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If the facts don’t fit the theory, change the facts.

By Albert Einstein, an American theoretical physicist.
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Abstract: Let G be a finite and simple graph with vertex set V (G), k ≥ 1 an integer and

let f : V (G) → {−k, k− 1, · · · ,−1, 1, · · · , k− 1, k} be 2k valued function. If
∑

x∈N(v)

f(x) ≥ k

for each v ∈ V (G), where N(v) is the open neighborhood of v, then f is a Smarandachely

k-Signed total dominating function on G. A set {f1, f2, . . . , fd} of Smarandachely k-Signed

total dominating function on G with the property that
d∑

i=1

fi(x) ≤ k for each x ∈ V (G) is

called a Smarandachely k-Signed total dominating family (function) on G. Particularly, a

Smarandachely 1-Signed total dominating function or family is called signed total dominating

function or family on G. The maximum number of functions in a signed total dominating

family on G is the signed total domatic number of G. In this paper, some properties related

signed total domatic number and signed total domination number of a graph are studied

and found the sign total domatic number of certain class of graphs such as fans, wheels and

generalized Petersen graph.

Key Words: Smarandachely k-signed total dominating function, signed total domination

number, signed total domatic number.

AMS(2000): 05C69

§1. Terminology and Introduction

Various numerical invariants of graphs concerning domination were introduced by means of
dominating functions and their variants [1] and [4]. We considered finite, undirected, simple
graphs G = (V, E) with vertex set V (G) and edge set E(G). The order of G is given by
n = |V (G)|. If v ∈ V (G), then the open neighborhood of v is N(v) = {u ∈ V (G)|uv ∈ E(G)}
and the closed neighborhood of v is N [v] = {v} ∪ N(v). The number dG(v) = d(v) = |N(v)|
is the degree of the vertex v ∈ V (G), and δ(G) is the minimum degree of G. The complete
graph and the cycle of order n are denoted by Kn and Cn respectively. A fan and a wheel
is a graph obtained from a path and a cycle by adding a new vertex and edges joining it to
all the vertices of the path and cycle respectively. The generalized Petersen graph P (n, k) is
defined to be a graph on 2n vertices with V (P (n, k)) = {viui : 1 ≤ i ≤ n} and E(P (n, k)) =

1Received February 18, 2010. Accepted March 20, 2010.
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{vivi+1, viui, uiui+k : 1 ≤ i ≤ n, subscripts modulo n}. If A ⊆ V (G) and f is a mapping from
V (G) in to some set of numbers, then f(A) =

∑
x∈A f(x).

Let k ≥ 1 be an integer and let f : V (G) → {−k, k − 1, · · · ,−1, 1, · · · , k − 1, k} be 2k

valued function. If
∑

x∈N(v)

f(x) ≥ k for each v ∈ V (G), where N(v) is the open neighborhood of

v, then f is a Smarandachely k-Signed total dominating function on G. A set {f1, f2, . . . , fd} of

Smarandachely k-Signed total dominating function on G with the property that
d∑

i=1

fi(x) ≤ k

for each x ∈ V (G) is called a Smarandachely k-Signed total dominating family (function) on
G. Particularly, a Smarandachely 1-Signed total dominating function or family is called signed
total dominating function or family on G. The singed total dominating function is defined in [6]
as a two valued function f : V (G) → {−1, 1} such that

∑
x∈N(v) f(x) ≥ 1 for each v ∈ V (G).

The minimum of weights w(f), taken over all signed total dominating functions f on G, is
called the signed total domination number γs

t (G). Signed total domination has been studied in
[3].

A set {f1, f2, . . . , fd} of signed total dominating functions on G with the property that∑d
i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed total dominating family on G. The

maximum number of functions in a signed total dominating family is the signed total domatic
number of G, denoted by ds

t (G). Signed total domatic number was introduced by Guan Mei
and Shan Er-fang [2]. Guan Mei and Shan Er-fang [2] have determined the basic properties of
ds

t (G). Some of them are analogous to those of the signed domatic number in [5] and studied
sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs
and complete graphs. Guan Mei and Shan Er-fang [2] presented the following results which are
useful in our investigations.

Proposition 1.1([6]) For Circuit Cn of length n we have γs
t (Cn) = n.

Proof Here no other signed total dominating exists than the constants equal to 1. ¤

Theorem 1.2([3]) Let T be a tree of order n ≥ 2. then, γs
t (T ) = n if and only if every vertex

of T is a support vertex or is adjacent to a vertex of degree 2.

Proposition 1.3([2]) The signed total domatic number ds
t (G) is well defined for each graph G.

Proposition 1.4([2]) For any graph G of order n ,γs
t (G) · ds

t (G) ≤ n.

Proposition 1.5([2]) If G is a graph with the minimum degree δ(G), then 1 ≤ ds
t (G) ≤ δ(G).

Proposition 1.6([2]) The signed total domatic number is an odd integer.

Corollary 1.7([2]) If G is a graph with the minimum degree δ(G) = 1 or 2, then ds
t (G) = 1.

In particular, ds
t (Cn) = ds

t (Pn) = ds
t (K1,n−1) = ds

t (T ) = 1, where T is a tree.

§2. Properties of the Signed Total Domatic Number

Proposition 2.1 If G is a graph of order n and γs
t (G) ≥ 0 then, γs

t (G)+ds
t (G) ≤ n+1 equality
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holds if and only if G is isomorphic to Cn or tree T of order n ≥ 2.

Proof Let G be a graph of order n. The inequality follows from the fact that for any two
non-negative integers a and b, a + b ≤ ab + 1. By Proposition 1.4 we have,

γs
t (G) + ds

t (G) ≤ γs
t (G) · ds

t (G) + 1 ≤ n + 1

Suppose that γs
t (G) + ds

t (G) = n + 1 then, n + 1 = γs
t (G) + ds

t (G) ≤ γs
t (G) · ds

t (G) + 1 ≤ n + 1.
This implies that γs

t (G) + ds
t (G) = γs

t (G) · ds
t (G) + 1. This shows that γs

t (G) · ds
t (G) = n

Solving equations 1 and 2 simultaneously, we have either γs
t (G) = 1 and ds

t (G) = n or γs
t (G) = n

and ds
t (G) = 1. If γs

t (G) = 1 and ds
t (G) = n then n = ds

t (G) ≤ δ(G) There fore, δ(G) ≥ n a
contradiction.

If γs
t (G) = n and ds

t (G) = 1 then by Proposition 1.1 and Proposition 1.2, we have γs
t (Cn) =

n and ds
t (Cn) = 1 and By Theorem 1.2, If T is a tree of order n ≥ 2 then, γs

t (T ) = n if and only
if every vertex of T is a support vertex or is adjacent to a vertex of degree 2 and ds

t (T ) = 1. ¤

Theorem 2.2 Let G be a graph of order n then ds
t (G) + ds

t (Ḡ) ≤ n− 1.

Proof Let G be a regular graph order n, By Proposition 1.5 we have ds
t (G) ≤ δ(G) and

ds
t (Ḡ) ≤ δ(Ḡ). Thus we have,

ds
t (G) + ds

t (Ḡ) ≤ δ(G) + δ(Ḡ) = δ(G) + (n− 1−∆(G)) ≤ n− 1.

Thus the inequality holds. ¤

§3. Signed Total Domatic Number of Fans, Wheels and Generalized

Petersen Graph

Proposition 3.1 Let G be a fan of order n then ds
t (G) = 1.

Proof Let n ≥ 2 and let x1, x2, . . . , xn be the vertex set of the fan G such that x1, x2, . . . , xn, x1

is a cycle of length n and xn is adjacent to xi for each i = 2, 3, . . . , n − 2. By Proposition 1.5
and Proposition 1.6, 1 ≤ ds

t (G) ≤ δ(G) = 2, which implies ds
t (G) = 1 which proves the result.¤

Proposition 3.2 If G is a wheel of order n then ds
t (G) = 1.

Proof Let x1, x2, . . . , xn be the vertex set of the wheel G such that x1, x2, . . . , xn−1, x1 is
a cycle of length n− 1 and xn is adjacent to xi for each i = 1, 2, 3, . . . , n− 1. According to the
Proposition 1.5 and Proposition 1.6, we observe that either ds

t (G) = 1 or ds
t (G) = 3. Suppose

to the contrary that ds
t (G) = 3. Let {f1, f2, f3} be a corresponding signed total dominating

family. Because of f1(xn) + f2(xn) + f3(xn) ≤ 1, there exists at least one function say f1 with
f1(xn) = −1 The condition

∑
x∈N(v) f1(x) ≥ 1 for each v ∈ (V (G)−{xn}) yields f1(x) = 1 for

each some i ∈ {1, 2, . . . , n− 1} and t = 2, 3 then it follows that ft(xi+1) = ft(xi+2) = 1, where
the indices are taken taken modulo n − 1 and ft(xn) = 1. Consequently, the function ft has
at most

⌊
n
2

⌋ − 1 for n is odd and n
2 − 1 for n is even number of vertices x ∈ V (G) such that
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ft(x) = −1. Thus there exist at most
⌊

n
2

⌋ − 1 for n is odd and n
2 − 1 for n is even number of

vertices x ∈ V (G) such that ft(x) = −1 for at least one i = 1, 2, 3. Since n ≥ 4, we observe
that 2(bn

2 c + 1) = 2
(

n
2 − 1

)
+ 1 < n for n is odd and 2

(
n
2 − 1

)
+ 1 < n, a contradiction to

f1(xn) + f2(xn) + f3(xn) ≤ 1 for each x ∈ V (G). ¤

Proposition 3.3 Let G = P (n, k) be a generalized Petersen graph then for k = 1, 2, ds
t (G) = 1.

Proof The generalized Petersen graph P (n, 1) is a graph on 2n vertices with

V (P (n, k)) = {viui : 1 ≤ i ≤ n}

and E(P (n, k)) = {vivi+1, viui, uiui+1 : 1 ≤ i ≤ n, subscripts modulo n}. According to the
Proposition 1.5, Proposition 1.6, we observe that ds

t (G) = 1 or ds
t (G) = 3.

Case 1: k = 1

Let {f1, f2, f3} be a corresponding signed total dominating functions. Because of f1(vn) +
f2(vn) + f3(vn) ≤ 1 for each i ∈ {1, 2, . . . , 2n}, there exist at least one number j ∈ {1, 2, 3}
such that fj(vi) = −1. Let, for example, f1(vk) = −1 for for any t ∈ {1, 2, . . . , 2n} then∑

x∈N(vt)
f1(v) ≥ 1 implies that f1(vk) = f1(vk+1) = −1 for k ∼= 0, 1mod4 and f1(vk) = −1 for

k ∼= 0mod3. This implies, there exist at most 8r, 8r + 2, 8r + 4, 8r + 6, r ≥ 1 vertices such
that ft(v) = −1 for each t = 2, 3 when P (n, 1) is of order 2(6r + l) for 0 ≤ l ≤ 2, 2(6r + 3),
2(6r + 4), 2(6r + 5) respectively. Thus there exist 3(8r) = 3(8( n

12 − l
6 ) < n (similarly < n for

all values of vertex set) a contradiction to f1(vn) + f2(vn) + f3(vn) ≤ 1 for each v ∈ V (G).

Case 2: k = 2

Similar to the proof of Case 1, we can prove the claim in this case. ¤
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Abstract: Let G be a connected graph. For any two vertices u and v, let d(u, v) denotes

the distance between u and v in G. The maximum distance between any pair of vertices is

called the diameter of G and is denoted by diam(G). A Smarandachely k-radio labeling of

a connected graph G is an assignment of distinct positive integers to the vertices of G, with

x ∈ V (G) labeled f(x), such that d(u, v) + |f(u) − f(v)| ≥ k + diam(G). Particularly, if

k = 1, such a Smarandachely radio k-labeling is called radio labeling for abbreviation. The

radio number rn(f) of a radio labeling f of G is the maximum label assignment to a vertex

of G. The radio number rn(G) of G is minimum {rn(f)} over all radio labelings of G. In

this paper, we completely determine the radio number of the graph P 3
n for all n ≥ 4.

Keywords: Smarandachely radio k-labeling, radio labeling, radio number of a graph.

AMS(2010): 05C78, 05C12, 05C15

§1. Introduction

All the graphs considered here are undirected, finite, connected and simple. The length of a
shortest path between two vertices u and v in a graph G is called the distance between u and v

and is denoted by dG(u, v) or simply d(u, v). We use the standard terminology, the terms not
defined here may be found in [1].

The eccentricity of a vertex v of a graph G is the distance from the vertex v to a farthest
vertex in G. The minimum eccentricity of a vertex in G is the radius of G, denoted by r(G),
and the of maximum eccentricity of a vertex of G is called the diameter of G, denoted by
diam(G). A vertex v of G whose eccentricity is equal to the radius of G is a central vertex.

For any real number x, dxe denotes the smallest integer greater than or equal to x and bxc
1Received January 5, 2010. Accepted March 20, 2010.
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denotes the greatest integer less than or equal to x. We recall that kth power of a graph G,
denoted by Gk is the graph on the vertices of G with two vertices u and v are adjacent in Gk

whenever d(u, v) ≤ k. The graph G3 is called a cube of G.

A labeling of a connected graph is an injection f : V (G) → Z+, while a Smarandache k-
radio labeling of a connected graph G is an assignment of distinct positive integers to the vertices
of G, with x ∈ V (G) labeled f(x), such that d(u, v)+ |f(u)−f(v)| ≥ k+diam(G). Particularly,
if k = 1, such a Smarandache radio k-labeling is called radio labeling for abbreviation. The
radio number rn(f) of a radio labeling f of G is the maximum label assigned to a vertex of G.
The radio number rn(G) of G is min{rn(f)}, over all radio labelings f of G. A radio labeling
f of G is a minimal radio labeling of G if rn(f) = rn(G).

Radio labeling is motivated by the channel assignment problem introduced by Hale et al
[10] in 1980. The radio labeling of a graph is most useful in FM radio channel restrictions to
overcome from the effect of noise. This problem turns out to find the minimum of maximum
frequencies of all the radio stations considered under the network.

The notion of radio labeling was introduced in 2001, by G. Chartrand, David Erwin, Ping
Zhang and F. Harary in [2]. In [2] authors showed that if G is a connected graph of order
n and diameter two, then n ≤ rn(G) ≤ 2n − 2 and that for every pair k, n of integers with
n ≤ k ≤ 2n − 2, there exists a connected graph of order n and diameter two with rn(G) = k.
Also, in the same paper a characterization of connected graphs of order n and diameter two
with prescribed radio number is presented.

In 2002, Ping Zhang [15] discussed upper and lower bounds for a radio number of cycles.
The bounds are showed to be tight for certain cycles. In 2004, Liu and Xie [5] investigated
the radio number of square of cycles. In 2007, B. Sooryanarayana and Raghunath P [12] have
determined radio labeling of cube of a cycle, for all n ≤ 20, all even n ≥ 20 and gave bounds
for other cycles. In [13], they also determined radio number of the graph C4

n, for all even n and
odd n ≤ 25.

A radio labeling is called radio graceful if rn(G) = n. In [12] and [13] it is shown that the
graph C3

n is radio graceful if and only if n ∈ {3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 18, 19} and C4
n is radio

graceful if and only if n ∈ {3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 23, 24, 25}.
In 2005, D. D. F. Liu and X. Zhu [7] completely determined radio numbers of paths and

cycles. In 2006, D. D. F. Liu [8] obtained lower bounds for the radio number of trees, and
characterized the trees achieving this bound. Moreover in the same paper, he gave another
lower bound for the radio number of the trees with at most one vertex of degree more than two
(called spiders) in terms of the lengths of their legs and also characterized the spiders achieving
this bound.

The results of D. D. F. Liu [8] generalizes the radio number for paths obtained by D. D. F.
Liu and X. Zhu in [7]. Further, D.D.F. Liu and M. Xie obtained radio labeling of square of paths
in [6]. In this paper, we completely determine the radio labeling of cube of a path. The main
result we prove in this paper is the following Theorem 1.1. The lower bound is established in
section 2 and a labeling procedure is given in section 3 to show that the lower bounds achieved
in section 3 are really the tight upper bounds.
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Theorem 1.1 Let P 3
n be a cube of a path on n (n ≥ 6 and n 6= 7) vertices. Then

rn(P 3
n)=





n2+12
6 , if n ≡ 0 (mod 6)

n2−2n+19
6 , if n ≡ 1 (mod 6)

n2+2n+10
6 , if n ≡ 2 (mod 6)

n2+15
6 , if n ≡ 3 (mod 6)

n2−2n+16
6 , if n ≡ 4 (mod 6)

n2+2n+13
6 , if n ≡ 5 (mod 6)

.

We recall the following results for immediate reference.

Theorem 1.2(Daphne Der-Fen Liu, Xuding Zhu [6]) For any integer n ≥ 4,

rn(Pn) =





2k2 + 3, if n = 2k + 1;

2k2 − 2k + 2 if n = 2k

Lemma 1.3(Daphne Der-Fen Liu, Melanie Xie [7]) Let P 2
n be a square path on n vertices with

k = bn
2 c. Let {x1, x2, . . . , xn} be a permutation of V (P 2

n) such that for any 1 ≤ i ≤ n− 2,

min{dPn
(xi, xi+1), dPn

(xi+1, xi+2) ≤ k + 1,

and if k is even and the equality in the above holds, then dPn(xi, xi+1) and dPn(xi+1, xi+2)
have different parities. Let f be a function, f : V (P 2

n) → {0, 1, 2, . . .} with f(x1) = 0, and
f(xi+1)− f(xi) = k + 1− d(xi, xi+1) for all 1 ≤ i ≤ n− 1. Then f is a radio-labeling for P 2

n .

§2. Lower Bound

In this section we establish the lower bound for Theorem 1.1. Throughout, we denote a path
on n vertices by Pn, where V (Pn) = {v1, v2, v3 . . , vn} and E(Pn) ={vivi+1 | i = 1, 2, ..., n−1}.
A path on odd length is called an odd path and that of even length is called an even path.

Observation 2.1 By the definition of P 3
n , for any two vertices u, v ∈ V (P 3

n), we get

dP 3
n
(u, v) =

⌈
dPn (u,v)

3

⌉
and diam(P 3

n) =
⌈

n−1
3

⌉

Observation 2.2 An odd path P2k+1 on 2k + 1 vertices has exactly one center namely vk+1,
while an even path P2k on 2k vertices has two centers vk and vk+1.

For each vertex u ∈ V (P 3
n), the level of u, denoted by l(u), is the smallest distance in Pn

from u to a center of Pn. Denote the level of the vertices in a set A by L(A).

Observation 2.3 For an even n, the distance between two vertices vi and vj in P 3
n is given by

their corresponding levels as;
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d(vi, vj) =





⌈
|l(vi)−l(vj)|

3

⌉
, whenever 1 ≤ i, j ≤ n

2 or n+2
2 ≤ i, j ≤ n

⌈
l(vi)+l(vj)+1

3

⌉
, otherwise

(1)

Observation 2.4 For an odd n, the distance between two vertices vi and vj in P 3
n is given by

their corresponding levels as;

d(vi, vj) =





⌈
|l(vi)−l(vj |)

3

⌉
, whenever 1 ≤ i, j ≤ n+1

2 or n+1
2 ≤ i, j ≤ n

⌈
l(vi)+l(vj)

3

⌉
, otherwise

(2)

Observation 2.5 If n is even, then

L(V (P 3
n)) =

{
n
2 − 1, n

2 − 2, . . . , 2, 1, 0, 0, 1, 2, . . . , n
2 − 2, n

2 − 1
}
.

Therefore ∑

vi∈V (P 3
n)

l(vi) = 2
[
1 + 2 + · · ·+ n

2
− 1

]
=

n

2

{n

2
− 1

}
=

n2 − 2n

4
(3)

Observation 2.6 If n is odd, then

L(V (P 3
n) =

{
n−1

2 , n−1
2 − 1, . . . 2, 1, 0, 1, 2, . . . n−1

2 − 1, n−1
2

}
.

Therefore

∑

vi∈V (P 3
n)

l(vi) = 2
[
1 + 2 + · · ·+ n− 1

2

]
=

n− 1
2

{
n + 1

2

}
=

n2 − 1
4

(4)

Let f be a radio labeling of the graph P 3
n . Let x1, x2, . . . , xn be the sequence of the

vertices of P 3
n such that f(xi+1) > f(xi) for every i, 1 ≤ i ≤ n− 1. Then we have

f(xi+1)− f(xi) ≥ diam(P 3
n) + 1− d(xi+1, xi) (5)

for every i, 1 ≤ i ≤ n− 1.
Summing up n− 1 inequalities in (5), we get

n−1∑

i=1

[f(xi+1)− f(xi)] ≥
n−1∑

i=1

[diam(P 3
n) + 1]−

n−1∑

i=1

d(xi+1, xi) (6)

The terms in the left hand side of the inequality (6) cancels each other except the first and
the last term, therefore, inequality (6) simplifies to

f(xn)− f(x1) ≥ (n− 1)[diam(P 3
n) + 1]−

n−1∑

i=1

d(xi+1, xi) (7)
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If f is a minimal radio labeling of P 3
n , then f(x1) = 1 (else we can reduce the span of f

by f(xn) − f(x1) + 1 by reducing each label by f(x1) − 1). Therefore, inequality (7) can be
written as

f(xn) ≥ (n− 1)[diam(P 3
n) + 1]−

n−1∑

i=1

d(xi+1, xi) + 1 (8)

By the observations 2.3 and 2.4, for every i, 1 ≤ i ≤ n− 1 it follows that

d(xi+1, xi) ≤
⌈

l(xi+1) + l(xi) + 1
3

⌉
≤ l(xi+1) + l(xi)

3
+ 1 (9)

whenever n is even. And

d(xi+1, xi) ≤
⌈

l(xi+1) + l(xi)
3

⌉
≤ l(xi+1) + l(xi)

3
+

2
3

(10)

whenever n is odd.
Inequalities (9) and (10), together gives,

n−1∑

i=1

d(xi+1, xi) ≤
n−1∑

i=1

[
l(xi+1) + l(xi)

3
+ k

]

where k = 1, if n is even and k = 2
3 if n is odd.

⇒
n−1∑

i=1

d(xi+1, xi) ≤ 1
3
× 2

n∑

i=1

l(xi)− 1
3

[l(xn) + l(x1)] + k(n− 1)

⇒
n−1∑

i=1

d(xi+1, xi) ≤ 2
3

n∑

i=1

l(xi) + k(n− 1)− 1
3

[l(x1) + l(xn)] (11)

From the inequalities 8 and 11, we get

f(xn) ≥ (n− 1)[diam(P 3
n) + 1]− 2

3

n∑

i=1

l(xi) + 1− k(n− 1) +
1
3

[l(x1) + l(xn)]

⇒ f(xn) ≥ (n− 1)diam(P 3
n)− 2

3

n∑

i=1

l(xi) + 1 + (1− k)(n− 1) +
1
3

[l(x1) + l(xn)] (12)

We now observe that the equality between the second and third terms in (9) holds only if
l(xi+1) + l(xi) ≡ 0 (mod 3) and the equality between the second and third terms in holds only
if(10) l(xi+1) + l(xi) ≡ 1 (mod 3). Therefore, there are certain number of pairs (xi+1, xi) for
which the strict inequality holds. That is, the right hand side of (9) as well as (10) will exceed
by certain amount say ξ. Thus, the right hand side of (12) can be refined by adding an amount
ξ as;

f(xn) ≥
⌈
(n− 1)diam(P 3

n)− 2
3

n∑

i=1

l(xi) + 1 + (1− k)(n− 1) + η + ξ

⌉
(13)
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where η = 1
3 [l(xi) + l(xi+1)].

We also see that the value of ξ increases heavily if we take a pair of vertices on same side of
the central vertex. So, here onwards we consider only those pairs of vertices on different sides
of a central vertex.

Observation 2.7 All the terms in the right side of the inequality (13), except ξ and η, are
the constants for a given path Pn. Therefore, for a tight lower bound these quantities must be
minimized. If n is even, we have two cental vertices and hence a minimal radio labeling will start
the label from one of the central vertices and end at the other vertex, so that l(x1) = l(xn) = 0.
However, if n is odd, as the graph Pn has only one central vertex, either l(x1) > 0 or l(xn) > 0.
Thus, η ≥ 0 for all even n, and η ≥ 1

3 for all odd n.

The terms η and ξ included in the inequality (13) are not independent. The choice of
initial and final vertices for a radio labeling decides the value of η, but at the same time it (this
choice) also effect ξ (since ξ depends on the levels in the chosen sequence of vertices). Thus,
for a minimum span of a radio labeling, the sum η + ξ to be minimized rather than η or ξ.

Observation 2.8 For each j, 0 ≤ j ≤ 2, define Lj = {v ∈ V (P 3
n)|l(v) ≡ j(mod 3)} and for

each pair (xi+1, xi), 1 ≤ i ≤ n− 1 of vertices of V (P 3
n), let

ξi =
{

l(xi+1)+l(xi)
3 + 1

}
−

⌈
l(xi+1)+l(xi)+1

3

⌉
, if n is even, or

ξi =
{

l(xi+1)+l(xi)
3 + 2

3

}
−

⌈
l(xi+1)+l(xi)

3

⌉
, if n is odd.

Then there are following three possible cases:

Possibility 1: Either (i) both xi+1, xi ∈ L0 or (ii) one of them is in L1 and the
other is in L2. In this case

ξi=





0, if n is even

2
3 , if n is odd

.

Possibility 2: Either (i) both xi+1, xi ∈ L2 or (ii) one of them is in L0 and the
other is in L1. In this case

ξi=





1
3 , if n is even

0, if n is odd
.

Possibility 3: Either (i) both xi+1, xi ∈ L1 or (ii) one of them is in L0 and the
other is in L2. In this case

ξi=





2
3 , if n is even

1
3 , if n is odd

.
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Observation 2.9 For the case n is even, the Possibility 1 given in the Observation 2.8 holds for
every pair of consecutive vertices in the sequence of the form either lα1 , rα2 , lα3 , rα4 , lα5 , rα6 , . . . ,

or lβ1 , rγ1 , lβ2 , rγ2 , lβ3 , rγ3 , . . . ,, where lαi , lβi , lγi denote the vertices in the left of a central vertex
and at a level congruent to 0, 1, 2 under modulo 3 respectively, and, rαi

,rβi
, rγi

denote the
corresponding vertices in the right side of a central vertex of the path Pn. The first sequence
covers only those vertices of P 3

n which are at a level congruent to 0 under modulo 3, and,
the second sequence covers only those vertices of L1 (or L2) which lie entirely on one side of
a central vertex. Now, as the sequence x1, x2, . . . , xn covers the entire vertex set of P 3

n , the
sequence should have at least one pair as in Possibility 2 (taken this case for minimum ξi) to
link a vertex in level congruent to 0 under modulo 3 with a vertex not at a level congruent to
0 under modulo 3. For this pair ξi ≥ 1

3 . Further, to cover all the left as well as right vertices in
the same level congruent to i, 1 ≤ i ≤ 2, we again require at least one pairs as in Possibility 2
or 3. Thus, for this pair again we have ξi ≥ 1

3 . Therefore,

ξ =
n∑

i=1

ξi ≥ 2
3

for all even n.

The above Observation 2.9 can be visualize in the graph called level diagram shown in
Figures 1 and 2. A Hamilton path shown in the diagram indicates a sequence x1, x2, . . . , xn

where thin edges join the pair of vertices as in Possibility 1 indicted in Observation 2.8 and
the bold edges are that of Possibility 2 or 3. Each of the subgraphs G0,0, G1,2 and G2,1 is a
complete bipartite graph having only thin edges and s = dn−4

6 e.

1αl

2αl

3αl

s
lα

1αr

2αr

3αr

s
rα

1βl

2βl

3βl

s
lβ

1γr

2γr

3γr

s
rγ

1γl

2γl

3γl

s
lγ

1βr

2βr

3βr

s
rβ

G0,0

G1,2 G2,1

Figure 1: For P 3
n when n ≡ 0 or 2 (mod 6).

1αl

2αl

3αl

s
lα

1αr

2αr

3αr

s
rα

1βl

2βl

3βl

s
lβ

1γr

2γr

3γr

s
rγ

1γl

2γl

3γl

s
lγ

1βr

2βr

3βr

s
rβ

G0,0

G1,2 G2,1

Figure 2: For P 3
n when n ≡ 0 or 2 (mod 6).

If ξ = 2
3 and n ≡ 0 (mod 6), then only two types of Hamilton paths are possible as shown

in Figures ?? and ??. In each of the case either l(x1) > 0 or l(xn) > 0, therefore η ≥ 1
3 . Hence

η + ξ ≥ 1 in this case.
If η = 0, then both the starting and the ending vertices should be in the subgraph G0,0.

Thus, one of the thin edges in G0,0 to be broken and one of its ends to be joined to a vertex in
G1,2 and the other to a vertex in G2,1 with bold edges. These two edges alone will not connect
the subgraphs, so to connect G1,2 and G2,1 we need at least one more bold edge. Therefore,
ξ ≥ 1 and hence η + ξ ≥ 1 in this case also.
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In all the other possibilities for the case n ≡ 0 or 2 under modulo 6, we have η ≥ 1
3 and

ξ ≥ 2
3 , so clearly η + ξ ≥ 1.
The situation is slightly different for the case when n ≡ 4 (mod 6). In this case;
If ξ = 2

3 , then there is one and only one possible type of Hamilton path as shown in Figure
??, so l(x1) > 0 and l(xn) > 0 implies that η ≥ 2

3 and hence η + ξ ≥ 4
3 .

Else if, η = 0, then two bold edges are required. One edge is between a vertex of G1,2 and
a vertex of G0,0, and, the other edge between a vertex of G2,1 and a vertex of G0,0 (for each
such edges ξi ≥ 1

3 ). These two edges will not connect all the subgraphs. For this, we require
an edge between a vertex of G1,2 and a vertex of G2,1, which can be done minimally only by
an edge between a pair of vertices as in Possibility 3 indicated in observation 2.8 (for such an
edge ξi = 2

3 ). Thus, ξ ≥ 2× 1
3 + 2

3 = 4
3 .

If ξ = 1, then the possible Hamilton path should contain at least either (i) one edge between
G1,2 and G2,1, and, another edge from G0,0, or, (ii) three edges from G0,0. The first case is
impossible because we can not join the vertices that lie on the same side of a central vertex
with ξ = 1 and the second case is possible only if η ≥ 1

3 .
Hence, for all even n, we get

η + ξ ≥ 1, if n ≡ 0 or 2 (mod 6) (14)

η + ξ ≥ 4
3
, if n ≡ 4 (mod 6) (15)

1αl

2αl

3αl

s
lα

1αr

2αr

3αr

s
rα

1βl

2βl

3βl

1−s
lβ

1γr

2γr

3γr

1−s
rγ

1γl

2γl

3γl

1−s
lγ

1βr

2βr

3βr

1−s
rβ

G0,0

G1,2 G2,1

s
lβ

s
rβ

Figure 3: A Hamilton path in a level
graph for the case n ≡ 4 (mod 6)

1βl

2βl

s
lβ

1βr

2βr

s
rβ

1αl

2αl

k
lα

1αr

2αr

k
rα

1γl

2γl

s
lγ

1γr

2γr

s
rγ

0C

0,1G 1,0G

2,2G

Figure 4: Level graph for the case n ≡ 3 or 5 (mod 6).

