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Mathematics After CC Conjecture

— Combinatorial Notions and Achievements

Linfan MAO

Chinese Academy of Mathematics and System Science, Beijing 100190, P.R.China

Academy of Mathematical Combinatorics with Applications, Colorado, USA

E-mail: maolinfan@163.com

Abstract: As a powerful technique for holding relations in things, combinatorics has expe-

rienced rapidly development in the past century, particularly, enumeration of configurations,

combinatorial design and graph theory. However, the main objective for mathematics is

to bring about a quantitative analysis for other sciences, which implies a natural question

on combinatorics. Thus, how combinatorics can contributes to other mathematical sciences,

not just in discrete mathematics, but metric mathematics and physics? After a long time

speculation, I brought the CC conjecture for advancing mathematics by combinatorics, i.e.,

any mathematical science can be reconstructed from or made by combinatorialization in my

postdoctoral report for Chinese Academy of Sciences in 2005, and reported it at a few aca-

demic conferences in China. After then, my surveying paper Combinatorial Speculation and

Combinatorial Conjecture for Mathematics published in the first issue of International Jour-

nal of Mathematical Combinatorics, 2007. Clearly, CC conjecture is in fact a combinatorial

notion and holds by a philosophical law, i.e., all things are inherently related, not isolated

but it can greatly promote the developing of mathematical sciences. The main purpose

of this report is to survey the roles of CC conjecture in developing mathematical sciences

with notions, such as those of its contribution to algebra, topology, Euclidean geometry and

differential geometry, non-solvable differential equations or classical mathematical systems

with contradictions to mathematics, quantum fields after it appeared 10 years ago. All of

these show the importance of combinatorics to mathematical sciences in the past and future.

Key Words: CC conjecture, Smarandache system, GL-system, non-solvable system of

equations, combinatorial manifold, geometry, quantum field.

AMS(2010): 03C05,05C15,51D20,51H20,51P05,83C05,83E50.

§1. Introduction

There are many techniques in combinatorics, particularly, the enumeration and counting with

graph, a visible, also an abstract model on relations of things in the world. Among them,

1Reported at the International Conference on Combinatorics, Graph Theory, Topology and Geometry, Jan-

uary 29-31, 2015, Shanghai, P.R.China.
2Received October 20, 2014, Accepted May 8, 2015.
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the most interested is the graph. A graph G is a 3-tuple (V,E, I) with finite sets V,E and a

mapping I : E → V × V , and simple if it is without loops and multiple edges, denoted by

(V ;E) for convenience. All elements v in V , e in E are said respectively vertices and edges.

A graph with given properties are particularly interested. For example, a path Pn in a graph

G is an alternating sequence of vertices and edges u1, e1, u2, e2, · · · , en, un1 , ei = (ui, ui+1) with

distinct vertices for an integer n ≥ 1, and if u1 = un+1, it is called a circuit or cycle Cn. For

example, v1v2v3v4 and v1v2v3v4v1 are respective path and circuit in Fig.1. A graph G is

connected if for u, v ∈ V (G), there are paths with end vertices u and v in G.

A complete graph Kn = (Vc, Ec; Ic) is a simple graph with Vc = {v1, v2, · · · , vn}, Ec =

{eij , 1 ≤ i, j ≤ n, i 6= j} and Ic(eij) = (vi, vj), or simply by a pair (V,E) with V =

{v1, v2, · · · , vn} and E = {vivj , 1 ≤ i, j ≤ n, i 6= j}.
A simple graphG = (V,E) is r-partite for an integer r ≥ 1 if it is possible to partition V into

r subsets V1, V2, · · · , Vr such that for ∀e(u, v) ∈ E, there are integers i 6= j, 1 ≤ i, j ≤ r such that

u ∈ Vi and v ∈ Vj . If there is an edge eij ∈ E for ∀vi ∈ Vi, ∀vj ∈ Vj , where 1 ≤ i, j ≤ r, i 6= j,

then, G is called a complete r-partite graph, denoted by G = K(|V1|, |V2|, · · · , |Vr|). Thus a

complete graph is nothing else but a complete 1-partite graph. For example, the bipartite graph

K(4, 4) and the complete graph K6 are shown in Fig.1.

K(4, 4) K6

Fig.1

Notice that a few edges in Fig.1 have intersections besides end vertices. Contrast to this

case, a planar graph can be realized on a Euclidean plane R2 by letting points p(v) ∈ R2 for

vertices v ∈ V with p(vi) 6= p(vj) if vi 6= vj , and letting curve C(vi, vj) ⊂ R2 connecting points

p(vi) and p(vj) for edges (vi, vj) ∈ E(G), such as those shown in Fig.2.

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig.2

Generally, let E be a topological space. A graph G is said to be embeddable into E ([32])
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if there is a 1 − 1 continuous mapping f : G → E with f(p) 6= f(q) if p 6= q for ∀p, q ∈ G, i.e.,

edges only intersect at vertices in E . Such embedded graphs are called topological graphs.

There is a well-known result on embedding of graphs without loops and multiple edges in

R
n for n ≥ 3 ([32]), i.e., there always exists such an embedding of G that all edges are straight

segments in Rn, which enables us turn to characterize embeddings of graphs on R2 and its

generalization, 2-manifolds or surfaces ([3]).

However, all these embeddings of G are established on an assumption that each vertex

of G is mapped exactly into one point of E in combinatorics for simplicity. If we put off this

assumption, what will happens? Are these resultants important for understanding the world?

The answer is certainly YES because this will enables us to pullback more characters of things,

characterize more precisely and then hold the truly faces of things in the world.

All of us know an objective law in philosophy, namely, the integral always consists of its

parts and all of them are inherently related, not isolated. This idea implies that every thing in

the world is nothing else but a union of sub-things underlying a graph embedded in space of

the world.

Σ1 Σ2

Σ3 Σ4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.3

Formally, we introduce some conceptions following.

Definition 1.1([30]-[31], [12]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical

systems, different two by two. A Smarandache multisystem Σ̃ is a union
m⋃
i=1

Σi with rules

R̃ =
m⋃
i=1

Ri on Σ̃, denoted by
(
Σ̃; R̃

)
.

Definition 1.2([11]-[13]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multisystem

consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topolog-

ical structure GL
[
Σ̃; R̃

]
of
(
Σ̃; R̃

)
is a topological vertex-edge labeled graph defined following:

V
(
GL
[
Σ̃; R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
GL
[
Σ̃; R̃

])
= {(Σi,Σj)|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L(Σi) = Σi and L : (Σi,Σj)→ L(Σi,Σj) = Σi
⋂

Σj

for integers 1 ≤ i 6= j ≤ m, also denoted by GL
[
Σ̃; R̃

]
for

(
Σ̃; R̃

)
.
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For example, let Σ1 = {a, b, c}, Σ2 = {c, d, e}, Σ3 = {a, c, e}, Σ4 = {d, e, f} and Ri = ∅
for integers 1 ≤ i ≤ 4, i.e., all these system are sets. Then the multispace

(
Σ̃; R̃

)
with

Σ̃ =
4⋃
i=1

Σi = {a, b, c, d, e, f} and R̃ = ∅ underlying a topological graph GL
[
Σ̃; R̃

]
shown

in Fig.3. Combinatorially, the Smarandache multisystems can be classified by their inherited

topological structures, i.e., isomorphic labeled graphs following.

Definition 1.3 ([13]) Let

G1
L1 =

(
m⋃

i=1

Σ
(1)
i ;

m⋃

i=1

R(1)
i

)
and G2

L2 =

(
n⋃

i=1

Σ
(2)
i ;

n⋃

i=1

R(2)
i

)
.

be two Smarandache multisystems underlying topological graphs G1 and G2, respectively. They

are isomorphic if there is a bijection ̟ : G1
L1 → G2

L2 with ̟ :
m⋃
i=1

Σ
(1)
i →

n⋃
i=1

Σ
(2)
i and

̟ :
m⋃
i=1

R(1)
i →

n⋃
i=1

R(2)
i such that

̟|Σi
(
aR(1)

i b
)

= ̟|Σi(a)̟|Σi
(
R(1)
i

)
̟|Σi(b)

for ∀a, b ∈ Σ
(1)
i , 1 ≤ i ≤ m, where ̟|Σi denotes the constraint of ̟ on (Σi,Ri).

Consequently, the previous discussion implies that

Every thing in the world is nothing else but a topological graph GL in space of the world,

and two things are similar if they are isomorphic.

After speculation over a long time, I presented the CC conjecture on mathematical sciences

in the final chapter of my post-doctoral report for Chinese Academy of Sciences in 2005 ([9],[10]),

and then reported at The 2nd Conference on Combinatorics and Graph Theory of China in 2006,

which is in fact an inverse of the understand of things in the world.

CC Conjecture([9-10],[14]) Any mathematical science can be reconstructed from or made by

combinatorialization.

Certainly, this conjecture is true in philosophy. It is in fact a combinatorial notion for

developing mathematical sciences following.

Notion 1.1 Finds the combinatorial structure, particularly, selects finite combinatorial rulers

to reconstruct or make a generalization for a classical mathematical science.

This notion appeared even in classical mathematics. For examples, Hilbert axiom system

for Euclidean geometry, complexes in algebraic topology, particularly, 2-cell embeddings of

graphs on surface are essentially the combinatorialization for Euclidean geometry, topological

spaces and surfaces, respectively.

Notion 1.2 Combine different mathematical sciences and establish new enveloping theory on

topological graphs, with classical theory being a special one, and this combinatorial process will

never end until it has been done for all mathematical sciences.
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A few fields can be also found in classical mathematics on this notion, for instance the

topological groups, which is in fact a multi-space of topological space with groups, and similarly,

the Lie groups, a multi-space of manifold with that of diffeomorphisms.

Even in the developing process of physics, the trace of Notions 1.1 and 1.2 can be also

found. For examples, the many-world interpretation [2] on quantum mechanics by Everett in

1957 is essentially a multispace formulation of quantum state (See [35] for details), and the

unifying the four known forces, i.e., gravity, electro-magnetism, the strong and weak nuclear

force into one super force by many researchers, i.e., establish the unified field theory is nothing

else but also a following of the combinatorial notions by letting Lagrangian L being that a

combination of its subfields, for instance the standard model on electroweak interactions, etc..

Even so, the CC conjecture includes more deeply thoughts for developing mathematics by

combinatorics i.e., mathematical combinatorics which extends the field of all existent mathemat-

ical sciences. After it was presented, more methods were suggested for developing mathematics

in last decade. The main purpose of this report is to survey its contribution to algebra, topol-

ogy and geometry, mathematical analysis, particularly, non-solvable algebraic and differential

equations, theoretical physics with its producing notions in developing mathematical sciences.

All terminologies and notations used in this paper are standard. For those not mentioned

here, we follow reference [5] and [32] for topology, [3] for topological graphs, [1] for algebraic

systems, [4], [34] for differential equations and [12], [30]-[31] for Smarandache systems.

§2. Algebraic Combinatorics

Algebraic systems, such as those of groups, rings, fields and modules are combinatorial them-

selves. However, the CC conjecture also produces notions for their development following.

Notion 2.1 For an algebraic system (A ;O), determine its underlying topological structure

GL[A ,O] on subsystems, and then classify by graph isomorphism.

Notion 2.2 For an integer m ≥ 1, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) all be algebraic systems

in Definition 1.2 and
(
G̃ ;O

)
underlying GL

[
G̃ ;O

]
with G̃ =

m⋃
i=1

Σi and O =
m⋃
i=1

Ri, i.e., an

algebraic multisystem. Characterize
(
G̃ ;O

)
and establish algebraic theory, i.e., combinatorial

algebra on
(
G̃ ;O

)
.

For example, let

〈G1; ◦1〉 =
〈
a, b|a ◦1 b = b ◦1 a, a2 = bn = 1

〉

〈G2; ◦2〉 =
〈
b, c|b ◦2 c = c ◦2 b, c5 = bn = 1

〉

〈G3; ◦3〉 =
〈
c, d|c ◦3 d = d ◦3 c, d2 = c5 = 1

〉

be groups with respective operations ◦1, ◦2 and ◦3. Then the set (G̃ ; {◦1, ◦2, ◦3}) is an algebraic

multisyatem with G̃ =
3⋃
i=1

Gi.
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2.1 KL
2 -Systems

A KL
2 -system is such a multi-system consisting of exactly 2 algebraic systems underlying a

topological graph KL
2 , including bigroups, birings, bifields and bimodules, etc.. For example, an

algebraic field (R; +, ·) is aKL
2 -system. Clearly, (R; +, ·) consists of groups (R; +) and (R\{0}; ·)

underlying KL
2 such as those shown in Fig.4, where L : V

(
KL

2

)
→ {(R; +), (R \ {0}; ·)} and

L : E
(
KL

2

)
→ {R \ {0}}.

(R; +) (R \ {0}, ·)
R \ {0}

Fig.4

A generalization of field is replace R \ {0} by any subset H ≤ R in Fig.4. Then a bigroup

comes into being, which was introduced by Maggu [8] for industrial systems in 1994, and then

Vasantha Kandasmy [33] further generalizes it to bialgebraic structures.

Definition 2.3 A bigroup (biring, bifield, bimodule, · · · ) is a 2-system (G ; ◦, ·) such that

(1) G = G1

⋃
G2;

(2) (G1; ◦) and (G2; ·) both are groups (rings, fields, modules,· · · ).

For example, let P̃ be a permutation multigroup action on Ω̃ with

P̃ = P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},

where P1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 and P2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉. Clearly, P̃ is a per-

mutation bigroup.

Let (G1; ◦1, ·1) and ((G2; ◦2, ·2)) be bigroups. A mapping pair (φ, ι) with φ : G1 → G2 and

ι : {◦1, ·1} → {◦2, ·2} is a homomorphism if

φ(a • b) = φ(a)ι(•)φ(b)

for ∀a, b ∈ G1 and • ∈ {◦1, ·1} provided a • b existing in (G1; ◦1, ·1). Define the image Im(φ, ι)

and kernel Ker(φ, ι) respectively by

Im(φ, ι) = { φ(g) | g ∈ G1 },
Ker(φ, ι) = { g ∈ G1| φ(g) = 1•, ∀• ∈ {◦2, ·2}},

where 1• denotes the unit of (G•; •) with G• a maximal closed subset of G on operation •.
For subsets H̃ ⊂ G̃, O ⊂ O, define (H̃ ;O) to be a submultisystem of

(
G̃;O

)
if (H̃ ;O)

is multisystem itself, denoted by
(
H̃;O

)
≤
(
G̃;O

)
, and a subbigroup (H ; ◦, ·) of (G ; ◦, ·) is



Mathematics After CC Conjecture 7

normal, denoted by H � G if for ∀g ∈ G ,

g •H = H • g,

where g •H = {g • h|h ∈H provided g • h existing} and H • g = {h • g|h ∈H provided h •
g existing} for ∀• ∈ {◦, ·}. The next result is a generalization of isomorphism theorem of group

in [33].

Theorem 2.4([11]) Let (φ, ι) : (G1; {◦1, ·1})→ (G2; {◦2, ·2}) be a homomorphism. Then

G1/Ker(φ, ι) ≃ Im(φ, ι).

Particularly, if (G2; {◦2, ·2}) is a group (A ; ◦), we know the corollary following.

Corollary 2.5 Let (φ, ι) : (G ; {◦, ·})→ (A ; ◦) be an epimorphism. Then

G1/Ker(φ, ι) ≃ (A ; ◦).

Similarly, a bigroup (G ; ◦, ·) is distributive if

a · (b ◦ c) = a · b ◦ a · c

hold for all a, b, c ∈ G . Then, we know the following result.

Theorem 2.6([11]) Let (G ; ◦, ·) be a distributive bigroup of order≥ 2 with G = A1 ∪A2 such

that (A1; ◦) and (A2; ·) are groups. Then there must be A1 6= A2. consequently, if (G ; ◦) it a

non-trivial group, there are no operations · 6= ◦ on G such that (G ; ◦, ·) is a distributive bigroup.

2.2 GL-Systems

Definition 2.2 is easily generalized also to multigroups, i.e., consisting of m groups underlying a

topological graph GL, and similarly, define conceptions of homomorphism, submultigroup and

normal submultigroup, · · · of a multigroup without any difficult.

For example, a normal submultigroup of (G̃ ; Õ) is such submutigroup (H̃ ;O) that holds

g ◦ H̃ = H̃ ◦ g

for ∀g ∈ G̃ , ∀◦ ∈ O, and generalize Theorem 2.3 to the following.

Theorem 2.7([16]) Let (φ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) be a homomorphism. Then

G̃1/Ker(φ, ι) ≃ Im(φ, ι).

Particularly, for the transitive of multigroup action on a set Ω̃, let P̃ be a permutation

multigroup action on Ω̃ with P̃ =
m⋃
i=1

Pi, Ω̃ =
m⋃
i=1

Ωi and for each integer i, 1 ≤ i ≤ m, the
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permutation group Pi acts on Ωi, which is globally k-transitive for an integer k ≥ 1 if for

any two k-tuples x1, x2, · · · , xk ∈ Ωi and y1, y2, · · · , yk ∈ Ωj , where 1 ≤ i, j ≤ m, there are

permutations π1, π2, · · · , πn such that

xπ1π2···πn
1 = y1, x

π1π2···πn
2 = y2, · · · , xπ1π2···πn

k = yk

and abbreviate the globally 1-transitive to that globally transitive of a permutation multigroup.

The following result characterizes transitive multigroup.

Theorem 2.8([17]) Let P̃ be a permutation multigroup action on Ω̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =

m⋃

i=1

Ωi,

where, each permutation group Pi transitively acts on Ωi for each integers 1 ≤ i ≤ m. Then

P̃ is globally transitive on Ω̃ if and only if the graph GL
[
Ω̃
]

is connected.

Similarly, let R̃ =
m⋃
i=1

Ri be a completed multisystem with a double operation set O
(
R̃
)

=

O1

⋃O2, where O1 = { ·i, 1 ≤ i ≤ m}, O2 = {+i, 1 ≤ i ≤ m}. If for any integers i, 1 ≤ i ≤ m,

(Ri; +i, ·i) is a ring, then R̃ is called a multiring, denoted by
(
R̃;O1 →֒ O2

)
and (+i, ·i) a

double operation for any integer i, which is integral if for ∀a, b ∈ R̃ and an integer i, 1 ≤ i ≤ m,

a ·i b = b ·i a, 1·i 6= 0+i and a ·i b = 0+i implies that a = 0+i or b = 0+i . Such a multiring(
R̃;O1 →֒ O2

)
is called a skew multifield or a multifield if each (R; +i, ·i) is a skew field or a

field for integers 1 ≤ i ≤ m. The next result is a generalization of finitely integral ring.

Theorem 2.9([16]) A finitely integral multiring is a multifield.

For multimodule, let O = { +i | 1 ≤ i ≤ m}, O1 = {·i|1 ≤ i ≤ m} and O2 = {+̇i|1 ≤ i ≤
m} be operation sets, (M ;O) a commutative multigroup with units 0+i and (R;O1 →֒ O2)

a multiring with a unit 1· for ∀· ∈ O1. A pair (M ;O) is said to be a multimodule over

(R;O1 →֒ O2) if for any integer i, 1 ≤ i ≤ m, a binary operation ×i : R ×M →M is defined

by a×i x for a ∈ R, x ∈M such that the conditions following

(1) a×i (x+i y) = a×i x+i a×i y;
(2) (a+̇ib)×i x = a×i x+i b×i x;
(3) (a ·i b)×i x = a×i (b×i x);
(4) 1·i ×i x = x.

hold for ∀a, b ∈ R, ∀x, y ∈ M , denoted by Mod(M (O) : R(O1 →֒ O2)). Then we know the

following result for finitely multimodules.

Theorem 2.10([16]) Let Mod(M (O) : R(O1 →֒ O2)) =
〈
Ŝ|R

〉
be a finitely generated

multimodule with Ŝ = {u1, u2, · · · , un}. Then

Mod(M (O) : R(O1 →֒ O2)) ∼= Mod(R(n) : R(O1 →֒ O2)),
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where Mod(R(n) : R(O1 →֒ O2)) is a multimodule on R(n) = {(x1, x2, · · · , xn) | xi ∈ R, 1 ≤
i ≤ n} with

(x1, x2, · · · , xn) +i (y1, y2, · · · , yn) = (x1+̇iy1, x2+̇iy2, · · · , xn+̇iyn),

a×i (x1, x2, · · · , xn) = (a ·i x1, a ·i x2, · · · , a ·i xn)

for ∀a ∈ R, integers 1 ≤ i ≤ m. Particularly, a finitely module over a commutative ring

(R; +, ·) generated by n elements is isomorphic to the module Rn over (R; +, ·).

§3. Geometrical Combinatorics

Classical geometry, such as those of Euclidean or non-Euclidean geometry, or projective geome-

try are not combinatorial. Whence, the CC conjecture produces combinatorial notions for their

development further, for instance the topological space shown in Fig.5 following.

P1 P2

P3 P4

P0

P1

⋂
P2

P2

⋂
P4

P3

⋂
P4

P1

⋂
P3

P1

⋂
P0 P2

⋂
P0

P3

⋂
P0 P4

⋂
P0

Fig.5

Notion 3.1 For a geometrical space P, determine its underlying topological structure GL[A ,O]

on subspaces, for instance, n-manifolds and classify them by graph isomorphisms.

Notion 3.2 For an integer m ≥ 1, let P1, P2, · · · , Pm all be geometrical spaces in Definition

1.2 and P̃ underlying GL
[
P̃

]
with P̃ =

m⋃
i=1

Pi, i.e., a geometrical multispace. Characterize

P̃ and establish geometrical theory, i.e., combinatorial geometry on P̃.

3.1 Euclidean Spaces

Let ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, 0 · · · , 0), · · · , ǫn = (0, · · · , 0, 1) be the normal basis of a

Euclidean space Rn in a general position, i.e., for two Euclidean spaces Rnµ ,Rnν , Rnµ ∩Rnν 6=
Rmin{nµ,nν}. In this case, let Xvµ be the set of orthogonal orientations in R

nvµ , µ ∈ Λ. Then

Rnµ ∩ Rnν = Xvµ ∩ Xvν , which enables us to construct topological spaces by the combination.

For an index set Λ, a combinatorial Euclidean space EGL(nν ; ν ∈ Λ) underlying a connected

graph GL is a topological spaces consisting of Euclidean spaces Rnν , ν ∈ Λ such that

V
(
GL
)

= { Rnν | ν ∈ Λ };



10 Linfan MAO

E
(
GL
)

= { (Rnµ ,Rnν ) | Rnµ ∩ Rnν 6= ∅, µ, ν ∈ Λ } and labeling

L : Rnν → Rnν and L : (Rnµ ,Rnν )→ Rnµ
⋂

Rnν¸

for (Rnµ ,Rnν ) ∈ E
(
GL
)
, ν, µ ∈ Λ.

Clearly, for any graph G, we are easily construct a combinatorial Euclidean space under-

lying G, which induces a problem following.

Problem 3.3 Determine the dimension of a combinatorial Euclidean space consisting of m

Euclidean spaces Rn1 ,Rn2 , · · · ,Rnm .

Generally, the combinatorial Euclidean spaces EGL(n1, n2, · · · , nm) are not unique and to

determine dimEGL(n1, n2, · · · , nm) converts to calculate the cardinality of |Xn1 ∪Xn2 ∪ · · · ∪Xnm |,
where Xni is the set of orthogonal orientations in Rni for integers 1 ≤ i ≤ m, which can be

determined by the inclusion-exclusion principle, particularly, the maximum dimension following.

Theorem 3.4([21]) dimEGL(n1, · · · , nm) ≤ 1 −m+
m∑
i=1

ni and with the equality holds if and

only if dim (Rni ∩ Rnj ) = 1 for ∀ (Rni ,Rnj ) ∈ E
(
GL
)
, 1 ≤ i, j ≤ m.

To determine the minimum dimEGL(n1, · · · , nm) is still open. However, we know this

number for G = Km and ni = r for integers 1 ≤ i ≤ m, i.e., EKm(r) by following results.

Theorem 3.5([21]) For any integer r ≥ 2, let EKm(r) be a combinatorial Euclidean space of

R
r, · · · ,Rr︸ ︷︷ ︸

m

, and there exists an integer s, 0 ≤ s ≤ r − 1 such that


 r + s− 1

r


 < m ≤


 r + s

r


 .

Then

dimminEKm(r) = r + s.

Particularly,

dimminEKm(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11.

3.2 Manifolds

An n-manifold is a second countable Hausdorff space of locally Euclidean n-space without

boundary, which is in fact a combinatorial Euclidean space EGL(n). Thus, we can further

replace these Euclidean spaces by manifolds and to get topological spaces underlying a graph,

such as those shown in Fig.6.
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Fig.6

Definition 3.6([22]) Let M̃ be a topological space consisting of finite manifolds Mµ, µ ∈ Λ.

An inherent graph Gin
[
M̃
]

of M̃ is such a graph with

V
(
Gin

[
M̃
])

= {Mµ, µ ∈ Λ};

E
(
Gin

[
M̃
])

= {(Mµ,Mν)i , 1 ≤ i ≤ κµν + 1|Mµ ∩Mν 6= ∅, µ, ν ∈ Λ},

where κµν + 1 is the number of arcwise connected components in Mµ ∩Mν for µ, ν ∈ Λ.

Notice that Gin
[
M̃
]

is a multiple graph. If replace all multiple edges (Mµ,Mν)i , 1 ≤ i ≤
κµν + 1 by (Mµ,Mν), such a graph is denoted by G[M̃ ], also an underlying graph of M̃ .

Clearly, if m = 1, then M̃(ni, i ∈ Λ) is nothing else but exactly an n1-manifold by

definition. Even so, Notion 3.1 enables us characterizing manifolds by graphs. The following

result shows that every manifold is in fact homeomorphic to combinatorial Euclidean space.

Theorem 3.7([22]) Any locally compact n-manifold M with an alta A = { (Uλ;ϕλ)| λ ∈ Λ} is

a combinatorial manifold M̃ homeomorphic to a combinatorial Euclidean space EGL(n, λ ∈ Λ)

with countable graphs Gin[M ] ∼= G.

Topologically, a Euclidean space Rn is homeomorphic to an opened ball Bn(R) = {(x1, x2,

· · · , xn)|x2
1+x

2
2+· · ·+x2

n < R}. Thus, we can view a combinatorial Euclidean space EG(n, λ ∈ Λ)

as a graph with vertices and edges replaced by ball Bn(R) in space, such as those shown in

Fig.6, a 3-dimensional graph.

Definition 3.8 An n-dimensional graph M̃n[G] is a combinatorial ball space B̃ of Bn, µ ∈ Λ

underlying a combinatorial structure G such that

(1) V (G) is discrete consisting of Bn, i.e., ∀v ∈ V (G) is an open ball Bnv ;

(2) M̃n[G] \ V (M̃n[G]) is a disjoint union of open subsets e1, e2, · · · , em, each of which is

homeomorphic to an open ball Bn;
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(3) the boundary ei − ei of ei consists of one or two Bn and each pair (ei, ei) is homeo-

morphic to the pair (B
n
, Bn);

(4) a subset A ⊂ M̃n[G] is open if and only if A ∩ ei is open for 1 ≤ i ≤ m.

Particularly, a topological graph T [G] of a graph G embedded in a topological space P is

1-dimensional graph.

According to Theorem 3.7, an n-manifold is homeomorphic to a combinatorial Euclidean

space, i.e., n-dimensional graph. This enables us knowing a result following on manifolds.

Theorem 3.9([22]) Let A [M ] = { (Uλ;ϕλ) | λ ∈ Λ} be a atlas of a locally compact n-manifold

M . Then the labeled graph GL|Λ| of M is a topological invariant on |Λ|, i.e., if HL1

|Λ| and GL2

|Λ| are

two labeled n-dimensional graphs of M , then there exists a self-homeomorphism h : M → M

such that h : HL1

|Λ| → GL2

|Λ| naturally induces an isomorphism of graph.

Theorem 3.9 enables us listing manifolds by two parameters, the dimensions and inherited

graph. For example, let |Λ| = 2 and then Amin[M ] = {(U1;ϕ1), (U2;ϕ2)}, i.e., M is double

covered underlying a graphs DL
0,κ12+1,0 shown in Fig.7,

U1 U2

e1

e2

e3

eκ12+1

¸

Fig.7

For example, let U1 = R2, ϕ1 = z, U2 = (R2 \ {(0, 0)}∪ {∞}, ϕ2 = 1/z and κ12 = 0. Then

the 2-manifold is nothing else but the Riemannian sphere.

The GL-structure on combinatorial manifold M̃ can be also applied for characterizing a few

topological invariants, such as those fundamental groups, for instance the conclusion following.

Theorem 3.10([23]) For ∀(M1,M2) ∈ E
(
GL
[
M̃
])

, if M1 ∩M2 is simply connected, then

π1

(
M̃
)
∼=




⊗

M∈V (G[M̃])

π1(M)



⊗

π1

(
Gin

[
M̃
])
.

Particularly, for a compact n-manifold M with charts {(Uλ, ϕλ)| ϕλ : Uλ → Rn, λ ∈ Λ},
if Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then

π1(M) ∼= π1

(
Gin[M ]

)
.
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3.3 Algebraic Geometry

The topological group, particularly, Lie group is a typical example ofKL
2 -systems that of algebra

with geometry. Generally, let

AX = (b1, b2, · · · , bm)T (LEq)

be a linear equation system with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1, and all equations in (LEq) are non-trivial, i.e., there are no numbers λ

such that (ai1, ai2, · · · , ain, bi) = λ(aj1, aj2, · · · , ajn, bj) for any integers 1 ≤ i, j ≤ m.

-
6

O
x

y

x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

A

B

D

C

Fig.8

It should be noted that the geometry of a linear equation in n variables is a plane in R
n.

Whence, a linear system (LEq) is non-solvable or not dependent on their intersection is empty

or not. For example, the linear system shown in Fig.8 is non-solvable because their intersection

is empty.

Definition 3.11 For any integers 1 ≤ i, j ≤ m, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there no solution x1, x2, · · · , xn hold both with the 2 equations.

Define a graph GL[LEq] on linear system (LEq) following:

V
(
GL[LEq]

)
= { the solution space Si of ith equation |1 ≤ i ≤ m},
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E
(
GL[Eq]

)
= { (Si, Sj) | Si

⋂
Sj 6= ∅, 1 ≤ i, j ≤ m} and with labels

L : Si → Si and L : (Si, Sj)→ Si
⋂
Sj¸

for ∀Si ∈ V
(
GL[LEq]

)
, (Si, Sj) ∈ E

(
GL[LEq]

)
. For example, the system of equations shown

in Fig.8 is 



x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

and CL4 is its underlying graph GL[LEq] shown in Fig.9.

S1

S2S3

S4B

A

C

D

Fig.9

Let Li be the ith linear equation. By definition we divide these equations Li, 1 ≤ i ≤ m

into parallel families

C1,C2, · · · ,Cs

by the property that all equations in a family Ci are parallel and there are no other equations

parallel to lines in Ci for integers 1 ≤ i ≤ s. Denoted by |Ci| = ni, 1 ≤ i ≤ s. Then, we can

characterize GL[LEq] following.

Theorem 3.12([24]) Let (LEq) be a linear equation system for integers m,n ≥ 1. Then

GL[LEq] ≃ KL
n1,n2,··· ,ns

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for integers

1 ≤ i ≤ s in (LEq) and (LEq) is non-solvable if s ≥ 2.

Notice that this result is not sufficient, i.e., even if GL[LEq] ≃ Kn1,n2,··· ,ns , we can not

claim that (LEq) is solvable or not. How ever, if n = 2, we can get a necessary and sufficient

condition on non-solvable linear equations.

Let H be a planar graph with each edge a straight segment on R2. Its c-line graph LC(H)

is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| if e1i and e2j are adjacent in H for L1 = e11e

1
2 · · · e1l , L2 =

e21e
2
2 · · · e2s, l, s ≥ 1}.
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Theorem 3.13([24]) A linear equation system (LEq2) is non-solvable if and only if GL[LEq2] ≃
LC(H)), where H is a planar graph of order |H | ≥ 2 on R2 with each edge a straight segment

Similarly, let

P1(x), P2(x), · · · , Pm(x) (ESn+1
m )

be m homogeneous polynomials in n + 1 variables with coefficients in C and each equation

Pi(x) = 0 determine a hypersurface Mi, 1 ≤ i ≤ m in Rn+1, particularly, a curve Ci if n = 2.

We introduce the parallel property following.

Definition 3.14 Let P (x), Q(x) be two complex homogeneous polynomials of degree d in n+ 1

variables and I(P,Q) the set of intersection points of P (x) with Q(x). They are said to be

parallel, denoted by P ‖ Q if d > 1 and there are constants a, b, · · · , c (not all zero) such that

for ∀x ∈ I(P,Q), ax1 + bx2 + · · ·+ cxn+1 = 0, i.e., all intersections of P (x) with Q(x) appear

at a hyperplane on P
nC, or d = 1 with all intersections at the infinite xn+1 = 0. Otherwise,

P (x) are not parallel to Q(x), denoted by P 6‖ Q.

Define a topological graph GL
[
ESn+1

m

]
in C

n+1 by

V
(
GL
[
ESn+1

m

])
= {P1(x), P2(x), · · · , Pm(x)};

E
(
GL
[
ESn+1

m

])
= {(Pi(x), Pj(x))|Pi 6‖ Pj , 1 ≤ i, j ≤ m}

with a labeling

L : Pi(x)→ Pi(x), (Pi(x), Pj(x))→ I(Pi, Pj),¸

where 1 ≤ i 6= j ≤ m, and the topological graph of GL
[
ESn+1

m

]
without labels is denoted by

G
[
ESn+1

m

]
. The following result generalizes Theorem 3.12 to homogeneous polynomials.

