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That is the essence of science: ask an impertinent question, and you are on

the way to the pertinent answer.

By Abraham Lincoln, an American president.
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Abstract: Many researchers have studied several operators on a connected graph in which

one make an attempt on subdivision of its edges. In this paper, we show how the Zagreb in-

dices, a particular case of Smarandache-Zagreb index of a graph changes with these operators

and extended these results to obtain a relation connecting the Zagreb index on operators.

Key Words: Subdivision graph, ladder graph, Smarandache-Zagreb index, Zagreb index,

graph operators.

AMS(2000): 05C20

§1. Introduction

A single number that can be used to characterize some property of the graph of a molecule

is called a topological index. For quite some time interest has been rising in the field of com-

putational chemistry in topological indices that capture the structural essence of compounds.

The interest in topological indices is mainly related to their use in nonempirical quantitative

structure property relationships and quantitative structure activity relationships. The most

elementary constituents of a (molecular) graph are vertices, edges, vertex-degrees, walks and

paths [14]. They are the basis of many graph-theoretical invariants referred to (somewhat

imprecisely) as topological index, which have found considerable use in Zagreb index.

Suppose G = (V,E) is a connected graph with the vertex set V and the edge set E. Given

an edge e = {u, v} of G. Now we can define the subdivision graph S(G) [2] as the graph

obtained from G by replacing each of its edge by a path of length 2, or equivalently by inserting

an additional vertex into each edge of G.

In [2], Cvetkocic defined the operators R(G) and Q(G) are as follows:

the operator R(G) is the graph obtained from G by adding a new vertex corresponding to

each edge of G and by joining each new vertex to the end vertices of the edge corresponding to

it. The operator Q(G) is the graph obtained from G by inserting a new vertex into each edge

of G and by joining edges those pairs of these new vertices which lie on the adjacent edges of

G (See also [16]).

1Received July 28, 2010. Accepted September 1, 2010.
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The Wiener index W belongs among the oldest graph-based structure-descriptors topo-

logical indices [12,17]. Numerous of its chemical applications were reported in [6,11] and its

mathematical properties are well known [3]. Another structure-descriptor introduced long time

ago [4] is the Zagreb index M1 or more precisely, the first Zagreb index, because there exists

also a second Zagreb index M2. The research background of the Zagreb index together with its

generalization appears in chemistry or mathematical chemistry.

In this paper, we concentrate on Zagreb index [8] with a pair of topological indices denoted

M1(G) and M2(G) [1,9,10,13,18]. The first Zagreb index

M1(G) =
∑

u∈V (G)

d2(u),

and the second Zagreb index

M2(G) =
∑

uv∈E(G)

d(u)d(v).

Generally, let G be a graph and H its a subgraph. The Smarandache-Zagreb index of G relative

to H is defined by

MS(G) =
∑

u∈V (H)

d2(u) +
∑

(u,v)∈E(G\H)

d(u)d(v).

Particularly, if H = G or H = ∅, we get the first or second Zagreb index M1(G) and M2(G),

respectively.

A Tadpole graph [15] Tn,k is a graph obtained by joining a cycle graph Cn to a path of

length k and a wheel graph Wn+1 [7] is defined as the graph K1 + Cn, where K1 is the singleton

graph and Cn is the cycle graph [8]. A ladder graph Ln = K2�Pn, where Pn is a path graph.

For all terminologies and notations not defined in here, we refer to Harary [5].

§2. A relation connecting the Zagreb indices on S(G), R(G) and Q(G) for the

Tadpole graph and Wheel graph

We derive a relation connecting the Zagreb index with the subdivision graph S(G) and two

graph operators R(G) and Q(G), where, n, k are integers≥ 1 in this section.

Theorem 2.1 The first Zagreb index

M1(S(Tn,k)) = M1(Tn,k) + 4(n+ k).

Proof The Tadpole graph Tn,k contains n+ k− 2 vertices of degree 2, one vertex of degree

3 and a pendent vertex. Hence M1(Tn,k) = 4n+4k+2. The subdivision graph S(Tn,k) contains

n+ k additional subdivision vertices. Hence

M1(S(Tn,k)) = M1(Tn,k) + 4(n+ k)

M1(S(Tn,k)) = 8n+ 8k + 2. (2.1)

�
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Theorem 2.2 M1(R(Tn,k)) = M1(S(Tn,k)) + 6(2n+ 2k + 1).

Proof Each vertex v of degree l in Tn,k is of degree 2l in R(Tn,k) and all the subdivision

vertices in S(Tn,k) is of the same degree l in R(Tn,k). So,

M1(R(Tn,k)) = 16(n− 1) + 16(k − 1) + 4(n+ k) + 40

M1(R(Tn,k)) = M1(S(Tn,k))+6(2n+2k+1) (2.2)

from equation (2.1). �

Theorem 2.3 M1(Q(Tn,k)) =





M1(Tn,k) + 2M1(S(Tn,k)) + 14, if k = 1;

M1(Tn,k) +M1(S(Tn,k)) + 16, if k ≥ 2.

Proof If k = 1, the graph Q(Tn,k) contains the sub graph Tn,k. The n+ k− 2 subdivision

vertices of degree 2 in S(Tn,k) are of double the degree in Q(Tn,k) and only 2 vertices of degree

5. So,

M1(Q(Tn,k)) = 16(n+ k − 2) + 50 +M1(Tn,k)

= 2(8n+ 8k + 2) +M1(Tn,k) + 14.

Hence M1(Q(Tn,k)) = M1(Tn,k) + 2M1(S(Tn,k)) + 14 if k = 1.

For k ≥ 2, the n+k−4 subdivision vertices of degree 2 in S(Tn,k) is of degree 4 in Q(Tn,k)

and only 3 vertices of degree 5 and one vertex of degree 3. Hence

M1(Q(Tn,k)) = M1(Tn,k) + 16(n+ k) + 20

and

M1(Q(Tn,k)) = M1(Tn,k) +M1(S(Tn,k)) + 16, if k ≥ 2.

�

Theorem 2.4 M2(S(Tn,k)) =





2M2(Tn,k) − 2, if k = 1;

2M2(Tn,k) − 4, if k ≥ 2

Proof Among the n+ k vertices in Tn,k, only one vertex of degree 1, one vertex of degree

3 and n+ k− 2 vertices of degree 2, among which the n+ k− 4 pairs of vertices of degree 2, the

three pairs of vertices of degree 2 and 3 and a pair of vertices of degree 2 and 1 are adjacent

with each other for k ≥ 2. Hence, k ≥ 2,

M2(Tn,k) = 4n+ 4k + 4. (2.3)

For k = 1, the n − 1 vertices of degree 2, one vertex of degree 3 and a pendent vertex among

which there will be n − 2 pairs of vertices of degree 2, two pairs of vertices of degree 2 and 3

and a pair of vertices of degree 3 and 1 are adjacent with each other. So when k = 1,

M2(Tn,k) = 4n+ 7. (2.4)
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The new n+ k vertices of degree 2 is inserted in Tn,k to construct S(Tn,k).

M2(S(Tn,k)) = 4(2n− 2) + 4(2k − 2) + 20 = 8n+ 8k + 4 (2.5)

Hence M2(S(Tn,k)) = 2M2(Tn,k) − 4 , for k ≥ 2, from equation (2.3).

M2(S(Tn,k)) = 2M2(Tn,k) − 2,

for k = 1, from equation (2.4). �

Theorem 2.5 M2(R(Tn,k)) =





4M2(S(Tn,k)) + 4, if k = 1;

4M2(S(Tn,k)) + 8, if k ≥ 2.

Proof If k = 1, the n−2 pairs of vertices of degree 4, 2n−2 pairs of vertices of degree 2 and 4,

two pairs of vertices of degree 4 and 6, four pairs of vertices of degree 2 and 6 and a pair of vertices

of degree 2 are adjacent to each other. So, M2(R(Tn,k)) = 16(n−2)+8(2k−2)+8(2n−2)+100.

Hence

M2(R(Tn,k)) = 32n+32k+36 = 4M2(S(Tn,k))+4. (2.6)

if k = 1, from equation (2.5).

The vertices which are of degree 1 in Tn,k are of degree 2l in R(Tn,k) and all the subdivision

vertices in S(Tn,k) remains unaltered in R(Tn,k). In R(Tn,k), the n+ k − 4 pairs of vertices of

degree 4, 2n − 1 pairs of degree 4 and 2, three pairs of vertices of degree 4 and 6, three pairs

of vertices of degree 2 and 6 and one pair of vertices of degree 2 are adjacent to each other in

R(Tn,k) when k ≥ 2. Hence

M2(R(Tn,k)) = 16(n− 2) + 8(2n− 2) + 16(k − 2) + 8(2k − 2) + 120,

M2(R(Tn,k)) = 32n+ 32k + 24, (2.7)

M2(R(Tn,k)) = 4(8n+ 8k + 4) + 8 = 4M2(S(Tn,k)) + 8,

if k ≥ 2 from equation (2.5). �

Theorem 2.6 M2(Q(Tn,k)) =





M2(R(Tn,k)) + 39, if k = 1;

M2(R(Tn,k)) + 46, if k = 2;

M2(R(Tn,k)) + 47, if k ≥ 3.

Proof We divide the proof of this theorem into three cases.

Case 1: When k = 1, the n− 3 pairs of vertices of degree 4, 2n− 4 pairs of vertices of degree

2 and 4, one pair of vertices of degree 5, two pairs of vertices of degree 2 and 5, two pairs of

vertices of degree 3 and 5, a pair of vertices of degree 3 and 4, a pair of vertices of 4 and 1, and

four pairs of vertices of degree 4 and 5 are adjacent to each other in Q(Tn,k). Hence

M2(Q(Tn,k)) = 16(n− 3) + 8(2n− 4) + 91 = 32n+ 91

= (32n+ 16k + 36) + 39) = M2(R(Tn,k)) + 39
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from equation (2.6).

Case 2: When k = 2, the n− 3 pairs of vertices of degree 4, 2n− 4 pairs of vertices of degree

2 and 4, three pair of vertices of degree 5, three pairs of vertices of degree 2 and 5, 4 pairs of

vertices of degree 3 and 5, a pair of vertices of degree 1 and 3, a pair of vertices of 2 and 3, and

two pairs of vertices of degree 4 and 5 are adjacent to each other in Q(Tn,k). Hence

M2(Q(Tn,k)) = 16(n− 3) + 8(2n− 4) + 214 = 32n+ 134

= (32n+ 32k + 24) + 46 = M2(R(Tn,k)) + 46

from equation (2.7).

Case 3: When k ≥ 3, there are n + k − 6 pairs of vertices of degree 4, 2n + 2k − 8 pairs of

vertices of degree 2 and 4, three pairs of vertices of degree 5, three pairs of vertices of degree

2 and 5, three pairs of vertices of degree 3 and 5, a pair of vertices of degree 3 and 1, a pair

of vertices of degree 2 and 3, a pair of vertices of degree 4 and 3 and three pairs of vertices of

degree 4 and 5 are neighbours to each other in Q(Tn,k), with which,

M2(Q(Tn,k)) = 16(n+ k − 6) + 8(2n+ 2k − 8) + 231 = 32n+ 32k + 71

= (32n+ 32k + 24) + 47 = M2(R(Tn,k)) + 47

from equation (2.7). �

Theorem 2.7 For the wheel graph Wn+1, M1(S(Wn+1)) = M1(Wn+1) + 8n.

Proof In Wn+1, it has n vertices of degree 3 and one vertex, the center of wheel of degree

n. So,

M1(Wn+1) = 9n+n2. (2.8)

By inserting a vertex in each edge of Wn+1, M1(S(Wn+1)) = M1(Wn+1) + 8n.

M1(S(Wn+1)) = n2+17n. (2.9)

�

Theorem 2.8 M1(R(Wn+1)) = 4M1(S((Wn+1))) − 24n.

Proof The degrees of the subdivision vertices in S(Wn+1) remains unaltered in R(Wn+1)

and a vertex of degree l in Wn+1, is of degree 2l in R(Wn+1).

M1(R(Wn+1)) = 4n2 + 44n = 4(n2 + 17n) − 24n

= 4M1(S((Wn+1))) − 24n. (2.10)

�

Theorem 2.9 M1(Q(Wn+1)) = M1(R((Wn+1))) +M1(Wn+1) + n(n+ 1)2.
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Proof Clearly Q(Wn+1) contains the subgraph Wn+1. Every subdivision vertex on the

edges of the subgraph Cn in S(Wn+1) is adjacent with the four subdivision vertices, two on

the spoke and two on the edges of Cn. Each of the subdivision vertex on the edges of Cn is

of degree 6. Also every subdivision vertex on a spoke is adjacent with the n − 1 subdivision

vertices on the other spokes and is adjacent with 2 subdivision vertices on the edges of Cn with

which the subdivision vertex on the spoke is of degree n+ 3. Therefore,

M1(Q(Wn+1)) = M1(Wn+1) + 36n+ (n+ 3)2n

= M1(Wn+1) + (4n2 + 44n) + (n3 + 2n2 + n)

and

M1(Q(Wn+1)) = M1(R((Wn+1))) +M1(Wn+1) + n(n+ 1)2

by equation (2.10). �

Theorem 2.10 M2(S(Wn+1)) = M2(Wn+1) + (9n− n2).

Proof A vertex of degree 3 is adjacent with two vertices of degree 3 and with the hub of

the wheel so that

M2(Wn+1) = 3n2 +9n (2.11)

In S(Wn+1), the 2n additional subdivision vertices are inserted. A vertex of degree 3 is adjacent

with three vertices of degree 2 and all the subdivision vertices on the spoke are adjacent to the

hub.

M2(S(Wn+1)) = 2n2 + 18n = (3n2 + 9n) + (9n− n2)

= M2(Wn+1) + (9n− n2) (2.12)

from equation (2.11). �

Theorem 2.11 M2(R(Wn+1)) = 4M2(S((Wn+1))) + 8n2.

Proof The degrees of the subdivision vertices in S(Wn+1) remains the same in R(Wn+1)

and every vertex in Wn+1 is of double the degree in R(Wn+1). Every vertex of degree 6 is

adjacent with the hub, two vertices of degree 6 and three subdivision vertices. The subdivision

vertices on the spoke is adjacent with the hub. Hence

M2(R(Wn+1)) = 72n+ 16n2 = 4(2n2 + 18n) + 8n2

= 4M2(S((Wn+1))) + 8n2 (2.13)

from equation (2.12). �

Theorem 2.12 For a wheel graph Wn+1,

M2(Q(Wn+1)) =
2M2(R((Wn+1)) + 3M2(S(Wn+1)) + (n4 + 7n3 + n2 + 27n)

2
.



Smarandache-Zagreb Index on Three Graph Operators 7

Proof Every subdivision vertex in S(Wn+1)(other than the subdivision vertices on the

spoke) is of degree 6 and is adjacent with the the two vertices of degree 3, two vertices of degree

6, two vertices of degree n + 3. A vertex of degree 3 is adjacent with the subdivision vertices

on the spokes of degree n + 3 , and the subdivision vertices on the spoke is adjacent with the

hub of the wheel and the n− 1 subdivision vertices on the remaining spokes.

M2(Q(Wn+1)) =

[
36 + 36 + 12(n+ 3) + 3(n+ 3) + n(n+ 3) +

((n+ 3)2(n− 1)

2

]
× n

=
2(16n2 + 72n) + 3(2n2 + 18n) + (n4 + 7n3 + n2 + 27n)

2

=
2M2(R((Wn+1)) + 3M2(S(Wn+1)) + (n4 + 7n3 + n2 + 27n)

2

by applying equations (2.12) and (2.13). �

§3. A relation connecting the Zagreb indices on S(G), R(G) and Q(G) for the

Ladder graph

In this section, we assume n being an integer≥ 3. When n = 1, L1 is the path P1 and When

n = 2, L2 is the cycle C4 for which the the relations on the Zagreb index are same as in the

case of Pk and Cn respectively.

Theorem 3.1 For the ladder graph Ln, M1(S(Ln)) = M1(Ln) + 4(3n− 2).

Proof The ladder graph Ln contains 2n− 4 vertices of degree 3 and four vertices of degree

2. So

M1(Ln) = 18n− 20 (3.1)

Since there are 3n− 2 edges in Ln there is an increase of 3n− 2 subdivision vertices in S(Ln).

M1(S(Ln)) = M1(Ln)+4(3n−2) = 30n−28. (3.2)

�

Theorem 3.2 M1(R(Ln)) = 2M1(S(Ln)) + (24n− 32).

Proof The subdivision vertices in S(Ln) retains the same degree in R(Ln) and a vertex of

degree l in Ln is of degree 2l in R(Ln). Hence,

M1(R(Ln)) = 22(3n− 2) + 72(n− 2) + 64

and

M1(R(Ln)) = 84n−88 = 2M1(S(Ln))+(24n−32) (3.3)

from equation (3.2). �

Theorem 3.3 M1(Q(Ln)) = M1(R(Ln)) + 42n− 88.
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Proof The graph Q(Ln) contains the subgraph Ln. The subdivision vertices on the top and

the bottom of the ladder say v1 and vk in Q(Ln) is of degree 4 corresponding to the adjacencies

and the nearest subdivision vertices of v1 and vk are of degree 5 corresponding to the 3 adjacent

subdivision vertices in S(Ln). The remaining 3n− 8 subdivision vertices are of degree 6. So

M1(Q(Ln)) = M1(Ln) + 132 + 62(3n− 8) = M1(R(Ln)) + 42n− 88,

from equation (3.3). �

Theorem 3.4 M2(S(Ln)) = M2(Ln) + 9n.

Proof In Ln, two vertices of degree 2 are adjacent with a vertex of degree 3 and a vertex

of degree 2. The 2n− 8 pairs of vertices of degree 3 are adjacent with the vertex of degree 2.

Hence,

M2(Ln) = 32 + 18(n− 3) + 9(n− 2) = 27n− 40. (3.4)

In S(Ln), eight pairs of vertices of degree 2, 6n− 12 pairs of vertices of degree 2 and three are

adjacent to each other. So

M2(S(Ln)) = 32 + 6(6n− 12) = M2(Ln) + 9n (3.5)

from equation (3.4). �

Theorem 3.5 M2(R(Ln)) = 5M2(S(Ln)) − 40.

Proof The degrees of the subdivision vertices in S(Ln) is unaffected in R(Ln), and all the

vertices in Ln become double the degree in R(Ln). In R(Ln), eight pairs of vertices of degree 4

and 2, 6n− 12 pairs of vertices of degree 2 and 6, two pairs of vertices of degree 4, 3n− 8 pairs

of vertices of degree 6 , four pairs of vertices of degree 4 and six are adjacent to each other. So,

M2(R(Ln)) = 180n−240 = 5M2(S(Ln))−40 (3.6)

from equation (3.5). �

Theorem 18 M2(Q(Ln))=





2M2(R(Ln)) + (−36n− 44), if n = 3;

M2(R(Ln)) + (−72n+ 548), if n = 4;

2M2(R(Ln)) + (−36n− 4), if n ≥ 5.

Proof We divide the proof of this result into three cases following.

Case 1: If n = 3, the Q(Ln) contains the subgraph Ln. In Q(Ln), there are four pairs of

vertices of degree 4 and 5, four pairs of vertices of degree 4 and 2, four pairs of vertices of degree

2 and 5, four pairs of vertices of degree 5 and 6 , two pairs of vertices of degree 5, four pairs

of vertices of degree 5 and 3, 6n − 16 pairs of vertices of degree 3 and 6, the 6n − 18 pairs of

vertices of vertices of degree 6 are adjacent to each other. Hence,

M2(Q(L3)) = 382 + 18(6n− 16) + 36(6n− 18)
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and

M2(Q(Ln)) = 2M2(R(Ln)) + (−36n− 44)

from equation (3.6).

Case 2: If n = 4, four pairs of vertices of degree 4 and 5, four pairs of vertices of degree 4 and

2, four pairs of vertices of degree 2 and 5, eight pairs of vertices of degree 5 and 6, four pairs of

vertices of degree 5 and 3, four pairs of vertices of degree 3 and 6 and 6n− 20 pairs of vertices

of degree 6 are adjacent to each other in Q(Ln). Hence,

M2(Q(Ln)) = 596 + 36(6n− 16) = 308 + 108n

and

M2(Q(Ln)) = M2(R(Ln)) + (548 − 72n)

from equation (3.6).

Case 3: If n ≥ 5, Q(Ln) contains 4 pairs of vertices of degree 4 and 5, four pairs of vertices of

degree 4 and 2, four pairs of vertices of degree 2 and 5, eight pairs of vertices of degree 5 and

6, four pairs of vertices of degree 5 and 3 , 6n− 16 pairs of vertices of degree 3 and 6, 6n− 18

pairs of vertices of degree 6 are adjacent to each other. Hence,

M2(Q(Ln)) = 452 + 18(6n− 16) + 36(6n− 18)

= 2M2(R(Ln)) + (−36n− 4)

by equation (3.6). �
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Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered

pair S = (G, σ) (S = (G, µ)) where G = (V, E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}.

Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called

abbreviated a signed graph or a marked graph. In this paper, we define the total minimal

dominating signed graph Mt(S) = (Mt(G), σ) of a given signed digraph S = (G, σ) and

offer a structural characterization of total minimal dominating signed graphs. Further, we

characterize signed graphs S for which S ∼ Mt(S) and L(S) ∼ Mt(S), where ∼ denotes

switching equivalence and Mt(S) and L(S) are denotes total minimal dominating signed

graph and line signed graph of S respectively.

Key Words: Smarandachely k-signed graphs, Smarandachely k-marked graphs, signed

graphs, marked graphs, balance, switching, total minimal dominating signed graph, line

signed graphs, negation.
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§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the

reader is refer to [8]. We consider only finite, simple graphs free from self-loops.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair

S = (G, σ) (S = (G,µ)) where G = (V,E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particu-

larly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated

a signed graph or a marked graph. Cartwright and Harary [5] considered graphs in which ver-

tices represent persons and the edges represent symmetric dyadic relations amongst persons

each of which designated as being positive or negative according to whether the nature of the

1Received July 20, 2010. Accepted September 3, 2010.
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relationship is positive (friendly, like, etc.) or negative (hostile, dislike, etc.). Such a network

S is called a signed graph (Chartrand [6]; Harary et al. [11]).

Signed graphs are much studied in literature because of their extensive use in modeling a

variety socio-psychological process (e.g., see Katai and Iwai [13], Roberts [15] and Roberts and

Xu [16]) and also because of their interesting connections with many classical mathematical

systems (Zaslavsky [22]).

A cycle in a signed graph S is said to be positive if the product of signs of its edges is

positive. A cycle which is not positive is said to be negative. A signed graph is then said to be

balanced if every cycle in it is positive (Harary [9]). Harary and Kabell [22] developed a simple

algorithm to detect balance in signed graphs as also enumerated them.

A marking of S is a function µ : V (G) → {+,−}; A signed graph S together with a

marking µ is denoted by Sµ. Given a signed graph S one can easily define a marking µ of S as

follows: For any vertex v ∈ V (S),

µ(v) =
∏

uv∈E(S)

σ(uv),

the marking µ of S is called canonical marking of S.

The following characterization of balanced signed graphs is well known.

Theorem 1(E. Sampathkumar [17]) A signed graph S = (G, σ) is balanced if, and only if,

there exists a marking µ of its vertices such that each edge uv in S satisfies σ(uv) = µ(u)µ(v).

The idea of switching a signed graph was introduced by Abelson and Rosenberg [1] in

connection with structural analysis of marking µ of a signed graph S. Switching S with respect

to a marking µ is the operation of changing the sign of every edge of S to its opposite whenever

its end vertices are of opposite signs. The signed graph obtained in this way is denoted by

Sµ(S) and is called µ-switched signed graph or just switched signed graph. Two signed graphs

S1 = (G, σ) and S2 = (G′, σ′) are said to be isomorphic, written as S1
∼= S2 if there exists

a graph isomorphism f : G → G′ (that is a bijection f : V (G) → V (G′) such that if uv is

an edge in G then f(u)f(v) is an edge in G′) such that for any edge e ∈ G, σ(e) = σ′(f(e)).

Further a signed graph S1 = (G, σ) switches to a signed graph S2 = (G′, σ′) (or that S1 and S2

are switching equivalent) written S1 ∼ S2, whenever there exists a marking µ of S1 such that

Sµ(S1) ∼= S2. Note that S1 ∼ S2 implies that G ∼= G′, since the definition of switching does

not involve change of adjacencies in the underlying graphs of the respective signed graphs.

Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be weakly isomorphic (see

[20]) or cycle isomorphic (see [21]) if there exists an isomorphism φ : G → G′ such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(See [21]):

Theorem(T. Zaslavsky [21]) Two signed graphs S1 and S2 with the same underlying graph are

switching equivalent if, and only if, they are cycle isomorphic.
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§2. Total Minimal Dominating Signed Graph

The total minimal dominating graph Mt(G) of a graph G is the intersection graph on the family

of all total minimal dominating sets of vertices in G. This concept was introduced by Kulli and

Iyer [14].

We now extend the notion of Mt(G) to the realm of signed graphs. The total minimal

dominating signed graph Mt(S) of a signed graph S = (G, σ) is a signed graph whose underlying

graph is Mt(G) and sign of any edge uv is Mt(S) is µ(u)µ(v), where µ is the canonical marking

of S. Further, a signed graph S = (G, σ) is called total minimal dominating signed graph, if

S ∼= Mt(S
′) for some signed graph S′. The following result restricts the class of total minimal

dominating signed graphs.

Theorem 3 For any signed graph S = (G, σ), its total minimal dominating signed graph Mt(S)

is balanced.

Proof Since sign of any edge uv is Mt(S) is µ(u)µ(v), where µ is the canonical marking of

S, by Theorem 1, Mt(S) is balanced. �

For any positive integer k, the kth iterated total minimal dominating signed graph, Mk
t (S)

of S is defined as follows:

M0
t (S) = S, Mk

t (S) = Mt(M
k−1
t (S))

Corollary 4 For any signed graph S = (G, σ) and for any positive integer k, Mk
t (S) is balanced.

The following result characterizes signed graphs which are total minimal dominating signed

graphs.

Theorem 5 A signed graph S = (G, σ) is a total minimal dominating signed graph if, and only

if, S is balanced signed graph and its underlying digraph G is a total minimal dominating graph.

Proof Suppose that S is total minimal dominating signed graph. Then there exists a signed

graph S′ = (G′, σ′) such that Mt(S
′) ∼= S. Hence by definition Mt(G) ∼= G′ and by Theorem

3, S is balanced.

Conversely, suppose that S = (G, σ) is balanced and G is total minimal dominating graph.

That is there exists a graph G′ such that Mt(G
′) ∼= G. Since S is balanced by Theorem 1,

there exists a marking µ of vertices of S such that for any edge uv ∈ G, σ(uv) = µ(u)µ(v).

Also since G ∼= Mt(G
′), vertices in G are in one-to-one correspondence with the edges of G′.

Now consider the signed graph S′ = (G′, σ′), where for any edge e′ in G′ to be the marking on

the corresponding vertex in G. Then clearly Mt(S
′) ∼= S and so S is total minimal dominating

graph. �

In [3], the authors proved the following for a graph G its total minimal dominating graph

Mt(G) is isomorphic to G then G is either C3 or C4. Analogously we have the following.

Theorem 6 For any signed graph S = (G, σ), S ∼ Mt(S) if, and only if, G is isomorphic to

either C3 or C4 and S is balanced.
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Proof Suppose S ∼Mt(S). This implies, G ∼= Mt(G) and hence by the above observation

we see that the graph G must be isomorphic to either C3 or C4. Now, if S is any signed graph on

any one of these graphs, Theorem 3 implies that Mt(S) is balanced and hence if S is unbalanced

its Mt(S) being balanced cannot be switching equivalent to S in accordance with Theorem 2.

Therefore, S must be balanced.

Conversely, suppose that S is balanced signed graph on C3 or C4. Then, since Mt(S) is

balanced as per Theorem 3, the result follows from Theorem 2 again. �

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed

graph S as follows: Given a signed graph S = (G, σ) its line signed graph L(S) = (L(G), σ′) is

the signed graph whose underlying graph is L(G), the line graph of G, where for any edge eiej

in L(S), σ′(eiej) is negative if, and only if, both ei and ej are adjacent negative edges in S.

Another notion of line signed graph introduced in [7], is as follows: The line signed graph of a

signed graph S = (G, σ) is a signed graph L(S) = (L(G), σ′), where for any edge ee′ in L(S),

σ′(ee′) = σ(e)σ(e′). In this paper, we follow the notion of line signed graph defined by M. K.

Gill [7] (See also E. Sampathkumar et al. [18,19]).

Theorem 7(M. Acharya [2]) For any signed graph S = (G, σ), its line signed graph L(S) =

(L(G), σ′) is balanced.

We now characterize signed graphs whose total minimal dominating signed graphs and its

line signed graphs are switching equivalent. In the case of graphs the following result is due to

Kulli and Iyer [14].

Theorem 8(Kulli and Iyer [14]) If G is a (p− 2)-regular graph then, Mt(G) ∼= L(G).

Theorem 9 For any signed graph S = (G, σ), Mt(S) ∼ L(S), if, and only if, G is (p − 2)-

regular.

Proof Suppose Mt(S) ∼ L(S). This implies, Mt(G) ∼= L(G) and hence by Theorem 8, we

see that the graph G must be (p− 2)-regular.

Conversely, suppose that G is (p − 2)-regular. Then Mt(G) ∼= L(G) by Theorem 8. Now

if S is signed graph with (p− 2)-regular, then by Theorem 3 and Theorem 7, Mt(S) and L(S)

are balanced and hence, the result follows from Theorem 2. �

The notion of negation η(S) of a given signed graph S defined in [10] as follows:

η(S) has the same underlying graph as that of S with the sign of each edge opposite to

that given to it in S. However, this definition does not say anything about what to do with

nonadjacent pairs of vertices in S while applying the unary operator η(.) of taking the negation

of S.

Theorem 6 provides easy solutions to two other signed graph switching equivalence rela-

tions, which are given in the following results.

Corollary 10 For any signed graph S = (G, σ), Mt(η(S)) ∼Mt(S).
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Corollary 11 For any signed graph S = (G, σ), η(S) ∼ Mt(S) if, and only if, S is an

unbalanced signed graph and G = C3.

For a signed graph S = (G, σ), the Mt(S) is balanced (Theorem 3). We now examine, the

conditions under which negation η(S) of Mt(S) is balanced.

Corollary 12 Let S = (G, σ) be a signed graph. If Mt(G) is bipartite then η(Mt(S)) is

balanced.

Proof Since, by Theorem 3 Mt(S) is balanced, if each cycle C in Mt(S) contains even

number of negative edges. Also, since Mt(G) is bipartite, all cycles have even length; thus, the

number of positive edges on any cycle C in Mt(S) is also even. Hence η(Mt(S)) is balanced.�
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Abstract: A set S of vertices in a graph G is said to be a Smarandachely k-dominating set

if each vertex of G is dominated by at least k vertices of S. The Smarandachely k-domination

number γk(G) of G is the minimum cardinality of Smarandachely k-dominating sets of G.