Observation 2.10 For the case n is odd, the Possibility 2 given in observation 2.8 holds for
every pair of consecutive vertices in the sequence of the form lβ1 , rα1 , lβ2 , rα2 , lβ3 , rα3 , . . . , or
rβ1 , lα1 , rβ2 , lα2 , rβ3 , lα3 , . . . , or lγ1 , rγ1 and lγ2 , rγ2 , lγ3 , rγ3 , . . . , where lαi , lβi , lγi denote
the vertices in the left of a central vertex and at a level congruent to 0, 1, 2 under modulo 3
respectively, and, rαi

,rβi
and rγi

denote the corresponding vertices in the right side of a central
vertex of the path Pn. Let C0 be the central vertex. Then C0 can be joined to one of the first
two sequences or the first sequence can be combined with second sequence through C0. The
third sequence covers only those vertices of P 3

n which are at a level congruent to 2 under modulo
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3, and, the first two sequences are disjoint. Hence to get a Hamilton path x1, x2, . . . , xn to
cover the entire vertex set of P 3

n , it should have at least a pair as in Possibility 3, (if the vertex
C0 combines first and second sequences) or at least two pairs that are not as in Possibility 1.
Therefore, as the graph contains only one center vertex,

η ≥ 1
3

and ξ ≥ 1
3

The above observation 2.10 will be visualized in the Figure 4.
In either of the cases, we claim that η + ξ ≥ 5

3

We note here that, if we take more than three edges amongst G1,0, G0,1 and G2,2 in the
level graphs shown in Figure 4, then ξ ≥ 4× 1

3 , so the claim follows immediately as η ≥ 1
3 .

Case 1: If η = 1
3 , then l(x1) = 0, so the vertex C0 is in either first sequence or in the second

sequence (as mentioned in the Observation 2.10), but not in both. Hence at least two edges are
required to get a Hamilton path. The minimum possible edges amongst G1,0, G0,1 and G2,2)
are discussed in the following cases.

Subcase 1.1: With two edges
The only possible two edges (in the sense of minimum ξ) are shown in Figure 5. Thus,

ξ ≥ 2
3 + 2

3 = 4
3 . Hence the claim.

1βl

2βl

s
lβ

1βr

2βr

s
rβ

1αl

2αl

k
lα

1αr

2αr

k
rα

1γl

2γl

s
lγ

1γr

2γr

s
rγ

0C

0,1G 1,0G

2,2G

Figure 5: Level graph(n ≡ 3 or 5 (mod 6)).

1βl

2βl

s
lβ

1βr

2βr

s
rβ

1αl

2αl

k
lα

1αr

2αr

k
rα

1γl

2γl

s
lγ

1γr

2γr

s
rγ

0C

0,1G 1,0G

2,2G

Figure 6: hamilton cycle(η = 1
3
, n ≡ 3, 5(mod 6)).

Subcase 1.2: With three edges
The only possible three edges are shown in Figures 5 and 6. In each case, ξ ≥ 4

3 . Hence
the claim.

Case 2: If η = 2
3 , then either l(x1) = 0 and l(xn) = 2, or, l(x1) = 1 and l(xn) = 1. In

the first case at least two edges are necessary, both these edges can not be as in Possibility 3
(because two such edges disconnect G0,1 or disconnect G2,2 or form a tree with at least three
end vertices as shown in Figure 7. Similar fact holds true for the second case also (Follows
easily from Figure 8.
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1βl

2βl

s
lβ

1βr

2βr

s
rβ

1αl

2αl

k
lα

1αr

2αr

k
rα

1γl

2γl

s
lγ

1γr

2γr

s
rγ

0C

0,1G 1,0G

2,2G

Figure 7: hamilton cycle for the case η = 1
3

and n ≡ 3 or 5(mod 6).

1βl

2βl

s
lβ

1βr

2βr

s
rβ

1αl

2αl

k
lα

1αr

2αr

k
rα

1γl

2γl

s
lγ

1γr

2γr

s
rγ

0C

0,1G 1,0G

2,2G

Figure 8: hamilton cycle for the case η = 2
3 and

n ≡ 3 or 5(mod 6).

Hence ξ ≥ 1
3 + 2

3 . Therefore,

ξ + η ≥ 5
3

for n ≡ 3 or 5 (mod 3) (16)

The case n ≡ 1(mod 3) follows similarly.

We now prove the necessary part of the Theorem 1.1.

Case 1: n ≡ 0 (mod 6) and n ≥ 6

Substituting the minimum possible bound for η + ξ = 1 (as in equation (14)) diam(P 3
n) =

dn−1
3 e = n

3 ,
∑n

i=1 l(xi) = n2−2n
4 (follows by Observation 2.5) and k = 1 in the inequality (13),

we get

f(xn) ≥
⌈
(n− 1)

n

3
− 2

3

(
n2 − 2n

4

)
+ 1 + 1

⌉

⇒ f(xn) ≥
⌈

n2

6
+ 2

⌉
=

n2

6
+ 2 (17)

Hence rn(P 3
n) ≥ n2+12

6 , whenever n ≡ 0 (mod 6) and n ≥ 6.

Case 2: n ≡ 1 (mod 6) and n ≥ 13

Substituting the minimum possible bound for η + ξ = 5
3 (as in equation (14)), diam(P 3

n) =
dn−1

3 e = n−1
3 ,

∑n
i=1 l(xi) = n2−1

4 and k = 2
3 in the inequality (13), we get

f(xn) ≥
⌈
(n− 1)

(
n− 1

3

)
− 2

3

(
n2 − 1

4

)
+ 1 +

1
3
(n− 1) +

5
3

⌉

⇒ f(xn) ≥ (n− 1)
(

n− 1
3

)
− 2

3

(
n2 − 1

4

)
+

1
3
(n− 1) + 3 =

n2 − 2n + 19
6

(18)
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Hence rn(P 3
n) ≥ n2−2n+19

6 , whenever n ≡ 1 (mod 6) and n ≥ 13.

Case 3: n ≡ 2 (mod 6) and n ≥ 8

Substituting the minimum possible bound for η + ξ = 1 (as in equation (14)), diam(P 3
n) =

dn−1
3 e = n+1

3 ,
∑n

i=1 l(xi) = n2−2n
4 and k = 1 in the inequality (13), we get

f(xn) ≥
⌈
(n− 1)

n + 1
3

− 2
3

(
n2 − 2n

4

)
+ 1 + 1

⌉

⇒ f(xn) ≥
⌈

(n− 2)2

6
+ n + 1

⌉
=

(n− 2)2

6
+ n + 1 =

n2 + 2n + 10
6

(19)

Hence rn(P 3
n) ≥ n2+2n+10

6 , whenever n ≡ 2 (mod 6) and n ≥ 8.

Case 4: n ≡ 3 (mod 6) and n ≥ 9

Substituting η + ξ = 5
3 , diam(P 3

n) = dn−1
3 e = n

3 ,
∑n

i=1 l(xi) = n2−1
4 and k = 2

3 in the
inequality (13), we get

f(xn) ≥
⌈
(n− 1)

n

3
− 2

3

(
n2 − 1

4

)
+ 1 +

1
3
(n− 1) +

5
3

⌉

⇒ f(xn) ≥
⌈

(n− 3)2

6
+ n + 1

⌉
=

(n− 3)2

6
+ n + 1 =

n2 + 15
6

(20)

Hence rn(P 3
n) ≥ n2+15

6 , whenever n ≡ 3 (mod 6) and n ≥ 9.

Case 5: n ≡ 4 (mod 6) and n ≥ 10

Substituting the minimum possible bound for η + ξ = 4
3 (as in equation (15)), diam(P 3

n) =
dn−1

3 e = n−1
3 ,

∑n
i=1 l(xi) = n2−2n

4 and k = 1 in the inequality (13), we get

f(xn) ≥
⌈
(n− 1)

n− 1
3

− 2
3

(
n2 − 2n

4

)
+ 1 +

4
3

⌉

f(xn) ≥
⌈

(n− 4)2

6
+ n

⌉
=

(n− 4)2

6
+ n =

n2 − 2n + 16
6

(21)

Hence rn(P 3
n) ≥ n2−2n+16

6 , whenever n ≡ 4 (mod 6) and n ≥ 10.

Case 6: n ≡ 5 (mod 6) and n ≥ 11

Substituting η + ξ = 5
3 , diam(G) = dn−1

3 e = n+1
3 ,

∑n
i=1 l(xi) = n2−1

4 and k = 2
3 in the

inequality (13), we get

f(xn) ≥
⌈
(n− 1)

n + 1
3

− 2
3

(
n2 − 1

4

)
+ 1 +

1
3
(n− 1) +

5
3

⌉
=

⌈
n2 + 2n + 13

6

⌉

⇒ f(xn) ≥
⌈

(n− 5)2

6
+ 2(n− 1)

⌉
=

(n− 5)2

6
+ 2(n− 1) =

n2 + 2n + 13
6

(22)

Hence rn(P 3
n) ≥ n2+n+13

6 , whenever n ≡ 5 (mod 6) and n ≥ 11.
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§3. Upper Bound and Optimal Radio-Labelings

We now establish Theorem 1.1, it suffices to give radio-labelings that achieves the desired spans.
Further, we will prove the following lemma similar to the Lemma 1.3 of Daphne Der-Fen Liu
and Melanie Xie obtained in [7].

Lemma 3.1 Let P 3
n be a cube path on n (n ≥ 6) vertices with k =

⌈
n−1

3

⌉
. Let {x1, x2, . . . , xn}

be a permutation of V (P 3
n) such that for any 1 ≤ i ≤ n− 2,

min{dPn(xi, xi+1), dPn(xi+1, xi+2)} ≤ 3k
2 + 1

if k is even and the equality in the above holds, then the sum of the parity congruent to 0 under
modulo 3. Let f be a function, f : V (P 3

n) → {1, 2, 3, . . .} with f(x1) = 1, and f(xi+1)− f(xi) =
k + 1 − d(xi, xi+1) for all 1 ≤ i ≤ n − 1, where d(xi, xi+1) = dP 3

n
(xi, xi+1). Then f is a

radio-labeling for P 3
n .

Proof Recall, diam(P 3
n) = k. Let f be a function satisfying the assumption. It suffices to

prove that f(xj)− f(xi) ≥ k + 1− d(xi, xj) for any j ≥ i + 2. For i = 1, 2, . . . , n− 1, set

fi = f(xi+1)− f(xi).

Since the difference in two consecutive labeling is at least one it follows that fi ≥ 1. Further,
for any j ≥ i + 2, it follows that

f(xj)− f(xi) = fi + fi+1 + · · ·+ fj−1.

Suppose j = i + 2. Assume d(xi, xi+1) ≥ d(xi+1, xi+2). (The proof for d(xi+1, xi+2) ≥
d(xi, xi+1) is similar.) Then, d(xi+1, xi+2) ≤ k+2

2 . Let xi = va, xi+1 = vb, and xi+2 = vc.
It suffices to consider the following cases.

Case 1: b < a < c or c < a < b

Since d(xi, xi+1) ≥ d(xi+1, xi+2), we obtain d(xi, xi+1) = d(xi+1, xi+2) ≤ k+2
2 and dPn

(xi, xi+2) ≤
2 so, d(xi, xi+2) = 1. Hence,

f(xi+2)− f(xi) = fi + fi+1

= k + 1− d(xi, xi+1) + k + 1− d(xi+1, xi+2)

≥ 2k + 2− 2
(

k + 2
2

)

= k + 1− 1

= k + 1− d(xi, xi+2)

Case 2: a < b < c or c < b < a
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In this case, d(xi, xi+2) ≥ d(xi, xi+1) + d(xi+1, xi+2)− 1 and hence

f(xi+2)− f(xi) = fi + fi+1

= k + 1− d(xi, xi+1) + k + 1− d(xi+1, xi+2)

= 2k + 2− {d(xi, xi+1) + d(xi+1, xi+2)}
= 2k + 2− {d(xi, xi+2) + 1}
= 2k + 1− d(xi, xi+2)

≥ k + 1− d(xi, xi+2)

Case 3: a < c < b or b < c < a

Assume min{dPn
(xi, xi+1), dPn

(xi+1, xi+2)} < 3k
2 + 1, then we have d(xi+1, xi+2) < k+2

2

and by triangular inequality,

d(xi, xi+2) ≥ d(xi, xi+1)− d(xi+1, xi+2)

Hence,

f(xi+2)− f(xi) = fi + fi+1

= k + 1− d(xi, xi+1) + k + 1− d(xi+1, xi+2)

= 2k + 2− [d(xi, xi+1)− d(xi+1, xi+2)]− 2d(xi+1, xi+2)

≥ 2k + 2− [d(xi, xi+2)]− 2d(xi+1, xi+2)

> 2k + 2− d(xi, xi+2)− 2
(

k + 2
2

)

= k − d(xi, xi+2)

Therefore,

f(xi+2)− f(xi) ≥ k + 1− d(xi, xi+2)

If min{dPn
(xi, xi+1), dPn

(xi+1, xi+2)} = 3k
2 + 1, then by our assumption, it must be that

dPn
(xi+1, xi+2) = 3k

2 + 1 (so k is even) ,and, sum of dPn
(xi, xi+1) and dPn

(xi+1, xi+2) is
congruent to 0 under modulo 3 implies that dPn

(xi, xi+1) 6≡ 0 (mod 3). Hence, we have

d(xi, xi+2) = d(xi, xi+1)− d(xi+1, xi+2) + 1.

This implies

f(xi+2)− f(xi) = fi + fi+1

= 2(k + 1)− [d(xi, xi+2)]− d(xi+1, xi+2)− d(xi+1, xi+2) + 1

≥ 2k + 2− 2[d(xi+1, xi+2)]− d(xi, xi+2) + 1

≥ 2k + 2− 2
(

k + 2
2

)
− d(xi, xi+2) + 1

= k + 1− d(xi, xi+2)

Let j = i + 3. First, we assume that the sum of some pairs of the distances d(xi, xi+1),
d(xi+1, xi+2), d(xi+2, xi+3) is at most k + 2. Then
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d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi+3) ≤ (k + 2) + k = 2k + 2

and hence,

f(xi+3)− f(xi) = 3k + 3− d(xi, xi+1)− d(xi+1, xi+2)− d(xi+2, xi+3)

≥ 3k + 3− (2k + 2)

= k + 1 > k + 1− d(xi, xi+3).

Next, we assume that the sum of every pair of the distances d(xi, xi+1), d(xi+1, xi+2) and
d(xi+2, xi+3) is greater than k + 2. Then, by our hypotheses, it follows that

d(xi, xi+1), d(xi+2, xi+3) ≥ k + 2
2

and d(xi+1, xi+2) ≤ k + 2
2

(23)

Let xi = va, xi+1 = vb, xi+2 = vc, xi+3 = vd. Since diam(P 3
n) = k, by equation

(23) and our assumption that the sum of any pair of the distances, d(xi, xi+1), d(xi+1, xi+2),
d(xi+2, xi+3), is greater than k + 2, it must be that a < c < b < d (or d < b < c < a). Then

d(xi, xi+3) ≥ d(xi, xi+1) + d(xi+2, xi+3)− d(xi+1, xi+2)− 1.

So,

d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi+3) ≤ d(xi, xi+3) + d(xi+1, xi+2) + 1

≤ d(xi, xi+3) +
k + 2

2
+ 1

= d(xi, xi+3) +
k

2
+ 2

By equation ??, we have

f(xi+3)− f(xi) = 3k + 3− d(xi, xi+1)− d(xi+1, xi+2)− d(xi+2, xi+3)

≥ 3k + 3− 2− k

2
− d(xi, xi+3)

= k + 1− d(xi, xi+3).

Let j ≥ i + 4. Since min{d(xi, xi+1), d(xi+1, xi+2)} ≤ k+2
2 , and fi ≥ k + 1 − d(xi, xi+1)

for any i, we have max{fi, fi+1} ≥ k
2 for any 1 ≤ i ≤ n− 2. Hence,

f(xj)− f(xi) ≥ fi + fi+1 + fi+2 + fi+3

≥
{

1 +
k

2

}
+

{
1 +

k

2

}

> k + 1 > k + 1− d(xi, xj)

¤
To show the existence of a radio-labeling achieving the desired bound, we consider cases

separately. For each radio-labeling f given in the following, we shall first define a permutation
(line-up) of the vertices V (P 3

n) = {x1, x2, . . . , xn}, then define f by f(x1) = 1 and for i =
1, 2, . . . , n− 1:

f(xi+1) = f(xi) + diam(P 3
n) + 1− dP 3

n
(xi, xi+1). (24)
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For the case n ≡ 0 (mod 6)

Let n = 6p. Then k =
⌈

n−1
3

⌉
= 2p ⇒ k

2 = p. Arrange the vertices of the graph P 3
n as

x1 = v3p+1, x2 = v2, x3 = v3p+3, . . . , xn = v3p as shown in the Table 1.
Define a function f by f(x1) = 1 and for all i, 1 ≤ i ≤ n− 1,

f(xi+1) = f(xi) + 2p + 1− dP 3
n
(xi, xi+1) (25)

The function f defined in equation (25) chooses the vertices one from the right of the central
vertex and other from the left for the consecutive labeling. The difference between two adjacent
vertices in Pn is shown above the arrow. Since the minimum of any two consecutive distances
is lesser than 3p + 1 and equal to 3p + 1 only if their sum is divisible by 3, by Lemma 3.1, it
follows that f is a radio labeling.

131 +=
p

vx  →
− ]13[ p

2
v  →

+13[ p

33 +p
v  →

−23 p

5
v  →

+13 p

63 +p
v  →

−23 p

8
v

 →
+13 p

•••  →
+13 p

36 −p
v  →

− ]23 p

13 −p
v  →

+ ]13[ p

p
v
6

 →
− ]16[ p

1
v

 →
+13[ p

23 +p
v  →

−23 p

4
v  →

+13 p

53 +p
v  →

−23 p

7
v  →

+13 p
•••  →

+13 p

46 −p
v  →

− ]23 p

23 −p
v  →

+ ]13[ p

16 −p
v  →

− ]46[ p

3
v  →

+13[ p

43 +p
v  →

−23 p

6
v  →

+13 p

73 +p
v  →

−23 p

9
v  →

+13 p
•••  →

+13p

26 −p
v  →

− ]23 p

np
xv =

3

Table 1: A radio-labeling procedure for the graph P 3
n when n ≡ 0 (mod 6)

For the labeling f defined above we get
n∑

i=1

d(xi, xi+1) =
⌈

3p− 1
3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉
+

⌈
6p− 1

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉
+

⌈
6p− 4

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 1)

= p + (2p + 1)(p− 1) + (p + 1) + 2p + (2p + 1) + (p− 1) +

(p + 1) + (2p− 1) + (2p + 1)(p− 1)

= 6p2 + 4p− 2.

Therefore,

f(xn) = (n− 1)(diamP 3
2 + 1)−

n∑

i=1

d(xi, xi+1) + f(x1)

= (6p− 1)(2p + 1)− (6p2 + 4p− 2) + 1

= 6p2 + 2 =
n2

2
+ 2.

Hence,
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rn(P 3
n) ≤ n2+12

6 , if n ≡ 0 (mod 6)

An example for this case is shown in Figure 9.

23 5 42 30 12 49

8 26 1 56 19 37

45 33 15 52 40 22

1v 2v
3v 4v 5v 6v

7v12v 11v
10v 9v 8v

14v 15v
16v 17v 18v13v

8x 2x
14x 10x 4x

16x

3x 9x
1x 18x 6x

12x

15x 11x
5x 17x 13x

7x

Figure 9: A minimal radio labeling of the graph P 3
18.

For the case n ≡ 1 (mod 6)

Let n = 6p + 1. Then k =
⌈

n−1
3

⌉
= 2p ⇒ k

2 = p. Arrange the vertices of the graph P 3
n as

x1 = v3p+1, x2 = v3, x3 = v3p+4, . . . , xn = v6p−1 as shown in the Table 2.

Define a function f by f(x1) = 1 and for all i, 1 ≤ i ≤ n− 1,

f(xi+1) = f(xi) + 2p + 1− dP 3
n
(xi, xi+1). (26)

For the function f defined in equation (26), The minimum difference between any two adjacent
vertices in Pn is shown in Table 2 is less than 3p + 1 and equal to 3p + 1 only if their sum is
divisible by 3, by Lemma 3.1, it follows that f is a radio labeling.

131 +=
p

vx  →
−23[ p

3
v  →

+13 p

43 +p
v  →

−23 p

6
v  →

+13 p

73 +p
v  →

−23 p

9
v

 →
+13 p

•••  →
−23 p

p
v

3
 →

+ ]13p

16 +p
v  →

−16 p

2
v  →

+13[ p

33 +p
v  →

−23 p

5
v  →

+13p

63 +p
v  →

−23 p
•••  →

−23 p

13 −p
v  →

+ ]13 p

p
v

6
 →
− ]16[ p

1
v  →

+13[ p

23 +p
v  →

−23 p

4
v  →

+13 p

53 +p
v  →

−23 p
•••  →

− ]23 p

23 −p
v  →

+13 p

np
xv =−16

Table 2: A radio-labeling procedure for the graph P 3
n when n ≡ 1 (mod 6)
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For the labeling f defined above we get

n∑

i=1

d(xi, xi+1) =
⌈

3p− 3
3

⌉
+

⌈
3p + 1

3

⌉
+

(⌈
3p− 2

3

⌉
+

⌈
3p + 1

3

⌉)
(p− 1) +

⌈
6p− 4

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉
+

⌈
6p− 1

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉
+

⌈
6p− 1

3

⌉
+

⌈
3p + 1

3

⌉

= 2p + (2p + 1)(p− 2) + 2p− 1 + (2p + 1)(p− 1) + 3p + 1 + (2p + 1)(p− 1) + 4p + 2

= 6p2 + 6p− 2.

Therefore,

f(xn) = (n− 1)(diamP 3
2 + 1)−

n∑

i=1

d(xi, xi+1) + f(x1)

= (6p)(2p + 1)− (6p2 + 6p− 2) + 1

= 6p2 + 3 =
n2 − 2n + 19

6
.

Hence,

rn(P 3
n) ≤ n2−2n+19

6 , if n ≡ 1 (mod 6) and n ≥ 13

An example for this case is shown in Figure 10.

41 23 5 48 30 12 55 37 19

22 40 58 15 33 51 8 26 44

1

Figure 10: A minimal radio labeling of the graph P 3
19.

For the case n ≡ 2 (mod 6)

Let n = 6p + 2. Then k =
⌈

n−1
3

⌉
= 2p + 1 ⇒ 3p + 2 < 3k

2 + 1. Arrange the vertices of the
graph P 3

n as x1 = v3p+1, x2 = v6p+2, x3 = v3p−2, . . . , xn = v3p+3 as shown in the Table 3.
Define a function f by f(x1) = 1 and for all i, 1 ≤ i ≤ n− 1,

f(xi+1) = f(xi) + 2p + 2− dP 3
n
(xi, xi+1) (27)

For the function f defined in equation (27), the minimum difference between any two adjacent
vertices in Pn is shown in Table 3 is not greater than 3p + 1 and k is odd, by Lemma 3.1, it
follows that f is a radio labeling.
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131 +=
p

vx  →
+13[ p

26 +p
v  →

+43 p

23 −p
v  →

+13p

16 −p
v  →

+43 p

53 −p
v  →

+13p

46 −p
v  →

+43 p
•••  →

+13 p

53 +p
v  →

+ ]43 p

1
v  →

+ ]13[ p

23 +p
v →

]2[

p
v

3

 →
+13[ p

16 +p
v  →

+43 p

33 −p
v  →

+13 p

26 −p
v  →

+43p

63 −p
v  →

+13 p

56 −p
v

 →
+43 p

93 −p
v •••  →

+ ]43 p

3
v  →

+ ]13[ p

43 +p
v →

]5[

13 −p
v  →

+13[ p

p
v

6

 →
+43 p

43 −p
v  →

+13 p

36 −p
v  →

+43 p

73 −p
v  →

+13 p

66 −p
v •••  →

+43 p

5
v

 →
+13 p

63 +p
v  →

+ ]43 p

2
v  →

+13p

np
xv =+33

Table 3: A radio-labeling procedure for the graph P 3
n when n ≡ 2 (mod 6)

For the labeling f defined above we get

n∑

i=1

d(xi, xi+1) =
(⌈

3p + 1
3

⌉
+

⌈
3p + 4

3

⌉)
(p) +

⌈
3p + 1

3

⌉
+

⌈
2
3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p + 4

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉
+

⌈
5
3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p + 4

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉

= (2p + 3)(p) + (p + 1) + 1 + (2p + 3)(p− 1) + (p + 1) +

2 + (2p + 3)(p− 1) + (p + 1)

= 6p2 + 8p.

Therefore,

22 71 47 15 64 40 8 57 33

5 37 61 12 44 68 19 51 75

1

26

Figure 11: A minimal radio labeling of the graph P 3
20.
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f(xn) = (n− 1)(diamP 3
2 + 1)−

n∑

i=1

d(xi, xi+1) + f(x1)

= (6p + 1)(2p + 2)− (6p2 + 8p) + 1

= 6p2 + p + 3 =
n2 + 2n + 10

6
.

Hence,

rn(P 3
n) ≤ n2+2n+10

6 ., if n ≡ 2 (mod 6)

An example for this case is shown in Figure 11.

For the case n ≡ 3 (mod 6)

Let n = 6p + 3. Then k =
⌈

n−1
3

⌉
= 2p + 1 ⇒ 3p + 2 < 3k

2 + 1. Arrange the vertices of the
graph P 3

n as x1 = v3p+1, x2 = v6p+2, x3 = v1, . . . , xn = v3p+4 as shown in the Table 4.

Define a function f by f(x1) = 1 and for all i, 1 ≤ i ≤ n− 1,

f(xi+1) = f(xi) + 2p + 2− dP 3
n
(xi, xi+1) (28)

For the function f defined in equation (28), the minimum difference between any two adjacent
vertices in Pn is shown in Table 4 is not greater than 3p + 1 and k is odd, by Lemma 3.1, it
follows that f is a radio labeling.

131 +=
p

vx  →
+ ]13[ p

26 +p
v  →

+ ]16[ p

1
v  →

+ ]13[ p

23 +p
v  →

+ ]13[ p

36 +p
v  →

+ ]16[ p

2
v  →

+13[ p

33 +p
v  →

−23 p

5
v  →

+13 p

63 +p
v  →

−23 p

8
v  →

+13 p

93 +p
v •••

36 −p
v  →

− ]23 p

13 −p
v  →

+ ]13[ p

p
v

6
 →

− ]46[ p

4
v  →

+13[ p

53 +p
v  →

−23p

7
v

 →
+13 p

83 +p
v  →

−23 p
•••

46 −p
v  →

− ]23 p

23 −p
v  →

+ ]13[ p

16 −p
v  →

− ]13[ p

p
v
3

 →
+13[ p

16 +p
v  →

+43 p

33 −p
v  →

+13 p

26 −p
v  →

+43p

63 −p
v  →

+13 p

56 −p
v •••

73 +p
v  →

+ ]43 p

3
v  →

+ ]13[ p

43 +p
v

n
x=

Table 4: A radio-labeling procedure for the graph P 3
n when n ≡ 3 (mod 6).
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For the labeling f defined above we get
n∑

i=1

d(xi, xi+1) =
⌈

3p + 1
3

⌉
+

⌈
6p + 1

3

⌉
+

⌈
3p + 1

3

⌉
+

⌈
6p + 1

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉
+

⌈
6p− 4

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 2

3

⌉)
(p− 2) +

⌈
3p + 1

3

⌉
+

⌈
3p− 1

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p− 4

3

⌉)
(p− 1) +

⌈
3p + 1

3

⌉

= (p + 1) + (2p + 1) + (p + 1) + (p + 1)(2p + 1) +

(2p + 1)(p− 1) + (p + 1) + (2p− 1) +

(2p + 1)(p− 2) + (p + 1) + p + (2p + 3)(p− 1) + (p + 1)

= 6p2 + 10p + 1.

Therefore,

f(xn) = (n− 1)(diamP 3
2 + 1)−

n∑

i=1

d(xi, xi+1) + f(x1)

= (6p + 2)(2p + 2)− (6p2 + 10p + 1) + 1

= 6p2 + 6p + 4 =
n2 + 15

6
.

Hence,

rn(P 3
n) ≤ n2+15

6 , if n ≡ 3 (mod 6)

An example for this case is shown in Figure 12.

6 15 72 40 24 65 49 33 58

14 5 62 37 53 69 28 44 76

1

19

10

Figure 12: A minimal radio labeling of the graph P 3
21

For the case n ≡ 4 (mod 6)

Let n = 6p + 4. Then k =
⌈

n−1
3

⌉
= 2p + 1 ⇒ 3p + 2 ≤ 3k

2 + 1. Arrange the vertices of the
graph P 3

n as x1 = v3p+1, x2 = v6p+2, x3 = v3p−2, . . . , xn = v6p+4 as shown in the Table 5.
Define a function f by f(x1) = 1 and for all i, 1 ≤ i ≤ n− 1,

f(xi+1) = f(xi) + 2p + 2− dP 3
n
(xi, xi+1). (29)
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For the function f defined in equation (29), the minimum difference between any two adjacent
vertices in Pn is shown in Table 5 is not greater than 3p + 4 and k is odd, by Lemma 3.1, it
follows that f is a radio labeling.

131 +=
p

vx  →
+ ]13[ p

26 +p
v  →

+ ]43[ p

23 −p
v  →

+13[ p

16 −p
v  →

+43 p

53 −p
v

 →
+13p

46 −p
v  →

+43 p

83 −p
v  →

+13 p
•••  →

+13 p

53 +p
v  →

+ ]43 p

1
v

 →
+ ]23[ p

33 +p
v  →

+13[ p

2
v  →

+43 p

63 +p
v  →

+13p

5
v  →

+43p
•••

 →
+43 p

p
v

6
 →
+13p

13 −p
v  →

+ ]13 p

36 +p
v  →

+ ]13[ p

23 +p
v  →

+ ]23[ p

46 +p
v

 →
+43[ p

p
v

3
 →
+13p

16 +p
v  →

+43p

33 −p
v  →

+13 p

26 −p
v  →

+43 p

63 −p
v

 →
+13 p

•••
73 +p

v  →
+43 p

3
v  →

+ ]13 p

43 +p
v

n
x=

Table 5: A radio-labeling procedure for the graph P 3
n when n ≡ 4 (mod 6).

For the labeling f defined above we get

n∑

i=1

d(xi, xi+1) =
⌈

3p + 1
3

⌉
+

⌈
3p + 4

3

⌉
+

(⌈
3p + 1

3

⌉
+

⌈
3p + 4

3

⌉)
(p− 1) +

(⌈
3p + 1

3

⌉
+

⌈
3p + 4

3

⌉)
(p) +

⌈
3p + 1

3

⌉
+

⌈
3p + 2

3

⌉
+

(⌈
3p + 4

3

⌉
+

⌈
3p + 1

3

⌉)
(p)

= (p + 1) + (p + 2) + (2p + 3)(p− 1) + (p + 1) + (2p + 3)p +

(p + 1) + (p + 1) + (2p + 3)p = 6p2 + 12p + 3.

Therefore,

f(xn) = (n− 1)(diamP 3
2 + 1)−

n∑

i=1

d(xi, xi+1) + f(x1)

= (6p + 3)(2p + 2)− (6p2 + 12p + 3) + 1

= 6p2 + 6p + 4 =
n2 − 2n + 16

6
.

Hence,

rn(P 3
n) ≤ n2−2n+16

6 , if n ≡ 4 (mod 6)

An example for this case is shown in Figure 13.

For the case n ≡ 5 (mod 6)

Let n = 6p + 5. Then k =
⌈

n−1
3

⌉
= 2p + 2 ⇒ 3p + 4 ≤ 3k

2 + 1. Arrange the vertices of the
graph P 3

n as x1 = v3p+3, x2 = v2, x3 = v3p+6, . . . , xn = v3p+4 as shown in the Table 6.
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11 17 37 6 22 32 1

30 24 4 35 19 9 40

27

14

Figure 13: A minimal radio labeling of the graph P 3
16.