Theorem 3.15([26]) Let n ≥ 2 be an integer. For a system (ESn+1
m ) of homogeneous polyno-

mials with a parallel maximal classification C1,C2, · · · ,Cl,

G[ESn+1
m ] ≤ K(C1,C2, · · · ,Cl)

and with equality holds if and only if Pi ‖ Pj and Ps 6‖ Pi implies that Ps 6‖ Pj, where

K(C1,C2, · · · ,Cl) denotes a complete l-partite graphs

Conversely, for any subgraph G ≤ K(C1,C2, · · · ,Cl), there are systems (ESn+1
m ) of homo-

geneous polynomials with a parallel maximal classification C1,C2, · · · ,Cl such that

G ≃ G[ESn+1
m ].

Particularly, if n = 2, i.e., an (ES3
m) system, we get the condition following.

Theorem 3.16([26]) Let GL be a topological graph labeled with I(e) for ∀e ∈ E
(
GL
)
. Then

there is a system
(
ES3

m

)
of homogeneous polynomials such that GL

[
ES3

m

]
≃ GL if and only if
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there are homogeneous polynomials Pvi(x, y, z), 1 ≤ i ≤ ρ(v) for ∀v ∈ V
(
GL
)

such that

I(e) = I



ρ(u)∏

i=1

Pui ,

ρ(v)∏

i=1

Pvi




for e = (u, v) ∈ E
(
GL
)
, where ρ(v) denotes the valency of vertex v in GL.

These GL-system of homogeneous polynomials enables us to get combinatorial manifolds,

for instance, the following result appeared in [26].

Theorem 3.17 Let (ESn+1
m ) be a GL-system consisting of homogeneous polynomials P1(x), P2(x),

· · · , Pm(x) in n + 1 variables with respectively hypersurfaces S1, S2, · · · , Sm. Then there is a

combinatorial manifold M̃ in Cn+1 such that π : M̃ → S̃ is 1 − 1 with GL
[
M̃
]
≃ GL

[
S̃
]
,

where, S̃ =
m⋃
i=1

Si.

Particularly, if n = 2, we can further determine the genus of surface g
(
S̃
)

by closed

formula as follows.

Theorem 3.18([26]) Let C1, C2, · · · , Cm be complex curves determined by homogeneous poly-

nomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component, and let

RPi,Pj =

deg(Pi)deg(Pj)∏

k=1

(
cijk z − b

ij
k y
)eij

k

, ωi,j =

deg(Pi)deg(Pj)∑

k=1

∑

e
ij
k
6=0

1

be the resultant of Pi(x, y, z), Pj(x, y, z) for 1 ≤ i 6= j ≤ m. Then there is an orientable surface

S̃ in R3 of genus

g
(
S̃
)

= β
(
G
〈
C̃
〉)

+

m∑

i=1


 (deg(Pi)− 1)(deg(Pi)− 2)

2
−

∑

pi∈Sing(Ci)

δ(pi)




+
∑

1≤i6=j≤m
(ωi,j − 1) +

∑

i≥3

(−1)i
∑

Ck1
⋂ ···⋂ Cki 6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]

with a homeomorphism ϕ : S̃ → C̃ =
m⋃
i=1

Ci. Furthermore, if C1, C2, · · · , Cm are non-singular,

then

g
(
S̃
)

= β
(
G
〈
C̃
〉)

+

m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2

+
∑

1≤i6=j≤m
(ωi,j − 1) +

∑

i≥3

(−1)i
∑

Ck1
⋂ ···⋂ Cki 6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]
,

where

δ(pi) =
1

2

(
Ipi

(
Pi,

∂Pi
∂y

)
− νφ(pi) + |π−1(pi)|

)
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is a positive integer with a ramification index νφ(p
i) for pi ∈ Sing(Ci), 1 ≤ i ≤ m.

Theorem 3.17 enables us to find interesting results in projective geometry, for instance the

following result.

Corollary 3.19 Let C1, C2, · · · , Cm be complex non-singular curves determined by homogeneous

polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component and Ci
⋂
Cj =

m⋂
i=1

Ci with

∣∣∣∣
m⋂
i=1

Ci

∣∣∣∣ = κ > 0 for integers 1 ≤ i 6= j ≤ m. Then the genus of normalization S̃ of

curves C1, C2, · · · , Cm is

g(S̃) = g(S̃) = (κ− 1)(m− 1) +
m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2
.

Particularly, if C1, C2, · · · , Cm are distinct lines in P2C with respective normalizations of

spheres S1, S2, · · · , Sm. Then there is a normalization of surface S̃ of C1, C2, · · · , Cm with

genus β
(
G
〈
L̃
〉)

. Furthermore, if G
〈
L̃
〉
) is a tree, then S̃ is homeomorphic to a sphere.

3.4 Combinatorial Geometry

Furthermore, we can establish combinatorial geometry by Notion 3.2. For example, we have

3 classical geometries, i.e., Euclidean, hyperbolic geometry and Riemannian geometries for de-

scribing behaviors of objects in spaces with different axioms following:

Euclid Geometry:

(A1) There is a straight line between any two points.

(A2) A finite straight line can produce a infinite straight line continuously.

(A3) Any point and a distance can describe a circle.

(A4) All right angles are equal to one another.

(A5) If a straight line falling on two straight lines make the interior angles on the same

side less than two right angles, then the two straight lines, if produced indefinitely, meet on that

side on which are the angles less than the two right angles.

Hyperbolic Geometry:

Axioms (A1)− (A4) and the axiom (L5) following:

(L5) there are infinitely many lines parallel to a given line passing through an exterior

point.

Riemannian Geometry:

Axioms (A1)− (A4) and the axiom (R5) following:

there is no parallel to a given line passing through an exterior point.

Then whether there is a geometry established by combining the 3 geometries, i.e., partially

Euclidean and partially hyperbolic or Riemannian. Today, we have know such theory really

exists, called Smarandache geometry defined following.
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Definition 3.20([12]) An axiom is said to be Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom

(1969).

L3

E

LL1

B
A

F C

D

(b)(a)

D C E

A BF G

l1

L2

Fig.10

For example, let us consider a Euclidean plane R
2 and three non-collinear points A,B and

C shown in Fig.10. Define s-points as all usual Euclidean points on R2 and s-lines any Euclidean

line that passes through one and only one of points A,B and C. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist one line

passing through them is now replaced by: one s-line and no s-line. Notice that through any

two distinct s-points D,E collinear with one of A,B and C, there is one s-line passing through

them and through any two distinct s-points F,G lying on AB or non-collinear with one of A,B

and C, there is no s-line passing through them such as those shown in Fig.10(a).

Observation 2. The axiom (E5) that through a point exterior to a given line there is

only one parallel passing through it is now replaced by two statements: one parallel and no

parallel. Let L be an s-line passes through C and D on L, and AE is parallel to CD in the

Euclidean sense. Then there is one and only one line passing through E which is parallel to L,

but passing a point not on AE, for instance, point F there are no lines parallel to L such as

those shown in Fig.10(b).

Generally, we can construct a Smarandache geometry on smoothly combinatorial manifolds

M̃ , i.e., combinatorial geometry because it is homeomorphic to combinatorial Euclidean space

EGL (n1, n2, · · · , nm) by Definition 3.6 and Theorem 3.7. Such a theory is founded on the results

for basis of tangent and cotangent vectors following.

Theorem 3.21([15]) For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]), the

dimension of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))
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with a basis matrix

[
∂

∂x

]

s(p)×ns(p)
=




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1

· · · 0

1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2ŝ(p)
∂

∂x2(ŝ(p)+1) · · · ∂
∂x2n2

· · · 0

· · · · · · · · · · · · · · · · · ·
1
s(p)

∂
∂xs(p)1

· · · 1
s(p)

∂
∂xs(p)ŝ(p)

∂
∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly functional matrix

[vij ]s(p)×ns(p) such that for any tangent vector v at a point p of M̃(n1, n2, · · · , nm),

v =

〈
[vij ]s(p)×ns(p) , [

∂

∂x
]s(p)×ns(p)

〉
,

where 〈[aij ]k×l, [bts]k×l〉 =
k∑
i=1

l∑
j=1

aijbij, the inner product on matrixes.

Theorem 3.22([15]) For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the dimen-

sion of T ∗p M̃(n1, n2, · · · , nm) is

dimT ∗p M̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))¸

with a basis matrix [dx]s(p)×ns(p) =




dx11

s(p) · · · dx1ŝ(p)

s(p) dx1(ŝ(p)+1) · · · dx1n1 · · · 0

dx21

s(p) · · · dx2ŝ(p)

s(p) dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p) · · · dxs(p)ŝ(p)

s(p) dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d at a point

p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij ]s(p)×s(p) such that,

d =
〈
[uij ]s(p)×ns(p) , [dx]s(p)×ns(p)

〉
.

Then we can establish tensor theory with connections on smoothly combinatorial manifolds

([15]). For example, we can establish the curvatures on smoothly combinatorial manifolds, and

get the curvature R̃ formula following.

Theorem 3.23([18]) Let M̃ be a finite combinatorial manifold, R̃ : X (M̃)×X (M̃)×X (M̃)×
X (M̃)→ C∞(M̃) a curvature on M̃ . Then for ∀p ∈ M̃ with a local chart (Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dx
σς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ,
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where

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι(µν)(σς)Γ
ξo

(κλ)(ηθ)g(ξo)(ϑι) − Γξo(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

and g(µν)(κλ) = g( ∂
∂xµν

, ∂
∂xκλ

).

This enables us to characterize the combination of classical fields, such as the Einstein’s

gravitational fields and other fields on combinatorial spacetimes and hold their behaviors ( See

[19]-[20] for details).

§4. Differential Equation’s Combinatorics

Let

(Eqm)





f1(x1, x2, · · · , xn+1) = 0

f2(x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn+1) = 0

be a system of equations. It should be noted that the classical theory on equations is not

combinatorics. However, the solutions of an equation usually form a manifold in the view of

geometry. Thus, the CC conjecture bring us combinatorial notions for developing equation

theory similar to that of geometry further.

Notion 4.1 For a system (Eqm) of equations, solvable or non-solvable, determine its un-

derlying topological structure GL[Eqm] on each solution manifold and classify them by graph

isomorphisms and transformations.

Notion 4.2 For an integer m ≥ 1, let D1, D2, · · · , Dm be the solution manifolds of an

equation system (Eqm) in Definition 1.2 and D̃ underlying GL
[
D̃

]
with D̃ =

m⋃
i=1

Di, i.e.,

a combinatorial solution manifold. Characterize the system (Eqm) and establish an equation

theory, i.e., equation’s combinatorics on (Eqm).

Geometrically, let

Sfi = {(x1, x2, · · · , xn+1)|fi(x1, x2, · · · , xn+1) = 0} ⊂ R
n+1

the solution-manifold in Rn+1 for integers 1 ≤ i ≤ m, where fi is a function hold with conditions

of the implicit function theorem for 1 ≤ i ≤ m. Then we are easily finding criterions on the

solubility of system (ESm), i.e., it is solvable or not dependent on

m⋂

i=1

Sfi 6= ∅ or = ∅.
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Whence, if the intersection is empty, i.e., (ESm) is non-solvable, there are no meanings in

classical theory on equations, but it is important for hold the global behaviors of a complex

thing. For such an objective, Notions 4.1 and 4.2 are helpful.

Let us begin at a linear differential equations system such as those of

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

or 



x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEnm)

with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

For example, let (LDE2
6) be the following linear homogeneous differential equation system





ẍ+ 3ẋ+ 2x = 0 (1)

ẍ+ 5ẋ+ 6x = 0 (2)

ẍ+ 7ẋ+ 12x = 0 (3)

ẍ+ 9ẋ+ 20x = 0 (4)

ẍ+ 11ẋ+ 30x = 0 (5)

ẍ+ 7ẋ+ 6x = 0 (6)

Certainly, it is non-solvable. However, we can easily solve equations (1)-(6) one by one and

get their solution spaces as follows:

S1 =
〈
e−t, e−2t

〉
= {C1e

−t + C2e
−2t|C1, C2 ∈ R} = {x|ẍ+ 3ẋ+ 2x = 0}

S2 =
〈
e−2t, e−3t

〉
= {C1e

−2t + C2e
−3t|C1, C2 ∈ R} = {x|ẍ+ 5ẋ+ 6x = 0}

S3 =
〈
e−3t, e−4t

〉
= {C1e

−3t + C2e
−4t|C1, C2 ∈ R} = {x|ẍ+ 7ẋ+ 12x = 0}

S4 =
〈
e−4t, e−5t

〉
= {C1e

−4t + C2e
−5t|C1, C2 ∈ R} = {x|ẍ+ 9ẋ+ 20x = 0}

S5 =
〈
e−5t, e−6t

〉
= {C1e

−5t + C2e
−6t|C1, C2 ∈ R} = {x|ẍ+ 11ẋ+ 30x = 0}

S6 =
〈
e−6t, e−t

〉
= {C1e

−6t + C2e
−t|C1, C2 ∈ R} = {x|ẍ+ 7ẋ+ 6x = 0}

Replacing each Σi by solution space Si in Definition 1.2, we get a topological graph
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GL[LDE2
6 ] shown in Fig.11 on the linear homogeneous differential equation system (LDE2

6).

Thus we can solve a system of linear homogeneous differential equations on its underlying graph

GL, no matter it is solvable or not in the classical sense.

〈
e−t, e−2t

〉 〈
e−2t, e−3t

〉

〈
e−3t, e−4t

〉

〈
e−4t, e−5t

〉〈
e−5t, e−6t

〉

〈
−e6t, e−t

〉

〈
e−2t

〉

〈
e−3t

〉

〈
e−4t

〉

〈
e−5t

〉

〈
e−6t

〉

〈e−t〉

Fig.11

Generally, we know a result on GL-solutions of homogeneous equations following.

Theorem 4.3([25]) A linear homogeneous differential equation system (LDES1
m) (or (LDEnm))

has a unique GL-solution, and for every HL labeled with linear spaces
〈
βi(t)e

αit, 1 ≤ i ≤ n
〉

on

vertices such that

〈
βi(t)e

αit, 1 ≤ i ≤ n
〉⋂〈

βj(t)e
αjt, 1 ≤ j ≤ n

〉
6= ∅

if and only if there is an edge whose end vertices labeled by
〈
βi(t)e

αit, 1 ≤ i ≤ n
〉

and
〈
βj(t)e

αjt,

1 ≤ j ≤ n〉 respectively, then there is a unique linear homogeneous differential equation system

(LDES1
m) (or (LDEnm)) with GL-solution HL, where αi is a ki-fold zero of the characteristic

equation, k1 + k2 + · · ·+ ks = n and βi(t) is a polynomial in t with degree≤ ki − 1.

Applying GL-solution, we classify such systems by graph isomorphisms.

Definition 4.4 A vertex-edge labeling θ : G→ Z+ is said to be integral if θ(uv) ≤ min{θ(u), θ(v)}
for ∀uv ∈ E(G), denoted by GIθ , and two integral labeled graphs GIθ1 and GIτ2 are called iden-

tical if G1
ϕ≃ G2 and θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)

⋃
E(G1),

denoted by GIθ1 = GIτ2 .

For example, GIθ1 = GIτ2 but GIθ1 6= GIσ3 for integral graphs shown in Fig.12.

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ1 GIτ2

2 2

1

1

GIσ3

Fig.12
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The following result classifies the systems (LDES1
m) and (LDEnm) by graphs.

Theorem 4.5([25]) Let (LDES1
m), (LDES1

m)′ (or (LDEnm), (LDEnm)′) be two linear homo-

geneous differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃
(LDES1

m)′ (or (LDEnm)
ϕ≃ (LDEnm)′) if and only if H = H ′.

For partial differential equations, let





F1(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn) = 0

(PDESm)

be such a system of first order on a function u(x1, · · · , xn, t) with continuous Fi : Rn → Rn

such that Fi(0) = 0.

Definition 4.6 The symbol of (PDESm) is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn) = 0,

i.e., substitutes ux1 , ux2 , · · · , uxn by p1, p2, · · · , pn in (PDESm), and it is algebraically contra-

dictory if its symbol is non-solvable. Otherwise, differentially contradictory.

For example, the system of partial differential equations following





(z − y)ux + (x− z)uy + (y − x)uz = 0

zux + xuy + yuz = x2 + y2 + z2 + 1

yux + zuy + xuz = x2 + y2 + z2 + 4

is algebraically contradictory because its symbol





(z − y)p1 + (x − z)p2 + (y − x)p3 = 0

zp1 + xp2 + yp3 = x2 + y2 + z2 + 1

yp1 + zp2 + xp3 = x2 + y2 + z2 + 4

is contradictory. Generally, we know a result for Cauchy problem on non-solvable systems of

partial differential equations of first order following.
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Theorem 4.7([28]) A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0 (x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0
−
n−1∑

i=0

p0
i

∂x0
i

∂sj0
6= 0.

According to Theorem 4.7, we know conditions for uniquely GL-solution of Cauchy problem

on system of partial differential equations of first order following.

Theorem 4.8([28]) A Cauchy problem on system (PDESm) of partial differential equations

of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDESm),

1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

is uniquely GL-solvable, i.e., GL[PDES] is uniquely determined.

Applying the GL-solution of a GL-system (DESm) of differential equations, the global

stability, i.e, sum-stable or prod-stable of (DESm) can be introduced. For example, the sum-

stability of (DESm) is defined following.

Definition 4.9 Let (DESCm) be a Cauchy problem on a system of differential equations in Rn,

HL ≤ GL
[
DESCm

]
a spanning subgraph, and u[v] the solution of the vth equation with initial

value u
[v]
0 , v ∈ V

(
HL
)
. It is sum-stable on the subgraph HL if for any number ε > 0 there
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exists, δv > 0, v ∈ V
(
HL
)

such that each GL(t)-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < δv, ∀v ∈ V
(
HL
)

exists for all t ≥ 0 and the inequality

∣∣∣∣∣∣

∑

v∈V (HL)

u′
[v] −

∑

v∈V (HL)

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by GL[t]
H∼ GL[0] and GL[t]

Σ∼ GL[0] if HL = GL
[
DESCm

]
. Furthermore, if

there exists a number βv > 0, v ∈ V
(
HL
)

such that every GL
′

[t]-solution with

∣∣∣u′[v]0 − u[v]
0

∣∣∣ < βv, ∀v ∈ V
(
HL
)

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (H)

u′
[v] −

∑

v∈V (HL)

u[v]

∣∣∣∣∣∣
= 0,

then the GL[t]-solution is called asymptotically stable, denoted by GL[t]
H→ GL[0] and GL[t]

Σ→
GL[0] if HL = GL

[
DESCm

]
.

For example, let the system (SDESCm) be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m

(
SDESCm

)

and a point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for an integer 1 ≤ i ≤

m is equilibrium of the ith equation in (SDESCm). A result on the sum-stability of (SDESCm)

is obtained in [30] following.

Theorem 4.10([28]) Let X
[i]
0 be an equilibrium point of the ith equation in (SDESCm) for each

integer 1 ≤ i ≤ m. If
m∑

i=1

Hi(X) > 0 and

m∑

i=1

∂Hi

∂t
≤ 0

for X 6=
m∑
i=1

X
[i]
0 , then the system (SDESCm) is sum-stable, i.e., GL[t]

Σ∼ GL[0].

Furthermore, if
m∑

i=1

∂Hi

∂t
< 0

for X 6=
m∑
i=1

X
[i]
0 , then GL[t]

Σ→ GL[0].
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§5. Field’s Combinatorics

The modern physics characterizes particles by fields, such as those of scalar field, Maxwell field,

Weyl field, Dirac field, Yang-Mills field, Einstein gravitational field, · · · , etc., which are in fact

spacetime in geometry, isolated but non-combinatorics. Whence, the CC conjecture can bring

us a combinatorial notion for developing field theory further, which enables us understanding

the world and discussed extensively in the first edition of [13] in 2009, and references [18]-[20].

Notion 5.1 Characterize the geometrical structure, particularly, the underlying topological

structure GL[D ] of spacetime D on all fields appeared in theoretical physics.

Notice that the essence of Notion 5.1 is to characterize the geometrical spaces of particles.

Whence, it is in fact equivalent to Notion 3.1.

Notion 5.2 For an integer m ≥ 1, let D1, D2, · · · , Dm be spacetimes in Definition 1.2

and D̃ underlying GL
[
D̃

]
with D̃ =

m⋃
i=1

Di, i.e., a combinatorial spacetime. Select suitable

Lagrangian or Hamiltonian density L̃ to determine field equations of D̃ , hold with the principle

of covariance and characterize its global behaviors.

There are indeed such fields, for instance the gravitational waves in Fig.13.

Fig.13

A combinatorial field D̃ is a combination of fields underlying a topological graph GL

with actions between fields. For this objective, a natural way is to characterize each field

Ci, 1 ≤ i ≤ n of them by itself reference frame {x}. Whence, the principles following are

indispensable.

Action Principle of Fields. There are always exist an action
−→
A between two fields C1 and

C2 of a combinatorial field if dim(C1 ∩ C2) ≥ 1, which can be found at any point on a spatial

direction in their intersection.

Thus, a combinatorial field depends on graph GL
[
D̃

]
, such as those shown in Fig.14.
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C1 C2

C3 C4

Fig.14

−→
C 1
←−
C 2

−→
C 2
←−
C 3

−→
C 3
←−
C 4

−→
C 4
←−
C 1

For understanding the world by combinatorial fields, the anthropic principle, i.e., the born

of human beings is not accidental but inevitable in the world will applicable, which implies the

generalized principle of covariance following.

Generalized Principle of Covariance([20]) A physics law in a combinatorial field is invari-

ant under all transformations on its coordinates, and all projections on its a subfield.

Then, we can construct the Lagrangian density L̃ and find the field equations of combi-

natorial field D̃ , which are divided into two cases ([13], first edition).

Case 1. Linear

In this case, the expression of the Lagrange density L
GL[D̃] is

L
GL[D̃] =

n∑

i=1

aiLDi +
∑

(Di,Dj)∈E(GL[D̃])

bijTij ,

where ai, bij are coupling constants determined only by experiments.

Case 2. Non-Linear

In this case, the Lagrange density L
GL[D̃] is a non-linear function on LDi and Tij for

1 ≤ i, j ≤ n. Let the minimum and maximum indexes j for (Mi,Mj) ∈ E
(
GL
[
D̃

])
are il and

iu, respectively. Denote by

x = (x1, x2, · · · ) = (LD1 ,LD2 , · · · ,LDn ,T11l , · · · ,T11u , · · · ,T22l , · · · , ).

If L
GL[D̃] is k + 1 differentiable, k ≥ 0, by Taylor’s formula we know that

L
GL[D̃] = L

GL[D̃](0) +

n∑

i=1

[
∂L

GL[D̃]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2L

GL[D̃]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,··· ,ik=1

[
∂kL

GL[D̃]

∂xi1∂xi2 · · · ∂xik

]

xij=0,1≤j≤k
xi1xi2 · · ·xik

+R(x1, x2, · · · ),
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where

lim
‖x‖→0

R(x1, x2, · · · )
‖x‖ = 0,

and choose the first k terms

L
GL[D̃](0) +

n∑

i=1

[
∂L

GL[D̃]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2L

GL[D̃]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,··· ,ik=1

[
∂kL

GL[D̃]

∂xi1∂xi2 · · · ∂xik

]

xij=0,1≤j≤k
xi1xi2 · · ·xik

to be the asymptotic value of Lagrange density L
GL[D̃], particularly, the linear parts

L
GL[D̃](0) +

n∑

i=1

[
∂L

GL[D̃]

∂LDi

]

LDi
=0

LMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

[
∂L

GL[D̃]

∂Tij

]

Tij=0

Tij .

Notice that such a Lagrange density maybe intersects. We need to consider those of

Lagrange densities without intersections. For example,

L
GL[D̃] =

4∑

i=1

L
2
Ci
−

4∑

i=1

L−→
C i
←−
C i+1

for the combinatorial field shown in Fig.14.

Then, applying the Euler-Lagrange equations, i.e.,

∂µ
∂L

GL[D̃]

∂∂µφD̃

−
∂L

GL[D̃]

∂φ
D̃

= 0,

where φ
D̃

is the wave function of combinatorial field D̃(t), we are easily find the equations of

combinatorial field D̃ .

For example, for a combinatorial scalar field φ
D̃

, without loss of generality let

φ
D̃

=
n∑

i=1

ciφDi

L
GL[D̃] =

1

2

n∑

i=1

(∂µiφDi∂
µiφDi −m2

iφ
2
Di

) +
∑

(Di,Dj)∈E(GL[D̃])

bijφDiφDj ,

i.e., linear case

L
GL[D̃] =

n∑

i=1

LDi +
∑

(Di,Dj)∈E(GL[D̃])

bijTij

with LDi = 1
2 (∂µiφDi∂

µiφDi −m2
iφ

2
Di

), Tij = φDiφDj , µi = µDi and constants bij , mi, ci for
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integers 1 ≤ i, j ≤ n. Then the equation of combinatorial scalar field is

n∑

i=1

1

ci
(∂µ∂

µi +m2
i )φMi

−
∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
φMj

ci
+
φMi

cj

)
= 0.

Similarly, we can determine the equations on combinatorial Maxwell field, Weyl field, Dirac

field, Yang-Mills field and Einstein gravitational field in theory. For more such conclusions, the

reader is refers to references [13], [18]-[20] in details.

Notice that the string theory even if arguing endlessly by physicists, it is in fact a combina-

torial field R4×R7 under supersymmetries, and the same also happens to the unified field theory

such as those in the gauge field of Weinberg-Salam on Higgs mechanism. Even so, Notions 5.1

and 5.2 produce developing space for physics, merely with examining by experiment.

§6. Conclusions

The role of CC conjecture to mathematical sciences has been shown in previous sections by

examples of results. Actually, it is a mathematical machinery of philosophical notion: there

always exist universal connection between things T with a disguise GL[T ] on connections,

which enables us converting a mathematical system with contradictions to a compatible one

([27]), and opens thoroughly new ways for developing mathematical sciences. However, is a

topological graph an element of a mathematical system with measures, not only viewed as a

geometrical figure? The answer is YES!

Recently, the author introduces
−→
G -flow in [29], i.e., an oriented graph

−→
G embedded in a

topological space S associated with an injective mappings L : (u, v)→ L(u, v) ∈ V such that

L(u, v) = −L(v, u) for ∀(u, v) ∈ X
(−→
G
)

holding with conservation laws

∑

u∈NG(v)

L (v, u) = 0 for ∀v ∈ V
(−→
G
)
,

where V is a Banach space over a field F and showed all these
−→
G -flows

−→
GV form a Banach

space by defining ∥∥∥−→GL
∥∥∥ =

∑

(u,v)∈X
(−→
G
)
‖L(u, v)‖

for ∀−→GL ∈ −→GV , and furthermore, Hilbert space by introducing inner product similarly, where

‖L(u, v)‖ denotes the norm of F (uv) in V , which enables us to get
−→
G -flow solutions, i.e.,

combinatorial solutions on differential equations.
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Abstract: In this paper, Mannheim curve is a timelike curve, by getting partner curve as a

spacelike curve which has spacelike binormal, with respect to IL
3 Lorentz Space, S2

1 Lorentz

sphere, or H2
0 Hyperbolic sphere, we have calculated arc lengths of Mannheim partner curve’s

(T ∗) , (N∗), (B∗) spherical indicator curves, arc length of (C∗) fixed pol curve, and we have

calculated geodesic curves of them, and also we have figured some relations among them. In

addition, if the natural lifts geodesic spray of spherical indicator curvatures of Mannheim

partner curve is an integral curve, we have expressed how Mannheim Curve is supposed to

be.

Key Words: Lorentz space, Mannheim curve, geodesic curvatures, geodesic spray, natural

lift.

AMS(2010): 53B30, 53C50

§1. Introduction

There are a lot of researches to be done in 3-dimentional Euclidian Space on differential geometry

of the curves. Especially, many theories were obtained by making connections two curves’

mutual points and between Frenet Frames. Well known researches are Bertrand curves and

Involute-Evolute curves, [6], [4], [7], [19]. Those curves were studied carefully in different

spaces, therefore, so many results were gained. In Euclidian Space and Minkowski Space,

Bertrand curves’ Frenet frames and Involute-Evolute curves’ Frenet frames create spherical

indicator curves on unit sphere surface. Those spherical indicator curves’ natural lifts and

geodesic sprays are defined in [5], [16], [3], [8].

Mannheim curve was firstly defined by A. Mannheim in 1878. Any curve can be a

Mannheim curve if and only if κ = λ
(
κ2 + τ2

)
, λ is a nonzere constant, where curvature

of curve is κ and curvature of torsion is τ. After a time, Manheim curve was redefined by Liu ve

Wang. According to this new definition, when first curve’s principal normal vector and second

curve’s binormal vector are linearly dependent, first curve was named as Mannheim curve, and

second curve was named as Mannheim partner curve, [21], [10]. There are so many researches

1Received October 29, 2014, Accepted May 18, 2015.
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to be done by Mathematicians after Liu ve Wang’s definition [12], [15], [15], [2].

§2. Preliminaries

Letα : I → E3, α(t) = (α1(s), α2(s), α3(s)) be unit speed differentiable curve. If we symbolize

α : I → E3 curve’s Frenet as {T,N,B}, curvature as κ, and torsion as τ , there are some

equations among them;





T ′(s) = κ(s)N(s)

N ′(s) = −κ(s)T (s) + τ(s)B(s)

B′(s) = −τ(s)N(s).

(2.1)

By using (2.1), we can get W Darboux vector as;

W = τT + κB (2.2)

If ϕ is the angle which is between W and B, the unit Darboux vector is that;

C = sinϕT + cosϕB (2.3)

Let X be differentiable vector space on M .( Note that M is any vector space)

d

ds
(α (s)) = X (α (s)) (2.4)

α curve is an integral curve of X if and only if d
ds

(α (s)) = X (α (s)).

Suppose that TM =
⋃
P∈M TM (P ), then,

α : I → TM,α (s) = (α (s) , α′ (s)) (2.5)

α : I → TM curve is natural lift of α : I →M and for v ∈ TM

X (v) = −〈v, S (v)〉N |P

X vector space is called geodesic spray [5], [17]. Where

DXY = DXY + 〈S (X) , Y 〉N (2.6)

The equation of (2.6) is a Gauss equation on M . (T ) , (N) and (B) spherical indicator
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curves’ equations and (C) pol curve’s equations are given respectively;





αT (s) = T (s)

αN (s) = N (s)

αB (s) = B (s)

αC (s) = C (s)

With respect to E3, arc lengths and geodesic curvatures of those curves are given respec-

tively;

sT =

∫ s

0

κds, sN =

∫ s

0

‖W‖ ds, sB =

∫ s

0

τds, sC =

∫ s

0

ϕ′ds (2.7)





kT =
1

cosϕ
,

kN =

√
1 +

(
ϕ′

‖W‖

)2

,

kB =
1

sinϕ
,

kC =

√
1 +

(
‖W‖
ϕ′

)2

.

(2.8)

With respect to S2, geodesic curvatures are given;

γT = tanϕ, γN =
ϕ′

‖W‖ , γB = cotϕ, γC =
‖W‖
ϕ′

(see[9]) (2.9)

Let α : I → χ (M) be natural lift of α : I → M . X geodesic spray is an integral curve if

and only if there is a geometric curve on M , (see [5]).

g : R
3 × R

3 → R , g(X,Y ) = x1y1 + x2y2 − x3y3

This inner product space is defined as Lorentz Space and symbolized as IL
3.X ∈ IL

3 vector’s

norm is ‖X‖
IL

=
√
|g(X,X)|. For X = (x1, x2, x3) and Y = (y1, y2, y3) ∈ IL

3

X × Y = (x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1)

X × Y is called vector product of X and Y , [1]. Let T be tangent vector of α : I → IL
3.

α : I → IL
3 is respectively defined as:

(1) If g(T, T ) > 0, αcurve is a spacelike curve;

(2) If g(T, T ) < 0, αcurve is a timelike curve;

(3) If g(T, T ) = 0, α curve is a lightlike or null curve, (see [11]).

Let α : I → IL
3 be differentiable timelike curve. In this case, T is timelike, N and B are
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spacelike, and Frenet formulas are given;





T ′ = κN

N ′ = κT − τB
B′ = τN.

(2.10)

(see [22]). Where

W = τT − κB (2.11)

(see [20]). In this situation, there are two cases for W Darboux vector; if W is spacelike, the

Lorentzian timelike angle ϕ which is between −B and W, then;

κ = ‖W‖ coshϕ , τ = ‖W‖ sinhϕ (2.12)

C = sinhϕT − coshϕB (2.13)

and unit Darboux vector is;

If W timelike, κ and τ are formulized;

κ = ‖W‖ sinhϕ , τ = ‖W‖ coshϕ (2.14)

and unit Darboux vector is;

C = coshϕT − sinhϕB (2.15)

Let α : I → IL
3 be spacelike curve which has spacelike binormal. In this case, α curve’s

Frenet vectors’ vector product are respectively;

T ×N = −B , N ×B = −T , B × T = N and Frenet formulas are found as;





T ′ = κN

N ′ = κT + τB

B′ = τN

(2.16)

(see [22]).In this case, Darboux vector will be;

W = −τT + κB, (see[20]). (2.17)

Let ϕ be the angle which is between B and W . Then,

κ = ‖W‖ cosϕ , τ = ‖W‖ sinϕ (2.18)

and unit Darboux vector is given as;

C = − sinϕT + cosϕB (2.19)
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Let M be a Lorentz manifold, and M be a hypersurface of M. Suppose that S is a shape

operator which is obtained from N normal of M , D is the connection on M, D̄ is the connection

on M ,

For X,Y ∈ χ(M), Gauss Equation is;

DXY = D̄XY + εg(S(X), Y )N (2.20)

Where S(X) = −DXN and ε = g(N,N), [18].

