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Experience is a hard teacher because she gives the test first, the lesson afterwards.

By Law Vernon, a British writer.
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Abstract: In this study, New identities of Buchsteiner loops were obtained via the principal

isotopes. It was also shown that the middle inner mapping T−1
v is a crypto-automorphism

with companions v and vλ. Our results which are new in a way, complement and extend

existing results in literatures.

Key Words: Buchsteiner loop, WWIP-inverse loop, automorphism group, crypto-

automorphism.

AMS(2000): 08A05

§1. Introduction

A binary system (Q, ·) is called a loop if a ·1 = a = 1 ·a, ∀a ∈ Q, and if the equations ax = b and

ya = b have respectively unique solutions x = a\b and y = b/a, ∀a, b ∈ Q. The mappings Rx

and Lx for each x ∈ Q, called respectively the right and left translation mappings, are defined

as yx = yRx and xy = yLx, ∀y ∈ Q, they are one-to-one mapping of Q onto Q. It is important

to know that the group generated by all these mappings are called multiplication group MlpQ,

readers should please see [1,10].

Therefore, a loop (Q, ·) is called Buchsteiner loop, if ∀ x, y, z ∈ Q, the identity

x\(xy · z) = (y · zx)/x (1.1)

is obeyed. This loop was first noticed by Buchsteiner [3] in 1976. Thereafter much is not heard

of it until 2004, when Piroska Csögo, et al came up with a comprehensive study on this loop

structure [5,6]. In fact, they presented for the first time, an example of Buchsteiner loop which

is conjugacy closed.

A Buchsteiner loop is isomorphic to all its loops isotopes, hence it is a G-loop. It is not

an inverse property loop, however it satisfies a kind of inverse known as doubly weak inverse

property(WWIP) [5].

1Received April 7, 2010. Accepted May 25, 2010.
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A loop (Q, ·) is called doubly weak inverse property (WWIP) if the identity

(x · y)Jρ · xJ2
ρ = yJρ (1.2)

holds ∀ x, y ∈ Q. Buchsteiner loop is a is a class of G-loop which is defined concisely by an

equation. This makes the study of Buchsteiner loop interesting since G-loop is not known to

be described by a first order sentence [5].

These facts, provided the background to obtain some new identities for Buchsteiner loops.

These identities, were in turn used to show that T−1
v is a crypto-automorphism with companion

v and vλ.

Definition 1.1 (1) An isotopism of loops (Q, ◦) and (, ·) with same underlying set, is a triple

(α, β, γ) of permutation of Q satisfying

xα · yβ = (x ◦ y)γ, ∀ x, y ∈ Q. (1.3)

In this case (Q, ◦) and (Q, ·) are said to be isotopic.

(2)An isotopism (α, β, γ) is called principal if γ = IdQ. In such a case 1 ∈ Q is identity of

(Q, ◦), and if we set 1α = u and 1β = v, then (??) becomes x ◦ y = x/v · u\y = xR−1
v · yL−1

u ,

∀x, y ∈ Q. Here \ and / are left and right division operation in (Q, ·). Then the loop (Q, ◦) is

called principal isotope of (Q, ·).
(3) An isotopism (α, β, γ) of a loop (Q, ·) onto itself is called autotopism. The set Atp(Q)

of all autotopisms of a loop Q is a group.

(4) A permutation α of Q is an automorphism if α ∈ Aut(Q) or if and only if (α, α, α) ∈
Atp(Q).

Definition 1.2([4]) Let (Q, ·) be any loop. A permutation C on symmetric group of Q is called

crypto-automorphism of Q if there exist m, t in Q, such that for every x, y in Q, we have

(x ·m)C · (t · y)C = (x · y)C. (1.4)

§2. Preliminaries

Lemma 2.1([5]) A loop Q satisfy the identity (1.1) if and only if

(L−1
x , Rx, L

−1
x Rx) (2.1)

is an autotopism ∀ x ∈ Q.

Lemma 2.2([5]) A loop (Q, ·) satisfies the Buchsteiner identity x\(xy · z) = (y · zx)/x, if and

only if (L−1
x , Rx, L

−1
x Rx) ∈ Atp(Q), ∀ x, y, z ∈ Q.

Theorem 2.1([5]) Let Q be a Buchsteiner loop. Then ∀ x, y ∈ Q, R(x,y) = [Lx, Ry] = L−1
(y,x).

Note also that, the commutator [Lx, Ry], is defined as LxRy = RyLx[Lx, Ry] ⇒ L−1
x R−1

y LxRy =

[Lx, Ry] ⇒ L−1
x L−1

y Lyx = [Lx, Ry], since from Lemma 2.2, R−1
y LxRy = L−1

y Lyx.
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Theorem 2.2([2]) Let (Q, ·, \, /) be a quasigroup. If Q(a, b, ◦)
θ∼= Q(c, d, ∗), then Q(f, g,△)

θ∼=
Q((f · b)θ/d, c\(a · g)θ,�). If (Q, ·) is a loop, then (f · b)θ/d = [f · (a\cθ−1)]θ and c\(a · g)θ =

[(dθ−1/b) · g]θ, where a, b, c, d, f, g ∈ Q.

§3. Main Results

Our first main result reads:

Theorem 3.1 A loop (Q, ·, \, /) is a Buchsteiner loop if and only if the identity

u{x\[(xy)/v · z]} = {[(uy)/v · u\{(uz)/v · u\(xv)}]/(u\(xv))}v (3.1)

holds ∀u, v, x, y, z ∈ Q.

Proof Suppose (Q, ·, \, /) is a Buchsteiner loop with any arbitrary principal isotope (Q, ◦)
such that x ◦ y = xR−1

v · yL−1
u = x/v · u\y, ∀ u, v ∈ Q. Buchsteiner loops are G-loops [5].

Now choose u, v ∈ Q such that (Q, ◦) is loop isotope of (Q, ·). Therefore, we have x\[(x ◦ y) ◦
z] = [y ◦ (z ◦ x)]/x ⇒ x\[(xR−1

v · yL−1
u )R−1

v · zL−1
u ] = [yR−1

v · (zR−1
v · xL−1

u )L−1
u ]/x. Now

choose p such that x\[(xR−1
v · yL−1

u )R−1
v · zL−1

u ] = p = [yR−1
v · (zR−1

v · xL−1
u )L−1

u ]/x, then

[(xR−1
v · yL−1

u )R−1
v · zL−1

u ] = x ◦ p ⇔ [yR−1
v · (zR−1

v · xL−1
u )L−1

u ] = p ◦ x. Solving these two

separately and equating the answers give

u[(x/v)\{([(x/v) · (u\y)]/v) · (u\z)}] = [{(y/v) · (u\[(z/v) · (u\x)])}/(u\x)]v

Setting x′ = x/v ⇒ x′v = x, y′ = u\y ⇒ uy′ = y and z′ = u\z ⇒ uz′ = z in the last

expression gives

u{x′\[(x′y′)/v · z′]} = {[(uy′)/v · u\{(uz′)/v · u\(x′v)}]/(u\(x′v))}v

which is the required identity if x′, y′and z′are respectively replaced by x, y and z

Conversely, let (Q, ·) be a loop which obeys equation (3.1), working upward the process of

the proof of necessary condition, we obtain the Buchsteiner identity relation for any arbitrary

u, v-principal isotope (Q, ◦) of (Q, ·). �

Lemma 3.1 Let (Q, ·) be a loop. Then

(1) Q is a Buchsteiner loop if and only if, ∀ x, u, v ∈ Q, the triple

(RvL
−1
x LuR

−1
v , LuR

−1
v R{u\(xv)}L

−1
u , L−1

x LuR
−1
v R{u\(xv)}) ∈ Atp(Q). (3.2)

(2) In particular, Q is a Buchsteiner loop if ∀u, v ∈ Q, the triple

(RvLuR
−1
v , LuR

−1
v R(u\v)L

−1
u , LuR

−1
v R(u\v)) ∈ Atp(Q). (3.3)

Proof (1) Suppose the Q is a Buchsteiner loop, then equation (3.1) of Theorem 3.1 holds

in (Q, ·). Expressing the equation in term of autotopism gives (3.2). Conversely, suppose the
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autotopism (3.2) holds in Q, ∀ u, v ∈ Q, taking any y, z ∈ Q it implies that, yRvL
−1
x LuR

−1
v ·

zLuR
−1
v R{u\(xv)}L

−1
u = (yz)L−1

x LuR
−1
v R{u\(xv)}, the rest is simple.

(2) Suppose the Q is a Buchsteiner loop, then equation (3.1) of Theorem 3.1 holds in (Q, ·),
hence the autotopism (3.2) holds in Q. The required result is obtained if we set x = 1 in this

autotopism. �

Theorem 3.2 Let (Q, ·) be a loop, (Q, ◦) an arbitrary principal isotope of (Q, ·) and (Q, ∗) some

isotopes of (Q, ·). Then (Q, ·) is a Buchsteiner loop if and only if the commutative diagram

(Q, ·) (Rv ,I,I)−−−−−−−−−−−−−−−→
left principal isotopism

(Q, ∗) (η,η,η)−−−−−−−−→
isomorphism

(Q, ◦)
(R−1

(u\v)
,L−1

u ,I)

−−−−−−−−−−−−→
principal isotopism

(Q, ·)

holds, where η = LuR
−1
v R(u\v), ∀u, v ∈ Q.

Proof Suppose (Q, ·) is a Buchsteiner loop, by Lemma 3.1(2) the autotopism (3.3) holds in

(Q, ·). Thus, (RvLuR
−1
v , LuR

−1
v R(u\v)L

−1
u , LuR

−1
v R(u\v)) = (Rv, I, I)(η, η, η)(R

−1
(u\v), L

−1
u , I),

where η = LuR
−1
v R(u\v). Expressing this in terms of composition supplies the prove of the

necessity. Conversely, suppose the commutative diagram holds in Q, we only need to show

that the autotopism (3.3) holds in (Q, ·). This is obtained by component multiplication of the

compositions of the commutative diagram. �

Theorem 3.3 A Buchsteiner loop (Q, ·, \, /) obeys the identities: ((uz)/v)·(u\v) = u{(u[(u\v)/v·
z])/v · (u\v)} and u{[u\(yv)]/v} = {(y · u\[(u/v) · (u\v)])/(u\v)}v.

Proof From Theorem 3.2, observed that (Q, ◦) and (Q, ∗) are principal and left prin-

cipal isotopes of (Q, ·) respectively and η = LuR
−1
v R(u\v) is an isomorphism. Therefore

(Q, 1, v, ◦)
η∼= (Q, u, u\v, ∗). Let (Q, y, z,△) be an arbitrary principal isotope of (Q, ·), comparing

these with the statement of Theorem 2.2, we have a = 1, b = v, c = u, d = u\v, f = y, g = z

and θ = η = LuR
−1
v R(u\v). Using these we can compute: c\(a · g)θ = u\(1 · z)LuR−1

v R(u\v) =

u\{((uz)/v) · (u\v)} and [(dθ−1/b) · g]θ = [{(u\v)(LuR−1
v R(u\v))

−1}/v · z]LuR−1
v R(u\v) =

{(u[(u\v)/v·z])/v}(u\v). Hence c\(a·g)θ = [(dθ−1/b)·g]θ⇔ u\{((uz)/v)·(u\v)} = {(u[(u\v)/v·
z])/v}(u\v)⇔((uz)/v) · (u\v) = u{(u[(u\v)/v · z])/v · (u\v)}, which proved the first identity.

The second is similarly obtained, using appropriate arrangement. �.

Corollary 3.1 Let (Q, ·) be a Buchsteiner loop. Then the identities (vz)/v = v[(v ·vλz)/v] and

v{(v\(yv))/v} = yvρ · v hold ∀ v, y, z ∈ Q.

Proof All of these identities are obtained respectively by identities of Theorem 3.3 by

setting u = v. �

Corollary 3.2 If (Q, ·) is a Buchsteiner loop, then

(1) (vz)/v = v[(v · vλz)/v] if and only if L−1
v = TvLvλT−1

v , ∀v, z ∈ Q;

(2) v{(v\(yv))/v} = yvρ · v if and only if Rv = T−1
v R−1

vρ Tv, ∀v, y ∈ Q.

Proof Setting u = v in the identities of Theorem 3.3, we obtained (vz)/v = v[(v ·
vλz)/v] ⇒ L−1

v = TvLvλT−1
v from the first one. Conversely, suppose L−1

v = TvLvλT−1
v
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holds in Q, now for any z ∈ Q zL−1
v = zTvLvλT−1

v ⇔ v\z = {v[vλ(v\(zv))]}/v, now set

z = v\(zv) and the first identity is obtained. The second assertion is similarly obtained. �

Corollary 3.3 Let Q be a Buchsteiner loop, then (TvLvλT−1
v , T−1

v R−1
vρ Tv, TvLvλT−1

v T−1
v R−1

vρ Tv) ∈
Atp(Q), ∀v ∈ Q.

Proof This is obtained by substituting the assertion of Corollary 3.2 into the autotopism

(2.1). �

Lemma 3.2 A permutation C on symmetric group of a loop Q is called crypto-automorphism,

if and only if (RmC,LtC,C) ∈ Atp(Q), where m, t ∈ Q.

Proof Suppose C is a crypto-automorphism, then by Definition 1.2 equation (1.4) holds

in Q, ie (x ·m)C · (t · y)C = (x · y)C ⇔ xRmC · yLtC = (xy)C ⇔ (RmC,LtC,C) ∈ Atp(Q).

Thus the result follows. �

Theorem 3.4 Let (Q, ·) be a Buchsteiner loop. Then

(1) TvL(vλ,v) is a crypto-automorphism with companions v\(vρv) and v.

(2) Tv is a crypto-automorphism with companions v\(vρv) and v.

Proof (1)Using the autotopism A = (TvLvλT−1
v , T−1

v R−1
vρ Tv, TvLvλT−1

v T−1
v R−1

vρ Tv) in

Corollary 3.3 such that for any y, z ∈ Q, we have

yTvLvλT−1
v · zT−1

v R−1
vρ Tv = (yz)TvLvλT−1

v T−1
v R−1

vρ Tv.

If we set z = 1, we obtain

yTvLvλT−1
v Rv = yTvLvλT−1

v T−1
v R−1

vρ Tv

⇔ yTvLvλLv = yTvLvλT−1
v T−1

v R−1
vρ Tv

⇔ yTv(L
−1
v L−1

vλ )−1 = yTvLvλT−1
v T−1

v R−1
vρ Tv

⇔ yTv(L
−1
v L−1

vλ Lvλv)
−1 = yTvLvλT−1

v T−1
v R−1

vρ Tv.

From Theorem 2.1, we have yTvL(v,vλ) = yTvLvλT−1
v T−1

v R−1
vρ Tv. Thus we substitute to get

A = (TvLvλT−1
v , T−1

v R−1
vρ Tv, TvL(v,vλ)).

Furthermore, A−1 = (TvL
−1
vλ T

−1
v , T−1

v RvρTv, L
−1
(v,vλ)

T−1
v ), thus for any y, z ∈ Q, apply-

ing A−1 we obtain, yTvL
−1
vλ T

−1
v · zT−1

v RvρTv = (yz)L−1
(v,vλ)

T−1
v . Now by appropriate cal-

culation, we can re-write A−1 = (L−1
(v,vλ)

T−1
v R−1

(v\(vρv)), L
−1
(vλ,v)

T−1
v L−1

v , L−1
(vλ,v)

T−1
v ) ⇔ A =

(R(v\(vρv))TvL(vλ,v), LvTvL(vλ,v), TvL(vλ,v)), which proved (1).

(2)L(vλ,v) has been observed to be an automorphism in Q ([5]). Thus taking any a, b ∈ Q,

we can write from (1) that

A = (R(v\(vρv))TvL(vλ,v), LvTvL(vλ,v), TvL(vλ,v))

= (R(v\(vρv))Tv, LvTv, Tv)(L(vλ,v), L(vλ,v), L(vλ,v))

and the result follows immediately. �
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Theorem 3.5 Let Q be a Buchsteiner loop, then T−1
v is a crypto-automorphism with compan-

ions v and vλ, ∀ v ∈ Q.

Proof From Theorem 3.4(2), we observed that Tv is a crypto-automorphism with com-

panions (v\(vρv) and v, thus by definition it implies that, for any a and b in Q, we have

aR(v\(vρv))Tv · bLvTv = (ab)Tv. Setting b = aρ, we obtain aR(v\(vρv))Tv · aρLvTv = 1⇒
R(v\(vρv))Tv = JρLvTvJλ, using the fact that Q is WWIP loop ([5]). This in terms of au-

totopism, implies B = (JρLvTvJλ, LvTv, Tv) ∈ Atp(Q), finally by appropriate calculation we

have JλLvTvJρ = TvR
−1
v , and LvTv = TvL

−1
vλ , re-writing we have B = (TvR

−1
v , TvL

−1
vλ , Tv) ∈

Atp(Q), ∀ v ∈ Q. The result follows by taking the inverse of B. �

Corollary 3.4 Any Buchsteiner loop Q is an A−loop.

Proof It is straight forward from Corollary 5.4 in [5] and the preceding theorem. �

Remark 3.1 Since all the inner mappings, i.e. L(u,v), R(u,v) and Tv have been established to

exhibit one form of automorphism or the other, then (Q, ·) is an A-loop.
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Abstract: The concepts of poly-Bernoulli numbers B
(k)
n , poly-Bernoulli polynomials Bk

n(t)

and the generalized poly-Bernoulli numbers B
(k)
n (a, b) are generalized to B

(k)
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n , B
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n (a, b)

and B
(k)
n (t, a, b, c) are established.
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§1. Introduction

In this paper we shall develop a number of generalizations of the poly-Bernoulli numbers and

polynomials, and obtain some results about these generalizations. They are fundamental objects

in the theory of special functions.

Euler numbers are denoted with Bk and are the coefficients of Taylor expansion of the

function
t

et − 1
as following:

t

et − 1
=

∞
∑

k=0

Bk
tk

k!
.

The Euler polynomials En(x) are expressed in the following series

2ext

et + 1
=

∞
∑

k=0

Ek(x)
tk

k!
.

for more details, see [1]-[4].

In [10], Q.M.Luo, F.Oi and L.Debnath defined the generalization of Euler polynomials

Ek(x, a, b, c) which are expressed in the following series:

2cxt

bt + at
=

∞
∑

k=0

Ek(x, a, b, c)
tk

k!
.

where a, b, c ∈ Z+. They proved that

1Received April 12, 2010. Accepted May 28, 2010.
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I) for a = 1 and b = c = e

Ek(x+ 1) =

k
∑

j=0





k

j



Ej(x) (1)

and

Ek(x+ 1) +Ek(x) = 2xk. (2)

II) for a = 1 and b = c ,

Ek(x+ 1, 1, b, b) + Ek(x, 1, b, b) = 2xk(ln b)k. (3)

In[5], Kaneko introduced and studied poly-Bernoulli numbers which generalize the classical

Bernoulli numbers. Poly-Bernoulli numbers B
(k)
n with k ∈ Z and n ∈ N appear in the following

power series:

Lik(1 − e−x)

1 − e−x
=

∞
∑

n=0

B(k)
n

tn

n!
, (∗)

where k ∈ Z and

Lik(z) =

∞
∑

m=1

zm

mk
. |z| < 1.

So for k ≤ 1,

Li1(z) = − ln(1 − z), Li0(z) =
z

1 − z
, Li−1 =

z

(1 − z)2
, ... .

Moreover when k ≥ 1, the left hand side of (∗) can be written in the form of ”interated

integrals”

et
1

et − 1
=

∫ t

0

1

et − 1

∫ t

0

...
1

et − 1

∫ t

0

t

et − 1
dtdt...dt

=

∞
∑

n=0

B(k)
n

tn

n!
.

In the special case, one can see B
(1)
n = Bn.

Definition 1.1 These poly-Bernoulli polynomials B
(k)
n (t) are appeared in the expansion of

Lik(1 − e−x)

1 − e−x
ext as follows:

Lik(1 − e−x)

1 − e−x
ext =

∞
∑

n=0

B
(k)
n (t)

n!
xn (4)

for more details, see [6] − [11].

Proposition 1.1 (Kaneko theorem [6]) The Poly-Bernoulli numbers of non-negative index k,

satisfy the following

B(k)
n = (−1)n

n+1
∑

m=1

(−1)m−1(m− 1)!







n

m− 1







mk
, (5)
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and for negative index −k, we have

B(−k)
n =

min(n,k)
∑

j=0

(j!)2







n+ 1

j + 1













k + 1

j + 1







, (6)

where






n

m







=
(−1)m

m!

m
∑

l=0

(−1)l





m

l



 ln m,n ≥ 0 (7)

Definition 1.2 Let a, b > 0 and a 6= b. The generalized poly-Bernoulli numbers B
(k)
n (a, b),

the generalized poly-Bernoulli polynomials B
(k)
n (t, a, b) and the polynomial B

(k)
n (t, a, b, c) are

appeared in the following series respectively.

Lik(1 − (ab)−t)

bt − a−t
=

∞
∑

n=0

B
(k)
n (a, b)

n!
tn |t| < 2π

| ln a+ ln b| , (8)

Lik(1 − (ab)−t)

bt − a−t
ext =

∞
∑

n=0

B
(k)
n (x, a, b)

n!
tn |t| < 2π

| ln a+ ln b| , (9)

Lik(1 − (ab)−t)

bt − a−t
cxt =

∞
∑

n=0

B
(k)
n (x, a, b, c)

n!
tn |t| < 2π

| ln a+ ln b| , (10)

§2. Main Theorems

We present some recurrence formulae for generalized poly-Bernoulli polynomials.

Theorem 2.1 Let x ∈ R and n ≥ 0. For every positive real numbers a, b and c such that a 6= b

and b > a, we have

B(k)
n (a, b) = B(k)

n

( − ln b

ln a+ ln b

)

(ln a+ ln b)n, (11)

B
(k)
j (a, b) =

j
∑

i=1

(−1)j−i(ln a+ ln b)i(ln b)j−i





j

i



B
(k)
j , (12)

B(k)
n (x; a, b, c) =

n
∑

l=0





n

l



 (ln c)n−lB
(k)
l (a, b)xn−l, (13)

B(k)
n (x+ 1; a, b, c) = B(k)

n (x; ac,
b

c
, c), (14)

B(k)
n (t) = B(k)

n (et+1, e−t), (15)

B(k)
n (x, a, b, c) = (ln a+ ln b)nB(k)

n (
− ln b+ x ln c

ln a+ ln b
). (16)
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Proof Applying Definition 1.2, we prove formulae (11)-(16) as follows.

(1) For formula (11), we note that

Lik(1 − (ab)−t)

bt − a−t
=

∞
∑

n=0

B
(k)
n (a, b)

n!
tn =

1

bt

(

Lik(1 − e−t ln ab)

1 − e−t ln ab

)

= e−t ln b
(

Lik(1 − e−t ln ab)

1 − e−t(lnab)

)

=

∞
∑

n=0

B(k)
n

( − ln b

ln a+ ln b

)

(ln a+ ln b)n
tn

n!

Therefore

B(k)
n (a, b) = B(k)

n

( − ln b

ln a+ ln b

)

(ln a+ ln b)n.

(2) For formula (12), notice that

Lik(1 − (ab)−t)

bt − a−t
=

1

bt

(

Lik(1 − (ab)−t )

1 − e−t ln ab

)

=

(

∞
∑

k=0

(ln b)k

k!
(−1)ktk

)(

∞
∑

n=0

B(k)
n

(ln a+ ln b)n

n!
tn

)

=

∞
∑

j=0

(

j
∑

i=0

(−1)j−iB
(k)
i

(ln a+ ln b)i

i!(j − i)!
(ln b)j−i

)

tj .

We have

B
(k)
j (a, b) =

j
∑

i=0

(−1)j−i(ln a+ ln b)i(ln b)j−i





j

i



B
(k)
i .

(3) For formula (13), by calcilation we know that

Lik(1 − (ab)−t)

bt − a−t
cxt =

∞
∑

n=0

B(k)
n (x, a, b, c)

tn

n!

=

(

∞
∑

l=0

B
(k)
l (a, b)

tl

l!

)(

∞
∑

i=0

(ln c)iti

i!
xi

)

=

∞
∑

l=0

l
∑

i=0

(ln c)l−i

i!(l − i)!
B

(k)
i (a, b)xl−itl

=
∞
∑

n=0





n
∑

l=0





n

l



 (ln c)n−lB
(k)
l (a, b)xn−l





tn

n!
.

(4) For formula (14), calculation shows that

Lik(1 − (ab)−t)

bt − a−t
c(x+1)t =

Lik(1 − (ab)−t)

bt − a−t
cxt.ct

=
Lik(1 − (ab)−t)
(

b
c

)t − (ac)−t
cxt =

∞
∑

n=0

B(k)
n (x; ac,

b

c
, c)

tn

n!
.
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(5) For formula (15), because of

Lik(1 − e−x)

1 − e−x
ext =

Lik(1 − e−x)

e−xt − e−x−xt
=

Lik(1 − e−x)

(e−t)x − (e1+t)−x
,

so we get that

B(k)
n (t) = B(k)

n (et+1, e−t).

(6) For formula (16), write

∞
∑

n=0

B(k)
n (x, a, b, c)

tn

n!
=

Lik(1 − (ab)−t)

bt − a−t
cxt =

1

bt
Lik(1 − (ab)−t)

(1 − (ab)−t)
cxt

= et(− ln b+x ln c)

(

Lik(1 − e−t ln ab)

1 − e−t(lnab)

)

=

∞
∑

n=0

(ln a+ ln b)nB(k)
n

(− ln b+ x ln c

ln a+ ln b

)

tn

n!
.

So

B(k)
n (x, a, b, c) = (ln a+ ln b)nB(k)

n

(− ln b+ x ln c

ln a+ ln b

)

.

�

Theorem 2.2 Let x ∈ R , n ≥ 0. For every positive real numbers a,b such that a 6= b and

b > a > 0, we have

B(k)
n (x + y, a, b, c) =

∞
∑

l=0





n

l



 (ln c)n−lB
(k)
l (x; a, b, c)yn−l

=

n
∑

l=0





n

l



 (ln c)n−lB
(k)
l (y, a, b, c)xn−l. (17)

Proof Calculation shows that

Lik(1 − (ab)−t)

bt − a−t
c(x+y)t =

∞
∑

n=0

B(k)
n (x+ y; a, b, c)

tn

n!
=
Lik(1 − (ab)−t)

bt − a−t
cxt.cyt

=

(

∞
∑

n=0

B(k)
n (x; a, b, c)

tn

n!

)(

∞
∑

i=0

yi(ln c)i

i!
ti

)

=

∞
∑

n=0





n
∑

l=0





n

l



 yn−l(ln c)n−lB
(k)
l (x, a, b, c)





tn

n!
.

So we get

Lik(1 − (ab)t)

bt − a−t
c(x+y)t =

Lik(1 − (ab)−t

bt − a−t
cytcxt

=

∞
∑

n=0





n
∑

l=0





n

l



xn−l(ln c)n−lB
(k)
l (y, a, b, c)





tn

n!
. �
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Theorem 2.3 Let x ∈ R and n ≥ 0.For every positive real numbers a,b and c such that a 6= b

and b > a > 0, we have

B(k)
n (x; a, b, c) =

n
∑

l=0





n

l



 (ln c)n−lB
(k)
l

( − ln b

ln a+ ln b

)

(ln a+ ln b)lxn−l, (18)

B(k)
n (x; a, b, c) =

n
∑

l=0

l
∑

j=0

(−1)l−j





n

l









l

j



 (ln c)n−l(ln b)l−j(ln a+ ln b)jB
(k)
j xn−k. (19)

Proof Applying Theorems 2.1 and 2.2, we know that

B(k)
n (x; a, b, c) =

n
∑

l=0





n

l



 (ln c)n−lB
(k)
l (a, b)xn−l

and

B(k)
n (a, b) = B(k)

n (
−lnb

ln a+ ln b
)(ln a+ ln b)n

Then the relation (18) follow if we combine these formulae. The proof for (19) is similar. �

Now,we give some results about derivatives and integrals of the generalized poly-Bernoulli

polynomials in the following theorem.

Theorem 2.4 Let x ∈ R.If a, b and c > 0 , a 6= b and b > a > 0 ,For any non-negative integer

l and real numbers α and β we have

∂lB
(k)
n (x, a, b, c)

∂xl
=

n!

(n− l)!
(ln c)lB

(k)
n−l(x, a, b, c) (20)

∫ β

α

B(k)
n (x, a, b, c)dx =

1

(n+ 1) ln c
[B

(k)
n+1(β, a, b, c) −B

(k)
n+1(α, a, b, c)] (21)

Proof Applying induction on n, these formulae (20) and (21) can be proved. �

In [9], GI-Sang Cheon investigated the classical relationship between Bernoulli and Euler

polynomials, in this paper we study the relationship between the generalized poly-Bernoulli

and Euler polynomials.

