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Abstract: Usually, one holds a thing T on its appearance or characters and particularly,

by mathematics. But is the mathematical reality equal to the reality of thing T? The answer

is not certain because the recognition of human on thing T is only a local or conditional

one, implied in the fable of blind men with an elephant, i.e., the sophist told the blind

men that an elephant has all characteristics that they are talking about. Then, what is the

significance of this fable? It lies essentially in the shape of an elephant and generally, the

reality of a thing is a combinatorial one, i.e., combinatorics is priori to the recognition of

human because all of us are similar to the blind in front of a thing. In this report, I discuss

the non-harmonious group with Smarandache multispace inherited a topological graph G

in first, generalize it to G-flows
−→
GL or networks

−→
N with vector flows and then, continuity

flows
−→
GL, i.e., mathematics over 1-dimensional topological graphs, which extends the classic

mathematics over combinatorial structures
−→
G . This report surveys how to establish such

a system by viewing continuity flow
−→
GL as a mathematical element for establishing the

Banach flow space, Hilbert flow space over topological graphs
−→
G and then, how to apply

it to generalize a few of important conclusions in functional analysis such as those of the

inverse mapping theorem, closed graph theorem and the Hahn-Banach theorem for providing

the recognition of human on the reality of things, including the subdivision of a matter M

into elementary particles with a mathematical supporting, which forms a complex network

on M in physics, and shows also the 12 meridians on human body in traditional Chinese

medicine is an example of G-flows or generally, continuity flows with dynamic equations.

Key Words: Combinatorial notion, contradiction, non-solvable system of equations, non-

harmonious group, Smarandachely denied axiom, Smarandache multispace, G-flow, continu-

ity flow, mathematical combinatorics, 12 meridians on human body.

AMS(2010): 05C10, 05C21, 35A08, 46B25, 51D20, 51H20, 51P05.

§1. Introduction

Usually, one holding a thing T on its appearance or characters and particularly, by mathematical

reality. Then, what is the reality of a thing T? In dictionary, the word “reality” is explained to

1Reported at The 10th International Combinatorics and Graph Theory Conference (CGT 2025), May 23-25,
2025, Xian, P.R.China

2Received January 15, 2025. Accepted March 16, 2025
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be the state of things as they actually exist, including everything that is and has been, whether

or not it is observable or comprehensible. Can one really hold on the reality of thing T? The

answer is not certain unless the mathematical reality. Generally, a thing T is multilateral or

complex one but the recognition of human on thing T has certain limitations, i.e., it is only the

local rather than the whole. Then, how to solve this problem and how to cross the gap from the

local to the whole? The answer is nothing else but the combinatorics.

1.1. Combination Prior to Reductionism. As we all known, the reduction on a matter T

is subdivided it into the minimum recognizable elements so that humans can understand the

reality of matter T . For example, to subdivide a matter T → molecule → atom → nucleus

→ proton and neutron → elementary particle consisting of quarks, leptons with interaction

quanta including photons and other particles of mediated interactions ([35]), and a living L →
biological macromolecule → cell or gene, such as those shown in Figure 1 on subdividing of

matter with elementary particles.

Figure 1

Actually, there is an assumption implied in reductionism without proof, i.e., the reality of

matter T can be held if the behavior of elementary particles over a topological 1-dimensional

structure is recognized locally by humans. For example, the models of proton, neutron are both

over graphs K3 by quarks in Figure 1. But, is this assumption right and so, one can holds on

the reality of matter T by reductionism? The

answer is not certain unless all elementary

particles are in stationary or synchronization.

For holding the whole with the local, we

all learned a famous fable of the blind men

with an elephant in elementary school, which

narrates that there are 6 blind men wanted

to know an elephant looked like by feeling its

body one by one, see Figure 2. Their recog-

nitive process is like this, namely the 1st one

touched the elephant’s tooth and claimed “an Figure 2

elephant is like a big, thick and smooth radish, the 2nd one touched the elephant’s trunk and

claimed “an elephant is like a tube, the 3rd one touched the elephant’s ear and claimed “an

elephant is like a big fan, the 4th one touched the elephant’s belly and claimed “an elephant is

clearly like a wall, the 5th one touched the elephant’s leg and claimed “an elephant is clearly like

a big pillar and finally, the 6th one touched the elephant’s tail and claimed “an elephant is like



Combinatorics – A Mathematical Approach for Holding on the Realty of Thing in the Universe 3

a piece of grass rope. Each of them believed the perception of himself on the shape of elephant

is right and insisting on his own opinion, kept an endless quarrelling with others. At this

time, a sophist came forward and told them “why you are thinking about the elephant’s shape

different is because each of you touches the different part of the elephant’s body. Essentially,

an elephant has all characteristics that you are talking about! This fable shows the limitation

of recognition of blind man compared to the normal, namely the elephant shape in eyes of the

blind men is very different from, even a bit ridiculous to that of the normal human. Then, what

is the elephant shape in eyes of the sophist by that of the blind men? The answer is certainly

nothing else but a union of characteristics recognized locally by the 6 blind men, namely the

combination of all the local to form a whole such as those shown in Figure 3.

Figure 3

An elephant = {4 big pillars}
⋃
{1 gross rope}

⋃
{1 tubes}⋃

{2 big fans}
⋃
{1 big wall}

⋃
{2 big radishes} (1.1)

with a combinatorial structure

q qq q
q q

q q

q q

q q

a

b

c1

c2

d e f h

g1 g2

g3 g4

Figure 4

where a1, a2 = big radishes, b1, b2 = big fans, c= elephant’s head, d = elephant’s neck, e =

big wall, g1, g2, g3, g4 = big pillars, f = grass rope. So, what is the philosophical implication of

the fable of blind men with an elephant? Certainly, the elephant is existing in a 3-dimension

R3. It is clear that the shape of an elephant can not be any combination of 2 big teeth (or

big radishes), 1 trunk (or tube), 2 ears (or big fans), 1 belly (or wall), 4 legs (or big pillars)

and 1 tail (or grass rope) but such a combination over the 1-dimensional topological graph GL

shown in Figure 4 in eyes of the sophist, inherited in the recognition of blind men by feeling

the different parts on the elephant body.

Notice that the sophist told the blind men that “an elephant has all characteristics that

you are talking about” is essentially a claim on the elephant shape, i.e., its shape is a union (1.1)
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of all characteristics of blind men hold on the elephant shape. Certainly, this is the recognitive

way of human on thing T by reductionism. Generally, let the observable characteristics be

χ1, χ2, · · · , χn in reductionism of thing T and denote the mathematical reality of thing T by

TM. So, one recognizes the mathematical reality of thing T by a union

TM =

n⋃
1

R(χi) (1.2)

of local recognitions R(χi) of human, called a Smarandache multispace ([14],[36]), where R(χi)

is the mathematical reality on characteristic χi for integers 1 ≤ i ≤ n. Now, is any combina-

tion of characteristics of χ1, χ2, · · · , χn necessarily the thing T? The answer is certainly Not

because one can not assert the characteristics χ1, χ2, · · · , χn are complete, and the recognitive

process of human on thing T is like the blind men on the elephant by feeling its partly body.

Furthermore, T is existing in space, which inherits a topological 1-dimensional stricture GL

in the reductionism process and the combination is conclusively priori to the reductionism in

recognition of thing T , which naturally leads to a complex network ([1]-[2]) or combinatorial

fields ([10]-[12]) on thing T . For example, there are 3.6× 1013 and 2.8× 1013 cells respectively

in a male or female body, which can be characterized by complex networks with 3.6 × 1013 or

2.8× 1013 nodes, respectively.

1.2. Combinatorics Implied in Contradictory System. Usually, human quarrelling is

because of the differences in recognition on one thing, which leads to contradiction, even by

mathematics. For example, let Si, 1 ≤ i ≤ 6 be the elephant shape of blind men in fable of the

blind men with an elephant. They were quarrelling because their recognition are very different,

i.e., Si 6= Sj if 1 ≤ i 6= j ≤ 6. However, the contradiction arising is not due to the nature of

elephant but the modeling of blind men, and the sophist told the blind men is its shape should

be essentially a contradictory system holding with a Smarandachely denied axiom ([35],[36]),

i.e., the axiom the elephant shape S = a big radish is simultaneously validated and invalided, or

the axiom the elephant shape S = the reality of elephant shape only invalided but in six different

shapes Si,1 ≤ i ≤ 6 simultaneously, contra-

dicting to a definite recognition on the ele-

phant shape. Indeed, there is a fundamental

question on the recognition of human, i.e., is

a contradictory system in mathematics worth-

less in recognition? The answer is certainly

Not because we can not asserted so, i.e., the Figure 5

contradiction is essentially caused by the modeling way of human, which violates the axiom

adopted in the mathematical system. However, all things are harmonious in nature, namely

the contradiction arising in a mathematical modeling only implies its inappropriate, not the

objective of thing in nature. Particularly, the modeling of elements in a self-organized system

such as those of biological population, cell system, gene, etc., i.e., all elements are self-motivated,

not necessarily in stationary and synchronization are the case.

For example, let A = {C1, C2, C3} and B = {C ′1, C ′2, C ′3} be two groups consisting of three

Tom cats chasing three Jerry mice in Figure 5 along three straight lines on Euclidean plane R2
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respectively, shown in Figure 6. Then, how to modeling the running behavior of cats in groups

A or B on plane R2? For answering this question, a natural idea is to describe the running

behavior of the two groups by moving orbits, i.e., lines on Euclidean plane R2, solve the two

systems of linear equations and then, answer this question. In fact, the obits of three cats in

groups A or B respectively form two systems of linear equations by cats running lines shown

in Figure 6, i.e

(LESN3 )


y = 4

y = 2

x+ y = 8

(LESS3 )


x = 3

y = 3

x+ y = 6

However, the system (LESN3 ) is non-solvable and the system (LESS3 ) has a solution (3, 3).

Now, can we conclude that the running behavior of cats in A are nothing unless an empty set

∅, and cats in B are all still at the point (3, 3) without moving? Of course Not because all cats

in group A and B are running on Euclidean plane R2.

-

6

-

6
x+ y = 8

y = 2

y = 4
y = 3

x = 3 x+ y = 6

r r
O Ox x

y y

Figure 6

Then, what is wrong with the modeling of running behavior of cats? The answer is modeling

by the solutions of systems (LESN3 ) and (LESS3 ) on running behavior of cats in groups A and

B is inappropriate. Certainly, a running orbit of cat in groups A or B can be characterized by

the solution of line equation, i.e., the straight line of cat in A or B on Euclidian plane R2 but

not the solution of system of linear equations.

In this case, the orbits Orb(A) or Orb(B) should be a union of points of cats in groups A

or B passing on plane R2, i.e.,

Orb(A) = {(x, y) : y = 4}
⋃
{(x, y) : y = 2}

⋃
{(x, y) : x+ y = 8},

Orb(B) = {(x, y) : x = 3}
⋃
{(x, y) : y = 3}

⋃
{(x, y) : x+ y = 6},

where each of the orbits Orb(A) and Orb(B) is a Smarandache multispace, i.e., combinatorial

one. For example, denote the points of a cat running on straight line ax + by = c by the set

La,b,c = {(x, y)|ax + by = c, a 6= 0 or b 6= 0} in Figure 6, the line intersections of (LESN3 ) and
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(LESS3 ) for cats in groups A,B by

v1 = L0,1,4

⋂
L1,1,8, v2 = L0,1,2

⋂
L1,1,8, L0,1,2

⋂
L0,1,4 = ∅,

u1 = L1,0,3

⋂
L1,1,6, u2 = L0,1,3

⋂
L1,0,3, u3 = L0,1,3

⋂
L1,1,6

and so, the running of cats in groups A, B can be characterized by combinatorial solutions of

systems (LESN3 ) and (LESS3 ) respectively, i.e., labeled graphs PL3 , C
L
3 shown in Figure 7.

r r r

r

r rL0,1,4 L0,1,2L1,1,8

v1 v2

L1,0,3 L0,1,3

L1,1,6

u1

u2

u3

Figure 7

Generally, let S̃ be a Smarandache multispace on n distinct spaces S1, S2, · · · , Sn for an

integer n ≥ 1. Define a labeled graph GL[S̃] associated with S̃ by

V
(
GL
[
S̃
])

= {S1, S2, · · · , Sn}

E
(
GL
[
S̃
])

=
{

(Si, Sj) |Si
⋂
Sj 6= ∅, 1 ≤ i 6= j ≤ n

}
and labels on the vertex Si, edge (Si,Sj) for integers 1 ≤ i 6= j ≤ n respectively by

L : Si → L (Si) = Si and L : (Si, Sj)→ L (Si, Sj) = Si
⋂
Sj .

Certainly, a Smarandache multispace S̃ is equivalent to the labeled graph GL[S̃] by defi-

nition. However, S̃ is a multiset implying the mathematical reality of thing but GL[S̃] is sets

over topological graph G which can contributes to establish a mathematics, i.e., mathematical

combinatorics by viewing GL[S̃] as a mathematical element. So, could we really establish such

a mathematics on elements GL[S̃]? The answer is definite by combinatorics.

The main purpose of this report is to survey the establishing of mathematics on continuity

flows
−→
GL holding with vertex conservation law, show the importance of non-harmonious groups

with G-solutions in recognition of the reality of thing T , generalize G-solutions to G-flows, conti-

nuity flows for constructing mathematics as those of Banach flow space, Hilbert flow space over

topological graphs G and then, generalize a few of important conclusions in classic mathematics

such as the inverse mapping theorem, closed graph theorem and the Hahn-Banach theorem in

these flow spaces for providing the recognition of human on the reality of things, including the

subdivision of a matter M into elementary particles with a mathematical supporting, and shows

also the 12 meridians, Ren and Du meridians on human body in traditional Chinese medicine

contributing an example of G-flows or generally, continuity flows by viewing the Ying Qi and
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Wei Qi on meridians to be vital energy ([24]-[27], [33]).

All terminologies and notations not defined in this paper are standard such as those of al-

gebra, complex systems, functional analysis, topology are referred to [3]-[5] and [34], topological

graph is referred to [6]-[7], [15] and Smarandache multispace are referred to [14] and [36].

§2. Mathematical Reality

A mathematical reality on thing T is such an abstraction of T with a priori assumption that

its evolution can be modeled consistent with the symbol behavior in a mathematical system.

Usually, it is characterized by solvable equation in the classic. However, it should be not a

solvable but non-solvable system, i.e., Smarandachely denied system or Smarandache multispace

by Godel’s incompleteness theorem on formal system, which concludes that there exist always

statements in a formal system S that can neither be proved nor disproved so long as S contains

the Peano’s axioms of arithmetic, namely it can be only characterized by non-solvable system

of solvable equations, i.e., non-harmonious group defined following.

Definition 2.1([29]) A non-harmonious group S is such a system S consisting of elements Pi,

1 ≤ i ≤ m,m ≥ 2 with interactions that Pi is constrained on a system of equations

(ESm)


FP1

(x,y) = 0

FP2(x,y) = 0

· · · · · · · · · · · ·

FPm(x,y) = 0

(2.1)

at time t, where Fi(x
0,y0) = 0 and Fi satisfies the existence condition of implicit function

theorem in a neighborhood U of point (x0,y0) in Euclidean space Rn for integers 1 ≤ i ≤ m.

Notice that each function of Fv1 ,Fv2 , · · · ,Fvm in equation (2.1) satisfying the condition

of implicit function theorem. There must be a solution manifold SFi ⊂ Rn with Fi : SFi → 0

for integer 1 ≤ i ≤ m. Then, the system (2.1) has no solution or has a solution is because of

m⋂
i=1

SFi
= ∅ or

m⋂
i=1

SFi
6= ∅. (2.2)

geometrically. So, what is the meaning of system (2.1) has or has no solution? The answer is

that the solution shows the overlap state of elements P1, P2, · · · , Pm at time t, not the state

of elements P1, P2, · · · , Pm because the behavior of element Pi is the solution manifold SFi

for integer 1 ≤ i ≤ m. Accordingly, the non-solvable case of system (2.1) indicates only that

there is no overlap state in elements P1, P2, · · · , Pm, not implies the state of Pi existing or not

because its state is characterized by the solution manifold SFi
for integers 1 ≤ i ≤ m.

And so, how to characterize the group behavior of P1, P2, · · · , Pm? the answer should be

the union
⋃m
i=1 SFi or Smarandache multispace on solution manifolds SFi , 1 ≤ i ≤ m, not the

intersection
⋂m
i=1 SFi

in classical mathematics for non-harmonious group S. In other words,
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the solution of system (2.1) can be only applied to the recognition of thing T if all element

states are the same in evolving, holds with SFi
= SFj

, 1 ≤ i, j ≤ m. It is worth noted that⋃m
i=1 SFi

⊂ Rn is a union that characterizes the state of elements to some extent but still not

completely the state of elements in group S. Then, how should we characterize the state of

group S in this case? The answer is the G-solution of equations in system (2.1).

Definition 2.2([29]) For any integer m ≥ 1, the G-solution of system (2.1) on non-harmonious

group S is a labeled graph GL with vertex and edge sets defined by

V
(
GL
)

= {SFi
, 1 ≤ i ≤ m} ,

E
(
GL
)

=
{

(SFi , SFj ) | if SFi

⋂
SFj 6= ∅ for integers 1 ≤ i, j ≤ m

}
and labels on vertices and edges of G by

L : SFi → SFi , (SFi , SFj )→ SFi

⋂
SFj , 1 ≤ i 6= j ≤ m.

Such a G-solution
⋃m
i=1 SFi

is called a combinatorial manifold in geometry ([9]). Notice

that the case of
⋂m
i=1 SFi

= ∅ is meaninglessness in classical mathematics because it includes

contradiction. However, it is mostly due to the overlap of element states rather than the

non-existence of state of elements, namely it is more meaningful to study the G-solution of

non-harmonious group S than that of classical one and get

Theorem 2.3([29]) For any integer m ≥ 1, a G-solution GL of system (2.1) on a non-

harmonious group S is always existing.

Generally, we can apply G-solution to discuss respectively those of non-solvable systems of

algebraic equations, ordinary differential equations and partial differential equations for char-

acterizing the states of non-harmonious groups with stability of the system, see [11]-[18] for

details. For example, let (LEq1
m), (LDES1

m) be respectively a non-solvable system of linear

equations and ordinary differential equations, i.e.,

(LEq1
m) AX = B, (LDES1

m)


Ẋ = A1X

Ẋ = A2X

· · · · · · · · ·

Ẋ = AmX

as examples, where matrixes A = (aij)m×n, Ak =
(
akij
)
m×n, X = (x1, x2, · · · , xn)T , B =

(b1, b2, · · · , bm)T and aij , a
[k]
ij , bi are real numbers for integers 1 ≤ i ≤ m, 1 ≤ j ≤ n. For any

integers 1 ≤ i, j ≤ m, i 6= j, two linear equations

ai1x1 + ai2x2 + · · ·+ ainxn = bi,

aj1x1 + aj2x2 + · · ·+ ajnxn = bj

are called parallel if there exists a constant c such that

c =
aj1
ai1

=
aj2
ai2

= · · · =
ajn
ain

6= bj
bi
, (2.3)
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which is essentially the condition of parallel planes in Euclidean space Rn. Now, let Li be the

ith linear equation in (LEq1
m). We classify these equations Li, 1 ≤ i ≤ m to parallel families

C1,C2, · · · ,Cs (2.4)

with the maximal property, i.e., all linear equations in family Ci are parallel and there are

no other equations parallel to lines in Ci, |Ci| = ni for integers 1 ≤ i ≤ s. Then, the linear

algebraic non-solvable system (LEq1
m) can be easily characterized.

Theorem 2.4([16]) Let (LEq1
m) be a linear equation system for integers m,n ≥ 1. Then

G[LEq1
m] ' Kn1,n2,··· ,ns (2.5)

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for integers

1 ≤ i ≤ s in (LEq1
m) and the system (LEq1

m) is non-solvable if s ≥ 2.

Particularly, if n = 2, let H be a planar graph with each edge of straight segment on R2.

Define its c-line graph LC(H) by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};

E(LC(H)) = {(L1, L2)| if e1
i and e2

j are adjacent in H for L1 = e1
1e

1
2 · · · e1

l , L2 =

e2
1e

2
2 · · · e2

s, l, s ≥ 1}.

For example, a planar graph H with its c-line graph Lc(H) is shown in Figure 8.

r r

r r

r

r
r

v1 v3
v2

v4

v5
v6

v7
-

L1

L2

L3

L4

L5

c-line graph

r
r r
r r

L1

L2

L3L4

L5

Figure 8

And so, the non-solvable system (LEq1
m) of linear equations can also be characterized by

c-line graph Lc(H), i.e.,

Theorem 2.5([16]) If n = 2, a linear equation system (LEq1
m) is non-solvable if and only if

G[LEq1
m] ' LC(H)), (2.6)

where H is a planar graph of order |H| ≥ 2 on R2 with each edge a straight segment

Notice that the solution of differential equation in system (LDES1
m) is a linear spaces

spanned by its basic solutions. Thus, we can label each vertex of G-solution to get a basis graph

of (LDES1
m) by its base.

Theorem 2.6([17]) Let H be a basis graph. Then, there is a unique linear homogeneous
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differential equation system (LDES1
m) with G-solution H.

For example, let (LDES1
6) be a system of homogeneous differential equations (1)− (6). It

is easily to know the bases of (1)− (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et}

with a basis graph GL[LDES1
6 ] shown in Figure 9.

(LDES1
6)



ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)
Figure 9

Furthermore, two linear spaces are isomorphic if and only if they have the same dimension.

We can replace each basis by its dimension, obtain a basis graph GL[LDES1
m] of systems

(LDES1
m) labeled with integers, called an integral graph and then, classify systems (LDES1

m)

of linear differential equations by integral graphs.

Theorem 2.7([17]) Let (LDES1
m), (LDES1

m)′ be two systems of linear homogeneous differ-

ential equation with integral graphs H, H ′, respectively. Then (LDES1
m)

ϕ
' (LDES1

m)′ if and

only if the integral graph H = H ′.

Similarly, let (PDES1
m) be a system of partial differential equations with

F1(x1, x2, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

F2(x1, x2, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

Fm(x1, x2, · · · , xn, u, ux1 , · · · , uxn , ux1x2 , · · · , ux1xn , · · · ) = 0

on a function u(x1, · · · , xn, t). Then, its symbol is determined by

F1(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0,

i.e., substitute pα1
1 , pα2

2 , · · · , pαnn into (PDES1
m) for the term uxα1

1 x
α2
2 ···x

αn
n

, where αi ≥ 0 for

integers 1 ≤ i ≤ n and a non-solvable system (PDES1
m) is algebraically contradictory if its

symbol is non-solvable. Otherwise, differentially contradictory. Then, we can characterize the

G-solution of non-solvable systems of partial differential equations of first order, which form a

non-harmonious groups and accordingly, to the reality of things.
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Theorem 2.8([20]) A Cauchy problem on systems
F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of partial differential equations of first order is non-solvable with initial values
xi|xn=x0

n
= x0

i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0(x0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0 (2.7)

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0
−
n−1∑
i=0

p0
i

∂x0
i

∂sj0
6= 0. (2.8)

Theorem 2.9([20]) A Cauchy problem on system (PDES1
m) of partial differential equations

of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDES1

m),

1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑
i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0 (2.9)

is uniquely G-solvable, i.e., GL[PDES] is uniquely determined.

Now, what is the role of G-solution on non-harmonious groups S? Its role is on the

global stability of non-harmonious group. Usually, a solution of system (ESm) of differential

equations is called stable or asymptotically stable if for all solutions Y (t) of the differential

equations (ESm) with |Y (0) −X(0)| < δ(ε), exists |Y (t) −X(t)| < ε for ∀ε > 0 and t ≥ 0 or

furthermore, lim
t→0
|Y (t) − X(t)| = 0. However, if

m⋂
i=1

STi = ∅ there are no solutions of (ESm),

the classical theory is failed to apply. By Theorem 2.3, any non-harmonious groups S has a

G-solution GL[ESm] of system (ESm) whenever it is solvable or not, namely the G-solution

GL[ESm] can be used to characterize the stability of system (ESm).

Let GL(t) be a G-solution of (ESm) with initial values GL(t0) and let ω : V
(
GL[ESm]

)
→
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R be a functional. A system (ESm) is said to be ω-stable if there exists a number δ(ε) for any

number ε > 0 such that ∥∥∥ω (GL1(t)−L2(t)
)∥∥∥ < ε (2.10)

or furthermore, asymptotically ω-stable if

lim
t→∞

∥∥∥ω (GL1(t)−L2(t)
)∥∥∥ = 0 (2.11)

if the initial values hold with ‖L1(t0)(v)− L2(t0)(v)‖ < δ(ε) for ∀v ∈ V
(−→
G
)

. In this case, if

there is a Liapunov ω-function L(ω(t)) : O → R, n ≥ 1 on
−→
G with open O ⊂ Rn such that

L(ω(t)) ≥ 0 with equality hold only if (x1, x2, · · · , xn) = (0, 0, · · · , 0) and L̇(ω(t)) < 0 if t ≥ t0.

Denoted by O the zero G-solution of system (ESm), i.e., all vertices and edges on GL[ESm]

are labeled by 0, we get a result on ω-stability of (ESm) following.

Theorem 2.10([21]) If there is a Liapunov ω-function L(ω(t)) : O → R on GL[ESm] of

system (ESm), then it is ω-stable, and furthermore, if L̇(ω(t)) < 0 for GL[ESm] 6= O, then it

is asymptotically ω-stable.

For a linear system (LDES1
m) of differential equations, we can further introduce the sum-

stable and prod-stable on (LDES1
m), i.e., a system GL[LDES1

m] is sum-stable or asymptotically

sum-stable if for all solutions Yv(t), v ∈ V (GL) of linear differential equations in (LDES1
m)

with |Yv(0)−Xv(0)| < δv exists∣∣∣∣∣∣
∑

v∈V (HL)

Yv(t)−
∑

v∈V (HL)

Xv(t)

∣∣∣∣∣∣ < ε (2.12)

for all t ≥ 0 or furthermore,

lim
t→0

∣∣∣∣∣∣
∑

v∈V (HL)

Yv(t)−
∑

v∈V (HL)

Xv(t)

∣∣∣∣∣∣ = 0 (2.13)

and prod-stable or asymptotically prod-stable if for all solutions Yv(t), v ∈ V (G) of (LDES1
m)

with |Yv(0)−Xv(0)| < δv exists∣∣∣∣∣∣
∏

v∈V (G)

Yv(t)−
∏

v∈V (G)

Xv(t)

∣∣∣∣∣∣ < ε (2.14)

for all t ≥ 0, or furthermore,

lim
t→0

∣∣∣∣∣∣
∏

v∈V (G)

Yv(t)−
∏

v∈V (G)

Xv(t)

∣∣∣∣∣∣ = 0. (2.15)

We get criterions on sum-stable and prod-stable of the linear system (LDES1
m) following.



Combinatorics – A Mathematical Approach for Holding on the Realty of Thing in the Universe 13

Theorem 2.11([17]) A zero O-solution of system (LDES1
m) of linear homogenous differential

equation is asymptotically sum-stable if and only if Reαv < 0 for each βv(t)e
αvt ∈ Bv with

vertex v ∈ GL[LDES1
m].

Theorem 2.12([17]) A zero O-solution of systems (LDES1
m) of linear homogenous differential

equation is asymptotically prod-stable if and only if∑
v∈V (G)

Reαv < 0 (2.16)

for each βv(t)e
αvt ∈ Bv with vertex v ∈ GL[LDES1

m].

Similarly, we can also discuss non-solvable systems of differential equations by linearizing

its non-linear differential parts, get criterions on the global stability of non-linear differential

equations and then, apply to the stability of system (ESm) of differential equations. For

example, the stability of food web in biological systems. Notice that a food web is a complex

network of interconnecting and overlapping food chains, i.e., “eating or being eaten” among

various organisms within an ecosystem and it is more suitable characterized by labeled directed

graphs
−→
GL with by Kolmogorov model.

Theorem 2.13([22]) A food web
−→
GL with initial value

−→
GL0 is globally stable or asymptotically

stable if and only if there is an Eulerian multi-decomposition

(−→
G
⋃←−

G
)L̂

=

s⊕
i=1

−→
HL
i (2.17)

with solvable stable or asymptotically stable conservative equations on labeling Eulerian sub-

graphs
−→
HL
i for integers 1 ≤ i ≤ s, where

←−
G is the digraph reversing orientation on every

edge in
−→
G ,

(−→
G
⋃←−
G
)L̂

is a labeled graph with labeling L̂ : V (
−→
G
⋃←−
G) = L

(
V (
−→
G)
)

and

L̂ : E
(−→
G
⋃←−
G
)
→ L

(
E
(−→
G
⋃←−
G
))

by L̂ : (u, v) → {0, (x, y), yf ′}, (v, u) → {xf, (x, y), 0} if

L : (u, v)→ {xf, (x, y), yf ′} for ∀(u, v) ∈ E(
−→
G) such as those shown in Figure 10.

n m n nẋ ẏ ẏ-

�

ẋ

-

u v

xf (x, y) yf ′
0

(x, y)

yf ′

xf

(x, y)

0

u v

Figure 10

§3. Mathematical Combinatorics

A G-solution GL[ESm] of system (ESm) characterize the state of non-harmonious group S
without direction on edges, i.e., not the action within itself. However, all things are in constantly

moving and evolved by their internal action under the external with elements moving in thing,
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which is only in one-way. Whence, we generalize G-solution GL[ESm] to a directed situation for

modeling substance flow on the evolution of thing T , holding with conservation at each vertex,

i.e., a generalization of network N to continuity flow, which is vectors in Banach space over a

topological graph
−→
G with end-operator actions, i.e., mathematical combinatorics.

Definition 3.1([23]) A continuity flow
(−→
G ;L,A

)
is an oriented topological graph

−→
GL in

space S associated with a mapping L : v → L(v), (v, u)→ L(v, u), 2 end-operators A+
vu ∈ A :

L(v, u) → LA
+
vu(v, u) and A+

uv ∈ A : L(u, v) → LA
+
uv (u, v) on a Banach space B over a field

F such as those shown in Figure 11 with L(v, u) = −L(u, v), A+
vu(−L(v, u)) = −LA+

vu(v, u) for

∀(v, u) ∈ E(
−→
GL) and meanwhile, holding with the continuity equation∑

u∈N−G (v)

LA
+
uv (u, v)−

∑
u∈N+

G (v)

LA
+
uv (u, v) = L(v) (3.1)

at any vertex v ∈ V (
−→
GL) of topological graph

−→
GL, where N−G (v), N+

G (v) are respectively the in-

neighborhood and out-neighborhood of vertex v ∈ V (
−→
GL), namely all vertices in N−G (v) ⊂ NG(v)

or N+
G (v) ⊂ NG(v) flow into or out of the vertex v and N−G (v) ∪N+

G (v) = NG(v).