S2
1(r) =

{
X ∈ IR3

1

∣∣ g(X,X) = r2, r ∈ IR, r = fixed
}

is defined as Lorentz sphere,

H2
0 (r) =

{
X ∈ IR3

1

∣∣ g(X,X) = −r2, r ∈ IR, r = fixed
}

is defined as hyperbolic sphere.

Let α : I → E3 and α∗ : I → E3 be two differentiable curves. Suppose that Frenet

Frames on the points of α (s) and α∗ (s) are respectively given as {T (s), N(s), B(s)} and

{T ∗(s), N∗(s), B∗(s)}. If α curve’s principal normal vector and α∗ curve’s binormal vector

are linearly dependent, α curve is named Mannheim curve, α∗ curve is named Mannheim part-

ner curve, and it is shown as (α, α∗), [21]. Mannheim curve’s equation is given as;

α∗(s∗) = α(s)− λN(s) or α(s) = α∗(s∗) + λB∗(s∗) [12].

There are some following equations among those curves;





T = cos θT ∗ + sin θN∗

N = B∗

B = − sin θT ∗ + cos θN∗.

(2.21)

cos θ =
ds∗

ds
, sin θ = λτ∗

ds∗

ds
(2.22)





T ∗ = cos θT − sin θB

N∗ = sin θT + cos θB

B∗ = N.

(2.23)

Where ∢ (T,T ∗)=θ, [3] .Let κ be curvature of α, τ be torsion of α, and let κ∗ be curvature of

α∗ , τ∗ be torsion of α∗. Then, there are the following equations;





κ = τ∗ sin θ · ds
∗

ds

τ = −τ∗ cos θ · ds
∗

ds
.

(2.24)
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



κ∗ =
dθ

ds∗

τ∗ = (κ sin θ − τ cos θ) · ds
∗

ds
.

(2.25)

τ∗ =
κ

λτ
, [3] (2.26)

Let α : I → E3 be Mannheim curve, α∗ : I → E3 be Mannheim partner curve. Suppose

that Frenet frames are respectively given as {T (s), N(s), B(s)} and {T ∗(s), N∗(s), B∗(s)}. Let

θ be the angle which is between T and T ∗, and let ϕ be the angle which is between B and W.

In this case, the following equations hold.

C = T ∗ (2.27)





sinϕ = cos θ

cosϕ = − sin θ
(2.28)

(see [15]). If we consider (2.28), (2.8), (2.9), (2.22) and (2.23) will respectively turn the following

equations;

cos θ =
τ

‖W‖ , − sin θ =
κ

‖W‖ (2.29)





kT = − 1

sin θ
,

kN =

√

1 +

(
θ′

‖W‖

)2

,

kB =
1

cos θ
, ,

kC =

√

1 +

(‖W‖
θ′

)2

.

(2.30)

γT = − cot θ, γN =
θ′

‖W‖ , γB = − tan θ, γC =
‖W‖
θ′

sinϕ =
ds∗

ds
, cosϕ = λτ∗

ds∗

ds
(2.31)

(see [15]).

§3. Timelike-Spacelike Mannheim Curve Pairs

Definition 3.1 Let α : I → IL
3 be timelike curve and let α∗ : I → IL

3 be spacelike curve

which has spacelike binormal. Suppose that α curve’s Frenet frames on the point of α (s) is
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{T (s), N(s), B(s)} and α∗ curve’s Frenet frames on the point of α∗ (s) is {T ∗(s), N∗(s), B∗(s)}
If α curve’s principal normal vector and α∗ curve’s binormal vektorare linearly dependent, α

curve is called Mannheim curve and α∗ curve is called Mannheim partner curve. This pair

curve is briefly symbolized as (α, α∗) and it is named timelike-spacelike Mannheim curve pairs.

Theorem 3.1 The distance which is between (α, α∗) timelike-spacelikeMannheim curve pairs

is constant.

Proof It can be written that;

α(s) = α∗(s∗) + λ(s∗)B∗(s∗).

If this equation is derived with respect to s∗ parameter, we can write that;

T
ds

ds∗
= T ∗ + λτ∗N∗ + λ′B∗

If we get inner product of the last equation and B∗, then;

λ′ = 0.

From the definition of Euclidean distance, we can write that;

d(α∗(s∗), α(s)) = ‖α(s) − α∗(s∗)‖
= |λ| = cons tan t 2

Theorem 3.2 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. Suppose that α curve’s

and α∗ curve’s Frenet frames are respectively {T,N,B} and {T ∗, N∗, B∗}. In this case, there

are the following equations;





T ∗ = − sinh θT + cosh θB

N∗ = − cosh θT + sinh θB

B∗ = N.

(3.1)

sinh θ =
ds∗

ds
, cosh θ = −λτ∗ ds

∗

ds
(3.2)





T = sinh θT ∗ − cosh θN∗

N = B∗

B = cosh θT ∗ − sinh θN∗.

(3.3)

Proof If we derive α∗(s∗) = α(s)−λN(s) with respect to s parameter, we can write that;

T ∗
ds∗

ds
= (1 − λκ)T (s)− λτB (3.4)
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If we get inner product of (3.4) and T , then;

− sinh θ
ds∗

ds
= 1− λκ (3.5)

If we get inner product of (3.4) and B, then;

cosh θ
ds∗

ds
= λτ (3.6)

If (3.5) and (3.6) are plugged into (3.4), we can write that;

T ∗ = − sinh θT + cosh θB

From Frenet formulas, the following equations can be found.

N∗ = − cosh θT + sinh θB,

B∗ = N

Obviously, we have shown that the equation of (3.1). If we arrange this equation with respect

to T and B, we can find the equation of (3.3). If α(s) = α∗(s∗) + λB∗(s∗) is derived with

respect to sparameter, it can be found that;

T = T ∗
ds∗

ds
+ λτ∗

ds∗

ds
N∗

If we consider the corresponding value of T from (3.3), the equation of (3.2) is proven.

Theorem 3.3 Let(α, α∗)be timelike-spacelike Mannheim curve pairs. Let κ be curvature of α,

and let τ be torsion of α. In this case, there is the following equation

λκ− µτ = 1

Proof If we divide (3.5) to (3.6), we can write that;

tanh θ =
λκ− 1

λτ

If we get µ = λ tanh θ, the result is proven. 2
Theorem 3.4 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. In this case, there are

the following equations among curvatures.

κ = −τ∗ cosh θ
ds∗

ds
, τ = −τ∗ sinh θ

ds∗

ds
(3.7)

κ∗ =
dθ

ds∗
= θ′

ds

ds∗
, τ∗ = −κ cosh θ

ds

ds∗
+ τ sinh θ

ds

ds∗
. (3.8)
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Proof If 〈T,B∗〉 = 0 is derived, then; κ = −τ∗ cosh θ
ds∗

ds
,

If 〈B,B∗〉 = 0 is derived, then; τ = −τ∗ sinh θ
ds∗

ds
,

If 〈T, T ∗〉 = sinh θ is derived, then; κ∗ =
dθ

ds∗
= θ′

ds

ds∗
,

If 〈N,N∗〉 = 0 is derived, then; τ∗ = −κ cosh θ
ds

ds∗
+ τ sinh θ

ds

ds∗
. Therefore, the result is

proven. 2
Theorem 3.5 Let(α, α∗) be timelike-spacelike Mannheim curve pairs. Let κ∗ be curvature of

α∗, let τ∗ be torsion of α∗, and let τ be torsion of α. The following equation holds.

τ∗ = − κ

λτ
. (3.9)

Proof If we get equations from (3.2) and if we multiply side by side (3.5) and (3.6), the

result is proven. 2
Theorem 3.6 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. There is the following

equation between α curve’s W Darboux vector and α∗ curve’s T ∗ tangent vector.

W = τ∗
ds∗

ds
T ∗ (3.10)

Proof We know that W = τT − κB. If we get the corresponding values of T and B from

(3.3), and then if we plug into those values in (3.10),Then, if we get the corresponding values

of κ and τ from (3.7), and then if we plug into those values in (3.10), the result is proven. 2
Result 3.1 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. Let ϕ be the angle which

is between α curve’s Darboux vector and α curve’s binormal vector. There are the following

equations between θ and ϕ.

If W is a spacelike vector; 



sinhϕ = − sinh θ

− coshϕ = cosh θ
(3.11)

If W is timelike vector; 



coshϕ = − sinh θ

− sinhϕ = cosh θ
(3.12)

ϕ′ = −θ′ (3.13)

Proof Suppose that W is a spacelike vector, and the following equations hold because of

the equations of (2.13) and (3.1),

C = sinhϕT − coshϕB,

T ∗ = − sinh θT + cosh θB
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If we consider that C = T ∗, we can write that;





sinhϕ = − sinh θ

− coshϕ = cosh θ
,

Similarly, suppose that W is a timelike vector, and from the equation of (2.15), we can write

that;

C = coshϕ T − sinhϕ B

If we consider that C = T ∗, we can write that;





coshϕ = − sinh θ

− sinhϕ = cosh θ

If we divide two equations to each other in the equation of (3.12), we can easily write that;

cothϕ = tanh θ

If we derive last equation, the following equation holds.

ϕ′ = −θ′.

Theorem 3.7 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. There is the following

equation which is between α curve’s W Darboux vector and α∗ curve’s W ∗ Darboux vector;

W ∗ =
−1

sinh θ
W − θ′κ

λκ ‖W‖N (3.14)

Proof It can be written τ∗T ∗ = −W ∗ + κ∗B∗ because α∗ Manheim partner curve’s W ∗

vector is spacelike. If this equation is plugged into (3.10), and if we consider that B∗= N, the

following equation holds.

W =
ds∗

ds
(−W ∗ + κ∗N)

If the corresponding value of
ds

ds∗
from (3.2) is written in this equation, then;

W ∗ =
−1

sinh θ
W + κ∗N (3.15)

On the other hand, from the equation of (3.7), we can write that
ds

ds∗
=

τ∗

‖W‖ . If the corre-

sponding value of τ∗ in (3.9) is written in this equation, then;

ds

ds∗
=

−κ
λτ ‖W‖ .
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If we plug this equation into κ∗ = θ′
ds

ds∗
, the following equation holds.

κ∗ = −θ′ κ

λτ ‖W‖ (3.16)

If we write this value of κ∗ in (3.15), the result is proven.

Let sT be α : I → IL
3 timelike Mannheim curve’s (T ) tangent indicator’s arc length, then;

sT =

∫ s

0

κds (3.17)

Similarly, (N) principal normal, (B) binormal, and (C) fixed pol curve’s arc lengths are respec-

tively;

sN =

∫ s

0

‖W‖ ds, (3.18)

sB =

∫ s

0

|τ | ds, (3.19)

sC =

∫ s

0

|φ′| ds (3.20)

Let kT be (T ) tangent indicator’s geodesic cuvature on IL
3. Suppose that TT is unit tangent

vector of (T ), then;

kT = ‖DTT TT ‖

If αT (s) = T (s) tangent indicator is derived with respect to sT parameter, we can write that;

TT = N (3.21)

If we derive one more time and simplify the equation, the following equation holds.

DTT TT = T − τ

κ
B (3.22)

From the definition of geodesic curvature;

kT =

√ ∣∣∣∣−1 +
τ2

κ2

∣∣∣∣ (3.23)

If we consider the equations of (2.12) and (3.11), we can write that;

kT =
1

cosh θ
(3.24)

Similarly, if αN (s) = N(s) principal normal indicatoris derived with respect to sN parameter,

and the equation of (2.12) is plugged into (3.25), and then the equation of (3.11) is considered,

we can write that;

TN = − cosh θT + sinh θB (3.25)
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If we derive one more time, the following equation holds.

DTNTN = (θ′ sinh θT + ‖W‖N − θ′ cosh θB)
1

‖W‖ (3.26)

From the definition of geodesic curvature;

kN =

√√√√
∣∣∣∣∣1 +

(
θ′

‖W‖

)2
∣∣∣∣∣ (3.27)

If αB(s) = B(s) binormal indicator is derived with respect to sB parameter, and if we chose

the positive routing.

DTBTB =
κ

τ
T −B (3.28)

From the equation of (2.12);

kB =
1

sinh θ
(3.29)

If αC(s) = C(s) fixed pol curve is derived with respect to sC parameter, we can write that;

TC = coshϕT − sinhϕB

If we derive one more time, and if we consider the equations of (3.11) and (3.13), we can write

that;

DTCTC = − sinh θT + cosh θB ± ‖W‖
θ′

N (3.30)

From the definition of geodesic curvature;

kC =

√√√√
∣∣∣∣∣1 +

(‖W‖
θ′

)2
∣∣∣∣∣ (3.31)

Result 3.2 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. α Mannheim curve’s

spherical indicators are (T ) , (N), (B) and also α Mannheim curve’s fixed pol curve which is

(C), with respect to IL
3, geodesic curvatures of (T ) , (N),(B) and (C) are respectively;





kT =
1

cosh θ

kN =

√√√√
∣∣∣∣∣1 +

(
θ′

‖W‖

)2
∣∣∣∣∣

,





kB =
1

sinh θ

kC =

√√√√
∣∣∣∣∣1 +

(‖W‖
θ′

)2
∣∣∣∣∣ .
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Let D be α : I → IL
3 Mannheim curve’s connection on IL

3, let D̄ be α : I → IL
3 Mannheim

curve’s connection on S2
1 , and let ¯̄D be α : I → IL

3 Mannheim curve’s connection on H2
0 .

Suppose that ξ is unit normal vector space of S2
1 and H2

0 , then;

DXY = D̄XY + εg(S(X), Y )ξ, ε = g(ξ, ξ)

DXY = ¯̄DXY + εg(S(X), Y )ξ, ε = g(ξ, ξ).

Where S is shape operator of S2
1 and H2

0 , and corresponding matrix is;

S =


 −1 0

0 − 1




(see[?]). Let γT be (T ) tangent indicator’s geodesic curvature on H2
0 , then;

γT =
∥∥∥ ¯̄DTT TT

∥∥∥

From Gauss Equation, we can write that;

DTT TT = ¯̄DTT TT + εg(S(TT ), TT )T

where

ε = g(T, T ) = −1, S(TT ) = −TT , and g(S(TT ), TT ) = −1

If we write those values in Gauss equation, and if we consider (3.22), we can write that;

¯̄DTT TT = − τ
κ
B. (3.32)

And also from the equation of (2.12) and (3.11);

γT = tanh θ. (3.33)

Similarly, Let γN be geodesic curvature of (N) principal normal indicator on S2
1 , then;

γN =
∥∥D̄TNTN

∥∥

From Gauss Equation, we can write that;

DTNTN = D̄TNTN + εg(S(TN), TN)N

where

ε = g(N,N) = +1, S(TN ) = −TN , and g(S(TN), TN ) = +1.

If those values are written in Gauss equation, and if we consider (3.26), we can write that;

D̄TNTN =
θ′

‖W‖(sinh θT − cosh θB) (3.34)
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If we get norm of the equation;

γN =
θ′

‖W‖ (3.35)

Let γB be geodesic curvature of (B) binormal indicator on S2
1 , then;

γB =
∥∥D̄TBTB

∥∥ .

From Gauss equation, we can write that;

DTBTB = D̄TBTB + εg(S(TB), TB)B

where

ε = g(B,B) = +1, S(TB) = −TB and g(S(TB), TB) = −1.

If we write those values in Gauss equation, and if we consider (3.28), we can write that;

D̄TBTB =
κ

τ
T (3.36)

From the equations of (2.12) and (3.11), it can be written that;

γB = coth θ (3.37)

Let γC be geodesic curvature of (C) fixed pol curve on S2
1 , then;

γC =
∥∥D̄TCTC

∥∥ .

From Gauss equation

DTCTC = D̄TCTC + εg(S(TC), TC)C

where

ε = g(C,C) = +1, S(TC) = −TC and g(S(TC), TC) = −1.

If we write those values in Gauss equation, and if we consider (2.13), (3.11) and (3.30), we can

write that;

γC =
‖W‖
θ′

. (3.38)

Result 3.3 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. α Mannheim curve’s

spherical indicators are (T ) , (N), (B) and also α Mannheim curve’s fixed pol curve is (C),

with respect to S2
1 Lorentz sphere or H2

0 hyperbolic sphere, geodesic curvatures of (T ) , (N),

(B) and (C) are respectively;

γT = tanh θ, γN =
θ′

‖W‖ , γB = coth θ, γC =
‖W‖
θ′

.

Let α∗ : I → IL
3 be spacelike Mannheim curve which has spacelike binormal, and let sT∗
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be α∗ : I → IL
3 curve’s (T ∗) tangent indicator’s arc length, then,

sT∗ =

∫ s

0

θ′ds (3.39)

Similarly, arc lengths of (N∗), (B∗) and (C∗) are found;

sN∗ =

∫ s

0

√∣∣∣(θ′)2 + ‖W‖2
∣∣∣ds (3.40)

sB∗ =

∫ s

0

‖W‖ ds (3.41)

sC∗ =

∫ s

0

(ϕ∗)′ds. (3.42)

On the other hand, let ϕ∗ be the angle which is between W ∗ and B∗. unit Darboux vector can

be written as;

C∗ = − sinϕ∗T ∗ + cosϕ∗B∗

where

sinϕ∗ =
τ∗

‖W ∗‖ and cosϕ∗ =
κ∗

‖W ∗‖ ⇒ tanϕ∗ =
τ∗

κ∗
.

C∗ is derived and then if we simplify the equation, we can write that;

(ϕ∗)′ =

(
τ∗

κ∗

)′

1 +
(
τ∗

κ∗

)2

If the values of κ∗ and τ∗ are written in the equation, we can write that;

( Note that the values of κ∗ and τ∗ are corresponding values of (3.8) and (3.12)

(ϕ∗)′ =

(
‖W‖
θ′

)′

1 +
(
‖W‖
θ′

)2 (3.43)

If (3.43) is written in the equation of (3.42), we can easily find that;

sC∗ =

∫ s

0

(
‖W‖
θ′

)′

1 +
(
‖W‖
θ′

)2 ds (3.44)

If (3.23) is considered, we can obtain that;

(ϕ∗)′ =

(√
k2
C − 1

)′

k2
C

(3.45)
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If (3.45) is written in the equation of (3.42), we can find that;

sC∗ =

∫ s

0

(√
k2
C − 1

)′

k2
C

ds. (3.46)

Result 3.4 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. On the point of α∗(s),

α∗curve’s Frenet vectors’ spherical indicator curves and (C∗) fixed pol curve which is drawn by

the unit Darboux vector. In terms of IL
3, (C∗) fixed pol curve’s arc lengths are respectively;





sT∗ =

∫ s

0

θ′ds,

sN∗ =

∫ s

0

√
|(θ′)2 + ‖W‖2ds,

sB∗ =

∫ s

0

‖W‖ds,

sC∗ =

∫ s

0

(‖W‖
θ′

)
′

1 + (‖W‖
θ′

)2
ds.

Result 3.5 Let (α, α∗) be timelike-spacelike Mannheim curve pairs, and let kC be α timelike

Mannheim curve’s geodesic curvature. In this case, the arc length of (C∗) fixed pol curve is;

sC∗ =

∫ s

0

(√
k2
C − 1

)′

k2
C

ds.

In terms of IL
3, Let kT∗ be α∗T∗(s) = T ∗(s) tangent indicator’s geodesic curvature, let sT∗ be

arc parameter , and let TT∗ be unit tangent vector . Then, we can say that;

TT∗ = − cosh θT + sinh θB (3.47)

If we derive one more time the equation of (3.47), it can be written that;

DTT∗TT∗ = − sinh θT + cosh θB +
‖W‖
θ′

N (3.48)

or if we get norm of (3.48), we can write that;

kT∗ =

√√√√
∣∣∣∣∣1 +

(‖W‖
θ′

)2
∣∣∣∣∣ (3.49)

Similarly, in terms of IL
3, Let kN∗ be α∗N∗(s) = N∗(s) principal normal indicator’s geodesic

curvature, let sN∗ be arc parameter, and let TN∗ be unit tangent vector. Then, we can say
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that;

TN∗ =
1√ ∣∣∣∣1 +
(
‖W‖
θ′

)2
∣∣∣∣

(− sinh θT + cosh θB) +
1√ ∣∣∣∣1 +
(

θ′

‖W‖

)2
∣∣∣∣

N (3.50)

If we consider the equations of (3.27) and (3.31), it can be written that;

TN∗ =
1

kC
(− sinh θT + cosh θB) +

1

kN
N (3.51)

If we derive one more time the equation of (3.51), after simplifying, it can be written that;

DTN∗TN∗ =

([
(− sinh θ

kC
)
′

+ ( κ
kN

)
√
|(θ′)2 + ‖W‖2|

]
T +

[
( 1
kN

)
′

√
|(θ′)2 + ‖W‖2|

]
N (3.52)

+

[
( cosh θ
kC

)
′ − τ

kN√
|(θ′)2 + ‖W‖2|

]
B

)

If we get norm of (3.52), we can write that;

kN∗ =

√√√√√√

[(
− sinh θ
kC

)′

+
(
κ
kN

)]2
+

[(
1
kN

)′
]2

+

[(
cosh θ
kC

)′

− τ
kN

]2

(θ′)2 + ‖W‖2
. (3.53)

In terms of IL
3, Let kB∗ be α∗B∗(s) = B∗(s) binormal indicator’s geodesic curvature, let

sB∗ be arc parameter, and let TB∗ be unit tangent vector. Then, we can say that;

TB∗ =
κ

‖W‖T −
τ

‖W‖B (3.54)

If we consider the equations of (2.12) and (3.11), it can be written that;

TB∗ = − cosh θT + sinh θB

If we derive, TB∗ after simplifying, it can be written that;

DTB∗TB∗ =
θ′

‖W‖(− sinh θT + cosh θB) +N (3.55)

or if we get norm of TB∗ , we can write that;

kB∗ =

√

1 +

(
θ′

‖W‖

)2

(3.56)

In terms of IL
3, Let kC∗ be α∗C∗(s) = C∗(s) fixed pol curve’s geodesic curvature, let sC∗ be arc

parameter, and let TC∗ be unit tangent vector. Then, we can say that;
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TC∗ = − cosϕ∗T ∗ + sinϕ∗B∗ (3.57)

If we derive one more time the equation of (3.57), it can be written that;

DTC∗TC∗ = − sinϕ∗T ∗ + cosϕ∗B∗ − ‖W
∗‖

(ϕ∗)′
N∗ (3.58)

If we get norm of (3.57), we can write that;

kC∗ =

√√√√
∣∣∣∣∣1 +

(‖W ∗‖
(ϕ∗)′

)2
∣∣∣∣∣ (3.59)

If the values of κ∗ and τ∗ are written in ‖W ∗‖ =
√
|(τ∗)2 + (κ∗)2|, we can find that ( Note

that the value of κ∗ and τ∗ are corresponding values of (3.8) and (3.9).)

‖W ∗‖ =
κ

λτ

√√√√
∣∣∣∣∣1 +

(‖W‖
(ϕ)′

)2
∣∣∣∣∣

From the equation of (3.31) and (3.45), it can be written that;

‖W ∗‖
(ϕ∗)′

=
κ(kC)3

λτ
(√

k2
C − 1

)′ (3.60)

If the value of (3.60) is written in, we can say that;

kC∗ =

√√√√√√

∣∣∣∣∣∣∣
1 +




κ(kC)3

λτ
(√

k2
C − 1

)′




2∣∣∣∣∣∣∣

Result 3.6 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. In terms of IL
3, α∗ curve’s

(T ∗), (N∗), (B∗) spherical indicator curves’ and (C∗) fixed pol curve’s geodesic curvatures are
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respectively;





kT∗ =

√∣∣∣1 + (
‖W‖
θ′

)2
∣∣∣,

kN∗ =

√
[(− sinh θ

kC
)′ + ( κ

kN
)]2 + [( 1

kN
)′ ]2 + [( cosh θ

kC
)′ − τ

kN
]2

(θ′)2 + ‖W‖2 ,

kB∗ =

√
1 +

( θ′

‖W‖
)2

,

kC∗ =

√√√√
∣∣∣∣∣1 +

( κ(kC)3

λτ(
√
k2
C − 1)′

)2
∣∣∣∣∣.

Let γT∗ be α∗ : I → IL
3 spacelike binormal spacelike Mannheim partner curve’s α∗T∗(s) =

T ∗(s) tangent indicator’s geodesic curvature in S2
1 . Then;

γT∗ =
∥∥D̄TT∗TT∗

∥∥

From Gauss equation, it can be written that;

DTT∗TT∗ = D̄TT∗TT∗ + εg(S(TT∗), TT∗)T
∗

where

ε = g(T ∗, T ∗) = +1, S(TT∗) = −TT∗ and g(S(TT∗), TT∗) = +1.

If those values are written in Gauss equation, and if the equation of (3.1) and (3.48) are

considered, we can say that;

D̄TT∗TT∗ =

(‖W‖
θ′

)
N (3.61)

If we get norm of (3.61), we can write that;

γT∗ =
‖W‖
θ′

DTT∗TT∗ = 0 if and only if
(
T ∗
)

curve geodesic spray is an integral curve. From the equation

of (3.61), we can find that; κ = 0, τ = 0 which means α is a straight line.

Result 3.7 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. α Mannheim curve does

not have any partner curve because α Mannheim curveis a straight line.

Let γN∗ be geodesic indicator in H2
0 for α∗N∗(s) = N∗(s) principal normal indicator. We

can write that;

γN∗ =
∥∥D̄TN∗TN∗

∥∥
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From Gauss equation, it can be written that;

DTN∗TN∗ = D̄TN∗TN∗ + εg(S(TN∗), TN∗)N
∗

where

ε = g(N∗, N∗) = +1, S(TN∗) = −TN∗ and g(S(TN∗), TN∗) = +1.

If those values are written in Gauss equation, and if the equations of (3.1) and (3.52) are

considered, we can say that

D̄TN∗TN∗ =

[
(− sinh θ

kC
)
′

+ ( κ
kN

)
√
|(θ′)2 + ‖W‖2|

+ cosh θ

]
T + (3.62)

[
( 1
kN

)
′

√
|(θ′)2 + ‖W‖2|

]
N +

[
( cosh θ
kC

)
′ − τ

kN√
|(θ′)2 + ‖W‖2|

− sinh θ

]
B

If we get norm of (??), we can write that;

γN∗ =

([
(− sinh θ

kC
)
′

+ ( κ
kN

)
√
|(θ′)2 + ‖W‖2|

+ cosh θ

]2

+

[
( 1
kN

)
′

√
|(θ′)2 + ‖W‖2|

]2

+

[
( cosh θ
kC

)
′ − τ

kN√
|(θ′)2 + ‖W‖2|

− sinh θ

]2)
1

2

DTN∗TN∗ = 0 if and only if
(
N∗
)

curve geodesic spray is an integral curve. In this case, we can

write that;





(
− sinh θ
kC

)′

+
(
κ
kN

)

√∣∣∣(θ′)2 + ‖W‖2
∣∣∣

+ cosh θ = 0,

(
1
kN

)′

√∣∣∣(θ′)2 + ‖W‖2
∣∣∣

= 0,

(
cosh θ
kC

)′

− τ
kN√∣∣∣(θ′)2 + ‖W‖2
∣∣∣
− sinh θ = 0

This value cannot be 0.

Result 3.8 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. There is no Mannheim

partner curve on hyperbolic sphere to be made α∗ Mannheim partner curve’s (N∗) principal

normal indicator geodezic spray is an integral curve.

Let γB∗ be geodesic curve in S2
1 for α∗B∗(s) = B∗(s) principal normal indicator. In this

case, we can write that;
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γB∗ =
∥∥∥ ¯̄DTB∗TB∗

∥∥∥

From Gauss Equation, it can be written that;

DTB∗TB∗ = ¯̄DTB∗TB∗ + εg(S(TB∗), TB∗)B
∗

where

ε = g(B∗, B∗) = −1, S(TB∗) = −TB∗ and g(S(TB∗), TB∗) = −1.

If those values are written in Gauss Equation, then, B∗ = N . And if the equation of (3.55) is

considered, we can say that;

¯̄DTB∗TB∗ =
θ′

‖W‖(− sinh θT + cosh θB) (3.63)

If we get norm of (3.63), we can write that;

γB∗ =
θ′

‖W‖

¯̄DTB∗TB∗ = 0 if and only if
(
B∗
)

curve geodesic spray is an integral curve. In this case, from

the equation of (3.63), we can write that;





−θ′ sinh θ

‖W‖ = 0,

θ′ cosh θ

‖W‖ = 0

where θ′ = 0. In this case, from the equations of (3.13) and (2.18),
κ

τ
= constant. This means

α Mannheim curve is a helix.

Result 3.9 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. If α Mannheim curve is a

helix, Mannheim partner of α is a straight line.

Let γC∗ be geodesic curve in S2
1 for α∗C∗(s) = C∗(s). In this case, we can write that;

γC∗ =
∥∥D̄TC∗TC∗

∥∥

From Gauss Equation, it can be written that;

DTC∗TC∗ = D̄TC∗TC∗ + εg(S(TC∗), TC∗)C
∗

where

ε = g(C∗, C∗) = +1, S(TC∗) = −TC∗ and g(S(TC∗), TC∗) = −1.
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If those values are written in Gauss equation, then,

C∗ = − sinϕ∗T ∗ + cosϕ∗B∗

And if the equation of (3.57) is considered, we can say that;

D̄TC∗TC∗ = −‖W
∗‖

(ϕ∗)′
N∗ (3.64)

If the equation of (3.60) is considered, geodesic curve is,

γC∗ =
κ(kC)3

λτ
(√

k2
C − 1

)′

DTC∗TC∗ = 0 if and only if
(
C∗
)

curve geodesic spray is an integral curve. In this case, from

the equation of (3.64), we can write that; κ∗ = τ∗ = 0. And from the equation of (3.9), κ = 0.

Result 3.10 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. α Mannheim curve does

not have any partner curve because α Mannheim curveis a straight line.

Result 3.11 Let (α, α∗) be timelike-spacelike Mannheim curve pairs. In terms of S2
1 or H2

0 ,

α∗ curve’s (T ∗), (N∗) and (B∗) spherical indicator curves’ and (C∗) fixed pol curve’s geodesic

curvatures are respectively;

γT∗ = γC =
‖W‖
θ′

γN∗ =

([
(− sinh θ

kC
)
′

+ ( κ
kN

)
√
|(θ′)2 + ‖W‖2|

+ cosh θ

]2

+

[
( 1
kN

)
′

√
|(θ′)2 + ‖W‖2|

]2

+

[
( cosh θ
kC

)
′ − τ

kN√
|(θ′)2 + ‖W‖2|

− sinh θ

]2)
1

2

γB∗ =
θ′

‖W‖ , γC∗ =
κ(kC)3

λτk
′

C

.
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54 Süleyman ŞENYURT and Selma DEMET

[4] Burke J.F., Bertrand curves associated with a pair of curves, Mathematics Magazine, 34(1),

60-62, 1960.
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Abstract: In this paper we introduced Smarandache-2-algebraic structure of R-module

namely Smarandache-R-module. A Smarandache-2-algebraic structure on a set N means

a weak algebraic structure A0 on N such that there exist a proper subset M of N , which

is embedded with a stronger algebraic structure A1, stronger algebraic structure means

satisfying more axioms, by proper subset one understands a subset from the empty set, from

the unit element if any, from the whole set. We define Smarandache-R-module and obtain

some of its characterization through S-algebra and Morita context. For basic concept we

refer to Raul Padilla.

Key Words: R-module, Smarandache-R-module, S-algebras, Morita context and Cauchy

modules.
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§1. Preliminaries

Definition 1.1 Let S be any field. An S-algebra A is an (R,R)-bimodule together with module

morphisms µ : A⊗RA→ A and η : R→ A called multiplication and unit linear maps respectively

such that

A⊗R A⊗R A µ⊗1A
=⇒
1A⊗µ

A⊗R A µ−→ A with µ ◦ (µ⊗ 1A) = µ ◦ (1A ⊗ µ) and

R
η⊗1A
=⇒
1A⊗η

A⊗R A µ−→ A with µ ◦ (η ⊗ 1A) = µ ◦ (1A ⊗ η).

Definition 1.2 Let A and B be S-algebras. Then f : A → B is an S-algebra homomorphism

if µB ◦ (f ⊗ f) = f ◦ µA and f ◦ ηA = ηB .

Definition 1.3 Let S be a commutative field with 1R and A an S-algebra M is said to be a

left A-module if for a natural map π : A⊗RM →M , we have π ◦ (1A ⊗ π) = π ◦ (µ⊗ 1M ).

Definition 1.4 Let S be a commutative field. An S-coalgebra is an (R,R)-bimodule C with R-

linear maps ∆ : C → C⊗RC and ε : C → R, called comultiplication and counit respectively such

1Received September 6, 2014, Accepted May 10, 2015.
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that C
∆−→ C⊗RC

1C⊗∆

⇉
∆⊗1C

C⊗RC⊗RC with (1C⊗∆)◦∆ = (∆⊗1C)◦∆ and C
∆→ C⊗RC

1C⊗ε
⇉
ε⊗1C

R

with (1C ⊗ ε) ◦∆ = 1C = (ε⊗ 1C) ◦∆.

Definition 1.5 Let C and D be S-coalgebras. A coalgebra morphism f : C → D is a module

morphism if it satisfies ∆D ◦ f = (f ⊗ f) ◦∆C and εD ◦ f = εC.

Definition 1.6 Let A be an S-algebra and C an S-coalgebra. Then the convolution product is

defined by f ∗ g = µ ◦ (f ⊗ g) ◦∆ with 1HomR(C,A) = η◦ ∈ (1R) for all f, g ∈ HomR(C,A).

Definition 1.6 For a commutative field S, an S-bialgebra B is an R-module which is an algebra

(B,µ, η) and a coalgebra (B,∆, ε) such that ∆ and ε are algebra morphisms or equivalently µ

and η are coalgebra morphisms.

