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Abstract: In this paper we construct solutions of the fuzzy matrix equation Âx̂ = b̂ for

x̂ when the elements in Â and b̂ are MMCE-triangular fuzzy numbers. Here we apply the

product rule to solve the equation without any restriction on the signs of multiplied fuzzy

numbers. Then we give two examples of the fuzzy product rule.
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§1. Introduction

The systems of linear equations play important role in various areas of mathematics, statis-

tic and engineering systems. Fuzzy systems represented by fuzzy numbers rather then crisp

numbers have a major role for fuzzy modelling which can formulate uncertainty in real world

problems. Fuzzy arithmetic operations have an essential role for treat linear systems whose

parameters are all or partially fuzzy numbers. Firstly, the basic arithmetic structure for fuzzy

numbers was introduced by Zadeh [11] and later this was developed many researcher such as

Mizumoto and Tanaka [15], Dubois and Prade [7], Klir [9]. The fuzzy addition operation is

practically easy to use. But, the other three fuzzy operations see various difficulties. Here we

consider the multiplication operation for use the system of linear equations. A main disadvan-

tage of this operation is that the shape of type fuzzy numbers (L-R, triangular or trapezoidal

numbers) is not preserved. For this reason the researchers sought alternative ways for the

product of fuzzy numbers.

Ma et al. introduced a new multiplicative operation of product type in [4]. They defined

easily computable arithmetic operations based on split representation. But it has a drawback

about the support. This problem has been solved by using middle-core-ecart representation

(MCE-representation) of fuzzy numbers. Later, Zeinali and Maheri [6] introduced the modified

MCE-product (MMCE, for short).

The system of linear equations Ax̂ = b̂, where A is a crisp matrix and b̂ is a fuzzy number

vector, is called a fuzzy system of linear equation (FSLE) have been solved firstly Friedman et

al. [12]. Following general model for solving such a fuzzy linear systems was proposed by many
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researchers ([13], [16], [4]). The linear system Âx̂ = b̂, where Â fuzzy matrix and b̂ is a fuzzy

number vector, is called a fully fuzzy linear system (FFLS). A lot of works have been done this

area with different methods ([ [17], [14], [8], [10]).

In this paper we will investigate the solutions of FFLS with MMCE-representation of

triangular fuzzy numbers. This paper is organized as follows. In Section 2, we briefly present the

necessary preliminaries on fuzzy theory and MMCE-representation. In section 3, we summarise

the definition and some properties of the FFLS. Then the solution of FFLS is constructed via

MMCE-representation of fuzzy numbers. The proposed method is illustrated by solving some

examples. Section 4 conclusion and some suggestions for future works are given.

§2. Preliminaries

In this section, we recall the basic notation of fuzzy numbers, the cross product and FFLS.

Definition 2.1([2]) Let E be a universal set. A fuzzy subset Â of E is given by its membership

function µÂ : E → [0, 1], where µÂ (t) represents the degree to which t ∈ E belongs to Â. We

denote the class of the fuzzy subsets of E by the sembol F (E).

Generally, a neutrosophic fuzzy set A(NFSA) is characterized by truth membership func-

tion TA(x), an indeterminacy membership functions IA(x) and a falsity membership function

FA(x).

Definition 2.2([9]) The α−level of a fuzzy set Â ⊆ E, denoted by
[
Â
]α

, is defined as

[
Â
]α

=
{
x ∈ E : Â (t) ≥ α

}
, ∀α ∈ (0, 1] .

Furthermore, if E is also topological space, then the 0−level is defined as the closure of the

support of Â. That is, [
Â
]0

=
{
x ∈ E : Â (t) > 0

}
.

The 1−level of a fuzzy subset Â is also called as core of Â and denoted by
[
Â
]1

= core
(
Â
)

.

Definition 2.3([9]) A fuzzy subset û on R is called a fuzzy real number (fuzzy interval), whose

α− cut set is denoted by [û]
α

, i.e., [û]
α

= {x : û (t) ≥ 0}, if it satisfies two axioms:

(i) There exists r ∈ R such that û (r) = 1;

(ii) For all 0 < α ≤ 1 , there exist real numbers −∞ < u−α ≤ u+α < +∞ such that [û]
α

is

equal to the closed interval [u−α , u
+
α ].

Similarly, we can also define a neutrosophic fuzzy real number and fuzzy interval.

Definition 2.4([2]) A fuzzy number Â is said to be triangular if the parametric representation

of its α−level is of the form[
Â
]α

= [(a2 − a1)α+ a1, a3 − (a3 − a2)α]
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for all α ∈ [0, 1], where
[
Â
]0

= [a1, a3] and core
(
Â
)

= a2. A triangular fuzzy number is

denoted by the triple (a1, a2, a3).