Theorem 2.5 For b > 0 we have

B(k1)
n (x+ y, 1, b, b) =

1

2

n
∑

k=0





n

k



 [B(k1)
n (y, 1, b, b) +B(k1)

n (y + 1, 1, b, b)]En−k(x, 1, b, b).

Proof We know that
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B(k1)
n (x+ y, 1, b, b) =

∞
∑

k=0





n

k



 (ln b)n−kB
(k1)
k (y; 1, b, b)xn−k

and

Ek(x+ y, 1, b, b) + Ek(x, 1, b, b) = 2xk(ln b)k

So, we obtain

B(k1)
n (x+ y, 1, b, b) =

1

2

n
∑

k=0





n

k



 (ln b)n−kB
(k1)
k (y; 1, b, b)

×
[

1

(ln b)n−k
(En−k(x, 1, b, b) + En−k(x+ 1, 1, b, b))

]

=
1

2

n
∑

k=0





n

k



B
(k1)
k (y; 1, b, b)

×



En−k(x, 1, b, b) +

n−k
∑

j=0





n− k

j



Ej(x, 1, b, b)





=
1

2

n
∑

k=0





n

k



B
(k1)
k (y; 1, b, b)En−k(x, 1, b, b)

+
1

2

n
∑

j=0





n

j



Ej(x; 1, b, b)

n−j
∑

k=0





n− j

k



B
(k1)
k (y, 1, b, b)

=
1

2

n
∑

k=0





n

k



B
(k1)
k (y; 1, b, b)En−k(x, 1, b, b)

+
1

2

n
∑

j=0





n

j



B
(k1)
n−j(y + 1; 1, b, b)Ej(x, 1, b, b)

So we have

B(k1)
n (x+ y, 1, b, b) =

1

2

n
∑

k=0





n

k



 [B(k1)
n (y, 1, b, b) +B(k1)

n (y + 1, 1, b, b)]En−k(x, 1, b, b).

�

Corollary 2.1 In Theorem 2.5, if k1 = 1 and b = e, then

Bn(x) =

n
∑

(k=0),(k 6=1)





n

k



BkEn−k(x).

For more details see [7].



14 Hassan Jolany, M.R.Darafsheh and R.Eizadi Alikelaye

References

[1] T.Arakawa and M.Kaneko, On poly-Bernoulli numbers, Comment.Math.Univ.St.Pauli 48

(1999), 159-167.

[2] B.N.Oue and F.Qi, Generalization of Bernoulli polynomials, Internat.J.Math.Ed.Sci.Tech.

33(2002), No,3, 428-431.

[3] M.S.Kim and T.Kim, An explicit formula on the generalized Bernoulli number with order

n, Indian.J.Pure and Applied Math. 31(2000), 1455-1466.

[4] Hassan Jolany and M.R.Darafsheh, Some another remarks on the generalization of Bernoulli

and Euler polynomials, Scientia Magna, Vol.5, No.3.

[5] M.Kaneko, Poly-Bernoulli numbers, Journal de Theorides Numbers De Bordeaux, 9(1997),

221-228.

[6] Y.Hamahata,H.Masubuch, Special multi-poly-Bernoulli numbers, Journal of Integer Se-

quences, Vol.10(2007).

[7] H.M.Srivastava and A.Pinter, Remarks on some relationships between the Bernoulli and

Euler polynomials, Applied Math. Letter, 17(2004), 375-380.

[8] Chad Brewbaker, A combinatorial Interpretation of the poly-Bernoulli numbers and two

Fermat analogues, Integers Journal, 8 (2008).

[9] GI-Sang Cheon, A note on the Bernoulli and Euler polynomials, Applied Math.Letter,

16(2003),365-368.

[10] Q.M.Luo,F.Oi and L.Debnath, Generalization of Euler numbers and polynomials, Int.J.

Math. Sci. (2003), 3893-3901.

[11] Y.Hamahata,H.Masubuchi, Recurrence formulae for multi-poly-Bernoulli numbers, Inte-

gers Journal, 7(2007).



International J.Math. Combin. Vol.2 (2010), 15-21

Open Alliance in Graphs

N.Jafari Rad and H.Rezazadeh

(Department of Mathematics of Shahrood University of Technology, Shahrood, Iran)

Email: n.jafarirad@shahroodut.ac.ir, rezazadehadi1363@gmail.com

Abstract: A defensive alliance in a graph G = (V, E) is a set of vertices S ⊆ V satisfying

the condition that for every vertex v ∈ S, the number of v’s neighbors is at least as large as

the number of v’s neighbors in V − S. For a subset T ⊂ V, T 6= S, a defensive alliance S is

called Smarandachely T -strong, if for every vertex v ∈ S, |N [v]∩S| > |N(v)∩ ((V −S)∪T )|.

In this case we say that every vertex in S is Smarandachely T -strongly defended. Particularly,

if we choose T = ∅, i.e., a Smarandachely ∅-strong is called strong defend for simplicity. The

boundary of a set S is the set ∂S =
⋃

v∈S
N(v) − S. An offensive alliance in a graph G

is a set of vertices S ⊆ V such that for every vertex v in the boundary of S, the number

of v’s neighbors in S is at least as large as the number of v’s neighbors in V − S. In this

paper we study open alliance problem in graphs which was posted as an open question in

[S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, Alliances in graphs, J. Combin. Math.

Combin. Comput. 48 (2004) 157-177].

Key Words: Smarandachely T -strongly defended, defensive alliance, affensive alliance,

strongly defended, open.

AMS(2000): 05C69

§1. Introduction

In this paper we study open alliance in graphs. For graph theory terminology and notation, we

generally follow [3]. For a vertex v in a graph G = (V,E), the open neighborhood of v is the set

N(v) = {u : uv ∈ E}, and the closed neighborhood of v is N [v] = N(v) ∪ {v}. The boundary of

S is the set ∂S =
⋃

v∈S N(v) − S. We denote the degree of v in S by dS(v) = N(v) ∩ S. The

edge connectivity, λ(G), of a graph G is the minimum number of edges in a set, whose removal

results in a disconnected graph. A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E),

written G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. For S ⊆ V , the subgraph induced by S is the graph

G[S] = (S,E ∩ S × S).

The study of defensive alliance problem in graphs, together with a variety of other kinds

of alliances, was introduced in [2]. A non-empty set of vertices S ⊆ V is called a defensive

alliance if for every v ∈ S, |N [v] ∩ S| ≥ |N(v) ∩ (V − S)|. In this case, we say that every

vertex in S is defended from possible attack by vertices in V −S. A defensive alliance is called

strong if for every vertex v ∈ S, |N [v] ∩ S| > |N(v) ∩ (V − S)|. In this case we say that every

1Received May 16, 2010. Accepted June 6, 2010.



16 N.Jafari Rad and H.Rezazadeh

vertex in S is strongly defended. An (strong) alliance S is called critical if no proper subset of

S is an (strong) alliance. The defensive alliance number of G, denoted a(G), is the minimum

cardinality of any critical defensive alliance in G. Also the strong defensive alliance number of

G, denoted â(G), is the minimum cardinality of any critical strong defensive alliance in G. For

a subset T ⊂ V, T 6= S, a defensive alliance S is called Smarandachely T -strong, if for every

vertex v ∈ S, |N [v] ∩ S| > |N(v) ∩ ((V − S) ∪ T )|. In this case we say that every vertex in S

is Smarandachely T -strongly defended. Particularly, if we choose T = ∅, i.e., a Smarandachely

∅-strong is called strong defend for simplicity.

The study of offensive alliances was initiated by Favaron et al in [1]. A non-empty set of

vertices S ⊆ V is called an offensive alliance if for every v ∈ ∂(S), |N(v)∩S| ≥ |N [v]∩(V −S)|.
In this case we say that every vertex in ∂(S) is vulnerable to possible attack by vertices in S. An

offensive alliance is called strong if for every vertex v ∈ ∂(S), |N(v)∩ S| > |N [v]∩ (V − S)|. In

this case we say that every vertex ∂(S) is very vulnerable. The offensive alliance number, ao(G)

of G, is the minimum cardinality of any critical offensive alliance in G. Also the strong offensive

alliance number, âo(G) of G, is the minimum cardinality of any critical strong offensive alliance

in G.

In [2] the authors left the study of open alliances as an open question. In this paper we

study open alliance in graphs. An alliance is called open (or total) if it is defined completely

in terms of open neighborhoods. We study open defensive alliances as well as open offensive

alliances in graphs.

Recall that a vertex of degree one in a graph G is called a leaf and its neighbor is a support

vertex. Let S(G) denote the set all support vertexes of a graph G.

§2. Open Defensive Alliance

Let G = (V,E) be a graph. A set S ⊆ V is an open defensive alliance if for every vertex v ∈ S,

|N(v) ∩ S| ≥ |N(v) ∩ (V − S)|. A set S ⊆ V is an open strong defensive alliance if for every

vertex v ∈ S, |N(v) ∩ S| > |N(v) ∩ (V − S)|. An open (strong) defensive alliance S is called

critical if no proper subset of S is an open (strong) defensive alliance. The open defensive

alliance number, at(G) of G, is the minimum cardinality of any critical open defensive alliance

in G, and the strong open defensive alliance number, ât(G) of G, is the minimum cardinality of

any critical open strong defensive alliance in G.

We remark that with this definition, strong defensive alliance is equivalent to open defensive

alliance, and so we have the following observation.

Observation 2.1 For any graph G, at(G) = â(G).

Thus we focus on open strong defensive alliances in G. We refer to an ât(G)-set as a

minimum open strong defensive alliance in G. By definition we have the following.

Observation 2.2 For any ât(G)-set S in a graph G, G[S] is connected.

Observation 2.3 Let S be an ât(G)-set in a graph G, and v ∈ S. If degG[S](v) = 1, then
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degG(v) = 1.

Note that for any graph G of n vertices 2 ≤ ât(G) ≤ n. In the following we characterize

all graphs of order n having open strong defensive alliance number n. For an integer n let En
be the class of all graphs G such that G ∈ En if and only if one of the following holds:

(1) G is a path on n vertices, (2) G is a cycle on n vertices, (3) G is obtained from a cycle on

n vertices by identifying two non adjacent vertices.

Theorem 2.4 For a connected graph G of n vertices, ât(G) = n if and only if G ∈ En.

Proof First we show that ât(Pn) = ât(Cn) = n. Suppose to the contrary, that ât(Pn) < n.

Let S be a ât(Pn)-set. By Observation 2.2, G[S] is connected. So G[S] is a path. Let v ∈ S

be a vertex such that degG[S](v) = 1. By Observation 2.3, degG(v) = 1. Then G[S] = Pn, a

contradiction. Thus ât(Pn) = n. Similarly, for any other graph in En, ât(G) = n.

For the converse suppose that G is a graph of n vertices and â(G) = n. If ∆(G) ≤ 2,

then G is a path or a cycle on n vertices, as desired. Suppose that ∆(G) ≥ 3. Let v be a

vertex of maximum degree in G. Since V (G) \ {v} is not an open strong defensive alliance in

G, there is a vertex v1 ∈ N(v) such that deg(v1) ≤ 2. If deg(v1) = 1, then V (G) \ {v1} is an

open strong defensive alliance, which is a contradiction. So deg(v1) = 2. Since V (G) \ {v1} is

not an open strong defensive alliance, there is a vertex v2 ∈ N(v1) such that deg(v2) ≤ 2. If

deg(v2) = 1, then V (G) \ {v2} is an open strong defensive alliance, which is a contradiction. So

deg(v2) = 2. Since V (G) \ {v1, v2} is not an open strong defensive alliance, there is a vertex

v3 ∈ N(v2) such that deg(v3) ≤ 2. Continuing this process we obtain a path v1 − v2 − ...− vk

for some k such that deg(vi) = 2 for 1 ≤ i < k and either deg(vk) = 1 or vk = v. If deg(vk) = 1,

then V (G) \ {v1, ..., vk} is an open strong defensive alliance for G. This is a contradiction. So

vk = v. If deg(v) ≥ 5, then V (G) \ {v1, v2, ..., vk−1} is an open strong defensive alliance for

G, a contradiction. So deg(v) = ∆(G) = 4. Since V (G) \ {v1, v2, ..., vk} is not an open strong

defensive alliance, there is a vertex w1 ∈ N(v) \ {v1, vk−1} with deg(w1) ≤ 2. If deg(w1) = 1

then V (G) \ {w1} is an open defensive alliance, a contradiction. So deg(w1) = 2. Since

V (G) \ {v1, v2, ..., vk, w1} is not an open strong defensive alliance, there is a vertex w2 ∈ N(w1)

such that deg(w2) = 2. As before, continuing the process, we deduce that there is a path

w1 −w2 − ...−wl for some l such that deg(vi) = 2 for 1 ≤ i < l and vl = v. Since ∆(G) = 4, we

conclude that G is obtained by identifying a vertex of Ck with a vertex of Cl. This completes

the result. �

As a consequence we have the following result.

Corollary 2.5 For a connected graph G, ât(G) = 2 if and only if G = P2.

For a nonempty set S in a graph G and a vertex x ∈ S, we let degS(v) = N(v) ∩ S. So

a set S ⊆ V is an open defensive alliance if for every vertex v ∈ S, degS(v) ≥ degV−S(v) + 1.

Notice that this is equivalent to 2degS(v) ≥ deg(v) + 1.

Proposition 2.6 For any graph G, ât(G) = 3, if and only if ât(G) 6= 2, and G has an induced

subgraph isomorphic to either (1) the path P3 = u − v − w, where deg(u) = deg(w) = 1 and

2 ≤ deg(v) ≤ 3, or (2) the cycle C3, where each vertex is of degree at most three.



18 N.Jafari Rad and H.Rezazadeh

Proof Let G be a graph. Suppose that ât(G) 6= 2. If G has an induced subgraph P3 =

u − v − w, where deg(u) = deg(w) = 1 and 2 ≤ deg(v) ≤ 3, then {u, v, w} is an open strong

defensive alliance, and so ât(G) = 3. Similarly, if (2) holds, we obtain ât(G) = 3.

Conversely, suppose that ât(G) = 3. So ât(G) 6= 2. Let S = {u, v, w} be a ât(G)-set. By

Observation 2.2, G[S] is connected. If G[S] is a path, then we let degG[S](u) = degG[S](w) = 1.

By definition degG(u) = degG(w) = 1. If degG(v) ≥ 4, then S is not an open strong defensive

alliance, which is a contradiction. So 2 ≤ degG(v) ≤ 3. It remains to suppose that G[S] is a

cycle. If a vertex of S has degree at least four in G, then S is not an open strong defensive

alliance, a contradiction. Thus any vertex of S has degree at most three in G. �

Let G1 be a graph obtained from K4 by removing two edge such that the resulting graph G

has a pendant vertex. Let G2 be a graph obtained from K4 by removing an edge, with vertices

{v1, v2, v3, v4}, where deg(v1) = deg(v2) = 2.

Proposition 2.7 For any graph G, ât(G) = 4 if and only if ât(G) 6∈ {2, 3}, and G has an

induced subgraph isomorphic to one of the following:

(1) P4, with vertices, in order, v1, v2, v3 and v4, where deg(v1) = deg(v4) = 1, and deg(v2)

and deg(v3) are at most three;

(2) C4, where each vertex is of degree at most three;

(3) K4, where each vertex has degree at most five;

(4) K1,3, with vertices {v1, v2, v3, v4}, where deg(vi) = 1 for i = 2, 3, 4, and deg(v1) ≤ 5;

(5) G1, where deg(vi) ≤ 5 for i = 1, 2, 3, 4;

(6) G2, where deg(vi) ≤ 3 for i = 1, 2, and deg(vi) ≤ 5 for i = 3, 4.

Proof It is a routine matter to see that if ât(G) 6∈ {2, 3}, and G has an induced subgraph

isomorphic to (i) for some i ∈ {1, 2, ..., 6}, then ât(G) = 4. Suppose that ât(G) = 4. Let

S = {v1, v2, v3, v4} be a ât(G)-set. By Observation 2.2 G[S] is connected. If G[S] is a path,

then we assume that degG[S](vi) = 1 for i = 1, 4, and degG[S](vi) = 2 for i = 2, 3. Now by

Observation 2.3 deg(vi) = 1 for i = 1, 4, and 4 = 2degG[S](vi) ≥ deg(vi) + 1 which implies that

deg(vi) ≤ 3 for i = 2, 3. We deduce that G has an induced subgraph isomorphic to (1). So

suppose that G[S] is not a path. If G[S] is a cycle then 4 = 2degG[S](vi) ≥ deg(vi) + 1 which

implies that deg(vi) ≤ 3 for i = 1, 2, 3, 4, and so G has an induced subgraph isomorphic to (2).

We assume now that ∆(G[S]) > 2. So ∆(G[S]) = 3. Let degG[S](v1) = 3. If any vertex of G[S]

is of maximum degree then 6 = 2degG[S](vi) ≥ deg(vi) + 1 which implies that deg(vi) ≤ 5 for

i = 1, 2, 3, 4. So G has an induced subgraph isomorphic to (3). Thus we suppose that G[S] is

not complete graph. If degG[S](vi) = 1 for i = 2, 3, 4, then by Observation 2.3 deg(vi) = 1 for

i = 2, 3, 4, and 6 = 2degG[S](v1) ≥ deg(v1) + 1, which implies that deg(v1) ≤ 5. In this case G

has an induced subgraph isomorphic to (4). The other possibilities are similarly verified. �

Proposition 2.8 For the complete graph Kn , ât(Kn) = ⌈n
2
⌉ + 1.

Proof Let S be a ât(Kn)-set and let v ∈ S. It follows that |N(v) ∩ S| ≥ ⌈n
2
⌉. So
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|S| ≥ ⌈n
2
⌉ + 1. On the other hand let S be any subset of ⌈n

2
⌉ + 1 vertices of Kn. For any

vertex v ∈ S,
deg(v) − 1

2
≥ ⌊n

2
⌋ − 1 ≥ degV−S(v). Since deg(v) = degS(v) + degV−S(v),

degS(v) − 1 ≥ degV−S(v). This means that S is a critical open strong defensive alliance, and

the result follows. �

Proposition 2.9 ât(Kr,s) = ⌊r
2
⌋ + ⌊s

2
⌋ + 2.

Proof Let Vr and Vs be the partite sets ofKr,s with |Vr| = r and |Vs| = s. Let S = Sr∪Ss be

a ât(Kr,s)-set, where Si ⊆ Vi for i = r, s. For i ∈ {r, s} and a vertex v ∈ Si, degS(v) ≥ ⌊n− i

2
⌋,

where n = r + s. This implies that |S| ≥ ⌊r
2
⌋ + ⌊s

2
⌋ + 2. On the other hand any set consisting

⌊r
2
⌋+ 1 vertices in Vr and ⌊s

2
⌋+ 1 vertices in Vs forms an open strong defensive alliance. This

completes the proof. �

Similarly the following is verified.

Proposition 2.10

(1) ât(Wn) = ⌈n+ 1

2
⌉ + 1;

(2) ât(Pm × Pn) = max{m,n} if min{m,n} = 1, and ât(Pm × Pn) = min{m,n} if

min{m,n} ≥ 2.

Proposition 2.11 If every vertex of a graph G has odd degree then at(G) = ât(G).

Proof Let G be a graph and every vertex of G has odd degree. First it is obvious that

at(G) = â(G) ≤ ât(G). Let S be a at(G)-set and v ∈ S. By definition degS(v) ≥ degV−s(v).

Since v is of odd degree, we obtain degS(v) ≥ degV−s(v) + 1. This means that S is an open

strong defensive alliance in G, and so ât(G) ≤ at(G). �

So if every vertex of a graph G has odd degree then any bound of at(G) holds for ât(G).

We next obtain some bounds for the open defensive alliance number of a graph G.

Proposition 2.12 For a connected graph G of order n, ât(G) ≤ n−
⌊

δ(G) − 1

2

⌋

.

Proof Let v be a vertex of minimum degree in a connected graph G. Consider a subset

S ⊆ N [v] with |S| = ⌊δ(G) − 1

2
⌋. It follows that V (G) \ S is a critical open strong alliance. �

Proposition 2.13 For any graph G, ât(G) ≥ ⌈δ(G) + 3

2
⌉.

Proof Let S be a ât(G)-set in a graph G, and let v ∈ S. By definition degS(v) − 1 ≥
degV−S(v). By adding degV−S(v) to both sides of this inequality we obtain degV−S(v) − 1 ≤
deg(v) − 1

2
. By adding degS(v) to both sides of this inequality we obtain

deg(v) + 1

2
≤ degS(v).

But degS(v) ≤ |S| − 1 and δ(G) ≤ deg(v). We deduce that
δ(G) + 3

2
≤ |S|. �

Proposition 2.14 For any graph G, a(G) ≤ ât(G) − 1.
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Proof Let S be a ât(G)-set in a graph G, and w ∈ S. Let S′ = S − {w}, and v ∈ S′. It

follows that degS′(v) = degS(v) − deg{w}(v) ≥ degV−S(v) + 1 − deg{w}(v) = degV−S′(v) + 1 −
2deg{w}(v) ≥ degV ′

S
(v), as desired. �

Let Π = [V1, V2] be a partition of the vertices of a graph G such that there are λ(G) edges

between V1 and V2. Π is called singular λ−bipartite if min{|V1|, |V2|} = 1, and non−singular
λ− bipartite if min{|V1|, |V2|} > 1.

Proposition 2.15 Let G be a graph such that every vertex of G has odd degree. If λ(G) < δ(G)

then ât(G) ≤ ⌊n
2
⌋ + 1.

Proof Let Π = [V1, V2] be a partition of the vertices of a graph G such that there are

λ(G) edges between V1 and V2. Without loss of generality assume that |V1| < |V2|. This

implies that |V1| ≤ ⌊n
2
⌋. Since λ(G) < δ(G), we have |Vi| ≥ 2 for i = 1, 2. As a result

Π is non-singular λ-bipartite. If V1 is not an open defensive alliance then there is a vertex

u ∈ V1 such that |N(u) ∩ V1| < |N(u) ∩ V2|. Then Π1 = [V1 − {u}, V2 ∪ {u}] is a partition

of the vertices of G and there are less than λ(G) edges between V1 − {u} and V2 ∪ {u}. But

|Π1| = |Π| − degV2(u) + degV1(u). So |Π1| < |Π|. This contradicts the assumption |Π| = λ(G).

Thus V1 is an open defensive alliance in G and the result follows. �

§3. Open Offensive Alliance

Let G = (V,E) be a graph. A set S ⊆ V is an open offensive alliance if for every vertex

v ∈ ∂(S), |N(v) ∩ S| ≥ |N(v) ∩ (V − S)|. In other words a set S ⊆ V is an open offensive

alliance if for every vertex v ∈ ∂(S), degS(v) ≥ degV−S(v), and this is equivalent to deg(v) ≥
2degV−S(v). A set S ⊆ V is an open strong offensive alliance if for every vertex v ∈ ∂(S),

|N(v) ∩ S| > |N(v) ∩ (V − S)| or, equivalently, dS(v) > dV−S(v), where dS(v) = N(v) ∩ S. An

open (strong) offensive alliance S is called critical if no proper subset of S is an open (strong)

offensive alliance. The open offensive alliance number, aot(G) of G, is the minimum cardinality

of any critical open offensive alliance in G, and the strong open offensive alliance number, âot(G)

of G, is the minimum cardinality of any critical open strong offensive alliance in G.

If S is a critical open offensive alliance of a graph G and |S| = aot(G), then we say that S

is an aot − set of G. The next proposition follows from the definitions.

Proposition 3.1 For all graphs G, ao(G) = âot(G) and aot(G) ≤ âot(G).

Thus we focus on open offensive alliances in G.

Theorem 3.2 For a graph G of order n with ∆(G) ≤ 2, aot(G) = 1.

Proof Suppose S = {v}, where deg(v) = △(G) ≤ 2. Since for every w ∈ ∂S, degS(w) = 1

and degV−S(w) ≤ 1. Therefore, dS(w) ≥ dV−S(w). So the result immediately follows. �

Corollary 3.3 For any cycle Cn and path Pn, ato(Cn) = ato(Pn) = 1.

The following has a straightforward proof and therefore we omit its proof.
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Proposition 3.4

(1) aot(Kn) = ⌊n
2
⌋;

(2) For 1 ≤ m ≤ n, aot(Km,n) = ⌈m
2
⌉;

(3) For any wheel Wn with n 6= 4, aot(Wn) = ⌈n
3
⌉ + 1;

(4) If every vertex of a graph G has odd degree then aot(G) = ao(G).

We next obtain some bounds for the open offensive alliance number of a graph G.

Proposition 3.5 For all graphs G, ato(G) ≥ ⌊δ(G)

2
⌋.

Proof Let S be a aot − set and v ∈ ∂S. By definition for any vertex v of ∂S, dS(v) ≥
dV−S(v). By adding dS(v) to both sides of this inequality we obtain dS(v) ≥ δ(v)

2
. Also it is

clear that ato(G) ≥ dS(v) and δ(v) ≥ δ. This completes the proof. �

Let α(G) denote the vertex covering number of G. That is the minimum cardinality of a

subset S of vertices of G that contains at least one endpoint of every edge.

Proposition 3.6 For all graphs G,

(1) ato(G) ≤ ⌊n
2
⌋;

(2) ato(G) ≤ α(G).

Proof (1) Let f : V −→ {a, b} be a vertex coloring ofG such that the number of edges whose

end vertices have the same color is minimum. Let O = {uv : f(u) = f(v)}, A = {u : f(u) = a}
and B = {u : f(u) = b}. Without loss of generality assume that |B| ≤ |A|. Suppose that B is

not an open offensive alliance in G. So three is a vertex v ∈ A such that degB(v) < degA(v).

Let f ′ : V −→ {a, b} be a vertex coloring of G with f ′(v) 6= f(v) and f ′(x) = f(x) if x 6= v. Let

O′ = {uv : f ′(u) = f ′(v)}, A′ = A−{v} and B′ = B∪{v}. Then |O′| = |O|−degA(v)+degB(v).

But degB(v) < degA(v). We deduce that |O′| < |O|. This is a contradiction since |O| is

minimum. Thus B is an open offensive alliance in G, and so the result follows.

(2) Let S be a α(G)-set and let v ∈ ∂(S). Since S is a vertex covering, degS(v) ≥ degV−S(v) +

1 ≥ degV−S(v). This implies that S is an open offensive alliance, and the result follows. �
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Abstract: For two vertices u and v in a graph G = (V, E), the distance d(u, v) and detour

distance D(u, v) are the length of a shortest or longest u − v path in G, respectively, and

the Smarandache distance di
S(u, v) is the length d(u, v) + i(u, v) of a u− v path in G, where

0 ≤ i(u, v) ≤ D(u, v) − d(u, v). A u − v path of length di
S(u, v), if it exists, is called a

Smarandachely u − v i-detour. A set S ⊆ V is called a Smarandachely i-detour set if every

edge in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices

in S. In particular, if i(u, v) = 0, then di
S(u, v) = d(u, v); and if i(u, v) = D(u, v) − d(u, v),

then di
S(u, v) = D(u, v). For i(u, v) = D(u, v) − d(u, v), such a Smarandachely i-detour

set is called a weak edge detour set in G. The weak edge detour number dnw(G) of G is

the minimum order of its weak edge detour sets and any weak edge detour set of order

dnw(G) is a weak edge detour basis of G. For any weak edge detour basis S of G, a subset

T ⊆ S is called a forcing subset for S if S is the unique weak edge detour basis containing

T . A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The

forcing weak edge detour number of S, denoted by fdnw(S), is the cardinality of a minimum

forcing subset for S. The forcing weak edge detour number of G, denoted by fdnw(G), is

fdnw(G) = min{fdnw(S)}, where the minimum is taken over all weak edge detour bases S

in G. The forcing weak edge detour numbers of certain classes of graphs are determined. It

is proved that for each pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there is a connected

graph G with fdnw(G) = a and dnw(G) = b.

Key Words: Smarandache distance, Smarandachely i-detour set, weak edge detour set,

weak edge detour number, forcing weak edge detour number.

