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Even when the experts all agree, they may well be mistaken.

By Bertrand Russell, a Welsh philosopher, logician and mathematician.
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Incidence Algebras and Labelings of Graph Structures
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Kannur University Campus P.O.-670 567, Kerala, India
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Abstract: Ancykutty Joseph, On Incidence Algebras and Directed Graphs, IJMMS,

31:5(2002), 301-305, studied the incidence algebras of directed graphs. We have extended it

to undirected graphs also in our earlier paper. We established a relation between incidence

algebras and the labelings and index vectors introduced by R.H. Jeurissen in Incidence Ma-

trix and Labelings of a Graph, Journal of Combinatorial Theory, Series B, Vol 30, Issue 3,

June 1981, 290-301, in that paper. In this paper, we extend the concept to graph structures

introduced by E. Sampathkumar in On Generalized Graph Structures, Bull. Kerala Math.

Assoc., Vol 3, No.2, Dec 2006, 65-123.

Key Words: Graph structure, Ri-labeling, Ri-index vector, labelling matrix, index matrix,

incidence algebra.

AMS(2010): 05C78, 05C50, 05C38, 06A11

§1. Introduction

Ancykutty Joseph introduced the concept of incidence algebras of directed graphs in [1]. She

used the number of directed paths from one vertex to another for introducing the incidence

algebras of directed graphs. Stefan Foldes and Gerasimos Meletiou [10] has discussed the

incidence algebras of pre-orders also. This motivated us in our study on the incidence algebras

of undirected graphs in [8]. We used the number of paths for introducing the concept of incidence

algebras of undirected graphs. We also established a relation between incidence algebras and

the labelings and index vectors of a graph as given by Jeurissen [12](based on the works of

Brouwer [2], Doob [9] and Stewart [15]) in that paper.

E. Sampathkumar introduced the concept of a graph structure in [13] as a generalization of

signed graphs. In this paper, we extend the results of our paper on graphs to graph structures

and prove that the collection of all Ri-labelings for the collection of all admissible Ri- index

vectors, the collection of all Ri-labelings for the index vector 0 and the collection of all Ri-

labelings for the index vector λiji, (λi ∈ F, F , a commutative ring ji an all 1-vector) of a graph

structure G = (V, R1, R2, · · · , Rk) are subalgebras of the incidence algebra I(V, F ). We also

1Received February 15, 2011. Accepted August 2, 2011.
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prove that the set of labeling matrices for all admissible index matrices of a graph structure is

a subalgebra of I(V k, F k).

§2. Preliminaries

Throughout this paper, by a ring we mean an associative ring with identity. First We go through

the definitions of commutative ring, partially ordered set, pre-ordered set etc. The following

definitions are adapted from [16].

Definition 2.1 A (left) A-module is an additive abelian group M with the operation of (left)

multiplication by elements of the ring A that satisfies the following properties.

(i) a(x + y) = ax + ay for any a ∈ A, x, y ∈ M ;

(ii) (a + b)x = ax + bx for any a, b ∈ A, x ∈ M ;

(iii) (ab)x = a(bx) for any a, b ∈ A, x ∈ M ;

(iv) 1x = x for an x ∈ M .

By an A-module, we mean a left A-module.

Definition 2.2 A set {x1, x2, ..., xn} of elements of M is a basis for M if

(i) a1x1 + a2x2 + ... + anxn = 0 for ai ∈ A only if a1 = a2 = ... = an = 0 and

(ii) M is generated by {x1, x2, ..., xn}, i.e., M is the collection of all linear combinations

of {x1, x2, ..., xn} with scalars from A.

A finitely generated module that has a basis is called free.

Definition 2.3 An algebra A is a set over a field K with operations of addition, multiplication

and multiplication by elements of K that have the following properties.

(i) A is a vector space with respect to addition and multiplication by elements of the field.

(ii) A is a ring with respect to addition and multiplication.

iii. (λa)b = a(λb) = λ(ab) for any λ ∈ K, a, b ∈ A.

A subset S of an algebra A is called a subalgebra if it is simultaneously a subring and a

subspace of A.

Definition 2.4([14]) A set X with a binary relation ≤ is a pre-ordered set if ≤ is reflexive

and transitive. If ≤ is reflexive, transitive and antisymmetric, then X is a partially ordered set

(poset).

E. Spiegel and C.J. O’Donnell [14] defined incidence algebra as follows.

Definition 2.5([14]) The incidence algebra I(X, R) of the locally finite partially ordered set

X over the commutative ring R with identity is I(X, R) = {f : X × X → R|f(x, y) =
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0 if x is not less than or equal to y} with operations given by

(f + g)(x, y) = f(x, y) + g(x, y)

(f.g)(x, y) =
∑

x≤z≤y

f(x, z).g(z, y)

(r.f)(x, y) = r.f(x, y)

for f, g ∈ I(X, R) with r ∈ R and x, y, z ∈ X.

Ancykutty Joseph [1] established a relation between incidence algebras and directed graphs.

The incidence algebra I(G, Z) for digraph without cycles and multiple edges (G,≤) representing

the finite poset (V,≤) is defined in [1] as follows.

Definition 2.6([1]) For u, v ∈ V , let pk(u, v) denote the number of directed paths of length

k from u to v and pk(v, u) = −pk(u, v). For i = 0, 1, · · · , n − 1, define fi, f
∗
i : V × V → Z

by fi(u, v) = pi(u, v), f∗
i (u, v) = −pi(u, v). The incidence algebra I(G, Z) of (G,≤) over the

commutative ring Z with identity is defined by I(G, Z) = {fi, f
∗
i : V ×V → Z, i = 0, 1, ..., n−1}

with operations defined as

(i) For f 6= g,(f + g)(u, v) = f(u, v) + g(u, v);

(ii) (f.g)(u, v) =
∑

w

f(u, w)g(w, v);

(iii) (zf)(u, v) = z.f(u, v)∀z ∈ Z; f, g ∈ I(G, Z).

In [10], Stefan Foldes and Gerasimos Meletiou says about incidence algebra of pre-order as

follows.

Definition 2.7([10]) Given a field F , the incidence algebra A(ρ), of a pre-ordered set (S, ρ), S =

{1, 2, ..., n} over F is the set of maps α : S2 → F such that α(x, y) = 0 unless xρy. The addition

and multiplication in A(ρ) are defined as matrix sum and product.

Replacing field F by a commutative ring R with identity and following the definition of

Foldes and Meletiou[10], we obtained in graphs [8] an analogue of the incidence algebra of a

directed graph given by Ancykutty Joseph[1].

Theorem 2.1([8]) Let G = (V, E) be a graph without cycles and multiple edges with V and E

finite. For u, v ∈ V , let fi(u, v) be the number of paths of length i between u and v. Then {fi}

is an incidence algebra of (G, ρ) denoted by I(G, Z) over the commutative ring Z with identity.

§3. Graph Structure and Incidence Algebra

We recall some basic definitions on graph structure given by E. Sampathkumar[13].

Definition 3.1([13]) G = (V, R1, R2, · · · , Rk) is a graph structure if V is a non empty set and

R1, R2, · · · , Rk are relations on V which are mutually disjoint such that each Ri, i = 1, 2, · · · , k,

is symmetric and irreflexive.
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If (u, v) ∈ Ri for some i, 1 ≤ i ≤ k, (u, v) is an Ri-edge. Ri-path between two vertices u

and v consists only of Ri-edges. G is R1R2 · · ·Rk connected if G is Ri-connected for each i.

We define Ri1i2···ir
-path, 1 ≤ r ≤ k, in a similar way as follows.

Definition 3.2 A sequence of vertices x0.x1, · · · , xn of V of a graph structure G = (V, R1, R2,

· · · , Rk) is an Ri1i2···ir
-path,1 ≤ r ≤ k, if Ri1 , Ri2 , · · · , Rir

are some among R1, R2, · · · , Rk

which are represented in it.

Note that the above definition matches with the concepts introduced in [4] by the authors.

Theorem 3.1 Let f j
i (u, v) be the number of Ri-paths of length j between u and f j∗

i (u, v) =

−f j
i (u, v). IRi

(G, Z) = {f j
i , f j∗

i : V ×V → Z, i = 0, 1, ..., n− 1} is an incidence algebra over Z.

Proof Let f r
i and fs

i be Ri-paths of length r and s respectively. For f r
i 6= fs

i ∈ IRi
(G, Z),

define ((f r
i +fs

i )(u, v)) = number of Ri-paths of length either r or s between u and v= f r
i (u, v)+

fs
i (u, v). Then

(f r
i .fs

i )(u, v) = number of Ri-paths of length r + s between u and v

=
∑

w:(u,w)∈Ri,(w,v)∈Ri

f r
i (u, w)fs

i (w, v).

(zf r
i )(u, v) = z.f r

i (u, v)∀z ∈ Z; f r
i , fs

i ∈ IRi
(G, Z) (The operations are extended in the

usual way if either or both are elements of the form f r∗
i ).

So IRi
(G, Z) is an incidence algebra over Z. �

Note 1. We may also consider another type of incidence algebras. Let f l
i1i2···ir

(u, v) be the

number of Ri1i2···ir
paths of length l between u and v and f l∗

i1i2···ir
(u, v) = −f l

i1i2···ir
(u, v). Then

Ii1i2···ir
(V, Z) = {f l

i1i2···ir
, f l∗

i1i2···ir
: V × V → Z, i = 0, 1, · · · , n − 1} with operations defined as

follows is another subalgebra over Z.

(i) (f l
i1i2···ir

+ fm
i1i2···ir

)(u, v) = f l
i1i2···ir

(u, v) + fm
i1i2···ir

(u, v).

(ii) (f l
i1i2···ir

.fm
i1i2···ir

)(u, v) =
∑

w:(u,w),(w,v)∈

ir⋃

i=i1

Ri

f l
i1i2···ir

(u, w)fm
i1i2···ir

(w, v).

(iii) (zf l
i1i2···ir

)(u, v) = z.f l
i1i2···ir

(u, v)∀z ∈ Z; f l
i1i2···ir

, fm
i1i2···ir

∈ Ii1i2···ir
(G, Z). (The

operations are extended in the usual way if either or both are elements of the form f r∗
i ).

Thus Ii1i2...ir
(V, Z) is an incidence algebra over Z.

Note 2. Another possibility is to consider a subalgebra consisting of various paths of the type

Ri1i2···ir
with all of i1i2 · · · ir being different from j1j2 · · · js for any two u−v paths fi1i2···ir

and

fj1j2···js
. Let f l

l1l2···lr
, fm

m1m2···ms
be Ri1i2···ir

and Rj1j2··· ,js
-paths of length l and m respectively.

Define

(f l
i1i2···ir

+ fm
j1j2···js

)(u, v) = f l
i1i2···irj1j2···js

(u, v) + fm
i1i2···irj1j2···js

(u, v),
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(f j
i1i2···ir

.f j
j1j2···js

)(u, v) =
∑

w:(u,w),(w,v)∈

ir⋃

i=i1

Ri

f l
i1i2...ir

(u, w)fm
j1j2...js

(w, v),

(zf l
l1l2···lr

)(u, v) = z.f l
l1l2···lr

(u, v),

Ipath(V, Z) = {f, f∗ : V × V → Z},

where f is an Ri1i2···ir
-path, i1, i2, · · · , ir ∈ {1, 2, · · · , k}, 1 ≤ r ≤ k and f∗ = −f . (The

operations are extended in the usual way if either or both are elements of the form f∗).

Thus Ipath(V, Z) is an incidence algebra over Z.

§4. Ri-labelings and Incidence Algebra

Now consider Ri-labelings and Ri-index vectors of G. We recall the concepts of Ri-labelings

and Ri-index vectors introduced in [5].

Definition 4.1([5]) Let F be an abelian group or a ring and G = (V, R1, R2, · · · , Rk) be a graph

structure with vertices v0, v1, · · · , vp−1 and qi number of Ri-edges. A mapping ri : V → F is

an Ri-index vector with components ri(v0), ri(v1), · · · , ri(vp−1), i = 1, 2, · · · , k and a mapping

xi : Ri → F is an Ri-labeling with components xi(e
1
i ), xi(e

2
i ), · · · , xi(e

qi

i ), i = 1, 2, · · · , k.

An Ri-labeling xi is an Ri-labeling for the Ri-index vector ri iff ri(vj) =
∑

er∈Ej
i

xi(er), where

Ej
i is the set of all Ri-edges incident with vj. Ri-index vectors for which an Ri-labeling exists

are called admissible Ri-index vectors.

Now we prove some results on Ri-labellings and incidence algebras. For that, first we recall

the operations of addition and scalar multiplication mentioned in [5].

(r1
i + r2

i )(vj) = r1
i (vj) + r2

i (vj),

(fr1
i )(vj) = fr1

i (vj),

(x1
i + x2

i )(ej) = x1
i (ej) + x2

i (ej),

(fx1
i )(ej) = fx1

i (ej).

Now we define multiplication as follows.

Definition 4.2 Let r1
i , r2

i be Ri-index vectors and x1
i , x

2
i be Ri-labelings of a graph structure

G = (V, R1, R2, · · · , Rk).

(r1
i .r2

i )(vl) =
∑

s:(vl,vs)∈Ri

r1
i (vl)r

2
i (vs)

(x1
i .x

2
i )(vl, vm) = 2.

∑

s:(vl,vs)∈Ri,(vs,vm)∈Ri

x1
i (vl, vs)x

2
i (vs, vm)(Multiplication by 2 is to ad-

just the duplication due to symmetric property of Ri-edges).

Now we prove that with respect to these operations, the set of all Ri-labelings for all

admissible Ri-index vectors is a subalgebra of the incidence algebra I(V, F ).
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Theorem 4.1 The set of Ri-labelings for all admissible Ri-index vectors of a graph struc-

ture G = (V, R1, R2, · · · , Rk) is a subalgebra of IL(Ai)(V, F ) where Ai is the collection of all

admissible Ri-index vectors.

Proof Let IL(Ai)(V, F ) be the collection of Ri-labelings for elements of Ai. Let x1
i , x

2
i ∈

IL(Ai)(V, F ). Then there exist r1
i , r2

i ∈ F such that

r1
i (vj) =

∑

p:(vj ,vp)∈Ri

x1
i (vj , vp) and r2

i (vj) =
∑

p:(vj ,vp)∈Ri

x2
i (vj , vp).

(r1
i + r2

i )(vj) = r1
i (vj) + r2

i )(vj) =
∑

p:(vj ,vp)∈Ri

x1
i (vj , vp) +

∑

p:(vj ,vp)∈Ri

x2
i (vj , vp)

=
∑

p:(vj ,vp)∈Ri

(x1
i + x2

i )(vj , vp).

Therefore x1
i + x2

i is an Ri-labeling for (r1
i + r2

i , i.e., x1
i + x2

i ∈ IL(Ai)(V, F ).

(ri1.r2
i )(vj) =

∑

s:(vjvs)∈Ri

r1
i (vj)r

2
i (vs)

=
∑

s:(vjvs)∈Ri

[
∑

l:(vjvl)∈Ri

x1
i (vj , vl)

∑

m:(vsvm)∈Ri

x2
i (vs, vm)]

= 2.
∑

s:(vjvs)∈Ri

∑

m:(vsvm)∈Ri

x1
i (vj , vs)x

2
i (vs, vm)

=
∑

n:(vjvn)∈Ri

(x1
i x

2
i )(vj , vn)

Therefore x1
i .x

2
i is an Ri-labeling for r1

i .r2
i . i.e., x1

i .x
2
i ∈ IL(Ai)(V, F ).

(fr1
i )(vj) = f.r1

i (vj)

= f.
∑

n:(vjvn)∈Ri

x1
i (vj , vn)

=
∑

n:(vjvn)∈Ri

fx1
i (vj , vn)

=
∑

n:(vjvn)∈Ri

(fx1
i )(vj , vn)

i.e., fx1
i ∈ IL(Ai)(V, F ). Hence IL(Ai)(V, F ) is a subalgebra of I(V, F ). �

For the next few results, we require results from our previous papers [5] and [7].

Theorem 4.2([5]) If F is an integral domain, the Ri-labelling of G for the Ri-index vector 0

form a free F -module.

Theorem 4.3([7]) Let F be an integral domain. Then Si(G), the collection of Ri-labelings for

λiji, λi ∈ F, ji an all 1-vector, is a free F -module.

Theorem 4.4 The set of Ri-labellings for λiji, λi ∈ F, ji an all 1 vector of a graph structure

G = (V, R1, R2, · · · , Rk) forms a subalgebra of the incidence algebra I(V, F ).
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Proof Let IL(λi)(V, F ) be the collection of Ri-labelings for λiji. Let x1
i , x

2
i ∈ IL(λi)(V, F ).

Then there exist λ1
i , λ

2
i ∈ F such that

λ1
i (vj) =

∑

p:(vjvp)∈Ri

x1
i (vj , vp) and λ2

i (vj) =
∑

p:(vjvp)∈Ri

x2
i (vj , vp).

By Theorem 4.3, λiji is an F -module. Hence it is enough if we prove that x1
i .x

2
i is an Ri-labeling

for (λ1
i .λ

2
i )j

(λ1
i .λ

2
i )(vj) =

∑

s:(vjvs)∈Ri

λ1
i (vj)λ

2
i (vs)

=
∑

s:(vjvs)∈Ri

[
∑

l:(vjvl)∈Ri

x1
i (vj , vl)

∑

m:(vsvm)∈Ri

x2
i (vs, vm)]

= 2.
∑

s:(vjvs)∈Ri,(vsvn)∈Ri

x1
i (vj , vs)x

2
i (vs, vn)

=
∑

n:(vjvn)∈Ri

(x1
i x

2
i )(vj , vn)

Therefore x1
i .x

2
i is an Ri-labeling for λ1

i .λ
2
i = λ3

i . i.e., x1
i .x

2
i ∈ IL(λi)(V, F ). Hence IL(λi)(V, F )

is a subalgebra of I(V, F ). �

Theorem 4.5 The set of Ri-labelings for 0 of a graph structure G = (V, R1, R2, ..., Rk) forms

a subalgebra of the incidence algebra I(V, F ).

Let IL(0i) be the collection of all Ri-labelings for 0. By Theorem 4.2, the collection is an

F -module. So it is enough if we prove that x1
i .x

2
i ∈ IL(0i)(V, F )∀x1

i , x
2
i ∈ IL(0i)(V, F ).

∑

n:(vjvn)∈Ri

(x1
i .x

2
i )(vj , vn) = 2.

∑

n:(vjvn)∈Ri

[
∑

s:(vjvs)∈Ri,(vsvn)∈Ri

x1
i (vj , vs)x

2
i (vs, vn)]

=
∑

s:(vjvs)∈Ri

x1
i (vj , vs)[

∑

n:(vsvn)∈Ri

x2
i (vs, vn)]

=
∑

s:(vjvs)∈Ri

x1
i (vj , vs).0(vs)

= 0

Therefore x1
i .x

2
i is an Ri-labeling for 0. ie., x1

i .x
2
i ∈ IL(0i)(V, F ). So IL(0i)(V, F ) is a subalgebra

of I(V, F ). �

§5. Labeling Matrices and Incidence Algebras

We now establish the relation between labeling matrices and incidence algebras. For that first

we recall the concepts of labeling matrices and index matrices of a graph structure introduced

by the authors in [6].

Definition 5.1([6]) Let F be an abelian group or a ring. Let Ri be an Ri-index vector and xi

be an Ri-labeling for i = 1, 2, · · · , k. Then
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x =




x1 0 . . . 0

0 x2 0 . . 0

. 0 . .

. . . .

. . . 0

0 0 . . . xk




is a labeling matrix and

r =




r1 0 . . . 0

0 r2 0 . . 0

. 0 . .

. . . .

. . . 0

0 0 . . . rk




is an index matrix for the graph structure G = (V, R1, R2, · · · , Rk).

x :




R1

R2

.

.

.

Rk




→ F k

is a labeling for r : V k → F k if
∑

m∈Es

xi(m) = ri(xs) for s = 0, 1, · · · , p − 1; i = 1, 2, · · · , k. If

ri is an admissible Ri-index vector i = 1, 2, · · · , k, then r is called an admissible index matrix

for G.

Now we establish some relations between these and incidence algebras.

Theorem 5.1 The set of labeling matrices for all admissible index matrices of a graph structure

G = (V, R1, R2, · · · , Rk) is a subalgebra of I(V k, F k).

Proof Let IL(A)(V
k, F k) be the set of all labeling matrices for the elements of A, the

set of all admissible index matrices. Let x1, x2 ∈ IL(A)(V
k, F k). Then x1

i , x
2
i ∈ IL(Ai)(V, F ),

the set of all Ri-labelings for the elements of the set Ai of all admissible Ri-index vectors

for i = 1, 2, · · · , k. Then as proved in Theorem 4.1, x1
i + x2

i , x
1
i .x

2
i , fx1

i ∈ IL(Ai)(V, F ) where

f ∈ F . Hence x1 + x2, x1.x2, fx1 are labelings for some r1 + r2, r1.r2, fr1 respectively. i.e.,

x1 + x2, x1.x2, fx1 ∈ IL(A)(V
k, F k). So IL(A)(V

k, F k) is a subalgebra of I(V k, F k). �
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Theorem 5.2 The set of labeling matrices for ΛJ with

Λ =




λ1 0 . . . 0

0 λ2 0 . . 0

. . . . . .

. . . . . 0

0 0 . . 0 λk




, J =




j1 0 . . . 0

0 j2 0 . . 0

. . . . . .

. . . . . 0

0 0 . . 0 jk




,

ji, an all 1-vector for i = 1, 2, ..., k of a graph structure G = (V, R1, R2, · · · , Rk) is a subalgebra

of I(V k, F k).

Proof Let IL(Λ)(V
k, F k) be the set of all labeling matrices for the index matrix Λ. Let

x1, x2 ∈ IL(Λ)(V
k, F k). Then x1

i , x
2
i ∈ IL(λi)(V, F ), the set of all Ri-labellings for λi for i =

1, 2, ..., k. Then as proved in Theorem 4.4, x1
i +x2

i , x
1
i .x

2
i , fx1

i ∈ IL(λi)(V, F ) where f ∈ F . Hence

x1 + x2, x1.x2, fx1 are labelings for Λ1 + Λ2, Λ1.Λ2, fΛ1 respectively, i.e.,x1 + x2, x1.x2, fx1 ∈

IL(Λ)(V
k, F k). So IL(Λ)(V

k, F k) is a subalgebra of I(V k, F k). �

Theorem 5.3 The set of labeling matrices for 0 of a graph structure G = (V, R1, R2, ..., Rk) is

a subalgebra of I(V k, F k).

Proof Let IL(0)(V
k, F k) be the set of all labeling matrices for the index matrix 0. Let

x1, x2 ∈ IL(0)(V
k, F k). Then x1

i , x
2
i ∈ IL(0i)(V, F ), the set of all Ri-labelings for 0 for i =

1, 2, ..., k. Then as proved in Theorem 4.5, x1
i + x2

i , x
1
i .x

2
i , fx1

i ∈ IL(0i)(V, F ) where f ∈ F .

Hence x1 + x2, x1.x2, fx1 are labelings for 0 + 0 = 0, 0.0 = 0, f0 = 0 respectively, i.e., x1 +

x2, x1.x2, fx1 ∈ IL(0(V
k, F k). So IL(0)(V

k, F k) is a subalgebra of I(V k, F k). �
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§1. Introduction

Graphs considered here are finite, simple and undirected. The symbols V (G) and E(G) will

denote the vertex set and edge set of a graph G. Terms not defined here are used in the sense

of Harary [2] and Gary Chartrand [1]. Two Graphs G1 and G2 are isomorphic if there exists

a one-to-one correspondence f from V (G1) to V (G2) such that uv ∈ E(G1) if and only if

f(u)f(v) ∈ E(G2). By a coloring of a graph, we mean an assignment of colors to the vertices

of G such that adjacent vertices are colored differently. The smallest number of colors in any

coloring of a graph G is called the chromatic number of G and is denoted by χ(G). If it is

possible to color G from a set of k colors, then G is said to be k-colorable. A coloring that uses

k-colors is called a k-coloring.

§2. Ideal Graph of a Graph

In this section, we introduce ideal graph of a graph. We can analyze the properties of graphs

by using ideal graph of a graph, which may be of smaller size than the original graph.

Definition 2.1 For a graph G with sets C of cycles, L of longest paths with all the internal

vertices of degree 2, and U ⊂ C , V ⊂ L , its Smarandachely ideal graph IU,V
d (G) of the graph

1Received February 23, 2011. Accepted August 10, 2011.
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G is formed as follows:

(i) These cycles and the edges lying on a cycle in U or C \ U will remain or not same in

Smarandachely ideal graph IU,V
d (G) of G.

(ii) Every longest u-v path in V or L \V is considered as an edge uv or not in Smarandachely

ideal graph IU,V
d (G) of G.

Particularly, if U = C and V = L , i.e., a Smarandachely IC ,L
d (G) of G is called the ideal

graph of G,denoted by Id(G).

Example 2.2 Some ideal graphs of graphs are shown following.

1.

v1 v2 v3 v4 v1 v4

G Id(G)

2.

u

v

G

u

Id(G)

v

Definition 2.3 The vertices of the ideal graph Id(G) are called strong vertices of the graph G

and the vertices, which are not in the ideal graph Id(G) are called weak vertices of the graph G.

Definition 2.4 The vanishing number of an edge uv of the ideal graph of a graph G is defined

as the number of internal vertices of the u-v path in the graph G.

We denote the vanishing number of an edge e of an ideal graph by v0(e).

Remark 2.5 It is possible to get the original graph G from its ideal graph Id(G) if we know

the vanishing numbers of all the edges of Id(G).

Definition 2.6 The vanishing number of the ideal graph of a graph G is denoted by vid and is

defined as the sum of all vanishing numbers of the edges of Id(G) or the number of weak vertices

of the graph G.

Definition 2.7 The ideal number of a graph G is defined as the number of vertices in the ideal

graph of the graph G or the number of strong vertices of the graph. It is denoted by pid.

Example 2.8 A graph with its ideal graph is shown in the following. In this graph, the ideal

number of the graph G is 6. (i.e. pid = 6). Also, in the ideal graph, the vanishing number of
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the edges are v0(u1u2) = v0(u2u5) = v0(u1u5) = v0(u4u6) = 0 and v0(u2u4) = v0(u4u8) = 1.

The vanishing number(vid) of the ideal graph Id(G) is 2.

u1
u2 u3 u4

G

u5

u6 u7

u8

u1
u2 u4

Id(G)

u5

u6 u8

The following proposition is obvious from the above definitions.

Proposition 2.9 Let G be a graph and p = |V (G)|. The following properties are true.

(i) p = pid + vid.

(ii) p ≥ pid.

(iii) p = pid if and only if G = Id(G).

Proof Proof follows from the Definitions 2.1, 2.6 and 2.7. �

Proposition 2.10 There are ideal graphs following.

(i) Id(Pn) = P2 for every n ≥ 2.

(ii) Id(Cn) = Cn, Id(Wn) = Wn and Id(Kn) = Kn for all n.

(iii) Id(K1,2) = P2.

(iv) Id(Km,n) = Km,n except for K1,2.

(v) Id(G) = G if δ ≥ 3.

(vi) Id(G) = G if G is Eulerian.

(vii) Id(Id(G)) = Id(G) for any graph G.
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Proof Proof follows from the definition of Id(G). �

Proposition 2.11 A vertex v of a graph G is a strong vertex if and only if deg(v) ≤ 1 or

deg(v) ≥ 3 or the vertex v lies in a cycle.

Proof Proof follows from the definition of Id(G). �

Proposition 2.12 If a vertex v of a graph G is a weak vertex, then deg(v) = 2.

proof Proof follows from the definition of Id(G). �

Remark 2.13 Converse of the above proposition is not true. For, consider G = C3. Then all

the vertices of G are of degree 2 but they are not weak vertices.

§3. Characterization of Connectedness

In this section, we characterize connected graphs using ideal graph.

Theorem 3.1 A graph G is connected if and only if Id(G) is connected.

Proof It is obvious from the definition of Id(G) that if G is connected, then Id(G) is

connected. Assume that Id(G) is connected. Let u and v be two vertices of G.

Case i. u and v are strong vertices of G.

Since Id(G) is connected, there exists an u-v path in Id(G) that gives an u-v path in G.

Case ii. u is a strong vertex and v is a weak vertex of G.

Then v is an internal vertex of an u1-v1 path of G where u1v1 is an edge of Id(G). By

assumption there exists an u-u1 path in Id(G). Then the paths u-u1 and u1-v jointly gives the

path in G between u and v.

Case iii. Both u and v are weak vertices of G.

Then u and v are internal vertices of some u1-w1 path and u2-w2 path in G respectively

such that u1w1 and u2w2 are edges of Id(G). Then there exists an w1-u2 path in Id(G). Then

the paths uw1u2v is the required u-v path in G. �

Theorem 3.2 A graph G and Id(G) have same number of connected components.

Proof Proof is obvious from the definition of Id(G) and Theorem 3.1.

§4. Characterization of Isomorphism

In this section, we characterize isomorphism of two graphs via ideal graphs. Since trees are

connected graphs with no cycles, this characterization maybe more useful to analyze the iso-

morphism of trees.
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Lemma 4.1([1]) If a graph G is isomorphic to a graph G′ under a function f, then

(i) G and G′ have same degree sequence

(ii) if G contains a k-cycle for some integer k ≥ 3, so does G′ and

(iii) if G contains a u-v path of length k, then G′ contains a f(u) − f(v) path of length k.

Theorem 4.2 If a graph G is isomorphic to a graph G′, then Id(G) is isomorphic to Id(G′).

Proof Proof follows from Lemma 4.1. �

Remark 4.3 The following example shows that the converse of the above theorem is not true.

G Id(G)

G′ Id(G
′)

Here, Id(G) and Id(G′) are isomorphic. But G and G′ are not isomorphic.

The following theorem gives the necessary and sufficient condition for two graphs to be

isomorphic.

Theorem 4.4 A graph G is isomorphic to the graph G′ if and only if Id(G) is isomorphic to

Id(G
′) and the isomorphic edges have same vanishing number.

Proof Assume the graph G is isomorphic to the graph G′. By Theorem 4.2 and Lemma

4.1, Id(G) is isomorphic to Id(G
′) and the isomorphic edges have same vanishing number.

Conversely, assume Id(G) is isomorphic to Id(G’) and the isomorphic edges have same vanishing

number. If uv and u′v′ are isomorphic edges of Id(G) and Id(G
′) respectively with same

vanishing number, then the edges uv and u′v′ or the paths u-v and u′-v′ are isomorphic in G,

since they have same vanishing number. Hence G is isomorphic to the graph G′. �

§5. Characterization of Coloring Property

In this section, we give one characterization for 2-colorable and study about the relation between

the coloring of ideal graph and the actual graph. Also, we find an upper bound for the chromatic

number of a graph.

Theorem 5.1 A graph G is 2-colorable if and only if Id(G) is 2-colorable.
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Proof It is obvious from the definition of ideal graph that a graph G has odd cycles if and

only if the ideal graph Id(G) has odd cycles. We know that a graph G is 2-colorable if and only

if it contains no odd cycles. Hence a graph G is 2-colorable if and only if Id(G) is 2-colorable.�

Theorem 5.2 The strong vertices of a graph G can have the same colors in G and Id(G) under

some 2-coloring if and only if all the edges of Id(G) have even vanishing number.

Proof Assume that the strong vertices of a graph G have same colors in G and Id(G) under

some 2-colorings. Let uv be an edge of Id(G). Then u and v are in different colors in Id(G)

under a 2-coloring. If the vanishing number of uv is an odd number, then u and v have the

same colors in G. Thus u or v differs by color in G from Id(G). This contradicts our assumption.

Hence all edges of Id(G) have even vanishing number. Other part of this theorem is obvious.�

Theorem 5.3 A graph G is k-colorable with k ≥ 3 and the strong vertices of G can have the

same colors as in Id(G) under a k-coloring if Id(G) is k-colorable.

Proof Let Id(G) is k-colorable with k ≥ 3. Assign the same colors for the strong vertices

of G as in Id(G) under a k-coloring. Then for the weak vertices which are lying in the path

of connecting strong vertices, we can use 3 colors such that G is k-colorable and the strong

vertices of G can have the same colors as in Id(G). �

Corollary 5.4 For any graph G, χ(G) ≤ χ(Id(G)) ≤ pid.