-��
��

��
��

L(v, u)A+
uv A+

vu

L(v) L(u)

v u

Figure 11

Notice that the continuity equations on vertices of
−→
GL form a non-solvable system (ESm) of

equations. For example, let the L : (v, u)→ L(v, u) ∈ Rn×R+ with end-operators A+
vu = avu

∂

∂t

and avu : Rn → R for any edge (v, u) ∈ E
(−→
G
)

in Figure 12 following.

+ ?6

r r

r r

u v

t w

�

6

-

?

Figure 12

Then, the continuity equations on vertices of
−→
GL are partial differential equations

atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t
= auv

∂L(u, v)

∂t

auv
∂L(u, v)

∂t
= avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
+ avt

∂L(v, t)

∂t

avw1

∂L(v, w)1

∂t
+ avw2

∂L(v, w)2

∂t
= awt

∂L(w, t)

∂t

awt
∂L(w, t)

∂t
+ avt

∂L(v, t)

∂t
= atu1

∂L(t, u)1

∂t
+ atu2

∂L(t, u)2

∂t
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Usually, a continuity flow (
−→
G ;L,A ) is abbreviated to

−→
GL for simplicity, which is a gen-

eralization of G-solution of non-harmonious group S and substance flow in physics, a more

accurate model on the reality of thing T and includes most mathematical models on thing T .

For example, if L(v) = ẋv, v ∈ V (
−→
G), a continuity flow

−→
GL is a complex flow ([23]); if xv is

a constant vv dependent on v for v ∈ V (
−→
G), a continuity flow

−→
GL is an action flow ([21]); if

A = Z or C, particularly, A = 1V , a continuity flow
−→
GL is

−→
G-flow ([19]) and if A = {1B}

and B is the number field Z or R, a continuity flow
−→
GL is complex network ([4]), which was

discussed extensively in complex science.

Now, could we really establish mathematics on continuity flows
−→
GL by view it as a mathe-

matical element? The answer is definite by considering
−→
GL to be a family of vectors underlying

a topological graph
−→
G with addition, multiplication and scalar multiplication for continuity

flows
−→
GL,
−→
G′L

′
and λ ∈ F defined by

GL +G′
L′

= (G \G′)L
⋃(

G
⋂
G′
)L+L′⋃

(G′ \G)
L′
, (3.2)

GL · G′L
′

= (G \G′)L
⋃(

G
⋂
G′
)L·L′⋃

(G′ \G)
L′
, (3.3)

λ · GL = Gλ·L. (3.4)

where, for any vertex v ∈ V (G) and edge (v, u) ∈ E(G), L(v), L′(v), L(v, u), L′(v, u) ∈ BL+L′ :

v → L(v) +L′(v), (v, u)→ L(v, u) +L′(v, u), L ·L′ : v → L(v) ·L′(v), (v, u)→ L(v, u) ·L′(v, u)

λ ·L : v → λ ·L(v), (v, u)→ λ ·L(v, u), L(v) ·L′(v) and L(v, u) ·L′(v, u) denotes the Hadamard

product of vectors in Banach space B, namely

(x1, x2, · · · , xn) · (y1, y2, · · · , yn) = (x1y1, x2y2, · · · , xnyn) . (3.5)

such as those shown for addition and scalar multiplication in Figure 13.

r r
r r
-

?

�

6

r r
r r

?

�
6

r r
r
?

�r6
v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a1 + a2

b1 + b2

c1 + c2

d1 + d2

- -

s r s r
s r s r
-

?

�
6

-

?

�
6

λ r
v1 v2 v1 v2

v3v4 v3v4

a

b

c

d

λ·a

λ·b

λ·c

λ·d

Figure 13

Notice that the addition “+”, scalar multiplication “·” on vectors a,b can be viewed as the

operations on a particular continuity flow
−→
GL, i.e., path

−→
P L
n+1, which enables us to establish

mathematics on continuity flows
−→
GL on Banach space B over topological graphs

−→
G .
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3.1. Banach Flow Space

Let G be a graph family closed under the union operation of graph, B be a Banach space over

field F and denoted by GB all continuity flows
−→
GL with

−→
G ∈ G , L : V (

−→
G)
⋃
E(
−→
G) → B.

Then, we have

Theorem 3.1([25],[32]) If G is a closed family of graphs under the union operation and B a

linear space (B; +, ·), then, all continuity flows (GB; +, ·) is a linear space, and furthermore, a

commutative ring if B is a commutative ring (B; +, ·) over a field F .

Assume all end-operators are continuous linear operators in A and define the norm of a

continuity flow
−→
GL by ∥∥∥∥−→GL

∥∥∥∥ =
∑

(v,u)∈E
(−→
G
)
∥∥∥LA+

vu(v, u)
∥∥∥ , (3.6)

where ‖ · ‖ is the norm on Banach space B. Then, we can verify the non-negative, homogeneity

and the triangle inequality hold with GB and the non-negative, conjugacy and the linearity if

B is further a Hilbert space, i.e.,

Theorem 3.2([25],[32]) If G is a closed family of graphs under the union operation and B a

Banach space (B; +, ·), then, GB with linear operators A+
vu, A+

uv for ∀(v, u) ∈ E
( ⋃
G∈G

−→
G

)
is

a Banach space, and furthermore, GB is a Hilbert space if B is a Hilbert space.

3.2. G-Isomorphic Operators on Banach Flow Space

Let GL1
1 , GL2

2 ∈ GB be continuity flows. Usually, a mapping f : GL1
1 → GL2

2 is said to be a

G-isomorphic operator between continuity flows GL1
1 , GL2

2 and the continuity flow GL1
1 is said

to be G-isomorphic to GL2
2 if G1, G2 are isomorphic in graphs, i.e., there is an isomorphism

ϕ : G1 → G2 of graph and L2 = f ◦ϕ ◦L1 for ∀(v, u) ∈ E (G1), i.e., GL1
1 , GL2

2 are isomorphic of

labeled graphs. Furthermore, we conventionalize that ĜL̂ = GL for a topological graph Ĝ ⊃ G
if L̂(x) = L(x) for x ∈ V (G) ∪ E(G) and L̂(x) = 0 for x 6∈ V (G) ∪ E(G), which reflects the

essence of continuity flow. And by this convention, a Ĝ-isomorphism between continuity flows

GL1
1 , GL2

2 can be generally defined even if GL1
1 , GL2

2 are non-isomorphic but with a supergraph

Ĝ as Ĝ ⊇ G1

⋃
G2, a G-isomorphic operator can be generally defined by

Definition 3.3([29]) A mapping f : GL1
1 → GL2

2 is a G-isomorphic operator between continuity

flows GL1
1 and GL2

2 if

(1) there is an isomorphism ϕ : Ĝ→ Ĝ with Ĝ ⊃ G1, G2 in graph;

(2) for ∀(v, u) ∈ E (G1) there is L2 = f ◦ ϕ ◦ L1 but for ∀(v, u) ∈ E (G2 \G1), f : 0 →
L2(v, u) and for ∀(v, u) ∈ E(G1\G2) and ∀(v, u) ∈ E(Ĝ\(G1

⋃
G2)), f : L(v, u)→ 0.

Notice that a G-isomorphic operator f : GB → GB′ is naturally commutative with end-

operators in A on edges of continuity flows
−→
GL ∈ GB by definition. Let GL1

1 , GL2
2 ∈ GB be

two continuity flows with scalars λ, µ ∈ F . Then, a G-isomorphic operator f : GB → GB′ is

linear if

f
(
λGL1

1 + µGL2
2

)
= λf

(
GL1

1

)
+ µf

(
GL2

2

)
, (3.7)
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is continuous at continuity flow GL0
0 if for any number ε > 0 there always exists a real number

δ(ε) such that ∥∥∥G1
L1 −GL0

0

∥∥∥ < δ(ε) ⇒
∥∥∥f (GL)− f (GL0

0

)∥∥∥ < ε (3.8)

and is bounded if there exists a constant ξ ∈ [0,∞) such that
∥∥f(GL)∥∥ ≤ ξ

∥∥GL∥∥ for any

continuity flow GL ∈ GB. Furthermore, if∥∥∥f (GL1
1

)
− f

(
GL2

2

)∥∥∥ ≤ ξ ∥∥∥GL1
1 −G

L2
2

∥∥∥ , ξ ∈ [0, 1) (3.9)

for two continuity flows GL1
1 , GL2

2 ∈ GB and a constant ξ, then f is a contraction on continuity

flow space GB. And then, we can generalize a few of well-known theorems in classical functional

analysis to Banach flow space following.

Theorem 3.4(Fixed Flow Theorem, [25],[29],[32]) For a continuous G-isomorphic contractor

f : GB → GB′ there is only one continuity flow GL ∈ GB such that f
(
GL
)

= GL.

Theorem 3.5(Banach Inverse Theorem, [25],[29],[32]) A G-isomorphic linear operator f : GB →
GB is continuous if and only if it is bounded and furthermore, if f is 1 − 1 then the inverse

operator f−1 of f is also a G-isomorphic continuous operator.

For a G-isomorphic operator f : GB → GB, its image Grapf of is defined by

Grapf =

{(
−→
G
L
, f

(
−→
G
L
))∣∣∣∣−→GL

∈ GB

}
(3.10)

and f is closed if the image Grapf of f is closed.

Theorem 3.6(Closed Graph Theorem, [25],[29],[32]) If T : GB1 → GB2 is a closed linear

operator with Banach spaces B1, B2, then T is continuous.

Particularly, a G-isomorphic linear operator f : GB → R or C is called a flow functional,

which can be applied to generalize the Hahn-Banach theorem to Banach flow space GB.

Theorem 3.7(Hahn-Banach Theorem, [25],[29],[32]) Let HB be a subspace of Banach flow

space GB and let F : HB → C be a continuous linear flow functional on HB. Then, there

is a continuous linear flow functional F̃ : GB → C satisfies the conditions that if
−→
G
L
∈ HB

then F̃ (
−→
G
L

) = F (
−→
G
L

) and
∥∥F̃∥∥ = ‖F‖. Particularly, if O 6=

−→
G
L0

0 ∈ GB, there is a continuous

linear flow functional F such that ‖F‖ = 1 and ‖F (
−→
G
L0

0 )‖ = ‖
−→
G
L0

0 ‖.

Then, what is the important role of Hahn-Banach theorem in Banach flow space GB?

Certainly, it can extend a flow functional from a small range to a large one. Furthermore, it

convinces us that the subdividing of matter does not affect the validity of quantum hypothesises,

i.e., a pure state in quantum mechanics is represented in terms of a normalized vector |ψ〉 in

Hilbert space H with 〈ψ|ψ〉 = 1, for an observable physical quantity a of quantum there exists

a corresponding Hermitian operator H acting on H and the time evolving of state is governed

by Schrödinger equation

i~
d |ψ〉
dt

= H |ψ〉 , (3.11)
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where ~ is the Planck’s constant. Now, can we conclude that the existence of Hermitian operator

H in a quantum Q with quark structure
−→
GL or a matter T such as the proton and neutron

consist of quanta over a topological graph
−→
GL? The answer is certainly Yes by a generalization

of Fréchet-Riesz representation theorem in Banach space to Banach flow space GB.

Theorem 3.8(Fréchet-Riesz Theorem, [25],[29],[32]) Let f : GB → C be a continuous linear

flow functional. For any continuous flow GL ∈ GB, there uniquely exists a continuous flow of

ĜL̂ ∈ GB holding with f(
−→
G
L

) =<
−→
G
L
, ĜL̂ >.

3.3. Integral and Differential on Continuity Flow

Let the isomorphism ϕ = idG, i.e., the identity mapping of topological graph
−→
G and let B be

a Hilbert space and particularly, a function field on variable x, Then, a G-isomorphic operator

f is determined ([29]) by equation

L2(v, u) = f ◦ L1(v, u), ∀(v, u) ∈ E(
−→
G) (3.11)

which is equivalent to

f

(
−→
G
L

[x]

)
=
−→
G
f(L[x])

. (3.12)

Thereby, we can define the power

−→
GaL[x] =

−→
GaL[x], aG

L[x] =
−→
GaL[x]

(3.13)

of continuity flow
−→
GL[x] for a number a ∈ R and respectively, the polynomial, sum and product

of continuity flows by

a0 + a1
−→
GL + a2

−→
GL2

+ · · ·+ an
−→
GLn =

−→
Ga0+a1L+a2L

2+···+anLn ,

a1
−→
GL1

1 + a2
−→
GL2

2 + · · ·+ an
−→
GLn
n =

(
n⋃
i=1

−→
G i

)a1L1+a2L2+···+anLn

,

(
a1
−→
GL1

1

)
·
(
a2
−→
GL2

2

)
· · ·
(
an
−→
GLn
n

)
=

(
n⋃
i=1

−→
G i

)a1L1·a2L2·····anLn

.

Particularly, the 3 interesting exponential identities ([31]) for integer n ≥ 1 following

ex = 1 +
x

1!
+
x2]

2!
+ · · ·+ xn

n!
+ · · · , (3.14)

etA = I +
tA

1!
+
t2A2

2!
+ · · ·+ tnAn

n!
+ · · · , (3.15)

eG
L[x] = I +

−→
G
L

[x]

1!
+

−→
G

2L
[x]

2!
+ · · ·+

−→
G
nL

[x]

n!
+ · · · , (3.16)

where A is an n× n matrix, GL[x] is a continuity flow that continuous in variable x.

Furthermore, we can define the limitation of continuity flow sequence {
−→
GLi
i [x]}∞1 , differ-

ential and integral on continuity flow
−→
GL[x] by equality (3.12) and also, establish the calculus
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on GB. For example, the fundamental theorem

b∫
a

f
d

dt

(−→
GL[t]

)
dt = f

(−→
GL[t]

)∣∣∣
t=b
− f

(−→
GL[t]

)∣∣∣
t=a

(3.17)

can be obtained similar to that of the calculus and introduce the variation on continuity flows
−→
GL[x], namely assume a G-isomorphic mapping L : (v, u) ∈ E(

−→
G)→ L [L(t,x(t), ẋ(t))(v, u)]

is differentiable and respectively define the action J [
−→
GL [t]] and variation δJ [

−→
GL [t]] on a con-

tinuity flow
−→
GL [t] by

J
[−→
GL [t]

]
=

∣∣∣∣∣∣
t2∫
t1

−→
GL [L(t,x(t),ẋ(t))]dt

∣∣∣∣∣∣ , δJ
[−→
GL [t]

]
=

∣∣∣∣∣∣δ
t2∫
t1

−→
G

L [L(t,q(t),q̇(t))]
dt

∣∣∣∣∣∣ , (3.18)

where the variation δ : GB → GB is a G-isomorphic operator. And so, the Euler-Lagrange

equations

∂
−→
G

L

∂qi
− d

dt

∂
−→
G

L

∂q̇i
= O, 1 ≤ i ≤ n. (3.19)

on continuity flow
−→
GL [t] can be established by the least action principle δJ [

−→
GL [t]](v, u) = 0

for ∀(v, u) ∈ E(
−→
GL [t]) with the properties of norm in Banach flow space GB.

§4. An Interesting Example

Although we are all human but it is very hard to answer what a human is unless by behavioral

characteristics. A more useful definition on human is by the pair {Y −, Y +} of Yin and Yang

with meridians running the vital energy on body in tradi-

tional Chinese medicine, including 12 meridians, i.e., the

lung meridian of hand-Taiyin (LU), heart meridian of hand-

Shaoyin (HT), pericardium meridian of hand-Jueyin (PC),

the spleen meridian of foot-Taiyin (SP), kidney meridian

of foot-Shaoyin (KI), liver meridian of foot-Jueyin (LR),

large intestine meridian of hand-Yangming (LI), small in-

testine meridian of hand-Taiyang (SI), Sanjiao (triple burn-

er) meridian of hand-Shaoyang (SJ), stomach meridian of

foot-Yangming (ST), bladder meridian of foot Taiyang (BL),

gallbladder meridian of foot-Shaoyang (GB), Ren meridian,

Du meridian and 671 acupoints such as those shown in Fig-

ure 14. All of them connect the five organs and six bowels,

communicating the up and down of vital energy of human

running with a balanced pair {Y −, Y +}, called to be Ying

Qi Ψ− and Wei Qi Ψ+, i.e., an operating ruler for human Figure 14

body in traditional Chinese medicine, and there must be imbalance acupoints in one of the 12
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meridians for a patient. Then, the essence of doctor treating illness is by a natural law, i.e.,

reducing the excess with supply the insufficient, regulates on the meridians of human so that

the restore balance of them by acupuncture or drugs.

Then, how to modeling the running of a living body of human? The answer is by the running

of vital energy on 12 meridians with Ren and Du meridians in traditional Chinese medicine.

Furthermore, how to modeling the running of vital energy on 12 meridians with Ren and Du

meridians? The answer is nothing else but a G-flow
−→
GL

12 defined by ([24],[26])

V
(−→
G12

)
= {All acupoints v on 12 meridians with Ren and Du meridians},

E
(−→
G12

)
= {All segments (v, u) connecting adjacent points on 12 meridians with Ren

and Du meridians with orientation of Ying Qi running}

such as those shown in Figure 15
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with a labeling L : (v, u) → {Ψ−(v, u),Ψ+(v, u)}, L : (v, u) → Ψ−(v, u) or L : (v, u) →
Ψ+(v, u) for edge ∀(v, u) ∈ E(

−→
G12). Notice that the Ying Qi Ψ− and Wei Qi Ψ+ both are

the vital energy with constant distributing c on each meridian of human body. Whence, they

run in accordance with the law of conservation of energy and thereby, hold with continuity

equation at each vertex of
−→
GL

12, i.e.,
−→
GL

12 is a G-flow of continuity flow, which is characterized

([33]) by 

∂
−→
GΨ−

12

∂xi
− d

dt

∂
−→
GΨ−

12

∂ẋi
= O, 1 ≤ i ≤ n,

∂
−→
GΨ+

12

∂xj
− d

dt

∂
−→
GΨ+

12

∂ẋj
= O, 1 ≤ j ≤ n,

−→
GΨ−

12 +
−→
GΨ+

12 =
−→
GLc

12 ,

(4.1)

for integers 1 ≤ i ≤ n if we assume that Ψ− and Ψ+ both are Lagrangian on the vital energy

field of human, where the 1st and 2nd equations are Euler-Lagrange equations (3.19), the 3rd

equation is the balance equation of Ying Qi and Wei Qi on meridians of human body, and the



Combinatorics – A Mathematical Approach for Holding on the Realty of Thing in the Universe 21

labeling Lc : ∀(v, u) ∈ E(
−→
G12) → cvu is constant. Notice that the system (4.1) of differential

equations is essentially the theoretical foundation and leads to clinical techniques of tradition-

al Chinese medicine, i.e., the amazing acupuncture and the prescription on compatibility of

traditional Chinese medicines for a disease treatment.

§5. Conclusion

The reality of a thing T existing in universe should be a combinatorial one in the eyes of human

because of the recognitive limitation and particularly, the mathematical reality. However, there

are no mathematics applicable to reality of things unless the partial or conditional. Thus,

a new mathematics should be established for the recognition of human on reality of thing

by combinatorics, from the local to the whole. I introduce how to do such an objective in

this report from non-harmonious groups to mathematical combinatorics, i.e., mathematics over

topological graph, which is a natural way for recognizing the reality of thing T because thing

T is not isolated but consisted of its elements, connected also with other things in unverse and

also, the recognitive results by reductionism is nothing else but a complex network, we have to

establish such a mathematics over topological graphs
−→
G inherited in thing T for crossing the

recognitive gap from the local to the whole, including both of the macroscopic and microscopic

such as the system of celestial body, particle moving or living evolution, the digital economy

devolving of international or domestic trade, namely the evolution of all system, no matter it

is harmonious or self-organized can be globally characterized by mathematical combinatorics.
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Abstract: In mathematics one always tries to get new structures from given ones. This

also applies to the realm of graphs, where one can create many new graphs from a given set

of graphs. In this work, we compute the explicit formulas for the number of spanning trees

of sequences of families of graphs of the same average degree four by electrically equivalent

transformations and rules of weighted generating function. Finally, we compare the entropy

of our graphs with other studied graphs with average degree being four.
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§1. Introduction

Deriving closed formulae of the number of spanning trees for various graphs has attracted the

attention of a lot of researchers. The importance of this research line is in fact due to

(1) Solving some computationally hard problems such as the Steiner tree;

(2) Problem and traveling salesman problem [1];

(3) Counting the number of Eulerian circuits in a graph [2];

(4) Deriving formulas for different type of graphs can be helpful in identifying those graphs

that contain the maximum number of spanning trees.

Such an investigation has practical consequences related to network reliability [5,6]. The

number of spanning trees τ(G) of a finite connected undirected graph G is an acyclic (n − 1)

- edge spanning subgraph. There exist various methods for finding this number. Kirchhoff [7]

gave the famous matrix tree theorem: if D is the diagonal matrix of the degrees of G and A

denote the adjacency matrix of G, Kirchhoff matrix L = D − A has all of its cofactors equal

to τ(G). Another method to count the complexity of a graph is using Laplacian eigenvalues.

1Received July 12, 2024. Accepted April 12, 2025
2∗Correspondence: salamadaoud@gmail.com
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Let G be a connected graph with k vertices. Kelmans and Chelnoknov [8] derived the following

formula

τ(G) =
1

k

k−1∏
i=1

µi,

where k = µ1 ≥ µ2 ≥ . . . ≥ µk = 0 are the eigenvalues of the Kirchhoff matrix L.

The degeneration of the graph through successive elimination of contraction of its edges

represent the core of another way to compute the complexity of a graph [9]. If G = (V,E) is a

multigraph with e ∈ E, then G.e is the graph obtained from G by contracting the degree until

its endpoints are a single vertex. The formula for computing the number of spanning trees of

a multigraph G is given by:

τ(G) = τ(G− e) + τ(G.e)

This formula is beautiful but not practically useful (grows exponentially with the size of

the graph-may be as many as 2|E(G)| terms. For a summary of other results for calculating the

umber of the spanning trees of graphs, see [10].

§2. Electrically Equivalent Transformations

Kirchhoff’s motivation was study of electrical networks: an edge-weighted graph can be regarded

as an electrical network, where weights are the conductance of the respective edges. The effect

conductance between two specific vertices x, y can be written as the quotient of (weighted)

number of spanning trees and the (weighted) number of so-called thickets, i.e., spanning forests

with exactly two components and property that each of the components contains precisely one

of the vertices x, y [11-13]. In the following, we list the effect of some simple transformations

on the number of spanning trees. Let H be an edge weighted graph, H ′ be the corresponding

electrically equivalent graph, τ(H) denotes the weighted number of spanning trees H.

(i) Parallel edges: If two parallel edges with conductances x and y in H are merged into

a single edge with conductances x+ y in H ′, then τ (H ′) = τ(H).

(ii) Serial edges: If two serial edges with conductances x and y in H are merged into a

single edge with conductance xy
x+y in H ′, then

τ (H ′) =
1

x+ y
τ(H).

(iii) 4−Y transformation: If a triangle with conductances a, b and c in H is changed into

an electrically equivalent star graph with conductances

x =
ab+ bc+ ca

a
, y =

ab+ bc+ ca

b
and z =

ab+ bc+ ca

c

in H ′, then

τ (H ′) =
(ab+ bc+ ca)2

abc
τ(H).

(iv) Y −4 transformation: If a star graph with conductances x, y and z in H is changed
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into an electrically equivalent triangle with conductances

a =
yz

x+ y + z
, b =

az

x+ y + z
and c =

xy

x+ y + z

in H ′, then

τ (H ′) =
1

a+ b+ c
τ(H).

In this work, we compute the number of spanning trees of three sequences of graphs of

average degree four based on Tridiminished icosahedron graph we named it An,Bn, Cn and Dn
respectively.

§3. Number of Spanning Trees in the Sequences of An Graph

Consider the sequence of graphs A1,A2, . . . ,An constructed as shown in Figure 1. According

to this construction, the number of total vertices |V (An)| and edges |E (An)| are |V (An)|
= 9n − 6 and |E (An)| = 18n − 15, n = 1, 2, · · · . The average degree of An is in the large n

limit which is 4.

Figure 1. Some sequences of graph An

Theorem 3.1 For any integer n ≥ 1, the number of spanning trees in the sequence of the graph

An is given by

Proof We use the electrically equivalent transformation to transform Ai to Ai−1. Figures

2− 4 following illustrate the transformation process from A2 to A1.
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Figure 2
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Figure 3
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Figure 4

Using the properties given in Section 2, we have the following transformations:

τ (H1) = 9a2τ (A2) , τ (H2) =

[
1

3a2 + 1

]3

τ (H1) ,

τ (H3) =
3a2 + 1

9a2
τ (H2) , τ (H4) =

[
(5a2 + 1)

2

a2 (3a2 + 1)

]3

τ (H3) ,

τ (H5) =

[
3a2 + 1

13a2 + 3

]3

τ (H4) , τ (H6) =

[
a2

7a2 + 1

]3

τ (H5) ,

τ (H7) = τ (H6) , τ (H8) =
9 (5a2 + 1)

2

(3a2 + 1) (13a2 + 3)
τ (H7) ,

τ (H9) =

[
(3a2 + 1) (7a2 + 1) (13a2 + 3)

(5a2 + 1) (45a2 + 11)

]3

τ (H8) , τ (H10) = τ (H9) ,

τ (H11) =
(13a2 + 3) (45a2 + 11)

72 (5a2 + 1)
2 τ (H10) and τ (A1) = τ (H11) .

Combining these twelve transformations, we have

τ (A2) = 8 (45a2 + 11)
2
τ (A1) . (1)

Further

τ (An) =

n∏
i=2

8 (45ai + 11)
2
τ (A1) = 3× 8n−1a2

1

[
n∏
i=2

(45ai + 11)

]2

, (2)
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where ai−1 = 35ai+8
45ai+11 , i = 2, 3, . . . , n. Its characteristic equation is 45λ2 − 24λ − 8 = 0, which

have two roots

λ1 =
4− 2

√
14

15
and λ2 =

4 + 2
√

14

15
.

Subtracting these two roots into both sides of ai−1 = 35ai+8
45ai+11 , we get

ai−1 −
4− 2

√
14

15
=

35ai + 8

45ai + 11
− 4− 2

√
14

15
= (23 + 6

√
14) ·

ai − 4−2
√

14
15

45ai + 11
, (3)

ai−1 −
4 + 2

√
14

15
=

35ai + 8

45ai + 11
− 4 + 2

√
14

15
= (23− 6

√
14) ·

ai − 4+2
√

14
15

45ai + 11
. (4)

Let bi =
ai− 4−2

√
14

15

ai− 4+2
√

14
15

. Then by Eqs. (3) and (4), we get bi−1 =
(

1033+276
√

14
25

)
bi and

bi =
(

1033+276
√

14
25

)n−i
bn. Therefore,

ai =

(
(033+276

√
14

25

)n−i (
4+2
√

14
15

)
bn − 4−2

√
14

15(
1033+276

√
14

25

)n−i
bn − 1

.

Thus

a1 =
2
(

1033+276
√

14
25

)n−1

(194 + 53
√

14)− 13(4− 2
√

14)

3
(

1033+276
√

14
25

)n−1

(177 + 44
√

14)− 195
. (5)

Using the expression an−1 = 35an+8
45an+11 and denoting the coefficients of 35an+8 and 45an+11

as αn and βn we have

45an + 11 = α0 (35an + 8) + β0 (45an + 11) ,

45an−1 + 11 =
α1 (35an + 8) + β1 (45an + 11)

α0 (35an + 8) + β0 (45an + 11)
,

45an−2 + 11 =
α2 (35an + 8) + β2 (45an + 11)

α1 (35an + 8) + β1 (45an + 11)
,

...

45an−i + 11 =
αi (35an + 8) + βi (45an + 11)

αi−1 (35an + 8) + βi−1 (45an + 11)
, (6)

45an−(i+1) + 11 =
αi+1 (35an + 8) + βi+1 (45an + 11)

αi (35an + 8) + βi (45an + 11)
, (7)

...

45a2 + 11 =
αn−2 (35an + 8) + βn−2 (45an + 11)

αn−3 (35an + 8) + βn−3 (45an + 11)
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Substituting Eq.(6) into Eq.(2), we obtain

τ (An) = 3× 8n−1a2
1 [αn−2 (35an + 8) + βn−2 (45an + 11)]

2
. (8)

where α0 = 0, β0 = 1 and α1 = 45, β1 = 11. By the expression an−1 = 35an+8
45an+11 and Eqs. (6)

and (7), we have

αi+1 = 46αi − 25αi−1;βi+1 = 46βi − 25βi−1. (9)

The characteristic equation of Eq.(9) is µ2 − 46µ+ 25 = 0 which have two roots

µ1 = 23 + 6
√

14 and µ2 = 23− 6
√

14.

The general solutions of Eq. (9) are

αi = c1µ
i
1 + c2µ

i
2;βi = d1µ

i
1 + d2µ

i
2.