Particularly, if k = 1, a Smarandachely k-dominating set is called a dominating set of G

and γk(G) is abbreviated to γ(G). In this paper, we get the Smarandachely 1-dominating

number, i.e., the dominating number of Pn × P2.

Key Words: Smarandachely k-dominating set, Smarandachely k-domination number,

dominating sets, dominating number.
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§1. Introduction

We considered finite, undirected, simple graphs G = (V,E) with vertex set V (G) and edge set

E(G). The order of G is given by n = |V (G)|. A set S ⊆ V of vertices in a graph G is called a

dominating set if every vertex v ∈ V is either an element of S or is adjacent to an element of

S. A dominating set S is a minimum dominating set if no proper subset is a dominating set.

The domination number γ(G) of a graph G is the minimum cardinality of a dominating set in

G. A set of vertices S in a graph G is said to be a Smarandachely k-dominating set if each

vertex of G is dominated by at least k vertices of S. Particularly, if k = 1, such a set is called

a dominating set of G. The Smarandachely k-domination number γk(G) of G is the minimum

cardinality of a Smarandachely k-dominating set of G.

As known, a fundamental unsolved problem concerning the bounds on the domination

number of product graphs is to settle Vizing’s conjecture. Another basic problem is to find

the domination number or bound on the domination number of specific Cartesian products,

for example the j × k grid graph Pj × Pk . This too seems to be a difficult problem. It is

1Received June 28, 2010. Accepted September 6, 2010.
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known that dominating set remains NP- complete when restricted to arbitrary sub graphs of

[2,12]. However, Hare, Hare and Hedetniemi [8,9] developed a linear time algorithm to solve this

problem on j × k grid graph for any fixed j. Moreover, the domination number of Pj × Pk has

been determined for small values of j. Jacobson and Kinch [10] established it for j = 1, 2, 3, 4

and all k. Hare [8] developed algorithm which she used to conjecture simple formulae for

γ(Pj × Pk) for 1 ≤ j ≤ 10. Chang and Clark [4] proved Hare’s formulae for the domination

number of P5 × Pk and P6 × Pk . The domination numbers for Pj × Pk 1 ≤ j ≤ 6 are listed

below:

1. γ(P1 × Pk) =
⌊

k+2
3

⌋
, k ≥ 1

2. γ(P2 × Pk) =
⌊

k+2
2

⌋
, k ≥ 1

3. γ(P3 × Pk) =
⌊

3k+4
4

⌋
, k ≥ 1

4. γ(P3 × Pk) =





k + 1, k = 1, 2, 3, 5, 6, 9;

k, otherwise.

5. γ(P3 × Pk) =





6k+6
5 , k = 2, 3, 7;

6k+8
5 , otherwise.

6. γ(P3 × Pk) =





10k+10
7 , k ≥ 6k ≡ 1mod7;

10k+12
7 , otherwiseifk ≥ 4.

It is well known that the concept of domination is originated from the game of chess board.

The problem of finding the minimum number of stones is one aspect and the number of ways of

placing the minimum number of stones is another aspect. Though the first aspect has not been

resolved as mentioned earlier, we consider the second aspect of the problem, that is, finding

the number of ways of placing the minimum number of stones. In this paper, we consider the

second aspect of the problem for Pn × P2. That is, equivalently finding the minimum number

of dominating sets in Pn × P2.

P7 × P2 :

u1 u2 u3 u4 u5 u6
u7

u1′

u2′ u3′ u4′

u5′ u6′

u7′

Figure 1: P7 × P2 with dominating vertices

The minimum dominating sets of Figure 1 are {u1, u3′ , u5, u7′} and {u1′ , u3, u5′ , u7}.
Similarly, the minimum dominating sets of Figure 2 are: {u1, u3′ , u5, u6′} {u1′ , u3, u5′ , u6},

{u1, u3′ , u5, u6}, {u1′ , u3, u5′ , u6′}, {u1, u3′ , u4, u6′}, {u1′ , u3, u4′ , u6}, {u1, u2′ , u4, u6′}, {u1′, u2,
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P6 × P2 :

u1
u2 u3 u4

u5 u6

u1′

u2′ u3′ u4′

u5′ u6′

Figure 2: P6 × P2 with dominating vertices

u4′ , u6}, {u1′ , u3, u4, u6′}, {u1, u3′ , u4′ , u6}, {u1, u2, u4′ , u6}, {u2, u2′ , u4, u6′}, {u2′ , u2, u4′ , u6},
{u1′ , u3, u5′ , u5}, {u1, u3′ , u5′ , u5}, {u2, u2′ , u5, u5′}, {u1′ , u2′ , u4, u6′}.

As such the domination number of Pn × P2 is, γ (Pn × P2) =
⌊

n+2
2

⌋
. Using this value we

consider the minimum number of dominating sets γD (Pn × P2) for the values n = 2k + 1 and

n = 2k.

§2. Results

To prove our results, we need some lemmas proved below.

Lemma 2.1 Let vertices of first and second rows in P2k+1×P2 are labeled with v1, v2 . . . , v2k−2,

v2k−1, v2k, v2k+1 and u1, u2, . . . , u2k−2, u2k−1, u2k, u2k+1, then there is no md-set containing both

the vertices v2kand u2k.

Proof On the contrary, assume that there is an md-set say D in P2k+1 × P2 containing

both the vertices v2kand u2k. Clearly, D−{v2ku2k} dominating set in P2k−2×P2, for otherwise

there exists a vertex vi (or ui ) of P2k−2×P2 which is not either in D−{v2ku2k} or not adjacent

to any vertex of D− {v2ku2k} then this vertex vi (or ui ) is not in D or is not adjacent to any

vertex of D in P2k+1 × P2 and hence D is not a dominating set in P2k+1 × P2, a contradiction

to the assumption.

Therefore,K = γ (P2k−2 × P2) ≤ |D − {v2ku2k}| = |D| − 2 = k + 1 − 2 = k − 1 a contra-

diction, which proves the Lemma. �

Lemma 2.2 There is no md-set containing both v2k+1 and u2k+1 , where the vertices of

P2k+1 × P2 are labelled as in the above Lemma 2.1.

Proof The proof is similar to that of Lemma 2.1 with a slight change, that is by considering

D−{v2k+1u2k+1} which is the dominating set in P2k−1×P2 with D being a md - set containing

both v2k+1and u2k+1 in P2k−1 × P2. Thus, K = γ (P2k−1 × P2) ≤ |D − {v2k+1u2k+1}| =

|D| − 2 = k + 1 − 2 = k − 1 a contradiction, which proves that D is not an md - set. �

Corollary 2.3 Every md - set in P2k+1 × P2 contains either v2k+1 or u2k+1.
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Theorem 2.4 γ(P2k+1 × P2) =





3, if k = 1;

2, if k ≥ 2.

Lemma 2.5 There exists exactly two md - sets containing both v2k−1 and u2k−1 in P2k × P2.

Proof In P2k × P2 , clearly the vertices v2k−1 and u2k−1 can cover v2k−2, v2k and u2k−2,

u2k respectively. We claim that any md - set D containing either v2k−3 or u2k−3 but not

both, (follows from the Corollary 2.3)union {v2k−1, u2k−1} is an md - set in P2k × P2. Since

k + 1 = γ(P2k × P2) ≤ |D ∪ {v2k−1, v2k−2}| = γ(P2k−3 × P2) + 2 = k − 1 + 2 = k + 1. Hence

the claim. Again by Theorem 2.4 and Corollary 2.3, there are exactly two md-sets viz D1

containing v2k−3 and D2 containing u2k−3 in P2k−3 × P2. Hence D1 ∪ {v2k−1, u2k−1} and

D2 ∪ {v2k−1, u2k−1} are md-sets in P2k × P2. �

Lemma 2.6 There is no md-set containing both v2k and u2k in P2k × P2.

Proof On the contrary, assume that there is a md - set in P2k × P2 containing both v2k

and u2k. Then, clearly,

D−{v2k, u2k} is a dominating set in P2k×P2. Thus, k = γ(P2k−2×P2) ≤ |D − {v2k, u2k}| ≤
|D| − 2 = k + 1 − 2 = k − 1 a contradiction, which proves this lemma. �

Theorem 2.7 For any k ≥ 3, γD (P2k × P2) = γ(P2k−2 × P2) + 4

Proof We prove this theorem by four steps following.

Step 1. Let D1, D2, · · · , Dt be md-sets containing u2k−2 in P2k−2 ×P2, then, Di ∪ {u2k}
and Di ∪{v2k} are dominating sets in P2k−2 ×P2 for i = 1, 2, · · · , t But, k+1 = γ(P2k ×P2) ≤
|Di| ∪ {u2k} = |Di|+1 = γ(P2k−2 ×P2)+1 = k+1. Hence, Di ∪{u2k} is a md-set in P2k ×P2.

And for the same reason, Di ∪ {v2k} is a md-set in P2k × P2.

Step 2. By the Lemma 2.5, Let D1 and D2 be two md - sets containing both v2k−3

and u2k−3 in P2k−2 × P2. But, by the Lemma, there exists exactly two md - sets say D′
1 and

D′
2 containing v2k−3 and u2k−3 respectively in P2k−2 × P2. So, D1 must be obtained from

D′
1∪{v2k−3, u2k−3} and D2 must be obtained from D′

2∪{v2k−3, u2k−3}. Thus it is not difficult

to see that (D1 − v2k−3)∪{v2k−1, u2k} and (D1 − u2k−3)∪{u2k−1, v2k} are md- sets in P2k×P2.

Step 3. For md-sets D1 and D2 of P2k−2 ×P2 the sets (D1 − {v2k−3})∪{v2k−1, v2k} and

({D2 − u2k−3}) ∪ {u2k−1, u2k, } are md- sets in P2k × P2.

Step 4. For md-sets D1 and D2 of P2k−2 × P2 the sets (D1 − {v2k−3}) ∪ {v2k−1, u2k−1}
and ({D2 − u2k−3}) ∪ {v2k−1, u2k−1} are md- sets in P2k × P2.

Thus γD (P2k × P2) = 2t+2+2+2 = 2t+2+4 = γD (P2k−2 × P2)+4 by steps 1, 2, 3, 4.�
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Abstract: A Smarandache-Fibonacci Triple is a sequence S(n), n ≥ 0 such that S(n) =

S(n−1)+S(n−2), where S(n) is the Smarandache function for integers n ≥ 0. Certainly, it

is a generalization of Fibonacci sequence. A Fibonacci graceful labeling and a super Fibonacci

graceful labeling on graphs were introduced by Kathiresan and Amutha in 2006. Generally,

let G be a (p, q)-graph and {S(n)|n ≥ 0} a Smarandache-Fibonacci Triple. An bijection

f : V (G) → {S(0), S(1), S(2), . . . , S(q)} is said to be a super Smarandache-Fibonacci grace-

ful graph if the induced edge labeling f∗(uv) = |f(u) − f(v)| is a bijection onto the set

{S(1), S(2), . . . , S(q)}. Particularly, if S(n), n ≥ 0 is just the Fibonacci sequence Fi, i ≥ 0,

such a graph is called a super Fibonacci graceful graph. In this paper, we construct new

types of graphs namely Fn ⊕K+

1,m, Cn ⊕ Pm, K1,n ⊘K1,2, Fn ⊕ Pm and Cn ⊕K1,m and we

prove that these graphs are super Fibonacci graceful graphs.

Key Words: Smarandache-Fibonacci triple, graceful labeling, Fibonacci graceful labeling,

super Smarandache-Fibonacci graceful graph, super Fibonacci graceful graph.

AMS(2000): 05C78

§1. Introduction

By a graph, we mean a finite undirected graph without loops or multiple edges. A path of

length n is denoted by Pn+1. A cycle of length n is denoted by Cn. G+ is a graph obtained

from the graph G by attaching pendant vertex to each vertex of G. Graph labelings, where

the vertices are assigned certain values subject to some conditions, have often motivated by

practical problems.

In the last five decades enormous work has been done on this subject [1]. The concept of

graceful labeling was first introduced by Rosa [5] in 1967. A function f is a graceful labeling of

a graph G with q edges if f is an injection from the vertices of G to the set {0, 1, 2, . . . , q} such

that when each edge uv is assigned the label |f(u)−f(v)|, the resulting edge labels are distinct.

The notion of Fibonacci graceful labeling and Super Fibonacci graceful labeling were introduced

by Kathiresan and Amutha [3]. We call a function f , a Fibonacci graceful labeling of a graph G

1Received June 30, 2010. Accepted September 6, 2010.
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with q edges if f is an injection from the vertices of G to the set {0, 1, 2, . . . , Fq}, where Fq is

the qth Fibonacci number of the Fibonacci series F1 = 1,F2 = 2,F3 = 3, F4 = 5, · · · , such that

each edge uv is assigned the labels |f(u)−f(v)|, the resulting edge labels are F1, F2, . . . , Fq. An

injective function f : V (G) → {F0, F1, . . . , Fq}, where Fq is the qth Fibonacci number, is said

to be a super Fibonacci graceful labeling if the induced edge labeling |f(u)−f(v)| is a bijection

onto the set {F1, F2, . . . , Fq}. In the labeling problems the induced labelings must be distinct.

So to introduce Fibonacci graceful labelings we assume F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · , as

the sequence of Fibonacci numbers instead of 0, 1, 2, . . . , [3].

Generally, a Smarandache-Fibonacci Triple is a sequence S(n), n ≥ 0 such that S(n) =

S(n− 1) + S(n− 2), where S(n) is the Smarandache function for integers n ≥ 0 [2]. A (p, q)-

graph G is a super Smarandache-Fibonacci graceful graph if there is an bijection f : V (G) →
{S(0), S(1), S(2), . . . , S(q)} such that the induced edge labeling f∗(uv) = |f(u) − f(v)| is a

bijection onto the set {S(1), S(2), . . . , S(q)}. So a super Fibonacci graceful graph is a special

type of Smarandache-Fibonacci graceful graph by definition.

In this paper, we prove that Fn ⊕K+
1,m, Cn ⊕ Pm, K1,n ⊘K1,2, Fn ⊕ Pm and Cn ⊕K1,m

are super Fibonacci graceful graphs.

§2. Main Results

In this section, we show that some new types of graphs namely Fn⊕K+
1,m, Cn⊕Pm, K1,n⊘K1,2,

Fn ⊕ Pm and Cn ⊕K1,m are super Fibonacci graceful graphs.

Definition 2.1([4]) Let G be a (p, q) graph. An injective function f : V (G) → {F0, F1, F2, . . . , Fq},
where Fq is the qth Fibonacci number, is said to be a super Fibonacci graceful graphs if the in-

duced edge labeling f∗(uv) = |f(u) − f(v)| is a bijection onto the set {F1, F2, . . . , Fq}.

Definition 2.2 The graph G = Fn ⊕Pm consists of a fan Fn and a Path Pm which is attached

with the maximum degree of the vertex of Fn.

The following theorem shows that the graph Fn ⊕Pm is a super Fibonacci graceful graph.

Theorem 2.3 The graph G = Fn ⊕ Pm is a super Fibonacci graceful graph.

Proof Let {u0 = v, u1, u2, . . . , un} be the vertex set of Fn and v1, v2, . . . , vm be the vertices

of Pm joined with the maximum degree of the vertex u0 of Fn. Also, |V (G)| = m + n + 1

and |E(G)| = 2n + m − 1. Define f : V (G) → {F0, F1, . . . , Fq} by f(u0) = F0, f(ui) =

F2n+m−1−2(i−1), 1 ≤ i ≤ n, f(vi) = Fm−2(i−1), 1 ≤ i ≤ 2,

f(vm) =





F2 ifm ≡ 0(mod3)

F1 ifm ≡ 1, 2(mod3)
f(vm−1) =





F3 ifm ≡ 1(mod3)

F2 ifm ≡ 2(mod3)

and f(vm−2) = F4 if m ≡ 2(mod3).

For l = 1, 2, . . . ,
m− 3

3
, or

m− 4

3
, or

m− 5

3
according to m ≡ 0(mod3) or m ≡ 1(mod3)
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or m ≡ 2(mod3), define

f(vi+2) = Fm−1−2(i−1)+3(l−1), 3l− 2 ≤ i ≤ 3l.

We claim that the edge labels are distinct. Let E1 = {f∗(uiui+1) : i = 1, 2, . . . , n− 1}. Then

E1 = {|f(ui) − f(ui+1)| : i = 1, 2, . . . , n− 1}
= {|f(u1) − f(u2)|, |f(u2) − f(u3)|, . . . , |f(un−1) − f(un)|}
= {|F2n+m−1 − F2n+m−3|, |F2n+m−3 − F2n+m−5|, . . . , |Fm+3 − Fm+1|}
= {F2n+m−2, F2n+m−4, . . . , Fm+4, Fm+2},

E2 = {f∗(u0ui) : i = 1, 2, . . . , n} = {|f(u0) − f(ui)| : i = 1, 2, . . . , n}
= {|f(u0) − f(u1)|, |f(u0) − f(u2)|, . . . , |f(u0) − f(un)|}
= {|F0 − F2n+m−1|, |F0 − F2n+m−3|, . . . , |F0 − Fm+1|}
= {F2n+m−1, F2n+m−3, . . . , Fm+3, Fm+1},

E3 = {f∗(u0v1), f
∗(v1v2)} = {|f(u0) − f(v1)|, |f(v1) − f(v2)|}

= {|F0 − Fm|, |Fm − Fm−2|} = {Fm, Fm−1}.

Let E4 = {f∗(v2v3)}. The edge labeling between the vertex v2 and starting vertex v3 of

the first loop is

E4 = {|f(v2) − f(v3)|} = {|Fm−2 − Fm−1|} = {Fm−3}.

For l = 1, let E5 = {f∗(vi+2vi+3) : 1 ≤ i ≤ 2}. Then

E5 = {|f(vi+2) − f(vi+3)| : 1 ≤ i ≤ 2}
= {|f(v3) − f(v4)|, |f(v4) − f(v5)|}
= {|Fm−1 − Fm−3|, |Fm−3 − Fm−5|} = {Fm−2, Fm−4}.

Let E1
5 = {f∗(v5v6)}. We find the edge labeling between the end vertex v5 of the first loop

and starting vertex v6 of the second loop following.

E1
5 = {|f(v5) − f(v6)|} = {|Fm−5 − Fm−4|} = {Fm−6}.

For l = 2, let E6 = {f∗(vi+2vi+3) : 4 ≤ i ≤ 5}. Then

E6 = {|f(vi+2) − f(vi+3)| : 4 ≤ i ≤ 5} = {|f(v6) − f(v7)|, |f(v7) − f(v8)|}
= {|Fm−4 − Fm−6|, |Fm−6 − Fm−8|} = {Fm−5, Fm−7}.

For labeling between the end vertex v8 of the second loop and starting vertex v9 of the

third loop, let E1
6 = {f∗(v8v9)}. Then

E1
6 = {|f(v8) − f(v9)|} = {|Fm−8 − Fm−7|} = {Fm−9},
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etc.. For l =
m− 5

3
− 1, let Em−5

3
−1 = {f∗(vi+2vi+3) : m− 10 ≤ i ≤ m− 9}. Then

Em−5

3
−1 = {|f(vi+2) − f(vi+3)| : m− 10 ≤ i ≤ m− 9}

= {|f(vm−8) − f(vm−7)|, |f(vm−7) − f(vm−6)|}
= {|F10 − F8|, |F8 − F6|} = {F9, F7}.

For the edge labeling between the end vertex vm−6 of the (
m− 5

3
− 1)th loop and starting

vertex vm−5 of the (
m− 5

3
)rd loop, let E1

m−5

3
−1

= {f∗(vm−6vm−5)}. Then

E1
m−5

3
−1

= {|f(vm−6) − f(vm−5)|} = {|F6 − F7|} = {F5},

Em−5

3

= {f∗(vi+2vi+3) : m− 7 ≤ i ≤ m− 6}
= {|f(vi+2) − f(vi+3)| : m− 7 ≤ i ≤ m− 6}
= {|f(vm−5) − f(vm−4)|, |f(vm−4) − f(vm−3)|}
= {|F7 − F5|, |F5 − F3|} = {F6, F4}.

For l =
m− 4

3
− 1, let Em−4

3
−1 = {f∗(vi+2vi+3) : m− 9 ≤ i ≤ m− 8}. Then

Em−4

3
−1 = {|f(vi+2) − f(vi+3)| : m− 9 ≤ i ≤ m− 8}

= {|f(vm−7) − f(vm−6)|, |f(vm−6) − f(vm−5)|}
= {|F9 − F7|, |F7 − F5|} = {F8, F6}.

For the edge labeling between the end vertex vm−5 of the (
m− 4

3
− 1)th loop and starting

vertex vm−4 of the (
m− 4

3
)rd loop, let E1

m−4

3
−1

= {f∗(vm−5vm−4)}. Then

E1
m−4

3
−1

= {|f(vm−5) − f(vm−4)|} = {|F5 − F6|} = {F4}.

For l =
m− 4

3
, let Em−4

3

= {f∗(vi+2vi+3) : m− 6 ≤ i ≤ m− 5}. Calculation shows that

Em−4

3

= {|f(vi+2) − f(vi+3)| : m− 6 ≤ i ≤ m− 5}
= {|f(vm−4) − f(vm−3)|, |f(vm−3) − f(vm−2)|}
= {|F6 − F4|, |F4 − F2|} = {F5, F3}.

Now for l =
m− 3

3
− 1, let Em−3

3
−1 = {f∗(vi+2vi+3) : m− 8 ≤ i ≤ m− 7}. Then

Em−3

3
−1 = {|f(vi+2) − f(vi+3)| : m− 8 ≤ i ≤ m− 7}

= {|f(vm−6) − f(vm−5)|, |f(vm−5) − f(vm−4)|}
= {|F8 − F6|, |F6 − F4|} = {F7, F5}.

Similarly, for finding the edge labeling between the end vertex vm−4 of the (
m− 3

3
− 1)th

loop and starting vertex vm−3 of the (
m− 3

3
)rd loop, let E1

m−3

3
−1

= {f∗(vm−4vm−3)}. Then

E1
m−3

3
−1

= {|f(vm−4) − f(vm−3)|} = {|F4 − F2|} = {F3}.
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For l =
m− 3

3
, let Em−3

3

= {f∗(vi+2vi+3) : m− 5 ≤ i ≤ m− 4}. Then

Em−3

3

= {|f(vi+2) − f(vi+3)| : m− 5 ≤ i ≤ m− 4}
= {|f(vm−3) − f(vm−2)|, |f(vm−2) − f(vm−1)|}
= {|F5 − F3|, |F3 − F1|} = {F4, F2}.

Now let

E(1) =
(
E1

⋃
E2

⋃
, . . . ,

⋃
Em−3

3

)⋃(
E1

5

⋃
E1

6

⋃
, . . . ,

⋃
E1

m−3

3
−1

)
,

E(2) =
(
E1

⋃
E2

⋃
, . . . ,

⋃
Em−4

3

)⋃(
E1

5

⋃
E1

6

⋃
, . . . ,

⋃
E1

m−4

3
−1

)
,

E(3) =
(
E1

⋃
E2

⋃
, . . . ,

⋃
Em−5

3

)⋃(
E1

5

⋃
E1

6

⋃
, . . . ,

⋃
E1

m−5

3
−1

)
.

If m ≡ 0(mod3), let E∗
1 = {f∗(vm−1vm)}, then E∗

1 = {|f(vm−1 − f(vm)|} = {|F1 − F2|} =

{F1}. Thus,

E = E∗
1

⋃
E(1) = {F1, F2, . . . , F2n+m−1}.

For example the super Fibonacci graceful labeling of F4 ⊕ P6 is shown in Fig.1.

F13 F11 F9 F7

F0 F6 F4 F5 F3 F1 F2

F13

F11 F9 F7

F12 F10 F8

F6 F5 F3 F4 F2 F1

F4 ⊕ P6 :

Fig.1

If m ≡ 1(mod3), let E∗
2 = {f∗(vm−2vm−1), f

∗(vm−1vm)}, then

E∗
2 = {|f(vm−2 − f(vm−1|, |f(vm−1 − f(vm)|}

= {|F2 − F3| |F3 − F1|} = {F1, F2}.

Thus,

E = E∗
2 ∪ E(2) = {F1, F2, . . . , F2n+m−1}.

For example the super Fibonacci graceful labeling of F4 ⊕ P7 is shown in Fig.2.

F14 F12 F10 F8F13 F11 F9

F14
F12 F10 F8

F0 F7 F5 F6 F4 F2 F3 F1

F7
F6 F4 F5 F3 F1 F2

F4 ⊕ P7 :

Fig.2
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If m ≡ 2(mod3), let E∗
3 = {f∗(vm−3vm−2), f

∗(vm−2vm−1), f
∗(vm−1vm)}, then

E∗
3 = {|f(vm−3) − f(vm−2)|, |f(vm−2) − f(vm−1)|, |f(vm−1 − f(vm)|}

= {|F3 − F4|, |F4 − F2|, |F2 − F1|} = {F2, F3, F1}.

Thus,

E = E∗
3 ∪ E(3) = {F1, F2, . . . , F2n+m−1}.

For example the super Fibonacci graceful labeling of F5 ⊕ P5 is shown in Fig.3.

F14 F12 F10 F8 F6

F0 F5 F3 F4 F2 F1

F13 F11 F9 F7

F14

F12 F10 F8 F6

F5 F4 F2 F3 F1

F5 ⊕ P5 :

Fig.3

Therefore, Fn ⊕ Pm admits a super Fibonacci graceful labeling. Hence, Fn ⊕ Pm is a super

Fibonacci graceful graph. �

Definition 2.4 An (n,m)-kite consists of a cycle of length n with m-edge path attached to one

vertex and it is denoted by Cn ⊕ Pm.

Theorem 2.5 The graph G = Cn ⊕Pm is a super Fibonacci graceful graph when n ≡ 0(mod3).

Proof Let {u1, u2, . . . , un = v} be the vertex set of Cn and {v = un, v1, v2, . . . , vm} be

the vertex set of Pm joined with the vertex un of Cn. Also, |V (G)| = |E(G)| = m + n.

Define f : V (G) → {F0, F1, . . . , Fq} by f(un) = F0, f(u1) = Fm+n, f(u2) = Fm+n−2 and for

l = 1, 2, . . . ,
n− 3

3
, f(ui+2) = Fm+n−1−2(i−1)+3(l−1), and for 3l−2 ≤ i ≤ 3l, f(vi) = Fm−2(i−1),

and for 1 ≤ i ≤ 2,

f(vm) =





F2 if m ≡ 0(mod3)

F1 if m ≡ 1, 2(mod3),
f(vm−1) =





F3 if m ≡ 1(mod3)

F2 if m ≡ 2(mod3)

and f(vm−2) = F4 when m ≡ 2(mod3). For l = 1, 2, . . . ,
m− 3

3
or

m− 4

3
or

m− 5

3
according

to m ≡ 0(mod3) or m ≡ 1(mod3) or m ≡ 2(mod3), let f(vi+2) = Fm−1−2(i−1)+3(l−1) for

3l− 2 ≤ i ≤ 3l.
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We claim that all these edge labels are distinct. Let E1 = {f∗unu1), f
∗(u1u2)}. Then

E1 = {|f(un) − f(u1)|, |f(u1) − f(u2)|}
= {|F0 − Fm+n|, |Fm+n − Fm+n−2|} = {Fm+n, Fm+n−1}.

For the edge labeling between the vertex u2 and starting vertex u3 of the first loop, let

E2 = {f∗(u2u3)}. Then

E2 = {|f(u2) − f(u3)|} = {|Fm+n−2 − Fm+n−1|} = {Fm+n−3}.

For l = 1, let E3 = {f∗(ui+2ui+3) : 1 ≤ i ≤ 2}. Then

E3 = {|f(ui+2) − f(ui+3)| : 1 ≤ i ≤ 2}
= {|f(u3) − f(u4)|, |f(u4) − f(u5)|}
= {|Fm+n−1 − Fm+n−3|, |Fm+n−3 − Fm+n−5)|} = {Fm+n−2, Fm+n−4}.

For the edge labeling between the end vertex u5 of the first loop and starting vertex u6 of

the second loop, let E
(1)
3 = {f∗(u5u6)}. Then

E
(1)
3 = {|f(u5) − f(u6)|} = {|Fm+n−5 − Fm+n−4|} = {Fm+n−6}.

For l = 2, let E4 = {f∗(ui+2ui+3) : 4 ≤ i ≤ 5}. Then

E4 = {|f(ui+2) − f(ui+3)| : 4 ≤ i ≤ 5} = {|f(u6) − f(u7)|, |f(u7) − f(u8)|}
= {|Fm+n−4 − Fm+n−6|, |Fm+n−6 − Fm+n−8|} = {Fm+n−5, Fm+n−7}.

For the edge labeling between the end vertex u8 of the second loop and starting vertex u9

of the third loop, let E
(1)
4 = {f∗(u8u9)}. Then

E
(1)
4 = {|f(u8) − f(u9)|} = {|Fm+n−8 − Fm+n−7|} = {Fm+n−9},

etc.. For l =
n− 3

3
− 1, let En−3

3
−1 = {f∗(ui+2ui+3) : n− 8 ≤ i ≤ n− 7}. Then

En−3

3
−1 = {|f(ui+2) − f(ui+3)| : n− 8 ≤ i ≤ n− 7}

= {|f(un−6) − f(un−5)|, |f(un−5) − f(un−4)|}
= {|Fm+8 − Fm+6|, |Fm+6 − Fm+4)|} = {Fm+7, Fm+5}.

For finding the edge labeling between the end vertex un−4 of the (
n− 3

3
− 1)th loop and

starting vertex un−3 of the (
n− 3

3
)rd loop, let E

(1)
n−3

3
−1

= {f∗(un−4un−3)}. Then

E
(1)
n−3

3
−1

= {|f(un−4) − f(un−3)|} = {|Fm+4 − Fm+5|} = {Fm+3}.

For l =
n− 3

3
, let En−3

3

= {f∗(ui+2ui+3) : n− 5 ≤ i ≤ n− 4}. Then

En−3

3

= {|f(ui+2) − f(ui+3)| : n− 5 ≤ i ≤ n− 4}
= {|f(un−3) − f(un−2)|, |f(un−2) − f(un−1)|}
= {|Fm+5 − Fm+3|, |Fm+3 − Fm+1|} = {Fm+4, Fm+2}.
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Let E∗
1 = {f∗(un−1un)} and E∗

2 = {f∗(unv1), f
∗(v1v2)}. Then

E∗
1 = {|f(un−1) − f(un)|} = {|Fm+1 − F0|} = {Fm+1},

E∗
2 = {|f(un) − f(v1)|, |f(v1) − f(v2)|}

= {|F0 − Fm|, |Fm − Fm−2|} = {Fm, Fm−1}.