Define a function f by f(x1) = 1 and for all i, 1 ≤ i ≤ n− 1,

f(xi+1) = f(xi) + 2p + 3− dP 3
n
(xi, xi+1) (30)

For the function f defined in equation (30), the maximum difference between any two adjacent
vertices in Pn is shown in Table 6 is less than or equal to 3p + 4 and the equality holds only if
their sum is divisible by 3, by Lemma 3.1, it follows that f is a radio labeling.

331 +=
p

vx  →
+13[ p

2
v  →

+43 p

63 +p
v  →

+13 p

5
v  →

+43 p

93 +p
v  →

+13 p
•••

 →
+13 p

13 −p
v  →

+ ]43 p

36 +p
v  →

+ ]13[ p

23 +p
v  →

+ ]33[ p

56 +p
v  →

+43[ p

13 +p
v

 →
+13p

26 +p
v  →

+43 p

23 −p
v  →

+13p

16 −p
v  →

+43 p
•••  →

+43 p

4
v

 →
+ ]13 p

53 +p
v  →

+ ]43[ p

1
v  →

+ ]36[ p

46 +p
v  →

+43[ p

p
v
3

 →
+13 p

16 +p
v

 →
+43 p

33 −p
v  →

+13 p

26 −p
v  →

+43p

63 −p
v  →

+13 p
•••  →

+13 p

73 +p
v

 →
+43 p

3
v  →

+ ]13 p

43 +p
v

n
x=

Table 6: A radio-labeling procedure for the graph P 3
n when n ≡ 5 (mod 6)

For the labeling f defined above we get

n∑

i=1

d(xi, xi+1) =
(⌈

3p + 1
3

⌉
+

⌈
3p + 4

3

⌉)
(p) +

⌈
3p + 1

3

⌉
+

⌈
3p + 3

3

⌉
+

(⌈
3p + 4

3

⌉
+

⌈
3p + 1

3

⌉)
(p) +

⌈
3p + 4

3

⌉
+

⌈
6p + 3

3

⌉
+

(⌈
3p + 4

3

⌉
+

⌈
3p + 1

3

⌉)
(p)

= (2p + 3)p + (p + 1) + (p + 1) + (2p + 1)p + (p + 2) +

(2p + 1) + (2p + 3)(p) = 6p2 + 14p + 5.
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Therefore,

f(xn) = (n− 1)(diamP 3
2 + 1)−

n∑

i=1

d(xi, xi+1) + f(x1)

= (6p + 4)(2p + 3)− (6p2 + 14p + 5) + 1

= 6p2 + 12p + 8 =
n2 + 2n + 13

6
.

Hence,

rn(P 3
n) ≤ n2+2n+13

6 , if n ≡ 5 (mod 6)

An example for this case is shown in Figure 14.

6 93 60 15 84 51 24 75 42

71 28 47 80 19 56 89 10 65

33

98

1

69

38

Figure 14: A minimal radio labeling of the graph P 3
23.

§4. Radio labeling of P 3
n for n ≤ 5 or n = 7

In this section we determine radio numbers of cube path of small order as a special case.

Theorem 4.1 For any integer n, 1 ≤ n ≤ 5, the radio number of the graph P 3
n is given by

rn(P 2
n) =





n, if n = 1, 2, 3, 4

8, if n = 5, 7

Proof If n ≤ 4, the graph is isomorphic to Kn and hence the result follows immediately.
Now consider the case n = 5, we see that there is exactly one pair of vertices at a distance 2
and all other pairs are adjacent, so maximum value of

∑4
1 d(xi, xi+1) = 2 + 1 + 1 + 1 = 5.

Now, consider a radio labeling f of P 3
5 and label the vertices as x1, x2, x3, x4, x5 such that

f(xi) < f(xi+1), then

f(xn)− f(x1) ≥ (n− 1)(diamP 3
5 + 1)−

4∑
1

d(xi, xi+1)

≥ 4(3)− 5 = 7

⇒ f(xn) ≥ 7 + f(x1) = 8
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4

3

8

6

1

Figure 15: A minimal radio labeling of P 3
5 .

includegraphics[width=8cm]figlast2.eps

Figure 16: A minimal radio labeling of P 3
7

On the other hand, In the Figure 15, we verify that the labels assigned for the vertices serve as
a radio labeling with span 8, so rn(P 3

n) = 8.

, similarly if n = 7, then, as the central vertex of P 3
n is adjacent to every other vertex,

maximum value of
∑6

i = 1d(xi, xi+1) = 2 × 5 + 1 = 11. So, as above, f(xn) ≥ (6)(2 + 1) −
11 + 1 = 8. The reverse inequality follows by the Figure 16. Hence the theorem. ¤
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Abstract: A simple undirected graph is said to be semisymmetric if it is regular and

edge-transitive but not vertex-transitive. It is easy to see that every semisymmetric graph

is necessarily bipartite, with the two parts having equal size and the automorphism group

acting transitively on each of these two parts. A semisymmetric graph is called biprimitive

if its automorphism group acts primitively on each part. This paper gives a classification of

biprimitive semisymmetric graphs arising from the action of the group PSL(2, p) on cosets of

A5, where p ≡ 1 (mod10) is a prime. By the way, the structure of the suborbits of PGL(2, p)

on the cosets of A5 is determined.

Keywords: Smarandache multi-group, group, semisymmetric graph, Biprimitive semisym-

metric graph, suborbit.
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§1. Introduction

For the group- and graph-theoretic terminology we refer the reader to [1,7]. All graphs con-
sidered in this paper are finite, undirected and simple. For a graph X, we use V (X), E(X),
A(X) and Aut(X) to denote its vertex set, edge set, arc set and full automorphism group,
respectively. If X be a bipartite with bipartition V (X) = U(X) ∪W (X). Set

A+ = 〈g ∈ A | U(X)g = U(X),W (X)g = W (X)〉 .

Clearly, if X is connected then either |A : A+| = 2 or A = A+, depending on whether or not
there exists an automorphism which interchanges the two parts U(X) and W (X). Suppose G

is a subgroup of A+. Then X is said to be G-semitransitive if G acts transitively on both U(X)
and W (X), and semitransitive if X is A+-semitransitive. Also X is said to be biprimitive if A+

acts primitively on each part. We call a graph semisymmetric if it is regular and edge-transitive
but not vertex-transitive. It is easy to see that every semisymmetric graph is a bipartite graph
with two parts of equal size and is semitransitive.

The first person who studied semisymmetric graphs was Folkman. In 1967 he constructed

1Supported by NNSF(10971144) and BNSF(1092010).
2Received January 13, 2010. Accepted March 21, 2010.
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several infinite families of such graphs and proposed eight open problems (see [6]). Afterwards,
Bouwer, Titov, Klin, A.V. Ivanov, A.A. Ivanov and others did much work on semisymmetric
graphs (see [2-3,8-10,13]). They gave new constructions of such graphs and nearly solved all of
Folkman’s open problems. In particular, Iofinova and Ivanov [9] in 1985 classified biprimitive
semisymmetric cubic graphs using group-theoretical methods; this was the first classification
theorem for such graphs. More recently, following some deep results in group theory which
depend on the classification of finite simple groups, some new methods and results in vertex-
transitive graphs and semisymmetric graphs have appeared. In [5], for example, the authors
give a classification of semisymmetric graphs of order 2pq where p and q are distinct primes. It
is shown that there are 131 examples of such graphs, which are biprimitive. In [4] a classification
is given, of biprimitive semisymmetric graphs arising from the action of the group PSL(2, p),
p ≡ 1 (mod8) a prime, on cosets of S4. In this paper, we will classify all biprimitve graphs
arising from the action of the group PSL(2, p), p ≡ 1 (mod10) a prime, on cosets of A5. To
prove the classification theorem, we have to determine the suborbits of PGL(2, p) acts on the
cosets of A5 and such a determination will certainly be useful for other problems.

Throughout the paper, Zn and Dn denote the cyclic group of order n and the dihedral
group of order n, respectively. A semidirect product of the group N by the group H will be
denoted by N : H. Given a group G and a subgroup H of G, we use [G : H] to denote the
set of right cosets of H in G. The action of G on [G : H] is always assumed to be the right
multiplication action. More precisely, for g ∈ G, we use R(g) to denote the effect of right
multiplication of g on [G : H] and let R(G) = {R(g)|g ∈ G}. However, for convenience, in most
cases we will identify R(g) with g, except for the special cases to be stated.

A Smarandache multi-group G is an union of groups (G1; ◦1), (G2; ◦2), · · · , (Gn; ◦n), dif-
ferent two by two for an integer n ≥ 1. Particularly, if n = 1, then G is just a group. A
Smarandache multi-group G is naturally acting on its underlying graph G[G ]. In [5], the au-
thors gave a group-theoretic construction of semitransitive graphs by introducing the definition
of so called bi-coset graph as following: Let G be a group, let L and R be subgroups of G

and let D be a union of double cosets of R and L in G, namely, D = ∪iRdiL. Define a
bipartite graph X = B(G,L, R;D) with bipartition V (X) = [G : L] ∪ [G : R] and edge set
E(X) = {{Lg, Rdg}|g ∈ G, d ∈ D}. This graph is called the bi-coset graph of G with respect
to L, R and D.

Note that in the above construction of semitransitive graphs, if L and R are the same
subgroup, then we still use Lg and Rg to denote different vertices in the two parts of V (X).
It is proved in [5] that (1) the graph X = B(G,L, R;D) is a well-defined bipartite graph, and
under the right multiplication action on V (X) of G, the graph X is G-semitransitive; (2) every
G-semitranstive graph is isomorphic to one of such bi-coset graphs.

Now we state the main theorem of this paper.

Theorem 1.1 Let p ≡ 1(mod10), G = PSL(2, p) and Q = PGL(2, p). Let Y be a biprimitive
semisymmetric graph with a subgroup G of Aut(Y ) acting edge-transitively on Y and having
A5 as a vertex stabilizer. Then Y is isomorphic to one of the following graphs:

(i) B(G,L, L;D), where L ∼= A5 and D is a double coset corresponds to a non-self-paired
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suborbit of G relative to L.
(ii) B(G,L, Lσ;D), where σ is an involution in Q\G and LσdL corresponds to a non-self-

paired suborbit of Q relative to L.
Moreover, each such graph Y is of order p3−p

60 and valency 60, and with the automorphism
group PSL(2, p). Table 1 lists the total numbers n1 and n2 of nonisomorphic semisymmetric
graphs B(G,L, L;D) and B(G,L, Lσ, D) for each of the congruence classes of p.

TABLE 1.

p(mod120) n1 n2

1 p3−60p2+1077p−15418
14400

p3−60p2+1197p−1138
14400

−1 p3−60p2+1197p−13142
14400

p3−60p2+1077p+1138
14400

11 p3−60p2+1197p−7238
14400

p3−60p2+1077p−5918
14400

−11 p3−60p2+1077p−8362
14400

p3−60p2+1197p−7024
14400

31 p3−60p2+1197p−9238
14400

p3−60p2+1077p−5518
14400

−31 p3−60p2+1077p−8762
14400

p3−60p2+1197p−5042
14400

41 p3−60p2+1077p−12218
14400

p3−60p2+1197p−2738
14400

−41 p3−60p2+1197p−11542
14400

p3−60p2+1077p−2062
14400

61 p3−60p2+1077p−11818
14400

p3−60p2+1197p−4738
14400

−61 p3−60p2+1197p−9542
14400

p3−60p2+1077p−2462
14400

71 p3−60p2+1197p−10838
14400

p3−60p2+1077p−2318
14400

−71 p3−60p2+1077p−11962
14400

p3−60p2+1197p−3442
14400

91 p3−60p2+1197p−5638
14400

p3−60p2+1077p−9118
14400

−91 p3−60p2+1077p−5162
14400

p3−60p2+1197p−8642
14400

101 p3−60p2+1077p−8618
14400

p3−60p2+1197p−6338
14400

−101 p3−60p2+1197p−7942
14400

p3−60p2+1077p−5662
14400

§2. Preliminaries

In this section, some preliminary results are given. The first two propositions give some prop-
erties of the groups PSL(2, p) and PGL(2, p).

Proposition 2.1 ([11], Lemma 2.1) Let p be an odd prime. Then

(1) the maximal subgroups of PSL(2, p) are:

One class of subgroups isomorphic to Zp : Z p−1
2

; one class isomorphic to Dp−1, when
p > 13; one class isomorphic to Dp+1, when p 6= 7; two classes isomorphic to A5, when p ≡
1(mod10); two classes isomorphic to S4, when p ≡ 1(mod8); and one class isomorphic to A4,

when p = 5 or p 6≡ 1(mod8).

(2)The maximal subgroups of PGL(2, p) are:

One class of subgroups isomorphic to Zp : Zp−1; one class isomorphic to D2(p−1), when
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p > 7; one class isomorphic to D2(p+1); one class isomorphic to S4, when p = 5 or p 6≡ 1(mod40)
and p > 5; and one subgroup PSL(2, p).

Proposition 2.2 ([5], Lemma 3.9) Any extension of PSL(2, p) by Z2 is isomorphic to either
PGL(2, p) or PSL(2, p)× Z2. In both cases the extension is split.

Proposition 2.3 ([5], Lemma 2.3) The graph X = B(G,L, R;D) is a well-defined bipartite
graph. Under the right multiplication action on V (X) of G, the graph X is G-semitransitive.
The kernel of the action of G on V (X) is CoreG(L) ∩ CoreG(R), the intersection of the cores
of the subgroups L and R in G. Furthermore, we have

(i) X is G-edge-transitive if and only if D = RdL for some d ∈ G;
(ii) the degree of any vertex in [G : L] (resp. [G : R]) is equal to the number of right cosets

of R (resp. L) in D (resp. D−1), so X is regular if and only if |L| = |R|;
(iii) X is connected if and only if G is generated by elements of D−1D;
(iv) X ∼= B(G,La, Rb;D′) where D′ =

⋃
i Rb (b−1dia)La, for any a, b ∈ G.

The next proposition provides one general and three particular conditions, each of which
is sufficient for a G-semitransitive graph to be vertex-transitive.

Proposition 2.4 ([5], Lemma 2.6) Let X = B(G,L, R;D). If there exists an involutory auto-
morphism σ of G such that Lσ = R and Dσ = D−1, then X is vertex-transitive. In particular,

(i) If G is abelian and acts regularly on both parts of X, then X is vertex-transitive. In
other words, bi-Cayley graphs of abelian groups are vertex-transitive.

(ii) If there exists an involutory automorphism σ of G such that Lσ = R, and the lengths
of the orbits of L on [G : R] (or the orbits of R on [G : L]) are all distinct, then X is vertex-
transitive.

(iii) If the representations of G on the two parts of X are equivalent and all suborbits of G

relative to L are self-paired, then X is vertex-transitive.

The link between groups and graphs that we use is the concept of the orbital graph of a
permutation group. For the terminology of orbital graph we refer the reader to [12].

The following group theoretical results will be used later.

Proposition 2.5 ([11], Lemma 2.1) Let G be a transitive group on Ω and let H = Gα for some
α ∈ Ω. Suppose that K 6 G and at least one G-conjugate of K is contained in H. Suppose
further that the set of G-conjugates of K which are contained in H form t conjugacy classes of
H with representatives K1, K2, · · · , Kt. Then K fixes

∑t
i=1 |NG(Ki) : NH(Ki)| points of Ω.

Proposition 2.6 ([11], Lemma 2.2) Let G be a primitive permutation group on Ω, and let
H = Gα for some α ∈ Ω. Suppose that H = A5 and let K1, ... , K7 be seven subgroups of H

satisfying K1
∼= A4, K2

∼= D10, K3
∼= D6, K4

∼= Z5, K5
∼= Z3, K6

∼= D4 and K7
∼= Z2. Let ki

be the number of points in Ω fixed by Ki, for i = 1, 2, ... , 7. Then G has 1 suborbit of length 1,
k1−1 suborbits of length 5, k2−1 suborbits of length 6, k3−1 suborbits of length 10, 1

2 (k4−k2)
suborbits of length 12, 1

2 (k5− 2k1− k3 +2) suborbits of length 20, 1
3 (k6− k1) suborbits of length

15, 1
2 (k7− 2k2− 2k3− k6 +4) suborbits of length 30, and all the other suborbits have length 60.

Proposition 2.7 ([11], Lemma 2.3) Let D = D2n be the dihedral group of order 2n, considered
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as a permutation group of degree n generated by a = (1, 2, · · · , n) and b = (1)(2, n)(3, n −
1) · · · (i, n + 2 − i) · · · , for any n > 2. Then the nontrival orbitals of D are Γi = (1, i)D =
(1, n + 2 − i)D, for 2 6 i 6 (n + 2)/2. Each of these orbitals is self-paired. Moreover, for all
points i, j, with i 6= j, there is an involution in D which interchanges i and j.

Proposition 2.8 ([11], Lemma 2.4) Let G be a transitive group on Ω and let H = Gα for
some α ∈ Ω. Suppose that G has t conjugacy classes of involutions, say C1, · · · , Ct. Suppose
further that a representative uj in Cj has Nj cycles of length 2, and that the centralizer of
uj in G has order cj. Also for a nontrivial self-paired suborbit ∆ relative to α and a point
B ∈ ∆, let inv(∆) be the number of involutions in G with a 2-cycle (σ,B). Then

∑t
j=1

Nj

cj
=

1
2|H|

∑
∆=∆∗ |∆(α)|inv(∆), where cj is the order of the centralizer of uj.

§3. Proof of Theorem 1.1

Now we begin the proof of Theorem 1.1. From now on we shall assume that G = PSL(2, p) and
Q = PGL(2, p), where p ≡ 1 (mod10). Clearly, Q = G : 〈σ〉 for some involution σ ∈ Q \G. Let
Y be a semisymmetric biprimitive graph with a subgroup G of Aut(Y ) acting edge-transitively
on Y and having A5 as a vertex stabilizer. Let U(Y ) and W (Y ) be the bipartition of V (Y ).
Then |U(Y )| = |W (Y )| = p3−p

120 and Gv
∼= A5 for any v ∈ U(Y ) and v ∈ W (Y ). Now Y is

isomorphic to the bi-coset graph X = B(G,L, R;D), where L ∼= R ∼= A5. With our notation,
V (X) = U(X) ∪W (X) = [G : L] ∪ [G : R]. We will treat the following two cases separately:

(1) Suppose the representations of G on U(X) and W (X) are equivalent. In this case,
by Proposition 2.3 (iv), no loss of any generality, we may assume L = R ∼= A5. With the
completely similar arguments as in [5, Lemma 4.1], we may show that X is semisymmetric if
and only if D−1 6= D, that is, D corresponds to a non-self-paired suborbit of G relative to L,
and two such bi-coset graphs defined (for the same group G) by distinct double cosets D1 and
D2 are isomorphic if and only if D1 and D2 are paired with each other in G, or more precisely,
D1 = D−1

2 .

(2) Suppose the representations of G on U(X) and W (X) are inequivalent. Let Q =
PGL(2, p) = 〈G, σ〉, where σ ∈ Q \G and σ2 = 1. By the Proposition 2.1, G has two conjugacy
classes of subgroups isomorphic to A5, which are fused by σ. Therefore, we may let R = Lσ

so that X = B(G,L, Lσ;D) where D = LσdL for some d ∈ G. With the similar arguments as
in [5, Lemma 4.2], X is semisymmetric if and only if the suborbit LσdL of Q relative to L is
not self-paired, and two such graphs X1 = B(G,L, R;D1) and X2 = B(G,L, R;D2) defined by
distinct double cosets D1 := Rd1L and D2 := Rd2L respectively are isomorphic if and only if
D′

1 := Lσd1L and D′
2 := Lσd2L are paired with each other in Q = PGL(2, p).

Following the above two cases, we need to determine non-self-paired suborbits of G relative
to L and non-self-paired suborbits of Q relative to L which are contained in [Q : L] \ [G : L].
Noting that the number of non-self-paired suborbits of G relative to L is the same as the number
of non-self-paired suborbits of Q relative to L which are contained in [G : L]. From now on
let Ω = [Q : L], Ω1 = [G : L] and Ω2 = [Q : L] \ [G : L]. We will consider the action of Q on
Ω and find all non-self-paired suborbits of Q contained in Ω1 and in Ω2 as well. We shall do
this only for the case where G = PSL(2, p) and L = A5, p ≡ 1(mod 120), and for the other
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cases, similar arguments and computations lead to the data listed in Appendix: TABLE 4− 1-
TABLE 4− 4.

Let Ki (for 1 6 i 6 7) be the representatives of the seven conjugacy classes of nontrivial
subgroups of L isomorphic to A4, D10, D6, Z5, Z3, D4 and Z2, respectively, and let K8 = 1.
Clearly any nontrivial subgroup K of L with a fixed point on Ω must be conjugate to one of
these Ki. For each i ∈ {1, . . . , 8}, let ki, ki1 and ki2 denote the respective numbers of fixed
points of Ki in Ω, Ω1 and Ω2. Among of all the suborbits with the L-stabilizer Ki, let xi1

and xi2 denote the respective numbers of the suborbits contained in Ω1 and Ω2; let yi, yi1,
yi2 = yi − yi1 denote the respective numbers of self-paired suborbits contained in Ω, Ω1 and
Ω2; and let hi1 = xi1− yi1 and hi2 = xi2− yi2 denote the respective numbers of non-self-paired
suborbits contained in Ω1 and Ω2.

First we determine the values of xi1 and xi2. For i ∈ {1, . . . , 7}, these values are given
in TABLE 2 and are obtained in the following way. After having determined the respective
normalizers of each Ki in L and in G (resp. Q), we apply Proposition 2.5 to calculate ki1 (resp.
ki). Then ki2 = ki − ki1 can be found also. By Proposition 2.6, we can determine the values of
xi1 and xi2, 1 ≤ i ≤ 7.

TABLE 2.

i 1 2 3 4 5 6 7

Ki A4 D10 D6 Z5 Z3 D4 Z2

NL(Ki) A4 D10 D6 D10 D6 A4 D4

NG(Ki) S4 D20 D12 Dp−1 Dp−1 S4 Dp−1

ki1 2 2 2 p−1
10

p−1
6

2 p−1
4

xi1 1 1 1 p−1
20

− 1 p−1
12

− 2 0 p−1
8
− 3

NQ(Ki) S4 D20 D12 D2(p−1) D2(p−1) S4 D2(p−1)

ki 2 2 2 p−1
5

p−1
3

2 p−1
2

ki2 0 0 0 p−1
10

− 1 p−1
6

0 p−1
4

xi2 0 0 0 p−1
20

p−1
12

0 p−1
8

Finally,

x81 =
1
60

(
p3 − p

120
− 1−

7∑

i=1

xi1
60
|Ki|

)

=
1
60

(
p3 − p

120
− 1− 1 · 5− 1 · 6− 1 · 10−

(
p− 1
20

− 1
)
· 12

−
(

p− 1
12

− 2
)
· 20−

(
p− 1

8
− 3

)
· 30

)

=
p3 − 723p + 15122

7200

and a similar computation gives

x82 =
1
60

(
p3 − p

120
− 1−

7∑

i=2

xi2
60
|Ki|

)
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=
1
60

(
p3 − p

120
− 1− p− 1

20
· 12− p− 1

12
· 20− p− 1

8
· 30

)

=
p3 − 723p + 722

7200
.

Next we determine the values of hi1 and hi2. We claim all the non-regular suborbits of Q are
self-paired, so that hi1 = hi2 = 0 for 1 6 i 6 7. For example, let i = 7 and let ∆ be a suborbit
with L-stabilizer K7 = Z2, and take v ∈ ∆. We consider the action of NQ(K7) ∼= D2(p−1) on
Fix(K7), the set of fixed points of K7 on Ω. This action is transitive and the kernel is Z2.
Since |Fix(K7)| = p−1

2 , by Proposition 2.7, there exists an element in NQ(K7) interchanging
u = L and v. So ∆ is self-paired, or equivalently, h71 = h72 = 0.

It remains to determine h81 and h82, the numbers of non-self-paired suborbits of Q in Ω1

and in Ω2 respectively. For these it suffices to calculate y81 and y8, the numbers of self-paired
regular suborbits of Q in Ω1 and in Ω, since h81 = x81−y81, h82 = x82−y82 and y8 = y81 +y82.
By Proposition 2.8, in order to calculate y81 (resp. y8), we need the value of inv(∆), which
is defined in Proposition 2.8 for all self-paired suborbits ∆ of G (resp. Q). Furthermore, to
calculate inv(∆) we need to know Guv and G{u,v} (resp. Quv and Q{u,v}), where u = L and
v ∈ ∆.

The lengths li (1 6 i 6 8) of self-paired suborbits with point stabilizer Ki, the numbers
yi1 and yi, the groups Guv, G{u,v} and Quv and Q{u,v}, and the value of inv(∆) for each ∆ are
listed in the following table.

TABLE 3.

i li yi1 yi Guv = Quv G{u,v} = Q{u,v} inv(∆)

1 5 1 1 A4 S4 6

2 6 1 1 D10 D20 6

3 10 1 1 D6 D12 4

4 12 p−1
20

− 1 p−1
10

− 1 Z5 D10 5

5 20 p−1
12

− 2 p−1
6
− 2 Z3 D6 3

7 30 p−1
8
− 3 p−1

4
− 3 Z2 D4 2

8 60 y81 y8 1 Z2 1

Next we shall calculate y81 and y8 using Proposition 2.8. We know that Q has two conjugacy
classes of involutions. A representative of the first class, say u1 ∈ G, fixes p−1

2 points, and so u1

contains N1 =
p3−p

60 − p−1
2

2 = p3−31p+30
120 cycles of length 2. Further, CQ(u1) ∼= D2(p−1) has order

c1 = 2(p − 1). A representative of the second class, say u2 ∈ Q \ G, has no fixed point and so
u2 contains N2 = p3−p

120 cycles of length 2. Also CQ(u2) ∼= D2(p+1) has order c2 = 2(p + 1). By
Proposition 2.8 and TABLE 3, we have

p3 − 31p + 30
240(p− 1)

+
p3 − p

240(p + 1)
=

1
2 · 60

(1 · 5 · 6 + 1 · 6 · 6 + 1 · 10 · 4

+
(

p− 1
10

− 1
)
· 12 · 5 +

(
p− 1

6
− 2

)
· 20 · 3 +

(
p− 1

4
− 3

)
· 30 · 2 + 60y8

)
.

It follows that y8 = p2−31p+270
60 .
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To determine y81 and y82, we turn to the group G. Note that G has only one conjugacy
class of involutions, and each involution u has precisely p−1

4 fixed points in Ω1 and so has

N =
p3−p
120 − p−1

4
2 = p3−31p+30

240 cycles of length 2. Also CG(u) ∼= Dp−1 has order c = p −
1. By Proposition 2.8 and TABLE 3, we may calculcate y81 = p2−30p+509

120 . Hence y82 =
y8 − y81 = p2−32p+31

120 and so h81 = x81 − y81 = p3−60p2+1077p−15418
7200 and h82 = x82 − y82 =

p3−60p2+1197p−1138
7200 .

Hence we find that Q has p3−60p2+1077p−15418
7200 non-self-paired regular suborbits, which

have length 60 and are contained in Ω1 and Q has p3−60p2+1197p−1138
7200 non-self-paired regular

suborbits, which have length 60 and are contained in Ω2. So we have p3−60p2+1077p−15418
14400

semisymmetric graphs X with valency 60 in case (i) and p3−60p2+1197p−1138
14400 semisymmetric

graphs X with valency 60 in case (ii) , as listed in TABLE 1.