The set of all fuzzy real numbers (fuzzy intervals) and triangular fuzzy numbers are denoted

by RF and RT , respectively.

Definition 2.5([1]) An arbitrary fuzzy number û in the parametric form is represented by an

ordered pair of functions [u−α , u
+
α ], 0 ≤ α ≤ 1, which satisfy the following requirements

(i) u−α is a bounded non-decreasing left continuous function on (0, 1] and right- continuous

for α = 0;

(ii) u+α is bounded non- increasing left continuous function on (0, 1] and right- continuous

for α = 0;

(iii) u−α ≤ u+α , 0 < α ≤ 1.

Definition 2.6([4],[3]) For û ∈ RF , consider the functions θ−u , θ
+
u → R+ defined by

θ−u (α) = mu − u−α , θ+u (α) = u+α −mu

where mu =
u−
1 +u+

1

2 . Then, û = (mu; θ−u ; θ+u ) is MCE-representation of û. Note that the

semicolon symbol makes this different from the well-known notation of a general triangular

fuzzy number denoted by (a, b, c). From now on, this notation is used for fuzzy numbers.

From reference [5], clearly, (mu; θ−u ; θ+u ) represents a fuzzy number if and only if θ−u , θ
+
u are

bounded, positive, non-increasing, left-continuous on (0; 1] and right-continuous at 0.

Although the MCE-product is easy to use, it doesn’t preserve the shapes of triangular and

trapezoidal fuzzy numbers in reference [4].

First, we note that for a triangular fuzzy number û = (a; b; c), MCE-representation is in

the form

û = (b; (b− a) (1− α); (c− b) (1− α)),

which means that if û ∈ RT , then û can be presented by (mu; k−u (1 − α); k+u (1 − α)), where

k−u , k
+
u ∈ R+. Now, the modification of MCE-product can be done as follows:

Definition 2.7([6]) Let û = (mu; k−u (1 − α); k+u (1 − α)) and v̂ = (mv; k
−
v (1 − α); k+v (1 − α))

be two triangular fuzzy numbers. The modified MCE-product (denoted by MMCE-product for

short) is defined by

û~ v̂ = (mumv; k
−
u k

−
v (1− α); k+u k

+
v (1− α)),

the α−cut of û~ v̂ is

(û~ v̂)α = [mumv − k−u k−v (1− α);mumv + k+u k
+
v (1− r)]

and its support is

sup pû~ v̂ = [mumv − k−u k−v ;mumv + k+u k
+
v ].
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The triple representation for û~ v̂ as a triangular fuzzy number is

û~ v̂ =
(
mumv − k−u k−v ,mumv, k

+
u k

+
v

)
.

For û, v̂ ∈ RT and t ∈ R, the sum and scalar multiplication are defined by

û⊕ v̂ =
(
mu +mv; k

−
u (1− α) + k−v (1− α); k+u (1− α) + k+v (1− α)

)
tu =

 (tmu; tk−u (1− α); tk+u (1− α)) , t ≥ 0,

(tmu;−tk+u (1− α);−tk−u (1− α)) , t < 0

and the MMCE-product is invertible and the inverse of û = (mu; k−u (1− α); k+u (1− α)) is

û−1 =

(
1

mu
;

1

k−u
(1− α);

1

k+u
(1− α)

)
.

Example 2.8 Consider Â = (−1, 1, 3) and B̂ = (1, 3, 6), then Â = (1; 2(1− α), 2(1− α))

and B̂ = (3; 2(1− α), 3(1− α)) are MMCE triangular fuzzy numbers. The below algebraic

operations can be easily done.

A⊕B = (4; 4(1− α), 5(1− α)) = (0, 4, 9);

A	B = (−2; 5(1− α), 4(1− α)) = (−7,−2, 2);

A~B = (3; 4(1− α), 6(1− α)) = (−1,−3, 9);

A \B = A~B−1 = (−3; 2(1− α), 2(1− α)) = (−5,−3,−1).

Definition 2.9([7]) A matrix Ĉ = (ĉij) is called a fuzzy matrix,if each element of Ĉ is a

MMCE triangular fuzzy number.

Up to rest of this paper, we represent n × m fuzzy matrix Ĉ = (ĉij)n×m with ĉij =

((mc)ij ; (k−u )ij (1 − α); (k+u )ij (1 − α)) and a new notation Ĉ = (C,E, F ), where C = (mc)ij ,

E = (k−u )ij (1− α) and F = (k+u )ij (1− α) are three n×m crisp matrix.