Definition 1.7 Let R,S be fields and M an (R,S)-bimodule. Then, M∗ = HomR(M,R)

is an (S,R)-bimodule and for every left R-module L, there is a canonical module morphism

αML : M∗ ⊗R L→ HomR(M,L) defined by αML (m∗ ⊗ l)(m) = m∗(m)l for all m ∈M,m∗ ∈M∗
and l ∈ L. If αML is an isomorphism for each left R-module L, then RMS is called a Cauchy

module.

Definition 1.8 Let R,S be fields with multiplicative identities M , an (S,R)-bimodule and N ,

an (R,S)-bimodule. Then the six-tuple datum K = [R,S,M,N, 〈, 〉R, 〈, 〉S ] is said to be a Morita

context if the maps 〈, 〉R : N ⊗S M → R and 〈, 〉S : M ⊗R N → S are binmodule morphisms

satisfying the following associativity conditions:

m′〈n,m〉R = 〈m′, n〉s m and 〈n,m〉Rn′ = n〈m,n′〉s

〈, 〉R and 〈, 〉S are called the Morita maps.

§2. Smarandache-R-Modules

Definition 2.1 A Smarandache-R-module is defined to be such an R-module that there exists

a proper subset A of R which is an S-Algebra with respect to the same induced operations of R.

§3. Results

Theorem 3.1 Let R be a R-module. There exists a proper subset A of R which is an S-coalgebra

iff A∗ is an S-algebra.

Proof Let us assume A∗ is an S-algebra. For proving that A is an S-coalgebra we check

the counit conditions as follows:

ε : A ≅ A⊗R S 1A⊗µ−→ A⊗R A∗ ψA−→ R.
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Next, we check the counit condition as follows:

∆ : A ≅ A⊗R S ⊗R S
1A⊗ηEndS(A)−→ A⊗R (A∗ ⊗R A)⊗R A∗

1A⊗A⊗∗
A−→ (A⊗R A)⊗R (A⊗R A)∗

1A⊗RA−→ (A⊗R A)⊗R (A⊗R A)∗

1A⊗A−→ (A⊗R A)⊗R A∗ ≅−→ (A⊗R A)⊗R A ≅−→ A⊗R A ≅−→ A.

Thus, A is an S-coalgebra.

Conversely, Let us assume A is an S-coalgebra. Now to prove that A∗ is an S-algebra, we

check the unit conditions as follows

η : R
ηEndS(A)−→ A⊗R A∗ → 1A ⊗A ≅−→ A.

We check the multiplication conditions as follows A is a Cauchy module. Notice that

A⊗R A→ R,

A ≅ A⊗R A⊗R R
1A⊗ηEndS(A)−→ A⊗R A⊗R A∗ → R ⊗R A∗ ≅−→ A∗,

µ : A⊗R A ε⊗1A−→ A∗ ⊗R A ≅−→ R⊗R A∗ ≅−→ A∗.

Thus, A∗ is an S-algebra. By definition, R is a smarandache R-module. 2
Theorem 3.2 Let R be an R-module. Then there exists a proper subset EndS(M)∗ of R which

is an S-algebra.

Proof Let us assume that R be an R-module. For proving that EndS(M) is an S-coalgebra

which satisfies multiplication and unit conditions µ : EndS(M)⊗REndS(M)→ EndS(M) and

η : R→ EndS(M), we check the comultiplication condition as follows:

∆ : EndS(M) ≅ EndS(M)⊗R
1End(M)⊗n−→ EndS(M)⊗R EndS(M).

Next, we check the counit conditions as follows:

ε : EndS(M) ≅ EndS(M)⊗R R
1End(M)⊗η−→ EndS(M)⊗R EndS(M)

≅⊗≅−→ HomR(M,M)⊗R HomR(M,M)

≅⊗≅−→ (M ′ ⊗RM)⊗R (M ′ ⊗RM)
ψM⊗ψM−→ R⊗R R ≅−→ R.

Thus EndS(M) is an S-coalgebra. By Theorem 3.1, EndS(M)∗ is an S-algebra. Hence, R is a

Smarandache R-module. 2
Theorem 3.3 Let R be an R-module. Then there exists a proper subset M ⊗RM∗ of R which

is an S-algebra.

Proof For proving that M ⊗R M∗ is an S-algebra, we check the multiplication and unit
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conditions as follows:

µ : (M ⊗RM∗)⊗ (M ⊗RM∗) ≅−→ M ⊗R (M∗ ⊗RM)⊗RM∗
1MψM⊗1M−→ M ⊗R R⊗RM∗

1M⊗ψM−→ M ⊗RM∗.

As M is a Cauchy module, we have

η : R→ EndS(M)
≅−→M ⊗RM∗,

which implies that M ⊗RM∗ is an S-algebra. Hence, R is a Smarandache R-module. 2
Theorem 3.4 Let R be an R-module. Then there exists a proper subset the datum [R,M,N, 〈, 〉R]

a morita context (M ⊗R N)∗ of R which is an S-algebra.

Proof Let us assume that R be an R-module. For proving that M ⊗R N is an S-algebra,

we have

µ : (M ⊗R N)⊗R (M ⊗R N) → M ⊗R (N ⊗RM)⊗R N
1M⊗〈,〉⊗1N−→ M ⊗R R⊗R N ≅−→M ⊗R N,

which shows that the multiplication condition is satisfied.

Also, since M and N are Cauchy R-modules, there exist maps

ηEndR(M) : R→M∗ ⊗RM and ηEndS(N) : R→ N∗ ⊗R N

that can be used to prove the unit condition as follows:

η : R ≅ R⊗R R
ηEndS(M)⊗ηEndS(N)−→ (M∗ ⊗RM)⊗R (N∗ ⊗R N)

≅⊗1M⊗N−→ (M∗ ⊗R N∗)⊗R (M ⊗R N)
≅⊗1M⊗N−→ (M ⊗R N)∗ ⊗R (M ⊗R N)
≅⊗1M⊗N−→ R∗ ⊗R (M ⊗R N)

≅−→ R⊗R (M ⊗R N)
≅−→ (M ⊗R N),

which implies that M ⊗R N is an S-algebra. By definition, R is a Smarandache R-module.

Theorem 3.5 Let R be an R-module. Then there exists a proper subset the datum [R,M,N, 〈, 〉R]

a morita context M ⊗R N of R which is an S-coalgebra.

Proof Let us assume that R be an R-module. For proving that (M⊗RN) is an S-coalgebra,
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we have

∆ : M ⊗R N = (M ⊗R N)⊗R (R⊗R)

1M⊗N⊗ηEndS(M)⊗ηEndS(N)−→ (M∗ ⊗RM)⊗R (N∗ ⊗R N)
1M⊗N⊗≅−→ (M ⊗R N)⊗R (M ⊗R N)⊗R (M∗ ⊗R N∗)
1M⊗N⊗≅−→ (M ⊗R N)⊗R (M ⊗R N)⊗R (M ⊗R N)∗

1M⊗N⊗〈,〉R∗

−→ (M ⊗R N)⊗R (M ⊗R N)⊗R R
≅−→ (M ⊗R N)⊗R (M ⊗R N).

Also, we have the counit condition as follows:

ε : M ⊗R N ≅ (M ⊗R N)⊗R R
1M⊗N⊗ηEndS(M)−→ (M ⊗R N)⊗R (M∗ ⊗RM)

〈.〉R⊗1M∗⊗M−→ R⊗RM∗ ⊗RM ≅−→M∗ ⊗RM ψM−→ R,

which implies that =⇒ M ⊗R N is an S-coalgebra. Hence, R is a Smarandache R-module. 2
Theorem 3.6 Let R be an R-module. Then there exists a proper subset the datum [R,M,N, 〈, 〉R]

a Morita context iff M ⊗R N is an S-bialgebra.

Proof First, if M ⊗R N is an S-bialgebra by Theorem 3.5, we know that M ⊗R N is an

S-algebra and M ⊗RN is an S-coalgebra. Hence by definition, R is a Smarandache R-module.

If M ⊗R N is an S-bialgebra, we have the map

ε = 〈.〉R : M ⊗R N → R.

Associativity of the map ε = 〈, 〉R holds because the diagram

(M ⊗R N)⊗RM ≅−→M ⊗R (N ⊗RM)

ε⊗ 1M ց ւ 1M ⊗ ε
M

is commutative. Hence the datum [R,M,N, 〈, 〉R] is a Morita context. 2
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§1. Introduction

In this article, we consider finite, undirected, simple and connected graphs G = (V,E) with

vertex set V and edge set E. As such p =| V | and q =| E | denote the number of vertices and

edges of a graph G, respectively. In general, we use 〈X〉 to denote the sub graph induced by the

set of vertices X ⊆ V . N(v) and N [v] denote the open and closed neighborhoods of a vertex

v, respectively. A non-trivial graph G is called connected if any two of its vertices are linked

by a path in G. A graph G is called n-connected (for n ∈ N) if |V (G)| > n and G − X(the

graph that results from removing all vertices in X and all edges incident with these vertices) is

connected for any vertex set X ⊆ V (G) with |X | < n. The greatest integer n such that G is n

- connected is called the connectivity κ(G) of G. A cut-edge or cut-vertex of G is an edge or

a vertex whose deletion increases the number of components. Unless mentioned otherwise for

terminology and notation the reader may refer [1] and [5].

The general problem consists of selecting a set of land parcels for conservation to ensure

species availability. This problem is also related to site selection, reserve network design and

corridor design. Biologists have highlighted the importance of addressing negative ecological

impacts of habitats fragmentation when selecting parcels for conservation. Ways to increase

the spatial coherence among the set of parcels selected for conservation have been investigated.

Conservation planning via Πk -connected graph model is an important conservation method, in

this model they increase the genetic diversity and allow greater mobility for better response to

predation and stochastic events such as fire, as well as long term climate change. This motivated

us to study Πk - connectedness in the following manner:

1Received October 26,2014, Accepted May 12, 2015.
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For any positive integer k. A graph G is said to be a Πk - connected graph if for any given

subset S of V (G) with |S| = k, the subgraph induced by S is connected.

For more detail, we refer [2]-[4], [6]– [10] and [13].

§2. Πk-Connected Graphs

Proposition 2.1 For any graph G with p ≥ 1 vertices is a Π1 - connected graph.

Proposition 2.2 For a given p ≥ 3 vertices, there exist a Π3 - connected graph of a graph G.

Proof Removal of t independent edges from a complete graph on p vertices results into a

Π3 - connected graph, where 0 ≤ t ≤ p
2 if p is even and 0 ≤ t ≤ p−1

2 if p is odd. 2
Proposition 2.3 Let ξ be the number of edges required to make a totally disconnected graph

which is a Π3 - connected graph and hence

ξ(Kp) =




p2−2p

2 if p is even

p2−2p+1
2 if p is odd

For a complete bipartite graph Km,n, the number of edges to be added to make it a Π3 - connected

graph is given by ξ(Km) + ξ(Kn).

Proposition 2.4 In general the number of edges required to make complete n- partite graph

Kx1,x2,x3,...,xn as a Π3 - connected graph is given by

ξ(Kx1) + ξ(Kx2) + · · ·+ ξ(Kxn).

Proposition 2.5 The complete bipartite graph Km,n is a Π3 - connected graph if m = 1, 2 and

n = 1, 2.

Theorem 2.1 For any graph G with p ≥ 3 vertices is a Π3 - connected graph if and only if

deg(vi) ≥ p− 2 for all vi ∈ V (G).

Proof Let G be a Π3 - connected graph. Suppose on contrary, there exists vj such that

deg(vj) ≤ p− 3. Let v1 and v2 be any two vertices which are not adjacent to vj , thus the graph

induced by v1, v2 and vj is not connected, which is a contradiction. Hence deg(vi) ≥ p− 2 for

all vi ∈ G.

Conversely, suppose deg(vi) ≥ p−2 for all vi ∈ G, let v1, v2, v3 be any three vertices. Then

v1 is adjacent to at least one of v2 and v3. v2 is adjacent to at least one of v1 and v3. Also v3

is adjacent to at least one of v1 and v2. Therefore G is a Π3 - connected graph. 2
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Theorem 2.2 If a graph G is a Πk- connected graph, then

δ(G) ≥




t if p = t(k − 1) + 1

t+ 1 if p = t(k − 1) + r + 1, 1 ≤ r ≤ k − 2

Proof Let G be a Πk connected graph with p = t(k− 1) + 1 vertices. Suppose on contrary

that δ(G) = s < t. Let v be a vertex with deg(v) = s. Now we partition the remaining p − 1

vertices into t vertex disjoint sets such that each set contains a vertex adjacent to v. Since

s < t, there exists at least one set N which has no vertex adjacent to v. Then 〈N ∪ {v}〉 is a

disconnected subgraph on k vertices, which is a contradiction.

Now, let p − 1 = t(k − 1) + r. Suppose on contrary that δ(G) = s < t + 1, let v be a

vertex such that deg(v) = s. Now partition the remaining p− 1 vertices excluding the vertex v

in t+ 1 number of vertex disjoint subsets having t subsets with cardinality k − 1 and one with

cardinality r in such a way that each subset contains exactly one vertex adjacent to v. Since

deg(v) < t+ 1, there exist at least one subset having no vertex adjacent to v. If the cardinality

of such a subset, say T is k− 1 then 〈T ∪{v}〉 is a disconnected subgraph on k - vertices, again

a contradiction. If the cardinality of such a subset, say D is r, then take a vertex which is

adjacent to v from a subset A with cardinality k−1 to D and any one vertex from D to A, then

〈A ∪ {v}〉 is a disconnected subgraph which is induced by k - vertices, a contradiction. Hence

δ(G) ≥




t if p− 1 = t(k − 1)

t+ 1 if p− 1 = t(k − 1) + r, 1 ≤ r ≤ k − 2
2

Theorem 2.3 Let G be a Πk - connectedHence the result follows. Then G is a Πk+1 - connected

graph with 2 ≤ k ≤ p− 1.

Proof On contrary, suppose G is a Πk - connected graph but not a Πk+1 - connected

one. Let S be set of k + 1 vertices on which the graph induced has more than one component.

Clearly a subset T consisting of k vertices on which the graph induced is disconnected which

is a subgraph of G, which is a contradiction. Hence G is also a Πk+1 - connected graph with

2 ≤ k ≤ p− 1. 2
Theorem 2.4 A graph G is a Πk-connected graph for all k, 1 ≤ k ≤ p if and only if G is

isomorphic to Kp.

Proof Let G be a Πk - connected graph for all k, 1 ≤ k ≤ p. Clearly G is isomorphic to a

complete graph Kp as G is a Π2 - connected graph.

On the other hand, let G be a complete graph on p vertices. In Kp, every pair of vertices

are adjacent. Hence G is a Π2 - connected graph. As we have proved, every Π2 - connected

graph is Πt - connected graph for all t, 3 ≤ t ≤ p. Therefore G is a Πk - connected graph with

1 ≤ k ≤ p. 2
Theorem 2.5 For any Square tree T 2 of a tree T with diameter d(T ) ≥ 5 is a Πp−1 - connected
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graph.

Proof Let T be any tree with diameter d(T ) ≥ 5. Consider any four non pendent vertices

vi+1, vi+2, vi+3, vi+4 in T such that vi+1 is adjacent to vi+2, vi+2 is adjacent to vi+3, vi+3 is

adjacent to vi+4, then in square of T , vi+2 is adjacent to vi+1, vi+3, vi+4 and vi+3 is adjacent

to vi+1, vi+2, vi+4. Removal of vi+2 and vi+3 disconnects the square and since no vertex is a

cut vertex, removal of any one vertex does not disconnect T 2. Hence square of any tree T with

diameter d(T ) ≥ 5 is a Πp−1 - connected graph. 2
Proposition 2.6 For any integer m ≥ 1, K1,m, K2

1,m are Π2 - connected graphs.

Proof Let K1,m be any star. Then the square of a star is a complete graph on m + 1

vertices and hence a Π2 - connected graph. 2
§3. Minimality Conditions on Πk-Connected Graphs

A Πk - connected graph G is said to be a vertex minimal Πk - connected graph if G is not a

Πk−1 - connected graph. A vertex minimal Πk - connected graph G is said to be a partially

vertex - edge minimal Πk - connected graph if G − e is not a Πk - connected graph for some

e ∈ E(G). A vertex minimal Πk - connected graph G is said to be a totally vertex - edge

minimal Πk - connected graph if G− e is not a Πk - connected graph for every e ∈ E(G). For

more details, refer [12].

Proposition 3.1 For any cycle Cp; p ≥ 4 vertices, the number of edges to be added to make it

a Π3 - connected graph is given by

q ≥




p2−4p

2 if p is even

p2−4p+1
2 if p is odd

where, the equality holds when the resulting graph is a partially vertex - edge minimal Π3 -

connected graph.

Proof Let Cp; p ≥ 4 vertices be a cycle. Then we have the following cases.

Case 1. Suppose p is even. In any Π3 - connected graph, the degree each vertex is at least

p − 2. Hence the number of edges in any Π3 - connected graph is always greater than or

equal to p(p−2)
2 . Therefore the number of edges to be added to Cp is greater than or equal to

p2−2p
2 − p = p2−4p

2 .

Case 2. Suppose p is odd. In any Π3 - connected graph on odd number of vertices, the degree

of each of the p− 1 vertices is at least p− 2 and the degree of one vertex is p− 1. Hence the

number of edges in any Π3 - connected graph on odd number of vertices is always greater than

or equal to (p−1)2

2 . Hence the number of edges to be added to Cp is greater than or equal to
p2−2p+1

2 − p = p2−4p+1
2 . 2
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Proposition 3.2 For any path Pp; p ≥ 4 vertices, the number of edges to be added to make it

a Π3 - connected graph is given by

q ≥




p2−4p

2 + 1 if p is even

p2−4p+1
2 + 1 if p is odd

where the equality holds when the resulting graph is a partially vertex - edge minimal Π3 -

connected graph.

Proof The proof follows on the same lines as in the above proposition. 2
Theorem 3.1 A connected graph G is a vertex minimal Πp - connected graph if and only if it

has at least one cut vertex.

Proof Let a connected graph G be a Πp - connected graph, that is, G is not a Πp−1 -

connected graph. There exist a vertex v such that the graph induced by V (G)−v is disconnected.

Hence v is cut vertex. Conversely, let G be a connected graph with a cut vertex, say v, therefore

the subgraph induced by the vertices V (G)− v is disconnected. Hence the graph G is a vertex

minimal Πp - connected graph. 2
Theorem 3.2 For a given k = 2l+ 1, l ≥ 3, there exists Πk - connected graph.

Proof Let k = 2l + 1, l ≥ 3 and G be a Π3 - connected graph on k − 3 vertices with

V (G) = {1, 2, 3, · · · , k−3} and let G
′

be a graph with V (G
′

) = {1, 2, 3, · · · , k−3, k−2} obtained

by adding a vertex k− 2 and making it adjacent to all the vertices of G. Now take prism of G
′

,

label the vertices of second copy of G
′

in the prism as {f(1), f(2), f(3), · · · , f(k− 3), f(k− 2)}
such that f(i) is the mirror image of i and remove the edge (k− 2, f(k− 2)) from the prism. In

the resulting graph H (say), the subgraph induced by any subset S ⊆ V (H)/{k− 2, f(k− 2)}
containing k − 1 vertices is connected. The subgraph induced by V (G) ∪ {k − 2, f(k − 2)}
disconnected on k− 3 + 1 + 1 = k − 1 vertices and hence every subgraph induced by k vertices

is connected. Hence H is Πk - connected. 2
Observation 3.1 The graph obtained in the above theorem is regular when G is a partially

vertex - edge minimal Π3 - connected graph, which is having even order.

1

2

3

4

5

f(3) f(1)

f(2)

f(5)

f(4)

Figure 1. Prism of a Π3 - connected graph having odd order
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For illustration, we construct the above prism of a Π3 - connected graph having odd order,

where prism of a graph G is defined as the cartesian product G×K2; that is, take two disjoint

copies of G and add a matching joining the corresponding vertices in the two copies, [8].

Theorem 3.3 For any vertex minimal Πk - connected graph can be embedded in a vertex

minimal Πk+i - connected graph, where i ≥ 0.

Proof Let G1 and G2 be two vertex minimal Πk and Πk+i - connected graphs. Now we

construct a vertex minimal Πk+i - connected graph in which G1 is an induced vertex minimal

Πk - connected subgraph. Make each vertex of G1 adjacent to each vertex in G2 and let the

resulting graph be G. Let S be any set of k+ i vertices from G. In the following cases we prove

the graph induced by S is connected.

Case 1. Suppose S ∩ V (G1) ∩ V (G2) 6= ∅, then the graph induced by S is connected since

each vertex in S ∩ V (G1) is adjacent to every vertex of S ∩ V (G2).

Case 2. Suppose S ∩V (G1) 6= ∅ and S ∩V (G2) = ∅, then |S| ≥ k and S ⊆ V (G1), the graph

induced by S is connected as G1 is vertex minimal Πk - connected.

Case 3. Suppose S∩V (G1) = ∅ and S∩V (G2) 6= ∅, then the graph induced by S is connected

since S is completely contained in V (G2) and G2 is a vertex minimal Πk+i - connected graph.

In all the three cases the graph induced by S is connected and G is not Πk+i−1 - connected

graph since G2 is a vertex minimal Πk+i - connected graph. Hence the graph G is a vertex

minimal Πk+i - connected graph having vertex minimal Πk - connected graph G1 as its induced

subgraph.

Thus the result follows. 2
Theorem 3.4 A connected graph G is a partially vertex - edge minimal Πp - connected graph

if and only if it has at least one cut edge.

Proof Let G be a connected graph with a cut edge say e = uv. Here u is a cut vertex and

also G− e is disconnected, hence G is a partially vertex - edge minimal Πp - connected graph.

Conversely, let G be a partially vertex - edge minimal Πp - connected graph then G− e is not

a Πp - connected graph. Hence e is a cut edge. 2
To prove our next result we make use of the following observations.

Observation 3.2 Removal of p2 independent edges from a complete graph Kp on even number

of vertices results into a partially vertex - edge minimal Π3 - connected graph having p(p−2)
2

edges.

Observation 3.3 Removal of p−1
2 independent edges from a complete graph on odd number

of vertices results into a partially vertex - edge minimal Π3 - connected graph having (p−1)2

2

edges.

Observation 3.4 Partially vertex - edge minimal Π3 - connected graph having even order is

a regular graph with regularity p− 2.
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Theorem 3.5 Let G1 and G2 be two partially vertex - edge minimal Π3 - connected graph. If

V (G1) = V (G2), then G1 is isomorphic to G2.

Proof Let G1 and G2 be partially vertex - edge minimal Π3 - connected graph having same

order. Then, there are following cases:

Case 1. Suppose p is even. As the graphs G1 and G2 are partially vertex - edge minimal Π3

connected graphs, deg(v) = p − 2, for all v ∈ V (G1) and deg(v) = p− 2 for all v ∈ V (G2).

Clearly G1 is isomorphic to G2.

Case 2. Suppose p is odd. As the graphs G1 and G2 are partially vertex - edge minimal Π3 -

connected graphs, in the graphs G1 and G2 degree of each of p− 1 vertices is p− 2 and degree

of one vertex is p− 1. Hence in this case also G1 is isomorphic to G2. 2
Theorem 3.6 Any graph G with order p is a totally vertex - edge minimal Πp - connected

graph if and only if G is isomorphic to a tree on p vertices.

Proof Let G be a graph of order p which is a strongly critical Πp - connected graph, that

is, G− e is not Πp - connected for all e ∈ V (G) and G is not a Πp−1 - connected graph. The

first condition in a totally vertex - edge minimal Πp - connected graph which implies that every

edge in G is a bridge and the second condition in a totally vertex - edge minimal Πp - connected

graph which again implies that every vertex in G is a cut vertex, clearly G is isomorphic to a

tree on p vertices.

Conversely, let G is isomorphic to a tree on p vertices. Since every internal vertex is a cut

vertex, we have a disconnected induced subgraph on p− 1 number of vertices and since every

edge is a bridge, G − e is not a Πp- connected graph for all e ∈ V (G). Hence G is a totally

vertex - edge minimal Πp - connected graph. 2
Theorem 3.7 Any graph G having even number of vertices is a totally vertex - edge minimal

Π3 - connected graph if and only if deg(vi) = p− 2 for all vi ∈ V (G).

Proof Let G be a totally vertex - edge minimal Π3 - connected graph on even number of

vertices, implies deg(v) ≥ p−2 for all v ∈ V (G) from the Theorem 2.1. Suppose deg(v) > p−2

for some v ∈ V (G), i.e., deg(v) = p − 1. There exist a vertex w adjacent to v such that

deg(w) = p − 1. The graph G − vw is still a Π3 - connected graph. Hence G is not a totally

vertex - edge minimal Π3 - connected graph, which is a contradiction. Hence deg(v) = p − 2

for all v ∈ V (G).

Conversely, let G be a graph such that deg(v) = p− 2 for all v ∈ V (G). For every vertex

in G there exist an unique non adjacent vertex in G. Hence in G − e there exist two vertices

say v and w non adjacent to some vertex say u. The graph induced by these three vertices is

disconnected and hence the graph is a totally vertex - edge minimal Π3 - connected graph. 2
Observation 3.5 Any complete graph on p ≥ 3 vertices is a Π3 - connected graph but not a

partially vertex - edge minimal and totally vertex - edge minimal Π3 - connected graph.
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Abstract: A proper k-coloring is called a b-coloring if there exits a vertex (b-vertex) that

has neighbour(s) in all other k − 1 color classes. The largest integer k for which G admits

a b-coloring is called the b-chromatic number denoted as ϕ(G). If b-coloring exists for every

integer k satisfying χ(G) 6 k 6 ϕ(G) then G is called b-continuous. The b-spectrum Sb(G)

of a graph G is the set of k integers(colors) for which G has a b-coloring. We investigate

b-chromatic number of the splitting graph of wheel and also discuss its b-continuity and

b-spectrum.
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§1. Introduction

A proper k-coloring of a graph G = (V (G), E(G)) is a mapping f : V (G)→ {1, 2, · · · , k} such

that every two adjacent vertices receives different colors. The chromatic number of a graph

G is denoted by χ (G), is the minimum number for which G has a proper k-coloring. The set

of vertices with a specific color is called a color class. A b-coloring of a graph G is a variant

of proper k-coloring such that every color class has a vertex which is adjacent to at least one

vertex in every other color classes and such a vertex is called a color dominating vertex. If v

is a color dominating vertex of color class c then we denote it as cdv(c) = v. The b-chromatic

number ϕ (G) is the largest integer k such that G admits a b-coloring with k colors. The

concept of b-coloring was originated by Irving and Manlove [1] and they also observed that

every coloring of a graph G with χ (G) colors is obviously a b-coloring. In the same paper they

have introduced the concepts of b-continuity and b-spectrum. If the b-coloring exists for every

integer k satisfying χ (G) 6 k 6 ϕ (G) then G is called b-continuous and the b-spectrum Sb(G)

of a graph G is the set of k integers(colors) for which G has a b-coloring. Kouider and Maheö [2]

have obtained lower and upper bounds for the b-chromatic number of the cartesian products of

two graphs while Vaidya and Shukla [3,4,5,6] have investigated b-chromatic numbers for various

1Received October 9, 2014, Accepted May 23, 2015.
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graph families. The concept of b-coloring has been extensively studied by Faik [7], Kratochvil

et al.[8], Alkhateeb [9] and Balakrishnan et al. [10].

Definition 1.1 The splitting graph S′(G) of a graph G is obtained by adding new vertex v′

corresponding to each vertex v of G such that N(v) = N(v′), where N(v) and N(v′) are the

neighborhood sets of v and v′ respectively in S′(G).

Here we investigate b-chromatic number for splitting graph of wheel.

Definition 1.2([1]) The m-degree of a graph G, denoted by m(G), is the largest integer m such

that G has m vertices of degree at least m− 1.

Proposition 1.3([1]) If graph G admits a b-coloring with m-colors, then G must have at least

m vertices with degree at least m− 1.

Proposition 1.4 Let Wn = Cn +K1. Then χ (Wn) =





3, n is even

4, n is odd.

Proposition 1.5([11]) χ(G) 6 ϕ(G) 6 m(G).

Proposition 1.6([12]) For any graph G, χ(G) > 3 if and only if G has an odd cycle.

§2. Main Results

Lemma 2.1 For a wheel Wn,

χ [S′(Wn)] =





4, n is odd

3, n is even

Proof Let v1, v2, . . . , vn be the rim vertices of wheel Wn which are duplicated by the

vertices v′1, v
′
2, . . . , v

′
n respectively and let v denotes the apex vertex of Wn which is duplicated

by the vertex v′. Let e1, e2, . . . , en be the rim edges of Wn. Then the resultant graph S′[Wn]

will have order 2(n+ 1) and size 6n.

Case 1. n is odd

In this case S′[Wn] contains odd Wn as an induced subgraph. Since χ (Wn) = 4 ⇒
χ[S′(Wn)] = 4.

Case 2. n is even

In this case S′[Wn] contains even Wn as an induced subgraph. Since χ(Wn) = 3 ⇒
χ[S′(Wn)] = 3. 2



b-Chromatic Number of Splitting Graph of Wheel 71

Theorem 2.2 For a wheel Wn,

ϕ[S′(Wn)] =




4, n = 3

3, n = 4

5, n = 5, 6, 8

6, n = 7

6, n > 9

Proof To prove the result we continue with the terminology and notations used in Lemma

2.1 and consider the following cases.

Case 1. n = 3

In this case the graph S′(W3) contains an odd cycle. Then by Proposition 1.6, χ[S′(W3)] >

3. As m[S′(W3)] = 4 and by Lemma 2.1, χ[S′(W3)] = 4. We have 4 6 ϕ[S′(W3)] 6 4 by

Proposition 1.5. Thus, ϕ[S′(W3)] = 4.

Case 2. n = 4

In this case the graph S′(W4) contains an odd cycle. Then by Proposition 1.6, χ[S′(W4)] >

3. As m[S′(W4)] = 5 and by Lemma 2.1 χ[S′(W4)] = 3. Then by Proposition 1.5 we have

3 6 ϕ[S′(W4)] 6 5.

If ϕ[S′(W4)] = 5 then by Proposition 1.3, the graph S′(W4) must have five vertices of

degree at least 4 which is possible. But due to the adjacency of vertices of the graph S′(W4)

any proper coloring with five colors have at least one color class which does not have color

dominating vertices hence it will not be b-coloring for the graph S′(W4). Thus, ϕ[S′(W4)] 6= 5.

Suppose ϕ[S′(W4)] = 4. Now consider the color class c = {1, 2, 3, 4} and define the color

function as f : V → {1, 2, 3, 4} as f(v) = 4 = f(v′), f(v1) = 1, f(v2) = 2, f(v′1) = 1, f(v′2) =

2, f(v′3) = 3, f(v′4) = 3 which in turn forces to assign f(v3) = 1, f(v4) = 2. This proper

coloring gives the color dominating vertices for color classes 1, 2 and 4 but not for 3 which

is contradiction to our assumption. Thus, ϕ[S′(W4)] 6= 4. Hence, we can color the graph by

three colors. For b-coloring, consider the color class c = {1, 2, 3} and define the color function

as f : V → {1, 2, 3} as f(v1) = 1 = f(v′1), f(v2) = 2 = f(v′2), f(v3) = 1 = f(v′3), f(v4) =

2 = f(v′4), f(v) = 3 = f(v′). This proper coloring gives the color dominating vertices as

cdv(1) = v1, cdv(2) = v2, cdv(3) = v. Thus ϕ[S′ (W4)] = 3.

Case 3. n = 5, 6, 8

Subcase 3.1 n = 5

In this case the graph S′(W5) contains an odd cycle. Then by Proposition 1.6, χ[S′(W5)] >

3. As m[S′(W5)] = 6 and by Lemma 2.1, χ[S′(W5)] = 4. Then by Proposition 1.5 we have

4 6 ϕ(S′(W5) 6 6.

If ϕ(S′(W5) = 6 then by Proposition 1.3, the graph S′(W5) must have six vertices of degree

at least five which is possible. But due to the adjacency of vertices of the graph S′(W5) any

proper coloring with six colors have at least one color class which does not have color dominating



72 Samir.K.Vaidya and Minal.S.Shukla

vertices. Hence it will not be b-coloring for the graph S′(W5). Thus, ϕ(S′(W5) 6= 6.

Suppose ϕ(S′(W5) = 5. Now consider the color class =̧{1, 2, 3, 4, 5} and define the color

function as f : V → {1, 2, 3, 4, 5} as f(v) = 5 = f(v′), f(v1) = 3, f(v2) = 1, f(v3) = 2, f(v4) =

3, f(v5) = 4, f(v′1) = 2, f(v′2) = 4, f(v′3) = 4, f(v′4) = 1, f(v′5) = 1. This proper coloring gives

the color dominating vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = v.

Thus, ϕ(S′(W5) = 5.

Subcase 3.2 n = 6, 8

In this case the graph S′(Wn) contains an odd cycle. Then by Proposition 1.6, χ[S′(Wn)] >

3. As m[S′(Wn)] = 7 and by Lemma 2.1, χ[S′(Wn)] = 3. Then by Proposition 1.5 we have

3 6 ϕ[S′(Wn)] 6 7.

If ϕ[S′(Wn)] = 7 then by Proposition 1.3, the graph S′(Wn) must have seven vertices of

degree at least six which is possible. But due to the adjacency of the vertices of graph S′(Wn)

any proper coloring with seven colors have at least one color class which does not have color

dominating vertices. Hence it will not be b-coloring for the graph S′(Wn). Thus, ϕ[S′(Wn)] 6= 7.

