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Abstract: This paper is devoted to the study of neutrosophic groups and neutrosophic

subgroups. Some properties of neutrosophic groups and neutrosophic subgroups are pre-

sented. It is shown that the product of a neutrosophic subgroup and a pseudo neutrosophic

subgroup of a commutative neutrosophic group is a neutrosophic subgroup and their union

is also a neutrosophic subgroup even if neither is contained in the other. It is also shown that

all neutrosophic groups generated by the neutrosophic element I and any group isomorphic

to Klein 4-group are Lagrange neutrosophic groups. The partitioning of neutrosophic groups

is also presented.

Key Words: Neutrosophy, neutrosophic, neutrosophic logic, fuzzy logic, neutrosophic
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smooth index.
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§1. Introduction

In 1980, Florentin Smarandache introduced the notion of neutrosophy as a new branch of

philosophy. Neutrosophy is the base of neutrosophic logic which is an extension of the fuzzy logic

in which indeterminancy is included. In the neutrosophic logic, each proposition is estimated

to have the percentage of truth in a subset T, the percentage of indeterminancy in a subset I,

and the percentage of falsity in a subset F. Since the world is full of indeterminancy, several

real world problems involving indeterminancy arising from law, medicine, sociology, psychology,

politics, engineering, industry, economics, management and decision making, finance, stocks and

share, meteorology, artificial intelligence, IT, communication etc can be solved by neutrosophic

logic.

Using Neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache introduced

the concept of neutrosophic algebraic structures in [1,2]. Some of the neutrosophic algebraic

1Received May 14, 2012. Accepted August 18, 2012.
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structures introduced and studied include neutrosophic fields, neutrosophic vector spaces, neu-

trosophic groups, neutrosophic bigroups, neutrosophic N-groups, neutrosophic semigroups, neu-

trosophic bisemigroups, neutrosophic N-semigroup, neutrosophic loops, neutrosophic biloops,

neutrosophic N-loop, neutrosophic groupoids, neutrosophic bigroupoids and so on. In [5], Ag-

boola et al studied the structure of neutrosophic polynomial. It was shown that Division

Algorithm is generally not true for neutrosophic polynomial rings and it was also shown that a

neutrosophic polynomial ring 〈R ∪ I〉 [x] cannot be an Integral Domain even if R is an Integral

Domain. Also in [5], it was shown that 〈R ∪ I〉 [x] cannot be a Unique Factorization Domain

even if R is a unique factorization domain and it was also shown that every non-zero neutro-

sophic principal ideal in a neutrosophic polynomial ring is not a neutrosophic prime ideal. In

[6], Agboola et al studied ideals of neutrosophic rings. Neutrosophic quotient rings were also

studied. In the present paper, we study neutrosophic group and neutrosophic subgroup. It

is shown that the product of a neutrosophic subgroup and a pseudo neutrosophic subgroup

of a commutative neutrosophic group is a neutrosophic subgroup and their union is also a

neutrosophic subgroup even if neither is contained in the other. It is also shown that all neutro-

sophic groups generated by I and any group isomorphic to Klein 4-group are Lagrange neutro-

sophic groups. The partitioning of neutrosophic groups is also studied. It is shown that the set

of distinct smooth left cosets of a Lagrange neutrosophic subgroup (resp. pseudo Lagrange neu-

trosophic subgroup) of a finite neutrosophic group (resp. finite Lagrange neutrosophic group)

is a partition of the neutrosophic group (resp. Lagrange neutrosophic group).

§2. Main Results

Definition 2.1 Let (G, ∗) be any group and let 〈G ∪ I〉 = {a + bI : a, b ∈ G}. N(G) =

(〈G ∪ I〉 , ∗) is called a neutrosophic group generated by G and I under the binary operation ∗.
I is called the neutrosophic element with the property I2 = I. For an integer n, n+I, and nI

are neutrosophic elements and 0.I = 0. I−1, the inverse of I is not defined and hence does not

exist.

N(G) is said to be commutative if ab = ba for all a, b ∈ N(G).

Theorem 2.2 Let N(G) be a neutrosophic group.

(i) N(G) in general is not a group;

(ii) N(G) always contain a group.

Proof (i) Suppose that N(G) is in general a group. Let x ∈ N(G) be arbitrary. If x is a

neutrosophic element then x−1 6∈ N(G) and consequently N(G) is not a group, a contradiction.