For finding the edge labeling between the vertex v2 and starting vertex v3 of the first loop,

let E∗
3 = {f∗(v2v3)}. Then

E∗
3 = {|f(v2) − f(v3)|} = {|Fm−2 − Fm−1|} = {Fm−3}.

For l = 1, let E∗
4 = {f∗(vi+2vi+3) : 1 ≤ i ≤ 2}. Then

E∗
4 = {|f(vi+2) − f(vi+3)| : 1 ≤ i ≤ 2}

= {|f(v3) − f(v4)|, |f(v4) − f(v5)|}
= {|Fm−1 − Fm−3|, |Fm−3 − Fm−5|} = {Fm−2, Fm−4}.

Now let E
(∗1)
4 = {f∗(v5v6)}. Then

E
(∗1)
4 = {|f(v5) − f(v6)|} = {|Fm−5 − Fm−4|} = {Fm−6}.

For l = 2, let E∗
5 = {f∗(vi+2vi+3) : 4 ≤ i ≤ 5}. Calculation shows that

E∗
5 = {|f(vi+2) − f(vi+3)| : 4 ≤ i ≤ 5}

= {|f(v6) − f(v7)|, |f(v7) − f(v8)|}
= {|Fm−4 − Fm−6|, |Fm−6 − Fm−8|} = {Fm−5, Fm−7}.

Let E
(∗1)
5 = {f∗(v8v9)}. We find the edge labeling between the end vertex v8 of the second

loop and starting vertex v9 of the third loop. In fact,

E
(∗1)
5 = {|f(v8) − f(v9)|} = {|Fm−8 − Fm−7|} = {Fm−9}

etc.. For l =
m− 5

3
− 1, let E∗

m−5

3
−1

= {f∗(vi+2vi+3) : m− 10 ≤ i ≤ m− 9}. Then

E∗
m−5

3
−1

= {|f(vi+2) − f(vi+3)| : m− 10 ≤ i ≤ m− 9}
= {|f(vm−8) − f(vm−7)|, |f(vm−7) − f(vm−6)|}
= {|F10 − F8|, |F8 − F6|} = {F9, F7}.

Similarly, for finding the edge labeling between the end vertex vm−6 of the (
m− 5

3
− 1)th

loop and starting vertex vm−5 of the (
m− 5

3
)rd loop, let E

(∗1)
m−5

3
−1

= {f∗(vm−6vm−5)}. Then

E
(∗1)
m−5

3
−1

= {|f(vm−6) − f(vm−5)|} = {|F6 − F7|} = {F5}.
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For l =
m− 5

3
, let E∗

m−5

3

= {f∗(vi+2vi+3) : m− 7 ≤ i ≤ m− 6}. Then

E∗
m−5

3

= {|f(vi+2) − f(vi+3)| : m− 7 ≤ i ≤ m− 6}
= {|f(vm−5) − f(vm−4)|, |f(vm−4) − f(vm−3)|}
= {|F7 − F5|, |F5 − F3|} = {F6, F4}.

For l =
m− 4

3
− 1, let E∗

m−4

3
−1

= {f∗(vi+2vi+3) : m− 9 ≤ i ≤ m− 8}. We find that

E∗
m−4

3
−1

= {|f(vi+2) − f(vi+3)| : m− 9 ≤ i ≤ m− 8}
= {|f(vm−7) − f(vm−6)|, |f(vm−6) − f(vm−5)|}
= {|F9 − F7|, |F7 − F5|} = {F8, F6}.

For getting the edge labeling between the end vertex vm−5 of the (
m− 4

3
− 1)th loop and

starting vertex vm−4 of the (
m− 4

3
)rd loop, let E

(∗1)
m−4

3
−1

= {f∗(vm−5vm−4)}. Then

E
(∗1)
m−4

3
−1

= {|f(vm−5) − f(vm−4)|} = {|F5 − F6|} = {F4}.

For l =
m− 4

3
, let E∗

m−4

3

= {f∗(vi+2vi+3) : m− 6 ≤ i ≤ m− 5}. Then

E∗
m−4

3

= {|f(vi+2) − f(vi+3)| : m− 6 ≤ i ≤ m− 5}
= {|f(vm−4) − f(vm−3)|, |f(vm−3) − f(vm−2)|}
= {|F6 − F4|, |F4 − F2|} = {F5, F3}.

For l =
m− 3

3
− 1, let E∗

m−3

3
−1

= {f∗(vi+2vi+3) : m− 8 ≤ i ≤ m− 7}. Then

E∗
m−3

3
−1

= {|f(vi+2) − f(vi+3)| : m− 8 ≤ i ≤ m− 7}
= {|f(vm−5) − f(vm−4)|, |f(vm−4) − f(vm−3)|}
= {|F8 − F6|, |F6 − F4|} = {F7, F5}.

For the edge labeling between the end vertex vm−3 of the (
m− 3

3
− 1)th loop and starting

vertex vm−2 of the (
m− 3

3
)rd loop, let E

(∗1)
m−3

3
−1

= {f∗(vm−3vm−2)}. Then

E
(∗1)
m−3

3
−1

= {|f(vm−3) − f(vm−2)|} = {|F4 − F5|} = {F3}.

Similarly, for l =
m− 3

3
, let E∗

m−3

3

= {f∗(vi+2vi+3) : m− 5 ≤ i ≤ m− 4}. Then

E∗
m−3

3

= {|f(vi+2) − f(vi+3)| : m− 5 ≤ i ≤ m− 4}
= {|f(vm−3) − f(vm−2)|, |f(vm−2) − f(vm−1)|}
= {|F5 − F3|, |F3 − F1|} = {F4, F2}.

Now let

E(1) =
(
E1

⋃
E2

⋃
· · ·
⋃
En−3

3

)⋃(
E1

3

⋃
E1

4

⋃
· · ·
⋃
E1

n−3

3

)

⋃(
E∗

1

⋃
E∗

2

⋃
· · ·
⋃
E∗

m−3

3

)⋃(
E

(∗1)
4

⋃
E

(∗1)
5

⋃
· · ·
⋃
E

(∗1)
m−3

3
−1

)
,



Super Fibonacci Graceful Labeling 31

E(2) =
(
E1

⋃
E2

⋃
· · ·
⋃
En−3

3

)⋃(
E1

3

⋃
E1

4

⋃
· · ·
⋃
E1

n−3

3

)

⋃(
E∗

1

⋃
E∗

2

⋃
· · ·
⋃
E∗

m−4

3

)⋃(
E

(∗1)
4

⋃
E

(∗1)
5

⋃
· · ·
⋃
E

(∗1)
m−4

3
−1

)

and

E(3) =
(
E1

⋃
E2

⋃
· · ·
⋃
En−3

3

)⋃(
E1

3

⋃
E1

4

⋃
· · ·
⋃
E1

n−3

3

)

⋃(
E∗

1

⋃
E∗

2

⋃
· · ·
⋃
E∗

m−5

3

)⋃(
E

(∗1)
4

⋃
E

(∗1)
5

⋃
· · ·
⋃
E

(∗1)
m−5

3
−1

)
.

If m ≡ 0(mod3), let E∗∗
1 = {f∗(vm−1vm)}, then

E∗∗
1 = {|f(vm−1 − f(vm)|} = {|F1 − F2|} = {F1}.

Thus,

E = E∗∗
1 ∪ E(1) = {F1, F2, . . . , Fm+n}.

For example the super Fibonacci graceful labeling of C6 ⊕ P6 is shown in Fig.4.

F0

F12

F10

F11
F9

F7

F6 F4 F5 F3 F1 F2

F1F2F4F3F5

F6

F7

F8

F10

F9

F11

F12

C6 ⊕ P6 :

Fig.4

If m ≡ 1(mod3), let E∗∗
2 = {f∗(vm−2vm−1), f

∗(vm−1vm)}, then

E∗∗
2 = {|f(vm−2 − f(vm−1|, |f(vm−1 − f(vm)|}

= {|F2 − F3| |F3 − F1|} = {F1, F2}.

Thus,

E = E∗∗
2 ∪ E(2) = {F1, F2, . . . , Fm+n}.

For example the super Fibonacci graceful labeling of C6 ⊕ P7 is shown in Fig.5.

F0

F13

F11

F12

F10

F8

F8

F9

F11F10

F12

F13
F7 F5 F6 F4 F2 F3 F1

F2F1F3F5F4F6F7

C6 ⊕ P7 :

Fig.5
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If m ≡ 2(mod3), let E∗∗
3 = {f∗(vm−3vm−2), f

∗(vm−2vm−1), f
∗(vm−1vm)}, then

E∗∗
3 = {|f(vm−3) − f(vm−2)|, |f(vm−2) − f(vm−1)|, |f(vm−1 − f(vm)|}

= {|F3 − F4|, |F4 − F2|, |F2 − F1|} = {F2, F3, F1}.

Thus,

E = E∗∗
3 ∪ E(3) = {F1, F2, . . . , Fm+n}.

For example the super Fibonacci graceful labeling of C6 ⊕ P5 is shown in Fig.6.

F0

F11

F9

F10 F8

F6

F5 F3 F4 F2 F1

F1F3F2F4F5

F6

F7

F9

F8

F10

F11

C6 ⊕ P5 :

Fig.6

Therefore, Cn ⊕ Pm admits a super Fibonacci graceful labeling. Hence, Cn ⊕ Pm is a super

Fibonacci graceful graph. �

Definition 2.6 The graph G = Fn ⊕ K+
1,m consists of a fan Fn and the extension graph of

K+
1,m which is attached with the maximum degree of the vertex of Fn.

Theorem 2.7 The graph G = Fn ⊕K+
1,m is a super Fibonacci graceful graph.

Proof Let V (G) = U ∪ V , where U = {u0, u1, . . . , un} be the vertex set of Fn and

V = (V1, V2) be the bipartion of K1,m, where V1 = {v = u0} and V2 = {v1, v2, . . . , vm} and

w1, w2, . . . , wm be the pendant vertices joined with v1, v2, . . . , vm respectively. Also, |V (G)| =

2m+ n+ 1 and |E(G)| = 2m+ 2n− 1.

Case 1 m,n is even.

Define f : V (G) → {F0, F1, . . . , Fq} by f(u0) = F0, f(ui) = F2m+2n−1−2(i−1) if 1 ≤ i ≤ n;

f(v2i−1) = F2m−4(i−1) if 1 ≤ i ≤ m

2
; f(v2i) = F2m−3−4(i−1) if 1 ≤ i ≤ m

2
; f(w2i−1) =

F2m−2−4(i−1) if 1 ≤ i ≤ m

2
and f(w2i) = F2m−1−4(i−1) if 1 ≤ i ≤ m

2
.

We claim that all these edge labels are distinct. Calculation shows that

E1 = {f∗(uiui+1) : i = 1, 2, . . . , n− 1}
= {|f(ui) − f(ui+1)| : i = 1, 2, . . . , n− 1}
= {|f(u1) − f(u2)|, |f(u2) − f(u3)|, . . . , |f(un−1) − f(un)|}
= {|F2n+2m−1 − F2n+2m−3|, |F2n+2m−3 − F2n+2m−5|, . . . , |F2m+3 − F2m+1|}
= {F2n+2m−2, F2n+2m−4, . . . , F2m+4, F2m+2},
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E2 = {f∗(u0ui) : i = 1, 2, . . . , n}
= {|f(u0) − f(ui)| : i = 1, 2, . . . , n}
= {|f(u0) − f(u1)|, |f(u0) − f(u2)|, . . . , |f(u0) − f(un−1)|, |f(u0) − f(un)|}
= {|F0 − F2n+2m−1|, |F0 − F2n+2m−3|, . . . , |F0 − F2m+3|, |F0 − F2m+1|}
= {F2n+2m−1, F2n+2m−3, . . . , F2m+3, F2m+1},

E3 = {f∗(u0v2i−1) : 1 ≤ i ≤ m

2
}

= {|f(u0) − f(v2i−1)| : 1 ≤ i ≤ m

2
}

= {|f(u0) − f(v1)|, |f(u0) − f(v3)|, . . . , |f(uo) − f(vm−3)|, |f(u0) − f(vm−1)|}
= {|F0 − F2m|, |F0 − F2m−4|, . . . , |F0 − F8|, |F0 − F4|}
= {F2m, F2m−4, . . . , F8, F4},

E4 = {f∗(u0v2i) : 1 ≤ i ≤ m

2
}

= {|f(u0) − f(v2i)| : 1 ≤ i ≤ m

2
}

= {|f(u0) − f(v2)|, |f(u0) − f(v4)|, . . . , |f(u0) − f(vm−2)|, |f(u0) − f(vm)|}
= {|F0 − F2m−3|, |F0 − F2m−7|, . . . , |F0 − F5|, |F0 − F1|}
= {F2m−3, F2m−7, . . . , F5, F1},

E5 = {f∗(v2i−1w2i−1) : 1 ≤ i ≤ m

2
}

= {|f(v2i−1) − f(w2i−1)| : 1 ≤ i ≤ m

2
}

= {|f(v1) − f(w1)|, |f(v3) − f(w3)|, . . . , |f(vm−3) − f(wm−3)|, |f(vm−1) − f(wm−1)|}
= {|F2m − F2m−2|, |F2m−4 − F2m−6|, . . . , |F8 − F6|, |F4 − F2|}
= {F2m−1, F2m−5. . . . , F7, F3},

E6 = {f∗(v2iw2i) : 1 ≤ i ≤ m

2
}

= {|f(v2i) − f(w2i)| : 1 ≤ i ≤ m

2
}

= {|f(v2) − f(w2)|, |f(v4) − f(w4)|, . . . , |f(vm−2) − f(wm−2)|, |f(vm) − f(wm)|
= {|F2m−3 − F2m−1|, |F2m−7 − F2m−5|, . . . , |F5 − F7|, |F1 − F3|}
= {F2m−2, F2m−6. . . . , F6, F2}.

Therefore,

E = E1

⋃
E2

⋃
· · ·
⋃
E6 = {F1, F2, . . . , F2m+2n−1} .

Thus, the edge labels are distinct. Therefore, Fn ⊕ K+
1,m admits super Fibonacci graceful

labeling. Hence, Fn ⊕K+
1,m is a super Fibonacci graceful graph.

For example the super Fibonacci graceful labeling of F4 ⊕K+
1,4 is shown in Fig.7.
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F0

F15 F13F14 F11 F9F12 F10

F15
F13 F11 F9

F8

F6 F7

F5 F4

F2 F3

F1

F1

F2F3

F4
F5

F6F7

F8F4 ⊕K+
1,4:

Fig.7

Case 2 m even, n odd.

Proof of this case is analogous to case(i).

For example the super Fibonacci graceful labeling of F5 ⊕K+
1,4 is shown in Fig.8.

F17 F15 F13 F11 F9F10F12F14F16

F17

F15 F13 F11
F9

F8

F0

F6

F8

F7

F7

F5

F6

F5

F4

F2

F4

F3

F3

F1

F2

F1

F5 ⊕K+
1,4:

Fig.8

Case 3 m,n is odd.

Define f : V (G) → {F0, F1, . . . , Fq} by f(u0) = F0; f(ui) = F2m+2n−1−2(i−1) if 1 ≤ i ≤ n;

f(wm) = F1; f(v2i−1) = F2m−4(i−1) if 1 ≤ i ≤ m+ 1

2
; f(v2i) = F2m−3−4(i−1) if 1 ≤ i ≤ m− 1

2
;

f(w2i−1) = F2m−2−4(i−1) if 1 ≤ i ≤ m− 1

2
and f(w2i) = F2m−1−4(i−1) if 1 ≤ i ≤ m− 1

2
.

We claim that the edge labels are distinct. Calculation shows that

E1 = {f∗(uiui+1) : i = 1, 2, . . . , n− 1}
= {|f(ui) − f(ui+1)| : i = 1, 2, . . . , n− 1}
= {|f(u1) − f(u2)|, |f(u2) − f(u3)|, . . . , |f(un−2) − f(un−1)|, |f(un−1) − f(un)|}
= {|F2n+2m−1 − F2n+2m−3|, |F2n+2m−3 − F2n+2m−5|, . . . , |F2m+5 − F2m+3|,

|F2m+3 − F2m+1|} = {F2n+2m−2, F2n+2m−4, . . . , F2m+4, F2m+2},
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E2 = {f∗(u0ui) : i = 1, 2, . . . , n}
= {|f(u0) − f(ui)| : i = 1, 2, . . . , n}
= {|f(u0) − f(u1)|, |f(u0) − f(u2)|, . . . , |f(u0) − f(un−1)|, |f(u0) − f(un)|}
= {|F0 − F2n+2m−1|, |F0 − F2n+2m−3|, . . . , |F0 − F2m+3|, |F0 − F2m+1|}
= {F2n+2m−1, F2n+2m−3, . . . , F2m+3, F2m+1},

E3 = {f∗(u0v2i−1) : 1 ≤ i ≤ m+ 1

2
}

= {|f(u0) − f(v2i−1)| : 1 ≤ i ≤ m+ 1

2
}

= {|f(u0) − f(v1)|, |f(u0) − f(v3)|, . . . , |f(uo) − f(vm−2)|, |f(u0) − f(vm)|}
= {|F0 − F2m|, |F0 − F2m−4|, . . . , |F0 − F6|, |F0 − F2|}
= {F2m, F2m−4, . . . , F6, F2},

E4 = {f∗(u0v2i) : 1 ≤ i ≤ m− 1

2
}

= {|f(u0) − f(v2i)| : 1 ≤ i ≤ m− 1

2
}

= {|f(u0) − f(v2)|, |f(u0) − f(v4)|, . . . , |f(uo) − f(vm−3)|, |f(u0) − f(vm−1)|}
= {|F0 − F2m−3|, |F0 − F2m−7|, . . . , |F0 − F7|, |F0 − F3|}
= {F2m−3, F2m−7. . . . , F7, F3},

E5 = {f∗(vmwm)} = {|f(vm) − f(wm)|} = {|F2 − F1|} = {F1},

E6 = {f∗(v2i−1w2i−1) : 1 ≤ i ≤ m− 1

2
}

= {|f(v2i−1) − f(w2i−1)| : 1 ≤ i ≤ m− 1

2
}

= {|f(v1) − f(w1)|, |f(v3) − f(w3)|, . . . , |f(vm−4) − f(wm−4)|, |f(vm−2) − f(wm−2)|}
= {|F2m − F2m−2|, |F2m−4 − F2m−6|, . . . , |F6 − F8|, |F6 − F4|}
= {F2m−1, F2m−5. . . . , F9, F5},

E7 = {f∗(v2iw2i) : 1 ≤ i ≤ m− 1

2
}

= {|f(v2i) − f(w2i)| : 1 ≤ i ≤ m− 1

2
}

= {|f(v2) − f(w2)|, |f(v4) − f(w4)|, . . . , |f(vm−3) − f(wm−3)|, |f(vm−1) − f(wm−1)|}
= {|F2m−3 − F2m−1|, |F2m−7 − F2m−5|, . . . , |F7 − F9|, |F3 − F5|}
= {F2m−2, F2m−6. . . . , F8, F4}.

Therefore,

E = E1

⋃
E2

⋃
· · ·
⋃
E7 = {F1, F2, . . . , F2m+2n−1}.
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Thus, the edge labels are distinct.Therefore, Fn⊕K+
1,m admits super Fibonacci graceful labeling.

Whence, Fn ⊕K+
1,m is a super Fibonacci graceful graph.

For example the super Fibonacci graceful labeling of F5 ⊕K+
1,3 is shown in Fig.9.

F15 F13 F11 F9 F7F8F10F12F14

F15
F13 F11 F9 F7

F0

F6

F6

F4

F5

F5

F3

F3

F4

F2

F1

F1

F2

F5 ⊕K+
1,3:

Fig.9

Case 4 m odd, n even.

Proof of this case is analogous to Case 4.

For example the super Fibonacci graceful labeling of F4 ⊕K+
1,3 is shown in Fig.10.

F13 F11 F9 F7F8F10F12

F13
F11 F9

F7

F0
F6

F6

F4

F5

F5

F3

F3

F4

F2

F1

F1

F2

F4 ⊕K+
1,3:

Fig.10

�

Definition 2.8 The graph G = Cn ⊕K1,m consists of a cycle Cn of length n and a star K1,m

is attached with the vertex un of Cn.

Theorem 2.9 The graph G = Cn⊕K1,m is a super Fibonacci graceful graph when n ≡ 0(mod3).

Proof Let V (G) = V1 ∪ V2, where V1 = {u1, u2, . . . , un} be the vertex set of Cn and

V2 = {v = un, v1, v2, . . . , vm} be the vertex set of K1,m. Also, |V (G)| = |E(G)| = m+n. Define

f : V (G) → {F0, F1, F2, . . . , Fq} by f(un) = F0; f(ui) = Fm+n−2(i−1) if 1 ≤ i ≤ 2; f(vi) = Fi

if 1 ≤ i ≤ m and for l = 1, 2, . . . ,
n− 3

3
, f(ui+2) = Fm+n−1−2(i−1)+3(l−1) if 3l− 2 ≤ i ≤ 3l.
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We claim that the edge labels are distinct. Calculation shows that

E1 = {f∗(unvi) : 1 ≤ i ≤ m}
= {|f(un) − f(vi)| : 1 ≤ i ≤ m}
= {|f(un) − f(v1)|, |f(un) − f(v2)|, . . . , |f(un) − f(vm−1)|, |f(un) − f(vm)|}
= {|F0 − F1|, |F0 − F2|, . . . , |F0 − Fm−1|, |F0 − Fm|}
= {F1, F2, . . . , Fm−1, Fm},

E2 = {f∗(unu1), f
∗(u1u2)} = {|f(un) − f(u1)|, |f(u1) − f(u2)|}

= {|F0 − Fm+n|, |Fm+n − Fm+n−2|} = {Fm+n, Fm+n−1}.

For the edge labeling between the vertex u2 and starting vertex u3 of the first loop, let

E3 = {f∗(u2u3)}. Then

E3 = {|f(u2) − f(u3)|} = {|Fm+n−2 − Fm+n−1} = {Fm+n−3}.

For l = 1, let E4 = {f∗(ui+2ui+3) : 1 ≤ i ≤ 2}. Then

E4 = {|f(ui+2) − f(ui+3)| : 1 ≤ i ≤ 2}
= {|f(u3) − f(u4)|, |f(u4) − f(u5)|}
= {|Fm+n−1 − Fm+n−3|, |Fm+n−3 − Fm+n−5)|}
= {Fm+n−2, Fm+n−4}.

Let E
(1)
4 = {f∗(u5u6)}. Then

E
(1)
4 = {|f(u5) − f(u6)|} = {|Fm+n−5 − Fm+n−4|} = {Fm+n−6}.

For l = 2, let E5 = {f∗(ui+2ui+3) : 4 ≤ i ≤ 5}. Then

E5 = {|f(ui+2) − f(ui+3)| : 4 ≤ i ≤ 5}
= {|f(u6) − f(u7)|, |f(u7) − f(u8)|}
= {|Fm+n−4 − Fm+n−6|, |Fm+n−6 − Fm+n−8)|}
= {Fm+n−5, Fm+n−7}.

For finding the edge labeling between the end vertex u8 of the second loop and starting

vertex u9 of the third loop, let E
(1)
5 = {f∗(u8u9)}. Then

E
(1)
5 = {|f(u8) − f(u9)|} = {|Fm+n−8 − Fm+n−7|} = {Fm+n−9}

etc.. Similarly, for l =
n− 3

3
− 1, let En−3

3
−1 = {f∗(ui+2ui+3) : n− 8 ≤ i ≤ n− 7}. Then

En−3

3
−1 = {|f(ui+2) − f(ui+3)| : n− 8 ≤ i ≤ n− 7}

= {|f(un−6) − f(un−5)|, |f(un−5) − f(un−4)|}
= {|Fm+8 − Fm+6|, |Fm+6 − Fm+4)|} = {Fm+7, Fm+5}.
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For finding the edge labeling between the end vertex un−4 of the (
n− 3

3
− 1)th loop and

starting vertex un−3 of the (
n− 3

3
)rd loop, let E

(1)
n−3

3
−1

= {f∗(un−4un−3)}. Then

E
(1)
n−3

3
−1

= {|f(un−4) − f(un−3)|} = {|Fm+4 − Fm+5|} = {Fm+3}.

For l =
n− 3

3
, let En−3

3

= {f∗(ui+2ui+3) : n− 5 ≤ i ≤ n− 4}. Then

En−3

3

= {|f(ui+2) − f(ui+3)| : n− 5 ≤ i ≤ n− 4}
= {|f(un−3) − f(un−2)|, |f(un−2) − f(un−1)|}
= {|Fm+5 − Fm+3|, |Fm+3 − Fm+1)|} = {Fm+4, Fm+2}.

Let E∗
1 = {f∗(un−1un)}. Then

E∗
1 = {|f(un−1) − f(un)|} = {|Fm+1 − F0|} = {Fm+1}.

Therefore,

E =
(
E1

⋃
E2

⋃
· · ·
⋃
En−3

3

)⋃(
E

(1)
4

⋃
E

(1)
5

⋃
· · ·
⋃
E

(1)
n−3

3
−1

)⋃
E∗

1

= {F1, F2, . . . , Fm+n} .

Thus, all edge labels are distinct. Therefore, the graph G = Cn ⊕K1,m admits super Fibonacci

graceful labeling. Whence, it is a super Fibonacci graceful graph. �

Example 2.10 This example shows that the graph C6 ⊕ K1,4 is a super Fibonacci graceful

graph.

F10

F8

F9

F7

F5

F0

F4 F3 F2
F1

F1F2F3
F4

F5

F6

F8

F7

F9

F10

C6 ⊕K1,4 :

Fig.11

Definition 2.11 G = K1,n ⊘K1,2 is a graph in which K1,2 is joined with each pendant vertex

of K1,n.

Theorem 2.12 The graph G = K1,n ⊘K1,2 is a super Fibonacci graceful graph.
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Proof Let {u0, u1, u2, . . . , un} be the vertex set ofK1,n and v1, v2, . . . , vn and w1, w2, . . . , wn

be the vertices joined with the pendant vertices u1, u2, . . . , un of K1,n respectively. Also,

|V (G)| = 3n + 1 and |E(G)| = 3n. Define f : V (G) → {F0, F1, F2, . . . , Fq} by f(u0) = F0,

f(ui) = F3n−3(i−1), 1 ≤ i ≤ n, f(vi) = F3n−1−3(i−1), 1 ≤ i ≤ n, f(wi) = F3n−2−3(i−1),

1 ≤ i ≤ n.

We claim that the edge labels are distinct. Calculation shows that

E1 = {f∗(u0ui) : i = 1, 2, . . . , n}
= {|f(u0) − f(ui)| : i = 1, 2, . . . n}
= {|f(u0) − f(u1)|, |f(u0) − f(u2)|, . . . , |f(u0) − f(un−1)|, |f(u0) − f(un)|}
= {|F0 − F3n|, |F0 − F3n−3|, . . . , |F0 − F6|, |F0 − F3|}
= {F3n, F3n−3, . . . , F6, F3},

E2 = {f∗(uivi) : i = 1, 2, . . . , n}
= {|f(ui) − f(vi)| : i = 1, 2, . . . , n}
= {|f(u1) − f(v1)|, |f(u2) − f(v2)|, . . . , |f(un−1) − f(vn−1)|,= |f(un) − f(vn)|}
= {|F3n − F3n−1|, |F3n−3 − F3n−4|, . . . , |F6 − F5|, |F3 − F2|}
= {F3n−2, F3n−5, . . . , F4, F1},

E3 = {f∗(uiwi) : i = 1, 2, . . . , n}
= {|f(ui) − f(wi)| : i = 1, 2, . . . , n}
= 1{|f(u1) − f(w1)|, |f(u2) − f(w2)|, . . . , |f(un−1) − f(wn−1)|, |f(un) − f(wn)|}
= {|F3n − F3n−2|, |F3n−3 − F3n−5|, . . . , |F6 − F4|, |F3 − F1|}
= {F3n−1, F3n−4, . . . , F5, F2}.

Therefore,

E = E1

⋃
E2

⋃
E3 = {F1, F2, . . . , F3n} .

Thus, all edge labels are distinct. Therefore, K1,n ⊘ K1,2 admits super Fibonacci graceful

labeling. Whence, it is a super Fibonacci graceful graph. �

Example 2.13 This example shows that the graph K1,3 ⊘K1,2 is a super Fibonacci graceful

graph.

F0

F9

F8 F7

F6

F5 F4

F3

F2 F1

F9
F6

F3

F7 F8
F4 F5 F1

F2

K1,3 ⊘K1,2 :

Fig.12
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Abstract: A Smarandachely k-marked graph is an ordered pair S = (G, µ) where G =

(V, E) is a graph called underlying graph of S and µ : V → (e1, e2, ..., ek) is a function, where

each ei ∈ {+,−}. An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let

Hn = {(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric

n-tuples. A Smarandachely symmetric n-marked graph is an ordered pair Sn = (G, µ),

where G = (V, E) is a graph called the underlying graph of Sn and µ : V → Hn is a

function. In this note, we obtain two different characterizations of Smarandachely consistent

symmetric n-marked graphs. Also, we obtain some results by introducing special types of

complementations.

Key Words: Smarandachely symmetric n-marked graphs, consistency, balance, comple-

mentation.

AMS(2000): 05C22

§1. Introduction

For graph theory terminology and notation in this paper we follow the book [2]. All graphs

considered here are finite and simple.

A Smarandachely k-marked graph is an ordered pair S = (G,µ) whereG = (V,E) is a graph

called underlying graph of S and µ : V → (e1, e2, ..., ek) is a function, where each ei ∈ {+,−}.
Let n ≥ 1 be an integer. An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n.

Let Hn = {(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric n-

tuples. Note that Hn is a group under coordinate wise multiplication, and the order of Hn is 2m,

where m = ⌈n
2 ⌉. A Smarandachely symmetric n-marked graph is an ordered pair Sn = (G,µ),

where G = (V,E) is a graph called the underlying graph of Sn and µ : V → Hn is a function.

In this paper, by an n-tuple/n-marked graph we always mean a symmetric n-tuple /

1Received July 30, 2010. Accepted September 7, 2010.
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Smarandachely symmetric n-marked graph.

An n-tuple (a1, a2, ..., an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise it is a

non-identity n-tuple. In an n-marked graph Sn = (G,µ) a vertex labelled with the identity n-

tuple is called an identity vertex, otherwise it is a non-identity vertex. Further, in an n-marked

graph Sn = (G,µ), for any A ⊆ V (G) the n-tuple µ(A) is the product of the n-tuples on the

vertices of A.

In [3], the authors defined different notions of balance in an n-marked graph Sn = (G,µ)

as follows:

(i) Sn is µi-balanced, if product of n-tuples on each component of Sn is identity n-tuple.