Using the initial conditions α0 = 0, β0 = 1 and α1 = 45, β1 = 11, yields

αi =
15
√

14

56
(23 + 6

√
14)i − 15

√
14

56
(23− 6

√
14)i;βi

=

(
7−
√

14

14

)
(23 + 6

√
14)i +

(
7 +
√

14

14

)
(23− 6

√
14)i. (10)

If an = 1, it means that An without any electrically equivalent transformation. Plugging

Eq. (10) into Eq.(8), we have

τ (An) = 3× 8n−1a2
1

[(
1568 + 421

√
14

56

)
(23 + 6

√
14)n−2

+

(
1568− 421

√
14

56

)
(23− 6

√
14)n−2

]2

, n ≥ 2. (11)

When n = 1, τ (A1) = 3 which satisfies Eq.(11). Therefore, the number of spanning trees

in the sequence of the graph An is given by

τ (An) = 3× 8n−1a2
1

[(
1568 + 421

√
14

56

)
(23 + 6

√
14)n−2

+

(
1568− 421

√
14

56

)
(23− 6

√
14)n−2

]2

, n ≥ 1, (12)

where

a1 =
2
(

1033+276
√

14
25

)n−1

(194 + 53
√

14)− 13(4− 2
√

14)

3
(

1033+276
√

14
25

)n−1

(177 + 44
√

14)− 195
, n ≥ 1. (13)

Inserting Eq. (13) into Eq.(12) we obtain the result. �



32 S. N. Daoud and Mohmmed Aljohani

§4. Number of Spanning Trees in the Sequences of Bn Graph

Consider the sequence of graphs B1,B2, . . . ,Bn constructed shown in Figure 5. According to

this construction, the number of total vertices |V (Bn)| and edges |E (Bn)| are |V (Bn)| = 9n−6

and |E (Bn)| = 18n− 15 for n = 1, 2, · · · The average degree of Bn is in the large n limit which

is 4.

Figure 5. Some sequences of graph Bn

Theorem 4.1 For n ≥ 1, the number of spanning trees in the sequence of Bn graph is given by

Proof We use the electrically equivalent transformation to transform Bi to Bi−1. Figures

6− 8 illustrate the transformation process from B2 to B1.

Figure 6
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Figure 7
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Figure 8

Using the properties given in Section 2, we have the following transformations:

τ (H1) =

[
1

2

]3

τ (B2) , τ (H2) = τ (H1) ,

τ (H3) =

[
1

3

]3

τ (H2) , τ (H4) = τ (H3) ,

τ (H5) = (9a2 + 3) τ (H4) ,

τ (H6) =

[
3

9a2 + 5

]3

τ (H5) , τ (H7) = τ (H6) ,

τ (H8) =
9a2 + 5

6 (3a2 + 1)
τ (H7) and τ (B1) = τ (H8) .

Combining these nine transformations, we have

τ (B2) = 4 (18a2 + 10)
2
τ (B1) . (14)

Further

τ (Bn) =

n∏
i=2

4 (18ai + 10)
2
τ (B1) = 3× 4n−1a2

1

[
n∏
i=2

(18ai + 10)

]2

, (15)

where ai−1 = 31ai+17
18ai+10 , i = 2, 3, · · · , n. Its characteristic equation is 18λ2 − 21λ− 17 = 0 which

have two roots

λ1 =
7−
√

185

12
and λ2 =

7 +
√

185

12
.

Subtracting these two roots into both sides of ai−1 = 31ai+17
18ai+102 , we get

ai−1 −
7−
√

185

12
=

31ai + 17

18ai + 10
− 7−

√
185

12
= (41 + 3

√
185) ·

ai −
(

7−
√

185
12

)
2 (18ai + 10)

, (16)
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ai−1 −
7 +
√

185

12
=

31ai + 17

18ai + 10
− 7 +

√
185

12
= (41− 3

√
185) ·

ai −
(

7+
√

185
12

)
2 (18ai + 10)

. (17)

Let bi =
ai− 7−

√
185

12

ai− 7+
√

185
12

. Then by Eqs. (16) and (17), we get

bi−1 =

(
1673 + 123

√
185

8

)
bi and bi =

(
1673 + 123

√
185

8

)n−i
bn.

Therefore

ai =

(
1673+122

√
185

8

)n−i (
7+
√

185
12

)
bn − 7−

√
185

12(
1673+123

√
185

8

)n−i
bn − 1

.

Thus,

a1 =

(
1673+123

√
155

8

)n−1

(83 + 7
√

185) + 4(7−
√

185)

3
(

1673+123
√

185
8

)n−1

(21 +
√

185) + 48
. (18)

Using the expression an−1 = 31an+17
18an+10 and denoting the coefficients of 31an+17 and 18an+10

as αn and βn, we have

18an + 10 = α0 (31an + 17) + β0 (18an + 10) ,

18an−1 + 10 =
α1 (31an + 17) + β1 (18an + 10)

α0 (31an + 17) + β0 (18an + 10)
,

18an−2 + 10 =
α2 (31an + 17) + β2 (18an + 10)

α1 (31an + 17) + β1 (18an + 10)
,

...

18an−i + 10 =
ai (31an + 17) + βi (18an + 10)

αi−1 (31an + 17) + βi−1 (18an + 10)
, (19)

18an−(i+1) + 10 =
αi+1 (31an + 17) + βi+1 (18an + 10)

αi (31an + 17) + βi (18an + 10)
, (20)

...

18a2 + 10 =
αn−2 (31an + 17) + βn−2 (18an + 10)

αn−3 (31an + 17) + βn−3 (18an + 10)
.

Substituting Eq.(19)into Eq.(15), we obtain

τ (Bn) = 3× 4n−1a2
1 [αn−2 (31an + 17) + βn−2 (18an + 10)]

2
. (21)
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where α0 = 0, β0 = 1 and α1 = 18, β1 = 10. By the expression an−1 = 31an+7
18an+10 and Eqs. (19)

and (20), we have

αi+1 = 41αi − 4αi−1, βi+1 = 41βi − 4βi−1.

Its characteristic equation is µ2 − 41µ+ 4 = 0 which have two roots

µ1 =
41 + 3

√
185

2
and µ2 =

41− 3
√

185

2

and with the general solution

αi = c1µ
i
1 + c2µ

i
2, βi = d1µ

i
1 + d2µ

i
2.

Using the initial conditions α0 = 0, β0 = 1 and α1 = 18, β1 = 10, yields

αi =
6
√

185

185

(
41 + 3

√
185

2

)i
− 6
√

185

185

(
41− 3

√
185

2

)i
, (22)

βi =

(
555− 21

√
185

1110

)(
41 + 3

√
185

2

)i
+

(
555 + 21

√
185

1110

)(
41− 3

√
185

2

)i
. (23)

If an = 1, it means that Bn without any electrically equivalent transformation.

Plugging Eq.(23) into Eq.(21), we have

τ (Bn) = 3× 4n−1a2
1

(518 + 38
√

185

37

)(
41 + 3

√
185

2

)n−2

+

(
518− 38

√
185

37

)(
41− 3

√
185

2

)n−2
2

, n ≥ 2. (24)

When n = 1, τ (B1) = 3 which satisfies Eq.(24).

Therefore, the number of spanning trees in the sequence of Tridiminished icosahedron

graph is given by

τ (Bn) = 3× 4n−1a2
1

(518 + 38
√

185

37

)(
41 + 3

√
185

2

)n−2

+

(
518− 38

√
185

37

)(
41− 3

√
185

2

)n−2
2

, n ≥ 1, (25)

where

a1 =

(
1673+123

√
185

8

)n−1

(83 + 7
√

185) + 4(7−
√

185)

3
(

1673+123
√

185
8

)n−1

(21 +
√

185) + 48
, n ≥ 1. (26)

Inserting Eq.(26) into Eq.(25) we obtain the result. �
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§5. Number of Spanning Trees in the Sequences of Cn Graph

Consider the sequence of graphs C1, C2, . . . , Cn constructed as shown in Figure 5. According to

this construction, the number of total vertices |V (Cn)| and edges |E (Cn)| are |V (Cn)| = 9n− 6

and |E (Cn)| = 18 for n−15, n = 1, 2, · · · . The average degree of Cn is in the large n limit which

is 4.

Figure 9. Some sequences of Cn

Theorem 5.1 For n ≥ 1, the number of spanning trees in the sequence of Cn is given by

Proof We use the electrically equivalent transformation to transform Ci to Ci−1. Figures

10− 12 illustrate the transformation process from C2 to C1.

Figure 10
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Figure 11
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Figure 12

Using the properties given in section 2, we have the following transformations:

τ (H1) =

[
1

2

]3

τ (C2) , τ (H2) = τ (H1) ,

τ (H3) = 9a2τ (H2) , τ (H4) =

(
1

3a2 + 1

)2

τ (H3) ,

τ (H5) =
3a2 + 1

9a2
τ (H4) , τ (H6) = τ (H5) ,

τ (H7) = 9

(
4a2 + 1

3a2 + 1

)
τ (H6) , τ (H8) =

[
(3a2 + 1)

15a2 + 4

]3

τ (H7) ,

τ (H9) =

(
15a2 + 4

9 (4a2 + 1)

)
τ (H8) , τ (C1) = τ (H9) .

Combining these ten transformations, we have

τ (C2) = 2 (30a2 + 8)
2
τ (C1) . (27)
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Further

τ (Cn) =

n∏
i=2

2 (30ai + 8)
2
τ (C1) = 3× 2n−1a2

1

[
n∏
i=2

(30ai + 8)

]2

, (28)

where ai−1 = 53ai+14
30ai+8 , i = 2, 3, · · · , n. Its characteristic equation is 30λ2 − 45λ− 14 = 0 which

have two roots

λ1 =
45−

√
3705

60
and λ2 =

45 +
√

3705

60
.

Subtracting these two roots into both sides of ai−1 = 53ai+14
30ai+8 , we get

ai−1 −
45−

√
3705

60
=

53ai + 14

30ai + 8
− 45−

√
3705

60
= (61 +

√
3705) ·

ai − 45−
√

3705
60

2 (30ai + 8)
, (29)

ai−1 −
45 +

√
3705

60
=

53ai + 14

30ai + 8
− 45 +

√
3705

60
= (61−

√
3705) ·

ai − 45+
√

3705
60

2 (30ai + 8)
. (30)

Let bi =
ai− 45−

√
3705

60

ai− 45+
√

3705
60

.Then by Eqs. (29) and (30), we get

bi−1 =

(
3713 + 61

√
3705

8

)
bi, and bi =

(
3713 + 61

√
3705

8

)n−i
bn.

Therefore,

ai =

(
3713+61

√
3705

8

)n−i (
45+
√

3705
60

)
bn − 45−

√
3705

60(
3713+61

√
3705

8

)n−i
bn − 1

.

Thus

a1 =

(
3713+61

√
3705

8

)n−1 (
600+11

√
3705

435

)
+
(

45−
√

3705
60

)
(

3713+61
√

3705
8

)n−1 (
131+

√
3705

116

)
+ 1

. (31)

Using the expression an−1 = 53an+14
30an+8 and denoting the coefficients of 53an+14 and 30an+8

as αn and βn, we have

30an + 8 = α0 (53an + 14) + β0 (30an + 8)

30an−1 + 8 =
α1 (53an + 14) + β130an + 8)

α0 (53an + 14) + β0 (30an + 8)

30an−2 + 8 =
α2 (53an + 14) + β2 (30an + 8)

α1 (53an + 14) + β1 (30an + 8)

...

30an−i + 8 =
αi (53an + 14) + βi (30an + 8)

αi−1 (53an + 14) + βi−1 (30an + 8)
, (32)
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30an−(i+1) + 8 =
αi+1 (53an + 14) + βi+1 (30an + 8)

αi (53an + 14) + βi (30an + 8)
, (33)

...

30a2 + 8 =
αn−2 (53an + 14) + βn−2 (30an + 8)

αn−3(53 + 14) + βn−3 (30an + 8)

Substituting Eq.(31) into Eq.(28), we obtain

τ (Cn) = 3× 2n−1a2
1 [αn−2 (53an + 14) + βn−2 (30an + 8)]

2
, (34)

where α0 = 0, β0 = 1 and α1 = 30, β1 = 8. By the expression an−1 = 53an+14
30an+8 and Eqs. (32)

and (33), we have

αi+1 = 61αi − 4αi−1, βi+1 = 61βi − 4βi−1. (35)

The characteristic equation of Eq. (35) is µ2 − 61µ+ 4 = 0 which have two roots

µ1 =
61 +

√
3705

2
and µ2 =

61 +
√

3705

2

and the general solutions of Eq.(35) are

αi = c1µ
i
1 + c2µ

i
2, βi = d1µ

i
1 + d2µ

i
2.

Substituting the initial conditions α0 = 0, β0 = 1 and α1 = 30, β1 = 8, yields

αi =
2
√

3705

247

(
61 +

√
3705

2

)i
− 2
√

3705

247

(
61 +

√
3705

2

)i
;

βi =

(
3705− 45

√
3705

7410

)(
61 +

√
3705

2

)i
+

(
3705 + 45

√
3705

7410

)(
61−

√
3705

2

)i
. (36)

If an = 1, it means that Cn without any electrically equivalent transformation. Plugging

Eq. (36) into Eq.(34), we have

τ (Cn) = 3× 2n−1a2
1

(4693 + 771
√

3705

247

)(
61 +

√
3705

2

)n−2

+

(
4693− 771

√
3705

247

)(
61−

√
3705

2

)n−2
2

, n ≥ 2. (37)

When n = 1, τ (C1) = 3 which satisfies Eq. (37). Therefore, the number of spanning trees
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in the sequence of Cn graph is given by

τ (Cn) = 3× 2n−1a2
1

(4693 + 771
√

3705

247

)(
61 +

√
3705

2

)n−2

+

(
4693− 771

√
3705

247

)(
61−

√
3705

2

)n−2
2

, n ≥ 1, (38)

where

a1 =

(
3713+61

√
3705

8

)n−1 (
600+11

√
3705

435

)
+
(

45−
√

3705
60

)
(

3713+61
√

3705
8

)n−1 (
131+

√
3705

116

)
+ 1

, n ≥ 1. (39)

Inserting Eq.(39) into Eq.(38) we obtain the result. �

§6. Number of Spanning Trees in the Sequences of Dn Graph

Consider the sequence of graphs D1,D2, . . . ,Dn constructed as shown in Figure 7. According

to this construction, the number of total vertices |V (Dn)| and edges |E (Dn)| are |V (Dn)| =

9n− 6 and |E (Dn)| = 18n− 15, n = 1, 2, · · · . The average degree of Dn is in the large n limit

which is 4.

Figure 13. Some sequences of Dn

Theorem 6.1 For n ≥ 1, the number of spanning trees in the sequence of Dn is given by

Proof We use the electrically equivalent transformation to transform Di to Di−1. Figure

14− 16 illustrate the transformation process from D2 to D1.
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Figure 14
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Figure 15
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Figure 16

Using the properties given in Section 2, we have the following transformations:

τ (H1) = 9a2τ (D2) , τ (H2) =

[
1

3a2 + 1

]3

τ (H1) ,

τ (H3) =
3a2 + 1

9a2
τ (H2) , τ (H4) = τ (H3) ,

τ (H5) = 9

(
4a2 + 1

3a2

)
τ (H4) , τ (H6) =

[
3a2 + 1

18a2 + 5

]3

τ (H5) ,

τ (H7) = τ (H6) , τ (H8) =
18a2 + 5

18 (4a2 + 1)
τ (H7) ,

τ (H9) = τ (H8) , τ (H10) = 9

(
11a2 + 3

18a2 + 5)

)
τ (H9) ,

τ (H11) =

[
18a2 + 5

69a2 + 19

]3

τ (H10) , τ (H12) = τ (H11) ,

τ (H13) =

[
69a2 + 19

18 (11a2 + 3)

]
τ (H12) , τ (D1) = τ (H13) .
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Combining these fourteen transformations, we have

τ (D2) = 4 (69a2 + 19)
2
τ (D1) . (40)

Further

τ (Dn) =

n∏
i=2

4 (69ai + 19)
2
τ (D1) = 3× 4n−1a2

1

[
n∏
i=2

(69ai + 19)

]2

, (41)

where

ai−1 =
40ai + 11

69ai + 19
, i = 2, 3, . . . , n. (42)

Its characteristic equation is 69λ2 − 21λ− 11 = 0 which have two roots

λ1 =
21−

√
3477

138
and λ2 =

21 +
√

3477

138
.

Subtracting these two roots into both sides of ai−1 = 40ai+11
69ai+19 , we get

ai−1 −
21−

√
3477

138
=

40ai + 11

69ai + 19
− 21−

√
3477

138
= (59 +

√
3477) ·

ai − 21−
√

3477
138

2 (69ai + 19)
, (43)

ai−1 −
21 +

√
3477

138
=

40ai + 11

69ai + 19
− 21 +

√
3477

138
= (59−

√
3477) ·

ai − 21+
√

3477
138

2 (69ai + 19)
. (44)

Let bi =
ai− 21−

√
3477

138

ai− 21+
√

3477
138

. Then by Eqs. (42) and (43), we get

bi−1 =

(
3479 + 59

√
3477

2

)
bi and bi =

(
3479 + 59

√
3477

2

)n−i
bn.

Therefore,

ai =

(
3479+59

√
3477

2

)n−i (
21+
√

3477
138

)
bn − 21−

√
3477

138(
3479+59

√
3477

2

)n−i
bn − 1

.

Thus,

a1 =

(
3479+59

√
3477

2

)n−1 (
2127+40

√
3477

2553

)
−
(

21−
√

3477
138

)
(

3479+59
√

3477
2

)n−1 (
2861+39

√
3477

1702

)
− 1

. (45)

Using the expression an−1 = 40an+11
69an+19 and denoting the coefficients of 40an+11 and 69an+19

as αn and βn, we have

69an + 19 = α0 (40an + 11) + β0 (69an + 19) ,

69an−1 + 19 =
α1 (40an + 11) + β1 (69an + 19)

α0 (40an + 11) + β0 (69an + 19)
,
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69an−2 + 19 =
α2 (40an + 11) + β2 (69an + 19)

α1 (40an + 11) + β1 (69an + 19)
,

...

69an−i + 19 =
αi (40an + 11) + βi (69an + 19)

αi−1 (40an + 11) + βi−1 (69an + 19)
, (46)

69an−(i+1) + 19 =
αi+1 (40an + 11) + βi+1(69 + 19)

αi (40an + 11) + βi (69an + 19)
, (47)

...

69a2 + 19 =
αn−2 (40an + 11) + βn−2 (69an + 19)

αn−3(40 + 11) + βn−3 (69an + 19)
.

Substituting Eq.(45) into Eq.(41), we obtain

τ (Dn) = 3× 4n−1a2
1 [αn−2 (40an + 11) + βn−2 (69an + 19)]

2
, (48)

where α0 = 0, β0 = 1 and α1 = 69, β1 = 19. By the expression an−1 = 40an+11
69an+19 and Eqs. (45)

and (46), we have

αi+1 = 59αi − αi−1, βi+1 = 59βi − βi−1

The characteristic equation of Eq.(48) is µ2 − 59µ+ 1 = 0 which have two roots

µ1 =
59 +

√
3477

2
and µ2 =

59 +
√

3477

2

and the general solutions of Eq.(48) are

αi = c1µ
i
1 + c2µ

i
2, βi = d1µ

i
1 + d2µ

i
2.

Substituting the initial conditions α0 = 0, β0 = 1 and α1 = 69, β1 = 19, yields

αi =
23
√

3477

1159

(
59 +

√
3477

2

)i
− 23

√
3477

1159

(
59−

√
3477

2

)i
,

βi =

(
1159− 7

√
3477

2318

)(
59 +

√
3477

2

)i
+

(
1159 + 7

√
3477

2318

)(
59−

√
3477

2

)i
. (49)

If an = 1, it means that Dn without any electrically equivalent transformation. Plugging

Eq. (49) into Eq.(47), we have

τ (Dn) = 3× 4n−1a2
1

(50996 + 865
√

3477

1159

)(
59 +

√
3477

2

)n−2

+

(
50996− 865

√
3477

1159

)(
59−

√
3477

2

)n−2
2

, n ≥ 2. (50)



48 S. N. Daoud and Mohmmed Aljohani

When n = 1, τ (D1) = 3 which satisfies Eq.(50). Therefore the number of spanning trees

in the sequence of Dn graph is given by

τ (Dn) = 3× 4n−1a2
1

(50996 + 865
√

3477

1159

)(
59 +

√
3477

2

)n−2

+

(
50996− 865

√
3477

1159

)(
59−

√
3477

2

)n−2
2

, n ≥ 1, (51)

where

a1 =

(
3479+59

√
3477

2

)n−1 (
2127+40

√
3477

2553

)
−
(

21−
√

3477
138

)
(

3479+59
√

3477
2

)n−1 (
2861+39

√
3477

1702

)
− 1

, n ≥ 1. (52)

Inserting Eq.(52) into Eq.(51) we obtain the result. �

§7. Numerical Results

Table 1. illustrates some values of the number of spanning trees in the graphs An,Bn, Cn and Dn.

n τ (An) τ (Bn) τ (Cn) τ (Dn)

1 3 3 3 3

2 44376 27648 26934 31212

3 732328128 185150208 200050668 434307072

4 12101944579584 1239020203008 1485574848600 6043816558272

5 199991606950244352 8291475833499648 11031866024955312 84105744275374848

6 3304977193903255289856 55486239089142448128 81922542024547792224 1170415440635048951808

§8. Spanning Tree Entropy

After having explicit Formulas for the number of spanning trees of the sequence of the three

families of graphs An,Bn, Cn and Dn, we can calculate its spanning tree entropy Z which is a

finite number and a very interesting quantity characterizing the network structure, defined as

in [14] as

For a graph G,

Z(G) = lim
n→∞

ln τ(G)

|V (G)|
(53)

and particularly,

Z (An) =
1

9
(ln[8] + 2 ln[23 + 6

√
14]) = 1.07918497,

Z (Bn) =
2

9
ln[41 + 3

√
185] = 0.9787402606,
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Z (Cn) =
7 ln[2]

9
− 2

9
ln[61−

√
3705] = 0.9903046082,

Z (Dn) =
2

9
ln[59 +

√
3477] = 1.060088273

Now we compare the value of entropy in our graphs with other graphs. It is clear that the

entropy of the An graph is larger than the other three graphs and the entropy of the Bn graph

is smaller than the other three graphs. In addition the entropy of graphs An and Dn is larger

than the fractal scale free lattice [15] which has the entropy 1.040 and the entropy of all four

graphs is smaller than two dimensional Sierpinski gasket [16] which has the entropy 1.166 of

the same average degree 4.

§9. Conclusions

In this work, we enumerate the number of spanning trees in the sequences of three sequences

of graphs of average degree four based on using electrically equivalent transformations. An

advantage of this method lies in the avoidance of laborious computation of Laplacian spectra

that is needed for a generic method for determining spanning trees.

References

[1] Applegate D. L., Bixby, Chvtal R. E. V., Cook W. J., The Traveling Salesman Problem:

A Computational Study, Princeton University Press, (2006).

[2] Zhang F., Yong X., Asymptotic enumeration theorems for the number of spanning trees

and Eulerian trail in circulant digraphs & graphs, Sci. China, Ser. A43(2), (1999), 264-271.

[3] Kirby E. C., Klein D. J., Mallion R. B., Pollak, P., Sachs S. H., A theorem for counting s-

panning trees in general chemical graphs and its particular application to toroidal fullerene,

Croat. Chem. Acta, 77 (2004), 263-278.

[4] Brown T. J. N., Mallion R. B., Pollak P., Roth A., Some methods for counting the spanning

trees in labelled molecular graphs, examined in relation to certain fullerenes, Discrete Appl.

Math., 67 (1996), 51-66.

[5] Boesch F. T., Salyanarayana A., Suffel C.L., A survey of some network reliability analysis

and synthesis results, Networks, 54 (2009), 99-107.

[6] Boesch F. T., On unreliability polynomials and graph connectivity in reliable network

synthesis, J. Graph Theory, 10 (1986), 339-352.

[7] Kirchhoff G. G., ber die Auflsung der Gleichungen auf welche man bei der Untersucher der

linearen Verteilung galuanischer Strome gefhit wird, Ann. Phg. Chem., 72 (1847), 497-508.

[8] Kelmans A. K., Chelnokov V. M., A certain polynomial of a graph and graphs with an

extremal number of trees, Journal of Combinatorial Theory B, Vol.16 (1974), 197-214.

[9] Daoud S. N., The deletion-contraction method for counting the number of spanning trees

of graphs, European Journal of Physical Plus, Vol.130, No. 10, Oct.(2015), 1-14.

[10] Daoud S. N., Number of spanning trees of Cartesian and composition products of graphs

and Chebyshev polynomials, IEEE Access, Vol. 7 (2019), 71142 - 71157.



50 S. N. Daoud and Mohmmed Aljohani

[11] Teufl E., Wagner S., Determinant identities for Laplace matrices, Linear Algebra Appl.,

432(2010), 441-457.

[12] Daoud S. N., Saleha W., Complexity trees of the sequence of some nonahedral graphs

generated by triangle Heliyon, 6(9) Sep. (2020).

[13] Liu J. B. and Daoud S. N., Number of spanning trees in the sequence of some graphs,

Complexity, Vol.2019 - Article ID 4271783—https://doi.org/10.1155/2019/4271783.

[14] Lyons R., Asymptotic enumeration of spanning trees, Combin. Probab. Comput., 14

(2005), 491-522.

[15] Zhang Z., Liu H., Wu B., Zou T., Spanning trees in a fractal scale -free lattice, Phys. Rev.

E, 83 016116 (2011).

[16] Chang S., Chen L., Yang W., Spanning trees on the Sierpinski gasket, J. Stat. Phys., 126

(2007), 649-667.



International J.Math. Combin. Vol.1-Vol.2(2025), 51-66

Connected Monophonic Eccentric Domination Number of

Corona Product of Some Standard Graphs

P. Titus1, J. Ajitha Fancy2, Santhakumaran3 and A. Radhakrishnan4

1. Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region,

Nagercoil - 629 004, India

2. Department of Mathematics, Scott Christian College (Autonomous), Nagercoil - 629 003, India

3. Department of Mathematics, Hindustan Institute of Technology and Science, Chennai - 603 103, India

4. Department of Information Technology, University College of Engineering Nagercoil, Nagercoil - 629 004, India

E-mail: titusvino@yahoo.com, ajithafancy@gmail.com, apskumar1953@yahoo.co.in, radhakrishnan.a@auttvl.ac.in

Abstract: For any two vertices u and v in a connected graph G, the monophonic distance

dm(u, v) from u to v is defined as the length of a longest u − v monophonic path in G.

The monophonic eccentricity em(v) of a vertex v in G is the maximum monophonic distance

from v to a vertex of G. A set S ⊆ V is a connected monophonic eccentric dominating set

if S is a monophonic eccentric dominating set and the induced subgraph 〈S〉 is connected.

The connected monophonic eccentric domination number γcme(G) is the cardinality of a

minimum connected monophonic eccentric dominating set of G. In this paper, we determine

the connected monophonic eccentric domination number of corona product of some standard

graphs.

Key Words: Monophonic eccentric vertex, monophonic eccentric dominating set, Smaran-

dachely dominating on subgraph H+ or H−, monophonic eccentric domination number,

connected monophonic eccentric dominating set, connected monophonic eccentric domina-

tion number.

AMS(2010): 05C12.

§1. Introduction

By a graph G = (V,E) we mean a non-trivial finite undirected graph without loops and multiple

edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic

terminology and results we refer to [1, 4]. For any two vertices u and v in a connected graph

G, the distance d(u, v) is the length of a shortest u − v path in G. For each vertex v in G,

define d−(v) = min {d(u, v) : u ∈ V − {v}}. A vertex u ( 6= v) is called a neighbor of v if

d(u, v) = d−(v). A vertex v is said to dominate a vertex u if u = v or u is a neighbor of v.

Since d−(v) = 1 for all v ∈ V , this is equivalent to the standard definition of neighbor. A set

S of vertices of G is called a dominating set if every vertex of G is dominated by some vertex

1Received February 10, 2025. Accepted May 8, 2025
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in S. Equivalently, a set S ⊆ V is a dominating set of G if every vertex in V −S is adjacent to

some vertex in S. A dominating set of G with minimum cardinality is a minimum dominating

set and this cardinality is the domination number γ(G). The topic of domination began with

Berge in [1] and Ore in [5]. In 1998, a text book devoted to domination written by Teresa et.

al. [9].

For any two vertices u and v in a connected graph G, the detour distance D(u, v) is the

length of a longest u − v path in G. For each vertex v in G, define D−(v) = min {D(u, v) :

u ∈ V − {v}}. A vertex u (6= v) is called a detour neighbor of v if D(u, v) = D−(v). A vertex

v is said to detour dominate a vertex u if u = v or u is a detour neighbor of v. A set S of

vertices of G is called a detour dominating set if every vertex of G is detour dominated by some

vertex in S. A detour dominating set of G with minimum cardinality is a minimum detour

dominating set and this cardinality is the detour domination number γD(G). These concepts

were introduced and studied in [3].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called

a monophonic path if it is a chordless path. For any two vertices u and v in a connected graph

G, the monophonic distance dm(u, v) from u to v is defined as the length of a longest u − v
monophonic path in G. The monophonic eccentricity em(v) of a vertex v in G is em(v) = max

{dm(u, v) : u ∈ V }. The monophonic radius, radm(G) of G is radm(G) = min {em(v) : v ∈ V }
and the monophonic diameter, diamm(G) of G is diamm(G) = max {em(v) : v ∈ V }. A vertex

v in G is a monophonic eccentric vertex of u in G if em(u) = dm(u, v). A vertex v in G is a

monophonic central vertex if em(v) = radm(G) and the subgraph induced by the monophonic

central vertices of G is the monophonic center of G. The monophonic distance was introduced

in [6] and further studied in [7].

Let v be any vertex of a connected graph G. The set of all monophonic eccentric vertices

of v is called the monophonic eccentric neighborhood of v and it is denoted by Nem(v). The

monophonic eccentric degree of a vertex v is defined as degem(v) = |Nem(v)|. The minimum

monophonic eccentric degree δem(G) is defined as δem(G) = min {degem(v) : v ∈ V } and the

maximum monophonic eccentric degree ∆em(G) is defined as ∆em(G) = max {degem(v) : v ∈
V }. A set S ⊆ V is a monophonic eccentric dominating set if every vertex in V − S has

a monophonic eccentric vertex in S. The monophonic eccentric domination number γme(G)

is the cardinality of a minimum monophonic eccentric dominating set of G. These concepts

were introduced and studied in [10, 11]. A set S ⊆ V is a connected monophonic eccentric

dominating set if S is a monophonic eccentric dominating set and the induced subgraph 〈S〉 is

connected. The connected monophonic eccentric domination number γcme(G) is the cardinality

of a minimum connected monophonic eccentric dominating set of G [12].