Suppose ϕ[S′(Wn)] = 6. Now consider the color class =̧{1, 2, 3, 4, 5, 6} and define the color

function as f : V → {1, 2, 3, 4, 5, 6} as f(v) = 6 = f(v′), f(v1) = 3, f(v2) = 1, f(v3) = 2, f(v4) =

3, f(v5) = 4, f(v′1) = 4, f(v′2) = 4, f(v′3) = 5, f(v′4) = 5, f(v′5) = 1 which in turn forces to assign

f(v6) = 2, f(v′6) = 1. This proper coloring gives the color dominating vertices for color classes

1, 2, 3, 4 and 6 but not for 5 which is contradiction to our assumption. Thus, ϕ[S′(Wn)] 6= 6.

Suppose that S′(Wn) has b-coloring with 5 colors. Now consider the color class =̧{1, 2, 3, 4, 5}
and define the color function as f : V (G)→ {1, 2, 3, 4, 5} as f(v) = 5 = f(v′), f(v1) = 3, f(v2) =

1, f(v3) = 2 = f(v′3), f(v4) = 3 = f(v′4), f(v5) = 4, f(v6) = 2, f(v′1) = 4, f(v′2) = 4, f(v′5) =

1, f(v′6) = 1. This proper coloring gives the color dominating vertices as cdv(1) = v2, cdv(2) =

v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = v. Thus, ϕ[S′(Wn)] = 5.

Case 4. n = 7

In this case the graph S′(W7) contains an odd cycle. Then by Proposition 1.6, χ[S′(W7)] >

3. As m[S′(W7)] = 7 and by Lemma 2.1, χ[S′(W7)] = 4. Then by Proposition 1.5 we have

4 6 ϕ[S′(W7)] 6 7.

Suppose ϕ[S′(W7)] = 7. Now consider the color class =̧{1, 2, 3, 4, 5, 6, 7} and define the

color function as f : V → {1, 2, 3, 4, 5, 6, 7} as f(v) = 7, f(v′) = 6, f(v1) = 5, f(v2) = 1, f(v3) =

2, f(v4) = 3, f(v5) = 1, f(v6) = 4, f(v′1) = 1, f(v′2) = 4, f(v′3) = 4, f(v′4) = 5, f(v′5) = 5, f(v′6) =

4 which in turn forces to assign f(v7) = 2, f(v′7) = 3. This proper coloring gives the color

dominating vertices for color classes 1, 2, 3, 4 and 5 but not for 6 and 7 which is contradiction

to our assumption. Thus, ϕ[S′(W7)] 6= 7.

Suppose that S′(W7) has b-coloring with 6 colors. Now consider the color class =̧{1, 2, 3, 4,
5, 6} and define the color function f : V → {1, 2, 3, 4, 5, 6} as f(v) = 6 = f(v′), f(v1) =

3, f(v2) = 1, f(v3) = 2, f(v4) = 3, f(v5) = 4, f(v6) = 2, f(v7) = 5, f(v′1) = 4, f(v′2) = 4, f(v′3) =

5, f(v′4) = 5, f(v′5) = 1, f(v′6) = 1, f(v′7) = 5. This proper coloring gives the color dominating

vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = v7, cdv(6) = v. Thus,

ϕ[S′(W7)] = 6.
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Case 5. n > 9

For n = 9, the graph S′(W9) contains an odd cycle. Then by Proposition 1.6, χ[S′(W9)] >

3. As m[S′(W9)] = 7 and by Lemma 2.1, χ[S′(W7)] = 4. Then by Proposition 1.5 we have

4 6 ϕ[S′(W7)] 6 7.

Suppose ϕ[S′(W9)] = 7. Consider the color class =̧{1, 2, 3, 4, 5, 6, 7} and define the color

function f : V → {1, 2, 3, 4, 5, 6, 7} as f(v) = 6, f(v′) = 7, f(v1) = 3, f(v2) = 1, f(v3) =

2, f(v4) = 3, f(v5) = 4, f(v6) = 1, f(v′1) = 4, f(v′2) = 4, f(v′3) = 5, f(v′4) = 5, f(v′5) = 1, f(v′6) =

2, f(v7) = 5, f(v′7) = 5, f(v8) = 3, f(v′8) = 4 which in turn forces to assign f(v9) = 2 = f(v′9).

This proper coloring gives the color dominating vertices for color classes 1, 2, 3, 4 and 5 but not

for 6 and 7 which is contradiction to our assumption. Thus, ϕ[S′(W9)] 6= 7.

Suppose that S′(W9) has b-coloring with 6 colors. Consider the color class =̧{1, 2, 3, 4, 5, 6}
and define the color function f : V → {1, 2, 3, 4, 5, 6} as f(v) = 6 = f(v′), f(v1) = 3, f(v2) =

1, f(v3) = 2, f(v4) = 3, f(v5) = 4, f(v6) = 2, f(v7) = 5, f(v8) = 3, f(v9) = 1 = f(v′9), f(v′1) =

4, f(v′2) = 4, f(v′3) = 5, f(v′4) = 5, f(v′5) = 1, f(v′6) = 1, f(v′7) = 5, f(v′8) = 4. This proper

coloring gives the color dominating vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) =

v5, cdv(5) = v7, cdv(6) = v. Thus, ϕ[S′(W9)] = 6.

For n > 9, we repeat the colors as in the above graph S′(W9)for the vertices {v1, v2, . . . , v9,
v′1, v

′
2, . . . , v

′
9, v, v

′} and for the remaining vertices assign the colors as f(v) = 6 = f(v′), f(v3k+7)

= 1 = f(v′3k+7), f(v3k+8) = 2 = f(v′3k+8) where k ∈ N . Hence, ϕ[S′(W9)] = 6, for all n > 9. 2
Theorem 2.3 Let Wn be a wheel. Then, S′(Wn) is b-continuous.

Proof To prove this result we continue with the terminology and notations used in Lemma

2.1 and consider the following cases.

Case 1. n = 3

In this case the graph S′(W3) is b-continuous as χ[S′(W3)] = ϕ[S′(W3)] = 4.

Case 2. n = 4

In this case the graph S′(W4) is b-continuous as χ[S′(W4)] = ϕ[S′(W4)] = 3.

Case 3. n = 5

In this case by Lemma 2.1, χ[S′(W5)] = 4 and by Theorem-2.2, ϕ[S′(W5)] = 5. Hence,

b-coloring exists for every integer satisfying χ[S′(W5)] 6 k 6 ϕ[S′(W5)](Here k = 4, 5). Thus,

S′(W5) is b-continuous.

Case 4. n = 6

In this case by Lemma 2.1, χ[S′(W6)] = 3 and by Theorem-2.2, ϕ[S′(W6)] = 5. It is

obvious that b-coloring for the graph S′(W6) is possible using the number of colors k = 3, 5.

Now for k = 4 the b-coloring for the graph S′(W6) is as follows.

Consider the color class =̧{1, 2, 3, 4} and define the color function f : V → {1, 2, 3, 4} as

f(v) = f(v′) = 4, f(v1) = f(v′1) = 3, f(v2) = f(v′2) = 1, f(v3) = f(v′3) = 2, f(v4) = f(v′4) =

3, f(v5) = f(v′5) = 1, f(v6) = f(v′6) = 2. This proper coloring gives the color dominating
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vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v. Thus, S′(W6) is four colorable.

Hence b-coloring exists for every integer k satisfy χ[S′(W6)] 6 k 6 ϕ[S′(W6)] (Here k = 3, 4, 5).

Consequently S′(W6) is b-continuous.

Case 5. n = 7

By Lemma 2.1, χ[S′(W7)] = 4 and by Theorem 2.2, ϕ[S′(W7)] = 6. It is obvious that

b-coloring for the graph S′(W7) is possible using the number of colors k = 4, 6. Now for k = 5

the b-coloring for the graph S′(W7) is as follows.

Consider the color class =̧{1, 2, 3, 4, 5} and define the color function f : V → {1, 2, 3, 4, 5}
as f(v) = f(v′) = 5, f(v1) = 3, f(v′1) = 4, f(v2) = 1, f(v′2) = 4, f(v3) = 2, f(v′3) = 2, f(v4) =

3, f(v′4) = 1, f(v5) = 4, f(v′5) = 1, f(v6) = 2, f(v′6) = 2, f(v7) = 1 = f(v′7). This proper

coloring gives the color dominating vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) =

v5, cdv(5) = v. Thus, S′(W7) is five colorable. Hence, b-coloring exists for every integer k

satisfy χ[S′(W7)] 6 k 6 ϕ[S′(W7)](Here k = 4, 5, 6). Hence S′(W7) is b-continuous.

Case 6. n = 8

By Lemma 2.1, χ[S′(W8)] = 3 and by Theorem 2.2,ϕ[S′(W8)] = 5. It is obvious that

b-coloring for the graph S′(W8) is possible using the number of colors k = 3, 5. Now for k = 4

the b-coloring for the graph S′(W8) is as follows.

Consider the color class =̧{1, 2, 3, 4} and define the color function as f : V → {1, 2, 3, 4}
as f(v) = f(v′) = 4, f(v1) = 3 = f(v′1), f(v2) = 1 = f(v′2), f(v3) = 2 = f(v′3), f(v4) = 3 =

f(v′4), f(v5) = 1 = f(v′5), f(v6) = 2 = f(v′6), f(v7) = 1 = f(v′7), f(v8) = 2 = f(v′8). This proper

coloring gives the color dominating vertices as cdv(1) = v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v.

Thus, S′(W8) is four colorable. Hence, b-coloring exists for every integer k satisfy χ[S′(W8)] 6

k 6 ϕ[S′(W8)](Here k = 3, 4, 5). Thus, S′(W8) is b-continuous.

Case 7. n > 9

For n = 9, by Lemma 2.1, χ[S′(W9)] = 4 and by Theorem 2.2,ϕ[S′(W9)] = 6. It is obvious

that b-coloring for the graph S′(W9) is possible using the number of colors k = 4, 6. Now for

k = 5 the b-coloring for the graph S′(W9) is as follows.

Consider the color class =̧{1, 2, 3, 4, 5} and define the color function as f : V → {1, 2, 3, 4, 5}
as f(v) = f(v′) = 5, f(v1) = 3, f(v′1) = 4, f(v2) = 1, f(v′2) = 4, f(v3) = 2, f(v′3) = 2, f(v4) =

3, f(v′4) = 1, f(v5) = 4, f(v′5) = 1, f(v6) = 2, f(v′6) = 2, f(v7) = 1 = f(v′7), f(v8) = 2, f(v′8) =

2, f(v9) = f(v′9) = 1. This proper coloring gives the color dominating vertices as cdv(1) =

v2, cdv(2) = v3, cdv(3) = v4, cdv(4) = v5, cdv(5) = v. Thus, S′(W9) is five colorable. Hence,

b-coloring exists for every integer k satisfy χ[S′(W9)] 6 k 6 ϕ[S′(W9)](Here k = 4, 5, 6). Hence,

S′(W9) is b-continuous.

For odd n > 9, we repeat the colors as in S′(W9) for the vertices {v1, v2, v9, . . . , v′1, v′2,
. . . , v′9, v, v′} and for the remaining vertices gives the colors as follows:

When k = 5, f(v′) = f(v) = 5, f(v3k+7) = f(v′3k+7) = 1, f(v3k+8) = f(v′3k+8) = 2, k ∈
N .

For even n > 9, we repeat the color assignment as in case n = 8 discussed above for the

vertices {v, v′, v1, . . . , v8, v′1, v′2, . . . , v′8} and for remaining vertices gives the colors as follows:
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When k = 4, f(v′) = f(v) = 4, f(v2k+7) = 1 = f(v′2k+7), f(v2k+8) = 2 = f(v′2k+8), k ∈
N and when k = 5, f(v′) = f(v) = 5, f(v2k+8) = 1 = f(v′2k+8), f(v2k+9) = 2 = f(v′2k+9), k ∈
N . 2

Any coloring with χ(G) is a b-coloring, we state the following obvious result.

Corollary 2.4 Let Wn be a wheel. Then

Sb[S
′(Wn)] =





{4}, n = 3

{3}, n = 4

{4, 5} n = 5

{3, 4, 5}, n = 6, 8

{4, 5, 6}, n = 7

{4, 5, 6} for odd n > 9

{3, 4, 5} for even n > 9

§3. Concluding Remarks

A discussion about b-coloring of wheel is carried out by Alkhateeb [9] while we investigate

b-chromatic number of splitting graph of wheel. We also obtain b-spectrum and show that

splitting graph of wheel is b-continuous.
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Abstract: The connected eccentricity index and the eccentric connectivity index of a graph

G is respectively defined by

ξ
ce(G) =

∑

v∈V (G)

deg(v)

ecc(v)
and ξ

c(G) =
∑

v∈V (G)

deg(v) ecc(v),

where ecc(v) is the eccentricity of a vertex v in G. In this paper, we have obtained the bounds

for connective eccentricity index of those generalized complementary prisms and eccentric

connective index of duplication of some graphs.

Key Words: Eccentricity, radius, diameter, complementary prism.

AMS(2010): 05C15, 05C38.

§1. Introduction

Throughout this paper all graphs we considered are simple and connected. For a vertex v ∈
V (G), deg(v) denotes the degree of v, δ(G) and ∆(G) represent the minimum and maximum

degree of G respectively. For vertices u, v ∈ V (G), the distance d(u, v) is defined as the length of

the shortest path between u and v in G. The eccentricity ecc(v) of a vertex v is the maximum

among the distance from v to the remaining vertices of G. The diameter d(G) of the graph

G is the maximum eccentricity of the vertices of G, while the radius r(G) of the graph G is

the minimum eccentricity of the vertices of G. The total eccentricity of the graph G, denoted

by ξ(G) is defined as the sum of eccentricities of all the vertices of the graph G. That is
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ξ(G) =
∑

v∈V (G)

ecc(v). The eccentric connectivity index of G, denoted by ξc(G) is defined as

ξc(G) =
∑

v∈V (G)

deg(v) ecc(v).

In [4], the connective eccentricity index (CEI) of a graph G was defined as

ξce(G) =
∑

v∈V (G)

deg(v)

ecc(v)
.

Kathiresan and Arockiaraj introduced some generalization of complementary prisms and

studied the Wiener index of those generalized complementary prisms ([8]).

Let G and H be any two graphs on p1 and p2 vertices, respectively and let R and S be

subsets of V (G) = {u1, u2, . . . , up1} and V (H) = {v1, v2, . . . , vp2} respectively. The comple-

mentary product G(R)2H(S) has the vertex set {(ui, vj) : 1 ≤ i ≤ p1, 1 ≤ j ≤ p2} and (ui, vj)

and (uh, vk) are adjacent in G(R)2H(S)

(1) if i = h, ui ∈ R and vjvk ∈ E(H), or if i = h, ui /∈ R and vjvk /∈ E(H) or

(2) if j = k, vj ∈ S and uiuh ∈ E(G), or if j = k, vj /∈ S and uiuh /∈ E(G).

In other words, G(R)2H(S) is the graph formed by replacing each vertex ui ∈ R of G

by a copy of H, each vertex ui /∈ R of G by a copy of H, each vertex vj ∈ S of H by a

copy of G and each vertex vj /∈ S of H by a copy of G. If R = V (G) (respectively, S =

V (H)), the complementary product can be written as G2H(S) (respectively, G(R)2H). The

complementary prism GG obtained from G is G2K2(S) with |S| = 1. That is, GG has a copy

of G and a copy of G with a matching between the corresponding vertices. In GG, we have

an edge vv for each vertex v in G. The authors of [?] consider this edge as K2 or K1,1 or P2.

By taking m copies of G and n copies of G, they generalize the complementary prism as a

graph G2H(S), where H = Km+n (or Km,n) and S is a subset of V (H) having m vertices and

H = C2m (or P2m) whose vertex set is {v1, v2, . . . , v2m} and S = {v1, v3, . . . , v2m−1} ([8]).

Let G be a graph with vertex set V (G) and edge set E(G). The graph EV (G) obtained by

duplicating each edge by a vertex of a graph G is defined as follows. The vertex set of EV (G)

is V (G) ∪ E(G). Two vertices x, y in the vertex set of EV (G) are adjacent in EV (G) in case

one of the following holds:

(1) x and y are adjacent vertices in G;

(2) x is in V (G), y is in E(G) and x, y are incident in G.

Motivated by these works, we have obtained the bounds for connective eccentric index of

those generalized complimentary prisms and eccentric connective index of duplication of some

graphs.

Theorem 1.1([8]) For the complementary prism GG, r(GG) = 2 and

d(GG) =





2 if d(G) = d(G) = 2

3 otherwise.
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Theorem 1.2([8]) For any connected graph G with p ≥ 2,

d(Gm+n) =





2 if d(G) = d(G) = 2 and m = n = 1

3 otherwise.

Theorem 1.3([8]) For any connected graph G with p ≥ 2,

d(Gm,n) =





2 if d(G) = d(G) = 2 and m = n = 1

3 otherwise.

Theorem 1.4([8] ) For any connected graph G with p ≥ 2,

d(Gpm,m) =





2m if m > 1

2 if m = 1 and d(G) = d(G) = 2

3 otherwise.

Theorem 1.5([8]) For any connected graph G with p ≥ 2 d(Gcm,m) = 2r+ 1 if m = 2r ≥ 2 and

r is a positive integer.

§2. Main Results

Theorem 2.1 For any connected graph G on p vertices,

p(p+ 1)

3
≤ ξce(GG) ≤ p(p+ 1)

2
.

Proof For any connected graph G on p vertices, by Theorem 1.1, GG ∈ F22 while G ∈ F22

and GG ∈ F23 while G /∈ F22. When GG ∈ F22, ecc(v) = 2 for all v ∈ V (GG). So

ξce(GG) =
∑

v∈V (GG)

deg(v)

ecc(v)
=

1

2

∑

v∈V (GG)

deg(v) =
p(p+ 1)

2
.

When GG ∈ F23, 2 ≤ ecc(v) ≤ 3 for all v ∈ V (GG). This implies that

1

3
≤ 1

ecc(v)
≤ 1

2

for all v ∈ V (GG) and hence
deg(v)

3
≤ deg(v)

ecc(v)
≤ deg(v)

2
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for all v ∈ V (GG). Therefore

∑

v∈V (GG)

deg(v)

3
≤

∑

v∈V (GG)

deg(v)

ecc(v)
≤

∑

v∈V (GG)

deg(v)

2
.

Thus
p(p+ 1)

3
≤ ξce(GG) ≤ p(p+ 1)

2
. 2

Theorem 2.2 For any connected graph G on p vertices and q edges with m,n ≥ 1

2

3

[
(m− n)q + n

(
p

2

)
+

(
m+ n

2

)]
≤ ξce(Gm+n) ≤ (m− n)q + n

(
p

2

)
+

(
m+ n

2

)
.

Proof The number of edges in Gm+n is (m − n)q + n
(
p
2

)
+
(
m+n

2

)
. By Theorem 1.2,

Gm+n ∈ F22 when m = 1, n = 1 and Gm+n ∈ F23 otherwise. Hence by Theorem 1.2, the result

follows. 2
Theorem 2.3 For any connected graph G on p vertices and q edges,

2

3

[
(m− n)q + n

(
p

2

)
+mn

]
≤ ξce(Gm,n) ≤ (m− n)q + n

(
p

2

)
+mn.

Proof The number of edges in Gm,n is

(m− n)q + n

(
p

2

)
+mn.

By Theorem 1.3, Gm,n ∈ F22 when m = n = 1 and Gm,n ∈ F23 otherwise. Hence by

Theorem 2.1, the result follows. 2
Theorem 2.4 For any connected graph G on p vertices and q edges,

(
p

2

)
+ p

(
2− 1

m

)
≤ ξce(Gpm,m) ≤ 2

[(
p

2

)
+ p

(
2− 1

m

)]
.

Proof In Gpm,m, the number of edges is m
(
p
2

)
+ p(2m− 1). By Theorem 1.4, r(Gpm,m) = m

and d(Gpm,m) = 2m. So
deg(v)

2m
≤ deg(v)

ecc(v)
≤ deg(v)

m

and hence

1

m

[
m

(
p

2

)
+ p(2m− 1)

]
≤ ξce(Gpm,m) ≤ 2

m

[
m

(
p

2

)
+ p(2m− 1)

]
. 2
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Theorem 2.5 For any connected graph G on p vertices and for any even integer m ≥ 2,

2mp(p+ 1)

m+ 1
≤ ξce(Gcm,m) ≤ 4mp(p+ 1)

m+ 2
.

Proof For even integer m ≥ 2, by Theorem 1.5,

m

2
+ 1 ≤ ecc(v) ≤ m+ 1

for all v ∈ V (Gcm,m). Also the number of edges in Gcm,m is m
(
p
2

)
+ 2mp. Therefore

2

m+ 1

[
m

(
p

2

)
+ 2mp

]
≤ ξce(Gcm,m) ≤ 2

m
2 + 1

[
m

(
p

2

)
+ 2mp

]

and hence
2mp

m+ 1
[p+ 1] ≤ ξce(Gcm,m) ≤ 4mp

m+ 2
[p+ 1]. 2

Now we determine the exact value of ξc(G) for some graph families.

Proposition 2.6 For any n ≥ 3,

ξc(EV (Pn)) =





1
2 (9n2 − 16n+ 7), n is odd

1
2 (9n2 − 16n+ 8), n is even.

Proof Let v1, v2, · · · , vn be the vertices on the path and x1, x2, · · · , xn−1 be the vertices

corresponding to the edges of the path Pn. Then,

ecc(vi) =





n− i, 1 ≤ i ≤
⌊
n
2

⌋

i− 1,
⌊
n
2

⌋
+ 1 ≤ i ≤ n

and ecc(xi) =





n− i, 1 ≤ i ≤
⌊
n
2

⌋

i,
⌊
n
2

⌋
+ 1 ≤ i ≤ n− 1.

Also,

deg(vi) =





2, i = 1, n

4, 2 ≤ i ≤ n− 1
and deg(xi) = 2, 1 ≤ i ≤ n− 1.

Therefore

ξc(EV (Pn)) =
∑

v∈V (EV (Pn))

deg(v) ecc(v)

= 4

n−1∑

i=2

ecc(vi) + 4(n− 1) + 2

n−1∑

i=1

ecc(xi)
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= 4

⌊n2 ⌋∑

i=2

(n− i) + 4

n−1∑

i=⌊n2 ⌋+1

(i− 1) + 4(n− 1)

+ 2(n− 1) + 2

⌊n2 ⌋∑

i=2

(n− i) + 2

n−1∑

i=⌊n2 ⌋+1

i

= 6

⌊n2 ⌋∑

i=2

(n− i) + 6

n−1∑

i=⌊n2 ⌋+1

i− 4
(
n− 1−

⌊n
2

⌋)
+ 6(n− 1)

= 6n
(⌊n

2

⌋
− 1
)
− 6

⌊n2 ⌋∑

i=2

i+ 6
n−1∑

i=⌊n2 ⌋+1

i− 4n+ 4 + 4
⌊n

2

⌋
+ 6n− 6

= 6n
(⌊n

2

⌋
− 1
)
− 12

⌊n2 ⌋∑

i=2

i+ 6

n−1∑

i=2

i+ 2n− 2 + 4
⌊n

2

⌋
.

= 6n
⌊n

2

⌋
− 6n− 12

⌊n2 ⌋∑

i=1

i+ 12 + 6

n−1∑

i=1

i− 6 + 2n− 2 + 4
⌊n

2

⌋

= (6n+ 4)
⌊n

2

⌋
− 4n+ 4− 12

(⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2

)
+ 6

(
n(n− 1)

2

)

= (6n+ 4)
⌊n

2

⌋
− 4n+ 4− 6

⌊n
2

⌋ (⌊n
2

⌋
+ 1
)

+ 3n2 − 3n

= (6n− 2)
⌊n

2

⌋
− 6

⌊n
2

⌋2
+ 3n2 − 7n+ 4

=





1
2 (9n2 − 16n+ 7), n is odd

1
2 (9n2 − 16n+ 8), n is even.

2
Proposition 2.7 For any n ≥ 3,

ξc(EV (Cn)) =





3n2 − n, n is odd

3n2 + 2n, n is even.

Proof Let v1, v2, · · · , vn be the vertices on the cycle of length n and x1, x2, · · · , xn be the

vertices corresponding to the edges of Cn so that vixi, xivi+1 ∈ E(EV (Cn)), 1 ≤ i ≤ n, where

vn+1 = v1. Then,

ecc(vi) =





n−1
2 , n is odd

n
2 , n is even

and ecc(xi) =





n+1
2 , n is odd

n+2
2 , n is even, for 1 ≤ i ≤ n.

Also, deg(vi) = 4, 1 ≤ i ≤ n and deg(xi) = 2, 1 ≤ i ≤ n. Therefore,
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ξc(EV (Cn)) =
∑

v∈V (EV (Cn))

deg(v) ecc(v)

= 4

n∑

i=1

ecc(vi) + 2

n∑

i=1

ecc(xi)

=





4n
(
n−1

2

)
+ 2n

(
n+1

2

)
, n is odd

4n
(
n
2

)
+ 2n

(
n+2

2

)
, n is even

=





3n2 − n, n is odd

3n2 + 2n, n is even.
2

Proposition 2.8 For any n ≥ 2,

ξc(EV (Kn)) =





6, n = 2

36, n = 3

7n(n− 1), n ≥ 4.

Proof Let v1, v2, . . . , vn be the vertices of Kn and x1, x2, . . . , xn,m =
(
n
2

)
be the vertices

corresponding to the edges of Kn. Then ecc(vi) = 2 for 1 ≤ i ≤ n and ecc(xi) = 3 for 1 ≤ i ≤ m.
Also deg(vi) = 2n− 2, 1 ≤ i ≤ n and deg(xi) = 2, 1 ≤ i ≤ m. Therefore,

ξc(EV (Kn)) =
∑

v∈V (EV (Kn))

deg(v) ecc(v)

=
∑

vi∈V (EV (Kn))

deg(vi) ecc(vi) +
∑

xi∈V (EV (Kn))

deg(xi) ecc(xi)

= 2n(2n− 2) + 6m

= 4n(n− 1) + 6
n(n− 1)

2
= 7n(n− 1).

When n = 3, ecc(vi) = ecc(xi) = 2. Therefore ξc(EV (K3)) = 36. When n = 2, ecc(vi) =

ecc(xi) = 1 and deg(vi) = 2 for i = 1, 2 and deg(x1) = 2. So ξc(EV (K2)) = 6. 2
Proposition 2.9 The eccentric connectivity index of K1,n is 6n.

Proof Let v0 be the central vertex and v1, v2, . . . , vn be the pendent vertex of K1,n. Let

x1, x2, . . . , xn be the vertices corresponding to the edges of K1,n in EV (K1,n). Then ecc(v0) = 1,

ecc(vi) = 2, 1 ≤ i ≤ n and ecc(xi) = 2, 1 ≤ i ≤ n. Also deg(v0) = 2n and deg(vi) = deg(xi) = 2
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for 1 ≤ i ≤ n. Therefore,

ξc(EV (K1,n)) =
∑

v∈V (EV (K1,n))

deg(v) ecc(v)

= 2n+

n∑

i=1

4 +

n∑

i=1

4 = 6n. 2
Proposition 2.10 For any n ≥ 3,

ξc(EV (Wn)) =





28n, n = 3, 4

34n, n = 5

36n, n ≥ 6.

Proof Let v0 be the central vertex and v1, v2, . . . , vn be the vertices on the cycle of Wn.

Let xi, 1 ≤ i ≤ n be the vertices corresponding to the edges on the cycle and xn+i, 1 ≤ i ≤ n

be the vertices corresponding to the edges v0vi, 1 ≤ i ≤ n.

Assume that n ≥ 6. In EV (Wn), ecc(v0) = 2, ecc(vi) = ecc(xi) = 3, 1 ≤ i ≤ n and ecc(xi) =

4, n + 1 ≤ i ≤ 2n. Also deg(v0) = 2n, deg(vi) = 6, 1 ≤ i ≤ n and deg(xi) = 2, 1 ≤ i ≤ 2n.

Therefore

ξc(EV (Wn)) =
∑

v∈V (EV (Wn))

deg(v) ecc(v)

= deg(v0) ecc(v0) +

n∑

i=1

deg(vi) ecc(vi)

+

n∑

i=1

deg(xi)ecc(xi) +

2n∑

i=n+1

deg(xi) ecc(xi)

= 4n+ 18n+ 6n+ 8n = 36n.

When n = 5, ecc(v0) = 2, ecc(vi) = 3, 1 ≤ i ≤ n, ecc(xi) = 3, 1 ≤ i ≤ 2n and hence

ξc(EV (Wn)) = 34n. When n = 3 and 4, ecc(v0) = 2, ecc(vi) = 2, 1 ≤ i ≤ n, ecc(xi) =

3, 1 ≤ i ≤ 2n and hence ξc(EV (Wn)) = 28n. 2
Proposition 2.11 For any n ≥ 2,

ξc(EV (Ln)) =





27
2 n

2 + n− 13
2 , when n is odd

27
2 n

2 + n− 4, when n is even.

Proof Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices on the path of length n− 1. Let

xi and yi be the duplicating vertices of the edges uiui+1 and vivi+1 respectively, 1 ≤ i ≤ n− 1
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and zi be the duplicating vertex of the edge uivi, 1 ≤ i ≤ n. In EV (Ln),

ecc(ui) =





n+ 1− i, 1 ≤ i ≤
[
n
2

]

ecc(un+1−i),
[
n
2

]
+ 1 ≤ i ≤ n,

ecc(vi) = ecc(ui), 1 ≤ i ≤ n,

ecc(xi) =





n+ 1− i, 1 ≤ i ≤
[
n
2

]

ecc(xn−i),
[
n
2

]
+ 1 ≤ i ≤ n− 1,

ecc(yi) = ecc(xi), 1 ≤ i ≤ n− 1 and

ecc(zi) =





n+ 1− i, 1 ≤ i ≤
⌈
n
2

⌉

ecc(zn+1−i),
⌈
n
2

⌉
+ 1 ≤ i ≤ n.

Also,

deg(ui) = deg(vi) =





4, i = 1, n

6, 2 ≤ i ≤ n− 1
and deg(xi) = deg(yi) = deg(zi) = 2.

Therefore,

ξc(EV (Ln)) =
∑

v∈V (EV (Ln))

deg(v) ecc(v)

= 2

n∑

i=1

deg(ui)ecc(ui) + 2

n−1∑

i=1

deg(xi)ecc(xi)

+

n∑

i=1

deg(zi)ecc(zi)

= 16n+ 12

n−1∑

i=2

ecc(ui) + 4

n−1∑

i=1

ecc(xi) + 2

n∑

i=1

ecc(zi).

When n is odd,

ξc(EV (Ln)) = 16n+ 12

[
(n− 2)

(
n+ 1

2

)
+ 2

(
1 + 2 + · · ·+

(
n+ 3

2

))]

+ 4

[
(n− 1)

(
n+ 3

2

)
+ 2

(
1 + 2 + · · ·+

(
n− 3

2

))]

+ 2

[
n

(
n+ 3

2

)
+ 2

(
1 + 2 + · · ·+

(
n− 1

2

))]

= 16n+ 6(n− 2)(n+ 1) + 4(n− 3)(n− 1)

+ 2(n− 1)(n+ 3) + n(n+ 3) + 2

(
n− 1

2

)(
n+ 1

2

)
=

27

2
n2 + n− 13

2
.
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When n is even,

ξc(EV (Ln)) = 16n+ 12

[
(n− 2)

(
n− 2

2

)
+ 2

(
1 + 2 + · · ·+

(
n− 4

2

))]

+ 4

[
(n− 1)

(
n+ 2

2

)
+ 2

(
1 + 2 + · · ·+

(
n− 2

2

))]

+ 2

[
n

(
n+ 4

2

)
+ 2

(
1 + 2 + · · ·+

(
n− 2

2

))]

= 16n+ 6(n2 − 4) + 2(n− 1)(n+ 2) + n(n+ 4)

+ 3(n− 4)(n− 2) +
3

2
(n(n− 2)) =

27

2
n2 + n− 4. 2

Proposition 2.12 For any n ≥ 3,

ξc(EV (Cn ◦K1)) =





6n2 + 12n, n is odd

6n2 + 16n, n is even.

Proof Let v1, v2, . . . , vn be the vertices in the cycle Cn and ui be the pendent vertex

attached at vi, 1 ≤ i ≤ n, in Cn ◦ K1. Let xi, 1 ≤ i ≤ n be the vertices corresponding to the

edges of the cycle Cn and yi, 1 ≤ i ≤ n be the vertices corresponding to the pendent edges of

Cn ◦K1 in EV (Cn ◦K1). In EV (Cn ◦Kn), for 1 ≤ i ≤ n,

ecc(vi) =





n+1
2 , if n is odd

n+2
2 , if n is even,

ecc(ui) =





n+3
2 , if n is odd

n+4
2 , if n is even,

ecc(xi) =





n+3
2 , if n is odd

n+2
2 , if n is even

and

ecc(yi) = ecc(ui).

Also deg(vi) = 6 and deg(ui) = deg(xi) = deg(yi) = 2, 1 ≤ i ≤ n. When n is odd,

ξc(EV (Cn ◦K1)) =
∑

v∈V (EV (Cn◦K1))

deg(v) ecc(v)

= 6

n∑

i=1

ecc(vi) + 4

n∑

i=1

ecc(ui) + 2

n∑

i=1

ecc(xi)

= 6n

(
n+ 1

2

)
+ 4n

(
n+ 3

2

)
+ 2n

(
n+ 3

2

)

= 6n2 + 12n.
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When n is even,

ξc(EV (Cn ◦K1)) =
∑

v∈V (EV (Cn◦K1))

deg(v) ecc(v)

= 6

n∑

i=1

ecc(vi) + 4

n∑

i=1

ecc(ui) + 2

n∑

i=1

ecc(xi)

= 6n

(
n+ 2

2

)
+ 4n

(
n+ 4

2

)
+ 2n

(
n+ 2

2

)

= 6n2 + 16n. 2
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Abstract: In this article, one Galilean (or called Isotropic) plane moving relative to two

other Galilean planes (or Isotropic Planes), one moving and the other fixed, was taken into

consideration and the relation between the absolute, relative and sliding velocities of this

movement and pole points were obtained. Also a canonical relative system for one-parameter

Galilean planar motion was defined. In addition, Euler-Savary formula, which gives the

relationship between the curvature of trajectory curves, was obtained with the help of this

relative system.
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§1. Introduction

Galilean Geometry, is described by Yaglom, [1]. So far, many researcher has done a lot of studies

as [2-4], etc in the Galilean Plane (or Isotropic Plane) and Galilean Space. Also, Euler-Savary’s

formula is very famous theorem. It gives relation between curvature of roulette and curvatures

of these base curve and rolling curve, [14]. It takes place in a lot of studies of engineering and

mathematics. A few of them are studies worked by Alexander and Maddocks,[5], Buckley and

Whitfield, [6], Dooner and Griffis, [7], Ito and Takahaski, [8], Pennock and Raje, [9].