Proof Proof follows from Theorem 5.3. �
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§1. Introduction

The pseudo-Smarandache function Z(n) was introduced by Kashihara [4] as follows:

Definition 1.1 For any integer n ≥ 1, Z(n) is the smallest positive integer m such that 1 +

2 + 3 + . . . m is divisible by n.

Alternately, Z(n) = min{m : m ∈ N : n |
m(m + 1)

2
}.

The main results and properties of pseudo-Smarandache functions are available in [3]-[5].

We noticed that the sum 1 + 2 + 3 + . . . + m can be replaced by the series of squares of first

m natural numbers and the cubes of first m natural numbers respectively, to get the pseudo-

Smarandache functions of first kind and second kind.

In the following we define pseudo-Smarandache functions of first kind and second kind.

Definition 1.2 For any integer n ≥ 1, the pseudo-Smarandache function of first kind, Z1(n)

is the smallest positive integer m such that 12 + 22 + 32 . . . + m2 is divisible by n.

Alternately, Z1(n) = min{m : m ∈ N : n |
m(m + 1)(2m + 1)

6
}.

Definition 1.3 For any integer n ≥ 1, the pseudo-Smarandache function of second kind, Z2(n)

is the smallest positive integer m such that 13 + 23 + 33 . . . + m3 is divisible by n.

Alternately, Z2(n) = min{m : m ∈ N : n |
m2(m + 1)2

4
}.

1Supported by UGC under the project No. 47-993/09 (WRO)
2Received April 12, 2011. Accepted August 15, 2011.
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For ready reference we give below some values of S(m)s and Z1(n)s, where S(m) stands for

the sum of the squares of first m natural numbers and Z1(n) stands for the pseudo-Smarandache

function of first kind for the value n for n ∈ N .

Values of S(m)

S(1) = 1 S(15) = 1240 S(29) = 8555 S(43) = 27434

S(2) = 5 S(16) = 1496 S(30) = 9455 S(44) = 29370

S(3) = 14 S(17) = 1785 S(31) = 10416 S(45) = 31395

S(4) = 30 S(18) = 2109 S(32) = 11440 S(46) = 33511

S(5) = 55 S(19) = 2470 S(33) = 12529 S(47) = 35726

S(6) = 91 S(20) = 2870 S(34) = 13685 S(48) = 38024

S(7) = 140 S(21) = 3311 S(35) = 14910 S(49) = 40425

S(8) = 204 S(22) = 3795 S(36) = 16206 S(50) = 42925

S(9) = 285 S(23) = 4324 S(37) = 17575 S(51) = 50882

S(10) = 385 S(24) = 4900 S(38) = 19019 S(52) = 48230

S(11) = 506 S(25) = 5525 S(39) = 20540 S(53) = 51039

S(12) = 650 S(26) = 6201 S(40) = 22140 S(54) = 53955

S(13) = 819 S(27) = 6930 S(41) = 23821 S(55) = 56980

S(14) = 1015 S(28) = 7714 S(42) = 25585 S(56) = 60116

Values of Z1(n)

Z1(1) = 1 Z1(14) = 3 Z1(27) = 40 Z1(40) = 15

Z1(2) = 3 Z1(15) = 4 Z1(28) = 7 Z1(41) = 20

Z1(3) = 4 Z1(16) = 31 Z1(29) = 14 Z1(42) = 27



Pseudo-Smarandache Functions of First and Second Kind 19

Z1(4) = 7 Z1(43) = 21 Z1(17) = 8 Z1(30) = 4

Z1(5) = 2 Z1(18) = 27 Z1(31) = 15 Z1(44) = 16

Z1(6) = 4 Z1(19) = 9 Z1(32) = 63 Z1(45) = 27

Z1(7) = 3 Z1(20) = 7 Z1(33) = 22 Z1(46) = 11

Z1(8) = 15 Z1(21) = 17 Z1(34) = 8 Z1(47) = 23

Z1(9) = 13 Z1(22) = 11 Z1(35) = 7 Z1(48) = 31

Z1(10) = 4 Z1(23) = 11 Z1(36) = 40 Z1(49) = 24

Z1(11) = 5 Z1(24) = 31 Z1(37) = 18 Z1(50) = 12

Z1(12) = 8 Z1(25) = 12 Z1(38) = 19 Z1(51) = 8

Z1(13) = 6 Z1(26) = 12 Z1(39) = 13 Z1(52) = 32

§2. Some Results for Pseudo-Smarandache Functions of First Kind

Following results can be directly verified from the table given above.

(1) Z1(n) = 1 only if n = 1.

(2) Z1(n) ≥ 1 for all n ∈ N .

(3) Z1(p) ≤ p, where p is a prime.

(4) If Z1(p) = n, p 6= 3, then p > n.

Lemma 2.1 If p is a prime then Z1(p) = p + 1, for p = 2 or 3. Also, Z1(p) =
p − 1

2
for p ≥ 5.

Proof For p = 2 and 3, the verification is direct from the above table of Z1(n).

Let S = 12 + 22 + 32 + . . . + (p−1
2 )2. Then S =

p(p + 1)(p − 1)

24
. Hence p divides S. Also

p ∤
p − 1

2
as

p − 1

2
< p. Let if possible (assumption) p | 12 + 22 + . . . + m2 where m <

p − 1

2
.

But in that case p divides every summand of the sum S. But p ∤ (p−1
2 )2. Hence our assumption

is wrong. Thus S is the minimum. Thus Z1(p) =
p − 1

2
�

Lemma 2.2 For p = 2, Z1(p
k) = pk+1 − 1.

Proof Straight verification confirms the result. �
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Lemma 2.3 Z1(n) ≥ max{Z1(N) : N | n}.

Proof Notice that in this case values of N are less than or equal to n and are divisors of

n. Hence values of Z1(N) can not exceed Z1(n). �

Lemma 2.4 Let n =
k(k + 1)(2k + 1)

6
for some k ∈ N , then Z1(n) = k.

Proof The result is the immediate consequence of the fact that no previous value of S(n)

is divisible by k. �

Lemma 2.5 It is not possible that Z1(m) = m for any m ∈ N .

Proof Let if possible Z1(m) = m. Then by definition m is the smallest of the positive

integer which divides 12 +22 +32 + . . . m2. Hence m does not divide 12 +22 +32 + . . . (m−1)2.

Let 12 + 22 + 32 + . . . (m− 1)2 = k. So, m divides k + m2. Hence m divides k, a contradiction.

�

Lemma 2.6 S(m) = k then S(m) = Z1(2k + 1).

Here S(n) will stand for the sum of the cubes of first n natural numbers. Please find the

table following.

Values of S(n)

S(1) = 1 S(15) = 14400 S(29) = 189225 S(43) = 894916

S(2) = 9 S(16) = 18496 S(30) = 216225 S(44) = 980100

S(3) = 36 S(17) = 23409 S(31) = 246016 S(45) = 1071225

S(4) = 100 S(18) = 29241 S(32) = 278784 S(46) = 1168561

S(5) = 225 S(19) = 36100 S(33) = 314721 S(47) = 1272384

S(6) = 441 S(20) = 44100 S(34) = 354025 S(48) = 1382976

S(7) = 784 S(21) = 53361 S(35) = 396900 S(49) = 1500625

S(8) = 1296 S(22) = 64009 S(36) = 443556 S(50) = 1625625

S(9) = 2025 S(23) = 76176 S(37) = 494209

S(10) = 3025 S(24) = 90000 S(38) = 549081
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Values of S(n)(continue)

S(11) = 4356 S(25) = 105625 S(39) = 608400

S(12) = 6084 S(26) = 123201 S(40) = 672400

S(13) = 8281 S(27) = 142884 S(41) = 741321

S(14) = 11025 S(28) = 164836 S(42) = 815409

Values of Z2(n)

Z2(1) = 1 Z2(14) = 7 Z2(27) = 8 Z2(40) = 15

Z2(2) = 3 Z2(15) = 5 Z2(28) = 7 Z2(41) = 40

Z2(3) = 2 Z2(16) = 7 Z2(29) = 28 Z2(42) = 20

Z2(4) = 3 Z2(17) = 16 Z2(30) = 15 Z2(43) = 42

Z2(5) = 4 Z2(18) = 3 Z2(31) = 30 Z2(44) = 111

Z2(6) = 3 Z2(19) = 18 Z2(32) = 15 Z2(45) = 5

Z2(7) = 6 Z2(20) = 4 Z2(33) = 11 Z2(46) = 23

Z2(8) = 7 Z2(21) = 6 Z2(34) = 16 Z2(47) = 46

Z2(9) = 2 Z2(22) = 11 Z2(35) = 14 Z2(48) = 8

Z2(10) = 4 Z2(23) = 22 Z2(36) = 3 Z2(49) = 6

Z2(11) = 10 Z2(24) = 15 Z2(37) = 36 Z2(50) = 4

Z2(12) = 3 Z2(25) = 4 Z2(38) = 19

Z2(13) = 12 Z2(26) = 12 Z2(39) = 12
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§3. Some Results on Pseudo-Smarandache Function of Second Kind

Following properties are result of direct verification from the above tables.

(1) Z2(n) = n only for n = 1.

(2) Z2(p) = p − 1, p 6= 2. Z2(p) = p + 1 for p = 2.

(3) Z2(n) ≥ max{Z2(N) : N | n}.

Following are some of the important results.

Lemma 3.1 If S(n) = k then Z2(k) = n.

Proof The proof follows from the definition of Z2(n). �

§4. Open Problem

Problem What is the relation between Z1(n) and Z2(n)?
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§1. Introduction

The concept of CR-submanifold of a Kahlerian manifold has been defined by A. Bejancu[1].

Later, A. Bejancu and N. Papaghiue [2], introduced and studied the notion of semi-invariant

submanifold of a Sasakian manifold. Which are closely related to CR-submanifolds in a Kahle-

rian manifold. However the existence of the structure vector field implies some important

changes.

The linear connection ∇ in an n-dimensional differentiable manifold M is called symmetric

if its torsion tensor vanishes, otherwise it is non-symmetric.The connection ∇ is metric if there

is a Riemannian metric g in M such that ∇g = 0, otherwise it is non-metric. It is well known

that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection.

In 1973, B. G. Schmidt [11] proved that if the holonomy group of ∇ is a subgroup of the

orthogonal group O(n), then ∇ is the Levi-Civita connection of a Riemannian metric. In 1924,

A. Friedmann and J. A. Schouten [9] introduced the idea of a semi-symmetric linear connection

in a differentiable manifold. A linear connection is said to be a semi-symmetric connection if

its torsion tensor T is of the form

T (X, Y ) = u(Y )X − u(X)Y,

1Received February 26, 2011. Accepted August 16, 2011.
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where u is a 1-form. A Hayden connection with the torsion tensor of the above form is a

semi-symmetric metric connection. In 1970, K. Yano [13] considered a semi-symmetric met-

ric connection and studied some of its properties. He proved that a Riemannian manifold is

conformally flat if and only if it admits a semi-symmetric metric connection whose curvature

tensor vanishes identically.He also proved that a Riemannian manifold is of constant curvature

if and only if it admits a semi-symmetric connection for which the manifold is a group manifold,

where a group manifold [8] is a differentiable manifold admitting a linear connection ∇ such

that its curvature tensor R vanishes and its torsion tensor is covariantly constant with respect

to ∇. In [12], L. Tamassy and T. Q. Binh proved that if in a Riemannian manifold of dimension

≥ 4, ∇ is a metric linear connection of non-vanishing constant curvature for which

R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0,

then ∇ is the Levi-Civita connection.On the other hand, S. Golab [10] introduced the idea of a

quarter symmetric linear connection if its torsion tensor T is of the form

T (X, Y ) = u(Y )φX − u(X)φY,

where u is a 1-form and φ is a tensor field of the type (1,1).

The purpose of the paper is to define and study quarter symmetric semi metric con-

nection in a quasi-sasakian manifold and consider its Kahler structure, globally metric frame

f -structure, integrability of distributions and geometry of their leaves. In Section 2, we recall

some results and formulae for the later use. In Section 3, we prove the existence of a Kahler

structure on and the existence of a globally metric frame f -structure in sence of S.I. Goldberg-

K. Yano [6]. The Section 4, is concerned with integrability of distributions on and geometry of

their leaves.

§2. Preliminaries

Let M̄ be a real 2n + 1 dimensional differentiable manifold, endowed with an almost contact

metric structure (f, ξ, η, g). Then we have from [4]

(a) f2 = −I + η ⊗ ξ;

(b) η(ξ) = 1;

(c) η ◦ f = 0;

(d) f(ξ) = 0; (2.1)

(e) η(X) = g(X, ξ);

(f) g( fX, fY ) = g(X, Y ) − η(X)η(Y )

for any vector field X , Y tangent to M̄ , where I is the identity on the tangent bundle ΓM̄ of

M̄ . Throughout the paper, all manifolds and maps are differentiable of class C∞.We denote by

F (M̄) the algebra of the differentiable functions on M̄ and by Γ(E) the F (M̄) module of the

sections of a vector bundle E over M̄ .
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The Niyembuis tensor field, denoted by Nf , with respect to the tensor field f , is given by

Nf (X, Y ) = [fX, fY ] + f2[X, Y ] − f [fX, Y ] + f [X, fY ], ∀X, Y ∈ Γ(TM̄)

And the fundamental 2-form Φ is given by

Φ(X, Y ) = g(X, fY ) ∀X, Y ∈ Γ(TM̄). (2.2)

The curvature tensor field of M̄ , denoted by R̄ with respect to the Levi-Civita connection ∇̄

,is defined by

R̄(X, Y )Z = ∇̄X∇̄Y Z−∇̄Y ∇̄XZ−∇̄[X,Y ]Z ∀X, Y, Z ∈ Γ(TM̄). (2.3)

(a) An almost contact metric manifold M̄ (f, ξ, η, g) is called normal if

Nf (X, Y )+2dη(X, Y )ξ = 0 ∀X, Y ∈ Γ(TM̄), (2.4)

Or equivalently

(∇̄fXf)Y = f(∇̄Xf)Y − g((∇̄Xξ, Y ) ∀X, Y ∈ Γ(TM̄).

(b) The normal almost contact metric manifold M̄ is called cosympletic if dΦ = dη = 0

Let M̄ be an almost contact metric manifold M̄ . According to [5] we say that M̄ is a

quasi-Sasakian manifold if and only if ξ is a Killing vector field and

(∇̄Xf)Y = g(∇̄fXξ, Y )ξ−η(Y )∇̄fXξ ∀X, Y ∈ Γ(TM̄). (2.5)

Next we define a tensor field F of type (1, 1) by

FX = −∇̄Xξ ∀X ∈ Γ(TM̄). (2.6)

A quarter symmetric semi metric connection ∇ on M is defined by

∇̄XY = ∇XY + η(X)fY − g(fX, Y )ξ

(∇̄Xf)Y = g(∇̄fXξ, Y )ξ−η(Y )∇̄fXξ−g(X, Y )ξ+η(X)η(Y )ξ ∀X, Y ∈ Γ(TM̄), (2.7)

∇̄Xξ = −FX ∀X ∈ Γ(TM̄). (2.8)

From [5] we recall

Lemma 2.1 Let M̄ be a quasi-Sasakian manifold. Then we have

(a) (∇̄ξf)X = 0 ∀X ∈ Γ(TM̄);

(b) f ◦ F = F ◦ f (c) Fξ = 0 (2.9)

(d) g(FX, Y ) + g(X, FY ) = 0 ∀X, Y ∈ Γ(TM̄);

(e) η ◦ F = 0;

(f) (∇̄XF )Y = R̄(ξ, X)Y ∀X, Y ∈ Γ(TM̄).

The tersor field f defined on M̄ an f structure in sense of K. Yano that is

f3 + f = 0.
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Next let M be a hypersurface of a quarter symmetric semi metric connection in a quasi-sasakian

manifold M̄ and denote by N the unit vector field normal to M . Denote by the same symbol

g the induced tensor metric on M , by ∇ the induced Levi-Civita connection on M and by

TM⊥ the normal vector bundle to M .The Gauss and Weingarten formulae of hypersurfaces of

a quarter symmetric semi metric connections are

(a) ∇̄XY = ∇XY + B(X, Y )N ;

(b) ∇̄XN = −AX + η(X)fN, (2.10)

where A is the shape operator with respect to the section N . It is known that

B(X, Y ) = g(AX, Y ) ∀X, Y ∈ Γ(TM). (2.11)

Because the position of the structure vector field with respect to M is very important we prove

the following results.

Theorem 2.1 Let M be a hypersurface of a quarter symmetric semi metric connection in a

quasi-sasakian manifold M̄ . If the structure vector field ξ is normal to M then M̄ is cosympletic

manifold and M is totally geodesic immersed in M̄ .

Proof Because M̄ is quasi-Sasakian manifold , then it is normal and dΦ = 0 ([3]). By

direct calculation using (2.10) (b), we infer

2dη(X, Y ) = g(∇̄Xξ, Y )−g(∇̄Y ξ, X) = g(AY, X)−g(AX, Y ) = 0 ∀X, Y ∈ Γ(TM̄). (2.12)

From (2.10) (b) and (2.12) we deduce

0 = dη(X, Y ) = g(Y, ∇̄Xξ) = −g(AX, Y ) = 0 ∀X, Y ∈ Γ(TM̄) (2.13)

which proves that M is totally geodesic. From (2.13) we obtain ∇̄Xξ = 0 ∀X ∈ Γ(TM̄) By

using (2.8),(2.9)(b)and (2.1) (d) from the above relation we state

∇̄Xξ = −f∇̄fXξ = 0 ∀X ∈ Γ(TM̄), (2.14)

because fX ∈ Γ(TM̄) ∀X ∈ Γ(TM̄). Using (2.14) and the fact that ξ is a Killing vector field,

we deduce dη = 0 that is M̄ is a cosympletic manifold. The proof is complete. �

Next we consider only the hypersurface which are tangent to ξ. Denote by U = fN and

from (2.1) (f), we deduce g(U, U) = 1 . Moreover, it is easy to see that U ∈ Γ(TM) .Denote

by D⊥ = Span(U) the 1-dimensional distribution generated by U , and by D the orthogonal

complement of D⊥ ⊕ (ξ) in TM . It is easy to see that

fD = D, D⊥ ⊆ TM⊥; TM = D ⊕ D⊥ ⊕ (ξ), (2.15)

where ⊕ denote the orthogonal direct sum. According with [1] from (2.15) we deduce that M

is a CR-submanifold of M̄ .

A CR-submanifold M of a quasi-Sasakian manifold M̄ is called CR-product if both dis-

tributions D ⊕ (ξ) and D⊥ are integrable and their leaves are totally geodesic submanifold of

M .
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Denote by P the projection morphism of TM to D and using the decomposion in (2.15)

we deduce

X = PX+a(X)U+η(X)ξ ∀X ∈ Γ(TM̄), (2.16)

fX = fPX + a(X)fU + η(fX)ξ ∴ fX = fPX − a(X)fU,

Since

U = fN, fU = f2N = −N + η(N)ξ = −N + g(N, ξ)ξ = −N,

where a is a 1-form on M defined by a(X) = g(X, U), X ∈ Γ(TM). From (2.16) using (2.1)

(a) we infer

fX = tX−a(X)N ∀X ∈ Γ(TM), (2.17)

where t is a tensor field defined by tX = fPX, X ∈ Γ(TM)

It is easy to see that

(a) tξ = 0;

(b) tU = 0. (2.18)

§3. Induced Structures on a Hypersurface of a Quarter Symmetric

Semi-Metric Connection in a Quasi-Sasakian Manifold

Let M be a hypersurface of a quarter symmetric semi metric connection in a quasi-sasakian

manifold M̄ . From (2.1) (a), (2.17) and (2.18) we obtain t3 + t = 0 , that is the tensor field t

defines an f -structure on M in sense of K.Yano [7]. Moreover, from (2.1) (a), (2.17), (2.18) we

infer

t2X = −X+a(X)U+η(X)ξ ∀X ∈ Γ(TM). (3.1)

Lemma 3.1 On a hypersurface of a quarter symmetric semi metric connection M of a quasi-

Sasakian manifold M̄ the tensor field t satisfies:

(a) g(tX, tY ) = g(X, Y ) − η(X)η(Y ) − a(X)a(Y ), (3.2)

(b) g(tX, Y ) + g(X, tY ) = 0 ∀X, Y ∈ Γ(TM).

Proof From (2.1) (f), and (2.17) we deduce

g(X, Y ) − η(X)η(Y ) = g(fX, fY ) = g(tX − a(X)N, tY − a(Y )N) = 0

= g(tX, tY ) + a(X)a(Y )

g(tX, tY ) = g(X, Y ) − η(X)η(Y ) − a(X)a(Y )

(b) g(tX, Y ) + g(X, tY ) = g(fX + a(X)N, Y ) + g(X, fY + a(Y )N)

= g(fX, Y ) + a(X)g(N, Y ) + g(X, fY ) + a(Y )g(X, N)
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= g(fX, Y ) + g(X, fY ) = 0.

Lemma 3.2 Let M be a hypersurface of a quarter symmetric semi metric connection in a

quasi-sasakian manifold M̄ . Then

(a) FU = fAξ + N ;

(b) FN = Aξ − U ;

(c) [U, ξ] = 0. (3.3)

Proof We take X = U , and Y = ξ in (2.7) and obtain

f∇̄Uξ = −∇̄Nξ

Then using (2.1) (a), (2.8), (2.10)(b), we deduce the assertion (a). The assertion (b) follows

from (2.1) (a), (2.9) (b) and (2.10) (b) and (3.3).Next by direct calculations, using (2.8), (2.9)

(b) and (2.10) we derive

∇̄ξU = (∇̄ξf)N + f∇̄ξN = −fAξ = −FU = ∇̄Uξ,

[U, ξ] = ∇̄Uξ − ∇̄ξU = ∇̄Uξ − ∇̄Uξ = 0

Which prove assertion (c). By using the decomposition TM̄ = TM ⊕ TM⊥, we deduce

FX = αX−η(AX)N, ∀X ∈ Γ(TM̄), (3.4)

where α is a tensor field of type (1, 1) on M , since g(FX, N) = −g(X, FN) = −g(X, Aξ−U) =

−η(AX) + a(X) ∀X ∈ Γ(TM̄). By using (2.7), (2.8), (2.10), (2.17) and (3.1), we obtain

Theorem 3.1 Let M be a hypersurface of a quarter symmetric semi-metric connection in a

quasi-sasakian manifold M̄ . Then the covariant derivative of a tensors t, a, η and α are given

by

(a) (∇X t)Y = g(FX, fY )ξ + η(Y )[αtX − η(AX)U + a(X)U ],

−g(fX, fY )ξ−a(Y )AX +B(X, Y )U ; (3.5)

(b) (∇Xa)Y = B(X, tY ) + η(Y )η(AtX) − a(Y )η(X);

(c) (∇Xη)(Y ) = g(Y,∇Xξ) − η(Y )η(X);

(d) (∇Xα)Y = (∇XF )Y + B(X, Y )Aξ − B(X, Y )U − η(AY )AX ∀X, Y ∈ Γ(TM),

respectively, where R is the curvature tensor field of M .

From (2.7), (2.8), (2.18) (a), (b) and (3.5)(a) we get

Proposition 3.1 On a hypersurface of a quarter symmetric semi metric connection M of a

quasi-sasakian manifold M̄ , we have

(a) ∇XU = −tAX + η(AtX)ξ − a(tX)ξ; (3.6)

(b) B(X, U) = a(AX) − η(X) ∀X ∈ Γ(TM).
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Theorem 3.2 Let M be a hypersurface of a quarter symmetric semi metric connection in

a quasi-sasakian manifold M̄ . The tensor field t is a parallel with respect to the Levi Civita

connection ∇ on M iff

AX = [η(AX)− a(X)]ξ + [a(AX)− η(X)]U. (3.7)

Proof Suppose that the tensor field t is parallel with respect to (∇), that is ∇t = 0. By

using (3.5) (a), we deduce

η(Y )[αtX − η(AX)U + a(X)U ] + g(FX, fY )ξ − g(fX, fY )ξ,

−a(Y )AX+B(X, Y )U = 0 ∀X, Y ∈ Γ(TM), (3.8)

Take Y = U in (3.8) and using (2.10) (b), (2.11), (3.6) (b) we infer

η(U)[αtX − η(AX)U + a(X)U ] + g(FX, fU)ξ − g(fX, fU)ξ − a(U)AX + B(X, U)U = 0,

AX = [η(AX) − a(X)]ξ + [a(AX) − η(X)]U ∀X, Y ∈ Γ(TM),

The proof is complete. �

Proposition 3.2 Let M be a hypersurface of a quarter symmetric semi metric connection in

a quasi-sasakian manifold M̄ . Then

(a) (∇Xa)Y = 0 ⇔ ∇XU = 0 and η(Y )a(tX) = a(Y )η(X);

(b) (∇Xη)Y = 0 ⇔ ∇Xξ = 0 and η(X)η(Y ) = 0 ∀X, Y ∈ Γ(TM).

Proof Let ∀X, Y ∈ Γ(TM) and using (2.11), (3.2) (b), (3.5) (b) and (3.6) (a) we obtain

g(∇XU, Y ) = g(−tAX + η(AtX)ξ − a(tX)ξ, Y )

= g(−tAX, Y ) + η(AtX)g(ξ, Y ) = a(tX)g(ξ, Y )

= g(AX, tY ) + η(AtX)η(Y ) − η(Y )a(tX) + η(X)a(Y ) − η(X)a(Y )

= (∇Xa)Y − η(Y )a(tX) + η(X)a(Y ).

(∇Xa)Y = 0 ⇔ ∇XU = 0 and η(Y )a(tX) = η(X)a(Y ),

(∇Xη)(Y ) = g(Y,∇Xξ) + η(X)η(Y ),

(∇Xη)(Y ) = 0 ⇔ ∇Xξ = 0 and η(X)η(Y ) = 0. �

According to Theorem 2 in [7], the tensor field

f̄ = t + η ⊗ U − a ⊗ ξ

defines an almost complex structure on M . Moreover, from Proposition 3.2 we deduce

Theorem 3.3 Let M be a hypersurface of a quarter symmetric semi metric connection in a

quasi-sasakian manifold M̄ . If the tensor fields t, a, η are parallel with respect to the connection

∇, then f̄ defines a Kahler structure on M .
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§4. Integrability of Distributions on a Hypersurface of a Quarter Symmetric

Semi-metric Connection in a Quasi-Sasakian Manifold M̄

From Lemma 3.2 we obtain

Corollary 4.1 On a hypersurface of a semi symmetric semi-metric connection M of a quasi-

Sasakian manifold M̄ there exists a 2-dimensional foliation determined by the integral distribu-

tion D⊥ ⊕ (ξ).

Theorem 4.1 Let M be a hypersurface of a quarter symmetric semi metric connection in a

quasi-Sasakian manifold M̄ . Then vskip 3mm

(a) A leaf of D⊥ ⊕ (ξ) is totally geodesic submanifold of M if and only if

(1) AU = a(AU)U + η(AU)ξ and

(2) FN = a(FN)U. (4.1)

(b) A leaf of D⊥ ⊕ (ξ) is totally geodesic submanifold of M̄ if and only if

(1) AU = 0 and

(2) a(FX) = a(FN) = 0, ∀X ∈ Γ(D).

Proof (a) Let M∗ be a leaf of integrable distribution D⊥ ⊕ (ξ) and h∗ be the second

fundamental form of the immersion M∗ → M . By using (2.1) (f), and (2.10) (b) we get

g(h∗(U, U), X) = g(∇̄UU, X) = −g(N, (∇̄Uf)X − g((∇̄UN, fX),

= 0 − g(−AU − η(U)N, fX) = g(AU, fX) + η(U)g(N, fX),

= g(AU, fX) ∀X ∈ Γ(TM) (4.2)

and

g(h∗(U, ξ), X) = g(∇̄Uξ, X) = −g(FU, X) = g(FN, fX) ∀X ∈ Γ(TM), (4.3)

Because g(FU, N) = 0 and fξ = 0 the assertion (a) follows from (4.2) and (4.3).

(b) Let h1 be the second fundamental form of the immersion M∗ → M . It is easy to see

that

h1(X, Y ) = h∗(X, Y )+B(X, Y )N, ∀X, Y ∈ Γ(D⊥⊕(ξ)). (4.4)

From (2.8) and (2.11) we deduce

g(h1(U, U), N) = g(∇̄UU, N) = a(AU), (4.5)

g(h1(U, ξ), N) = g(∇̄Uξ, N) = a(FU), (4.6)

The assertion (b) follows from (4.3)-(4.6).

Theorem 4.2 Let M be a hypersurface of a quarter symmetric semi metric connection in a

quasi-sasakian manifold M̄ . Then
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(a) the distribution D⊕ (ξ) is integrable iff g(AfX + fAX, Y ) = 0, ∀X, Y ∈ Γ(D);(4.7)

(b) the distribution D is integrable iff (4.7) holds and

FX = η(AtX)U − η(AX)N, (equivalentwithFD ⊥ D) ∀X ∈ Γ(D)

(c) The distribution D ⊕ D⊥ is integrable iff FX = 0, ∀X ∈ Γ(D).

Proof Let X, Y ∈ Γ(D). Since ∇ is a torsion free and ξ is a Killing vector field, we infer

g([X, ξ], U) = g(∇̄Xξ, U)−g(∇̄ξX, U) = g(∇Xξ, U)+g(∇Uξ, X) = 0 ∀X ∈ Γ(D) (4.8)

Using (2.1) (a), (2.10) (a) we deduce

g([X, Y ], U) = g(∇̄XY − ∇̄Y X, U) = g(∇̄XY − ∇̄Y X, fN)

= g(∇̄Y fX − ∇̄XfY, N) = g(AfX + fAX, Y ) ∀X, Y ∈ Γ(D). (4.9)

Next by using (2.8) (2.9) (d) and the fact that ∇ is a metric connection we get

g([X, Y ], ξ) = g(∇̄XY, ξ)−g(∇̄Y X, ξ) = 2g(FX, Y ) ∀X, Y ∈ Γ(D). (4.10)

The assertion (a) follows from (4.8), (4.9) and assertion (b) follows from (4.8)-(4.10). Using

(2.8) and (2.9) we obtain

g([X, U ], ξ) = g(∇̄XU, ξ)−g(∇̄UX, ξ) = 2g(FX, U) ∀X ∈ Γ(D) (4.11)

Taking on account of

g(FX, N) = g(FfX, fN) = g(FfX, U) ∀X ∈ Γ(D). (4.12)

The assertion (c) follows from (4.10) and (4.11). �

Theorem 4.3 Let M be a hypersurface of a quarter symmetric semi metric connection in a

quasi-sasakian manifold M̄ . Then

(a) the distribution D is integrable and its leaves are totally geodesic immersed in M if

and only if

FD ⊥ D and AX = a(AX)U+η(AX)ξ, ∀X ∈ Γ(D); (4.13)

(b) the distribution D ⊕ (ξ) is integrable and its leaves are totally geodesic immersed in if

and only if

AX = a(AX)U, X ∈ Γ(D) and FU = 0; (4.14)

(c) the distribution D ⊕ D⊥ is integrable and its leaves are totally geodesic immersed in

M if and only if .

FX = 0, X ∈ Γ(D).

Proof Let M∗
1 be a leaf of integrable distribution D and h∗

1 the second fundamental form

of immersion M∗
1 → M . Then by direct calculation we infer

g(h∗
1(X, Y ), U) = g(∇̄XY, U) = −g(Y,∇XU) = −g(AX, tY ), (4.15)
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and

g(h∗
1(X, Y ), ξ) = g(∇̄XY, ξ) = g(FX, Y ) ∀X, Y ∈ Γ(D). (4.16)

Now suppose M∗
1 is a totally submanifold of M . Then (4.13) follows from (4.15) and (4.16).

Conversely suppose that (4.13) is true. Then using the assertion (b) in Theorem 4.2 it is easy

to see that the distribution D is integrable. Next the proof follows by using (4.15) and (4.16).