Thus we finish the proof of Theorem 1.1. ¤
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Appendix:

TABLE 4-1

i 1 2 3 4 5 7 8

i 1 2 3 4 5 7 8

Ki A4 D10 D6 Z5 Z3 Z2 1

NL(Ki) A4 D10 D6 D10 D6 D4

NG(Ki) S4 D20 D12 Dp+1 Dp+1 Dp+1

ki1 2 2 2 p+1
10

p+1
6

p+1
4

xi1 1 1 1 p+1
20 − 1 p+1

12 − 2 p+1
8 − 3 p3−723p+13678

7200

yi1 1 1 1 p+1
20 − 1 p+1

12 − 2 p+1
8 − 3 p2−32p+447

120

hi1 0 0 0 0 0 0 p3−60p2+1197p−13142
7200

p ≡ −1(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p+1) D2(p+1)

ki 2 2 2 p+1
5

p+1
3

p+1
2

ki1 0 0 0 p+1
10

p+1
6

p+1
4

xi2 0 0 0 p+1
20

p+1
12

p+1
8

p3−723p−722
7200

yi2 0 0 0 p+1
20

p+1
12

p+1
8

p2−30p−31
120

hi2 0 0 0 0 0 0 p3−60p2+1077p+1138
7200

NG(Ki) A4 D10 D12 Dp−1 Dp+1 Dp+1

ki1 1 1 2 p−1
10

p+1
6

p+1
4

xi1 0 0 1 p−1
20 − 1

2
p+1
12 − 1 p+1

8 − 3
2

p3−723p+6622
7200

yi1 0 0 1 p−1
20 − 1

2
p+1
12 − 1 p+1

8 − 3
2

p2−32p+231
120

hi1 0 0 0 0 0 0 p3−60p2+1197p−7238
7200

p ≡ 11(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p+1) D2(p+1)

ki 2 2 2 p−1
5

p+1
3

p+1
2

ki2 1 1 0 p−1
10

p+1
6

p+1
4

xi2 1 1 0 p−1
20 − 1

2
p+1
12 − 1 p+1

8 − 3
2

p3−723p+6622
7200

yi2 1 1 0 p−1
20 − 1

2
p+1
12 − 1 p+1

8 − 3
2

p2−30p+209
120

hi2 0 0 0 0 0 0 p3−60p2+1077p−5918
7200

NG(Ki) A4 D10 D12 Dp+1 Dp−1 Dp−1

ki1 1 1 2 p+1
10

p−1
6

p−1
4

xi1 0 0 1 p+1
20 − 1

2
p−1
12 − 1 p−1

8 − 3
2

p3−723p+7778
7200

yi1 0 0 1 p+1
20 − 1

2
p−1
12 − 1 p−1

8 − 3
2

p2−32p+269
120

hi1 0 0 0 0 0 0 p3−60p2+1077p−8362
7200

p ≡ −11(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p−1) D2(p−1)

ki 2 2 2 p+1
5

p−1
3

p−1
2

ki2 1 1 0 p+1
10

p−1
6

p−1
4

xi2 1 1 0 p+1
20 − 1

2
p−1
12 − 1 p−1

8 − 3
2

p3−723p+7778
7200

yi2 1 1 0 p+1
20 − 1

2
p−1
12 − 1 p−1

8 − 3
2

p2−32p+247
120

hi2 0 0 0 0 0 0 p3−60p2+1197p−7042
7200
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TABLE 4-2

i 1 2 3 4 5 7 8

Ki A4 D10 D6 Z5 Z3 Z2 1

NL(Ki) A4 D10 D6 D10 D6 D4

NG(Ki) S4 D10 D6 Dp−1 Dp−1 Dp+1

ki1 2 1 1 p−1
10

p−1
6

p+1
4

xi1 1 0 0 p−1
20 − 1

2
p−1
12 − 3

2
p+1
8 − 1 p3−723p+7022

7200

yi1 1 0 0 p−1
20 − 1

2
p−1
12 − 3

2
p+1
8 − 1 p2−32p+271

120

hi1 0 0 0 0 0 0 p3−60p2+1197p−9238
7200

p ≡ 31(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p−1) D2(p+1)

ki 2 2 2 p−1
5

p−1
3

p+1
2

ki2 0 1 1 p−1
10

p−1
6

p+1
4

xi2 0 1 1 p−1
20 − 1

2
p−1
12 − 1

2
p+1
8 − 2 p3−723p+7022

7200

yi2 0 1 1 p−1
20 − 1

2
p−1
12 − 1

2
p+1
8 − 2 p2−30p+209

120

hi2 0 0 0 0 0 0 p3−60p2+1077p−5518
7200

NG(Ki) S4 D10 D6 Dp+1 Dp+1 Dp−1

ki1 2 1 1 p+1
10

p+1
6

p−1
4

xi1 1 0 0 p+1
20 − 1

2
p+1
12 − 3

2
p−1
8 − 1 p3−723p+7378

7200

yi1 1 0 0 p+1
20 − 1

2
p+1
12 − 3

2
p−1
8 − 1 p2−30p+269

120

hi1 0 0 0 0 0 0 p3−60p2+1077p−8762
7200

p ≡ −31(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p+1) D2(p−1)

ki 2 2 2 p+1
5

p+1
3

p−1
2

ki2 0 1 1 p+1
10

p+1
6

p−1
4

xi2 0 1 1 p+1
20 − 1

2
p+1
12 − 1

2
p−1
8 − 2 p3−723p+7378

7200

yi2 0 1 1 p+1
20 − 1

2
p+1
12 − 1

2
p−1
8 − 2 p2−32p+207

120

hi2 0 0 0 0 0 0 p3−60p2+1197p−5042
7200

NG(Ki) S4 D20 D6 Dp−1 Dp+1 Dp−1

ki1 2 2 1 p−1
10

p+1
6

p−1
4

xi1 1 1 0 p−1
20 − 1 p+1

12 − 3
2

p−1
8 − 2 p3−723p+11122

7200

yi1 1 1 0 p−1
20 − 1 p+1

12 − 3
2

p−1
8 − 2 p2−30p+389

120

hi1 0 0 0 0 0 0 p3−60p2+1077p−12218
7200

p ≡ 41(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p+1) D2(p−1)

ki 2 2 2 p−1
5

p+1
3

p−1
2

ki2 0 0 1 p−1
10

p+1
6

p−1
4

xi2 0 0 1 p−1
20

p+1
12 − 1

2
p−1
8 − 1 p3−723p+3922

7200

yi2 0 0 1 p−1
20

p+1
12 − 1

2
p−1
8 − 1 p2−32p+111

120

hi2 0 0 0 0 0 0 p3−60p2+1197p−2738
7200

NG(Ki) S4 D20 D6 Dp+1 Dp−1 Dp+1

ki1 2 2 1 p+1
10

p−1
6

p+1
4

xi1 1 1 0 p+1
20 − 1 p−1

12 − 3
2

p+1
8 − 2 p3−723p+10478

7200

yi1 1 1 0 p+1
20 − 1 p−1

12 − 3
2

p+1
8 − 2 p2−32p+367

120

hi1 0 0 0 0 0 0 p3−60p2+1197p−11542
7200

p ≡ −41(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p−1) D2(p+1)

ki 2 2 2 p+1
5

p−1
3

p+1
2

ki2 0 0 1 p+1
10

p−1
6

p+1
4

xi2 0 0 1 p+1
20

p−1
12 − 1

2
p+1
8 − 1 p3−723p+3278

7200

yi2 0 0 1 p+1
20

p−1
12 − 1

2
p+1
8 − 1 p2−30p+89

120

hi2 0 0 0 0 0 0 p3−60p2+1077p−2062
7200
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TABLE 4-3

i 1 2 3 4 5 7 8

i 1 2 3 4 5 7 8

Ki A4 D10 D6 Z5 Z3 Z2 1

NL(Ki) A4 D10 D6 D10 D6 D4

NG(Ki) A4 D20 D12 Dp−1 Dp−1 Dp−1

ki1 1 2 2 p−1
10

p−1
6

p−1
4

xi1 0 1 1 p−1
20 − 1 p−1

12 − 1 p−1
8 − 5

2
p3−723p+11522

7200

yi1 0 1 1 p−1
20 − 1 p−1

12 − 1 p−1
8 − 5

2
p2−30p+389

120

hi1 0 0 0 0 0 0 p3−60p2+1077p−11818
7200

p ≡ 61(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p−1) D2(p−1)

ki 2 2 2 p−1
5

p−1
3

p−1
2

ki2 1 0 0 p−1
10

p−1
6

p−1
4

xi2 1 0 0 p−1
20

p−1
12 − 1 p−1

8 − 1
2

p3−723p+4322
7200

yi2 1 0 0 p−1
20

p−1
12 − 1 p−1

8 − 1
2

p2−32p+151
120

hi2 0 0 0 0 0 0 p3−60p2+1197p−4738
7200

NG(Ki) A4 D20 D12 Dp+1 Dp+1 Dp+1

ki1 1 2 2 p+1
10

p+1
6

p+1
4

xi1 0 1 1 p+1
20 − 1 p+1

12 − 1 p+1
8 − 5

2
p3−723p+10078

7200

yi1 0 1 1 p+1
20 − 1 p+1

12 − 1 p+1
8 − 5

2
p2−32p+327

120

hi1 0 0 0 0 0 0 p3−60p2+1197p−9542
7200

p ≡ −61(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p+1) D2(p+1)

ki 2 2 2 p+1
5

p+1
3

p+1
2

ki2 1 0 0 p+1
10

p+1
6

p+1
4

xi2 1 0 0 p+1
20

p+1
12 − 1 p+1

8 − 1
2

p3−723p+2878
7200

yi2 1 0 0 p+1
20

p+1
12 − 1 p+1

8 − 1
2

p2−30p+89
120

hi2 0 0 0 0 0 0 p3−60p2+1077p−2462
7200

NG(Ki) S4 D10 D12 Dp−1 Dp+1 Dp+1

ki1 2 1 2 p−1
10

p+1
6

p+1
4

xi1 1 0 1 p−1
20 − 1

2
p+1
12 − 2 p+1

8 − 2 p3−723p+10222
7200

yi1 1 0 1 p−1
20 − 1

2
p+1
12 − 2 p+1

8 − 2 p2−32p+351
120

hi1 0 0 0 0 0 0 p3−60p2+1197p−10838
7200

p ≡ 71(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p+1) D2(p+1)

ki 2 2 2 p−1
5

p+1
3

p+1
2

ki2 0 1 0 p−1
10

p+1
6

p+1
4

xi2 0 1 0 p−1
20 − 1

2
p+1
12

p+1
8 − 1 p3−723p+3022

7200

yi2 0 1 0 p−1
20 − 1

2
p+1
12

p+1
8 − 1 p2−30p+89

120

hi2 0 0 0 0 0 0 p3−60p2+1077p−2318
7200

NG(Ki) S4 D10 D12 Dp+1 Dp−1 Dp−1

ki1 2 1 2 p+1
10

p−1
6

p−1
4

xi1 1 0 1 p+1
20 − 1

2
p−1
12 − 2 p−1

8 − 2 p3−723p+11378
7200

yi1 1 0 1 p+1
20 − 1

2
p−1
12 − 2 p−1

8 − 2 p2−30p+389
120

hi1 0 0 0 0 0 0 p3−60p2+1077p−11962
7200

p ≡ −71(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p−1) D2(p−1)

ki 2 2 2 p+1
5

p−1
3

p−1
2

ki2 0 1 0 p+1
10

p−1
6

p−1
4

xi2 0 1 0 p+1
20 − 1

2
p−1
12

p−1
8 − 1 p3−723p+4178

7200

yi2 0 1 0 p+1
20 − 1

2
p−1
12

p−1
8 − 1 p2−32p+127

120

hi2 0 0 0 0 0 0 p3−60p2+1197p−3442
7200
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TABLE 4-4

i 1 2 3 4 5 7 8

Ki A4 D10 D6 Z5 Z3 Z2 1

NL(Ki) A4 D10 D6 D10 D6 D4

NG(Ki) A4 D10 D6 Dp−1 Dp−1 Dp+1

ki1 1 1 1 p−1
10

p−1
6

p+1
4

xi1 1 1 1 p−1
20 − 1

2
p−1
12 − 1

2
p+1
8 − 1

2
p3−723p+3422

7200

yi1 1 1 1 p−1
20 − 1

2
p−1
12 − 1

2
p+1
8 − 1

2
p2−32p+151

120

hi1 0 0 0 0 0 0 p3−60p2+1197p−5638
7200

p ≡ 91(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p−1) D2(p+1)

ki 2 2 2 p−1
5

p−1
3

p+1
2

ki2 1 1 1 p−1
10

p−1
6

p+1
4

xi2 1 1 1 p−1
20 − 1

2
p−1
12 − 3

2
p+1
8 − 5

2
p3−723p+10622

7200

yi2 1 1 1 p−1
20 − 1

2
p−1
12 − 3

2
p+1
8 − 5

2
p2−30p+329

120

hi2 0 0 0 0 0 0 p3−60p2+1077p−9118
7200

NG(Ki) A4 D10 D6 Dp+1 Dp+1 Dp−1

ki1 1 1 1 p−1
10

p+1
6

p−1
4

xi1 1 1 1 p+1
20 − 1

2
p+1
12 − 1

2
p−1
8 − 1

2
p3−723p+3778

7200

yi1 1 1 1 p+1
20 − 1

2
p+1
12 − 1

2
p−1
8 − 1

2
p2−30p+149

120

hi1 0 0 0 0 0 0 p3−60p2+1077p−5162
7200

p ≡ −91(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p+1) D2(p−1)

ki 2 2 2 p+1
5

p+1
3

p−1
2

ki2 1 1 1 p+1
10

p+1
6

p−1
4

xi2 1 1 1 p+1
20 − 1

2
p+1
12 − 3

2
p−1
8 − 5

2
p3−723p+10978

7200

yi2 1 1 1 p+1
20 − 1

2
p+1
12 − 3

2
p−1
8 − 5

2
p2−32p+327

120

hi2 0 0 0 0 0 0 p3−60p2+1197p−8642
7200

NG(Ki) A4 D20 D6 Dp−1 Dp+1 Dp−1

ki1 1 2 1 p−1
10

p+1
6

p−1
4

xi1 0 1 0 p−1
20 − 1 p+1

12 − 1
2

p−1
8 − 3

2
p3−723p+7522

7200

yi1 0 1 0 p−1
20 − 1 p+1

12 − 1
2

p−1
8 − 3

2
p2−30p+269

120

hi1 0 0 0 0 0 0 p3−60p2+1077p−8618
7200

p ≡ 101(mod120) NQ(Ki) S4 D20 D12 D2(p−1) D2(p+1) D2(p−1)

ki 2 2 2 p+1
5

p−1
3

p+1
2

ki2 1 0 1 p−1
10

p+1
6

p−1
4

xi2 1 0 1 p−1
20

p+1
12 − 3

2
p−1
8 − 3

2
p3−723p+7522

7200

yi2 1 0 1 p−1
20

p+1
12 − 3

2
p−1
8 − 3

2
p2−32p+231

120

hi2 0 0 0 0 0 0 p3−60p2+1197p−6338
7200

NG(Ki) A4 D20 D6 Dp+1 Dp−1 Dp+1

ki1 1 2 1 p+1
10

p−1
6

p+1
4

xi1 0 1 0 p+1
20 − 1 p−1

12 − 1
2

p+1
8 − 3

2
p3−723p+6878

7200

yi1 0 1 0 p+1
20 − 1 p−1

12 − 1
2

p+1
8 − 3

2
p2−32p+247

120

hi1 0 0 0 0 0 0 p3−60p2+1197p−7942
7200

p ≡ −101(mod120) NQ(Ki) S4 D20 D12 D2(p+1) D2(p−1) D2(p+1)

ki 2 2 2 p+1
5

p−1
3

p+1
2

ki2 1 0 1 p+1
10

p−1
6

p+1
4

xi2 1 0 1 p+1
20

p−1
12 − 3

2
p+1
8 − 3

2
p3−723p+6878

7200

yi2 1 0 1 p+1
20

p−1
12 − 3

2
p+1
8 − 3

2
p2−30p+209

120

hi2 0 0 0 0 0 0 p3−60p2+1077p−5662
7200
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Abstract: A Smarandachely k-signed digraph (Smarandachely k-marked digraph) is an

ordered pair S = (D, σ) (S = (D, µ)) where D = (V,A) is a digraph called underlying

digraph of S and σ : A → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each

ei ∈ {+,−}. Particularly, a Smarandachely 2-signed digraph or Smarandachely 2-marked

digraph is called abbreviated a signed digraph or a marked digraph. In this paper, we define

the path signed digraph
−→
Pk(S) = (

−→
Pk(D), σ′) of a given signed digraph S = (D, σ) and offer

a structural characterization of signed digraphs that are switching equivalent to their 3-path

signed digraphs
−→
P3(S). The concept of a line signed digraph is generalized to that of a path

signed digraphs. Further, in this paper we discuss the structural characterization of path

signed digraphs
−→
Pk(S).

Key Words: Smarandachely k-Signed digraphs, Smarandachely k-marked digraphs, signed

digraphs, marked digraphs, balance, switching, path signed digraphs, line signed digraphs,

negation.
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§1. Introduction
For standard terminology and notion in digraph theory, we refer the reader to the classic text-
books of Bondy and Murty [2]and Harary et al. [4]; the non-standard will be given in this paper
as and when required.

A Smarandachely k-signed digraph (Smarandachely k-marked digraph) is an ordered pair
S = (D, σ) (S = (D, µ)) where D = (V,A) is a digraph called underlying digraph of S and σ :
A → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particularly,
a Smarandachely 2-signed digraph or Smarandachely 2-marked digraph is called abbreviated
a signed digraph or a marked digraph. A signed digraph is an ordered pair S = (D, σ), where

1Received February 21, 2010. Accepted March 24.
2The third author is B.E student at Department of Computer Science & Engineering, Rajeev Institute of

Technology, Hassan. This is her first research contribution.
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D = (V,A) is a digraph called underlying digraph of S and σ : A → {+,−} is a function. A
marking of S is a function µ : V (D) → {+,−}. A signed digraph S together with a marking µ

is denoted by Sµ. A signed digraph S = (D, σ) is balanced if every semicycle of S is positive
(See [4]). Equivalently, a signed digraph is balanced if every semicycle has an even number of
negative arcs. The following characterization of balanced signed digraphs is obtained in [9].

Proposition 1.1(E. Sampathkumar et al. [9]) A signed digraph S = (D, σ) is balanced if,
and only if, there exist a marking µ of its vertices such that each arc −→uv in S satisfies σ(−→uv) =
µ(u)µ(v).

In [9], the authors define switching and cycle isomorphism of a signed digraph as follows:

Let S = (D, σ) and S′ = (D′, σ′), be two signed digraphs. Then S and S′ are said to be
isomorphic, if there exists an isomorphism φ : D → D′ (that is a bijection φ : V (D) → V (D′)
such that if −→uv is an arc in D then

−−−−−−→
φ(u)φ(v) is an arc in D′) such that for any arc −→e ∈ D,

σ(−→e ) = σ′(φ(−→e )).

Given a marking µ of a signed digraph S = (D, σ), switching S with respect to µ is
the operation changing the sign of every arc −→uv of S′ by µ(u)σ(−→uv)µ(v). The signed digraph
obtained in this way is denoted by Sµ(S) and is called µ switched signed digraph or just switched
signed digraph.

Further, a signed digraph S switches to signed digraph S′ (or that they are switching
equivalent to each other), written as S ∼ S′, whenever there exists a marking of S such that
Sµ(S) ∼= S′.

Two signed digraphs S = (D, σ) and S′ = (D′, σ′) are said to be cycle isomorphic, if there
exists an isomorphism φ : D → D′ such that the sign σ(Z) of every semicycle Z in S equals to
the sign σ(φ(Z)) in S′.

Proposition 1.2(E. Sampathkumar et al. [9]) Two signed digraphs S1 and S2 with the same
underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Path Signed Digraphs

In [3], Harary and Norman introduced the notion of line digraphs for digraphs. The line digraph
L(D) of a given digraph D = (V,A) has the arc set A := A(D) of D for its vertex set and (e, f)
is an arc in L(D) whenever the arcs e and f in D have a vertex in common in such a way that
it is the head of e and the tail of f ; hence, a given digraph H is called a line digraph if there
exists a digraph D such that L(D) ∼= H. By a natural way, Broersma and Li [1] generalized
the concept of line digraphs to that of directed path graphs.

Let k be a positive integer, and denote
−→
Pk or

−→
Ck a directed path or a directed cycle on

k vertices, respectively. Let D be a digraph containing at least one directed path
−→
Pk. Denote

Πk(D), the set of all
−→
Pk’s of D. Then the directed

−→
Pk-graph of D, denoted by

−→
Pk(D), is

the digraph with vertex set Πk(D); pq is an arc of
−→
Pk(D) if, and only if, there is a

−−−→
Pk+1 or−→

Ck = (v1v2...vk+1) in D (with v1 = vk+1 in the case of a
−→
Ck) such that p = v1v2...vk and
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q = v2...vkvk+1. Note that
−→
P1(D) = D and

−→
L (D). In [7], the authors proposed an open

problem for further study, i.e., how to give a characterization for directed
−→
P3-graphs.

We extend the notion of
−→
Pk(D) to the realm of signed digraphs. In a signed digraph

S = (D, σ), where D = (V,A) is a digraph called underlying digraph of S and σ : A → {+,−}
is a function. The path signed digraph

−→
Pk(S) = (

−→
Pk(D), σ′) of a signed digraph S = (D, σ)

is a signed digraph whose underlying digraph is
−→
Pk(D) called path digraph and sign of any

arc e =
−→
Pk

−→
P ′k in

−→
Pk(S) is σ′(

−→
Pk

−→
P ′k) = σ(

−→
Pk)σ(

−→
P ′k). Further, a signed digraph S = (G, σ)

is called path signed digraph, if S ∼= −→
Pk(S′), for some signed digraph S′. At the end of this

section, we discuss the structural characterization of path signed digraphs
−→
Pk(S).We now gives

a straightforward, yet interesting, property of path signed digraphs.

Proposition 2.1 For any signed digraph S = (D, σ), its path signed digraph
−→
Pk(S) is balanced.

Proof Since sign of any arc σ′(e =
−→
Pk

−→
P ′k) in

−→
Pk(S) is σ(

−→
Pk)σ(

−→
P ′k), where σ is the marking

of
−→
Pk(S), by Proposition 1.1,

−→
Pk(S) is balanced. ¤

Remark: For any two signed digraphs S and S′ with same underlying digraph, their path
signed digraphs are switching equivalent.

In [9], the authors defined line signed digraph of a signed digraph S = (D, σ) as follows:

A line signed digraph L(S) of a signed digraph S = (D, σ) is a signed digraph L(S) =
(L(D), σ′) where for any arc

−→
ee′ in L(D), σ′(

−→
ee′) = σ(−→e )σ(

−→
e′ ) (see also, E. Sampathkumar et

al. [8]).

Hence, we shall call a given signed digraph S a line signed digraph if it is isomorphic to the
line signed digraph L(S′) of some signed digraph S′. By the definition of path signed digraphs,
we observe that

−→
P2(S) = L(S).

Corollary 2.2 For any signed digraph S = (G, σ), its
−→
P2(S) (=L(S)) is balanced.

In [9], the authors obtain structural characterization of line signed digraphs as follows:

Proposition 2.3(E. Sampathkumar et al. [9]) A signed digraph S = (D, σ) is a line signed
digraph (or

−→
P2-signed digraph) if, and only if, S is balanced signed digraph and its underlying

digraph D is a line digraph (or
−→
P2-digraph).

Proof Suppose that S is balanced and D is a line digraph. Then there exists a digraph
D′ such that L(D′) ∼= D. Since S is balanced, by Proposition 1.1, there exists a marking µ

of D such that each arc −→uv in S satisfies σ(−→uv) = µ(u)µ(v). Now consider the signed digraph
S′ = (D′, σ′), where for any arc −→e in D′, σ′(−→e ) is the marking of the corresponding vertex in
D. Then clearly, L(S′) ∼= S. Hence S is a line signed digraph.

Conversely, suppose that S = (D, σ) is a line signed digraph. Then there exists a signed
digraph S′ = (D′, σ′) such that L(S′) ∼= S. Hence D is the line digraph of D′ and by Corollary
2.2, S is balanced. ¤

We strongly believe that the above Proposition can be generalized to path signed digraphs
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−→
Pk(S) for k ≥ 3. Hence, we pose it as a problem:

Problem 2.4 If S = (D, σ) is a balanced signed digraph and its underlying digraph D is a path
digraph, then S is a path signed digraph.

§3. Switching Equivalence of Signed Digraphs and Path Signed Digraphs

Broersma and Li [1] concluded that the only connected digraphs D with
−→
P3(D) ∼= D consists

of a directed cycle with in-trees or out-trees attached to its vertices, with at most non-trivial
trees, where a directed tree T of D is an out-tree of D if V (T ) = V (D) and precisely one vertex
of T has in-degree zero (the root of T ), while all other vertices of T have in-degree one, and an
in-tree of D is defined analogously with respect to out-degrees.

Proposition 3.1(Broersma and Hoede [1]) Let D be connected digraph without sources or
sinks. If D has an in-tree or out-tree, then

−→
P3(D) ∼= D if, and only if, D ∼= −→

Cn for some n ≥ 3.
Hence, if D is strongly connected, then

−→
P3(D) ∼= D if, and only if, D ∼= −→

Cn for some n ≥ 3.

In the view of the above result, we now characterize signed digraphs that are switching
equivalent to their

−→
P3-signed digraphs.

Proposition 3.2 For any strongly connected signed digraph S = (D, σ), S ∼ −→
P3(S) if, and

only if, S is balanced and D ∼= −→
Cn for some n ≥ 3.vskip 3mm

Proof Suppose S ∼ L(S). This implies, D ∼= L(D) and hence by Proposition 3.1, D ∼= −→
Cn.

Now, if S is signed digraph, then by Corollary 2.2, implies that L(S) is balanced and hence if
S is unbalanced its line signed digraph L(S) being balanced cannot be switching equivalent to
S in accordance with Proposition 1.2. Therefore, S must be balanced.

Suppose that S is balanced and D ∼= −→
Cn for some n ≥ 3. Then, by Proposition 2.1,

−→
P3(S)

is balanced, the result follows from Proposition 1.2. ¤
In [9], the authors defined a signed digraph S is periodic, if Ln+k(S) ∼ Ln(S) for some

positive integers n and k.

Analogous to the line signed digraphs, we defined periodic for
−→
P3(S) as follows:

For some positive integers n and k, define that a path signed digraph
−→
P3(S) is periodic, if−−−→

Pn+k
3 (S) ∼ −→

Pn
3 (S).

Proposition 3.3(Broersma and Hoede [1]) If D is strongly connected digraph and
−→
Pn

3 (D) ∼= D

for some n ≥ 1, then
−→
P3(D) ∼= D and D is a directed cycle.

The following result is follows from Propositions 2.1,3.2 and 3.3.

Proposition 3.4 If S is strongly connected signed digraph, and
−→
Pn

3 (S) ∼ S for some n ≥ 1,
then

−→
P3(S) ∼ S and D is a directed cycle.

The negation η(S) of a given signed digraph S defined as follows: η(S) has the same
underlying digraph as that of S with the sign of each arc opposite to that given to it in S.
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However, this definition does not say anything about what to do with nonadjacent pairs of
vertices in S while applying the unary operator η(.) of taking the negation of S.

For a signed digraph S = (D, σ), the
−→
Pk(S) is balanced (Proposition 2.1). We now examine,

the condition under which negation of
−→
Pk(S) (i.e., η(

−→
Pk(S))) is balanced.

Proposition 3.5 Let S = (D, σ) be a signed digraph. If
−→
Pk(D) is bipartite then η(

−→
Pk(S)) is

balanced.

proof Since, by Proposition 2.1,
−→
Pk(S) is balanced, then every semicycle in

−→
Pk(S) contains

even number of negative arcs. Also, since
−→
Pk(G) is bipartite, all semicycles have even length;

thus, the number of positive arcs on any semicycle C in
−→
Pk(S) are also even. This implies that

the same thing is true in negation of
−→
Pk(S). Hence η(

−→
Pk(S)) is balanced. ¤

Proposition 3.2 provides easy solutions to three other signed digraph switching equivalence
relations, which are given in the following results.

Corollary 3.6 For any signed digraph S = (D, σ), η(S) ∼ −→
P3(S) if, and only if, S is an

unbalanced signed digraph on any odd semicycle.

Corollary 3.7 For any signed digraph S = (D, σ) and for any integer k ≥ 1,
−→
Pk(η(S)) ∼ −→

Pk(S).
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Abstract: The visibility of human beings only allows them to find objects in R3 at a time

t. That is why physicists prefer to adopt the Euclidean space R3 being physical space of

particles until last century. Recent progress shows the geometrical space of physics maybe

Rn for n ≥ 4, for example, n = 10, or 11 in string theory. Then how to we visualize an object

in Rn for n ≥ 4? This paper presents a combinatorial model, i.e., combinatorial Euclidean

spaces established on Euclidean spaces R3 and prove any such Euclidean space Rn with

n ≥ 4 can be decomposed into such combinatorial structure. We also discuss conditions for

realization Rn in mathematics or physical space by combinatorics and show the space R10

in string theory is a special case in such model.

Key Words: Smarandache multi-space, combinatorial Euclidean space, combinatorial fan-

space, spacetime, p-brane, parallel probe, ultimate theory for the Universe.

AMS(2000): 05A18, 05B40, 83C05

§1. Introduction

A Euclidean space Rn is the point set {(x1, x2, · · · , xn)| xi ∈ R, 1 ≤ i ≤ n} for an integer
n ≥ 1. The structure of our eyes determines that one can only detect particles in an Euclidean
space R3, which gave rise to physicists prefer R3 as a physical space. In fact, as showed in the
references [2], [18] and [21], our visible geometry is the spherical geometry. This means that
we can only observe parts of a phenomenon in the Universe if its topological dimensional≥ 4
([1], [14]). It should be noted that if parallel worlds [6], [20] exist the dimensional of Universe
must≥ 4. Then,

Can we establish a model for detecting behaviors of particles in Rn with n ≥ 4?

This paper suggests a combinatorial model and a system for visualizing phenomenons in the
space Rn with n ≥ 4. For this object, we establish the decomposition of Rn underlying a
connected graph G in Sections 2 and 3, then show how to establish visualizing system in such
combinatorial model and acquire its global properties, for example, the Einstein’s gravitational
equations in Section 4. The final sections discusses conditions of its physical realization. Termi-
nologies and notations not defined here are followed in [1], [3] and [4] for topology, gravitational
fields and graphs.

1Received January 16, 2010. Accepted March 24, 2010.
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§2. Combinatorial Euclidean Spaces

Definition 2.1([13]) A combinatorial system CG is a union of mathematical systems (Σ1;R1),(Σ2;R2),
· · · , (Σm;Rm) for an integer m, i.e.,

CG = (
m⋃

i=1

Σi;
m⋃

i=1

Ri)

with an underlying connected graph structure G, i.e., a particular Smarandache multi-space([8]),
where

V (G) = {Σ1,Σ2, · · · ,Σm},
E(G) = { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

Definition 2.2 A combinatorial Euclidean space is a combinatorial system CG of Euclidean
spaces Rn1 , Rn2 , · · · , Rnm with an underlying structure G, denoted by EG(n1, · · · , nm) and
abbreviated to EG(r) if n1 = · · · = nm = r.

It should be noted that a combinatorial Euclidean space is itself a Euclidean space. This
fact enables us to decomposition a Euclidean space Rn into Euclidean spaces Rn1 , Rn2 , · · · ,
Rnm underlying a graph G but with less dimensions, which gives rise to a packing problem on
Euclidean spaces following.

Problem 2.1 Let Rn1 , Rn2 , · · · , Rnm be Euclidean spaces. In what conditions do they consist
of a combinatorial Euclidean space EG(n1, · · · , nm)?

Notice that a Euclidean space Rn is an n-dimensional vector space with a normal basis
ε1 = (1, 0, · · · , 0), ε2 = (0, 1, 0 · · · , 0), · · · , εn = (0, · · · , 0, 1), namely, it has n orthogonal
orientations. So if we think any Euclidean space Rn is a subspace of a Euclidean space Rn∞

with a finite but sufficiently large dimension n∞, then two Euclidean spaces Rnu and Rnv have
a non-empty intersection if and only if they have common orientations. Whence, we only need
to determine the number of different orthogonal orientations in EG(n1, · · · , nm).

Denoted by Xv1 , Xv2 , · · · , Xvm consist of these orthogonal orientations in Rnv1 , Rnv2 ,
· · · , Rnvm , respectively. An intersection graph G[Xv1 , Xv2 , · · · , Xvm

] of Xv1 , Xv2 , · · · , Xvm
is

defined by ([5])

V (G[Xv1 , Xv2 , · · · , Xvm ]) = {v1, v2, · · · , vm},
E[Xv1 , Xv2 , · · · , Xvm ] = {(vi, vj)|Xvi

⋂
Xvj 6= ∅, 1 ≤ i 6= j ≤ m}.

By definition, we know that

G ∼= G[Xv1 , Xv2 , · · · , Xvm ],

which transfers the Problem 2.1 of Euclidean spaces to a combinatorial one following.

Problem 2.2 For given integers κ, m ≥ 2 and n1, n2, · · · , nm, find finite sets Y1, Y2, · · · , Ym

with their intersection graph being G such that |Yi| = ni, 1 ≤ i ≤ m, and |Y1∪Y2∪· · ·∪Ym| = κ.
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2.1 The maximum dimension of EG(n1, · · · , nm)

First, applying the inclusion-exclusion principle, we get the next counting result.

Theorem 2.1 Let EG(n1, · · · , nm) be a combinatorial Euclidean space of Rn1 , Rn2 , · · · , Rnm

with an underlying structure G. Then

dimEG(n1, · · · , nm) =
∑

〈vi∈V (G)|1≤i≤s〉∈CLs(G)

(−1)s+1dim(Rnv1
⋂

Rnv2
⋂ · · ·⋂Rnvs ),

where nvi denotes the dimensional number of the Euclidean space in vi ∈ V (G) and CLs(G)
consists of all complete graphs of order s in G.

Proof By definition, Rnu ∩ Rnv 6= ∅ only if there is an edge (Rnu ,Rnv ) in G. This
condition can be generalized to a more general situation, i.e., Rnv1 ∩Rnv2 ∩ · · ·∩Rnvl 6= ∅ only
if 〈v1, v2, · · · , vl〉G ∼= Kl.

In fact, if Rnv1 ∩ Rnv2 ∩ · · · ∩ Rnvl 6= ∅, then Rnvi ∩ Rnvj 6= ∅, which implies that
(Rnvi ,Rnvj ) ∈ E(G) for any integers i, j, 1 ≤ i, j ≤ l. Therefore, 〈v1, v2, · · · , vl〉G is a complete
graph of order l in the intersection graph G.

Now we are needed to count these orthogonal orientations in EG(n1, · · · , nm). In fact, the
number of different orthogonal orientations is

dimEG(n1, · · · , nm) = dim(
⋃

v∈V (G)

Rnv )

by previous discussion. Applying the inclusion-exclusion principle, we find that

dimEG(n1, · · · , nm) = dim(
⋃

v∈V (G)

Rnv )

=
∑

{v1,··· ,vs}⊂V (G)

(−1)s+1dim(Rnv1
⋂

Rnv2
⋂
· · ·

⋂
Rnvs )

=
∑

〈vi∈V (G)|1≤i≤s〉∈CLs(G)

(−1)s+1dim(Rnv1
⋂

Rnv2
⋂
· · ·

⋂
Rnvs ).

¤
Notice that dim(Rnv1 ∩Rnv2 ∩ · · · ∩Rnvs ) = nv1 if s = 1 and dim(Rnv1 ∩Rnv2 ) 6= 0 only

if (Rnv1 ,Rnv2 ) ∈ E(G). We get a more applicable formula for calculating dimEG(n1, · · · , nm)
on K3-free graphs G by Theorem 2.1.