(ii) Sn is consistent (inconsistent), if product of n-tuples on each cycle of Sn is identity

n-tuple (non-identity n-tuple).

(iii) Sn is balanced, if every cycle (component) contains an even number of non-identity

edges.

Note: (1)A µi-balanced (consistent) n-marked graph need not be balanced and conversely.

(2)A consistent n-marked graph need not be µi-balanced and conversely.

Proposition 1(Characterization of consistent n-marked graphs) An n-marked graph Sn =

(G,µ) is consistent if, and only if, for each k, 1 ≤ k ≤ n, the number of n-tuples in any cycle

whose kth co-ordinate is − is even.

Proof Suppose Sn is consistent and let C be a cycle in Sn with number of n-tuples in any

cycle whose kth co-ordinate is − is odd, for some k, 1 ≤ k ≤ n. Then, the kth co-ordinate in

cycle of n-tuples on the vertices of the cycle C is − and C is inconsistent cycle in Sn. Hence

Sn is inconsistent a contradiction.

Converse part follows from the definition of consistent n-marked graphs. �

In [1], Acharya defined trunk on graphs as follows: Given a u − v path P = (u =

u0, u1, u2, ..., um−1, um = v) of length m ≥ 2 in a graph G, the subpath P ′ = (u1, u2, ..., um−1)

of P is called a u − v trunk or the trunk of P . The following result will give the another

characterization of consistent n-marked graph.

Proposition 2 An n-marked graph Sn = (G,µ) is consistent if, and only if, for any edge

e = uv, the n-tuple of the trunk of every u− v path of length ≥ 2 is µ(u)µ(v).

Proof Necessity: Suppose Sn = (G,µ) is consistent. Let e = uv be any edge of Sn

and P = (u = u0, u1, u2, ..., um−1, um = v) be any u − v path of length m ≥ 2 in Sn. Then

C = P ∪ {e} is a cycle in Sn which must have the number of n-tuples whose kth co-ordinate is

− is even. Therefore,

µ(P ′)µ(u)µ(v) = µ(P ) = µ(C) = identity n− tuple (1)

where P ′ is the trunk of P . Clearly (1), implies that µ(P ′) and µ(u)µ(v) are equal. Since P

was an arbitrarily chosen u − v path of length ≥ 2 and also since the edge e was arbitrary by

choice the necessary condition follows.
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Sufficiency: Suppose that Sn satisfies the condition stated in the Proposition. We need

to show that Sn is consistent. Let C = (v1, v2, ..., vh, v1) be any cycle in Sn. Consider any edge

e = vivi+1 of C where indices are reduced modulo h. Then by the condition, we have

µ(vi)µ(vi+1) =
∏

j∈h−{i,i+1}
µ(vj), h = {1, 2, ..., h} (2)

because the section of P of C, not containing the edge vivi+1, which is a vi−vi+1 path of length

≥ 2 in Sn satisfies the condition. Equation (2) shows that the number of same non-identity

vertices in {vi, vi+1} must be of the even or odd as the number of same non-identity vertices in

V (C)−{vi, vi+1}. Clearly, this is possible if, and only if, the number of n-tuples cycle C whose

kth co-ordinate is − is even if, and only if, C is consistent. Since C was an arbitrarily chosen

cycle in Sn, it follows that Sn must be consistent. �

If we take n = 1 in the above Proposition, then the following result regarding 1-marked

graph (i.e, marked graph).

Corollary 3(B. D. Acharya [1]) A marked graph S = (G,µ) is consistent if, and only if, for

any edge e = uv, the sign of the trunk of every u− v path of length ≥ 2 is µ(u)µ(v).

§2. Complementation

In this section, we investigate the notion of complementation of graphs with multiple signs on

their vertices. For any t ∈ Hn, the t-complement of a = (a1, a2, ..., an) is: at = at. The reversal

of a = (a1, a2, ..., an) is: ar = (an, an−1, ..., a1). For any T ⊆ Hn, and t ∈ Hn, the t-complement

of T is T t = {at : a ∈ T }.
Let Sn = (G,µ) and S′

n = (G′, µ′) be two n-marked graphs. Then Sn is said to be

isomorphic to S′
n and we write Sn

∼= S′
n, if there exists a bijection φ : V → V ′ such that if

e = uv is an edge in Sn, u and v is labeled by a = (a1, a2, ..., an) and a′ = (a′1, a
′
2, ..., a

′
n)

respectively, then φ(u)φ(v) is an edge in S′
n and φ(u) and φ(v) which is labeled by a and a′

respectively, and conversely.

For each t ∈ Hn, an n-marked graph Sn = (G,µ) is t-self complementary, if Sn
∼= St

n.

Proposition 4 For all t ∈ Hn, an n-marked graph Sn = (G,µ) is t-self complementary if, and

only if, Sa
n is t-self complementary, for any a ∈ Hn.

Proof Suppose Sn is t-self complementary. Then, Sn
∼= St

n. This implies Sa
n
∼= Sat

n .

Conversely, suppose that Sa
n is t-self complementary. Then, Sa

n
∼= (Sa

n)t. Since (Sa
n)a = Sn.

Hence Sn
∼= (Sat

n )a = St
n. �

Proposition 5 Let Sn = (G,µ) be an n-marked graph. Suppose the underlying graph of Sn

is bipartite. Then, for any t ∈ Hn, Sn is consistent if, and only if, its t-complement St
n is

consistent.

Proof Since Sn is consistent, by Proposition 1, for each k, 1 ≤ k ≤ n, the number of

n-tuples on any cycle C in G whose kth co-ordinate is − is even. Also, since G is bipartite,
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for each k, 1 ≤ k ≤ n, number of n-tuples on C whose kth co-ordinate is + is also even. This

implies that the same thing is true in any t-complement of Sn, where t can be any element

of Hn. Hence St
n is i-balanced. Similarly, the converse follows, since for each t ∈ Hn, the

underlying graph of St
n is also bipartite. �
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Abstract: The main purpose of this paper is to study the existence of a fixed points

in fuzzy n-normed spaces. we proved our main results, a fixed point theorem for a self
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fuzzy n-normed spaces. Also we gave some remarks on fuzzy n-normed spaces.
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§1. Introduction

A Pseudo-Euclidean space is a particular Smarandache space defined on a Euclidean space

Rnsuch that a straight line passing through a point p may turn an angle θp ≥ 0. If θp ≥ 0 ,

then p is called a non-Euclidean point. Otherwise, a Euclidean point. In this paper, normed

spaces are considered to be Euclidean, i.e., every point is Euclidean.In [7], S. Gähler introduced

n-norms on a linear space. A detailed theory of n-normed linear space can be found in [8,10,12-

13]. In [8], H. Gunawan and M. Mashadi gave a simple way to derive an (n−1)- norm from the

n-norm in such a way that the convergence and completeness in the n-norm is related to those

in the derived (n − 1)-norm. A detailed theory of fuzzy normed linear space can be found in

[1,3,4,5,6,9,11]. In [14], A. Narayanan and S. Vijayabalaji have extend n-normed linear space

to fuzzy n-normed linear space. In section 2, we quote some basic definitions, and we show

that a fuzzy n-norm is closely related to an ascending system of n-seminorms. In section 3, we

introduce a locally convex topology in a fuzzy n-normed space. In section 4, we consider finite

dimensional fuzzy n-normed linear spaces. In section 5, we give some fixed point theorem in

fuzzy n− normed spaces.

1Received June 1, 2010. Accepted September 8, 2010.
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§2. Fuzzy n-norms and ascending families of n-seminorms

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall

the definitions of an n-seminorm and a fuzzy n-norm [14].

Definition 2.1 A function (x1, x2, . . . , xn) 7→ ‖x1, . . . , xn‖ from Xn to [0,∞) is called an

n-seminorm on X if it has the following four properties:

(S1) ‖x1, x2, . . . , xn‖ = 0 if x1, x2, . . . , xn are linearly dependent;

(S2) ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn;

(S3) ‖x1, . . . , xn−1, cxn‖ = |c|‖x1, , . . . , xn−1, xn‖ for any real c;

(S4) ‖x1, . . . , xn−1, y + z‖ 6 ‖x1, . . . , xn−1, y‖ + ‖x1, . . . , xn−1, z‖.

An n-seminorm is called a n-norm if ‖x1, x2, . . . , xn‖ > 0 whenever x1, x2, . . . , xn are

linearly independent.

Definition 2.1 A fuzzy subset N of Xn × R is called a fuzzy n-norm on X if and only if :

(F1) For all t 6 0, N(x1, x2, . . . , xn, t) = 0;

(F2) For all t > 0, N(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent;

(F3) N(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn;

(F4) For all t > 0 and c ∈ R, c 6= 0,

N(x1, x2, . . . , cxn, t) = N(x1, x2, . . . , xn,
t

|c|);

(F5) For all s, t ∈ R,

N(x1, . . . , xn−1, y + z, s+ t) ≥ min {N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1z, t)} .

(F6) N(x1, x2, . . . , xn, t) is a non-decreasing function of t ∈ R and

lim
t→∞

N(x1, x2, . . . , xn, t) = 1.

The following two theorems clarify the relationship between Definitions 2, 1 and 2.2.

Theorem 2.1 Let N be a fuzzy n-norm on X. As in [14] define for x1, x2, . . . , xn ∈ X and

α ∈ (0, 1)

‖x1, x2, . . . , xn‖α := inf {t : N(x1, x2, . . . , xn, t) ≥ α} . (1)

Then the following statements hold.

(A1) For every α ∈ (0, 1), ‖•, •, . . . , •‖α is an n-seminorm on X;
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(A2) If 0 < α < β < 1 and x1, . . . , xn ∈ X then

‖x1, x2, . . . , xn‖α 6 ‖x1, x2, . . . , xn‖β ;

(A3) If x1, x2, . . . , xn ∈ X are linearly independent then

lim
α→1−

‖x1, x2, . . . , xn‖α = ∞.

Proof (A1) and (A2) are shown in [14, Theorem 3.4]. Let x1, x2, . . . , xn ∈ X be linearly

independent, and t > 0 be given. We set β := N(x1, x2, . . . , xn, t). It follows from (F2) that

β ∈ [0, 1). Then (F6) shows that, for α ∈ (β, 1),

‖x1, x2, . . . , xn‖α > t.

This proves (A3). �

We now prove a converse of Theorem 2.1.

Theorem 2.2 Suppose we are given a family ‖•, •, . . . , •‖α, α ∈ (0, 1), of n-seminorms on X

with properties (A2) and (A3). We define

N(x1, x2, . . . , xn, t) := inf{α ∈ (0, 1) : ‖x1, x2, . . . , xn‖α > t}. (2)

where the infimum of the empty set is understood as 1. Then N is a fuzzy n-norm on X.

Proof (F1) holds because the values of an n-seminorm are nonnegative.

(F2): Let t > 0. If x1, . . . , xn are linearly dependent then N(x1, . . . , xn, t) = 1 follows from

property (S1) of an n-seminorm. If x1, . . . , xn are linearly independent thenN(x1, . . . , xn, t) < 1

follows from (A3).

(F3) is a consequence of property (S2) of an n-seminorm.

(F4) is a consequence of property (S3) of an n-seminorm.

(F5): Let α ∈ (0, 1) satisfy

α < min{N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1, z, s)}. (3)

It follows that ‖x1, . . . , xn−1, y‖α < s and ‖x1, . . . , xn−1, z‖α < t. Then (S4) gives

‖x1, . . . , xn−1, y + z‖α < s+ t.

Using (A2) we find N(x1, . . . , xn−1, y+z, s+t) > α and, since α is arbitrary in (3), (F5) follows.

(F6): Definition 2.2 shows thatN is non-decreasing in t. Moreover, limt→∞N(x1, . . . , xn, t) =

1 because seminorms have finite values. �

It is easy to see that Theorems 2.1 and 2.2 establish a one-to-one correspondence between

fuzzy n-norms with the additional property that the function t 7→ N(x1, . . . , xn, t) is left-

continuous for all x1, x2, . . . , xn and families of n-seminorms with properties (A2), (A3) and

the additional property that α 7→ ‖x1, . . . , xn‖α is left-continuous for all x1, x2, . . . , xn.
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Example 2.3([14,Example 3.3] Let ‖•, •, . . . , •‖ be a n-norm on X . Define N(x1, x2, . . . , xn, t)

= 0 if t 6 0 and, for t > 0,

N(x1, x2, . . . , xn, t) =
t

t+ ‖x1, x2, . . . , xn‖
.

Then the seminorms (2.1) are given by

‖x1, x2, . . . , xn‖α =
α

1 − α
‖x1, x2, . . . , xn‖.

§3. The locally convex topology generated by a fuzzy n-norm

In this section (X,N) is a fuzzy n-normed space, that is, X is real vector space and N is

fuzzy n-norm on X . We form the family of n-seminorms ‖•, •, . . . , •‖α, α ∈ (0, 1), according to

Theorem 2.1. This family generates a family F of seminorms

‖x1, . . . , xn−1, •‖α, where x1, . . . , xn−1 ∈ X and α ∈ (0, 1).

The family F generates a locally convex topology on X ; see [15, Def. (37.9)], that is, a basis of

neighborhoods at the origin is given by

{x ∈ X : pi(x) 6 ǫi for i = 1, 2, . . . , n},

where pi ∈ F and ǫi > 0 for i = 1, 2 . . . , n. We call this the locally convex topology generated

by the fuzzy n-norm N .

Theorem 3.1 The locally convex topology generated by a fuzzy n-norm is Hausdorff.

Proof Given x ∈ X , x 6= 0, choose x1, . . . , xn−1 ∈ X such that x1, . . . , xn−1, x are linearly

independent. By Theorem 2.1(A3) we find α ∈ (0, 1) such that ‖x1, . . . , xn−1, x‖α > 0. The

desired statement follows; see [15, Theorem 37.21]. �

Some topological notions can be expressed directly in terms of the fuzzy-norm N . For

instance, we have the following result on convergence of sequences. We remark that the defi-

nition of convergence of sequences in a fuzzy n-normed space as given in [20, Definition 2.2] is

meaningless.

Theorem 3.2 Let {xk} be a sequence in X and x ∈ X. Then {xk} converges to x in the locally

convex topology generated by N if and only if

lim
k→∞

N(a1, . . . , an−1, xk − x, t) = 1 (4)

for all a1, . . . , an−1 ∈ X and all t > 0.

Proof Suppose that {xk} converges to x in (X,N). Then, for every α ∈ (0, 1) and all

a1, a2, . . . , an−1 ∈ X , there is K such that, for all k > K, ‖a1, a2, . . . , an−1, xk − x‖α < ǫ. The

latter implies

N(a1, a2, . . . , an−1, xk − x, ǫ) > α.
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Since α ∈ (0, 1) and ǫ > 0 are arbitrary we see that (4) holds. The converse is shown in a

similar way. �

In a similar way we obtain the following theorem.

Theorem 3.3 Let {xk} be a sequence in X. Then {xk} is a Cauchy sequence in the locally

convex topology generated by N if and only if

lim
k,m→∞

N(a1, . . . , an−1, xk − xm, t) = 1 (5)

for all a1, . . . , an−1 ∈ X and all t > 0.

It should be noted that the locally convex topology generated by a fuzzy n-norm is not

metrizable, in general. Therefore, in many cases it will be necessary to consider nets {xi} in

place of sequences. Of course, Theorems 3.2 and 3.3 generalize in an obvious way to nets.

§4. Fuzzy n-norms on finite dimensional spaces

In this section (X,N) is a fuzzy n-normed space and X has finite dimension at least n. Since

the locally convex topology generated by N is Hausdorff by Theorem 3.1 Tihonov’s theorem

[15, Theorem 23.1] implies that this locally convex topology is the only one on X . Therefore,

all fuzzy n-norms on X are equivalent in the sense that they generate the same locally convex

topology.

In the rest of this section we will give a direct proof of this fact (without using Tihonov’s

theorem). We will set X = Rd with d > n.

Lemma 4.1 Every n-seminorm on X = Rd is continuous as a function on Xn with the

euclidian topology.

Proof For every j = 1, 2, . . . , n, let {xj,k}∞k=1 be a sequence in X converging to xj ∈ X .

Therefore, lim
k→∞

‖xj,k − xj‖ = 0, where ‖x‖ denotes the euclidian norm of x. From property

(S4) of an n-seminorm we get

|‖x1,k, x2,k, . . . , xn,k‖ − ‖x1, x2,k, . . . , xn,k‖| ≤ ‖x1,k − x1, x2,k, . . . , xn,k‖.

Expressing every vector in the standard basis of Rd we see that there is a constant M such that

‖y1, y2, . . . , yn‖ ≤M ‖y1‖ . . . ‖yn‖ for all yj ∈ X.

Therefore,

lim
k→∞

‖x1,k − x1, x2,k, . . . , xn,k‖ = 0

and so

lim
k→∞

|‖x1,k, x2,k, . . . , xn,k‖ − ‖x1, x2,k, . . . , xn,k‖| = 0.

We continue this procedure until we reach

lim
k→∞

‖x1,k, x2,k, . . . , xn,k‖ = ‖x1, x2, . . . , xn‖ . �
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Lemma 4.2 Let (Rd, N) be a fuzzy n-normed space. Then ‖x1, x2, . . . , xn‖α is an n-norm if

α ∈ (0, 1) is sufficiently close to 1.

Proof We consider the compact set

S =
{
(x1, x2, . . . , xn) ∈ R

dn : x1, x2, . . . , xn is an orthonormal system in R
d
}
.

For each α ∈ (0, 1) consider the set

Sα = {(x1, x2, . . . , xn) ∈ S : ‖x1, x2, . . . , xn‖α > 0} .

By Lemma 4.1, Sα is an open subset of S. We now show that

S = ∪
α∈(0,1)

Sα. (6)

If (x1, x2, . . . , xn) ∈ S then (x1, x2, . . . , xn) is linearly independent and therefore there is

β such that N(x1, x2, . . . , xn, 1) < β < 1. This implies that ‖x1, x2, . . . , xn‖β ≥ 1 so (6) is

proved. By compactness of S, we find α1, α2, . . . , αm such that

S =
m∪

i=1
Sαi

.

Let α = max {α1, α2, . . . , αm}. Then ‖x1, x2, . . . , xn‖α > 0 for every (x1, x2, . . . , xn) ∈ S.

Let x1, x2, . . . , xn ∈ X be linearly independent. Construct an orthonormal system

e1, e2, . . . , en from x1, x2, . . . , xn by the Gram-Schmidt method. Then there is c > 0 such

that

‖x1, x2, . . . , xn‖α = c ‖e1, e2, . . . , en‖α > 0.

This proves the lemma. �

Theorem 4.1 Let N be a fuzzy n-norm on Rd, and let {xk} be a sequence in Rd and x ∈ Rd.

(a) {xk} converges to x with respect to N if and only if {xk} converges to x in the euclidian

topology.

(b) {xk} is a Cauchy sequence with respect to N if and only if {xk} is a Cauchy sequence

in the euclidian metric.

Proof (a) Suppose {xk} converges to x with respect to euclidian topology. Let a1, a2, . . . , an−1 ∈
X . By Lemma 4.1, for every α ∈ (0, 1),

lim
k→∞

‖a1, a2, . . . , an−1, xk − x‖α = 0.

By definition of convergence in (Rd, N), we get that {xk} converges to x in (Rd, N). Conversely,

suppose that {xk} converges to x in (Rd, N). By Lemma 4.2, there is α ∈ (0, 1) such that

‖y1, y2, . . . , yn‖α is an n-norm. By definition, {xk} converges to x in the n-normed space

(Rd, ‖·‖α). It is known from[8, Proposition 3.1] that this implies that {xk} converges to x with

respect to euclidian topology.

(b) is proved in a similar way. �
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Theorem 4.2 A finite dimensional fuzzy n-normed space (X,N) is complete.

Proof This follows directly from Theorem 3.4. �

§5. Some fixed point theorem in fuzzy n− normed spaces

In this section we prove some fixed point theorems.

Definition 5.1 A sequence a {xk} in a fuzzy n-normed space (X,N) is said to be fuzzy n-

convergent to x∗ ∈ X and denoted by xk  x∗ as k → ∞ if

lim
k→∞

N(x1, · · · , xn−1, xk − x∗, t) = 1

for every x1, · · · , xn−1 ∈ X and x∗ is called the fuzzy n-limit of {xk}.

Remark 5.1 It is noted that if (X,N) is a fuzzy n-normed space then the fuzzy n-limit of a

fuzzy n-convergent sequence is unique. Indeed, if {xk} is a fuzzy n-convergent sequence and

suppose it converges to x∗ and y∗ in X . Then by definition lim
k→∞

N(x1, · · · , xn−1, xk −x∗, t) = 1

and lim
k→∞

N(x1, · · · , xn−1, xk − y∗, t) = 1 for every x1, · · · , xn−1 ∈ X and for every t > 0. By

(N5), we have

N(x1, · · · , xn−1, x− y, t) = N(x1, · · · , xn−1, x
∗ − xk + xk − y∗, t/2 + t/2)

> min{N(x1, · · · , xn−1, x
∗ − xk, t/2), N(x1, · · · , xn−1, xk − y∗, t/2)}.

By letting k → ∞, we obtain N(x1, · · · , xn−1, x
∗ − y∗, t) = 1, which implies that x∗ = y∗.

Definition 5.2 A sequence {xk} in a fuzzy n-normed space (X,N) is said to be fuzzy n-Cauchy

sequence if

lim
k,m→∞

N(x1, . . . , xn−1, xk − xm, t) = 1

for every x1, · · · , xn−1 ∈ X and for every t > 0.

Proposition 5.1 In a fuzzy n-normed space (X,N), every fuzzy n-convergent sequence is a

fuzzy n-Cauchy sequence.

Proof Let {xk} be a fuzzy n-convergent sequence in X converging to x∗ ∈ X . Then

lim
k→∞

N(x1, · · · , xn−1, xk − x∗, t) = 1 for every x1, · · · , xn−1 ∈ X and for every t > 0. By (N5),

N(x1, · · · , xn−1, xk − xm, t)

= N(x1, · · · , xn−1, xk − x∗ + x∗ − xm, t/2 + t/2)

> min{N(x1, · · · , xn−1, xk − x∗, t/2), N(x1, · · · , xn−1, x
∗ − xm, t/2)}.

By letting n,m→ ∞, we get,

lim
k,m→∞

N(x1, · · · , xn−1, xk − xm, t) = 1

for every x1, · · · , xn−1 ∈ X and for every t > 0, i.e., {xk} is a fuzzy n-Cauchy sequence. �
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If every fuzzy n-Cauchy sequence in X converges to an x∗ ∈ X , then (X,N) is called

a complete fuzzy n-normed space. A complete fuzzy n-normed space is then called a fuzzy

n-Banach space.

Theorem 5.1 Let (X,N) be a fuzzy n-normed space. Let f : X → X be a map satisfies the

condition:

There exists a λ ∈ (0, 1) such that for all x, x1, · · · , xn−1 ∈ X and for all t > 0,one has

N(x1, · · · , xn−1, x, t) > 1 − t ⇒ N(x1, · · · , xn−1, f(x), λt) > 1 − λt. (7)

Then

(i) For any real number ǫ > 0 there exists k0(ǫ) ∈ N such that fk(x) θ.

(ii) f has at most a fixed point, that is the null vector of X. Moreover, if f is a linear mapping,

f has exactly one fixed point.

Proof (i) Note that if f satisfies the condition (1), then for every ǫ ∈ (0, 1), there exists a

k0 = k0(ǫ) such that, for all k > k0, and for every x, x1, · · · , xn−1 ∈ X

N(x1, · · · , xn−1, f
k(x), ǫ) > 1 − ǫ

holds. Indeed, one has easily that

N(x1, · · · , xn−1, x, 1 + ǫ) > 1 − (1 + ǫ).

Then by condition (1), for all x, x1, · · · , xn−1 ∈ X and k > 1,

N(x1, · · · , xn−1, f
k(x), λk(1 + ǫ)) > 1 − λk(1 + ǫ)

holds. Indeed, for each ǫ > 0 there exists a k = k0 implies that λn(1 + ǫ) 6 ǫ, from which,

because of condition (N6), there exists a k0 ∈ N such that for k > k0,

N(x1, · · · , xn−1, f
k(x), ǫ) > N(x1, · · · , xn−1, f

k(x), λk(1 + ǫ))

> 1 − λk(1 + ǫ)

> 1 − ǫ.

Since ǫ is an arbitrary, we have fk(x) θ as required.

(ii) Assume that f(x) = x. By applying part (i), for all ǫ ∈ (0, 1) one has

N(x1, · · · , xn−1, x, ǫ) > 1 − ǫ

for every x1, · · · , xn−1 ∈ X . This implies that

N(x1, · · · , xn−1, x, 0+) = 1

for every x1, · · · , xn−1 ∈ X , i.e., x = θ. �
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Lemma 5.1 Let {xk} be a sequence in a fuzzy n-normed space (X,M). If for every t > 0,

there exists a constant λ ∈ (0, 1) such that

N(x1, . . . , xn−1, xk − xk+1, t) ≥ N(x1, . . . , xn−1, xk−1 − xk, t/λ) (8)

for all x1, · · · , xn−1 ∈ X, then {xk} is a fuzzy n-Cauchy sequence in X.

Proof Let t > 0 and λ ∈ (0, 1). Then for m > k, by using (N5) and the inequality (1), we

have

N(x1, . . . , xn−1, xk − xm, t)

> min{N(x1, . . . , xn−1, xk − xk+1, (1 − λ)t),

N(x1, . . . , xn−1, xk+1 − xm, λt)}
· · ·

> min{N(x1, . . . , xn−1, x0 − x1,
(1 − λ)t

λk
),

N(x1, . . . , xn−1, xk+1 − xm, λt)}

Also,

N(x1, . . . , xn−1, xk+1 − xm, λt)

> min{N(x1, . . . , xn−1, xk+1 − xk+2, (1 − λ)λt),

N(x1, . . . , xn−1, xk+2 − xm, λ
2t)}

· · ·
> min{N(x1, . . . , xn−1, x0 − x1,

(1 − λ)t

λk
),

N(x1, . . . , xn−1, xk+2 − xm, λ
2t)}

By repeating these argument, we get

N(x1, . . . , xn−1, xk − xm, t)

> min{N(x1, . . . , xn−1, x0 − x1,
(1 − λ)t

λk
),

N(x1, . . . , xn−1, xm−1 − xm, λ
m−n−1t)}

· · ·
> min{N(x1, . . . , xn−1, x0 − x1,

(1 − λ)t

λk
),

N(x1, . . . , xn−1, x0 − x1,
t

λk
)}

Since (1 − λ) t
λk ≤ t

λk and the property (F6), we conclude that

N(x1, . . . , xn−1, xk − xm, t) ≥ N(x1, . . . , xn−1, x0 − x1,
(1 − λ)t

λk
).

Therefore, by letting m > k → ∞, we get

lim
k,m→∞

N(x1, · · · , xn−1, xk − xm, t) = 1
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for every x1, · · · , xn−1 ∈ X and for every t > 0, i.e., {xk} is a fuzzy n-Cauchy sequence. �

Definition 5.3 A pair of maps (f, g) is called weakly compatible pair if they commute at

coincidence point, i.e., fx = gx implies fgx = gfx.

Theorem 5.2 Let (X,M) be a fuzzy n-normed space and let f, g : X → X satisfy the following

conditions:

(i) f(X) ⊆ g(X);

(ii) any one f(X) or g(X) is complete;

(iii) N(x1, . . . , xn−1, f(x)−f(y), t) > N(x1, . . . , xn−1, g(x)−g(y), t/λ), for all x, y, x1, · · · , xn−1 ∈
X, t > 0, λ ∈ (0, 1).

Then f and g have a unique common fixed point provided f and g are weakly compatible

on X.

Proof Let x0 ∈ X . By condition (i), we can find x1 ∈ X such that f(x0) = g(x1) = y1.

By induction, we can define a sequence yk in X such that

yk+1 = f(xk) = g(xk+1),

n = 0, 1, 2, · · · . We consider two cases:

Case I: If yr = yr+1 for some r ∈ N, then

yr = f(xr−1) = f(xr) = g(xr) = g(xr+1) = yr+1 = z

for some z ∈ X . Since f(xr) = g(xr) and f, g are weakly compatible, we have f(z) = fg(xr) =

gf(xr) = g(z). By condition (iii), for all x1, · · · , xn−1 ∈ X and for all t > 0, we have

N(x1, · · · , xn−1, f(z) − z, t) = N(x1, · · · , xn−1, f(z) − f(xr), t)

> N(x1, · · · , xn−1, g(z) − g(xr), t/λ)

> · · · ≥ N(x1, · · · , xn−1, g(z) − g(xr), t/λ
k).

Clearly, the righthand side of the inequality approaches 1 as k → ∞ for every x1, . . . , xn−1 ∈ X

and t > 0. Hence, N(x1, · · · , xn−1, f(z) − z, t) = 1. This implies that f(z) = z = g(z), i.e., z

is a common fixed point of f and g.

Case II yk 6= yk+1, for each k = 0, 1, 2, · · · . Then, by condition (ii) again, we have

N(x1, · · · , xn−1, yk − yk+1, t) = N(x1, · · · , xn−1, g(xk) − g(xk+1), t)

= N(x1, · · · , xn−1, f(xk−1) − f(xk), t)

≥ N(x1, · · · , xn−1, g(xk−1) − g(xk), t/λ)

= N(x1, · · · , xn−1, yk−1 − yk, t)
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Then, by Lemma 5.1, {yk} is a Cauchy sequence (with respect to fuzzy n-norm) in X . Since

g(X) is complete, there exists w ∈ g(X) such that

lim
k→∞

yk = lim
k→∞

g(xk) = w.

Also, since w ∈ g(X), we can find a p ∈ X such that g(p) = w. Note that

w = g(p) = lim
k→∞

g(xk) = lim
k→∞

f(xk).

Thus, by (iii), we have

N(x1, · · · , xn−1, f(p) − g(p), t) = lim
k→∞

N(x1, · · · , xn−1, f(p) − f(xk), t)

≥ lim
k→∞

N(x1, · · · , xn−1, g(p) − g(xk), t/λ)

= N(x1, · · · , xn−1, g(p) − w, t/λ)

= N(x1, · · · , xn−1, w − w, t/λ),

which implies that w = f(p) = g(p) is a common fixed point of f and g. Furthermore, f and g

are weakly compatible maps, we have

f(w) = fg(w) = gf(w) = g(w).

But than, by (iii),

N(x1, · · · , xn−1, f(w) − w, t) = N(x1, · · · , xn−1, f(w) − f(p), t)

≥ N(x1, · · · , xn−1, g(w) − g(p), t/λ)

= N(x1, · · · , xn−1, f(w) − f(p), t/λ)

≥ · · · ≥ N(x1, · · · , xn−1, g(w) − g(p), t/λk).