(ii) Since a group G and an indeterminate I generate N(G), it follows that G ⊂ N(G) and

N(G) always contain a group. �

Definition 2.3 Let N(G) be a neutrosophic group.

(i) A proper subset N(H) of N(G) is said to be a neutrosophic subgroup of N(G) if N(H)

is a neutrosophic group such that is N(H) contains a proper subset which is a group;
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(ii) N(H) is said to be a pseudo neutrosophic subgroup if it does not contain a proper

subset which is a group.

Example 2.4 (i) (N (Z) , +), (N (Q) , +) (N (R) , +) and (N (C) , +) are neutrosophic groups

of integer, rational, real and complex numbers respectively.

(ii) (〈{Q − {0}} ∪ I〉 , .), (〈{R − {0}} ∪ I〉 , .) and (〈{C − {0}} ∪ I〉 , .) are neutrosophic groups

of rational, real and complex numbers respectively.

Example 2.5 Let N(G) = {e, a, b, c, I, aI, bI, cI} be a set where a2 = b2 = c2 = e, bc =

cb = a, ac = ca = b, ab = ba = c, then N(G) is a commutative neutrosophic group under

multiplication since {e, a, b, c} is a Klein 4-group. N(H) = {e, a, I, aI}, N(K) = {e, b, I, bI}
and N(P ) = {e, c, I, cI} are neutrosophic subgroups of N(G).

Theorem 2.6 Let N(H)be a nonempty proper subset of a neutrosophic group (N(G), ⋆). N(H)is

a neutrosophic subgroup of N(G) if and only if the following conditions hold:

(i) a, b ∈ N(H) implies that a ⋆ b ∈ N(H) ∀ a, b ∈ N(H);

(ii) there exists a proper subset A of N(H) such that (A, ⋆) is a group.

Proof Suppose that N(H) is a neutrosophic subgroup of ((N(G), ⋆). Then (N(G), ⋆) is a

neutrosophic group and consequently, conditions (i) and (ii) hold.

Conversely, suppose that conditions (i) and (ii) hold. Then N(H) = 〈A ∪ I〉 is a neutro-

sophic group under ⋆. The required result follows. �

Theorem 2.7 Let N(H) be a nonempty proper subset of a neutrosophic group (N(G),*). N(H) is

a pseudo neutrosophic subgroup of N(G) if and only if the following conditions hold:

(i) a, b ∈ N(H) implies that a ∗ b ∈ N(H) ∀ a, b ∈ N(H);

(ii) N(H) does not contain a proper subset A such that (A,*) is a group.

Definition 2.8 Let N(H) and N(K) be any two neutrosophic subgroups (resp. pseudo neu-

trosophic subgroups) of a neutrosophic group N(G). The product of N(H) and N(K) denoted by

N(H).N(K) is the set N(H).N(K) = {hk : h ∈ N(H), k ∈ N(K)}.

Theorem 2.9 Let N(H) and N(K) be any two neutrosophic subgroups of a commutative

neutrosophic group N(G). Then:

(i) N(H) ∩ N(K) is a neutrosophic subgroup of N(G);

(ii) N(H).N(K) is a neutrosophic subgroup of N(G);

(iii) N(H) ∪ N(K) is a neutrosophic subgroup of N(G) if and only if N(H) ⊂ N(K) or

N(K) ⊂ N(H).

Proof The proof is the same as the classical case. �

Theorem 2.10 Let N(H) be a neutrosophic subgroup and let N(K) be a pseudo neutro-

sophic subgroup of a commutative neutrosophic group N(G). Then:
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(i) N(H).N(K) is a neutrosophic subgroup of N(G);

(ii) N(H) ∩ N(K) is a pseudo neutrosophic subgroup of N(G);

(iii) N(H)∪N(K) is a neutrosophic subgroup of N(G) even if N(H) 6⊆ N(K) or N(K) 6⊆
N(H).

Proof (i) Suppose that N(H) and N(K) are neutrosophic subgroup and pseudo neutro-

sophic subgroup of N(G) respectively. Let x, y ∈ N(H).N(K). Then xy ∈ N(H).N(K). Since

N(H) ⊂ N(H).N(K) and N(K) ⊂ N(H).N(K), it follows that N(H).N(K) contains a proper

subset which is a group. Hence N(H).N(K) is a neutrosophic of N(G).