Corollary 2.1 If G is K3-free, then

dimEG(n1, · · · , nm) =
∑

v∈V (G)

nv −
∑

(u,v)∈E(G)

dim(Rnu
⋂

Rnv ).

Particularly, if G = v1v2 · · · vm a circuit for an integer m ≥ 4, then

dimEG(n1, · · · , nm) =
m∑

i=1

nvi
−

m∑
i=1

dim(Rnvi

⋂
Rnvi+1 ),

where each index is modulo m.
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Now we determine the maximum dimension of combinatorial Euclidean spaces of Rn1 ,
Rn2 , · · · , Rnm with an underlying structure G.

Theorem 2.2 Let EG(nv1 , · · · , nvm
) be a combinatorial Euclidean space of Rnv1 , Rnv2 , · · · ,

Rnvm with an underlying graph G, V (G) = {v1, v2, · · · , vm}. Then the maximum dimension
dimmaxEG(nv1 , · · · , nvm) of EG(nv1 , · · · , nvm) is

dimmaxEG(nv1 , · · · , nvm) = 1−m +
∑

v∈V (G)

nv

with conditions dim(Rnu ∩Rnv ) = 1 for ∀(u, v) ∈ E(G).

Proof Let Xv1 , Xv2 , · · · , Xvm consist of these orthogonal orientations in Rnv1 , Rnv2 , · · · ,
Rnvm , respectively. Notice that

|Xvi

⋃
Xvj

| = |Xvi
|+ |Xvj

| − |Xvi

⋂
Xvj

|
for 1 ≤ i 6= j ≤ m by Theorem 1.5.1 in the case of n = 2. We immediately know that |Xvi

∪Xvj
|

attains its maximum value only if |Xvi
∩Xvj

| is minimum. Since Xvi
and Xvj

are nonempty
sets, we find that the minimum value of |Xvi

∩Xvj
| = 1 if (vi, vj) ∈ E(G).

The proof is finished by the inductive principle. Not loss of generality, assume (v1, v2) ∈
E(G). Then we have known that |Xv1

⋃
Xv2 | attains its maximum

|Xv1 |+ |Xv2 | − 1

only if |Xv1 ∩ Xv2 | = 1. Since G is connected, not loss of generality, let v3 be adjacent with
{v1, v2} in G. Then by

|Xv1

⋃
Xv2

⋃
Xv3 | = |Xv1

⋃
Xv2 |+ |Xv3 | − |(Xv1

⋃
Xv2)

⋂
Xv3 |,

we know that |Xv1 ∪ Xv2 ∪ Xv3 | attains its maximum value only if |Xv1 ∪ Xv2 | attains its
maximum and |(Xv1 ∪Xv2)∩Xv3 | = 1 for (Xv1 ∪Xv2)∩Xv3 6= ∅. Whence, |Xv1 ∩Xv3 | = 1 or
|Xv2 ∩Xv3 | = 1, or both. In the later case, there must be |Xv1 ∩Xv2 ∩Xv3 | = 1. Therefore,
the maximum value of |Xv1 ∪Xv2 ∪Xv3 | is

|Xv1 |+ |Xv2 |+ |Xv3 | − 2.

Generally, we assume the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪Xvk
| to be

|Xv1 |+ |Xv2 |+ · · ·+ |Xvk
| − k + 1

for an integer k ≤ m with conditions |Xvi ∩Xvj | = 1 hold if (vi, vj) ∈ E(G) for 1 ≤ i 6= j ≤ k.
By the connectedness of G, without loss of generality, we choose a vertex vk+1 adjacent with
{v1, v2, · · · , vk} in G and find out the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪Xvk

∪Xvk+1 |. In
fact, since

|Xv1 ∪Xv2 ∪ · · · ∪Xvk
∪Xvk+1 | = |Xv1 ∪Xv2 ∪ · · · ∪Xvk

|+ |Xvk+1 |
− |(Xv1 ∪Xv2 ∪ · · · ∪Xvk

)
⋂

Xvk+1 |,



A Combinatorial Decomposition of Euclidean Spaces Rn with Contribution to Visibility 51

we know that |Xv1 ∪Xv2 ∪ · · · ∪Xvk
∪Xvk+1 | attains its maximum value only if |Xv1 ∪Xv2 ∪

· · · ∪Xvk
| attains its maximum and |(Xv1 ∪Xv2 ∪ · · · ∪Xvk

)
⋂

Xvk+1 | = 1 for (Xv1 ∪Xv2 ∪ · · · ∪
Xvk

) ∩Xvk+1 6= ∅. Whence, |Xvi ∩Xvk+1 | = 1 if (vi, vk+1) ∈ E(G). Consequently, we find that
the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪Xvk

∪Xvk+1 | is

|Xv1 |+ |Xv2 |+ · · ·+ |Xvk
|+ |Xvk+1 | − k.

Notice that our process searching for the maximum value of |Xv1 ∪Xv2 ∪ · · · ∪Xvk
| does

not alter the intersection graph G of Xv1 , Xv2 , · · · , Xvm
. Whence, by the inductive principle

we finally get the maximum dimension dimmaxEG of EG, that is,

dimmaxEG(nv1 , · · · , nvm
) = 1−m + n1 + n2 + · · ·+ nm

with conditions dim(Rnu ∩Rnv ) = 1 for ∀(u, v) ∈ E(G). ¤

2.2 The minimum dimension of EG(n1, · · · , nm)

Determining the minimum value dimminEG(n1, · · · , nm) of EG(n1, · · · , nm) is a difficult problem
in general case. But for some graph families we can determine its minimum value.

Theorem 2.3 Let EG(nv1 , nv2 , · · · , nvm) be a combinatorial Euclidean space of Rnv1 , Rnv2 , · · · ,
Rnvm with an underlying graph G, V (G) = {v1, v2, · · · , vm} and {v1, v2, · · · , vl} an independent
vertex set in G. Then

dimminEG(nv1 , · · · , nvm) ≥
l∑

i=1

nvi

and with the equality hold if G is a complete bipartite graph K(V1, V2) with partite sets V1 =
{v1, v2, · · · , vl}, V2 = {vl+1, vl+2, · · · , vm} and

l∑

i=1

nvi
≥

m∑

i=l+1

nvi
.

Proof Similarly, we use Xv1 , Xv2 , · · · , Xvm
to denote these orthogonal orientations in Rnv1 ,

Rnv2 , · · · , Rnvm , respectively. By definition, we know that

Xvi

⋂
Xvj

= ∅, 1 ≤ i 6= j ≤ l

for (vi, vj) 6∈ E(G). Whence, we get that

|
m⋃

i=1

Xvi
| ≥ |

l⋃

i=1

Xvi
| =

l∑

i=1

nvi
.

By the assumption,

l∑

i=1

nvi
≥

m∑

i=l+1

nvi
,

we can partition Xv1 , Xv2 , · · · , Xvm to
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Xv1 = (
m⋃

i=l+1

Yi(v1))
⋃

Z(v1),

Xv2 = (
m⋃

i=l+1

Yi(v2))
⋃

Z(v2),

· · · · · · · · · · · · · · · ,

Xvl
= (

m⋃
i=l+1

Yi(vl))
⋃

Z(vl)

such that
l∑

k=1

|Yi(vk)| = |Xvi
| for any integer i, l + 1 ≤ i ≤ m, where Z(vi) maybe an empty

set for integers i, 1 ≤ i ≤ l. Whence, we can choose

X ′
vi

=
l⋃

k=1

Yi(vk)

to replace each Xvi for any integer i, 1 ≤ i ≤ m. Notice that the intersection graph of
Xv1 , Xv2 , · · · , Xvl

, X ′
vl+1

, · · · , X ′
vm

is still the complete bipartite graph K(V1, V2), but

|
m⋃

i=1

Xvi
| = |

l⋃
i=1

Xvi
| =

l∑
i=1

ni.

Therefore, we get that

dimminEG(nv1 , · · · , nvm
) =

l∑
i=1

nvi

in the case of complete bipartite graph K(V1, V2) with partite sets V1 = {v1, v2, · · · , vl}, V2 =
{vl+1, vl+2, · · · , vm} and

l∑
i=1

nvi ≥
m∑

i=l+1

nvi . ¤

Although the lower bound of dimEG(nv1 , · · · , nvm
) in Theorem 2.3 is sharp, but it is not

better if G is given in some cases. Consider a complete system of r-subsets of a set with less
than 2r elements. We know the next conclusion if G = Km.

Theorem 2.4 For any integer r ≥ 2, let EKm(r) be a combinatorial Euclidean space of
Rr, · · · ,Rr

︸ ︷︷ ︸
m

, and there exists an integer s, 0 ≤ s ≤ r − 1 such that


 r + s− 1

r


 < m ≤


 r + s

r


 .

Then

dimminEKm(r) = r + s.

Proof We denote by X1, X2, · · · , Xm these sets consist of orthogonal orientations in m

Euclidean spaces Rr. Then each Xi, 1 ≤ i ≤ m, is an r-set. By assumption,
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
 r + s− 1

r


 < m ≤


 r + s

r




and 0 ≤ s ≤ r − 1, we know that two r-subsets of an (r + s)-set must have a nonempty
intersection. So we can determine these m r-subsets X1, X2, · · · , Xm by using the complete
system of r-subsets in an (r + s)-set, and these m r-subsets X1, X2, · · · , Xm can not be chosen

in an (r + s − 1)-set. Therefore, we find that |
m⋃

i=1

Xi| = r + s, i.e., if 0 ≤ s ≤ r − 1, then

dimminEKm
(r) = r + s. ¤

For general combinatorial spaces EKm
(nv1 , · · · , nvm

) of Rnv1 , Rnv2 , · · · , Rnvm , we get
their minimum dimension if nvm

is large enough.

Theorem 2.5 Let EKm be a combinatorial Euclidean space of Rnv1 , Rnv2 , · · · , Rnvm , nv1 ≥
nv2 ≥ · · · ≥ nvm

≥ dlog2(
m+1

2nv1−nv2−1
)e+ 1 and V (Km) = {v1, v2, · · · , vm}. Then

dimminEKm
(nv1 , · · · , nvm

) = nv1 + dlog2(
m + 1

2nv1−nv2−1 )e.

Proof Let Xv1 , Xv2 , · · · , Xvm
be sets consist of these orthogonal orientations in Rnv1 ,

Rnv2 , · · · , Rnvm , respectively and

2s−1 <
m

2k+1 − 1
+ 1 ≤ 2s

for an integer s, where k = nv1 − nv2 . Then we find that

dlog2(
m + 1

2nv1−nv2−1 )e = s.

We construct a family {Yv1 , Yv2 , · · · , Yvm
} with none being a subset of another, |Yvi

| = |Xvi
|

for 1 ≤ i ≤ m and its intersection graph is still Km, but with

|Yv1

⋃
Yv2

⋃
· · ·

⋃
Yvm

| = nv1 + s.

In fact, let Xv1 = {x1, x2, · · · , xnv2
, xnv2+1, · · · , xnv1

} and U = {u1, u2, · · · , us}, such as
those shown in Fig.2.1 for s = 1 and nv1 = 9.

X1

X2 X3
X4

x1x2x3 x4 x5x6 x7x8x9

u1

Fig.2.1

Choose g elements xi1 , xi2 , · · · , xig
∈ Xv1 and h ≥ 1 elements uj1 , uj2 , · · · , ujh

∈ U . We
construct a finite set
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Xg.h = {xi1 , xi2 , · · · , xig
, uj1 , uj2 , · · · , ujh

}
with a cardinal g + h. Let g + h = |Xv1 |, |Xv2 |, · · · , |Xvm |, respectively. We consequently
find such sets Yv1 , Yv2 , · · · , Yvm . Notice that there are no one set being a subset of another
in the family {Yv1 , Yv2 , · · · , Yvm

}. So there must have two elements in each Yvi
, 1 ≤ i ≤ m

at least such that one is in U and another in {xnv2
, xnv2+1, · · · , xnv1

}. Now since nvm
≥

dlog2(
m+1

2nv1−nv2−1
)e+ 1, there are

k+1∑

i=1

s∑

j=1


 k + 1

i





 s

j


 = (2k+1 − 1)(2s − 1) ≥ m

different sets Yv1 , Yv2 , · · · , Yvm altogether with |Xv1 | = |Yv1 |, · · · , |Xvm | = |Yvm |. None of them
is a subset of another and their intersection graph is still Km. For example,

Xv1 , {u1, x1, · · · , xnv2−1},
{u1, xnv2−nv3+2, · · · , xnv2

},
· · · · · · · · · · · · · · · · · · ,

{u1, xnvk−1−nvk
+2, · · · , xnvk

}
are such sets with only one element u1 in U . See also in Fig.4.1.1 for details. It is easily to
know that

|Yv1

⋃
Yv2

⋃
· · ·

⋃
Yvm

| = nv1 + s = nv1 + dlog2(
m + 1

2nv1−nv2 − 1
)e

in our construction.
Conversely, if there exists a family {Yv1 , Yv2 , · · · , Yvm} such that |Xv1 | = |Yv1 |, · · · , |Xvm | =

|Yvm
| and

|Yv1

⋃
Yv2

⋃
· · ·

⋃
Yvm

| < nv1 + s,

then there at most

k+1∑

i=1

s∑

j=1


 k + 1

i





 s− 1

j


 = (2k+1 − 1)(2s−1 − 1) < m

different sets in {Yv1 , Yv2 , · · · , Yvm
} with none being a subset of another. This implies that

there must exists integers i, j, 1 ≤ i 6= j ≤ m with Yvi ⊂ Yvj , a contradiction. Therefore, we get
the minimum dimension dimminEKm of EKm to be

dimminEKm
(nv1 , · · · , nvm

) = nv1 + dlog2(
m + 1

2nv1−nv2 − 1
)e.

¤

As we introduce in Section 1, the combinatorial space of R3 is particularly interested in
physics. In the case of Km, we can determine its minimum dimension.
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Theorem 2.5 Let EKm
(3) be a combinatorial Euclidean space of R3, · · · ,R3

︸ ︷︷ ︸
m

. Then

dimminEKm
(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + d√me, if m ≥ 11.

Proof Let X1, X2, · · · , Xm be these sets consist of orthogonal orientations in m Euclidean
spaces R3, respectively and |X1 ∪X2 ∪ · · · ∪Xm| = l. Then each Xi, 1 ≤ i ≤ m, is a 3-set.

In the case of m ≤ 10 =


 5

2


, any s-sets have a nonempty intersection. So it is easily

to check that

dimminEKm(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10.

We only consider the case of m ≥ 11. Let X = {u, v, w} be a chosen 3-set. Notice that
any 3-set will intersect X with 1 or 2 elements. Our discussion is divided into three cases.

Case 1 There exist 3-sets X ′
1, X

′
2, X

′
3 such that X ′

1 ∩ X = {u, v}, X ′
2 ∩ X = {u,w} and

X ′
3 ∩X = {v, w} such as those shown in Fig.2.2, where each triangle denotes a 3-set.

wu

v

Fig.2.2

Notice that there are no 3-sets X ′ such that |X ′ ∩ X| = 1 in this case. Otherwise, we
can easily find two 3-sets with an empty intersection, a contradiction. Counting such 3-sets,
we know that there are at most 3(v − 3) + 1 3-sets with their intersection graph being Km.
Thereafter, we know that

m ≤ 3(l − 3) + 1, i.e., l ≥ dm− 1
3

e+ 3.

Case 2 There are 3-sets X ′
1, X

′
2 but no 3-set X ′

3 such that X ′
1 ∩X = {u, v}, X ′

2 ∩X = {u,w}
and X ′

3 ∩X = {v, w} such as those shown in Fig.2.3, where each triangle denotes a 3-set.
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u

v

w

Fig.2.3

In this case, there are no 3-sets X ′ such that X ′ ∩ X = {u} or {w}. Otherwise, we can
easily find two 3-sets with an empty intersection, a contradiction. Enumerating such 3-sets, we
know that there are at most

2(l − 1) +


 l − 3

2


 + 1

3-sets with their intersection graph still being Km. Whence, we get that

m ≤ 2(l − 1) +


 l − 3

2


 + 1, i.e., l ≥ d3 +

√
8m + 17
2

e.

Case 3 There are a 3-set X ′
1 but no 3-sets X ′

2, X
′
3 such that X ′

1 ∩X = {u, v}, X ′
2 ∩X = {u,w}

and X ′
3 ∩X = {v, w} such as those shown in Fig.2.4, where each triangle denotes a 3-set.

u v

w

Fig.2.4

Enumerating 3-sets in this case, we know that there are at most

l − 2 + 2


 l − 2

2




such 3-sets with their intersection graph still being Km. Therefore, we find that

m ≤ l − 2 + 2


 l − 2

2


 , i.e., l ≥ 2 + d√me.

Combining these Cases 1− 3, we know that

l ≥ min{dm− 1
3

e+ 3, d3 +
√

8m + 17
2

e, 2 + d√me} = 2 + d√me.
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Conversely, there 3-sets constructed in Case 3 show that there indeed exist 3-sets X1, X2, · · · , Xm

whose intersection graph is Km, where

m = l − 2 + 2


 l − 2

2


 .

Therefore, we get that

dimminEKm
(3) = 2 + d√me

if m ≥ 11. This completes the proof. ¤

§3. A Combinatorial Model of Euclidean Spaces Rn with n ≥ 4

A combinatorial fan-space R̃(n1, · · · , nm) is the combinatorial space EKm(n1, · · · , nm) of Rn1 ,
Rn2 , · · · , Rnm such that for any integers i, j, 1 ≤ i 6= j ≤ m,

Rni

⋂
Rnj =

m⋂

k=1

Rnk ,

which is in fact a p-brane with p = dim
m⋂

k=1

Rnk in string theory ([15]-[17]), seeing Fig.3.1 for

details.

-�

?

6

�

	

p-brane

Fig.3.1

For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m × nm coordinate matrix [x] following
with xil = xl

m for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂,

[x] =




x11 · · · x1m̂ x1(m̂)+1) · · · x1n1 · · · 0

x21 · · · x2m̂ x2(m̂+1) · · · x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ xm(m̂+1) · · · · · · xmnm−1 xmnm




.

By definition, we know the following result.
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Theorem 3.1 Let R̃(n1, · · · , nm) be a fan-space. Then

dimR̃(n1, · · · , nm) = m̂ +
m∑

i=1

(ni − m̂),

where

m̂ = dim(
m⋂

k=1

Rnk). ¤

The inner product 〈(A), (B)〉 of (A) and (B) is defined by

〈(A), (B)〉 =
∑

i,j

aijbij .

Then we know the next result by definition.

Theorem 3.2 Let (A), (B), (C) be m× n matrixes and α a constant. Then
(1) 〈αA, B〉 = α 〈B,A〉;
(2) 〈A + B,C〉 = 〈A,C〉+ 〈B,C〉;
(3) 〈A,A〉 ≥ 0 with equality hold if and only if (A) = Om×n.

Theorem 3.3 Let (A), (B) be m× n matrixes. Then

〈(A), (B)〉2 ≤ 〈(A), (A)〉 〈(B), (B)〉

and with equality hold only if (A) = λ(B), where λ is a real constant.

Proof If (A) = λ(B), then 〈A,B〉2 = λ2 〈B,B〉2 = 〈A,A〉 〈B,B〉. Now if there are no
constant λ enabling (A) = λ(B), then (A) − λ(B) 6= Om×n for any real number λ. According
to Theorem 3.2, we know that

〈(A)− λ(B), (A)− λ(B)〉 > 0,

i.e.,

〈(A), (A)〉 − 2λ 〈(A), (B)〉+ λ2 〈(B), (B)〉 > 0.

Therefore, we find that

∆ = (−2 〈(A), (B)〉)2 − 4 〈(A), (A)〉 〈(B), (B)〉 < 0,

namely,

〈(A), (B)〉2 < 〈(A), (A)〉 〈(B), (B)〉 . ¤

Theorem 3.4 For a given integer sequence n1, n2, · · · , nm,m ≥ 1 with 0 < n1 < n2 < · · · < nm,
(R̃(n1, · · · , nm); d) is a metric space.

Proof We only need to verify that each condition for a metric space is hold in (R̃(n1, · · · , nm); d).
For two point p, q ∈ R̃(n1, · · · , nm), by definition we know that



A Combinatorial Decomposition of Euclidean Spaces Rn with Contribution to Visibility 59

d(p, q) =
√
〈[p]− [q], [p]− [q]〉 ≥ 0

with equality hold if and only if [p] = [q], namely, p = q and

d(p, q) =
√
〈[p]− [q], [p]− [q]〉 =

√
〈[q]− [p], [q]− [p]〉 = d(q, p).

Now let u ∈ R̃(n1, · · · , nm). By Theorem 3.3, we then find that

(d(p, u) + d(u, p))2

= 〈[p]− [u], [p]− [u]〉+ 2
√
〈[p]− [u], [p]− [u]〉 〈[u]− [q], [u]− [q]〉

+ 〈[u]− [q], [u]− [q]〉
≥ 〈[p]− [u], [p]− [u]〉+ 2 〈[p]− [u], [u]− [q]〉+ 〈[u]− [q], [u]− [q]〉
= 〈[p]− [q], [p]− [q]〉 = d2(p, q).

Whence, d(p, u) + d(u, p) ≥ d(p, q) and (R̃(n1, · · · , nm); d) is a metric space. ¤
According to Theorem 3.1, a combinatorial fan-space R̃(n1, n2, · · · , nm) can be turned

into a Euclidean space Rn with n = m̂ +
m∑

i=1

(ni − m̂). Now the inverse question is that for

a Euclidean space Rn, weather there exist a combinatorial Euclidean space EG(n1, · · · , nm) of
Euclidean spaces Rn1 , Rn2 , · · · , Rnm such that dimRn1 ∪Rn2 ∪ · · · ∪Rnm = n? We get the
following decomposition result of Euclidean spaces.

Theorem 3.5 Let Rn be a Euclidean space, n1, n2, · · · , nm integers with m̂ < ni < n for
1 ≤ i ≤ m and the equation

m̂ +
m∑

i=1

(ni − m̂) = n

hold for an integer m̂, 1 ≤ m̂ ≤ n. Then there is a combinatorial fan-space R̃(n1, n2, · · · , nm)
such that

Rn ∼= R̃(n1, n2, · · · , nm).

Proof Not loss of generality, assume the normal basis of Rn is ε1 = (1, 0, · · · , 0), ε2 =
(0, 1, 0 · · · , 0), · · · , εn = (0, · · · , 0, 1). Then its coordinate system of Rn is (x1, x2, · · · , xn).
Since

n− m̂ =
m∑

i=1

(ni − m̂),

choose

R1 = 〈ε1, ε2, · · · , εm̂, εm̂+1, · · · , εn1〉 ;
R2 = 〈ε1, ε2, · · · , εm̂, εn1+1, εn1+2, · · · , εn2〉 ;
R3 = 〈ε1, ε2, · · · , εm̂, εn2+1, εn2+2, · · · , εn3〉 ;
· · · · · · · · · · · · · · · · · · · · · · · · · · · ;
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Rm =
〈
ε1, ε2, · · · , εm̂, εnm−1+1, εnm−1+2, · · · , εnm

〉
.

Calculation shows that dimRi = ni and dim(
m⋂

i=1

Ri) = m̂. Whence R̃(n1, n2, · · · , nm) is

a combinatorial fan-space. Whence,

Rn ∼= R̃(n1, n2, · · · , nm). ¤

Notice that a combinatorial fan-space R̃(n1, n2, · · · , nm) is in fact EKm(n1, n2, · · · , nm).
Let ni = 3 for 1 ≤ i ≤ m. We get a result following by Theorem 3.5.

Corollary3.1 Let Rn be a Euclidean space with n ≥ 4. Then there is a combinatorial Euclidean
space EKm

(3) such that

Rn ∼= EKm
(3)

with m = n−1
2 or m = n− 2.

§4. A Particle in Euclidean Spaces Rn with n ≥ 4

Corollary 3.1 asserts that an Euclidean space Rn can be really decomposed into 3-dimensional
Euclidean spaces R3 underlying a complete graph Km with m = n−1

2 or m = n−2. This suggests
that we can visualize a particle in Euclidean space Rn by detecting its partially behavior in
each R3. That is to say, we are needed to establish a parallel probe for Euclidean space Rn if
n ≥ 4.

Generally, a parallel probe on a combinatorial Euclidean space EG(n1, n2, · · · , nm) is the
set of probes established on each Euclidean space Rni for integers 1 ≤ i ≤ m, particularly for
EG(3) which one can detects a particle in its each space R3 such as those shown in Fig.4.1 in
where G = K4 and there are four probes P1, P2, P3, P4.

R3 R3

R3 R3

P1 P2

P3 P4

-
? ?

�

-

6

�

6

Fig.4.1
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Notice that data obtained by such parallel probe is a set of local data F (xi1, xi2, xi3) for
1 ≤ i ≤ m underlying G, i.e., the detecting data in a spatial ε should be same if ε ∈ R3

u ∩R3
v,

where R3
u denotes the R3 at u ∈ V (G) and (R3

u,R3
v) ∈ E(G).

For data not in the R3 we lived, it is reasonable that we can conclude that all are the same
as we obtained. Then we can analyze the global behavior of a particle in Euclidean space Rn

with n ≥ 4.
Then how to apply this speculation? Let us consider the gravitational field with dimensional≥

4. We know the Einstein’s gravitation field equations in R3 are

Rµν − 1
2
gµνR = κTµν ,

where Rµν = Rα
µαν = gαβRαµβν , R = gµνRµν are the respective Ricci tensor, Ricci scalar

curvature and

κ =
8πG

c4
= 2.08× 10−48cm−1 · g−1 · s2

Now for a gravitational field Rn with n ≥ 4, we decompose it into dimensional 3 Euclidean
spaces R3

u, R3
v, · · · , R3

w. Then we find Einstein’s gravitational equations shown in [4] as follows:

Rµuνu
− 1

2
gµuνu

R = −8πGEµuνu
,

Rµvνv −
1
2
gµvνvR = −8πGEµvνv ,

· · · · · · · · · · · · · · · ,

Rµwνw
− 1

2
gµwνw

R = −8πGEµwνw

for each R3
u, R3

v, · · · , R3
w. If we decompose Rn into a combinatorial Euclidean fan-space

R̃(3, 3, · · · , 3︸ ︷︷ ︸
m

), then u, v, · · · , w can be abbreviated to 1, 2 · · · ,m. In this case, these gravita-

tional equations can be represented by

R(µν)(στ) −
1
2
g(µν)(στ)R = −8πGE(µν)(στ)

with a coordinate matrix

[xp] =




x11 · · · x1m̂ · · · x13

x21 · · · x2m̂ · · · x23

· · · · · · · · · · · · · · ·
xm1 · · · xmm̂ · · · xm3




for a point p ∈ Rn, where m̂ = dim(
m⋂

i=1

Rni) a constant for ∀p ∈
m⋂

i=1

Rni and xil = xl

m for

1 ≤ i ≤ m, 1 ≤ l ≤ m̂. Because the local behavior is that of the projection of the global.
Whence, the following principle for determining behavior of particles in Rn, n ≥ 4 hold.
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Projective Principle A physics law in a Euclidean space Rn ∼= R̃(3, 3, · · · , 3︸ ︷︷ ︸
m

) with n ≥ 4 is

invariant under a projection on R3 in R̃(3, 3, · · · , 3︸ ︷︷ ︸
m

).

Applying this principe enables us to find a spherically symmetric solution of Einstein’s
gravitational equations in Euclidean space Rn.

§5. Discussions

A simple calculation shows that the dimension of the combinatorial Euclidean fan-space R̃(3, 3, · · · , 3︸ ︷︷ ︸
m

)

in Section 3 is

dimR̃(3, 3, · · · , 3︸ ︷︷ ︸
m

) = 3m + (1−m)m̂, (4− 1)

for example, dimR̃(3, 3, · · · , 3︸ ︷︷ ︸
m

) = 6, 9, 12 if m̂ = 0 and 5, 7, 9 if m̂ = 1 and m = 2, 3, 4 with

an additional time dimension t.

We have discussed in Section 1 that the visible geometry is the spherical geometry of
dimensional 3. That is why the sky looks like a spherical surface. In these geometrical elements,
such as those of point, line, ray, block, body,· · · , etc., we can only see the image of bodies on
our spherical surface, i.e., surface blocks.

Then what is the geometry of transferring information? Here, the term information in-
cludes information known or not known by human beings. So the geometry of transferring
information consists of all possible transferring routes. In other words, a combinatorial geom-
etry of dimensional≥ 1. Therefore, not all information transferring can be seen by our eyes.
But some of them can be felt by our six organs with the helps of apparatus if needed. For
example, the magnetism or electromagnetism can be only detected by apparatus. Consider m̂

the discussion is divided into two cases, which lead to two opposite conclusions following.

Case 1. m̂ = 3.

In this case, by the formula (4 − 1) we get that dimR̃(3, 3, · · · , 3︸ ︷︷ ︸
m

) = 3, i.e., all Euclidean

spaces R3
1,R

3
2, · · · ,R3

m are in one R3, which is the most enjoyed case by human beings. If
it is so, all the behavior of Universe can be realized finally by human beings, particularly, the
observed interval is ds and all natural things can be come true by experiments. This also means
that the discover of science will be ended, i.e., we can find an ultimate theory for the Universe
- the Theory of Everything. This is the earnest wish of Einstein himself beginning, and then
more physicists devoted all their lifetime to do so in last century.

Case 2. m̂ ≤ 2.



A Combinatorial Decomposition of Euclidean Spaces Rn with Contribution to Visibility 63

If the Universe is so, then dimR̃(3, 3, · · · , 3︸ ︷︷ ︸
m

) ≥ 4. In this case, the observed interval in the

field R3
human where human beings live is

ds2
human = a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 − c(t, r, θ, φ)dθ2 − d(t, r, θ, φ)dφ2.

by Schwarzschild metrics in R3. But we know the metric in R̃(3, 3, · · · , 3︸ ︷︷ ︸
m

) should be dsR̃. Then

how to we explain the differences (dsR̃ − dshuman) in physics?

Notice that one can only observes the line element dshuman, i.e.,, a projection of dsR̃ on R3
human

by the projective principle. Whence, all contributions in (dsR̃−dshuman) come from the spatial
direction not observable by human beings. In this case, it is difficult to determine the exact
behavior and sometimes only partial information of the Universe, which means that each law on
the Universe determined by human beings is an approximate result and hold with conditions.

Furthermore, if m̂ ≤ 2 holds, because there are infinite underlying connected graphs, i.e.,
there are infinite combinations of R3, one can not find an ultimate theory for the Universe,
which means the discover of science for human beings will endless forever, i.e., there are no a
Theory of Everything.
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Abstract: In this paper a new method for establishing generating equations of rooted

Eulerian planar maps will be provided. It is an algebraic method instead of the constructional

one used as before and plays an important role in finding the kind of equations. Some

equations of rooted loopless Eulerian planar maps will be obtained by using the method and

some results will be corrected and simplified here.
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§1. Introduction

A Smarandache multi-embedding of a graph G on a multi-surface S̃ is a continuous mapping
ς : G → S̃ such that there are no intersections between any two edges unless its endpoints,
where S̃ is an unions of surfaces underlying a graph H. Particularly, if |V (H)| = 1, i.e., S̃ is
just a surface, such multi-embedding is the common embedding of G.