Clearly, the expression on the righthand side approaches 1 as k → ∞ for every x1, . . . , xn−1 ∈ X

and t > 0, which implies that f(w) = w. Therefore, w is a common fixed point of f and g. The

uniqueness of fixed point is immediate from condition (iii). �
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Abstract: In the present paper, the following result of Ramanujan [2] is shown to be

contained as special case of a matrix identity in two parameters [3]: If a , b , c , d are real

numbers such that a d − b c = 0, then

(a + b + c)2 + (b + c + d)2 + (a − d)2 = (c + d + a)2 + (d + a + b)2 + (b − c)2.

(a + b + c)4 + (b + c + d)4 + (a − d)4 = (c + d + a)4 + (d + a + b)4 + (b − c)4.

Combinatorial properties of the two pairs of Brahmagupta polynomials defined by the matrix

identities in one and two parameters are also described.

Key Words: Results of Ramanujan, matrix identity, Brahmagupta polynomials, combi-

natorial properties.
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§1. Introduction

E.R. Suryanarayan [4] has described the following matrix identity:


 xn yn

t yn xn


 =


 x y

t y x




n

(1)

with x0 = 1, y0 = 0, n = 0, 1, 2, · · · . The identity (1) is the starting point to define a pair

of homogeneous polynomials {xn(x, y; t), yn(x, y; t)} of degree n in two real variables x, y and a

real parameter t 6= 0 such that x2 − ty2 6= 0 called Brahmagupta Polynomials. An extensive

list of properties of Brahmagupta polynomials is given in [4].

R.Rangarajan, Rangaswamy and E.R. Suryanarayan [3] have extended the matrix identity

(1) in the following way: Let B(s,t) denote the set of matrices of the form

B =


 x y

ty x+ sy


 (2)

1Received July 28, 2010. Accepted September 10, 2010.
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where t and s are two parameters and x and y are two real variables subjected to the condition

that x2 + s x y − t y2 6= 0. Define B to be the extended matrix in two parameters. It is easy

to check that in B(s,t) the commutative law for multiplication holds. As a result,the following

extended matrix identity in two parameters holds:


 x y

ty x+ sy




n

=


 xn(x, y, s, t) yn(x, y, s, t)

tyn(x, y, s, t) xn(x, y, s, t) + syn(x, y, s, t)


 (3)

It is very interesting to note that, if s = t = y = 1 and x = 0, then (3) takes the form:


 0 1

1 1




n

=


 Fn−1 Fn

Fn Fn+1


 (4)

where Fn is the nth Fibonacci number

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1 −
√

5

2

)n]

The extended matrix identity (3) defines the pair (xn(x, y, s, t) , yn(x, y, s, t)) of Brahmagupta

polynomials in two parameters. An extensive list of properties of Brahmagupta polynomials in

two parameters is given in [3].

In [1] an innovative matrix identity wherein each matrix has a determinant of the form

x2 + y2 + z2 is proposed to view Ramanujan result in the power 2. But the identity does not

work in the power 4. However, the paper provided us a good motivation to seek an appropriate

matrix identity in two parameters to view both the results of Ramanujan.

§2. A pair of results of Ramanujan

One of the remarkable results of Ramanujan, appearing on the page 385 of his note books [2]

is stated as follows: If a, b, c, d are real numbers such that ad = bc, then

(a+ b+ c)2 + (b+ c+ d)2 + (a− d)2 = (c+ d+ a)2 + (d+ a+ b)2 + (b − c)2 (5)

(a+ b+ c)4 + (b+ c+ d)4 + (a− d)4 = (c+ d+ a)4 + (d+ a+ b)4 + (b − c)4 (6)

For example, if a = 6, b = 3, c = 2 and d = 1, then 112 + 62 + 52 = 92 + 102 + 12 and

114 + 64 + 54 = 94 + 104 + 14. Writing

x1 = a+ b+ c, y1 = b+ c+ d, z1 = c+ d+ a, w1 = d+ a+ b

the results (5) and (6) become

x2
1 + y2

1 + (x1 − y1)
2 = z2

1 + w2
1 + (z1 − w1)

2 (7)

x4
1 + y4

1 + (x1 − y1)
4 = z4

1 + w4
1 + (z1 − w1)

4 (8)
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where x1, y1, z1, w1 are real numbers such that x2
1 + y2

1 − x1y1 = z2
1 + w2

1 − z1w1.

It is straightforward to workout

a =
1

3
x1 −

2

3
y1 +

1

3
z1 +

1

3
w1,

b =
1

3
x1 +

1

3
y1 −

2

3
z1 +

1

3
w1,

c =
1

3
x1 +

1

3
y1 +

1

3
z1 −

2

3
w1,

d = −2

3
x1 +

1

3
y1 +

1

3
z1 +

1

3
w1

and hence ad = bc is equivalent to

x2
1 + y2

1 − x1y1 = z2
1 + w2

1 − z1w1.

Now, it is very easy to verify the Ramanujan results because on expanding the last terms and

simplifying both the sides of (7) and (8) one obtains:

2(x2
1 + y2

1 − x1y1) = 2(z2
1 + w2

1 − z1w1) (9)

2(x2
1 + y2

1 − x1y1)
2 = 2(z2

1 + w2
1 − z1w1)

2 (10)

By varying the choices for a, b, c, d one obtains infinitely many solutions of (5) and (6).

The main purpose of this paper is to generate infinite quadruple sequences of solutions {xn, yn, zn, wn}, n =

1, 2, 3, · · · to (7) and (8) starting from just one set {x1, y1, z1, w1} of positive integers such that

x2
n + y2

n − xnyn = z2
n +w2

n − znwn 6= 0, using a suitable extended matrix in two parameters (2)

wherein each matrix has a determinant of the form

x2
1 + y2

1 − x1y1 =
1

2
(x2

1 + y2
1 + (x1 − y1)

2).

This new idea enables us to construct a pair of two variable homogeneous polynomials of degree

n which are useful to evaluate {xn, yn, zn, wn}, n = 1, 2, 3, · · · .

The required extended matrix identity in two parameters: In order to achieve our

objective, we shall consider the set of all the matrices appearing in the identity (3) with s =

t = −1 :

A(x, y) =


 x y

−y x− y


 (11)

where x and y are any two real numbers such that x2 + y2 − xy 6= 0. Clearly A(x, y) ∈ GL2(R)

, general linear group of all 2 by 2 invertible matrices. Let A(x,y) be the set of all matrices of

the form (11) where x and y are any two real numbers such that x2 + y2 − xy 6= 0.

Let A(x1, y1) and A(x2, y2) be any two matrices in A(x,y). Then we shall show that A(x3, y3) =

A(x1, y1)A(x2, y2) is also in A(x,y).

A(x3, y3) =


 x1 y1

−y1 x1 − y1




 x2 y2

−y2 x2 − y2



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=


 (x1x2 − y1y2) (x1y2 + y1x2 − y1y2)

−(x1y2 + y1x2 − y1y2) (x1x2 − y1y2) − (x1y2 + y1x2 − y1y2)




where x3 = x1x2−y1y2 and y3 = (x1y2+y1x2−y1y2) are again real numbers and x2
3+y2

3−x3y3 =

(x2
1 + y2

1 − x1y1)(x
2
2 + y2

2 − x2y2) 6= 0. Moreover,

A(x1, y1)A(x2, y2) = A(x2, y2)A(x1, y1).

Hence A(x,y) is a commutative matrix subgroup ofGL2(R). In this matrix subgroup, Ramanujan

result deduced in (9) and (10) can be restated as follows:

2det[A(x1, y1)] = 2 det[A(z1, w1)] (12)

2{det[A(x1, y1)]}2 = 2 {det[A(z1, w1)]}2 (13)

Now, the infinite quadruple solutions {xn, yn, zn, wn}, n = 1, 2, 3, · · · can be computed as fol-

lows:

A(xn, yn) = [A(x1, y1)]
n (14)

A(zn, wn) = [A(z1, w1)]
n (15)

Using the standard theorem on product of determinants, it is straight forward to workout

2 det[A(xn, yn)] = 2 det[A(zn, wn)] (16)

2 {det[A(xn, yn)]}2 = 2 {det[A(zn, wn)]}2 (17)

In order to workout (14) and (15), we shall use the following eigen relations:


 x y

−y x− y




n

=
1

ω2 − ω


1 1

ω ω2




x+ ωy 0

0 x+ ω2y




n
ω2 −1

−ω 1




where ω = e
2πi
3 is the cube root of unity. As a result, {xn, yn, zn, wn}, n = 1, 2, 3, · · · have the

following binet forms:

xn =
−ω2(x1 + ωy1)

n + ω(x1 + ω2y1)
n

ω − ω2
(18)

yn =
(x1 + ωy1)

n − (x1 + ω2y1)
n

ω − ω2
(19)

zn =
−ω2(z1 + ωw1)

n + ω(z1 + ω2w1)
n

ω − ω2
(20)

wn =
(z1 + ωw1)

n − (z1 + ω2w1)
n

ω − ω2
(21)

Also, it is interesting to workout the following binary recurrence relations for {xn, yn, zn, wn}, n =

1, 2, 3, · · · :

xn+1 = (2x1 − y1) xn − (x2
1 + y2

1 − x1y1) xn−1, x0 = 1, x1 = a+ b+ c (22)

yn+1 = (2x1 − y1) yn − (x2
1 + y2

1 − x1y1) yn−1, y0 = 0, y1 = b+ c+ d (23)
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zn+1 = (2z1 − w1) zn − (z2
1 + w2

1 − z1w1) zn−1, z0 = 1, z1 = c+ d+ a (24)

wn+1 = (2z1 − w1) wn − (z2
1 + w2

1 − z1w1) wn−1, w0 = 0, w1 = d+ a+ b (25)

where a, b, c, d are any four real numbers such that ad = bc.

A pair of evaluating polynomials: The binet forms (18)− (21) define a Pair of Evaluating

Polynomials,namely, Pn(x, y) and Qn(x, y) given by

Pn(x, y) =
−ω2(x+ ωy)n + ω(x+ ω2y)n

ω − ω2
(26)

Qn(x, y) =
(x+ ωy)n − (x+ ω2y)n

ω − ω2
(27)

So that one can evaluate

Pn(x1, y1) = xn, Qn(x1, y1) = yn, Pn(z1, w1) = zn, Qn(z1, w1) = wn.

It is also a quite convenient method for computing (Pn(x, y), Qn(x, y)) using the following

extended matrix identity:


 Pn(x, y) Qn(x, y)

−Qn(x, y) Pn(x, y) −Qn(x, y)


 =


 x y

−y x− y




n

§3. Combinatorial properties of Brahmagupta Polynomials

The Brahmagupta polynomials in one parameter exhibit the following combinatorial properties:

Theorem 1([4]) The Brahmagupta polynomials in one parameter have the following binet

forms :

xn =
1

2

[
(x + y

√
t)n + (x − y

√
t)n
]

yn =
1

2
√
t

[
(x + y

√
t)n − (x − y

√
t)n
]




. (28)

They satisfy the following three -term recurrences :

xn+1 = 2 x xn − (x2 − ty2) xn−1 , x0 = 1, x1 = x

yn+1 = 2 x yn − (x2 − ty2) yn−1 , y0 = 0, y1 = y



 . (29)

The Brahmagupta polynomials in two parameters exhibit the following similar combina-

torial properties:
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Theorem 2([3])
(
xn +

s

2
yn

)
and yn have the following binet forms:

(
xn + s

2yn

)
= 1

2 [(x+ λ+y)
n

+ (x+ λ−y)
n
]

yn = 1

2
√

(s2/4)+t
[(x+ λ+y)

n − (x+ λ−y)
n]





(30)

where λ± =
s

2
±
√
s2

4
+ t.

As a consequence, the Brahmagupta polynomials in two parameters satisfy the following three

-term recurrences:

xn+1 = (2x+ sy)xn −
(
x2 + sxy − ty2

)
xn−1, x0 = 1 , x1 = x

yn+1 = (2x+ sy)yn −
(
x2 + sxy − ty2

)
yn−1, y0 = 0, y1 = y




. (31)

The first few Brahmagupta polynomials in two parameters are:

x0 = 1, x1 = x, x2 = x2 + ty2, x3 = x3 + 3txy2 + sty3,

x4 = x4 + 4stx3y + 6tx2y2 + stxy3 + (t+ s2)y4, · · · ;

y0 = 0, y1 = y, y2 = 2xy + sy2, y3 = 3x2y + 3sxy2 + (t+ s2)y3,

y4 = 4x3y + 6sx2y2 + 4(t+ s2)xy3 + s(2t+ s2)y4, · · · .

In [4], as a consequence of Theorem 1. it is shown that Brahmagupta polynomials are polyno-

mial solutions of t − Cauchy’s - Reimann equations:

∂xn

∂x
=

∂yn

∂y
= n xn−1

∂xn

∂y
= t

∂yn

∂y
= n t yn−1




. (32)

As a further consequence, xn and yn are shown to satisfy the wave equation:

(
∂2

∂x2
− 1

t

∂2

∂y2

)
U = 0. (33)

The corresponding extended result is the following theorem :

Theorem 3 The polynomials xn(x, y, s, t) and yn(x, y, s, t) satisfy the following second order

linear partial differential equations :

(
∂2

∂x2
+
s

t

∂2

∂x∂y
− 1

t

∂2

∂y2

)
U = 0. (34)
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Proof Partial differentiation of (30) yields,

∂

∂x
(xn +

s

2
yn) =

(
−s

2

∂

∂x
+

∂

∂y

)
yn = n

(
xn−1 +

s

2
yn−1

)
(35)

∂

∂y

(
xn +

s

2
yn

)
= n

[
s

2

(
xn−1 +

s

2
yn−1

)
+

(
s2

4
+ t

)
yn−1

]
(36)

∂yn

∂x
= nyn−1 (37)

So we may simplify the above as follows-

∂xn

∂x
= −

(
s
∂

∂x
− ∂

∂y

)
yn (38)

∂xn

∂y
= −s

2

∂yn

∂y
+
s

2

(
−s

2

∂yn

∂x
+
∂yn

∂y

)
+

(
s2

4
+ t

)
∂yn

∂x
= t

∂yn

∂x

They naturally lead to

t
∂2yn

∂x2
+

∂

∂y

(
s
∂

∂x
− ∂

∂y

)
yn = 0 (39)

which is same as (
∂2

∂x2
+
s

t

∂2

∂x ∂y
− 1

t

∂2

∂y2

)
yn = 0 (40)

Also, the Partial differential equation for xn may be derived as follows-

∂xn

∂x
+
s

t

∂xn

∂y
=
∂yn

∂y
(41)

1

t

∂xn

∂y
=
∂yn

∂x
(42)

As a direct consequence, xn satisfies the following Partial differential equation-

(
∂2

∂x2
+
s

t

∂2

∂x ∂y
− 1

t

∂2

∂y2

)
xn = 0 (43)

�
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§1. Introduction

In 1964, J. Eells and J.H. Sampson introduced the notion of poly-harmonic maps as a natural

generalization of harmonic maps [1].

Firstly, harmonic maps f : (M, g) −→ (N, h) between Riemannian manifolds are the critical

points of the energy

E (f) =
1

2

∫

M

|df |2 vg, (1.1)

and they are therefore the solutions of the corresponding Euler–Lagrange equation. This equa-

tion is given by the vanishing of the tension field

τ (f) = trace∇df. (1.2)

Secondly, as suggested by Eells and Sampson in [1], we can define the bienergy of a map f

by

E2 (f) =
1

2

∫

M

|τ (f)|2 vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.

Jiang derived the first and the second variation formula for the bienergy in [3], showing

that the Euler–Lagrange equation associated to E2 is

τ2 (f) = −J f (τ (f)) = −∆τ (f) − traceRN (df, τ (f)) df = 0 (1.4)

where J f is the Jacobi operator of f . The equation τ2 (f) = 0 is called the biharmonic equation.

Since J f is linear, any harmonic map is biharmonic. Therefore, we are interested in proper

biharmonic maps, that is non-harmonic biharmonic maps.

1Received July 7, 2010. Accepted September 12, 2010.
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In this paper, we study biharmonic slant helices in E3. We give some characterizations for

biharmonic slant helices with Bishop frame in E3.

§2 Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the space E3 are briefly presented.

The Euclidean 3-space E
3 provided with the standard flat metric given by

〈 , 〉 = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3. Recall that, the norm of an arbitrary

vector a ∈ E3 is given by ‖a‖ =
√
〈a, a〉. γ is called a unit speed curve if velocity vector v of γ

satisfies ‖a‖ = 1.

Denote by {T,N,B} the moving Frenet–Serret frame along the curve γ in the space E3.

For an arbitrary curve γ with first and second curvature, κ and τ in the space E3, the following

Frenet-Serret formulae is given

T′ = κN,

N′ = −κT + τB,

B′ = −τN,

where

〈T,T〉 = 〈N,N〉 = 〈B,B〉 = 1,

〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0.

Here, curvature functions are defined by κ = κ(s) = ‖T(s)‖ and τ(s) = −
〈
N,B′〉.

Torsion of the curve γ is given by the aid of the mixed product

τ(s) =
[γ′, γ′′, γ′′′]

κ2
.

In the rest of the paper, we suppose everywhere κ(s) 6= 0 and τ(s) 6= 0.

The Bishop frame or parallel transport frame is an alternative approach to defining a

moving frame that is well defined even when the curve has vanishing second derivative. One can

express parallel transport of an orthonormal frame along a curve simply by parallel transporting

each component of the frame. The tangent vector and any convenient arbitrary basis for the

remainder of the frame are used. The Bishop frame is expressed as

T′ = k1M1 + k2M2,M
′
1 = −k1T,M

′
2 = −k2T. (2.1)

Here, we shall call the set {T,M1,M1} as Bishop trihedra and k1 and k2 as Bishop

curvatures. The relation matrix may be expressed as

T= T,

N = cos θ (s)M1 + sin θ (s)M2,

B = − sin θ (s)M1 + cos θ (s)M2,
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where θ (s) = arctan k2

k1
, τ(s) = θ′ (s) and κ(s) =

√
k2
1 + k2

2 . Here, Bishop curvatures are defined

by

k1 = κ(s) cos θ (s) , k2 = κ(s) sin θ (s) .

On the other hand, we get

T = T,

M1 = cos θ (s)N− sin θ (s)B,

M2 = sin θ (s)N + cos θ (s)B.

§3. Biharmonic curves in E
3

Biharmonic equation for the curve γ reduces to

∇3
TT −R (T,∇TT)T = 0, (3.1)

that is, γ is called a biharmonic curve if it is a solution of the equation (3.1).

Theorem 3.1 γ : I −→ E3 is a unit speed biharmonic curve if and only if

k2
1 + k2

2 = C,

k′′1 − k3
1 − k1k

2
2 = 0, (3.2)

k′′2 − k3
2 − k2k

2
1 = 0,

where C is non-zero constant of integration.

Proof Using the bishop equations (2.1) and biharmonic equation (3.1), we obtain

(−3k′1k1 − 3k′2k2)T + (k′′1 − k3
1 − k1k

2
2)M1 + (k′′2 − k3

2 − k2k
2
1)M2 −R (T,∇TT)T = 0. (3.3)

In E
3, the Riemannian curvature is zero, we have

(−3k′1k1 − 3k′2k2)T + (k′′1 − k3
1 − k1k

2
2)M1 + (k′′2 − k3

2 − k2k
2
1)M2 = 0. (3.4)

By (3.4), we see that γ is a unit speed biharmonic curve if and only if

−3k′1k1 − 3k′2k2 = 0,

k′′1 − k3
1 − k1k

2
2 = 0, (3.5)

k′′2 − k3
2 − k2k

2
1 = 0.

These, together with (3.5), complete the proof of the theorem. �

Corollary 3.2 γ : I −→ E3 is a unit speed biharmonic curve if and only if

k2
1 + k2

2 = C 6= 0,

k′′1 − Ck1 = 0, (3.6)

k′′2 − Ck2 = 0,
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where C is constant of integration.

Theorem 3.3 Let γ : I −→ E3 is a unit speed biharmonic curve, then

k2
1 (s) + k2

2 (s) = C,

k1 (s) = c1e
√

Cs + c2e
−
√

Cs, (3.7)

k2 (s) = c3e
√

Cs + c4e
−
√

Cs,

where C, c1, c2, c3, c4 are constants of integration.

Proof Using (3.6), we have (3.7). �

Corollary 3.4 If c1 = c3 and c2 = c4, then

k1 (s) = k2 (s) . (3.8)

Definition 3.5 A regular curve γ : I −→ E3 is called a slant helix provided the unit vector M1

of the curve γ has constant angle θ with some fixed unit vector u, that is

g (M1 (s) , u) = cos θ for all s ∈ I. (3.9)

The condition is not altered by reparametrization, so without loss of generality we may

assume that slant helices have unit speed. The slant helices can be identified by a simple

condition on natural curvatures.

Theorem 3.6 Let γ : I −→ E3 be a unit speed curve with non-zero natural curvatures. Then,

γ is a slant helix if and only if
k1

k2
= constant. (3.10)

Proof Differentiating (3.9) and by using the Bishop frame (2.1), we find

g (∇TM1, u) = g (k1T, u) = k1g (T, u) = 0. (3.11)

From (3.9), we get

g (T, u) = 0.

Again differentiating from the last equality, we obtain

g (∇TT, u) = g (k1M1 + k2M2, u)

= k1g (M1, u) + k2g (M2, u)

= k1 cos θ + k2 sin θ = 0.

Using above equation, we get
k1

k2
= − tan θ = constant.

The converse statement is trivial. This completes the proof. �
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Theorem 3.7 . Let γ : I −→ E3 be a unit speed biharmonic slant helix with non-zero natural

curvatures. Then,

k1 = constant and k2 = constant. (3.12)

Proof Suppose that γ be a unit speed biharmonic slant helix. From (3.10) we have

k1 = σk2. (3.13)

where σ is a constant.

On the other hand, using first equation of (3.6), we obtain that k2 is a constant. Similarly,

k1 is a constant.

Hence, the proof is completed. �
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Abstract: This work addresses the methods to solve Very Large Scale Integration (VLSI)

circuit partitioning problem with dual objectives, viz., 1. Minimizing the number of inter-

connection between partitions, that is, the cut size of the circuit and 2. Balancing the area

occupied by the partitions. In this work an efficient hybrid Genetic Algorithm (GA) incor-

porating the Taguchi method as a local search mechanism has been developed to solve both

bipartitioning and recursive partitioning problems in VLSI design process. The systematic

reasoning ability of the Taguchi method incorporated after the crossover operation of GA,

has improved the searching ability of GA. The proposed Hybrid Taguchi Genetic Algorithm

(HTGA) has been tested with fifteen popular bench mark circuits of ISCAS 89 (Interna-

tional Symposium on Circuit and Systems-89). The results of experiments conducted, have

proved that HTGA is able to converge faster in reaching the nearer-to-optimal solutions. The

performance of the proposed HTGA is compared with that of the standard GA and Tabu

Search method reported in the literature. It is found that the proposed HTGA is superior

and consistent both in terms of number of iterations required to reach nearer-to-optimal

solution and also the solution quality.

Key Words: VLSI, partitioning, genetic algorithm, Taguchi method, cut size, multi-

partitioning.

AMS(2000): 49J35

§1. Introduction

During the Very Large Scale Integration (VLSI) design process, the complex circuit compris-

ing of elements like gates, buffers, Input/Output ports which are inter connected by wires is

divided into subsets, that is, modules [10,16] as the first step. This partitioning of the circuit

into smaller modules is essential to reduce the problem complexity of the VLSI physical design

1Received July 21, 2010. Accepted September 14, 2010.
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problem. Proper partitioning of a VLSI circuit will result in minimum total area occupied

by all the elements of the circuit, and reduction in the total length of interconnecting wires

between the elements, which will in turn minimize the power dissipation and time delay during

its operation. To achieve these objectives of VLSI design problem, the complex VLSI circuit

should be partitioned into smaller sub modules such that the number of wires passing between

the elements of different modules is kept minimum. For a particular partition, the sum total of

number of wires passing between the modules is known as cutsize of the partition. A partition

with modules occupying equal area will largely help in the later part of the VLSI design process

namely floorplanning, placement and routing. Hence, partitioning of VLSI circuit should be

done in such a way that, all the modules occupy more or less equal area or in other words

the uneven distribution of area among the modules, that is, imbalance in area should be kept

minimum. Hence in this work, both these objectives (i) minimizing the cutsize and (ii) mini-

mizing the area imbalance among the modules are considered for solving the VLSI partitioning

problem.

VLSI circuit partitioning is proved to be an intractable problem [14] and only satisfac-

tory solutions to the different problem instances are being generated by designing suitable

metaheuristic algorithms. In this research work, an attempt is made to design a suitable meta-

heuristic algorithm capable of producing consistent solution with lesser number of iterations for

a wider range of VLSI circuit problem.

§2. Literature survey

B.W.Kernighan and S.Lin proposed the group migration algorithm (KL algorithm) [12] for

graph partitioning problem which through the years of use has been proved to be very efficient.

However KL algorithm is designed only for bipartitioning the given circuit. C.M.Fiduccia

and R.M.Mattheyses (FM) improved the KL algorithm by introducing an elegant bucket sort-

ing technique [7]. However, FM algorithm was able to provide satisfactory solutions only for

smaller to medium size problems and also only for bipartitioning the circuit. Later Cong.J

(1994) developed k-way net based multi way partitioning algorithm to produce better quality

solutions than the FM algorithm but only for smaller size problems. Mean time hMetis [24] and

other Multilevel Clustering algorithms (MLC) were developed [8] based on the flat partitioning

methodology with an aim of further minimizing the cutsize. Later, the Multilevel Partitioning

algorithm (MLP) that is also based on the flat partitioning methodology, was developed by

Jong-Sheng (2003) and its performance surpassed the result produced by hMetis and MLC in

terms of minimal cutsize. However it is proved that flat multiway partitioning approach could

produce better quality results for smaller size integrated circuits [17,18], and due to the space

complexity (O(N.K (K-1)) where N denotes the number of cells) and poor flexibility, the ap-

proach is less efficient with larger size integrated circuits. The method of recursive partitioning

evolved by Aeribi.S [3] is found to be performing better than the flat partitioning methodol-

ogy interms of solution quality but at the cost of additional computational load. Sadiq.M.Sait

developed metaheuristic algorithms [16] based on Genetic Algorithm (GA) and Tabu search

(TS) to address relatively larger size problems and with multiple objectives. In his work he has
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proved that though GA is able to produce quality solutions for smaller size circuits and Tabu

search outperforms GA in terms of both quality of the solution and execution time even for the

larger circuits.

In this work, with an emphasis on solution quality, research focus is retained to improve

upon the recursive partitioning methodology, inspite of its heavy computational requirement

compared to the flat partitioning methodology. Also to address the problem complexity of VLSI

multi partitioning problem, which is NP-hard, an attempt is made to develop a metaheuristic

algorithm based on the robust and versatile tool, GA. To overcome the inherent scalability issue

with the GA, the Taguchi method, a robust design approach is incorporated in the genetic search

process.

§3. Problem formulation

Any VLSI circuit consisting of more than one component or element (that is either a gate or flip

flop or buffer) can be represented in the form of a hyper graph H(V,E). V = {v1, v2, v3 · · · vn}
is the set of nodes representing the elements used in the circuit and E = {e1, e2, e3 · · · en} is

the set of edges representing all the required connections between the elements. The aim of the

work is to split the given hyper graph into required number of partitions with minimum number

of inter connections between the partitions (namely the cutsize) and also with minimal area

imbalance between the modules, that is, the uneven distribution of area among the partitions.

An attempt to minimize the number of interconnecting wires between two modules by placing

the elements associated in the interconnectivity, together in one module will result in increase

in area imbalance between the two modules, and vice versa. Hence in order to achieve the

above said two contradicting objectives concurrently, the following combined objective function

is constructed.

The Combined Objective Function ( COF ):

COF = Minimize [(α1 ∗ F1) + (α2 ∗ F2)] (1)

where,

F1 = Cutsize (given in (2))

F2 = Area imbalance between the circuits (given in (3))

α1 = Weightage factor assigned to the cutsize

α2 = Weightage factor assigned to the area imbalance

The function [23] for cutsize (F1) is:

F1 =
∑

∀r∈E




(|Qr|−1)∑

i=1

(−1)i+1cQr

i − 2F

|Qr|∏

j=1

xj


 (2)

where,

Qr= Set of assignment variables for all non Input/Output components on net (edges) r

F =





1 if |Qr| is even
0 otherwise
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E = Set of edges

Ci
Qr = Combinations of the set Qr taken i at a time

xj = Set of nodes

The function for area imbalance (F2) is:

F2 = β1 − β2 (3)

where,

β1 = max { |P | : P is a partition }
β2 = min { |P | : P is a partition }
|P | = Number of elements in a partition

§4. Proposed methodology

A GA based heuristic namely Hybrid Taguchi Genetic Algorithm (HTGA) is proposed in this

work, to solve the VLSI circuit partitioning problem with dual objectives of minimizing the

cutsize and minimizing the area imbalance among the partitions. The proposed algorithm is

tested with fifteen popular bench mark circuits of ISCAS89, and its performance is compared

with that of the other metaheuristics reported in the literature.

4.1 Genetic Algorithm

Genetic algorithm operates on the principle of survival-of-the-fittest, where weak individuals die,

while stronger ones survive and bear many offspring and breed children, which often inherit

qualities that are, in many cases superior to their parent’s qualities [14]. GA begins with a

population offspring (individuals- representing the design/decision variables) created randomly.

Thereafter, each string in the population is evaluated to find its fitness value (that is, the

objective function value of the given optimization problem). The operators Selection, Crossover

and Mutation are used to create a new and better population. The new population is further

evaluated for the fitness values and tested for termination. If the termination criteria are not

met, the population is interactively operated by the above genetic operators and evaluated.

One cycle of these genetic operations and the evaluation procedure is known as a generation in

GA terminology. The generation cycle is continued until the termination criterion is met.

4.2 Taguchi Method

Taguchi method is a robust design approach, which uses many ideas from statistical experimen-

tal design for evaluating and implementing improvements in products, processes and equipment

[21,9]. The fundamental principle of Taguchi method is to improve the quality of a product by

minimizing the effect of the causes of variation without eliminating the inevitable causes.

The two major tools used in the Taguchi method are:

1. Orthogonal arrays (OA) which are used to study many design parameters simultaneously,

2. Signal-to-Noise Ratio (SNR) which measures quality.
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For instance, let there be an optimization problem whose solution is influenced by, say

seven factors and each of these factors can be at any of the two levels. If the objective is to find

a suitable level for each factor to find an optimal solution, then the total number of possible

experiments is 27 to find the optimal solution. An orthogonal array (OA), an example shown in

Table 1, represents a set of recommended limited number of experiments, (eight for the example

shown in Table 1, needed to find a suitable level for each factor to achieve an optimal solution

at a faster rate. Thus, with the help of only these 8 experiments out of a total 27 possible

experiments, the best solution can be found with each factor being at a suitable level. The

orthogonal arrays are represented as Ln(xn−1), where n = 2k is the number of experimental

runs, k is a positive integer, x is the number of levels for each factor and n− 1 is the number

of columns in an orthogonal array. The example OA is shown in the Table 1, is of L8(2
7) type.