Generally, a dominating, detour dominating or monophonic eccentric dominating set S of

graph G is Smarandachely dominated on subgraph H ≺ G if G −H is not dominating, detour

dominating, or monophonic eccentric dominating by set S, called a Smarandachely dominat-

ed on subgraph H−, or S is not a dominating, detour dominating or monophonic eccentric

dominating set of graph G but it is a dominating, detour dominating or monophonic eccentric

dominating set S of graph G+H, called a Smarandachely dominated on subgraph H−. Partic-

ularly, if H = ∅, a Smarandachely, detour dominating or monophonic eccentric dominating set
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S on subgraph H is nothing else but dominating, detour dominating or monophonic eccentric

dominating by S. For example, let H = P2. If there is an edge e ∈ E(G) such that G − e is

not dominating, detour dominating, or monophonic eccentric dominating by set S, then G is

Smarandachely dominated on a subgraph P−2 .

Consider the graph G given in Figure 1.1. It is easily seen that no 2-element subset of G

is a connected monophonic eccentric dominating set. The sets {v1, v2, v6} and {v3, v4, v5} are

the only minimum connected monophonic eccentric dominating set of G so that γcme(G) = 3.

Figure 1.1

The following theorems will be used in the sequel.

Theorem 1.1([10]) If G = H +Kp or Kp +H , where H is any connected graph, then

γcme(G) = γcme(H).

Theorem 1.2([10]) Let G be a cycle of order p and let p ≡ l(mod 6). Then,

γme(G) =


⌈p

3

⌉
+ 1 if l = 2 ,⌈p

3

⌉
otherwise.

Theorem 1.3([10]) Let G be a wheel of order p and let p ≡ l(mod 6). Then,

γme(G) =


p

3
+ 1 if l = 3,⌈
p− 1

3

⌉
otherwise.

Theorem 1.4([10]) For the complete graph Kp, γcme(Kp) = 1.

Theorem 1.5([10]) Let G be a wheel of order p.

(i) If p ≤ 9 and p ≡ l(mod 6), then

γcme(G) =


p

3
+ 1 if l = 3,⌈
p− 1

3

⌉
otherwise.
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(ii) If p > 9, then γcme(G) = p− 5.

§2. Connected Monophonic Eccentric Domination Number

The corona of two graphs G1 and G2 is the graph G = G1 o G2 formed from one copy of G1

and |V (G1)| copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith

copy of G2. The distance related properties of corona was studied in [8] and the domination

parameters of corona was studied in [2].

Theorem 2.1 Let G be a connected graph of order m and let H be any graph of order n. Then

γcme(G ◦H) ≤ m(1 + γme(H)).

Proof Let Hi,n be the ith copy of H (1 ≤ i ≤ m). Let Si be a minimum monophonic

eccentric dominating set of Hi,n. In G o H, it is clear that every vertex in Hi,n is monophonic

eccentric dominated by a vertex in S =
m⋃
i=1

Si. Thus S is a monophonic eccentric dominating

set of G o H, but the induced subgraph 〈S〉 is not connected. Therefore, we consider a set

S
′

= S ∪ V (G). Clearly, S
′

is a connected monophonic eccentric dominating set of G and so

γcme(G o H) ≤ m(1 + γme(H)). �

Remark 2.2 The bounds in Theorem 2.1 is sharp. For the graph G = Cr o Cs where s = r+3,

γcme(G) = m(1 + γme(Cs)).

Theorem 2.3 If G = Pr o Cs (r ≥ 2), then

γcme(G) =



4 if r = 2, 3 and s = 3,

r + 2 if (r = 2, 3 and s = 4, 5)) or (r ≥ 4 and 3 ≤ s ≤
⌈
r + 7

2

⌉
),

r + 2 + (2s− r − 8)γme(Cs) if r ≥ 3 and s =

⌈
r + 9

2

⌉
,

⌈
r + 11

2

⌉
, · · · , r + 3,

r(1 + γme(Cs)) if s > r + 3.

Proof Let G be the corona product of Pr and Cs. Let u1, u2, . . . , ur (r ≥ 2) be the vertices

of Pr and let Ci,s: vi,1, vi,2, . . . , vi,s, vi,1 be the ith copy of Cs (1 ≤ i ≤ r). We prove this

theorem by considering three cases.

Case 1. 3 ≤ s ≤
⌈
r + 7

2

⌉
.

Subcase 1.1 r = 2, 3 and s = 3.

Let S = {u1, v1,1, v1,2, v1,3}. It is clear that the vertices ui (2 ≤ i ≤ r) and the vertices vi,j

(2 ≤ i ≤ r, 1 ≤ j ≤ s) are monophonic eccentric dominated by a vertex v1,j . Also, the induced

subgraph 〈S〉 is connected. Hence S is a minimum connected monophonic eccentric dominating

set of G and so γcme(G) = 4.
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Subcase 1.2 (r = 2, 3 and s = 4, 5) or (r ≥ 4 and 3 ≤ s ≤
⌈
r + 7

2

⌉
).

If r is even, then the vertices ui (1 ≤ i ≤ r
2 ) and vi,j (1 ≤ i ≤ r

2 , 1 ≤ j ≤ s) are

monophonic eccentric dominated by a vertex vr,j ; and the vertices ui ( r+2
2 ≤ i ≤ r) and

vi,j ( r+2
2 ≤ i ≤ r, 1 ≤ j ≤ s) are monophonic eccentric dominated by a vertex v1,j . Then

S = {v1,j , vr,j} is a minimum monophonic eccentric dominating set of G, but the induced

subgraph 〈S〉 is not connected. Therefore, we consider a set S
′

= {u1, u2, . . . , ur} ∪ S. Clearly,

S
′

is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) = r + 2.

If r is odd, then the vertices ui (1 ≤ i ≤ r−1
2 ) and vi,j (1 ≤ i ≤ r−1

2 , 1 ≤ j ≤ s)

are monophonic eccentric dominated by a vertex vr,j , the vertices ui ( r+3
2 ≤ i ≤ r) and vi,j

( r+3
2 ≤ i ≤ r, 1 ≤ j ≤ s) are monophonic eccentric dominated by a vertex v1,j , and the vertices

u r+1
2

and v r+1
2 ,j (1 ≤ j ≤ s) are monophonic eccentric dominated by both the vertices v1,j and

vr,j . Then S = {v1,j , vr,j} is a minimum monophonic eccentric dominating set of G, but the

induced subgraph 〈S〉 is not connected. Therefore, we consider a set S
′

= {u1, u2, . . . , ur} ∪ S.
Clearly, S

′
is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) = r + 2.

Case 2. r ≥ 3 and s =

⌈
r + 9

2

⌉
,

⌈
r + 11

2

⌉
, · · · , r + 3.

Subcase 2.1 r is even.

Let m = s − r + 8

2
. It can be easily seen that the vertices ui (1 ≤ i ≤ r

2 ) and vi,j

(1 ≤ i ≤ r
2 −m, 1 ≤ j ≤ s) are monophonic eccentric dominated by a vertex vr,j . Similarly,

the vertices ui ( r+2
2 ≤ i ≤ r) and vi,j ( r+2

2 + m ≤ i ≤ r, 1 ≤ j ≤ s) are monophonic eccentric

dominated by a vertex v1,j . Let Sk ( r+2
2 −m ≤ k ≤

r
2 +m) be a minimum monophonic eccentric

dominating set of Ck,s. It is clear that, in G, any vertex in Ck,s ( r+2
2 −m ≤ k ≤ r

2 + m) is

monophonic eccentric dominated by a vertex in Sk and hence

S =

 r
2 +m⋃

k= r+2
2 −m

Sk

⋃{v1,j , vr,j}

is a minimum monophonic eccentric dominating set of G, but the induced subgraph 〈S〉 is not

connected. Therefore, we consider a set S
′

= {u1, u2, . . . , ur} ∪ S. Clearly, S
′

is a minimum

connected monophonic eccentric dominating set of G. Thus

γcme(G) =
∣∣∣S′ ∣∣∣

= r + 2m γme(Cs) + 2

= r + 2 +

[
2(s− r + 8

2
)

]
γme(Cs)

= r + 2 + (2s− r − 8) γme(Cs).
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Subcase 2.2 r is odd.

Let m = s − r + 7

2
. It can be easily verified that the vertices ui (1 ≤ i ≤ r−1

2 ) and vi,j

(1 ≤ i ≤ r+1
2 −m, 1 ≤ j ≤ s) are monophonic eccentric dominated by a vertex vr,j . Similarly,

the vertices ui ( r+3
2 ≤ i ≤ r) and vi,j ( r+1

2 + m ≤ i ≤ r, 1 ≤ j ≤ s) are monophonic eccentric

dominated by a vertex v1,j . Also, the vertex u r+1
2

is monophonic eccentric dominated by both

the vertices v1,j and vr,j . Let Sk ( r+3
2 −m ≤ k ≤

r−1
2 +m) be a minimum monophonic eccentric

dominating set of Ck,s. It is clear that, in G, any vertex in Ck,s ( r+3
2 −m ≤ k ≤ r−1

2 + m) is

monophonic eccentric dominated by a vertex in Sk and hence

S =

 r−1
2 +m⋃

k= r+3
2 −m

Sk

⋃{v1,j , vr,j}

is a minimum monophonic eccentric dominating set of G, but the induced subgraph 〈S〉 is not

connected. Therefore, we consider a set S
′

= {u1, u2, . . . , ur} ∪ S. Clearly, S
′

is a minimum

connected monophonic eccentric dominating set of G. Thus

γcme(G) =
∣∣∣S′ ∣∣∣

= r + (2m− 1) γme(Cs) + 2

= r + 2 +

[
2(s− r + 7

2
)− 1

]
γme(Cs)

= r + 2 + (2s− r − 8) γme(Cs).

Case 3. s > r + 3.

If r is even, then the vertices ui (1 ≤ i ≤ r
2 ) are monophonic eccentric dominated by a vertex

vr,j (1 ≤ j ≤ s) and the vertices ui ( r+2
2 ≤ i ≤ r) are monophonic eccentric dominated by a

vertex v1,j (1 ≤ j ≤ s). If r is odd, then the vertices ui (1 ≤ i ≤ r−1
2 ) are monophonic eccentric

dominated by a vertex vr,j (1 ≤ j ≤ s), the vertices ui ( r+3
2 ≤ i ≤ r) are monophonic eccentric

dominated by a vertex v1,j (1 ≤ j ≤ s), and the vertex u r+1
2

is monophonic eccentric dominated

by both the vertices v1,j and vr,j (1 ≤ j ≤ s). Let Sk (1 ≤ k ≤ r) be a minimum monophonic

eccentric dominating set of Ck,s. It is clear that, in G, any vertex in Ck,s (1 ≤ k ≤ r)

is monophonic eccentric dominated by a vertex in Sk and hence S =
r⋃

k=1

Sk is a minimum

monophonic eccentric dominating set of G, but the induced subgraph 〈S〉 is not connected.

Therefore, we consider a set S
′

= {u1, u2, . . . , ur} ∪ S. Clearly, S
′

is a minimum connected

monophonic eccentric dominating set of G and so

γcme(G) = r + r γme(Cs) = r(1 + γme(Cs)). �

The result of the above theorem contains γme(Cs) and we can calculate γme(Cs) using

Theorem 1.2.

Note 2.4 If r = 1, then G = P1 o Cs is a wheel. By Theorem 1.5, we have γcme(G) =
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γcme(Ws+1).

Theorem 2.5 If G = Pr o Ws (r ≥ 2), then

γcme(G) =


r + 2 if 4 ≤ s ≤

⌈
r + 9

2

⌉
,

r + 2 + (2s− r − 10)γme(Ws) if r ≥ 3 and s =

⌈
r + 11

2

⌉
,

⌈
r + 13

2

⌉
, · · · , r + 4,

r(1 + γme(Ws)) if s > r + 4.

Proof Since Ws = Cs−1 +K1, by Theorem 1.1 we have γcme(Ws) = γcme(Cs−1). Then by

Theorem 2.1, the required result can be got. �

The result of the above theorem contains γme(Ws) and we can calculate γme(Ws) using

Theorem 1.3.

Note 2.6 If r = 1, then G = P1 o Ws. By Theorem 1.1 we have γcme(G) = γcme(Ws).

Theorem 2.7 If G = Pr ◦Ks (r ≥ 2), then

γcme(G) =


(s+ 1)

⌊r
2

⌋
if (2 ≤ r ≤ 5 and 1 ≤ s ≤ 6−

⌊
r + 4

2

⌋
) or (r ≥ 6 and s = 1),

r + 2 if (2 ≤ r ≤ 5 and s > 6−
⌊
r + 4

2

⌋
) or (r ≥ 6 and s > 1).

Proof Let G be the corona product of Pr and Ks. Let u1, u2, · · · , ur (r ≥ 2) and

vi,1, vi,2, · · · , vi,s be the vertices of Pr and the vertices of the ith copy of Ks (1 ≤ i ≤ r),

respectively. We prove this theorem by considering two cases.

Case 1. (2 ≤ r ≤ 5 and 1 ≤ s ≤ 6−
⌊
r + 4

2

⌋
) or (r ≥ 6 and s = 1.

Let S = {u1, v1,1, · · · , v1,s;u2, v2,1, · · · , v2,s; · · · ;ub r2c, vb r2c,1, · · · , vb r2c,s}. It is clear that

the vertices ui (
⌈
r+1

2

⌉
≤ i ≤ r) and the vertices vi,1 (

⌈
r+2

2

⌉
≤ i ≤ r) are monophonic eccentric

dominated by the vertex v1,1. Also, the induced subgraph 〈S〉 is connected. Hence S is a

minimum connected monophonic eccentric dominating set of G and so

γcme(G) = 2
⌊r

2

⌋
.

Case 2. (2 ≤ r ≤ 5 and s > 6−
⌊
r + 4

2

⌋
) or (r ≥ 6 and s > 1).

It is clear that the vertices ui (
⌈
r+1

2

⌉
≤ i ≤ r) and vi,j (

⌈
r+1

2

⌉
≤ i ≤ r, 1 ≤ j ≤ s) are

monophonic eccentric dominated by a vertex v1,j(1 ≤ j ≤ s). Also, the vertices ui (1 ≤ i ≤
⌊
r
2

⌋
)

and vi,j (1 ≤ i ≤
⌊
r
2

⌋
, 1 ≤ j ≤ s) are monophonic eccentric dominated by a vertex vr,j . Hence

S = {v1,j , vr,j} (1 ≤ j ≤ s) is a minimum monophonic eccentric dominating set of G, but the

induced subgraph 〈S〉 is not connected. Therefore, we consider a set S
′

= {u1, u2, · · · , ur} ∪ S.
Clearly, S

′
is a minimum connected monophonic eccentric dominating set of G and so γcme(G) =

r + 2. �
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Note 2.8 If r = 1, then G = P1 o Ks is a complete graph. By Theorem 1.4, γcme(G) = 1.

Theorem 2.9 If G = Pr o K1,n (2 ≤ r ≤ 5), then

γcme(G) =


(n+ 2)

⌊r
2

⌋
if 1 ≤ s ≤ 5−

⌊
r + 4

2

⌋
,

r + 2 if s > 5−
⌊
r + 4

2

⌋
.

Proof By an argument similar to Theorem 2.7, the required result can be got. �

Theorem 2.10 If G = Pr ◦K1,n (r ≥ 6), then γcme(G) = r + 2.

Proof Let G be the corona product of Pr and K1,n. Let u1, u2, . . . , ur (r ≥ 6) and

vi,1, vi,2, · · · , vi,n+1 be the vertices of Pr and the ith copy of K1,n (1 ≤ i ≤ r), respectively.

It is clear that the vertices ui (
⌈
r+1

2

⌉
≤ i ≤ r) and vi,j (

⌈
r+1

2

⌉
≤ i ≤ r, 1 ≤ j ≤ n + 1)

are monophonic eccentric dominated by a vertex v1,j(1 ≤ j ≤ n + 1). Also, the vertices ui

(1 ≤ i ≤
⌊
r
2

⌋
) and vi,j (1 ≤ i ≤

⌊
r
2

⌋
, 1 ≤ j ≤ n + 1) are monophonic eccentric dominated

by a vertex vr,j . Hence S = {v1,j , vr,j} (1 ≤ j ≤ n + 1) is a minimum monophonic eccentric

dominating set of G, but the induced subgraph 〈S〉 is not connected. Therefore, we consider

a set S
′

= {u1, u2, · · · , ur} ∪ S. Clearly, S
′

is a minimum connected monophonic eccentric

dominating set of G and so γcme(G) = r + 2. �

Theorem 2.11 If G = Pr ◦Km,n (r,m, n ≥ 2), then γcme(G) = r + 2.

Proof By an argument similar to Theorem 2.10, the required result can be got. �

Note 2.12 If G = P1 ◦Km,n, then

γcme(G) =

 1 if either m or n = 1,

2 if m,n ≥ 2.

Theorem 2.13 Let G = Cr ◦ P1 (r ≥ 6) and let r ≡ k(mod 6). Then,

γcme(G) =


⌈r

3

⌉
+ r − 3 if k = 2, 3,⌈r

3

⌉
+ r − 4 if k = 0, 1, 4 and 5.

Proof Let G be the corona product of Cr and P1. Let u1, u2, · · · , ur and vi,1 be the vertices

of Cr and the vertices of the ith copy of P1 (1 ≤ i ≤ r), respectively. We prove this theorem by

considering six cases.

Case 1. r ≡ 0(mod 6).

Let S = {v1,1, v2,1; v7,1, v8,1; · · · ; vr−5,1, vr−4,1}. It is easily verified that the vertices ur−1,

vr−1,1, u3 and v3,1 are monophonic eccentric dominated by the vertex v1,1, the vertices u4, v4,1,

ur and vr,1 are monophonic eccentric dominated by the vertex v2,1, · · · , the vertices ur−1, vr−1,1,

ur−3 and vr−3,1 are monophonic eccentric dominated by the vertex vr−5,1 and the vertices ur,
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vr,1, ur−2 and vr−2,1 are monophonic eccentric dominated by the vertex vr−4,1. It is clear that

S is a minimum monophonic eccentric dominating set of G, but the induced subgraph 〈S〉 is not

connected. Therefore, we consider a set S
′

= {u1, u2, · · · , ur−4} ∪ S. Clearly, S
′

is a minimum

connected monophonic eccentric dominating set of G and so

γcme(G) =
⌈r

3

⌉
+ r − 4.

Case 2. r ≡ 1(mod 6).

Let S = {v1,1, v2,1; v7,1, v8,1; · · · ; vr−6,1, vr−5,1; vr,1} ∪ {u1, u2, · · · , ur−5;ur}. By an argu-

ment similar to Case 1, it can be easily seen that S is a minimum connected monophonic

eccentric dominating set of G and so γcme(G) =
⌈r

3

⌉
+ r − 4.

Case 3. r ≡ 2(mod 6).

Let S = {v1,1, v2,1; v7,1, v8,1; · · · ; vr−1,1, vr,1} ∪ {u1, u2, · · · , ur−6;ur−1, ur}. By an argu-

ment similar to Case 1, it can be easily seen that S is a minimum connected monophonic

eccentric dominating set of G and so

γcme(G) =
⌈r

3

⌉
+ 1 + r − 4 =

⌈r
3

⌉
+ r − 3.

Case 4. r ≡ 3(mod 6).

Let S = {v1,1, v2,1; v7,1, v8,1; · · · ; vr−2,1, vr−1,1} ∪ {u1, u2, · · · , ur−7;ur−2, ur−1, ur}. By an

argument similar to Case 1, it can be easily seen that S is a minimum connected monophonic

eccentric dominating set of G and so

γcme(G) =
⌈r

3

⌉
+ 1 + r − 4 =

⌈r
3

⌉
+ r − 3.

Case 5. r ≡ 4(mod 6).

Let S = {v1,1, v2,1; v7,1, v8,1; · · · ; vr−3,1, vr−2,1} ∪ {u1, u2, · · · , ur−8;ur−3, ur−2, ur−1, ur}.
By an argument similar to Case 1, it can be easily seen that S is a minimum connected

monophonic eccentric dominating set of G and so

γcme(G) =
⌈r

3

⌉
+ r − 4.

Case 6. r ≡ 5(mod 6).

Let S = {v1,1, v2,1; v7,1, v8,1; · · · ; vr−4,1, vr−3,1}∪{u1, u2, · · · , ur−9;ur−4, ur−3, · · · , ur}. By

an argument similar to Case 1, it can be easily seen that S is a minimum connected monophonic

eccentric dominating set of G and so γcme(G) =
⌈r

3

⌉
+ r − 4. �
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Theorem 2.14 Let G = Cr ◦ Ps (r ≥ 8, s ≥ 2) and let r ≡ k(mod 8). Then

γcme(G) =



3r − 8 + k

2
if 2 ≤ s ≤ r + 1 and 0 ≤ k ≤ 3,

3r − k
2

if 2 ≤ s ≤ r + 1 and 3 < k < 8,

2r if s = r + 2,

3r if s > r + 2.

Proof Let G be the corona product of Cr and Ps. Let u1, u2, · · · , ur and vi,1, vi,2, · · · , vi,s
be the vertices of Cr and the vertices of the ith copy of Ps (1 ≤ i ≤ r), respectively. We prove

this theorem by considering three cases.

Case 1. 2 ≤ s ≤ r + 1.

Subcase 1.1 r ≡ 0(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−7,j , vr−6,j , vr−5,j , vr−4,j} (1 ≤ j ≤
s). It is easily verified that the vertices ur−1, vr−1,j , u3 and v3,j are monophonic eccentric dom-

inated by a vertex v1,j , the vertices u4, v4,j , ur and vr,j are monophonic eccentric dominated by

a vertex v2,j , the vertices u1, v1,j , u5 and v5,j are monophonic eccentric dominated by a vertex

v3,j , the vertices u2, v2,j , u6 and v6,j are monophonic eccentric dominated by a vertex v4,j ,

. . . , the vertices ur−1, vr−1,j , ur−5 and vr−5,j are monophonic eccentric dominated by a vertex

vr−7,j , the vertices ur, vr,j , ur−4 and vr−4,j are monophonic eccentric dominated by a vertex

vr−6,j , the vertices u1, v1,j , ur−3 and vr−3,j are monophonic eccentric dominated by a vertex

vr−5,j and the vertices u2, v2,j , ur−2 and vr−2,j are monophonic eccentric dominated by a vertex

vr−4,j . It is clear that S is a minimum monophonic eccentric dominating set of G, but the in-

duced subgraph 〈S〉 is not connected. Therefore, we consider a set S
′

= {u1, u2, · · · , ur−4}∪S.
Clearly, S

′
is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) =
r

2
+ r − 4 =

3r − 8

2
=

3r − 8 + k

2
.

Subcase 1.2 r ≡ 1(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−8,j , vr−7,j , vr−6,j , vr−5,j} ∪ {vr,j}
(1 ≤ j ≤ s). It is easily verified that the vertices ur−1, vr−1,j , u3 and v3,j are monophonic

eccentric dominated by a vertex v1,j , the vertices u4, v4,j , ur and vr,j are monophonic eccentric

dominated by a vertex v2,j , the vertices u1, v1,j , u5 and v5,j are monophonic eccentric dominat-

ed by a vertex v3,j , the vertices u2, v2,j , u6 and v6,j are monophonic eccentric dominated by a

vertex v4,j , · · · , the vertices ur−1, vr−1,j , ur−6 and vr−6,j are monophonic eccentric dominated

by a vertex vr−8,j , the vertices ur, vr,j , ur−5 and vr−5,j are monophonic eccentric dominated

by a vertex vr−7,j , the vertices ur−8, vr−8,j , ur−4 and vr−4,j are monophonic eccentric domi-

nated by a vertex vr−6,j , the vertices ur−7, vr−7,j , ur−3 and vr−3,j are monophonic eccentric

dominated by a vertex vr−5,j and the vertices u2, v2,j , ur−2 and vr−2,j are monophonic ec-

centric dominated by a vertex vr,j . It is clear that S is a minimum monophonic eccentric
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dominating set of G, but the induced subgraph 〈S〉 is not connected. Therefore, we consider a

set S
′

= {u1, u2, . . . , ur−5;ur} ∪ S. Clearly, S
′

is a minimum connected monophonic eccentric

dominating set of G and so

γcme(G) =
r + 1

2
+ r − 4 =

3r − 7

2
=

3r − 8 + k

2
.

Subcase 1.3 r ≡ 2(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−9,j , vr−8,j , vr−7,j , vr−6,j}∪{vr−1,j ,

vr,j} ∪ {u1, u2, · · · , ur−6;ur−1, ur}. By an argument similar to Subcase 1.2, it is clear that S is

a minimum connected monophonic eccentric dominating set of G and so

γcme(G) =
r + 2

2
+ r − 4 =

3r − 6

2
=

3r − 8 + k

2
.

Subcase 1.4 r ≡ 3(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−10,j , vr−9,j , vr−8,j , vr−7,j}∪{vr−2,j ,

vr−1,j , vr,j} ∪ {u1, u2, · · · , ur−7;ur−2, ur−1, ur}. By an argument similar to Subcase 1.2, it is

clear that S is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) =
r + 3

2
+ r − 4 =

3r − 5

2
=

3r − 8 + k

2
.

Subcase 1.5 r ≡ 4(mod 8).

Let

S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−11,j , vr−10,j , vr−9,j , vr−8,j}⋃
{vr−7,j , vr−6,j , vr−5,j , vr−4,j}

⋃
{u1, u2, · · · , ur−4} .

By an argument similar to Subcase 1.2, it can be easily seen that S is a minimum connected

monophonic eccentric dominating set of G and so

γcme(G) =
r + 4

2
+ r − 4 =

3r − 4

2
=

3r − k
2

.

Subcase 1.6 r ≡ 5(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−12,j , vr−11,j , vr−10,j , vr−9,j ; vr−4,j ,

vr−3,j , vr−2,j , vr−1,j} ∪ {u1, u2, · · · , ur−9;ur−4, ur−3, · · · , ur}. By an argument similar to Sub-

case 1.2, it can be easily seen that S is a minimum connected monophonic eccentric dominating

set of G and so

γcme(G) =
r + 3

2
+ r − 4 =

3r − 5

2
=

3r − k
2

.

Subcase 1.7 r ≡ 6(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−13,j , vr−12,j , vr−11,j , vr−10,j ; vr−5,j ,

vr−4,j , vr−3,j , vr−2,j}∪ {u1, u2, · · · , ur−10;ur−5, ur−4, · · · , ur}. By an argument similar to Sub-
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case 1.2, it is clear that S is a minimum connected monophonic eccentric dominating set of G

and so

γcme(G) =
r + 2

2
+ r − 4 =

3r − 6

2
=

3r − k
2

.

Subcase 1.8 r ≡ 7(mod 8).

Let S = {v1,j , v2,j , v3,j , v4,j ; v9,j , v10,j , v11,j , v12,j ; · · · ; vr−14,j , vr−13,j , vr−12,j , vr−11,j ; vr−6,j ,

vr−5,j , vr−4,j , vr−3,j}∪ {u1, u2, · · · , ur−11;ur−6, ur−5, · · · , ur}. By an argument similar to Sub-

case 1.2, it is clear that S is a minimum connected monophonic eccentric dominating set of G

and so

γcme(G) =
r + 1

2
+ r − 4 =

3r − 7

2
=

3r − k
2

.

Case 2. s = r + 2.

Let S = {v1,1, v2,1, · · · , vr,1}. It is easily verified that the vertices ur−1, vr−1,k, u3, v3,k

(2 ≤ k ≤ s − 1) and v1,s are monophonic eccentric dominated by the vertex v1,1, the vertices

u4, v4,k, ur, vr,k (2 ≤ k ≤ s − 1) and v2,s are monophonic eccentric dominated by the vertex

v2,1, · · · , the vertices ur−2, vr−2,k, u2, v2,k (2 ≤ k ≤ s − 1) and vr,s are monophonic eccentric

dominated by the vertex vr,1. It is clear that S is a minimum monophonic eccentric dominating

set of G, but the induced subgraph 〈S〉 is not connected. Therefore, we consider a set S
′

=

{u1, u2, . . . , ur} ∪ S. Clearly, S
′

is a minimum connected monophonic eccentric dominating set

of G and so

γcme(G) = 2r.

Case 3. s > r + 2.

Let S = {v1,1, v2,1, · · · , vr,1; v1,s, v2,s, · · · , vr,s}. In r+2 < s < 2r, the vertices ur−1, vr−1,k,

u3, v3,k (s − r + 1 ≤ k ≤ r) and v1,l (r + 1 ≤ l ≤ s) are monophonic eccentric dominated by

the vertex v1,1, the vertices u4, v4,k, ur, vr,k (s − r + 1 ≤ k ≤ r) and v2,l (r + 1 ≤ l ≤ s)

are monophonic eccentric dominated by the vertex v2,1, . . . , the vertices ur−2, vr−2,k, u2, v2,k

(s− r + 1 ≤ k ≤ r) and vr,l (r + 1 ≤ l ≤ s) are monophonic eccentric dominated by the vertex

vr,1. Also, the vertices v1,l (1 ≤ l ≤ s − r) are monophonic eccentric dominated by the vertex

v1,s, the vertices v2,l (1 ≤ l ≤ s − r) are monophonic eccentric dominated by the vertex v2,s,

. . . , the vertices vr,l (1 ≤ l ≤ s− r) are monophonic eccentric dominated by the vertex vr,s.

In s ≥ 2r, the vertices ur−1, u3 and v1,l (
⌊
s+3

2

⌋
≤ l ≤ s) are monophonic eccentric

dominated by the vertex v1,1, the vertices u4, ur, and v2,l (
⌊
s+3

2

⌋
≤ l ≤ s) are monophonic

eccentric dominated by the vertex v2,1, . . . , the vertices ur−2, u2, and vr,l (
⌊
s+3

2

⌋
≤ l ≤ s) are

monophonic eccentric dominated by the vertex vr,1. Also, the vertices v1,l (1 ≤ l ≤
⌊
s+1

2

⌋
)

are monophonic eccentric dominated by the vertex v1,s, the vertices v2,l (1 ≤ l ≤
⌊
s+1

2

⌋
) are

monophonic eccentric dominated by the vertex v2,s, . . . , the vertices vr,l (1 ≤ l ≤
⌊
s+1

2

⌋
) are

monophonic eccentric dominated by the vertex vr,s. Hence, it is clear that S is a minimum

monophonic eccentric dominating set of G, but the induced subgraph 〈S〉 is not connected.