AMS(2000): 05C12

§1. Introduction

For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest

u–v path in G. A u–v path of length d(u, v) is called a u–v geodesic. For a vertex v of G,

the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum

eccentricity among the vertices of G is the radius, radG and the maximum eccentricity among

the vertices of G is its diameter, diamG of G. Two vertices u and v of G are antipodal if d(u, v)

1Received March 30, 2010. Accepted June 8, 2010.
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= diamG. For vertices u and v in a connected graph G, the detour distance D(u, v) is the

length of a longest u–v path in G. A u–v path of length D(u, v) is called a u–v detour. It

is known that the distance and the detour distance are metrics on the vertex set V (G). The

detour eccentricity eD(v) of a vertex v in G is the maximum detour distance from v to a vertex

of G. The detour radius, radDG of G is the minimum detour eccentricity among the vertices

of G, while the detour diameter, diamDG of G is the maximum detour eccentricity among the

vertices of G. These concepts were studied by Chartrand et al. [2].

A vertex x is said to lie on a u–v detour P if x is a vertex of P including the vertices u

and v. A set S ⊆ V is called a detour set if every vertex v in G lies on a detour joining a pair

of vertices of S. The detour number dn(G) of G is the minimum order of a detour set and any

detour set of order dn(G) is called a detour basis of G. A vertex v that belongs to every detour

basis of G is a detour vertex in G. If G has a unique detour basis S, then every vertex in S is

a detour vertex in G. These concepts were studied by Chartrand et al. [3].

In general, there are graphs G for which there exist edges which do not lie on a detour

joining any pair of vertices of V . For the graph G given in Figure 1.1, the edge v1v2 does not

lie on a detour joining any pair of vertices of V . This motivated us to introduce the concept of

weak edge detour set of a graph [5].

b b

b

b

b

b

b

b

v1 v2

Figure 1: G

The Smarandache distance diS(u, v) is the length d(u, v) + i(u, v) of a u − v path in G,

where 0 ≤ i(u, v) ≤ D(u, v) − d(u, v). A u − v path of length diS(u, v), if it exists, is called a

Smarandachely u−v i-detour. A set S ⊆ V is called a Smarandachely i-detour set if every edge

in G has both its ends in S or it lies on a Smarandachely i-detour joining a pair of vertices in

S. In particular, if i(u, v) = 0, then diS(u, v) = d(u, v) and if i(u, v) = D(u, v) − d(u, v), then

diS(u, v) = D(u, v). For i(u, v) = D(u, v) − d(u, v), such a Smarandachely i-detour set is called

a weak edge detour set in G. The weak edge detour number dnw(G) of G is the minimum order

of its weak edge detour sets and any weak edge detour set of order dnw(G) is called a weak edge

detour basis of G. A vertex v in a graph G is a weak edge detour vertex if v belongs to every

weak edge detour basis of G. If G has a unique weak edge detour basis S, then every vertex

in S is a weak edge detour vertex of G. These concepts were studied by A. P. Santhakumaran

and S. Athisayanathan [5].

To illustrate these concepts, we consider the graph G given in Figure 1.2. The sets S1 =

{u, x}, S2 = {u, y} and S3 = {u, z} are the detour bases of G so that dn(G) = 2 and the sets

S4 = {u, v, y} and S5 = {u, x, z} are the weak edge detour bases of G so that dnw(G) = 3. The

vertex u is a detour vertex and also a weak edge detour vertex of G.
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Figure 2: G

The following theorems are used in the sequel.

Theorem 1.1([5]) For any graph G of order p ≥ 2, 2 ≤ dnw(G) ≤ p.

Theorem 1.2([5]) Every end-vertex of a non-trivial connected graph G belongs to every weak

edge detour set of G. Also if the set S of all end-vertices of G is a weak edge detour set, then

S is the unique weak edge detour basis for G.

Theorem 1.3([5]) If T is a tree with k end-vertices, then dnw(T ) = k.

Theorem 1.4([5]) Let G be a connected graph with cut-vertices and S a weak edge detour set

of G. Then for any cut-vertex v of G, every component of G− v contains an element of S.

Throughout this paper G denotes a connected graph with at least two vertices.

§2. Forcing Weak Edge Detour Number of a Graph

First we determine the weak edge detour numbers of some standard classes of graphs so that

their forcing weak edge detour numbers will be determined.

Theorem 2.1 Let G be the complete graph Kp (p ≥ 3) or the complete bipartite graph Km,n (2 ≤
m ≤ n). Then a set S ⊆ V is a weak edge detour basis of G if and only if S consists of any

two vertices of G.

Proof Let G be the complete graph Kp(p ≥ 3) and S = {u, v} be any set of two vertices

of G. It is clear that D(u, v) = p − 1. Let xy ∈ E. If xy = uv, then both its ends are in S.

Let xy 6= uv. If x 6= u and y 6= v, then the edge xy lies on the u– v detour P : u, x, y, . . . , v of

length p− 1. If x = u and y 6= v, then the edge xy lies on the u– v detour P : u = x, y, . . . , v of

length p − 1. Hence S is a weak edge detour set of G. Since |S| = 2, S is a weak edge detour

basis of G.

Now, let S be a weak edge detour basis of G. Let S ′ be any set consisting of two vertices

of G. Then as in the first part of this theorem S ′ is a weak edge detour basis of G. Hence

|S| = |S ′| = 2 and it follows that S consists of any two vertices of G.

Let G be the complete bipartite graph Km,n (2 ≤ m ≤ n). Let X and Y be the bipartite

sets of G with |X | = m and |Y | = n. Let S = {u, v} be any set of two vertices of G.

Case 1 Let u ∈ X and v ∈ Y . It is clear that D(u, v) = 2m− 1. Let xy ∈ E. If xy = uv, then
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both of its ends are in S. Let xy 6= uv be such that x ∈ X and y ∈ Y . If x 6= u and y 6= v, then

the edge xy lies on the u– v detour P : u, y, x, . . . , v of length 2m− 1. If x = u and y 6= v, then

the edge xy lies on the u– v detour P : u = x, y, . . . , v of length 2m− 1. Hence S is a weak edge

detour set of G.

Case 2 Let u, v ∈ X . It is clear that D(u, v) = 2m− 2. Let xy ∈ E be such that x ∈ X and

y ∈ Y . If x 6= u, then the edge xy lies on the u– v detour P : u, y, x, . . . , v of length 2m− 2. If

x = u, then the edge xy lies on the u– v detour P : u = x, y, . . . , v of length 2m− 2. Hence S

is a weak edge detour set of G.

Case 3 Let u, v ∈ Y . It is clear that D(u, v) = 2m. Then, as in Case 2, S is a weak edge

detour set of G. Since |S| = 2, it follows that S is a weak edge detour basis of G.

Now, let S be a weak edge detour basis of G. Let S ′ be any set consisting of two vertices

of G. Then as in the first part of the proof of Km,n, S
′ is a weak edge detour basis of G. Hence

|S| = |S ′| = 2 and it follows that S consists of any two vertices adjacent or not. �

Theorem 2.2 Let G be an odd cycle of order p ≥ 3. Then a set S ⊆ V is a weak edge detour

basis of G if and only if S consists of any two adjacent vertices of G.

Proof Let S = {u, v} be any set of two adjacent vertices ofG. It is clear thatD(u, v) = p−1.

Then every edge e 6= uv of G lies on the u–v detour and both the ends of the edge uv belong to

S so that S is a weak edge detour set of G. Since |S| = 2, S is a weak edge detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S ′ be any set of two adjacent

vertices of G. Then as in the first part of this theorem S ′ is a weak edge detour basis of G.

Hence |S| = |S ′| = 2. Let S = {u, v}. If u and v are not adjacent, then since G is an odd

cycle, the edges of u– v geodesic do not lie on the u– v detour in G so that S is not a weak edge

detour set of G, which is a contradiction. Thus S consists of any two adjacent vertices of G. �

Theorem 2.3 Let G be an even cycle of order p ≥ 4. Then a set S ⊆ V is a weak edge detour

basis of G if and only if S consists of any two adjacent vertices or two antipodal vertices of G.

Proof Let S = {u, v} be any set of two vertices of G. If u and v are adjacent, then

D(u, v) = p − 1 and every edge e 6= uv of G lies on the u– v detour and both the ends of the

edge uv belong to S. If u and v are antipodal, then D(u, v) = p/2 and every edge e of G lies

on a u– v detour in G. Thus S is a weak edge detour set of G. Since |S| = 2, S is a weak edge

detour basis of G.

Now, assume that S is a weak edge detour basis of G. Let S ′ be any set of two adjacent

vertices or two antipodal vertices of G. Then as in the first part of this theorem S ′ is a weak

edge detour basis of G. Hence |S| = |S ′| = 2. Let S = {u, v}. If u and v are not adjacent and

u and v are not antipodal, then the edges of the u– v geodesic do not lie on the u– v detour in

G so that S is not a weak edge detour set of G, which is a contradiction. Thus S consists of

any two adjacent vertices or two antipodal vertices of G. �

Corollary 2.4 If G is the complete graph Kp (p ≥ 3) or the complete bipartite graph Km,n (2 ≤
m ≤ n) or the cycle Cp (p ≥ 3), then dnw(G) = 2.
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Proof This follows from Theorems 2.1, 2.2 and 2.3. �

Every connected graph contains a weak edge detour basis and some connected graphs may

contain several weak edge detour bases. For each weak edge detour basis S in a connected graph

G, there is always some subset T of S that uniquely determines S as the weak edge detour basis

containing T . We call such subsets ”forcing subsets” and we discuss their properties in this

section.

Definition 2.5 Let G be a connected graph and S a weak edge detour basis of G. A subset

T ⊆ S is called a forcing subset for S if S is the unique weak edge detour basis containing T .

A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing

weak edge detour number of S, denoted by fdnw(S), is the cardinality of a minimum forcing

subset for S. The forcing weak edge detour number of G, denoted by fdnw(G), is fdnw(G) =

min {fdnw(S)}, where the minimum is taken over all weak edge detour bases S in G.

Example 2.6 For the graph G given in Figure 2.1(a), S = {u, v, w} is the unique weak edge

detour basis so that fdnw(G) = 0. For the graph G given in Figure 2.1(b), S1 = {u, v, x},
S2 = {u, v, y} and S3 = {u, v, w} are the only weak edge detour bases so that fdnw(G) = 1.

For the graph G given in Figure 2.1(c), S4 = {u,w, x}, S5 = {u,w, y}, S6 = {v, w, x} and

S7 = {v, w, y} are the four weak edge detour bases so that fdnw(G) = 2.

b b b b bb

b b

b

bb

b

u w v

(a)

b b b b bb

b b

b

u s w t v

x y

(b)

b

b

b

b

b

b

b

v

u

w

x

y

(c)

Figure 3: G

The following theorem is clear from the definitions of weak edge detour number and forcing

weak edge detour number of a connected graph G.

Theorem 2.7 For every connected graph G, 0 6 fdnw(G) 6 dnw(G).

Remark 2.8 The bounds in Theorem 2.7 are sharp. For the graph G given in Figure 2.1(a),

fdnw(G) = 0. For the cycle C3, fdnw(C3) = dnw(C3) = 2. Also, all the inequalities in Theorem

2.7 can be strict. For the graph G given in Figure 2.1(b), fdnw(G) = 1 and dnw(G) = 3 so

that 0 < fdnw(G) < dnw(G).

The following two theorems are easy consequences of the definitions of the weak edge detour

number and the forcing weak edge detour number of a connected graph.

Theorem 2.9 Let G be a connected graph. Then

a) fdnw(G) = 0 if and only if G has a unique weak edge detour basis,
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b) fdnw(G) = 1 if and only if G has at least two weak edge detour bases, one of which is

a unique weak edge detour basis containing one of its elements, and

c) fdnw(G) = dnw(G) if and only if no weak edge detour basis of G is the unique weak

edge detour basis containing any of its proper subsets.

Theorem 2.10 Let G be a connected graph and let F be the set of relative complements of the

minimum forcing subsets in their respective weak edge detour bases in G. Then
⋂

F∈F
F is the

set of weak edge detour vertices of G. In particular, if S is a weak edge detour basis of G, then

no weak edge detour vertex of G belongs to any minimum forcing subset of S.

Theorem 2.11 Let G be a connected graph and W be the set of all weak edge detour vertices

of G. Then fdnw(G) 6 dnw(G) − |W |.

Proof Let S be any weak edge detour basis S of G. Then dnw(G) = |S|, W ⊆ S and S is

the unique weak edge detour basis containing S −W . Thus fdnw(S) 6 |S −W | = |S| − |W | =

dnw(G) − |W |. �

Remark 2.12 The bound in Theorem 2.11 is sharp. For the graph G given in Figure 2.1(c),

dnw(G) = 3, |W | = 1 and fdnw(G) = 2 as in Example 2.6. Also, the inequality in Theorem

2.11 can be strict. For the graph G given in Figure 2.2, the sets S1 = {v1, v4} and S2 = {v2, v3}
are the two weak edge detour bases for G and W = ∅ so that dnw(G) = 2, |W | = 0 and

fdnw(G) = 1. Thus fdnw(G) < dnw(G) − |W |.
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Figure 4: G

In the following we determine fdnw(G) for certain graphs G.

Theorem 2.13 a) If G is the complete graph Kp (p ≥ 3) or the complete bipartite graph

Km,n (2 ≤ m ≤ n), then dnw(G) = fdnw(G) = 2.

b) If G is the cycle Cp (p ≥ 4), then dnw(G) = fdnw(G) = 2.

c) If G is a tree of order p ≥ 2 with k end-vertices, then dnw(G) = k, fdnw(G) = 0.

Proof a) By Theorem 2.1, a set S of vertices is a weak edge detour basis if and only if S

consists of any two vertices of G. For each vertex v in G there are two or more vertices adjacent

with v. Thus the vertex v belongs to more than one weak edge detour basis of G. Hence it

follows that no set consisting of a single vertex is a forcing subset for any weak edge detour

basis of G. Thus the result follows.

b) By Theorems 2.2 and 2.3, a set S of two adjacent vertices of G is a weak edge detour

basis of G. For each vertex v in G there are two vertices adjacent with v. Thus the vertex v
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belongs to more than one weak edge detour basis of G. Hence it follows that no set consisting of

a single vertex is a forcing subset for any weak edge detour basis of G. Thus the result follows.

c) By Theorem 1.3, dnw(G) = k. Since the set of all end-vertices of a tree is the unique

weak edge detour basis, the result follows from Theorem 2.9(a). �

The following theorem gives a realization result.

Theorem 2.14 For each pair a, b of integers with 0 6 a 6 b and b > 2, there is a connected

graph G with fdnw(G) = a and dnw(G) = b.

Proof The proof is divided into two cases following.

Case 1: a = 0. For each b > 2, let G be a tree with b end-vertices. Then fdnw(G) = 0 and

dnw(G) = b by Theorem 2.13(c).

Case 2: a > 1. For each i (1 6 i 6 a), let Fi : ui, vi, wi, xi, ui be the cycle of order 4 and let

H = K1,b−a be the star at v whose set of end-vertices is {z1, z2, . . . , zb−a}. Let G be the graph

obtained by joining the central vertex v of H to both vertices ui, wi of each Fi (1 6 i 6 a).

Clearly the graph G is connected and is shown in Figure 2.3.

Let W = {z1, z2, . . . , zb−a} be the set of all (b − a) end-vertices of G. First, we show

that dnw(G) = b. By Theorems 1.2 and 1.4, every weak edge detour basis contains W and

at least one vertex from each Fi (1 6 i 6 a). Thus dnw(G) > (b − a) + a = b. On the other

hand, since the set S1 = W ∪ {v1, v2, . . . , va} is a weak edge detour set of G, it follows that

dnw(G) 6 |S1| = b. Therefore dnw(G) = b.

Next we show that fdnw(G) = a. It is clear that W is the set of all weak edge detour

vertices of G. Hence it follows from Theorem 2.11 that fdnw(G) 6 dnw(G)−|W | = b−(b−a) =

a. Now, since dnw(G) = b, it is easily seen that a set S is a weak edge detour basis of G if and

only if S is of the form S = W ∪ {y1, y2, . . . , ya}, where yi ∈ {vi, xi} ⊆ V (Fi) (1 6 i 6 a). Let

T be a subset of S with |T | < a. Then there is a vertex yj (1 6 j 6 a) such that yj /∈ T . Let

sj ∈ {vj , xj} ⊆ V (Fj) distinct from yj . Then S ′ = (S − {yj}) ∪ {sj} is a weak edge detour

basis that contains T . Thus S is not the unique weak edge detour basis containing T . Thus

fdnw(S) > a. Since this is true for all weak edge detour basis of G, it follows that fdnw(G) > a

and so fdnw(G) = a. �
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§1. Introduction

It is safe to report that the many important results in the theory of the curves in E3 were

initiated by G. Monge; and G. Darboux pionnered the moving frame idea. Thereafter, F. Frenet

defined his moving frame and his special equations which play important role in mechanics and

kinematics as well as in differential geometry (for more details see [1]).

At the beginning of the 20th century, A. Einstein’s theory opened a door to new geometries

such as Lorentzian Geometry, which is simultaneously the geometry of special relativity, was

established. Thereafter, researchers discovered a bridge between modern differential geometry

and the mathematical physics of general relativity by giving an invariant treatment of Lorentzian

geometry. They adapted the geometrical models to relativistic motion of charged particles.

Consequently, the theory of the curves has been one of the most fascinating topic for such

modeling process. As it stands, the Frenet-Serret formalism of a relativistic motion describes

the dynamics of the charged particles. The mentioned works are treated in Minkowski space-

time.

In the light of the existing literature, in [4] authors introduced special curves by Frenet-

Serret frame vector fields in Minkowski space-time. A regular curve in Minkowski space-time,

whose position vector is composed by Frenet frame vectors on another regular curve, is called

a Smarandache Curve [4]. In this work, we study special Smarandache Curve in the Euclidean

space. We hope these results will be helpful to mathematicians who are specialized on mathe-

matical modeling.

1Received March 31, 2010. Accepted June 8, 2010.
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§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the space E3 are briefly presented (A more complete elementary treatment can be found in

[2].)

The Euclidean 3-space E3 provided with the standard flat metric given by

〈, 〉 = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3. Recall that, the norm of an arbitrary

vector a ∈ E3 is given by ‖a‖ =
√

〈a, a〉. ϕ is called an unit speed curve if velocity vector v of

ϕ satisfies ‖v‖ = 1. For vectors v, w ∈ E3 it is said to be orthogonal if and only if 〈v, w〉 = 0.

Let ϑ = ϑ(s) be a regular curve in E3. If the tangent vector field of this curve forms a constant

angle with a constant vector field U , then this curve is called a general helix or an inclined

curve. The sphere of radius r > 0 and with center in the origin in the space E3 is defined by

S2 =
{

p = (p1, p2, p3) ∈ E3 : 〈p, p〉 = r2
}

.

Denote by {T,N,B} the moving Frenet-Serret frame along the curve ϕ in the space E3. For an

arbitrary curve ϕ ∈ E3, with first and second curvature, κ and τ respectively, the Frenet-Serret

formulae is given by [2]









T ′

N ′

B′









=









0 κ 0

−κ 0 τ

0 −τ 0

















T

N

B









, (1)

where

〈T, T 〉 = 〈N,N〉 = 〈B,B〉 = 1,

〈T,N〉 = 〈T,B〉 = 〈T,N〉 = 〈N,B〉 = 0.

The first and the second curvatures are defined by κ = κ(s) = ‖T ′(s)‖ and τ(s) = −〈N,B′〉,
respectively.

§3. Special Smarandache Curves in E3

In [4] authors introduced:

Definition 3.1 A regular curve in Minkowski space-time, whose position vector is composed

by Frenet frame vectors on another regular curve, is called a Smarandache curve.

In the light of the above definition, we adapt it to regular curves in the Euclidean space as

follows:

Definition 3.2 Let γ = γ(s) be a unit speed regular curve in E3 and {T,N,B} be its moving

Frenet-Serret frame. Smarandache TN curves are defined by

ζ = ζ(sζ) =
1√
2

(T +N) . (2)
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Let us investigate Frenet-Serret invariants of Smarandache TN curves according to γ =

γ(s). Differentiating (2), we have

ζ′ =
dζ

dsζ

dsζ
ds

=
1√
2

(−κT + κN + τB) , (3)

and hence

Tζ =
−κT + κN + τB√

2κ2 + τ2
(4)

where
dsζ
ds

=

√

2κ2 + τ2

2
. (5)

In order to determine the first curvature and the principal normal of the curve ζ, we formalize

T ′
ζ = Ṫζ

dsζ
ds

=
δT + µN + ηB

(2κ2 + τ2)
3
2

, (6)

where


















δ = −
[

κ2(2κ2 + τ2) + τ(τκ′ − κτ ′)
]

,

µ = −
[

κ2(2κ2 + 3τ2) + τ(τ3 − τκ′ + κτ ′)
]

,

η = κ
[

τ(2κ2 + τ2) − 2(τκ′ − κτ ′)
]

.

(7)

Then, we have

Ṫζ =

√
2

(2κ2 + τ2)2

(

δT + µN + ηB
)

. (8)

So, the first curvature and the principal normal vector field are respectively given by

∥

∥

∥Ṫζ

∥

∥

∥ =

√
2
√

δ2 + µ2 + η2

(2κ2 + τ2)
2 (9)

and

Nζ =
δT + µN + ηB
√

δ2 + µ2 + η2
. (10)

On other hand, we express

Tζ ×Nζ =
1

vl

∣

∣

∣

∣

∣

∣

∣

∣

T N B

−κ κ τ

δ µ η

∣

∣

∣

∣

∣

∣

∣

∣

, (11)

where v =
√

2κ2 + τ2 and l =
√

δ2 + µ2 + η2. So, the binormal vector is

Bζ =
[κη − τµ]T + [κη + δτ ]N − κ [µ+ δ]B

vl
. (12)

In order to calculate the torsion of the curve ζ, we differentiate

ζ′′ =
1√
2















−(κ2 + κ′)T+

(κ′ − κ2 − τ2)N

+(κτ + τ ′)B















(13)
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and thus

ζ′′′ =
ωT + φN + σB√

2
, (14)

where














ω = κ3 + κ(τ2 − 3κ′) − κ′′,

φ = −κ3 − κ(τ2 + 3κ′) − 3ττ ′ + κ′′,

σ = −κ2τ − τ3 + 2τκ′ + κτ ′ + τ ′′.

(15)

The torsion is then given by:

τζ =

√
2
[

(κ2 + τ2 − κ′)(κσ + τω) + κ(κτ + τ ′)(φ− ω) + (κ2 + κ′)(κσ − τφ)
]

[τ(2κ2 + τ2) + κτ ′ − κτ ′]
2
+ (κ′τ − κτ ′)2 + (2κ3 + κτ2)2

. (16)

Definition 3.3 Let γ = γ(s) be an unit speed regular curve in E3 and {T,N,B} be its moving

Frenet-Serret frame. Smarandache NB curves are defined by

ξ = ξ(sξ) =
1√
2

(N +B) . (17)

Remark 3.4 The Frenet-Serret invariants of Smarandache NB curves can be easily obtained

by the apparatus of the regular curve γ = γ(s).

Definition 3.5 Let γ = γ(s) be an unit speed regular curve in E3 and {T,N,B} be its moving

Frenet-Serret frame. Smarandache TNB curves are defined by

ψ = ψ(sψ) =
1√
3

(T +N +B) . (18)

Remark 3.6 The Frenet-Serret invariants of Smarandache TNB curves can be easily obtained

by the apparatus of the regular curve γ = γ(s).

§4. Examples

Let us consider the following unit speed curve:















γ1 = 9
208 sin 16s− 1

117 sin 36s

γ2 = − 9
208 cos 16s+ 1

117 cos 36s

γ3 = 6
65 sin 10s

. (19)

It is rendered in Figure 1.
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Figure 1: The Curve γ = γ(s)

And, this curve’s natural equations are expressed as in [2]:







κ(s) = −24 sin10s

τ(s) = 24 cos 10s
(20)

In terms of definitions, we obtain special Smarandache curves, see Figures 2 − 4.
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Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered

pair S = (G, σ) (S = (G, µ)) where G = (V, E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}.

Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called

abbreviated a signed graph or a marked graph. Given a connected graph H of order at

least 3, the H-Line Graph of a graph G = (V, E), denoted by HL(G), is a graph with the

vertex set E, the edge set of G where two vertices in HL(G) are adjacent if, and only if, the

corresponding edges are adjacent in G and there exists a copy of H in G containing them.

Analogously, for a connected graph H of order at lest 3, we define the H-Line signed graph

HL(S) of a signed graph S = (G, σ) as a signed graph, HL(S) = (HL(G), σ′), and for any

edge e1e2 in HL(S), σ′(e1e2) = σ(e1)σ(e2). In this paper, we characterize signed graphs S

which are H-line signed graphs and study some properties of H-line graphs as well as H-line

signed graphs.

Key Words: Smarandachely k-Signed graphs, Smarandachely k-Marked graphs, Signed

graphs, Balance, Switching, H-Line signed graph.

AMS(2000): 05C22

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [8]; the

non-standard will be given in this paper as and when required. We treat only finite simple

graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair S =

(G, σ) (S = (G,µ)) where G = (V,E) is a graph called underlying graph of S and σ : E →
(e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particularly, a

Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated a signed

1Received May 4, 2010. Accepted June 8, 2010.
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graph or a marked graph. We say that a signed graph is connected if its underlying graph is

connected. A signed graph S = (G, σ) is balanced if every cycle in S has an even number of

negative edges (See [9]). Equivalently a signed graph is balanced if product of signs of the edges

on every cycle of S is positive.

A marking of S is a function µ : V (G) → {+,−}; A signed graph S together with a

marking µ is denoted by Sµ.

The following characterization of balanced signed graphs is well known.

Theorem 1.1(E. Sampathkumar [12]) A signed graph S = (G, σ) is balanced if, and only if,

there exists a marking µ of its vertices such that each edge uv in S satisfies σ(uv) = µ(u)µ(v).

Given a signed graph S one can easily define a marking µ of S as follows: For any vertex

v ∈ V (S),

µ(v) =
∏

uv∈E(S)

σ(uv),

the marking µ of S is called canonical marking of S.

The idea of switching a signed graph was introduced by Abelson and Rosenberg [1] in

connection with structural analysis of marking µ of a signed graph S. Switching S with respect

to a marking µ is the operation of changing the sign of every edge of S to its opposite whenever

its end vertices are of opposite signs. The signed graph obtained in this way is denoted by

Sµ(S) and is called µ-switched signed graph or just switched signed graph. Two signed graphs

S1 = (G, σ) and S2 = (G′, σ′) are said to be isomorphic, written as S1
∼= S2 if there exists

a graph isomorphism f : G → G′ (that is a bijection f : V (G) → V (G′) such that if uv is

an edge in G then f(u)f(v) is an edge in G′) such that for any edge e ∈ G, σ(e) = σ′(f(e)).

Further a signed graph S1 = (G, σ) switches to a signed graph S2 = (G′, σ′) (or that S1 and S2

are switching equivalent) written S1 ∼ S2, whenever there exists a marking µ of S1 such that

Sµ(S1) ∼= S2. Note that S1 ∼ S2 implies that G ∼= G′, since the definition of switching does

not involve change of adjacencies in the underlying graphs of the respective signed graphs.

Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be weakly isomorphic (see

[22]) or cycle isomorphic (see [23]) if there exists an isomorphism φ : G → G′ such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(See [23]):

Theorem 1.2(T. Zaslavsky [23]) Two signed graphs S1 and S2 with the same underlying graph

are switching equivalent if, and only if, they are cycle isomorphic.

§2. H-Line Signed Graph of a Signed Graph

The line graph L(G) of a nonempty graph G = (V,E) is the graph whose vertices are the edges

of G and two vertices are adjacent if and only if the corresponding edges are adjacent. The

triangular line graph T (G) of a nonempty graph was introduced by Jerret [10] as a graph whose

vertices are edges of G and two vertices are adjacent if and only if corresponding edges belongs

to a common triangle. Triangular graphs were introduced to model a metric space defined on
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the edge set of a graph. These concepts were generalized in [5] as follows: Let H be a fixed

connected graph of order at least 3. For a graph G of size the H-line graph of G, denoted

by HL(G),is the graph whose vertices are the edges of G and two vertices are adjacent the

corresponding edges are adjacent and belong to a copy of H .If H ∼= P3 then HL(G) = L(G)

and so H-line graph is a generalization of line graphs. Clearly, if a graph is H free, then its

H-line graph is trivial.

In [10], the authors introduced the notion of triangular line graph of a graph as follows:

The triangular line graph of a G = (V,E) denoted by T (G) = (V ′, E′), whose vertices are the

edges of G and two vertices are adjacent the corresponding edges belongs to a triangle in G.

Clearly for any graph G, T (G) = K3L(G).