The second tool of Taguchi method, the SNR, is used to find which level is suitable for

each factor; SNR calculation is discussed with an example in Section ??. In communication

engineering parlance, the Signal to Noise Ratio means the measure of signal quality, which

corresponds to the solution quality in Taguchi method. While conducting each experiment as

per the orthogonal array, the objective function value is computed, and the effect of each of the

two levels on each factor in contributing to the objective function value is computed. A level

to a particular factor, which gives the maximum effect in contribution to the objective function

value, is optimal for the concerned factor. As the effect is maximum for this level, it is said

to have maximum influence or the maximum Signal to Noise Ratio (SNR) and so considered

as optimal level for the factor. With the conduct of all the experiments as per the orthogonal

array, the solution obtained with optimal level for each factor, is the optimum solution for the

given optimization problem.

4.3 Hybrid Taguchi Genetic Algorithm (HTGA)

In the proposed Hybrid Taguchi Genetic Algorithm (HTGA) to solve the VLSI partitioning

problem, the Taguchi method is embedded within GA, between the crossover and mutation op-

erations, to improve all the solutions of the intermediate population obtained after the crossover

operation and before subjected to the subsequent mutation operation.

The proposed HTGA is designed to generate multi-partitioning solutions for larger size

VLSI problems through the recursive approach, recomented by Areibi.S [3]. The adapted

recursive approach applies bipartitioning recursively until the desired number of partition is

obtained, which is illustrated in the example shown in Fig. 1, where a single VLSI circuit is

recursively partitioned into eight partitions.

Figure 1: Recursive partitioning of a VLSI circuit
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In HTGA, genotype representation is used to code a feasible solution as a chromosome

[4,14]. The zeros and ones in a chromosome represents either of the two partitions they belong

to. In case of multiple partitions through recursive partitioning, each of the divided chromo-

somes representing each partition will have zeros and ones representing either of the two sub

partitions.

A bipartition solution of a VLSI circuit having components v1, v2, v3, v4, v5 and v6 shown

in the Fig. 2 is encoded as a solution chromosome as shown in Fig. 3. The digit one represents

that the element is present in the partition P1 otherwise in P2.

Figure 2: A bipartitioning solution of the example VLSI circuit

v1 v2 v3 v4 v5 v6

1 0 1 0 0 1

Figure 3: Chromosome representation of bipartition solution

When the bipartition solution shown in Fig.3 is further partitioned through recursive

method, that is, when P1 is partitioned into P1(a) and P1(b) and P2 is partitioned into P2(a)

and P2(b), a sample solution shown in Fig.4 is encoded as a solution chromosome as shown in

Fig.5.

Figure 4: A recursive partitioning solution of the example VLSI circuit

In the proposed HTGA, the random initial population of partitioning solutions is subjected

to selection and crossover operations. The resultant intermediate population obtained through

the cross over operations is fed to the local search mechanism, Taguchi method module of the
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v1 v3 v6 v2 v4 v5

1 0 1 1 0 1

Figure 5: Chromosome representation of the solution with four partitions

HTGA. This phase of the HTGA creates a new improved intermediate population of same size

with each solution entirely different from the initial solutions of the intermediate population

resulted out of crossover operation of GA.

The algorithm shows the Taguchi phase in HTGA.

Algorithm

Encode the random initial population of solution

Do while the termination criteria is not met

Step 1: Perform Reproduction

Step 2: Perform Crossover

Step 3: Taguchi Method

a: Select a suitable orthogonal array

Do while the size of the population is reached

Do while an improved solution is found

Step b: Random selection of pair of chromosome.

Step c: Calculate SNRs.

Compute Effect of Factors.

Select the optimal bit

Step d: Construct new chromosome

End Do

End Do

Step 4: Perform Mutation

End Do

Decode the best solution in the final population to get the optimal partition.

In each iteration of this phase, a pair of chromosomes, say X and Y are selected at random

from the intermediate population and a better chromosome Z is evolved by choosing each gene

either from chromosome X (level 1) or from chromosome Y (level 2). The Taguchi method

of producing a better chromosome Z from a randomly chosen two chromosomes X and Y is

illustrated in Table 2. Selection of suitable level is done by conducting eight experiments as per

the example orthogonal array, shown in Table 1. For each experiment the functional value which

is COF of experimental chromosome is computed. As the problem is minimization problem, the

signal to noise ratio, SNR (ηi) for each experiment i is computed as a reciprocal of COF value

of the experimental chromosome. Having calculated the SNR value for all the experiments,

for each gene, the effect of choosing from level 1 (chromosome X) or level 2 (chromosome Y)

chromosome is computed as equations 4 and 5.

Ef1 =
n∑

i=1

SNR(ηi), when gene i is belongs to level 1 (4)
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Ef2 =
n∑

i=1

SNR(ηi), when gene i is belongs to level 2 (5)

The gene is selected from the level for which the effect of factor Efi is maximum and the

improved chromosome Z is thus constructed with all such selected genes in their respective

positions.

The above said iteration is repeated by selecting another pair of chromosomes from the

intermediate population and a new chromosome is created. The procedure is repeated till the

new intermediate population of required size is created. This improved intermediate population

is fed to the subsequent mutation operator of generation cycle of GA. The generation cycle of

HTGA is repeated till the termination criterion is met.

§5. Results and discussions

The proposed algorithm, HTGA was coded in C++ and experiments were conducted in an

IBM Pentium D PC with 3.20 GHz Processor. The HTGA was tested with fifteen number of

ISCAS89 (International Symposium of Circuit And Systems) benchmark circuits. The details

of the benchmarks are shown in Table 3. To measure the effect of Taguchi method in the

proposed HTGA, the performance of HTGA is compared with that of the standard template

of GA, that is, a genetic algorithm without the hybridization of Taguchi method. To make the

comparison on a common platform the standard GA is also coded in C++, run on the same

machine and tested with the same benchmark circuits.

In the proposed HTGA tournament selection is used for reproduction operation, Single cut

point crossover is used in the crossover operation and Flap bit mutation is used for mutation

operation. The parameters used in HTGA are as below.

1. Population Size = 20

2. Crossover probability (Pc) = 0.6

3. Mutation probability (Pm) = 0.01

4. Termination Criterion = A predefined number of iterations for a given circuit or a

predefined satisfactory COF value, whichever occurs first.

5. Orthogonal array used in the Taguchi experimentation is L8(2
7).

The best values for the individual parameters are fixed by conducting trials and on satis-

factory performance. The crossover probability Pc was varied from 0.4 to 0.9, and the GA is

found able to converge faster with a crossover probability Pc of value 0.6. Similarly the muta-

tion probability Pm was varied between 0.001 to 0.1 and the GA with the mutation probability

Pm of value 0.01 is found able to retain more number of better solution than worse solution at

the end of GA cycle.

For all the bench mark circuits taken in this work, the proposed algorithm HTGA is able

to outperform the standard Genetic Algorithm both in bipartitioning application and so in

recursive partitioning application, again both in terms of number of iterations required to reach

a nearer-to-optimal solution and also in terms of the quality of the solution, that is the absolute

value of COF . The results of this comparative study between GA and HTGA in bipartitioning
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and in recursive partitioning (four partitions) are shown in Tables 4 and 5 respectively.

It can be seen from both Tables 4 and 5, that the CPU time taken by HTGA is higher

compared to the standard GA for smaller circuit, which may be attributed to the additional

computational load required because of the Taguchi method of HTGA. However it can be also

seen from these tables that, for larger circuits, the CPU time taken by HTGA is substantially

lower than standard GA, which can be attributed to the efficiency of HTGA in reaching the

solutions with lesser number of generation cycles.

It is observed that because of the Taguchi method after the crossover operation, HTGA

is able to converge at a faster rate than that of the standard GA, which is explained with a

sample benchmark problem S832 in Fig.6.

Figure 6: Convergence comparison between GA and HTGA for the benchmark problem S832

For each of the fifteen ISCAS89 benchmark circuits the experiment is conducted with

25 sets of different initial random populations, again with each initial random population the

experiment is repeated 100 times to access the consistency rate of the solution produced by the

proposed HTGA. The percentage consistency rate is computed as {( number of trials getting

COF value within five percent of the best found COF value /total number of trials )*100}.
The summary of the findings are shown in Table 6, which exhibit that the consistency rate of

proposed HTGA is considerably higher than the normal GA.

The performance of the HTGA is also compared with that of two meta heuristics, reported

in the literature [16] viz (i). GA based heuristic, (ii). Tabu Search based heuristic. The cutsize

obtained by these heuristic and the proposed HTGA is shown in Table 7.

It can be seen from the Table 7, that though the GA based heuristic proposed in the

literature [16] is effective in minimizing the cutsize for smaller benchmark circuits, the Tabu

Search based heuristic given in the literature is able to outperform the GA for larger benchmark

circuits. The proposed HTGA overcomes this issue and produces lesser cutsize for all the

benchmark circuits except S386 and S5378. For these two circuits cutsize produced by HTGA

is marginally higher than the Tabu Search based meta heuristics but lower than GA based

heuristics. The effectiveness of HTGA in producing better quality solutions could be attributed

to the systematic reasoning ability of the Taguchi method, which is built in the proposed HTGA.
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Again the proposed HTGA may be made to surpass the performance of TS for the circuits S386

and S5378 by designing an improved OA even with more than 2 levels, (if required), which is

a part of the scope for future work.

As the hMetis [24] algorithm, and other algorithms such as MLP, MLC mentioned in the

literature in section 2 are suited for only flat partitioning [3] and are capable of producing

solutions even for very large size problems with appreciably lesser time with the objective of

producing solution with satisfactory quality level, the run time of hMetis, MLP, MLC cannot

be compared with that of the proposed HTGA, which uses recursive partitioning methodology

and whose solution quality is expected to be much higher than that of the flat partitioning

methodology [3,17-18].

Due to the recursive nature and a larger number of computations involved in OA, HTGA

needs more computational time for larger scale benchmarks. However this issue could be ad-

dressed by constructing dedicated OA with more number of factors. And grouping of higher

cardinality edges in a particular partition (Pi) instead of doing random initial population gen-

eration, which is again the scope for future work.

§6. Conclusion

In this work, an attempt is made to solve the VLSI circuit partitioning problem with an objective

of minimizing the cutsize, that is, the number of wires passing between the partitions and also

balancing the area between the partitions. An efficient hybrid Genetic Algorithm incorporating

Taguchi method as a local search mechanism, named as, Hybrid Taguchi Genetic Algorithm

(HTGA) has been developed to solve both the bipartitioning and recursive partitioning problem

in the VLSI design process. The proposed HTGA is tested with a wide range of ISCAS89

benchmark circuits and its performance is compared with that of a standard GA (without the

use of Taguchi as a local search tool) and it is found that HTGA out performs the standard

GA both in terms of solution quality and the number of iterations required for reaching the

nearer-to-optimal solution, due to the systematic reasoning ability of the Taguchi method. The

experimentation with proposed HTGA was also repeated with the same and different input data

sets and it was found that the proposed HTGA is consistent in producing quality solutions.

The performance of HTGA is also compared with that of the GA and Tabu Search based

meta heuristics reported in the literature. And it is found that the proposed HTGA is able to

give better solutions than the GA based heuristics for all the benchmark circuits considered

in this work. Compared to the Tabu Search based heuristic, the proposed HTGA is able to

produce better solution for all the benchmark circuits except S386 and S5378. Again HTGA

may be made to surpass the performance of TS for the circuits S386 and S5378 by designing

an improved orthogonal array (OA) even with more than 2 levels (if required) which is a part

of the scope for the future work.
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Appendix:

Table 1: An example Orthogonal Array, L8(2
7)

Factors

1 2 3 4 5 6 7

Experiment A B C D E F G

number Levels assigned

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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Table 2: An example calculation of Taguchi method.

Step a: Select a suitable two level orthogonal array, say L8(2
7) shown in Table 1

Step b: Randomly select two chromosomes from the intermediate crossover population

Chromosome X : 1 0 1 1 1 1 1 (level 1)

Chromosome Y : 0 1 1 1 0 1 0 (level 2)

Step c: Taguchi Experiment

Factors

1 2 3 4 5 6 7

Experiment A B C D E F G Function SNR(ηi)

value COFi

1 1 0 1 1 1 1 1 3.5 0.28

2 1 0 1 1 0 1 0 2.0 0.50

3 1 1 1 1 1 1 1 4.0 0.25

4 1 1 1 1 0 1 1 5.0 0.20

5 0 0 1 1 0 1 0 3.0 0.33

6 0 0 1 1 1 1 1 3.0 0.33

7 0 1 1 1 0 1 1 3.0 0.33

8 0 1 1 1 1 1 0 5.0 0.20

Ef1 1.23 1.44 1.31 1.19 1.06 1.14 1.14

Ef2 1.19 0.98 1.10 1.23 1.36 1.41 1.28

Optimal Level 1 1 1 2 2 2 2

Step d: Construct a new chromosome

Optimal

Chromosome Z 1 0 1 1 0 1 0

Table 3: Details of ISCAS89 benchmark problems tested with HTGA

S.NO Benchmark Number of Number of

Circuit Code Elements Interconnections

1 S27 18 13

2 S208 117 108

3 S298 136 130

4 S386 172 165

5 S641 433 410

6 S832 310 291

7 S953 440 417

8 S1196 561 547

9 S1238 540 526

10 S1488 667 648

11 S1494 661 642

12 S5378 2994 2944

13 S9234 5845 5822

14 S13207 8652 8530

15 S15850 10384 10296
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Table 4: Performance comparison between GA and HTGA in bipartitioning

Benchmark Circuit Standard Genetic Algorithm

Cut size Area COF No. of CPU

(F1) (F2) Generations time (s)

S27 3 2 2.5 2 2

S208 30 20 25 25641 552

S298 15 26 20.5 4872 95

S832 40 84 62 28436 278

S386 38 101 69.5 7985 165

S641 47 128 87.5 33700 1506

S953 95 139 117 27741 600

S1196 110 13 61.5 6654 396

S1238 98 65 81.5 4385 380

S1488 104 10 57 9359 1058

S1494 104 18 61 8659 1102

S5378 541 30 285.5 12658 1956

S9234 1082 42 562 28958 4558

S13207 1602 80 841 30258 6582

S15850 2186 24 1105 38598 8965

HTGA

S27 3 1 2 2 2

S208 27 18 22.5 9189 659

S298 13 25 19 2346 112

S832 39 74 56.5 18849 290

S386 32 95 63.5 3339 170

S641 44 117 80.5 29221 1600

S953 84 141 112.5 21080 556

S1196 102 13 57.5 4159 398

S1238 73 74 73.5 2958 302

S1488 92 18 55 8158 650

S1494 101 19 60 6858 520

S5378 463 36 249.5 9958 952

S9234 915 46 480.5 12554 2858

S13207 1328 91 709.5 20587 4965

S15850 1665 30 847.5 25987 4895
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Table 5: Performance comparison between GA and HTGA in Multi-Partitioning(4-Partitions)

Benchmark Circuit Standard Genetic Algorithm

Cut size Area COF No. of CPU

(F1) (F2) Generations time (s)

S27 6 3 4.5 11 15

S208 45 19 32 37580 705

S298 55 19 37 10144 192

S832 97 27 62 48325 596

S386 72 105 88.5 16470 421

S641 99 83 91 49435 3254

S953 102 115 108.5 45434 1000

S1196 123 8 65.5 12065 821

S1238 118 49 83.5 8658 859

S1488 112 6 59 15285 3548

S1494 123 11 67 16258 2658

S5378 552 25 288.5 24585 4586

S9234 1125 33 579 45866 5486

S13207 1658 45 851.5 60258 8456

S15850 2103 18 1060.5 66558 12455

HTGA

S27 5 2 3.5 10 13

S208 34 20 27 17125 802

S298 48 22 35 4913 185

S832 85 21 53 26218 630

S386 69 98 83.5 15264 513

S641 80 52 66 34934 3951

S953 123 68 95.5 31849 916

S1196 112 10 61 4586 795

S1238 98 40 69 4589 698

S1488 102 6 54 10258 2854

S1494 119 11 65 12859 1425

S5378 545 22 283.5 18548 1922

S9234 1123 30 576.5 25866 3596

S13207 1659 42 850.5 40287 4987

S15850 2102 18 1060 39854 7584
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Table 6: Comparison on consistency rate between GA and HTGA

Benchmark Consistency rate

Circuit Genetic Algorithm HTGA

S27 40 60

S208 46 63

S298 52 68

S832 58 66.25

S386 62.5 71

S641 48 62

S953 46 63

S1196 48 69.65

S1238 40.5 70.6

S1488 45.26 69.24

S1494 49.65 65

S5378 55 70.65

S9234 48.4 67.25

S13207 59.65 69

S15850 51 68.6

Table 7: Cutsize Comparison of HTGA with GA and TS (S.MSait)

Benchmark Cutsize of the Benchmark Circuits

Circuit Genetic Algorithm Tabu Search HTGA

S298 19 24 13

S832 45 50 39

S386 36 30 32

S641 45 59 44

S953 96 99 84

S1196 123 106 102

S1238 127 79 73

S1488 104 98 92

S1494 102 101 101

S5378 573 430 463

S9234 1090 918 915

S13207 1683 1332 1328

S15850 2183 1671 1665
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Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered

pair S = (G, σ) (S = (G, µ)) where G = (V, E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}.

Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called

abbreviated a signed graph or a marked graph. In this paper, we establish a new graph

equation L2(G) ∼= Lk(G), where L2(G) & Lk(G) are second iterated line graph and kth

iterated line graph respectively. Further, we characterize signed graphs S for which L2(S) ∼

Lk(S) and η(S) ∼ Lk(S), where ∼ denotes switching equivalence and L2(S), Lk(S) and

η(S) are denotes the second iterated line signed graph, kth iterated line signed graph and

negation of S respectively.

Key Words: Smarandachely k-signed graphs, Smarandachely k-marked graphs, signed

graphs, marked graphs, balance, switching, line signed graphs, negation.
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§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the

reader is refer to [8]. We consider only finite, simple graphs free from self-loops.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair

S = (G, σ) (S = (G,µ)) where G = (V,E) is a graph called underlying graph of S and

σ : E → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particu-

larly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated

a signed graph or a marked graph. Cartwright and Harary [5] considered graphs in which ver-

tices represent persons and the edges represent symmetric dyadic relations amongst persons

each of which designated as being positive or negative according to whether the nature of the

relationship is positive (friendly, like, etc.) or negative (hostile, dislike, etc.). Such a network

1Received June 1, 2010. Accepted September 15, 2010.
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S is called a signed graph (Chartrand [6]; Harary et al. [11]).

Signed graphs are much studied in literature because of their extensive use in modeling a

variety socio-psychological process (e.g., see Katai and Iwai [14], Roberts [16] and Roberts and

Xu [17]) and also because of their interesting connections with many classical mathematical

systems (Zaslavsky [25]).

A cycle in a signed graph S is said to be positive if the product of signs of its edges is

positive. A cycle which is not positive is said to be negative. A signed graph is then said to be

balanced if every cycle in it is positive (Harary [9]). Harary and Kabell [12] developed a simple

algorithm to detect balance in signed graphs as also enumerated them.

A marking of S is a function µ : V (G) → {+,−}; A signed graph S together with a

marking µ is denoted by Sµ. Given a signed graph S one can easily define a marking µ of S as

follows: For any vertex v ∈ V (S),

µ(v) =
∏

uv∈E(S)

σ(uv),

the marking µ of S is called canonical marking of S.

The following characterization of balanced signed graphs is well known.

Theorem 1(E. Sampathkumar, [18]) A signed graph S = (G, σ) is balanced if, and only if,

there exists a marking µ of its vertices such that each edge uv in S satisfies σ(uv) = µ(u)µ(v).

The idea of switching a signed graph was introduced in [1] in connection with structural

analysis of social behavior and also its deeper mathematical aspects, significance and connec-

tions may be found in [25].

Switching S with respect to a marking µ is the operation of changing the sign of every edge

of S to its opposite whenever its end vertices are of opposite signs. The signed graph obtained

in this way is denoted by Sµ(S) and is called µ-switched signed graph or just switched signed

graph. Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be isomorphic, written as

S1
∼= S2 if there exists a graph isomorphism f : G→ G′ (that is a bijection f : V (G) → V (G′)

such that if uv is an edge in G then f(u)f(v) is an edge in G′) such that for any edge e ∈ G,

σ(e) = σ′(f(e)). Further a signed graph S1 = (G, σ) switches to a signed graph S2 = (G′, σ′)

(or that S1 and S2 are switching equivalent) written S1 ∼ S2, whenever there exists a marking

µ of S1 such that Sµ(S1) ∼= S2. Note that S1 ∼ S2 implies that G ∼= G′, since the definition

of switching does not involve change of adjacencies in the underlying graphs of the respective

signed graphs.

Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be weakly isomorphic (see

[23]) or cycle isomorphic (see [23]) if there exists an isomorphism φ : G → G′ such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(See [24]).

Theorem 2(T. Zaslavsky, [24]) Two signed graphs S1 and S2 with the same underlying graph

are switching equivalent if, and only if, they are cycle isomorphic.
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§2. Negation switching equivalence in signed graphs

One of the important operations on signed graphs involves changing signs of their edges. From

socio-psychological point of view, if a signed graph represents the structure of a social system

in which vertices represent persons in a social group, edges represent their pair-wise (dyadic)

interactions and sign on each edge represents the qualitative nature of interaction between the

corresponding members in the dyad classified as being positive or negative then according to

social balance theory, the social system is defined to be in a balanced state if every cycle in the

signed graph contains an even number of negative edges [9]; otherwise, the social system is said

to be in an unbalanced state. The term balance used here refers to the real-life situation in

which the individuals in a social group experience a state of cognitive stability in the sense that

there is no psychological tension amongst them that demands a change in the pattern of their

ongoing in- terpersonal interactions. For instance, as pointed out by Heider [13], any situation

in which a person is forced to maintain a positive relation simultaneously with two other persons

who are in conflict with each other is an unbalanced state of the triad consisting of the three

persons. Thus, when the social system is found to be in an unbalanced state it is desired to bring

it into a balanced state by means of forcing some positive (negative) relationships change into

negative (positive) relationships; such sets of edges in the corresponding signed graph model are

called balancing sets (see Katai & Iwai [14]). Such a change (which may be regarded as a unary

operation transforming the given signed graph) is called negation, which has other implications

in social psychology too (see Acharya & Joshi [2]). Thus, formally, the negation η(S) of S is a

signed graph obtained from S by negating the sign of every edge of S; that is, by changing the

sign of each edge to its opposite [10].

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed

graph S as follows: Given a signed graph S = (G, σ) its line signed graph L(S) = (L(G), σ′)

is the signed graph whose underlying graph is L(G), the line graph of G, where for any edge

eiej in L(S), σ′(eiej) is negative if, and only if, both ei and ej are adjacent negative edges in

S. Another notion of line signed graph introduced in [7] is as follows: The line signed graph of

a signed graph S = (G, σ) is a signed graph L(S) = (L(G), σ′), where for any edge ee′ in L(S),

σ′(ee′) = σ(e)σ(e′). In this paper, we follow the notion of line signed graph defined by M. K.

Gill [7] (See also E. Sampathkumar et al. [19,20]).

Theorem 3(M. Acharya, [3]) For any signed graph S = (G, σ), its line signed graph L(S) =

(L(G), σ′) is balanced.

Hence, we shall call a given signed graph S a line signed graph if it is isomorphic to the

line signed graph L(S′) of some signed graph S′. In [20], the authors obtained a structural

characterization of line signed graphs as well as line signed digraphs.

For any positive integer k, the kth iterated line graph, Lk(G) of G (kth iterated line signed

graph, Lk(S) of S) is defined as follows:

L0(G) = G, Lk(G) = L(Lk−1(G)) (L0(S) = S, Lk(S) = L(Lk−1(S)))

Corollary 4(P. Siva Kota Reddy & M. S. Subramanya, [22]) For any signed graph S = (G, σ)
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and for any positive integer k, Lk(S) is balanced.

The following result is well known.

Theorem 5(V. V. Menon, [15]) For a graph G, G ∼= Lk(G) for any integers k ≥ 1 if, and only

if, G is 2-regular.

Proposition 6(D. Sinha, [21]) For a connected graph G = (V,E), L(G) ∼= L2(G) if, and only

if, G is cycle or K1,3.

From the above results we have the following result for graphs.

Theorem 7 For any graph G, L2(G) ∼= Lk(G) for some k ≥ 3, if, and only if, G is either a

cycle or K1,3.

Proof Suppose that L2(G) ∼= Lk(G) for some k ≥ 3. We observe that Lk(G) = Lk−2(L2(G)).

Hence, by Proposition 6, L2(G) must be a cycle. But for any graph G, L(G) is a cycle if, and

only if, G is either cycle or K1,3. Since K1,3 is a forbidden to line graph and L(G) is a line

graph, G 6= K1,3. Hence L(G) must be a cycle. Finally L(G) is a cycle if, and only if, G is

either a cycle or K1,3.

Conversely, if G is a cycle Cr , of length r, r ≥ 3 then for any k ≥ 2, Lk(G) is a cycle and

if G = K1,3 then for any k ≥ 2, Lk(G) = C3. This implies, L2(G) = Lk(G) for any k ≥ 3. This

completes the proof. �

We now characterize those second iterated line signed graphs that are switching equivalent

to their kth iterated line signed graphs.

Proposition 8 For any signed graph S = (G, σ), L2(S) ∼ Lk(S) if, and only if, G is either a

cycle or K1,3.

Proof Suppose L2(S) ∼ Lk(S). This implies, L2(G) ∼= Lk(G) and hence by Theorem 7,

we see that the graph G must be isomorphic to either a cycle or K1,3.

Conversely, suppose that G is a cycle or K1,3. Then L2(G) ∼= Lk(G) by Theorem 7. Now,

if S any signed graph on any of these graphs, By Corollary 4, L2(S) and Lk(S) are balanced

and hence, the result follows from Theorem 2. �

We now characterize those negation signed graphs that are switching equivalent to their

line signed graphs.

Proposition 9 For any signed graph S = (G, σ), η(S) ∼ Lk(S) if, and only if, S is an

unbalanced signed graph and G is 2-regular with odd length.

Proof Suppose η(S) ∼ Lk(S). This implies, G ∼= Lk(G) and hence G is 2-regular. Now,

if S is any signed graph with underlying graph as 2-regular, Corollary 4 implies that Lk(S) is

balanced. Now if S is an unbalanced signed graph with underlying graph G = Cn, where n is

even, then clearly η(S) is unbalanced. Next, if S is unbalanced signed graph with underlying

graph G = Cn, where n is odd, then η(S) is unbalanced. Hence, if η(S) is unbalanced and
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its line signed graph Lk(S) being balanced can not be switching equivalent to S in accordance

with Theorem 2. Therefore, S must be unbalanced and G is 2-regular with odd length.

Conversely, suppose that S is an unbalanced signed graph and G is 2-regular with odd

length. Then, since Lk(S) is balanced as per Corollary 4 and since G ∼= Lk(G), the result

follows from Theorem 2 again. �

Corollary 10 For any signed graph S = (G, σ), η(S) ∼ L(S) if, and only if, S is an unbalanced

signed graph and G is 2-regular with odd length.
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Abstract: Let G=(V(G),E(G)) be a graph.A set of vertices S in a graph G is called to be

a Smarandachely dominating k-set, if each vertex of G is dominated by at least k vertices

of S. Particularly, if k = 1, such a set is called a dominating set of G. The Smarandachely

domination k -number γk(G) of G is the minimum cardinality of a Smarandachely dominating

k -set of G. S is called weak domination set if deg(u) ≤ deg(v) for every pair of (u, v) ∈

V (G)− S . The minimum cardinality of a weak domination set S is called weak domination

number and denoted by γw(G) . In this paper we introduce the weak reinforcement number

which is the minimum number of added edges to reduce the weak dominating number. We

give some boundary of this new parameter and trees. Furthermore, some boundary of strong

reinforcement number has been given for a given graph G and its complemented graph G.

Key Words: Connectivity, Smarandachely dominating k-set,Smarandachely dominating

k-number, strong or weak reinforcement number.
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§1. Introduction

Let G = (V,E) be a graph with vertex set V and edge set E. A set S ⊆ V is a Smarandachely

dominating k -set of G if every vertex v in V −S there exists a vertex u in S such that u and v are

adjacent in G. The Smarandachely domination k -number of G, denoted γk(G) is the minimum

cardinality of a Smarandachely dominating k -set of G [7]. The concept of dominationin graphs,

with its many variations, is well studied in graph theory and also many kind of dominating

k -numbers have been described. Strong domination(sd-set) and weak domination(sw-set) was

introduced by Sampathkumar and Latha [2]. Let uv ∈ E . Then u and v dominate each

other. Further, u strongly dominates [weakly dominates] v if deg(u) ≥ deg(v) [ deg(u) ≤
deg(v)]. A set S ⊆ V is strong dominating set(sd-set) [weakly dominating set(sw-set)] if every

vertex v ∈ V − S is strongly dominated [weakly dominated] by some u in S. The strong

domination number γs(G) [weak domination number γw(G) ] of G is the minimum cardinality

of a Smarandachely dominating k -set S [5]. If Smarandachely domination k -number of G is

small, then distance between each pair of vertices is small in G. This property is easily see that

1Received July 20, 2010. Accepted September 16, 2010.
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γk(G) = γs(G) = γw(G) = 1 , where G is complete and the distance between each pairs is

1. If any edge could removed from graph G then the Smarandachely domination k -number of

G increase. Fink et al.[4] introduced the bondage number of a graph in 1990. The bondage

number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal

from G results in a graph with Smarandachely domination k -number grater than γk(G) [1,4,5].

Strong and weak bondage number introduced by Ebadi et al. in 2009 [7]. If some edge added

from graph G then the Smarandachely domination k -number of G could decrease. In 1990,

Kok and Mynhardt [6] introduced the reinforcement number r(G) of a graph G, which is the

minimum number of extra edges whose addition to graph G results in a graph G′ with γk(G)

< γk(G′) . They defined r(G) = 0 if γk(G) = 1 . In 1995, Ghoshol et al. introduced strong

reinforcement number rs , the cardinality of a smallest set F which satisfies γs(G+F ) < γs(G)

where F ⊂ E(G) [5]. In Figure1, γk(G) = 2 ,γs(G) = 3 ,γw(G) = 4 , r(G) = 2 and rs(G) = 1

for graph G.