Therefore, we consider a set S
′

= {u1, u2, · · · , ur} ∪ S. Clearly, S
′

is a minimum connected

monophonic eccentric dominating set of G and so γcme(G) = 3r. �
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Theorem 2.15 If G = Cr ◦ Ps (r ≤ 7), then

γcme(G) =



(s+ 1)
⌈r

3

⌉
if 1 ≤ s ≤ 7−

⌈
r + 4

2

⌉
,

3r − 1

2
if r = 3, 5 and 7−

⌈
r + 4

2

⌉
< s < r + 2,

8 if (r = 4, 6 and 7−
⌈
r + 4

2

⌉
< s < r + 2) or (r = 7 and 3 ≤ s ≤ 8),

7 if r = 7 and s = 2,

2r if s = r + 2,

3r if s > r + 2.

Proof Let G be the corona product of Cr and Ps. Let u1, u2, · · · , ur and vi,1, vi,2, · · · , vi,s
be the vertices of Cr and the vertices of the ith copy of Ps (1 ≤ i ≤ r), respectively. We prove

this theorem by considering four cases.

Case 1. 1 ≤ s ≤ 7−
⌈
r + 4

2

⌉
.

Let S = {u1, v1,1, · · · , v1,s;u2, v2,1, · · · , v2,s; · · · ;ud r3e, vd r3e,1, · · · , vd r3e,s}. It is easily veri-

fied that every vertex in V −S has a monophonic eccentric vertex in S and the induced subgraph

〈S〉 is connected. Hence S is a minimum connected monophonic eccentric dominating set of G

and so γcme(G) = (s+ 1)
⌈r

3

⌉
.

Case 2. 7−
⌈
r + 4

2

⌉
< s < r + 2.

Subcase 2.1 r = 3 and 5.

If r = 3, let S = {v1,j , v2,j ;u1, u2}. If r = 5, let S = {v1,j , v2,j , v4,j ;u1, u2, u3, u4}. Then by

an argument similar to Case 1, it is clear that S is a minimum connected monophonic eccentric

dominating set of G and so

γcme(G) =
3r − 1

2
.

Subcase 2.2 (r = 4 and 6) or (r = 7 and 3 ≤ s ≤ 8).

Let S = {u1, v1,j ;u2, v2,j ;u3, v3,j ;u4, v4,j}. Then by an argument similar to Case 1, it

is clear that S is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) = 8.

Subcase 2.3 r = 7 and s = 2.

Let S = {u1, v1,j ;u2, v2,1, v2,2;u3, v3,j}. Then by an argument similar to Case 1, it is clear

that S is a minimum connected monophonic eccentric dominating set of G and so γcme(G) = 7.

Case 3. s = r + 2.

Let S = {v1,1, v2,1, · · · , vr,1;u1, u2, · · · , ur}. By an argument similar to Case 2 of Theorem

2.14, it can be easily seen that S is a minimum connected monophonic eccentric dominating

set of G and so γcme(G) = 2r.
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Case 4. s > r + 2.

Let S = {v1,1, v2,1, · · · , vr,1; v1,s, v2,s, · · · , vr,s;u1, u2, · · · , ur}. By an argument similar to

Case 3 of Theorem 2.14, it can be easily seen that S is a minimum connected monophonic

eccentric dominating set of G and so γcme(G) = 3r. �

Theorem 2.16 If G = Cr ◦ Cs (r ≥ 8) and r ≡ k(mod 8), then

γcme(G) =



3r − 8 + k

2
if s ≤ r + 2 and 0 ≤ k ≤ 3,

3r − k
2

if s ≤ r + 2 and 3 < k < 8,

r(1 + γme(Cs)) if s > r + 2.

Proof Let G be the corona product of Cr and Cs. Let u1, u2, · · · , ur be the vertices of Cr

and let Ci,s: vi,1, vi,2, · · · , vi,s, vi,1 be the ith copy of Cs (1 ≤ i ≤ r), respectively. We prove

this theorem by considering two cases.

Case 1. s ≤ r + 2.

By an argument similar to Case 1 of Theorem 2.14, the required result can be got.

Case 2. s > r + 2.

Let Sk (1 ≤ k ≤ r) be a minimum monophonic eccentric dominating set of Ck,s. It is clear

that, in G, any vertex in Ck,s (1 ≤ k ≤ r) is monophonic eccentric dominated by a vertex in Sk.

Also, the vertices u1, u2, · · · , ur are monophonic eccentric dominated by a vertex in Sk (1 ≤
k ≤ r) and hence S =

r⋃
k=1

Sk is a minimum monophonic eccentric dominating set of G, but the

induced subgraph 〈S〉 is not connected. Therefore, we consider a set S
′

= {u1, u2, · · · , ur} ∪ S.
Clearly, S

′
is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) = r(1 + γme(Cs)). �

The result of the above theorem contains γme(Cs) and we can calculate γme(Cs) using

Theorem 1.2.

Theorem 2.17 If G = Cr o Ws (r ≥ 8) and r ≡ k(mod 8), then

γcme(G) =



3r − 8 + k

2
if s ≤ r + 3 and 0 ≤ k ≤ 3,

3r − k
2

if s ≤ r + 3 and 3 < k < 8,

r(1 + γme(Ws)) if s > r + 3.

Proof By Theorem 1.1 and by an argument similar to Theorem 2.16, the required result

can be got. �
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The result of the above theorem contains γme(Ws) and we can calculate γme(Ws) using

Theorem 1.3.

Theorem 2.18 If G = Cr o Cs (r ≤ 7), then

γcme(G) =



⌈r
3

⌉
+ r if r = 3, 5 and 3 ≤ s ≤ r + 2,

8 if r = 4, 6, 7 and 3 ≤ s ≤ r + 2,

r(1 + γme(Cs)) if s > r + 2.

Proof Let G be the corona product of Cr and Cs. Let u1, u2, · · · , ur be the vertices of Cr

and let Ci,s: vi,1, vi,2, · · · , vi,s, vi,1 be the ith copy of Cs (1 ≤ i ≤ r), respectively. We prove

this theorem by considering two cases.

Case 1. 3 ≤ s ≤ r + 2.

Subcase 1.1 r = 3 and 5.

If r = 3, let S = {v1,j , v2,j ;u1, u2}. If r = 5, let S = {v1,j , v2,j , v4,j ;u1, u2, u3, u4}. By

an argument similar to Case 2 of Theorem 2.15, it can be easily seen that S is a minimum

connected monophonic eccentric dominating set of G and so γcme(G) =
⌈r

3

⌉
+ r.

Subcase 1.2 r = 4, 6 and 7.

Let S = {u1, v1,j ;u2, v2,j ;u3, v3,j ;u4, v4,j}. By an argument similar to Case 2 of Theorem

2.15, it clear that S is a minimum connected monophonic eccentric dominating set of G and so

γcme(G) = 8.

Case 2. s > r + 2.

By an argument similar to Case 2 of Theorem 2.16, the required result can be got. �

The result of the above theorem contains γme(Cs) and we can calculate γme(Cs) using

Theorem 1.2.

Theorem 2.19 If G = Cr ◦Ws (r ≤ 7), then

γcme(G) =



⌈r
3

⌉
+ r if r = 3, 5 and 4 ≤ s ≤ r + 3,

8 if r = 4, 6, 7 and 4 ≤ s ≤ r + 3,

r(1 + γme(Ws)) if s > r + 3.

Proof By Theorem 1.1 and by an argument similar to Theorem 2.18, the required result

can be got. �

The result of the above theorem contains γme(Ws) and we can calculate γme(Ws) using

Theorem 1.3.
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Theorem 2.20 If G = Cr ◦Ks or G = Cr o Km,n and r ≡ k(mod 8), then

γcme(G) =



⌈r
3

⌉
+ r if r = 3, 5,

8 if r = 4, 6, 7,

3r − 8 + k

2
if r ≥ 8 and 0 ≤ k ≤ 3,

3r − k
2

if r ≥ 8 and 3 < k < 8.

Proof By an argument similar to Case 1 of Theorem 2.18 and Case 1 of Theorem 2.14, the

required result can be got. �
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Abstract: Let G = (V,E) be a (p, q) graph,

M =


1, 2, · · · , p

2
, 1

2
, 1

3
, · · · , 2

p+2
, if p is even,

1, 2, · · · , p−1
2
, 1

2
, 1

3
, · · · , 2

p+3
, if p is odd

and let χ : V (G)→M be a bijection.For each edge xy assign the label dχ(x)χ(y)e.χ is called a

fractional product cordial labeling (simply called FP-cordial labeling) if |Πχ(0)−Πχ(1)| ≤ 1,

where Πχ(1) and Πχ(0) respectively denotes the number of edges labelled with 1 and not

labelled with 1. A graph with a fractional product cordial labeling is called a fractional

product cordial graph (Simply FP-cordial graph).In this paper we investigate the fractional

product cordial labeling behaviour of snake graphs, helm, sunflower graph and subdivision

of the comb graphs.

Key Words: Triangular snake, quadrilateral snake, slanting ladder, triangular ladder, fan

graph, flower graphs, Smarandachely FP-cordial labeling.

AMS(2010): 05C38, 05C76, 05C78.

§1. Introduction

We consider finite, simple and undirected graphs only. Several types of cordial related concept

was studied in [1,4-20]. Labelled graph used in several area of science such as: coding theory, x-

ray crystallography, radar, astronomy, circuit design, communication network addressing, data

base management,etc [2]. The notion of FP-cordial labeling has been introduced in [12] and

also FP-cordial labeling behaviour of path, cycle, complete, star, wheel, book with triangle

pages, ladder, comb, double comb, bistar, subdivision of the star and subdivision of the bistar

have been studied in [12]. The number of vertices of a graph G is called the order of G and

number of edges is called the size of G. In this paper we investigate the FP-cordial labeling

behaviour of certain graphs, like subdivision of comb, subdivision of double comb, triangular

snake, quadrilateral snake, slanting ladder, triangular ladder, fan graph, flower graph, sunflower

1Received October 19, 2024. Accepted May 12, 2025
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graph, helm and closed helm. dxe denotes the smallest integer ≥ x.

§2. Preliminaries

Definition 2.1([3]) The subdivision graph S(G) of a graph G is obtained from G by inserting

a new vertex of degree 2 on edge of G.

Definition 2.2([2]) The corona graph G1�G2 is the graph obtained from G1 and G2 by taking

one copy of G1 and n copies of G2 and joining the ith vertex of G1 with an edge to the every

vertex in the ith copy of G2 where G1 is the graph of order n.

Definition 2.3([3]) Let G1 and G2 be two graphs with vertex sets V1 and V2 and edge sets

E1E2 respectively.Then the join G1 +G2 is the graph whose vertex set is V1 ∪ V2 and edge set

is given by E1 ∪ E2 ∪ {uv : u ∈ V1andv ∈ V2}.

Definition 2.4([3]) The product graph G1×G2 is defined as follows: Consider any two vertices

u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are adjacent in G1 ×G2 whenever

[u1 = v1 and u2 adjacent to v2] or [u2 = v2 and u1 adjacent to v1].

Definition 2.5([2]) The graph Ln = Pn × K2 is called a ladder with 2n vertices and 3n − 2

edges.

Definition 2.6([2]) The triangular ladder, T (Ln) is a graph obtained from the ladder graph

Ln by adding the edges ujvj+1, (1 ≤ j ≤ n− 1) where uj , vj(1 ≤ j ≤ n), n ≥ 1 are the vertices

of Ln.

Definition 2.7([2]) A slanting ladder S(Ln)(n ≥ 2), is the graph obtained from two paths

u1u2 · · ·un and v1v2 · · · vn by joining each vj with uj+1, 1 ≤ j ≤ n− 1.

Definition 2.8([2]) The graph Fn = Pn + K1 is called a fan graph where Pn is a path.It has

n+ 1 vertices and 2n− 1 edges.

Definition 2.9([2]) The triangular snake Tn(n ≥ 2), is obtained from the path Pn : u1u2 · · ·un
with V (Tn) = V (Pn) ∪ {vi : 1 ≤ i ≤ n − 1} and edge set E(Tn) = E(Pn) ∪ {uivi, ui+1vi : 1 ≤
i ≤ n− 1}.

Definition 2.10([2]) A helm graph Hn(n ≥ 3), is a graph obtained from a wheel by attaching

a pendent vertex at each n-cycle vertex.

Definition 2.11([2]) A quadrilateral snake Qn(n ≥ 3), is obtained from the path Pn : u1u2 · · ·un
by replacing every edge of a path by a cycle C4, in such a way that each pair of vertices (ui, ui+1)

remains adjacent. That is, it is obtained from a path Pn by joining ui and ui+1 to new vertices

vi and wi respectively, and then joining vi and wi by an edge for 1 ≤ i ≤ n− 1.

Definition 2.12([2]) The flower graph Fln(n ≥ 3), is the graph obtained from a helm Hn by

joining each pendent vertex to the apex of the helm.
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Definition 2.13([2]) The sunflower graph Sn(n ≥ 3), is obtained by taking a wheel with central

vertex u and the cycle Cn : u1u2 · · ·unu1 and new vertices v1, v2, · · · , vn where vi is joined by

vertices ui, ui+1(modn). Thus the sunflower graph Sn has 2n+ 1 vertices and 4n edges.

Definition 2.14([2]) A closed helm CHn(n ≥ 3), is the graph obtained from a helm Hn by

joining each pendent vertex to form a cycle.

Definition 2.15([2]) The quadrilateral book graph B(4, n) with n-pages is defined as n copies

of cycle C4 sharing a common edge. The common edge is called the spine or base of the book.

Theorem 2.16([2]) The path Pn is FP-cordial if and only if n /∈ {3, 5}.

Theorem 2.17([2]) The cycle Cn is FP-cordial if and only if n ≥ 6.

§3. Fractional Product Cordial Labeling

Definition 3.1 Let G = (V,E) be a (p, q) graph,

M =


1, 2, · · · , p2 ,

1
2 ,

1
3 , · · · ,

2
p+2 , if p is even,

1, 2, · · · , p−1
2 , 1

2 ,
1
3 , · · · ,

2
p+3 , if p is odd.

and let χ : V (G)→M be a bijection. For each edge xy assign the label dχ(x)χ(y)e. Then, χ is

called a fractional product cordial labeling (simply called FP-cordial labeling) if |Πχ(0)−Πχ(1)| ≤
1, where Πχ(1) and Πχ(0) respectively denotes the number of edges labelled with 1 and not

labelled with 1. A graph with a fractional product cordial labeling is called a fractional product

cordial graph (simply FP-cordial graph). Otherwise, if |Πχ(0) − Πχ(1)| ≥ 2, such a labeling χ

is called a Smarandachely FP-cordial labeling.

Theorem 3.2 The subdivision of the comb Pn �K1, S(Pn �K1) is FP-cordial if and only if

n ≥ 2.

Proof Let V (S(Pn �K1)) = {xi, yj , zj : 1 ≤ i ≤ 2n− 1, 1 ≤ j ≤ n} and E(S(Pn �K1)) =

{xixi+1, xkyj , yjzj : 1 ≤ i ≤ 2n−2, 1 ≤ j ≤ n, k = 1, 3, · · · , 4n−1}. Then it has 4n−1 vertices

and 4n− 2 edges.

Assume n ≥ 2. Assign labels 1, 2, · · · , 2n−1 to the vertices x1, x2, · · · , x2n−1 and assign the

labels 1
3 ,

1
4 , · · · ,

1
n+2 to the vertices z1, z2, · · · , zn. Now, assign the labels 1

n+3 ,
1

n+4 , · · · ,
1

2n+1 ,
1
2

to the vertices y1, y2, · · · , yn. Therefore Πχ(0) = 2n− 1 and Πχ(1) = 2n− 1.

Since, S(P1 �K1) ∼= P3, the proof follows from Theorem 2.16. �

Theorem 3.3 The subdivision of the double comb Pn� 2K1, S(Pn� 2K1) is FP-cordial if and

only if n ≥ 2.

Proof Let V (S(Pn � 2K1)) = {xi, vj , wj , yj , zj : 1 ≤ i ≤ 3n− 1, 1 ≤ j ≤ n} and E(S(Pn �
K1)) = {xixi+1, xkyj , yjzj , xkwj , wjvj : 1 ≤ i ≤ 3n− 2, 1 ≤ j ≤ n, k = 1, 3, · · · , 6n− 1}. Then
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it has 6n− 1 vertices and 6n− 2 edges.

Assume n ≥ 2. Assign labels 1, 2, · · · , n to the vertices v1, v2, · · · , vn and assign the

labels n + 1, n + 2, · · · , 2n to the vertices w1, w2, · · · , wn. Now, assign labels 2n + 1, 2n +

2, · · · , 3n− 1 to the vertices x1, x2, · · · , xn−1 and assign the labels 1
2 ,

1
3 , · · · ,

1
n+1 to the vertices

xn, xn+1, · · · , x2n−1. We now assign labels 1
n+2 ,

1
n+3 , · · · ,

1
2n+1 to the vertices z1, z2, · · · , zn and

assign the labels 1
2n+2 ,

1
2n+3 , · · · ,

1
3n+1 to the vertices y1, y2, · · · , yn. Therefore Πχ(0) = 3n− 1

and Πχ(1) = 3n− 1.

As, S(P1 � 2K1) ∼= P5, the proof follows from Theorem 2.16. �

Theorem 3.4 The quadrilateral book graph B(4, n) is FP-cordial if and only if n ≥ 2.

Proof Let V (B(4, n)) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(B(4, n)) = {uv, uui, vvi, uivi : 1 ≤
i ≤ n}. Then, it has 2n+ 2 vertices and 3n+ 1 edges. This proof is divided into four cases.

Case 1. n is odd and n ≥ 3.

Fix the labels 2, 3, 1 and 4 respectively to the vertices u, v, u1, v1. Assign the labels

5, 7, · · · , n to the vertices u2, u3, · · · , un−1
2

. Now, assign labels 1
3 ,

1
5 , · · · ,

1
n+2 to the vertices

un−1
2 +1, un−1

2 +2, · · · , un. We now assign labels 6, 8, · · · , n+1 to the vertices v2, v3, · · · , vn−1
2

and

assign the labels 1
2 ,

1
4 , · · · ,

1
n+1 to the vertices vn−1

2 +1, vn−1
2 +2, · · · , vn. Therefore, Πχ(0) = 3n+1

2

and Πχ(1) = 3n+1
2 .

Case 2. n is even and n > 2.

Fix the labels 2, 3, 1 and 4 respectively to the vertices u, v, u1, v1. Assign labels 5, 7, · · · , n+

1 to the vertices u2, u3, · · · , un2 . Now, assign labels 1
3 ,

1
5 , · · · ,

1
n+1 to vertices un

2 +1, un2 +2, · · · , un,

respectively. We now assign the labels 6, 8, · · · , n to the vertices v2, v3, · · · , vn2 and assign

the labels 1
2 ,

1
4 , · · · ,

1
n+2 to the vertices vn

2 +1, vn2 +2, · · · , vn. Therefore, Πχ(0) = 3n+2
2 and

Πχ(1) = 3n
2 .

Case 3. n = 2.

A FP-cordial labeling of B(4, 2) is given in Figure 1.

Figure 1

Case 4. n = 1.

Since B(4, 1) ∼= C4, the proof follows from Theorem 2.17. �
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Theorem 3.5 The triangular snake graph Tn is FP-cordial if and only if n ≥ 4.

Proof Let Pn : u1u2 · · ·un be the path. Let V (Tn) = V (Pn) ∪ {yi : 1 ≤ i ≤ n − 1} and

E(Tn) = E(Pn) ∪ {uiyi, yiui+1 : 1 ≤ i ≤ n− 1}. Then it has 2n− 1 vertices and 3n− 3 edges.

This proof is divided into three cases.

Case 1. n is even and n ≥ 4,

Then the following subcases are arises.

Subcase 1. n ≥ 6.

Assign labels 1, 3, · · · , n to the vertices u1, u2, · · · , un2 and assign the labels 1
2 ,

1
4 , · · · ,

1
n+1

to the vertices un
2 +1, un2 +2, · · · , un. We now assign the labels 2, 4, · · · , n − 2 to the ver-

tices y1, y2, · · · , yn2−1 and assign the labels 1
3 ,

1
5 , · · · ,

1
n+2 to the vertices yn

2
, yn−1

2 +1, · · · , yn−1.

Therefore Πχ(0) = 3n−2
2 and Πχ(1) = 3n−4

2 .

Subcase 2. n = 4.

A FP-cordial labeling of T4 is given in Figure 2.

Figure 2

Case 2. n is odd and n ≥ 5.

Assign labels 1, 3, · · · , n − 2 to the vertices u1, u2, · · · , un−1
2

, respectively and assign the

labels 1
2 ,

1
4 , · · · ,

1
n+1 to the vertices un+1

2
, un+1

2 +1, · · · , un. Now assign the labels 2, 4, · · · , n−1 to

the vertices y1, y2, · · · , yn−1
2

and assign labels 1
3 ,

1
5 , · · · ,

1
n to vertices yn−1

2 +1, yn−1
2 +2, · · · , yn−1,

respectively. Therefore, Πχ(0) = 3n−3
2 and Πχ(1) = 3n−3

2 .

Case 3. n ∈ {2, 3}.

Suppose Tn ∈ Ωfpc. If n = 2, since T2
∼= C3, the proof follows from Theorem 2.17. If n = 3,

the vertex labels are 1, 2, 1
2 ,

1
3 ,

1
4 . Suppose 1 and 2 are the vertex labels of the non adjacent

vertices then Πχ(0) = 0 and Πχ(1) = 6, a contradiction.

Suppose 1 and 2 are the vertex labels of the adjacent vertices then Πχ(0) = 1 and Πχ(1) = 5,

which is also not possible. �

Theorem 3.6 The quadrilateral snake Qn is FP-cordial if and only if n ≥ 4.

Proof Let Pn : u1u2 · · ·un be the path. Let V (Qn) = V (Pn) ∪ {vi, wi : 1 ≤ i ≤ n− 1 and

E(Qn) = E(Pn) ∪ {uivi, viwi, wiui+1 : 1 ≤ i ≤ n− 1}. Then, it has 3n− 2 vertices and 4n− 4

edges. This proof is divided into three cases.
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Case 1. n is even and n ≥ 4.

Assign labels 2, 3, · · · , n+2
2 to the vertices u1, u2, · · · , un2 and assign the labels 1, (n+2

2 ) +

2, (n+2
2 ) + 4, · · · , 3n−2

2 to the vertices v1, v2, · · · , vn2 . Now assign the labels (n+2
2 ) + 1, (n+2

2 ) +

3, · · · , ( 3n−4
2 ) to the vertices w1, w2, · · · , wn

2−1 and assign the labels 1
2 ,

1
3 , · · · ,

2
n+2 to the vertices

un
2 +1, un2 +2, · · · , un. We now assign labels 2

n+4 ,
2

n+8 , · · · ,
2

3n to the vertices wn−1, wn−2, · · · , wn
2

and assign the labels 2
n+6 ,

2
n+10 , · · · ,

2
3n−2 to the vertices vn−1, vn−2, · · · , vn2 +1. Therefore,

Πχ(0) = 2n− 2 and Πχ(1) = 2n− 2.

Case 2. n is odd and n ≥ 5.

Assign labels 2, 3, · · · , n+1
2 to the vertices u1, u2, · · · , un−1

2
and assign the labels 1, n+5

2 , n+9
2 ,

· · · , 3n−5
2 to the vertices v1, v2, · · · , vn−1

2
. Now assign the labels n+3

2 , n+7
2 , · · · , ( 3n−3

2 ) to the ver-

tices w1, w2, · · · , wn−1
2

and assign the labels 1
2 ,

1
3 , · · · ,

2
n+3 to the vertices un−1

2 +1, un−1
2 +2, · · · , un.

We now assign the labels 2
n+5 ,

2
n+9 , · · · ,

2
3n−1 to the vertices vn−1

2 +1, vn−1
2 +2, · · · , vn−1 and

assign the labels 2
n+7 ,

2
n+11 , · · · ,

2
3n+1 to the vertices wn−1

2 +1, wn−1
2 +2, · · · , wn−1. Therefore,

Πχ(0) = 2n− 2 and Πχ(1) = 2n− 2.

Case 3. n ∈ {2, 3}.

Suppose Qn ∈ Ωfpc. If n = 2, Q2
∼= C4. Therefore, the proof follows from Theorem 2.17.

In the case of n = 3, the vertex labels are 1, 2, 3, 1
2 ,

1
3 ,

1
4 ,

1
5 . If 1, 2 and 3 are the vertex

labels of the non adjacent vertices, Πχ(0) ≤ 1 a contradiction to the size of Q3 is 12.

If 1, 2 and 3 are the vertex labels of the adjacent vertices, Πχ(0) ≤ 3 again a contradiction

to the size of Q3 is 12. �

Theorem 3.7 If n ≥ 2 then the slanting ladder S(Ln) is FP-cordial.

Proof Let V (S(Ln)) = {xi, yi : 1 ≤ i ≤ n} and E(S(Ln)) = {xixi+1, yiyi+1, xiyi+1 : 1 ≤
i ≤ n− 1}. Then it has 2n vertices and 3n− 3 edges. This proof is divided into two cases.

Case 1. n is odd and n ≥ 3.

Assign labels 1, 2, · · · , n to the vertices y1, y2, · · · , yn and assign the labels 1
n ,

1
n−1 , · · · ,

1
2 ,

1
n+1

to the vertices x1, x2, · · · , xn. We have Πχ(0) = 3n−3
2 and Πχ(1) = 3n−3

2 .

Case 2. n is even and n ≥ 2.

Assign labels 1, 2, · · · , n to the vertices y1, y2, · · · , yn and assign the labels 1
n+1 ,

1
n , · · · ,

1
2

to the vertices x1, x2, · · · , xn. We have Πχ(0) = 3n−4
2 and Πχ(1) = 3n−2

2 . �

Theorem 3.8 The triangular ladder T (Ln) is FP-cordial if and only if n 6= 2.

Proof Let V (T (Ln) = {xi, yi : 1 ≤ i ≤ n} and E(T (Ln)) = {xixi+1, yiyi+1, xiyi+1, xiyi :

1 ≤ i ≤ n− 1} ∪ {xnyn}. Then it has 2n vertices and 4n− 3 edges. This proof is divided into

three cases.

Case 1. n is odd.

Assign labels 1, 3, · · · , n to the vertices y1, y2, · · · , yn+1
2

and assign the labels 1
2 ,

1
3 , · · · ,

2
n+1
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to the vertices yn+1
2 +1, yn+1

2 +2, · · · , yn. Now, assign the labels 2, 4, · · · , n − 1 to the vertices

x1, x2, · · · , xn−1
2

and assign the labels 1
n+1 ,

1
n , · · · ,

2
n+3 to the vertices xn−1

2 +1, xn−1
2 +2, · · · , xn.

We have Πχ(0) = 2n− 2 and Πχ(1) = 2n− 1.

Case 2. n is even and n ≥ 4.

Assign labels 1, 3, · · · , n−1 to the vertices y1, y2, · · · , yn2 and assign the labels 1
2 ,

1
3 , · · · ,

2
n+2

to the vertices yn
2 +1, yn2 +2, · · · , yn. Now, assign labels 2, 4, · · · , n to the vertices x1, x2, · · · , xn2

and assign the labels 1
n+1 ,

1
n , · · · ,

2
n+4 to the vertices xn−1

2 +1, xn−1
2 +2, · · · , xn. We have Πχ(0) =

2n− 1 and Πχ(1) = 2n− 2.

Case 3. n = 2.

Suppose T (L2) ∈ Ωfpc. In this case the vertex labels are 1, 2, 1
2 ,

1
3 . If 1 and 2 are the vertex

labels of the non adjacent vertices, Πχ(0) = 0 and Πχ(1) = 5, a contradiction. If 1 and 2 are

the vertex labels of the adjacent vertices, Πχ(0) = 1 and Πχ(1) = 4, not possible. �

Theorem 3.9 The fan graph Fn is FP-cordial if and only if n /∈ {2, 3, 4, 6}.

Proof Let Pn : u1u2 · · ·un be the path. Let V (Fn) = V (Pn) ∪ {u} and E(Fn) = E(Pn) ∪
{uui : 1 ≤ i ≤ n}. Then fan graph has n + 1 vertices and 2n − 1 edges. This proof is divided

into three cases.

Case 1. n is odd and n 6= 3.

Then, the following subcases are arises.

Subcase 1.1 n ≥ 7.

Consider the central vertex u. Assign the label 3 to u. Now, assign labels 1, 2, 4, · · · , n+1
2 to

the vertices u1, u2, · · · , un−1
2

and assign the labels un−1
2 +1, un−1

2 +2, · · · , un. Therefore, Πχ(0) =

n and Πχ(1) = n− 1.

Subcase 1.2. n ∈ {1, 5}.

If n = 1, F1
∼= P2, the proof follows from Theorem 2.16. If n = 5, F5 is FP-cordial labeling

given in Figure 3.

Figure 3

Case 2. n is even and n ≥ 8.

For the central vertex u is assigned by 3. Assign labels 1, 2, 4, · · · , n2 to the vertices

u1, u2, · · · , un−2
2

and assign the labels 1
2 ,

1
3 , · · · ,

2
n+4 to the vertices un−2

2 +1, un−2
2 +2, · · · , un.

Therefore, Πχ(0) = n− 1 and Πχ(1) = n.
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Case 3. n ∈ {2, 3, 4, 6}.

Suppose Fn ∈ Ωfpc. Then, the following subcases are arises.

Subcase 3.1 n = 2.

Since F2
∼= C3, the proof follows from Theorem 2.17.

Subcase 3.2 n = 3.

The vertex labels are 1, 2, 1
2 ,

1
3 . If 1 and 2 are the vertex labels of the non adjacent vertices,

Πχ(0) = 0 and Πχ(1) = 5, a contradiction. If 1 and 2 are the vertex labels of the adjacent

vertices, Πχ(0) = 1 and Πχ(1) = 4, again a contradiction.

Subcase 3.3 n = 4.

The vertex labels are 1, 2, 1
2 ,

1
3 ,

1
4 . If 1 and 2 are the vertex labels of the non adjacent

vertices, Πχ(0) = 0 and Πχ(1) = 7, a contradiction. If 1 and 2 are the vertex labels of the

adjacent vertices, Πχ(0) = 1 and Πχ(1) = 6, again a contradiction.

Subcase 3.4 n = 6.