(ii) Let x, y ∈ N(H) ∩ N(K). Since N(H) and N(K) are neutrosophic subgroup and

pseudo neutrosophic of N(G) respectively, it follows that xy ∈ N(H) ∩ N(K) and also since

N(H)∩N(K) ⊂ N(H) and N(H)∩N(K) ⊂ N(K), it follows that N(H)∩N(K) cannot contain

a proper subset which is a group. Therefore, N(H)∩N(K) is a pseudo neutrosophic subgroup

of N(G).

(iii) Suppose that N(H) and N(K) are neutrosophic subgroup and pseudo neutrosophic sub-

group of N(G) respectively such that N(H) 6⊆ N(K) or N(K) 6⊆ N(H). Let x, y ∈ N(H) ∪
N(K). Then xy ∈ N(H)∪N(K). But then N(H) ⊂ N(H)∪N(K) and N(K) ⊂ N(H)∪N(K)

so that N(H) ∪ N(K) contains a proper subset which is a group. Thus N(H) ∪ N(K) is a

neutrosophic subgroup of N(G). This is different from what is obtainable in classical group

theory. �

Example 2.11 N(G) = 〈Z10 ∪ I〉 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, I, 2I, 3I, 4I, 5I, 6I, 7I, 8I, 9I, 1 +

I, 2 + I, 3 + I, 4 + I, 5 + I, 6 + I, 7 + I, 8 + I, 9 + I, · · · , 9 + 9I} is a neutrosophic group under

multiplication modulo 10. N(H) = {1, 3, 7, 9, I, 3I, 7I, 9I} and N(K) = {1, 9, I, 9I} are neu-

trosophic subgroups of N(G) and N(P ) = {1, I, 3I, 7I, 9I} is a pseudo neutrosophic subgroup

of N(G). It is easy to see that N(H) ∩ N(K), N(H) ∪ N(K), N(H).N(K), N(P ) ∪ N(H),

N(P ) ∪ N(K), N(P ).N(H) and N(P ).N(K) are neutrosophic subgroups of N(G) while

N(P ) ∩ N(H) and N(P ) ∪ N(K) are pseudo neutrosophic subgroups of N(G).

Definition 2.12 Let N(G) be a neutrosophic group. The center of N(G) denoted by Z(N(G))

is the set Z(N(G)) = {g ∈ N(G) : gx = xg ∀ x ∈ N(G)}.

Definition 2.13 Let g be a fixed element of a neutrosophic group N(G). The normalizer of g

in N(G) denoted by N(g) is the set N(g) = {x ∈ N(G) : gx = xg}.

Theorem 2.14 Let N(G) be a neutrosophic group. Then

(i) Z(N(G)) is a neutrosophic subgroup of N(G);

(ii) N(g) is a neutrosophic subgroup of N(G);

Proof (i) Suppose that Z(N(G)) is the neutrosophic center of N(G). If x, y ∈ Z(N(G)),

then xy ∈ Z(N(G)). Since Z(G), the center of the group G is a proper subset of Z(N(G)),

it follows that Z(N(G)) contains a proper subset which is a group. Hence Z(N(G)) is a

neutrosophic subgroup of N(G).

(ii) The proof is the same as (i). �
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Theorem 2.15 Let N(G) be a neutrosophic group and let Z(N(G)) be the center of N(G) and

N(x) the normalizer of x in N(G). Then

(i) N(G) is commutative if and only if Z(N(G)) = N(G);

(ii) x ∈ Z(N(G)) if and only if N(x) = N(G).

Definition 2.16 Let N(G) be a neutrosophic group. Its order denoted by o(N(G)) or | N(G) |
is the number of distinct elements in N(G). N(G) is called a finite neutrosophic group if

o(N(G)) is finite and infinite neutrosophic group if otherwise.

Theorem 2.17 Let N(H)and N(K)be two neutrosophic subgroups (resp. pseudo neutrosophic

subgroups) of a finite neutrosophic group N(G). Then o(N(H).N(K)) = o(N(H)).o(N(K))
o(N(H)∩N(K)) .

Definition 2.18 Let N(G)and N(H)be any two neutrosophic groups. The direct product of

N(G) and N(H) denoted by N(G)×N(H) is defined by N(G)×N(H) = {(g, h) : g ∈ N(G), h ∈
N(H)}.

Theorem 2.19 If (N(G), ∗1) and (N(H), ∗2) are neutrosophic groups, then (N(G) × N(H), ∗)
is a neutrosophic group if (g1, h1) ∗ (g2, h2) = (g1 ∗1 g2, h1 ∗2 h2) ∀ (g1, h1) , (g2, h2) ∈ N(G) ×
N(H).