Next, suppose that the distribution D ⊕ (ξ) is integrable and its leaves are totally geodesic

submanifolds of M . Let M1 be a leaf of D ⊕ (ξ) and h1 the second fundamental form of

immersion M1 → M . By direct calculations, using (2.8), (2.10) (b), (3.2) (b) and (3.6) (c), we

deduce

g(h1(X, Y ), U) = g(∇̄XY, U) = −g(AX, tY ), ∀X, Y ∈ Γ(D) (4.17)

and

g(h1(X, ξ), U) = g(∇̄Xξ, U) = −g(FU, X), ∀X ∈ Γ(D). (4.18)

Then the assertion (b) follows from (4.12), (4.17), (4.18) and the assertion (a) of Theorem 4.2 .

Next let M̄1 a leaf of the integrable distribution D ⊕ D⊥ and h̄1 the second fundamental form

of the immersion M1 → M . By direct calculation we get

g(h̄1(X, Y ), ξ) = g(FX, Y ), ∀X ∈ Γ(D), Y ∈ Γ(D⊕D⊥). (4.19)
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Abstract: Let G = (V, E) be a simple graph, k ≥ 1 an integer and let f : V (G) →

{−k, k − 1, · · · ,−1, 1, · · · , k − 1, k} be 2k valued function. If
∑

x∈N(v)

f(x) ≥ k for each

v ∈ V (G), where N(v) is the open neighborhood of v, then f is a Smarandachely comple-

mentary k-signed dominating function on G. The weight of f is defined as w(f) =
∑

v∈V f(v)

and the Smarandachely complementary k-signed domination number of G is defined as

γS
cs(G) = min{w(f) : f is a minimal complementary signed dominating function of G}.

Particularly, a Smarandachely complementary 1-signed dominating function or family is

called a complementary singed dominating function or family on G with abbreviated nota-

tion γcs(G), the Smarandachely complementary 1-signed domination number of G. In this

paper, we determine the value of complementary signed domination number for some special

class of graphs. We also determine bounds for this parameter and exhibit the sharpness of

the bounds. We also characterize graphs attaining the bounds in some special classes.

Key Words: Smarandachely complementary k-signed dominating function, Smaran-

dachely complementary k-signed dominating number, dominating function, signed domi-

nating function, complementary signed dominating function.

AMS(2010): 05C69

§1. Introduction

By a graph we mean a finite, undirected connected graph without loops or multiple edges.

Terms not defined here are used in the sense of Haynes et. al. [3] and Harary [2].

Let G = (V, E) be a graph with n vertices and m edges. A subset S ⊆ V is called a

dominating set of G if every vertex in V -S is adjacent to at least one vertex in S.

A function f : V → {0, 1} is called a dominating function of G if
∑

u∈N [v] f(u) ≥ 1 for

every v ∈ V . Dominating function is a natural generalization of dominating set. If S is a

dominating set, then the characteristic function is a dominating function.

Generally, let f : V (G) → {−k, k − 1, · · · ,−1, 1, · · · , k − 1, k} be 2k valued function. If∑
x∈N(v)

f(x) ≥ k for each v ∈ V (G), where N(v) is the open neighborhood of v, then f is a

Smarandachely complementary k-signed dominating function on G. The weight of f is defined

1Received February 12, 2011. Accepted August 18, 2011.
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as w(f) =
∑

v∈V f(v) and the Smarandachely complementary k-signed domination number of G

is defined as γS
cs(G) = min{w(f) : f is a minimal complementary signed dominating function of

G}. Particularly, if k = 1, a Smarandachely complementary 1-signed dominating function is a

function f : V → {+1,−1} such that
∑

u∈N [v] f(u) ≥ 1 for every v ∈ V on G with abbreviated

notation γS
cs(G) = γcs(G) = min{w(f) : f is a minimal complementary signed dominating

function of G}, the Smarandachely complementary 1-signed domination number of G. Signed

dominating function is defined in [1].

Definition 1.1 A caterpillar is a tree T for which removal of all pendent vertices leaves a path.

Definition 1.2 The wheel Wn is defined to be the graph K1 + Cn−1 for n ≥ 4.

§2. Main Results

Definition 2.1 A function f : V → {+1,−1} is called a complementary signed dominating

function of G if
∑

u/∈N [v] f(u) ≥ 1 for every v ∈ V with deg(v) 6= n − 1. The weight of a

complementary signed dominating function f is defined as w(f) =
∑

v∈V f(v).

The complementary signed domination number of G is defined as

γcs(G) = min{w(f) : f is a minimal complementary signed dominating function of G}.

Example 2.2 Consider the graph G given in Fig 2.1

b b

bb

b

b

v1

v6 v5

v2

v3

v4

Fig.2.1

Define f : V (G) → {+1,−1} by f(v1) = f(v3) = f(v4) = f(v6) = 1 and f(v2) = f(v5) = −1. It

is easy to observe that f is a minimal complementary signed dominating function with minimum

weight and so γcs(G) = 2.

Theorem 2.3 Let Tn be a caterpillar on 2n vertices obtained from a path v1, v2, . . . , vn on n

vertices by adding n new vertices u1, u2, . . . , un and joining ui to vi with an edge for each i.

Then γcs(Tn) = 4.

Proof The proof is divided into cases following.



36 Y.S.Irine Sheela and R.Kala

b b b b b b b b

b b b b b b b b

b b b

b b b

1

v1

1

u1

-1

v2

-1

u2

1

v3

1

u3

-1

v4

-1

u4

1

1

-1

vn−2

-1

un−2

1

vn−1

1

un−1

1

vn

1

un

Fig.2.2

Case i n is even.

Define f : V (Tn) → {+1,−1} as follows :

f(vi) = f(ui) =





+1 if 1 ≤ i < n and i is odd,

−1 if 2 ≤ i < n and i is even.

f(vn) = f(un) = +1. We claim that f is a complementary signed dominating function.

For odd i with 1 ≤ i < n,

∑

w/∈N [ui]

f(w) = −(n − 2) + [(n − 2) − 2] + 4 = 2.

Also, ∑

w/∈N [un]

f(w) = −(n − 2) + [(n − 2) − 2] + 4 = 2.

For even i with 2 ≤ i < n,

∑

w/∈N [ui]

f(w) = − [(n − 2) − 2] + (n − 2) + 4 = 6.

For 2 ≤ i < n − 2,

∑

w/∈N [vi]

f(w) = − [(n − 2) − 2] + (n − 2) − 2 + 4 = 4,

∑

w/∈N [v1]

f(w) = − [(n − 2) − 1] + [(n − 2) − 2] + 4 = 3,

∑

w/∈N [vn−1]

f(w) = − [(n − 2) − 1] + (n − 2) + 4 − 3 = 2,

∑

w/∈N [vn−2]

f(w) = − [(n − 2) − 2] + (n − 2) − 1 + 4 − 1 = 4,

∑

w/∈N [vn]

f(w) = −(n − 2) + (n − 2) + 4 − 3 = 1.

Therefore f is a complementary signed dominating function. Since
∑

w/∈N [vn] f(w) = 1, the

labeling is minimum with respect to the vertices v1, v2, . . . , vn−2 and u1, u2, . . . , un−1.
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If un−1 is given value −1, then
∑

u/∈N [un] f(u) = 0. It is easy to observe that
∑

v∈V [Tn] f(v) =

4 is minimum for this particular complementary signed dominating function. Hence γcs(Tn) = 4

if n is even.

Case ii n is odd.

Define f : V (Tn) → {+1,−1} as follows :

f(vi) =





+1 for 1 ≤ i ≤ n − 2 and i is odd,

−1 for 2 ≤ i ≤ n − 3 and i is even.

and f(vn−1) = f(vn) = +1.

f(ui) =





+1 if 1 ≤ i ≤ n and i is odd,

−1 if 2 ≤ i ≤ n − 1 and i is even.

b b b b b b b b

b b b b b b b b

b b b

b b b

+1

v1

+1

u1

-1

v2

-1

u2

+1

v3

+1

u3

-1

v4

-1

u4

-1

vn−3

-1

un−3

+1

vn−2

+1

un−2

+1

vn−1

-1

un−1

+1

vn

+1

un

Fig.2.3

We claim that f is a complementary signed dominating function.

For odd i with 1 ≤ i ≤ n − 4,

∑

w/∈N [ui]

f(w) = − [(n − 3) + 1] + [(n − 3) + 1 − 2] + 4 = 2.

For even i with 2 ≤ i ≤ n − 3,

∑

w/∈N [ui]

f(w) = − [(n − 3) + 1 − 2] + (n − 3) + 1 + 4 = 6.

Also ∑

w/∈N [un−2]

f(w) = − [(n − 3) + 1] + (n − 3) + 1 + 4 − 2 = 2,

∑

w/∈N [un−1]

f(w) = − [(n − 3) + 1 − 1] + [(n − 3) + 1 − 1] + 4 = 4

and ∑

w/∈N [un]

f(w) = − [(n − 3) + 1] + [(n − 3) + 1] + 4 − 2 = 2.
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For 2 ≤ i ≤ n − 4,

∑

w/∈N [vi]

f(w) = − [(n − 3) + 1 − 2] + [(n − 3) + 1 − 2] + 4 = 4,

∑

w/∈N [v1]

f(w) = − [(n − 3) + 1 − 1] + [(n − 3) + 1 − 2] + 4 = 3,

∑

w/∈N [vn−3]

f(w) = − [(n − 3) + 1 − 2] + [(n − 3) + 1 − 1] + 4 − 1 = 4,

∑

w/∈N [vn−2]

f(w) = − [(n − 3) + 1 − 1] + [(n − 3) + 1 − 1] + 4 − 2 = 2,

∑

w/∈N [vn−1]

f(w) = − [(n − 3) + 1 − 1] + [(n − 3) + 1 − 1] + 4 − 2 = 2,

∑

w/∈N [vn]

f(w) = − [(n − 3) + 1] + [(n − 3) + 1 − 1] + 4 − 2 = 1.

Therefore f is a complementary signed dominating function. Since
∑

w/∈N [vn] f(w) = 1, the

labeling is minimum with respect to the vertices v1, v2, . . . , vn−2 and u1, u2, . . . , un−1.

If un−2 is given value −1, then
∑

w/∈N [vn−1]
f(w) = 0. It is easy to observe that

∑
v∈V [Tn] f(v) =

4 is minimum for this particular complementary signed dominating function. Hence γcs(Tn) = 4

if n is odd. Therefore γcs(Tn) = 4 for all n. �

Theorem 2.4 Let Pn be a path on n vertices and each vertex of Pn is a support which is

adjacent to exactly two pendent vertices. Such a graph is called a caterpillar and denoted by T .

Then

γcs(T ) =





3 if n is odd, n ≥ 3

4 if n is even, n ≥ 4.

Proof Let the vertices of the path Pn be v1, v2, . . . , vn and let each vertex vi be adjacent

to exactly two pendent vertices namely ui and wi.

Case i n is odd.

Define f : V (T ) → {+1,−1} as follows :

f(vi) =





+1 if i is odd,

−1 if i is even.

f(ui) = +1 for all i and

f(wi) =





+1 if i = 1,

−1 if 2 ≤ i ≤ n.
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b b b b

b b b b b b b b b b b b b b b b
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v3

+1

u3

+1

w3

-1

v4

-1

u4

+1

w4

-1

vn−3

-1

un−3

+1

wn−3

-1

vn−2

+1
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+1
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-1
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-1
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un

+1

wn

-1

Fig.2.4

We claim that f is a complementary signed dominating function. We have,

∑

w/∈N [u1]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

(
n − 1

2

)
+ 2 − 1 + (n − 1) − (n − 1) = 1.

For even i with 2 ≤ i ≤ n − 1,

∑

w/∈N [ui]

f(w) =

(
n − 1

2

)
+ 1 −

[(
n − 1

2

)
− 1

]
+ 2 + (n − 1) − 1 − (n − 1) = 3.

For odd i with 3 ≤ i ≤ n,

∑

w/∈N [ui]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

(
n − 1

2

)
+ 2 + (n − 1) − 1 − (n − 1) = 1,

∑

w/∈N [w1]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

(
n − 1

2

)
+ 2 − 1 + (n − 1) − (n − 1) = 1,

For even i with 2 ≤ i ≤ n − 1,

∑

w/∈N [wi]

f(w) =

(
n − 1

2

)
+ 1 −

[(
n − 1

2

)
− 1

]
+ 2 + (n − 1) − [(n − 1) − 1] = 5.

For odd i with 3 ≤ i ≤ n,

∑

w/∈N [wi]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

(
n − 1

2

)
+ 2 + (n − 1) − [(n − 1) − 1] = 3,

∑

w/∈N [v1]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

[
−1 +

(
n − 1

2

)]
+ 2 − 2 + (n − 1) − (n − 1) = 1.

For even i with 2 ≤ i ≤ n − 1,

∑

w/∈N [vi]

f(w) =

(
n − 1

2

)
+ 1 − 2 −

[(
n − 1

2

)
− 1

]
+ 2 + (n − 1) − 1 − [(n − 1) − 1] = 2.

For odd i with 3 ≤ i < n,

∑

w/∈N [vi]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

[
n − 1

2
− 2

]
+ 2 + (n − 1) − 1 − [(n − 1) − 1] = 4,

∑

w/∈N [vn]

f(w) =

(
n − 1

2

)
+ 1 − 1 −

[(
n − 1

2

)
− 1

]
+ 2 + (n − 1) − 1 − [(n − 1) − 1] = 3.
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Therefore f is a complementary signed dominating function. Since
∑

w/∈N [w1]
f(w) = 1, the

labeling is minimum with respect to the vertices v2, v3, . . . , vn and w2, w3, . . . , wn, u1, u2, . . . , un.

If u1 is given value −1, then
∑

w/∈N [vi]
f(w) = 0 for even i with 2 ≤ i ≤ n − 1. It is

easy to observe that
∑

v∈V (T ) f(v) = 3 is minimum for this particular complementary signed

dominating function. Therefore γcs(T ) = 3 if n is odd and n ≥ 3.

Case ii n is even.

Define f : V (T ) → {+1,−1} as follows :

f(vi) =





+1 for 1 ≤ i ≤ 4 and 5 ≤ i ≤ n, i is odd,

−1 for 6 ≤ i ≤ nand i is even.

f(ui) = +1 for 1 ≤ i ≤ n and f(wi) = −1 for 1 ≤ i ≤ n

b b b b b b

b b b b b b b b b b b b b b b b b b

b b bb b b

v1

+1

u1

+1

w1

-1

v2

+1

u2

+1

w2

-1

v3

+1

u3

+1

w3

-1

v4

+1

u4

+1

w4

-1

v5

+1

u5

+1

w5

-1

v6

-1

u6

+1

w6

-1

vn−2

-1

un−2

+1

wn−2

-1

vn−1

+1

un−1

+1

wn−1

-1

vn

-1

un

+1

wn

-1

Fig.2.5

We claim that f is a complementary signed dominating function.

∑

w/∈N [v1]

f(w) = 4 − 2 +

(
n − 4

2

)
−

(
n − 4

2

)
+ (n − 1) − (n − 1) = 2.

For i = 2, 3,

∑

w/∈N [vi]

f(w) = 4 − 3 +

(
n − 4

2

)
−

(
n − 4

2

)
+ (n − 1) − (n − 1) = 1,

∑

w/∈N [v4]

f(w) = 4 − 2 +

(
n − 4

2

)
− 1 −

(
n − 4

2

)
+ (n − 1) − (n − 1) = 1,

∑

w/∈N [v5]

f(w) = 4 − 1 +

(
n − 4

2

)
− 1 −

[(
n − 4

2

)
− 1

]
+ (n − 1) − (n − 1) = 3.

For odd i with 7 ≤ i ≤ n − 1,

∑

w/∈N [vi]

f(w) = 4 +

(
n − 4

2

)
− 1 −

[
n − 4

2
− 2

]
+ (n − 1) − (n − 1) = 5.

For even i with 6 ≤ i < n,

∑

w/∈N [vi]

f(w) = 4 +

(
n − 4

2

)
− 2 −

[(
n − 4

2

)
− 1

]
+ (n − 1) − (n − 1) = 3,

∑

w/∈N [vn]

f(w) = 4 +

(
n − 4

2

)
− 1 −

[(
n − 4

2

)
− 1

]
+ (n − 1) − (n − 1) = 4.
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For 1 ≤ i ≤ 4,

∑

w/∈N [ui]

f(w) = 4 − 1 +

(
n − 4

2

)
−

(
n − 4

2

)
+ (n − 1) − n = 2.

For odd i with 5 ≤ i ≤ n − 1,

∑

w/∈N [ui]

f(w) = 4 +

(
n − 4

2

)
− 1 −

(
n − 4

2

)
+ (n − 1) − n = 2.

For even i with 6 ≤ i ≤ n,

∑

w/∈N [ui]

f(w) = 4 +

(
n − 4

2

)
−

[
n − 4

2
− 1

]
+ (n − 1) − n = 4.

For 1 ≤ i ≤ 4,

∑

w/∈N [wi]

f(w) = (4 − 1) +
n − 4

2
−

(
n − 4

2

)
+ n − (n − 1) = 4.

For odd i with 5 ≤ i ≤ n − 1,

∑

w/∈N [wi]

f(w) = 4 +

(
n − 4

2

)
− 1 −

(
n − 4

2

)
+ n − [n − 1] = 4.

For even i with 6 ≤ i ≤ n,

∑

w/∈N [wi]

f(w) = 4 +

(
n − 4

2

)
−

[(
n − 4

2

)
− 1

]
+ n − (n − 1) = 6.

Therefore f is a complementary signed dominating function. Since
∑

w/∈N [v2] f(w) = 1, the

labeling is minimum with respect to the vertices v4, v5, . . . , vn, u1, u3, . . . , un and w1, w3, . . . , wn.

If v4 is given value −1, then
∑

w/∈N [v1]
f(w) = 0. It is easy to observe that

∑
v∈V (T ) f(v) =

4 is minimum for this particular complementary signed dominating function. Therefore γcs(T ) =

4 if n is even and n ≥ 4. �

Theorem 2.5 For a bipartite graph Km,n,

γcs(Km,n) =






5 if exactly one of m, n is odd,

6 if both m and n are odd,

4 if both m and n are even,

where 2 ≤ m ≤ n.

Proof Let (V1, V2) be the partition of Km,n with |V1| = m and |V2| = n. Let the vertices of

V1 be v1, v2, . . . , vm and let the vertices of V2 be u1, u2, . . . , un. Define f : V (Km,n) → {+1,−1}

as follows :

f(vi) =






−1 if 1 ≤ i ≤
m − 2

2
,

+1 if
m − 2

2
< i ≤ m,
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when m is even and

f(vi) =






−1 if 1 ≤ i ≤
m − 3

2
,

+1 if
m − 3

2
< i ≤ m,

when m is odd

f(ui) =





−1 if 1 ≤ i ≤
n − 2

2
,

+1 if
n − 2

2
< i ≤ n,

when n is even and

f(ui) =





−1 if 1 ≤ i ≤
n − 3

2
,

+1 if
n − 3

2
< i ≤ n,

when n is odd.

Case i m is even.

Let vi be a vertex with f(vi) = −1. Then

∑

u/∈N [vi]

f(u) = (−1)

[
m − 2

2
− 1

]
+ m −

(
m − 2

2

)

= −(m − 2) + 1 + m = 3

Let vi be a vertex with f(vi) = +1. Then

∑

u/∈N [vi]

f(u) = (−1)

(
m − 2

2

)
+ m −

(
m − 2

2

)
− 1

= −(m − 2) + m − 1 = 1

Case ii m is odd.

Let vi be a vertex with f(vi) = −1. Then

∑

u/∈N [vi]

f(u) = (−1)

[(
m − 3

2

)
− 1

]
+ m −

(
m − 3

2

)

= −(m − 3) + 1 + m = 4

Let vi be a vertex with f(vi) = +1. Then

∑

u/∈N [vi]

f(u) = (−1)

(
m − 3

2

)
+ m −

(
m − 3

2

)
− 1 = 2

Case iii n is even.

The proof is similar to case (i) replacing m and vi by n and ui.

Case iv n is odd.
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The proof is similar to case (ii) replacing m and vi by n and ui.

If the number of vertices with function −1 is increased by 1, a vertex with function value

+1 will not satisfy the condition necessary for a complementary signed dominating function.

Therefore f is a complementary signed dominating function.

Case I Exactly one of m or n is odd.

When m is even and n is odd, then

γcs(Km,n) =
∑

v∈V (Km,n)

f(v)

= (−1)

(
m − 2

2

)
+ m −

(
m − 2

2

)
+ (−1)

(
n − 3

2

)
+ n −

(
n − 3

2

)

= −(m − 2) + m − (n − 3) + n = 5

When m is odd and n is even

γcs(Km,n) =
∑

v∈V (Km,n)

f(v)

= −

(
m − 3

2

)
+ m −

(
m − 3

2

)
−

(
n − 2

2

)
+ n −

(
n − 2

2

)

= −(m − 3) + m − (n − 2) + n = 5

Case II Both m and n are even.

γcs(Km,n) = −

(
m − 2

2

)
+ m −

(
m − 2

2

)
−

(
n − 2

2

)
+ n −

(
n − 2

2

)

= −(m − 2) + m − (n − 2) + n = 4

Case III Both m and n are odd.

γcs(Km,n) = −

(
m − 3

2

)
+ m −

(
m − 3

2

)
−

(
n − 3

2

)
+ n −

(
n − 3

2

)

= −(m − 3) + m − (n − 3) + n = 6

�

Remark 2.6 γcs(Km,n) = γs(Km,n) for m, n > 3.

We observe that γcs(W5) = 3, γcs(W6) = 4, γcs(W7) = 1, γcs(W8) = 4, γcs(W9) = 3 and

γcs(W10) = 2. We determine γcs(Wn) for n ≥ 11.

Theorem 2.7 For the Wheel Wn = K1 + Cn−1,

γcs(Wn) =





4 if n is even

3 if n is odd
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Proof Let v1, v2, . . . , vn−1, v be the vertices of Wn, where v is the center of the Wheel.

Case i n is even.

Define f : V (Wn) −→ {+1, − 1} by f(v1) = f(v2) = f(v3) = f(v4) = f(v5) = +1 and

for 6 ≤ i ≤ n − 1,

f(vi) =





−1 if i is even,

+1 if i is odd

and f(v) = −1. We claim that f is a complementary signed dominating function.

∑

u/∈N [v1]

f(u) = 5 − 2 +

[(
n − 6

2

)
− 1

]
−

(
n − 6

2

)
= 2.

For i = 2, 3, 4

∑

u/∈N [vi]

f(u) = 5 − 3 +

(
n − 6

2

)
−

(
n − 6

2

)
= 2,

∑

u/∈N [v5]

f(u) = 5 − 2 +

(
n − 6

2

)
−

[(
n − 6

2

)
− 1

]
= 4,

∑

u/∈N [v6]

f(u) = 5 − 1 +

(
n − 6

2

)
− 1 −

[(
n − 6

2

)
− 1

]
= 4.

If i is odd and 7 ≤ i ≤ n − 3, then

∑

u/∈N [vi]

f(u) = 5 +

(
n − 6

2

)
− 1 −

[(
n − 6

2

)
− 2

]
= 5 − 1 + 2 = 6.

If i is even and 8 ≤ i < n − 1, then

∑

u/∈N [vi]

f(u) = 5 +

(
n − 6

2

)
− 2 −

[(
n − 6

2

)
− 1

]
= 4.

Also

∑

u/∈N [vn−1]

f(u) = 5 − 1 +

(
n − 6

2

)
− 1 −

[(
n − 6

2

)
− 1

]
= 4.

Therefore f is a complementary signed dominating function. Since
∑

u/∈N [v4]

f(u) = 2, the labeling

is minimum with respect to the vertices v1, v2, v6, . . . , vn−1. If f(v1) = −1, then
∑

u/∈N [v3]

f(u) =

0. It is easy to observe that

∑

u∈V (Wn)

f(u) = 5 +

(
n − 6

2

)
−

(
n − 6

2

)
− 1 = 4

is minimum. Hence γcs(Wn) = 4 if n is even.

Case ii n is odd.
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Define f : V (Wn) −→ {+1, − 1} by f(v1) = f(v2) = f(v3) = f(v4) = +1 and for

5 ≤ i ≤ n − 1,

f(vi) =




−1 if i is even,

+1 if i is odd

and f(v) = −1. We claim that f is a complementary signed dominating function.

∑

u/∈N [v1]

f(u) = 4 − 2 +

(
n − 5

2

)
−

[(
n − 5

2

)
− 1

]
= 3.

For i = 2, 3

∑

u/∈N [vi]

f(u) = 4 − 3 +

(
n − 5

2

)
−

(
n − 5

2

)
= 1,

∑

u/∈N [v4]

f(u) = 4 − 2 +

(
n − 5

2

)
− 1 −

(
n − 5

2

)
= 1,

∑

u/∈N [v5]

f(u) = 4 − 1 +

(
n − 5

2

)
− 1 −

[(
n − 5

2

)
− 1

]
= 3.

If i is even and 6 ≤ i ≤ n − 3, then

∑

u/∈N [vi]

f(u) = 4 +

(
n − 5

2

)
− 2 −

[(
n − 5

2

)
− 1

]
= 3.

If i is odd and 5 < i < n − 1, then

∑

u/∈N [vi]

f(u) = 4 +

(
n − 5

2

)
− 1 −

[(
n − 5

2

)
− 2

]
= 5,

∑

u/∈N [vn−1]

f(u) = 4 − 1 +

(
n − 5

2

)
− 1 −

[(
n − 5

2

)
− 1

]
= 3.

Therefore f is a complementary signed dominating function. Since
∑

u/∈N [v2]

f(u) = 1, the labeling

is minimum with respect to the vertices v4, v5, . . . , vn−1. If f(v5) = −1, then
∑

u/∈N [v3]

f(u) < 0.

It is easy to observe that
∑

u∈V (Wn)

f(u) = 3 is minimum. Hence γcs(Wn) = 3 if n is odd. �

Theorem 2.8 For the wheel Wn = K1 + Cn−1, n ≥ 4,γcs(Wn) = γcs(Cn−1) − 1.

Proof Let v1, v2, . . . , vn, v be the vertices of Wn. Now,

γcs(Wn) =

n−1∑

i=1

f(vi) + f(v)

= γcs(Cn−1) − 1

Hence γcs(Wn) = γcs(Cn−1) − 1. �
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§1. Introduction

Chaos Theory is the qualitative study of unstable aperiodic behavior in deterministic nonlinear

dynamical systems. Aperiodic behavior is observed when there is no variable, describing the

state of the system, that undergoes a regular repetition of values. Unstable aperiodic behavior is

highly complex it never repeats and it continues to manifest the effects of any small perturbation.

As per the current mathematical theory a chaotic system is defined as showing sensitivity to

initial conditions. In other words, to predict the future state of a system with certainty, you

need to know the initial conditions with infinite accuracy, since errors increase rapidly with

even the slightest inaccuracy. This is why the weather is so difficult to forecast. The theory

also has been applied to business cycles, and dynamics of animal populations, as well as in

fluid motion, planetary orbits, electrical currents in semi-conductors, medical conditions like

epileptic seizures, and the modeling of arms races.

During the 1960s Edward Lorenz, a meteorologist at MIT, worked on a project to simulate

weather patterns on a computer. He accidentally stumbled upon the butterfly effect after

deviations in calculations off by thousandths greatly changed the simulations. The Butterfly

Effect reflects how changes on the small-scale, can influence things on the large-scale. It is the

classic example of chaos, where small changes may cause large changes. A butterfly, flapping

its wings in Hong Kong, may change tornado patterns in Texas.

Chaos Theory regards organizations businesses as complex, dynamic, non-linear, co-creative

and far-from-equilibrium systems. Their future performance cannot be predicted by past and

1Received November 25, 2010. Accepted August 18, 2011.
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present events and actions. In a state of chaos, organizations behave in ways which are simul-

taneously both unpredictable chaotic and patterned orderly [6,10,11].

The vacuüm C-metric was first discovered by Levi-Civita within a class of degenerate static

vacuüm metrics. However, over the years it has been rediscovered many times: by Newman

and Tamburino, by Robinson and Trautman and again by Ehlers and Kundt who called it the

C-metric in 1962. The charged C-metric has been studied in detail by Kinnersley and Walker.

In general the space-time represented by the C-metric contains one or, via an extension, two

uniformly accelerated particles as explained in. A description of the geometric properties of

various extensions of the C-metric as well as a more complete list of references is contained in

. The main property of the C-metric is the existence of two hypersurface-orthogonal Killing

vectors, one of which is time like (showing the static property of the metric) in the space-time

region of interest in this work. The C-metric is a vacuüm solution of the Einstein equations

of the Petrov type D. Kinnersley and Walker showed that it represents black holes uniformly

accelerated by nodal singularities in opposite directions along the axis of the axial symmetry

[5,7,9].

Many types of dynamical manifolds And systems are discussed in [1-4,11]. A dynamical

system in the space X is a function q = f(p, t) which assigns to each point p of the space X

and to each real number t, ∞ < t < ∞ a definite point q ∈ X and possesses the following three

properties:

a – Initial condition: f(p, 0) = p for any point p ∈ X ;

b – Property of continuity in both arguments simultaneously:

lim
p→p0
t→t0

f(p, t) = f(p
0,t0).

c – Group property f(f(p, t1), t2) = f(p, t1 + t2) [11].

A subset A of a topological space X is called a retract of X if there exists a continuous

map r : X → A (called a retraction) such that r(a) = a, ∀a ∈ A [8]. A subset A of a topological

space X is a deformation retract of X if there exists a retraction r : X → A and a homotopy

f : X × I → X such that f(x, 0) = x, f(x, 1) = r(x), ∀x ∈ X and f(a, t) = a, ∀a ∈ A, t ∈ [0, 1]

[8].

§2. Main Results

In this paper we will discuss some types of retractions and deformations retracts in Weyl

representation of the space-time of the vacuüm C metric when m = 0.

