.3 If a 3−dimensional para-Kenmotsu manifold M3 admits conformal Yamabe

soliton (g, ξ, λ, p) and if the manifold is Ricci symmetric, then the soliton is shrinking if p > 34
3 ,

steady if p = 34
3 and expanding if p < 34

3 .

Proof From equation (3.10), we get

6λ = 3p− 34.

The definition of shrinking, steady and expanding is that λ > 0, λ = 0 and λ < 0 respec-

tively.

So, from the above soliton is shrinking, steady and expanding if p > 34
3 , p = 34

3 and p < 34
3

respectively. �

Theorem 3.4 Let a n−dimensional para-Kenmotsu manifold admits conformal Yamabe soliton

(g,X, λ, p), such that the soliton vector field X is pointwise collinear with ξ, then X is a constant

multiple of ξ and X is a Killing vector field.

Proof Let X = cξ, where c is a function and ξ is the Reeb vector field then

(Lcξg)(U, V ) = g(∇Ucξ, V ) + g(U,∇V cξ).

Using (2.7) in the above equation and then applying (2.2), we get

(Lcξg)(U, V ) = (Uc)η(V ) + (V c)η(U) + 2c{g(U, V )− η(U)η(V )}. (3.11)

Again from equation (1.1), we have

(Lcξg)(U, V ) =
[
2r − 2λ+

(
p+

2

n

)]
g(U, V ). (3.12)

Equating (3.11) and (3.12), we get[
2r − 2λ+

(
p+

2

n

)]
g(U, V ) = (Uc)η(V ) + (V c)η(U)

+2c{g(U, V )− η(U)η(V )}. (3.13)

Putting V = ξ, in the previous equation, we obtain

(Uc) =
[
2r − 2λ+

(
p+

2

n

)
− ξc

]
η(U). (3.14)
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Again, Substituting U = ξ in above equation, we get

(ξc) =
[
r − λ+

(p
2

+
1

n

)]
. (3.15)

Using (3.15) in (3.14) becomes

(Uc) =
[
r − λ+

(p
2

+
1

n

)]
η(U). (3.16)

Now, taking exterior differentiation of (3.16), we get[
r − λ+

(p
2

+
1

n

)]
dη = 0. (3.17)

Since dη 6= 0, the above equation becomes[
r − λ+

(p
2

+
1

n

)]
= 0. (3.18)

Using (3.18) in (3.16) gets

Uc = 0,

which implies that c is constant.

If we are using (3.18) in (1.1) yields

(LXg)(U, V ) = 0.

Hence, X is a Killing vector field. �

§4. Conformal Gradiant Yamabe Soliton

Theorem 4.1 If a n−dimensional para-Kenmotsu manifold admits conformal gradient Yamabe

soliton with potential function f , then if the scalar curvature is constant then the potential

function f is also constant and conversely.

Proof From equation (1.2), we gets

∇UDf =
[
r − λ+

(
p+

2

n

)]
U. (4.1)

Taking covariant differentiation (4.1) along the vector field V , we get

∇V∇UDf = (V r)U +
{
r − λ+

(
p+

2

n

)}
∇V U. (4.2)

Interchanging U and V in the above equation, we get

∇U∇VDf = (Ur)V +
{
r − λ+

(
p+

2

n

)}
∇UV. (4.3)
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Again, from (4.1) we have

∇[U,V ]Df =
[
r − λ+

(
p+

2

n

)]
(∇UV −∇V U). (4.4)

As is widely known that

R(U, V )Df = ∇U∇VDf −∇V∇UDf −∇[U,V ]Df,

Using (4.2),(4.3) and (4.4) in the previous equation, we get

R(U, V )Df = (Ur)V − (V r)U. (4.5)

Contracting (4.5) over U , we get

S(V,Df) = −(n− 1)g(V,Dr). (4.6)

Substituting, V = ξ and using (2.11) in (4.6), we get ξf = ξr.

Putting U = ξ in (4.5), we obtain

R(ξ, V )Df = (ξr)V − (V r)ξ. (4.7)

Taking inner product with U , yields

g(R(ξ, V )Df,U) = (ξr)g(U, V )− (V r)η(U). (4.8)

From (2.10)

g(R(ξ, V )Df,U) = [η(U)(V f)− g(U, V )(ξf)]. (4.9)

As we know,

g(R(ξ, V )Df,U) = −g(R(ξ, V )U,Df).

So, from equation (4.8) and (4.9) we get,

(ξr)g(V,U)− (V r)η(U) = −[η(U)(V f)− g(U, V )(ξf)], (4.10)

which gives the following after antisymmetrizing

(Ur)η(V )− (V r)η(U) = (Uf)η(V )− (V f)η(U). (4.11)

Replacing V by ξ in the previous equation (4.11) and using ξf = ξr implies that Df = Dr.

So, if the scalar curvature is constant, then the potential function is also constant and conversely.

This completes the proof. �
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