Theorem 2.20 Let N(G)be a neutrosophic group and let H be a classical group. Then N(G)×H

is a neutrosophic group.

Definition 2.21 Let N(G) be a finite neutrosophic group and let N(H) be a neutrosophic sub-

group of N(G).

(i) N(H) is called a Lagrange neutrosophic subgroup of N(G) if o(N(H)) | o(N(G));

(ii) N(G) is called a Lagrange neutrosophic group if all neutrosophic subgroups of N(G)

are Lagrange neutrosophic subgroups;

(iii) N(G) is called a weak Lagrange neutrosophic group if N(G) has at least one Lagrange

neutrosophic subgroup;

(iv) N(G) is called a free Lagrange neutrosophic group if it has no Lagrange neutrosophic

subgroup.

Definition 2.22 Let N(G) be a finite neutrosophic group and let N(H) be a pseudo neutrosophic

subgroup of N(G).

(i) N(H) is called a pseudo Lagrange neutrosophic subgroup of N(G) if o(N(H)) | o(N(G));

(ii) N(G) is called a pseudo Lagrange neutrosophic group if all pseudo neutrosophic sub-

groups of N(G) are pseudo Lagrange neutrosophic subgroups;

(iii) N(G) is called a weak pseudo Lagrange neutrosophic group if N(G) has at least one

pseudo Lagrange neutrosophic subgroup;

(iv) N(G) is called a free pseudo Lagrange neutrosophic group if it has no pseudo Lagrange

neutrosophic subgroup.

Example 2.23 (i) Let N(G) be the neutrosophic group of Example 2.5. The only neutrosophic
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subgroups of N(G)are N(H) = {e, a, I, aI}, N(K) = {e, b, I, bI} and N(P ) = {e, c, I, cI}. Since

o(N(G)) = 8 and o(N(H)) = o(N(K)) = o(N(P )) = 4 and 4 | 8, it follows that N(H), N(K)and

N(P)are Lagrange neutrosophic subgroups and N(G) is a Lagrange neutrosophic group.

(ii) Let N(G) = {1, 3, 5, 7, I, 3I, 5I, 7I} be a neutrosophic group under multiplication mod-

ulo 8. The neutrosophic subgroups N(H) = {1, 3, I, 3I}, N(K) = {1, 5, I, 5I} and N(P ) =

{1, 7, I, 7I} are all Lagrange neutrosophic subgroups. Hence N(G) is a Lagrange neutrosophic

group.

(iii) N(G) = N (Z2)×N (Z2) = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 1+I), (1, I), · · · , (1+I, 1+I)}
is a neutrosophic group under addition modulo 2. N(G) is a Lagrange neutrosophic group since

all its neutrosophic subgroups are Lagrange neutrosophic subgroups.

(iv) Let N(G) = {e, g, g2, g3, I, gI, g2I, g3I} be a neutrosophic group under multiplication

where g4 = e. N(H) = {e, g2, I, g2I} and N(K) = {e, I, g2I} are neutrosophic subgroups of

N(G). Since o(N(H)) | o(N(G)) but o(N(K)) does not divide o(N(G)) it shows that N(G) is

a weak Lagrange neutrosophic group.

(v) Let N(G) = {e, g, g2, I, gI, g2I} be a neutrosophic group under multiplication where

g3 = e. N(G) is a free Lagrange neutrosophic group.

Theorem 2.24 All neutrosophic groups generated by I and any group isomorphic to Klein

4-group are Lagrange neutrosophic groups.

Definition 2.25 Let N(H) be a neutrosophic subgroup (resp. pseudo neutrosophic subgroup)

of a neutrosophic group N(G). For a g ∈ N(G), the set gN(H) = {gh : h ∈ N(H)} is called

a left coset (resp. pseudo left coset) of N(H) in N(G). Similarly, for a g ∈ N(G), the set

N(H)g = {hg : h ∈ N(H)} is called a right coset (resp. pseudo right coset) of N(H) in N(G).

If N(G) is commutative, a left coset (resp. pseudo left coset) and a right coset (resp. pseudo

right coset) coincide.

Definition 2.26 Let N(H)be a Lagrange neutrosophic subgroup (resp. pseudo Lagrange neutro-

sophic subgroup) of a finite neutrosophic group N(G). A left coset xN(H)of N(H) in N(G) de-

termined by x is called a smooth left coset if | xN(H) |=| N(H) |. Otherwise, xN(H) is called

a rough left coset of N(H) in N(G).