Cardinality of {c, e}-set equals to the γk(G) , cardinality of {c, d, e}-set equals to the γs(G)

, cardinality of {a, b, f, g}-set equals to the γw(G) . Moreover, when we add two edge from

vertex d to vertex f and g, γk(G) decrease. Then,r(G) = 2 . Similarly, when we add an edge

from vertex c to vertex g, it is easy to see that rs(G) = 1. In this paper, for ∆(G) and δ(G)

denote the number of maximum and minimum degree, respectively.

§2 Weak reinforcement number

In this section we introduced a new reinforcement concept. Let F be a subset of E(G). Weak

reinforcement number rw , the cardinality of smallest set F which satisfiesγw(G+F ) < γw(G).

Then here, some weak reinforcement number boundaries’ are given and reinforcement numbers

of basic graph are computed.

Theorem 2.1 Let G be a connected graph, then 1 ≤ rw ≤ n.(n−1)
2 −m , where n = |V (G)| and

m = |E(G)| for any graph G.

Proof If ∆(G) = n− 1 , then rw(G) = 0 by definition. To dominate all vertices of a graph

by a vertex which has minimum degree, it is necessary all vertices have n − 1 degree, so the

graph is a complete graph. For any graph G, we can add n.(n−1)
2 −m edges to make a complete

graph and it’s an upper boundary. Lower boundary is 1, because of star graph’s structure.

Consequently, when we add at least 1-edge and at most n.(n−1)
2 −m, decrease γw(G). �

Observation 2.1 If G is a complete graph then,γw(G) = 1.
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Theorem 2.2 If γw(G) is 2, then rw(G) = n.(n−1)
2 −m for any graph G.

Proof Let weak domination number of a graph G be 2. We can decrease this number only

1. Due to the Observation 2.1 the graph G must be a complete. To make graph G complete

must add |E(G)| edges to graph, i.e. we must add n.(n−1)
2 −m edges. �

Lemma 2.1([6]) The weak and strong domination number of n-cycle is

γw(Cn) = γs(Cn) = ⌈n
3
⌉for, n ≥ 3.

Theorem 2.3 The weak reinforcement number of the n-cycle (with n ≥ 7 and n 6= 9) is

rw(Cn) =





2 , n = 1 (mod3)

4 , n = 2 (mod3)

6 , n = 0 (mod3)

Proof From Lemma 2.1, the weak domination number of graph Cn is ⌈n
3 ⌉. When γw(G)

is decreased, there arises 3 cases.

Case 1 If n ≡ 1(mod3) , the vertex which is taken to weak domination set, including itself

dominates 3 vertices. In order for a vertex to dominate both itself and the other 3 vertices, to

graph Cn two edges are added ( see Figure 2).

In conclusion, in the weak domination set there are vertices from K4 structure in Figure

2 together with the n−4
3 vertices. Then,γw(Cn + F ) = n−4

3 + 1 = n−1
3 . Since n−1

3 < ⌈n
3 ⌉, then

rw = 2.

Case 2 If n ≡ 2(mod3), similar to Case1, by creating two K4 structure, the proof is set. In

conclusion, in the weak domination set there has been n−8
3 +2 vertices. Then,γw(Cn+F ) = n−2

3 .

Since n−2
3 < ⌈n

3 ⌉ , then rw = 4.

Case 3 If n ≡ 0(mod3) , when it is set similar to Case1,rw = 6 .

Combining Cases 1-3, the proof is complete. �

Theorem 2.4 Values of weak reinforcement number of C4,C5,C6 and C9 are 2, 5, 9 and 7,

respectively.
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Proof The weak reinforcement number of C4,C5 and C6 are 2. It is easily seeing that from

Theorem 2.2, rw(C4) = 2,rw(C5) = 2,rw(C6) = 9. Moreover, γw(C9) = 3. To decrease this

number,we must obtain a K4 and K5 from C9 vertices.Then it’s easily see that rw(C9) = 7. �

Lemma 2.2([4]) The weak and strong domination number of the path of order-n is

γs(Pn) = ⌈n
3
⌉, forn ≥ 3,

γw(Pn) =





⌈n
3 ⌉ , if n = 1 (mod3),

⌈n
3 ⌉ + 1 , otherwise

Theorem 2.5 The weak reinforcement number of the path of order-n is

rw(Pn) =





3 , n = 1 (mod3)

1 , otherwise.

Proof If n = 3k and n = 3k+2 then γw(Pn) = ⌈n
3 ⌉+1. For these cases, we add an e1-edge

to two vertices, which has degree 1, then the graph be a Cn. γw(Cn) > γw(Cn + e1) since

γw(Cn) is ⌈n
3 ⌉. For this reason, rw(Pn) = 1. If n = 3k+1 then we add an edge to two vertices,

which has degree 1, then the graph be a Cn. Then we add 2 more edges, likes Theorem 2.3,

Case1. Since γw(Cn) > γw(Cn + F ), then rw(Pn) = 3, where F is a set of added edges. �

Lemma 2.3([4]) The weak and strong domination number of the wheel graph W1,n is

γs(W1,n) = 1 , γw(W1,n) = ⌈n
3
⌉.

Theorem 2.6 The weak reinforcement number of the wheel graph W1,n (with n ≥ 7 and n 6= 9)

rw(W1,n) =





2 , n = 1 (mod3)

4 , n = 2 (mod3)

6 , n = 0 (mod3)

Proof The proof is similar to that of Theorem 2.3. �

Theorem 2.7 If n = 4, 5, 6, 9 then rw(W1,n) is 2,5,9 and 7, respectively.

Proof The proof makes similar to that of Theorem 2.4. �

Lemma 2.4([5]) The weak and strong domination number of the complete bipartite graph Km,n

is

γs(Km,n) =





2 , if 2 ≤ m = n,

m , if 1 ≤ m < n.

γw(Km,n) =





2 , if 2 ≤ m = n,

n , if 1 ≤ m < n.
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Theorem 2.8 The weak reinforcement number of complete bipartite graph Km,n, where m ≤ n

is

rw(Km,n) =





m2 −m , m = n ≥ 2,

1 , m < n.

Proof If m = n , then γw(Km,n) = 2 . Due to Theorem 2.2, the graph must be a complete

while weak domination number decreasing. The edge number of graph K2m is
2m(2m− 1)

2
.

The edge number of Km,n is m2. So, rw number is m2 −m. If m < n then γw(Km,n) = n.

When we add an edge between two vertices which have degree of m, we obtain the rw number

is 1. �

Result 2.1 If m=1, then rw(K1,n) = 1, where K1,n is a star graph.

Lemma 2.5([5]) Define a support to be a vertex in a tree which adjacent to an end-vertex.

Every tree T with (n ≥ 4) has at least one of the following characteristic.

(i) A support adjacent to at least 2 end-vertex;

(ii) A support is adjacent to a support of degree 2;

(iii) A vertex is adjacent to 2 support of degree 2;

(iv) A support of a leaf and the vertex adjacent to the support are both of degree 2.

Theorem 2.9 If any vertex of tree T is adjacent with two or more end-vertices, then rw(T ) = 1.

Proof Let T has two or more end-vertices, which denote by u1, u2, . . .. The ui’s belong

to every minimum weak domination set of T . We add an e-edge between two vertices, then

γw(T ) > γw(T + e) . Hence, rw(T ) = 1. �

Theorem 2.10 Let T be any tree order of n (n > 3), then rw(T ) ≤ 3.

Proof It is easy to see that rw(T ) = 0 and rw(T ) = 1 for n=2 and n=3, respectively.

Assume that n > 3. From Lemma 2.5, there are 4 cases. (see Figure3)

Case 1 Assume that supported vertex s is adjacent to two or more vertices. All end-vertices

are in weak domination set. When we add an e-edge between any two end-vertices, γw(T ) >

γw(T + e) is obtained. Hence, rw(T ) = 1.
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Case 2 In this case two end-vertices are in weak domination set. We must obtain K4 structure

for weak dominate four vertices by a vertex. For this, worst case situation, we must add three

edges. Hence,rw(T ) ≤ 3.

Case 3 and Case 4 The proofs make similar to Case2. Consequently, rw(T ) ≤ 3.

Combining Cases 1-4, the proof is complete. �

§3. Strong reinforcement number

In these section general results is given for strong reinforcement number and some boundaries of

strong reinforcement number of any graph G and its complemented graph G. In [5], Theorems

3.1-3.6 following are proved.

Theorem 3.1 The strong reinforcement number of the path of order-n and n-cycle is

rs(Pn) = rs(Cn) = i, wheren ≡ i(mod3).

Theorem 3.2 The strong reinforcement number of multipicle complete graph is

rs(Km1,m2,...,mt
) =





0 , if m1 = 1

m1 − 1 , if m1 6= 1 andm1 = m2

1 , if m1 6= 1 andm1 6= m2

Theorem 3.3 rs(G) ≤ p− 1 − ∆(G) for any graph G, where p = |V (G)|.

Theorem 3.4 If G is any graph G, then rs(G) = p− 1 − ∆(G) if and only if γs(G) = 2.

Theorem 3.5 rs(G) ≤ ∆(G) + 1 , for any graph G with γs(G) ≥ 2.

Theorem 3.6 γs(G) + rs(G) ≤ p− ∆(G) + 1 for any graph G, where p = |V (G)|.

Theorem 3.7 Let G be any graph order of n and G be a complemented graph of G. If graph

G has at least one vertex which has degree 1, then γs(G) = 2 and rs(G) = 1.

Proof Let vertex u has degree 1. vertex u adjacent to n-2 vertices in G . Then taking

vertex v in strong domination set where vertex v adjacent to vertex u. Hence,γs(G) = 2 .From

Theorem 3.4,rs(G) = p− 1 − ∆(G) . Since ∆(G) = n− 2 , it is easily see that rs(G) = 1. �

Theorem 3.8 Let G be any graph order of n and G be a complemented graph of G. Then,

rs(G) ≤ δ(G).

Proof It is obvious that ∆(G) = n− δ(G)−1 and rs(G) ≤ n−1−∆(G) from the Theorem

3.3. Whence,

rs(G) ≤ n− 1 − (n− δ(G) − 1), rs(G) ≤ δ(G). �
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Theorem 3.9 Let G be any graph order of n and G be a complemented graph of G. Then,

rs(G) + rs(G) ≤ n+ δ(G) − (∆(G) + 1).

Proof It easily see that from Theorems 3.3 and 3.8. �

§4. Conclusion

The concept of domination in graph is very effective both in theoretical developments and

applications. Also, domination set problem can be used to solve hierarchy problem, network

flows and many combinatoric problems. If graph G has a small domination number then

each pairs of vertex has small distance. So, in any graph if we want to decrease to domination

number, we have to decrease distance between each pairs of vertex. More than thirty domination

parameters have been investigated by different authors, and in this paper we have introduced

the concept of domination. We called weak reinforcement number its. Then, we computed weak

reinforcement number for some graph and some boundary of strong reinforcement number has

been given for a given graph G and its complemented graph G. Work on other domination

parameters will be reported in forthcoming papers.
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§1. Introduction

The point partition number [4] of a graph G is the minimum number of subsets into which the

point-set of G can be partitioned so that the subgraph induced by each subset has a property

P . Dual to this concept of point partition number of graph is the maximum number of subsets

into which the point-set of G can be partitioned such that the subgraph induced by each subset

does not have the property P . Define the property P such that a graph G has the property P

if G contains no subgraph which is homeomorphic to the complete graph K3. Now the point

partition number and dual point partition number for the property P is referred to as point

arboricity and tulgeity of G respectively. Equivalently the tulgeity is the maximum number of

vertex disjoint subgraphs contained in G so that each subgraph is not acyclic. This number is

called the tulgeity of G denoted by τ(G). Also, τ(G) can be defined as the maximum number

1Received June 28, 2010. Accepted September 18, 2010.
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of disjoint cycles in G. The formula for tulgeity of a complete bipartite graph is given in [5].

The problems of Nordhaus-Gaddum type for the dual point partition number are investigated

in [3].

Let P be a graph property and G be a graph. If there exists a partition of G with a

partition set pair {H,T } such that the subgraph induced by a subset in H has property P ,

but the subgraph induced in T has no property P , then we say G possesses the Smarandache

partition. Particularly, let H = ∅ or T = ∅, we get the conception of point partition or its dual.

All graphs considered in this paper are finite and contains no loops and no multiple edges.

Denote by [x] the greatest integer less than or equal to x, by |S| the cardinality of the set S,

by E(G) the edge set of G and by Kn the complete graph on n vertices. pG and qG denotes

the number of vertices and edges of the graph G. The other notations and terminology used in

this paper can be found in [6].

Line graph L(G) of a graph G is defined with the vertex set E(G), in which two vertices

are adjacent if and only if the corresponding edges are adjacent in G. Since τ(G) ≤
[p
3

]
, it is

obvious that τ(L(G)) ≤
[q
3

]
. However for complete graph Kp, τ(Kp) =

[p
3

]
.

Middle graph M(G) of a graph G is defined with the vertex set V (G)∪E(G), in which two

elements are adjacent if and only if either both are adjacent edges in G or one of the elements is

a vertex and the other one is an edge incident to the vertex in G. Clearly τ(M(G)) ≤
[
p+ q

3

]
.

Total graph T (G) of a graph G defined with the vertex set V (G) ∪ E(G), in which two

elements are adjacent if and only if one of the following holds true (i) both are adjacent edges

or vertices in G (ii) one is a vertex and other is an edge incident to it in G.

§2. Basic Results

We begin by presenting the results concerning the tulgeity of a graph.

Theorem 2.1([5]) For any graph G, τ(G) =
∑
τ(C) ≤ τ(B), where the sums being taken over

all components C and blocks B of G, respectively.

Theorem 2.2([5]) For the complete n-partite graph G = K(p1, p2, ..., pn), 1 ≤ p1 ≤ p2 ≤ ..... ≤

pn and
∑
pi = p, τ(G) = min

([
1

2

n−1∑

0

pi

]
, [p/3]

)
, where p0 = 0.

We have derived [1] the formula to find the tulgeity of the line graph of complete and

complete bigraph.

Theorem 2.3([1]) τ(L(Kn)) =

[
n(n− 1)

6

]
.

Theorem 2.4([1]) τ(L(Km,n) =
[mn

3

]
.

Also, we have derived an upper bound for the tulgeity of line graph of any graph and

characterized the graphs for which the upper bound equal to the tulgeity.
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Theorem 2.5([1]) For any graph G, τ(L(G)) ≤∑
i

[
deg vi

3

]
where deg vi denotes the degree of

the vertex vi and the the summation taken over all the vertices of G.

Theorem 2.6([1]) If G is a tree and for each pair of vertices (vi, vj) with deg vi, deg vj > 2,

if there exist a vertex v of degree 2 on P (vi, vj) then τ(L(G)) ≤∑
i

[
deg vi

3

]
.

We have derived the results to find the tulgeity of Knödel graph, Prism graph and their

line graph in [2].

§3. Wheel Graph

The wheel graph Wn on n + 1 vertices is defined as Wn = Cn + K1 where Cn is a n-cycle.

Let V (Wn) = {vi : 0 ≤ i ≤ n − 1} ∪ {v} and E(Wn) = {ei = vivi+1 : 0 ≤ i ≤ n −
1, subscripts modulo n} ∪ {e′i = vvi : 0 ≤ i ≤ n− 1}.

Wheel graph Wn

Figure 3.1

Theorem 3.1 The Tulgeity of the line graph of Wn,

τ(L(Wn)) =

[
2n

3

]
.

Proof By the definition of line graph, V (L(Wn)) = E(Wn) = {ei : 0 ≤ i ≤ n −
1, subscripts modulo n} ∪ {e′i : 0 ≤ i ≤ n− 1}. Let

C =
{
eie

′
ie

′
i+1 : i = 3(k − 1), 1 ≤ k ≤

[n
3

]}

and

C
′ =

{
eiei+1e

′
i+1 : i = 3k − 2, 1 ≤ k ≤

[n
3

]}
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be a collection of 3-cycles of L(Wn). Clearly the cycles of C and C′ are vertex disjoint and if

V (C) and V (C′) denotes the set of vertices belonging to the cycles of C and C′ respectively

then V (C) ∩ V (C′) = ∅. Hence τ(L(Wn)) ≥ |C| + |C′| = 2
[n
3

]
.

If n ≡ 0 or 1(mod 3), then 2
[n
3

]
=

[
2n

3

]
. Hence τ(L(Wn)) ≥

[
2n

3

]
. If n ≡ 2(mod 3),

then

[
2n

3

]
= 2

[n
3

]
+ 1. In this case e′n−2, e

′
n−1, en−2, en−1 /∈ V (C) ∪ V (C′) and the set

{e′n−2, e
′
n−1, en−2} induces a 3-cycle. Hence if n ≡ 2(mod 3), τ(L(Wn)) ≥ 2

[n
3

]
+ 1 =

[
2n

3

]
.

Therefore in both the cases τ(L(Wn)) ≥
[
2n

3

]
. Also since |V (L(Wn))| = 2n, τ(L(Wn)) ≤

[
2n

3

]
.

Hence τ(L(Wn)) =

[
2n

3

]
. �

L(W8) and its vertex disjoint cycles

Figure 3.2

Theorem 3.2 The Tulgeity of the middle graph of Wn, τ(M(Wn)) = n.

Proof By the definition of middle graph, V (M(Wn)) = V (Wn) ∪ E(Wn), in which for

any two elements x, y ∈ V (M(Wn)), xy ∈ E(M(Wn)) if and only if any one of the following

holds. (i) x, y ∈ E(Wn) such that x and y are adjacent in Wn, (ii) x ∈ V (Wn), y ∈ E(Wn)

or x ∈ E(Wn), y ∈ V (Wn) such that x and y are incident in Wn. Since V (M(Wn)) =

V (Wn) ∪ E(Wn), |V (M(Wn))| = n+ 1 + 2n = 3n+ 1 and hence τ(M(Wn)) ≤
[
3n+ 1

3

]
= n.

Let C = {Ci = vieie
′
i : 0 ≤ i ≤ n− 1} be the collection of cycles of M(Wn). Clearly the cycles

of C are vertex disjoint and |C| = n. Hence τ(M(Wn)) ≥ n which implies τ(M(Wn)) = n. �

By the definition of total graph V (M(Wn)) = V (T (Wn)) and E(M(Wn)) ⊂ E(T (Wn)).

Also since τ(M(Wn)) = n =

[
1

3
pM(Wn)

]
, we conclude the following result.



102 Akbar Ali.M.M, S.Panayappan and Vernold Vivin.J

M(W9) and its vertex disjoint cycles

Figure 3.3

Theorem 3.3 For any wheel graph Wn, the tulgeity of its total graph,

τ(T (Wn)) = τ(M(Wn)) = n.

§4. Gear Graph

The gear graph is a wheel graph with vertices added between pair of vertices of the outer cycle.

The gear graph Gn has 2n+ 1 vertices and 3n edges.

Gear Graph Gn

Figure 4.1
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Let V (Gn) = {vi : 0 ≤ i ≤ n − 1} ∪ {ui : 0 ≤ i ≤ n − 1} ∪ {v} and E(Gn) = {ei = viui :

0 ≤ i ≤ n−1}∪ {e′i = vvi : 0 ≤ i ≤ n−1}∪{e′′i = uivi+1 : 0 ≤ i ≤ n−1, subscripts modulo n}.

Theorem 4.1 For any gear graph Gn, the tulgeity of its line graph,

τ(L(Gn)) = n.

Proof By the definition of line graph, V (L(Gn)) = E(Gn), in which the set of vertices

of L(Gn), {e′i : 0 ≤ i ≤ n − 1} induces a clique of order n. Also for each i, (0 ≤ i ≤ n − 1),

the set {e′′i e′i+1ei+1 : subscripts modulo n} induces vertex disjoint clique of order 3. Let C =

{e′′i e′i+1ei+1 : 0 ≤ i ≤ n − 1, subscripts modulo n} be the set of cycles of L(Gn). It is clear

that the cycles of C are vertex disjoint and |C| = n therefore τ(L(Gn)) ≥ n. Also, since

pL(Gn) = qGn
= 3n, τ(L(Gn)) ≤

[
3n

3

]
= n. Hence τ(L(Gn)) = n. �

L(G6) and its vertex disjoint cycles

Figure 4.2

Theorem 4.2 For any gear graph Gn, the tulgeity of its middle graph,

τ(M(Gn)) =

[
4n+ 1

3

]
.

Proof Since pM(Gn) = pGn
+ qGn

= (n + 1) + 3n = 4n + 1, τ(M(Gn)) =

[
4n+ 1

3

]
.

By the definition of middle graph V (M(Gn)) = V (Gn) ∪ E(Gn), in which the set of vertices

{e′i : 0 ≤ i ≤ n− 1} ∪ {v} induces a clique Kn+1 of order n+ 1 and for each i, (0 ≤ i ≤ n− 1)

the set {e′′i e′i+1ei+1vi+1 : subscripts modulo n} induces a clique of order 4. From these cliques

we form the set of cycles of M(Gn). Let C={set of vertex disjoint 3-cycles of the clique Kn+1}
and C′ = {e′′i e′i+1ei+1vi+1 : 0 ≤ i ≤ n − 1, subscripts modulo n}. Clearly V (C) ∩ V (C′) = ∅
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and hence the cycles of C and C′ are vertex disjoint. Also |C| =

[
n+ 1

3

]
and |C′| = n. Hence

τ(M(Gn)) ≥ |C| + |C′| =

[
4n+ 1

3

]
. Therefore τ(M(Gn)) =

[
4n+ 1

3

]
. �

M(G5) and its vertex disjoint cycles

Figure 4.3

By the definition of total graph V (M(Gn)) = V (T (Gn)) and E(M(Gn)) ⊂ E(T (Gn)).

Also since τ(M(Gn)) =

[
4n+ 1

3

]
=

[
1

3
pM(Gn)

]
, we conclude the following result.

Theorem 4.3 For any gear graph Gn, the tulgeity of its middle graph,

τ(M(Gn)) = τ(T (Gn)) =

[
4n+ 1

3

]
.

§5. Helm Graph

The helm graph Hn is the graph obtained from an n-wheel graph by adjoining a pendant edge

at each node of the cycle.

Let V (Hn) = {v} ∪ {vi : 0 ≤ i ≤ n− 1} ∪ {ui : 0 ≤ i ≤ n− 1}, E(Hn) = {ei = vivi+1 : 0 ≤
i ≤ n− 1, subscript modulo n} ∪ {e′i = vvi : 0 ≤ i ≤ n− 1} ∪ {e′′i = viui : 0 ≤ i ≤ n− 1}.

Theorem 5.1 For any helm graph Hn, τ(L(Hn)) = n.

Proof By the definition of line graph, V (L(Hn)) = {ei : 0 ≤ i ≤ n − 1} ∪ {e′i : 0 ≤ i ≤
n − 1} ∪ {e′′i : 0 ≤ i ≤ n − 1}. Since ei, e

′
i and e′′i (0 ≤ i ≤ n − 1) are adjacent edges in Hn,

{ei, e
′
i, e

′′
i } induces a 3-cycle in L(Hn) for each i, (0 ≤ i ≤ n−1). Let C = {eie

′
ie

′′
i : 0 ≤ i ≤ n−1}

be the set of these cycles. Clearly C contains vertex disjoint cycles of L(Hn) and |C| = n. Hence

τ(L(Hn)) ≥ n. Also since |V (L(Hn))| = 3n, τ(L(Hn)) ≤ n. Therefore τ(L(Hn)) = n. �
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Helm Graph Hn

Figure 5.1

Theorem 5.2 The Tulgeity of the middle graph of the helm graph Hn, is given by

τ(M(Hn)) =

[
4n+ 1

3

]
.

Proof By the definition of middle graph, V (M(Hn)) = V (Hn)∪E(Hn), in which for each

i, (0 ≤ i ≤ n − 1), the set of vertices {ei, ei+1, e
′
i+1, e

′′
i+1, vi+1 : subscript modulo n} induce a

clique of order 5. Also {e′i : 0 ≤ i ≤ n−1}∪{v} induces a clique of order n+1 (sayKn+1). Since

deg ui = 1 for each i, (0 ≤ i ≤ n− 1) in M(Hn) τ(M(Hn)) = τ(M(Hn)−{ui : 0 ≤ i ≤ n− 1}).
Hence τ(M(Hn)) ≤

[
1

3
(|E(Hn)| + |V (Hn)| − n)

]
=

[
4n+ 1

3

]
. Consider the collection C of

cycles of M(Hn), C = {vieie
′′
i : 0 ≤ i ≤ n − 1}. Each cycle of C are vertex disjoint and

|C| = n. Also the cycles of C are vertex disjoint from the cycles of the clique Kn+1. Hence

τ(M(Hn)) ≥ |C| +
[
n+ 1

3

]
=

[
4n+ 1

3

]
. Therefore τ(M(Hn)) =

[
4n+ 1

3

]
. �

Theorem 5.3 Tulgeity of total graph of helm graph Hn, is given by

τ(T (Hn)) =

[
5n+ 1

3

]
.

Proof By the definition of total graph, V (T (Hn)) = V (Hn) ∪ E(Hn) and E(T (Hn)) =

E(M(Hn)) ∪ {uivi : 0 ≤ i ≤ n − 1} ∪ {vvi : 0 ≤ i ≤ n − 1} ∪ {vivi+1 : 0 ≤ i ≤ n −
1 subscripts modulo n}. For each i, (0 ≤ i ≤ n− 1) the set of vertices {ei, vi+1, ei+1, e

′
i+1, e

′′
i+1}

of T (Hn) induces a clique of order 5. Also the set of vertices {e′i : 0 ≤ i ≤ n− 1} ∪ {v} induces

a clique Kn+1 of order n+ 1. For each i, (0 ≤ i ≤ n− 1) the set of vertices {ui, vi, e
′′
i } induces

a 3-cycle in T (Hn). Hence C1 = {uivie
′′
i : 0 ≤ i ≤ n− 1} is a set of vertex disjoint cycles of the

subgraph of T (Hn) induced by {ui, vi, e
′′
i : 0 ≤ i ≤ n− 1}.
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M(H9) and its vertex disjoint cycles

Figure 5.2

Case 1 n is even.

Let C2 be the collection of vertex disjoint 3-cycles of the subgraph induced by the set of

vertices {ei : 0 ≤ i ≤ n − 1} ∪ {e′j : j = 2k + 1, 0 ≤ k ≤ n

2
− 1}. i.e., C2 = {eiei+1e

′
i+1 : i =

2k, 0 ≤ k ≤ n
2 − 1}. Let C3 be the set of 3-cycles of T (Hn) induced by {e′i : i = 2k, 0 ≤ k ≤

n
2 − 1} ∪ {v}. Since the subgraph induced by {e′i : i = 2k, 0 ≤ k ≤ n

2 − 1} ∪ {v} is a clique of

order
n

2
+ 1, C3 contains

[
1

3

(n
2

+ 1
)]

vertex disjoint 3-cycles. Since V (Ci) ∩ V (Ci) = ∅ for i

6= j, τ(T (Hn)) ≥ |C1| + |C2| + |C3| =

[
5n+ 1

3

]
.

Case 2 n is odd.

Let C2 = {eiei+1e
′
i+1 : i = 2k, 0 ≤ k ≤ n−3

2 } be the collection of vertex disjoint cycles

of the subgraph induced by {ei : 0 ≤ i ≤ n − 2} ∪ {e′i : i = 2k + 1, 0 ≤ k ≤ n−3
2 }. Now

V ′ = V (T (Hn)) − {V (C1) ∪ V (C2)} = {e′2i : 0 ≤ i ≤ n−1
2 } ∪ {en−1, v} has

5n+ 1

3
vertices and

induced subgraph 〈V ′〉 contains a clique of order
n+ 3

2
. If

n+ 3

2
≡ 0 or 1(mod 3) then 〈V ′〉

has

[
1

3

(
n+ 5

2

)]
vertex disjoint 3-cycles disjoint from the cycles of C1 and C2.

If
n+ 3

2
≡ 2(mod 3) then

〈
{e′2i : 1 ≤ i ≤ n−3

2 } ∪ {v}
〉

has
1

3

(
n− 1

2

)
vertex disjoint 3-

cycles and there exists another cycle en−1e
′
n−1e

′
0 disjoint from the cycles of C1,C2 and the

cycles of
〈
{e′2i : 1 ≤ i ≤ n−1

2 } ∪ {v}
〉
. Hence in both the cases τ(T (Hn)) ≥ |C1| + |C2| +[

1

3

(
n+ 5

2

)]
=

[
5n+ 1

3

]
. Since |V (T (Hn))| = 5n+ 1, it is clear that τ(T (Hn)) ≤

[
5n+ 1

3

]
.

Hence τ(T (Hn)) =

[
5n+ 1

3

]
. �
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T (H6) and its vertex disjoint cycles

Figure 5.3
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Abstract: This paper surveys the applications of Smarandache’s notion to graph theory

appeared in International J.Math.Combin. from Vol.1,2008 to Vol.3,2009. In fact, many

problems discussed in these papers are generalized in this paper. Topics covered in this

paper include: (1)What is a Smarandache System? (2)Vertex-Edge Labeled Graphs with

Applications: (i)Smarandachely k-constrained labeling of a graph; (ii)Smarandachely super

m-mean graph; (iii)Smarandachely uniform k-graph; (iv)Smarandachely total coloring of a

graph; (3)Covering and Decomposing of a Graph: (i)Smarandache path k-cover of a graph;

(ii)Smarandache graphoidal tree d-cover of a graph; (4)Furthermore.

Key Words: Smarandache system, labeled graph, Smarandachely k-constrained labeling,

Smarandachely k-constrained labelingSmarandachely super m-mean graph, Smarandachely

uniform k-graph, Smarandachely total coloring of a graph, Smarandache path k-cover of a

graph, Smarandache graphoidal tree d-cover of a graph.
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§1. What is a Smarandache System?

A Smarandache System first appeared in [1] is defined in the following.

Definition 1.1([1]) A rule in a mathematical system (Σ;R) is said to be Smarandachely denied

if it behaves in at least two different ways within the same set Σ, i.e., validated and invalided,

or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2([2]) For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathe-

matical systems different two by two. A Smarandache multi-space is a pair (Σ̃; R̃) with

Σ̃ =
m⋃

i=1

Σi, and R̃ =
m⋃

i=1

Ri.

1Received June 1, 2010. Accepted September 18, 2010.
2Reported at Beijing Jiaotong University, November 18, 2009.
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Definition 1.3([3]) An axiom is said to be Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

axiom(1969).

Example 1.1 Let us consider an Euclidean plane R2 and three non-collinear points A,B and

C. Define s-points as all usual Euclidean points on R2 and s-lines any Euclidean line that

passes through one and only one of points A,B and C, such as those shown in Fig.1.1.