The chaotic vacuüm C metric when m = 0 is defined as

ds2 =
1

A2(x(t) + y(t))2


 −k2A2(−1 + y2(t))du2(t) + 1

1−x2(t)dx2(t)+

1
−1+y2(t)dy2(t) + 1−x2(t)

k2 dw2(t)


 (1)
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where x(t), y(t), u(t), w(t) are functions of time. The chaotic Weyl coordinates system are

z(t) =
1 + x(t)y(t)

A(x(t) + y(t))2

r(t) =
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2

w(t) = w(t)

u(t) = u(t)

Now we will use the following Lagrangian equations:

d

ds

(
∂T

∂Ψ′
i

)
−

∂T

∂Ψi
= 0, i = 1, 2, 3, 4. (2)

To deduce a chaotic geodesic which is a retraction of
ch

C0 by using Lagrangian equations, where
ch

C0 is the chaotic vacuüm C metric when m = 0. Since, T = 1
2ds2 it follows that

T =
1

2



 1

A2(x(t) + y(t))2



 −k2A2(−1 + y2(t))du2(t) + 1
1−x2(t)dx2(t)+

1
−1+y2(t)dy2(t) + 1−x2(t)

k2 dw2(t)







 . (3)

Then the Lagrangian equations of chaotic vacuüm
ch

C0 are

d

ds

[
−

k2(−1 + y2(t)

(x(t) + y(t))2
)u′(t)

]
= 0 (4)

d

ds

[
1 − x2(t)

k2A2(x(t) + y(t))2
w′(t)

]
= 0 (5)

d

ds

[
x′(t)

A2(x(t) + y(t))2(1 − x2(t))

]
−

1

A2(x(t) + y(t))2
×

[
x(t)

1 − x2(t)
(x′(t))2 +

−x(t)

k2
(w′(t))2

]
+


 −k2A2(−1 + y2(t))(u′(t))2 + 1

1−x2(t) (x
′(t))2+

1
−1+y2(t) (y

′(t))2 + 1−x2(t)
k2 (w′(t))2



[

1

A2(x(t) + y(t))3

]
= 0 (6)

d

ds

[
y′(t)

A2(x(t) + y(t))2(−1 + y2(t))

]
−

1

A2(x(t) + y(t))2
×

[
−k2A2y(t)(u′(t))2 −

y(t)

(−1 + y2(t))2
(y′(t))2

]
+



 −k2A2(−1 + y2(t))(u′(t))2 + 1
1−x2(t) (x

′(t))2+

1
−1+y2(t) (y

′(t))2 + 1−x2(t)
k2 (w′(t))2




[

1

A2(x(t) + y(t))3

]
= 0 (7)
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From Eq.(2.4), we obtain
k2(−1 + y2(t)

(x(t) + y(t))2
)u′(t) =constant ,say λ,if λ = 0 then u′(t) = 0, and so

u(t) =constant α, if α = 0 we have the following retraction

z(t) =
1 + x(t)y(t)

A(x(t) + y(t))2

r(t) =
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2

w(t) = w(t)

u(t) = 0

which is the chaotic retraction
ch

C01 in the chaotic vacuüm
ch

C0. Also, from Eq.(2.5), we get
1 − x2(t)

k2A2(x(t) + y(t))2
w′(t) =constant ,say ν , if ν = 0 then w′(t) = 0 , and so w(t) =constant δ,

if δ = 0 we have the following retraction

z(t) =
1 + x(t)y(t)

A(x(t) + y(t))2

r(t) =
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2

w(t) = 0

u(t) = u(t)

which is the chaotic retraction
ch

C02 in the chaotic vacuüm
ch

C0. Moreover from Eq.(2.6), we

have
d

ds

[
x′(t)

A2(x(t) + y(t))2(1 − x2(t))

]
=constant , say ̟ , if ̟ = 0 then x′(t) = 0 , and so

x(t) =constant β, if β = 0 we have the following retraction

z(t) =
1

Ay2(t)

r(t) =
(y2(t) − 1)

1
2

Ay2(t)

w(t) = w(t)

u(t) = u(t)

which is chaotic geodesic
ch

C03 in chaotic hyper affine subspace of chaotic vacuüm
ch

C0. Now,

from Eq.(2.7), we have
d

ds

[
y′(t)

A2(x(t) + y(t))2(−1 + y2(t))

]
=constant ,say γ, if γ = 0 then

y′(t) = 0 , and so y(t) =constant ρ, if ρ = 0 we have the following retraction

z(t) =
1

Ax2(t)

r(t) =
i(1 − x2(t))

1
2

Ax2(t)

w(t) = w(t)

u(t) = u(t)
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which is chaotic geodesic
ch

C04 in chaotic hyper affine subspace of chaotic vacuüm
ch

C0

From the above discussion we can formulate the following theorem.

Theorem 2.1 The geodesic of the chaotic vacuüm
ch

C0 by using Lagrangian equations is a type

of retraction which is chaotic hyper affine subspace of
ch

C0.

Now we will discuss the relations between the deformation retracts of chaotic vacuüm and

their geodesics. The deformation retract of the chaotic vacuüm
ch

C0 is defined as Ψ :
ch

C0 × I →
ch

C0 ,where I is the closed interval [0, 1]. The retraction of the chaotic vacuüm
ch

C0 is defined as

r :
ch

C0 →
ch

C01,
ch

C02,
ch

C03 and
ch

C04. The deformation retract of the chaotic vacuüm
ch

C0 into a

geodesic
ch

C01 ⊆
ch

C0 is given by

Ψ(m, s) = cos(
πs

2
)

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), 0

)

and so Ψ(m, 0) =
ch

C0 , Ψ(m, 1) =
ch

C01. The deformation retract of the chaotic vacuüm
ch

C0 into

a geodesic
ch

C02 ⊆
ch

C0 is given by

Ψ(m, s) = cos(
πs

2
)

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, 0 , u(t)

)
.

Thus Ψ(m, 0) =
ch

C0 , Ψ(m, 1) =
ch

C02. The deformation retract of the chaotic vacuüm
ch

C0 into a

geodesic
ch

C03 ⊆
ch

C0 is given by

Ψ(m, s) = cos(
πs

2
)

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(
1

Ay2(t)
,
(y2(t) − 1)

1
2

Ay2(t)
, w(t), u(t)

)
.

So Ψ(m, 0) =
ch

C0 , Ψ(m, 1) =
ch

C03. The deformation retract of the chaotic vacuüm
ch

C0 into a

geodesic
ch

C04 ⊆
ch

C0 isgiven by

Ψ(m, s) = cos(
πs

2
)

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(
1

Ax2(t)
,
i(1 − x2(t))

1
2

Ax2(t)
, w(t), u(t)

)
,
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and so Ψ(m, 0) =
ch

C0 , Ψ(m, 1) =
ch

C04.

Theorem 2.2 The end limit of dynamical chaotic n-dimensional vacuüm
ch

Vn is zero-dimensional

chaotic vacuüm
ch

V0.

Proof Let Di be the dynamical chaotic n-dimensional vacuüm
ch

Vn .Then we get the

following chains:

ch

Vn
D1

1→
ch

V 1
n

D1
2→

ch

V 2
n → · · · →

ch

V m−1
n such that lim

m→∞
D1

m(
ch

V m−1
n ) =

ch

Vn−1;

ch

Vn−1
D1

1→
ch

V 1
n−1

D1
2→

ch

V 2
n−1 → · · · →

ch

V m−1
n−1 such that lim

m→∞
D1

m(
ch

V m−1
n−1 ) =

ch

Vn−2,

...
ch

V1
D1

1→
ch

V 1
1

D1
2→

ch

V 2
1 → · · · →

ch

V m−1
1 such that lim

m→∞
D1

m(
ch

V m−1
1 ) =

ch

V0.

Therefore, from the last chain the end limits of the dynamical chaotic n-dimensional vacuüm
ch

Vn is zero-dimensional chaotic vacuüm. �

Now we are going to discuss some types of dynamical chaotic vacuüm
ch

C0. Let D :
ch

C0 →
ch

C0 be the dynamical chaotic vacuüm on
ch

C0 which preserve the isometry of chaotic vacuüm
ch

C0

into itself such that D(x1, x2, x3 , x4) = (|x1| , x2, x3, x4). So we can define D as

D :

(
1 + x(t)y(t)

A(x(t) + y(t))2
,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

−→

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)
.

The deformation retracts of the dynamical chaotic vacuüm
ch

C0 into the dynamical chaotic

retraction
ch

C01 ⊆
ch

C0 is given by

ΨD :

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)
× I

−→

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), 0

)

with

ΨD (m, s) = cos(
πs

2
)

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), 0

)
.

The deformation retracts of the dynamical chaotic vacuüm
ch

C0 into the dynamical chaotic
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retraction
ch

C02 ⊆
ch

C0 is given by

ΨD :

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)
× I

−→

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, 0 , u(t)

)

with

ΨD (m, s) = cos(
πs

2
)

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, 0 , u(t)

)
.

The deformation retracts of the dynamical chaotic vacuüm
ch

C0 into the dynamical chaotic

geodesic
ch

C03 ⊆
ch

C0 is given by

ΨD :

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)
× I

−→

(∣∣∣∣
1

Ay2(t)

∣∣∣∣ ,
(y2(t) − 1)

1
2

Ay2(t)
, w(t), u(t)

)

with

ΨD (m, s) = cos(
πs

2
)

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(∣∣∣∣
1

Ay2(t)

∣∣∣∣ ,
(y2(t) − 1)

1
2

Ay2(t)
, w(t), u(t)

)
.

The deformation retracts of the dynamical chaotic vacuüm
ch

C0 into the dynamical chaotic

geodesic
ch

C04 ⊆
ch

C0 is given by

ΨD :

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)
× I

−→

(∣∣∣∣
1

Ax2(t)

∣∣∣∣ ,
i(1 − x2(t))

1
2

Ax2(t)
, w(t), u(t)

)

with

ΨD (m, s) = cos(
πs

2
)

(∣∣∣∣
1 + x(t)y(t)

A(x(t) + y(t))2

∣∣∣∣ ,
(1 − x2(t))

1
2 (y2(t) − 1)

1
2

A(x(t) + y(t))2
, w(t), u(t)

)

+ sin(
πs

2
)

(∣∣∣∣
1

Ax2(t)

∣∣∣∣ ,
i(1 − x2(t))

1
2

Ax2(t)
, w(t), u(t)

)
.

Then the following theorem has been proved.
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Theorem 2.3 The deformation retracts of the dynamical chaotic vacuüm
ch

C0 into chaotic

geodesic is different from the deformation retracts of the chaotic vacuüm
ch

C0 into the chaotic

geodesic.
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Abstract: A circulant graph is a Cayley graph constructed out of a finite cyclic group Γ

and a generating set A is a subset of Γ. In this paper, we attempt to find upper bounds for

distance-g domination , distance-g paired domination and distance-g connected domination

number for circulant graphs. Exact values are also determined in certain cases.

Key Words: Circulant graph, Smarandachely distance-g paired-(U,V ) dominating P-

set, distance-g domination, distance-g paired, total and connected domination, distance-g

efficient domination.

AMS(2010): 05C69

§1. Introduction

Let Γ be a finite group with e as the identity. A generating set of the group Γ is a subset A

such that every element of Γ can be expressed as the product of finitely many elements of A.

Assume that e /∈ A and a ∈ A implies a−1 ∈ A. The Cayley graph G = (V, E), where V (G) = Γ

and E(G) = {(x, xa)|x ∈ V (G), a ∈ A} and it is denoted by Cay(Γ, A). The exclusion of e from

A eliminates the possibility of loops in the graph. When Γ = Zn, the Cayley graph Cay(Γ, A)

is called as circulant graph and denoted by Cir(n, A).

Suppose G = (V, E) is a graph, the open neighbourhood N(v) of a vertex v ∈ V (G) consists

of the set of vertices adjacent to v. The closed neighbourhood of v is N [v] = N(v)∪{v}. For a set

D ⊆ V , the open neighbourhood N(D) is defined to be
⋃

v∈D

N(v), and the closed neighbourhood

of D is N [D] = N(D)∪D. Let u, v ∈ V (G), then d(u, v) is the length of the shortest uv−path.

For any v ∈ V (G), Ng(v) = {u ∈ V (G) : d(u, v) ≤ g} and Ng[v] = Ng(v) ∪ {v}. A set D ⊆ V ,

1Received February 12, 2011. Accepted August 20, 2011.
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of vertices in G is called a dominating set if every vertex v ∈ V is either an element of D or is

adjacent to an element of D. That is N [D] = V (G). The domination number γ(G) of G is the

minimum cardinality among all the dominating sets in G and the corresponding dominating

set is called a γ-set. A set D ⊆ V , of vertices in G is called a distance-g dominating set if

Ng[D] = V (G). The distance−g domination number γg(G) of G is the minimum cardinality

among all the distance−g dominating sets in G and the corresponding distance−g dominating

set is called a γg-set.

Let G be a graph, D, U, V ⊂ V (G) with U
⋃

V = V (G), U
⋂

V = ∅, g ≥ 1 an integer

and 〈D〉G having graphical property P. If d(u, D) ≤ g for u ∈ U − D but d(v, D) > g for

v ∈ V −D, such a vertex subset D is called a Smarandachely distance-g paired-(U, V ) dominating

P-set. Particularly, if U = V (G), V = ∅ and P=perfect matching, i.e., a Smarandachely

distance-g paired-(V (G), ∅) dominating P-set D is called a distance-g paired dominating set.

The minimum cardinality among all the distance-g paired dominating sets for graph G is the

distance-g paired domination number, denoted by γg
p(G). A set S ⊆ V , of vertices in G is called

a distance-g total dominating set if Ng(S) = V (G). The distance−g total domination number

γg
t (G) of G is the minimum cardinality among all the distance −g total dominating sets in G

and the corresponding distance−g total dominating set is called a γg
t -set. A set D ⊆ V , of

vertices in G is said to be distance-g connected dominating set if every vertex in V (G) − D

is within distance g of a vertex in D and the induced subgraph < D > is g− connected (If

x ∈ Ng[y] for all x, y ∈ D, then x and y are g−connected). The minimum cardinality of a

distance −g connected dominating set for a graph G is the distance −g connected domination

number, denoted by γg
c (G). A set D ⊆ V is called a distance-g efficient dominating set if for

every vertex v ∈ V, |Ng[v] ∩ D| = 1.

The concept of domination for circulant graphs has been studied by various authors and

one can refer to [1,6-8] and Rani [9-11] obtained the various domination numbers including

total, connected and independent domination numbers for Cayley graphs on Zn. Paired domi-

nation was introduced by Haynes and Slater. In 2008, Joanna Raczek [2] generalized the paired

domination and investigated properties of the distance paired domination number of a path,

cycle and some non-trivial trees. Raczek also proved that distance−g paired domination prob-

lem is NP-complete. Haoli Wang et al. [3] obtained distance−g paired domination number of

circulant graphs for a particular kind of generating set. In this paper, we attempt to find the

sharp upper bounds for distance−g paired domination number for circulant graphs for a general

generating set. The distance version of domination have a strong background of applications.

For instance, efficient construction of distance−g dominating sets can be applied in the context

of distributed data structure, where it is proposed that distance−g dominating sets can be

selected for locating copies of a distributed directory. Also it is useful for efficient selection of

network centers for server placement.

Throughout this paper, n is a fixed positive integer, Γ = Zn, m = ⌊
n

2
⌋, k is an integer

such that 1 ≤ k ≤ m and g is a fixed positive integer such that 1 ≤ g ≤ m. Let A =

{a1, a2, . . . , ak, n − ak, n − ak−1, . . . , n − a1} ⊂ Zn with 1 ≤ a1 < a2 < . . . < ak ≤ m, A1 =

{a1, a2, . . . , ak}. Let d1 = a1, di = ai − ai−1 for 2 ≤ i ≤ k and d = max
1≤i≤k

{di}.
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§2. Distance-g Domination

In this section, we obtain upper bounds for the distance−g domination number and distance−g

efficient domination number. Also whenever the equality occurs we give the corresponding sets.

Theorem 2.1 Let n(≥ 3) be a positive integer, m = ⌊
n

2
⌋, k is an integer such that 1 ≤ k ≤ m

and g is a fixed positive integer such that 1 ≤ g ≤ m. Let A = {a1, a2, . . . , ak, n − ak, n −

ak−1, . . . , n − a1} ⊂ Zn with 1 ≤ a1 < a2 < . . . < ak ≤ m, and G = Cir(n, A). If d1 = a1, di =

ai − ai−1 for 2 ≤ i ≤ k, d = max
1≤i≤k

{di}, then γg(G) ≤ d⌈
n

2gak + d
⌉.

Proof Let x = 2gak +d and ℓ = ⌈n
x ⌉. Consider the set D = {0, 1, . . . , d−1, x, x+1, . . . , x+

d−1, 2x, 2x+1, . . . , 2x+d−1, . . . , (ℓ−1)x, (ℓ−1)x+1, . . . , (ℓ−1)x+d−1}. Note that |D| = dℓ

and rai ∈ Ng[ai], for 1 ≤ r ≤ g. Let v ∈ V (G). By division algorithm, one can write v = ix+ j

for some i with 0 ≤ i ≤ ℓ − 1 and 0 ≤ j ≤ x − 1. We have the following cases:

Case i Suppose 0 ≤ i ≤ ℓ − 1 and 0 ≤ j ≤ gak + d − 1.

SubCase i When 0 ≤ j < a1, then by the definition of d, v ∈ D ⊆ Ng[D].

SubCase ii When a1 ≤ j ≤ gak + d − 1, one can write j = ram + t, for some integers r, m, t

with 1 ≤ r ≤ g, 1 ≤ m ≤ k and 0 ≤ t ≤ d − 1 and so v = ix + t + ram where as ix + t ∈ D.

Since ram ∈ Ng[am], we get v ∈ Ng[{ix, ix + 1, . . . , ix + (d − 1)}] ⊆ Ng[D].

Case ii Suppose 0 ≤ i ≤ ℓ − 2 and gak + d ≤ j ≤ 2gak + d − 1. Choose an integer h with

1 ≤ h ≤ gak such that v + h = (i + 1)x. One can write h = ram − t, for some integers r, m, t

with 1 ≤ r ≤ g, 1 ≤ m ≤ k and 0 ≤ t ≤ d − 1 and hence v + ram = (i + 1)x + t, which means

that v ∈ Ng[{(i + 1)x, (i + 1)x + 1, . . . , (i + 1)x + (d − 1)}] ⊆ Ng[D].

Case iii Suppose i = ℓ − 1 and gak + d ≤ j ≤ 2gak + d − 1. As mentioned earlier, one can

choose an integer h with 1 ≤ h ≤ gak such that v + h = 0. Write h = ram − t with 1 ≤ r ≤ m,

1 ≤ m ≤ k and 0 ≤ t ≤ d − 1, which means that v ∈ Ng[{0, 1, 2, . . . , d − 1}] ⊆ Ng[D]. Thus D

is a distance−g dominating set of G. �

Theorem 2.2 Let n(≥ 3) be a positive integer, m = ⌊
n

2
⌋, k is an integer such that 1 ≤ k ≤ m

and g is a fixed positive integer such that 1 ≤ g ≤ m. Let A = {d, 2d, . . . , kd, n − kd, n − (k −

1)d, . . . , n − d} and G = Cir(n, A). If d(1 + 2gk) divides n, then γg(G) =
n

1 + 2gk
. In this

case, Cir(n, A) has a distance-g efficient dominating set.

Proof In the notation of the Theorem 2.1, ai = id for all 1 ≤ i ≤ k and so di =

d. By Theorem 2.1, D = {0, 1, . . . , d − 1, x, x + 1, . . . , x + (d − 1), 2x, 2x + 1, . . . , 2x + (d −

1), . . . (ℓ − 1)x, (ℓ − 1)x + 1, . . . , (ℓ − 1)x + (d − 1)} is a distance-g dominating set and hence

γg(G) ≤ d(
n

d(1 + 2gk)
) =

n

1 + 2gk
. Let n = ℓ(d(1 + 2gk)). Since |Ng[v]| = 2gk + 1, for all

v ∈ V (G), |D| = ℓd and |Ng[u] ∩ Ng[v]| = ∅ for any two distinct vertices u, v ∈ D, we have

γg(G) =
n

1 + 2gk
. From this, one can conclude that D is a distance-g efficient dominating set

in G.
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§3. Distance-g Paired Domination, Distance-g Connected Domination

and Distance-g Total Domination

In this section, we obtain upper bounds for the distance−g paired domination number, distance−g

connected domination number and distance−g total domination number. Also whenever the

equality occurs we give the corresponding sets.

Theorem 3.1 Let n(≥ 3) be a positive integer, m = ⌊
n

2
⌋, k is an integer such that 1 ≤

k ≤ m and g is a fixed positive integer such that 1 ≤ g ≤ m. Let A = {a1, a2, . . . , ak, n −

ak, n − ak−1, . . . , n − a1} ⊂ Zn with 1 ≤ a1 < a2 < . . . < ak ≤ m, and G = Cir(n, A). Let

d1 = a1, di = ai − ai−1 for 2 ≤ i ≤ k, d = max
1≤i≤k

{di}. If (2g + 1)ak + d divides n, then

γg
p(G) ≤ 2d(

n

(2g + 1)ak + d
).

Proof Let x = (2g + 1)ak + d, ℓ = n
x and Dp = {0, 1, . . . , d − 1, ak, ak + 1, . . . , ak + (d −

1), x, x + 1, . . . , x + (d − 1), ak + x, ak + x + 1, . . . , ak + x + (d − 1), . . . , (ℓ − 1)x, (ℓ − 1)x +

1, . . . , (ℓ− 1)x + (d− 1), ak + (ℓ− 1)x, ak + (ℓ− 1)x + 1, . . . , ak + (ℓ− 1)x + (d− 1)}. Note that

|Dp| = 2dℓ and rai ∈ Ng[ai] for 1 ≤ r ≤ g. Let v ∈ V (G). By division algorithm, one can write

v = ix + j for some i, j with 0 ≤ i ≤ ℓ − 1 and 0 ≤ j ≤ x − 1. We have the following cases:

Case i Suppose 0 ≤ i ≤ ℓ − 1 and 0 ≤ j ≤ gak + (d − 1).

SubCase i If 0 ≤ j < a1 then by the definition of d, v ∈ Ng[Dp].

SubCase ii When a1 ≤ j ≤ gak + d− 1, one can write j = ram + t, for 1 ≤ r ≤ g, 1 ≤ m ≤ k

and 0 ≤ t ≤ d−1, then v = ix+ ram + t and so v ∈ Ng[{ix, ix+1, . . . , ix+(d−1)}] ⊆ Ng[Dp].

Case ii Suppose 0 ≤ i ≤ ℓ − 1 and gak + d ≤ j ≤ gak + ak + d − 1. In this case v can be

written as v = ix + gak + h where d ≤ h ≤ ak + (d − 1). By the property of vertex transitivity

and by case(i), we have v ∈ Ng[{ix + ak, ix + ak + 1, . . . , ix + ak + (d − 1)}] ⊆ Ng[Dp].

Case iii Suppose 0 ≤ i ≤ ℓ − 1 and gak + ak + d ≤ j ≤ 2gak + ak + d − 1.

SubCase i Suppose 0 ≤ i ≤ ℓ−2. In this case v can be written as v = (i+1)x+(j−x) for some

i, j such that 0 ≤ i ≤ ℓ−2 and −gak ≤ j−x ≤ 0. Thus v+(x−j) = (i+1)x and 0 ≤ x−j ≤ gak.

Hence by case (i), we have v ∈ Ng[{(i + 1)x, (i + 1)x + 1, . . . , (i + 1)x + (d − 1)}] ⊆ Ng[Dp].

SubCase ii Suppose i = ℓ − 1. Then v ∈ Ng[{0, 1, . . . , d − 1}] ⊆ Ng[Dp]. Thus Dp is a

distance-g dominating set of G. let D′ = {0, 1, . . . , d − 1, x, x + 1, . . . , x + (d − 1), . . . , (ℓ −

1)x, (ℓ − 1)x + 1, . . . , (ℓ − 1)x + (d − 1)}. It is note that D′ ⊆ Dp and for all u ∈ D′, there

exists v = u + ak ∈ Dp such that u and v are adjacent in < Dp >. Hence < Dp > has a perfect

matching and Dp is a distance-g paired dominating set. �

Lemma 3.2 let n(≥ 3) be a positive integer, m = ⌊
n

2
⌋, k is an integer such that 1 ≤ k ≤ m and

g is a fixed positive integer such that 1 ≤ g ≤ m. Let A = {a1, a2, . . . , ak, n−ak, n−ak−1, . . . , n−

a1} ⊂ Zn with 1 ≤ a1 < a2 < . . . < ak ≤ m and G = Cir(n, A). Let d1 = a1, di = ai − ai−1 for

2 ≤ i ≤ k, d = max
1≤i≤k

{di}. Then γg
t (G) ≤ 2d⌈

n

(2g + 1)ak + d
⌉.
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Proof Let ℓ = ⌈
n

(2g + 1)ak + d
⌉ and let x = d+(2g+1)ak. Then n = (ℓ−1)x+ j for some

0 ≤ j ≤ x−1. As in the proof of Theorem 2.1, one can prove that Dt = {0, 1, . . . , d−1, ak, ak +

1, . . . , ak + (d − 1), x, x + 1, . . . , x + (d − 1), ak + x, ak + x + 1, . . . , ak + x + (d − 1), . . . , (ℓ −

1)x, (ℓ−1)x+1, . . . , (ℓ−1)x+(d−1), ak +(ℓ−1)x, ak +(ℓ−1)x+1, . . . , ak +(ℓ−1)x+(d−1)},

is a distance-g dominating set. Also note that, for every z ∈ Dt there exists another adjacent

vertex z + ak or z − ak ∈ Dt. Thus Dt is a distance-g total dominating set. �

Now we obtain some equality for the distance g-paired domination number in certain classes

of circulant graphs.

Corollary 3.3 Let n(≥ 3) be a positive integer, m = ⌊
n

2
⌋, k is an integer such that 1 ≤ k ≤ m

and g is a fixed positive integer such that 1 ≤ g ≤ m. Let A = {1, 2, . . . , k, n−k, . . . , n−1} ⊂ Zn

and G = Cir(n, A). Then γg
p (G) = 2(

n

(2g + 1)k + 1
).

Proof Take ak = k in the statement of Theorem 3.1. As d = 1 and by Theorem 3.1, one can

easily prove D = {0, k, x, x+ k, . . . , (ℓ− 1)x, (ℓ− 1)x + k} is a distance-g paired dominating set

and hence γg
p(G) ≤ 2(

n

(2g + 1)k + 1
). Also,since any two adjacent vertices in D can dominate

at most (2g + 1)k + 1 distinct vertices of G, γg
p (G) ≥ 2(

n

(2g + 1)k + 1
). �

Remark 3.4 Joanna Raczek [2] has proved γg
p(Cn) = 2⌈

n

2g + 2
⌉, for n ≥ 3. This can be

obtained by taking ak = 1 and d = 1 in Theorem 3.1. Also, Haoli Wang et al. [3] have obtained

the distance-g paired domination number for Cir(n, A = {1, k}) for k = 2, 3 and 4.

Remark 3.5 The upper bound obtained for distance-g paired domination number matches

with the distance-g total domination number. i.e., γg
t (G) ≤ 2d⌈

n

(2g + 1)ak + d
⌉. In general, for

Cir(n, A), the distance-g paired domination number is not equal to distance-g total domination,

for all g.

Lemma 3.6 Let n(≥ 3) be a positive integer, m = ⌊
n

2
⌋, k is an integer such that 1 ≤ k ≤ m and

g is a fixed positive integer such that 1 ≤ g ≤ m. Let A = {a1, a2, . . . , ak, n−ak, n−ak−1, . . . , n−

a1} ⊂ Zn with 1 ≤ a1 < a2 < . . . < ak ≤ m, and G = Cir(n, A). Let d1 = a1, di = ai − ai−1 for

2 ≤ i ≤ k, d = max
1≤i≤k

{di}, then γg
c (G) ≤ d(1 + ⌈

n − (d + 2gak)

(d − 1) + gak
⌉).

Proof Let ℓ = ⌈
n − (d + 2gak)

(d − 1) + gak
⌉ and Dc = {0, 1, . . . , d−1, d−1+gak, d−1+gak+1, . . . , d−

1+gak +d−1, d−1+2gak, d−1+2gak+1, . . . , d−1+2gak+d−1, . . . , 2(d−1+gak), 2(d−1+

gak)+1, . . . , ℓ(d− 1+ gak)+ d− 1, ℓ(d− 1+ gak), ℓ(d− 1+ gak)+1, . . . , ℓ(d− 1+ gak)+ d− 1}.

As in the proof of Theorem 2.1, we can prove Dc is a distance −g dominating set. Since 1 ∈ A

and rai ∈ Ng[ai] for 1 ≤ r ≤ g, 0 + j, d− 1 + gak + j, 2(d − 1 + gak) + j, . . . , ℓ(d− 1 + gak) + j

are −g connected in the induced subgraph < Dc > for each j with 0 ≤ j ≤ d − 1. Thus Dc is

a distance −g connected dominating set for G with |Dc| = d(1 + ⌈
n − (d + 2gak)

(d − 1) + gak
⌉). �

Remark 3.7 From the above lemma, by replacing g = 1, we get the usual connected domination
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number. i.e., when g = 1, γc(G) ≤ d(1 + ⌈
n − (d + 2ak)

(d − 1) + ak
⌉).
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§1. Introduction

A drawing of a graph G on a surface S is such a drawing with no edge crosses itself, no adjacent

edges cross each other, no two edges intersect more than once, and no three edges have a

common point. A Smarandache λS-drawing of G on S is a drawing of G on S with minimal

intersections λS . Particularly, a Smarandache 0-drawing of G on S, if existing, is called an

embedding of G on S.

The classical version of Jordan curve theorem in topology states that a single closed curve C

separates the sphere into two connected components of which C is their common boundary. In

this section, we investigate the polyhedral statements and proofs of the Jordan curve theorem.

Let Σ = Σ(G; F ) be a polyhedron whose underlying graph G = (V, E) with F as the set

of faces. If any circuit C of G not a face boundary of Σ has the property that there exist two

proper subgraphs In and Ou of G such that

In
⋃

Ou = G; In
⋂

Ou = C, (A)

then Σ is said to have the first Jordan curve property, or simply write as 1-JCP. For a graph G,

if there is a polyhedron Σ = Σ(G; F ) which has the 1-JCP, then G is said to have the 1-JCP

as well.

Of course, in order to make sense for the problems discussed in this section, we always

suppose that all the members of F in the polyhedron Σ = Σ(G; F ) are circuits of G.

Theorem A(First Jordan curve theorem) G has the 1-JCP If, and only if, G is planar.

Proof Because of H1(Σ) = 0, Σ = Σ(G; F ), from Theorem 4.2.5 in [1], we know that

1Received December 25, 2010. Accepted August 25, 2011.
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Im ∂2 = Ker ∂1 = C, the cycle space of G and hence Im ∂2 ⊇ F which contains a basis of C.

Thus, for any circuit C /∈ F , there exists a subset D of F such that

C =
∑

f∈D

∂2f ; C =
∑

f∈F\D

∂2f. (B)

Moreover, if we write

Ou = G[
⋃

f∈D

f ]; In = G[
⋃

f∈F\D

f ],

then Ou and In satisfy the relations in ( A) since any edge of G appears exactly twice in the

members of F . This is the sufficiency.

Conversely, if G is not planar, then G only have embedding on surfaces of genus not 0.

Because of the existence of non contractible circuit, such a circuit does not satisfy the 1-JCP

and hence G is without 1-JCP. This is the necessity. �

Let Σ∗ = Σ(G∗; F ∗) be a dual polyhedron of Σ = Σ(G; F ). For a circuit C in G, let

C∗ = {e∗| ∀e ∈ C}, or say the corresponding vector in G∗
1 , of C ∈ G1.

Lemma 1 Let C be a circuit in Σ. Then, G∗\C∗ has at most two connected components.

Proof Suppose H∗ be a connected component of G∗\C∗ but not the only one. Let D be

the subset of F corresponding to V (H∗). Then,

C′ =
∑

f∈D

∂2f ⊆ C.

However, if ∅ 6= C′ ⊂ C, then C itself is not a circuit. This is a contradiction to the condition of

the lemma. From that any edge appears twice in the members of F , there is only one possibility

that

C =
∑

f∈F\D

∂2f.

Hence, F\D determines the other connected component of G∗\C∗ when C′ = C. �

Any circuit C in G which is the underlying graph of a polyhedron Σ = Σ(G; F ) is said

to have the second Jordan curve property, or simply write 2-JCP for Σ with its dual Σ∗ =

Σ(G∗; F ∗) if G∗\C∗ has exactly two connected components. A graph G is said to have the 2-

JCP if all the circuits in G have the property.

Theorem B(Second Jordan curve theorem) A graph G has the 2-JCP if, and only if, G is

planar.

Proof To prove the necessity. Because for any circuit C in G, G∗\C∗ has exactly two

connected components, any C∗ which corresponds to a circuit C in G is a cocircuit. Since any

edge in G∗ appears exactly twice in the elements of V ∗, which are all cocircuits, from Lemma

1, V ∗ contains a basis of Ker δ∗1 . Moreover, V ∗ is a subset of Im δ∗0 . Hence, Ker δ1 ⊆ Im δ0.

From Lemma 4.3.2 in [1], Im δ∗0 ⊆ Ker δ∗1 . Then, we have Ker δ∗1 =Im δ∗0 , i.e., H̃1(Σ
∗) = 0.

From the dual case of Theorem 4.3.2 in [1], G∗ is planar and hence so is G. Conversely, to
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prove the sufficiency. From the planar duality, for any circuit C in G, C∗ is a cocircuit in G∗.

Then, G∗\C∗ has two connected components and hence C has the 2- JCP. �

For a graph G, of course connected without loop, associated with a polyhedron Σ =

Σ(G; F ), let C be a circuit and EC , the set of edges incident to, but not on C. We may define

an equivalence on EC , denoted by ∼C as the transitive closure of that ∀a, b ∈ EC ,

a ∼C b ⇔ ∃f ∈ F, (aαC(a, b)bβ ⊂ f)

∨(b−βC(b, a)a−α ⊂ f),
(C)

where C(a, b), or C(b, a) is the common path from a to b, or from b to a in C ∩ f respectively.