Definition 2.27 Let N(H)be a neutrosophic subgroup (resp. pseudo neutrosophic subgroup) of

a finite neutrosophic group N(G). The number of distinct left cosets of N(H) in N(G)denoted

by [N(G):N(H)] is called the index of N(H) in N(G).

Definition 2.28 Let N(H)be a Lagrange neutrosophic subgroup (resp. pseudo Lagrange neutro-

sophic subgroup) of a finite neutrosophic group N(G). The number of distinct smooth left cosets

of N(H) in N(G) denoted by [N(H):N(G)] is called the smooth index of N(H) in N(G).

Theorem 2.29 Let X be the set of distinct smooth left cosets of a Lagrange neutrosophic

subgroup (resp. pseudo Lagrange neutrosophic subgroup) of a finite neutrosophic group (resp.

finite Lagrange neutrosophic group) N(G). Then X is a partition of N(G).

Proof Suppose that X = {Xi}n
i=1 is the set of distinct smooth left cosets of a Lagrange
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neutrosophic subgroup (resp. pseudo Lagrange neutrosophic subgroup) of a finite neutro-

sophic group (resp. finite Lagrange neutrosophic group) N(G). Since o(N(H)) | o(N(G)) and

| xN(H) |=| N(H) | ∀ x ∈ N(G), it follows that X is not empty and every member of N(G) be-

longs to one and only one member of X. Hence ∩n
i=1Xi = ∅ and ∪n

i=1Xi = N(G). Consequently,

X is a partition of N(G). �

Corollary 2.30 Let [N(H) : N(G)] be the smooth index of a Lagrange neutrosophic subgroup in

a finite neutrosophic group (resp. finite Lagrange neutrosophic group) N(G). Then | N(G) |=|
N(H) | [N(H) : N(G)].

Proof The proof follows directly from Theorem 2.29. �

Theorem 2.31 Let X be the set of distinct left cosets of a neutrosophic subgroup (resp. pseudo

neutrosophic subgroup) of a finite neutrosophic group N(G). Then X is not a partition of N(G).

Proof Suppose that X = {Xi}n
i=1 is the set of distinct left cosets of a neutrosophic subgroup

(resp. pseudo neutrosophic subgroup) of a finite neutrosophic group N(G). Since N(H) is a non-

Lagrange pseudo neutrosophic subgroup, it follows that o(N(H)) is not a divisor of o(N(G))

and | xN(H) |6=| N(H) | ∀ x ∈ N(G). Clearly, X is not empty and every member of N(G) can

not belongs to one and only one member of X. Consequently, ∩n
i=1Xi 6= ∅ and ∪n

i=1Xi 6= N(G)

and thus X is not a partition of N(G). �

Corollary 2.32 Let [N(G) : N(H)] be the index of a neutrosophic subgroup (resp. pseudo

neutrosophic subgroup) in a finite neutrosophic group N(G). Then | N(G) |6=| N(H) | [N(G) :

N(H)].

Proof The proof follows directly from Theorem 2.31. �

Example 2.33 Let N(G)be a neutrosophic group of Example 2.23(iv).

(a) Distinct left cosets of the Lagrange neutrosophic subgroup N(H) = {e, g2, I, g2I} are:

X1 = {e, g2, I, g2I}, X2 = {g, g3, gI, g3I}, X3 = {I, g2I}, X4 = {gI, g3I}. X1, X2 are smooth

cosets while X3, X4 are rough cosets and therefore [N(G) : N(H)] = 4, [N(H) : N(G)] = 2.

| N(H) | [N(G) : N(H)] = 4 × 4 6=| N(G) | and | N(H) | [N(H) : N(G)] = 4 × 2 =| N(G) |.
X1 ∩ X2 = ∅ and X1 ∪ X2 = N(G) and hence the set X = {X1, X2} is a partition of N(G).

(b) Distinct left cosets of the pseudo non-Lagrange neutrosophic subgroup N(H) = {e, I, g2I}
are: X1 = {e, I, g2I}, X2 = {g, gI, g3I}, X3 = {g2, I, g2I}, X4 = {g3, gI, g3I}, X5 = {I, g2I},
X6 = {gI, g3I}. X1, X2, X3, X4 are smooth cosets while X5, X6 are rough cosets. [N(G) :

N(H)] = 6, [N(H) : N(G)] = 4, | N(H) | [N(G) : N(H)] = 3 × 6 6=| N(G) | and

| N(H) | [N(H) : N(G)] = 3 × 4 6=| N(G) |. Members of the set X = {X1, X2, X3, X4}
are not mutually disjoint and hence do not form a partition of N(G).