Behzad and Chartrand [3] introduced the notion of line signed graph L(S) of a given signed

graph S as follows: L(S) is a signed graph such that (L(S))u ∼= L(Su) and an edge eiej in L(S)

is negative if, and only if, both ei and ej are adjacent negative edges in S. Another notion of line

signed graph introduced in [7], is as follows: The line signed graph of a signed graph S = (G, σ)

is a signed graph L(S) = (L(G), σ′), where for any edge ee′ in L(S), σ′(ee′) = σ(e)σ(e′). In

this paper, we follow the notion of line signed graph defined by M. K. Gill [7] (See also E.

Sampathkumar et al. [13,14]). For more operations on signed graphs see [15-20].

Proposition 2.1 For any signed graph S = (G, σ), its line signed graph L(S) = (L(G), σ′) is

balanced.

In [21], the authors extends the notion of triangular line graphs to triangular line signed

graphs. We now extend the notion of H-line graph to the realm of signed graph as follows:

Let S = (G, σ) ba a signed graph. For any fixed connected graph H of order at least 3,

the H-line signed graph of S, denoted by HL(S) is the signed graph HL(S) = (HL(G), σ′)

whose underlying graph is HL(G) and for any edge ee′ in HL(G), σ′(ee′) = σ(e)σ(e′). Further

a signed graph S is said to be H-line signed graph if there exists a signed graph S′ such that

HL(S′) ∼= S.

We now give a straightforward, yet interesting property of H-line signed graphs.

Theorem 2.2 For any connected graph H of order at least 3 and for any signed graph S =

(G, σ), its H-line signed graph HL(S) is balanced.

Proof Let σ
′

denote the signing of HL(S) and let the signing σ of S be treated as a marking

of the vertices of HL(S). Then by definition of HL(S) we see that σ′(e1, e2) = σ(e1)σ(e2), for

every edge (e1, e2) of HL(S) and hence, by Theorem 1.1, the result follows. �

Corollary 2.3 For any two signed graphs S1 and S2 with the same underlying graph, HL(S1) ∼
HL(S2).

The following result characterizes signed graphs which are H-line signed graphs.

Theorem 2.4 A signed graph S = (G, σ) is a H-line signed graph for some connected graph

H of order at least 3 if, and only if, S is balanced signed graph and its underlying graph G is a
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H-line graph.

Proof Suppose that S isH-line signed graph. Then there exists a signed graph S′ = (G′, σ′)

such that HL(S′) ∼= S. Hence by definition HL(G) ∼= G′ and by Theorem 2.2, S is balanced.

Conversely, suppose that S = (G, σ) is balanced and G is H-line graph. That is there exists

a graph G′ such that HL(G′) ∼= G. Since S is balanced by Theorem 1.1, there exists a marking

µ of vertices of S such that for any edge uv ∈ G, σ(uv) = µ(u)µ(v). Also since G ∼= HL(G′),

vertices in G are in one-to-one correspondence with the edges of G′. Now consider the signed

graph S′ = (G′, σ′), where for any edge e′ in G′ to be the marking on the corresponding vertex

in G. Then clearly HL(S′) ∼= S and so S is H-line graph. �

For any positive integer k, the kth iterated H-line signed graph, HLk(S) of S is defined as

follows:

HL0(S) = S, HLk(S) = HL(HLk−1(S)).

Corollary 2.5 Given a signed graph S = (G, σ) and any positive integer k, HLk(S) is balanced,

for any connected graph H of order ≥ 3.

In [6], the authors proved the following for a graph G its H-line graph HL(G) is isomorphic

to G then H is a path or a cycle. Analogously we have the following.

Theorem 2.6 If a signed graph S = (G, σ) satisfies S ∼ HL(S) then S is balanced and H is

a cycle or a path.

Theorem 2.7 For any cycle Ck on k ≥ 3 vertices, a connected graph G on n ≥ r vertices

satisfies CkL(G) ∼= G if, and only if, G = Ck.

Proof Suppose that CkL(G) ∼= G. Then clearly, G must be unicyclic. Since CkL(G) ∼= G,

we observe that G must contain a cycle Ck. Next, suppose that G contains a vertex of degree

≥ 3, then the vertex corresponding to the edge not on the cycle in CkL(G) will be isolated

vertex. Hence G must be a cycle Ck.

Conversely, if G = Ck, then clearly for any two adjacent edges in Ck belongs to a copy of

Ck and so CkL(G) ∼= L(G). Since the line graph of any Ck is Ck itself, we have CkL(G) ∼= G.�

Corollary 2.8 For any cycle Ck on k ≥ 3 vertices, a graph G on n ≥ r vertices satisfies

CkL(G) ∼= G if, and only if, G is 2-regular and every component of G is Ck.

In view of the above theorem we have,

Theorem 2.9 For any cycle Ck on k ≥ 3 vertices, a signed graph S = (G, σ) connected graph

G on n ≥ r vertices satisfies CkL(S) ∼ S if, and only if, G = Ck.

Theorem 2.10 For a path Pk on k ≥ 3 vertices a connected graph G on n ≥ r vertices which

contains a cycle of length r > k satisfies PkL(G) ∼= L(G) if, and only if, G = Cn and n ≥ k.

Proof The result follows if k = 3, since P3L(G) = L(G). Assume that k ≥ 4. Clearly

G must contain at least k vertices. Suppose that PkL(G) ∼= L(G) and G contains a cycle of
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length r ≥ k. Then number of vertices in G and number of edges are equal. Hence G must

be unicyclic. Since G contains a cycle of length r > k, then any two adjacent edges in C of

G belongs to a common Pk. Hence PkL(G) also contains a cycle of length r. Next, suppose

that G contains a vertex of degree ≥ 3, then the vertex corresponding to the edge not on the

cycle in PkL(G) will be adjacent to two adjacent vertices forming a C3 and so HL(G) is not

unicyclic. Hence G must be the cycle Cn .

Conversely, if G = Cn and n ≥ k, then clearly any two adjacent edges in Ck belongs to a

copy of Ck and so PkL(G) ∼= L(G). Since the line graph of Cn is Cn itself, PkL(G) ∼= L(G). �

Corollary 2.11 For any path Pk on k ≥ 3 vertices, a graph G on n ≥ r vertices satisfies

PkL(G) ∼= G if, and only if, G is 2-regular and every component of G is Cr, for some r ≥ k.

Analogously, we have the following for signed graphs:

Corollary 2.12 For any path Pk on k ≥ 3 vertices, a signed graph S = (G, σ) on n ≥ r vertices

satisfies PkL(S) ∼ S if, and only if, S is balanced and every component of G is Cr, for some

r ≥ k.

In [10], the authors prove that for any graph G, T (G) ∼= L(G) if, and only if, G = Kn.

Analogously, we have the following:

Theorem 2.13 A graph G of order n satisfies KrL(G) ∼= L(G) for some r ≤ n if, and only if,

G = Kn.

Proof The result is trivial if k = n. Suppose that KrL(G) ∼= L(G) and G is not complete

for some r ≤ n − 1. Then there exists at least two nonadjacent vertices u and v in G. Now

for any vertex w, the edges uw and vw are adjacent and hence the corresponding vertices are

adjacent. But the edges uw and vw can not be adjacent in KrL(G) since any set of r vertices

containing u and v can not induce complete subgraph Kr. Whence, the condition is necessary.

For sufficiency, suppose G = Kn for some n ≥ r. Then for any two adjacent vertices

in L(G), the corresponding edges adjacent edges in G belongs to some Kr. Hence they are

also adjacent in KrL(G) and any two nonadjacent vertices in L(G) remain nonadjacent.This

completes the proof. �

Analogously, we have the following result for signed graphs:

Theorem 2.14 A signed graph S = (G, σ) satisfies KrL(S) ∼ L(S), for some 3 ≤ k ≤ |V (G)|
if, and only if, S is a balanced on a complete graph.

§3. Triangular Line Signed Graphs and (0, 1, -1) Matrices

Matrices are very good models to represent a graph. In general given a matrix A = (aij) of

order m × n one can associate many graphs with it (see [11]. On the other hand given any

graph G we can associate many matrices such adjacency matric, incidence matrix etc (see [8]).

Analogously, given a matrix with entries one can associate many signed graphs (See [11]). In
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this section, we give a relation between the notion of triangular line graph and some graph

associated with {0, 1}-matrices. Also we extend this to triangular signed graphs and some

signed graphs associated with matrices whose entries are −1, 0, or 1.

Given a (0, 1)-matrix A, the term graph T (A) of A was defined as follows (See [2]): The

vertex set of T (A) consists of m row labels r1, r2, ..., rm and n column labels c1, c2, ..., cn of A

and the edge set consists of the unordered pairs ricj for which aij 6= 0.

Given a (0, 1)-matrix A of order m × n, the graph Gt(A) can be constructed as follows:

The vertex set of Gt(A) consists of non-zero entries of A and the edge set consists of distinct

pairs of vertices (aij , akr) that lie in the same row (i=k) with air 6= 0 or or same column(j=r)

with akj 6= 0. The following result relates the connects the two notions the term graph and Gt

graph of a given matrix A:

Theorem 3.1 For any (0, 1)-matrix A, Gt(A) = T (T (A)).

Let A = (aij) be any m × n matrix in which each entry belongs to the set {−1, 0, 1}; we

shall call such a matrix a (0,±1)-matrix. The notion of term graph of a (0, 1)-matrix can be

easily extended to term signed graph of a (0,±1)-matrix A as follows ( see [2]): The vertex set

of T (A) consists of m row labels r1, r2, ..., rm and n column labels c1, c2, ..., cn of A, the edge

set consists of the unordered pairs ricj for which aij 6= 0 and the sign of the edge ricj is the

sign of the nonzero entry aij .

Next, given any (0,±1)-matrix A a triangular matrix signed graph Sgt(A) of A can be

constructed as follows: The vertex set of Sgt(A) is consists of nonzero entries of A and edge set

consists of distinct pairs of vertices (aij , akr) that lie in the same row (i = k) with air 6= 0 or

same column (j = r) with akj 6= 0; the sign of an edge uv in Sg(A) is defined as the product of

sings of the entries of A that correspond to u = aij and v = akr.

The following is a observation whose proof follows from the definition of triangular line

graph and the facts just mentioned above:

Theorem 3.2 For any (0,±1) matrix A, Sgt(A) ∼= T (Tg(A)).

The Kronecker product or tensor product of two signed graphs S1 and S2, denoted by

S1

⊗

S2 is defined (see [2]) as follows:The vertex set of (S1

⊗

S2) is V (S1) × V (S2), the edge

set is E(S1

⊗

S2) := {((u1, v1), (u2, v2)) : u1u2 ∈ E(S1), v1v2 ∈ E(S2)} and the sign of the

edge (u1, v1)(u2, v2) is the product of the sign of u1u2 in S1 and the sign of v1v2 in S2. In the

following result, A(S) will denote the usual adjacency matrix of the given signed graph S and

A
⊗

B denotes the standard tensor product of the given matrices A and B.

Theorem 3.3( M. Acharya [2]) For any two signed graphs S1andS2, A(S1

⊗

S2) = A(S1)
⊗

A(S2).

Theorem 3.4 For any signed graph S, T (A(S)) = S
⊗

K+
2 , where K

+
2 denotes the complete

graph K2 with its only edge treated as being positive.

The adjacency signed graph ð(S) of a given signed graph S is the matrix signed graph

Sg(A(S)) of the adjacency matrix A(S) of S [2].
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Theorem 3.5( M. Acharya [2]) For any signed graph S, ð(S) = L(S
⊗

K+
2 ).

Analogously we define triangular adjacency signed graph of A(S), the adjacency matrix of

S denoted by ðt(S) as the signed graph Sgt(A(S)). We have the following result.

Theorem 3.6 For any signed graph S, ðt(S) = T (S
⊗

K+
2 ).
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Abstract: Let G = (V, E) be a graph and let v ∈ V. Let γmin(v, G) denote the

minimum cardinality of a minimal dominating set of G containing v. Then γM,m(G) =

max{γmin(v, G) : v ∈ V (G)} is called the min-max dom-saturation number of G. In this

paper we present a dynamic programming algorithm for determining the min-max dom-

saturation number of a tree.

Key Words: Domination, Smarandachely k-dominating set, min-max dom-saturation

number.

AMS(2000):

§1. Introduction

By a graph G = (V,E) we mean a finite, undirected graph with neither loops nor multiple

edges. The order and size of G are denoted by n and m respectively. For graph theoretic

terminology we refer to Chartrand and Lesniak [6].

One of the fastest growing areas in graph theory is the study of domination and related

subset problems such as independence, irredundance, covering and matching. An excellent

treatment of fundamentals of domination in graphs is given in the book by Haynes et al.[7].

Surveys of several advanced topics in domination are given in the book edited by Haynes et

al.[8].

Let G = (V,E) be a graph. A subset S of V is said to be a Smarandachely k-dominating

set in G if every vertex in V − S is adjacent to at least k vertices in S. When k = 1, the set

S is simply called a dominating set. A dominating set S is called a minimal dominating set if

no proper subset of S is a dominating set of G. The domination number γ(G) is the minimum

cardinality taken over all minimal dominating sets in G.

Let S be a subset of vertices of a graph G and let u ∈ S. A vertex v is called a private

neighbor of u with respect to S if N [v] ∩ S = {u}. A dominating set D of G is a minimal

dominating set if and only if every vertex in D has a private neighbor with respect to D.

1Received May 14, 2010. Accepted June 10, 2010.
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In a graph G any vertex of degree 1 is called a leaf and the unique vertex which is adjacent

to a leaf is called a support vertex.

Acharya [1] introduced the concept of dom-saturation number ds(G) of a graph, which is

defined to be the least positive integer k such that every vertex of G lies in a dominating set of

cardinality k. Arumugam and Kala [2] observed that for any graph G, ds(G) = γ(G) or γ(G)+1

and obtained several results on ds(G). Motivated by this concept Arumugam and Subramanian

[3] introduced the concept of independence saturation number of a graph and Arumugam et

al. [4] introduced the concept of irredundance saturation number of a graph. In [5] we have

generalized the concept of min-max and max-min graph saturation parameters for any graph

theoretic property P which may be hereditary or super hereditary in the following.

Definition 1.1 The min-max dom-saturation number γM,m(G) is defined as follows. For any

v ∈ V (G), let γmin(v,G) = min{|S| : S is a minimal dominating set of G and v ∈ S} and let

γM,m(G) = max{γmin(v,G) : v ∈ V (G)}.

Thus γM,m(G) is the largest positive integer k, with the property that every vertex of G

lies in a minimal dominating set of cardinality at least k.

Since the decision problem corresponding to the domination number γ(G) is NP-complete,

it follows that the decision problem corresponding to γM,m(G) is also NP-complete. Hence

developing polynomial time algorithms for determining γM,m(G) for special classes of graphs

is an interesting problem.

In this paper we present a dynamic programming algorithm for determining the min-max

dom-saturation number of a tree.

§2. Main Results

Let T be a tree rooted at v. For any vertex u ∈ V (T ), let Tu be the subtree of T rooted at u.

Let u1, . . . , uk be the children of u in Tu and let Ti = Tui
. For any dominating set D of Tu, let

Di = D ∩ V (Ti). We now define the following six parameters.

(i) γ1(T, u) = min{|D| : D is a minimal dominating set of Tu, u ∈ D and u is isolated in

〈D〉}.

(ii) γ2(T, u) = min{|D| : D is a minimal dominating set of Tu, u ∈ D, u is not isolated in 〈D〉
and u has a child as its private neighbor}.

(iii) γ3(T, u) = min{|D| : D is a minimal dominating set of Tu, u /∈ D and u is a private

neighbor of its child}.

(iv) γ4(T, u) = min{|D| : D is a minimal dominating set of Tu − u and ui /∈ D, 1 ≤ i ≤ k}.

(v) γ5(T, u) = min{|D| : D is a minimal dominating set of Tu, u /∈ D and at least two of its

children are in D}.

(vi) γ00(T, u) = min{|D| : D is a minimal dominating set of Tu − u}.
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Observation 2.1 If the subtree Tu is a star or if every child of u is a support vertex, then

γ2(T, u) is not defined. Also if the vertex u has two leaves as its children then γ3(T, u) is not

defined. If u is a support vertex of Tu, then γ4(T, u) is not defined and if the number of children

of u is less than two then γ5(T, u) is not defined.

Lemma 2.1 γ1(T, u) = 1 +
k
∑

i=1

min{γ4(Ti, ui), γ
5(Ti, ui), γ

00(Ti, ui)}.

Proof Let D be a minimal dominating set of Tu, u ∈ D,u is isolated in 〈D〉 and |D| =

γ1(T, u). Hence ui /∈ Di, 1 ≤ i ≤ k. If no children of ui is in Di, then |Di| ≥ γ00(Ti, ui). If

exactly one child of ui is in Di, then |Di| ≥ γ4(Ti, ui). Otherwise |Di| ≥ γ5(Ti, ui). Thus |Di| ≥
min{γ4(Ti, ui), γ

5(Ti, ui), γ
00(Ti, ui)}. Hence |D| ≥ 1+

k
∑

i=1

min{γ4(Ti, ui), γ
5(Ti, ui), γ

00(Ti, ui)}.
We get the equality. �

The reverse inequality follows from the observation that any minimal dominating set D

of Tu having u as an isolated vertex in 〈D〉 is of the form D =

(

k
⋃

i=1

Di

)

∪ {u} where Di is a

minimal dominating set of Ti not containing ui, 1 ≤ i ≤ k.

Lemma 2.2 Suppose the subtree Tu of T rooted at u is neither a star nor every child of

u is a support vertex. Then γ2(T, u) = 1 + min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} +γ4(Tj , uj) +

∑

r 6=i,j

min{γ1(Tr, ur), γ
2(Tr, ur), γ

4(Tr, ur), γ
5(Tr, ur), γ

00(Tr, ur)}} where the minimum is taken

over all i, j such that ui is not a leaf of Tu and uj is not a support vertex of Tu.

Proof Let D be a minimal dominating set of Tu, u ∈ D, u is not isolated in 〈D〉 and u

has one of its children as its private neighbor and |D| = γ2(T, u). Without loss of generality we

assume that ui ∈ D and uj is the private neighbor of u with respect to D. Since D is a minimal

dominating set it follows that ui is not a leaf of Tu and uj is not a support vertex of Tu. Since

ui ∈ D, |Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui)}. Also uj and all its children are not in Dj , we have

|Dj | ≥ γ4(Tj , uj). For r 6= i, j,

|Dr| ≥ min{γ1(Tr, ur), γ
2(Tr, ur), γ

4(Tr, ur), γ
5(Tr, ur), γ

00(Tr, ur)}.

Hence

|D| ≥ 1 + min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} + γ4(Tj , uj)

+
∑

r 6=i,j

min{γ1(Tr, ur), γ
2(Tr, ur), γ

4(Tr, ur), γ
5(Tr, ur), γ

00(Tr, ur)}},

where the minimum is taken over all i, j such that ui is not a leaf of Tu and uj is not a support

vertex of Tu.

The reverse inequality is obvious. �

Lemma 2.3 Let D be a minimal dominating set of Tu such that u /∈ D. If a child of u, say

u1 is a leaf, then γ3(T, u) = 1 +
k
∑

i=2

min{γ3(Ti, ui), γ
5(Ti, ui)}. If no child of u is a leaf, then

γ3(T, u) = min
1≤i≤k

{min{γ1(Ti, ui), γ
2(Ti, ui)} +

∑

j 6=i

min{γ3(Tj , uj), γ
5(Tj, uj)}}.
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Proof Let D be a minimal dominating set of Tu such that u /∈ D, u is a private neighbor

of a child and |D| = γ3(T, u).

Case 1. Exactly one child, say u1, of u is a leaf.

Then u1 ∈ D and ui /∈ D for all i > 1.

Hence γ3(T, u) ≥ 1 +
k
∑

i=2

min{γ3(Ti, ui), γ
5(Ti, ui)}.

Case 2. No child of u is a leaf.

Without loss of generality we assume that u is the private neighbor of ui ∈ D. Then

|Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui)}. Also since u is the private neighbor of ui, all the other

children of u are not in D and hence for all j 6= i,

|Dj | ≥ min{γ3(Tj , uj), γ
5(Tj , uj)}.

Thus |D| ≥ min
1≤i≤k

{min{γ1(Ti, ui), γ
2(Ti, ui)} +

∑

j 6=i

min{γ3(Tj, uj), γ
5(Tj , uj)}}.

The reverse inequality is obvious. �

Lemma 2.4 If u is not a support vertex of Tu, then

γ4(T, u) =

k
∑

i=1

min{γ3(Ti, ui), γ
5(Ti, ui)}.

Proof Let D be a minimal dominating set of Tu − {u}, ui /∈ D and |D| = γ4(T, u).

Let Di = D ∩ V (Ti). Since ui /∈ Di, |Di| ≥ min{γ3(Ti, ui), γ
5(Ti, ui)} and hence |D| ≥

k
∑

i=1

min{γ3(Ti, ui), γ
5(Ti, ui)}. The reverse inequality is obvious. �

Lemma 2.5 If u has more than one child, then

γ5(T, u) = min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} +min{γ1(Tj , uj), γ

2(Tj , uj)}

+ min
r 6=i,j

{γ1(Tr, ur), γ
2(Tr, ur), γ

3(Tr, ur), γ
5(Tr, ur)}}.

Proof Let D be a minimal dominating set of Tu such that at least two children of u, say

ui and uj are in D and |D| = γ5(T, u). Since ui, uj ∈ D, |Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui)} and

|Dj | ≥ min{γ1(Tj , uj), γ
2(Tj , uj)}. For any r 6= i, j, ur may or may not be in D. Hence

|Dr| ≥ min{γ1(Tr, ur), γ
2(Tr, ur), γ

3(Tr, ur), γ
5(Tr, ur)}.

Thus

|D| ≥ min
i,j

{min{γ1(Ti, ui), γ
2(Ti, ui)} +min{γ1(Tj , uj), γ

2(Tj , uj)}

+ min
r 6=i,j

{γ1(Tr, ur), γ
2(Tr, ur), γ

3(Tr, ur), γ
5(Tr, ur)}}.

The reverse inequality is obvious. �
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Lemma 2.6 γ00(T, u) =
k
∑

i=1

min{γ1(Ti, ui), γ
2(Ti, ui), γ

3(Ti, ui), γ
5(Ti, ui)}.

Proof Let D be a minimal dominating set of Tu − u such that |D| = γ00(T, u). Obviously

|Di| ≥ min{γ1(Ti, ui), γ
2(Ti, ui), γ

3(Ti, ui), γ
5(Ti, ui)}. Thus

|D| ≥
k
∑

i=1

min{γ1(Ti, ui), γ
2(Ti, ui), γ

3(Ti, ui), γ
5(Ti, ui)}.

The reverse inequality is obvious. �

Lemma 2.7 γmin(v, T ) = min{γ1(T, v), γ2(T, v)}.

Proof Let D be a minimal dominating set of T such that v ∈ D and

|D| = γmin(v, T ). Since v is either isolated or nonisolated in 〈D〉 , the result follows. �

Based on the above lemmas we have the following dynamic programming algorithm for

determining γmin(v, T ) for trees.

ALGORITHM TO FIND γmin(v, T )

INPUT: A tree T rooted at v1, with a BFS ordering of its vertices {v1, v2, . . . , vn}.
OUTPUT: Minimum cardinality of a minimal dominating set of T containing v1.

Step 1. INITIALIZATION

for i = 1 to n do

γ1(vi) = 1; γ2(vi) = ∞; γ3(vi) = ∞,

γ4(vi) = ∞; γ5(vi) = ∞; γ00(vi) = 0.

end for;

Step 2. COMPUTATION

for i = n to 1 do

Step 2.1: Let ui1, ui2, . . . , uil be the children of vi

Step 2.2: CALCULATE γ1(vi)

Compute γ1(vi) = 1 +
l
∑

j=1

min{γ4(uij), γ
5(uij), γ

00(uij)}.

Step 2.3: CALCULATE γ2(vi)

If there exists a child of vi which is not a leaf and there exists a child of vi

which is not a support then compute

γ2(vi) = 1 + min
j,k

{min{γ1(uij), γ
2(uij)}+

γ4(uik) +
∑

r 6=j,k

{γ1(uir), γ
2(uir), γ

4(uir), γ
5(uir), γ

00(uir)}.

where the minimum is taken over all j, k, j 6= k such that uik is not a support

vertex and uij is not a leaf.
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Step 2.4: CALCULATE γ3(vi)

If vi has exactly one child which is a leaf, say u1, then compute γ3(vi) =

1 +
l
∑

j=2

min{γ3(uij), γ
5(uij)}

otherwise

γ3(vi) = min
1≤j≤l

{min{γ1(uij), γ
2(uij)} +

∑

k 6=j

{γ3(uik), γ
5(uik)}}.

Step 2.5: CALCULATE γ4(vi)

If vi is not a support vertex then compute

γ4(vi) =
l
∑

j=1

min{γ3(uij), γ
5(uij)}

Step 2.6: CALCULATE γ5(vi)

If vi has more than one child then compute

γ5(vi) = min
j 6=k

{γ1(uij), γ
2(uij)} +min{γ1(uik), γ

2(uik)}+
min
r 6=j,k

{γ1(uir), γ
2(uir), γ

3(uir), γ
5(uir)}

Step 2.7: CALCULATE γ00(vi)

Compute γ00(vi) =
l
∑

j=1

{γ1(uij), γ
2(uij), γ

3(uij), γ
5(uij)}

end for;

Step 3. Compute γmin(v1, T ) = min{γ1(v1), γ
2(v1)}.

Observation 2.2 Using the above algorithm for any given vertex v of T the parameter

γmin(v, T ) can be computed. Applying the above algorithm for each vertex v we compute

γmin(v, T ) for all v ∈ V and γM,m(T ) = max{γmin(v, T ) : v ∈ V (T )} can be computed.

Example 2.1 A tree rooted at the vertex 1 and the table showing the computations of the

above algorithm are given below.
1

2 3 4

5
6 7 8

9 10 11 12

Figure 1

γ1 γ2 γ3 γ4 γ5 γ00

12 1 ∞ ∞ ∞ ∞ 0

11 1 ∞ ∞ ∞ ∞ 0

10 1 ∞ ∞ ∞ ∞ 0

9 1 ∞ ∞ ∞ ∞ 0
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γ1 γ2 γ3 γ4 γ5 γ00

8 1 ∞ ∞ ∞ 2 2

7 1 ∞ 1 ∞ ∞ 1

6 1 ∞ 1 ∞ ∞ 1

5 1 ∞ ∞ 0 ∞ 0

4 3 ∞ 1 2 ∞ 1

3 2 ∞ 1 1 ∞ 1

2 2 2 2 ∞ 2 2

1 5 5 4 4 5 4

Hence γmin(1, T ) = min(γ1(T, 1), γ2(T, 1)) = 5.

Repeated application of the algorithm gives γmin(2, T ) = 4, γmin(3, T ) = 5, γmin(4, T ) = 5,

γmin(5, T ) = 5, γmin(6, T ) = 4, γmin(7, T ) = 4, γmin(8, T ) = 4, γmin(9, T ) = 4, γmin(10, T ) =

5, γmin(11, T ) = 6, γmin(12, T ) = 6. Hence γM,m(T ) = max{γmin(i, T ) : 1 ≤ i ≤ 12} = 6.

§3. Conclusion

Courcelle has proved that if a graph property can be expressed in extended monadic second

order logic (EMSO), then for every fixed w ≥ 1, there is a linear-time algorithm for testing

this property on graphs having treewidth at most w. The property of a subset S of V being

a minimal dominating set can be expressed in EMSO and hence for families of graphs with

bounded treewidth, a linear time algorithm can be developed for computing γmin(v,G) for

any given vertex v. Hence developing such algorithm for specific families of graphs of bounded

treewidth is an interesting problem for further research.
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Abstract: Researches on embeddings of graphs on the projective plane have significance

to determine the total genus distributions of graphs. Based on the embedding model of joint

tree, this paper calculated the embedding number of the circular graph C(2n + 1, 2)(n ≥ 2)

on the projective plane. Therefore, embeddings of K5 on the projective plane is solved.

Key Words: Surface, genus, embeddings, joint tree, Smarandachely k-drawing.
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§1. Introduction

In this paper, a surface is a compact 2-dimensional manifold without boundary. It is orientable

or nonorientable. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is

a homeomorphism φ: G → S such that φ(G) on S has exactly k intersections in φ(E(G)) for

an integer k. If k = 0, i.e., there are no intersections between in φ(E(G)), or in another words,

each connected component of S − φ(G) is homeomorphic to an open disc, then G has an 2-cell

embedding on S. Two embeddings h : G→ S and g : G→ S of G into a surface S are said to

be equivalent if there is a homeomorphism f : S → S such that f ◦ h = g.