It can be seen that |EC/ ∼C | 6 2 and the equality holds for any C not in F only if Σ is

orientable.

In this case, the two equivalent classes are denoted by EL = EL(C) and ER = ER(C).

Further, let VL and VR be the subsets of vertices by which a path between the two ends of two

edges in EL and ER without common vertex with C passes respectively.

From the connectedness of G, it is clear that VL∪VR = V \V (C). If VL∩VR = ∅, then C is

said to have the third Jordan curve property, or simply write 3-JCP. In particular, if C has the

3-JCP, then every path from VL to VR (or vice versa) crosses C and hence C has the 1-JCP. If

every circuit which is not the boundary of a face f of Σ(G), one of the underlain polyhedra of

G has the 3-JCP, then G is said to have the 3-JCP as well.

Lemma 2 Let C be a circuit of G which is associated with an orientable polyhedron Σ =

Σ(G; F ). If C has the 2-JCP, then C has the 3-JCP. Conversely, if VL(C) 6= ∅, VR(C) 6= ∅ and

C has the 3-JCP, then C has the 2-JCP.

Proof For a vertex v∗ ∈ V ∗ = V (G∗), let f(v∗) ∈ F be the corresponding face of Σ.

Suppose In∗ and Ou∗ are the two connected components of G∗\C∗ by the 2-JCP of C. Then,

In =
⋃

v∗∈In∗

f(v∗) and Ou =
⋃

v∗∈Ou∗

f(v∗)

are subgraphs of G such that In∪Ou = G and In∩Ou = C. Also, EL ⊂ In and ER ⊂ Ou (or

vice versa). The only thing remained is to show VL ∩VR = ∅. By contradiction, if VL ∩VR 6= ∅,

then In and Ou have a vertex which is not on C in common and hence have an edge incident

with the vertex, which is not on C, in common. This is a contradiction to In ∩ Ou = C.

Conversely, from Lemma 1, we may assume that G∗\C∗ is connected by contradiction.

Then there exists a path P ∗ from v∗1 to v∗2 in G∗\C∗ such that V (f(v∗1))∩VL 6= ∅ and V (f(v∗2))∩

VR 6= ∅. Consider

H =
⋃

v∗∈P∗

f(v∗) ⊆ G.

Suppose P = v1v2 · · · vl is the shortest path in H from VL to VR.

To show that P does not cross C. By contradiction, assume that vi+1 is the first vertex of

P crosses C. From the shortestness, vi is not in VR. Suppose that subpath vi+1 · · · vj−1, i+2 6

j < l, lies on C and that vj does not lie on C. By the definition of EL, (vj−1, vj) ∈ EL and
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hence vj ∈ VL. This is a contradiction to the shortestness. However, from that P does not

cross C, VL ∩ VR 6= ∅. This is a contradiction to the 3-JCP. �

Theorem C(Third Jordan curve theorem) Let G = (V, E) be with an orientable polyhedron

Σ = Σ(G; F ). Then, G has the 3-JCP if, and only if, G is planar.

Proof From Theorem B and Lemma 2, the sufficiency is obvious. Conversely, assume that

G is not planar. By Lemma 4.2.6 in [1], Im∂2 ⊆ Ker∂1 = C, the cycle space of G. By Theorem

4.2.5 in [1], Im∂2 ⊂ Ker∂1. Then, from Theorem B, there exists a circuit C ∈ C\ Im∂2 without

the 2-JCP. Moreover, we also have that VL 6= ∅ and VR 6= ∅. If otherwise VL = ∅, let

D = {f |∃e ∈ EL, e ∈ f} ⊂ F.

Because VL = ∅, any f ∈ D contains only edges and chords of C, we have

C =
∑

f∈D

∂2f

that contradicts to C /∈ Im∂2. Therefore, from Lemma 2, C does not have the 3-JCP. The

necessity holds. �

§2 Reducibilities

For Sg as a surface(orientable, or nonorientable) of genus g, If a graph H is not embedded on a

surface Sg but what obtained by deleting an edge from H is embeddable on Sg, then H is said

to be reducible for Sg. In a graph G, the subgraphs of G homeomorphic to H are called a type

of reducible configuration of G, or shortly a reduction. Robertson and Seymour in [2] has been

shown that graphs have their types of reductions for a surface of genus given finite. However,

even for projective plane the simplest nonorientable surface, the types of reductions are more

than 100 [3,7].

For a surface Sg, g > 1, let Hg−1 be the set of all reductions of surface Sg−1. For H ∈ Hg−1,

assume the embeddings of H on Sg have φ faces. If a graph G has a decomposition of φ

subgraphs Hi, 1 6 i 6 φ, such that

φ⋃

i=1

Hi = G;

φ⋃

i6=j

(Hi

⋂
Hj) = H ; (1)

all Hi, 1 6 i 6 φ, are planar and the common vertices of each Hi with H in the boundary of a

face, then G is said to be with the reducibility 1 for the surface Sg.

Let Σ∗ = (G∗; F ∗) be a polyhedron which is the dual of the embedding Σ = (G; F ) of G

on surface Sg. For surface Sg−1, a reduction H ⊆ G is given. Denote H∗ = [e∗|∀e ∈ E(H)].

Naturally, G∗ −E(H∗) has at least φ = |F | connected components. If exact φ components and

each component planar with all boundary vertices are successively on the boundary of a face,

then Σ is said to be with the reducibility 2.

A graph G which has an embedding with reducibility 2 then G is said to be with reducibility

2 as well.
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Given Σ = (G; F ) as a polyhedron with under graph G = (V, E) and face set F . Let H be

a reduction of surface Sp−1 and, H ⊆ G. Denote by C the set of edges on the boundary of H

in G and EC , the set of all edges of G incident to but not in H . Let us extend the relation ∼C :

∀a, b ∈ EC ,

a ∼C b ⇔ ∃f ∈ FH , a, b ∈ ∂2f (2)

by transitive law as a equivalence. Naturally, |EC/ ∼C | 6 φH . Denote by {Ei|1 6 i 6 φC} the

set of equivalent classes on EC . Notice that Ei = ∅ can be missed without loss of generality.

Let Vi, 1 6 i 6 φC , be the set of vertices on a path between two edges of Ei in G avoiding

boundary vertices. When Ei = ∅, Vi = ∅ is missed as well. By the connectedness of G , it is

seen that
φC⋃

i=1

Vi = V − VH . (3)

If for any 1 6 i < j 6 φC , Vi ∩ Vj = ∅, and all [Vi] planar with all vertices incident to Ei on

the boundary of a face, then H , G as well, is said to be with reducibility 3.

§3. Reducibility Theorems

Theorem 1 A graph G can be embedded on a surface Sg(g > 1) if, and only if, G is with the

reducibility 1.

Proof Necessity. Let µ(G) be an embedding of G on surface Sg(g > 1). If H ∈ Hg−1,

then µ(H) is an embedding on Sg(g > 1) as well. Assume {fi|1 6 i 6 φ} is the face set of µ(H),

then Gi = [∂fi + E([fi]in)], 1 6 i 6 φ, provide a decomposition satisfied by (1). Easy to show

that all Gi, 1 6 i 6 φ, are planar. And, all the common edges of Gi and H are successively in

a face boundary. Thus, G is with reducibility 1.

Sufficiency. Because of G with reducibility 1, let H ∈ Hg−1, assume the embedding µ(H)

of H on surface Sg has φ faces. Let G have φ subgraphs Hi, 1 6 i 6 φ, satisfied by (1), and all

Hi planar with all common edges of Hi and H in a face boundary. Denote by µi(Hi) a planar

embedding of Hi with one face whose boundary is in a face boundary of µ(H), 1 6 i 6 φ. Put

each µi(Hi) in the corresponding face of µ(H), an embedding of G on surface Sg(g > 1) is then

obtained. �

Theorem 2 A graph G can be embedded on a surface Sg(g > 1) if, and only if, G is with the

reducibility 2.

Proof Necessity. Let µ(G) = Σ = (G; F ) be an embedding of G on surface Sg(g > 1) and

µ∗(G) = µ(G∗) = (G∗, F ∗)(= Σ∗), its dual. Given H ⊆ G as a reduction. From the duality

between the two polyhedra µ(H) and µ∗(H), the interior domain of a face in µ(H) has at least

a vertex of G∗, G∗ − E(H∗) has exactly φ = |Fµ(H)| connected components. Because of each

component on a planar disc with all boundary vertices successively on the boundary of the disc,

H is with the reducibility 2. Hence, G has the reducibility 2.

Sufficiency. By employing the embedding µ(H) of reduction H of G on surface Sg(g > 1)

with reducibility 2, put the planar embedding of the dual of each component of G∗ −E(H∗) in
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the corresponding face of µ(H) in agreement with common boundary, an embedding of µ(G)

on surface Sg(g > 1) is soon done. �

Theorem 3 A 3-connected graph G can be embedded on a surface Sg(g > 1) if, and only if,

G is with reducibility 3.

Proof Necessity. Assume µ(G) = (G, F ) is an embedding of G on surface Sg(g > 1).

Given H ⊆ G as a reduction of surface Sp−1. Because of H ⊆ G, the restriction µ(H) of µ(G)

on H is also an embedding of H on surface Sg(g > 1). From the 3-connectedness of G, edges

incident to a face of µ(H) are as an equivalent class in EC . Moreover, the subgraph determined

by a class is planar with boundary in coincidence, i.e., H has the reducibility 3. Hence, G has

the reducibility 3.

Sufficiency. By employing the embedding µ(H) of the reduction H in G on surface Sg(g >

1) with the reducibility 3, put each planar embedding of [Vi] in the interior domain of the

corresponding face of µ(H) in agreement with the boundary condition, an embedding µ(G) of

G on Sg(g > 1) is extended from µ(H). �

§4. Research Notes

A. On the basis of Theorems 1–3, the surface embeddability of a graph on a surface(orientabl

or nonorientable) of genus smaller can be easily found with better efficiency.

For an example, the sphere S0 has its reductions in two class described as K3,3 and K5.

Based on these, the characterizations for the embeddability of a graph on the torus and the

projective plane has been established in [4]. Because of the number of distinct embeddings of

K5 and K3,3 on torus and projective plane much smaller as shown in the Appendix of [5], the

characterizations can be realized by computers with an algorithm much efficiency compared

with the existences, e.g., in [7].

B. The three polyhedral forms of Jordan closed planar curve axiom as shown in section 2

initiated from Chapter 4 of [6] are firstly used for surface embeddings of a graph in [4]. However,

characterizations in that paper are with a mistake of missing the boundary conditions as shown

in this paper.

C. The condition of 3-connectedness in Theorem 3 is not essential. It is only for the simplicity

in description.

D. In all of Theorem 1–3, the conditions on planarity can be replaced by the corresponding

Jordan curve property as shown in section 2 as in [4] with the attention of the boundary

conditions.
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⋃
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they are not adjacent in G or v = D is a minimal dominating set containing u. particularly,

if U = S and W = ∅, i.e., a Smarandachely mediate-(S, ∅) dominating graph DS
m(G) is

called the mediate dominating graph Dm(G) of a graph G. In this paper, some necessary

and sufficient conditions are given for Dm(G) to be connected, Eulerian, complete graph,
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Key Words: Connectedness, connectivity, Eulerian, hamiltonian, dominating set, Smaran-

dachely mediate-(U, W ) dominating graph.

AMS(2010): 05C69

§1. Introduction

The graphs considered here are finite and simple. Let G = (V, E) be a graph and let the vertices

and edges of a graph G be called the elements of G. The undefined terminology and notations

can be found in [2]. The connectivity(edge connectivity) of a graph G, denoted by κ(G)(λ(G)),

is defined to be the largest integer k for which G is k-connected(k-edge connected). For a

vertex v of G, the eccentricity eccG(v) of v is the largest distance between v and all the other

vertices of G, i.e., eccG(v) = max{dG(u, v)/u ∈ V (G)}. The diameter diam(G) of G is the

max{eccG(v)/v ∈ V (G)}. The chromatic number χ(G) of a graph G is the minimum number of

independent subsets that partition the vertex set of G. Any such minimum partition is called

a chromatic partition of V (G).

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. We call G and H to be

isomorphic, and we write G ∼= H , if there exists a bijection θ : V (G) −→ V (H) with xy ∈ E(G)

if and only if θ(x)θ(y) ∈ E(H) for all x, y ∈ V (G).

1Supported by UGC-SAP DRS-II New Delhi, India: for 2010-2015and the University Grants Commission,

New Delhi,India-No.F.4-3/2006(BSR)/7-101/2007(BSR) dated: September 2009.
2Received April 8, 2011. Accepted August 28, 2011.
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Let G = (V, E) be a graph. A set D ⊆ V is a dominating set of G if every vertex in

V − D is adjacent to some vertex in D. A dominating set D of G is minimal if for any vertex

v ∈ D, D− v is not a dominating set of G. The domination number γ(G) of G is the minimum

cardinality of a minimal dominating set of G. The upper domination number Γ(G) of G is the

maximum cardinality of a minimal dominating set of G. For details on γ(G), refer [1].

The maximum number of classes of a domatic partition of G is called the domatic number of

G and is denoted by d(G). The vertex independence number β0(G) is the maximum cardinality

among the independent set of vertices of G.

Our aim in this paper is to introduce a new graph valued function in the field of domination

theory in graphs.

Definition 1.1 Let S be the set of minimal dominating sets of graph G and U, W ⊂ S with

U
⋃

W = S and U
⋂

W = ∅. A Smarandachely mediate-(U, W ) dominating graph DS
m(G) of a

graph G is a graph with V (DS
m(G)) = V ′ = V

⋃
U and two vertices u, v ∈ V ′ are adjacent if

they are not adjacent in G or v = D is a minimal dominating set containing u. particularly, if

U = S and W = ∅, i.e., a Smarandachely mediate-(S, ∅) dominating graph DS
m(G) is called the

mediate dominating graph Dm(G) of a graph G.

In Fig.1, a graph G and its mediate dominating graph Dm(G) are shown.
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s1 = {2, 3}

s2 = {3, 5}

s3 = {2, 4}

s4 = {1, 4, 5}

Observations 1.2 The following results are easily observed.:

(1) For any graph G, G is an induced subgraph of Dm(G).

(2) Let S = {s1, s2, · · · , sn} be the set of all minimal dominating sets of G, then each si;

1 ≤ i ≤ n will be independent in Dm(G).

(3) If G = Kp, then Dm(G) = pK2. (4) If G = Kp, then Dm(G) = Kp+1.
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§2. Results

When defining any class of graphs, it is desirable to know the number of vertices and edges.

It is hard to determine for mediate dominating graph. So we obtain a bounds for Dm(G) to

determine the number of vertices and edges in Dm(G).

Theorem 2.1 For any graph G, p + d(G) ≤ p′ ≤
p(p + 1)

2
, where d(G) is the domatic number

of G and p′ denotes the number of vertices of Dm(G). Further the lower bound is attained if

and only if G = Kp and the upper bound is attained if and only if G is a (p− 2) regular graph.

Proof The lower bound follows from the fact that every graph has at least d(G) number

of minimal dominating sets of G and the upper bound follows from the fact that every vertex

is in at most (p − 1) minimal dominating sets of G.

Suppose the lower bound is attained. Then every vertex is in exactly one minimal domi-

nating set of G and hence, every minimal dominating set is independent. Further, for any two

minimal dominating sets D and D′, every vertex in D is adjacent to every vertex in D′.

Suppose the upper bound is attained. Then each vertex is in exactly (p − 1) minimal

dominating sets hence G is (p − 2) regular.

Conversely, we first consider the converse part of the equality of the lower bound. If

G = Kp, then d(Kp) = 1 and there exist exactly one minimal dominating set S(G). Therefore

by the definition of Dm(G), V (Dm(G)) = p + |S(G)| = p + 1 = p + d(G).

Now, we consider the converse part of the equality of the upper bound. Suppose G is a

(p − 2) regular graph. Then G has
p(p − 1)

2
minimal dominating sets of G. Therefore by the

definition of Dm(G), V (Dm(G)) = p + |S(G)| = p +
p(p − 1)

2
=

p(p + 1)

2
. �

Theorem 2.2 For any graph G, p ≤ q′ ≤
p(p + 1)

2
, where q′ denotes the number of edges of

Dm(G). Further, the lower bound is attained if and only if G = Kp and the upper bound is

attained if and only if G = Kp.

Proof First we consider the lower bound. Suppose the lower bound is attained. Then

p = q′, it follows that G contains no edges in Dm(G). Therefore by observation 3, G = Kp;

p ≥ 2. Conversely, if G = Kp; p ≥ 2 the Dm(G) = pK2. Therefore p = q′.

Now consider the upper bound. Suppose the upper bound is attained. Then q′ =
p(p + 1)

2
.

Therefore δ(Dm(G)) = ∆(Dm(G)) = p−1. Hence Dm(G) = Kp+1. By observation 4, G = Kp.

Conversely, if G = Kp, then Dm(G) = Kp+1, since Kp+1 has p(p+1)
2 edges. Therefore

q′ =
p(p + 1)

2
. �

In the next theorem, we prove the necessary and sufficient condition for Dm(G) to be

connected.

Theorem 2.3 For any (p,q) graph G, the mediate dominating graph Dm(G) is connected if

and only if ∆(G) < p − 1.
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Proof Let ∆(G) < p − 1. We consider the following cases.

Case 1 Let u and v be any two adjacent vertices in G. Suppose there is no minimal dominating

set containing both u and v. Then there exist another vertex w in V which is not adjacent to

both u and v. Let D and D′ be any two maximal independent sets containing u, w and v, w

respectively. Since every maximal independent set is a minimal dominating set, hence u and v

are connected by a path uDwD′v. Thus Dm(G) is connected.

Case 2 Let u and v be any two nonadjacent vertices in G. Then by observation 1, G is an

induced subgraph of Dm(G). Clearly u and v are connected in Dm(G). Thus from the above

two cases Dm(G) is connected.

Conversely, suppose Dm(G) is connected. On the contrary assume that ∆(G) = p − 1.

Let u be any vertex of degree p − 1. Then u is a minimal dominating set of G and V − u

also contains a minimal dominating set of G. It follows that Dm(G) has two components, a

contradiction. �

Theorem 2.4 For any graph G, Dm(G) is either connected or has at least one component

which is K2.

Proof We consider the following cases:

Case 1 If ∆(G) < p − 1, then by Theorem 2.1, Dm(G) is connected.

Case 2 If δ(G) = ∆(G) = p − 1, then G is Kp. By Observation 3, Dm(Kp) = pK2.

Case 3 If δ(G) < ∆(G) = p − 1.

Let u1, u2, · · · , ui be the vertices of degree p− 1 in G. Let H = G−{u1, u2, · · · , ui}. Then

clearly ∆(H) < p−1. By Theorem 2.1, Dm(H) is connected. Since Dm(G) = Dm(H)∪({u1}+

u1)∪({u2}+u2)∪· · ·∪({un}+un). Therefore it follows that at least one component of Dm(G)

is K2. �

Corollary 1 For any graph G, Dm(G) = Kp ∪ K2 if and only if G = K1,p−1.

Proof The proof follows from Observation 3 and Theorem 2.6. �

In the next theorem, we characterize the graphs G for which Dm(G) is a tree.

Theorem 2.5 The mediate dominating graph Dm(G) of G is a tree if and only if G = K1.

Proof Let the mediate dominating graph Dm(G) of G be a tree and G 6= K1. Then by

Theorem 2.3, ∆(G) < p − 1. Hence Dm(G) is connected. Now consider the following cases.

Case 1 Let G be a disconnected graph. If G is totally disconnected graph, then by the

observation 4, Dm(G) = Kp+1, a contradiction.

Let us consider at least one component of G containing an edge uev. Then the smallest

possible graph is G = K2 ∪ K1. Therefore Dm(G) = C3 · C3, a contradiction. Hence for any

disconnected graph G of order at least two, Dm(G) must contain a cycle of length at least three,
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a contradiction. Thus G = K1.

Case 2 Let G be a connected graph with ∆(G) < p−1. By Theorem 2.3, Dm(G) is connected.

For Dm(G) to be connected and ∆(G) < p− 1, the order of the graph G must be greater than

or equal to four. Then there exist at least two nonadjacent vertices u and v in G, which

belong to at least one minimal dominating set D of G. Therefore uvDu is a cycle in Dm(G), a

contradiction. Thus from above two cases we conclude that G = K1.

Conversely, if G = K1, then by the definition of Dm(G), Dm(G) = K2, which is a tree. �

In the next theorem we characterize the graphs G for which Dm(G) is a cycle.

Theorem 2.6 The mediate dominating graph Dm(G) of G is a cycle if and only if G = 2K1.

Proof Let Dm(G) be a cycle. Then by Theorem 2.3, ∆(G) < p − 1. Suppose G 6= 2K1,

then by Theorem 2.5, Dm(G), Dm(G) is either a tree or containing at least one vertex of degree

greater than or equal to 3, a contradiction. Hence G = 2K1.

Conversely, if G = 2K1 then by observation, Dm(G) = K3 or C3 a cycle. �

Proposition 1 The mediate dominating graph Dm(G) of G is a complete graph if and only if

G = Kp.

In the next theorem, we find the diameter of Dm(G).

Theorem 2.7 Let G be any graph with ∆(G) < p−1, then diam(Dm(G)) ≤ 3, where diam(G)

is the diameter of G.

Proof Let G be any graph with ∆(G) < p− 1, then by Theorem 2.3, Dm(G) is connected.

Let u, v ∈ V (Dm(G)) be any two arbitrary vertices in Dm(G). We consider the following cases.

Case 1 Suppose u, v ∈ V (G), u and v are nonadjacent vertices in G, then d
Dm(G)

(u, v) = 1. If

u and v are adjacent in G, suppose there is no minimal dominating set containing both u and

v. Then there exist another vertex w in V (G), which is not adjacent to both u and v. Let D

and D′ be any two maximal independent sets containing u, w and v, w respectively. Since every

maximal independent set is a minimal dominating set, hence u and v are connected in Dm(G)

by a path uDwD′v. Thus, d
Dm(G)

(u, v) ≤ 3.

Case 2 Suppose u ∈ V and v /∈ V . Then v = D is a minimal dominating set of G. If u ∈ D,

then d
Dm(G)

(u, v) = 1. If u /∈ D, then there exist a vertex w ∈ D which is adjacent to both u

and v. Hence d
Dm(G)

(u, v) = d(u, w) + d(w, v) = 2.

Case 3 Suppose u, v ∈ V . Then u = D and v = D′ are two minimal dominating sets of G.

If D and D′ are disjoint, then every vertex in w ∈ D is adjacent to some vertex x ∈ D′ and

vice versa. This implies that, d
Dm(G)

(u, v) = d(u, w) + d(w, x) + d(x, v) = 3. If D and D′ have

a vertex in common, then d
Dm(G)

(u, v) = d(u, w) + d(w, v) = 2. Thus from all these cases the

result follows. �

In the next two results we prove the vertex and edge connectivity of Dm(G).
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Theorem 2.8 For any graph G,

κ(Dm(G)) = min{min(degDm(G)

1≤i≤p
vi), min

1≤j≤n
|Sj |},

where S′
js are the minimal dominating sets of G

Proof Let G be a (p, q) graph. We consider the following cases:

Case 1 Let x ∈ vi for some i, having minimum degree among all v′is in Dm(G). If the degree

of x is less than any vertex in Dm(G), then by deleting those vertices of Dm(G) which are

adjacent with x, results in a disconnected graph.

Case 2 Let y ∈ Sj for some j, having minimum degree among all vertices of S′
js. If degree of

y is less than any other vertices in Dm(G), then by deleting those vertices which are adjacent

with y, results in a disconnected graph.

Hence the result follows. �

Theorem 2.9 For any graph G,

λ(Dm(G)) = min{min(degDm(G)

1≤i≤p
vi), min

1≤j≤n
|Sj |},

where S′
js are the minimal dominating sets of G

Proof The proof is on the same lines of the proof of Theorem 2.8. �

§3. Traversability in Dm(G)

The following will be useful in the proof of our results.

Theorem A([2]) A graph G is Eulerian if and only if every vertex of G has even degree. Next,

we prove the necessary and sufficient conditions for Dm(G) to be Eulerian.

Theorem 3.1 For any graph G with ∆(G) < p − 1, Dm is Eulerian if and only if it satisfies

the following conditions:

(i) Every minimal dominating set contains even number of vertices;

(ii) If v ∈ V is a vertex of odd degree, then it is in odd number of minimal dominating

sets, otherwise it is in even number of minimal dominating sets.

Proof Suppose ∆(G) < p−1. By Theorem 2.3, Dm(G) is connected. If Dm(G) is Eulerian.

On the contrary, if condition (i) is not satisfied, then there exists a minimal dominating set

containing odd number of vertices and hence Dm(G) has a vertex of odd degree, therefore

by Theorem A, Dm(G) is Eulerian, a contradiction. Similarly we can prove (ii). Conversely,

suppose the given conditions are satisfied. Then degree of each vertex in Dm(G) is even.

Therefore by Theorem A, Dm(G) is Eulerian. �

Theorem 3.2 Let G be any graph with ∆(G) < p − 1 and Γ(G) = 2. If every vertex is in

exactly two minimal dominating sets of G, then Dm(G) is Hamiltonian.
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Proof Let ∆(G) < p−1. Then by Theorem 2.3, Dm(G) is connected. Clearly γ(G) = Γ(G)

and if every vertex is in exactly two minimal dominating sets then there exist an induced two

regular graph in Dm(G). Hence Dm(G) contains a hamiltonian cycle. Therefore Dm(G) is

hamiltonian. �

Next, we prove the chromatic number of Dm(G).

Theorem 3.3 For any graph G,

χ(Dm(G)) =





χ(G) + 1 if vertices of any minimal dominating sets colored by χ(G) colors

χ(G) otherwise

Proof Let G be a graph with χ(G) = k and D be the set of all minimal dominating sets of

G. Since by the definition of Dm(G), G is an induced subgraph of Dm(G) and by Observation 2,

D is an independent set. Therefore to color Dm(G), either we can make use of the colors which

are used to color G that is χ(Dm(G)) = k = χ(G) or we should have to use one more new color.

In particular, if the vertices of any minimal dominating set x of G are colored with k−colors,

then we require one more new color to color x in Dm(G). Hence in this case we require k + 1

colors to color Dm(G). Therefore χ(Dm(G)) = k + 1 This implies, χ(Dm(G)) = χ(G) + 1. �

§4. Characterization of Dm(G)

Question. Is it possible to determine the given graph G is a mediate dominating graph of

some graph?

A partial solution to the above problem is as follows.

Theorem 4.1 If G = Kp; p ≥ 2, then it is a mediate dominating graph of Kp−1.

Proof The proof follows from Theorem 2.2. �

Problem 4.1 Give necessary and sufficient condition for a given graph G is a mediate domi-

nating graph of some graph.

§5. Domination in Dm(G)

We first calculate the domination number of Dm(G) of some standard class of graphs.

Theorem 5.1 (i) If G = Kp, then γ(Dm(Kp)) = p;

(ii) If G = K1,p, then γ(Dm(K1,p)) = 2;

(iii) If G = Wp; p ≥ 4 then γ(Dm(Wp)) = γ(Cp−1) + 1;

(iv) If G = Pp; p ≥ 2 then γ(Dm(Pp)) = 2; �

Theorem 5.2 Let G be any graph of order p and S = {s1, s2, · · · , sn} be the set of all minimal

dominating sets of G, then γ(Dm(G)) ≤ γ(G) + |S|.
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Proof Let D = {v1, v2, · · · , vi}; 1 ≤ i ≤ p be a minimum dominating set of G. By

the definition of Dm(G), G is an induced subgraph of Dm(G) and by Observation 2, each si;

1 ≤ i ≤ n is independent in Dm(G). Hence D′ = D ∪ S will form a dominating set in Dm(G).

Therefore γ(Dm(G)) ≤ |D′| = |D ∪ S| = γ(G) + |S|. �

Theorem 5.3 Let G be any connected graph with δ(G) = 1, then γ(Dm(G)) = 2.

Proof Let G be any connected graph with a minimum degree vertex u, such that deg(u) = 1.

Let v be a vertex adjacent to u in G. Then deg
G
(u) = p− 2, and every minimal dominating set

contains either u or v. Hence D = {u, v} is a minimal dominating set of Dm(G). Therefore,

γ(Dm(G)) = |D| = |{u, v}| = 2. �

Corollary 2 For any nontrivial tree T , γ(Dm(T )) = 2.

Furthermore, we get a Nordhaus-Gaddum type result following.

Theorem 5.4 Let G be any graph of order p, then

(i) γ(Dm(G)) + γ(Dm(G)) ≤ p + 1;

(ii) γ(Dm(G)) · γ(Dm(G)) ≤ p.

Further, equality holds if and only if G = Kp.
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Abstract: Let G = (V, E) be a graph. When G is used to model the network of a

group of individuals, the vertex set V stands for individuals and the edge set E is used to

represent the relations between them. If we want a set of representatives having relations

with other members of the group, choose a dominating set of the graph. For a smallest set of

representatives, choose a minimal dominating set of the graph. In this paper we generalize

this concept by allowing the division of the group into a number of subgroups. We introduce

the concept of class domination (greed domination) and study it’s properties. A dominating

set S of G is a class dominating set or a greed dominating set, if S
⋂

Vi 6= φ for all i. Here Vi

such that i = 1, 2, . . . , n is a partition of V . We also discuss different versions of domination

in the context of social networks.

Key Words: Minimal dominating set, greed dominating set, minimal greed dominating

set, proportionate greed dominating set.
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§1. Introduction

A graph G = (V, E) is a discrete mathematical structure which contains the nonempty set V

of vertices and the set E of unordered pairs of elements of V called edges. In this paper we

restrict our attention to finite simple graphs. For basic terminology and definitions which are

not explained in this paper, reader may refer Harary [4].

Graph is an efficient tool for modeling group of individuals (represented by vertices) and

various relationships among them (represented by edges). Consider the problem of selecting

representatives from the group, who have good relationship with the remaining members of the

group. A dominating set of the graph which model the problem is the solution. The dominating

set (DS) of a graph G = (V, E) is a subset S of V such that all vertices in V − S is adjacent

to at least one vertex in S. A minimal dominating set (MDS) is a dominating set S such that

S − {v} is not a dominating set for all vertex v ∈ S. The domination number γ(G) and the

1Support by sanctioning a minor project No : MRP (S) - 653 / 2007 (X Plan) / KLKE 018 / UGC - SWRO.
2Received November 1, 2010. Accepted August 30, 2011.
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upper domination number Γ(G) of the graph G are defined as follows.

γ(G) = min {|S| : S is a minimal dominating set of G}

and

Γ(G) = max {|S| : S is a minimal dominating set of G}.

Although the mathematical study of dominating sets in graphs began around 1960, the

subject has historical root dating back to 1862 when de Jaenisch [3] studied the problem of

determining the minimum number of queens which are necessary to cover an n×n chessboard.

In 1958 Claud Berg [1] wrote a book on graph theory, in which he defined for the first time

the concept of domination number of a graph (he called the number, the coefficient of external

stability). In 1977 Cockayne and Hedetniemi [2] published a survey of the few results known at

that time about the dominating sets in graphs. Later the subject has developed as an important

area of research with many related areas such as independence, irredundance, packing, covering

etc. A comprehensive text on domination is available, which is edited by T. W. Haynes et al.

[5]. For advanced research topics, reader may refer another text edited by T. W. Haynes et al.

[6].

§2. Greed Domination

A group of people contains Hindus, Christians and Muslims. It is possible that a member of

a particular religion has good relation with members of other religion. As a consequence, if

we select a minimal set of representatives having good relationship with all other members of

the group, the representatives may not contain members from some religion. This situation

results into imbalance of social relations. A possible solution is to give due consideration to all

subgroups while selecting the representatives. This motivates us to generalize the concept of

dominating sets in graphs.

Let G = (V, E) be a graph and P = {V1, V2, . . . Vn} be a mutually disjoint partition of

V . Total number of subsets in the partition P is denoted by |P |. A subset S of V is called

a greed dominating set (class dominating set) of G w.r.t to the partition P , if S dominate all

vertices of V − S and Vi ∩ S 6= φ for all i = 1, 2, . . . , n. A greed dominating set S is a minimal

greed dominating set if no proper subset of S is a greed dominating set. The greed domination

number γgP (G) and the upper greed domination number ΓgP (G) of the graph G are defined as

follows.