In this case the vertex labels are 1, 2, 3, 1
2 ,

1
3 ,

1
4 ,

1
5 . If the central vertex is assigned by 1 or

2 or 3, Πχ(0) ≤ 4 a contradiction to the size of F6 is 11. If the central vertex is assigned by 1
2

or 1
3 or 1

4 or 1
5 , Πχ(0) ≤ 3 again a contradiction to the size of F6 is 11. �

Theorem 3.10 The helm Hn is FP-cordial for all n ≥ 3.

Proof Let V (Hn) = V (Wn) ∪ {zi : 1 ≤ i ≤ n} where Wn = Cn + K1, Cn be the cycle

y1y2 · · · yny1, V (K1) = {y} and E(Hn) = E(Wn) ∪ {yizi : 1 ≤ i ≤ n}. Then it has 2n + 1

vertices and 3n edges. The proof is divided into two cases.

Case 1. n is odd.

For the central vertex y is assigned by 2
n+1 . Assign labels 1, 2, · · · , n to the vertices

y1, y2, · · · , yn and assign the labels

1

2
,

1

3
, · · · , 2

n− 1
,

2

n+ 3
, · · · , 1

n+ 2

to the vertices z1, z2, · · · , zn. Therefore,

Πχ(0) =
3n− 1

2
and Πχ(1) =

3n+ 1

2
.

Case 2. n is even.

Consider the central vertex y. Assign labels 2
n to y. Now, assign the labels 1, 2, · · · , n to

the vertices y1, y2, · · · , yn and assign the labels

1

2
,

1

3
, · · · , 2

n− 2
,

2

n+ 2
, · · · , 1

n+ 2
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to the vertices z1, z2, · · · , zn. Therefore,

Πχ(0) =
3n

2
and Πχ(1) =

3n

2
. �

Example 3.11 A FP-cordial labeling of H12 is shown in Figure 4.

Figure 4

Theorem 3.12 The flower graph Fln is FP-cordial if and only if n ≥ 4.

Proof Let V (Fln) = {u, vi, wi : 1 ≤ i ≤ n} and E(Fln) = {uvi, vivi+1, viwi, uwi : 1 ≤ i ≤
n− 1} ∪ {uvn, v1vn, vnwn, uwn}. Then, it has 2n+ 1 vertices and 4n edges.

Assume n ≥ 4. Consider the central vertex u. Assign the label 1 to u. Now, assign

labels 2, 3, · · · , n − 1, 1
2 , n to the vertices v1, v2, · · · , vn and assign the labels 1

3 ,
1
4 , · · · ,

1
n+2 to

the vertices wn, w1, w2 · · · , wn−1. We have Πχ(0) = 2n and Πχ(1) = 2n.

When n = 3, suppose Fln ∈ Ωfpc. Then, the vertex labels are 1, 2, 3, 1
2 ,

1
3 ,

1
4 ,

1
5 . In the case

1, 2 and 3 are the vertex labels of the non adjacent vertices then Πχ(0) ≤ 4, a contradiction to

the size of Fl3 is 12. But in the cases 1, 2 and 3 are the vertex labels of the adjacent vertices

then Πχ(0) ≤ 1 again a contradiction to the size of Fl3 is 12. �

Corollary 3.13 The sunflower graph Sn is FP-cordial if and only if n ≥ 4.

Proof Let V (Sn) = {x, yi, zi : 1 ≤ i ≤ n} and E(Sn) = {xyi, yiyi+1, yi+1zi : 1 ≤ i ≤
n− 1} ∪ {xyn, y1zn}. Then it has 2n+ 1 vertices and 4n edges. Assume n ≥ 4. Let

M =


1, 2, · · · , p2 ,

1
2 ,

1
3 , · · · ,

2
p+2 , if p is even,

1, 2, · · · , p−1
2 , 1

2 ,
1
3 , · · · ,

2
p+3 , if p is odd

and let χ : V (Fln) → M be the FP-cordial labeling of flower graph in Theorem 3.12. Defined

χ∗ : V (Sn) → M by χ∗(x) = χ(u), χ∗(yi) = χ(vi) where 1 ≤ i ≤ n, χ∗(zi) = χ(wi) where
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1 ≤ i ≤ n. Since χ is FP-cordial labeling, χ∗ is also a FP-cordial labeling of the sunflower

graph Sn.

In the case of n = 3, there does not exist a FP-cordial labeling of the sunflower graph as

in Theorem 3.12. �

Example 3.14 A FP-cordial labeling of S12 is shown in Figure 5.

Figure 5

Corollary 3.15 The closed helm CHn is FP-cordial if and only if n ≥ 4.

Proof Let V (CHn) = V (Hn) and E(CHn) = E(Hn) ∪ {zizi+1 : 1 ≤ i ≤ n − 1} ∪ {z1zn}.
Then it has 2n + 1 vertices and 4n edges. Let n ≥ 4. Take the vertex set of helm graph Hn

as in Theorem 3.10. Clearly, the FP-cordial labeling χ in Theorem 3.12 is also a FP-cordial

labeling of closed helm.

For the case of n = 3, as in Theorem 3.12, there does not exist a FP-cordial labeling of the

closed helm graph. �
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Abstract: We introduce the new concept of modulo two square mean labeling. A graph

is said to be modulo two square mean labeling, if there is a function φ from the vertex set

of G to {1, 2, 3, · · ·n}, φ′ from the edge set of G to {1} where φ
′
(uv) =

⌈
f(u)2+f(v)2

2

⌉
mod

2. In this paper we Prove that the modulo two square mean labeling of some path related

graphs and H−graph with more than 3 vertices. Additionally, we provide a C + + program

designed to determine the modulo two square mean labeling for the above mentioned graphs.

Key Words: Square sum labeling, mean labeling, root mean square labeling, Smaran-

dachely mean labeling.

AMS(2010): 05C78, 05C85.

§1. Introduction

In this paper, we consider only simple, finite, undirected and non-trivial graph G = (V(G),E(G))

with the vertex set V(G) and the edge set E(G). Labeling of a graph G is an assignment integers

to vertices or edges or both following certain rules. A useful survey on graph labeling by

J.A.Gallian (2015) can be found in [1]. Labeled graph has its own applications in various fields

such as engineering, technology, etc. A particular type of labeling becomes more interesting

if there arises a number of problems that kindles the interest of the researchers. Prominent

among the types of labeling is square sum labeling [2],[3], [4], [5]. In this paper we deal only

finite, simple, connected and undirected graphs obtained through graph operations. Another

labeling has been introduced by Somasundaram and Ponraj [6] the notion of mean labeling of

graphs. A graph G with p vertices and q edges is called a mean graph if there is an injective

1Received November 15, 2024. Accepted May 16, 2025
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function f from the vertices of G to {0, 1, 2, · · · , q} such that when each edge uv is labeled with
f(u) + f(v)

2
, if f(u) + f(v) is even,

f(u) + f(v) + 1

2
, if f(u) + f(v) is odd

then the resulting edge labels are distinct. Generally, let V ′ ⊂ V (G). If G\V ′ has a mean

labeling φ, then φ is called a Smarandachely mean labeling respect to V ′ on G. The concept

of root square mean labeling has been introduced by S. S. Sandhya, S. Somasundaram and S.

Anusa in 2014. Meena. S and Mani. R investigated this labeling for some cycle related graphs.

§2. Basic Definitions

We use the following definitions in the subsequent section to prove the main result.

Definition 2.1([4]) A path is a trail in which all vertices are distinct.

Definition 2.2 The H-Graph of a path Pn, n ≥ 3 is obtained from two copies of v1, v2, v3, · · · vn
and u1, u2, u3, · · ·un by joining the vertices vn+1

2
and un+1

2
by an edge if n is odd and the vertices

vn
2 +1 and un

2 +1 if n is even.

§3. Main Results

Theorem 3.1 The graph Pn, n ≥ 2 is a modulo two square mean labeling.

Proof Let v (Pn) = {vi/1 ≤ i ≤ n} be the vertex set and E (Pn) = {ei = 1, 1 ≤ i ≤ n−1}is
the edge set. The graph has n vertices and n-1 edges.

Let f : v → {1, 2, · · ·n} by defining the vertex labeling f (vi) = {i for1 ≤ i ≤ n}. Then

the induced edge labels are f(ei) =

⌈
f(vi)

2+f(vi+1)2

2

⌉
mod 2, 1 ≤ i ≤ n− 1 for ei ∈ Pn if n ≥ 2.

Then for every e ∈ E(Pn) is f (ei) = {1}. Hence f is a modulo two square mean labeling. �

Illustration 3.1 A modulo two square mean labeling of P5 is shown in Figure 1.

r rrr r
1 2 3 4 5

1 1 1 1

Figure 1. Modulo two square mean labeling of P5

Program 1

# include <iostream>

# include <cmath>

int main()

{
int n, x[100],y[100],v[100],i;
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std::cout << ”Enter The Number of Vertices n = ”;

std::cin>> n;

for(i = 1; i <= n; i+ +)

{
std::cout<< ”\n The Path of the Vertices of v[” << i << ”] = ” << i << ”\n”;

x[i]= (i*i)+((i+1)*(i+1));

y[i]=ceil(float(x[i])/2);

}
for(i = 1; i <= n; i+ +)

{
std:: cout<< ”\n” <<”The Square of the Edges of e(” << i << ”) = ” << y[i];

std:: cout<< ”\t\t” <<” Edges of e(” << i << ”) = ” << y[i]%2;

std::cout<< ”\n”; }
return 0;

}

Theorem 3.2 A graph G obtained by attaching each vertex of Pn to the central vertex of K1,2

is a modulo two square mean labeling.

Proof Let G = Pn⊗K1,2 be a graph obtained from a path Pn with vertices ui and joining

the vertices vi, wi of K1,2 for the vertices ui of Pn, 1 ≤ i ≤ n respectively.

Define f : V (G)→ {1, 2, 3, · · · 3n} to be

f (ui) = 3i− 1 1 ≤ i ≤ n,

f (vi) = 3i− 2 1 ≤ i ≤ n,

f (wi) = 3i 1 ≤ i ≤ n.

by the definition of modulo two square mean labeling. The edges get labels

f (uiui+1) =

⌈
f(ui)

2+f(ui+1)2

2

⌉
mod 2, 1 ≤ i ≤ n− 1,

f (uivi) =

⌈
f(ui)

2+f(vi)
2

2

⌉
mod 2, 1 ≤ i ≤ n,

f (uiwi) =

⌈
f(ui)

2+f(wi)
2

2

⌉
mod 2, 1 ≤ i ≤ n.

Clearly, f admits modulo two square mean labeling. �

Illustration 3.2 A modulo two square mean labeling of P3 ⊗K1,2 is shown in Figure 2.

q q q q q q
qqq

1 1 1 1 1 1

1 1

1 3 4 6 7 9

2 5 8

Figure 2. Modulo two square mean labeling of P3 ⊗K1,2
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Program 2

# include <iostream>

# include <cmath>

int main()

{
int n, i,c=0; int v[100],u[100],w[100];

int e1[100],e2[100],e3[100],e4[100],e5[100],e6[100];

std::cout<< ”Enter the Number of Vertices = ”;

std::cin>>n;

for (i=1;i<=n;i++)

{
v[i]=3*i-2;

u[i]=3*i-1;

w[i]=3*i;

std::cout<< ”\t The Vertices of v[” << i << ”] = ” << v[i];

std::cout<< ”\t The Vertices of u[” << i << ”] = ” << u[i];

std::cout<<” \t The Vertices of w[” << i << ”] = ” << w[i];

std::cout<< ”\n”;

}
std::cout<< ”\n”;

for (i = 1; i <= n; i+ +)

{
e3[i]=((u[i]*u[i])+(v[i]*v[i]));

e4[i]= ceil( float (e3[i])/2);

std::cout<<”\n Edges addition of e[” << i << ”] = ” << e3[i] << ”\t\t”;

std::cout<< ”\t\t Edges of e[” << i << ”] = ” << e4[i]%2 << ”\t”;

}
for (i = 1; i <= n; i+ +)

{
e5[i]=((u[i]*u[i])+(w[i]*w[i]));

e6[i]= ceil( float (e5[i])/2);

std::cout<< ”\n Edges addition of e[” << i+ n << ”] = ” << e5[i] << ”\t\t”;

std::cout<< ”\t\t Edges of e[” << i+ n << ”] = ” << e6[i]%2 << ”\t”;

}
for (i=1; i¡=n-1; i++)

{
e1[i]=((u[i]*u[i])+(u[i+1]*u[i+1]));

e2[i]= ceil( float (e1[i])/2);

std::cout<< ”\n Edges addition of e[” << 2 ∗ n+ i << ”] = ” << e1[i] << ”\t\t”;

std::cout<< ”\t\t Edges of e[” << 2 ∗ n+ i << ”] = ” << e2[i]%2 << ”\t”;

}
return 0;
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}

Theorem 3.3 The graph K1,2 ⊗ Pn is a modulo two square mean labeling.

Proof Let G = K1,2 ⊗ Pn be a graph obtained by joining a pendant vertex of a path Pn

with a star K1,2 and let u be the central vertex of K1,2. Let u1, u2 be the other vertices of K1,2

and let v1, v2, · · · vn be the vertices of Pn.

Define f : V (G)→ {1, 2, 3, · · ·n+ 2} as follows:

f(u1) = 1 and f(u2) = 2, f(u = v1) = 3,

f(vi+1) = 3 + i. and 1 ≤ i ≤ n− 1

by the definition of modulo two square mean labeling. They are labeled as

f (u1v1) =

⌈
f(u1)2+f(v1)2

2

⌉
mod 2,

f (u2v1) =

⌈
f(u2)2+f(v1)2

2

⌉
mod 2,

f (vivi+1) =

⌈
f(vi)

2+f(vi+1)2

2

⌉
mod 2, 1 ≤ i ≤ n− 1.

Clearly, G admits modulo two square mean labeling. �

Illustration 3.3 A modulo two square mean labeling of K1,2 ⊗ P3 is shown in Figure 3.

r r r
r

r

1

2

3 4 5

1

1

1 1

Figure 3. Modulo two square mean labeling of K1,2 ⊗ P3

Program 3

# include <iostream>

# include <cmath>

int main()

{
int n, i,j,c=0;

int v[100],u[100],w[100];

int e1[500],e2[500];

std::cout<< ”Enter the Number of Vertices of path Graph = ”;

std::cin>>n;

u[1]=1;

u[2]=2;

v[1]=3;

std::cout<< ”\n The Vertices of u[” << 1 << ”] = ” << u[1];

std::cout<< ”\n The Vertices of u[” << 2 << ”] = ” << u[2];
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std::cout<< ”\n\n The path Vertices of v[” << 1 << ”] = ” << v[1];

for (i = 1; i <= n− 1; i+ +)

{
v[i+1]=3+i;

std::cout<< ”\n The path Vertices of v[” << i+ 1 << ”] = ” << v[i+ 1];

}
std::cout<< ”\n”;

e1[1]=((u[1]*u[1])+(v[1]*v[1]));

e2[1]=ceil( float (e1[1])/2);

std::cout<< ”\n Edges addition of e[” << 1 << ”] = ” << e1[1] << ”\t”;

std::cout<< ”\t\t Edges of e[” << 1 << ”] = ” << e2[1]%2 << ”\t”;

e1[2]=((u[2]*u[2])+(v[1]*v[1]));

e2[2]= ceil( float (e1[2])/2);

std::cout<< ”\t\t Edges addition of e[” << 2 << ”] = ” << e1[2] << ”\t”;

std::cout<< ”\t\t Edges of e[” << 2 << ”] = ” << e2[2]%2 << ”\t”;

for(i = 1; i <= n− 1; i+ +)

{
e1[i+2]=((v[i]*v[i])+(v[i+1]*v[i+1]));

e2[i+2]= ceil (float (e1[i+2])/2);

std::cout<< ”\n Edges addition of e[” << i+ 2 << ”] = ” << e1[i+ 2] << ”\t”;

std::cout<< ”\t\t Edges of e[” << i+ 2 << ”] = ” << e2[i+ 2]%2 << ”\t”;

}
return 0;

}

Theorem 3.4 The graph Hn with odd n and n ≥ 3, is a modulo two square mean labeling.

Proof Let Hn, n ≥ 3 be a H-Graph with vertex set {u1, u2, u3, · · ·un, v1, v2, v3, · · · vn}
and edge set {uiui+1, vivi+1 | 1 ≤ i ≤ n − 1} ∪ {un+1

2
vn+1

2
if n is odd}. Define f : v(G) →

{1, 2, 3, · · · .2n} by

f(ui) = i , 1 ≤ i ≤ n,

f(vi) = n+ i, 1 ≤ i ≤ n

by defining the edge labels

f(ei) =

⌈
f(ui)

2+f(ui+1)2

2

⌉
mod 2 for 1 ≤ i ≤ n− 1,

f(ei+n−1) =

⌈
f(vi)

2+f(vi+1)2

2

⌉
mod 2 for 1 ≤ i ≤ n− 1,

f(e2n−1) =

⌈
f(

un+1
2 )

2
+f(

vn+1
2 )

2

2

⌉
mod 2.

Then, for every e ∈ E(Pn) is f(ei) = 1. Hence, the graph Hn , n ≥ 3 and n is odd has a modulo

two square mean labeling. �
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Illustration 3.4 A modulo two square mean labeling of H5 is shown in Figure 4.r r
r r
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Figure 4. Modulo two square mean labeling of H5

Program 4

# include <iostream>

# include <cmath>

int main()

{
int n, i,j,c=0; int v[100],u[100];

int e1[100],e2[100],e3[100],e4[100],e5[1],e6[1];

std::cout<< ”Enter the Number of Vertices of H-Graph with odd Number of vertices = ”;

std::cin>>n;

for (i = 1; i <= n; i+ +)

{
u[i]=i;

v[i]=n+i;

}
for (i = 1; i <= n; i+ +)

std::cout<< ”\n The Vertices of u[” << i << ”] = ” << u[i];

std::cout<< ”\n”;

for (i = 1; i <= n; i+ +)

std::cout<< ”\n The Vertices of v[” << i << ”] = ” << v[i];

std::cout<< ”\n”;

for(i = 1; i <= n− 1; i+ +)

{
e1[i]=((u[i]*u[i])+(u[i+1]*u[i+1]));

e2[i]= ceil( float (e1[i])/2);

std::cout<< ”\n Edges addition of e[” << i << ”] = ” << e1[i] << ”\t”;

std::cout<< ”\t\t Edges of e[” << i << ”] = ” << e2[i]%2 << ”\t”;

}
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for(i = 1; i <= n− 1; i+ +)

{
e3[i]=((v[i]*v[i])+(v[i+1]*v[i+1]));

e4[i]= ceil( float (e3[i])/2);

std::cout<< ”\n Edges addition of e[” << n+ i− 1 << ”] = ” << e3[i] << ”\t”;

std::cout<< ”\t\t Edges of e[” << n+ i− 1 << ”] = ” << e4[i]%2 << ”\t”;

}
e5[1]=((v[(n+1)/2]*v[(n+1)/2])+(u[(n+1)/2]*u[(n+1)/2]));

e6[1]= ceil( float (e5[1])/2);

std::cout<< ”\n Middle Edges addition of e[” << n+ i− 1 << ”] = ” << e5[1] << ”\t”;

std::cout<< ”\t\t Edges of e[” << n+ i− 1 << ”] = ” << e6[1]%2 << ”\t”;

return 0;

}

Theorem 3.5 The graph Hn ⊗K1,2 where n is odd and n ≥ 3 is a modulo two square mean

labeling.

Proof Let G = Hn ⊗ K1,2 where Hn is a H−graph with vertices u1, u2, u3, · · ·un and

v1, v2, v3, · · · vn. for 1 ≤ i ≤ n. Let ti, si be the vertices of K1,2 attached at ui, and xi, yi be the

vertices of K1,2 joined at vi. Define f : V (G) → {1, 2, · · · , 6n}, then the label to the vertices

are as follows:

f(ti) = 3i− 2, 1 ≤ i ≤ n. ,

f(si) = 3i, 1 ≤ i ≤ n. ,

f(ui) = 3i− 1, 1 ≤ i ≤ n., ,

f(xi−n) = 3i− 2, n+ 1 ≤ i ≤ 2n. ,

f(yi−n) = 3i, n+ 1 ≤ i ≤ 2n. ,

f(vi−n) = 3i− 1, n+ 1 ≤ i ≤ 2n.

by the definition of a modulo two square mean labeling. We define the edge labels are defined

to be

f(uiti) =

⌈
f(ui)

2+f(ti)
2

2

⌉
mod 2, 1 ≤ i ≤ n,

f(uisi) =

⌈
f(ui)

2+f(si)
2

2

⌉
mod 2, 1 ≤ i ≤ n,

f(vixi) =

⌈
f(vi)

2+f(xi)
2

2

⌉
mod 2, 1 ≤ i ≤ n,

f(viyi) =

⌈
f(vi)

2+f(yi)
2

2

⌉
mod 2, 1 ≤ i ≤ n,

f(uiui+1) =

⌈
f(ui)

2+f(ui+1)2)
2

⌉
mod 2, 1 ≤ i ≤ n− 1,
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f(vivi+1) =

⌈
f(vi)

2+f(vi+1)2)
2

⌉
mod 2, 1 ≤ i ≤ n− 1,

f(un+1
2
vn+1

2
) =

⌈
f(un+1

2
)2+f(vn+1

2
)2

2

⌉
mod 2, if n is odd.

Hence, the edge label satisfying the a modulo two square mean labeling and Hn⊗K1,2 has

a modulo two square mean labeling. �

Illustration 3.5 A modulo two square mean labeling of H5 ⊗K1,2is shown in Figure 5.

�
�
�
�
�
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r r r r r
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r r rp r r r r r r r
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1 1 1 1 1 1 1 1 1 1

2 5 8 11 14

17 20 23 26 29

1 1 1 1 1 1 1 1 1 1

16 18 19 21 22 24 25 27 28 30

Figure 5. Modulo two square mean labeling of H5 ⊗K1,2

Program 5

# include <iostream>

# include <cmath>

int main()

{
int n, i,j,c=0; int v[100],u[100],w[100],t[100],s[100],x[100],y[100];

int e1[100],e2[100],e3[100],e4[100],e5[100],e6[100],e7[100],e8[100];

int e9[100],e10[100],e11[100],e12[100],e13[100],e14[100];

std::cout<< ”Enter the Number of Vertices of H-Graph with odd Number of vertices = ”;

std::cin>>n;

for (i = 1; i <= n; i+ +)

{
t[i]=3*i-2;

s[i]=3*i;

u[i]=3*i-1;

}
for (i = n+ 1; i <= 2 ∗ n; i+ +)

{
x[i-n]=3*i-2;

y[i-n]=3*i;



Modulo two Square Mean Labeling of Some Path and Path Related Graphs 87

v[i-n]=3*i-1;

}
std::cout<< ”\n”;

for (i = 1; i <= n; i+ +)

{
std::cout<< ”\t The Vertices of t[” << i << ”] = ” << t[i];

std::cout<< ”\t The Vertices of u[” << i << ”] = ” << u[i];

std::cout<< ”\t The Vertices of s[” << i << ”] = ” << s[i];

std::cout<< ”\n”;

}
std::cout<< ”\n”;

for (i = n+ 1; i <= 2 ∗ n; i+ +)

{
std::cout<< ”\t The Vertices of x[” << i− n << ”] = ” << x[i− n];

std::cout<< ”\t The Vertices of v[” << i− n << ”] = ” << v[i− n];

std::cout<< ”\t The Vertices of y[” << i− n << ”] = ” << y[i− n];

std::cout<< ”\n”;

}
std::cout<< ”\n”;

for(i = 1; i <= n; i+ +)

{
e1[i]=((u[i]*u[i])+(t[i]*t[i]));

e2[i]= ceil(float (e1[i])/2);

std::cout<< ”\n Edges addition of e[” << i << ”] = ” << e1[i] << ”\t”;

std::cout<< ”\t Edges of e[” << i << ”] = ” << e2[i]%2 << ”\t”;

}
for(i = 1; i <= n; i+ +)

{
e3[i]=((u[i]*u[i])+(s[i]*s[i]));

e4[i]= ceil( float (e3[i])/2);

std::cout<< ”\n Edges addition of e[” << n+ i << ”] = ” << e3[i] << ”\t”;

std::cout<< ”\t Edges of e[” << n+ i << ”] = ” << e4[i]%2 << ”\t”;

}
for(i = 1; i <= n; i+ +)

{
e5[i]=((v[i]*v[i])+(x[i]*x[i]));

e6[i]= ceil( float (e5[i])/2);

std::cout<< ”\n Edges addition of e[” << 2 ∗ n+ i << ”] = ” << e5[i] << ”\t”;

std::cout<< ”\t Edges of e[” << 2 ∗ n+ i << ”] = ” << e6[i]%2 << ”\t”;

}
for (i = 1; i <= n; i+ +)

{
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e7[i]=((v[i]*v[i])+(y[i]*y[i]));

e8[i]= ceil( float (e7[i])/2);

std::cout<< ”\n Edges addition of e[” << 3 ∗ n+ i << ”] = ” << e7[i] << ”\t”;

std::cout<< ”\t Edges of e[” << 3 ∗ n+ i << ”] = ” << e8[i]%2 << ”\t”;

}
for (i = 1; i <= n− 1; i+ +)

{
e9[i]=((u[i]*u[i])+(u[i+1]*u[i+1]));

e10[i]= ceil( float (e9[i])/2);

std::cout<< ”\n Edges addition of e[” << 4 ∗ n+ i << ”] = ” << e9[i] << ”\t”;

std::cout<< ”\t Edges of e[” << 4 ∗ n+ i << ”] = ” << e10[i]%2 << ”\t”;

}
for(i = 1; i <= n− 1; i+ +)

{
e11[i]=((v[i]*v[i])+(v[i+1]*v[i+1]));

e12[i]= ceil( float (e11[i])/2);

std::cout<< ”\n Edges addition of e[” << 5 ∗ n− 1 + i << ”] = ” << e11[i] << ”\t”;

std::cout<< ”\t Edges of e[” << 5 ∗ n+ i− 1 << ”] = ” << e12[i]%2 << ”\t”;

}
e13[1]=((v[(n+1)/2]*v[(n+1)/2])+(u[(n+1)/2]*u[(n+1)/2]));

e14[1]= ceil( float (e13[1])/2);

std::cout<< ”\n Middle Edges addition of e[” << 6 ∗n− 1 << ”] = ” << e13[1] << ”\t”;

std::cout<< ”\t Edges of e[” << 6 ∗ n− 1 << ”] = ” << e14[1]%2 << ”\t”;

return 0;

}

§4. Conclusion

In this Paper, we have introduced the new concept of modulo two square mean labeling of path,

path related graphs and H− class graphs. This new approach will be helpful to attack standard

conjectures and unsolved open problems.
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§1. Introduction

Bagdasaryan [1] showed the following result involving the Pochhammer symbol [2-4] and the

gamma function [5-8]:

For k, p, q ∈ N, p > q, we have

Γ
(

1+qk
p

)
Γ
(

1−(p−q)k
p

) =
1− (p− q)k

p

∑
k−1=m2+···+(k−1)mk

(−1)k−1+m2+···+mk

pk−1+m2+···+mk
·

(k − 1 +m2 + · · ·+mk)!

m2! · · ·mk!
·
[

(q)2 − (q − p)2

2!

]m2

· · ·[
(q)k−1 − (q − p)k−1

(k − 1)!

]mk−1
[

(q)k − (q − p)k
k!

]mk
, (1)

where the sum runs over all partitions of (k − 1)”.

In this note, we obtain a simpler expression for such ratio of gamma functions.

§2. Ratio of Gamma Functions

In fact, we know [7] the property Γ(z + 1) = zΓ(z). Then, it is natural the following sequence
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of products

Γ

(
1 + qk

p

)
= Γ

(
1− p+ qk

p
+ 1

)
=

1− p+ qk

p
Γ

(
1− p+ qk

p

)
=

1− p+ qk

p
Γ

(
1− 2p+ qk

p
+ 1

)
,

=
1− p+ qk

p

1− 2p+ qk

p
Γ

(
1− 2p+ qk

p

)
=

1− p+ qk

p
· · · 1− kp+ qk

p
Γ

(
1− kp+ qk

p

)
, (2)

and therefore

Γ
(

1+qk
p

)
Γ
(

1−(p−q)k
p

) =
1

pk
(1 + qk − p)(1 + qk − 2p)(1 + qk − 3p) · · · (1 + qk − kp)

=
1

pk

k∏
r=1

(1 + qk − rp)

=

[
1− p+ qk

p

]
k

=

k∑
m=1

S
(m)
k

(
1− p+ qk

p

)m
, (3)

as an alternative to the expression (1), with the participation of the descending factorial function

and the Stirling numbers of the first kind [7], [9]. If we observe the sequence (2) it is clear that

(3) is valid for p and q arbitrary real numbers with p 6= 0, and k = 1, 2, 3, · · · .
Besides, we have the relation [7] following

Γ(β)

Γ(β − k)
= (−1)k(1− β)k, (4)

whose application for β = 1+qk
p implies the property

Γ
(

1+qk)
p

)
Γ
(

1−(p−q)k
p

) = (−1)k
(
p− 1− qk

p

)
k

, (5)

which is compatible with (3) because we have the general relation

[x]k = (−1)k(−x)k.

Consequently, the equalities (3) and (5) are alternatives to (1).
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Abstract: The graph G = (V,E) consists of p vertices and q edges. Let

ρ =


p
2
, p is even

p−1
2
, p is odd,

and Γ = {±1,±2, . . . ,±ρ}. Consider a function Λ : V → Γ that allocates unique labels

from Γ to the various vertices of V when p is even and allocates a unique labels in Γ to

p − 1 vertices of V , repeating a label for the remaining one vertex when p is odd. Then,

the labeling as mentioned above is called a pair mean cordial labeling (PMC-labeling) if for

every edge uv of G, there is a labeling
Λ(u) + Λ(v)

2
if Λ(u) + Λ(v) is even,

Λ(u) + Λ(v) + 1

2
if Λ(u) + Λ(v) is odd

such that |S̄Λ1 − S̄Λc1
| ≤ 1, and a Smarandachely PMC-labeling if |S̄Λ1 − S̄Λc1

| ≥ 2, where

S̄Λ1 and S̄Λc1
are denoted the number of edges labelled with 1 and the number of edges not

labelled with 1, respectively. A graph G that has a pair mean cordial labeling is called a

pair mean cordial graph (PMC-graph). In this research paper, we prove the existences of

the PMC-labeling of some tree related graphs like the X-tree, Y-tree, prism of wheel graph,

subdivision of bistar graph and coconut tree.