Given a graph G, how many nonequivalent embeddings of G are there into a given surface

is one of important problems in topological graph theory. It can be tracked back to the genus

distributions or total genus distributions of graphs. Since Gross and Furst [1] had introduced

these concepts, the genus distributions or total genus distributions of a few graph classes had

been solved by scholars [2-7]. However, for many other graph classes, we have not solved the

related problems temporarily. There are always relationships among the numbers of embeddings

of a graph on different genus surfaces. Therefore, researching on embeddings of graphs on

sphere,torus,projective plane,Klein bottle has special significance. The embedding model of

joint tree [8] is a special method which had promoted the research on genus distributions or

total distributions of graphs [9-12].Basing on this model,this paper calculated the embedding

number of circular graph C(2n+ 1, 2)(n ≥ 2) on the projective plane.

1Supported by the National Nature Science Fund of China(10771062) and Plan Supporting new century

excellent persons of Education Department.
2Received April 21, 2010. Accepted June 12, 2010.
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§2. Related Knowledge and Lemmas

A surface can be represented by a polygon of even edges in the plane whose edges are pairwise

identified and directed clockwise or counterclockwise. To distinguish the direction of each edge,

we index each edge by “+”(always omitted) and “−” . For example, sphere, torus, projective

plane, Klein bottle can be represented by O0 = aa−, O1 = aba−b−, N1 = aa, N2 = aabb

respectively. In general,

Op =

p
∏

i=1

aibia
−
i b

−
i , Nq =

q
∏

i=1

aiai

denote respectively an orientable surface with genus p and a nonorientable surface with

genus q(p ≥ 1, q ≥ 1). Edge a is called a twisted edge if the directions of the identical edges a

is the same. Otherwise edge a is called an untwisted edge. A nonorientable surface has at least

one twist edge.

The following three operations don’t change the type of a surface:

Operation 1 Aaa− ⇔ A.

Operation 2 AabBab⇔ AcBc.

Operation 3 AB ⇔ (Aa)(a−B).

Among the above three operations, the parentheses stand for cyclic order. A and B stand

liner order and they aren’t empty except operation 2. Actually the above operations determine

a topological equivalence denoted ∼. Therefore, They introduce three relations of topological

equivalence.

Relation 1 AxByCx−Dy−E ∼ ADCBExyx−y−.

Relation 2 AxBxC ∼ AB−Cxx.

Relation 3 Axxyzy−z− ∼ Axxyyzz.

Based on the above operations and relations, It is easy to obtain the following lemmas:

Lemma 2.1([8]) Suppose S1 is an orientable surface with genus p and S2 is a nonorientable

surface with genus q.

(1) If S = S1xyx
−y−, Then S is an orientable surface with genus p+ 1;

(2) If S = S2xyx
−y−, Then S is a nonorientable surface with genus q + 2;

(3) If S = S1xx, Then S is a nonorientable surface with genus 2p+ 1;

(4) If S = S2xx, Then S is a nonorientable surface with genus q + 1.

Lemma 2.2 Suppose surface S is nonorientable and S = AxByCx−Dy−, then the nonrientable

genus of S is not less than 3.

Proof According to relation1, S = AxByCx−Dy− ∼ ADCBxyx−y−. LetS2 = ADCB,

then S2 is nonorientable and its genus is at least 1. Based on Lemma ??, the nonorientable

genus of surface S is not less than 3. �

Lemma 2.3 Suppose surface S is nonorientable, if S = AxByCyDx or S = AxByCxDy−,

then the nonorientable genus is not less than 2.
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Proof If S = AxByCyDx, according to relation 2,

S = AxByCyDx ∼ AxBC−Dxyy ∼ AD−CB−yyxx.

According to Lemma 2.1,the nonorientable genus of S is not less than 2;

Suppose S = AxByCxDy−, according to relation 2,

S = AxByCxDy− ∼ AC−y−B−Dy−xx ∼ AC−D−Bxxy−y−.

According to Lemma 2.1, the nonorientable genus of S is not less than 2. �

The embedding model of joint tree may be introduced in the following way: Given a

spanning tree T of a graph G = (V,E), we split every cotree edge into two edges and label

them by the identical letter. The two edges are called the semi-edges of the original cotree

edge. The resulting graph is the joint tree of the original graph G. Suppose the number of

cotree edges is β. Given a direction to every semi-edge so that the direction of each pair of

semi-edges can be the same or opposite. Beginning with a vertex, we walk all over the edges

of the joint tree by its rotation. Writing the letter of semi-edges of the original graph cotree

edges by order. we obtain a polygon of 2β edges which is exactly the associated surface of the

graph G. There is a 1 to 1 correspondence between the associated surfaces and the embeddings

of graph G. Hence an embedding of a graph G on a surface can be exactly represented by an

associate surface of the graph G.

§3. Main Conclusions

The first, we investigate the structure character of polygon representation of projective plane.

Definition 3.1 If surface S = AxByCxDy, then x and y are said to be interlaced in S; if

surface S = AxBxCyDy, then x and y are said to be parallel in S.

According to Lemmas 2.2 and 2.3, it is easy to obtain the following theorem:

Theorem 3.1 Suppose S is a projective plane. If two edges in the polygon representation of S

are all twisted, then they must be interlaced; otherwise, they must be parallel.

Definition 3.2 Circular graph C(2n+ 1, 2) (n ≥ 2) is obtained by appending chords {ujuj+2 |
j = 1, 2, · · · , 2n + 1} on the circle u1u2 · · ·u2n+1u1. Figure 1 is the circular graph C(7, 2).

ai = u2i−1u2i+1(i = 1, 2, · · · , n) are called odd chords; bi = u2iu2i+2(i = 1, 2, · · · , n − 1)

are called even chords. Specially, let c0 = u2n+1u1, a0 = u2n+1u2, b0 = u2nu1. Denote the

collection of odd chords by E1, E1 = {ai | i = 1, 2, · · · , n}; Denote the collection of even chords

by E2, E2 = {bi | i = 1, 2, · · · , n − 1}. The subscriptions of vertices are the Residue Class

Modules of 2n+ 1.
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u1

u2

u3

u4u5

u6

u7 a0

b0 a1

a2

a3
b1

b2

c0

Figure 1: C(7,2)

There are some researches on embeddings of circular graphs in paper [13]. According to

it, a circular graph can be embedded on the projective plane. But the embedding number and

structure have not been investigated yet. In this paper, we calculated the embedding number

of circular graphs on the projective plane.

We choose path u1u2...u2nu2n+1 as the spanning tree of the circular graph C(2n + 1, 2)

(n ≥ 2). Then by splitting each cotree edge, we obtain the joint tree. The two edges by splitting

one cotree edge are called semi-edges of the original cotree edge. The upside of the spanning

tree is the side which the semi-edge a0 incident with vertex u2n+1 is placed. The other side

is called the underside of the spanning tree. Considering the special positions of cotree edges

c0, a0, b0, we discuss the embedding of circular graph C(2n + 1, 2)(n ≥ 2) on the projective

plane basing on whether the three cotree edges are twisted.

First, according to Lemmas 2.2 and 2.3, if the associated surface of circular graph C(2n+

1, 2)(n ≥ 2) is projective plane, then we have the following claims:

Claim 1 There are at most three twisted edges in E1 ∪E2.

In fact, if there are more than three twisted edges in E1 ∪E2, there will exist two twisted

edges and they are parallel in the associated surface. It contradicts to Theorem 3.1.

Claim 2 Each semi-edges pair of an untwisted edge must be placed on the same side of the

spanning tree.

In fact, if a semi-edges pair of an untwisted edge are placed on the distinct sides of the

spanning tree, the untwisted edge and c0 must be interlaced in the associated surface of graph

G. It contradicts to Theorem 3.1.

Claim 3 If ai−1, ai(or bi−1, bi) are two untwisted edges in E1(orE2) and they are placed on

distinct sides of the spanning tree, then bi−1(orai) is twisted and its two semi-edges must be

placed on distinct side of the spanning tree.

As is shown in Figure 2, ai−1, ai are two untwisted edges and placed on the two sides of

the spanning tree respectively. If bi−1 is not twisted, then it must be interlaced with one of the

three edges ai−1, ai, c0. If bi−1 is twisted but its two semi-edges are placed on the same side of

the spanning tree, it will be interlaced with ai−1 or ai. The two cases all contradict to Theorem

3.1. Similarly we can prove the case of the two edges bi−1, bi.
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c0
...

...ai

- -
ai

c0ai-1 ai-1

-

bi-1

bi-1

Figure 2: The side-transferring of untwisted neighbor edges

Theorem 3.2 The embedding number of a circular graph C(2n+1, 2)(n ≥ 2) on the projective

plane is 8n+ 6.

Proof There are two embedding cases when considering whether c0 is twisted.

Case 1 c0 is untwisted

Because c0 is untwisted, each semi-edges pair of a twisted edge must be placed on the same

side of the spanning tree. Otherwise, it will be interlaced with c0 and contract to Theorem 3.1.

On the other side, every two twisted edges must be interlaced in the associated surface. all the

twisted edges are placed on the same side. According to Claim3, there are no side-transferring

case of neighbor untwisted edges in E1 or E2. Otherwise, there must exist a twisted edge that its

semi-edges pair are placed on the two distinct side of the spanning tree respectively. It contracts

to the above discussion. According to whether a0, b0 are twisted edges, The embeddings can be

classified into four subcases:

Subcase 1.1 a0 and b0 are all untwisted

c0

a0

a1

b1 a0b0 b0b1

an-1 an-1

...

...

an an

c0

-

-

-

-

-
a1

u1 u2
u2n+1u2n

bn-1 bn-1

-

Figure 3: The joint tree of Subcase 1.1

As shown in Figure 3, a0 and b0 can only be placed on the same side of the spanning tree.

If there are twisted edges in E1 ∪E2. they can only be a1 or an. Suppose a1 is twisted, then it

must be on the upside of the spanning tree. Furthermore, b1 can only be placed on the underside

and also is an. Corresponding bn−1 is on the upside. Therefore, the sequence of untwisted edges

b1b2 · · · bn−1 will shift sides at one vertex. It contradicts to the above discussion. Then a1 can’t

be a twisted edge, so is an in the same way. Then there are no twisted edges in E1 ∪ E2.

According to claim 3 and the above discussion, the untwisted edges sequence b1b2 · · · bn−1 must

be on the upside of the spanning tree while another untwisted edges sequence a1a2 · · · an must

be on the underside. Beginning at semi-edge c0 incident to vertex u1. Walk along all the joint

tree edges by its rotation, we get the associated surface:
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S = c0b0a0b1b
−
1 b2b

−
2 · · · bn−1b

−
n−1b0a0c

−
0 a

−
n ana

−
n−1an−1 · · ·a−1 a1

∼ b0a0b0a0 ∼ N1.

Considering the symmetry of the two sides of the spanning tree, the embedding number of

Subcase 1.1 is 2.

Subcase 1.2 a0 is twisted, b0 is untwisted

c0

a0a1 a2 a0

b0
b0b1 b1

a2

bn-1 bn-1

... ...

... ...

an an

c0
-

-

-

-

-

-

a1

u1

u2

u2n+1

u2n

Figure 4: The joint tree of Subcase 1.2

Similarly, according to Theorem 3.1, a0 and b0 can only be placed on the distinct side of

the spanning tree(as shown in Figure 4. If there is no twisted edge in E1 ∪ E2, then an can

only be placed on the upside because the untwisted edge can only be placed on the underside

of the spanning tree. Then the sequence of untwisted edges a1a2 · · · an will shift sides at one

vertex. It contradicts to the above discussion. So there is no twisted edges in E1 ∪ E2.

Each twisted edge in E1 ∪ E2 and a0 must be interlaced and they are placed on the same

side. Then, the twisted edges in E1 ∪ E2 can only be the following edges:a1 , b1, an. a1 and an

can’t all be twisted edges, otherwise they will be parallel. However there are at least one twisted

edge among them, otherwise the sequence of untwisted edges a1a2 · · ·an will shift sides. If an is

twisted, then it can only be placed on the upside and be interlaced with a0. So b1 and a1 must

be untwisted. Furthermore, a1 must be placed on the underside while b1 must be placed on the

upside. Therefore, the untwisted edge bn−1 can only be placed on the underside. It indicate

that the untwisted edges sequence b1b2 · · · bn−1 shift sides at one vertex. It contradicts to Claim

3. So a1 must be twisted and an is untwisted. If b1 is also twisted, Then it will be placed on

the upside. So a2 will be placed on the underside while an will be placed on the upside. It is

to say that the untwisted edges sequence a2a3 · · · an will shift sides and contradicts to Claim 3.

Based on the above discussion, a1 is the only twisted edge in E1 ∪ E2. According to

Theorem 3.1 and Claims 1,2,3, the rotations of the joint tree are only fixed. The associated

surface is

S = c0a1a0a1a2a
−
2 · · ·ana−n a0c

−
0 b

−
0 b

−
n−1bn−1 · · · b1b−1 b0

∼ a1a0a1a0 ∼ N1.

So the embedding number of Subcase 1.2 on the projective plane is also 2.

Subcase 1.3 a0 is untwisted, b0 is twisted

Similarly, a0 and b0 can only be placed on the distinct side of the spanning tree. discussed
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in the same way with Subcase 1.2, an is the only twisted edges in E1 ∪ E2. The joint tree is

shown in Figure 5:

c0

a0

a1

b1 a0

b0 b0

b1

an-1 an-1

...

...

an an

c0

-

--

-

-

-
a1

u1

u2

u2n+1

u2n

bn-1 bn-1

Figure 5; joint tree of subcase 1.3

The associated surface is

S = c0a0b1b
−
1 · · · bn−1b

−
n−1a

−
0 c

−
0 anb0ana

−
n−1an−1 · · · a−1 a1b0

∼ anb0anb0 ∼ N1.

The embedding number of Subcase 1.3 is 2.

Subcase 1.4 a0, b0 are all untwisted

As shown in Figure 6, a0, b0 can only be placed on the distinct side respectively, otherwise

they are interlaced and contradict to Theorem 3.1. Furthermore, a1 must be placed on the

underside and an must be placed on the upside. In correspondence, b1 is on the upside and

bn−1 is on the underside. Because the associated surface is projective plane, so there are at

least one twisted edge in E1 ∪ E2.

If there is only one twisted edge in E1 ∪ E2 and it is ai(1 ≤ i ≤ n), then the untwisted

sequence b1b2 · · · bn−1 will shift sides at one vertex and contradiction happens. similarly is the

case that bi(1 ≤ i ≤ n− 1) is the only twisted edge. So there are at least two twisted edges in

E1 ∪ E2.

If there are two twisted edges in E1∪E2, then the twisted edges pair must be the following

combinations: {ai, bi}, {ai, bi−1}, {ai, ai+1}, {bi, bi+1}. If the twisted edge pair are ai, ai+1(1 ≤
i ≤ n − 1), Then the untwisted edges sequence b1b2 · · · bn−1 will shift sides. Similarly, if the

twisted edges pair are bi, bi+1(1 ≤ i ≤ n−2), the untwisted edges sequence a1a2 · · · an will shift

sides. According to Claim 3, contradiction happens.

If the twisted edges pair is ai, bi(1 ≤ i ≤ n− 1), according to Theorem 3.1, they are on the

underside. The joint tree is shown in Figure 6.

c0

a0

a1

b1

ai ai

a0

b0
b0a1

b1

bn-1 bn-1

...

......
an an

c0
-

-

--

-

-

-

bi bi

...

u1 u3

u2

u2n

u2n+1

Figure 6: The joint tree of embedding Subcase 1.4 (ai, bi is twisted)
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The associated surface

S = c0a0b1b
−
1 · · · bi−1b

−
i−1ai+1a

−
i+1 · · ·ana−n a−0

c−0 b
−
0 b

−
n−1bn−1 · · · b−i+1bi+1biaibiaia

−
i−1ai−1 · · · a−1 a1b0

∼ biaibiai ∼ N1

and the embedding number of this case is 2(n− 1).

If the twisted edges pair is ai, bi−1(2 ≤ i ≤ n), then they are on upside. The associated

surface

S = c0a0b1b
−
1 · · · bi−2b

−
i−2bi−1aibi−1aiai+1a

−
i+1 · · · ana−n a−0

c−0 b
−
0 b

−
n−1bn−1 · · · b−i bia−i−1ai−1 · · ·a−1 a1b0

∼ bi−1aibi−1ai ∼ N1

and the embedding number of this case is also 2(n− 1).

If there are three twisted edges in E1∪E2, Then the twisted edges must be the following two

combinations: {ai, ai+1, bi} and {bi, bi+1, ai+1}. Suppose ai, ai+1, bi(1 ≤ i ≤ n− 2) are twisted

edges and placed on the underside of the spanning tree. The untwisted edges an must be placed

on the upside. According to Claim3, the untwisted edges sequence an · · · ai+2 are on the upside.

Therefore, the untwisted edge bi+1 will be interlaced with ai+1 or ai+2. It contradicts Theorem

3.1. Suppose ai, ai+1, bi(2 ≤ i ≤ n− 1) are placed on the upside of the spanning tree, similarly,

the untwisted edges sequence a1 · · · ai−1 must be placed on the underside. Therefore, the

untwisted edge bi−1 must be interlaced with ai−1 or ai. It contradicts Theorem 3.1. Similarly,

If bi, bi+1, ai+1 are twisted edges, contradiction will also happen.

So the embedding number of the Subcase1.4 on the projective plane is 4n − 4. The em-

bedding number of the Case 1 on the projective plane is 4n+ 2.

Case 2 c0 is twisted

In this case, semi-edges pair of each twisted edge can only be placed on the distinct side.

Otherwise, the twisted edge and c0 will be parallel and contradicts to Theorem 3.1. There are

at most two twisted edges in E1 ∪E2, otherwise there will exist two twisted edges and they are

parallel in the associated surface. According to whether a0 and b0 are twisted, the embedding

can be classified into four subcases.

Subcase 2.1 a0, b0 are all twisted

If there are twisted edges in E1 ∪ E2, they can only be the following combinations:

ai, ai+1(1 ≤ i ≤ n − 1) or bi, bi+1(1 ≤ i ≤ n − 2, n > 2). In fact, among the untwisted

edges sequence b1b2 · · · bn−1, b1, bn−1 are all on the underside. If the sequence shift sides, then

it will shift sides two times continuously and ai, ai+1(1 ≤ i ≤ n − 1) will be twisted edges.

similarly, bi, bi+1(1 ≤ i ≤ n− 2, n > 2) may be twisted edges in the same way.

If there are no twisted edges in E1 ∪E2, the untwisted edges sequence a1a2 · · · an must be

placed on the upside while the the untwisted edges sequence b1b2 · · · bn−1 must be placed on

the underside. the associated surface
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S = c0b0a1a
−
1 a2a

−
2 · · · ana−n a0c0b

−
0 b

−
n−1bn−1 · · · b−1 b1a0

∼ c0b0a0c0b0a0 ∼ N1.

The embedding number of this subcase on the projective plane is 2.

If ai, ai+1(1 ≤ i ≤ n− 1) are twisted edges, the joint tree is shown in Figure 7.

c0

b0
a1

ai

ai

a0

a0 b1 b1

... ...

...

c0

-

a1
an

...u2i

ai+1

ai+1
b0

an

-
-

bn-1 bn-1

-

Figure 7: The joint tree of Subcase2.1(ai, ai+1 are twisted)

The associated surface

s = c0b0a1a
−
1 · · · ai−1a

−
i−1aibib

−
i ai+1ai+2a

−
i+2 · · · ana−n a0

c0b0b
−
n−1bn−1 · · · b−i+1bi+1aiai+1b

−
i−1bi−1 · · · b−1 b1a0

∼ c0b0aiai+1a0c0b0aiai+1a0 ∼ N1

and the embedding number of this subcase on the projective plane is 2(n− 1).

If bi, bi+1(1 ≤ i ≤ n− 2, n > 2) are twisted edges, the joint tree is shown in Figure 8.

c0

b0
a1 ai ai a0

a0 b1 b1

...

...

c0

-

a1 an

u2i

bi+1
b0

an

--

bn-1 bn-1

-
bi

bi+1 bi

-

...

...

Figure 8: The joint tree of Subcase 2.1(bi, bi+1 is twisted)

The associated surface

S = c0b0a1a
−
1 · · · aia−i bi+1biai+2a

−
i+2 · · · ana−n a0

c0b0b
−
n−1bn−1 · · · bi+1ai+1a

−
i+1bib

−
i−1bi−1 · · · b1b−1 a0

∼ c0b0bi+1bia0c0b0bi+1bia0 ∼ N1

and the embedding number of this subcase on the projective plane is 2(n− 2) = 2n− 4.

So The embedding number of subcase 1.2 on the projective plane is 4n− 4.

Subcase 2.2 a0 is twisted, b0 is untwisted

As shown in Figure 9, the semi-edges pair of a0 must be placed on the two distinct sides

and b0 be placed on the upside.
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If there is no twisted edges in E1 ∪ E2, then a1 and an can only be placed on the distinct

side. Then the untwisted edges sequence a1a2 · · ·an will shift sides and contradict to Claim3.

So there are twisted edges in E1 ∪ E2. However, the twisted edges in E1 ∪ E2 can only be

a1, an, bn−1. Suppose an is twisted, then a1, bn−1 are untwisted. Then the untwisted edges

sequence a1a2 · · · an−1 must be placed on the upside of the spanning tree. Therefore bn−1 must

be on the underside and interlaced with an. Contradiction happens.

If a1 is twisted, then an, bn−1 are untwisted. The untwisted edges sequences b1b2 · · · bn−1

and a2a3 · · · an are placed on the upside and underside respectively. The joint tree is shown in

Figure 9:

c0

a0 a1

b1 a0b0 b0b1

an-1 an-1

...

...

an an

c0

-

-

-

- -
a1

u1 u2
u2n+1u2n

bn-1 bn-1

-
a2 a2

-

Figure 9: The joint tree of subcase 2.2(a1 is twisted)

The associated surface

S = c0a1b0b1b
−
2 · · · bn−1b

−
n−1b

−
0 a0c0a

−
n ana

−
n−1an−1 · · ·a−2 a2a0

∼ c0a1a0c0a1a0 ∼ N1.

If bn−1 is twisted, then a1, an are untwisted. The joint tree is shown in Figure 10.

c0

b0
a1 a0

a0 b1 b1

...

...

c0

-

a1

an

b0

an

--
bn-1

bn-1
-

an-1 an-1

-

bn-2 bn-2

-

u1

u2

u3 u2n u2n+1

Figure 10: The joint tree of subcase2.2(bn−1 is twisted)

The associated surface

S = c0b0a1a
−
1 a2a

−
2 · · · an−1a

−
n−1b

−
0 bn−1a0c0a

−
n anbn−1b

−
n−2bn−2 · · · b−1 b1a0

∼ c0bn−1a0c0bn−1a0 ∼ N1

and the embedding number of subcase2.2 on the projective plane is 4.

Subcase 2.3 a0 is untwisted, b0 is twisted

Similarly, in this case, the twisted edges in E1 ∪ E2 can only be b1 or an. If b1 is twisted,

the associated surface

S = c0b0b1a0a2a
−
2 a3a

−
3 · · · ana−n a−0 c0b0b−n−1bn−1b

−
n−2bn−2 · · · b−2 b2b1

∼ c0b0b1c0b0b1 ∼ N1.
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If an is twisted, the associated surface

S = c0b0a0b1b
−
1 b2b

−
2 · · · bn−1b

−
n−1a

−
0 anc0b0ana

−
n−1an−1a

−
n−2an−2 · · · a−1 a1

∼ c0b0anc0b0an ∼ N1

and the embedding number of Subcase 2.3 on the projective plane is 4.

Subcase 2.4 a0, b0 are all untwisted

a0 and b0 must be placed on the distinct side of the spanning tree. If there are twisted

edges in E1 ∪ E2, then the semi-edges of the twisted edge must be placed on the distinct side.

It will be interlaced with a0 and b0. So the edges in E1 ∪ E2 are all untwisted. However, the

untwisted edges a1 and an can only be placed on the distinct side. Then the untwisted edges

sequence a1a2 · · · an will shift sides at one vertex. Contradiction happens. So Subcase 2.4 can’t

be embedded on the projective plane.

Then the embedding number of Case 2 on the projective plane is 4n+ 4.

Based on the above discussion, the embedding number of circular graph C(2n+ 1)(n ≥ 2)

on the projective plane is 8n+ 6. �

Let n = 2, we obtain the following corollary:

Corollary 3.1 The embedding number of complete graph K5 on the projective plane is 22.
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Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered

pair S = (G, σ) (S = (G, µ)) where G = (V, E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}.

Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called

abbreviated a signed graph or a marked graph. In this note, we obtain a structural char-

acterization of jump symmetric n-sigraphs. The notion of jump symmetric n-sigraphs was

introduced by E. Sampathkumar, P. Siva Kota Reddy and M. S. Subramanya [Proceedings

of the Jangjeon Math. Soc., 11(1) (2008), 89-95].

Key Words: Smarandachely symmetric n-sigraph, Smarandachely symmetric n-marked

graph, Balance, Jump symmetric n-sigraph.

AMS(2000): 05C22

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to West [6]; the non-

standard will be given in this paper as and when required. We treat only finite simple graphs

without self loops and isolates.

Let n ≥ 1 be an integer. An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n.

Let Hn = {(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric

n-tuples. Note that Hn is a group under coordinate wise multiplication, and the order of Hn is

2m, where m = ⌈n2 ⌉.
A Smarandachely symmetric n-sigraph (Smarandachely symmetric n-marked graph) is an

ordered pair Sn = (G, σ) (Sn = (G,µ)), where G = (V,E) is a graph called the underlying

graph of Sn and σ : E → Hn (µ : V → Hn) is a function.

A sigraph (marked graph) is an ordered pair S = (G, σ) (S = (G,µ)), where G = (V,E) is

a graph called the underlying graph of S and σ : E → {+,−} (µ : V → {+,−}) is a function.

Thus a Smarandachely symmetric 1-sigraph (Smarandachely symmetric 1-marked graph) is a

sigraph (marked graph).

The line graph L(G) of graph G has the edges of G as the vertices and two vertices of L(G)

1Received April 21, 2010. Accepted June 12, 2010.
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are adjacent if the corresponding edges of G are adjacent.

The jump graph J(G) of a graph G = (V,E) is L(G), the complement of the line graph

L(G) of G (See [1] and [2]).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-

tuple/Smarandachely symmetric n-sigraph/Smarandachely symmetric n-marked graph.

An n-tuple (a1, a2, ..., an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise it is

a non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity n-tuple

is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product

of the n-tuples on the edges of A.

In [4], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See

also R. Rangarajan and P. Siva Kota Reddy [3]):

Definition 1.1 Let Sn = (G, σ) be an n-sigraph. Then,

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is

the identity n-tuple, and

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges.

Note An i-balanced n-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [4].

Proposition 1.1(E. Sampathkumar et al. [4]) An n-sigraph Sn = (G, σ) is i-balanced if, and

only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is

equal to the product of the n-tuples of u and v.

The line n-sigraph L(Sn) of an n-sigraph Sn = (G, σ) is defined as follows (See [5]):

L(Sn) = (L(G), σ′), where for any edge ee′in L(G), σ′(ee′) = σ(e)σ(e′).

The jump n-sigraph of an n-sigraph Sn = (G, σ) is an n-sigraph J(Sn) = (J(G), σ′),

where for any edge ee′ in J(Sn), σ′(ee′) = σ(e)σ(e′). This concept was introduced by E.

Sampathkumar et al. [4]. This notion is analogous to the line n-sigraph defined above. Further,

an n-sigraph Sn = (G, σ) is called jump n-sigraph, if Sn ∼= J(S′
n) for some signed graph S′.

In the following section, we shall present a characterization of jump n-sigraphs. The following

result indicates the limitations of the notion of jump n-sigraphs defined above, since the entire

class of i-unbalanced n-sigraphs is forbidden to be jump n-sigraphs.

Proposition 1.2(E. Sampathkumar et al. [4]) For any n-sigraph Sn = (G, σ), its jump n-

sigraph J(Sn) is i-balanced.

§2. Characterization of Jump n-Sigraphs

The following result characterize n-sigraphs which are jump n-sigraphs.

Proposition 2.1 An n-sigraph Sn = (G, σ) is a jump n-sigraph if, and only if, Sn is i-balanced
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n-sigraph and its underlying graph G is a jump graph.

Proof Suppose that Sn is i-balanced and G is a jump graph. Then there exists a graph

H such that J(H) ∼= G. Since Sn is i-balanced, by Proposition 1.1, there exists a marking

µ of G such that each edge uv in Sn satisfies σ(uv) = µ(u)µ(v). Now consider the n-sigraph

S′
n = (H,σ′), where for any edge e in H , σ′(e) is the marking of the corresponding vertex in

G. Then clearly, J(S′
n)

∼= Sn. Hence Sn is a jump n-sigraph.