γgP (G) = min {|S| : S is a minimal greed dominating set of G}

and

ΓgP (G) = max {|S| : S is a minimal greed dominating set of G}.

When P = {V }, greed domination coincides with ordinary domination. For any partition

P of V , at least one minimal greed dominating set exists. Hence the definitions of γgP (G) and

ΓgP (G) are meaningful. Let P1 and P2 are two partitions of V . We say that P2 is bigger than

P1 or P1 is smaller than P2 if P2 is obtained by further partitioning one or more subsets of P1.

Two partitions P1 and P2 are incomparable, if P2 is not bigger than P1 or vice versa.
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Theorem 2.1 If P is a partition of G such that |P | = n, then γgP (G) ≥ n.

Proof Any minimal dominating set S of G w.r.t the partition P = {V1, V2, . . . , Vn} satisfies

S ∩ Vi 6= φ for all i = 1, 2, . . . , n. Hence |S| ≥ n and γgP (G) ≥ n. �

Is it possible that for partition P , γgP (G) > |P |? The answer is YES. It is illustrated

below.

Example 2.2 Consider the graph G, which is the union of the cycles (v1, v2, v3), (v6, v7, v8)

and the path (v3, v4, v5, v6). Clearly γ = 2. Consider the partition P = {V1, V2} of V such that,

V1 = {v1, v2, v3, v4, v5, v6} and V2 = {v7, v8}. For this partition, γgP (G) = 3 > |P |.

Theorem 2.3 If P is a partition such that, γgP (G) = |P |, and for any partition P ′ where

P ′ is bigger than P , obtained by partitioning exactly one subset of P and |P ′| = |P | + 1, then

γgP ′(G) = |P | + 1.

Proof Let S = {v1, v2, . . . , v|P |} be a minimal greed dominating set of G w.r.t P =

{V1, V2, . . . , V|P |} such that vi ∈ Vi for i = 1, 2, . . . , |P |. Let P ′ be obtained by further parti-

tioning exactly one of the subsets, say V1 into to subsets V11 and V12. If v1 ∈ V11 then v1 /∈ V12

and vice versa. For the time being let v1 ∈ V11. Now consider S′ = {v, v1, v2 . . . , v|P |}, where

v ∈ V12. Clearly S′ is a minimal greed dominating set of G w.r.t the new partition P ′. Hence

the result. �

Corollary 2.4 If P1, P2, . . . , Pn are partitions of V (G) satisfying the conditions,

(i) Pi+1 is bigger than Pi;

(ii) |Pi+1| = |Pi| + 1 for each i;

(iii) γgP1(G) = |P1|,

then γgPi+1(G) = γgPi
(G) + 1 for each i.

Next we shall characterize the graphs such that γgP (G) = |P | for each partition P of V (G).

Theorem 2.5 For the graph G, γgP (G) = |P | for all partition P of V (G) if and only if there

exists a vertex v ∈ V such that N [v] = V (G).

Proof Suppose the graph G has the property, γgP (G) = |P | for for each partition P of

V (G). Consider the partition P = {V }. Then γgP (G) = 1. Hence there exists a vertex v ∈ V

such that N [v] = V (G).

Conversely, Let there exists a vertex v ∈ V such that N [v] = V (G). Take any partition

P = {V1, V2, . . . , Vn} of V (G). With no loss of generality we can assume that, v ∈ V1. Now

consider the set S = {v, v2, v3, . . . , vn} made by selecting v from V1 and an arbitrary vertex vi

from Vi for i = 2, 3, . . . , n. This set is a minimal greed dominating set of G w.r.t the partition

P . Hence γgP (G) = |P |, by Theorem 2.1. �

Theorem 2.6 Let P1 and P2 are two partitions of V such that P2 is bigger than P1, then

γgP1(G) ≤ γgP2(G).
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Proof Suppose that S is a minimal greed dominating set of the graph G w.r.t the partition

P2 such that γgP2 (G) = |S|. Then S is a greed dominating set of G w.r.t the partition P1.

Hence γgP1(G) ≤ γgP2(G) = |S|. �

Theorem 2.7 If γ is the domination number of the graph G, then V (G) has a partition P such

that γgP (G) = γ.

Proof Let S = {v1, v2, . . . , vγ} be a minimal dominating set of G. Consider the partition

P = {V1, V2, . . . , Vγ} of V such that vi ∈ Vi for all i = 1, 2, . . . , γ. Now γgP (G) = γ. �

Theorem 2.8 If P is a partition such that γgP (G) = γ, then γgP ′ (G) = γ for all partition P ′

smaller than P .

Proof Let P ′ be smaller than P . Then P ′ is obtained by combining two or more subsets

of P . Suppose S′ is the smallest minimal greed dominating set of G w.r.t the partition P ′ and

|S| > γ. Since γgP (G) = γ, there exists a minimal greed dominating set S w.r.t P such that

|S| = γ. But intersection of S with any subset of P ′ is nonempty. This gives another minimal

greed dominating set of G w.r.t P ′. Also |S| < |S′|. This is a contradiction. �

§3. Proportionate Greed Domination

A greed dominating set S of the graph G is called a proportionate greed dominating set (PGDS)

w.r.t. the partition P = {V1, V2, . . . , Vn}, if
|S ∩ V i|

|Vi|
=

|S ∩ V j|

|Vj |
for all i, j = 1, 2, . . . , n.

This idea is a special case of the concept of greed dominating set. A proportionate greed

dominating set S is called a minimal proportionate greed dominating set (MPGDS) if no proper

subset of S is a proportionate greed dominating set. MPGDS is used to model the problem of

selecting representatives from a group of individuals, so that the number of representatives is

proportionate to the strength of the subgroups.

Theorem 3.1 The graph G = (V, E) has a PGDS w.r.t the partition P where |P | 6= |V | if and

only if |V | is not a prime number.

Proof Let S be a PGDS w.r.t the partition P = {V1, V2, . . . , Vn} of the graph G. Then

by definition of PGDS,
|S ∩ V i|

|Vi|
=

|S ∩ V j|

|Vj |
=

p

q
for all i, j = 1, 2, . . . , n, where p and q are

relatively prime positive integers and q 6= 0. Clearly, q divides |S ∩ V i| and p divides |V i| for

all i. Then |V | =
∑

i |Vi| is divisible by p. If p = 1, then |Vi| = q × |S ∩ V i| for all i. Now |V |

is divisible by q. Hence always |V | is not a prime number.

Conversely, let |V | = qr, where q, r > 1 and P = {V1, V2, . . . , Vn} be a partition of V such

that |Vi| = qri for all i and
∑

i ri = r. Then the set S = V itself is a PGDS of G w.r.t the

given partition. �

If a graph has a PGDS w.r.t. a partition P , then it has an MPGDS. This fact leads to the

following result.
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Corollary 2.2 The graph G = (V, E) has an MPGDS w.r.t the partition P where |P | 6= |V | if

and only if |V | is not a prime number.

Theorem 3.3 If S is a PGDS w.r.t the partition P = {V1, V2, . . . , Vn} of the graph G, then
|S ∩ V i|

|Vi|
=

|S|

|V |
=

p

q
for all i = 1, 2, . . . , n.

Proof Since
|S ∩ V i|

|Vi|
=

|S|

|V |
=

p

q
for all i and (p, q) = 1, |S∩V i| = nip and |Vi| = niq where

ni is some positive integer. Then |S| =
∑

i |S ∩ V i| =
∑

i nip and |V | =
∑

i |Vi| =
∑

i niq.

Hence the result. �

But in the graphs modeling real situations we cannot ensure the equality of the fractions
|S ∩ V i|

|Vi|
. To deal with these cases we allow variations of the values

|S ∩ V i|

|Vi|
, subject to the

condition |
p

q
−

|S ∩ V i|

|Vi|
| ≤ ǫ, where ǫ has a prescribed value. Using Theorem 3.3 we get an

approximate value of
|S ∩ V i|

|Vi|
for graphs having no PGDS w.r.t the partition P .

§4. Cost Factor of a Partition

If the graph G models a set of people, then γ(G) is the minimum number of representatives

selected from the group. But in many situations, where considerations of group within group

is strong, this is not practical. Consequently selection of more representatives than the min-

imum required increases the total cost. Another interesting situation arise while establishing

communication networks. If radio stations are to be situated at different places in a country,

naturally we select those places such that every part of the country receive signals from at least

one station. To minimize the total cost, we try to minimize the number of places selected.

Then some states may not get a radio station. To solve this problem, every state is given

minimum one radio station, which undermines our objective. Keeping this fact in mind we

introduce the cost factor of the partition P . The cost factor of the partition P is defined as

CP (G) = γgP (G)−γ(G). A partition P of V (G) is called a cost effective partition if CP (G) = 0.

Every graph has at least one cost effective partition.

Theorem 4.1 Let G = (V, E) be a graph, then

(i) G has at least one cost effective partition;

(ii) G has exactly one cost effective partition if and only if γ(G) = |V |.

Proof The conclusion (i) follows from Theorem 2.7. For (ii), if γ(G) = |V | and P =

{V1, V2, . . . , V|V |} is a partition of V , then |Vi| = 1 for each i. If there exists another partition

P ′ such that |P ′| = |V |, then P = P ′.

To prove converse part, Let the graph G has exactly one cost effective partition, say

P = {V1, V2, . . . , Vγ}. Suppose γ(G) < |V |. Since P is cost effective, γgP (G) = γ(G) and

let S be the corresponding greed dominating set. Take the vertex v ∈ (V − S). If necessary
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rename the subset of the partition such that, v ∈ V1. Next consider the new partition P ′ =

{V1 − {v}, V2 ∪ {v}, V3, . . . , Vγ}. Clearly |P | = |P ′| and γgP ′(G) = γ(G). This contradicts the

uniqueness of P . �

§5. Problems for Further Research

Here we present a set of questions which are intended for future research.

(i) We have proved in Theorem 2.6 that, for the partitions P1 and P2 of V such that P2

bigger than P1, γgP1 (G) ≤ γgP2(G). Is there any relation between ΓgP1 (G) and ΓgP2(G)?

(ii) Is it possible to characterize the partitions of a graph, so that γgP (G) = |P |?

(iii) Find the total number of different partitions of the graph G having domination number

γ, such that γgP (G) = γ.

(iv) The subset S of V (G) is a total dominating set, if every vertex in V is adjacent to at least

one vertex in S. Extend the idea of greed domination to total dominating sets of G.

(v) Design an algorithm for computing the values of γgP (G) and ΓgP (G) for a given partition

P of the graph G.

(vi) Find the total number of cost effective partitions of a given graph with n vertices and

having domination number γ.
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Abstract: In [7], we introduced the new concept (G,D)-set of graphs. Let G = (V, E) be

any graph. A (G,D)-set of a graph G is a subset S of vertices of G which is both a dominating

and geodominating(or geodetic) set of G. The minimum cardinality of all (G,D)-sets of G is

called the (G,D)-number of G and is denoted by γG(G). In this paper, we introduce a new

parameter called forcing (G,D)-number of a graph G. Let S be a γG-set of G. A subset T of

S is said to be a forcing subset for S if S is the unique γG-set of G containing T. A forcing

subset T of S of minimum cardinality is called a minimum forcing subset of S. The forcing

(G,D)-number of S denoted by fG,D(S) is the cardinality of a minimum forcing subset of S.

The forcing (G,D)-number of G is the minimum of fG,D(S), where the minimum is taken

over all γG-sets S of G and it is denoted by fG,D(S).

Key Words: (G,D)-number, Forcing (G,D)-number, Smarandachely k-dominating set.
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§1. Introduction

By a graph G=(V,E), we mean a finite, undirected connected graph without loops and multiple

edges. For graph theoretic terminology, we refer [5]. A set of vertices S in a graph G is said

to be a Smarandachely k-dominating set if each vertex of G is dominated by at least k vertices

of S. Particularly, if k = 1, such a set is called a dominating set of G, i.e., every vertex in

V −D is adjacent to at least one vertex in D. The minimum cardinality among all dominating

sets of G is called the domination number γ(G) of G[6]. A u-v geodesic is a u-v path of length

d(u,v). A set S of vertices of G is a geodominating (or geodetic) set of G if every vertex of

G lies on an x-y geodesic for some x,y in S. The minimum cardinality of a geodominating set

is the geodomination (or geodetic) number of G and it is denoted by g(G)[1[-[4]. A (G,D)-set

of G is a subset S of V(G) which is both a dominating and geodetic set of G. The minimum

cardinality of all (G,D)-sets of G is called the (G,D)-number of G and is denoted by γG(G).

1Received January 21, 2011. Accepted August 30, 2011.
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Any (G,D)-set of G of cardinality γG is called a γG-set of G[7].In this paper, we introduce a

new parameter called forcing (G,D)-number of a graph G. Let S be a γG-set of G. A subset T

of S is said to be a forcing subset for S if S is the unique γG-set of G containing T. A forcing

subset T of S of minimum cardinality is called a minimum forcing subset of S. The forcing

(G,D)-number of S denoted by fG,D(S) is the cardinality of a minimum forcing subset of S.

The forcing (G,D)-number of G is the minimum of fG,D(S), where the minimum is taken over

all γG-sets S of G and it is denoted by fG,D(S).

§2. Forcing (G,D)-number

Definition 2.1 Let G be a connected graph and S be a γG-set of G. A subset T of S is called

a forcing subset for S if S is the unique γG-set of G containing T. A forcing subset T of S of

minimum cardinality is called a minimum forcing subset for S. The forcing (G,D)-number of

S denoted by fG,D(S) is the cardinality of a minimum forcing subset of S. The forcing (G,D)-

number of G is the minimum of fG,D(S), where the minimum is taken over all γG-sets S of G

and it is denoted by fG,D(G). That is, fG,D(G) = min{fG,D(S): S is any γG-set of G}.

Example 2.2 In the following figure,

w

yu

v x

Fig.2.1

S1 = {u, x} and S2 = {v, y} are the only two γG-sets of G. {u}, {x} and {u, x} are forcing

subsets of S1. Therefore, fG,D(S1) = 1. Similarly, {v}, {y} and {v, y} are the forcing subsets

of fG,D(S2). Therefore, fG,D(S2) = 1. Hence fG,D(G) = min{1, 1} = 1. For G, we have,

0 < fG,D(G) = 1 < γG(G) = 2.

Remark 2.3 1. For every connected graph G, 0 6 fG,D(G) 6 γG(G).

2. Here the lower bound is sharp, since for any complete graph S = V (G) is a unique

γG-set. So, T = Φ is a forcing subset for S and fG,D(Kp) = 0.

3. Example 2.2 proves the bounds are strict.

Theorem 2.4 Let G be a connected graph. Then,

(i) fG,D(G) = 0 if and only if G has a unique γG-set;

(ii) fG,D(G) = 1 if and only if G has at least two γG-sets, one of which, say, S has forcing

(G,D)-number equal to 1;
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(iii) fG,D(G) = γG(G) if and only if every γG-set S of G has the property, fG,D(S) =

|S| = γG(G).

Proof (i) Suppose fG,D(G) = 0. Then, by Definition 2.1, fG,D(S) = 0 for some γG-set

S of G. So, empty set is a minimum forcing subset for S. But, empty set is a subset of every

set. Therefore, by Definition 2.1, S is the unique γG-set of G. Conversely, let S be the unique

γG-set of G. Then, empty set is a minimum forcing subset of S. So, fG,D(G) = 0.

(ii) Assume fG,D(G) = 1. Then, by (i), G has at least two γG-sets. fG,D(G) = min{fG,D(S) :

S is any γG − setof G}. So, fG,D(S) = 1 for at least one γG-set S. Conversely, suppose G has

at least two γG-sets satisfying the given condition. By (i), fG,D(G) 6= 0. Further, fG,D(G) > 1.

Therefore, by assumption, fG,D(G) = 1.

(iii) Let fG,D(G) = γG(G). Suppose S is a γG-set of G such that fG,D(S) < |S| = γG(G).

So, S has a forcing subset T such that |T | < |S|. Therefore, fG,D(G) = min{fG,D(S) :

S is a γG − set of G} 6 |T | < |S| = γG(G). This is a contradiction. So, every γG-set S of G

satisfies the given condition. The converse is obvious. Hence the result. �

Corollary 2.5 fG,D(Pn) = 0 if n ≡ 1(mod3).

Proof Let Pn = (v1, v2, . . . , v3k+1), k > 0. Now, S = {v1, v4, v7, . . . , v3k+1} is the unique

γG-set of Pn. So, by Theorem 2.4, fG,D(Pn) = 0. �

Observation 2.6 Let G be any graph with at least two γG-sets. Suppose G has a γG-set S

satisfying the following property:

S has a vertex u such that u ∈ S′ for every γG-set S′ different from S (I),

Then, fG,D(G) = 1.

Proof As G has at least two γG-sets, by Theorem 2.4, fG,D(G) 6= 0. If G satisfies (I), then

we observe that fG,D(S) = 1. So, by Definition 2.1, fG,D(G) = 1. �

Corollary 2.7 Let G be any graph with at least two γG-sets. Suppose G has a γG-set S such

that S
⋂

S′ = φ for every γG-set S′ different from S. Then fG,D(G) = 1.

Proof Given that G has a γG-set S such that S
⋂

S′ = φ for every γG-set S′ different

from S. Then, we observe that S satisfies property (I) in Observation 2.6. Hence, we have,

fG,D(G) = 1. �

Corollary 2.8 Let G be any graph with at least two γG-sets. If pair wise intersection of distinct

γG-sets of G is empty, then fG,D(G) = 1.

Proof The proof proceeds along the same lines as in Corollary 2.7. �

Corollary 2.9 fG,D(Cn) = 1 if n = 3k, k > 1.

Proof Let n = 3k, k > 1. Let V (Cn) = {v1, v2, . . . , v3k}. Note that the only γG-sets

of Cn are S1 = {v1, v4, . . . , v3(k−1)+1}, S2 = {v2, v5, . . . , v3(k−1)+2} and S3 = {v3, v6, . . . , v3k}.
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Further, we have, S1

⋂
S2 = S1

⋂
S3 = S2

⋂
S3 = ∅. That is, pair wise intersection of distinct

γG-sets of Cn is empty. Hence, from Corollary 2.8, we have fG,D(Cn) = 1 if n = 3k. �

Definition 2.10 A vertex v of G is said to be a (G,D)-vertex of G if v belongs to every γG-set

of G.

Remark 2.11 1. All the extreme vertices of a graph G are (G,D)-vertices of G.

2. If G has a unique γG-set S, then every vertex of S is a (G,D)-vertex of G.

Lemma 2.12 Let G = (V, E) be any graph and u ∈ V (G) be a (G,D)-vertex of G. Suppose S

is a γG-set of G and T is a minimum forcing subset of S, then u /∈ T .

Proof Since u is a (G,D)-vertex of G, u is in every γG-set of G. Given that S is a γG-set

of G and T is a minimum forcing subset of S. Suppose u ∈ T . Then, there exists a γG-set S′ of

G different from S such that T − {u} ⊆ S′. Otherwise, T − {u} is a forcing subset of S. Since

u ∈ S′, T ⊆ S′. This contradicts the fact that T is a minimum forcing subset of S. Hence,

from the above arguments, we have u /∈ T . �

Corollary 2.13 Let W be the set of all (G,D)-vertices of G. Suppose S is a γG-set of G and

T is a forcing subset of S. If W is non-empty, then T 6= S.

Definition 2.14 Let G be a connected graph and S be a γG-set of G. Suppose T is a minimum

forcing subset of S. Let E = S − T be the relative complement of T in its relative γG-set S.

Then, L is defined by

L = {E|E is a relative complement of a minimum

forcing subset T in its relative γG − set S of G}.

Theorem 2.15 Let G be a connected graph and ζ = The intersection of all E ∈ L . Then, ζ

is the set of all (G,D)-vertices of G.

Proof Let W be the set of all (G,D)-vertices of G.

Claim W = ζ, the intersection of all E ∈ L . Let v ∈ W . By Definition 2.10, v is in every

γG-set of G. Let S be a γG-set of G and T be a minimum forcing subset of S. Then, v ∈ S.

From Lemma 2.12, we have, v /∈ T . So, v ∈ E = S − T . Hence, v ∈ E for every E ∈ L . That

is, v ∈ ζ. Conversely, let v ∈ ζ. Then, v ∈ E = S − T , where T is a minimum forcing subset of

the γG-set S. So, v ∈ S for every γG-set S of G. That is, v ∈ W . �

Corollary 2.16 Let S be a γG-set of a graph G and T is a minimum forcing subset of S. Then,

W
⋂

T = ∅.

Remark 2.17 The above result holds even if G has a unique γG-set.

Corollary 2.18 Let W be the set of all (G,D)-vertices of a graph G. Then, fG,D(G) 6

γG(G) − |W |.
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Remark 2.19 In the above corollary, the inequality is strict. For example, consider the

following graph G.

v1

v6

v2

v5v4

v3

Fig.2.2

For G, S1 = {v1, v4, v5}, S2 = {v1, v3, v5}, S3 = {v1, v4, v6} are the only distinct γG-sets.

Therefore, γG(G) = 3. But, fG,D(S1) = 2 and fG,D(S2) = fG,D(S3) = 1. So, fG,D(G) =

min{fG,D(S): S is a γG-set of G} = 1. Also, W = {1}. Now, γG(G)− |W | = 3− 1 = 2. Hence

fG,D(G) 6 γG(G) − |W |.

Also the upper bound is sharp. For example, consider the following graph G.

v1

v6

v2

v5v4

v3

Fig.2.3

For G, S1 = {v1, v4, v5}, S2 = {v1, v3, v6} are different γG-sets. Therefore, γG(G) = 3. But,

fG,D(S1) = fG,D(S2) = 2. So, fG,D(G) = min{fG,D(S): S is a γG-set of G} = 2. Also,

W = {1}. Now, γG(G) − |W | = 3 − 1 = 2. Hence, fG,D(G) = γG(G) − |W |.

Corollary 2.20 fG,D(G) 6 γG(G) − k where k is the number of extreme vertices of G.

Proof The result follows from |W | > k. �

Theorem 2.21 For a complete graph G = Kp, fG,D(G) = 0 and |W | = p.
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Proof V (Kp) is the unique γG-set of Kp. Hence by Theorem 2.4, fG,D(Kp) = 0. By

Remark 2.11, W = V (G) with |W | = p. �
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Abstract: Let G be a (p, q) - graph. An injective function f : V (G) →

{l0, l1, l2, · · · , la}, (a ǫ N), is said to be Lucas graceful labeling if an induced edge la-

beling f1(uv) = |f(u) − f(v)| is a bijection onto the set {l1, l2, · · · , lq} with the as-

sumption of l0 = 0, l1 = 1, l2 = 3, l3 = 4, l4 = 7, l5 = 11, etc.. If G admits Lu-

cas graceful labeling, then G is said to be Lucas graceful graph. An injective function

f : V (G) → {l0, l1, l2, · · · , la−1, la+1}, (a ǫ N), is said to be almost Lucas graceful la-

beling if the induced edge labeling f1(uv) = |f(u) − f(v)| is a bijection onto the set

{l1, l2, · · · , lq}or{l1, l2, · · · , lq−1, lq+1} with the assumption of l0 = 0, l1 = 1, l2 = 3, l3 =

4, l4 = 7, l5 = 11, etc.. Then G is called almost Lucas graceful graph if it admits almost

Lucas graceful labeling. Also, an injective function f : V (G) → {l0, l1, l2, · · · , la}, (a ǫ N), is

said to be nearly Lucas graceful labeling if the induced edge labeling f1(u, v) = |f(u)− f(v)|

onto the set {l1, l2, · · · , li−1, li+1, li+2, · · · , lj−1, lj+1, lj+2, · · · , lk−1, lk+1, lk+2, · · · , lb (b ǫ N

and b ≤ a) with the assumption of l0 = 0, l1 = 1, l2 = 3, l3 = 4, l4 = 7, l5 = 11, etc.. If G

admits nearly Lucas graceful labeling, then G is said to be nearly Lucas graceful graph. In

this paper, we show that the graphs Sm,n, Sm,n@Pt and Fm@Pn are almost Lucas graceful

graphs. Also we show that the graphs Sm,n@Pt and Cn are nearly Lucas graceful graphs.
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§1. Introduction

By a graph, we mean a finite undirected graph without loops or multiple edges. A cycle of

length n is denoted by Cn · G+ is a graph obtained from the graph G by attaching pendant

vertex to each vertex of G. The concept of graceful labeling was introduced by Rosa [3] in 1967.

A function f is called a graceful labeling of a graph G with q edges if f is an injection from

the vertices of G to the set {1, 2, 3, · · · , q} such that when each edge uv is assigned the label

1Received May 26, 2011. Accepted September 6, 2011.
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|f(u) − f(v)|, the resulting edge labels are distinct. The notion of Fibonacci graceful labeling

was introduced by K.M.Kathiresan and S.Amutha [4]. We call a function f , a Fibonacci

graceful label labeling of a graph G with q edges if f is an injection from the vertices of

G to the set {0, 1, 2, · · · , Fq}, where Fq is the qth Fibonacci number of the Fibonacci series

F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · and each edge uv is assigned the label |f(u) − f(v)|. Based

on the above concept we define the following.

A Smarandache-Fibonacci triple is a sequence S(n), n ≥ 0 such that S(n) = S(n −

1) + S(n − 2), where S(n) is the Smarandache function for integers n ≥ 0. Clearly, it is a

generalization of Fibonacci sequence and Lucas sequence. Let G be a (p, q)-graph and {S(n)|n ≥

0} a Smarandache-Fibonacci triple. An bijection f : V (G) → {S(0), S(1), S(2), . . . , S(q)} is

said to be a super Smarandache-Fibonacci graceful graph if the induced edge labeling f∗(uv) =

|f(u) − f(v)| is a bijection onto the set {S(1), S(2), . . . , S(q)}. Particularly, if S(n), n ≥ 0 is

just the Lucas sequence, such a labeling f : V (G) → {l0, l1, l2, · · · , la} (a ǫ N) is said to be

Lucas graceful labeling if the induced edge labeling f1(uv) = |f(u) − f(v)| is a bijection on to

the set {l1, l2, · · · , lq}. If G admits Lucas graceful labeling, then G is said to be Lucas graceful

graph. An injective function f : V (G) → {l0, l1, l2, · · · , la−1, la+1}, (a ǫ N), is said to be almost

Lucas graceful labeling if the induced edge labeling f1(uv) = |f(u)−f(v)| is a bijection onto the

set {l1, l2, · · · , lq} or {l1, l2, · · · , lq−1, lq+1} with the assumption of l0 = 0, l1 = 1, l2 = 3, l3 =

4, l4 = 7, l5 = 11, etc.. Then G is called almost Lucas graceful graph if it admits almost Lucas

graceful labeling. Also, an injective function f : V (G) → {l0, l1, l2, · · · , la}, (a ǫ N), is said to

be nearly Lucas graceful labeling if the induced edge labeling f1(u, v) = |f(u) − f(v)| onto the

set {l1, l2, · · · , li−1, li+1, li+2, · · · , lj−1, lj+1, lj+2, · · · , lk−1, lk+1, lk+2, · · · , lb (b ǫ N and b ≤ a)

with the assumption of l0 = 0, l1 = 1, l2 = 3, l3 = 4, l4 = 7, l5 = 11, etc.. If G admits nearly

Lucas graceful labeling, then G is said to be nearly Lucas graceful graph. In this paper, we

show that the graphs Sm,n, Sm,n@Pt and Fm@Pn are almost Lucas graceful graphs. Also we

show that the graphs Sm,n@Pt and Cn are nearly Lucas graceful graphs.

§2. Almost Lucas Graceful Graphs

In this section, we show that some graphs namely Sm,n, Sm,n@Pt and Fm@Pn are almost Lucas

graceful graphs.

Definition 2.1 Let G be a (p, q) - graph. An injective function f : V (G) → {l0, l1, l2, · · · , la−1,

la+1}, a ǫ N , is said to be almost Lucas graceful labeling if the induced edge labeling f1(uv) =

|f(u) − f(v)| is a bijection onto the set {l1, l2, · · · , lq} or {l1, l2, · · · , lq−1, lq+1}. Then G is

called almost Lucas graceful graph if it admits almost Lucas graceful labeling.

Definition 2.2 ([2]) Sm,n denotes a star with n spokes in which each spoke is a path of length

m.

Theorem 2.3 Sm,n is an almost Lucas graceful graph when m ≡ 1(mod 2) and n ≡ 0(mod 3)

Proof Let G = Sm,n. Let V (G) = {ui,j : 1 ≤ i ≤ m and 1 ≤ j ≤ n} be the vertex set of



90 M.A.Perumal, S.Navaneethakrishnan and A.Nagarajan

G. Let E(G) = {u0ui,1 : 1 ≤ i ≤ m} ∪ {ui,jui,j+1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1} be the edge set

of G. So, |V (G)| = mn + 1 and |E(G)| = mn. Define f : V (G) → {l0, l1, l2, · · · , la} , a ǫ N by

f(u0) = l0. For i = 1, 2, · · · , m − 2 and i ≡ 1(mod 2), f(ui,j) = ln(i−1)+2j−1, 1 ≤ j ≤ n. For

i = 1, 2, · · · , m − 1 and i ≡ 0(mod 2), f(ui,j) = lni+2−2j , 1 ≤ j ≤ n. For s = 1, 2, · · · ,
n − 3

3
f(um,j) = l(m−1)n+2(j+1)−3s, 3s−2 ≤ j ≤ 3s. and for s =

n

3
, f(um,j) = l(m−1)n+2(j+1)−3s, 3s−

2 ≤ j ≤ 3s − 1. We claim that the edge labels are distinct. Let

E1 =

m⋃

i=1

i≡1(mod 2)

{f1(u0ui,1)} =

m⋃

i=1

i≡1(mod 2)

{|f(u0) − f(ui,1)|}

=

m⋃

i=1

i≡1(mod 2)

{∣∣l0 − ln(i−1)+1

∣∣} =

m⋃

i=1

i≡1(mod 2)

{
ln(i−1)+1

}

=
{
l1, l2n+1, l4n+1, · · · , l(m−1)n+1

}
,

E2 =

m⋃

i=1

i≡0(mod 2)

{f1(u0ui,1)} =

m⋃

i=1

i≡0(mod 2)

{|f(u0) − f(ui,1)|}

=

m⋃

i=1

i≡0(mod 2)

{|l0 − lni|} =

m⋃

i=1

i≡0(mod 2)

{lni}

=
{
l2n, l4n, ..., l(m−1)n

}
,

E3 =

m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{f1 (ui,jui,j+1)} =

m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{|f(ui,j) − f(ui,j+1|}

=
m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{∣∣ln(i−1)+2j−1 − ln(i−1)+2j+1

∣∣} =
m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{
ln(i−1)+2j

}

=

m−2⋃

i=1

i≡1(mod 2)

{
ln(i−1)+2, ln(i−1)+4, · · · , ln(i−1)+2n−2

}

= {l2, l4, · · · , l2n−2}
⋃

{l2n+2, l2n+4, · · · , l4n−2}
⋃

· · ·
⋃{

l(m−3)n+2, l(m−3)n+4, · · · , l(m−3)n+2n−2

}

=
{
l2, l4, · · · , l2n−2, l2n+4, · · · , l4n−2, · · · , l(m−3)n+2, l(m−3)n+4, · · · , lmn−n−2

}
,
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E4 =

m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{f1(ui,juij+1)} =

m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{|f(ui,j) − f(ui,j+1)|}

=

m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{|lni−2j+2 − lni−2j |} =

m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{lni−2j+1}

=
m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{lni−1, lni−3, · · · , lni−2n+3}

= {l2n−1, l2n−3, · · · , l3}
⋃

{l4n−1, l4n−3, · · · , l2n+3}
⋃

· · ·
⋃{

l(m−1)n−1, l(m−1)n−3, · · · , lmn−3n+3

}

=
{
l2n−1, l2n−3, · · · , l3, l4n−1, l4n−3, · · · , l2n+3, · · · , l(m−1)n−1, l(m−1)n−3, · · · , lmn−3n+3

}
,

E5 =

n−3
3⋃

s=1

{f1(um,jum,j+1) : 3s− 2 ≤ j ≤ 3s − 1}

=

n−3
3⋃

s=1

{|f(um,j) − f(um,j+1)| : 3s − 2 ≤ j ≤ 3s − 1}

=

n−3
3⋃

s=1

{∣∣ln(m−1)+2j−3s+2 − ln(m−1)+2j−3s+4

∣∣ : 3s− 2 ≤ j ≤ 3s − 1
}

=

n−3
3⋃

s=1

{
ln(m−1)+2j−3s+3 : 3s − 2 ≤ j ≤ 3s − 1

}

=
{
ln(m−1)+2, ln(m−1)+4

}⋃{
ln(m−1)+5, ln(m−1)+7

}⋃

· · ·
⋃{

ln(m−1)+2n−10−n+3+3, ln(m−1)+2n−8−n+3+3

}

=
{
ln(m−1)+2, ln(m−1)+4, ln(m−1)+5, ln(m−1)+7, · · · , ln(m−1)+n−4, ln(m−1)+n−2

}

= {ln(m−1)+2, ln(m−1)+4, ln(m−1)+5, ln(m−1)+7, · · · , lmn−4, lmn−2}.