Definition 2.10([7]) Consider the n× n linear system of equations:
(ĉ

11
~ x̂

1
)⊕ (ĉ

12
~ x̂

2
) ... (ĉ

1n
~ x̂

n
) = b̂

1

(ĉ
21
~ x̂

1
)~ (ĉ

22
~ x̂

2
) · · · (ĉ

2n
~ x̂

n
) = b̂2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(ĉ
n1
⊗ x̂

1
)~ (ĉ

n2
~ x̂

2
) ... (ĉ

nn
~ x̂

n
) = b̂n.

The matrix form of the above equations is

Ĉ ~ x̂ = b̂ (1)
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where the coefficient matrix Ĉ = (ĉij) is a n×n fuzzy matrix for integers 1 ≤ i, j ≤ n and x̂i, b̂i

are MMCE triangular fuzzy numbers, 1 ≤ i ≤ n. Such a system is called a fully fuzzy linear

system (FFLS).

§3. The Solution of FFLS

In this section we solve a FFLS Ĉ~ x̂ = b̂ using Computational methods given by [8]. However,

in this fuzzy system we use MMCE triangular fuzzy numbers instead of LR fuzzy numbers.

Thus, a FFLS will be solved not only for positive fuzzy numbers but also for all fuzzy numbers.

In this paper, we suppose that all fuzzy numbers are MMCE triangular fuzzy numbers.

Definition 3.1([8]) We say x̂ is a fuzzy approximate solution or more shortly, fuzzy solution of

Ĉ ~ x̂ = b̂ with the left and right shape functions similar to that L(.) and R(.) which used in Ĉ

and b̂ if and only if Ĉ~ x̂ = b̂ with approximate operators as mentioned above, i.e. x̂ = (x, y, z)

is said to be fuzzy solution of (C,E, F )⊗ x̂ = (b, q, s) iff

Cx = b, Cy + Ex = q, Cz + Fx = s (2)

where the membership function of each element of {x p µx̂ > 0} can be defined with the same

functions L and R which used in Ĉ and b̂.

Note that we use MMCE triangular fuzzy number with semicolon notation which is p-

resented by (mu; k−u (1 − α); k+u (1 − α)) = (C;E;F ) instead of LR fuzzy number denoted by

(C,E, F ) in (2).

Now, we use the Eq (1) as follow

((mc)ij ;
(
k−c
)
ij

(1− r);
(
k+c
)
ij

(1− α))~ ((mx)j ;
(
k−x
)
j

(1− α);
(
k+x
)
j

(1− α))

= ((mb)j ;
(
k−b
)
j

(1− α);
(
k+b
)
j

(1− α)).

If we rearrange the Eqs in (2), we get the following equations

n∑
j=1

(mc)ij . (mx)j = (mb)i

n∑
j=1

(mc)ij .
(
k−x
)
j

(1− α) +

n∑
j=1

(
k−c
)
ij

(1− α). (mx)j =
(
k−b
)
j

(1− α)

n∑
j=1

(mc)ij .
(
k+x
)
j

(1− α) +

n∑
j=1

(
k+c
)
ij

(1− α). (mx)j =
(
k+x
)
j

(1− α)

where C is a nonsingular crisp matrix (1 ≤ j ≤ n).

If we assume that C is a nonsingular crisp matrix, we can write similarly from reference

[8] that

(Cx,Cy + Ex,Cz + Fx) = (b, q, s) .
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So, we have 
Cx = b,

Cy = q − Ex,

Cz = s− Fx.

(3)

Thus, we can easily get

x = C−1b, (4)

y = C−1q − C−1Ex, (5)

z = C−1s− C−1Fx, (6)

by using the inverse matrix of C, which enables us to get the following result.

Theorem 3.2 Let Â = (A;M ;N) and b̂ = (b; g;h) be non-negative fuzzy matrix and non-

negative fuzzy vector, respectively, and Â be the product of a permutation matrix by a di-

agonal matrix with positive diagonal entries. Moreover let h ≥ MA−1b, g ≥ NA−1b and(
MA−1 + I

)
b ≥ h. Then the system Âx̂ = b̂ has a positive fuzzy solution.

Proof See [8] for its proof. �

Now we consider two examples, one consisting of positive triangular fuzzy numbers and for

the other example it does not matter the sign of the triangular fuzzy numbers.