With respect to the enumeration of rooted Eulerian planar maps the first result for enu-
merating rooted general Eulerian planar maps with vertex partition was achieved by Tutte [10]
in the early 1960’s. In 1986 the enumeration of rooted non-separable Eulerian planar maps with
vertex partition was studied by Liu [4]. In 1992 the enumeration of rooted loopless Eulerian
planar maps with vertex partition and other variables as parameters were investigated by Liu
[5,6,7] too. From then on some new results were obtained [1,2,8,9], but the method used there
was so difficult that one can not understand them easily. In 2004 the enumeration of unrooted
Eulerian and unicursl planar maps with the number of edges was resulted by Liskovets [3] based
on the rooted results. In present article we will provide an algebraic method instead of that
used in the past for counting this kind of planar maps. It will paly an important role in estab-
lishing the equations of all kinds of rooted Eulerian planar maps. As examples, some equations
of rooted loopless Eulerian planar maps can be derived by using the method. The procedure

1Received March 8, 2010. Accepted March 25, 2010.
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and some results in [5,6,8] will be reduced greatly and updated properly.
In general, rooting a map means distinguishing one edge on the boundary of the outer face

as the root-edge, and one end of that edge as the root-vertex. In diagrams we usually represent
the root-edge as an edge with an arrow in the outer face, the arrow being drawn from the
root-vertex to the other end. So the outer face is also called the root-face. A planar map
with a rooting is said to be a rooted planar map. We say that two rooted planar maps are
combinatorially equivalent or up to root-preserving isomorphism if they are related by one to
one correspondence of their elements, which maps vertices onto vertices, edges onto edges and
faces onto faces,and which preserves incidence relations and the rooted elements. Otherwise,
combinatorially inequivalent or nonisomorphic here.

Let M be any set of maps. For a map M ∈M let M −R and M •R be the resultant maps
of deleting the root-edge R(M) from M and contracting R(M) into a vertex as the new root-
vertex, respectively. For a vertex v of M let val(v) be the valency of the vertex v. Moreover,
the valency of the root-vertex of M is denoted by val(M).

Terminologies and notations not explained here refer to [9].

§2. Relations on Maps

In order to set up the enumerating equation satisfied by some generating functions we have to
introduce the operations on maps in M.

Let
M〈R〉 = {M −R | M ∈M}; M(R) = {M •R | M ∈M}, (31)

and let 



5̃M =
∑

M∈M
{5iM | i = 1, 2, · · · , l(M)− 1};

5M =
∑

M∈M
{5iM | i = 0, 1, 2, · · · , l(M)},

(32)

where 5iM is the resultant map of splitting the root-vertex of M into two vertices v′r and v′′r
with a new edge 〈v′r, v′′r 〉 as the root-edge of the new map 5iM such that the valency of its
root-vertex val(5iM) = i + 1.

Further,write that



M(e) = {M ∈M | val(M) ≡ 0(mod2)};
M(o) = {M ∈M | val(M) ≡ 1(mod2)}.

(33)

It is clear that M(e) and M(o) stand for maps in M with the valency of root-vertex of the
maps being even and odd, respectively.

Let M1 and M2 be two sets of maps. For two maps M1 ∈M1 and M2 ∈M2, let M1+̇M2

be the map M1

⋃
M2 such that

(i) M1

⋂
M2 is only a vertex as the root-vertex of M1+̇M2;

(ii) M1 is inside one of the faces incident with the root-vertex of M2;

(iii) The root-edge of M1+̇M2 is the same as that of M2;
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(iv) The first occurrence of the edges in M1 incident with the root-vertex of M1+̇M2 is the
root-edge of M1 when one moves around the root-vertex of M1+̇M2 in the rotational direction
starting from the root-edge of M1+̇M2.

For the maps Mi ∈Mi, i = 1, 2, · · · , k, we define that





M1+̇M2+̇ · · · +̇Mk =
(
M1+̇M2+̇ · · · +̇Mk−1

)
+̇Mk;

M1 ¯M2 ¯ · · · ¯Mk =
{
M1+̇M2+̇ · · · +̇Mk | Mi ∈Mi, 1 6 i 6 k

}
,

M¯k = M1 ¯M2 ¯ · · · ¯Mk|M1=M2=···=Mk=M.

(34)

Now, we have to introduce another kind operation in order to finish the construction of
the sets of maps as follows.

For two maps M1 ∈ M1 and M2 ∈ M2, let M1+̂M2 be the resultant map of identifying
the two root-edges of M1 and M2 such that M1 is inside the non-root-face incident with the
root-edge of M2, or onto the non-root-side of M2 if the root-edge of M2 is a cut-edge. Of course,
the root-edge of M1+̂M2 has to be the identified edge and the non-root-face incident with the
root-edge of M1+̂M2 is the same as in M1.

For the maps M ∈M and Mi ∈Mi, i = 1, 2, · · · , k, we define that





M1+̂M2+̂ · · · +̂Mk =
(
M1+̂M2+̂ · · · +̂Mk−1

)
+̂Mk;

M1 ⊕M2 ⊕ · · · ⊕Mk =
{
M1+̂M2+̂ · · · +̂Mk | Mi ∈Mi, 1 6 i 6 k

}
;

M⊕k = M1 ⊕M2 ⊕ · · · ⊕Mk|M1=M2=···=Mk=M.

(35)

A map is called Eulerian if all its vertices are of even valency. It is well-known that a
map is Eularian if and only if it has an Eularian circuit, a circuit containing each of the edges
exactly once. A map is called loopless if there is no any loop in the map.

Let Enl be the set of all rooted loopless Eulerian planar maps with the vertex map ϑ in Enl

as a special case. Of course, the loop map O is not in Enl. It is easily checked that no Eulerian
maps has a separable edge.

The enumerating problems of rooted loopless Eulerian planar maps will be discussed here
by using a new method witch is much simpler than that used in the past [4,5,6,9].

Let Enl0 = {ϑ} and Enli = {M ∈ Enl − ϑ | R(M) is i multi-edges in M}, for i > 1. Then
the set Enl can be partitioned into the following form

Enl =
∑

i>0

Enli , and Enl(R) =
∑

i>0

Enli(R), (36)

where Enl0(R) = Enl0 = {ϑ} and Enl1(R) = Enl − Enl0 . Let Ein = Enl+̇{O} be the set of all
rooted inner Eulerian planar maps [9], then from (4) we have

Enli(R) = E¯i−1
in ¯ Enl,

for i > 2.
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If we write E¯0
in = Enl0 = {ϑ}, then from (6) we have

Enl(R) =
∑

i>0

Enli(R) = Enl0(R) + Enl1(R) +
∑

i>2

Enli(R)

= Enl0 + (Enl − Enl0) +
∑

i>2

(E¯i−1
in ¯ Enl)

= Enl +
∑

i>1

(E¯i
in ¯ Enl) = Enl0 ¯ Enl +

∑

i>1

(E¯i
in ¯ Enl)

= E¯0
in ¯ Enl +

∑

i>1

(E¯i
in ¯ Enl).

i.e.,
Enl(R) =

∑

i>0

(E¯i
in ¯ Enl). (37)

Now, In order to enumerate the maps in Enl conveniently, we need to reconstruct the set
Enl according to the construction of Enl(R) in (7). Hence, we suppose that

F =
∑

i>0

[(
5̃Ein

)⊕i

⊕ (5Enl)
]

, (38)

where
(
5̃Ein

)⊕0

is defined as Enl0 .
In general, a map in F may be not Eulerian. It is obvious that F can be classified into

two classes F (e) and F (o) where F (e) is just what we need because the maps in it are all
Eulerian, i.e., F (e) ⊆ Enl − Enl0 . Conversely, for any map M ∈ Enl − Enl0 , there is a set Enli ,
i > 1 such that M ∈ Enli , thus M • R ∈ Enli(R) = E¯i−1

in ¯ Enl. So we have M ∈ Enli =[
(5̃Ein)⊕i−1 ⊕ (5Enl)

](e)

⊂ F (e), i.e., Enl − Enl0 ⊆ F (e). In the other words, we have

Enl = Enl0 + F (e) and F (e) = F − F (o). (39)

In addition, it is not difficult to see that

Ein〈R〉 = Enl. (40)

§3. Equations with Vertex Partition

In this section we want to discuss the following generating function for the set M of some maps.

gM(x : y) =
∑

M∈M
xl(M)yn(M), (41)

in which y(M) and n(M) stand for infinite vectors, and

yn(M) =
∏

i>1

y
ni(M)
i ; y = (y1, y2, · · · ); n(M) = (n1(M), n2(M), · · · ),

where l(M) = val(M) and ni(M) is the number of the non-root vertices of valency i, i > 1.
The function (11) is said to be the vertex partition function of M. Naturally, for a Eulerian
planar map M ∈ Enl, we may let l(M) = val(M) = 2m(M) and n2j+1(M) ≡ 0 for j > 0.
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For this reason we need to introduce the following Blisard -operator in y

∫

y

yi = yi, i > 1 and
∫

y

y0 = 1,

which is a linear operator and for a function f(z) we define that

δx,yf =
f(x)− f(y)

x2 − y2
. (42)

They are said to be (x, y)-deference of f(z) .
In the following, the new algebraic method is used for enumerating the set of maps in F (e).

Lemma 3.1 For the set F (e), we have

gF(e)(x : y
¯
) =

∫

y

x2y2δx,y(f + z2f2)
1− x2y2δx,y(2f + z2f2)

, (43)

where f = f(z) = gEnl(z : y
¯
).

Proof From the definitions (3), (8) and (11), we have

gF (x : y) =
∑

i>0

x

∫

y

y


 ∑

M∈Ein

l(M)−1∑

j=1

xjyl(M)−jyn(M)




i
∑

M∈Enl

l(M)∑

j=0

xjyl(M)−jyn(M)

= x

∫

y

y
∑

i>0

(
xy−1 gEin(y)− x−1ygEin(x)

1− xy−1

)i
f(y)− xy−1f(x)

1− xy−1

=
∫

y

∑

i>0

(
xy

yf(y)− xf(x)
y − x

)i+1

=
∫

y

xy(yf(y)− xf(x))
y (1 + x2f(x))− x (1 + y2f(y))

= x2

∫

y

y2

(
1 + y2f(y)

)
f(y)− (

1 + x2f(x)
)
f(x)

y2 (1 + x2f(x))2 − x2 (1 + y2f(y))2
+ gF(o)(x : y)

i.e.,

gF (x : y) =
∫

y

x2y2δx,y(f + z2f2)
1− x2y2δx,y(2f + z2f2)

+ gF(o)(x : y),

where f = f(z) = gEnl(z : y) and

gF(o)(x : y) =
∫

y

xyδx,y(z2f)
1− x2y2δx,y(2f + z2f2)

. (44)

This lemma can be derived from (9) immediately. ¤

Theorem 3.1 The generating function f = f(z) = gEnl(z : y
¯
) with vertex partition satisfies

the following enumerating equation

f =
∫

y

1− x2y2δx,yf

1− x2y2δx,y(2f + z2f2)
, (45)
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This is a modification and simplification to the result (3.13) in [5].

Proof It is clear that gEnl0
(x : y) = 1. So from (9) and (13), Eq.(15) is obtained by

grouping the terms. ¤

§4. Equations with the Numbers of Vertices and Faces

In what following we want to study the following generating function for the set M of some
maps.

fM(x, y, z) =
∑

M∈M
xl(M)yn(M)zq(M), (46)

where l(M) = val(M) and n(M) and q(M) are the numbers of non-root vertices and inner faces
of M ∈ M, respectively. It is clear that we may write l(M) = val(M) = 2m(M) if M ∈ Enl is
an Eulerian map.

In fact, this section will provide a functional equation satisfied by the generating function
f = fEnl(x, y, z) with the valency of root-vertex, the numbers of non-root vertices and inner
faces of the maps in Enl, respectively, as three parameters.

Summing the results as above, we can obtain the following results.

Lemma 4.1 For the set Ein, we have

fEin(x, y, z) = x2zf, (47)

where f = fEnl(x, y, z).

Proof The Lemma is obtained directly from (10) and (16). ¤
In the following, the algebraic method is used again for enumerating the set of maps in

F (e).

Lemma 4.2 For the set F (e), we have

fF(e)(x, y, z) = x2y
(1 + zf∗) f∗ − (

1 + x2zf
)
f

(1 + x2zf)2 − x2 (1 + zf∗)2
, (48)

where f = fEnl(x, y, z) and f∗ = fEnl(1, y, z).

Proof By (8),(9),(12) and (16) we have

fF (x, y, z) = xy
∑

i>0


 ∑

M∈Ein

2m(M)−1∑

j=1

xjyn(M)zq(M)




i
∑

M∈Enl

2m(M)∑

j=0

xjyn(M)zq(M)

= xy
∑

i>0

(
xf∗Ein − fEin

1− x

)i
f∗ − xf

1− x
= yz−1

∑

i>0

(
xz

f∗ − xf

1− x

)i+1

=
xy(f∗ − xf)

1− x (1 + zf∗) + x2zf
,
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i.e.,

fF (x, y, z) = x2y
(1 + zf∗) f∗ − (

1 + x2zf
)
f

(1 + x2zf)2 − x2 (1 + zf∗)2
+ fF(o)(x, y, z),

where f∗Ein = fEin(1, y, z) and

fF(o)(x, y, z) =
xy

(
f∗ − x2f

)

(1 + x2zf)2 − x2 (1 + zf∗)2
. (49)

The Lemma is obtained directly from the definition of F (e) in (9). ¤

Theorem 4.1 The generating function f = fEnl(x, y, z) with the valency of root-vertex, the
numbers of non-root vertices and inner faces of the maps in Enl, respectively, as three parameters
satisfies the following cubic equation

f = 1 + x2y
(1 + zf∗) f∗ − (

1 + x2zf
)
f

(1 + x2zf)2 − x2 (1 + zf∗)2
, (50)

where f∗ = f(1, y, z).

Proof From (9) we have

f = fEnl0
(x, y, z) + fF(e)(x, y, z),

where fEnl0
(x, y, z) = 1. By substituting (18) into the above formula Eq(20) holds. ¤

§5. Equations with the Edge Number and the Root-Face Valency

In this section we study the following generating function for the set M of some maps.

fM(x, y, z) =
∑

M∈M
xl(M)ys(M)zp(M), (51)

where l(M) = val(M) and s(M) and p(M) are the number of edges and the valency of root-face
of M ∈M, respectively. we may also write l(M) = val(M) = 2m(M) if M ∈ Enl is an Eulerian
map.

In this section we provide a functional equation satisfied by the generating function f =
fEnl(x, y, z) with the valency of root-vertex, the number of edges the valency of the root-face of
the maps in Enl, respectively, as three parameters. Write that

hEnl(x, y) = fEnl(x, y, 1), FEnl(y, z) = fEnl(1, y, z), HEnl(y) = fEnl(1, y, 1).

Lemma 5.1 For the set Ein, we have

fEin(x, y, z) = x2yzf, (52)

where f = fEnl(x, y, z).

Proof The Lemma is obtained directly from (10) and (21). ¤
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Lemma 5.2 For the set F (e), we have

fF(e)(x, y, z) =
x2yz[FH0 − (1 + x2yh)f ]

(1 + x2yh)2 − x2H2
0

− (1− z)x2y2zHFhf

1− x2y2H2h2
, (53)

where h = hEnl(x, y), F = FEnl(y, z), H = HEnl(y) and H0 = 1 + yH.

Proof By (8),(9),(12) and (21) we have

fF (x, y, z) = xyz
∑

i>0


 ∑

M∈Ein

2m(M)−1∑

j=1

xjys(M)




i
∑

M∈Enl

2m(M)∑

j=0

xjys(M)zp(M)

−
∑

k>1

xkyk(z − z2)fhk−1Hk−1F

= xyz
∑

i>0

(
xHEin − hEin

1− x

)i
F − xf

1− x
− xyz(1− z)Ff

∑

k>1

(xyHh)k−1

=
xyz(F − xf)

1− x− xHEin + hEin
− (1− z)xyzFf

1− xyHh
,

where HEin = yH,hEin = x2yh, i.e.,

fF (x, y, z) =
x2yz[FH0 − (1 + x2yh)f ]

(1 + x2yh)2 − x2H2
0

− (1− z)x2y2zHFhf

1− x2y2H2h2
+ fF(o)(x, y, z),

where H0 = 1 + yH and

fF(o)(x, y, z) =
xyz[(1 + x2yh)F − x2H0f ]

(1 + x2yh)2 − x2H2
0

− (1− z)xyzFf

1− x2y2H2h2
. (54)

The Lemma is obtained directly from the definition of F (e) in (9). ¤

Theorem 5.1 The generating function f = fEnl(x, y, z) with the valency of root-vertex, the
numbers of non-root vertices and inner faces of the maps in Enl, respectively, as three parameters
satisfies the following cubic equation

f = 1 +
x2yz[H0F − (1 + x2yh)f ]

(1 + x2yh)2 − x2H2
0

− (1− z)x2y2zHFhf

1− x2y2H2h2
, (55)

where h = hEnl(x, y), F = FEnl(y, z), H = HEnl(y) and H0 = 1 + yH.

Proof From (9) we have

f = fEnl0
(x, y, z) + fF(e)(x, y, z),

where fEnl0
(x, y, z) = 1. By substituting (23) into the above formula Eq(25) holds. ¤

Theorem 5.2 The generating function h = hEnl(x, y) with the valency of root-vertex and the
number of edges of the maps in Enl, respectively, as two parameters satisfies the following cubic
equation

h3
0 − h2

0 − (y + H2
0 )x2h0 + x2H2

0 + x4yH0 = 0, (56)
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where H0 = 1 + yHEnl(y) and h0 = 1 + x2yhEnl(x, y).
This is a modification and simplification to the result (4.11) in [5].

Proof For any map M ∈ Enl, since the number of vertices of M is n(M) + 1 and the
number of faces of M is q(M)+1, the number s(M) of edges of M is n(M)+ q(M) by Eulerian
formula. It follows from (16) and (21) that h = hEnl(x, y) = fEnl(x, y, y). So if we take z = y,
then Eq(20) becomes Eq(26) by grouping the terms where H = f∗Enl

(y, y) = fEnl(1, y, y).
Of course, Eq(26) may be also derived by substituting y2i = yi into Eq(15) and replacing

x2 in it with x2y since s(M) =
∑

i>0 in2i(M), or by substituting z = 1 into Eq(25). ¤
Note that Eq(20) and Eq(26) have been solved in the forms of parametric expressions or

explicit formulae in [2] and [7], respectively.
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Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered

pair S = (G, σ) (S = (G, µ)) where G = (V, E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}.
Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called

abbreviated a signed graph or a marked graph. In this paper, we present solutions of some

signed graph switching equations involving the line signed graph, complement and nth power
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§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [6]; the
non-standard will be given in this paper as and when required. We treat only finite simple
graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair S =
(G, σ) (S = (G,µ)) where G = (V, E) is a graph called underlying graph of S and σ : E →
(e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particularly, a
Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated a signed
graph or a marked graph. A signed graph S = (G, σ) is balanced if every cycle in S has an even
number of negative edges (See [7]). Equivalently a signed graph is balanced if product of signs
of the edges on every cycle of S is positive.

1Received February 20, 2010. Accepted March 26, 2010.
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A marking of S is a function µ : V (G) → {+,−}; A signed graph S together with a
marking µ by Sµ.

The following characterization of balanced signed graphs is well known.

Proposition 1.1(E. Sampathkumar [8]) A signed graph S = (G, σ) is balanced if, and only if,
there exist a marking µ of its vertices such that each edge uv in S satisfies σ(uv) = µ(u)µ(v).

Given a marking µ of S, by switching S with respect to µ we mean reversing the sign of
every edge of S whenever the end vertices have opposite signs in Sµ [1]. We denote the signed
graph obtained in this way is denoted by Sµ(S) and this signed graph is called the µ-switched
signed graph or just switched signed graph. A signed graph S1 switches to a signed graph S2

(that is, they are switching equivalent to each other), written S1 ∼ S2, whenever there exists a
marking µ such that Sµ(S1) ∼= S2.

Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be weakly isomorphic (see
[13]) or cycle isomorphic (see [14]) if there exists an isomorphism φ : G → G′ such that the
sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known
(See [14]):

Proposition 1.2(T. Zaslavsky [14]) Two signed graphs S1 and S2 with the same underlying
graph are switching equivalent if, and only if, they are cycle isomorphic.

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed
graph S as follows: Given a signed graph S = (G, σ) its line signed graph L(S) = (L(G), σ′)
is the signed graph whose underlying graph is L(G), the line graph of G, where for any edge
eiej in L(S), σ′(eiej) is negative if, and only if, both ei and ej are adjacent negative edges in
S. Another notion of line signed graph introduced in [5], is as follows:

The line signed graph of a signed graph S = (G, σ) is a signed graph L(S) = (L(G), σ′),
where for any edge ee′ in L(S), σ′(ee′) = σ(e)σ(e′). In this paper, we follow the notion of line
signed graph defined by M. K. Gill [5] (See also E. Sampathkumar et al. [9]).

Proposition 1.3(M. Acharya [2]) For any signed graph S = (G, σ), its line signed graph
L(S) = (L(G), σ′) is balanced.

For any positive integer k, the kth iterated line signed graph, Lk(S) of S is defined as
follows:

L0(S) = S, Lk(S) = L(Lk−1(S)).

Corollary 1.4 For any signed graph S = (G, σ) and for any positive integer k, Lk(S) is
balanced.

Let S = (G, σ) be a signed graph. Consider the marking µ on vertices of S defined as
follows: for each vertex v ∈ V , µ(v) is the product of the signs on the edges incident with
v. The complement of S is a signed graph S = (G, σc), where for any edge e = uv ∈ G,
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σc(uv) = µ(u)µ(v). Clearly, S as defined here is a balanced signed graph due to Proposition
1.1.

§2. nth Power signed graph

The nth power graph Gn of G is defined in [3] as follows:

The nth power has same vertex set as G, and has two vertices u and v adjacent if their
distance in G is n or less.

In [12], we introduced a natural extension of the notion of nth power graphs to the realm
of signed graphs: Consider the marking µ on vertices of S defined as follows: for each vertex
v ∈ V , µ(v) is the product of the signs on the edges incident at v. The nth power signed graph
of S is a signed graph Sn = (Gn, σ′), where Gn is the underlying graph of Sn, where for any
edge e = uv ∈ Gn, σ′(uv) = µ(u)µ(v).

The following result indicates the limitations of the notion of nth power signed graphs as
introduced above, since the entire class of unbalanced signed graphs is forbidden to nth power
signed graphs.

proposition 2.1(P. Siva Kota Reddy et al.[12]) For any signed graph S = (G, σ), its nth power
signed graph Sn is balanced.

For any positive integer k, the kth iterated nth power signed graph, (Sn)k of S is defined
as follows:

(Sn)0 = S, (Sn)k = Sn((Sn)k−1).

Corollary 2.2 For any signed graph S = (G, σ) and any positive integer k, (Sn)k is balanced.

The degree of a signed graph switching equation is then the maximum number of operations
on either side of an equation in standard form. For example, the degree of the equation S ∼ L(S)
is one, since in standard form it is L(S) ∼ S, and there is one operation on each side of the
equation. In [12], the following signed graph switching equations are solved:

• S ∼ (L(S))n (1)

• L(S) ∼ (L(S))n (2)

• L(S) ∼ S
n
, where n ≥ 2 (3)

• L2(S) ∼ Sn, where n ≥ 2 (4)

• L2(S) ∼ Sn, where n ≥ 2, and (5)

• L2(S) ∼ S
n
, where n ≥ 2. (6)

Recall that L2(S) is the second iterated line signed graph S.
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Several of these signed graph switching equations can be viewed as generalized of earlier
work [11]. For example, equation (1) is a generalization of L(S) ∼ S, which was solved by Siva
Kota Reddy and Subramanya [11]. When n = 1 in equations (3) and (4), we get L(S) ∼ S

and L2(S) ∼ S2, which was solved in [11]. If n = 1 in (5) and (6), the resulting signed graph
switching equation was solved by Siva Kota Reddy and Subramanya [11].

Further, in this paper we shall solve the following three signed graph switching equations:

• L(S) ∼ Sn (7)

• L(S) ∼ Sn (orL(S) ∼ Sn) (8)

• L(S) ∼ (S)n (9)

In the above expressions, the equivalence (i.e, ∼) means the switching equivalent between
corresponding graphs.

Note that for n = 1, the equation (7) is reduced to the following result of E. Sampathkumar
et al. [10].

Proposition 2.3(E. Sampathkumar et al. [10]) For any signed graph S = (G, σ), L(S) ∼ S

if, and only if, S is a balanced signed graph and G is 2-regular.

Note that for n = 1, the equations (8) and (9) are reduced to the signed graph switching
equation which is solved by Siva Kota Reddy and Subramanya [11].

Proposition 2.4 (P. Siva Kota Reddy and M. S. Subramanya [11]) For any signed graph
S = (G, σ), L(S) ∼ S if, and only if, G is either C5 or K3 ◦K1.

§3. The Solution of L(S) ∼ Sn

We now characterize signed graphs whose line signed graphs and its nth power line signed
graphs are switching equivalent. In the case of graphs the following result is due to J. Akiyama
et. al [3].

Proposition 3.1(J. Akiyama et al. [3]) For any n ≥ 2, the solutions to the equation L(G) ∼= Gn

are graphs G = mK3, where m is an arbitrary integer.

Proposition 3.2 For any signed graph S = (G, σ), L(S) ∼ Sn, where n ≥ 2 if, and only if, G

is mK3, where m is an arbitrary integer.

Proof Suppose L(S) ∼ Sn. This implies, L(G) ∼= Gn and hence by Proposition 3.1, we see
that the graph G must be isomorphic to mK3.

Conversely, suppose that G is mK3. Then L(G) ∼= Gn by Proposition 3.1. Now, if S is
a signed graph with underlying graph as mK3, by Propositions 1.3 and 2.1, L(S) and Sn are
balanced and hence, the result follows from Proposition 1.2. ¤
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§4. Solutions of L(S) ∼ Sn

In the case of graphs the following result is due to J. Akiyama et al. [3].

Proposition 4.1(J. Akiyama et al. [3]) For any n ≥ 2, G = C2n+3 is the only solution to the
equation L(G) ∼= Gn.

Proposition 4.2 For any signed graph S = (G, σ), L(S) ∼ Sn, where n ≥ 2 if, and only if, G

is C2n+3.

Proof Suppose L(S) ∼ Sn. This implies, L(G) ∼= Gn and hence by Proposition 4.1, we see
that the graph G must be isomorphic to C2n+3.

Conversely, suppose that G is C2n+3. Then L(G) ∼= Gn by Proposition 4.1. Now, if S is
a signed graph with underlying graph as C2n+3, by definition of complementary signed graph
and Proposition 2.1, L(S) and Sn are balanced and hence, the result follows from Proposition
1.2. ¤

In [3], the authors proved there are no solutions to the equation L(G) ∼= (G)n, n ≥ 2. So
its very difficult, in fact, impossible to construct switching equivalence relation of L(S) ∼ (S)n.
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§1. Introduction

A means of describing how one state develops into another state over the course of time.
Technically, a dynamical system is a smooth action of the reals or the integers on another object
(usually a manifold). When the reals are acting, the system is called a continuous dynamical
system, and when the integers are acting, the system is called a discrete dynamical system. If
f is any continuous function, then the evolution of a variable x can be given by the formula
xn+1 = f(xn). This equation can also be viewed as a difference equation xn+1−xn = f(xn)−xn ,
so defining g(x) ≡ f(x)− x gives xn+1− xn = g(xn) ∗ 1,which can be read ”as n changes by 1
unit, x changes by g(x). This is the discrete analog of the differential equation x′(n) = g(x(n)).

In other words; a dynamic system is a set of equations specifying how certain variables
change over time. The equations specify how to determine (compute) the new values as a
function of their current values and control parameters. The functions, when explicit, are
either difference equations or differential equations. Dynamic systems may be stochastic or
deterministic. In a stochastic system, new values come from a probability distribution. In a
deterministic system, a single new value is associated with any current value [1, 11] .

The dynamical systems were discussed in [1, 9, 11]. The fundamental groups of some types
of a manifold were studied in [2, 6− 8, 10].

1Received December 12, 2009. Accepted March 26, 2010.
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§1. Definitions

1. The set of homotopy classes of loops based at the point x0 with the product operation
[f ][g] = [f.g] is called the fundamental group and denoted by π1(X, x0) [3].

2. Given spaces X and Y with chosen points x0 ∈ X and y0 ∈ Y , then the wedge sum X ∨Y

is the quotient of the disjoint union X ∪ Y obtained by identifying x0 and y0 to a single
point [5].

3. A knot is a subset of 3-space that is homeomorphic to the unit circle and a trefoil knot is
the simplest nontrivial knot, it can be obtained by joining the loose ends of an overhand
knot [5].

4. A Smarandache multi-space is a union of n spaces equipped with some different structures
for an integer n ≥ 2 , which can be used for discrete or connected space [4].

5. Given a knot k, the fundamental group π1(R3 − k) is called the knot group of k [5].

6. A dynamical system in the space X is a function q = f(p, t) which assigns to each point
p of the space X and to each real numbert , ∞ < t < ∞ a definite point q ∈ X and
possesses the following three properties :

a- Initial condition : f(p, 0) = p for any pointp ∈ X.

b- Property of continuity in both arguments simultaneously:

lim
p→p0
t→t0

f(p, t) = f(p0,t0)

c- Group property f(f(p, t1), t2) = f(p, t1 + t2)[11].

§2. The Main Results

Aiming to our study, we will introduce the following:

Theorem 3.1 Let K be a trefoil knot then there are two types of dynamical trefoil knot
Di : K → K , i = 1, 2 , Di(K) 6= K,which induces dynamical trefoil knot D̄i : π1(K) → π1(K)
such that D̄i(π1(K)) is a free group of rank ≤ 4 or identity group.

Proof Let D1 : K → K be a dynamical trefoil knot such that D1(K) is dynamical crossing
i.e. the point of upper arc crossing touch the point of lower crossing, where D1(c) = p1 as in
Figure 1(a) then we have the induced dynamical trefoil knot D̄1 : π1(K) → π1(K) such that
D̄1(π1(K)) = π1(D1(K)) ≈ π1(S1

1) ∗ π1(S1
2), thus D̄1(π1(K)) ≈ Z ∗ Z , so D̄1(π1(K))is a free

group of rank = 2. Also, if D1 : K → K such that D1(c) = p1, D1(b) = p2 then D1(K) is
space as in Figure 1(b) and so D̄1(π1(K)) = π1(D1(K)) ≈ π1(S1

1) ∗ π1(S1
2) ∗ π1(S1

3), thus
D̄1(π1(K)) is a free group of rank = 3. Moreover, if D1 : K → K such that D1(c) =
p1, D1(b) = p2, D1(a) = p3 , then D1(K) is space as in Figure 1(c) and so D̄1(π1(K)) =
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π1(D1(K)) ≈ π1(S1
1) ∗ π1(S1

2) ∗ π1(S1
3) ∗ π1(S1

4), hence D̄1(π1(K))is a free group of rank = 4.
There is another type D2 : K → K such that D2(K) is dynamical trefoil knot with singularity
as in Figure 1(d) then we obtain the induced dynamical trefoil knot D̄2 : π1(K) → π1(K)
such that D̄2(π1(K)) = π1(D2(K)) = 0. Therefore, D̄i(π1(K)) is a free group of rank≤ 4 or
identity group. ¤

-D1 p1

(b)

p1p2
-D1 (c)

p1
-D1

p2

p3

(a)

-D2 (d)

FIGURE 1

Theorem 3.2 The fundamental group of the limit dynamical trefoil knot is the identity group.

Proof Let D1 : K → K1, D2 : D1(K) → D1(K2) , . . . , Dn : Dn−1(Dn−2) . . . (D1(K) →
Dn−1(Dn−2) . . . (D1(Kn) such that lim

n→∞
(Dn(Dn−1) . . . (D1(K) . . .) is a point as in Figure 2

(a,b) ,then π1( lim
n→∞

(Dn(Dn−1) . . . (D1(K) . . .)) = 0. ¤

Theorem 3.3 There are different types of dynamical link graph L which represent a trefoil
knot ,where D(L) 6= L such that π1(D(L)) is a free group of rank ≤ 3.