Conversely, suppose that Sn = (G, σ) is a jump n-sigraph. Then there exists a n-sigraph

S′
n = (H,σ′) such that J(S′

n)
∼= Sn. Hence G is the jump graph of H and by Proposition 1.2,

Sn is i-balanced. �
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Abstract: Let G(V, E) be a graph with p vertices and q edges. A vertex labeling of G is

an assignment f : V (G) → {1, 2, 3, . . . , p + q} be an injection. For a vertex labeling f, the

induced Smarandachely edge m-labeling f∗

S for an edge e = uv, an integer m ≥ 2 is defined

by

f
∗

S(e) =

⌈

f(u) + f(v)

m

⌉

.

Then f is called a Smarandachely super m-mean labeling if f(V (G))∪ {f∗(e) : e ∈ E(G)} =

{1, 2, 3, . . . , p + q}. Particularly, in the case of m = 2, we know that

f
∗(e) =







f(u)+f(v)
2

if f(u) + f(v) is even;

f(u)+f(v)+1
2

if f(u) + f(v) is odd.

Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely

super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean

graph if m = 2. In this paper, we discuss two kinds of constructing larger mean graphs. Here

we prove that (Pm; Cn)m ≥ 1, n ≥ 3, (Pm; Q3)m ≥ 1, (P2n; Sm)m ≥ 3, n ≥ 1 and for any

n ≥ 1 (Pn; S1), (Pn; S2) are mean graphs. Also we establish that [Pm; Cn]m ≥ 1, n ≥ 3,

[Pm; Q3]m ≥ 1 and [Pm; C
(2)
n ]m ≥ 1, n ≥ 3 are mean graphs.

Key Words: Labeling, mean labeling, mean graphs, Smarandachely edge m-labeling,

Smarandachely super m-mean labeling, super mean graph.

AMS(2000): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let G(V,E) be

a graph with p vertices and q edges. A path on n vertices is denoted by Pn and a cycle on n

vertices is denoted by Cn. The graph P2 ×P2 ×P2 is called the cube and is denoted by Q3. For

notations and terminology we follow [1].
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A vertex labeling of G is an assignment f : V (G) → {1, 2, 3, . . . , p + q} be an injection.

For a vertex labeling f, the induced Smarandachely edge m-labeling f∗
S for an edge e = uv, an

integer m ≥ 2 is defined by

f∗
S(e) =

⌈

f(u) + f(v)

m

⌉

.

Then f is called a Smarandachely super m-mean labeling if f(V (G)) ∪ {f∗(e) : e ∈ E(G)} =

{1, 2, 3, . . . , p+ q}. Particularly, in the case of m = 2, we know that

f∗(e) =







f(u)+f(v)
2 if f(u) + f(v) is even;

f(u)+f(v)+1
2 if f(u) + f(v) is odd.

Such a labeling is usually called a super mean labeling. A graph that admits a Smarandachely

super mean m-labeling is called Smarandachely super m-mean graph, particularly, super mean

graph if m = 2. The mean labeling of the Petersen graph is given in Figure 1.
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Figure 1

A super mean labeling of the graph K2,4 is shown in Figure 2.
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Figure 2

The concept of mean labeling was first introduced by Somasundaram and Ponraj [2] in

the year 2003. They have studied in [2-5,8-9], the meanness of many standard graphs like

Pn, Cn,Kn(n ≤ 3), the ladder, the triangular snake, K1,2,K1,3,K2,n, K2+mK1,K
c
n+2K2, Sm+

K1, Cm ∪ Pn(m ≥ 3, n ≥ 2), quadrilateral snake, comb, bistars B(n), Bn+1,n, Bn+2,n, the

carona of ladder, subdivision of central edge of Bn,n, subdivision of the star K1,n(n ≤ 4), the

friendship graph C
(2)
3 , crown Cn ⊙K1, C

(2)
n , the dragon, arbitrary super subdivision of a path

etc. In addition, they have proved that the graphs Kn(n > 3),K1,n(n > 3), Bm,n(m > n+ 2),

S(K1,n)n > 4, C
(t)
3 (t > 2), the wheel Wn are not mean graphs.



70 Selvam Avadayappan and R. Vasuki

The concept of super mean labeling was first introduced by R. Ponraj and D. Ramya

[6]. They have studied in [6-7] the super mean labeling of some standard graphs. Also they

determined all super mean graph of order ≤ 5. In [10], the super meanness of the graph C2n

for n ≥ 3, the H-graph, Corona of a H-graph, 2-corona of a H-graph, corona of cycle Cn for

n ≥ 3, mCn-snake for m ≥ 1, n ≥ 3 and n 6= 4, the dragon Pn(Cm) for m ≥ 3 and m 6= 4 and

Cm × Pn for m = 3, 5 are proved.

Let Cn be a cycle with fixed vertex v and (Pm;Cn) the graph obtained from m copies of

Cn and the path Pm : u1u2 . . . um by joining ui with the vertex v of the ith copy of Cn by means

of an edge, for 1 ≤ i ≤ m.

Let Q3 be a cube with fixed vertex v and (Pm;Q3) the graph obtained from m copies of Q3

and the path Pm : u1u2 . . . um by joining ui with the vertex v of the ith copy of Q3 by means

of an edge, for 1 ≤ i ≤ m.

Let Sm be a star with vertices v0, v1, v2, . . . , vm. Define (P2n;Sm) to be the graph obtained

from 2n copies of Sm and the path P2n : u1u2 . . . u2n by joining uj with the vertex v0 of the

jth copy of Sm by means of an edge, for 1 ≤ j ≤ 2n, (Pn;S1) the graph obtained from n copies

of S1 and the path Pn : u1u2 . . . un by joining uj with the vertex v0 of the jth copy of S1 by

means of an edge, for 1 ≤ j ≤ n, (Pn;S2) the graph obtained from n copies of S2 and the path

Pn : u1u2 . . . un by joining uj with the vertex v0 of the jth copy of S2 by means of an edge, for

1 ≤ j ≤ n.

Suppose Cn : v1v2 . . . vnv1 be a cycle of length n. Let [Pm;Cn] be the graph obtained from

m copies of Cn with vertices v11 , v12 , . . . , v1n
, v21 , . . . , v2n

, . . . , vm1 , . . . , vmn
and joining vij and

vi+1j
by means of an edge, for some j and 1 ≤ i ≤ m− 1.

Let Q3 be a cube and [Pm;Q3] the graph obtained from m copies of Q3 with vertices

v11 , v12 , . . . , v18 , v21 , v22 , . . . , v28 , . . . , vm1 , vm2 , . . . , vm8 and the path Pm : u1u2 . . . um by adding

the edges v11v21 , v21v31 , . . . , vm−11vm1 (i.e) vi1vi+11 , 1 ≤ i ≤ m− 1.

Let C
(2)
n be a friendship graph. Define [Pm;C

(2)
n ] to be the graph obtained from m copies

of C
(2)
n and the path Pm : u1u2 . . . um by joining ui with the center vertex of the ith copy of

C
(2)
n for 1 ≤ i ≤ m.

In this paper, we prove that (Pm;Cn)m ≥ 1, n ≥ 3, (Pm;Q3)m ≥ 1, (P2n;Sm)m ≥ 3, n ≥ 1,

and for any n ≥ 1(Pn;S1), (Pn;S2) are mean graphs. Also we establish that [Pm;Cn]m ≥ 1,

n ≥ 3, [Pm;Q3]m ≥ 1 and [Pm;C
(2)
n ]m ≥ 1, n ≥ 3 are mean graphs.

§2. Mean Graphs (Pm;G)

Let G be a graph with fixed vertex v and let (Pm;G) be the graph obtained from m copies of

G and the path Pm : u1u2 . . . um by joining ui with the vertex v of the ith copy of G by means

of an edge, for 1 ≤ i ≤ m.

For example (P4;C4) is shown in Figure 3.
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Figure 3

Theorem 2.1 (Pm;Cn) is a mean graph, n ≥ 3.

Proof Let vi1 , vi2 , . . . , vin be the vertices in the ith copy of Cn, 1 ≤ i ≤ m and u1, u2, . . . , um

be the vertices of Pm. Then define f on V (Pm;Cn) as follows:

Take n =







2k if n is even

2k + 1 if n is odd.

Then f(ui) =







(n+ 2)(i− 1) if i is odd

(n+ 2)i− 1 if i is even

Label the vertices of vij as follows:

Case (i) n is odd

When i is odd,

f(vij ) = (n+ 2)(i− 1) + 2j − 1, 1 ≤ j ≤ k + 1

f(vik+1+j
) = (n+ 2)i− 2j + 1, 1 ≤ j ≤ k, 1 ≤ i ≤ m.

When i is even,

f(vij ) = (n+ 2)i− 2j, 1 ≤ j ≤ k,

f(vik+j
) = (n+ 2)(i− 1) + 2(j − 1), 1 ≤ j ≤ k + 1, 1 ≤ i ≤ m

Case (ii) n is even

When i is odd,

f(vij ) = (n+ 2)(i− 1) + 2j − 1, 1 ≤ j ≤ k + 1

f(vik+1+j
) = (n+ 2)i− 2j, 1 ≤ j ≤ k − 1, 1 ≤ i ≤ m

When i is even,

f(vij ) = (n+ 2)i− 2j, 1 ≤ j ≤ k + 1

f(vik+1+j
) = (n+ 2)(i− 1) + 2j + 1, 1 ≤ j ≤ k − 1, 1 ≤ i ≤ m

The label of the edge uiui+1 is (n+ 2)i, 1 ≤ i ≤ m− 1.

The label of the edge uivi1 is







(n+ 2)(i− 1) + 1 if i is odd,

(n+ 2)i− 1 if i is even



72 Selvam Avadayappan and R. Vasuki

and the label of the edges of the cycle are

(n+ 2)i− 1, (n+ 2)i− 2, . . . , (n+ 2)i− n if i is odd,

(n+ 2)i− 2, (n+ 2)i− 3, . . . , (n+ 2)i− (n+ 1) if i is even.

For example, the mean labelings of (P6;C5) and (P5;C6) are shown in Figure 4. �

Figure 4

Theorem 2.2 (Pm;Q3) is a mean graph.

Proof For 1 ≤ j ≤ 8, let vij be the vertices in the ith copy of Q3, 1 ≤ i ≤ m and

u1, u2, . . . , um be the vertices of Pm.

Then define f on V (Pm;Q3) as follows:

f(ui) =







14i− 14 if i is odd

14i− 1 if i is even.

When i is odd,

f(vi1) = 14i− 13, 1 ≤ i ≤ m

f(vij ) = 14i− 13 + j, 2 ≤ j ≤ 4, 1 ≤ i ≤ m

f(vi5) = 14i− 5, 1 ≤ i ≤ m

f(vij ) = 14i− 9 + j, 6 ≤ j ≤ 8, 1 ≤ i ≤ m
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when i is even,

f(vij ) = 14i− 1 − j, 1 ≤ j ≤ 3, 1 ≤ i ≤ m

f(vi4) = 14i− 6, 1 ≤ i ≤ m

f(vij ) = 14i− 5 − j, 5 ≤ j ≤ 7, 1 ≤ i ≤ m

f(vi8) = 14i− 14, 1 ≤ i ≤ m

The label of the edges of Pm are 14i, 1 ≤ i ≤ m− 1.

The label of the edges of uivi1 =







14i− 13, if i is odd

14i− 1, if i is even

The label of the edges of the cube are

14i− 1, 14i− 2, . . . , 14i− 12 if i is odd,

14i− 2, 14i− 3, . . . , 14i− 13 if i is even.

For example, the mean labeling of (P5;Q3) is shown in Figure 5. �

Figure 5

Theorem 2.3 (P2n;Sm) is a mean graph, m ≥ 3, n ≥ 1.

Proof Let u1, u2, . . . , u2n be the verfices of P2n. Let v0j
, v1j

, v2j
, v3j

, . . . , vmj
be the vertices

in the jth copy of Sm, 1 ≤ j ≤ 2n.

Label the vertices of (P2n;Sm) as follows:
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f(u2j+1) = (2m+ 4)j, 0 ≤ j ≤ n− 1,

f(u2j) = (2m+ 4)j − 1, 1 ≤ j ≤ n,

f(v02j+1 ) = (2m+ 4)j + 1, 0 ≤ j ≤ n− 1,

f(v02j
) = (2m+ 4)j − 2, 1 ≤ j ≤ n,

f(vi2j+1 ) = (2m+ 4)j + 2i, 0 ≤ j ≤ n− 1, 1 ≤ i ≤ m

f(vi2j
) = (2m+ 4)(j − 1) + 2i+ 1, 1 ≤ j ≤ n, 1 ≤ i ≤ m

The label of the edge ujuj+1 is (m+ 2)j, 1 ≤ j ≤ 2n− 1

The label of the edge ujv0j
is







(m+ 2)(j − 1) + 1, if j is odd

(m+ 2)j − 1, if j is even

The label of he edge v0j
vij is







(m+ 2)(j − 1) + i+ 1, if j is odd, 1 ≤ i ≤ m

(m+ 2)(j − 1) + i, if j is even, 1 ≤ i ≤ m

For example, the mean labeling of (P6;S5) is shown in Figure 6. �

Figure 6

Theorem 2.4 (Pn;S1) and (Pn;S2) are mean graphs for any n ≥ 1.

Proof Let u1, u2, . . . , un be the vertices of Pn. Let vo1 , v02 , . . . , v0n
and

v11 , v12 , . . . , v1n
be the vertices of S1.

Label the vertices of (Pn;S1) as follows:

f(uj) =







3j − 3 if j is odd, 1 ≤ j ≤ n

3j − 1 if j is even, 1 ≤ j ≤ n

f(v0j
) = 3j − 2, 1 ≤ j ≤ n

f(v1j
) =







3j − 1 if j is odd, 1 ≤ j ≤ n

3j − 3 if j is even, 1 ≤ j ≤ n
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The label of the edges of Pn are 3j, 1 ≤ j ≤ n− 1.

The label of the edges ujv0j
is







3j − 2, if j is odd

3j − 1, if j is even

The label of the edges v0j
v1j

is







3j − 1, if j is odd

3j − 2, if j is even

Let v01 , v02 , . . . , v0n
, v11 , v12 , . . . , v1n

and v21 , v22 , . . . , v2n
be the vertices of S2.

Label the vertices of (Pn;S2) as follows:

f(uj) =







4j − 4 if j is odd, 1 ≤ j ≤ n

4j − 1 if j is even, 1 ≤ j ≤ n

f(v0j
) = 4j − 2, 1 ≤ j ≤ n

f(v1j
) =







4j − 3 if j is odd, 1 ≤ j ≤ n,

4j − 4 if j is even, 1 ≤ j ≤ n,

f(v2j
) =







4j − 1 if j is odd, 1 ≤ j ≤ n,

4j − 3 if j is even, 1 ≤ j ≤ n,

The label of the edges of Pn are 4j, 1 ≤ j ≤ n− 1

The label of the edges ujv0j
is







4j − 3, if j is odd

4j − 1 if j is even

The label of the edges v0j
v1j

is







4j − 2, if j is odd

4j − 3, if j is even

The label of the edges v0j
v2j

is







4j − 1, if j is odd

4j − 2, if j is even

For example, the mean labelings of (P7;S1) and (P6;S2) are shown in Figure 7. �

Figure 7
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§3. Mean Graphs [Pm;G]

Let G be a graph with fixed vertex v and let [Pm;G] be the graph obtained from m copies of

G by joining vij and vi+1j
by means of an edge, for some j and 1 ≤ i ≤ m− 1.

For example [P5;C3] is shown in Figure 8.

Figure 8

Theorem 3.1 [Pm;Cn] is a mean graph.

Proof Let u1, u2, . . . , um be the vertices of Pm. Let vi1 , vi2 , . . . , vin be the vertices of the

ith copy of Cn, 1 ≤ i ≤ m and joining vij (= ui) and vi+1j
(= ui+1) by means of an edge, for

some j.

Case (i) n = 4t, t = 1, 2, 3, . . .

Define f : V ([Pm;Cn]) → {0, 1, 2, . . . , q} by

f(vij ) = (n+ 1)(i− 1) + 2(j − 1), 1 ≤ j ≤ 2t+ 1

f(vi2t+1+j
) = (n+ 1)i− 2j, 1 ≤ j ≤ 2t− 1, 1 ≤ i ≤ m

The label of the edge vi(t+1)
vi+1(t+1)

is (n + 1)i, 1 ≤ i ≤ m − 1. The label of the edges of

the cycle are (n+ 1)i− 1, (n+ 1)i− 2, . . . , (n+ 1)i− n, 1 ≤ i ≤ m.

For example, the mean labeling of [P4;C8] is shown in Figure 9.

Figure 9

Case (ii) n = 4t+ 1, t = 1, 2, 3, . . .

Define f : V ([Pm;Cn]) → {0, 1, 2, . . . , q} by

f(vi1) = (n+ 1)(i− 1), 1 ≤ i ≤ m

f(vij ) = (n+ 1)(i− 1) + 2j − 1, 2 ≤ j ≤ 2t+ 1, 1 ≤ i ≤ m

f(vi(2t+1+j)
) = (n+ 1)i− 2j, 1 ≤ j ≤ 2t, 1 ≤ i ≤ m
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The label of the edge vi(t+1)
vi+1(t+1)

is (n + 1)i, 1 ≤ i ≤ m − 1. The label of the edges of the

cycle are (n+ 1)i− 1, (n+ 1)i− 2, . . . , (n+ 1)i− n, 1 ≤ i ≤ m.

For example, the mean labeling of [P6;C5] is shown in Figure 10.

Figure 10

Case (iii) n = 4t+ 2, t = 1, 2, 3, . . .

Define f : V ([Pm;Cn]) → {0, 1, 2, . . . , q} by

f(vi1) = (n+ 1)(i− 1), 1 ≤ i ≤ m

f(vij ) = (n+ 1)(i− 1) + 2j − 1, 2 ≤ j ≤ 2t+ 1, 1 ≤ i ≤ m

f(vi(2t+1+j)
) = (n+ 1)i− 2j + 1, 1 ≤ j ≤ 2t+ 1, 1 ≤ i ≤ m

The label of the edge vi(t+1)
vi+1(t+1)

is (n + 1)i, 1 ≤ i ≤ m − 1. The label of the edges of the

cycle are (n+ 1)i− 1, (n+ 1)i− 2, . . . , (n+ 1)i− n, 1 ≤ i ≤ m.

For example, the mean labeling of [P5;C6] is shown in Figure 11.

Figure 11

Case (iv) n = 4t− 1, t = 1, 2, 3, . . .

Define f : V ([Pm;Cn]) → {0, 1, 2, . . . , q} by

f(vij ) = (n+ 1)(i− 1) + 2(j − 1), 1 ≤ j ≤ 2t, 1 ≤ i ≤ m

f(vi(2t+j)
) = (n+ 1)i− 2j + 1, 1 ≤ j ≤ 2t− 1, 1 ≤ i ≤ m

The label of the edge vi(t+1)
vi+1(t+1)

is (n + 1)i, 1 ≤ i ≤ m − 1. The label of the edges of the

cycle are (n+ 1)i− 1, (n+ 1)i− 2, . . . , (n+ 1)i− n, 1 ≤ i ≤ m.

For example, the mean labeling of [P7;C3] is shown in Figure 12. �

Figure 12
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Theorem 3.2 [Pm;Q3] is a mean graph.

Proof For 1 ≤ j ≤ 8, let vij be the vertices in the ith copy of Q3, 1 ≤ i ≤ m. Then define

f on V [Pm;Q3] as follows:

When i is odd.

f(vi1) = 13i− 13, 1 ≤ i ≤ m

f(vij ) = 13i− 13 + j, 2 ≤ j ≤ 4, 1 ≤ i ≤ m

f(vi5) = 13i− 5, 1 ≤ i ≤ m

f(vij ) = 13i− 9 + j, 6 ≤ j ≤ 8, 1 ≤ i ≤ m

When i is even.

f(vij ) = 13i− j, 1 ≤ j ≤ 3, 1 ≤ i ≤ m

f(vi4) = 13i− 5, 1 ≤ i ≤ m

f(vij ) = 13i− j − 4, 5 ≤ j ≤ 7, 1 ≤ i ≤ m

f(vi8) = 13i− 13, 1 ≤ i ≤ m

The label of the edge vi1v(i+1)1 is 13i, 1 ≤ i ≤ m − 1. The label of the edges of the cube are

13i− 1, 13i− 2, . . . , 13i− 12, 1 ≤ i ≤ m.

For example the mean labeling of [P4;Q3] is shown in Figure 13. �

Figure 13

Theorem 3.3 [Pm;C
(2)
n ] is a mean graph.

Proof Let u1, u2, . . . , um be the vertices of Pm and the vertices ui, 1 ≤ i ≤ m is attached

with the center vertex in the ith copy of C
(2)
n . Let ui = vi1 (center vertex in the ith copy of

C
(2)
n ).

Let vij and v′ij for 1 ≤ i ≤ m, 2 ≤ j ≤ n be the remaining vertices in the ith copy of C
(2)
n .

Then define f on V [Pm, C
(2)
n ] as follows:

Take n =







2k if n is even

2k + 1 if n is odd.

Label the vertices of vij and v′ij as follows:

Case (i) When n is odd
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f(vi1) = (2n+ 1)i− (n+ 1), 1 ≤ i ≤ m

f(vij ) = (2n+ 1)i− (n+ 2) − 2(j − 2), 2 ≤ j ≤ k + 2

f(vik+2+j
) = (2n+ 1)i− 2(n− 1) + 2(j − 1), 1 ≤ j ≤ k − 1, k ≥ 2

f(v′ij ) = (2n+ 1)i− (n− 1) + 2(j − 2), 2 ≤ j ≤ k + 1

f(v′ik+1+j
) = (2n+ 1)i− 1 − 2(j − 1), 1 ≤ j ≤ k, 1 ≤ i ≤ m

Case (ii) When n is even

f(vij ) = (2n+ 1)i− (n+ 1) − 2(j − 1), 1 ≤ j ≤ k + 1

f(vik+1+j
) = (2n+ 1)i− 2(n− 1) + 2(j − 1), 1 ≤ j ≤ k − 1, 1 ≤ i ≤ m

f(v′ij ) = (2n+ 1)i− (n− 1) + 2(j − 2), 2 ≤ j ≤ k + 1

f(v′ik+1+j
) = (2n+ 1)i− 2 − 2(j − 1), 1 ≤ j ≤ k − 1, 1 ≤ i ≤ m

The label of the edge uiui+1 is (2n+ 1)i, 1 ≤ i ≤ m− 1 and the label of the edges of C
(2)
n are

(2n+ 1)i− 1, (2n+ 1)i− 2, . . . , (2n+ 1)i− 2n for 1 ≤ i ≤ m.

For example the mean labelings of [P4, C
(2)
6 ] and [P5, C

(2)
3 ] are shown in Figure 14. �

Figure 14
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Abstract: Let G be a graph of size q and a, n, d be positive integers for which
n

2
[2a +

(n − 1)d] ≤ q <

(

n + 1

2

)

[2a + nd]. Then G is said to have (a, d)-ascending subgraph

decomposition ((a, d)-ASD) if the edge set of G can be partitioned into n-non-empty sets

generating subgraphs G1, G2, G3, . . . , Gn with out isolating vertices such that each Gi is

isomorphic to a proper subgraph of Gi+1 for 1 ≤ i ≤ n − 1 and |E(Gi)| = a + (i − 1)d. In

this paper, we find (a, d)-ASD for Kn, Km,n and for product graphs.

Key Words: ASD, (a, d)-ASD, Smarandachely (P, Q)-decomposition, Smarandachely

(a, d)-decomposition.

AMS(2000): 05C70

§1. Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. A wheel on p

vertices is denoted by Wp. A path of length t is denoted by Pt+1. A graph obtained from two

graphs G1 and G2 by taking one copy of G1 (which has p-vertices) and p copies of G2 and then

joining the ith vertex of G1 to every vertex of the ith copy of G2 is denoted by G1 ⊙G2. Terms

not defined here are used in the sense of Harary [4]. Throughout this paper G ⊂ H means G is

a subgraph of H.

Let G = (V,E) be a simple graph of order p and size q. If G1, G2, . . . , Gn are edge disjoint

subgraphs of G such that E(G) = E(G1) ∪E(G2) ∪ · · · ∪E(Gn), then {G1, G2, . . . , Gn} is said

to be a decomposition of G.

The concept of ASD was introduced by Alavi et al. [1]. The graph G of size q where




n+ 1

2



 ≤ q <





n+ 2

2



 , is said to have an ascending subgraph decomposition (ASD) if

1Received May 20, 2010. Accepted June 25, 2010.
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G can be decomposed into n-subgraphs G1, G2, . . . , Gn without isolated vertices such that each

Gi is isomorphic to a proper subgraph of Gi+1 for 1 ≤ i ≤ n− 1. We generalize the concept of

ASD as follows:

Definition 1.1 A graph G has a Smarandachely (P,Q)-decomposition for graphical properties P

and Q, P ⊂ Q if the edge set E(G) can be partitioned into non-empty sets generating subgraphs

H ∈ P without isolating vertices such that each such H is isomorphic to a proper subgraph

of J ∈ Q. In particular, we define a Smarandachely (a, d)- decomposition is a Smarandachely

(P,Q)-decomposition, where P = {Gj/|E(Gj)| = a + (j − 1)d} and Q = P = {Gj+1/Gj ∈ P

and |E(Gj+1)| = a+ jd} into subgraphs G1, G2, . . . , Gn.

In other words G is a simple graph of size q and a, n, d are positive integers for which
n

2
[2a + (n − 1)d] ≤ q <

(

n+ 1

2

)

[2a + nd]. Then (a, d)-ascending subgraph decomposition

((a, d) − ASD) of G is the edge disjoint decomposition of G into subgraphs G1, G2, . . . , Gn

without isolated vertices such that each Gi is isomorphic to a proper subgraph of Gi+1 for

1 ≤ i ≤ n − 1 and |E(Gi)| = a + (i − 1)d. The following theorems will be useful in proving

certain results in Section 2.

Theorem 1.2([1]) Let G be a graph of size q, where





n+ 1

2



 ≤ q <





n+ 2

2



 for some

positive integers n, such that G has an ascending subgraph decomposition G1, G2, . . . , Gn such

that Gi has size i for 1 ≤ i ≤ n− 1 and Gn has size q −





n

2



 .

Theorem 1.3([2]) Cn × Cn is decomposed into two Hamilton cycles if n is odd.

Theorem 1.4([2]) Kn is (i) decomposed into
n

2
-Hamilton cycles if n is odd. (ii) decomposed

into

⌊

n+ 1

2

⌋

-Hamilton cycles and a 1-factors if n is even.

§2. Main Results

Definition 2.1 Let G be a graph of size q and a, n, d be positive integers for which
(n

2

)

[2a+(n−

1)d] ≤ q <

(

n+ 1

2

)

[2a+nd]. Then G is said to have (a, d)- ascending subgraph decomposition

((a, d)−ASD) if the edge set of G can be partitioned into n non-empty sets generating subgraphs

G1, G2, . . . , Gn without isolated vertices such that each Gi is isomorphic to a proper subgraph

of Gi+1 for 1 ≤ i ≤ n− 1 and |E(Gi)| = a+ (i− 1)d.

Remark 2.2 From the above definition, the usual ASD of G coincides with (1, 1)-ASD of G.

Example 2.3 Consider the Graph G.
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v6

v5 v4

v1 v2

v3G :

v2

v4

G1

v1

v6

v5

v2
G2

v6

v5 v4

v3

v2v1
G3

Fig.2.1

Clearly, {G1, G2, G3} is a (1, 2)-ASD of G.

Theorem 2.4 Let G be a graph of size q, where
(n

2

)

[2a+(n−1)d] ≤ q <

(

n+ 1

2

)

[2a+nd] for

some positive integer n, such that G has (a, d)- ASD, then G has an (a, d)-ASD G1, G2, . . . , Gn

such that Gi has size a+(i−1)d for 1 ≤ i ≤ n−1 and Gn has size q−
(

n− 1

2

)

[2a+(n−2)d].

The following number theoretical result will be useful for proving further results.

Lemma 2.5 Given that the numbers a, a + d, a + 2d, . . . , a + (n − 1)d are in A.P (a, d ∈ Z).

Then their sum is

(i) Sn = (a− d)n+ d





n+ 1

2



 if d ≤ a and

(ii) Sn = a





n+ 1

2



+ (d− a)





n

2



 if d ≥ a.

§3. (a, d)-ASD on Complete Graphs and Complete Bipartite Graphs

Theorem 3.1 Kn+1 has (a, d)-ASD if and only if a = 1, d = 1.