In 1959, Müller, [10]; defined one-parameter planar motion in the Euclidean plane E2. He

studied the moving coordinate system and Euler-Savary’s formula during one parameter planar

motions. Then, Ergin in 1991 and 1992, [11-[12]; considering the Lorentzian Plane L2, instead

of the Euclidean plane E2, introduced the one parameter planar motion in the Lorentzian plane

L2 and gave the relations between both the velocities and accelerations and also defined the

moving coordinate system. Furthermore, in 2002 Aytun [13] studied the Euler Savary formula

for the one parameter Lorentzian motions as using Müller’s Method [10]. And in 2003, Ikawa

[14] gave the Euler-Savary formula on Minkowski without using Müller’s Method [10].

1Received December 26, 2014, Accepted May 28, 2015.
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In 1983, Otto Röschel, [15]; studied kinematics in the isotropic plane. He investigated

fundamental properties of the point-paths, developed a formula analog to the wellknown formula

of Euler-Savary and studied special motions: An isotropic elliptic motion and an isotropic four-

bar-motion. And in 1985, he [16]; studied motions
∑
/
∑

0 in the isotropic plane. Given

C2 -curve k in the moving frame
∑

he found the enveloped curve k0 in the fixed frame
∑

0

and considered the correspondance between the isotropic curvatures A and A0 of k and k0.

Then he investigated third - order properties of the point-paths. And then in 2013, Yüce,

[17], considering the Galilean Plane G2, instead of the Euclidean Plane E2 or instead of the

Lorentzian Plane L2, defined one parameter planar Galilean motion in Galilean Plane G2 analog

[10] or [11]. Moreover, they analyzed the relationships between the absolute, relative and sliding

velocities of one-parameter Galilean Planar motion as well as the related pole lines.

Now we investigate the moving coordinate system and Euler Savary’s Formula during the

one parameter planar Galilean motion in Galilean Plane G2 analog [10] or [11] by using Müller’s

method.

§2. Preliminaries

In this section, the basic information about Galilean geometry which is described by Ya-

glom, [1], will be given.

Let {x} and {x′} be two relative frames and origin point O with velocity v on a line o

move according to relative frame {x′} , that is, b (t) = b+ vt where t is time and b is coordinate

of point O with respect to coordinate system {x′} at the moment t = 0 (see, Figure 1).

o

A

O′

O
b

x

-- v

Figure 1 The rectilinear motion

Then, relation between coordinates of x and x′ is

x′ = x+ b (t) (1)

= x+ b+ vt. (2)

Also, since time would be t′ = t+ a (example, t is Gregorian calendar, t′ is Hijra calendar), we

can write 



x′ = x+ vt+ b

t′ = t+ a.
(3)

This transformations (1.1) are called Galilean Transformations for rectilinear motions. If point

A (x, t) with coordinate x and t of a (two-dimensional) plane xOt (see, Figure 2) represents

position of point A (x) on a line o at time t, then two-dimensional Geometry which is invariant

under the Galilean Transformations for rectilinear motions is obtained.
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-6
A(x, t)

O
x

t

Figure 2 xOt plane

So, this geometry is called the geometry of Galileo’s principle of relativity for rectilinear motions

or two-dimensional Galilean geometry and is represented by G2. Since we shall only talk about

the two-dimensional Galilean geometry in this work, we shall shortly call Galilean plane. If

transformation (3) is arranged as x instead of t and y instead of x, we get

x′ = x+ a

y′ = y + vx+ b.
(4)

This transformation (4) composed of the shear transformation

x1 = x

y1 = y + vx
(5)

and the translation transformation

x′ = x1 + a

y′ = y1 + b.
(6)

Theorem 2.1([1]) Transformation (4) maps

(1) lines onto lines;

(2) parallel lines onto parallel lines;

(3) collinear segments AB, CD onto collinear segments A′B′,C′D′ with C′D′

A′B′ = CD
AB

;

(4) a figure F onto a figure F ′ of the same area.

In the Galilean plane, the vectors {g1 = (1, 0),g2 = (0, 1)} are called orthogonal basis vec-

tors of G2, and also a vector which is parallel to vector g2 is called special vector. If {g1,g2} are

orthogonal basis vectors and a,b ∈ G2 whose coordinates are (x1, x2) and (y1, y2) according to

this basis vectors {g1,g2} , respectively, then the Galilean inner product of vectors a,b ∈ G2

with respect to bases {g1,g2} is defined by

〈a,b〉G = x1y1 (7)

(also you can see in [4]). If a,b are special vectors, then the Galilean special inner product of
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special vectors is defined by

〈a,b〉δ = x2y2. (8)

Hence, the norm of every vector a = (x1, x2) ∈ G2 on the Galilean plane is denoted by ‖a‖G
and is defined by

‖a‖G =
√
〈a,a〉G = |x1| (9)

and the norm of every special vector a = (0, x2) ∈ G2 on the Galilean Plane is denoted by ‖a‖δ
and is defined by

‖a‖δ =
√
〈a,a〉δ = |x2| . (10)

The distance between points A (x1, x2) and B (y1, y2) on the Galilean Plane is denoted by dAB

and is defined by

dAB =
√
〈AB,AB〉G = y1 − x1, (11)

where y1 > x1 (see, Figure 3).

Figure 3 The distance between two points in G2

Figure 4 The special distance between two points

That is, dAB is equal to ‖PP1‖ in the sense of Euclidean Geometry. If the distance between
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A (x1, x2) and B (y1, y2) is equal to zero (x1 = y1), then special distance of the points A (x1, x2)

and B (y1, y2) is denoted by δAB and is defined by

δAB =
√
〈AB,AB〉δ = y2 − x2 (12)

here y2 > x2 (see, Figure 4). The set of points M (x, y) whose distances from a fixed point

Q (a, b) have constant absolute value r is called a Galilean circle, and is denoted by S. Thus,

the circle S in the Galilean Plane is defined by

(x− a)2 = r2 (13)

or

x2 + 2px+ q = 0 (14)

where p = −a, q = a2− r2. Also in the Galilean Plane, lines are parallel to y-axis are separable

from class of lines and these lines are called special lines and others are called ordinary lines.

Therefore, the circle S in the Galilean Plane consists of two special lines whose distance from

Q is r (see, Figure 5).

Figure 5 The circle in G2

Figure 6 The angle between two intersecting lines
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However, the angle between two ordinary lines y = kx + s and y = k1x + s1 intersecting at a

point Q = (x0, y0) (see, Figure 6) is defined by

δll1 = k1 − k. (15)

But the right angle is defined by angle between ordinary line and special line in the Galilean

Plane. So, the special lines are perpendicular to ordinary lines and also special vectors are

perpendicular to ordinary vectors. Consequently, let S be a unit circle with centered at O and

M (x, y) be a point on S. Assume that l denotes line OM and α denotes δOl (see, Figure 7).

Figure 7 The trigonometry in G2

Then, we have

cosgα = 1 (16)

and

singα = α. (17)

Also, suppose that l1 be another ordinary line and δll1 = β. Then we get

cos g (α+ β) = 1 (18)

and

sin g (α+ β) = sin gα cos gβ + cos gα sin gβ. (19)

We can define a circle by another definition in Euclidean Geometry that the set of points M

from which a given ordinary segment AB (i.e., a segment on an ordinary line) is seen at a

constant directed angle α. If we use this definition in the Galilean Plane, we have equation

ax2 + 2b1x+ 2b2y + c = 0 (20)

which are (Euclidean) parabolas and this set is called a Galilean cycle and denoted by Z. Here

each of lines which are parallel to y-axis, is a diameter of cycle Z and it is denoted by d (see,

Figure 8).
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Figure 8 The cycle in G2 and circle in E2

Also, the length of an arc AB of a curve Γ is equal to the length s = dAB of the cord AB (see,

Figure 9).

Figure 9 The length of an arc in G2

Thus, the radius of cycle Z is defined by

r =
1

2a
. (21)

Furthermore, the curvature ρ of Γ at A is defined as the rate change of the tangent at A, that

is, the curvature of Γ at A is

ρ = lim
△s→0

△ϕ
△s (22)

where △ϕ = TAT ′0 is angle between the two neighboring tangents, △s = arcAM is the scalar

arc element of Γ such that M is a point of curve Γ (see, Figure 10).
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Figure 10 The curvature in G2

Therefore, the radius of curvature of Γ at A, denoted r, is

r =
1

ρ
. (23)

Now, let consider all cycles passing through the points of Γ and having the same tangent AT = l

at A as Γ. From these cycles, we select that for any other cycle Z0 which is closest distance

MM ′ between points on Γ and Z sufficiently close to A which project to the same point N on

l is larger than the distance between the corresponding points M and M ′0 of Γ and Z0. This

cycle Z0 is called the osculating cycle of curve Γ at A (see, Figure 11), [1].

Figure 11 The cycle in G2

§3. One Parameter Planar Galilean Motion

LetG andG′
(
G = G′ = G2

)
be moving and fixed Galilean planes and {O;g1,g2} and {O′;g′1,g′2}

be their coordinate systems, respectively. The motion defined by the transformation

x = x′−u (24)
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is called as one parameter planar Galilean motion and denoted by B = G/G′ where

OO′ = u =u1g1 + u2g2 (25)

for u1, u2 ∈ R, x,x′ are the coordinate vectors with respect to the moving and fixed rectangular

coordinate systems of a point X = (x1, x2) ∈ G respectively. Also, these vectors x,x′ and u

and shear rotation angle ϕ between g1 and g′1 are continuously differentiable functions of a

time parameter t (see, Figure 12).

Figure 12 The motion B = G/G′

We can write

g1 = g′1 + ϕg′2

g2 = g′2
(26)

for the shear rotation angle ϕ = ϕ (t) between g1 and g′1. In this study, we suppose that

ϕ̇(t) =
dϕ

dt
6= 0 (27)

where ”.” denotes the derivation with respect to ”t”. By differentiating the equations (25) and

(26), the derivative formulae of the motion B = G/G′ are

ġ1 = ϕ̇g2

ġ2 = 0

u̇ = u1g1 + (u2 + u1ϕ̇)g2.

(28)

The velocity of the point X with respect to G is defined as the relative velocity Vr and is

founded by

Vrẋ1g1 + ẋ2g2. (29)

Furthermore, velocity of the point X ∈ G according to G′ is known as the absolute velocity,

and is found as

Va = −u̇1g1 + (−u̇2 − u1ϕ̇+ x1ϕ̇)g2 + Vr. (30)



The Moving Coordinate System and Euler-Savary’s Formula 97

Thus, we get the sliding velocity

Vf = −u̇1g1 + (−u̇2 − u1ϕ̇+ x1ϕ̇)g2. (31)

In the general one parameter motions, the points whose sliding velocity is zero, i.e.,Vf= 0 are

called the pole point or instantaneous shear rotation pole point and in the Galilean Plane G,

the pole point P = (p1, p2) ∈ G of the motion B = G/G′ is defined by

p...





p1 = u1 + u̇2(t)
ϕ̇(t)

p2 = p2 (t (λ))
(32)

for λ ∈ R (see, Figure 13) [17].

Figure 13 The pole line in Galilean plane

Corollary 3.1([17]) During one parameter planar motion B = G/G′ invariants points in both

planes at any instant t have been on a special line in the plane G. That is, there only exists

pole line in the Galilean Plane G at any instant t. For all t ∈ I, this pole lines are parallel

to y-axis and these pole lines form bundles of parallel lines. Using equations (31)and (32), for

sliding velocity, we can write

Vf = {0g1 + (x1 − p1)g2} ϕ̇. (33)

Corollary 3.2([17]) During one parameter planar motion B = G/G′, the pole ray PX =

(x1 − p1) g1 + (x2 − p2)g2 and Vf = {0g1 + (x1 − p1)g2} ϕ̇ are perpendicular vectors, i.e.,〈
PX,Vf

〉
G

= 0. Thus, under the motion B = G/G′, the focus of the points X ∈ G is an orbit

curve that is normal pass through the shear rotation pole P .

Corollary 3.3([17]) Under the motion B = G/G′, the norm of the sliding velocity Vf is

‖Vf‖δ = ‖PX‖G |ϕ̇| . (34)

That is, during the motion B = G/G′, all of the orbits of the points X ∈ G are such curves
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whose normal lines pass thoroughly the pole point P . At any instant t, the motion B = G/G′

is a Galilean instantaneous shear rotation with the angular velocity ϕ̇ about the pole point P .

Since there exist pole points in every moment t, during the one-parameter plane motion

B = G/G′ any pole point P is situated various positions on the plane G and G′. The position

of the pole point P on the moving plane G is usually a curve and this curve is called moving

pole curve and is denoted by (P ) . Also the position of this pole point P on the fixed plane G′

is usually a curve and this curve is called fixed pole curve and is denoted by (P ′) .

§4. The Moving Coordinate System on the Galilean Planes

In this section, we study on three Galilean planes, and investigate relative, sliding and absolute

velocity, a point of X on a plane according to the other two plane and relations between the

pole points. Let A and G be moving and G′ be fixed Galilean plane and {B,a1,a2} , {O;g1,g2}
and {O′;g′1,g′2} their coordinate systems, respectively (see, Figure 14).

Figure 14 The two moving and one fixed coordinate system

Assume that ϕ and ψ are rotation angles of one parameter planar motions A/G and A/G′,

respectively. Let us consider a point X with the coordinates of (x1, x2) in moving plane A.

Since

BX = x1a1 + x2a2 (35)

OB = b = b1a1 + b2a2 (36)

O′B = b′ = b′1a1 + b′2a2 (37)

are vectors on the moving system of A, we have

x = OX = OB + BX = b + x1a1 + x2a2 (38)

x′ = O′X = O′B + BX = b′+x1a1 + x2a2 (39)

where vector x and x′ denote the point X with respect to the coordinate systems of G and G′,

respectively. Let’s find the velocities of one parameter motion with the help of the differentiation
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the equations (38) and (39). Assume that ”d...” denotes the differential with respect to G and

”d′...” denotes the differential with respect to G′.

The derivative equations in motion B = A/G, are

da1 = dϕa2 (40)

da2 = 0 (41)

db = db1a1 + (b1dϕ+ db2)a2 (42)

and the derivative equations in motion B = A/G′ taking d′b = d′b′, are

d′a1 = d′ψa2 (43)

d′a2 = 0 (44)

d′b = db′1a1 + (b′1dψ + db′2)a2. (45)

So differential of X with respect to G is

dx = (σ1 + dx1)a1 + (σ2 + τx1 + dx2)a2 (46)

where σ1 = db1, σ2 = db2 + b1dϕ, τ = dϕ. Therefore the relative velocity vector of X with

respect to G is

Vr =
dx

dt
(47)

and also differential of X with respect to G′ is

d′x = (σ′1 + dx1)a1 + (σ′2 + τ ′x1 + dx2)a2 (48)

where σ′1 = db′1, σ
′
2 = db′2 + b′1dψ, τ

′ = dψ. Thus, the absolute velocity vector of X with respect

to G′ is

Va =
d′x

dt
. (49)

Here σ1, σ2, σ
′
1, σ
′
2, τ and τ ′ are the Pfaffian forms of one parameter motion with respect to t.

If Vr = 0 and Va = 0 then the point X is fixed in the planes G and G′, respectively. Thus, the

conditions that the point is fixed in planes G and G′ become

dx1 = −σ1, dx2 = −σ1 − τx1 (50)

and

dx1 = −σ′1, dx2 = −σ′2 − τ ′x1, (51)

respectively. Substituting equation (50) into equation (48) and considering that the sliding

velocity of the point X is Vf =
dfx

dt
, we have

dfx = {σ′1 − σ1}a1 + {(σ′2 − σ2) + (τ ′ − τ)}a2. (52)
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Therefore from (46), (48) and (52) we may give the following theorem.

Theorem 4.1 If X is a fixed point on G, then we have

d′x = dfx + dx, (53)

that is, Va= Vf+Vr. Thus, velocities law is preserved.

Remark 4.2 In the motion A/G, the absolute velocity Ṽa corresponds the differential of

dx = σ1a1 + {σ2 + τx1}a2 + dx1a1 + dx2a2 (54)

according to plane G of the point X , and the relative velocity Ṽr which is the velocity of X

according to the plane A, is equal to the differential of

dx1a1 + dx2a2 (55)

with respect to A of the point X . Thus the sliding velocity Ṽf with respect to motion A/G is

the differential of

σ1a1 + {σ2 + τx1}a2 (56)

according to G of the point X . Similarly, in the motion A/G′, the absolute velocity Ṽ′a is equal

to the differential of

d′x = σ′1a1 + {σ′2 + τ ′x1} a2 + dx1a1 + dx2a2 (57)

with respect to G′ of the point X, and the relative velocity Ṽ′r is the differential of

dx1a1 + dx2a2 (58)

with respect to A of the point X. So the sliding velocity Ṽ′f corresponds the differential of

σ′1a1 + {σ′2 + τ ′x1}a2 (59)

with respect to G′ of the point X .Since the motion G/G′ is characterized by the inverse motion

of A/G and the motion A/G′, we have the sliding motion dfx when we subtract from the

sliding velocity of the motion A/G′ to the sliding velocity of the motion A/G. So we can write

Vf = Ṽ′f − Ṽf . (60)

To avoid the cases of pure translation we assume that ϕ̇ 6= 0, ψ̇ 6= 0.

In one parameter planar Galilean motions the pole point is characterised by vanishing

sliding velocity, i.e., dfx = 0. So, the pole point P of the one parameter planar motion G/G′ is

obtained as

p1 = −σ
′
2 − σ2

τ ′ − τ (61)
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p2 = p2 (λ) , λ ∈ R (62)

where BP = p1a1 + p2a2. Note that here we find

σ′1 − σ1 = 0. (63)

§5. The Shear Rotation Poles for Moving Galilean Planes with

Respect to the Other

Let us have three planes such as A,G,G′ moving with respect to together and also occur in

two one parameter planar Galilean motion with respect to each other. In the determined time

t, pairs of plane (A,G), (A,G′) and (G,G′) have a determined shear rotation pole line, and in-

stantaneous shear rotation motions arise with angular velocity about the pole line. Accordingly,

three planes moving with respect to together constitute a three-member kinematic chain.

Motion A/G of plane A with respect to plane G is formulated by equation system (41).

Here dϕ = τ is infinitesimal shear rotation angle, that is, τ
dt

is an angular velocity. Differential

of point X with respect to plane A

dBX =dx1a1 + dx2a2. (64)

The differential corresponds to relative velocity with respect to plane A. If point X is fixed,

then we can write dBX = 0. In the equation (46), the differential of point X is given with

respect to plane G. From here, sliding velocity of point X with respect to motion A/G is

σ1a1 + (σ2 + τx1) a2. (65)

However the shear rotation pole of motion is characterized by vanishing the sliding velocity.

So, for the shear rotation pole line q of motion A/G, we have

q...
{
q1 = −σ2

τ
, q2 = q2 (ξ) ξ ∈ R. (66)

Similarly for the shear rotation pole line q′ of motion A/G′, we get

q′...

{
q′1 = −σ

′
2

τ ′
, q′2 = q′2 (µ) , µ ∈ R. (67)

And also, the angular velocity of motion G/G′ is

d (ψ − ϕ)

dt
=
τ ′ − τ
dt

(68)

and for the shear rotation pole line p, from equations (61) and (62) we can rewrite

p...





p1=−σ
′
2−σ2

τ ′−τ

p2 = p2 (λ) , λ ∈ R

. (69)
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So, we give following theorem.

Theorem 5.1 If three Galilean planes form one parameter planar Galilean motions pairwisely,

there exist three shear rotation pole lines at every moment t, and each of these three lines is

parallel to the others.

Corollary 5.2 Generally, if there are n−Galilean planes which form one parameter planar

Galilean motions pairwisely, then we tell of n−member kinematic chain. If the each motions is

connected time (real) parameter t , there exit


 n

2


 relative shear rotation pole lines at every

moment t and every each line is parallel to each others.

Theorem 5.3 The rate of the distance of three shear rotation poles is as the rate of their

angular velocities.

Proof Since q1 = −σ2

τ
, q′1 = −σ

′
2

τ ′ and p1 = −σ
′
2−σ2

τ ′−τ , it is hold

(q1 − q1) : (p1 − q′1) : (q1 − p1) = (τ ′ − τ) : τ : −τ ′. (70)

Thus, we can write

∥∥∥
−−→
QQ′

∥∥∥
G

:
∥∥∥
−−→
Q′P

∥∥∥
G

:
∥∥∥−−→PQ

∥∥∥
G

= (τ ′ − τ) : τ : −τ ′. (71)

§6. Euler-Savary’s Formula for One Parameter Motions in the Galilean Plane

We studied one parameter Galilean motion adding {B,a1,a2} moving system to the motion

of G with respect to G′. Now, in this section, we choose a special relative system {B,a1,a2}
satisfying the following conditions:

(i) The initial point B of the system is a pole point P on the pole line that coordinates

are p1 and p2.

(ii) The axes {B;a1} coincides with the common tangent of the pole curves (P ) and (P ′) .

If we consider the condition i), then from equations (61) and (62) we have

p1 = p2 = 0. (72)

Thus, we can write

σ′1 = σ1, σ
′
2 = σ2. (73)

Therefore we get

db = dp = σ1a1 + σ2a2 = d′p = db′. (74)

Considering the condition ii), then we have σ′2 = σ2 = 0. So if we choose σ′1 = σ1 = σ, then the
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derivative equations for the canonical relative system {P,a1,a2} are

da1 = τa2, d′a1 = τ ′a2

da2 = 0, d′a2 = 0

dp = σa1, d′p = σa1.

(75)

Moreover, τ is the cotangent angle, that is, two neighboring tangets angle of curve (P ) , and

τ ′ is also the cotangent angle of curve (P ′) where, σ = ds is the scalar arc element of the pole

curves (P ) and (P ′). And so τ : σ is the curvature of the moving pole curve (P ). Similarly,

τ ′ : σ is the curvature of the fixed pole curve (P ′). Hence from (23) the radius of curvature of

the pole curves (P ) and (P ′) are

r =
σ

τ
(76)

and

r′ =
σ

τ ′
(77)

respectively. Moving plane G rotates the infinitesimal instantaneous angle of the dφ = τ ′ − τ
around the shear rotation pole P within the time scale dt with respect to fixed plane G′ .

Therefore the angular velocity of shear rotational motion of G with respect to G′ is

τ ′ − τ
ds

=
dφ

ds
= φ̇. (78)

Hence we get
τ ′ − τ
ds

=
dφ

ds
=

1

r′
− 1

r
(79)

from equations (76), (77) and (78). We accept that for the direction of unit tangent vector a1,

pole curves (P ) and (P ′) are drawn to the positive x-axis direction that is, ds
dt
> 0, and so we

have r > 0. Similarly we can write r′ > 0.

Now we will investigate case of the point X ′ which is on the diameter d of osculating cycle

of trajectory curve which is drawn in the fixed plane G′ by a point X of moving plane G in

the movement G/G′. In the canonical relative system, let coordinates of points X at plane G

and X ′ at plane G′ be the (x1, x2) and (x′1, x
′
2), respectively. In the movement D/D′, there

is a point X ′ which is on center of curvature of osculating cycle of trajectory curve of X are

situated together with the instantaneous rotation pole P in every moment t such that

PX = x1a1 + x2a2

and

PX′ = x′1a1 + x′2a2

have same direction which passes the pole point P. So we can write

x1 : x2 = x′1 : x′2



104 Mücahit AKBIYIK and Salim YÜCE

or

x1x
′
2 − x′1x2 = 0. (80)

Considering the condition ii) we obtain the condition that the point X to be the fixed in the

moving plane G is

dx1 = −σ, dx2 = −τx1 (81)

and the point X ′ to be the fixed in the moving plane G′ is

dx′1 = −σ, dx′2 = −τ ′x′1. (82)

Differentiating the equation(80) and from the conditions (81) and (82) we have

(x2 − x′2)σ + x1x
′
1 (τ − τ ′) = 0. (83)

If the polar coordinates are passed, then we get

x1 = a cos gα = a, x2 = a sin gα = aα (84)

x′1 = a′ cos gα = a′, x′2 = a′ sin gα = a′α. (85)

Thus, we can write

(a sin gα− a′ sin gα)σ + aa′ (τ − τ ′) = 0. (86)

So from last equation and equation (79) we have

(
1

a′
− 1

a

)
sin gα =

1

r′
− 1

r
=
dφ

ds
. (87)

Here, r and r′ are the radii of curvature of the pole curves P and P ′, respectively. ds represents

the scalar arc element and dφ represents the infinitesimal Galilean angle of the motion of the

pole curves. The equation (87) is called the Euler-Savary formula for one-parameter motion in

Galilean plane G.

Consequently, the following theorem can be given.

Theorem 6.1 Let G and G′ be the moving and fixed Galilean planes, respectively. A point

X ∈ G, draws a trajectory whose a point at the normal axis of curvature is X ′ on the plane G′

in one-parameter planar motion G/G′. In the inverse motion of G/G′, a point X ′ assumed on

G′ draws a trajectory whose a point at the normal axis of curvature is X on the plane G. The

relation between the points X and X ′ which is given by the Euler-Savary formula given in the

equation (87).
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Abstract: Let G be a binary labeled graph and Al(G) = (lij) be its label adjacency

matrix. For a vertex vi, we define label degree as Li =
n∑

j=1

lij . In this paper, we define label

Laplacian energy LEl(G). It depends on the underlying graph G and labels of the vertices.

We compute label Laplacian spectrum of families of graph. We also obtain some bounds for

label Laplacian energy.
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§1. Introduction

For an n-vertex graph G with adjacency matrix A whose eigenvalues are λ1 > λ2 > . . . > λn,

the energy of the graph G is defined as E(G) =
n∑
i=1

|λi|. The concept of Energy of graph

was introduced by Ivan Gutman, in connection with the π-molecular energy. The matrix

L(G) = D(G) − A(G) is the Laplacian matrix of (n,m) graph G. If µ1 > µ2 > . . . > µn = 0

are the eigenvalues of L(G), then the Laplacian energy of G is defined as

LE(G) =
n∑
i=1

|µi − 2m
n
|

However, in the last few years, research on graph energy has much intensified, resulting

in a very large number of publications which can be found in the literature [4, 5, 6, 7, 9, 16].

In spectral graph theory , the eigenvalues of several matrices like adjacency matrix, Laplacian

matrix [8], distance matrix [10] etc. are studied extensively for more than 50 years. Recently

minimum covering matrix, color matrix, maximum degree etc are introduced and studied in

[1,2,3].

Motivated by this, P.G. Bhat and S. D’Souza have introduced a new matrix Al(G) called

label matrix [14] of a binary labeled graph G = (V,X), whose elements are defined as follows:

1Received December 15, 2014, Accepted May 20, 2015.
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lij =





a, if vivj ∈ X(G) and l(vi) = l(vj) = 0,

b, if vivj ∈ X(G) and l(vi) = l(vj) = 1,

c, if vivj ∈ X(G) and l(vi) = 0, l(vj) = 1 or vice-versa,

0, otherwise.

where a, b, and c are distinct non zero real numbers. The eigenvalues λ1, λ2, . . ., λn of Al(G) are

said to be label eigenvalues of the graph G and form its label spectrum. The label eigenvalues

satisfy the following simple relations:

n∑

i=1

λi = 0 and
n∑

i=1

λ2
i = 2Q (1.1)

where

Q = n1a
2 + n2b

2 + n3c
2 (1.2)

Where n1, n2 and n3 denotes number of edges with (0, 0), (1, 1) and (0, 1) as end vertex labels

respectively.

The label degree of the vertex vi, denoted by Li, is given by Li =
n∑
i=1

lij . A Graph G is said

to be k-label regular if Li = k for all i. The label Laplacian matrix of a binary labeled graph G

is defined as

Ll(G) = Diag(Li)−Al(G)

where Diag(Li) denotes the diagonal matrix of the label degrees. Since Ll(G) is real symmetric,

all its eigenvalues µi, i = 1, 2, . . . , n, are real and can be labeled as µ1 > µ2 > . . . > µn. These

form the label Laplacian spectrum of G. Several results on Laplacian of Graph G are reported

in the Literature ([6, 11, 12, 13, 16]).

This paper is organized as follows. In section 2, we establish relationship between λi and

µi and some general results on Laplacian label eigenvalues µi. In section 3, lower bound and

upper bounds for LEl(G) are obtained. In the last section label Laplacian spectrum is derived

for family of graphs.

§2. Label Laplacian Energy

The following Lemma 2.1 shows the similarities between the spectra of label matrix and label

Laplacian matrix. For a labeled graph, let PA(x) and PL(x) denote the label and label Laplacian

characteristic polynomials respectively.

Lemma 2.1 If {λ1, λ2, . . . , λn} is the label spectrum of k-label regular graph G, then {k −
λn, k − λn−1, . . . , k − λ1} is the label Laplacian spectrum of G.

Proof The label Laplacian characteristic polynomial for k-label regular graph G is given
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by

PL(x) = det(Ll(G) − xI) = (−1)n det(Al(G) − (k − x)I) = (−1)nPA(k − x) (2.1)

Thus, if λ1 > λ2 > · · · > λn is the label spectrum of k-label regular graph G, then from equation

(2.1), it follows that k − λn > k − λn−1 > . . . > k − λ1 is the label Laplacian spectrum of G.2
We first introduce the auxiliary eigenvalues γi, defined as

γi = µi − 1
n

n∑
j=1

Lj

Lemma 2.2 If µ1, µ2, · · · , µn are the label Laplacian eigenvalues of Ll(G), then

n∑

i=1

µ2
i = 2Q+

n∑

i=1

L2
i .

Proof We have

n∑

i=1

µ2
i = trace (Ll(G))2 =

n∑

i=1

n∑

j=1

lij lji = 2
∑

i<j

l2ij +

n∑

i=1

l2ii

= 2[n1(a)
2 + n2(b)

2 + n3(c)
2] +

n∑

i=1

L2
i = 2Q+

n∑

i=1

L2
i 2

Lemma 2.3 Let G be a binary labeled graph of order n. Then
n∑
i=1

γi = 0 and
n∑
i=1

γ2
i = 2R,

where

R = Q+ 1
2

n∑
i=1

(
Li − 1

n

n∑
j=1

Lj

)2

and Q is given by equation (1.2).

Proof Note that

n∑
i=1

µi = tr(Ll(G)) =
n∑
i=1

Li and
n∑
i=1

µ2
i =

n∑
i=1

L2
i + 2Q

From which we have,

n∑
i=1

γi =
n∑
i=1

(
µi − 1

n

n∑
j=1

Lj

)
=

n∑
i=1

µi −
n∑
j=1

Lj = 0
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and

n∑

i=1

γ2
i =

n∑

i=1


µi −

1

n

n∑

j=1

Lj




2

=
n∑

i=1

µ2
i −

2

n

n∑

i=1

Lj

n∑

i=1

µi +

(
1

n

n∑

i=1

Lj

)2

=

n∑

i=1

L2
i + 2Q− 2

n

(
n∑

i=1

Lj

)2

+

(
1

n

n∑

i=1

Lj

)2

= 2Q+

n∑

i=1

(
Li −

1

n

n∑

i=1

Lj

)2

= 2R 2
Definition 2.1 Let G be a binary labeled graph of order n. Then the label Laplacian energy of

G, denoted by LEl(G), is defined as
n∑
i=1

|γi|, i.e.

LEl(G) =
n∑
i=1

|µi − 1
n

n∑
j=1

Lj|

In 2006, I.Gutman and B.Zhou defined Laplacian energy LE(G) of a graph G. More on

Laplacian energy reader can refer ([8], [15], [17], [18]). In Chemistry, there are situations where

chemists use labeled graphs, such as vertices represent two distinct chemical species and the

edges represent a particular reaction between two corresponding species. We mention that this

paper deals only the mathematical aspects of label Laplacian energy of a graph and it is a new

concept in the literature.

Lemma 2.4 If G is k- label regular, then LEl(G) = El(G).

If G is k- label regular, then k = Li = 1
n

n∑
j=1

Lj for i = 1, 2, · · · , n. Using Lemma 2.1,

γi = µi − 1
n

n∑
j=1

Lj = (k − λn+1−i)− k = −λn+1−i

for i = 1, 2, · · · , n. Hence, the lemma follows from the definitions of the label energy and label

Laplacian energy.

§2. Bounds for the Label Laplacian Energy

Lemma 3.1([17]) Let a1, a2, . . . , an be non-negative numbers. Then

n


 1

n

n∑

i=1

ai −
(

n∏

i=1

ai

) 1
n


 6 n

n∑

i=1

ai −
(

n∑

i=1

√
ai

)2

6 n(n− 1)


 1

n

n∑

i=1

ai −
(

n∏

i=1

ai

) 1
n


 .
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Theorem 3.1 Let G be a binary labeled graph with n vertices and m edges. Then

√
2R+ n(n− 1)∆

2
n 6 LEl(G) 6

√
2(n− 1)R+ n∆

2
n ,

where ∆ =

∣∣∣∣∣det

(
Ll(G)− 1

n

n∑
j=1

LjI

)∣∣∣∣∣.