Proof Let L be a link graph which represent a trefoil knot and consider the following
dynamical edges D(e) = a,D(f) = c,D(g) = b as in Figure 3(a) then π1(D(L)) ≈ π1(S1) and
so π1(D(L)) is a free group of rank 1. Now, if D(e) 6= e,D(f) 6= f,D(g) 6= g as in Figure

3(b)we get the same result. Also, if D(e) = e,D(f) = f,D(g) 6= g as in Figure 3(c) then,
π1(D(L)) ≈ π1(S1

1) ∗ π1(S1
2) ∗ π1(S1

3), thus π1(D(L)) is a free group of rank 3.Moreover, if
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D(e) = e,D(f) 6= f,D(g) 6= g as in Figure 3(d)then π1(D(L)) ≈ π1(S1
1) ∗ π1(S1

2) .Hence
π1(D(L)) is a free group of rank 2. Therefore π1(D(L)) is a free group of rank ≤ 3. ¤

-D1 - -D2

lim
n→∞

Dn

- - -D1 D2

lim
n→∞

Dn

FIGURE 2

- -

- -

a a
a

a a

b b
b

b b
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e

f

g

(a)

(or)
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(b)

e

f

g

(or)
D(L)

e

f

g

D(L)
(or)

e

f

g

(d)(c)

FIGURE 3

Theorem 3.4 The fundamental group of limit dynamical link graph of n vertices is a free group
of rank n.

Proof Let K be link graph of n vertices , then lim
n→∞

(D(K)) is a graph with only one vertex
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and n-loops as in Figure 4 ,for n=3 and so π1( lim
n→∞

(D(K))) = π1(
n∨

i =1
S1

i ) ≈ Z ∗ Z ∗ ... ∗ Z︸ ︷︷ ︸
n terms

.

Hence, π1( lim
n→∞

(D(K))) is a free group of rank n. ¤

- - -D1 D2
lim

n→∞
Dn

FIGURE 4

Theorem 3.5 Let I be the closed interval [0, 1] . Then there is a sequence of dynamical man-
ifolds Di : I → Ii, i = 1, 2, ..., n with variation curvature and torsion such that lim

n→∞
Dn(I) is

trefoil knot and π1(R3 − lim
n→∞

Dn(I)) ≈ Z.

Proof Consider the sequence of dynamical manifolds with variation curvature and torsion
: D1 : I → I1, D2 : I1 → I2, ..., Dn : In−1 → In such that lim

n→∞
Dn(I) is a trefoil knot as in

Figure 5, Therefore, π1(R3 − lim
n→∞

Dn(I)) ≈ Z. ¤

-

- ....... -

0 1

D1

D2

lim
n→∞

Dn

FIGURE 5

Theorem 3.6 The knot group of the limit dynamical sheeted trefoil knot is either isomorphic
to Z or identity group.

Proof Let K be a sheet trefoil knot with boundary {A,B}as in Figure 6 and D : K → K

is dynamical sheeted trefoil knot of K into itself,then we get the following sequence: D1 : K →
K, D2 : D1(K) → D1(K) , . . . ,

Dn : (Dn−1) . . . (D1(K) . . .) → (Dn−1) . . . (D1(K) . . .)
such that lim

n→∞
(Dn(Dn−1) . . . (D1(K) . . .) = k where, k is a trefoil knot as in Figure 6(a) then

π1(R
3−k) ≈ Z..Also, if lim

n→∞
(Dn(Dn−1) . . . (D1(K) . . .) =point as in Figure 6(b,c) thenπ1(R

3−
lim

n→∞
(Dn(Dn−1) . . . (D1(K) . . .)) = π1(R

3 − one point). Hence,
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π1(R
3 − lim

n→∞
(Dn(Dn−1) . . . (D1(K) . . .)) = 0.

Therefore, the knot group of the limit dynamical sheeted trefoil knot is either isomorphic to
Z or identity group.

- - -

- - -.........

D1 D2
lim

n→∞
Dn

D1 D2
lim

n→∞
Dn

(a)

(b)

- - -.....D1 D2
lim

n→∞
Dn

(c)

FIGURE 6
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§1. Introduction

For definitions not explained here, readers are referred to [1]. Let G be a simple graph with
vertex set V and edge set E. By a drawing of G on the plane Π, we mean a collection of points
P in Π and open arcs A in Π − P for which there are correspondences between V and P and
between E and A such that the vertices of an edge correspond to the endpoints of the open
arcs. A drawing is called good, if for all arcs in A, no two with a common endpoint meet, no
two meet in more than one point, and no three have a common point. A crossing in a good
drawing is a point of intersection of two arcs in A. A Smarandache P-drawing of a graph G for
a graphical property P is such a good drawing of G on the plane with minimal intersections
for its each subgraph H ∈ P. A Smarandache P-drawing is said to be optimal if P = G and
it minimizes the number of crossings. The crossing number cr(G) of a graph G is the number
of crossings in any optimal drawing of G in the plane. Let D be a good drawing of the graph
G, we denote by cr(D) the number of crossings in D.

Let Pn and Cn be the path and cycle of length n, respectively, and the star Sn be the
complete bipartite graph K1,n.

Given two vertex disjoint graphs G1 and G2, the Cartesian product G1×G2 of G1 and G2

1Supported by National Science Foundation of China (10771062), New Century Excellent Talents in Uni-

versity (07-0276), Changsha Science and Technology Program(K0902210-11) and Talent Introduction Research

Fund(SF0905).
2Received January 11, 2010. Accepted March 28, 2010.
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is defined by




V (G1 ×G2) = V (G1)× V (G2)

E(G1 ×G2) = {(u1, u2) (v1, v2) |u1 = v1 and u2 v2 ∈ E(G2),

or u2 = v2 and u1 v1 ∈ E(G1)}

Let G1 be a graph homeomorphic to G2, then cr(G1) = cr(G2). And if G1 is a subgraph
of G2, it is easy to see that cr(G1) ≤ cr(G2).

Calculating the crossing number of a given graph is in general an elusive problem [2] and
only the crossing numbers of few families of graphs are known. Most of them are Cartesian
products of special graphs, partly because of the richness of their repetitive patterns. The
already known results on the crossing number of G×H fit into three categories:

(i) G and H are two small graphs. Harary, et al. obtained the crossing number of C3×C3

in 1973 [3]; Dean and Richter [4] investigated the crossing number of C4 × C4; Richter and
Thomassen [5] determined the crossing number of C5×C5; in [6] Anderson, et al. obtained the
crossing number of C6 × C6; Kles̆c̆ [7]studied the crossing number of K2,3 × C3. These results
are usually used as the induction basis for establishing the results of type (ii):

(ii) G is a small graph and H is a graph from some infinite family. In [8], the crossing
numbers of G × Cn for any graph G of order four except S3 were studied by Beineke and
Ringeisen, this gap was bridged by Jendrol’ et al. in [9]. The crossing numbers of Cartesian
products of 4-vertex graphs with Pn and Sn are determined by Kles̆c̆ in [10], he also determined
the crossing numbers of G×Pn for any graph G of order five [11-13]. For several special graphs
of order five, the crossing numbers of their products with Cn or Sn are also known, most of
which are due to Kles̆c̆ [14-17]. For special graphs G of order six, Peng et al. determined the
crossing number of the Cartesian product of the Petersen graph P (3, 1) with Pn in [18], Zheng
et al. gave the bound for the crossing number of Km×Pn for m > 3, n > 1, and they determined
the exact value for cr(K6 × Pn), see [19], and the authors [20] established the crossing number
of the Cartesian product of Pn with the complete bipartite graph K2,4.

(iii) Both G and H belong to some infinite family. One very long attention-getting problem
of this type is to determine the crossing number of the Cartesian product of two cycles, Cm

and Cn, which was put forward by Harary et al. [3], and they conjectured that cr(Cm×Cn) =
(m−2)n for n ≥ m. In the next three decades, many authors were devoted to this problem and
the conjecture has been proved true for m = 3, 4, 5, 6, 7, see [8,21-24]. In 2004, the problem was
progressed by Glebsky and Salazar, who proved that the crossing number of Cm × Cn equals
its long-conjectured value for n ≥ m(m + 1) [25]. Besides the Cartesian product of two cycles,
there are several other results. D.Bokal [26] determined the crossing number of the Cartesian
product Sm × Pn for any m ≥ 3 and n ≥ 1 used a quite newly introduced operation: the zip
product. Tang, et al. [27] and Zheng, et al. [28] independently proved that the crossing number
of K2,m × Pn is 2nbm

2 cbm−1
2 c for arbitrary m ≥ 2 and n ≥ 1.

Stimulated by these results, we begin to investigate the crossing number of the Cartesian
product of star Sn with a 6-vertex graph G2 shown in Figure 1, and get its crossing number is
6bn

2 cbn−1
2 c+ 2n + 2bn

2 c, for n ≥ 1.
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v1

v4

v5

v3

v2

v6

Figure1: The graph G2 Figure 2: The graph Hn

§2. Some Basic Lemmas and the Main Result

Let A and B be two disjoint subsets of E. In a drawing D, the number of crossings made by an
edge in A and another edge in B is denoted by crD(A,B). The number of crossings made by
two edges in A is denoted by crD(A). So cr(D) = crD(E). By counting the number of crossings
in D, we have Lemma 1.

Lemma 1 Let A,B, C be mutually disjoint subsets of E. Then

crD(A ∪B,C) = crD(A,C) + crD(B,C);

crD(A ∪B) = crD(A) + crD(B) + crD(A,B).
(1)

The crossing numbers of the complete bipartite graph Km,n were determined by Kleitman [29]
for the case m ≤ 6. More precisely, he proved that

cr(Km,n) = bm
2 cbm−1

2 cbn
2 cbn−1

2 c, if m ≤ 6 (2)

For convenience, bm
2 cbm−1

2 cbn
2 cbn−1

2 c is often denoted by Z(m,n) in our paper. To ob-
tain the main result of the paper, first we construct a graph Hn which is shown in Figure
2. Let V (Hn) = {v1, v2, v3, v4, v5, v6; t1, t2, · · · , tn}, E(Hn) = {vitj | 1 6 i 6 6; 1 6 j 6
n} ∪ {v1v2, v1v3, v1v5, v1v6, v2v3, v3v4, v3v5, v4v5, v4v6, v5v6}. Let T i be the subgraph of Hn in-
duced by the edge set {vitj |1 6 j 6 n}, and let ti be the vertex of T i of degree six. Clearly,
the induced subgraph [v1, v2, · · · , v6] ∼= G2. Thus, we have

Hn = G2 ∪K6,n = G2 ∪ (
n⋃

i=1

T i) (3)

For a graph G, the removal number r(G) of G is the smallest nonnegative integer r such
that the removal of some r edges from G results in a planar subgraph of G. By removing an
edge from each crossing of a drawing of G in the plane we get a set of edges whose removal
leaves a planar graph. Thus we have the following.

Lemma 2 For any drawing D of G, cr(D) > r(G).

Lemma 3 cr(H1) = 1, cr(H2) = 4.
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Proof A good drawing of H1 in Figure 3 shows that cr(H1) 6 1, and a good drawing of
H2 in Figure 4 shows that cr(H2) 6 4. By Lemma 2, we only need to prove that r(H1) > 1 and
r(H2) > 4.

Figure 3: A good drawing of H1 Figure 4: A good drawing of H2

Let r = r(H1) and let H ′
1 be a planar subgraph of H1 having 16− r edges. It is easy to see

that H ′
1 is a connected spanning subgraph of H1. By Euler’s formula, in any planar drawing of

H ′
1, there are 11− r faces. Since H ′

1 has girth at least 3, 2(16− r) > 3(11− r), so r > 1, that
is r(H1) > 1. Similarly, we can have r(H2) > 4. ¤

In a drawing D, if an edge is not crossed by any other edge, we say that it is clean in D;
if it is crossed by at least one edge, we say that it is crossed in D.

Lemma 4 Let D be a good drawing of Hn. If there are two different subgraphs T i and T j such
that crD(T i, T j) = 0, then crD(G2, T

i ∪ T j) > 4.

Proof We label the vertices of G2, see Figure 1. Since the two subgraphs T i and T j do
not cross each other in D, the induced drawing D|T i∪T j of T i ∪ T j divides the plane into six
regions that there are exactly two vertices of G2 on the boundary of each region.

Assume to the contrary that crD(G2, T
i ∪ T j) 6 3. The degrees of vertices v1, v3 and

v5 in G2 are all 4, so there are at least two crossings on the edges incident to v1, v3 and v5,

respectively. We can assert that edges v1v3, v3v5 and v1v5 must be crossed. Otherwise, without
loss of generality, we may assume that the edge v1v3 is clean, then the vertices v1 and v3 must
lie on the boundary of the same region, and there are at least two crossings on the edges (except
the edge v1v3) incident to vertices v1 and v3, respectively, a contradiction. Since the degree of
vertex v4 in G2 is 3, one can easily see that there is at least one more crossing on the edges
incident to v4, contradicts to our assumption and completes the proof. ¤

To obtain our main result, the following theorem is introduced.

Theorem 1 cr(Hn) = Z(6, n) + n + 2bn
2 c, for n > 1.

Proof A good drawing in Figure 2 shows that cr(Hn) ≤ Z(6, n)+n+2bn
2 c. Now we prove

the reverse inequality by induction on n. By Lemma 3, the cases hold for n = 1 and n = 2.

Now suppose that n > 3, and for all l < n, there is

cr(Hl) ≥ Z(6, l) + l + 2b l
2c (4)
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and for a certain good drawing D of Hn, assume that

crD(Hn) < Z(6, n) + n + 2bn
2 c (5)

The following two cases are discussed:

Case 1. Suppose that there are at least two different subgraphs T i and T j that do not cross
each other in D. Without loss of generality, assume that crD(Tn−1, Tn) = 0. By Lemma 4,
crD(G2, T

n−1 ∪Tn) ≥ 4. As cr(K3,6) = 6, for all i, i = 1, 2, · · · , n− 2, crD(T i, Tn−1 ∪Tn) > 6.

Using (1), (2), (3) and (4), we have

crD(Hn) = crD(G2 ∪
n−2⋃

i=1

T i ∪ Tn−1 ∪ Tn)

= crD(G2 ∪
n−2⋃

i=1

T i) + crD(Tn−1 ∪ Tn) + crD(G2, T
n−1 ∪ Tn)

+
n−2∑

i=1

crD(T i, Tn−1 ∪ Tn)

> Z(6, n− 2) + (n− 2) + 2bn− 2
2

c+ 4 + 6(n− 2)

= Z(6, n) + n + 2bn
2
c

This contradicts (5).

Case 2. Suppose that crD(T i, T j) > 1 for any two different subgraphs T i and T j , 1 6 i 6=
j 6 n. Using (1), (2) and (3), we have

crD(Hn) = crD(G2) + crD(
n⋃

i=1

T i) + crD(G2,
n⋃

i=1

T i)

> crD(G2) + Z(6, n) +
n∑

i=1

crD(G2, T
i)

(6)

This, together with (5) implies that

crD(G2) +
n∑

i=1

crD(G2, T
i) < n + 2bn

2
c

So, there is at least one subgraph T i that crD(G2, T
i) 6 1.

Subcase 2.1 Suppose that there is at least one subgraph T i that do not cross the edges of G2.

Without loss of generality, we may assume that crD(G2, T
n) = 0. Let us consider the 6-cycle

C6 of the graph G2. Hence G2 consists of C6 and four additional edges.

Subcase 2.1.1 Suppose that the edges of C6 do not cross each other in D. Since crD(G2, T
n) =

0, then the possibility of C6∪Tn must be as shown in Figure 5(1). Consider the four additional
edges of G2, they cannot cross the edges of Tn and the edges of C6 either, so the unique
possibility is crD(G2 ∪Tn) = 2, see Figure 5(1). Consider now a subdrawing of G2 ∪Tn ∪T i of
the drawing D for some i ∈ {1, 2, . . . , n− 1}. If ti locates in the region labeled ω, then we have
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crD(G2, T
i) > 4, using crD(Tn, T i) > 1, we get crD(G2 ∪ Tn, T i) > 5. If ti locates in the other

regions, one can see that on the boundary of these regions there are at most three vertices of
G2, and there are at least two vertices of G2 are in a region having no common edge with it, in
this case we have crD(G2 ∪ Tn, T i) > 5. Using (1), (2) and (3), we can get

crD(Hn) = crD(G2 ∪ Tn ∪
n−1⋃

i=1

T i)

= crD(G2 ∪ Tn) + crD(
n−1⋃

i=1

T i) +
n−1∑

i=1

crD(G2 ∪ Tn, T i)

> 1 + Z(6, n− 1) + 5(n− 1)

> Z(6, n) + n + 2bn
2
c

which contradicts (5).
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n
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ω b

a

b

c

d

f

e

(2)

t
n

Figure 5

Subcase 2.1.2 Suppose that the edges of C6 cross each other in D. By the above arguments
in Subcase 2.1.1, we can assert that in D there must exist a subgraph T i, i ∈ {1, 2, · · · , n− 1},
such that crD(G2 ∪ Tn, T i) 6 4. The condition crD(G2, T

n) = 0 implies that crD(C6, T
n) = 0.

In this case the vertex tn of Tn lies in the region with all six vertices of C6 on its boundary, and
the condition crD(G2∪Tn, T i) 6 4 enforces that in the subdrawing of C6∪Tn there is a region
with at least three vertices of C6 on its boundary. In this case C6 cannot have more than two
internal crossings. If C6 has only one internal crossing, then the possibilities of C6 ∪ Tn are
shown in Figure 5(2) and Figure 5(3). If C6 has two internal crossings, then the possibility of
C6 ∪ Tn is shown in Figure 5(4). The vertices of G2 are labeled by a, b, c, d, e, f, respectively.
Since crD(G2, T

n) = 0, the four edges of G2 not in C6 do not cross the edges of Tn.

Consider the case shown in Figure 5(2). The three possible edges ac, ce, ae and the fourth
possible edge bd or bf or df separate the subdrawing of G2 ∪ Tn into several regions with at
most three vertices of G2 on each boundary. The three possible edges bd, bf, df and the fourth
possible edge ac or ce or ae separate the subdrawing of G2 ∪ Tn into several regions with at
most three vertices of G2 on each boundary. If the vertex ti of T i locates in the region with
three vertices of G2 on its boundary, one can note that there are at least 2 vertices of G2 do not
on the boundary of its neighborhood region, then crD(G2 ∪ Tn, T i) > 5; if the vertex ti of T i

locates in the region with at most two vertices of G2 on its boundary, one can see that there is at
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least one vertex of G2 is in a region having no common edge with it, then crD(G2∪Tn, T i) > 5,

a contradiction. If the possibility of C6 ∪ Tn is as shown in Figure 5(3) or Figure 5(4), then a
similar contradiction can be made by the analogous arguments.

Subcase 2.2 Suppose that crD(G2, T
i) > 1 for 1 6 i 6 n. Together with our former assump-

tion, there is at least one subgraph T i that crD(G2, T
i) = 1. Without loss of generality, assume

that crD(G2, T
n) = 1.

Subcase 2.2.1 Suppose that crD(C6, T
n) = 0. Then the possibilities of C6 ∪ Tn are shown

in Figure 5. It is clear that, in each region whose boundary composed of segments of edges
that incident with tn, there are at most two vertices of G2. Adding the four additional possible
edges of G2 that have one crossing with the edges of Tn, then there are at most three vertices
of G2 on the boundary of each region. Consider now a subdrawing of G2 ∪ Tn ∪ T i of the
drawing D for some i ∈ {1, 2, . . . , n− 1}. If ti locates in one of the regions with three vertices
of G2 on its boundary, then then we have crD(G2, T

i) > 3, using crD(Tn, T i) > 1, we have
crD(G2 ∪ Tn, T i) > 4. If ti locates in one of the regions with at most two vertices of G2 on its
boundary, then one can see that there are at least two vertices of G2 are in a region having no
common edge with it, in this case we have crD(G2 ∪ Tn, T i) > 6. Let

M = {T i|ti lies in the region with three vertices of G2 on its boundary}

Using (1), (2) and (3), we have

crD(Hn) = crD(G2 ∪ Tn ∪
n−1⋃

i=1

T i)

= crD(G2 ∪ Tn) + crD(
n−1⋃

i=1

T i) +
∑

T i∈M

crD(G2 ∪ Tn, T i)

+
∑

T i /∈M

crD(G2 ∪ Tn, T i)

> 1 + Z(6, n− 1) + 4|M |+ 6(n− 1− |M |)

Together with (5), we can get

2|M | > 5n− 5− 2bn
2
c − 6bn− 1

2
c > 2bn

2
c (7)

Combined with (6) and (7), we can get

crD(Hn) = crD(G2) + crD(
n⋃

i=1

T i) + crD(G2,
n⋃

i=1

T i)

= crD(G2) + crD(
n⋃

i=1

T i) +
∑

T i∈M

crD(G2, T
i) +

∑

T i /∈M

crD(G2, T
i)

> Z(6, n) + 3|M |+ (n− |M |)
> Z(6, n) + n + 2bn

2
c

which contradicts (5).
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Subcase 2.2.2 Suppose that crD(C6, T
n) = 1, then the subdrawing of C6 ∪ Tn must be one

of the ten possibilities shown in Figure 6. Adding the four additional possible edges of G2

that do not cross Tn, it is not difficult to see that there are at most three vertices of G2 on
the boundary of every region. Consider now a subdrawing of G2 ∪ Tn ∪ T i of the drawing D

for some i ∈ {1, 2, . . . , n − 1}. One can see that the number of crossings between the edges of
G2 ∪ Tn and the edges of T i are divided into two classes:

(1) In the subdrawing of G2 ∪ Tn, we have crD(G2 ∪ Tn, T i) > 5 no matter which region
does ti locate in, then a contradiction can be made by the similarly arguments in Subcase 2.1.1.

(2) In the subdrawing of G2 ∪ Tn, crD(G2 ∪ Tn, T i) = 4 when ti locates in the region with
three vertices of G2 on its boundary (and crD(G2 ∪ Tn, T i) = 4 if and only if crD(G2, T

i) = 3
and crD(Tn, T i) = 1), and crD(G2 ∪ Tn, T i) > 6 when ti locates in the other regions, then a
contradiction can be made by the similarly arguments in Subcase 2.2.1. That completes the
proof of the theorem. ¤

(2) (3) (4) (5)(1)

(8)(6) (7) (10)(9)

Figure 6: Ten possibilities of C6 ∪ Tn

Lemmas 5 and 6 are trivial observations.

Lemma 5 If there exists a crossed edge e in a drawing D and deleting it results in a new
drawing D∗, then cr(D) > cr(D∗) + 1.

Lemma 6 If there exists a clean edge e = uv in a drawing D and contracting it into a vertex
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u = v results in a new drawing D∗, then cr(D) > cr(D∗).

Let H be a graph isomorphic to G2. Consider a graph GH obtained by joining all vertices
of H to six vertices of a connected graph G such that every vertex of H will only be adjacent
to exactly one vertex of G. Let G∗H be the graph obtained from GH by contracting the edges
of H.
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x3
x1

x6

x5

x8

x7

x9

x4

x10

Figure 7
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Lemma 7 cr(G∗H) 6 cr(GH)− 1.

Proof Let D be an optimal drawing of GH . The subgraph H has ten edges and let
x1, x2, . . . , x9, x10 denote the numbers of crossings on the edges of H, see Figure 7. The following
two cases are distinguished.

Case 1. Suppose that at least one of x1, x2, . . . , x6, x10 is greater than 0, then either x7 <

x1 + x3 + x4 + x9 + x10 or x9 < x2 + x5 + x6 + x7 + x10 holds. Figure 8 shows that H can be
contracted to the vertex h with at least one crossing decreased if x7 < x1 + x3 + x4 + x9 + x10.

Figure 9 shows that H can be contracted to the vertex h with at least one crossing decreased
if x9 < x2 + x5 + x6 + x7 + x10. That means cr(G∗H) 6 crD(GH)− 1 = cr(GH)− 1.
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Figure 10

Case 2. Suppose that x1 = x2 = · · · = x6 = x10 = 0, then we have x7 + x8 + x9 > 1 since
cr(H1) = 1. Figure 10 shows that H can be contracted to the vertex h in the following way:
first, delete the edges x7, x8 and x9, (for convenience, here we use xi to denote the respective
edge with xi crossings), then redraw the former edge x7 closely enough to edges x1 and x6, at
last, contract the edge x2 into a vertex h. By Lemma 5, the first step decreases at least one
crossing. And by Lemma 6, the second and last steps do not increase the number of crossings.
That means cr(G∗H) 6 crD(GH)− 1 = cr(GH)− 1. This completes the proof. ¤

Consider now the graph G2×Sn. For n > 1 it has 6(n + 1) vertices and edges that are the
edges in n + 1 copies Gi

2, i = 0, 1, · · · , n, and in the six stars Sn, see Figure 11.

Figure 11: A good drawing of G2 × Sn

Now, we can get the main theorem.

Theorem 2 cr(G2 × Sn) = Z(6, n) + 2n + 2bn
2 c, for n > 1.

Proof A drawing in Figure 11 shows that cr(G2 × Sn) 6 Z(6, n) + 2n + 2bn
2 c. Assume

that there is an optimal drawing D of G2 × Sn with fewer than Z(6, n) + 2n + 2bn
2 c crossings.

Contracting the edges of each Gi
2 to a vertex ti for all i = 1, 2, · · · , n in D results in a graph

homeomorphic to Hn, and using Lemma 7 repeatedly, we have cr(Hn) ≤ cr(G2 × Sn) − n =
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crD(G2×Sn)−n < Z(6, n)+n+2bn
2 c, a contradiction with Theorem 1. Therefore, cr(G2×Sn) =

Z(6, n) + 2n + 2bn
2 c. ¤
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§1. Introduction

Hyperbolic Geometry appeared in the first half of the 19th century as an attempt to understand
Euclid’s axiomatic basis of Geometry. It is also known as a type of non-Euclidean Geometry,
being in many respects similar to Euclidean Geometry. Hyperbolic Geometry includes similar
concepts as distance and angle. Both these geometries have many results in common but many
are different.

There are known many models for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc. In this note we choose
the Poincaré disc model in order to present the hyperbolic version of the Smarandache’s pedal
polygon theorem. The Euclidean version of this well-known theorem states that if the points
Mi, i = 1, n are the projections of a point M on the sides AiAi+1, i = 1, n, where An+1 = A1, of
the polygon A1A2...An, then M1A

2
1+M2A

2
2+...+MnA2

n = M1A
2
2+M2A

2
3+...+Mn−1A

2
n+MnA2

1

[1]. This result has a simple statement but it is of great interest.
We begin with the recall of some basic geometric notions and properties in the Poincaré

disc. Let D denote the unit disc in the complex z - plane, i.e.

D = {z ∈ C : |z| < 1}

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

1Received February 20, 2010. Accepted March 28, 2010.
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which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of the disc to
be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex conjugate
of z0. Let Aut(D,⊕) be the automorphism group of the groupoid (D,⊕). If we define

gyr : D ×D → Aut(D,⊕), gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a⊕ b = gyr[a, b](b⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that obeys the
following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties. For all real
numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1⊗ a = a;

(G2) (r1 + r2)⊗ a = r1 ⊗ a⊕ r2 ⊗ a;

(G3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a);

(G4) |r|⊗a
‖r⊗a‖ = a

‖a‖ ;

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a;

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1 ;

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional ”vectors”

‖G‖ = {±‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖;
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖.

Definition 1.1 The hyperbolic distance function in D is defined by the equation

d(a, b) = |aª b| =
∣∣∣∣

a− b

1− ab

∣∣∣∣ .

Here, aª b = a⊕ (−b), for a, b ∈ D.

Theorem 1.2(The Möbius Hyperbolic Pythagorean Theorem) Let ABC be a gyrotriangle in
a Möbius gyrovector space (Vs,⊕,⊗), with vertices A,B, C ∈ Vs, sides a,b, c ∈ Vs and side
gyrolenghts a, b, c ∈ (−s, s), a = −B ⊕ C,b = −C ⊕A, c = −A⊕B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖
and with gyroangles α, β, and γ at the vertices A,B, and C. If γ = π/2, then

c2

s
=

a2

s
⊕ b2

s
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(see [2, p 290])

For further details we refer to the recent book of A.Ungar [2].

§2. Main Result

In this sections, we present a proof of the hyperbolic a Smarandache’s pedal polygon theorem
in the Poincaré disc model of hyperbolic geometry.

Theorem 2.1 Let A1A2...An be a hyperbolic convex polygon in the Poincaré disc, whose
vertices are the points A1, A2, ..., An of the disc and whose sides (directed counterclockwise) are
a1= −A1 ⊕A2, a2= −A2 ⊕A3, ..., an= −An ⊕A1. Let the points Mi, i = 1, n be located on the
sides a1, a2, ..., an of the hyperbolic convex polygon A1A2...An respectively. If the perpendiculars
to the sides of the hyperbolic polygon at the points M1,M2,..., and Mn are concurrent, then the
following equality holds:

|−A1 ⊕M1|2ª|−M1 ⊕A2|2⊕|−A2 ⊕M2|2ª|−M2 ⊕A3|2⊕...⊕|−An ⊕Mn|2ª|−Mn ⊕A1|2 = 0.

Proof We assume that perpendiculars meet at a point of A1A2...An and let denote this
point by M (see Figure). The geodesic segments −A1⊕M, −A2⊕M, ..., −An⊕M,−M1⊕M,

−M2⊕M, ..., −Mn⊕M split the hyperbolic polygon into 2n right-angled hyperbolic triangles.
We apply the Theorem 1.2 to these 2n right-angled hyperbolic triangles one by one, and we
easily obtain:

|−M ⊕Ak|2 = |−Ak ⊕Mk|2 ⊕ |−Mk ⊕M |2 ,

for all k from 1 to n, and M0 = Mn.Using equalities

|−M ⊕Ak|2 = |−Ak ⊕M |2 , k = 1, n,

we have

αk = |−Ak ⊕Mk|2 ⊕ |−Mk ⊕M |2 = |−M ⊕Mk−1|2 ⊕ |−Mk−1 ⊕Ak|2 = α
′
k
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for all k from 1 to n, and M0 = Mn. This implies

α1 ⊕ α2 ⊕ ...⊕ αn = α
′
1 ⊕ α

′
2 ⊕ ...⊕ α

′
n.

Since ((−1, 1),⊕) is a commutative group, we immediately obtain

|−A1 ⊕M1|2⊕|−A2 ⊕M2|2⊕...⊕|−An ⊕Mn|2 = |−M1 ⊕A2|2⊕|−M2 ⊕A3|2⊕...⊕|−Mn ⊕A1|2 ,

i.e.

|−A1 ⊕M1|2ª|−M1 ⊕A2|2⊕|−A2 ⊕M2|2ª|−M2 ⊕A3|2⊕...⊕|−An ⊕Mn|2ª|−Mn ⊕A1|2 = 0.

¤
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§1. Introduction

Let D be a simple digraph with vertex set V (D) = {v1, v2, · · · , vn} and arc set Γ(D) ⊂ V (D)×
V (D). Let |Γ(D)| = m. The arc adjacency matrix of D is the n× n matrix A = [aij ], where

aij =





1 if i < j and (vi, vj) ∈ Γ(D)

−1 if i < j and (vj , vi) ∈ Γ(D)

0 if vi and vj are not adjacent.