Key Words: X-tree, Y-tree, prism of wheel graph, subdivision of bistar graph, coconut

tree.
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§1. Introduction

All graphs considered in this paper are simple, finite and undirected. Let G = (V (G), E(G)) be

a graph with p = |V (G)| vertices and q = |E(G)| edges where V (G) and E(G) denote the vertex

1Received January 4, 2025. Accepted May 20, 2025
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set and edge set of a graph G. For all terminologies and notations of graph theory, we refer the

book of Harary [4]. The idea of graceful labeling was introduced by Rosa in [12]. Further results

on the radio number of trees were explored in [1]. Janani and Ramachandran [5] have worked

on relatively prime edge labeling of graphs. Sunitha and Sheriba [14] have been investigated

the Gaussian tribonacci R-graceful labeling of the path, comb, coconut tree, regular caterpillar

graph, Bistar graph and subdivision of Bistar graph. Zeen [15] proved that the existence of

edge δ-graceful labeling for some cyclic related graphs like wheel graph, prism graph, double

wheel graph, prism of the wheel graph, gear graph, closed helm, butterfly graph, alternate

triangular cycle and friendship graph. The concept of cordial labeling was introduced by Cahit

in [2]. Some new families of 3-equitable prime cordial graphs were discussed in [13]. Product

cordial graph in the context of some graph operations on gear graph have been investigated

in [7]. Prajapati et al. [8] have studied the SD-prime cordial labeling of K4-snake and related

graphs. For a dynamic survey on graph labeling, we follow the book of Gallian [3]. Also we

have introduced a PMC-labeling in [9] and the PMC-labeling behavior of more graphs like web

graph, jewel graph, sun flower graph, flower graph, tadpole graph, dumbbell graph, umbrella

graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph, triangular

snake, alternate triangular snake, quadrilateral snake and alternate quadrilateral snake have

been investigated in [9-11]. In this paper, we investigate the PMC-labeling behavior of some

tree related graphs like the X-tree, Y-tree, prism of wheel graph, subdivision of bistar graph

and coconut tree.

§2. Preliminaries

We present a few fundamental definitions that are essential for the upcoming section.

Definition 2.1([14]) The coconut tree CTm,n is a graph obtained by connecting the center

vertex of K1,n with a pendant vertex of the path Pm.

Definition 2.2([14]) The bistar graph Bm,n is obtained from K2 by attaching m pendant edges

to one end of K2 and n pendant edges to the other end of K2.

Definition 2.3([14]) The subdivision of bistar graph S(Bm,n) is obtained by subdividing each

edges of a bistar graph Bm,n.

Definition 2.4([5]) The Y-tree Yn is a tree of three paths with exactly three vertices of degree

one, one vertex of degree three and other vertices of degree two.

Definition 2.5([5]) The X-tree Xn is a tree of four paths with exactly four vertices of degree

one, one vertex of degree four and other vertices of degree two.

Definition 2.6([15]) For n ≥ 3, let {u0, u1, u2, . . . , un} be the vertices of the wheel graph Wn

with hub vertex u0 and {v0, v1, v2, . . . , vn} be the vertices of W
′

n a copy of the wheel graph Wn

with hub vertex v0. The prism of the wheel graph Wn, PWn is obtained by joining u0 of Wn to

the corresponding vertex v0 of W
′

n and each ui of Wn to the corresponding vertex vi of W
′

n for

all i = 1, 2, . . . , n. ie., PWn = K2 ×Wn.
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§3. Main Results

Theorem 3.1 The X-tree Xn is a PMC-graph for all n.

Proof The vertex set and edge set of the X-tree Xn denoted by V (Xn) = {u0, ui, vi, xi, yi |
1 ≤ i ≤ n} and E(Xn) = {u0u1, u0v1, u0x1, u0y1, uiui+1, vivi+1, xixi+1, yiyi+1 | 1 ≤ i ≤ n− 1}
respectively. Then, Xn has 4n edges and 4n + 1 vertices. Let Λ(u0) = 2, Λ(x1) = −1,

Λ(x3) = −n− 1 and Λ(yn) = 1. We have consider the two cases.

Case 1. n is odd.

First, assign the labels −1,−2, · · · , −n−1
2 and 3, 4, · · · , n+3

2 respectively according to the

vertices u1, u3, . . . , un and u2, u4, · · · , un−1. Then, assign the labels n+5
2 , n+7

2 , . . . , n + 2 and
−n−3

2 , −n−5
2 , . . . ,−n to the vertices v1, v3, · · · , vn and v2, v4, . . . , vn−1 respectively. Also, as-

sign the labels −n − 2,−n − 3, · · · , −3n−1
2 and n + 3, n + 4, . . . , 3n+1

2 corresponding to the

vertices x2, x4, · · · , xn−1 and x5, x7, . . . , xn. Assign the labels −3n−3
2 , −3n−5

2 , · · · ,−2n and
3n+3

2 , 3n+5
2 , · · · , 2n to the vertices y1, y3, · · · , yn and y2, y4, · · · , yn−1 respectively.

Case 2. n is odd.

Assign the labels−1,−2, · · · , −n2 and 3, 4, · · · , n+4
2 according to the vertices u1, u3, · · · , un−1

and u2, u4, · · · , un. Then, assign the labels −n−2
2 , −n−4

2 , · · · ,−n and n+6
2 , n+8

2 , · · · , n + 2 to

the vertices v1, v3, · · · , vn−1 and v2, v4, · · · , vn respectively. Consequently, assign the labels

−n− 2,−n− 3, · · · , −3n−2
2 and n+ 3, n+ 4, · · · , 3n

2 corresponding to the vertices x2, x4, · · · , xn
and x5, x7, · · · , xn−1. Finally, assign the labels 3n+2

2 , 3n+4
2 , · · · , 2n and −3n−4

2 , −3n−6
2 , · · · ,−2n

to the vertices y1, y3, · · · , yn−1 and y2, y4, · · · , yn−2 respectively. In both cases, we have S̄Λ1
=

2n = S̄Λc1
and the proof is complete. �

Example 3.2 A PMC-labeling of the X-tree X4 is given in Figure 1.

Figure 1

Theorem 3.3 The Y-tree Yn is a PMC-graph for all n.

Proof The vertex set and edge set of the Y-tree Yn are denoted by V (Yn) = {u0, ui, vi, wi |
1 ≤ i ≤ n} and E(Yn) = {u0u1, u0v1, u0x1, uiui+1, vivi+1, wiwi+1 | 1 ≤ i ≤ n− 1} respectively.

Then, Yn has 3n edges and 3n + 1 vertices. Let Λ(u0) = 2 and Λ(wn) = 1. We have consider
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the two cases.

Case 1. n is odd.

First, assign the labels to the vertices ui, 1 ≤ i ≤ n as in case (i) of Theorem 3.1. Then,

assign the labels −n−3
2 , −n−5

2 , · · · ,−n− 1 and n+5
2 , n+7

2 , · · · , n+ 1 to the vertices v1, v3, · · · , vn
and v2, v4, · · · , vn−1 respectively. Subsequently, assign the labels −n − 2,−n − 3, · · · , −3n−1

2

and n+2, n+3, · · · , 3n+1
2 corresponding to the vertices w1, w3, · · · , wn−2 and w2, w4, · · · , wn−1.

Hence S̄Λ1
= 3n−1

2 and S̄Λc1
= 3n+1

2 .

Case 2. n is even.

Next, assign the labels to the vertices ui, 1 ≤ i ≤ n as in Case 1 of Theorem 3.1. So,

assign the labels −n−2
2 , −n−4

2 , · · · ,−n and n+4
2 , n+6

2 , · · · , n + 1 to the vertices v1, v3, · · · , vn−1

and v2, v4, · · · , vn respectively. Label the vertex w1 by −n− 1. Consequently, assign the labels

−n−2,−n−3, · · · , −3n
2 and n+2, n+3, · · · , 3n

2 corresponding to the vertices w2, w4, · · · , wn−2

and w3, w5, · · · , wn−1. Thus, S̄Λ1 = 3n
2 = S̄Λc1

. �

Example 3.4 A PMC-labeling of the Y-tree Y5 is given in Figure 2.

Figure 2

Theorem 3.5 The prism of wheel graph PWn is not PMC-graph for all n ≥ 3.

Proof Let us consider the prism of wheel graph PWn, n ≥ 3. Let V (PWn) = {u0, v0, ui, vi |
1 ≤ i ≤ n} and E(PWn) = {u0v0, u0ui, u0vi, uivi | 1 ≤ i ≤ n} ∪ {uiui+1, unu1, vivi+1, vnv1 |
1 ≤ i ≤ n − 1} denote, respectively, the vertex set and edge set of the prism of wheel graph

PWn. Then, PWn has 5n + 1 edges and 2n + 2 vertices. Suppose that the prism of wheel

graph PWn is a PMC-graph. We have the maximum possible number of edges designated with

a label 1 is 2n− 1. Consequently, the minimum number of edges that are not designated with

a label 1 is 3n+ 2. Therefore, S̄Λc1
− S̄Λ1 ≥ n+ 3 ≥ 6 > 1, a contradiction arises. �

Theorem 3.6 The subdivision S(Bm,n) of bistar graph Bm,n is a PMC-graph for all m and n.

Proof Let V (S(Bm,n)) = {u0, ui, xi, x0, v0, vj , yj | 1 ≤ i ≤ m and 1 ≤ j ≤ n} and

E(S(Bm,n)) = {u0xi, xiui, u0x0, x0v0, v0yj , yjvj | 1 ≤ i ≤ m and 1 ≤ j ≤ n} denote, respective-

ly, the vertex set and edge set of the subdivision of bistar graph S(Bm,n). Then, S(Bm,n) has
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2m+ 2n+ 2 edges and 2m+ 2n+ 3 vertices. Let Λ(u0) = 2,Λ(v0) = −m−n−1 and Λ(x0) = 1.

Next we assign the labels 2, 3, . . . ,m + 1 and −1,−2, · · · ,−m to the vertices u1, u2, · · · , um
and x1, x2, · · · , xm respectively. Consequently, assign the labels −m− 1,−m− 2, · · · ,−m− n
and m+ 2,m+ 3, · · · ,m+ n+ 1 corresponding to the vertices v1, v2, · · · , vn and y1, y2, · · · , yn.

Thus, S̄Λ1
= m+ n+ 1 = S̄Λc1

. �

Example 3.7 A PMC-labeling of the subdivision of bistar graph S(B3,4) is given in Figure 3.

Figure 3

Theorem 3.8 The coconut tree CT (m,n) is a PMC-graph for every m,n with |m− n| ≤ 3.

Proof Let V (CT (m,n)) = {ui, vj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(CT (m,n)) =

{uiui+1, unvj : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n}. Clearly, the coconut tree CT (m,n) has m + n − 1

edges and m+ n vertices.

Case 1. |m− n| = 0.

Then, m = n. We have to show that CT (m,n) is a PMC-graph.

Subcase 1.1 m is odd.

Let us assign the labels 2, 3, · · · , m+3
2 and −1,−2, · · · , −m+1

2 according to the vertices

u1, u3, · · · , um and u2, u4, · · · , um−1. Next, assign labels −m−1
2 , −m−3

2 , · · · ,−m and m+5
2 , m+7

2 ,

· · · ,m corresponding to the vertices v1, v2, · · · , vm+1
2

and vm+3
2
, vm+5

2
, · · · , vm−1. Label the

vertex vm by 1.

Subcase 1.2 m is even.

If m = 2, define Λ(u1) = 2, Λ(u2) = −1, Λ(v1) = −2 and Λ(v2) = 1. Therefore,

S̄Λ1 = 1 and S̄Λc1
= 2. If m > 2, we assign the labels 2, 3, · · · , m+2

2 and −1,−2, · · · , −m2
to the vertices u1, u3, · · · , um−1 and u2, u4, · · · , um respectively. Further, assign the labels
−m−2

2 , −m−4
2 , · · · ,−m and m+4

2 , m+6
2 , · · · ,m corresponding to the vertices v1, v2, · · · , vm2 and

vm+2
2
, vm+4

2
, · · · , vm−1. Label the vertex vm by 1. In each cases, S̄Λ1

= m and S̄Λc1
= m− 1.

Case 2. |m− n| = 1.

Then, m− n = 1 or m− n = −1.

Subcase 2.1 m− n = 1.
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Then we have to prove that CT (m,m−1) is a PMC-graph. Define Λ(u1) = 1. If m is odd,

we assign the labels 2, 3, · · · , m+1
2 and −1,−2, · · · , −m+1

2 to the vertices u2, u4, · · · , um−1 and

u3, u5, · · · , um respectively. Now, assign the labels −m−1
2 , −m−3

2 , · · · ,−m+1 and m+3
2 , m+5

2 , · · · ,
m−1 corresponding to the vertices v1, v2, · · · , vm−1

2
and vm+1

2
, vm+3

2
, · · · , vm−2. Then label the

vertex vm−1 by 2. If m is even, let us assign the labels 2, 3, · · · , m+2
2 and −1,−2, · · · , −m+2

2

to the vertices u2, u4, · · · , um and u3, u5, · · · , um−1 respectively. Also, we assign the labels
−m

2 , −m−2
2 , · · · ,−m+ 1 and m+4

2 , m+6
2 , · · · ,m− 1 corresponding to the vertices v1, v2, · · · , vm2

and vm+2
2
, vm+4

2
, · · · , vm−2. Finally label the vertex vm−1 by 2. Hence S̄Λ1 = m − 1 and

S̄Λc1
= m− 1.

Subcase 2.2 m− n = −1.

We have to show that CT (m,m + 1) is a PMC-graph. If m is odd, assign the label-

s to the vertices ui, 1 ≤ i ≤ m as in Subcase 2.1 of Case 2. Next, we assign the labels
−m−1

2 , −m−3
2 , · · · ,−m and m+3

2 , m+5
2 , · · · ,m to the vertices v1, v2, · · · , vm+1

2
and vm+3

2
, vm+5

2
,

· · · , vm respectively. Then, label the vertex vm+1 by m+1
2 . If m is even, then assign the la-

bels to the vertices ui, 1 ≤ i ≤ m as in Subcase 2.1 of Case 2. Also we assign the labels
−m

2 , −m−2
2 , · · · ,−m and m+4

2 , m+6
2 , · · · ,m to the vertices v1, v2, · · · , vm+2

2
and vm+4

2
, vm+6

2
, · · · ,

vm correspondingly. Finally, label the vertex vm+1 by −m2 . Consequently, S̄Λ1
= m = S̄Λc1

.

Case 3. |m− n| = 2.

Then, m− n = 2 or m− n = −2.

Subcase 3.1 m− n = 2.

Now we have to prove that CT (m,m − 2) is a PMC-graph. Assign the labels to the

vertices ui, vj , 1 ≤ i ≤ m, 1 ≤ j ≤ m− 2 as in subcase (i) of case (ii). Hence S̄Λ1 = m− 1 and

S̄Λc1
= m− 2.

Subcase 3.2 m− n = −2.

We have to show that CT (m,m + 2) is a PMC-graph. If m is odd, assign the labels

2, 3, · · · , m+3
2 and−1,−2, · · · , −m+1

2 according to the vertices u1, u3, · · · , um and u2, u4, · · · , um−1.

Next, assign the labels −m−1
2 , −m−3

2 , · · · ,−m − 1 and m+5
2 , m+7

2 , · · · ,m + 1 to the vertices

v1, v2, · · · , vm+3
2

and vm+5
2
, vm+7

2
, . . . , vm+1 respectively. Then label the vertex vm+2 by 1. If

m is even, we assign the labels 2, 3, · · · , m+2
2 and −1,−2, · · · , −m2 corresponding to vertices

u1, u3, · · · , um−1 and u2, u4, · · · , um. Moreover, we assign the labels −m−2
2 , −m−4

2 , · · · ,−m− 1

and m+4
2 , m+6

2 , · · · ,m+1 according to the vertices v1, v2, · · · , vm+2
2

and vm+4
2
, vm+6

2
, · · · , vm+1.

Finally label the vertex vm+2 by 1. Therefore, S̄Λ1
= m and S̄Λc1

= m+ 1.

Case 4. |m− n| = 3.

Then, m− n = 3 or m− n = −3.

Subcase 4.1 m− n = 3.

We have to show that CT (m,m+3) is a PMC-graph. Define Λ(u1) = −m+2 and Λ(u2) = 1.

If m is odd, we assign the labels 2, 3, . . . , m+1
2 and −1,−2, · · · , −m+3

2 according to the vertices

u3, u5, · · · , um and u4, u6, · · · , um−1. Next, we assign the labels −m+1
2 , −m−1

2 , · · · ,−m + 3
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and vm−1
2
, vm+1

2
, · · · , vm−4 to the vertices v1, v2, . . . , vm−3

2
and m+3

2 , m+5
2 , · · · ,m − 2 respec-

tively. Then label the vertex vm−3 by 1. If m is even, then assign the labels 2, 3, . . . , m2 and

−1,−2, · · · , −m+2
2 corresponding to the vertices u3, u5, · · · , um−1 and u4, u6, · · · , um. Further,

we assign the labels −m2 , −m−2
2 , · · · ,−m+3 and m+2

2 , m+4
2 , · · · ,m−3 according to the vertices

v1, v2, · · · , vm−4
2

and vm−2
2
, vm

2
, · · · , vm−4. Finally, label the vertex vm−3 by 1. Subsequently,

S̄Λ1
= S̄Λc1

= m− 2.

Subcase 4.2 m− n = −3.

We have to show that CT (m,m+3) is a PMC-graph. Now assign the labels to the vertices

ui, vj , 1 ≤ i ≤ m, 1 ≤ j ≤ m+ 2 as in Subcase 3.1 of Case 3. If m is odd, then label the vertex

vm+3 by −m−1
2 . If m is even, label the vertex vm+3 by m+2

2 . Hence S̄Λ1 = S̄Λc1
= m+ 1. �

Theorem 3.9 The coconut tree CT (m,n) is not PMC-graph for every m,n with n−m ≥ 4.

Proof If possible, let CT (m,n) is a PMC-graph. If the edge uv receives the label 1, the

possible results are either Λ(u) + Λ(v) = 1 or Λ(u) + Λ(v) = 2.

Case 1. n−m is odd.

Then, the maximum possible number of edges designated with a label 1 is m + 1. Subse-

quently, the minimum number of edges that are not designated with a label 1 is q − (m+ 1) =

n− 2. Therefore, S̄Λc1
− S̄Λ1

≥ n− 2− (m+ 1) = n−m− 3 ≥ 2 > 1, we get a contradiction.

Case 2. n−m is even.

Then, the maximum possible number of edges designated with a label 1 is m. Consequently,

the minimum number of edges that are not designated with a label 1 is q −m = n− 1. Thus,

S̄Λc1
− S̄Λ1

≥ n− 1−m = n−m− 1 ≥ 3 > 1, a contradiction arises. �

Theorem 3.10 The coconut tree CT (m,n) is a PMC-graph for every m,n with m− n ≥ 4.

Proof Clearly, the coconut tree CT (m,n) has m+ n− 1 edges and m+ n vertices.

Case 1. m ≡ 0 (mod 4).

Subcase 1.1 n ≡ 0 (mod 4).

Let us assign the labels 2, 3, · · · , m+n+4
4 and −1,−2, · · · , −m−n4 according to the vertices

u1, u3, · · · , um+n−2
2

and u2, u4, · · · , um+n
2

. Label the vertex um+n+2
2

by −m−n−4
4 . Also we as-

sign the labels −m−n−8
4 , m+n+8

4 and −m−n−12
4 , m+n+12

4 to the vertices um+n+4
2

, um+n+6
2

and

um+n+8
2

, um+n+10
2

respectively. This process should be repeated until the label 1 is assigned to

um. Subsequently, assign the labels −m−2
2 , m+2

2 and −m−4
2 , m+4

2 corresponding to the vertices

v1, v2 and v3, v4. This process should be repeated until the labels −m−n2 , m+n
2 are assigned to

vn−1, vn.

Subcase 1.2 n ≡ 1 (mod 4).

Assign the labels 2, 3, · · · , m+n+7
4 and −1,−2, · · · , −m−n+1

4 to vertices u1, u3, · · · , um+n+1
2

and u2, u4, · · · , um+n−1
2

respectively. So assign the labels −m−n−7
4 , −m−n−3

4 according to the
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vertices um+n+3
2

, um+n+5
2

. Assign the labels −m−n−11
4 , m+n+11

4 and −m−n−15
4 , m+n+15

4 to the

vertices um+n+7
2

, um+n+9
2

and um+n+11
2

, um+n+13
2

respectively. This process should be repeated

until the label 1 is assigned to um. Subsequently, assign the labels −m−2
2 , m+2

2 and −m−4
2 , m+4

2

according to the vertices v1, v2 and v3, v4 respectively. This process should be repeated until

the labels −m−n+1
2 , m+n−1

2 are assigned to vn−2, vn−1. Finally, label the vertex vn by −m−n+1
2 .

Subcase 1.3 n ≡ 2 (mod 4).

Assign the labels 2, 3, · · · , m+n+6
4 and−1,−2, · · · , −m−n+2

4 to the vertices u1, u3, · · · , um+n
2

and u2, u4, · · · , um+n−2
2

respectively. Then, assign the labels −m−n−6
4 , −m−n−2

4 according to

the vertices um+n+2
2

, um+n+4
2

. Next, assign the labels −m−n−10
4 , m+n+10

4 and −m−n−14
4 , m+n+14

4

to the vertices um+n+6
2

, um+n+8
2

and um+n+10
2

, um+n+12
2

respectively. This process should be

repeated until the label 1 is assigned to um. Subsequently, assign the labels to the vertices vj ,

1 ≤ j ≤ n as in Subcase 1.1 of Case 1.

Subcase 1.4 n ≡ 3 (mod 4).

Also assign the labels 2, 3, · · · , m+n+5
4 and −1,−2, · · · , −m−n−1

4 according to the vertices

u1, u3, · · · , um+n−1
2

and u2, u4, · · · , um+n+1
2

. Label the vertex um+n+3
2

by −m−n−5
4 . Next, assign

the labels −m−n−9
4 , m+n+9

4 and −m−n−11
4 , m+n+11

4 according to the vertices um+n+5
2

, um+n+7
2

and um+n+9
2

, um+n+11
2

. This process should be repeated until the label 1 is assigned to um.

Consequently, assign the labels to the vertices vj , 1 ≤ j ≤ n as in Subcase 1.2 of Case 1.

Case 2 m ≡ 1 (mod 4).

Subcase 2.1 n ≡ 0 (mod 4).

Now, assign the labels to the vertices ui, 1 ≤ i ≤ m− 2 as in Subcase 1.2 of Case 1. Then,

assign the labels −m−1
2 , 1 according to the vertices um−1, um. Label the vertex v1 by m+1

2 .

Assign the labels −m−3
2 , m+3

2 and −m−5
2 , m+5

2 to the vertices v2, v3 and v4, v5 respectively. This

process should be repeated until the labels −m−n+1
2 , m+n−1

2 are assigned to vn−2, vn−1. Finally,

label the vertex vn by −m−n+1
2 .

Subcase 2.2 n ≡ 1 (mod 4).

In this case, assign the labels to the vertices ui, 1 ≤ i ≤ m − 2 as in Subcase 1.3 of

Case 1. Then, assign the labels −m−1
2 , 1 according to the vertices um−1, um. Label the vertex

v1 by m+1
2 . Also, assign the labels −m−3

2 , m+3
2 and −m−5

2 , m+5
2 corresponding to the vertices

v2, v3 and v4, v5. This process should be repeated until the labels −m−n2 , m+n
2 are assigned to

vn−1, vn.

Subcase 2.3 n ≡ 2 (mod 4).

Assign the labels to the vertices ui, 1 ≤ i ≤ m−2 as in Subcase 1.4 of Case 1. Next, assign

the labels −m−1
2 , 1 according to the vertices um−1, um. Consequently, assign the labels to the

vertices vj , 1 ≤ j ≤ n as in Subcase 2.1 of Case 2.

Subcase 2.4 n ≡ 3 (mod 4).

Subsequently, assign the labels to the vertices ui, 1 ≤ i ≤ m− 2 as in Subcase 1.1 of Case
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1. Also, assign the labels −m−1
2 , 1 corresponding to the vertices um−1, um. Assign the labels to

the vertices vj , 1 ≤ j ≤ n as in Subcase 2.2 of Case 2.

Case 3. m ≡ 2 (mod 4).

Subcase 3.1 n ≡ 0 (mod 4).

This proof is consistent with Subcase 1.3 of Case 1.

Subcase 3.2 n ≡ 1 (mod 4).

This proof is consistent with Subcase 1.4 of Case 1.

Subcase 3.3 n ≡ 2 (mod 4).

This proof is consistent with Subcase 1.1 of Case 1.

Subcase 3.4 n ≡ 3 (mod 4).

This proof is consistent with Subcase 1.2 of Case 1.

Case 4. m ≡ 3 (mod 4).

Subcase 4.1 n ≡ 0 (mod 4).

This proof is consistent with Subcase 2.3 of Case 2.

Subcase 4.2 n ≡ 1 (mod 4).

This proof is consistent with Subcase 2.4 of Case 2.

Subcase 4.3 : n ≡ 2 (mod 4).

This proof is consistent with Subcase 2.1 of Case 2.

Subcase 4.4 n ≡ 3 (mod 4).

This proof is consistent with Subcase 2.2 of Case 2. �

Example 3.11 A PMC-labeling of the coconut tree CT (8, 4) is given in Figure 4.

Figure 4

§4. Conclusion

The PMC-labeling behavior of some tree related graphs like the X-tree, Y-tree, prism of wheel

graph, subdivision of bistar graph and coconut tree have been investigated in this paper. It is

still available to future work to establish the PMC-labeling for more graph families.
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Abstract: Spivey obtained an identity for Bell numbers, here we give an elementary proof

of it and we show that it gives a recurrence relation for
∑n
j=0 j

mS
[j]
n , which shows that these

quantities involving the Stirling numbers of the second kind are linear combination of the

B(k).
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§1. Introduction

Spivey [1]-[4] gave a combinatorial proof of the identity following

B(m+ n) =

m∑
j=0

n∑
k=0

jn−k
(
n

k

)
S[j]
mB(k), (1)

for the Bell numbers [5],[7] and

B(n) ≡
n∑
q=0

S[q]
n , (2)

where S
[q]
n is a Stirling number of the second kind [6]-[12].

On the other hand, we know the Dobinski’s formula [6], [7], [13]-[15] following

n∑
q=0

S[q]
n xq = e−x

∞∑
k=0

kn

k!
xk, n ≥ 0, (3)

1Received November 30, 2024. Accepted May 24, 2025
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which for x = 1 implies the expression

B(n) =
1

e

∞∑
k=0

kn

k!
. (4)

Spivey [1] comments that the quantities

Ar :=

m∑
j=0

jrS[j]
m , r ≥ 0, (5)

for a given m = 0, 1, . . ., can be expressed as a linear combination of Bell numbers. In Sec. 2

we use (4) to give an elementary proof of (1), and we deduce a recurrence relation for (5), in

harmony with this affirmation of Spivey.

§2. Spivey’s Identity

Here we exhibit a simple demonstration of (1). First, we perform the following calculation

∞∑
k=j

kn

(k − j)!
=

∞∑
q=0

(q + j)n

q!
=

n∑
r=0

(
n

r

)
jn−r

∞∑
q=0

qr

q!

(4)
= e

n∑
r=0

(
n

r

)
jn−rB(r). (6)

Besides, let’s remember the property ([6], [16])

km =

k∑
j=0

(
k

j

)
j!S[j]

m (7)

Then

B(m+ n)
(4)
=

1

e

∞∑
k=0

kn

k!
km

(7)
=

1

e

m∑
j=0

j!S[j]
m

∞∑
k=j

(
k

j

)
kn

k!

=
1

e

m∑
j=0

S[j]
m

∞∑
k=j

kn

(k − j)!

(6)
=

m∑
j=0

n∑
r=0

jn−r
(
n

r

)
S[j]
mB(r), (6)

in according with (1). �

From (1),

B(m+ n) =

n∑
r=0

(
n

r

)
B(n− r)

m∑
j=0

jrS[j]
m

(5)
=

n∑
r=0

(
n

r

)
B(n− r)Ar, (8)
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then in this recurrence relation for the quantities (5) we can employ n = 0, 1, 2, · · · to obtain

each Ar as a linear combination of Bell numbers. In fact, for a given integer m,

A0 = B(m),

A1 = B(m+ 1)−B(m),

A2 = B(m+ 2)− 2B(m+ 1),

A3 = B(m+ 3)− 3B(m+ 2) +B(m), and so on (9)

Now, the Euler’s operator ( x d
dx

)m
([6],[15],[16],[17]) can be applied to (3) to deduce the

following explicit formula for (5),

Ar =

m∑
k=0

(
m

k

) r∑
j=0

j!S[j]
r S

[j]
m−kB(k), (10)

which is compatible with the values (9); we can consider that (10) is the inversion of (8). The

combination of (9) and (10) implies interesting identities. For example,

n−1∑
k=0

2n−k
(
n

k

)
B(k) = B(n+ 2)−B(n+ 1)−B(n),

n−1∑
k=0

3n−k
(
n

k

)
B(k) = B(n+ 3)− 3B(n+ 2) + 2B(n+ 1)−B(n). (11)

Spivey [18] obtained the following property

n∑
k=0

(−1)kkmS(k)
n =

m∑
j=0

(−1)jj!S[j]
m S

(j+1)
n+1 , (12)

which can be seen as companion of (10), and for m = 1 gives the known relation for the

harmonic numbers ([6], [19], [20])

Hn =
(−1)n

n!

n∑
k=0

(−1)kkS(k)
n =

(−1)n+1

n!
S

(2)
n+1, (13)

in terms of Stirling numbers of the first kind ([3], [6], [7], [19], [20]).
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Abstract: The evolution of decision-making processes and medical diagnosis has been sig-

nificantly influenced by advances in fuzzy soft set theory (FSS) and its extensions. This

paper delves into the use of interval-valued intuitionistic fuzzy soft matrices (IVIFSMs) to

improve the accuracy and reliability of medical diagnoses, focusing on viral diseases. Usu-

ally, traditional methods struggle with the uncertainties and complexities of medical data.