Example 2.34 Let N(G) = {1, 2, 3, 4, I, 2I, 3I, 4I} be a neutrosophic group under multipli-

cation modulo 5. Distinct left cosets of the non-Lagrange neutrosophic subgroup N(H) =

{1, 4, I, 2I, 3I, 4I} are X1 = {1, 4, I, 2I, 3I, 4I}, X2 = {2, 3, I, 2I, 3I, 4I}, X3 = {I, 2I, 3I, 4I}.
X1, X2 are smooth cosets while X3 is a rough coset and therefore [N(G) : N(H)] = 3,
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[N(H) : N(G)] = 2, | N(H) | [N(G) : N(H)] = 6 × 3 6=| N(G) | and | N(H) | [N(H) :

N(G)] = 6 × 2 6=| N(G) |. Members of the set X = {X1, X2} are not mutually disjoint and

hence do not form a partition of N(G).

Example 2.35 Let N(G)be the Lagrange neutrosophic group of Example 2.5. Distinct left

cosets of the Lagrange neutrosophic subgroup N(H) = {e, a, I, aI} are: X1 = {e, a, I, aI},
X2 = {b, c, bI, cI}, X3 = {I, aI}, X4 = {bI, cI}. X1, X2 are smooth cosets while X3, X4 are

rough cosets and thus [N(G) : N(H)] = 4, [N(H) : N(G)] = 2, | N(H) | [N(G) : N(H)] =

4 × 4 = 16 6=| N(G) | and | N(H) | [N(H) : N(G)] = 4 × 2 = 8 =| N(G) |. Members of the set

X = {X1, X2} are mutually disjoint and N(G) = X1 ∪ X2. Hence X is a partition of N(G).

Example 2.36 Let N(G)be the Lagrange neutrosophic group of Example 2.23(iii).

(a) Distinct left cosets of the Lagrange neutrosophic subgroup N(H) = {(0, 0), (0, 1), (0, I),

(0, 1+I)} are respectively X1 = {(0, 0), (0, 1), (0, I), (0, 1+I)}, X2 = {(1, 0), (1, 1), (1, I), (1, 1+

I)}, X3 = {(I, 0), (I, 1), (I, I), (I, 1 + I)}, X4 = {(I + I, 0), (1 + I, 1), (1 + I, I), (1 + I, 1 + I)},
X5 = {(1+ I, 0), (1+ I, 1), (1+ I, 1+ I)}. X1, X2, X3, X4 are smooth cosets while X5 is a rough

coset. Thus, [N(G) : N(H)] = 5, [N(H) : N(G)] = 4, | N(H) | [N(G) : N(H)] = 4 × 5 =

20 6=| N(G) |= 16 and | N(H) | [N(H) : N(G)] = 4 × 4 = 16 =| N(G) |. Members of the set

X = {X1, X2, X3, X4} are mutually disjoint and N(G) = X1 ∪ X2 ∪ X3 ∪ X4 so that X is a

partition of N(G).

(b) Distinct left cosets of the pseudo Lagrange neutrosophic subgroup N(H) = {(0, 0), (0, I),

(I, 0), (I, I)} are respectively X1 = {(0, 0), (0, I), (I, 0), (I, 1)}, X2 = {(0, 1), (0, 1 + I), (I, 1),

(I, 1+I)}, X3 = {(1, 0), (1, I), (1+I, 0), (1+I, I)}, X4 = {(1, 1), (1, 1+I), (1+I, 1), (1+I, 1+I)}.
X1, X2, X3, X4 are smooth cosets and [N(G) : N(H)] = [N(H) : N(G)] = 4. Consequently,

| N(H) | [N(G) : N(H)] =| N(H) | [N(H) : N(G)] = 4 × 4 = 16 =| N(G) |. Members of the

set X = {X1, X2, X3, X4} are mutually disjoint, N(G) = X1 ∪ X2 ∪ X3 ∪ X4 and hence X is a

partition of N(G).
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Abstract: In this paper, we introduce and investigate a new class of sets and maps be-

tween bitopological spaces called supra(1,2) b-open, and supra (1,2) b-continuous maps,

respectively. Furthermore, we introduce the concepts of supra(1,2) locally-closed, supra(1,2)

locally b-closed sets. We also introduce supra(1,2) extremely disconnected. Finally, addi-

tional properties of these sets are investigated.
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supra(1,2) extremely disconnected.
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§1. Introduction

In 1983 A.S.Mashhour et al [5] introduced supra topological spaces and studied s-continuous

maps and s∗-continuous maps. Andrijevic [1] introduced a class of generalized open sets in a

topological space,the called b-open sets in 1996. In 1963, J.C.Kelly [3] introduced the concept

of bitopological spaces. The purpose of this present paper is to define some properties by

using supra(1,,2) b-open sets, supra(1,2) locally-closed, supra(1,2) locally b-closed in supra

bitopological spaces and investigate the relationship between them.