Example 3.3 Consider the following FFLS for positive fuzzy numbers (Test 3.2 in [8]) 5̂x̂1 + 6̂x̂2 = 5̂0,

7̂x̂1 + 4̂x̂2 = 4̂8

where 4̂ = (4, 4, 5), 5̂ = (4, 5, 6), 6̂ = (5, 6, 8), 7̂ = (6, 7, 7), 4̂8 = (43, 48, 55) and 5̂0 = (40, 50, 67)

are triangular fuzzy numbers. Using MMCE triangular fuzzy numbers instead of triangular

fuzzy numbers we mean
(5; (1− α); (1− α))~ (x1; y1(1− α); z1(1− α))⊕ (6; (1− α); 2 (1− α))

~ (x2; y2(1− α); z2(1− α)) = (50; 10(1− α); 17 (1− α))

(7; (1− α); 0)~ (x1; y1(1− α); z1(1− α))⊕ (4; 0; (1− α))~ (x2; y2(1− α); z2(1− α))

= (48; 5(1− α); 7 (1− α))

So with Eq. (4) we get 5 6

7 4

 x1

x2

 =

 50

48

 =⇒

 x1

x2

 =

 4

5

 .
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Similarly by Eqs. (5) and (6) we have 5 6

7 4

 y1 (1− α)

y2 (1− α)

 =

 10 (1− α)

5 (1− α)

−
 1 (1− α) 1 (1− α)

1 (1− α) 0 (1− α)

 4

5



=⇒

 y1

y2

 =

 1/11

1/11


and  5 6

7 4

 z1 (1− α)

z2 (1− α)

 =

 17 (1− α)

7 (1− α)

−
 1 (1− α) 2 (1− α)

0 (1− α) 1 (1− α)

 4

5



=⇒

 z1

z2

 =

 0

1/2

 .
So, the solution is

x̂ =

 (
4; 1

11 (1− α) ; 0
)(

5; 1
11 (1− α) ; 1

2 (1− α)
)


where this solution is a fuzzy solution; also we consider that our solution is the same as the

solution in [8].

Example 3.4 Consider the following FFLS for all fuzzy numbers (Example 2 in [10]) −̂1x̂1 + 2̂x̂2 = −̂2,

−̂3x̂1 + 3̂x̂2 = 4̂

where,

−̂3 = (−4,−3,−2), −̂1 = (−3,−1, 2),

2̂ = (1, 2, 4), 3̂ = (1, 3, 6),

−̂2 = (−3,−2,−1), 4̂ = (1, 4, 5)

are triangular fuzzy numbers. Using MMCE triangular fuzzy numbers instead of triangular

fuzzy numbers we mean
(−1; 2(1− α); 3 (1− α))~ (x1; y1(1− α); z1(1− α)) + (2; (1− α); 2 (1− α))

~ (x2; y2(1− α); z2(1− α)) = (−2; (1− α); (1− α))

(−3; (1− α); (1− α))~ (x1; y1(1− α); z1(1− α)) + (3; 2 (1− α) ; 3 (1− α))

~ (x2; y2(1− α); z2(1− α)) = (4; 3(1− α); (1− α))
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So with Eq. (4) we get −1 2

−3 3

 x1

x2

 =

 −2

4

 =⇒

 x1

x2

 =

 −14/3

−10/3

 .
Similarly by Eq. (5) and (6) we have

 −1 2

−3 3

 y1 (1− α)

y2 (1− α)

 =

 1 (1− α)

3 (1− α)

−
 2 (1− α) 1 (1− α)

1 (1− α) 2 (1− α)

 −14/3

−10/3



=⇒

 y1

y2

 =

 1/11

1/11


and −1 2

−3 3

 z1 (1− α)

z2 (1− α)

 =

 1 (1− α)

1 (1− α)

−
 5 (1− α) 2 (1− α)

1 (1− α) 3 (1− α)

 −14/3

−10/3



=⇒

 z1

z2

 =

 11.22

16.44

 .
So, the solution of system is

x̂ =

 (−4.66;−8.77 (1− α) ; 11.22 (1− α))

(−3.33; 8.88 (1− α) ; 16.44 (1− α))

 =

 (−8.77,−4.66, 15.33)

(−12.21,−3.33, 13.11)


where this solution is a fuzzy solution; but the solution in [10] is not a fuzzy solution. So the

method we used in this paper is more convenient.

§4. Conclusion

In this study, we introduced the Direct method in [8] for finding the solution of fully fuzzy linear

system (FFLS) by using the MMCE triangular fuzzy numbers with the product rule instead of

LR fuzzy numbers. We presented two examples to implement the given method. We verified

that the sign of fuzzy numbers does not matter in the fuzzy solution of the system.

This product rule easy to use for multiplication of fuzzy numbers which are not depend on

the signs . For this reason, it provides a great advantage in solving fuzzy equation systems. So,

for future work, we can apply this new method to find fuzzy eigenvalues and fuzzy eigenvectors

of the the system of linear equations Âx̂ = λ̂x̂.
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