Proof Note that
n∑

i=1

|γi| = LEl(G) and

n∑

i=1

γ2
i = 2R,

where R =
[
n1(a)

2 + n2(b)
2 + n3(c)

2
]
+

1

2

n∑
i=1

(
Li − 1

n

n∑
j=1

Lj

)2

.

Using Lemma 3.1, it can be easily checked that Theorem 3.1 is true if ∆ = 0. Now we

assume that ∆ 6= 0. By setting ai = γ2
i , i = 1, 2, . . . , n, and

K = n


 1

n

n∑

i=1

γ2
i −

(
n∏

i=1

γ2
i

) 1
n


 > 0.

From Lemma 3.1, we have

K 6 n

n∑

i=1

γ2
i −

(
n∑

i=1

|γi|
)2

6 (n− 1)K,

which can be further expressed as

K 6 2nR− (LEl(G))2 6 (n− 1)K

2nR− (n− 1)K 6 (LEl(G))2 6 2nR−K, (3.1)

where

K = n


 1

n
γ2
i −

(
n∏

i=1

γ2
i

) 1
n


 = n

[
1

n
2R−∆

2
n

]
= 2R− n∆

2
n

Substituting in equation (3.1), we obtain

√
2R+ n(n− 1)∆

2
n 6 LEl(G) 6

√
2R(n− 1) + n∆

2
n . 2

Theorem 3.2 Let G be a binary labeled graph of order n > 2. Then

2
√
R 6 LEl(G) 6

√
2nR.
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Proof Consider the term

S =

n∑

i=1

n∑

j=1

(|γi| − |γj |)2 = 2n

n∑

i=1

|γi|2 − 2

(
n∑

i=1

|γi|
)


n∑

j=1

|γj |




= 2n.2R− 2(LEl(G))2 = 4nR− 2(LEl(G))2

Note that S > 0, i.e., 4nR − 2(LEl(G))2 > 0, which implies LEl(G) 6
√

2nR. We have(
n∑
i=1

γi

)2

= 0 and the fact that R > 0,

2R =

n∑

i=1

γ2
i =

(
n∑

i=1

γi

)2

− 2
∑

16i<j6n

γiγj 6 2

∣∣∣∣∣∣

∑

16i<j6n

γiγj

∣∣∣∣∣∣
6 2

∑

16i<j6n

|γi||γj | (3.2)

Thus,

LEl(G)2 =

(
n∑

i=1

|γi|
)2

=

n∑

i=1

|γi|2 + 2
∑

16i<j6n

|γi||γj |

> 2R+ 2R = 4R

from Lemma 2.3 and equation (3.1). Hence, LEl(G) > 2
√
R. 2

Theorem 3.3 Let G be a labelled graph of order n. Then

LEl(G) 6
1

n

n∑

i=1

Li +

√√√√√(n− 1)


2R−

(
1

n

n∑

i=1

Li

)2

.

Proof We have

γn = 0− 1

n

n∑

i=1

Li =
1

n

n∑

i=1

Li.

Consider the non-negative term

S =
n−1∑

i=1

n−1∑

j=1

(|γi| − |γj |)2

= 2(n− 1)

n∑

i=1

γ2
i − 2

(
n∑

i=1

|γi|
)


n∑

j=1

|γj |




= 2(n− 1)


2R−

(
1

n

n∑

i=1

Li

)2

− 2

(
LEl(G) − 1

n

n∑

i=1

Li

)2

> 0.
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Hence,

LEl(G) 6
1

n

n∑

i=1

Li +

√√√√√(n− 1)


2R−

(
1

n

n∑

i=1

Li

)2

. 2

§4. Label Laplacian Spectrum of Some Graphs

Theorem 4.1 For n > 2, the label Laplacian spectrum of complete graph Kn is





0 ma+ (n−m)c (n−m)b+mc nc

1 m− 1 n−m− 1 1





where m vertices are labeled zero, n−m vertices are labeled one and 0 6 m 6 n.

Proof Let v1, v2, · · · , vm vertices of Kn be labeled zero and vm+1, vm+2, · · · , vn be labeled

1. Then the label degree of vertex vi is L(vi) = (m − 1)a + (n − m)c for i = 1, 2, . . . ,m,

L(vi) = (n−m− 1)b+mc for i = m+ 1,m+ 2, . . . , n,

Ll(Kn) =


 [ma+ (n−m)c]Im − aJm×m −cJm×(n−m)

−cJ(n−m)×m [(n−m)b+mc]In−m − bJ(n−m)×(n−m)




Consider

det (µI − Ll(Kn))

=

∣∣∣∣∣∣
[µ− {ma+ (n−m)c}]Im + aJm×m cJm×(n−m)

cJ(n−m)×m [µ− {(n−m)b +mc}]In−m + bJ(n−m)×(n−m)

∣∣∣∣∣∣
.

Step 1 Replacing column C1 by C′1 = C1 +C2 + . . .+Cn, we obtain determinant µ det(B).

Step 2 In determinant B, replace the row Ri by R′i = Ri −Ri−1 for i = 2, 3, . . . ,m,m+

2,m+ 3, . . . , n, we obtain

det(B) = (µ− {(m− 1)a+ (n−m)c})m−1
(µ− {(n−m− 1)b+mc})n−m−1

det(C).

Step 3 By changing Ci by C′i = Ci + Ci+1 + . . .+ Cn for i = m+ 1 to n in determinant

C, we get a new determinant D of order m+ 1, i.e.

det(D) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a a . . . a (n−m)c

0 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0

1 c c . . . c µ−mc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



Laplacian Energy of Binary Labeled Graph 113

Step 4 By expanding determinant D over the first column , we obtain det(D) = µ−mc+
(−1)m+2(−1)m+1(n−m)c = µ− nc.

Step 5 By back substitution,

det (µI − Ll(G)) = µ (µ− [ma+ (n−m)c])
m−1

(µ− [(n−m)b+mc])
n−m−1

(µ− nc).

Hence, label Laplacian spectrum of Kn is,





0 ma+ (n−m)c (n−m)b+mc nc

1 m− 1 n−m− 1 1



 2

Corollary 4.1 For n > 2, the label Laplacian spectrum of Kn − {(0, 0)} is





0 (m− 2)a+ (n−m)c ma+ (n−m)c (n−m)b +mc nc

1 1 m− 2 n−m− 1 1





where m vertices are labeled zero, n−m vertices are labeled one and 0 6 m 6 n.

Corollary 4.2 For n > 2, the label Laplacian spectrum of Kn − {(1, 1)} is





0 ma+ (n−m)c (n−m− 2)b+mc (n−m)b+mc nc

1 m− 1 1 n−m− 2 1





where m vertices are labeled zero, n−m vertices are labeled one and 0 6 m 6 n.

Theorem 4.2 The label Laplacian spectrum of star graph Sn is





0 a c α+β
2

α−β
2

1 m− 2 n−m− 1 1 1





where m denotes the number of vertices including the central vertex labeled zero, remaining

vertices labeled one, m ≤ n, α = ma+ (n−m+ 1)c and β =
√

[ma+ (n−m+ 1)c]2 − 4acn.

Proof Let v1, v2, · · · , vm be labeled as zero and remaining vertices be labeled as one,where

v1 is the central vertex. Then, L(v1) = a(m− 1) + c(n−m) and

L(vi) =





a, for i = 2, 3, · · · ,m
c, for i = m+ 1,m+ 2, · · · , n
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Ll(Sn) =




a(m− 1) + c(n−m) −a −a · · · −a −c −c · · · −c
−a a 0 · · · 0 0 0 · · · 0

−a 0 a · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

−a 0 0 · · · 0 0 0 . . . 0

−a 0 0 · · · a 0 0 · · · 0

−c 0 0 · · · 0 c 0 · · · 0

−c 0 0 · · · 0 0 c · · · 0
...

...
...

. . .
...

...
...

. . .
...

−c 0 0 · · · 0 0 0 · · · c




where rows and columns are denoted by v1, v2, · · · , vm, vm+1, vm+2, · · · , vn for the matrix Ll(Sn).

Consider det(µI − Ll(G)).

Step 1 Replace the column C1 by C′1 = C1+C2+· · ·+Cn. Then we see that det(µI−Ll(G))

is of the form µ det(B).

Step 2 In det(B), replace Ri by R′i = Ri−Ri−1, i = 3, 4, · · · ,m,m+2, · · · , n. Simplifying

we get det(B) = (µ− a)m−2(µ− c)n−m−1 det(C).

Step 3 In det(C), replace Ci by C′i = Ci +Ci+1 + · · ·+Cn for i = m,m+ 1, · · · , n. Then

it reduces to the order m+ 1.

Step 4 In det(C), Replacing Ci by C′i = Ci + Ci+1 + · · ·+ Cm for i = 2, 3, · · · , (m − 1),

we get

det(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (m− 1)a (m− 2)a . . . 2a a (n−m)c

1 (µ− a) 0 . . . 0 0 0

0 0 1 . . . 0 0 0
...

...
... . . .

...
...

...

0 0 0 . . . 0 1 0

1 0 0 . . . 0 0 (µ− c)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Expanding over the last column, we get det(C) = µ2 − [am+ (n −m+ 1)c]µ + acn. By

back substitution, we obtain

det(µI − Ll(G)) = µ(µ− a)m−2(µ− c)n−m−1
(
µ2 − [am+ (n−m+ 1)c]µ+ acn

)
.

Hence, label Laplacian spectrum of Sn is given by





0 a c α+β
2

α−β
2

1 m− 2 n−m− 1 1 1







Laplacian Energy of Binary Labeled Graph 115

where α = ma+ (n−m+ 1)c and β =
√

[ma+ (n−m+ 1)c]2 − 4acn. 2
Corollary 4.3 The label Laplacian spectrum of star graph Sn is





0 b c δ+γ
2

δ−γ
2

1 m− 2 n−m− 1 1 1





where m denotes the number of vertices including the central vertex labeled zero, remaining

vertices labeled one, m ≤ n, δ = mb+ (n−m+ 1)c and γ =
√

[mb+ (n−m+ 1)c]− 4bcn.

Proof Let v1 be the central vertex . Let v1, v2, · · · , vm be labeled as one and remaining

vertices be labeled as zero. Then , L(v1) = b(m− 1) + c(n−m) and

L(vi) =





b, for i = 2, 3, · · · ,m
c, for i = m+ 1,m+ 2, · · · , n

The remaining proof of this corollary is similar to Theorem 4.2. 2
Corollary 4.4 If the vertices of cycle C2n are labeled 0 and 1 alternately, then LEl(C2n) =

cLE(C2n) = cE(C2n).

Corollary 4.5 If the vertices of path Pn are labeled 0 and 1 alternately, then LEl(Pn) =

cLE(Pn).

Lemma 4.1([10]) Let M,N,P,Q be matrices, M invertible and

S =


M N

P Q




Then det(S) = det(M) det(Q− PM−1N). Furthermore, if M , P are commute, then det(S) =

det(MQ− PN).

Theorem 4.3 The label Laplacian spectrum of complete bipartite graph K(r, s) with m1 6

r,m2 6 s, the number of zeros in the vertex set of order r, s respectively, is given by





0 (am2 + (s−m2)c) (cm2 + (s−m2)b) (am1 + (r −m1)c) (cm1 + (r −m1)b)

1 m1 − 1 r −m1 − 1 m2 − 1 s−m2 − 1




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and the roots of

[µ3 − µ2{(a+ c)(m1 +m2) + (b + c)((r + s)− (m1 +m2))}
+µ{ac(m2

1 +m2
2) + (c2 + ab)(m2(s−m2) +m1(r −m1))

+(ab+ bc+ ca)(m1(s−m2) +m1(r −m1)) + bc((r −m1)

+(s−m2))
2 + (b2 + c2)(r −m1)(s−m2)} − {(a+ c)bc(r −m1)(s−m2)(m1 +m2)

+abc (m1(s−m2)(s+m1 −m2) +m2(r −m1)(r +m2 −m1))

+bc2(r −m1)(s−m2)(r + s−m1 −m2)

+ac(a+ c)m2
1m2 + c(ac+ c2 + ab)m1m2(s−m2) + ac(b+ c)m1m2(r −m1)}] = 0.

Proof Let the labels of r + s vertices of K(r, s) be 000 · · ·0︸ ︷︷ ︸
m1

111 · · ·1︸ ︷︷ ︸
r−m1

and 000 · · ·0︸ ︷︷ ︸
m2

111 · · ·1︸ ︷︷ ︸
s−m2

.

Ll(K(r, s)) =


 Ar×r −Br×s
−BTs×r Cs×s




(r+s)x(r+s)

with B =


 aJm1×m2 cJm1×s−m2

cJr−m1×m2 bJr−m1×s−m2



rxs

Characteristic polynomial of Ll(K(r, s)) is

φ(Ll(K(r, s)), µ) =

∣∣∣∣∣∣
(µI −A)r×r Br×s

BTs×r (µI − C)s×s

∣∣∣∣∣∣
= |µI −A||(µI − C)−BTA−1B| (4.1)

by Lemma 4.1. Let us denote the label degree of m1, r − m1, m2 and s − m2 vertices as

W = cm2 + (s−m2)b, X = cm2 + (s−m2)b, Y = am1 + (r −m1)c and Z = cm1 + (r −m1)b

respectively. Then A = Diag[µ − W,µ − W, . . . , µ − W,µ − W,µ − X,µ − X, . . . , µ − X ],

C = Diag[µ− Y, µ− Y, . . . , µ− Y, µ− Y, µ− Z, µ− Z, . . . , µ− Z]. Note that

BTA−1B =




{
m1a

2

µ−W + c2(r−m1)
µ−X

}
Jm2×m2

{
acm1

µ−W + bc(r−m1)
µ−X

}
Jm2×s−m2{

acm1

µ−W + bc(r−m1)
µ−X

}
Js−m2×m2

{
c2m1

µ−W + b2(r−m1)
µ−X

}
Js−m2×s−m2




By applying elementary transformations, det(C −BTA−1B) reduces to order m2 + 1. Hence,

|C −BTA−1B| = (µ− Y )m2−1 (µ− Z)s−m2−1 det(E), (4.2)

where

det(E) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(µ− Y )−m2G −(m2 − 1)G (m2 − 2)G . . . −G −(s−m2)H

0 1 0 . . . 0 0

0 0 1 . . . 0 0
... . . .

...

−m2H −(m2 − 1)H −(m2 − 2)H . . . −H (µ− Z)− (s−m2)K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and G = m1a
2

µ−W + c2(r−m1)
µ−X , H = acm1

µ−W + bc(r−m1)
µ−X and K = c2m1

µ−W + b2(r−m1)
µ−X .

Now expression (4.1) becomes

φ(Ll(K(r, s), µ) = (µ−W )m1−1(µ−X)r−m1−1(µ− Y )m2−1(µ− Z)s−m2−1

×[(µ−W )(µ−X)(µ− Y )(µ− Z)− c2m1(s−m2)(µ −X)(µ− Y )

−b2(r −m1)(s−m2)(µ−W )(µ− Y )− a2m1m2(µ− Z)(µ−X)

−c2(r −m1)m2(µ− Z)(µ−W ) + (r −m1)m1m2(s−m2)(c
4 + a2b2 − 2abc2)].

On further simplification, we obtain

φ(Ll(K(r, s), µ) = µ(µ−W )m1−1(µ−X)r−m1−1(µ− Y )m2−1(µ− Z)s−m2−1

[µ3 − µ2(X + Y + Z +W ) + µ(WX +XY + Y Z + ZW +WY +XZ)

−(XYZ +XYW +XWZ +WY Z)− c2m1(s−m2)(µ− (X + Y ))

−b2(r −m1)(s−m2)(µ− (Y +W ))− a2m1m2(µ− (X + Z))

−c2(r −m1)m2(µ− (W + Z))].

Substituting W ,X ,Y and Z and reducing the terms we get





0 (am2 + (s−m2)c) (cm2 + (s−m2)b) (am1 + (r −m1)c) (cm1 + (r −m1)b)

1 m1 − 1 r −m1 − 1 m2 − 1 s−m2 − 1





and the roots of

[µ3 − µ2{(a+ c)(m1 +m2) + (b + c)((r + s)− (m1 +m2))}
+µ{ac(m2

1 +m2
2) + (c2 + ab)(m2(s−m2) +m1(r −m1))

+(ab+ bc+ ca)(m1(s−m2) +m1(r −m1)) + bc((r −m1)

+(s−m2))
2 + (b2 + c2)(r −m1)(s−m2)} − {(a+ c)bc(r −m1)(s−m2)(m1 +m2)

+abc (m1(s−m2)(s+m1 −m2) +m2(r −m1)(r +m2 −m1))

+bc2(r −m1)(s−m2)(r + s−m1 −m2)

+ac(a+ c)m2
1m2 + c(ac+ c2 + ab)m1m2(s−m2) + ac(b+ c)m1m2(r −m1)}] = 0. 2

Theorem 4.4 Let S(m,n) be a double star graph with central vertices labeled zero and the

pendent vertices labeled one. Then the characteristic polynomial of label Laplacian matrix of

S(m,n) is

µ(µ− c)m+n−4
(
µ3 − [(m+ n)c+ 2a]µ2 + [ac(m+ n) + c2mn+ 2ac]µ− [ac2(m+ n)]

)
.

Proof Let vm and vm+1 be the central vertices of S(m,n) with zero labels. Remaining

m+ n− 2 vertices be given label one. Characteristic polynomial of Ll(S(m,n)) is
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|µI − Ll(S(m, n))| =

∣∣∣∣∣∣∣∣∣∣∣

(µ − c)Im−1 cJm−1×1 Om−1×1 Om−1×n−1

cJ1×m−1 (µ − (m − 1)c − a)I1 aI1 O1×n−1

O1×m−1 aI1 (µ − (n − 1)c − a)I1 cJ1×n−1

On−1×m−1 Om−1×1 cJn−1×1 (µ − c)In−1

∣∣∣∣∣∣∣∣∣∣∣

Using elementary transformations, we get

|µI − Ll(S(m,n))| = µ(µ− c)m+n−4

∣∣∣∣∣∣∣∣

(µ−mc− a) a 0

a− c (µ− (n− 1)c− a) (n− 1)c

−c c (µ− c)

∣∣∣∣∣∣∣∣

Hence, the characteristic polynomial of S(m,n) is

φ(Ll(S(m,n)), µ) = µ(µ− c)m+n−4
(
µ3 − [(m+ n)c+ 2a]µ2 + [ac(m+ n)

+c2mn+ 2ac]µ− [ac2(m+ n)]
)
. 2

Corollary 4.6 Let S(m,n) be a double star graph with central vertices labeled one and the

pendent vertices labeled zero. Then the characteristic polynomial of label Laplacian matrix of

S(m,n) is

µ(µ− c)m+n−4
(
µ3 − [(m+ n)c+ 2b]µ2 + [bc(m+ n) + c2mn+ 2bc]µ− [bc2(m+ n)]

)
.

Definition 4.1 The crown graph S0
n for an integer n > 3 is the graph with vertex set

{u1, u2, . . . , un, v1, v2, . . . , vn} and edge set {uivi : 1 6 i, j 6 n, i 6= j}.

Lemma 4.2([10]) Let

A =


A0 A1

A1 A0




be a 2×2 block symmetric matrix. Then the eigenvalues of A are the eigenvalues of the matrices

A0 +A1 and A0 −A1.

Theorem 4.5 The label Laplacian spectrum of crown graph S0
n of order 2n is





0 ma+ (n−m)c (n−m)b+mc nc (m− 2)a+ c(n−m) ξ+η
2

ξ−η
2

1 m− 1 n−m− 1 1 m− 1 1 1





where X = 2a(m− 1) + 2b(n−m− 1) + cn, Y = 4ab(m− 1)(n−m− 1) + 2bc(n−m− 1)(n−
m) + 2acm(m− 1), ξ = X, η =

√
X2 − 4Y and m denotes the number of vertices labelled zero

in each vertex set of the crown graph.
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Proof Let the labels of n vertices of S0
n be 000 . . .0︸ ︷︷ ︸

m

111 · · ·1︸ ︷︷ ︸
n−m

in each partite set. Then

Ll(S
0
n) =


 A −B
−B A




where

v1 v2 · · · vm vm+1 vm+2 · · · vn

A = Diag[ W W · · · W Z Z · · · Z ],

W and Z are the label degrees of the m zero label vertices and n − m one label vertices

respectively given by W = a(m− 1) + c(n−m) and Z = b(n−m− 1) + cm. Note that

B =


 a(J − I)m×m cJm×n−m

cJn−m×m a(J − I)n−m×n−m




From Lemma 4.2, the label Laplacian spectrum of Ll(S
0
n) is the union of spectrum of A + B

and A−B. Observe that A+B = Ll(Kn). Hence, by Theorem 4.2, we obtain

Specl(A+B) =





0 ma+ (n−m)c (n−m)b+mc nc

1 m− 1 n−m− 1 1



 (4.3)

Also, A−B = A+Al(Kn). Consider det(µI − (A+Al(Kn))).

Step 1 Replacing Ri by R′i = Ri − Ri−1, for i = 2, 3, · · · ,m,m + 2,m + 3, · · · , n, we

obtain

det(µI−(A+Al(Kn))) = (µ−(a(m−2)+c(n−m)))m−1(µ−(b(n−m−2)+cm)))n−m−1 det(E).

Step 2 Replacing Ci by C′i = Ci + Ci+1 + . . .+ Cm, i = 1, 2, . . . ,m− 1 and replacing Cj

by Cj = Cj +Cj+1 + . . .+Cn, j = 1, 2, . . . , n− 1, the det(E) reduces to a determinant of order

m+ 1.

det(E) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ −a(m− 1) −a(m− 2) . . . −a −c(n−m)

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0

−cm −c(m− 1) −c(m− 2) . . . −c ς

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where σ = µ− [2a(m− 1) + c(n−m)] and ς = µ− [2b(n−m− 1) + cm].

Step 3 Expanding over the first column

det(E) = µ2 − µ[2a(m− 1) + 2b(n−m− 1) + cm] + 4ab(m− 1)(n−m− 1)

+2bc(n−m− 1)(n−m) + 2cam(m− 1).
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Step 4 Substituting det(E) in Step 1,

det(µI − (A+Al(Kn))) = (µ− (a(m− 2) + c(n−m)))m−1

×(µ− (b(n−m− 2) + cm)))n−m−1{µ2 − µ[2a(m− 1) + 2b(n−m− 1) + cm]

+4ab(m− 1)(n−m− 1) + 2bc(n−m− 1)(n−m) + 2cam(m− 1)}.

Hence, label Laplacian spectrum of A−B is

Specl(A−B) =




a(m− 2) + c(n−m) m− 1

b(n−m− 2) + cm n−m− 1

X+
√
X2−4Y
2 1

X−
√
X2−4Y
2 1




(4.4)

where

X = 2a(m− 1) + 2b(n−m− 1) + cn,

Y = 4ab(m− 1)(n−m− 1) + 2bc(n−m− 1)(n−m) + 2acm(m− 1).

The union of expressions (4.3) and (4.4) is the label Laplacian spectrum of S0
n. 2
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Abstract: A graph G = (V, E) with p vertices and q edges is said to be a Total Mean

Cordial graph if there exists a function f : V (G) → {0, 1, 2} such that for each edge xy

assign the label
⌈

f(x)+f(y)
2

⌉
where x, y ∈ V (G), and the total number of 0, 1 and 2 are

balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total

number of vertices and edges labeled with x (x = 0, 1, 2). In this paper, we investigate the

total mean cordial labeling behavior of Ln⊙K1, S(Pn⊙2K1), S(Wn) and some more graphs.

Key Words: Smarandachely total mean cordial labeling, cycle, path, wheel, union, corona,

ladder.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper we considered finite, undirected and simple graphs. The symbols V (G)

and E(G) will denote the vertex set and edge set of a graphG. A graph labeling is an assignment

of integers to the vertices or edges, or both, subject to certain conditions. Labeled graphs serves

as a useful mathematical model for a broad range of application such as coding theory, X-ray

crystallography analysis, communication network addressing systems, astronomy, radar, circuit

design and database management [1]. Ponraj, Ramasamy and Sathish Narayanan [3] introduced

the concept of total mean cordial labeling of graphs and studied about the total mean cordial

labeling behavior of Path, Cycle, Wheel and some more standard graphs. In [4,6], Ponraj and

Sathish Narayanan proved that Kc
n + 2K2 is total mean cordial if and only if n = 1, 2, 4, 6, 8

and they investigate the total mean cordial labeling behavior of prism, gear, helms. In [5],

Ponraj, Ramasamy and Sathish Narayanan investigate the Total Mean Cordiality of Lotus

inside a circle, bistar, flower graph, K2,n, Olive tree, P 2
n , S(Pn ⊙K1), S(K1,n). In this paper

we investigate Ln ⊙K1, S(Pn ⊙ 2K1), S(Wn) and some more graphs. If x is any real number.

Then the symbol ⌊x⌋ stands for the largest integer less than or equal to x and ⌈x⌉ stands for

the smallest integer greater than or equal to x. For basic definitions that are not defined here

are used in the sense of Harary [2].

1Received October 31, 2014, Accepted June 2, 2015.
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§2. Preliminaries

Definition 2.1 A total mean cordial labeling of a graph G = (V,E) is a function f : V (G)→
{0, 1, 2} such that for each edge xy assign the label

⌈
f(x)+f(y)

2

⌉
where x, y ∈ V (G), and the

total number of 0, 1 and 2 are balanced. That is |evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where

evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). If there exists

a total mean cordial labeling on a graph G, we will call G is total mean cordial.

Furthermore, let H ≤ G be a subgraph of G. If there is a function f from V (G)→ {0, 1, 2}
such that f |H is a total mean cordial labeling but

⌈
f(u) + f(v)

2

⌉
is a constant for all edges

in G \H, such a labeling and G are then respectively called Smarandachely total mean cordial

labeling and Smarandachely total mean cordial labeling graph respect to H.

The following results are frequently used in the subsequent section.

Definition 2.2 The product graph G1 × G2 is defined as follows: Consider any two vertices

u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are adjacent in G1 ×G2 whenever

[u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1]. Note that the graph Ln = Pn × P2 is

called the ladder on n steps.

Definition 2.3 Let G1 and G2 be two graphs with vertex sets V1 and V2 and edge sets E1 and

E2 respectively. Then their join G1 +G2 is the graph whose vertex set is V1 ∪ V2 and edge set

is E1 ∪ E2 ∪ {uv : u ∈ V1 and v ∈ V2}. Also the graph Wn = Cn +K1 is called the wheel.

Definition 2.4 Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The corona of G1 with G2,

G1⊙G2 is the graph obtained by taking one copy of G1 and p1 copies of G2 and joining the ith

vertex of G1 with an edge to every vertex in the ith copy of G2.

Definition 2.5 The union of two graphs G1 and G2 is the graph G1 ∪G2 with V (G1 ∪G2) =

V (G1) ∪ V (G2) and E (G1 ∪G2) = E (G1) ∪ E (G2).

Definition 2.6 The subdivision graph S (G) of a graph G is obtained by replacing each edge

uv of G by a path uwv.

Theorem 2.7([7]) Let G be a (p, q) Total Mean Cordial graph and n 6= 3 then G ∪ Pn is also

total mean cordial.

Main Results

Theorem 3.1 S(Wn) is total mean cordial.

Proof Let V (S(Wn)) = {u, ui, xi, yi : 1 ≤ i ≤ n}, E(S(Wn)) = {uiyi, yiui+1 : 1 ≤ i ≤
n− 1} ∪ {unyn, ynu1} ∪ {uxi, xiui : 1 ≤ i ≤ n}. Clearly |V (S(Wn))|+ |V (S(Wn))| = 7n+ 1.

Case 1. n ≡ 0 (mod 12).
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Let n = 12t and t > 0. Define f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t

f(ui) = 0, 1 ≤ i ≤ 2t

f(u2t+i) = 2, 1 ≤ i ≤ 7t

f(u9t+i) = 1, 1 ≤ i ≤ 3t

f(yi) = 1, 1 ≤ i ≤ 2t− 1

f(y2t−1+i) = 2, 1 ≤ i ≤ 7t

f(y9t−1+i) = 1, 1 ≤ i ≤ 3t+ 1.

Here evf (0) = 28t+ 1, evf (1) = evf (2) = 28t.

Case 2. n ≡ 1 (mod 12).

Let n = 12t+ 1 and t > 0. Define a map f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t+ 1

f(ui) = 0, 1 ≤ i ≤ 2t

f(u2t+i) = 2, 1 ≤ i ≤ 7t

f(u9t+i) = 1, 1 ≤ i ≤ 3t+ 1

f(yi) = 1, 1 ≤ i ≤ 2t− 1

f(y2t−1+i) = 2, 1 ≤ i ≤ 7t+ 1

f(y9t+i) = 1, 1 ≤ i ≤ 3t+ 1.

Here evf (0) = evf (1) = 28t+ 3, evf (2) = 28t+ 2.

Case 3. n ≡ 2 (mod 12).

Let n = 12t+ 2 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t+ 2

f(ui) = 0, 1 ≤ i ≤ 2t

f(u2t+i) = 2, 1 ≤ i ≤ 7t+ 1

f(u9t+1+i) = 1, 1 ≤ i ≤ 3t+ 1

f(yi) = 1, 1 ≤ i ≤ 2t

f(y2t+i) = 2, 1 ≤ i ≤ 7t+ 1

f(y9t+1+i) = 1, 1 ≤ i ≤ 3t+ 1.

In this case evf (0) = evf (1) = evf (2) = 28t+ 5.

Case 4. n ≡ 3 (mod 12).

Let n = 12t−9 and t > 0. For n = 3, the Figure 1 shows that S(W3) is total mean cordial.
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Now assume t ≥ 2. Define a map f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 9

f(ui) = 0, 1 ≤ i ≤ 2t− 2

f(u2t−2+i) = 2, 1 ≤ i ≤ 7t− 5

f(u9t−7+i) = 1, 1 ≤ i ≤ 3t− 2

f(yi) = 1, 1 ≤ i ≤ 2t− 3

f(y2t−3+i) = 2, 1 ≤ i ≤ 7t− 5

f(y9t−8+i) = 1, 1 ≤ i ≤ 3t− 1.

In this case evf (0) = evf (1) = 28t− 21, evf (2) = 28t− 20.

Case 5. n ≡ 4 (mod 12).

Let n = 12t− 8 and t > 0. The following Figure 2 shows that S(W4) is total mean cordial.
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Now assume t ≥ 2. Define f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 8

f(ui) = 0, 1 ≤ i ≤ 2t− 2

f(u2t−2+i) = 2, 1 ≤ i ≤ 7t− 5

f(u9t−7+i) = 1, 1 ≤ i ≤ 3t− 1

f(yi) = 1, 1 ≤ i ≤ 2t− 3

f(y2t−3+i) = 2, 1 ≤ i ≤ 7t− 4

f(y9t−7+i) = 1, 1 ≤ i ≤ 3t− 1.

In this case evf (0) = 28t− 19, evf (1) = evf (2) = 28t− 18.
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Case 6. n ≡ 5 (mod 12).

Let n = 12t− 7 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 7

f(ui) = 1, 1 ≤ i ≤ 4t− 3

f(u4t−3+i) = 2, 1 ≤ i ≤ 7t− 4

f(u11t−7+i) = 1, 1 ≤ i ≤ t
f(yi) = 0, 1 ≤ i ≤ 4t− 3

f(y4t−3+i) = 2, 1 ≤ i ≤ 7t− 4

f(y11t−7+i) = 1, 1 ≤ i ≤ t.

In this case evf (0) = evf (1) = evf (2) = 28t− 16.

Case 7. n ≡ 6 (mod 12).

Let n = 12t− 6 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 6

f(ui) = 0, 1 ≤ i ≤ 2t− 1

f(u2t−1+i) = 2, 1 ≤ i ≤ 7t− 4

f(u9t−5+i) = 1, 1 ≤ i ≤ 3t− 1

f(yi) = 1, 1 ≤ i ≤ 2t− 2

f(y2t−2+i) = 2, 1 ≤ i ≤ 7t− 3

f(y9t−5+i) = 1, 1 ≤ i ≤ 3t− 1.

In this case evf (0) = evf (1) = 28t− 7, evf(2) = 28t− 6.

Case 8. n ≡ 7 (mod 12).

Let n = 12t− 5 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 5

f(ui) = 0, 1 ≤ i ≤ 2t− 1

f(u2t−1+i) = 2, 1 ≤ i ≤ 7t− 3

f(u9t−4+i) = 1, 1 ≤ i ≤ 3t− 1

f(yi) = 1, 1 ≤ i ≤ 2t− 2

f(y2t−2+i) = 2, 1 ≤ i ≤ 7t− 3

f(y9t−5+i) = 1, 1 ≤ i ≤ 3t.

Here evf (0) = evf (1) = 28t− 11, evf (2) = 28t− 12.

Case 9. n ≡ 8 (mod 12).
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Let n = 12t− 4 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 4

f(ui) = 0, 1 ≤ i ≤ 2t− 1

f(u2t−1+i) = 2, 1 ≤ i ≤ 7t− 2

f(u9t−3+i) = 1, 1 ≤ i ≤ 3t− 1

f(yi) = 1, 1 ≤ i ≤ 2t− 1

f(y2t−1+i) = 2, 1 ≤ i ≤ 7t− 3

f(y9t−4+i) = 1, 1 ≤ i ≤ 3t.

In this case evf (0) = evf (1) = evf (2) = 28t− 9.

Case 10. n ≡ 9 (mod 12).