§2. Preliminaries

Throughout this paper by (X, τ1, τ2), (Y, σ1, σ2) and (Z, η1, η2). (or simply X, Y and Z) rep-

resent bitopological spaces on which no separation axioms are assumed unless otherwise men-

tioned. For a subset A of X , Ac denote the complement of A. A subcollection µ is called a supra

topology [5] on X if X ∈ µ, where µ is closed under arbitrary union. (X, µ) is called a supra

topological space. The elements of µ are said to be supra open in (X, µ) and the complement of

a supra open set is called a supra closed set. The supra topology µ is associated with the topol-

1Received July 13, 2012. Accepted August 20, 2012.
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ogy τ if τ ⊂ µ. A subset A of X is τ1τ2-open [4] if A∈ τ1 ∪ τ2 and τ1τ2-closed if its complement

is τ1τ2-open in X . The τ1τ2-closure of A is denoted by τ1τ2cl(A) and τ1τ2cl(A) = ∩{ F : A ⊂ F

and F c is τ1τ2-open}. Let (X,µ1, µ2) be a supra bitopological space. A set A is µ1µ2-open if

A ∈ µ1 ∪ µ2 and µ1µ2-closed if its complement is µ1µ2-open in (X, µ1, µ2). The µ1µ2-closure

of A is denoted by µ1µ2cl(A) and µ1µ2cl(A) = ∩{ F : A ⊂ F and F c is µ1µ2 − open}.

Definition 2.1 Let (X, µ) be a supra topological space. A set A is called

(1) supra α-open set [2] if A ⊆ intµ(clµ(intµ(A)));

(2) supra semi-open set [2] if A ⊆ clµ(intµ(A));

(3) supra b-open set [6] if A ⊆ clµ(intµ(A)) ∪ intµ(clµ(A)).

Definition 2.2([4]) Let (X, τ1, τ2) be a bitopological space. A subset A of (X, τ1, τ2) is called

(1) (1,2)semi-open set if A ⊆ τ1τ2cl(τ1int(A));

(2) (1,2)pre-open set if A ⊆ τ1int(τ1τ2cl(A));

(3) (1,2)α-open-set if A ⊆ τ1int(τ1τ2cl(τ1int(A)));

(4) (1,2)b-open-set A ⊆ τ1τ2cl(τ1int(A)) ∪ τ1int(τ1τ2cl(A)).

§3. Comparison

In this section we introduce a new class of generalized open sets called supra(1,2) b-open sets

and investigate the relationship between some other sets.

Definition 3.1 Let (X, τ1, τ2) be a supra bitopological space. A set A is called a supra(1,2)

b-open set if A ⊆ µ1µ2cl(µ1int(A)) ∪ µ1int(µ1µ2cl(A)).The compliment of a supra(1,2) b-open

is called a supra(1,2) b-closed set.

Definition 3.2 Let X be a supra bitopological space. A set A is called

(1) supra (1,2) semi-open set if A ⊆ µ1µ2cl(µ1int(A));

(2) supra (1,2) pre-open set if A ⊆ µ1int(µ1µ2cl(A));

(3) supra (1,2) α-open-set if A ⊆ µ1int(µ1µ2cl(µ1int(A))).

Theorem 3.3 In a supra bitopological space (X, µ1, µ2), any supra open set in (X, µ1) is

supra(1,2) b-open set and any supra open set in (X, µ2) is supra (2,1) b-open set.

Proof Let A be any supra open in (X, µ1). Then A = µ1int(A). Now A ⊆ µ1µ2cl(A) =

µ1µ2cl(µ1int(A)) ⊆ µ1µ2cl(µ1int(A) ∪ µ1int(µ1µ2cl(A)). Hence A is supra(1,2) b-open set.

Similarly, any supra open in (X, µ2) is supra(2,1) b-open set. �

Remark 3.4 The converse of the above theorem need not be true as shown by the following

example.