Proof Suppose the graph Kn+1 has (a, d)-ASD G1, G2, . . . , Gn with |E(Gi)| = a+(i−1)d,

for 1 ≤ i ≤ n.

By (ii) of Lemma 2.5, q(Kn+1) = a





n+ 1

2



 + (d − a)





n

2



 . Also since q(Kn+1) =





n+ 1

2



 , we have a = 1 and d = 1. �

As it was mentioned in [3] that the complete graph Kn+1 with (n+1) vertices could easily

be proved to have a star ASD and a path ASD, The converse follows.

Theorem 3.2 Kn,n has (a, d)-ASD, d ≥ a if and only if a = 1 and d = 2.
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Proof Suppose the graph Kn,n admits (a, d) − ASD, d ≥ a. If the graph Kn,n admits

(a, d) − ASD G1, G2, . . . , Gn then by (ii) of Lemma 2.5, we have |E(Kn,n)| = a





n+ 1

2



+

(d− a)





n

2



 .

Also, |E(Kn,n)| = n2 =





n+ 1

2



+





n

2



 , so we have a = 1 and d = 2.

Conversely, suppose a = 1, d = 2.

Case (i) When n is even, n = 2k, k ∈ Z+.

Then Kn,n can be decomposed into k-hamilton cycles H1, H2, . . . , Hk. Now, decompose the

hamilton cycles Hi into paths Gi and Gn−(i−1) of length 2i− 1 and 2n− (2i− 1) for 1 ≤ i ≤ k.

Clearly, {G1, G2, . . . , Gn} is the required (1,2)-ASD of Kn,n.

Case (ii) When n is odd, n = 2k + 1, k ∈ Z+.

Let (X,Y ) be the bipartition of Kn,n, where X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}.
DefineH1 = {(xn, yj) : j = n−2}. For 2 ≤ i ≤ n−1, defineHi byHn+1−i = {(xi, yj) : j = 2i−2

to i+ n− 2} ∪ {(xj , yi+j−2) : j = i+ 1 to n}, where addition is taken module n with residues

1, 2, 3, . . . , n instead of the usual residues 0, 1, 2, . . . , n− 1. Hn = {(x1, yk) : k = 1, 2, . . . , n} ∪
{(xj+1, yj) : 1 ≤ j ≤ n− 1}. Clearly, {H1, H2, . . . , Hn} is a (1, 2) −ASD of Kn,n. �

Example 3.3 Consider the graph K7,7. Let (X,Y ) be the bipartition of K7,7 where X =

{x1, x2, x3, x4, x5, x6, x7}, Y = {y1, y2, y3, y4, y5, y6, y7}.

H1 H2 H3

y5

x7
x6

y3 y7

x7

y1

x5

y2 y3

x6 x7

x4

y6 y2

x3

y7 y1

H4 H5

x5 x6 x7

y4
y5 y6 y7 y1

x4 x5 x6 x7

x2

y2 y3 y4 y5 y6 y7

x3 x4 x5 x6 x7

x1

y1 y2 y3 y4 y5 y7

x2 x3 x4 x5 x6 x7

H6
H7

y6

Fig. 3.1
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Clearly, {H1, H2, H3, H4, H5, H6, H7} is a(1, 2) −ASD of K7,7.

Theorem 3.4 Kn,n(n > 1) admits (a, d)−ASD, d < a if and only if n = 2a−1 and d = 1, a > 1.

Proof Suppose the graph Kn,n(n > 1) admits (a, d) − ASD where d < a, then by (i)

Lemma 2.5, we have |E(Kn,n)| = (a − d)n + d





n+ 1

2



 . Also, |E(Kn,n)| = n2. Therefore,

n2 = (a − d)n + d





n+ 1

2



 and so (2 − d)n2 = (2a − d)n. Then n = 2a−d
2−d . Since, n > 1,

a > d, we have 2 − d > 0. Then d = 1 and a > 1. Hence n = 2a− 1.

Conversely, Suppose n = 2a − 1, d = 1 and a > 1. Let (X,Y ) be the bipartition of Kn,n

where X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}.
Define Tn−j−1 = {(xj , yi) : 1 ≤ i ≤ n}∪{(yi−j+1, xi) : n+2j+1

2 ≤ i ≤ n} where 1 6 j ≤ n−1
2

and Tj = {(x + n− j + 1, yi) : 1 ≤ i ≤ n−1
2 + j} where 1 ≤ j ≤ n−1

2 . Clearly, {T1, T2, . . . , Tn}
is the required (a, 1) −ASD of Kn,n. �

Example 3.5 Consider the graph K5,5. Let (X,Y ) be the bipartition of K5,5 where X =

{x1, x2, x3, x4, x5} and Y = {y1, y2, y3, y4, y5}. Clearly, {T1, T2, T3,

T4, T5} is a (3, 1) −ASD of K5,5.

x5

y1 y2 y3 y1 y2 y3 y4

x4

y1 y2 y3 y4 y5

x3

T3
x2

y1 y2 y3 y4 y5 y1 y2 y3 y4
y5

x4 x5x5

T4
T5

x1

Fig. 3.2
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§4. (a, d) −ASD on Product Graphs

In this section, we prove some product graphs admit (a, d) −ASD.

Theorem 4.1 Cn × Cn(n > 3) has (2, 4) −ASD when n is odd.

Proof Note that |E(Cn × Cn)| = 2n2 and |V (Cn × Cn)| = n2. By Theorem 1.2, The

graph Cn × Cn (n-odd) can be decomposed into two Hamilton cycles C1 and C2 of length n2

respectively.

Case (i) When n = 2k + 1, k ≡ 1(mod 2).

Let P1 = C1 − (v, x) and P2 = C2 − (v, y) where v, x, y ∈ V (Cn × Cn) and x 6= y. First,

define P1 = (xvy) when k = 3, decompose the path P1 into paths Pi of length (4i − 2), 6 ≤
i ≤ 7 and decompose the path P2 into paths Pi of length (4i − 2), 2 ≤ i ≤ 5. For, k > 4,

decompose the path P1 into paths Pi of length (4i − 2), where 2 ≤ i ≤ k −
⌊

k
2

⌋

− 1 and

2

(

2 −
⌊

k

2

⌋)

+

⌊

k

2

⌋

+ 1 ≤ i ≤ n. Also decompose the path P2 into paths Pi of length (4i− 2),

where

(

k −
⌊

k

2

⌋)

≤ i ≤ 2

(

k −
⌊

k

2

⌋)

+

⌊

k

2

⌋

. This is possible because of

L(P 1
1 ) =

k−⌊ k
2 ⌋−2
∑

j=1

(2 + 4j) +

n−1
∑

j=2+(2(k−⌊ k
2 ⌋)+k−⌊ k

2 ⌋)4
(2 + 4j)

=

(

k −
⌊

k
2

⌋

− 2
)

2

(

12 +

((

k −
⌊

k

2

⌋

− 2

)

− 1

)

4

)

+

(⌊

k
2

⌋

+ 1
)

2

(

2

(

2 +

(

2

(

k −
⌊

k

2

⌋)

+

⌊

k

2

⌋)

4

)

+ 4

⌊

k

2

⌋)

= 2

(

k −
⌊

k

2

⌋

− 2

)(

k −
⌊

k

2

⌋)

+

(

⌊

k
2

⌋

+ 1

2

)

(

4 + 16k − 4

⌊

k

2

⌋)

= 2k2 − 4k − 4k

⌊

k

2

⌋

+ 4

⌊

k

2

⌋

+ 2

⌊

k

2

⌋2

+ 2 + 8k + 8k

⌊

k

2

⌋

− 2

⌊

k

2

⌋2

= 2k2 + 4k + 2 + 4k

⌊

k

2

⌋

+ 4

⌊

k

2

⌋

= 2k2 + 4k + 2 + 2k(k − 1) + 2(k − 1)

= 4k2 + 4k

= (2k + 1)2 − 1 = n2 − 1

L(P ′
2) =

(

k + 1

2

)(

2

(

2 +

(

k −
⌊

k

2

⌋

− 1

)

4

)

+ 4k

)

= (k + 1)

(

6k − 2

(

2

⌊

k

2

⌋

+ 1

))

= (k + 1)(6k − 2k) = (2k + 1)2 − 1 = n2 − 1.

From the above construction, clearly, {P1, P2, . . . , Pn} is a (2, 4) −ASD of Cn × Cn.

Case (ii) When n = 2k + 1, k ≡ 0(mod 2).
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Let P ′
1 = C1 − (v, x) and P ′

2 = C2 − (v, y) where v, x, y ∈ V (Cn × Cn) and x 6= y. First

define P1 = (xvy), then decompose the path P ′
1 into paths P2 of length 6 and Pj of length

(2 + 4j), 4 ≤ j ≤ n− 1 and j = 0, 1(mod 4) and also decompose the path P ′
2 into paths Pj of

length (2 + 4j), 2 ≤ j ≤ n− 1 and j = 2, 3(mod 4). This is possible, since

L(P ′
1) = 6 +

n−1
∑

j=4

j≡0,1(mod 4)

(2 + 4j)

= 6 + 2

n−1
∑

j=4

j≡0,1(mod 4)

1 + 4

n−1
∑

j=4

j≡0,1(mod 4)

j

= 6 + 2

2k
∑

j=4

j≡0,1(mod 4)

1 + 4

2k
∑

j=4

j≡0,1(mod 4)

j

= 6 + 2(k − 1) + (4k2 + 2k − 4) = (2k + 1)2 − 1 = n2 − 1

and

L(P ′
2) =

n−1
∑

j=2

j≡2,3(mod 4)

(2 + 4j)

= 2
2k
∑

j=2

j≡2,3(mod 4)

1 + 4
2k
∑

j=2

j≡2,3(mod 4)

j

= 2k + 4
2k
∑

j=2

j≡2,3(mod 4)

j

= 2k + (2k + 4k2) = (2k + 1)2 − 1 = n2 − 1.

As in the case clearly, {P1, P2, . . . , Pn} is a (2, 4) −ASD of Cn × Cn. �

Theorem 4.2 Pn+1 × Pn+1 with size q = 2n(n+ 1) admits (4, 4) −ASD.

Proof Let G = Pn+1 ×Pn+1. Define Wi,j = (ui, vj), where 1 ≤ i, j ≤ n+ 1 and also define

V (G) = {Wi,j : 1 ≤ i, j ≤ n+ 1}, |E(G)| = 2(n2 + n).

Case (i) n ≡ 3(mod 4), n = 4m− 1(m ∈ Z+).

First define, Gn = {(Wi,j , Vi,j+1) : 1 ≤ i ≤ 4, 1 ≤ j ≤ n} and define for 1 ≤ k ≤ n−3
4 .

Gk = {(Wi,j , Vi,j+1) : i = 4k + 1, 1 ≤ j ≤ 4k}
Gn−k = {(Wi,j ,Wi,j+1) : i = 4k + 1, 4k + 1 ≤ j ≤ n and

4k + 2 ≤ i ≤ 4(k + 1), 1 ≤ j ≤ n}

Also, define for 1 ≤ L ≤ n+ 1

4
and k =

n− 3

4
.
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GL+k = {(Wi,j , Vi+1,j) : j = 4L− 3, 1 ≤ i ≤ n and

j = 4L− 2, 1 ≤ i ≤ 4L− 3}
Gn−(L+k) = {(Wi,j ,Wi+1,) : 4L− 2 ≤ i ≤ n, j = 4L− 2 and

1 ≤ i ≤ n, 4L− 1 ≤ j ≤ 4L}

Clearly, {G1, G2, . . . , Gn} is a (4, 4) −ASD of Pn+1 × Pn+1 (See Fig. 4.1).

Fig. 4.1

Case (ii) n ≡ 0(mod 4), n = 4m(m ∈ Z+).

First define, Gn = {(Wi,j ,Wi,j+1) : 1 ≤ i ≤ 4, 1 ≤ j ≤ n} and define for 1 ≤ k ≤ n−4
4 .

Gk = {(Wi,j ,Wi,j+1) : i = 4k + 1, 1 ≤ j ≤ 4k}
Gn−k = {(Wi,j ,Wi,j+1) : i = 4k + 1, 4k + 1 ≤ j ≤ n and

4k + 2 ≤ i ≤ 4(k + 1), 1 ≤ j ≤ n}

Define for 1 ≤ L ≤ n−4
4 and p = n−4

4 .

GL+p+1 = {(Wi,j ,Wi+1,j) : j = 4L, 1 ≤ i ≤ n and

j = 4L + 1, 1 ≤ i ≤ 4L}
Gn−(L+p+1) = {(Wi,j ,Wi+1,j) : 4L + 1 ≤ i ≤ n, j = 4L + 1 and

1 ≤ i ≤ n, 4L + 2 ≤ j ≤ 4l + 3}
G(p+1) = {(Wi,j ,Wi+1,j) : i = n+ 1, 1 ≤ j ≤ n} and

Gn−(p+1) = {(Wi,j ,Wi+1,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ 3}
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Finally define Gn/2 = {(Wi,j ,Wi+1,j) : 1 ≤ i ≤ n, n ≤ j ≤ n+ 1}. From the above construction

clearly, {G1, G2, . . . , Gn} is a (4, 4) −ASD of Pn+1 × Pn+1 (See Fig. 4.2).

Fig 4.2

Case (iii) n ≡ 1(mod 4), n = 4m+ 1(m ∈ Z+).

First define,

Gn = {(Wi,j+1Wi,jWi+1,j) : i = 1, j = 1}
∪ {(Wi,i−1Wi,iWi,i+1Wi−1,iWi,iWi+1,i) : 2 ≤ i ≤ n}
∪ {(Wi,j−1Wi,jWi−1,j) : i = n+ 1, j = n+ 1}

Define for 1 ≤ r ≤ n− 5

2

Gn−2r = {(Wi,j+1Wi,jWi+1,j) : i = 1, j = 2r + 1}
∪ {(Wi,j−1Wi,jWi,j+1Wi−1,jWi,jWi+1,j) : 2 ≤ i ≤ n− 2r and j = 2r + i}
∪ {(Wi,jWi+1,jWi+1,j−1) : i = n− 2r and j = n+ 1}

Also, define for r =
n− 3

2
,

G′
2 = {(Wi,jWi,j+1Wi,jWi+1,j) : i = 3, j = 2r + 1}

∪ {(Wi,jWi+1,jWi+1,j−1) : i = n− 2r, j = n+ 1}
G′

3 = {(Wi,j+1Wi,jWi+1,j) : i = 1, j = 2r + 1}
∪ {(Wi,j−1Wi,jWi,j+1Wi−1,jWi,jWi+1,j) : i = 2, j = 2r + i}

Define for 1 ≤ k ≤ n− 3

2

G′
n−2k−1 = {(Wi+1,jWi,jWi,j+1) : i = 1, j = 2k + 1}

∪ {(Wi−1,jWi,jWi+1,jWi,j−1Wi,jWi,j+1) : i = 2k + j and

2 ≤ j ≤ n− 2k − 2}
∪ {(Wi,jWi,j+1Wi−1,j+1) : i = n+ 1, j = n− 2k − 2}
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Define

C1 = (W1,n,W2,n,W2,n+1,W1,n+1,W1,n),

C2 = (Wn,1,Wn+1,n,Wn+1,2,Wn,2,Wn,1) and

M = {(Wi,j ,Wi,j+1) : i = 1, n+ 1 and j ≡ 0(mod 2)}

∪{(Wi,j ,Wi+1,j) : j = 1, n+ 1 and i ≡ 0(mod 2)}.

Let Gn−1 = G′
n−1 ∪ C1 and Gn−3 = G′

n−3 ∪ C2. Define G1 = M0, G2 = G′
2 ∪M1, G3 =

G′
3∪M2 and Gn−2k+1 = G′

n−2k−1 ∪Mk, where 3 ≤ k ≤ n−3
2 and Mi

∼= 4K2 are suitably chosen

from M in order to form G1, G2, . . . , Gn as (4, 4) −ASD (See Fig 4.3).

Fig. 4.3

Case (iv) n ≡ 2(mod 4), n = 4L + 2(L ∈ Z+).
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For 1 ≤ m ≤ L and m ≡ 1(mod 2), define

Gm = {(Wi,j ,Wi+1,j) : 4m− 3 ≤ i ≤ 4m− 2, n+ 2 −m ≤ j ≤ n+ 1}
∪ {(Wi,j ,Wi+1,j) : 4m+ 1 ≤ i ≤ 4m− 2, n+ 2 −m ≤ j ≤ n+ 1} and

Gn−(m−1) = {(Wi,j ,Wi+1,j) : 4m− 3 ≤ i ≤ 4m− 2 and 1 ≤ j ≤ n+ 1 −m}
∪ {(Wi,j ,Wi+1,j) : 4m+ 1 ≤ i ≤ 4m+ 2 and 1 ≤ j ≤ n+ 1 −m}.

For 1 ≤ m ≤ L and m ≡ 0(mod 2), define

Gm = {(Wi,j ,Wi+1,j) : 4m− 5 ≤ i ≤ 4m− 4, n+m− 2 ≤ j ≤ n+ 1}
∪ {(Wi,j ,Wi+1,j) : 4m− 1 ≤ i ≤ 4m,n+m− 2 ≤ j ≤ n+ 1} and

Gn−(m−1) = {(Wi,j ,Wi+1,j) : 4m− 5 ≤ i ≤ 4m− 4 and 1 ≤ j ≤ n+m− 3}
∪ {(Wi,j ,Wi+1,j) : 4m− 1 ≤ i ≤ 4m and 1 ≤ j ≤ n+m− 3}.

For 1 ≤ m ≤ L and m ≡ 1(mod 2), define

Gm+L = {(Wi,j ,Wi,j+1) : n−m− L + 2 ≤ i ≤ n+ 1 and

4m− 3 ≤ j ≤ 4m− 2}
∪ {(Wi,j ,Wi,j+1) : n−m− L + 2 ≤ i ≤ n+ 1 and

4m+ 1 ≤ j ≤ 4m+ 2} and

Gn−(m+L+1) = {(Wi,j ,Wi+1,j) : 1 ≤ i ≤ n−m− L + 1 and 4m− 3 ≤ j ≤ 4m− 2}
∪ {(Wi,j ,Wi+1,j) : 1 ≤ i ≤ n−m− L + 1 and 4m+ 1 ≤ i ≤ 4m+ 2}

and for 1 ≤ m ≤ L and m ≡ 0(mod 2),

Gm+L = {(Wi,j ,Wi,j+1) : n−m− L + 3 ≤ i ≤ n+ 1 and 4m− 5 ≤ j ≤ 4m− 4}
∪ {(Wi,j ,Wi,j+1) : n−m− L + 3 ≤ i ≤ n+ 1 and 4m− 1 ≤ j ≤ 4m} and

Gn−(m+L+1) = {(Wi,j ,Wi,j+1) : 1 ≤ i ≤ n−m− L− 2 and 4m− 5 ≤ j ≤ 4m− 4}
∪ {(Wi,j ,Wi,j+1) : 1 ≤ i ≤ n−m− L + 2 and 4m− 1 ≤ j ≤ 4m}.

When L is even, define

G(n/2) = {(Wi,j ,Wi,j+1) : 2 ≤ i ≤ n+ 1, n− 1 ≤ j ≤ n} and

G(n/2)+1 = {(Wi,j ,Wi+1,j) : n− 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪ {(Wi,j ,Wi,j+1) : i = 1, n− 1 ≤ j ≤ n}.

When L is odd, define

G(n/2) = {(Wi,j ,Wi,j+1) : 2 ≤ i ≤ n+ 1, n− 3 ≤ j ≤ n− 2} and

G(n/2)+1 = {(Wi,j ,Wi+1,j) : n− 3 ≤ i ≤ n− 2 and 1 ≤ j ≤ n+ 1}.

From the above construction clearly, {G1, G2, . . . , Gn} is a (4, 4) − ASD of Pn+1 × Pn+1.

See Fig. 4.4(a) and Fig. 4.4(b). �
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Fig. 4.4(a)

Fig. 4.4(b)
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§5. (a, d) −ASD on Some Special Graphs

In this section (a, d) − ASD is established for some special graphs like wheel, Carona and a

special type in caterpillar.

Theorem 5.1 Wn2+1 = K1 + Cn2(n ≥ 3) has (a, d) − ASD, d ≥ a if and only if a = 2 and

d = 4.

Proof Suppose Wn2+1 has (a, d) − ASD, d ≥ a, By (ii) of Lemma 2.5, |E(Wn2+1)| =

a





n+ 1

2



+ (d− a)





n

2



 , also we have |E(Wn2+1)| = 2n2.

From the above relations, we have a = 2 and d = 4. Conversely, let V (Wn2+1) =

{u1, v1, v2, . . . , vn2). Define G1 = (u1, v1) ∪ (v1, v2) and

Gi =

{

((ui, vj) ∪ (vj , vj+1)) :
i−1
∑

k=1

(2k − 1) ≤ j ≤
i
∑

k=1

(2k − 1)

}

.

for 2 ≤ i ≤ n. Where addition is taken modulo n2 with residues 1, 2, 3, . . . , n2 instead of the

usual residues 0, 1, 2, . . . , n2−1. Then clearly, Gi ⊆ Gi+1, 1 ≤ i ≤ n−1 and |E(Gi)| = 2(2i−1)

for 1 ≤ i ≤ n. Hence, {G1, G2, . . . , Gn} is a (2, 4) −ASD of Wn2+1. �

Example 5.2 A decomposition of Wn2+1, where n = 3 into (2, 4)−ASD is illustrated in Fig.

5.1. Clearly, {G1, G2, G3} is a (2, 4) −ASD.

Fig. 5.1

Definition 5.3 Let T = S(v1, v2, . . . , vn−1, vn, vn+1) be a caterpillar where vi means n leaves

attached to each vertex and vn+1 means no leaf attached to the last vertex.

Theorem 5.4 The caterpillar T = S(v0, v1, v2, . . . , vn−1, vn) has an (a, d) − ASD, (d ≥ a) if

and only if a = 2 and d = 2.

Proof Suppose T admits (a,d) - ASD (d ≥ a) By (ii) of Lemma 2.5, |E(T )| = a





n+ 1

2



+

(d−a)





n

2



 . Also, |E(T )| = (n+1)n = n2+1 = 2





n+ 1

2



 . From the above two relations,

we have a = 2 and d = 2.
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Conversely, suppose a = 2, d = 2. Let

V (G) = {v1, v2, . . . , vn, vn+1} ∪
{

v
(k)
1 , v

(k)
2 , . . . , v(k)

n : 1 ≤ k ≤ n
}

,

where vi are vertices on the path Pn and v
(k)
j (1 ≤ k ≤ n) are the vertices of the star at each

vj(1 ≤ j ≤ n). Define for 1 ≤ k ≤ n, Tk = {(vk, vk+1)} ∪
{(

vk, v
(k)
j

)

: 1 ≤ j ≤ n
}

.

Case (i) When n is odd, n = 2m+ 1.

Decompose Tk for k ≡ 0, 1(mod 2) into Gm and Gn−(m−1), 1 ≤ m ≤ n−1
2 . Where

Gm = {(v2k, v2k+1)}
⋃

{(

vk+1, v
(k+1)
j

)

: n− (2k − 2) ≤ j ≤ n
}

and

Gn−(m−1) =
{(

vk+1, v
(k)
j

)

: 1 ≤ j ≤ n− (2k − 1)
}

⋃

{(v2k−1, v2k)}
⋃

{(

vk, v
(k)
j

)

: 1 ≤ j ≤ n
}

.

Define Gn+1
2

= {(vn, vn+1)} ∪
{(

vn, v
(n)
j

)

: 1 ≤ j ≤ n
}

. Clearly Gi ⊆ Gi+1, 1 ≤ i ≤ n− 1 and

|E(Gi)| = 2i, 1 ≤ i ≤ n. Hence {G1, G2, . . . , Gn} is a (2, 2) −ASD of T.

Case (ii) When n is even, n = 2m.

Decompose Tk for k ≡ 0, 1(mod 4) into Gm and Gn−(m−1), 1 ≤ m ≤ n
2 as in Case (i).

Clearly Gi ⊆ Gi+1, 1 ≤ i ≤ n− 1. Hence {G1, G2, ,̇Gn} is a (2, 2)−ASD of T. �

Corollary 5.5 The corona Cn⊙nK1 has (a, d)−ASD, (d ≥ a) if and only if a = 2 and d = 2.

Proof By taking vn+1 = v1 in T = S(v1, v2, . . . , vn, vn+1). We have T = Cn ⊙ nK1. �
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Abstract: For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman s-

dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function

f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E

with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for

an integer s, 2 ≤ s ≤ n on a graph G = (V, E) is a function f : E → {0, 1, 2, · · · , n}

satisfying the condition that |f(e) − f(h)| ≥ s for adjacent edges e, h ∈ E with f(e) or

f(h) ∈ I . Particularly, if we choose n = s = 2 and I = {0}, such a Smarandachely Roman s-

dominating function or Smarandachely Roman edge s-dominating function is called Roman

dominating function or Roman edge dominating function. The Roman edge domination

number γre(G) of G is the minimum of f(E) =
∑

e∈E
f(e) over such functions. In this

paper, we find lower and upper bounds for Roman edge domination numbers in terms of the

diameter and girth of G.

Key Words: Smarandachely Roman s-dominating function, Smarandachely Roman edge

s-dominating function, diameter, girth.
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§1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). As usual |V | = n and |E| = q

denote the number of vertices and edges of the graph G, respectively. The open neighborhood

N(v) of the vertex v is the set {u ∈ V (G)| uv ∈ E(G)} and its closed neighborhood N [v] =

N(v)∪{v}. Similarly, the open neighborhood of a set S ⊆ V is the set N [S] =
⋃

v∈S N(v), and

its closed neighborhood is N(S) = N(S) ∪ S. The minimum and maximum vertex degrees in

G are denoted by δ(G) and ∆(G), respectively.

The degree of an edge e = uv of G is defined by deg e = deg u + deg v − 2 and δ′(G)

(∆′(G)) is the minimum (maximum) degree among the edges of G (the degree of a edge is the

1Received May 17, 2010. Accepted June 30, 2010.
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number of edges adjacent to it). A vertex of degree one is called a pendant vertex or a leaf and

its neighbor is called a support vertex.

A set D ⊆ V is said to be a dominating set of G, if every vertex in V −D is adjacent to

some vertex in D. The minimum cardinality of such a set is called the domination number of

G and is denoted by γ(G). For a complete review on the topic of domination and its related

parameters, see [5].

Mitchell and Hedetniemi in [6] introduced the notion of edge domination as follows. A set

F of edges in a graph G is an edge dominating set if every edge in E−F is adjacent to at least

one edge in F . The minimum numbers of edges in such a set is called the edge domination

number of G and is denoted by γe(G). This concept is also studied in [1].

For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman s-dominating

function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function f : V → {0, 1, 2, · · · , n}
satisfying the condition that |f(u) − f(v)| ≥ s for each edge uv ∈ E with f(u) or f(v) ∈ I.

Similarly, a Smarandachely Roman edge s-dominating function for an integer s, 2 ≤ s ≤ n

on a graph G = (V,E) is a function f : E → {0, 1, 2, · · · , n} satisfying the condition that

|f(e) − f(h)| ≥ s for adjacent edges e, h ∈ E with f(e) or f(h) ∈ I. Particularly, if we

choose n = s = 2 and I = {0}, such a Smarandachely Roman s-dominating function or

Smarandachely Roman edge s-dominating function is called Roman dominating function or

Roman edge dominating function.

The concept of Roman dominating function (RDF) was introduced by E. J. Cockayne, P. A.

Dreyer, S. M. Hedetniemi and S. T. Hedetniemi in [3]. (See also [2,4,7]). A Roman dominating

function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that

every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.

The weight of a Roman dominating function is the value f(V ) =
∑

u∈V f(u). The Roman

domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman

dominating function on G.

A Roman edge dominating function (REDF) on a graph G = (V,E) is a function f : E →
{0, 1, 2} satisfying the condition that every edge e for which f(e) = 0 is adjacent to at least

one edge h for which f(h) = 2. The weight of a Roman edge dominating function is the value

f(E) =
∑

e∈E f(e). The Roman edge domination number of a graph G, denoted by γre(G),

equals the minimum weight of a Roman edge dominating function on G. This concept is also

studied in Soner et al. in [8]. A γ − set, γr − set and γre-set, can be defined as a minimum

dominating set (MDS), a minimum Roman dominating set (MRDS) and a minimum Roman

edge dominating set (MREDS), respectively.

The purpose of this paper is to establish sharp lower and upper bounds for Roman edge

domination numbers in terms of the diameter and the girth of G.