We find the edge labeling between the end vertex of sth loop and the starting vertex of (s+1)th

loop and s = 1, 2, · · · ,
n − 3

3
. Let

E6 =

n−3
3⋃

s=1

{f1(um,jum,j+1) : j = 3s} =

n−3
3⋃

s=1

{|f(um,j) − f(um,j+1) : j = 3s|}

= {|f(um,3) − f(um,4)| , |f(um,6) − f(um,7)| , · · · , |f(um,n−3) − f(um,n−2)|}

=
{∣∣l(m−1)n+8−3 − l(m−1)n+10−6

∣∣ ,
∣∣l(m−1)n+14−6 − l(m−1)n+16−9

∣∣ ,

· · · ,
∣∣l(m−1)n+2n−4−n+3 − l(m−1)n+2n−2−n

∣∣}

=
{∣∣l(m−1)n+5 − l(m−1)n+4

∣∣ ,
∣∣l(m−1)n+8−ll(m−1)n + 7

∣∣ , · · · ,
∣∣l(m−1)n+n−1 − l(m−1)n+n−2

∣∣}

= {|l(m−1)n+3, l(m−1)n+6, · · · , l(m−1)n+n−3|}

=
{
l(m−1)n+3, l(m−1)n+6, · · · , lmn−3

}
.
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For s =
n

3
, let

E7 = {f1(um,jum,j+1) : 3s − 2 ≤ j ≤ 3s − 1} = {|f(um,j) − f(um,j+1)| : 3s − 2 ≤ j ≤ 3s − 1}

=
{∣∣l(m−1)n+2n−2−n − l(m−1)n+2n−n

∣∣ ,
∣∣l(m−1)n+2n−n − l(m−1)n+2n+2−n

∣∣}

=
{∣∣l(m−1)n+n−2 − l(m−1)n+n

∣∣ ,
∣∣l(m−1)n+n − l(m−1)n+n+2

∣∣}

=
{
l(m−1)n+n−1, l(m−1)n+n+1

}
= {lmn−1, lmn+1} .

Now, E =
7⋃

i=1

Ei = {l1, l2, ..., lmn−1, lmn+1}. So, the edge labels of G are distinct. Therefore, f

is an almost Lucas graceful labeling. Thus G = Sm,n is an almost Lucas graceful graph, when

m ≡ 1(mod 2) and n ≡ 0(mod 3). �

Example 2.4 An almost Lucas graceful labeling of S7,9 is shown in Fig.2.1.

l1 l3 l5 l7 l9 l11 l13 l15 l17

l18 l16 l14 l12 l10 l8 l6 l4 l2

l19 l21 l23 l25 l27 l29 l31 l33 l35

l36 l34 l32 l30 l28 l26 l24 l22 l20

l37 l39 l41 l43 l45 l47 l49 l51 l53

l54 l52 l50 l48 l46 l44 l42 l40 l38

l55 l57 l59 l58 l60 l62 l61 l63 l65

l2 l4 l6 l8 l10 l12 l14 l16

l17 l15 l13 l11 l9 l7 l5 l3

l20 l22 l24 l26 l28 l30 l32 l34

l35 l33 l31 l29 l27 l25 l23 l21

l38 l40 l42 l44 l46 l48 l50 l52

l53 l51 l49 l47 l45 l43 l41 l39

l56 l58 l57 l59 l61 l60 l62 l64

l0

l1
l18

l19

l36

l37

l54
l55

Fig.2.1 S7,9

Definition 2.5([2]) The graph G = Sm,n@Pt consists of Sm,n and a path Pt of length t which

is attached with the maximum degree of the vertex of Sm,n.

Theorem 2.6 Sm,n@Pt is an almost Lucas graceful graph when m ≡ 0(mod 2) and t ≡

0(mod 3).

Proof Let G = Sm,n@Pt with m ≡ 0(mod 3) and t ≡ 0(mod 3). Let

V (G) = {u0, ui,j : 1 ≤ i ≤ m and 1 ≤ j ≤ n}
⋃

{vk : 1 ≤ k ≤ t} ,

E(G) = {u0ui,1 : 1 ≤ i ≤ m}
⋃

{ui,juij+1 : 1 ≤ i ≤ m and 1 ≤ j ≤ n − 1}
⋃

{u0v1}
⋃

{vkvk+1 : 1 ≤ k ≤ t − 1}
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be the vertex set and edge set of G, respectively. Thus |V (G)| = mn+t+1 and |E(G)| = mn+t.

Define f : V (G) → {l0, l1, l2, · · · , la} , a ǫ N by f(u0) = l0. For i = 1, 2, · · · , m and for

i ≡ 1(mod 2), f(ui,j) = ln(i−1)+2j−1, 1 ≤ j ≤ n. For i = 1, 2, · · · , m and for i ≡ 1(mod 2),

f(ui,j = lni−2j+2, 1 ≤ j ≤ n. For s = 1, 2, · · · ,
t − 3

3
, f(vk) = lmn+2k−3s+2, 3s − 2 ≤ k ≤ 3s

and for s =
t

3
, f(vk) = lmn+2k−3s+2, 3s − 2 ≤ k ≤ 3s − 1. We claim that the edge labels are

distinct. Let

E1 =
m⋃

i=1

i≡1(mod 2)

{f1(u0ui,1)}

=

m⋃

i=1

i≡1(mod 2)

{|f(u0) − f(ui,1)|} =

m⋃

i=1

i≡1(mod 2)

{∣∣l0 − ln(i−1)+1

∣∣}

=

m⋃

i=1

i≡1(mod 2)

{
ln(i−1)+1

}
=
{
l1, l2n+1, l4n+1, · · · , ln(m−1)+1

}
,

E2 =

m⋃

i=1

i≡1(mod 2)

{f1(u0ui,1)} =

m⋃

i=1

i≡1(mod 2)

{|f(u0) − f(ui,1)|}

=

m⋃

i=1

i≡1(mod 2)

{|l0 − lni|} =

m⋃

i=1

i≡1(mod 2)

{lni} = {l2n, l4n, · · · , lmn} ,

E3 =

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{f1(ui,jui,j+1)} =

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{|f(ui,j) − f(ui,j+1)|}

=

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{∣∣ln(i−1)+2j−1 − ln(i−1)+2j+1

∣∣} =

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{
ln(i−1)+2j

}

=

m⋃

i=1

i≡1(mod 2)

{
ln(i−1)+2, ln(i−1)+4, · · · , ln(i−1)+2n−2

}

= {l2, l4, · · · , l2n−2}
⋃

{l2n+2, l2n+4, · · · , l4n−2}
⋃

· · ·
⋃{

ln(m−2)+2, ln(m−2)+4, · · · , lmn−2

}

= {l2, l4, · · · , l2n−2, l2n+2, l2n+4, · · · , l4n−2, · · · , ln(m−2)+2, ln(m−2)+4, · · · , lmn−2},
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E4 =

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{f1(ui,jui,j+1)} =

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{|f(ui,j) − f(ui,j+1)|}

=

m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{|lni−2j+2 − lni−2j |}

=
m⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{lni−2j+1} =
m⋃

i=1

i≡0(mod 2)

{lni−1, lni−3, · · · , lni−2n+3}

= {l2n−1, l2n−3, · · · , l3} ∪ {l4n−1, l4n−3, ..., l2n+3} ∪ ... ∪ {lmn−1, lmn−3, · · · , lmn−2n+3}

= {l2n−1, l2n−3, · · · , l3, l4n−1, l4n−3, · · · , l2n+3, · · · , lmn−1, lmn−3, · · · , lmn−2n+3},

E
′

1 = {f1(u0v1)} = {|f(u0) − f(v1)|} = {|l0 − lmn+1|} = {lmn+1},

E
′

2 =

t−3
3⋃

s=1

{f1(vkvk+1) : 3s− 2 ≤ k ≤ 3s − 1}

=

t−3
3⋃

s=1

{|f(vk) − f(vk+1) : 3s − 2 ≤ k ≤ 3s− 1|}

=

t−3
3⋃

s=1

{|lmn+2k+2−3s − lmn+2k+4−3s| : 3s − 2 ≤ k ≤ 3s − 1}

=

t−3
3⋃

s=1

{lmn+2k+3−3s : 3s − 2 ≤ k ≤ 3s− 1}

= {lmn+2, lmn+4} ∪ {lmn+5, lmn+7} ∪ · · · ∪ {lmn+t−4, lmn+t−2}

= {lmn+2, lmn+4, lmn+5, lmn+7, · · · , lmn+t−4, lmn+t−2}

We find the edge labeling between the end vertex of sth loop and the starting vertex of (s+1)th

loop for integers s = 1, 2, · · · ,
t − 3

3
. Let

E
′

3 =

t−3
3⋃

s=1

{f1(u3su3s+1)}

= {|f(u3s) − f(u3s+1)|}

=
{
|f(u3) − f(u4)| , |f(u6) − f(u7)| , ...,

∣∣f(t−3) − f(t−2)

∣∣}

= {|lmn+8−3 − lmn+10−6| , |lmn+14−6 − lmn+16−9| , ..., |lmn+2t−4−t+3 − lmn+2t−2−t|}

= {|lmn+5 − lmn+4| , |lmn+8 − lmn+7| , ..., |lmn+t−1 − lmn+t−2|}

= {lmn+3, lmn+6, ..., lmn+t−3} .
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For s =
t

3
, let

E
′

4 = {f1(vkvk+1) : 3s − 2 ≤ k ≤ 3s− 1}

= {|f(vk) − f(vk+1)| : 3s − 2 ≤ k ≤ 3s − 1}

= {|lmn+2t−4+2−t − lmn+2t−2+2−t| , |lmn+2t−2+2−t − lmn+2t+2−t|}

= {|lmn+t−2 − lmn+t+2| |lmn+t − lmn+t+1|} = {lmn+t−1, lmn+t+1} .

Now, E =
4⋃

i=1

(Ei

⋃
E

′

i) = {l1, l2, · · · , lmn, · · · , lmn+t−1, lmn+t+1}. So, the edge labels of G are

distinct. Therefore, f is an almost Lucas graceful graph. Thus G = Sm,n@Pt is an almost

Lucas graceful graph when m ≡ 0(mod 2) and t ≡ 0(mod 3).

Example 2.7 An almost Lucas graceful labeling on S4,7@P6 is shown in Fig.2.2.

l0

l1l3l5l7l9l11l13

l2 l4 l6 l8 l10 l12 l14

l15l17l19l21l23l25l27

l16 l18 l20 l22 l24 l26 l28
l28

l29

l31

l33

l32

l34

l36

l29

l30

l32

l31

l33

l35

l2l4l6l8l10l12

l13l11l9l7l5l3

l26l24l22l20l18l16

l27l25l23l21l19l17

l15

l14

l1

Fig.2.2 S4,7@P6

Definition 2.8([2]) The graph G = Fm@Pn consists of a fan Fm and a path Pn of length n

which is attached with the maximum degree of the vertex of Fm.

Theorem 2.9 Fm@Pn is almost Lucas graceful graph when n ≡ 0(mod 3).

Proof Let v1, v2, · · · , vm+1 and u0 be the vertices of a Fan Fm. Let u1, u2, · · · , un be the

vertices of a path Pn. Let G = Fm@Pn, |V (G)| = m + n + 2 and |E(G)| = 2m + n + 1. Define

f : V (G) → {l0, l1, l2, · · · , lq+2 by f(u0) = l0; f(vi) = l2i−1; f(uj) = l2m+2j−3s+3, 3s− 2 ≤ j ≤

3s. We claim that the edge labels are distinct. Let

E1 =

m⋃

i=1

{f1(vivi+1)} =

m⋃

i=1

{|f(vi) − f(vi+1)|}

=

m⋃

i=1

{|l2i−1 − l2i+1|}

=
m⋃

i=1

{l2i} = {l2, l4, ..., l2m} ,
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E2 =

m+1⋃

i=1

{f1(u0vi)} =

m+1⋃

i=1

{|f(u0) − f(vi)|}

=

m+1⋃

i=1

{|l0 − l2i−1|} =

m+1⋃

i=1

{l2i−1} = {l1, l3, ..., l2m+1} ,

E3 = {f1(u0u1)} = {|f(u0) − f(u1)|} = {|l0 − l2m+2|} = {l2m+2} ,

E4 =

n−3
3⋃

s=1

{f1(ujuj+1) : 3s − 2 ≤ j ≤ 3s − 1}

=

n−3
3⋃

s=1

{|f(uj) − f(uj+1)| : 3s − 2 ≤ j ≤ 3s − 1}

= {|f(u1) − f(u2)| , |f(u2) − f(u3)|}
⋃

{|f(u4) − f(u5)| , |f(u5) − f(u6)|}
⋃

· · ·
⋃

{|f(un−5) − f(un−4)| , |f(un−4) − f(un−3)|}

= {|l2m+2 − l2m+4| , |l2m+4 − l2m+6|}
⋃

{|l2m+5 − l2m+7| , |l2m+7 − l2m+9|}
⋃

· · ·
⋃

{|l2m+2n−10+3−n+3 − l2m+2n−8+3−n+3| , |l2m+2n−8+3−n+3l2m+2n−6+3−n+3|}

= {l2m+3, l2m+5} ∪ {l2m+6, l2m+8} ∪ · · · ∪ {l2m+n−3, l2m+n−1}

= {l2m+3, l2m+5, l2m+6, l2m+8, · · · , l2m+n−3, l2m+n−1} .

We find the edge labeling between the end vertex of sth loop and the starting vertex of (s+1)th

loop for s = 1, 2, · · · ,
n

3
− 1. Let

E5 =

n
3 −1⋃

s=1

{f1(ujuj+1) : j = 3s} =

n
3 −1⋃

s=1

{|f(uj) − f(uj+1)| : j = 3s}

= {|l2m+6+3−3 − l2m+8+3−6| , |l2m+12+3−6 − l2m+14+3−9| ,

· · · , |l2m+2n−6+3−n+3 − l2m+2n−4+3−n|}

= {|l2m+6 − l2m+5| , |l2m+9 − l2m+8| , |l2m+n − l2m+n−1|}

= {l2m+4, l2m+7, · · · , l2m+n−2} .

For s =
n

3
, let

E6 = {f1(ujuj+1) : 3s− 2 ≤ j ≤ 3s − 1}

= {|f(uj) − f(uj+1)| : 3s − 2 ≤ j ≤ 3s − 1}

= {|f(un−2) − f(un−1)| , |f(un−1) − f(un)|}

= {|l2m+2n−4+3−n − l2m+2n−2+3−n| , |l2m+2n−2+3−n − l2m+2n+3−n|}

= {|l2m+n−1 − l2m+n+1| , |l2m+n+1 − l2m+n+3|}

= {l2m+n, l2m+n+2} .

Now, E =
6⋃

i=1

Ei = {l1, l2, · · · , l2m, l2m+1, l2m+2, · · · , l2m+n−2, l2m+n−1, l2m+n, l2m+n+2}. So,

the edge labels of G are distinct. Therefore, f is an almost Lucas graceful labeling.

Thus G = Fm@Pn is an almost Lucas graceful graph when n ≡ 0(mod 3). �
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Example 2.10 An almost Lucas graceful labeling on F5@P6 is shown in Fig.2.3.

l1 l3 l5 l7 l9 l11

l0 l12 l14 l16 l15

l2 l4 l6 l8 l10

l12 l13 l15 l14

l1
l3

l5 l7
l9

l11

l17 l19

l16 l18

Fig.2.3 F5@P6

§3. Nearly Lucas Graceful Graphs

In this section, we show that the graphs Sm,n@Pt and Cn are nearly Lucas graceful graphs.

Definition 3.1 Let G be a (p, q) - graph. An injective function f : V (G) → {l0, l1, l2, · · · , la},

(a ǫ N), is said to be nearly Lucas graceful labeling if the induced edge labeling f1(u, v) = |f(u)−

f(v)| onto the set {l1, l2, · · · , li−1, li+1, li+2, · · · , lj−1, lj+1, lj+2, · · · , lk−1, lk+1, lk+2, · · · , lb (b ǫ N

and b ≤ a) with the assumption of l0 = 0, l1 = 1, l2 = 3, l3 = 4, l4 = 7, l5 = 11, etc.. If G admits

nearly Lucas graceful labeling, then G is said to be nearly Lucas graceful graph.

Theorem 3.2 Sm,n@Pt is a nearly Lucas graceful graph when n ≡ 1, 2(mod 3) m ≡ 1(mod 2)

and t = 1, 2(mod 3)

Proof Let G = Sm,n@Pt with V (G) = {u0, ui,j : 1 ≤ i ≤ m and 1 ≤ j ≤ n}∪{vk : 1 ≤ k ≤ t}.

Let E(G) = {u0ui,j : 1 ≤ i ≤ m}
⋃
{ui,jui,j+1 : 1 ≤ i ≤ m and 1 ≤ j ≤ n}

⋃
{u0v1}∪{vkvk+1 :

1 ≤ k ≤ t − 1} be the edge set of G. So, |V (G)| = mn + t + 1 and |E(G)| = mn + t.

Define f : V (G) → {l0, l1, · · · , la}, a ǫ N by f(u0) = l0. For i = 1, 2, · · · , m and for

i ≡ 1(mod 2) f(ui,j) = ln(i−1)+2j−1, 1 ≤ j ≤ n. For i = 1, 2, · · · , m and for i ≡ 0(mod 2),

f(ui,j) = lin−2j+2, 1 ≤ j ≤ n. For s = 1, 2, · · · ,
n − 2

3
− 1 or s = 1, 2, · · · ,

n − 1

3
− 1 or

s = 1, 2, 3, · · · ,
n

3
− 1, f(um,j) = lmn+2(j+1)−3s, 3s − 2 ≤ j ≤ 3s. For s =

n − 2

3
or

n − 1

3
or

n

3
, f(um,j = lmn+2(j+1)−3s, 3s − 2 ≤ j ≤ 3s − 1. For r = 1, 2, · · · ,

t − 2

3
or r = 1, 2, · · · ,

t − 1

3

or r = 1, 2, 3, · · · ,
t

3
, f(vk) = lmn+2k+3−3r, 3r − 2 ≤ j ≤ 3r − 1. We claim that the edge labels
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are distinct. Let

E1 =
m⋃

i=1

i≡1(mod 2)

{f1(u0ui,1} =
m⋃

i=1

i≡1(mod 2)

{|f(u0) − f(ui,j)|}

=
m⋃

i=1

i≡1(mod 2)

{∣∣l0 − l(i−1)n+1

∣∣} =
m⋃

i=1

i≡1(mod 2)

{
l(i−1)n+1

}
=
{
l1, l2n+1, · · · , l(m−1)n+1

}
,

E2 =

m⋃

i=1

i≡0(mod 2)

{f1(u0ui,1)} =

m⋃

i=1

i≡0(mod 2)

{|f(u0) − f(ui,1)|}

=

m⋃

i=1

i≡0(mod 2)

{l0 − lin} =

m⋃

i=1

i≡0(mod 2)

{lin} =
{
l2n, l4n, · · · , l(m−1)n

}
,

E3 =
m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{f1(ui,jui,j+1)} =
m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{|f(ui,j) − f(ui,j+1)|}

=

m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{∣∣l(i−1)n+2j−1 − l(i−1)n+2j+1

∣∣} =

m−2⋃

i=1

i≡1(mod 2)

n−1⋃

j=1

{
l(i−1)n+2j

}

=

m−2⋃

i=1

i≡1(mod 2)

{
l(i−1)n+2, l(i−1)n+4, · · · , l(i−1)n+2n−2

}

= {l2, l4, · · · , l2n−2}
⋃

{l2n+2, l2n+4, · · · , l4n−2}
⋃

· · ·
⋃{

l(m−3)n+2, l(m−3)n+4, · · · , lmn−n−2

}

=
{
l2, l4, · · · , l2n−2, l2n+2, l2n+4, · · · , l4n−2, · · · , l(m−3)+2, l(m−3)n+4, · · · , lmn−n−2

}
,

E4 =

m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{f1(ui,jui,j+1)} =

m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{|f(ui,j) − f(ui,j+1)|}

=
m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{|lni−2j+2 − lni−2j |} =
m−1⋃

i=1

i≡0(mod 2)

n−1⋃

j=1

{lni−2j+1}

=

m−1⋃

i=1

i≡0(mod 2)

{lin−1, lin−3, · · · , lin−2n+3}

= {l2n−1, l2n−3, · · · , l3}
⋃

{l4n−1, l4n−3, · · · , l2n+3}
⋃

· · ·
⋃{

l(m−1)n−1, l(m−1)n−3, · · · , lmn−3n+3

}

=
{
l2n−1, l2n−3, · · · , l4n−1, l4n−3, · · · , l2n+3, · · · , l(m−1)n−1, l(m−1)n−3, · · · , lmn−3n+3

}
.
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For n ≡ 1(mod 3) and s = 1, 2, · · · ,
n − 4

3
, let

E5 =

n−4
3⋃

s=1

{f1(um,jum,j+1) : 3s− 2 ≤ j ≤ 3s − 1}

=

n−4
3⋃

s=1

{|f(um,j) − f(um,j+1)| : 3s − 2 ≤ j ≤ 3s − 1}

=

n−4
3⋃

s=1

{∣∣l(m−1)n+2j−3s+2 − l(m−1)n+2j−3s+4

∣∣ : 3s − 2 ≤ j ≤ 3s − 1
}

=

n−4
3⋃

s=1

{
l(m−1)n+2j−3s+3 : 3s − 2 ≤ j ≤ 3s − 1

}

=
{
l(m−1)n+2, l(m−1)n+4

}
∪
{
l(m−1)n+5, l(m−1)n+7

}
∪ ... ∪

{
l(m−1)n+n−4, l(m−1)n+n−2

}

=
{
l(m−1)n+2, l(m−1)n+4, l(m−1)n+5, l(m−1)n+7, ..., lmn−4, lmn−2

}
.

We find the edge labeling between the end vertex of sth loop and the starting vertex of (s+1)th

loop for integers s = 1, 2, · · · ,
n − 4

3
. Let

E6 =

n−1
3⋃

s=1

{f1(um,jum,j+1) : j = 3s} =

n−1
3⋃

s=1

{|f(um,j) − f(um,j+1)| : j = 3s}

= {|f(um,3) − f(um,4)| , |f(um,6) − f(um,7)| , · · · , |f(um,n−1) − f(um,n)|}

=
{∣∣l(m−1)n+5 − l(m−1)n+4

∣∣ ,
∣∣l(m−1)n+7

∣∣ , · · · ,
∣∣l(m−1)n+2n−2−n+1 − l(m−1)n+2n+2−n−2

∣∣}

=
{
l(m−1)n+3, l(m−1)n+6, · · · , lmn−1

}
.

For s =
n − 1

3
, Let

E7 = {f1(um,jum,j+1) : 3s − 2 ≤ j ≤ 3s − 1}

= {|f(um,j) − f(um,j+1)| : 3s − 2 ≤ j ≤ 3s − 1}

=
{∣∣l(m−1)n+2n−6+2−n+1 − l(m−1)n+2n−4+2−n+1

∣∣ ,
∣∣l(m−1)n+2n−4+2−n+1 − l(m−1)n+2n−2+2−n+1

∣∣}

= {|lmn−3 − lmn−1| , |lmn−1 − lmn+1|} = {lmn−2, lmn}
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Now, E =
7⋃

i=1

Ei = {l1, l2, · · · , lmn}. For n ≡ 2(mod 3) and integers s = 1, 2, · · · ,
n − 2

3
,

E
′

1 =

n−2
3⋃

s=1

{f1(um,jum,j+1) : 3s − 2 ≤ j ≤ 3s − 1}

=

n−2
3⋃

s=1

{|f(um,j) − f(um,j+1)| : 3s − 2 ≤ j ≤ 3s− 1}

=

n−2
3⋃

s=1

{∣∣l(m−1)n+2j+2−3s − l(m−1)n+2j+4−3s

∣∣ : 3s − 2 ≤ j ≤ 3s − 1
}

=

n−2
3⋃

s=1

{
l(m−1)n+2j+3−3s : 3s − 2 ≤ j ≤ 3s − 1

}

=
{
l(m−1)n+2, l(m−1)n+4

}
∪
{
l(m−1)n+5, l(m−1)n+7

}
∪ ... ∪

{
l(m−1)n+n−3, l(m−1)n+n−1

}

=
{
l(m−1)n+2, l(m−1)n+4, l(m−1)n+5, l(m−1)n+7, · · · , lmn−3, lmn−1

}

We find the edge labeling between the end vertex of sth loop and the starting vertex of s + 1th

loop for integers s = 1, 2, · · · ,
n − 2

3
. Let

E
′

2 =

n−2
3⋃

s=1

{f1(um,jum,j+1)j = 3s} =

n−2
3⋃

s=1

{|f(um,j) − f(um,j+1)| : j = 3s}

= {|f(um,3) − f(um,4)| , |f(um,6) − f(um,7)| , · · · , |f(um,n−2) − f(um,n−1|}

=
{∣∣l(m−1)n+8−3 − l(m−1)n+10−6

∣∣ ,
∣∣l(m−1)n+14−6 − l(m−1)n+16−9

∣∣ ,
· · · ,

∣∣l(m−1)n+2n−2−n+2 − l(m−1)n+2n−n−1

∣∣}

=
{∣∣l(m−1)n+5 − l(m−1)n+4

∣∣ ,
∣∣l(m−1)n+8 − l(m−1)n+7

∣∣ ,

· · · ,
∣∣l(m−1)n+n − l(m−1)n+n−1

∣∣}

=
{
l(m−1)n+3, l(m−1)n+6, · · · , lmn−2

}
.

For s =
n + 1

3
, let

E
′

3 = {f1(um,jum,j+1) : j = 3s − 2} = {|f(um,j) − f(um,j+1)| : j = n − 1}

= {|f(um,n−1) − f(um,n)|} =
{∣∣l(m−1)n+2n−n−1 − l(m−1)n+2n+2−n−1

∣∣}

= {|lmn−1 − lmn+1|} = {lmn} .

Therefore, E
′

=
3⋃

i=1

E
′

i . Let

E0 = {f1(u0v1)} = {|f(u0) − f(v1)|} = {|l0 − lmn+2|} = {lmn+2} .
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For t ≡ 2(mod 3) and r = 1, 2, · · · ,
t − 2

3
, let

E”
1 =

t−2
3⋃

r=1

{f1(vkvk+1) : 3r − 2 ≤ k ≤ 3r − 1}

=

t−2
3⋃

r=1

{|f(vk) − f(vk+1)| : 3r − 2 ≤ k ≤ 3r − 1}

= {|f(v1) − f(v2)| , |f(v2) − f(v3)|}
⋃

{|f(v4) − f(v5)| , |f(v5) − f(v6)|}
⋃

· · ·
⋃

{|f(vt−4) − f(vt−3)| , |f(vt−3) − f(vt−2)|}

= {|lmn+3+2−3 − lmn+3+4−3|, |lmn+3+4−3 − lmn+3+6−3|}
⋃

{|lmn+8+3−6 − lmn+10+3−6| , |lmn+10+3−6 − lmn+12+3−6|}
⋃

· · ·
⋃

{|lmn+3+2t−8−t+2 − lmn+3+2t−6−t+2| , |lmn+3+2t−6−t+2 − lmn+3+2t−4−t+2|}

= {|lmn+2 − lmn+4|, |lmn+4 − lmn+6|}
⋃

{|lmn+5 − lmn+7| , |lmn+7 = lmn+9|}
⋃

· · ·
⋃

{|lmn+t−3 − lmn+t−1| , |lmn+t−1 − lmn+t+1|}

= {lmn+3 , lmn+5}
⋃

{lmn+6 , lmn+8}
⋃

· · ·
⋃

{lmn+t−2 , lmn+t}

= {lmn+3, lmn+5, lmn+6, lmn+8, · · · , lmn+t−2, lmn+t}.

We find the edge labeling between the end vertex of rth loop and the starting vertex of (r+1)th

loop for integers r = 1, 2, · · · ,
t − 2

3
. Let

E”
2 =

t−2
3⋃

r=1

{f1(vkvk+1) : k = 3r} =

t−2
3⋃

r=1

{|f(vk) − f(vk+1)| : k = 3r}

= {|f(v3) − f(v4)| , |f(v6) − f(v7)| , · · · , |f(vt−2) − f(vt−1)|}

= {|lmn+3+6−3 − lmn+3+8−6| , |lmn+3+12−6 − lmn+3+14−9| ,

· · · , |lmn+3+2t−4−t+2 − lmn+3+2t−2−t−1|}

= {|lmn+6 − lmn+5| , |lmn+9 − lmn+8| , ..., |lmn+t+1 − lmn+t|}

= {lmn+4, lmn+7, · · · , lmn+t−1} .

For s =
t + 1

3
, let

E”
3 = {f1(vkvk+1) : k = 3r − 2} = {|f(vk) − f(vk+1)| : k = 3r − 2}

= {|lmn+3+2t−2−t−1 − lmn+3+2t−t−1|} = {|lmn+t − lmn+t+2|} = {lmn+t+1}

Therefore, E” = E0

⋃
E”

1

⋃
E”

2

⋃
E”

3 = {lmn+2, lmn+3, lmn+5, lmn+6, lmn+8, · · · , lmn+t−2, lmn+t,

lmn+t+1, lmn+4, lmn+7, · · · , lmn+t−1}. Now, E
⋃

E” =
7⋃

i=1

Ei ∪E0 ∪E”
1 ∪E”

2 ∪E”
3 = {l1, l2, · · · ,

lmn, lmn+2, lmn+3, lmn+4, · · · , lmn+t−2, lmn+t−1, lmn+t, lmn+t+1}. So, the edge labels of G are
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distinct. For t ≡ 1(mod 3) and integers r = 1, 2, · · · ,
t − 1

3
, let

E
′′′

1 =

t−1
3⋃

r=1

{f1(vkvk+1) : 3r − 2 ≤ k ≤ 3r − 1}

=

t−1
3⋃

r=1

{|f(vk) − f(vk+1)| : 3r − 2 ≤ k ≤ 3r − 1}

= {|f(v1) − f(v2)| , |f(v2) − f(v3)|}
⋃

{|f(v4) − f(v5)| , |f(v5) − f(v6)|}
⋃

· · ·
⋃

{|f(vt−3) − f(vt−2)| , |f(vt−2) − f(vt−1)|}

= {|lmn+3+2−3 − lmn+3+4−3| , |lmn+3+4−3 − lmn+3+6−3|}⋃
{|lmn+3+8−6 − lmn+3+10−6| , |lmn+3+10−6 − lmn+3+12−6|}

⋃

· · ·
⋃

{|lmn+3+2t−6−t+1 − lmn+3+2t−4−t+1| , |lmn+3+2t−4−t+1 − lmn+3+2t−2−t+1| }

= {|lmn+2 − lmn+4| , |lmn+4 − lmn+6|}
⋃

{|lmn+5 − lmn+7| , |lmn+7 − lmn+9|}
⋃

· · ·
⋃

{|lmn+t−2 − lmn+t| , |lmn+t − lmn+t+2|}

= {lmn+3, lmn+5, lmn+6, lmn+8, · · · , lmn+t−1, lmn+t+1} .