(i) The axiom (A5) that through a point exterior to a given line there is only one parallel

passing through it is now replaced by two statements: one parallel, and no parallel. Let L be

an s-line passes through C and is parallel in the Euclidean sense to AB. Notice that through

any s-point not lying on AB there is one s-line parallel to L and through any other s-point

lying on AB there is no s-lines parallel to L such as those shown in Fig.1(a).

(ii) The axiom that through any two distinct points there exist one line passing through

them is now replaced by; one s-line, and no s-line. Notice that through any two distinct s-

points D,E collinear with one of A,B and C, there is one s-line passing through them and

through any two distinct s-points F,G lying on AB or non-collinear with one of A,B and C,

there is no s-line passing through them such as those shown in Fig.1(b).

L

l1

A B

D

E

C

l2
A BF G

D
C

E

l1

(a) (b)

Fig.1

Definition 1.4 A combinatorial system CG is a union of mathematical systems (Σ1;R1),(Σ2;R2),

· · · , (Σm;Rm) for an integer m, i.e.,

CG = (
m⋃

i=1

Σi;
m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1,Σ2, · · · ,Σm},

E(G) = { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.

§2. Vertex-Edge Labeled Graphs with Applications

2.1 Application to Principal Fiber Bundles

Definition 2.1 A labeling on a graph G = (V,E) is a mapping θL : V ∪ E → L for a label set

L, denoted by GL.
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If θL : E → ∅ or θL : V → ∅, then GL is called a vertex labeled graph or an edge labeled

graph, denoted by GV or GE, respectively. Otherwise, it is called a vertex-edge labeled graph.

Example:

1

2

3

1

1

1

4 2

3

4

2

3 4

4

1 1 2

2 1

2

Fig.2

Definition 2.2([4]) For a given integer sequence 0 < n1 < n2 < · · · < nm, m ≥ 1, a

combinatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there is

a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomor-

phism ϕp : Up → R̃(n1(p), n2(p), · · · , ns(p)(p)), a combinatorial fan-space with {n1(p), n2(p),

· · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}, and
⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}, de-

noted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).

A combinatorial manifold M̃ is finite if it is just combined by finite manifolds with an

underlying combinatorial structure G without one manifold contained in the union of others.

Certainly, a finitely combinatorial manifold is indeed a combinatorial manifold. Examples of

combinatorial manifolds can be seen in Fig.3.

M3
B1 T2

(a)

T2

B1 B1

(b)

Fig.3

Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold and d, d ≥ 1 an integer. We

construct a vertex-edge labeled graph Gd[M̃(n1, n2, · · · , nm)] by

V (Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,

where V1 = {ni −manifolds Mni in M̃(n1, · · · , nm)|1 ≤ i ≤ m} and V2 = {isolated intersection

points OMni ,Mnj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤ i, j ≤ m}. Label ni for each
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ni-manifold in V1 and 0 for each vertex in V2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,

where E1 = {(Mni ,Mnj ) labeled with dim(Mni
⋂
Mnj ) | dim(Mni

⋂
Mnj) ≥ d, 1 ≤ i, j ≤ m}

and E2 = {(OMni ,Mnj ,Mni), (OMni ,Mnj ,Mnj ) labeled with 0|Mni tangent Mnj at the point

OMni ,Mnj for 1 ≤ i, j ≤ m}.

Now denote by H(n1, n2, · · · , nm) all finitely combinatorial manifolds M̃(n1, n2, · · · , nm)

and G[0, nm] all vertex-edge labeled graphs GL with θL : V (GL) ∪ E(GL) → {0, 1, · · · , nm}
with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete graphs

and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u, v) ∈ E(G), τ2(e) ≤ min{τ1(u), τ1(v)}.

Then we know a relation between sets H(n1, n2, · · · , nm) and G([0, nm], [0, nm]) following.

Theorem 2.1([1]) Let 1 ≤ n1 < n2 < · · · < nm,m ≥ 1 be a given integer sequence. Then

every finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) defines a vertex-edge labeled graph

G([0, nm]) ∈ G[0, nm]. Conversely, every vertex-edge labeled graph G([0, nm]) ∈ G[0, nm] defines

a finitely combinatorial manifold M̃ ∈ H(n1, n2, · · · , nm) with a 1−1 mapping θ : G([0, nm]) →
M̃ such that θ(u) is a θ(u)-manifold in M̃ , τ1(u) = dimθ(u) and τ2(v, w) = dim(θ(v)

⋂
θ(w))

for ∀u ∈ V (G([0, nm])) and ∀(v, w) ∈ E(G([0, nm])).

Definition 2.3([4]) A principal fiber bundle consists of a manifold P action by a Lie group G ,

which is a manifold with group operation G ×G → G given by (g, h) → g◦h being C∞ mapping,

a projection π : P →M , a base pseudo-manifold M , denoted by (P,M,G ), seeing Fig.4 (where

V = π−1(U)) such that conditions (1), (2) and (3) following hold.

(1) there is a right freely action of G on P,, i.e., for ∀g ∈ G , there is a diffeomorphism

Rg : P → P with Rg(p) = pg for ∀p ∈ P such that p(g1g2) = (pg1)g2 for ∀p ∈ P , ∀g1, g2 ∈ G

and pe = p for some p ∈ P , e ∈ G if and only if e is the identity element of G .

(2) the map π : P →M is onto with π−1(π(p)) = {pg|g ∈ G }.

(3) for ∀x ∈ M there is an open set U with x ∈ U and a diffeomorphism TU : π−1(U) →
U × G of the form TU (p) = (π(p), sU (p)), where sU : π−1(U) → G has the property sU (pg) =

sU (p)g for ∀g ∈ G , p ∈ π−1(U).
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V V V

?
x ∈ U

π−1

P

M

- U × G
TU

Fig.4

Question For a family of k principal fiber bundles P1(M1,G1), P2(M2,G2),· · · , Pk(Mk,Gk)

over manifolds M1, M2, · · · , Mk, how can we construct principal fiber bundles on a smoothly

combinatorial manifold consisting of M1,M2, · · · ,Mk underlying a connected graph G?

The answer is YES. The technique is by voltage assignment on labeled graphs defined as follows.

Definition 2.4([4]) A voltage labeled graph on a vertex-edge labeled graph GL is a 2-tuple

(GL;α) with a voltage assignments α : E(GL) → Γ such that

α(u, v) = α−1(v, u), ∀(u, v) ∈ E(GL),

with its labeled lifting GLα defined by

V (GLα) = V (GL) × Γ, (u, g) ∈ V (GL) × Γ abbreviated to ug;

E(GL
α) = { (ug, vg◦h) | for ∀(u, v) ∈ E(GL) with α(u, v) = h }

with labels ΘL : GLα → L following:

ΘL(ug) = θL(u), and ΘL(ug, vg◦h) = θL(u, v)

for u, v ∈ V (GL), (u, v) ∈ E(GL) with α(u, v) = h and g, h ∈ Γ.

For a voltage labeled graph (GL, α) with its lifting GL
α, a natural projection π : GLα → GL

is defined by π(ug) = u and π(ug, vg◦h) = (u, v) for ∀u, v ∈ V (GL) and (u, v) ∈ E(GL) with

α(u, v) = h. Whence, (GLα , π) is a covering space of the labeled graph GL. A voltage labeled

graph with its labeled lifting are shown in Fig.4.4, in where, GL = CL
3 and Γ = Z2.

3

4

12

2
(GL, α)

5

3

3

5
5

4

4

GLα

2

2

1
1

2

2

Fig.5

Now we show how to construct principal fiber bundles over a combinatorial manifold M̃ .
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Construction 2.1 For a family of principal fiber bundles over manifolds M1,M2, · · · , Ml,

such as those shown in Fig.6,

PM1?
M1

PM2

M2

? PMl

Ml

?? ? ?H◦1
H◦2

H◦l

ΠM1
ΠMl

ΠM2

Fig.6

where H◦i
is a Lie group acting on PMi

for 1 ≤ i ≤ l satisfying conditions PFB1-PFB3, let M̃

be a differentiably combinatorial manifold consisting of Mi, 1 ≤ i ≤ l and (GL[M̃ ], α) a voltage

graph with a voltage assignment α : GL[M̃ ] → G over a finite group G, which naturally induced

a projection π : GL[P̃ ] → GL[M̃ ]. For ∀M ∈ V (GL[M̃ ]), if π(PM ) = M , place PM on each

lifting vertex MLα in the fiber π−1(M) of GLα [M̃ ], such as those shown in Fig.7.

PM PM PM

︸ ︷︷ ︸
π−1(M)?

M

Fig.7

Let Π = πΠMπ−1 for ∀M ∈ V (GL[M̃ ]). Then P̃ =
⋃

M∈V (GL[M̃ ])

PM is a smoothly combinato-

rial manifold and LG =
⋃

M∈V (GL[M̃ ])

HM a Lie multi-group by definition. Such a constructed

combinatorial fiber bundle is denoted by P̃Lα(M̃,LG).

For example, let G = Z2 and GL[M̃ ] = C3. A voltage assignment α : GL[M̃ ] → Z2 and its

induced combinatorial fiber bundle are shown in Fig.8.

u

vw
1 1

1

? u0u1

v1w0

v0 w1

π

M3

M1 M2

PM3
PM2

PM2
PM3

PM1
PM1

Π?
Fig.8
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Then we know the existence result following.

Theorem 2.2([4]) A combinatorial fiber bundle P̃α(M̃,LG) is a principal fiber bundle if and

only if for ∀(M ′,M ′′) ∈ E(GL[M̃ ]) and (PM ′ , PM ′′ ) = (M ′,M ′′)Lα ∈ E(GL[P̃ ]), ΠM ′ |PM′∩PM′′
=

ΠM ′′ |PM′∩PM′′
.

2.2 Smarandachely k-constrained labeling of a graph

In references [5]-[6], the Smarandachely k-constrained labeling on some graph families are dis-

cussed.

Definition 2.5 A Smarandachely k-constrained labeling of a graph G(V,E) is a bijective map-

ping f : V ∪ E → {1, 2, .., |V | + |E|} with the additional conditions that |f(u) − f(v)| ≥ k

whenever uv ∈ E, |f(u) − f(uv)| ≥ k and |f(uv) − f(vw)| ≥ k whenever u 6= w, for an integer

k ≥ 2. A graph G which admits a such labeling is called a Smarandachely k-constrained total

graph, abbreviated as k − CTG.

An example for k = 5:

11 1 7 13 3 9 15 56 12 2 8 14 4 10

Fig.9: A 5-constrained labeling of a path P7.

Definition 2.6 The minimum positive integer n such that the graph G ∪Kn is a k − CTG is

called k-constrained number of the graph G and denoted by tk(G), the corresponding labeling is

called a minimum k-constrained total labeling of G.

Problem 2.1 Determine tk(G) for ∀k ∈ Z+ and a graph G.

≫Update Results for Problem 2.1 obtained in [5]-[6]:

Case 1. k = 1

In fact, t1(G) = 0 for any graph G since any bijective mapping f : V ∪ E → {1, 2, .., |V | +
|E|} satisfies that |f(u)−f(v)| ≥ 1 whenever uv ∈ E, |f(u)−f(uv)| ≥ 1 and |f(uv)−f(vw)| ≥ 1

whenever u 6= w.

Case 2. k = 2

(1) t2(Pn)=





0 if n = 2,

1 if n = 3,

0 else.

Proof Let V (Pn) = {v1, v2, ..., vn} and E(Pn) = {vivi+1|1 ≤ i ≤ n− 1}. Consider a total

labeling f : V ∪E −→ {1, 2, 3, ..., 2n−1} defined as f(v1) = 2n−3; f(v2) = 2n−1; f(v1v2) = 2;

f(v2v3) = 4; and f(vk) = 2k − 5, f(vkvk+1) = 2k, for all k ≥ 3. This function f serves as a

Smarandachely 2-constrained labeling for Pn, for n ≥ 4. Further, the cases n = 2 and n = 3
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are easy to prove. �

2n-3 2n-1 1 3 2n-7 2n-5
2 4 6 2n-2

1 5

2 4

3
6 1 7

2 4

3 5

Fig.10

(2) t2(Cn) = 0 if n ≥ 4 and t2(C3) = 2.

Proof If n ≥ 4, then the result follows immediately by joining end vertices of Pn by an

edge v1vn , and, extending the total labeling f of the path as in the proof of the Theorem 2.4

above to include f(v1v2) = 2n.

Consider the case n = 3. If the integers a and a + 1 are used as labels, then one of them

is assigned for a vertex and other is to the edge not incident with that vertex. But then, a+ 2

can not be used to label the vertex or an edge in C3. Therefore, for each three consecutive

integers we should leave at least one integer to label C3. Hence the span of any Smarandachely

2-constrained labeling of C3 should be at least 8. So t2(C3) ≥ 2 . Now from the Figure 3 it is

clear that t2(C3) ≤ 2 . Thus t2(C3) = 2. �

(3) t2(Kn) = 0 if n ≥ 4.

(4) t2(W1,n) = 0 if n ≥ 3.

(6) t2(Km,n)=





2 if n = 1 and m = 1,

1 if n = 1 and m ≥ 2,

0 else.

Case 3. k ≥ 3

(1) tk(K1,n)=





3k − 6, if n = 3,

n(k − 2), otherwise.
if k.n ≥ 3.

Proof For any Smarandachely k-constrained labeling f of a star K1,n, the span of f , after

labeling an edge by the least positive integer a is at least a+nk. Further, the span is minimum

only if a = 1. Thus, as there are only n + 1 vertices and n edges, for any minimum total

labeling we require at least 1 + nk − (2n+ 1) = n(k − 2) isolated vertices if n ≥ 4 and at least

1 +nk− 2n = n(k− 2)+ 1 if n = 3. In fact, for the case n = 3, as the central vertex is incident

with each edge and edges are mutually adjacent, by a minimum k-constrained total labeling,

the edges as well the central vertex can be labeled only by the set {1, 1 + k, 1 + 2k, 1 + 3k}.
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Suppose the label 1 is assigned for the central vertex, then to label the end vertex adjacent to

edge labeled 1 + 2k is at least (1 + 3k) + 1 (since it is adjacent to 1, it can not be less than

1 + k). Thus at most two vertices can only be labeled by the integers between 1 and 1 + 3k.

Similar argument holds for the other cases also.

Therefore, t(K1,n) ≥ n(k − 2) for n ≥ 4 and t(K1,n) ≥ n(k − 2) + 1 for n = 3.

To prove the reverse inequality, we define a k-constrained total labeling for all k ≥ 3, as

follows:

(1) When n = 3, the labeling is shown in the Fig.11 below

1

1 + 2k 1 + 3k 1 + k

2

3

3k

Fig.11

(2) When n ≥ 4, define a total labeling f as f(v0vj) = 1 + (j − 1)k for all j, 1 ≤ j ≤ n.

f(v0) = 1 + nk, f(v1) = 2 + (n− 2)k, f(v2) = 3 + (n− 2)k,and for 3 ≤ i ≤ (n− 1),

f(vi+1)=





f(vi) + 2, if f(vi) ≡ 0(mod k),

f(vi) + 1, otherwise.

and the rest all unassigned integers between 1 and 1 + nk to the n(k − 2) isolated vertices,

where v0 is the central vertex and v1, v2, v3, ..., vn are the end vertices.

The function so defined is a Smarandachely k-constrained labeling of K1,n ∪ K̄n(k−2), for

all n ≥ 4. �

(2) Let Pn be a path on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Pn)=





0 if k ≤ k0,

2(k − k0) − 1 if k > k0 and 2n ≡ 0(mod 3),

2(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).

(3) Let Cn be a cycle on n vertices and k0 = ⌊ 2n−1
3 ⌋. Then

tk(Cn) =





0 if k ≤ k0,

2(k − k0) if k > k0 and 2n ≡ 0 (mod 3),

3(k − k0) if k > k0 and 2n ≡ 1 or 2(mod 3).
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2.3 Smarandachely Super m-Mean Graph

The conception of Smarandachely edge m-labeling on a graph was introduced in [7].

Definition 2.7 Let G be a graph and f : V (G) → {1, 2, 3, · · · , |V | + |E(G)|} be an injection.

For each edge e = uv and an integer m ≥ 2, the induced Smarandachely edge m-labeling f∗
S is

defined by

f∗
S(e) =

⌈
f(u) + f(v)

m

⌉
.

Then f is called a Smarandachely super m-mean labeling if f(V (G)) ∪ {f∗(e) : e ∈ E(G)} =

{1, 2, 3, · · · , |V | + |E(G)|}. A graph that admits a Smarandachely super mean m-labeling is

called Smarandachely super m-mean graph.

Particularly, if m = 2, we know that

f∗(e) =





f(u)+f(v)
2 if f(u) + f(v) is even;

f(u)+f(v)+1
2 if f(u) + f(v) is odd.

Example: A Smarandache super 2-mean graph P 2
6

1 2 3 5 7 8 9 11 13 14 15

4 6 10 12

Fig.12

Problem 2.2 Find integers m and graphs G such that G is a Smarandachely super m-mean

graph.

≫Update Results for Problem 2.2 Obtained in [7]:

Now all results is on the case of Smarandache super 2-mean graphs.

(1) A H-graph of a path Pn is the graph obtained from two copies of Pn with vertices

v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices vn+1

2

and un+1

2

if n is odd and the

vertices vn
2
+1 and un

2
if n is even. Then

A H-graph G is a Smarandache super 2-mean graph.

(2) The corona of a graph G on p vertices v1, v2, . . . , vp is the graph obtained from G by

adding p new vertices u1, u2, . . . , up and the new edges uivi for 1 ≤ i ≤ p, denoted by G⊙K1.

If a H-graph G is a Smarandache super 2-mean graph, then G ⊙ K1 is a Smarandache

super 2-mean graph.
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(3) For a graph G, the 2-corona of G is the graph obtained from G by identifying the center

vertex of the star S2 at each vertex of G, denoted by G⊙ S2.

If a H-graph G is a Smarandache super 2-mean graph, then G⊙S2 is a Smarandache super

2-mean graph.

(4) Cycle C2n is a Smarandache super 2-mean graph for n ≥ 3.

(5) Corona of a cycle Cn is a Smarandache super 2-mean graph for n ≥ 3.

(6) A cyclic snake mCn is the graph obtained from m copies of Cn by identifying the vertex

v(k+2)j
in the jth copy at a vertex v1j+1

in the (j + 1)th copy if n = 2k + 1 and identifying the

vertex v(k+1)j
in the jth copy at a vertex v1j+1

in the (j + 1)th copy if n = 2k.

The graph mCn-snake, m ≥ 1, n ≥ 3 and n 6= 4 has a Smarandache super 2-mean labeling.

(7) A Pn(G) is a graph obtained from G by identifying an end vertex of Pn at a vertex of

G.

If G is a Smarandache super 2-mean graph then Pn(G) is also a Smarandache super 2-mean

graph.

(8) Cm × Pn for n ≥ 1,m = 3, 5 are Smarandache super 2-mean graphs.

Problem 2.3 For what values of m (except 3,5) the graph Cm × Pn is a Smarandache super

2-mean graph?

2.4 Smarandachely Uniform k-Graphs

The conception of Smarandachely Uniform k-Graph was introduced in the reference [8].

Definition 2.7 For an non-empty subset M of vertices in a graph G = (V,E), each vertex u

in G is associated with the set fo
M (u) = {d(u, v) : v ∈M, u 6= v}, called its open M-distance-

pattern.

A graph G is called a Smarandachely uniform k-graph if there exist subsets M1,M2, · · · ,Mk

for an integer k ≥ 1 such that fo
Mi

(u) = fo
Mj

(u) and fo
Mi

(u) = fo
Mj

(v) for 1 ≤ i, j ≤ k and

∀u, v ∈ V (G). Such subsets M1,M2, · · · ,Mk are called a k-family of open distance-pattern

uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called

the Smarandachely odpu-number of G, denoted by odS
k (G).

Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform

(odpu-) graph. In this case, its odpu-number odS
k (G) of G is abbreviated to od(G).

Problem 2.4 Determine which graph G is Smarandachely uniform k-graph for an integer

k ≥ 1.

≫Update Results for Problem 2.4 Obtained in [8]:

(1) A connected graph G is an odpu-graph if and only if the center Z(G) of G is an odpu-set.

(2) Every self-centered graph is an odpu-graph.
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(3) A tree T has an odpu-set M if and only if T is isomorphic to P2.

(4) If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.

(5) A block graph G is an odpu-graph if and only if G is complete.

(6) A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a

subset M ⊂ V (G) with |M | ≥ 2 such that the induced subgraph 〈M〉 is complete, 〈V −M〉 is

not complete and any vertex in V −M is adjacent to all the vertices of M.

Problem 2.5 Determine the Smarandachely odpu-number odS
k (G) of G for an integer k ≥ 1.

≫Update Results for Problem 2.5 obtained in [8]:

(1) For every positive integer k 6= 1, 3, there exists a graph G with odpu-number k.

(2) If a graph G has odpu-number 4, then r(G) = 2.

(3) The number 5 cannot be the odpu-number of a bipartite graph.

(4) Let G be a bipartite odpu-graph. Then od(G) = 2 if and only if G is isomorphic to P2.

(5) od(C2k+1) = 2k.

(6) od(Kn) = 2 for all n > 2.

2.5 Smarandachely Total Coloring of a graph

The conception of Smarandachely total k-coloring of a graph following is introduced by Zhongfu

Zhang et al. in [9].

Definition 2.8 Let f be a total k−coloring on G. Its total-color neighbor of a vertex u of

G is denoted by Cf (x) = {f(x)|x ∈ TN (u)}. For any adjacent vertices x and y of V (G), if

Cf (x) 6= Cf (y), say f a k AVSDT-coloring of G (the abbreviation of adjacent-vertex-strongly-

distinguishing total coloring of G).

The AVSDT-coloring number of G, denoted by χast(G) is the minimal number of colors

required for an AVSDT-coloring of G

Definition 2.9 A Smarandachely total k-coloring of a graph G is an AVSDT-coloring with

|Cf (x)\Cf (y)| ≥ k and |Cf (y)\Cf (x)| ≥ k.

The minimum Smarandachely total k-coloring number of a graph G is denoted by χk
ast(G).

Obviously, χast(G) = χ1
ast(G) and

· · · ≤ χk+1
ast (G) ≤ χk

ast(G) ≤ χk−1
ast (G) ≤ · · · ≤ χ1

ast(G)

by definition.

Problem 2.6 Determine χk
ast(G) for a graph G.

≫Update Results for Problem 2.6 obtained in [9]:

χ1
ast(Sm +Wn) = m+ n+ 3 if min{m,n} ≥ 5.
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It should be noted that the number χk
ast(G) of graph families following are determined for

integers k ≥ 1 by Zhongfu Zhang et al. in references [10]-[15].

(1) 3-regular Halin graphs;

(2) 2Pn, 2Cn, 2K1,n and double fan graphs for integers n ≥ 1;

(3) Pm + Pn for integers m,n ≥ 1;

(4) Pm ∨ Pn for integers m,n ≥ 1;

(5) Generalized Petersen G(n, k);

(6) k-cube graphs.

§3. Covering and Decomposing of a Graph

Definition 3.1 Let P be a graphical property. A Smarandache graphoidal P (k, d)-cover of

a graph G is a partition of edges of G into subgraphs G1, G2, · · · , Gl ∈ P such that E(Gi) ∩
E(Gj) ≤ k and ∆(Gi) ≤ d for integers 1 ≤ i, j ≤ l.

The minimum cardinality of Smarandache graphoidal P (k, d)-cover of a graph G is de-

noted by Π
(k,d)
P

(G).

Problem 3.1 determine Π
(k,d)
P

(G) for a graph G.

3.1 Smarandache path k-cover of a graph

The Smarandache path k-cover of a graph was discussed by S. Arumugam and I.Sahul Hamid

in [16].

Definition 3.2 A Smarandache path k-cover of a graph G is a Smarandache graphoidal P

(k,∆(G))-cover of G with P=path for an integer k ≥ 1.

A Smarandache path 1-cover of G such that its every edge is in exactly one path in it is

called a simple path cover.

The minimum cardinality of simple path covers of G is called the simple path covering

number of G and is denoted by Π
(1,∆(G))
P

(G).

If do not consider the condition E(Gi)∩E(Gj) ≤ 1, then a simple path cover is called path

cover of G, its minimum number of path cover is denoted by π(G) in reference. For examples,

πs(Kn) = ⌈n
2 ⌉ and πs(T ) = k

2 , where k is the number of odd degree in tree T .

Problem 3.2 determine Π
(k,d)
P

(G) for a graph G.

≫Update Results for Problem 3.2 Obtained in [10]:

(1) Π
(1,∆(G))
P

(T ) = π(T ) = k
2 , where k is the number of vertices of odd degree in T .

(2) Let G be a unicyclic graph with cycle C. Let m denote the number of vertices of degree

greater than 2 on C. Let k be the number of vertices of odd degree. Then
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Π
(1,∆(G))
P

(G) =





3 if m = 0

k
2 + 2 if m = 1

k
2 + 1 if m = 2

k
2 if m ≥ 3

(3) For a wheel Wn = K1 + Cn−1, we have

Π
(1,∆(G))
P

(Wn) =





6 if n = 4
⌊

n
2

⌋
+ 3 if n ≥ 5

Proof Let V (Wn) = {v0, v1, . . . , vn−1} and E(Wn) = {v0vi : 1 ≤ i ≤ n− 1}∪ {vivi+1 : 1 ≤
i ≤ n− 2} ∪ {v1vn−1}.

If n = 4, then Wn = K4 and hence Π
(1,∆(G))
P

(Wn)(Wn) = 6.

Now, suppose n ≥ 5. Let r =
⌊

n
2

⌋

If n is odd, let

Pi = (vi, v0, vr+i), i = 1, 2, . . . , r.

Pr+1 = (v1, v2, . . . , vr),

Pr+2 = (v1, v2r, v2r−1, . . . , vr+2) and

Pr+3 = (vr, vr+1, vr+2).

If n is even, let

Pi = (vi, v0, vr−1+i), i = 1, 2, . . . , r − 1.

Pr = (v0, v2r−1),

Pr+1 = (v1, v2, . . . , vr−1),

Pr+2 = (v1, v2r−1, . . . , vr+1) and

Pr+3 = (vr−1, vr, vr+1).

Then Π
(1,∆(G))
P

(Wn) = {P1, P2, . . . , Pr+3} is a simple path cover of Wn. Hence πs(Wn) ≤
r + 3 =

⌊
n
2

⌋
+3. Further, for any simple path cover ψ of Wn at least three vertices on

C = (v1, v2, . . . , vn−1) are terminal vertices of paths in ψ. Hence t ≤ q − k
2 − 3, so that

Π
(1,∆(G))
P

(Wn) = q − t ≥ k
2 + 3 =

⌊
n
2

⌋
+ 3. Thus Π

(1,∆(G))
P

(Wn) =
⌊

n
2

⌋
+ 3. �

A. Nagarajan, V. Maheswari and S. Navaneethakrishnan discussed Smarandache path 1-

cover in [17].

Definition 3.3 A Smarandache path 1-cover of G such that its every edge is in exactly two

path in it is called a path double cover.

Define G ∗H with vertex set V (G)× V (H) in which (g1, h1) is joined to (g2, h2) whenever

g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H); G◦ H , the weak product of graphs G, H with vertex
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set V (G)×V (H) in which two vertices (g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G)

and h1h2 ∈ E(H) and

γ2(G) = min { |ψ| : ψ is a path double cover of G }.

(4) Let m ≥ 3.

γ2(Cm ◦K2) =





3 if m is odd;

6 if m is even.

(5) Let m,n ≥ 3. γ2(Cm ◦ Cn) = 5 if at least one of the numbers m and n is odd.

(6) Let m,n ≥ 3.

γ2(Pm ◦ Cn) =





4 if n ≡ 1 or 3(mod 4)

8 if n ≡ 0 or 2(mod 4)

(7) γ2(Cm ∗K2) = 6 if m ≥ 3 is odd.

(8) γ2(Pm ∗K2) = 4 for m ≥ 3.

(9) γ2(Pm ∗K2) = 5 for m ≥ 3.

(10) γ2(Cm × P3) = 5 if m ≥ 3 is odd.

(11) γ2(Pm ◦K2) = 4 for m ≥ 2.

(12) γ2(Km,n) = max{m,n}.
(13)

γ2(Pm × Pn) =





3 if m=2 or n=2;

4 if m,n ≥ 2.

(14) γ2(Cm × Cn) = 5 if m ≥ 3, n ≥ 3 and at least one of the numbers m and n is odd.

(15) γ2(Cm ×K2) = 4 for m ≥ 3.

3.2 Smarandache graphoidal tree d-cover of a graph

S.Somasundaram, A.Nagarajan and G.Mahadevan discussed Smarandache graphoidal tree d-

cover of a graph in references [18]-[19].

Definition 3.4 A Smarandache graphoidal tree d-cover of a graph G is a Smarandache graphoidal

P (|G|, d)-cover of G with P=tree for an integer d ≥ 1.

The minimum cardinality of Smarandache graphoidal tree d-cover of G is denoted by

γ
(d)
T (G) = Π

(|G|,d)
P

(G). If d = ∆(G), then γ
(d)
T (G) is abbreviated to γT (G).

Problem 3.3 determine γT (G) for a graph G, particularly, γT (G).

≫Update Results for Problem 3.3 Obtained in [12-13]:

Case 1: γT (G)

(1) γT (Kp) = ⌈p
2⌉;

(2) γT (Km,n) = ⌈m+n
3 ⌉ if m ≤ n < 2m− 3.

(3) γT (Km,n) = m if n > 2m− 3.
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(4) γT (Pm × Pn) = 2 for integers m,n ≥ 2.

(5) γT (Pn × Cm) = 2 for integers m ≥ 3, n ≥ 2.

(6) γT (Cm × Cn) = 3 if m,n ≥ 3.

Case 2: γ
(d)
T (G)

(1)

γ
(d)
T (Kp) =





p(p−2d+1)
2 if d < p

2 ,

⌈p
2⌉ if d ≥ p

2

if p ≥ 4.

(2) γ
(d)
T (Km,n) = p+ q − pd = mn− (m+ n)(d− 1) if n,m ≥ 2d.

(3) γ
(d)
T (K2d−1,2d−1) = p+ q − pd = 2d− 1.

(4) γ
(d)
T (Kn,n) = ⌈ 2n

3 ⌉ for d ≥ ⌈ 2n
3 ⌉ and n > 3.

(5) γ
(d)
T (Cm × Cn) = 3 for d ≥ 4 and γ

(2)
T (Cm × Cn) = q − p.

§5. Furthermore

In fact, Smarandache’s notion can be used to generalize more and more conceptions and

problems in classical graph theory. Some of them will appeared in my books Automorphism

Groups of Maps, Surfaces and Smarandache’s Geometries (Second edition), Smarandache Multi-

Space Theory (Second edition) published in forthcoming, or my monograph Graph Theory – A

Smarandachely Type will be appeared in 2012.
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