Therefore, building upon the integration of fuzzy set theory and soft set theory, IVIFSM

offers a sophisticated approach to handling uncertainties inherent in medical data. This

study demonstrates how IVIFSM can provide healthcare professionals with a more robust

tool to make informed decisions, thereby improving diagnostic results. Through a detailed

examination of theoretical foundations, methodological innovations, and practical applica-

tions, this article underscores the potential of IVIFSM to revolutionize medical diagnosis

and decision-making frameworks.

Key Words: Interval-valued intuitionistic fuzzy set (IVIFS), fuzzy soft set (FSS), interval-

valued intuitionistic fuzzy soft set (IVIFSS), fuzzy soft matrix (FSM), interval-valued intu-

itionistic fuzzy soft matrix (IVIFSM).
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§1. Introduction

In these days, the pattern of decision-making and medical diagnosis has undergone a significant

transfiguration with the approach of fuzzy set theory and its consequent extensions. Having

accurate and trustworthy decision-making tools is essential for medical diagnosis. Conventional

techniques frequently find it difficult to handle the ambiguity and complexity of medical data.

This has led to the research of fuzzy soft sets and their variations. However, in current days,

almost all of our substantial problems in modern life, such as socio-economic development,

medical discipline, and engineering fields of study, we experience uncertainties, inexact circum-

1Received March 1, 2025. Accepted May 26, 2025
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stances, and ambiguity, which involve rough data, and a certain amount of these problems are

predominantly humanistic. Over the last few years, several theories and methodologies have

been exhibited to act with certain ambiguity and inexact data, like probability theory, fuzzy

set theory, fuzzy sets and systems, soft set theory, etc. Lotfi Zadeh [1] introduced the notion of

Fuzzy set theory, which provided a way to handle uncertainty and imprecision in various fields.

Then the concept of intuitionistic fuzzy set (IFS) theory was introduced by K. T. Attanassov [2],

in which each element of IFS is formed with membership and non-membership degrees between

0 and 1, offering an even preferable way to model and analyze uncertain information. After

a while, Attanasov and Gargov [3] bring out the concept of interval-valued intuitionistic fuzzy

set (IVIFS), which is an extension of IFS, and draw out the membership and non-membership

degrees with intervals between 0 to 1. However, traditional fuzzy sets theory and fuzzy systems

had limitations when addressing more complex and ambiguous scenarios. To address these chal-

lenges, Molodstov [4] introduced the soft set theory, which offers a new mathematical method

to manage uncertainties without relying on traditional probabilistic approaches. Researchers

like Maji [5-7] and Roy [8] furthered the idea of the soft set by combining fuzzy set theory

with soft set theory, creating the concept of fuzzy soft sets (FSS) and those properties of fuzzy

soft union, intersection, complement, etc. This combination allowed for more sophisticated

handling of uncertainty through operations like intersection, union, and complement, making

these theories more applicable to real-world problems, especially in decision-making and medi-

cal diagnosis. Afterward, Ahmad and Kharal [9] develop and enhance the analysis of Maji on

FSS, which include study of the union, intersection, De Morgans Inclusions and De Morgans

Laws in FSS theory. In the study of Neog and Sut [10] they demonstrated the concept of fuzzy

soft sets and complement of fuzzy soft set in a new away that accommodated every obligation

of complement of a classical set. In recent years, implementation of FSS in several fields of

discipline and humanistic circumstances has been analyzed by many researchers [11-16]. In [13]

De et.al. revised and review Sanchezs [15,16] method of medical diagnosis focuses onto intu-

itionistic fuzzy set. Base on intuitionistic fuzzy soft set Saikia et.al. [14] modified De et.al. [13]

method. Moreover, Chetia and Das [11] analyze Sanchezs [15,16] proposed method of medical

diagnosis founded on IVFSS to develop the methodology of De et.al. in [13]. The notion of

interval-valued intuitionistic fuzzy soft set (IVIFSS) was introduced by mathematician Jiang

et.al. [17].

Though decision-making to engineering and medical applications, matrices are very effec-

tive for addressing various everyday problems, traditional matrices, often face challenges with

uncertain issues. To overcome these challenges, Chetia and Das [12] proposed intuitionistic fuzzy

soft matrices (IFSM), which come with operations and properties designed to handle this uncer-

tainty better. Hereinafter Zulqarnain et. al. created a decision-making method [18-20] known

as the interval-valued fuzzy soft max-min decision-making method that uses interval-valued

fuzzy soft matrices to improve decision-making and medical diagnoses and includes comparing

the performance of fuzzy soft matrices with interval-valued fuzzy soft matrices. Meenakshi

and Kaliraja [21] provided techniques to apply Sanchezs approach to medical diagnosis us-

ing interval-valued fuzzy matrices, in which they introduced the arithmetic mean matrix of an

interval-valued fuzzy matrix and applied Sanchezs [15, 16] method directly to this mean matrix,
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showing how it can be effectively used for medical diagnosis. Focus on IFSMs Zulqarnain et.al.

[20, 22, 23] proposed a disease diagnosis methodology, in which IFSM is utilized for diagnosis

in patients who suffer from different diseases.

All these innovative ideas are used in our study to provide a unique approach to identi-

fying diseases according to the data exhibited. The research initiative intends to increase the

precision and dependability of medical diagnosis by utilizing interval-valued intuitionistic fuzzy

soft matrices focus on to Zulqarnain et.al. proposed method [23] for medical diagnosis, which

provides healthcare workers with improved instruments for making informed decisions. This

research is built on the basic principles of IVIFSs, IVIFSMs and their combination provides a

comprehensive framework for dealing with uncertainties in medical diagnosis. To do so, in sec-

tion 2 we give an abridge discussion of theoretical foundations of IVIFSs, IVIFSSs and IVIFSMs.

In sections 3, we explore the methodological developments of these concepts and developed an

established methodology based on IVIFSMs to get an optimal result for medical diagnosis. In

Section 4, we demonstrate a hypothetical example to illustrate the execution functioning of the

proposed method with a particular focus on their role in improving decision-making processes

and the accuracy of medical diagnosis. The discussion and consequences are narrated in Section

5.

§2. Preliminaries

In the following, we concisely review some basic concepts of IFS, IVIFS, soft set (SS), intu-

itionistic fuzzy soft set (IFSS), IVIFSS and IVIFSM that will be applied in the subsequent

section. For convenience in this study, we assume N1 = {1, 2, 3, · · · , r}, N2 = {1, 2, 3, · · · , s},
and N3 = {1, 2, 3, · · · , t}, in all respects.

Definition 2.1 Let K be the domain of objects. An IFS ν in K defined as the ordered triplet

ν = {(α, µν(α), γν(α)) | α ∈ K}, (1)

where µν : K → [0, 1] and γν : K → [0, 1] described the membership and non-membership grade

according to the objects α ∈ K and the relation µν(α) + γν(α) ≤ 1 holds for each α ∈ K.

Definition 2.2 Let K be the domain of objects. An IVIFS ν in K defined as the ordered triplet

ν = {(α, µν(α), γν(α)) | α ∈ K}, (2)

where µν(α) = [µLν (α), µUν (α)] ⊆ [0, 1] and γν(α) = [γLν (α), γUν (α)] ⊆ [0, 1] are intervals and the

relations 0 ≤ µLν (α) ≤ µUν (α) ≤ 1,0 ≤ γLν (α) ≤ γUν (α) ≤ 1 and µUν (α) + γUν (α) ≤ 1 holds for

each α ∈ K.

Definition 2.3 Let K be the domain of discourse and σ be the set of parameters with ω ⊆
σ. A pair 〈Ω, ω〉 is studied as a soft set under the domain of discourse K, where Ω : ω →
P (K), such as Ω(ε) = φ, if ε /∈ ω and P (K) represent the power set of K.

By harmonizing the idea of IFS with soft set theory Maji et al. [7] present the notion of

IFSS.
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Definition 2.4 Let K be the domain of discourse and σ be the set of parameters with ω ⊆ σ.

A pair 〈Ω, ω〉 is studied as an intuitionistic fuzzy soft set on the domain of discourse K, where

Ω : ω → =(K) such that Ω(ε) = ∅ if ε /∈ ω

and =(K) represents the set of all intuitionistic fuzzy subsets of K. Conventionally, for every

ε ∈ ω, Ω(ε) describes an intuitionistic fuzzy subset of K and can be formed as

Ω(ε) = {(α, µΩ(ε)(α), γΩ(ε)(α)) | α ∈ K},

where µΩ(ε)(α) and γΩ(ε)(α) explain the membership and non-membership degree of α, respec-

tively. The collection of every IFSS on K according to the parameter set ω ⊆ σ is acquainted

as the intuitionistic fuzzy soft class and is denoted as IFSC(K,σ).

Definition 2.5 Let K be the domain of discourse and σ be the set of parameters with ω ⊆ σ.

A pair 〈Ω, ω〉 is studied as an interval-valued intuitionistic fuzzy soft set on the domain of

discourse K, where

Ω : ω → ==(K) such that Ω(ε) = ∅ if ε /∈ ω

and ==(K) represents the set of all interval-valued intuitionistic fuzzy subsets of K. Conven-

tionally, for every ε ∈ ω, Ω(ε) describes an interval-valued intuitionistic fuzzy subset of K and

can be formed as

Ω(ε) = {(α, µΩ(ε)(α), γΩ(ε)(α)) | α ∈ K},

where µΩ(ε)(α) and γΩ(ε)(α) explain the membership and non-membership degree of α, respec-

tively. The collection of every IVIFSS on K according to the parameter set ω ⊆ σ is acquainted

as the interval-valued intuitionistic fuzzy soft class and is denoted as IVIFSC(K,σ).

Definition 2.6 For the set of parameters σ = {ε1, ε2, . . . , εn}, the complement of σ is elicited

by ¬σ and is illustrated as ¬σ = {¬ε1,¬ε2, . . . ,¬εn}, where ¬εi = not εi.

Definition 2.7 We elicit the complement of an IVIFSS 〈Ω, ω〉 as 〈Ω, ω〉{ and is described as

〈Ω, ω〉{ = 〈Ω{,¬ω〉,

where the mapping Ωc : ¬ω → ==(K) is formed as

Ω{(ε) = {〈α, µΩ(¬ε)(α), γΩ(¬ε)(α)) | α ∈ K and ε ∈ ¬ω}.

Definition 2.8 Let K = {α1, α2, · · · , αm} be the domain of discourse and σ = {ε1, ε2, · · · , εn}
be the set of parameters with ω ⊆ σ. Presume 〈Ω, ω〉 to be a FSS in the fuzzy soft class (K,σ).

Then, the matrix form of FSS 〈ω,Ω〉 is defined as ωm×n = {αij}m×n, where i = 1, 2, · · · ,m
and j = 1, 2, · · · , n. Here

αij =

0 if εj /∈ ω

µj(αi) if εj ∈ ω

and µj(αi) stands for the membership degree of αi for the fuzzy set Ω(εj).
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Definition 2.9 Let K = {αi}mi=1 be the domain of discourse and σ be the set of parameters

with ω ⊆ σ = {εj}nj=1. Presume 〈Ω, ω〉 to be an IVIFSS over K. Then, the matrix form of the

IVIFSS 〈Ω, ω〉 is defined as ωm×n = {αij}m×n, i = 1, 2, · · · ,m and j = 1, 2, · · · , n. Here

αij =

(
[
0, 0
]
,
[
1, 1
]
) if εj /∈ ω

(
[
µLj (αi), µ

U
j (αi)

]
,
[
γLj (αi), γ

U
j (αi)

]
) if εj ∈ ω

.

Here
[
µLj (αi), µ

U
j (αi)

]
and

[
γLj (αi), γ

U
j (αi)

]
explain the membership and non-membership

degree of each αi for the IVIFS Ω(εj).

Definition 2.10 Consider two IVIFSMs ωm×n = {αij}m×n and ϕm×n = {βij}m×n. Then, the

addition and subtraction of ωm×n and ϕm×n are defined as

ω + ϕ =
(
[max(µLω , µ

L
ϕ),max(µUω , µ

U
ϕ )], [min(γLω , γ

L
ϕ ),min(γUω , γ

U
ϕ )]
)

(3)

and

ω − ϕ =
(
[min(µLω , µ

L
ϕ),min(µUω , µ

U
ϕ )], [max(γLω , γ

L
ϕ ),max(γUω , γ

U
ϕ )]
)
. (4)

Definition 2.11 Consider two IVIFSMs ωm×n = {αij}m×n and ϕm×n = {βij}m×n. Then, the

max-min composition of ωm×n and ϕm×n is defined as

ω ∗ϕ =
(
[max(min(µLω , µ

L
ϕ)),max(min(µUω , µ

U
ϕ ))], [min(max(γLω , γ

L
ϕ )),min(max(γUω , γ

U
ϕ ))]

)
. (5)

Definition 2.12 Consider two IVIFSMs ωm×n = {αij}m×n and ϕm×n = {βij}m×n. Then, the

geometric mean (GM) of ωm×n and ϕm×n is defined as

ω ◦ ϕ =
(
[
√
µLω · µLϕ,

√
µUω · µUϕ ], [

√
γLω · γLϕ ,

√
γUω · γUϕ ]

)
. (6)

In particular, the GM of ωm×n = {αij}m×n is given as

GM(ωm×n) =
(√

µLω · µUω ,
√
γLω · γUω

)
. (7)

Definition 2.13 Consider two IVIFSMs ωm×n = {αij}m×n and ϕm×n = {βij}m×n. Then, the

harmonic mean (HM) of ωm×n and ϕm×n is defined as

ω • ϕ =

([
2 · µLω · µLϕ
µLω + µLϕ

,
2 · µUω · µUϕ
µUω + µUϕ

]
,

[
2 · γLω · γLϕ
γLω + γLϕ

,
2 · γUω · γUϕ
γUω + γUϕ

])
. (8)

In general, the HM of ωm×n = {αij}m×n is given as

HM(ω) =

(
2 · µLω · µUω
µLω + µUω

,
2 · γLω · γUω
γLω + γUω

)
. (9)
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§3. An Ideal Model for Medical Diagnosis Based on IVIFSS

In the following, we construct an ideal model to obtain a congenial result for medical diagnosis

based on IVIFSS. Assume S = {εi}i∈N1
to be the set of r syndromes of s diseases D = {dj}j∈N2

.

Let, P = {pk}k∈N3
be the set of patients who view the syndromes. In accordance to the

discipline the diagnosis model can be evaluated methodically like and so.

Step 1. At the outset, we describe an IVIFSS 〈Ω1, ω1〉 over S = {εi}i∈N1 , that provide

a syndrome-disease relation matrix (SDRM) R1 = (ρij)r×s, manifested from IVIFSS 〈Ω1, ω1〉
and is form in the following way

R1 = (ρij)r×s =

d1 d2 . . . ds


ε1 ρ11 ρ12 · · · ρ1s

ε2 ρ21 ρ22 · · · ρ2s

...
...

...
. . .

...

εr ρr1 ρr2 · · · ρrs

where ρij = ([xij , yij ], [zij , wij ]) with 0 ≤ xij ≤ yij ≤ 1, 0 ≤ zij ≤ wij ≤ 1 and 0 ≤ yij+wij ≤ 1.

Correspondingly, a relation matrix R2 = (χij)r×s called non syndrome-disease relation

matrix (NSDRM), is constructed from 〈Ω1, ω1〉{, complement of 〈Ω1, ω1〉 and is formed as

R2 = (χij)r×s =

d1 d2 . . . ds


ε1 χ11 χ12 · · · χ1s

ε2 χ21 χ22 · · · χ2s

...
...

...
. . .

...

εr χr1 χr2 · · · χrs

where χij = ([zij , wij ], [xij , yij ]) in accordance to ρij = ([xij , yij ], [zij , wij ]) and 0 ≤ zij ≤ wij ≤
1, 0 ≤ xij ≤ yij ≤ 1 and 0 ≤ yij + wij ≤ 1.

Step 2. Thereafter, we demonstrate other IVIFSS 〈Ω2, ω2〉 and its complement 〈Ω2, ω2〉{

over P = {pk}k∈N3
. That come up with, a patient-syndrome relation matrix (PSRM) N1 =

(ξki)t×r, and a patient-non syndrome relation matrix (PNSRM) N2 = (ζki)t×r, in accordance

to 〈Ω2, ω2〉 and 〈Ω2, ω2〉{, respectively and illustrated like as

N1 = (ξki)t×r =

ε1 ε2 . . . εr


p1 ξ11 ξ12 · · · ξ1r

p2 ξ21 ξ22 · · · ξ2r
...

...
...

. . .
...

pt ξt1 ξt2 · · · ξtr

where ξki = ([αki, βki], [λki, δki]), with 0 ≤ αki ≤ βki ≤ 1, 0 ≤ λki ≤ δki ≤ 1 and 0 ≤ βki+δki ≤
1.
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Correspondingly,

N2 = (ζki)t×r =

ε1 ε2 . . . εr


p1 ζ11 ζ12 · · · ζ1r

p2 ζ21 ζ22 · · · ζ2r
...

...
...

. . .
...

pt ζt1 ζt2 · · · ζtr

where ζki = ([λki, δki], [αki, βki]), according to ξki = ([αki, βki], [λki, δki]) with 0 ≤ αki ≤ βki ≤
1, 0 ≤ λki ≤ δki ≤ 1 and 0 ≤ βki + δki ≤ 1.

Step 3. Hereinafter, utilizing Def.(2.11) and relation matrices R1 = (ρij)r×s, R2 =

(χij)r×s, N1 = (ξki)t×r and N2 = (ζki)t×r, we evaluate four relation matrices W1 = (ς1kj)t×s =

N1 ∗ R1, W2 = (ς2kj)t×s = N1 ∗ R2, W3 = (ς3kj)t×s = N2 ∗ R1, and W4 = (ς4kj)t×s = N2 ∗ R2,

which are manifested in the following way

W1 = (ς1kj)t×s = N1 ∗ R1 =

d1 d2 . . . ds


p1 ς111 ς112 · · · ς11s

p2 ς121 ς122 · · · ς12s
...

...
...

. . .
...

pt ς1t1 ς1t2 · · · ς1ts

where, each

ς1kj = ξki ∗ ρij =
([

max(min(αki, xij)),max(min(βki, yij))
]
,
[
(min(max(λki, zij)),min(max(δki, wij))

])
.

W2 = (ς2kj)t×s = N1 ∗ R2 =

d1 d2 . . . ds


p1 ς211 ς212 · · · ς21s

p2 ς221 ς222 · · · ς22s
...

...
...

. . .
...

pt ς2t1 ς2t2 · · · ς2ts
where, each

ς2kj = ξki ∗ χij =
([

max(min(αki, zij)),max(min(βki, wij))
]
,
[
(min(max(λki, xij)),min(max(δki, yij))

])
.

W3 = (ς3kj)t×s = N2 ∗ R1 =

d1 d2 . . . ds


p1 ς311 ς312 · · · ς31s

p2 ς321 ς322 · · · ς32s
...

...
...

. . .
...

pt ς3t1 ς3t2 · · · ς3ts
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where, each

ς3kj = ζki ∗ ρij =
([

max(min(λki, xij)),max(min(δki, yij))
]
,
[
(min(max(αki, zij)),min(max(βki, wij))

])
.

W4 = (ς4kj)t×s = N2 ∗ R2 =

d1 d2 . . . ds


p1 ς411 ς412 · · · ς41s

p2 ς421 ς422 · · · ς42s
...

...
...

. . .
...

pt ς4t1 ς4t2 · · · ς4ts
where, each

ς4kj = ζki ∗ χij =
([

max(min(λki, zij)),max(min(δki, wij))
]
,
[
(min(max(αki, xij)),min(max(βki, yij))

])
,

and W1, W2, W3 and W4 are named as patient syndrome disease matrix (PSDM), patient

syndrome non-disease matrix (PSNDM), patient non-syndrome disease matrix (PNSDM) and

patient non-syndrome non-disease matrix (PNSNDM), gradually.

Step 4. Next, applying Eq.(7), we compute the GM of each ς`kj of the exhibited relation

matrices {W`}4`=1 obtained from step 3 and that can be recount as

G` = GM(W`) = GM(ς`kj) =

(√
µL
ς`kj
· µU

ς`kj
,
√
γL
ς`kj
· γU
ς`kj

)
`=1,2,3,4

. (10)

In this case µς`kj and γς`kj represent the fuzzy membership degree and fuzzy reference degree

of each ς`kj , respectively.

Step 5. Calculate the membership value (MV) matrices of all the four G` in the following

way

Y` = MV (G`) = MV (GM(ς`kj)) =
{

(µς`kj − γς`kj )
}
`=1,2,3,4

, (11)

where µς`kj =
√
µL
ς`kj
· µU

ς`kj
, and γ`ςkj =

√
γL
ς`kj
· γU
ς`kj

.

Step 6. Based on Step 5, the diagnosis score value matrices (DSVM) S1 and S2 of the

obtained membership values Y` are exhibited as

S1 = Y1 − Y3 and S2 = Y2 − Y4. (12)

Step 7: Using DSVMs obtained in Step 6 compute the total score value matrix (TSVM) and

is derived as

θ = (τkj)t×s = S1 − S2. (13)

Step 8. Focus on the total scores value matrix of all t patients according to the s diseases,

find

ψm = max
j

(τkj) = max
j

(S1(pk, dj)− S2(pk, dj)) . (14)

which conclude that patient pk is suffering from the disease dm, where 1 ≤ m ≤ s.
Step 9. If same values of ψm acquire in different rows, then go to Step 1 and reiterate
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the method by reevaluating the syndrome of the patients.

§4. Explicative Case Illustrations

In this section, we illustrate an exegetical case of study to evaluate the effectual mode of the

developed model for disease diagnosis. Presume, three patients P = {p1, p2, p3} are admitted

in a clinic with syndromes S = {ε1, ε2, ε3} and the probable diseases associated with these

syndromes are D = {d1, d2}. According to the circumstances, the developed diagnosis model

can be exhibited orderly thus and so.

Step 1. Foremost, we illustrate an IVIFSS 〈Ω1, D〉 over S = {εi}3i=1, where Ω1 : D →
==(S). This illustration provides a SDRM R1 = (ρij)3×2 obtained from IVIFSS 〈Ω1, D〉 and

is formed as

R1 =
(
ρij
)

3×2
=


([0.6, 0.7], [0.1, 0.2]) ([0.6, 0.65], [0.2, 0.3])

([0.5, 0.6], [0.2, 0.3]) ([0.4, 0.5], [0.4, 0.5])

([0.2, 0.3], [0.6, 0.7]) ([0.7, 0.8], [0.1, 0.2])

 ,
where ρij = ([xij , yij ], [zij , wij ]) with 0 ≤ xij ≤ yij ≤ 1, 0 ≤ zij ≤ wij ≤ 1, and 0 ≤
yij + wij ≤ 1. Correspondingly, NSDRM R2 = (χij)3×2 is constructed from 〈Ω1, D〉{, called

the complement of 〈Ω1, D〉 and is formed as

R2 =
(
χij
)

3×2
=


([0.1, 0.2], [0.6, 0.7]) ([0.2, 0.3], [0.6, 0.65])

([0.2, 0.3], [0.5, 0.6]) ([0.4, 0.5], [0.4, 0.5])

([0.6, 0.7], [0.2, 0.3]) ([0.1, 0.2], [0.7, 0.8])

 ,
where χij = ([zij , wij ], [xij , yij ]) in accordance to ρij = ([xij , yij ], [zij , wij ]) and 0 ≤ zij ≤ wij ≤
1,0 ≤ xij ≤ yij ≤ 1,0 ≤ wij + yij ≤ 1.

Step 2. Next, we demonstrate the IVIFSS 〈Ω2, S〉 and its complement 〈Ω2, S〉{ over

P = {pk}3k=1, where Ω2 : S → ==(P ). Those come up with a PSRM N1 = (ξkj)3×3 and a

PNSRM N2 = (ζkj)3×3 in accordance to 〈Ω2, S〉 and its complement 〈Ω2, S〉{, respectively, and

are formed like as

N1 = (ξkj)3×3 =


([0.2, 0.3], [0.6, 0.7]) ([0.5, 0.6], [0.2, 0.3]) ([0.3, 0.4], [0.5, 0.55])

([0.3, 0.4], [0.5, 0.55]) ([0.4, 0.5], [0.4, 0.45]) ([0.5, 0.6], [0.2, 0.25])

([0.6, 0.7], [0.2, 0.25]) ([0.4, 0.6], [0.2, 0.3]) ([0.4, 0.45], [0.45, 0.5])

 ,

where ξkj = ([αkj , βkj ], [λkj , δkj ]) with 0 ≤ αkj ≤ βkj ≤ 1, 0 ≤ λkj ≤ δkj ≤ 1, and 0 ≤
βkj + δkj ≤ 1. Correspondingly,

N2 = (ζkj)3×3 =


([0.6, 0.7], [0.2, 0.3]) ([0.2, 0.3], [0.5, 0.6]) ([0.5, 0.55], [0.3, 0.4])

([0.5, 0.55], [0.3, 0.4]) ([0.4, 0.5], [0.4, 0.5]) ([0.2, 0.25], [0.5, 0.6])

([0.2, 0.25], [0.6, 0.7]) ([0.2, 0.3], [0.4, 0.6]) ([0.45, 0.5], [0.4, 0.45])

 ,
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where ζkj = ([λkj , δkj ], [αkj , βkj ]) according to ξkj = ([αkj , βkj ], [λkj , δkj ]), with 0 ≤ αkj ≤
βkj ≤ 1, 0 ≤ λkj ≤ δkj ≤ 1and 0 ≤ βkj + δkj ≤ 1.

Step 3. Thereafter, employing Def.(2.11) and relation matrices R1,R2,N1 and N2 we

evaluate four composition relation matrices W1 = (ς1kj)3×2 = N1∗R1, W2 = (ς2kj)3×2 = N1∗R2,

W3 = (ς3kj)3×2 = N2 ∗ R1 and W4 = (ς4kj)3×2 = N2 ∗ R2, which are built in the following way

W1 =


([0.5, 0.6], [0.2, 0.3]) ([0.4, 0.5], [0.4, 0.5])

([0.5, 0.6], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.25])

([0.6, 0.7], [0.2, 0.25]) ([0.6, 0.65], [0.2, 0.3])

 ,
where, each

ς1kj = ξki ∗ ρij =
[
max(min(αki, xij)),max(min(βki, yij))

]
,
[
min(max(λki, zij)),min(max(δki, wij))

]
.

W2 =


([0.3, 0.4], [0.5, 0.55]) ([0.4, 0.5], [0.4, 0.5])

([0.5, 0.6], [0.2, 0.3]) ([0.4, 0.5], [0.4, 0.5])

([0.4, 0.5], [0.4, 0.5]) ([0.4, 0.45], [0.45, 0.5])

 ,
where, each

ς2kj = ξki ∗ χij =
[
max(min(αki, zij)),max(min(βki, wij))

]
,
[
min(max(λki, xij)),min(max(δki, yij))

]
.

W3 =


([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.65], [0.2, 0.3])

([0.5, 0.55], [0.3, 0.4]) ([0.5, 0.55], [0.3, 0.4])

([0.2, 0.3], [0.4, 0.6]) ([0.45, 0.5], [0.45, 0.5])

 ,
where, each

ς3kj = ζki ∗ ρij =
[
max(min(λki, xij)),max(min(δki, yij))

]
,
[
min(max(αki, zij)),min(max(βki, wij))

]
.

W4 =


([0.5, 0.55], [0.3, 0.4]) ([0.2, 0.3], [0.5, 0.6])

([0.2, 0.3], [0.5, 0.6]) ([0.4, 0.45], [0.4, 0.5])

([0.45, 0.5], [0.4, 0.45]) ([0.2, 0.3], [0.4, 0.6])

 ,
where, each

ς4kj = ζki ∗ χij =
[
max(min(λki, zij)),max(min(δki, wij))

]
,
[
min(max(αki, xij)),min(max(βki, yij))

]
.

Here, W1,W2,W3 and W4 are named as PSDM, PSNDM, PNSDM and PNSNDM, respectively.

Step 4. Next, employing Eq.(10) we compute the G` of the exhibited relation matrices

{W`}4`=1 obtained from step 3 and that can be computed as

G1 =


(0.55, 0.24) (0.45, 0.45)

(0.45, 0.42) (0.55, 0.22)

(0.65, 0.22) (0.62, 0.24)

 , G2 =


(0.35, 0.52) (0.45, 0.45)

(0.55, 0.24) (0.45, 0.45)

(0.45, 0.45) (0.42, 0.47)

 ,
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G3 =


(0.65, 0.24) (0.62, 0.24)

(0.52, 0.35) (0.52, 0.35)

(0.24, 0.49) (0.47, 0.47)

 , G4 =


(0.52, 0.35) (0.24, 0.55)

(0.24, 0.55) (0.42, 0.45)

(0.47, 0.42) (0.47, 0.47)

 .
Step 5. In the following, using Eq.(11) we calculate the membership value MV matrices

of all the four G` thus and so

Y1 =


0.31 0

0.03 0.33

0.43 0.38

 , Y2 =


−0.17 0

0.31 0

0 −0.05

 , Y3 =


0.41 0.38

0.17 0.17

−0.25 0

 ,

Y4 =


0.17 −0.31

−0.31 −0.03

0.05 0

 .
Step 6. Next, utilizing Eq.(12) the DSVMs S1 and S2 of the obtained membership values

Y` are computed as

S1 =


−0.1 −0.38

−0.14 0.16

0.68 0.38

 , S2 =


−0.34 0.31

0.62 0.03

−0.05 −0.05

 .
Step 7. Using Eq.(13) and DSVMs obtained in Step 6 determine the TSVM

θ =


0.24 −0.69

−0.76 0.13

0.73 0.43

 .
Step 8. Focus on the total scores value matrix of all three patients according to the

two diseases and Eq.(14), we conclude that patient p1 and p3 are suffering from disease d1 and

patient p2 suffering from disease d2.

§5. Conclusions

In our work, focus on Zulqarnain et.al. proposed method [23] and IVIFSM we develop a disease

diagnosis model to diagnose illness in patients through a detailed examination of theoretical

foundations, methodological innovations, and practical application. The established method-

ology provides a mathematical model in which the relation matrices are typically formed with

IVIFSM, which is an extension of Zulqarnain et.al. proposed method [23] and increases the

precision and dependability of medical diagnosis.
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