We find the edge labeling between the end vertex of rth loop and the starting vertex of (r+1)th

loop for integers r = 1, 2, · · · ,
t − 1

3
. Let

E
′′′

2 =

t−1
3⋃

r=1

{f1(vkvk+1) : k = 3r}

=

t−1
3⋃

r=1

{|f(vk) − f(vk+1)| : k = 3r}

= {|f(v3) − f(v4)| , |f(v6) − f(v7)| , · · · , |f(vt−1) − f(vt)|}

= {|lmn+3+6−3 − lmn+3+8−6| , · · · , |lmn+3+2t−2−t+1 − lmn+3+2t−t−2|}

= {|lmn+6 − lmn+5| , |lmn+9 − lmn+8| , ..., |lmn+t+2 − lmn+t+1|}

= {lmn+4, lmn+7, · · · , lmn+t}

Therefore E
′′′

= E0

⋃
E

′′′

1

⋃
E

′′′

2 = {lmn+2, lmn+3, · · · , lmn+t−1, lmn+t+1, lmn+4, lmn+7, · · · ,

lmn+t} = {lmn+2, lmn+3, lmn+4, · · · , lmn+t−1, lmn+t, lmn+t+1}. Now, E ∪ E
′

∪ E
′′′

=
4⋃

i=1

Ei

⋃{ 3⋃
i=1

E
′

i

}⋃{
E0

⋃
E

′′′

1

⋃
E

′′′

2

}
= {l1 , l2 , · · · , lmn , lmn+2 , lmn+3 , · · · , lmn+t−1 , lmn+t , lmn+t+1 }.

So, the edge labels of G are distinct. In both cases, f is a nearly Lucas graceful labeling. Thus

G = Sm,n@Pt is a nearly Lucas graceful graph when m ≡ 1(mod 2), n ≡ 1, 2(mod 3) and

t ≡ 1, 2, (mod 3).

Example 3.3 A nearly Lucas graceful labeling of S5,7@P7 is shown in Fig.3.1.
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l13 l11 l9 l7 l5 l3 l1

l2 l4 l6 l8 l10 l12 l14

l27 l25 l23 l21 l19 l17 l15

l16 l18 l20 l22 l24 l26 l28

l35 l36 l34 l32 l33 l31 l29
l34 l35 l33 l31 l32 l30

l29

l0 l37 l39 l41 l40
l42

l44
l43

l37 l38 l40 l39 l41
l43

l42
l17 l19 l21 l23 l25 l27

l28
l26 l24 l22 l20 l18 l16 l15

l3 l5 l7 l9 l11 l13 l14
l1

l12 l10 l8 l6 l4 l2

Fig.3.1 S5,7@P7

Theorem 3.4 Cn is a nearly Lucas graceful graph. when n ≡ 1, 2(mod 3).

Proof Let G = Cn with V (G) = {ui : 1 ≤ i ≤ n}. Let E(G) = {uiui+1 : 1 ≤ i ≤ n − 1} ∪

{unu1} be the edge set of G. So, |V (G)| = n and |E(G)| = n.

Case 1 n ≡ 1(mod 3).

Define f : V (G) → {l0, l1, l2, · · · , la} , a ǫ N by f(u1) = l0. For s = 1, 2, · · · ,
n − 4

3
,

f(ui) = l2i−3s, 3s − 1 ≤ i ≤ 3s + 1 and for s =
n − 1

3
, f(ui) = l2i−3s, 3s − 1 ≤ i ≤ 3s. We

claim that the edge labels are distinct. Let

E1 = {f1(u1u2), f1(unu1)} = {|f(u1) − f(u2)| , |f(un − f(u1)|}

= {|l0 − l1| , |l2n−n+1 − l0|} = {l1, ln+1} .

For s = 1, 2, · · · ,
n − 1

3
, let

E2 =

n−1
3⋃

s=1

{f1(uiui+1) 3s − 1 ≤ i ≤ 3s}

=

n−1
3⋃

s=1

{|f(ui) − f(ui+1)| : 3s − 1 ≤ i ≤ 3s}

= {|f(u2) − f(u3)| , |f(u3) − f(u4)|}
⋃

{|f(u5) − f(u6)| , |f(u6) − f(u7)|}
⋃

· · ·
⋃

{|f(un−2) − f(un−1)| , |f(un−1) − f(un)|}

= {|l1 − l3| , |l3 − l5|}
⋃

{|l4 − l6| , |l6 − l8|}
⋃

· · ·
⋃

{|l2n−4−n+1 − l2n−2−n+1| , |l2n−2−n+1 − l2n−n+1|}

= {l2, l4}
⋃

{l5, l7}
⋃

{ln−2, ln} .

We find the edge labeling between the end vertex of sth loop and the starting vertex of (s+1)th
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loop for integers s = 1, 2, · · · ,
n − 1

3
− 1. Let

E3 =

n−4
3⋃

s=1

{f1(uiui+1) : i = 3s + 1}

=

n−4
3⋃

s=1

{|f(ui) − f(ui+1)| : i = 3s + 1}

= {|f(u4) − f(u5)| , |f(u7) − f(u8)| , · · · , |f(un−3 − f(un−2)|}

= {|l8−3 − l10−6| , |l14−6 − l16−9| , · · · , |l2n−6−n+4 − l2n−4−n+1|}

= {|l5 − l4| , |l8 − l7| , · · · , |ln−2 − ln−3|} = {l3, l6, · · · , ln−4}

Now, E =
3⋃

i=1

Ei = {l1, l2, l3, l4, · · · , ln−2, ln, ln+1}.

Case 2 n ≡ 2(mod 3).

Define f : V (G) → {l0, l1, l2, · · · , la}, a ǫ N by f(u1) = l0, f(un) = ln+2. For s =

1, 2, · · · ,
n − 2

3
−1, f(ui) = l2i−3s, 3s−1 ≤ i ≤ 3s+1 and for s =

n − 2

3
, f(ui) = l2i−3s, 3s−1 ≤

i ≤ 3s. We claim that the edge labels are distinct. Let

E1 = {f1(u1u2), f1(un−1un), f1(unu1)}

= {|f(u1) − f(u2)| , |f(un−1) − f(un)| , |f(un) − f(u1)|}

= {|l0 − l1| , |l2n−2−n+2 − ln+2| , |ln+2 − l0|} = {l1, ln+1, ln+2} ,

E2 =

n−2
3⋃

s=1

{f1(uiui+1) : 3s − 1 ≤ i ≤ 3s}

=

n−2
3⋃

s=1

{|f(ui) − f(ui+1)| : 3s − 1 ≤ i ≤ 3s}

= {|f(u2) − f(u3)| , |f(u3) − f(u4)|}
⋃

{|f(u5) − f(u6)| , |f(u6) − f(u7)|}
⋃

· · ·
⋃

{|f(un−3) − f(un−2)| , |f(un−2) − f(un−1)|}

= {|l4−3 − l6−3| , |l6−3 − l8−3|}
⋃

{|l10−6 − l12−6| , |l12−6 − l14−6|}
⋃

· · ·
⋃

{|l2n−6−n+2 − l2n−4−n+2|}

= {|l1 − l3| , |l3 − l5|}
⋃

{|l4 − l6| , |l6 − l8|}
⋃

· · ·
⋃

{|ln−4 − ln−2| , |ln−2 − ln|}

= {l2, l4, l5, l7, ..., ln−3, ln−1} .

We find the edge labeling between the end vertex of (s − 1)th loop and the starting vertex of
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sth loop for integers s = 1, 2, · · · ,
n − 5

3
. Let

E3 =

n−5
3⋃

s=1

{f1(uiui+1) : i = 3s + 1}

=

n−5
3⋃

s=1

{|f(ui) − f(ui+1)| : i = 3s + 1}

= {|f(u4) − f(u5)| , |f(u7) − f(u8)| , ..., |f(un−4) − f(un−3)|}

= {|l5 − l4| , |l8 − l7| , · · · , |l2n−8−n+5 − l2n−6−n+2|} = {l3, l6, · · · , ln−2}

Now, E =
3⋃

i=1

Ei = {l1, l2, l3, l4, · · · , ln−3, ln−2, ln−1, ln+1, ln+2} So, all these edge labels of G

are distinct. In both the cases, f is a nearly Lucas graceful graph. Thus G = Cn is a nearly

Lucas graceful graph when n ≡ 1, 2(mod 3). �

Example 3.5 A nearly Lucas graceful labeling on C13 in Case 1 is shown in Fig.3.2.

l0 l1

l3

l5

l4

l6

l8l7
l9

l11

l10

l12

l14
l1

l2

l4

l3

l5

l7
l6l8

l10

l9

l11

l13

l14

Fig.3.2 C13

Example 3.6 A nearly Lucas graceful labeling on C14 in Case 2 is shown in Fig.3.3.

l0 l1

l3

l5

l4

l6
l8l7

l9

l11

l10

l12

l14
l16

l1 l2

l4

l3

l5

l7
l6l8

l10

l9

l11

l13

l15
l16

Fig.3.3 C14
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Abstract: A vertex labeling of G is an assignment f : V (G) → {1, 2, 3, . . . , p + q} be an

injection. For a vertex labeling f, the induced Smarandachely edge m-labeling f∗

S for an

edge e = uv, an integer m ≥ 2 is defined by f∗

S(e) =

⌈
f(u) + f(v)

m

⌉
. Then f is called a

Smarandachely super m-mean labeling if f(V (G))∪{f∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , p+q}.

Particularly, in the case of m = 2, we know that

f
∗(e) =





f(u) + f(v)

2
if f(u) + f(v) is even;

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.

Such a labeling is usually called a mean labeling. A graph that admits a Smarandachely

super mean m-labeling is called a Smarandachely super m-mean graph, particularly, a mean

graph if m = 2. In this paper, some new families of mean graphs are investigated. We

prove that the graph obtained by two new operations called mutual duplication of a pair of

vertices each from each copy of cycle Cn as well as mutual duplication of a pair of edges each

from each copy of cycle Cn admits mean labeling. More over that mean labeling for shadow

graphs of star K1,n and bistar Bn,n are derived.

Key Words: Smarandachely super m-mean labeling, mean labeling, Smarandachely super

m-mean graph, mean graphs; mutual duplication.

AMS(2010): 05C78

§1. Introduction

We begin with simple,finite,connected and undirected graph G = (V (G), E(G)) with p vertices

and q edges. For all other standard terminology and notations we follow Harary [3]. We will

provide brief summary of definitions and other information which serve as prerequisites for the

present investigations.

1Received February 21, 2011. Accepted September 8, 2011.
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Definition 1.1 Consider two copies of cycle Cn. Then the mutual duplication of a pair of

vertices vk and v′k respectively from each copy of cycle Cn produces a new graph G such that

N(vk) = N(v′k).

Definition 1.2 Consider two copies of cycle Cn and let ek = vkvk+1 be an edge in the first

copy of Cn with ek−1 = vk−1vk and ek+1 = vk+1vk+2 be its incident edges. Similarly let

e′m = umum+1 be an edge in the second copy of Cn with e′m−1 = um−1um and e′m+1 = um+1um+2

be its incident edges. The mutual duplication of a pair of edges ek, e′m respectively from two

copies of cycle Cn produces a new graph G in such a way that N(vk) − vk+1 = N(um) − um+1

={vk−1, um−1} and N(vk+1) − vk = N(um+1) − um ={vk+2, um+2}.

Definition 1.3 The shadow graph D2(G) of a connected graph G is obtained by taking two

copies of G say G′ and G′′. Join each vertex u′ in G′ to the neighbors of the corresponding

vertex u′′ in G′′.

Definition 1.4 Bistar is the graph obtained by joining the apex vertices of two copies of star

K1,n by an edge.

Definition 1.5 If the vertices are assigned values subject to certain conditions then it is known

as graph labeling.

Graph labeling is one of the fascinating areas of research with wide ranging applications.

Enough literature is available in printed and electronic form on different types of graph labeling

and more than 1200 research papers have been published so far in past four decades. Labeled

graph plays vital role to determine optimal circuit layouts for computers and for the repre-

sentation of compressed data structure. For detailed survey on graph labeling we refer to A

Dynamic Survey of Graph Labeling by Gallian [2]. A systematic study on various applications

of graph labeling is carried out in Bloom and Golomb [1].

Definition 1.6 A vertex labeling of G is an assignment f : V (G) → {1, 2, 3, . . . , p + q} be

an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling f∗
S for an

edge e = uv, an integer m ≥ 2 is defined by f∗
S(e) =

⌈
f(u) + f(v)

m

⌉
. Then f is called a

Smarandachely super m-mean labeling if f(V (G)) ∪ {f∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , p + q}.

Particularly, in the case of m = 2, we know that

f∗(e) =





f(u) + f(v)

2
if f(u) + f(v) is even;

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.

Such a labeling is usually called a mean labeling. A graph that admits a Smarandachely super

mean m-labeling is called a Smarandachely super m-mean graph, particularly, a mean graph if

m = 2.

The mean labeling was introduced by Somasundaram and Ponraj [4] and they proved the

graphs Pn, Cn, Pn × Pm, Pm × Cn etc. admit mean labeling. The same authors in [5] have

discussed the mean labeling of subdivision of K1,n for n < 4 while in [6] they proved that the
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wheel Wn does not admit mean labeling for n > 3. Mean labeling in the context of some graph

operations is discussed by Vaidya and Lekha[7] while in [8] the same authors have investigated

some new families of mean graphs. In the present work four new results corresponding to mean

labeling are investigated.

§2. Main Results

Theorem 2.1 The graph obtained by the mutual duplication of a pair of vertices in cycle Cn

admits mean labeling.

Proof Let v1,v2,. . . , vn be the vertices of the first copy of cycle Cn and let u1,u2,. . . , un

be the vertices of the second copy of cycle Cn. Let G be the graph obtained by the mutual

duplication of a pair of vertices each respectively from each copy of cycle Cn. To define f :

V (G) → {0, 1, 2, . . . , q} two cases are to be considered.

Case 1. n is odd.

Without loss of generality assume that the vertex vn+3
2

from the first copy of cycle Cn and

the vertex u1 from the second copy of cycle Cn are mutually duplicated.

f(vi) = 2i − 2 for 1 ≤ i ≤
n + 1

2
,;

f(vi) = 2(n − i) + 3 for
n + 3

2
≤ i ≤ n;

f(u1) = n + 4;

f(ui) = n + 2i + 3 for 2 ≤ i ≤
n + 1

2
;

f(ui) = 3n − 2i + 6 for
n + 3

2
≤ i ≤ n.

Case 2: n is even.

Without loss of generality assume that the vertex vn+2
2

from the first copy of cycle Cn and

the vertex u1 from the second copy of cycle Cn are mutually duplicated.

f(vi) = 2i − 2 for 1 ≤ i ≤
n + 2

2
;

f(vi) = 2(n − i) + 3 for
n + 4

2
≤ i ≤ n;

f(u1) = n + 4;

f(ui) = n + 2i + 3 for 2 ≤ i ≤
n

2
;

f(ui) = 3n − 2i + 6 for
n + 2

2
≤ i ≤ n.

In view of the above defined labeling pattern f is a mean labeling for the graph obtained by

the mutual duplication of a pair of vertices in cycle Cn. �

Illustration 2.2 The following Fig.1 shows the pattern of mean labeling of the graph obtained

by the mutual duplication of a pair of vertices of cycle C10.
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Fig.1

Theorem 2.3 The graph obtained by the mutual duplication of a pair of edges in cycle Cn

admits mean labeling.

Proof Let v1,v2,. . . , vn be the vertices of the first copy of cycle Cn and let u1,u2,. . . , un

be the vertices of the second copy of cycle Cn. Let G be the graph obtained by the mutual

duplication of a pair of edges each respectively from each copy of cycle Cn. To define f : V (G) →

{0, 1, 2, . . . , q} two cases are to be considered.

Case 1. n is odd.

Without loss of generality assume that the edge e= vn+1
2

vn+3
2

from the first copy of cycle

Cn and the edge e′= u1u2 from the second copy of cycle Cn are mutually duplicated.

f(v1) = 0;

f(vi) = 2i − 1 for 2 ≤ i ≤
n + 1

2
;

f(vi) = 2(n − i) + 2 for
n + 3

2
≤ i ≤ n;

f(ui) = n + 2i + 2 for 1 ≤ i ≤
n + 1

2
;

f(ui) = 3n − 2i + 7 for
n + 3

2
≤ i ≤ n.
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Case 2. n is even, n 6= 4.

Without loss of generality assume that the edge e= vn
2 +1vn

2 +2 from the first copy of cycle

Cn and the edge e′= u1u2 from the second copy of cycle Cn are mutually duplicated.

f(vi) = 2i − 2 for 1 ≤ i ≤
n

2
+ 1;

f(vi) = 2(n − i) + 3 for
n

2
+ 2 ≤ i ≤ n;

f(ui) = n + 2i + 2 for 1 ≤ i ≤
n

2
+ 1;

f(ui) = 3n − 2i + 7 for
n

2
+ 2 ≤ i ≤ n.

Then above defined function f provides mean labeling for the graph obtained by the mutual

duplication of a pair of edges in Cn. �

Illustration 2.4 The following Fig.2 shows mean labeling for the graph obtained by the mutual

duplication of a pair of edges in cycle C9.

Theorem 2.5 D2(K1,n) is a mean graph.

Proof Consider two copies of K1,n. Let v,v1,v2,. . . , vn be the vertices of the first copy

of K1,n and v′,v′1,v
′
2,. . . , v′n be the vertices of the second copy of K1,n where v and v′ are the

respective apex vertices. Let G be D2(K1,n). Define f : V (G) → {0, 1, 2, . . . , q} as follows.

f(v) = 0;

f(vi) = 2i for 1 ≤ i ≤ n;

f(v′) = 4n;

f(v′1) = 4n − 1;

f(v′i) = 4n − 2i + 2 for 2 ≤ i ≤ n.

The above defined function provides the mean labeling of the graph D2(K1,n). �
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Illustration 2.6 The labeling pattern for D2(K1,4) is given in Fig.3.

2 4 6 8

9

16

15 14 12 10

v

v1 v2 v3 v4

v′

v
′

1 v
′

2 v
′

3 v
′

4

Fig.3

Theorem 2.7 D2(Bn,n) is a mean graph.

Proof Consider two copies of Bn,n. Let {u, v, ui, vi, 1 ≤ i ≤ n} and {u′, v′, u′
i, v

′
i, 1 ≤

i ≤ n} be the corresponding vertex sets of each copy of Bn,n. Let G be D2(Bn,n). Define

f : V (G) → {0, 1, 2, . . . , q} as follows.

f(u) = 0;

f(ui) = 2i for 1 ≤ i ≤ n;

f(v) = 8n + 1;

f(vi) = 4i + 1 for 1 ≤ i ≤ n − 1;

f(vn) = 4n + 5;

f(u′) = 4n;

f(u′
i) = 2(n + i) for 1 ≤ i ≤ n − 1;

f(u′
n) = 4n− 1;

f(v′) = 8n + 3;

f(v′i) = 8(n + 1) − 4i for 1 ≤ i ≤ n.

In view of the above defined labeling pattern G admits mean labeling. �

Illustration 2.8 The labeling pattern for D2(B3,3) is given in Fig.4.
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§3. Concluding Remarks

As all the graphs are not mean graphs it is very interesting to investigate graphs or graph

families which admit mean labeling. Here we contribute two new graph operations and four

new families of mean graphs. Somasundaram and Ponraj have proved that star K1,n is mean

graph for n ≤ 2 and bistar Bm,n (m > n) is mean graph if and only if m < n + 2 while in

this paper we have investigated that the shadow graphs of star K1,n and bistar Bn,n also admit

mean labeling.

To investigate similar results for other graph families and in the context of different labeling

techniques is an open area of research.
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Abstract: Let k ≥ 0 be an integer. A Smarandachely vertex-mean k-labeling of a (p, q)

graph G = (V, E) is such an injection f : E −→ {0, 1, 2, ..., q∗ + k}, q∗ = max(p, q) such that

the function fV : V −→ N defined by the rule fV (v) = Round
(∑

e∈Ev
f(e)

d(v)

)
− k satisfies

the property that fV (V ) =
{
fV (u) : u ∈ V

}
= {1, 2, ..., p}, where Ev denotes the set of

edges in G that are incident at v, N denotes the set of all natural numbers and Round is

the nearest integer function. A graph that has a Smarandachely vertex-mean k-labeling is

called Smarandachely k vertex-mean graph or Smarandachely k V -mean graph. Particularly,

if k = 0, such a Smarandachely vertex-mean 0-labeling and Smarandachely 0 vertex-mean

graph or Smarandachely 0 V -mean graph is called a vertex-mean labeling and a vertex-mean

graph or V -mean graph, respectively. In this paper, we obtain necessary conditions for a

graph to be V -mean and study V -mean behaviour of certain classes of graphs.
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§1. Introduction

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces

a label for each edge xy depending on the vertex labels. An edge labeling of a graph G is an

assignment f of labels to the edges of G that induces a label for each vertex v depending on

the labels of the edges incident on it. Vertex labelings such as graceful labeling, harmonious

labeling and mean labeling and edge labelings such as edge-magic labeling, (a,d)-anti magic

labeling and vertex-graceful labeling are some of the interesting labelings found in the dynamic

survey of graph labeling by Gallian [3]. In fact B. D. Acharya [2] has introduced vertex-

graceful graphs, as an edge-analogue of graceful graphs. Observe that, in a variety of practical

problems, the arithmetic mean, X , of a finite set of real numbers {x1, x2, ..., xn} serves as a

1Received February 12, 2011. Accepted September 10, 2011.
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better estimate for it, in the sense that
∑

(xi − X) is zero and
∑

(xi − X)2 is the minimum.

If it is required to use a single integer in the place of X then Round(X) does this best, in

the sense that
∑

(xi − Round(X)) and
∑

(xi − Round(X))2 are minimum, where Round(Y ),

nearest integer function of a real number, gives the integer closest to Y ; to avoid ambiguity,

it is defined to be the nearest even integer in the case of half integers. This motivates us to

define the edge-analogue of the mean labeling introduced by R. Ponraj [1]. A mean labeling f

is an injection from V to the set {0, 1, 2, ..., q} such that the set of edge labels defined by the

rule Round(
f(u) + f(v)

2
) for each edge uv is {1, 2, ..., q}. For all terminology and notations in

graph theory, we refer the reader to the text book by D. B. West [4]. All graphs considered in

the paper are finite and simple.

1 2 3 41 2 4

5 6

4

1 2 3 7

1 532 67

1 2 4

3 5 6

1 3

0 2 4

5 7

3

5

4

1

2

5

4

3

1

0 1 2 4 6

3 5 7 8

2 4 5

0 1 3 7

6 8 9

Fig.1 Some V -mean graphs

Fig.2
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Definition 1.1 Let k ≥ 0 be an integer. A Smarandachely vertex-mean k-labeling of a (p, q)

graph G = (V, E) is such an injection f : E −→ {0, 1, 2, ..., q∗ + k}, q∗ = max(p, q) such that the

function fV : V −→ N defined by the rule fV (v) = Round
(∑

e∈Ev
f(e)

d(v)

)
−k satisfies the property

that fV (V ) =
{
fV (u) : u ∈ V

}
= {1, 2, ..., p}, where Ev denotes the set of edges in G that are

incident at v, N denotes the set of all natural numbers and Round is the nearest integer function.

A graph that has a Smarandachely vertex-mean k-labeling is called Smarandachely k vertex-mean

graph or Smarandachely k V -mean graph. Particularly, if k = 0, such a Smarandachely vertex-

mean 0-labeling and Smarandachely 0 vertex-mean graph or Smarandachely 0 V -mean graph is

called a vertex-mean labeling and a vertex-mean graph or V -mean graph, respectively.

Henceforth we call vertex-mean as V-mean. To initiate the investigation, we obtain nec-

essary conditions for a graph to be a V -mean graph and we present some results on this new

notion in this paper. In Fig.1 we give some V -mean graphs and in Fig.2, we give some non

V -mean graphs.

§2. Necessary Conditions

Following observations are obvious from Definition 1.1.

Observation 2.1 If G is a V-mean graph then no V-mean labeling assigns 0 to a pendant

edge.

Observation 2.2 The graph K2 and disjoint union of K2 are not V -mean graphs, as any

number assigned to an edge uv leads to assignment of same number to each of u and v. Thus

every component of a V -mean graph has at least two edges.

Observation 2.3 The minimum degree of any V -mean graph is less than or equal to three ie,

δ 6 3 as Round(0 + 1 + 2 + 3) is 2. Thus graphs that contain a r-regular graph, where r ≥ 4

as spanning sub graph are not V -mean graphs and any 3-edge-connected V -mean graph has a

vertex of degree three.

Observation 2.4 If f is a V -mean labeling of a graph G then either (1) or (2) of the following

is satisfied according as the induced vertex label fV (v) is obtained by rounding up or rounding

down.

fV (v)d(v) ≤
∑

e∈Ev

f(e) +
1

2
d(v), (1)

fV (v)d(v) ≥
∑

e∈Ev

f(e) −
1

2
d(v). (2)

Theorem 2.5 If G is a V-mean graph then the vertices of G can be arranged as v1, v2, ..., vp

such that q2 − 2q ≤
∑p

1 kd(vk) ≤ 2qq∗ − q2 + 2q.

Proof Let f be a V -mean labeling of a graph G. Let us denote the vertex that has the

induced vertex label k, 1 ≤ k ≤ p as vk. Observe that,
∑

v∈V fV (v)d(v) attains it maxi-

mum/minimum when each induced vertex label is obtained by rounding up/down and the first
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q largest/smallest values of the set {0, 1, 2, · · · , q∗} are assigned as edge labels by f . This with

Observation 2.4 completes the proof. �

Corollary 2.6 Any 3-regular graph of order 2m, m ≥ 4 is not a V -mean graph.

Corollary 2.7 The ladder Ln = Pn × P2, n ≥ 7 is not a V -mean graph.

A V -mean labeling of ladders L3 and L4 are shown in Figure 1.

§3. Classes of V -Mean Graphs

Theorem 3.1 If n ≥ 3 then the path Pn is V -mean graph.

Proof Let {e1, e2, ..., en−1} be the edge set of Pn such that ei = vivi+1. We define f :

E −→ {0, 1, 2, ..., q∗ = p} as follows:

f(ei) =





i, if 1 ≤ i ≤ p − 2,

i + 1, if i = p − 1.

It can be easily verified that f is a V -mean labeling. �

A V -mean labeling of P10 is shown in Fig.3.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 10

Fig.3

Theorem 3.2 If n ≥ 3 then the cycle Cn is V -mean graph.

Proof Let {e1, e2, ..., en} be the edge set of Cn such that ei = vivi+1, 1 ≤ i ≤ n − 1,

en = vnv1. Let ζ=
⌈

n
2

⌉
− 1. The edges of Cn are labeled as follows: The numbers 0, 1, 2, · · · , n

except ζ are arranged in an increasing sequence α1, α2, · · · , αn and αk is assigned to ek. Clearly

the edges of Cn receive distinct labels and the vertex labels induced are 1, 2, · · · , n. Thus Cn

is V -mean graph. �

The corona G1⊙G2 of two graphs G1(p1, q1) and G2(p2, q2) is defined as the graph obtained

by taking one copy of G1 and p1 copies of G2 and then joining the ith vertex of G1 to all the

vertices in the ith copy of G2. The graph Cn ⊙ K1 is called a crown.

Theorem 3.3 The corona Pn ⊙ KC
m, where n ≥ 2 and m ≥ 1 is V -mean graph.

Proof Let the vertex set and the edge set of G = Pn ⊙ KC
m be as follows:

V (G) = {ui : 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n and 1 ≤ j ≤ m},

E(G) = A
⋃

B ,
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where A = {ei = uiui+1 : 1 ≤ i ≤ n − 1} and B = {eij = uiuij : 1 ≤ i ≤ n and 1 ≤ j ≤ m}.

We observe that G has order (m + 1)n and size (m + 1)n − 1. The edges of G are labeled in

three steps as follows :

Step 1. The edges e1 and e1j , 1 ≤ j ≤ m are assigned distinct integers from 1 to (m+1)

in such a way that e1 receives the number Round(

∑m+1
j=1 j

m + 1
).

Step 2. For each i, 2 ≤ i ≤ n − 1, the edges ei and eij , 1 ≤ j ≤ m are assigned distinct

integers from (m + 1)(i − 1) + 1 to (m + 1)i in such a way that ei receives the number

Round(
f(ei−1) +

∑m+1
j=1 (m + 1)(i − 1) + j

m + 2
).

Step 3. The edges enj, 1 ≤ j ≤ m are assigned distinct integers from (m + 1)(n− 1) + 1

to (m + 1)n in such a way that non of these edges receive the number

Round(
f(en−1) +

∑m+1
j=1 (m + 1)(n − 1) + j

m + 2
).

Then the edges of G receive distinct labels and the vertex labels induced are 1, 2, ..., (m + 1)n.

Thus G is V -mean graph.

Fig.4 displays a V -mean labeling of P5 ⊙ KC
4 .

3 7 12 17 223 7 12 17

1 2 4 5 6 8 9 10 11 13 14 15 16 18 19 20 21 23 24 25

1 2 4 5 6 8 9 10 11
13 14

15
16

18 19
20 21 23 24 25

Fig.4 A V -mean labeling of P5 ⊙ KC
4

Theorem 3.4 The star graph K1,n is V -mean graph if and only if n ∼= 0(mod2).

Proof Necessity: Suppose G = K1,n, n = 2m+1 for some m ≥ 1 is V -mean and let f be a

V -mean labeling of G. As no V -mean labeling assigns zero to a pendant edge, f assigns 2m+1

distinct numbers from the set {1, 2, ..., 2m + 2} to the edges of G. Observe that, whatever be

the labels assigned to the edges of G, label induced on the central vertex of G will be either m+1

or m + 2. In both cases two vertex labels induced on G will be identical. This contradiction

proves necessity.

Sufficiency: Let G = K1,n, n = 2m for some m ≥ 1. Then assignment of 2m distinct

numbers except m + 1 from the set {1, 2, ..., 2m + 1} gives the desired V -mean labeling of G.�

Theorem 3.5 The crown Cn ⊙ K1 is V -mean graph.
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Proof Let the vertex set and the edge set of G = Cn ⊙ K1 be as follows: V(G) =

{ui, vi : 1 ≤ i ≤ n}, E(G) = A
⋃

B where A = {ei = uiui+1 : 1 ≤ i ≤ n − 1}
⋃
{en = unu1}

and B =
{
e
′

i = uivi : 1 ≤ i ≤ n
}
. Observe that G has order and size both equal to 2n. For

3 ≤ n ≤ 5, V -mean labeling of G are shown in Fig.5. For n ≥ 6, define f : E(G) −→

{0, 1, 2, ..., 2n} as follows:

Case 1 n ≡ 0(mod 3).

f(ei) =






2i − 2 if 1 ≤ i ≤
n

3
− 1,

2i if i =
n

3
,

2i − 1 if
n

3
+ 1 ≤ i ≤ n,

f(e
′

i) =





2i − 1 if 1 ≤ i ≤

n

3
,

2i if
n

3
+ 1 ≤ i ≤ n.

Case 2 n 6≡ 0(mod 3).

f(ei) =





2i − 2 if 1 ≤ i ≤
⌊n

3

⌋
,

2i − 1 if
⌊n

3

⌋
+ 1 ≤ i ≤ n,

f(e
′

i) =





2i − 1 if 1 ≤ i ≤
⌊n

3

⌋
,

2i if
⌊n

3

⌋
+ 1 ≤ i ≤ n.

It can be easily verified that f is a V -mean labeling of G. �

A V -mean labeling of some crowns are shown in Fig.5.

1

2 3 4

5 6

1 5 6

0 3

4

1 4 6 8

3 2 5 7

7

0 3 5

1 4 6 8

1 4 6 8 10

3 2 5 7 9

9

0 3 5 7

1 4 6 8 10

Fig.5 V -mean labeling of crowns for n = 3, 4, 5

Problem 3.6 Determine new classes of trees and unicyclic graphs which are V -mean graphs.
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