For i > j we define aij = aji. A is a symmetric matrix of order n and all its eigenvalues are
real. We denote the eigenvalues of A by λ1, λ2, · · · , λn with λ1 ≥ λ2 ≥ · · · ≥ λn. The set
{λ1, λ2, · · · , λn} is called the arc spectrum of D. The characteristic polynomial |xI −A| of the
arc adjacency matrix A is called the arc characteristic polynomial of D and it is denoted by
Φ(D;x). The arc energy of D is defined by

Ea(D) =
n∑

i=1

|λi|.

For the majority of conjugated hydrocarbons, The total π−electron energy, Eπ satisfies
the relation

Eπ(D) =
n∑

i=1

|λi|

1Received February 28, 2010. Accepted March 30, 2010.
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where λ1, λ2, · · · , λn are the eigenvalues of the molecular graph of the conjugated hydrocarbons.
In view of this, Gutman [3] introduced the concept of graph energy E(G) of a simple undirected
graph G and he defined it as

E(G) =
n∑

i=1

|λi|

where λ1, λ2, · · · , λn are the eigenvalues of the adjacency matrix of G. Survey of development
of this topic before 2001 can be found in [4]. For recent development, one can consult [2]. The
energy of a graph has close links to chemistry [5]. In many situations chemists use digraph
rather than graphs. In this paper we are interested in studying mathematical aspects of arc
energy of digraphs. The skew energy of a digraph is recently studied in [1].

In Section 2 of this paper we study some basic properties of the arc energy and also derive
an upper bound for Ea(D). In Section 3 we study arc energy of directed trees. We compute arc
energies of directed cycles and some unitary Cayley digraphs in Section 4 and 5 respectively.

§2. Basic Properties of Arc Energy

We begin with the definition of arc energy.

Definition 2.1 Let A be the arc adjacency matrix of a digraph D. Then its Smarandache arc
k-energy EK

a (D) is defined as
∑n

i=1 |λi|k, where n is the order of D and λi, 1 ≤ i ≤ n are the
eigenvalues of A. Particularly, if k = 1, the Smarandache arc k-energy E1

a(D) is called the arc
energy of D and denoted by Ea(D) for abbreviatation.

Example 2.2 Let D be a directed cycle on four vertices.

-

?

�

6

Then A =




0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0




and the characteristic polynomial of A is λ4 − 4λ2 + 4, and

hence the eigenvalues of A are −√2,
√

2,−√2,
√

2, and the arc energy of D is 4
√

2.

Theorem 2.3 Let D be a digraph with the arc adjacency characteristic polynomial

Φ(D;x) = b0x
n + b1x

n−1 + · · ·+ bn.

Then
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(i) b0 = 1;

(ii) b1 = 0;

(iii) b2 = −m, the number of arcs of D;

(iv) For i < j < k, we define

(i, j) = number of triangles of the form

�
-

I

vk

vi vj

and

(i, j, k) = number of triangles of the form

	

-
I

vi

vk

vj

b3 = −2[(i, j) + (j, k) + (k, i) + (k, j, i)− (j, i)− (k, j)− (i, k)− (i, j, k)].

Proof

(i) It follows from the definition, Φ(D;x) = det(xI −A), that b0 = 1.

(ii) Since the diagonal elements of A are all zero, the sum of determinants of all 1×1 principal
submatrices of A = trace of A = 0. So b1 = 0.

(iii) The sum of determinants of all 2× 2 principal submatrices of

A =
∑

j<k

det


 0 ajk

akj 0


 =

∑

j<k

−ajkakj = −
∑

j<k

a2
jk = −m.

Thus b2 = −m.

(iv) We have

b3 = (−1)3
∑

i<j<k

∣∣∣∣∣∣∣∣

0 aij aik

aji 0 ajk

aki akj 0

∣∣∣∣∣∣∣∣
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= (−1)3
∑

i<j<k

∣∣∣∣∣∣∣∣

0 aij aik

aij 0 ajk

aik ajk 0

∣∣∣∣∣∣∣∣

= −2
∑

i<j<k sijsiksjk

= −2[(i, j)+(j, k)+(k, i)+(k, j, i)−(j, i)−(k, j)−(i, k)−(i, j, k)].

¤

Theorem 2.4 If λ1, λ2, · · · , λn are the arc eigenvalues of a digraph D, then

(i)
∑n

i=1 λ2
i = 2m;

(ii) For 1 ≤ i ≤ n, |λi| ≤ ∆, the maximum degree of the underlying graph GD.

Proof (i) We have
∑n

i=1 λ2
i = trace of A2 =

∑n
i=1

∑n
j=1 aijaji

=
n∑

i=1

n∑

j=1

(aij)2 = 2m.

(ii) Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A. The Cauchy-Schwartz inequality state
that if (a1, a2, · · · , an) and (b1, b2, · · · , bn) are real n-vectors then

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
.

Let ai = 1 and bi = |λi| for 1 ≤ i ≤ n, and i 6= j. Then




n∑
i=1
i6=j

|λi|




2

≤ (n− 1)




n∑
i=1
i6=j

|λi|2

 . (2.1)

Since
∑n

i=1 λi = 0 we have
∑n

i=1,
i6=j

λi = −λj . Thus

|
n∑

i=1,
j 6=i

λi|2 = | − λj |2.

Hence

| − λj |2 ≤




n∑
i=1
i6=j

|λi|




2

.

Using (2.1) in the above inequality we get

| − λj |2 ≤ (n− 1)
n∑

i=1

(|λi|2 − |λj |2
)
.
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i.e.,
n|λj |2 ≤ 2m(n− 1),

|λj |2 ≤ (n− 1)2.

Hence
|λj | ≤ ∆.

¤

Corollary 2.5 Ea(D) ≤ n∆.

Theorem 2.6
√

2m + n(n− 1)p2/n ≤ Ea(D) ≤ √
2mn ≤ n

√
∆ where p = |det A| = ∏n

i=1 |λi|.

Proof We have

(Ea(D))2 =

(
n∑

i=1

|λi|
)2

=
n∑

i=1

λ2
i +

∑

i 6=j

|λi| |λj |

and by the inequality between the arithmetic and geometric means,

1
n

Ea(D) ≥
(

n∏

i=1

|λi|
) 1

n

= |det A| 1n

∴ 1
n(n− 1)

∑

i 6=j

|λi| |λj | ≥

∏

i 6=j

|λi| |λj |



1
n(n−1)

=

(
n∏

i=1

|λi|2(n−1)

) 1
n(n−1)

=

(
n∏

i=1

|λi|
) 2

n

= |
n∏

i=1

λi| 2n = p
2
n .

Therefore

(Ea(D))2 ≥ 2m + n(n− 1)p
2
n .

To prove the right hand side inequality , we apply Schwartz’s inequality to the Euclidean
vectors u = (|λ1|, |λ2|, · · · , |λn|) and v = (1, 1, · · · , 1) to get

Ea(D) =
n∑

i=1

|λi| ≤
√√√√

n∑

i=1

|λi|2
√

n =
√

2mn ≤
√

n∆n = n
√

∆. (2.2)

¤

Corollary 2.7 Ea(D) = n
√

∆ if and only if A2 = ∆In where In is the identity matrix of order
n.
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Proof Equality holds in (2.2) if and only if the Schwartz’s inequality becomes equality and
trace A2 =

∑n
i=1 λ2

i = 2m = n∆, if and only if, there exists a constant α such that |λi|2 = α

for all i and GD is a ∆-regular graph, if and only if, A2 = αIn and α = ∆. ¤

Theorem 2.8 Each even positive integer 2p is the arc energy of a directed star.

Proof Let V (K1,n) = {v1, . . . , vn+1}. If vn+1 is the center of K1,n, orient all the edges
toward vn+1. Then

A =




0 0 . . . 0 1

0 0 . . . 0 1
...

...
. . .

...
...

1 1 . . . 1 0




,

and its eigenvalues are {√n,−√n, 0, 0, . . . , 0}, and so Ea(K1,n) = 2
√

n. Now take n = p2. ¤

§3. Arc Energies of Trees

We begin with a basic lemma.

Lemma 3.1 Let D be a simple digraph. and let D′ be the digraph obtained from D by reversing
the orientations of all the arcs incident with a particular vertex of D. Then Ea(D) = Ea(D′).

Proof Let A(D) be the arc adjacency matrix of D with respect to a labeling of its vertex
set. Suppose the orientations of all the arcs incident at vertex vi of D are reversed. Let the
resulting digraph be D′. Then A(D′) = PiA(D)Pi where Pi is the diagonal matrix obtained
from the identity matrix by changing the i-th diagonal entry to −1. Hence A(D) and A(D′)
are orthogonally similar, and so have the same eigenvalues, and hence D and D′ have the same
arc energy. ¤

Lemma 3.2 Let T be a labeled directed tree rooted at vertex v. It is possible, through reversing
the orientations of all arcs incident at some vertices other than v, to transform T to a directed
tree T ′ in which the orientations of all the arcs go from low labels to high labels.

Proof The proof is by induction on n, the order of the tree. For n = 2, there is only one
arc and the result is true. Assume that any labeled directed tree of order less than n can be
transformed in the manner described to a directed tree T ′ such that the orientations of all the
arcs go from low labels to high labels. Consider a labeled directed tree T of order n rooted
at v. Let N(v) be the neighbor set of v. For each w ∈ N(v), reverse the orientations of all
the arcs incident at w, if necessary, so that the orientation of the arc between v and w is from
low to high labels. Now, by induction assumption, the old-labeled new-orientation subtree Tw

rooted at w ∈ N(v) can be transformed to a directed subtree T ′w such that the orientations of
all the arcs go from low labels to high labels. Now combine all the subtrees T ′w and the root v

to obtain the required tree T ′. ¤
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Theorem 3.3 The arc energy of a directed tree is independent of its orientation.

Proof Let T be a labeled directed tree. Since the underlying graph is a tree, it is a

bipartite graph, and hence we can label T such that A(T ) =


 0 Y

Y T 0


. By Lemma 3.2, we

can transform T to T ′ such that A(T ′) =


 0 X

XT 0


, where X is nonnegative. By applying

Lemma 3.1 repeatedly, we conclude that A(T ) and A(T ′) are orthogonally similar, and hence
have the same eigenvalues and so the same arc energy. Consequently, T has the same arc energy
as the special directed tree T ′ in which the orientations of all the arcs go from low labels to
high labels. ¤

Corollary 3.4 The arc energy of a directed tree is the same as the energy of its underlying
tree.

Proof From the proof of Theorem 3.3, the arc energy of a directed tree is equal to the sum

of the singular values of


 0 X

XT 0


, which is nothing but the adjacency matrix of underlying

undirected tree and so the arc energy of a directed tree is the same as the energy of its underlying
undirected tree. ¤

Corollary 3.5 Energy of a special tournament of order n with vertex set {1, 2, . . . , n} in which
all its arcs point from low labels to high labels is same as its underlying tournament.

§4. Computation of Arc Energies of Cycles

In this section, we compute the arc energies of cycles under different orientations. Given a
directed cycle, fix a vertex and label the vertices consecutively. Reversing the arcs incident at
a vertex if necessary, we obtain a new directed cycle with arcs going from low labels to high
labels with a possible exception of one arc. Hence the arc adjacency matrix of a directed cycle
is orthogonally similar to either A+ or A− where,

A+ =




0 1 0 . . . 1

1 0 1 . . . 0
...

...
...

...

1 0 0 . . . 0




and A− =




0 1 0 . . . −1

1 0 1 . . . 0
...

...
...

...

−1 0 0 . . . 0




.

Case (i): Let C+
n be the directed cycle with arc adjacency matrix A+. We have A+ = Z+Zn−1
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where

Z =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

1 0 0 . . . 0




which is a circulant matrix. Since Zn = I, the characteristic polynomial of Z is xn − 1. Hence
we have Sp(Z) = {1, w, w2, · · · , wn−1} where w = e

2πi
n and so

Sp(C+
n ) = {wj + wj(n−1) : j = 0, 1, 2, · · · , n− 1}

= {wj + w−j : j = 0, 1, 2, · · · , n− 1}
= {2 cos(

2jπ

n
) : j = 0, 1, 2, · · · , n− 1}.

For n = 2k + 1, we have

Ea(C+
n ) =

n−1∑

j=0

2| cos(
2jπ

n
)| = 2 + 4

k∑

j=1

| cos(
2jπ

(2k + 1)
)|

= 2 + 4
k∑

j=1

cos(
jπ

(2k + 1)
) = 2 + 4


 sin (2k+1)π

2(2k+1)

2 sin π
2(2k+1)

− 1
2




= 2 csc(
π

2(2k + 1)
) = 2 csc(

π

2n
).

For n = 4k,

Ea(C+
n ) =

n−1∑

j=0

2| cos(
2jπ

n
)| = 4 + 8

k−1∑

j=1

cos(
jπ

2k
)

= 4 + 8

(
sin (2k−1)π

4k

2 sin π
4k

− 1
2

)
= 4 cot(

π

4k
) = 4 cot(

π

n
).

Similarly for n = 4k + 2
Ea(C+

n ) = 4 csc(
π

n
).

Putting together the results above, we obtain the following formulas for arc energy of C+
n :

Ea(C+
n ) =





2 csc π
2n if n ≡ 1(mod2),

4 cot π
n if n ≡ 0(mod4),

4 csc π
n if n ≡ 2(mod4).

Case (ii): Let C−n be the directed cycle with arc adjacency matrix A−. We have A− = Z−Zn−1

where

Z =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

−1 0 0 . . . 0




.
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Since Zn = −I, the characteristic polynomial of Z is xn + 1. Hence we have Sp(Z) =
{e (2j+1)πi

n | j = 0, 1, · · · , (n− 1)}. So Sp(A−) = {z − zn−1 | z ∈ Sp(Z)}.

For n = 2k + 1, we have

Ea(C−n ) =
n−1∑

j=0

2| cos(
(2j + 1)π
2k + 1

)| = 2

(
k∑

m=0

cos(
mπ

2k + 1
)−

2k∑

m=k+1

cos(
mπ

2k + 1
)

)

= 2

(
1 +

k∑
m=1

cos(
mπ

2k + 1
)−

2k∑

m=k+1

cos
(

π − 2k + 1−m

2k + 1

))

= 2

(
1 +

k∑
m=1

cos(
mπ

2k + 1
) +

2k∑

m=k+1

cos
(

2k + 1−m

2k + 1

)
π

)

= 2

(
1 + 2

k∑
m=1

cos(
mπ

2k + 1
)

)
= 2 + 4

k∑
m=1

cos(
mπ

2k + 1
)

= 2 csc(
π

2n
).

For n = 4k, we have

Ea(C−n ) =
n−1∑

j=0

| cos(
(2j + 1)π

4k
)| = 8

k−1∑

j=0

cos(
(2j + 1)π

4k
)

= 8
k∑

j=1

cos(
(2j − 1)π

4k
) = 8

(
sin (k+1)π

4k cos(π
4 − π

4k )
sin π

4k

)
.

Similarly for n = 4k + 2, we get

Ea(C−n ) =
sin( (k+1)π

2(2k+1) ) cos( kπ
2(2k+1) − π

2(2k+1) )

sin π
2(2k+1)

.

Putting together the results above, we obtain the following formulas for arc energy of C−n :

Ea(C−n ) =





2 csc( π
2n ) if n ≡ 1(mod2),

8
(

sin
(k+1)π

4k cos( π
4− π

4k )

sin π
4k

)
if n ≡ 0(mod4),

sin(
(k+1)π
2(2k+1) ) cos( kπ

2(2k+1)− π
2(2k+1) )

sin π
2(2k+1)

if n ≡ 2(mod4).

§4. On the Arc Energies of Some Unitary Cayley Digraphs

We now define the unit Cayley digraph Dn, n > 1. The vertex set of Dn is V (Dn) =
{0, 1, 2, · · · , (n− 1)} and the arc set of Dn is Γ(Dn) and is defined as follows:

For i, j ∈ {0, 1, 2, · · · , (n−1)} with i < j and (j− i, n) = 1, (i, j) ∈ Γ(Dn) or (j, i) ∈ Γ(Dn)
according as j − i is a quadratic residue or a quadratic non-residue modulo n. In this section
we compute arc energies of unitary Cayley digraphs Dn for n = 2α0pα1

1 · · · pαr
r , α0 = 0 or 1,
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pi ≡ 1 (mod 4), i = 1, 2, 3, · · · , r. We make use of the following well-known result to establish
a formula for arc energy of Dn for certain values of n.

Theorem 5.1 Let n = 2α0pα1
1 · · · pαr

r , n > 1 and (a, n) = 1. Then x2 ≡ a (mod n) is solvable
if and only if

(i)
(

a
pi

)
= 1 for i = 1, 2, · · · , r

and

(ii) a ≡ 1 (mod 4) if 4 | n but 8 - n ; a ≡ 1 (mod 8) if 8 | n.

Here
(

a
pi

)
is the Legendre symbol.

Theorem 5.2 For n = 2α0pα1
1 · · · pαr

r , α0 = 0 or 1, pi ≡ 1 (mod 4), i = 1, 2, 3, · · · , r, the
arc adjacency eigenvalues of the unitary Cayley digraph Dn are the Gauss sums G(r, χ

f
), r =

0, 1, 2, · · · , n− 1, associated with quadratic character f .

Proof The arc adjacency matrix of Dn with respect to the natural order of the vertices
0, 1, · · · , n− 1 is

An =




( 0
n ) ( 1

n ) ( 2
n ) . . . ( i−1

n ) . . . (n−1
n )

( 1
n ) ( 0

n ) ( 1
n ) . . . ( i−2

n ) . . . (n−2
n )

...

( i−1
n ) ( i−2

n ) ( i−3
n ) . . . ( 0

n ) . . . (n−i
n )

...

(n−1
n ) (n−2

n ) (n−3
n ) . . . (n−i

n ) . . . ( 0
n )




where

(a

n

)
=





1 if (a, n) = 1 and x2 ≡ a(mod n) is solvable,

−1 if (a, n) = 1 and x2 ≡ a(mod n) is not solvable,

0 otherwise.

Since n = 2α0pα1
1 · · · pαr

r , n > 1, where α0 = 0 or 1 and pi ≡ 1 (mod 4), i = 1, 2, 3, · · · , r, it
follows from Theorem 5.1 that x2 ≡ −1 (mod n) is solvable. Thus

(
− 1

n

)
= 1. (5.1)

Moreover, if (a, n) = 1 then

(
n− a

n

)
=

(−a

n

)
=

(−1
n

) (a

n

)
=

(a

n

)
( using (5.1)).
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Hence the arc adjacency matrix An of Dn is circulant. Consequently the eigenvalues of An are
given by

λr =
n−1∑
m=0

(m

n

)
wrm, r = 0, 1, · · · , n− 1, w = e

2πi
n

=
n−1∑
m=1

(m

n

)
wrm = G(r, χ

f
)

where χ
f

is the Dirichlet quadratic character mod n. ¤

Theorem 5.3 If n = 2α0pα1
1 · · · pαr

r , n > 1, where α0 = 0 or 1 and pi ≡ 1 (mod 4), i =
1, 2, · · · , r then the arc energy of Dn is

Ea(Dn) =
√

n φ(n).

Proof By Theorem 5.2, the eigenvalues of Dn are

λr = G(r, χ
f
), 0 ≤ r ≤ n− 1.

Hence the arc energy of Dn is given by

Ea(Dn) =
n−1∑
r=0

|λr| =
n−1∑
r=0

|G(r, χ
f
)|

=
n−1∑
r=1

|χf (r)||G(1, χ
f
)| = |G(1, χ

f
)| φ(n).

Therefore, to complete the proof, we need to compute |G(1, χ
f
)|. We have

|G(1, χ
f
)|2 = G(1, χ

f
)G(1, χ

f
) = G(1, χ

f
)

n∑
m=1

χ
f
(m) e

−2πim
n

=
n∑

m=1

G(m,χ
f
) e

−2πim
n =

n∑
m=1

n∑

j=1

(
j

n

)
e

2πijm
n e

−2πim
n

=
n∑

j=1

(
j

n

) n∑
m=1

wm(j−1), where w = e
2πi
n

=
(

1
n

) n∑
m=1

1, since
n∑

m=1

wm(j−1) = 0, if j > 1

= n.

Hence |G(1, χ
f
)| = √

n and E(Dn) =
√

n φ(n).

Conclusion The arc spectrum and arc energy of Dn when n ≡ 1 or 2(mod 4) was computed
(Theorems 5.2 and 5.3.) using fact that the associated arc adjacency matrix An was circulant.
Since in general An is not circulant, we leave open the problem of computing the arc spectrum
and arc energy of Dn for any natural number n.
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Abstract: In this paper, we study the Euler-Savary’s formula for the planar curves in the
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and a roulette which lie on two dimensional lightlike cone Q2.
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§1. Introduction

The Euler-Savary’s Theorem is well known theorem which is used in serious fields of study in
engineering and mathematics.

A Smarandache geometry is a geometry which has at least one Smarandachely denied
axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e.,
validated and invalided, or only invalided but in multiple distinct ways. So the Euclidean
geometry is just a Smarandachely denied-free geometry.

In the Euclidean plane E2,let cB and cR be two curves and P be a point relative to cR.
When cR roles without splitting along cB , the locus of the point P makes a curve cL. The curves
cB , cR and cL are called the base curve, rolling curve and roulette, respectively. For instance,
if cB is a straight line, cR is a quadratic curve and P is a focus of cR, then cL is the Delaunay
curve that are used to study surfaces of revolution with the constant mean curvature, (see
[1]).The relation between the curvatures of this curves is called as the Euler-Savary’s formula.

Many studies on Euler-Savary’s formula have been done by many mathematicians. For
example, in [4], the author gave Euler-Savary’s formula in Minkowski plane. In [5], they ex-
pressed the Euler-Savary’s formula for the trajectory curves of the 1-parameter Lorentzian
spherical motions.

On the other hand, there exists spacelike curves, timelike curves and lightlike(null) curves in
semi-Riemannian manifolds. Geometry of null curves and its applications to general reletivity
in semi-Riemannian manifolds has been constructed, (see [2]). The set of all lightlike(null)

1Received February 1, 2010. Accepted March 30,2010.
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vectors in semi-Riemannian manifold is called the lightlike cone. We know that it is important
to study submanifolds of the lightlike cone because of the relations between the conformal
transformation group and the Lorentzian group of the n-dimensional Minkowski space En

1 and
the submanifolds of the n-dimensional Riemannian sphere Sn and the submanifolds of the
(n+1)-dimensional lightlike cone Qn+1. For the studies on lightlike cone, we refer [3].

In this paper, we have done a study on Euler-Savary’s formula for the planar curves in
two dimensional lightlike cone Q2. However, to the best of author’s knowledge, Euler-Savary’s
formula has not been presented in two dimensional lightlike cone Q2. Thus, the study is proposed
to serve such a need. Thus, we get a short contribution about Smarandache geometries.

This paper is organized as follows. In Section2, the curves in the lightlike cone are reviewed.
In Section3, we define the associated curve that is the key concept to study the roulette, since
the roulette is one of associated curves of the base curve. Finally, we give the Euler-Savary’s
formula in two dimensional cone Q2.

We hope that, these study will contribute to the study of space kinematics, mathematical
physics and physical applications.

§2. Euler-Savary’s Formula in the Lightlike Cone Q2

Let E3
1 be the 3−dimensional Lorentzian space with the metric

g(x, y) = 〈x, y〉 = x1y1 + x2y2 − x3y3,

where x = (x1, x2, x3), y = (y1, y2, y3) ∈ E3
1 .

The lightlike cone Q2 is defined by

Q2 = {x ∈ E3
1 : g(x, x) = 0}.

Let x : I → Q2 ⊂ E3
1 be a curve, we have the following Frenet formulas (see [3])

x′(s) = α(s)

α′(s) = κ(s)x(s)− y(s) (2.1)

y′(s) = −κ(s)α(s),

where s is an arclength parameter of the curve x(s). κ(s) is cone curvature function of the
curve x(s),and x(s), y(s), α(s) satisfy

〈x, x〉 = 〈y, y〉 = 〈x, α〉 = 〈y, α〉 = 0,

〈x, y〉 = 〈α, α〉 = 1.

For an arbitrary parameter t of the curve x(t), the cone curvature function κ is given by

κ(t) =

〈
dx
dt , d2x

dt2

〉2

−
〈

d2x
dt2 , d2x

dt2

〉 〈
dx
dt , dx

dt

〉

2
〈

dx
dt , dx

dt

〉5 (2.2)

Using an orthonormal frame on the curve x(s) and denoting by κ, τ , β and γ the curvature,
the torsion, the principal normal and the binormal of the curve x(s) in E3

1 , respectively, we
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have

x′ = α

α′ = κx− y = κβ,

where κ 6= 0, 〈β, β〉 = ε = ±1, 〈α, β〉 = 0, 〈α, α〉 = 1, εκ < 0. Then we get

β = ε
κx− y√−2εκ

, ετγ =
κ′

2
√−2εκ

(x +
1
κ

y). (2.3)

Choosing

γ =

√
−εκ

2
(x +

1
κ

y), (2.4)

we obtain
κ =

√−2εκ, τ = −1
2
(
κ′

κ
). (2.5)

Theorem 2.1 The curve x : I → Q2 is a planar curve if and only if the cone curvature function
κ of the curve x(s) is constant [3].

If the curve x : I → Q2 ⊂ E3
1 is a planar curve, then we have following Frenet formulas

x′ = α,

α′ = ε
√−2εκβ, (2.6)

β′ = −√−2εκα.

Definition 2.2 Let x : I → Q2 ⊂ E3
1 be a curve with constant cone curvature κ (which means

that x is a conic section) and arclength parameter s. Then the curve

xA = x(s) + u1(s)α + u2(s)β (2.7)

is called the associated curve of x(s) in the Q2, where {α, β} is the Frenet frame of the curve
x(s) and {u1(s), u2(s)} is a relative coordinate of xA(s) with respect to {x(s), α, β}.

Now we put
dxA

ds
=

δu1

ds
α +

δu2

ds
β. (2.8)

Using the equation (2.2) and (2.6), we get

dxA

ds
= (1 +

du1

ds
−√−2εκu2)α + (u1ε

√−2εκ +
du2

ds
)β. (2.9)

Considering the (2.8) and (2.9), we have

δu1

ds
= (1 +

du1

ds
−√−2εκu2)

δu2

ds
= (u1ε

√−2εκ +
du2

ds
) (2.10)
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Let sA be the arclength parameter of xA. Then we write

dxA

ds
=

dxA

dsA
.
dsA

ds
= v1α + v2β (2.11)

and using (2.8) and (2.10), we get

v1 = 1 +
du1

ds
−√−2εκu2

v2 = u1ε
√−2εκ +

du2

ds
. (2.12)

The Frenet formulas of the curve xA can be written as follows:

dαA

dsA
= εA

√−2εAκAβA

dβA

dsA
= −√−2εAκAαA, (2.13)

where κA is the cone curvature function of xA and εA = 〈βA, βA〉 = ±1 and 〈αA, αA〉 = 1.

Let θ and ω be the slope angles of x and xA respectively. Then

κA =
dω

dsA
= (κ +

dφ

ds
)

1√
|v2

1 + εv2
2 |

, (2.14)

where φ = ω − θ.

If β is spacelike vector, then we can write

cos φ =
v1√

v2
1 + v2

2

and sinφ =
v2√

v2
1 + v2

2

.

Thus, we get
dφ

ds
=

d

ds
(cos−1 v1√

v2
1 + v2

2

)

and (2.14) reduces to

κA = (κ +
v1v

′
2 − v

′
1v2

v2
1 + v2

2

)
1√

v2
1 + v2

2

.

If β is timelike vector, then we can write

cosh φ =
v1√

v2
1 − v2

2

and sinhφ =
v2√

v2
1 − v2

2

and we get
dφ

ds
=

d

ds
(cosh−1 v1√

v2
1 − v2

2

).

Thus, we have

κA = (κ +
v1v

′
2 − v

′
1v2

v2
1 − v2

2

)
1√

v2
1 − v2

2

.

Let xB and xR be the base curve and rolling curve with constant cone curvature κB and
κR in Q2, respectively. Let P be a point relative to xR and xL be the roulette of the locus of
P.
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We can consider that xL is an associated curve of xB such that xL is a planar curve in Q2,
then the relative coordinate {w1,w2} of xL with respect to xB satisfies

δw1

dsB
= 1 +

dw1

dsB
−√−2εBκBw2

δw2

dsB
= w1εB

√−2εBκB +
dw2

dsB
(2.15)

by virtue of (2.10).
Since xR roles without splitting along xB at each point of contact, we can consider that

{w1,w2} is a relative coordinate of xL with respect to xR for a suitable parameter sR. In this
case, the associated curve is reduced to a point P. Hence it follows that

δw1

dsR
= 1 +

dw1

dsR
−√−2εRκRw2 = 0

δw2

dsR
= w1εR

√−2εRκR +
dw2

dsR
= 0. (2.16)

Substituting these equations into (2.15), we get

δw1

dsB
= (

√−2εRκR −
√−2εBκB)w2

δw2

dsB
= (εB

√−2εBκB − εR

√−2εRκR)w1. (2.17)

If we choose εB = εR = −1, then

0 < (
δw1

dsB
)2 − (

δw2

dsB
)2 = (

√
2κR −

√
2κB)2(w2

2 − w2
1). (2.18)

Hence, we can put
w1 = r sinhφ , w2 = r cosh φ.

Differentiating this equations, we get

dw1

dsR
=

dr

dsR
sinhφ + r cosh φ

dφ

dsR

dw2

dsR
=

dr

dsR
cosh φ + r sinhφ

dφ

dsR
(2.19)

Providing that we use (2.16), then we have

dw1

dsR
= r

√
2κR cosh φ− 1

dw2

dsR
= r sinhφ

√
2κR (2.20)

If we consider (2.19) and (2.20), then we get

r
dφ

dsR
= −r

√
2κR + cosh φ (2.21)

Therefore, substituting this equation into (2.14), we have

rκL = ±1 +
cosh φ

r
∣∣√2κR −

√
2κB

∣∣ (2.22)
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If we choose εB = εR = +1, then from (2.17)

0 < (
δw1

dsB
)2 + (

δw2

dsB
)2 = (

√−2κR −
√−2κB)2(w2

1 + w2
2) (2.23)

Hence we can put

w1 = r sinφ , w2 = r cos φ.

Differentiating this equations, we get

dw1

dsR
=

dr

dsR
sinφ + r cos φ

dφ

dsR
= r

√−2κR cos φ− 1

dw2

dsR
=

dr

dsR
cos φ− r sinφ

dφ

dsR
= −r sinφ

√−2κR (2.24)

and
r

dφ

dsR
= r

√−2κR − cos φ (2.25)

Therefore, substituting this equation into (2.14), we have

rκL =
√−2κB +

√−2κR∣∣√−2κR −
√−2κB

∣∣ −
cos φ

r
∣∣√−2κR −

√−2κB

∣∣ , (2.26)

where κL =
√−2εLκL.

Thus we have the following Euler-Savary’s Theorem for the planar curves in two dimen-
sional lightlike cone Q2.

Theorem 2.3 Let xR be a planar curve on the lightlike cone Q2 such that it rolles without
splitting along a curve xB . Let xL be a locus of a point P that is relative to xR. Let Q be a
point on xL and R a point of contact of xB and xR corresponds to Q relative to the rolling
relation. By (r, φ) , we denote a polar coordinate of Q with respect to the origin R and the base
line x

′
B |R. Then curvatures κB , κR and κL of xB , xR and xL respectively, satisfies

rκL = ±1 +
cosh φ

r
∣∣√2κR −

√
2κB

∣∣ , if εB = εR = −1,

rκL =
√−2κB +

√−2κR∣∣√−2κR −
√−2κB

∣∣ −
cos φ

r
∣∣√−2κR −

√−2κB

∣∣ if εB = εR = +1.
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The man with a new idea is a crank until the idea succeeds.

By Mark Twain, an American writer.
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