Soner et al. in [8] proved that:

Theorem A For a graph G of order p,

γe(G) ≤ γre(G) ≤ 2γe(G).
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Theorem B For cycles Cp with p ≥ 3 vertices,

γre(Cp) = ⌈2p/3⌉.

Here we observe the following properties.

Property 1 For any connected graph G with p ≥ 3 vertices,

γre(G) = γr(L(G)).

Property 2 a) If an edge e has degree one and h is adjacent to e, then every such h must be

in every REDS of G.

b) For the path graph Pk with k ≥ 2 vertices,

γre(Pk) = ⌊2k/3⌋.

c) For the complete bipartite graph Km,n with m ≤ n vertices,

γre(Km,n) =







2m-1 if m = n,

2m otherwise.

2 2 1

γre(K3,3) = 5

ex:

d) γre(G ∪H) = γre(G) + γre(H).

In the following theorem, we establish the result relating to maximum edge degree of G.

Theorem 1 Let f = (E0, E1, E2) be any γre − function and G has no isolated edges, then

2q/(∆′(G) + 1) − |E1| ≤ γre(G) ≤ q − ∆′(G) + 1.

Furthermore, equality hold for P3, P4, and C3.

Proof Let f = (E0, E1, E2) be any γre − function. Since E2 dominates the set E0, so

S = (E1 ∪E2) is a edge dominating set of G. Then

2|S|∆′(G) ≥ 2
∑

e∈S deg(e) = 2
∑

e∈S |N(e)| ≥ 2|⋃e∈S N(e)| ≥ 2|E − S| ≥ 2q − 2|S|.

Thus

2q/(∆′(G) + 1) ≤ 2|S| = 2(|E1| + |E2|) = |E1| + γre(G).

Converse, let deg e = ∆′(G), if for every edge x ∈ N(e) is adjacent to an edge h which is not

adjacent to e. Then clearly, E(G)−N(e)∪h is an REDS. Thus γre(G) ≤ q−∆′(G)+1 follows.

�

Corollary 1 Let f = (E0, E1, E2) be any γre − function and G has no isolated edges. If

|E1| = 0, then
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2q/(∆′(G) + 1) ≤ γre(G) ≤ q − ∆′(G) + 1.

In this section sharp lower and upper bounds for γre(G) in terms of diam(G) are presented.

Recall that the eccentricity of vertex v is ecc(v) = max{d(u, v) : u ∈ V, u 6= v} and the

diameter of G is diam(G) = max{ecc(v) : v ∈ V }. Throughout this section we assume that G

is a nontrivial graph of order n ≥ 2.

Theorem 2 If a graph G has diameter two, then γre(G) ≤ 2δ′. Further, the equality holds if

G = P3.

Proof Since G has diameter two, N(e) dominates E(G) for all edge e ∈ E(G). Now, let

e ∈ E(G) and deg e = δ′. Define f : E(G) −→ {0, 1, 2} by f(ei) = 2 for ei ∈ N(e) and f(ei) = 0

otherwise. Obviously f is a Roman edge dominating function of G. Thus γre(G) ≤ 2δ′. For

P3, γre(P3) = 2 = 2 × 1. �

Theorem 3 For any connected graph G on n vertices,

⌈(diam(G) + 1)/2⌉ ≤ γre(G)

With equality for Pn, (2 ≤ n ≤ 5).

Proof The statement is obviously true for K2. Let G be a connected graph with vertices

n ≥ 3. Suppose that P = e1e2...ediam(G) is a longest diametral path in G. By Theorem B,

γre(P ) = ⌈2diam(G)/3⌉, and ⌈(diam(G) + 1)/2⌉ < ⌈2(diam(G) + 1)/3⌉, then ⌈(diam(G) +

1)/2 ≤ ⌈2diam(G)/3⌉ ≤ γre(P ), let f = (E0, E1, E2) be a γre(P ) − function. Define g :

E(G) −→ {0, 1, 2} by g(e) = f(e) for e ∈ E(P ) and g(hi) ≤ 1 for hi ∈ E(G) − E(P ), then

w(g) = w(f) +
∑

hi∈E(G)−E(P ) hi. Obviously g is a REDF for G and hence

⌈(diam(G)+1)/2⌉ ≤ γre(G). �

Theorem 4 For any connected graph G on n vertices,

γre(G) ≤ q − ⌊(diam(G) − 1)/3⌋.

Furthermore, this bound is sharp for Cn and Pn.

Proof Let P = e1e2...ediam(G) be a diametral path in G. Moreover, let f = (E0, E1, E2) be

a γre(P )− function. By Property 2(b), the weight of f is ⌈2diam(G)/3⌉. Define g : E(G) −→
{0, 1, 2} by g(e) = f(e) for e ∈ E(P ) and g(e) = 1 for e ∈ E(G) − E(P ). Obviously g is a

REDF for G. Hence,

γre(G) ≤ w(f) + (q − diam(G)) ≤ q − ⌊(diam(G) − 1)/3⌋. �

Theorem 5([8]) For any connected graph G on n vertices,

γre(G) ≤ n− 1
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and equality holds if G is isomorphic to W5, P3, C4, C5, Kn and Km,m.

Theorem 6 For any connected graph G on n vertices,

γre(G) ≤ n− ⌈diam(G)/3⌉.

Furthermore, this bound is sharp for Pn. And equality hold for Km,m, P3k, (k > 0), Kn, W5,

C4 and C5.

Proof The technic proof is same with that of Theorem 3. �

In this section we present bounds on Roman edge domination number of a graph G con-

taining cycle, in terms of its grith. Recall that the grith of G (denoted by g(G)) is that length

of a smallest cycle in G. Throughout this section, we assume that G is a nontrivial graph with

n ≥ 3 vertices and contains a cycle. The following result is very crucial for this section.

Theorem 7 For a graph G of order n with g(G) ≥ 3 we have γre(G) ≥ ⌈2g(G)/3⌉.

Proof First note that if G is the n-cycle then γre(G) = ⌈2n/3⌉ by Theorem B. Now, let C

be a cycle of length g(G) in G. If g(G) = 3 or 4, then we need at least 1 or 2 edges, to dominate

the edges of C and the statement follows by Theorem A. Let g(G) ≥ 5. Then an edge not in

E(G), can be adjacent to at most one edge of C for otherwise we obtain a cycle of length less

than g(G) which is a contradiction. Now the result follows by Theorem A. �

Theorem 8 For any connected graph with n vertices, δ′(G) ≥ 2 and g(G) ≥ 3. Then γre(G) ≥
n− ⌊g(G)/3⌋. Furthermore, the bound is sharp for Km,m, Cn, Kn and Wn.

Proof LetG be a such graph with n-vertices, if we prove the γre(Cn) ≥ n−⌊g(Cn)/3⌋. Then

this proof satisfying the any graph of order n. Since g(Cn) ≥ g(G) then n− g(Cn) ≤ n− g(G).

By Theorem B, γre(Cn) = ⌈2n/3⌉ = ⌈2g(Cn)/3⌉ = n− ⌈n/3⌉ ≤ n− ⌊n/3⌋ ≤ n− ⌊g(G)/3⌋. �

Theorem 9 For a simple connected graph G with n-vertices and δ′ ≤ 2, if g(G) ≥ 5, then

γre(G) ≥ 2δ′. The bound is sharp for C5 and C6.

Proof Let G be such a graph and C be a cycle with g(G) edges. If n = 5, then G is a

5 − cycle and γre(G) = 4 = 2δ′. For n ≥ 6, since δ′ ≤ 2, then γre(G) ≥ ⌈2g(G)/3⌉ ≥ 2δ′ by

Theorem 7. �

Theorem 10 Let T be any tree and let e = uv be an edge of maximum degree ∆′. If 1 <

diam(G) ≤ 5 and degw ≤ 2 for every vertex w 6= u, v, then γre(G) = q − ∆′ + 1.

Proof Let T be a tree with diam(T ) ≤ 4 and degw ≤ 2 for every vertex w 6= u, v, where

e = uv is an edge of maximum degree in T . If diam(T ) = 2 or 3, then γre(G) = q−∆′ + 1 = 2.

If diam(T ) = 4 or 5, then each non-pendent edge of T is adjacent to a pendent edge of T and

hence the set E1 ∪E2 of all non-pendent edges of T forms a minimum edge dominating set and

γre(G) = |E1| + 2|E2| = q − ∆′ + 1. �

Theorem 11([8]) Let G be a tree or a unicyclic graph, then γre(G) ≤ γr(G).
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Theorem 12 Let T is an n − vertex tree, with n ≥ 2, then γre(T ) ≤ 2n/3. The bound is

sharp for Pn.

Proof We use induction on n. The statement is obviously true for K2. If diamT = 2 or

3, then T has a dominating edge, and γre(T ) ≤ 2 ≤ 2n/3.

Hence we may assume that diamT ≥ 4. For a subtree T ′ with n′ vertices, where n′ ≥ 2,

the induction hypothesis yields an REDF f ′ of T ′ with weight at most 2n′/3. We find a subtree

T ′ such that adding a bit more weight to f ′ will yield a small enough REDF f for T .

Let P be a longest path in T chosen to maximize the degree of its next-to-last vertex v,

and let u be the non-leaf neighbor of v and let h = uv.

Case 1. Let degT (v) > 2. Obtain T ′ by deleting v and its leaf neighbors. Since diamT ≥ 4, we

have n′ ≥ 2. Define f on E(T ) by f(e) = f ′(e) except for f(h) = 2 and f(e) = 0 for each edge e

adjacent to h. Not that f is an RDF for T and that w(f) = w(f ′)+2 ≤ 2(n− 3)/3+2 ≤ 2n/3.

Case 2. Let degT (v) = degT (u) = 2. Obtain T ′ by deleting v and u and the leaf neighbor z

of v. Since diamT ≥ 4, we have n′ ≥ 2. If n′ = 2, then T is P5 and has an REDF of weight

3. Otherwise, the induction hypothesis applies. Define f on E(T ) by letting f(e) = f ′(e)

except for f(h) = 2 and f(e) = 0 for each edge e adjacent to h. Again f is an REDF, and the

computation w(f) < 2n/3 is the same as in Case 1.

Case 3. Let degT (u) > 2 and every penultimate neighbor of u has degree 2. Obtain T ′

by deleting v and its leaf neighbors and u. Define f on E(T ) by f(e) = f ′(e) except for

f(h) = 2 and f(e) = 0 for each edge e adjacent to h. Not that f is an RDF for T and

that w(f) = w(f ′) + 2 ≤ 2(n − 3)/3 + 2 ≤ 2n/3. If some neighbor of u is a leaf. Obtain

T ′ by deleting v and its leaf neighbors and u and its leaf neighbors. Define f on E(T ) by

f(e) = f ′(e) except for f(h) = 2 and f(e) = 0 for each edge e adjacent to h. Not that f is

an RDF for T and that w(f) = w(f ′) + 2 ≤ 2(n− 3)/3 + 2 ≤ 2n/3. From the all cases above

w(f) = w(f ′) + 2 ≤ 2(n− 3)/3 + 2 ≤ 2n/3. This completes the proof. �

Corollary 2 Let T is an q − edge tree, with q ≥ 1, then γre(T ) ≤ 2(q + 1)/3.

Theorem 13 Let f = (E0, E1, E2) be any γre(T )− function of a connected graph T of q ≥ 2.

Then

(1) 1 ≤ |E2| ≤ (q + 1)/3;

(2) 0 ≤ |E1| ≤ 2q/3 − 4/3;

(3) (q + 1)/3 ≤ |E0| ≤ q − 1.

Proof By Theorem 12, |E1| + 2|E2| ≤ 2(q + 1)/3.

(1) If E2 = ∅, then E1 = q and E0 = ∅. The REDF (0, q, 0) is not minimum since

|E1| + 2|E2| > 2(q + 1)/3. Hence |E2| ≥ 1. On the other hand, |E2| ≤ (q + 1)/3 − |E1|/2 ≤
(q + 1)/3.

(2) Since |E2| ≥ 1, then |E1| ≤ 2(q + 1)/3 − 2|E2| ≤ 2(q + 1)/3 − 2 = 2q/3 − 4/3.

(3) The upper bound comes from |E0| ≤ q − |E2| ≤ q − 1. For the lower bound, adding on

both side 2|E0|+ 2|E1|+ 2|E2| = 2q,−|E1| − 2|E2| ≥ −2(q+1)/3 and −|E1| ≥ −2(q+ 1)/3+ 2
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gives 2|E0| ≥ (2q + 2)/3. Therefor, |E0| ≥ (q + 1)/3. �
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Abstract: One-parameter planar homothetic motion of 3-lorentzian planes, two are moving

and one is fixed, have been considered in ref. [19]. In this paper we have given the canonical

relative systems of a plane with respect to other planes so that the plane has a curve on

it, which is spacelike or timelike under homothetic motion. Therefore, Euler-Savary formula

giving the relation between curvatures of the trajectory curves drawn on the points on moving

L and fixed plane L′ is expressed separately for the cases whether the curves are spacelike

or timelike. As a result it has been found that Euler-Savary formula stays the same whether

these curves are spacelike or timelike. We have also found that if homothetic scala h is equal

to 1 then the Euler-Savary formula becomes an equation which exactly the same is given by

ref. [6].

Key Words: Homothetic Motion, Euler-Savary Formula, Lorentz Plane, kinematics,

Smarandache Geometry.

AMS(2000): 53A04, 53A17, 53B50.

§1. Introduction

We know that the angular velocity vector has an important role in kinematics of two rigid bodies,

especially one Rolling on another, [15] and [16]. To investigate to geometry of the motion of a

line or a point in the motion of plane is important in the study of planar kinematics or planar

mechanisms or in physics. Mathematicians and physicists have interpreted rigid body motions

in various ways. K. Nomizu [16] has studied the 1-parameter motions of orientable surface

M on tangent space along the pole curves using parallel vector fields at the contact points

and he gave some characterizations of the angular velocity vector of rolling without sliding.

H.H. Hacısalihoğlu showed some properties of 1-parameter homothetic motions in Euclidean

space [8]. The geometry of such a motion of a point or a line has a number of applications

in geometric modeling and model-based manufacturing of the mechanical products or in the

design of robotic motions. These are specifically used to generate geometric models of shell-type

objects and thick surfaces, [4,7,17].

1Received June 7, 2010. Accepted June 30, 2010.
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As a model of spacetimes in physics, various geometries such as those of Euclid, Riemannian

and Finsler geometries are established by mathematicians.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e.,

validated and invalided, or only invalided but in multiple distinct ways, [11, 18].

In the Euclidean geometry, also called parabolic geometry, the fifth Euclidean postulate

that there is only one parallel to a given line passing through an exterior point, is kept or

validated. While in the Riemannian geometry, called elliptic geometry, the fifth Euclidean

postulate is also invalidated as follows: there is no parallel to a given line passing through an

exterior point [11].

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geome-

tries may be united altogether, in the same space, by some Smarandache geometries. These

last geometries can be partially Euclidean and partially Non-Euclidean. Howard Iseri [10] con-

structed a model for this particular Smarandache geometry, where the Euclidean fifth postulate

is replaced by different statements within the same space, i.e. one parallel, no parallel, infinitely

many parallels but all lines passing through the given point, all lines passing through the given

point are parallel. Linfan Mao [12,13] showed that Smarandache geometries are generalizations

of Pseudo-Manifold Geometries, which in their turn are generalizations of Finsler Geometry,

and which in its turn is a generalization of Riemann Geometry.

The Euler-Savary theorem is a well-known theorem and studied systematically in two and

three dimensional Euclidean space E2 and E3 by [2,3,14]. This theorem is used in serious

fields of study in engineering and mathematics. For each mechanism type a simple graphical

procedure is outlined to determine the circles of inflections and cusps, which are useful to

compute the curvature of any point of the mobile plane through the Euler-Savary equation. By

taking Lorentzian plane L2 instead of Euclidean plane E2, Ergin [5] has introduced 1-parameter

planar motion in Lorentzian plane. Furthermore he gave the relation between the velocities,

accelerations and pole curves of these motions. In the L2 Lorentz plane Euler-Savary formula

is given in references, [1], [6] and [9].

Let L (moving), L′ (fixed) be planes and the coordinate systems of these planes be {O;~e1,

~e2(timelike)} and {O′;~e′1, ~e
′
2(timelike)}, respectively. Therefore, one-parameter Lorentzian pla-

nar homothetic motion is defined by the transformation [19]

~x′ = h~x− ~u, (1)

where h is homothetic scale,
−−→
OO′ = ~u, is vector combining the systems (fixed and moving)

initial points and the vectors ~X , ~X ′ show the position vectors of the point X ∈ L with respect

to moving and fixed systems, respectively. In the one-parameter Lorentzian planar homothetic

motion the relation
~Va = ~Vf + h~Vr

holds where ~Va, ~Vf and ~Vr represent to absolute, sliding and relative velocity of the motion,

respectively [19].

We have given the canonical relative systems of a plane with respect to others planes so

that the plane has a curve on it which is spacelike or timelike under homothetic motions. Thus
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Euler-Savary formula, which gives the relation between the curvatures of the trajectory curves

drawn an the points of moving plane L and fixed plane L′, is expressed separately for the cases

whether the curves are spacelike or timelike. Finally it has been observed that Euler-Savary

formula does not change whether these curves are spacelike or timelike and if homothetic scale

is equal to 1 then the Euler-Savary formula takes the form in reference [6].

§2. Moving Coordinate Systems and Their Velocities

Let L1, L be the moving planes and L′ be the fixed plane. The perpendicular coordinate

systems of the planes L1, L and L′ are {B;~a1,~a2}, {O;~e1, ~e2} and {O′;~e′1, ~e
′
2}, respectively.

Suppose that θ and θ′ are the rotation angles of one parameter Lorentzian homothetic motions

of L1 with respect to L and L′, respectively. Therefore, in one parameter Lorentzian homothetic

motions L1/L and L1/L
′ following relations are holds

~a1 = cosh θ~e1 + sinh θ~e2

~a2 = sinh θ~e1 + cosh θ~e2
(2)

−−→
OB = ~b = b1~a1 + b2~a2 (3)

and

~a1 = cosh θ′~e′1 + sinh θ′~e′2

~a2 = sinh θ′~e′1 + cosh θ′~e′2
(4)

−−→
O′B = ~b′ = b′1~a1 + b′2~a2 (5)

respectively [19]. If we consider equations (2)-(3) and (4)-(5), then the differential equations

for the motions L1/L and L1/L
′ are as follows, respectively [19]

d~a1 = dθ~a2, d~a2 = dθ~a1

d~b = (db1 + b2dθ)~a1 + (db2 + b1dθ)~a2

(6)

and

d′~a1 = dθ′~a2, d′~a2 = dθ′~a1

d′~b′ = (db′1 + b′2dθ
′)~a1 + (db′2 + b′1dθ

′)~a2.
(7)

If we use the following abbreviations

dθ = λ, dθ′ = λ′

db1 + b2dθ = σ1, db2 + b1dθ = σ2

db′1 + b′2dθ
′ = σ′

1, db′2 + b′1dθ
′ = σ′

2

(8)

then the differential equations for L1/L and L1/L
′ become

d~a1 = λ~a2, d~a2 = λ~a1, d~b = σ1~a1 + σ2~a2 (9)
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and

d′~a1 = λ′~a2, d′~a2 = λ′~a1, d′~b = σ′
1~a1 + σ′

2~a2 (10)

respectively. Here the quantities σj , σ
′
j , λ and λ′ are Pfaffian forms of one parameter Lorentzian

homothetic motion [19].

For the point X with the coordinates of x1 and x2 in plane L1 we get

−−→
BX = x1~a1 + x2~a2

~x = (hx1 + b1)~a1 + (hx2 + b2)~a2

~x′ = (hx1 + b′1)~a1 + (hx2 + b′2)~a2.

(11)

Therefore one obtains

d~x = (dhx1 + hdx1 + σ1 + hx2λ)~a1+(dhx2 + hdx2 + σ2 + hx1λ)~a2 (12)

and

d′~x = (dhx1 + hdx1 + σ′
1 + hx2λ

′)~a1 + (dhx2 + hdx2 + σ′
2 + hx1λ

′)~a2, (13)

where ~Vr = d~x
dt and ~Va = d′~x

dt are called relative and absolute velocities of the point X , [19]. If
~Vr = 0 (i.e. d~x = 0) and ~Va = 0 (i.e. d′~x = 0), then the point X is fixed in the Lorentzian

planes L and L′, respectively. Thus, from equations (12) and (13) the condition that the point

X are fixed in L and L′ are given by following equations

hdx1 = −dhx1 − σ1 − hx2λ

hdx2 = −dhx2 − σ2 − hx1λ
(14)

and

hdx1 = −dhx1 − σ′
1 − hx2λ

′

hdx2 = −dhx2 − σ′
2 − hx1λ

′
(15)

respectively. Substituting equation (14) into equation (13), sliding velocities ~Vf =
df~x
dt of the

point X becomes

df~x = [(σ′
1 − σ1) + hx2 (λ′ − λ)]~a1 + [(σ′

2 − σ2) + hx1 (λ′ − λ)]~a2. (16)

Thus, for the pole point P = (p1, p2) of the motion, we write [19]

x1 = p1 = − σ′
2 − σ2

h (λ′ − λ)
, x2 = p2 = − σ′

1 − σ1

h (λ′ − λ)
. (17)

§3. Euler-Savary Formula For One Parameter Lorentzian

Planar Homothetic Motions

Now, we consider spacelike and timelike pole curves of one parameter lorentzian planar homo-

thetic motions and calculate Euler-Savary formula for both cases individually.
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3.1 Canonical Relative System For Spacelike Pole Curves and Euler-Savary For-

mula

Now, let us choose the moving plane A represented by the coordinate system {B;~a1,~a2} in such

way to meet following conditions:

i) The origin of the system B and the instantaneous rotation pole P coincide with each

other, i.e. B = P ;

ii) The axis {B;~a1} is the pole tangent, that is, it coincides with the common tangent of

spacelike pole curves (P ) and (P ′), (see Figure 1).

Figure 1. Spacelike Pole Curves (P ) and (P ′)

If we consider the condition (i), then from equation (17) we reach that σ1 = σ′
1 and σ2 = σ′

2.

Thus, from equation (9) and (10) we get

d~b = d~p = σ1~a1 + σ2~a2 = d′~p = d′~b.

Therefore, we have given the tangent of pole and constructed the rolling for the spacelike pole

curves (P ) and (P ′). Considering the condition (ii) yields us that σ2 = σ′
2 = 0. If we choose

σ1 = σ′
1 = σ and consider equations (6) and (7), then we get the following equations for the

differential equations related to the canonical relative system {P ;~a1,~a2} of the plane denoted

by L1p,

d~a1 = λ~a2, d~a2 = λ~a1, d~p = σ~a1 (18)

and

d′~a1 = λ′~a2, d′~a2 = λ′~a1, d′~p = σ~a1 (19)
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where σ = ds is scalar arc element of the spacelike pole curves of (P ) and (P ′) and λ is

central cotangent angle, i.e. the angle between two neighboring tangents of (P ). Therefore,

the curvature of (P ) at the point P is λ/σ. Similarly, taking λ′ to be central cotangent angle,

the curvature (P ′) at the point P becomes λ′/σ. Therefore, r = σ/λ and r′ = σ/λ′ are the

curvature radii of spacelike pole curves (P ) and (P ′), respectively. Lorentzian plane L with

respect to lorentz plane L′ rotates about infinitesimal rotation angle dv = λ′ − λ at the time

interval dt around the rotation pole P . Thus the rotational motions velocity of L with respect

to L′ becomes

λ′ − λ

dt
=
dv

dt
=

.
v . (20)

Let us suppose that the direction of the unit tangent vector ~a1 is same as the direction of

spacelike pole curves (P ) and (P ′) (i.e., ds/dt > 0). In this case for the curvature radii (P ) and

(P ′), r > 0 and r′ > 0, respectively.

Now we investigate the velocities of the point X which has the coordinates x1 and x2 with

respect to canonical relative system. Considering equation (12) and (13) we find

d~x = (dhx1 + hdx1 + σ + hx2λ)~a1 + (dhx2 + hdx2 + hx1λ)~a2 (21)

d′~x = (dhx1 + hdx1 + σ + hx2λ
′)~a1 + (dhx2 + hdx2 + hx1λ

′)~a2. (22)

Thus, the condition that the point X to be fixed in the Lorentzian planes L and L′ becomes

hdx1 = −dhx1 − σ − hx2λ

hdx2 = −dhx2 − hx1λ
(23)

and

hdx1 = −dhx1 − σ − hx2λ
′

hdx2 = −dhx2 − hx1λ
′.

(24)

Therefore, the sliding velocity ~Vf is written to be

df~x = h (x2~a1 + x1~a2) (λ′ − λ) .

Any point X chosen at the moving Lorentzian plane L draws a trajectory at the fixed lorentz

plane L′ during one parameter Lorentzian planar homothetic motion L/L′. Now we search for

the planar curvature center X ′ of this trajectory at the time t.

The points X and X ′ have coordinates (x1, x2) and (x′1, x
′
2) with respect to canonical

relative system and stay on the trajectory normal of X at every time t with the instantaneous

rotation pole P . Generally a curvature center of a planar curve with respect to the point of

the plane stays on the normal with respect to the point of the curve. In addition to that, this

curvature center can be thought to be the limit of the intersection’s normal of two neighboring

points on the curve (see Figure 2). Therefore the vectors

−−→
PX = x1~a1 + x2~a2
−−→
PX ′ = x′1~a1 + x′2~a2
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Figure 2. Spacelike vectors
→

PX and
→

PX ′

have same direction crossing the point P . Hence, the coordinates of the point X and X ′ satisfies

the following equation:

x1x
′
2 − x2x

′
1 = 0. (25)

Differentiation the last equation yields

dx1x
′
2 + x1dx

′
2 − dx′1x2 − x′1dx2 = 0. (26)

The condition of being fixed of X in the Lorentzian plane L was given in equations (23).

Moreover, the condition of being fixed of X ′ in the Lorentzian plane L′ is

hdx′1 = −dhx′1 − σ − hx′2λ
′

hdx′2 = −dhx′2 − hx′1λ
′.

(27)

Considering equation (26) with equations (23) and (27), we find

(x′2 − x2) σ + h (x1x
′
1 − x2x

′
2) (λ′ − λ) = 0. (28)

Taking the vectors
−−→
PX and

−−→
PX ′ to be spacelike vectors and switching to the polar coordinates,

i.e.,

x1 = a coshα, x2 = a sinhα

x′1 = a′ coshα, x′2 = a′ sinhα

we find

σ (a′ − a) sinhα+ haa′ (λ′ − λ) = 0. (29)
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From equations (20) and (28) we obtain
(

1

a′
− 1

a

)

sinhα = h

(

1

r′
− 1

r

)

= h
dv

ds
. (30)

This last equation is called Euler-Savary formula for the lorentzian homothetic motion.

Therefore we can give the following theorem.

Theorem 1 In the one parameter Lorentzian planar homothetic motion of moving Lorentz

plane L with respect to fixed Lorentz plane L′, any point X at the plane L draws a trajectory

with the instantaneous curvature center X ′ in the plane L′. In reverse motion, any point X ′ at

the plane L′ draws a trajectory at the lorentz plane L, being the curvature center at the initial

point X. The interrelation between the points X and X ′ is expressed in equation (30) which is

Euler-Savary formula in the sense of Lorentz.

3.2 Canonical Relative System For Timelike Pole Curves and Euler-Savary Formula

Let us choose the moving plane A represented by the coordinate system {B;~a1,~a2} in such way

to meet following conditions:

i) The origin of the system B and the instantaneous rotation pole P coincide with each other,

i.e. B = P ,

ii) The axis {B;~a2} is the pole tangent, that is, it coincides with the common tangent of timelike

pole curves (P ) and (P ′), (see Figure 3.).

Figure 3. Timelike pole curves (P ) and (P ′)

Thus, if the operations in III.1 section are performed considering the conditions i) and ii),

the Euler-Savary formula for one-parameter lorentzian planar homothetic motion remains un-

changed, that is, it is the same as in the equation (30), (see Figure 4.).
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Figure 4. Timelike vectors
→

PX and
→

PX ′

Following Theorem 1 we reach the following corollaries:

Corollary 1 In the one parameter Lorentzian homothetic motion L/L′, whether the pole

curves spacelike or timelike, the interrelation between the points X and X ′ is given by
(

1

a′
− 1

a

)

sinhα = h

(

1

r′
− 1

r

)

which is Euler-Savary formula in the sense of Lorentz.

Corollary 2 If h ≡ 1, then we reach the formula
(

1

a′
− 1

a

)

sinhα =

(

1

r′
− 1

r

)

which is Euler-Savary formula in the Lorentzian plane given in references [1,6,9].
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