Let n = 12t− 3 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 3

f(ui) = 0, 1 ≤ i ≤ 2t− 1

f(u2t−1+i) = 2, 1 ≤ i ≤ 7t− 2

f(u9t−3+i) = 1, 1 ≤ i ≤ 3t

f(yi) = 1, 1 ≤ i ≤ 2t− 2

f(y2t−2+i) = 2, 1 ≤ i ≤ 7t− 1

f(y9t−3+i) = 1, 1 ≤ i ≤ 3t.

In this case evf (0) = evf (1) = 28t− 7, evf(2) = 28t− 6.

Case 11. n ≡ 10 (mod 12).

Let n = 12t− 2 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 2

f(ui) = 0, 1 ≤ i ≤ 2t− 1

f(u2t−1+i) = 2, 1 ≤ i ≤ 7t− 1

f(u9t−2+i) = 1, 1 ≤ i ≤ 3t

f(yi) = 1, 1 ≤ i ≤ 2t− 2

f(y2t−2+i) = 2, 1 ≤ i ≤ 7t− 1

f(y9t−3+i) = 1, 1 ≤ i ≤ 3t+ 1.

In this case evf (0) = 28t− 5, evf (1) = evf(2) = 28t− 4.

Case 12. n ≡ 11 (mod 12).
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Let n = 12t− 1 and t > 0. Define a function f : V (S(Wn))→ {0, 1, 2} by f(u) = 0,

f(xi) = 0, 1 ≤ i ≤ 12t− 1

f(ui) = 1, 1 ≤ i ≤ 4t− 1

f(u4t−1+i) = 2, 1 ≤ i ≤ 7t

f(u11t−1+i) = 1, 1 ≤ i ≤ t
f(yi) = 0, 1 ≤ i ≤ 4t− 1

f(y4t−1+i) = 2, 1 ≤ i ≤ 7t− 1

f(y11t−2+i) = 1, 1 ≤ i ≤ t+ 1.

In this case evf (0) = evf (1) = evf (2) = 28t− 6.

Hence S(Wn) is total mean cordial. 2
Theorem 3.2 S(Pn ⊙ 2K1) is total mean cordial.

Proof Let V (S(Pn ⊙ 2K1)) = {ui, vi, wi, xi, yi : 1 ≤ i ≤ n} ∪ {u′

i : 1 ≤ i ≤ n − 1} and

E(S(Pn ⊙ 2K1)) = {uiu
′

i, u
′

iui+1 : 1 ≤ i ≤ n− 1} ∪ {uivi, uiwi, vixi, wiyi : 1 ≤ i ≤ n}. Clearly

|V (S(Pn ⊙ 2K1))|+ |V (S(Wn ⊙ 2K1))| = 12n−3. Now we define a map f : V (S(Pn⊙2K1))→
{0, 1, 2} by f(v1) = 0, f(w1) = 1, f(un) = 0,

f(ui) = f(u
′

i) = 0, 1 ≤ i ≤ n− 1

f(vi) = f(wi) = 1, 2 ≤ i ≤ n
f(xi) = f(yi) = 2, 1 ≤ i ≤ n.

In this case evf (0) = evf (1) = evf (2) = 4n− 1.

Hence S(Pn ⊙ 2K1) is total mean cordial. 2
Theorem 3.3 Ln ⊙K1 is total mean cordial.

Proof Let V (Ln ⊙K1) = {ui, vi, xi, yi : 1 ≤ i ≤ n} and E(Ln ⊙K1) = {xiui, uivi,
viyi : 1 ≤ i ≤ n}∪{uiui+1, vivi+1 : 1 ≤ i ≤ n−1}. Here |V (Ln ⊙K1)|+ |E(Ln ⊙K1)| = 9n−2.

Define a map f : V (Ln ⊙K1)→ {0, 1, 2} by

f(ui) = 0, 1 ≤ i ≤ n
f(xi) = 0, 1 ≤ i ≤

⌈
n
2

⌉

f(yi) = 1, 1 ≤ i ≤ n
f(x⌈n2 ⌉+i) = 1, 1 ≤ i ≤

⌊
n
2

⌋

f(vi) = 2, 1 ≤ i ≤ n.

The following Table 1 shows that f is a total mean cordial labeling of Ln ⊙K1.
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Nature of n evf (0) evf (1) evf (2)

n ≡ 0 (mod 2)

⌊
9n− 2

3

⌋ ⌈
9n− 2

3

⌉ ⌊
9n− 2

3

⌋

n ≡ 1 (mod 2)

⌈
9n− 2

3

⌉ ⌊
9n− 2

3

⌋ ⌊
9n− 2

3

⌋

Hence Ln ⊙K1 is Total Mean Cordial. 2
Theorem 3.4 The graph P1 ∪ P2 ∪ . . . ∪ Pn is total mean cordial.

Proof We prove this theorem by induction on n. For n = 1, 2, 3 the result is true, see

Figure 3.
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Assume the result is true for P1 ∪ P2 ∪ . . . ∪ Pn−1. Then by Theorem 2.7, (P1 ∪ P2 ∪ . . . ∪
Pn−1) ∪ Pn is total mean cordial. 2
Theorem 3.5 Let Cn be the cycle u1u2 . . . unu1. Let GCn be a graph with V (GCn) = V (Cn)∪
{vi : 1 ≤ i ≤ n} and E(GCn) = E(Cn) ∪ {uivi, ui+1vi : 1 ≤ i ≤ n − 1} ∪ {unvn, u1vn}. Then

GCn is total mean cordial.

Proof Clearly, |V (GCn)|+ |E(GCn)| = 5n.

Case 1. n ≡ 0 (mod 3).

Let n = 3t and t > 0. Define f : V (GCn)→ {0, 1, 2} by

f(ui) = f(vi) = 0, 1 ≤ i ≤ t
f(ut+i) = f(vt+i) = 2, 1 ≤ i ≤ t
f(u2t+i) = f(v2t+i) = 1, 1 ≤ i ≤ t− 1

f(u3t) = 1 and f(v3t) = 0. In this case evf (0) = evf (1) = evf (2) = 5t.

Case 2. n ≡ 1 (mod 3).

Let n = 3t+ 1 and t > 0. Define f : V (GCn)→ {0, 1, 2} by

f(ui) = f(vi) = 0, 1 ≤ i ≤ t
f(ut+1+i) = f(vt+i) = 2, 1 ≤ i ≤ t
f(u2t+1+i) = f(v2t+1+i) = 1, 1 ≤ i ≤ t

f(ut+1) = 0, f(v2t+1) = 2. In this case evf (0) = 5t+ 1, evf (1) = evf (2) = 5t+ 2.
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Case 3. n ≡ 2 (mod 3).

Let n = 3t+ 2 and t > 0. Construct a vertex labeling f : V (GCn)→ {0, 1, 2} by

f(ui) = f(vi) = 0, 1 ≤ i ≤ t+ 1

f(ut+2+i) = f(vt+1+i) = 2, 1 ≤ i ≤ t
f(u2t+2+i) = f(v2t+2+i) = 1, 1 ≤ i ≤ t

f(ut+1) = 1, f(v2t+2) = 2. In this case evf (0) = evf (1) = 5t+ 3, evf (2) = 5t+ 4.

Hence GCn is total mean cordial. 2
Example 3.6 A total mean cordial labeling of GC8 is given in Figure 4.
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Theorem 3.6 Let St(Ln) be a graph obtained from a ladder Ln by subdividing each step exactly

once. Then St(Ln) is total mean cordial.

Proof Let V (St(Ln)) = {ui, vi, wi : 1 ≤ i ≤ n} and E(St(Ln)) = {uiwi, wivi : 1 ≤ i ≤
n} ∪ {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1}. It is clear that |V (St(Ln))|+ |E(St(Ln))| = 7n− 2.

Case 1. n ≡ 0 (mod 6).

Let n = 6t. Define a map f : V (St(Ln))→ {0, 1, 2} as follows.

f(ui) = 0, 1 ≤ i ≤ 6t

f(wi) = 0, 1 ≤ i ≤ t
f(wt+i) = 1, 1 ≤ i ≤ 5t

f(vi) = 2, 1 ≤ i ≤ 5t

f(v5t+i) = 1, 1 ≤ i ≤ t.

In this case evf (0) = evf (1) = 14t− 1, evf(2) = 14t.

Case 2. n ≡ 1 (mod 6).
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Let n = 6t+ 1 and t ≥ 1. Define a function f : V (St(Ln))→ {0, 1, 2} by

f(ui) = 0, 1 ≤ i ≤ 6t+ 1

f(wi) = 0, 1 ≤ i ≤ t
f(wt+i) = 2, 1 ≤ i ≤ 5t+ 1

f(vi) = 1, 1 ≤ i ≤ 4t+ 1

f(v4t+1+i) = 2, 1 ≤ i ≤ 2t.

Here evf (0) = 14t+ 1, evf (1) = evf (2) = 14t+ 2.

Case 3. n ≡ 2 (mod 6).

Let n = 6t+ 2 and t ≥ 0. The Figure 5 shows that St(L2) is total mean cordial.
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Consider the case for t ≥ 1. Define f : V (St(Ln))→ {0, 1, 2} as follows.

f(ui) = 0, 1 ≤ i ≤ 6t+ 2

f(wi) = 0, 1 ≤ i ≤ t
f(wt+i) = 1, 1 ≤ i ≤ 5t+ 1

f(vi) = 2, 1 ≤ i ≤ 5t+ 1

f(v5t+1+i) = 1, 1 ≤ i ≤ t.

and f(w6t+2) = 2, f(v6t+2) = 0. Here evf(0) = evf (1) = evf (2) = 14t+ 4.

Case 4. n ≡ 3 (mod 6).

Let n = 6t− 3 and t ≥ 1. Define a function f : V (St(Ln))→ {0, 1, 2} by

f(ui) = f(wi) = f(vi) = 0, 1 ≤ i ≤ 2t− 2

f(u2t−1+i) = f(w2t−1+i) = f(v2t+i) = 1, 1 ≤ i ≤ 2t− 2

f(u4t−2+i) = f(w4t−1+i) = f(v4t−2+i) = 2, 1 ≤ i ≤ 2t− 2

f(u2t−1) = f(w2t−1) = 0, f(u4t−2) = f(w4t−2) = f(w4t−1) = 1 and f(u6t−3) = f(v6t−3) =

2. In this case evf (0) = 14t− 7, evf (1) = evf (2) = 14t− 8.

Case 5. n ≡ 4 (mod 6).
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Let n = 6t− 2 and t > 0. Define f : V (St(Ln))→ {0, 1, 2} by

f(ui) = 0, 1 ≤ i ≤ 6t− 2

f(wi) = 0, 1 ≤ i ≤ t
f(wt+i) = 1, 1 ≤ i ≤ 5t− 2

f(vi) = 2, 1 ≤ i ≤ 5t− 2

f(v5t−2+i) = 1, 1 ≤ i ≤ t.

In this case evf (0) = evf (1) = 14t− 5, evf(2) = 14t− 6.

Case 6. n ≡ 5 (mod 6).

Let n = 6t− 1 and t > 0. Define a function f : V (St(Ln))→ {0, 1, 2} by

f(ui) = 0, 1 ≤ i ≤ 6t− 1

f(wi) = 0, 1 ≤ i ≤ t
f(wt+i) = 1, 1 ≤ i ≤ 5t− 1

f(vi) = 2, 1 ≤ i ≤ 5t− 1

f(v5t−1+i) = 1, 1 ≤ i ≤ t.

Here evf (0) = evf (1) = evf (2) = 14t− 3.

Hence St(Ln) is total mean cordial. 2
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Abstract: A graph G(v, e) is simple if it is without self loops and parallel edges and a

graph G(v, e) is connected if every vertex of graph is connected with each other. This paper

is dealing with the problem of finding the number of regions in any simple connected graph.

In other words this paper generalize the Eulers result on number of regions in planer graphs

to all simple non planar graphs according to Euler number of regions in planar graphs is

given by f = e − v + 2. Now we extend Eulers result to all simple graphs. I will prove that

the number of regions in any simple connected graph is equal to

f = e − v + 2 +

r−1∑

j=1

j

r∑

i=2

Ci, r ∈ N

The minimum number of regions in any complete graph is

f =
1

4

[n

2

] [n − 1

2

] [
n − 2

2

] [
n − 3

2

]
+

n2 − 3n + 4

2

Where [ ] represents greatest integer function, and n is the number of vertices of graph.

Key Words: Planar graph, simple graph, non-planar graph, complete graph, regions of a

graph, crossing number.

AMS(2010): 05C25.

§1. Introduction

A planar graph is one that can be drawn on a two-dimensional plane such that no two edges

cross. A cubic graph is one in which all vertices have degree three. A three connected graph

is one that cannot be disconnected by removal of two vertices. A graph is said to be bipartite

1Received January 4, 2015, Accepted June 10, 2015.
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if the vertices can be colored using exactly two colors such that no two adjacent vertices have

the same color. [1] pp 16-20 A plane representation of a graph divides the plane into regions

also called windows, faces or meshes. A window is characterized by the set of edges or the set

of vertices forming its boundary. Note that windows is not defined in a non planer graph or

even in a planer graph not embedded in a plane. Thus a window is a property of the specific

plane representation of a graph. The window of a graph may be finite or infinite. The portion

of a plane lying outside a graph embedded in a plane is infinite in its extend. Since a planar

graph may have different plane representation Euler gives formula for number of windows in a

planar graph.[2] pp 88-100.

Lemma 1.1([1]) A graph can be embedded in a surface of a sphere if and only if it can be

embedded in a plane.

Lemma 1.2([1]) A planer graph may be embedded in a plane such that any specified region can

be made the infinite region.

Lemma 1.3(Euler theorem, [1], [2]) A connected planer graph with n vertices and e edges has

e− n+ 2 regions.

Lemma 1.4([2]) A plane graph is bipartite if and only if each of its faces has an even number

of sides.

Corollary 1.5([2]) In a simple connected planar graph with f regions n vertices and e edges

(e > 2) the following inequalities must hold.

e ≥ 3

2
f and e ≤ 3n− 6.

Theorem 1.6([2]) The spherical embedding of every planar 3-connected graph is unique.

The crossing number (sometimes denoted as c(G) of a graph G is the smallest number of

pair wise crossings of edges among all drawings of G in the plane. In the last decade, there has

been significant progress on a true theory of crossing numbers. There are now many theorems

on the crossing number of a general graph and the structure of crossing critical graphs, whereas

in the past, most results were about the crossing numbers of either individual graphs or the

members of special families of graphs. The study of crossing numbers began during the Second

World War with Paul Turan. In [4], he tells the story of working in a brickyard and wondering

about how to design an efficient rail system from the kilns to the storage yards. For each kiln

and each storage yard, there was a track directly connecting them. The problem he Consider

was how to lay the rails to reduce the number of crossings, where the cars tended to fall off the

tracks, requiring the workers to reload the bricks onto the cars. This is the problem of finding

the crossing number of the complete bipartite graph. It is also natural to try to compute the

crossing number of the complete graph. To date, there are only conjectures for the crossing

numbers of these graphs called Guys conjecture which suggest that crossing number of complete
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graph Kn is given by V (Kn) = Z(n) [5] [6].

Z(n) =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
,

where [ ] represents greatest integer function which can also be written as

Z(n) =





1
64n(n− 2)2(n− 4)2 ... if n is even

1
64 (n− 1)2(n− 3)2 ... if n is odd

Guy prove it for n ≤ 10 in 1972 in 2007 Richter prove it for n ≤ 12 For any graph G, we

say that the crossing number c(G) is the minimum number of crossings with which it is possible

to draw G in the plane. We note that the edges of G need not be straight line segments, and

also that the result is the same whether G is drawn in the plane or on the surface of a sphere.

Another invariant of G is the rectilinear crossing number, c(G), which is the minimum number

of crossings when G is drawn in the plane in such a way that every edge is a straight line

segment. We will find by an example that this is not the same number obtained by drawing G

on a sphere with the edges as arcs of great circles. In drawing G in the plane, we may locate

its vertices wherever it is most convenient. A plane graph is one which is already drawn in the

plane in such a way that no two of its edges intersect. A planar graph is one which can be

drawn as a plane graph [9]. In terms of the notation introduced above, a graph G is planar

if and only if c(G) = 0. The earliest result concerning the drawing of graphs in the plane is

due to Fary [7] [10], who showed that any planar graph (without loops or multiple edges) can

be drawn in the plane in such a way that every Edge is straight. Thus Farys result may be

rephrased: if c(G) = 0, then c̄(G) = 0. In a drawing, the vertices of the graph are mapped into

points of a plane, and the arcs into continuous curves of the plane, no three having a point in

common. A minimal drawing does not contain an arc which crosses itself, nor two arcs with

more than one point in common. [8][11]In general for a set of n line segments, there can be up

to O(n2) intersection points, since if every segment intersects every other segment, there would

be
n(n− 1)

2
= O(n2)

intersection points. To compute them all we require is O(n2) algorithm.

§2. Main Result

Before proving the main result we would like to give the detailed purpose of this paper. Euler

gives number of regions in planer graphs which is equal to f = e − v + 2. But for non planar

graphs the number of regions is still unknown. It is obvious that every graph has different

representations; there is no particular representation of non planer simple graphs a graphG(v, e)

can be represented in different ways. My aim is to find the number of regions in any simple non

planer graph in whatever way we draw it. I will prove that number of regions of any simple



136 Mushtaq Ahmad Shah, M.H.Gulzar and Mridula Purohit

non planar graph is equal to

f = e− v + 2 +

r−1∑

j=1

j

r∑

i=2

Ci, r ∈ N

where
∑
C2 are the total number of intersection points where two edges have a common point,∑

C3 are the total number of intersection points where three edges have a common point, and

so on,
∑
Cr are the total number of intersecting points where r edges have a common point.

In whatever way we draw the graph. And the minimum number of regions in a complete

graph is equal to

f =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
+
n2 − 3n+ 4

2
, n = number of vertices

This result is depending upon Guys conjecture which is true for all complete graphs n ≤ 12

therefore my result is true for all complete graphs n ≤ 12 if conjecture is true for all n, then

my result is also true for all complete graphs.

Theorem 2.1 The number of regions in any simple graph is given by

f = e− v + 2 +

r∑

j=1

j

r∑

i=2

Ci, r ∈ N

In particular number of regions in any complete graph is given by

f =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
+
n2 − 3n+ 4

2

This result of complete graphs is true for all graphs n ≤ 12 it is true for all n if Guys conjecture

is true for all n.

Proof Let G(v, e) be a graph contains the finite set of vertices v and finite set of edges e.

It is obvious that every graph has a planar representation in a certain stage and in that stage

according to Euler number of regions are f = e− v+ 2. Let n edges remaining in the graph by

adding a single edge graph becomes non planar that in this stage it has maximum planarity so

if we start to add remaining n edges one by one intersecting points occur and number of regions

start to increase. Out of remaining n edges let us suppose that there are certain intersecting

points where two edges have a common points it is denoted by C2 and total such points can be

represented by
∑
C2 similarly let us suppose that there are certain intersecting points where

three edges have a common points it is denoted by C3 and total such points can be represented

by
∑
C3 and this process goes on and finally let us suppose that there are certain intersecting

points where r edges have a common point it is denoted by Cr and total such points can be

represented by
∑
Cr. It must be kept in mind that graphs cannot be defined uniquely and

finitely every graph has different representations. Since my result is true for all representations

in whatever way you can represent graph. We first show that if we have finite set of n edges in



Number of Regions in Any Simple Connected Graph 137

a plane such that each pair of edges have one common point and no three edges have a common

point, number of regions is increased by one by each pair of edges. Let fn be the number of

regions created by finite set of n edges. It is not obvious that every finite set of n edges creates

the same number of regions, this follows inductively when we establish a recurrence f0.

Fig.1

We begin with no edges and one region, so f0 = 1. We prove that

fn = fn−1 + n

if n ≥ 1. Consider finite set of n edges, with n ≥ 1 and let L be one of these edges. The other

edges form a finite set of n− 1 edges. We argue that adding L increases the number of regions

by n. The intersection of L with the other edges partition L into n portions. Each of these

portions cuts a region into two. Thus adding L increases the number of regions by n .since this

holds for all finite set of edges we have

fn = fn−1 + n

if n ≥ 1. This determines a unique sequence starting with f0 = 1, and hence every finite set

of edges creates same number of regions. Thus it is clear that if two edges have a common

point number of region is increased by one we represent it by C2 and total number of such

intersecting point is denoted by
∑
C2, similarly if three edges have a common point number

of regions is increased by two and we denote it by C3 and total number of such intersection

points is denoted by
∑
C3 and number of regions are 2

∑
C3 this process goes on and finally if

r lines have a common point number of regions is increased by r and it is denoted by Cr and

total number of such intersection points are denoted by
∑
Cr and number of regions increased

by (r− 1)
∑
Cr it must be noted that every graph has different representations any number of

intersection points can occur. Thus we conclude that number of regions in any simple graph is
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given by

f = e− v + 2 + sum of all intersecting points where two edges have common point

+2(sum of all intersecting points where three edges have common point)

+3(sum of all intersecting points where four edges have common point)

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+(r − 1)(sum of all intersecting points where r edges have common point),

written to be

f = e− v + 2 +
∑

C2 + 2
∑

C3 + 3
∑

C4 + ...+ (r − 1)
∑

Cr,

which can be expressed as

f = e− v + 2 +
r−1∑

j=1

j
r∑

i=2

Ci, r ∈ N

It should be noted that Figures 2-4 below illustrate above result.

Figure 2

Figure 2 has 20 vertices and 30 edges, there are 9 intersection points where two edges have

common point, 2 intersection points where three edges have common point,1 intersection points

where four edges have common point, 1 intersection points where five edges have common point,

and number of regions is 32 we now verify it by above formula.

f = e− v + 2 +

r∑

j=1

j

r∑

i=2

Ci

= e− v + 2 +
∑

C2 + 2
∑

C3 + 3
∑

C4 + 4
∑

C5.



Number of Regions in Any Simple Connected Graph 139

Substitute above values we get that

f = 30− 20 + 2 + 9 + 4 + 3 + 4 = 32,

which verifies that above result.

Figure 3 below has 14 vertices 24 edges 15 intersecting points where two edges have common

point. 2 intersection points where three edges have common point,1 intersection points where

four edges have common point, and number of regions is 34 we now verify it by above formula.

f = e− v + 2 +

r∑

j=1

j

r∑

i=2

Ci

= e− v + 2 +
∑

C2 + 2
∑

C3 + 3
∑

C4 = 24− 14 + 2 + 15 + 4 + 3 = 34,

which again verifies that above result.

Figure 3

Figure 4 below has 6 vertices 11 edges 2 intersecting points where two edges have common

point. 1 intersection points where three edges have common point, and number of regions is 11

we now verify it by above formula.

f = e− v + 2 +

r∑

j=1

j

r∑

i=2

Ci

= e− v + 2 +
∑

C2 + 2
∑

C3 = 11− 6 + 2 + 2 + 2 = 11,

verifies that above result again.
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Figure 4

Now if the graph is complete with n vertices then the number of edges in it is n(n−1)
2 and

minimum number of crossing points are given by Guys conjecture that is

Z(n) =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]

which is true for all n ≤ 12 thus above result is true for all n ≤ 12, if Guys conjecture is true,

then my result is true for all n. We know that every complete graph has a planar representation

in a certain stage. When we start to draw any complete graph we add edge one by one and a

stage comes when graph has maximum planarity in that stage number of regions according to

Euler is f = e−v+2, when we start to add more edges one by one number of crossing numbers

occur but according to definition of crossing numbers two edges have a common point and no

three edges have a common point it has been shown that if two edges have a common point

number of regions is increased by
∑
C2 , thus the number of regions is given by

f = e− v + 2 +
∑

C2,

where ∑
C2 =

1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]

is the minimum number of crossing points ( Guys conjecture), e the number of edges and v

number of vertices.

Let us suppose that graph has n vertices and number of edges is n(n−1)
2 substitute these

values above we get minimum number of regions in a complete graph is given by

f = e− v + 2 +
∑

C2

=
n(n− 1)

2
− n+ 2 +

1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
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=
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
+
n2 − 3n+ 4

2
.

That proves the result. 2
Figures 5-6 below illustrates this result. The Figure 5 below is the complete graph of six

vertices and number of regions are as

f =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
+
n2 − 3n+ 4

2

=
1

4

[
6

2

] [
6− 1

2

] [
6− 2

2

] [
6− 3

2

]
+

62 − 3(6) + 4

2

=
1

4
× 3× 2× 2× 1 +

36− 18 + 4

2
= 14

This shows that the above result is true.

Figure 5

Figure 6 below is the complete graph of 5 vertices and number of regions are as

f =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
+
n2 − 3n+ 4

2

=
1

4

[
5

2

] [
5− 1

2

] [
5− 2

2

] [
5− 3

2

]
+

52 − 3(5) + 4

2

=
1

4
× 2× 2× 1× 1 +

25− 15 + 4

2
= 8
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Figure 6

Example 1 Find the number of regions of a complete graph of 8 vertices with minimum

crossings. Find number of regions?

Solution Apply the above result we get

f =
1

4

[n
2

] [n− 1

2

] [
n− 2

2

] [
n− 3

2

]
+
n2 − 3n+ 4

2

=
1

4

[
8

2

] [
8− 1

2

] [
8− 2

2

] [
8− 3

2

]
+

82 − 3× 8 + 4

2

=
1

4
× 4× 3× 3× 2 +

64− 24 + 4

2
= 40

Example 2 A graph has 10 vertices and 24 edges, there are three points where two edges

have a common point, and there is one point where three edges have a common point find the

number of regions of a graph?

Solution By applying above formula we get

f = e− v + 2 +

r∑

j=1

j

r∑

i=2

Ci

= e− v + 2 +
∑

C2 + 2
∑

C3 = 24− 10 + 2 + 3 + 2 = 21

Thus number of regions is 21.
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Abstract: In this note, the non-trivial connected digraphs D with vertex set V (D) =

{v1, v2, . . . , vn} satisfying

n∑

i=1

d
−(vi) · d

+(vi) = n − 2 are characterized, where d−(vi) and

d+(vi) be the in-degree and out-degree of vertices of D, respectively.

Key Words: Directed path, directed cycle, directed tree, tournament.

AMS(2010): 05C20.

§1. Introduction

Notations and definitions not introduced here can be found in [1]. For a simple graph G

with vertex set V (G) = {v1, v2, · · · , vn}, V.R.Kulli[2] gave the following characterization. A

graph G is a non-empty path if and only if it is connected graph with n ≥ 2 vertices and
n∑

i=1

d2
i − 4n + 6 = 0, where di is the degree of vertices of G. In this note, we extend the

characterization of paths to directed paths, which is needed to characterize the maximal outer

planarity property of some digraph operator(digraph valued function).

We need some concepts and notations on directed graphs. A directed graph(or just digraph)

D consists of a finite non-empty set V (D) of elements called vertices and a finite set A(D) of or-

dered pair of distinct vertices called arcs. Here, V (D) is the vertex set and A(D) is the arc set of

D. A directed path from v1 to vn is a collection of distinct vertices v1, v2, v3, . . . , vn together with

the arcs v1v2, v2v3, . . . , vn−1vn considered in the following order: v1, v1v2, v2, v2v3, . . . , vn−1vn, vn.

A directed path is said to be non-empty if it has at least one arc. An arborescence is a directed

graph in which, for a vertex u called the root(i.e., a vertex of in-degree zero) and any other

vertex v, there is exactly one directed path from u to v. A directed cycle is obtained from a

nontrivial directed path on adding an arc from the terminal vertex to the initial vertex of the

directed path. A directed tree is a directed graph which would be a tree if the directions on the

arcs are ignored. The out-degree of a vertex v, written d+(v), is the number of arcs going out

1Received January 8, 2015, Accepted June 8, 2015.
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from v and the in-degree of a vertex v, written d−(v), is the number of arcs coming into v.

The total degree of a vertex v, written td(v), is the number of arcs incident with v. We

immediately have td(v) = d−(v) + d+(v). A tournament is a nontrivial complete asymmetric

digraph.

§2. Characterization

Theorem 2.1 A connected digraph D with vertex set V (D) = {v1, v2, · · · , vn}, n ≥ 2 is a

non-empty directed path if and only if

n∑

i=1

d−(vi) · d+(vi) = n− 2. (1)

Proof Let D be a directed path with n vertices v1, v2, · · · , vn. Then it is easy to verify

that the sum of product of in-degree and out-degree of its vertices is (n− 2).

To prove the sufficiency part, we are given that D is connected with n vertices v1, v2, . . . , vn

and equation (1) is satisfied. If n = 2, then the only connected digraph is a tournament with

two vertices(or a directed path with two vertices) and (1) is trivially verified.

Now, suppose that D is connected with n ≥ 3 vertices. We consider the following two

cases:

(i) The total degree of every vertex of D is at most two;

(ii) There exists at least one vertex of D whose total degree is at least three.

In the former case, since D is connected, it is either a directed path or a directed tree or

a directed cycle.

Suppose thatD is a directed tree with n ≥ 3 vertices. Then there exists exactly two vertices

of total degree one, and (n−2) vertices of total degree two. Thus,

n∑

i=1

d−(vi)·d+(vi) = φ < n−2

violating the condition (1), where φ is the number of vertices of D whose in-degree and out-

degree are both one. Hence D cannot be a directed tree. On the other hand, if D is a directed

cycle with n ≥ 3 vertices, then

n∑

i=1

d−(vi) · d+(vi) = n > n − 2, again violating the condition

(1). Hence D cannot be a directed cycle also. In the latter case, we prove as follows.

Case 1. Suppose that a connected digraph D with n ≥ 3 vertices has exactly one vertex of

total degree three, and remaining vertices of total degree at most two. We consider the following

two subcases of Case 1.

Subcase 1. If D is a directed tree, then clearly it has three vertices of total degree one,

and (n− 4) vertices of total degree two. Thus,

n∑

i=1

d−(vi) · d+(vi) ≤ φ
′

< n− 2, where φ
′

is the

number of vertices of D whose in-degree and out-degree are both at least one.

Subcase 2. If D is cyclic, then it has a vertex of total degree one, and (n− 2) vertices of
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total degree two. Thus,
n∑

i=1

d−(vi) · d+(vi) = n > n− 2.

Case 2. Finally, consider any connected digraph with n vertices having more than one vertex

of total degree at least three. Clearly, such a digraph can be obtained by adding new arcs

joining pairs of non-adjacent vertices of a digraph described in Case 1. The addition of new

arcs increases the total degree of some vertices and there by the above inequality is preserved

in this case also. Therefore in all cases, we arrive at a contradiction if we assume that D has

some vertices of total degree at least three. Hence we conclude that D is a non-empty directed

path. This completes the proof. 2
Remark 2.1 It is known that a directed path is a special case of an arborescence. Hence

equation (1) is satisfied for an arborescence whose root vertex has out-degree exactly one. For

an example, see Fig.1, Fig.2. It is easy to verify that equation (1) is satisfied for an arborescence

showed in Fig.1, but not in Fig.2.
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Fig.1 Fig.2

Acknowledgement

We thank Prof.R.Chandrasekhar and Prof.Mayamma Joseph, members of Monthly Informal

Group Discussion(MIGD), ADMA, Bangalore for very useful discussions in motivating and

developing this work.

References

[1] Jorgen Bang-Jensen, Gregory Gutin, Digraphs Theory, Algorithms and applications, Springer-

Verlag London Limited(2009).

[2] V.R.Kulli, A Characterization of Paths, The Mathematical Education, 1975, pp 1-2.



I want to bring out the secrets of nature and apply them for the happiness of

man. I dont know of any better service to offer for the short time we are in the

world.

By Thomas Edison, an American inventor.



Author Information

Submission: Papers only in electronic form are considered for possible publication. Papers

prepared in formats, viz., .tex, .dvi, .pdf, or.ps may be submitted electronically to one member

of the Editorial Board for consideration in the International Journal of Mathematical

Combinatorics (ISSN 1937-1055). An effort is made to publish a paper duly recommended

by a referee within a period of 3 months. Articles received are immediately put the refer-

ees/members of the Editorial Board for their opinion who generally pass on the same in six

week’s time or less. In case of clear recommendation for publication, the paper is accommo-

dated in an issue to appear next. Each submitted paper is not returned, hence we advise the

authors to keep a copy of their submitted papers for further processing.

Abstract: Authors are requested to provide an abstract of not more than 250 words, lat-

est Mathematics Subject Classification of the American Mathematical Society, Keywords and

phrases. Statements of Lemmas, Propositions and Theorems should be set in italics and ref-

erences should be arranged in alphabetical order by the surname of the first author in the

following style:

Books

[4]Linfan Mao, Combinatorial Geometry with Applications to Field Theory, InfoQuest Press,

2009.

[12]W.S.Massey, Algebraic topology: an introduction, Springer-Verlag, New York 1977.

Research papers

[6]Linfan Mao, Mathematics on non-mathematics - A combinatorial contribution, International

J.Math. Combin., Vol.3(2014), 1-34.

[9]Kavita Srivastava, On singular H-closed extensions, Proc. Amer. Math. Soc. (to appear).

Figures: Figures should be drawn by TEXCAD in text directly, or as EPS file. In addition,

all figures and tables should be numbered and the appropriate space reserved in the text, with

the insertion point clearly indicated.

Copyright: It is assumed that the submitted manuscript has not been published and will not

be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors

agree that the copyright for their articles is transferred to the publisher, if and when, the

paper is accepted for publication. The publisher cannot take the responsibility of any loss of

manuscript. Therefore, authors are requested to maintain a copy at their end.

Proofs: One set of galley proofs of a paper will be sent to the author submitting the paper,

unless requested otherwise, without the original manuscript, for corrections after the paper is

accepted for publication on the basis of the recommendation of referees. Corrections should be

restricted to typesetting errors. Authors are advised to check their proofs very carefully before

return.



June 2015

Contents

Mathematics After CC Conjecture –Combinatorial Notions and Achievements

By Linfan MAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

Timelike-Spacelike Mannheim Pair Curves Spherical Indicators Geodesic

Curvatures and Natural Lifts
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