Example 3.5 Let X = {a, b, c, d}, µ1 = {φ, X, {a, b}, {a, c, d}}, µ2 = {φ, {a}, {a, b}, {b, c, d}, X};
µ1µ2-open = {φ, {a}, {a, b}, {a, c, d}, {b, c, d}, X}, µ1µ2-closed = {φ, {a}, {b}, {c, d}, {b, c, d}, X},
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supra(1,2) bO(X) = {φ, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d},X}. It is obvious that

{a,d}∈ supra(1,2) b-open but {a, d} /∈ µ1-open. Also, supra(2,1) bO(X) = (φ, {a}, {a, b},
{a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d},X}. Here {a, c} ∈ supra(2,1) b-

open set but {a, c} /∈ µ2-open.

Theorem 3.6 In a supra bitopological space (X, µ1, µ2), any supra open set in (X, µ1) is

supra(1,2) α-open set and any supra open set in (X, µ2) is supra (2,1) α-open set.

Proof Let A be any supra open in (X, µ1). Then A = µ1int(A). Now A ⊆ µ1µ2cl(A).

Then µ1int(A) ⊆ µ1int(µ1µ2cl(A)). Since A = µ1int(A), A ⊆ µ1int(µ1µ2cl(µ1int(A))). Hence

A is supra(1,2) α-open set. Similarly, any supra open in (X, µ2) is supra(2,1) α-open set. �

Remark 3.7 The converse of the above theorem need not be true as shown in the following

example.

Example 3.8 Let X = {a, b, c, d}, µ1 = {φ, {a, c}, {a, b, c}, {a, b, d}, X}, µ2 = {φ, {c, d}, {a, b, d},
{b, c, d}, X}, µ1µ2-open = {φ, {a, c}, {c, d}, {a, b, c}, {a, b, d, {b, c, d}, X}, µ1µ2-closed = {φ, {a},
{c}, {d}, {a, b}, {b, d}, X}. supra(1,2) αO(X) = {φ, {a, c}, {a, b, c}, {a, c, d}, {a, b, d}},X}. Here

{a, c, d} ∈ supra(1, 2) α-open but {a, c, d} /∈ µ1-open. Also, supra(2,1) αO(X) = (φ, {c, d},
{a, c, d}, {a, b, d}, {b, c, d}, X}. Here {a, c, d} ∈ supra(2, 1)α-open but {a, c, d} /∈ µ2-open.

Theorem 3.9 Every supra(1,2) α-open is supra(1,2) semi-open.

Proof Let A be a supra (1,2) α-open set in X . Then A ⊆ µ1int(µ1µ2cl(µ1int(A))) ⊆
µ1µ2cl(µ1int(A)). Therefore, A ⊆ µ1µ2cl(µ1int(A)). Hence A is supra(1,2) semi-open set. �

Remark 3.10 The converse of the above theorem need not be true as shown below.

Example 3.11 Let X = {a, b, c, d}, µ1 = {φ, {b}, {a, d}, {a, b, c}, X}, µ2 = {φ, {b, c}, {a, b, d}, X},
µ1µ2-open ={φ, {b}, {a, d}, {b, c}, {a, b, c, {a, b, d}, X}, µ1µ2-closed = {φ, {c}, {d}, {a, d}, {b, c},
{a, c, d}, X}. supra(1,2) αO(X) = {φ, {b}, {a, d}, {a, b, c}, {a, b, d}}, X}, supra(1,2) SO(X) =

{φ, {b}, {a, d}, {b, c}, {a, b, c}, {a, b, d}}, X}. Here {b, c} is a supra(1,2) α-open but not supra(1,2)

semi-open.

Theorem 3.12 Every supra(1,2) semi-open set is supra(1,2) b-open.

Proof Let A be a supra(1,2) semi-open set X . Then A ⊆ µ1µ2cl(µ1int(A)). Hence

A ⊆ µ1µ2cl(µ1int(A)) ∪ µ1int(µ1µ2cl(A)). Thus A is supra(1,2) b-open set. �

Remark 3.13 The converse of the above theorem need not be true as shown in the following

example.

Example 3.14 Let X = {a, b, c, d}, µ1 = {φ, {a}, {a, b}, {b, c, d}, X}, µ2 = {φ, {b}, {a, d}, {a, b, d},
{b, c, d}, X}, µ1µ2-open = {φ, {a}, {b}, {a, b}, {a, d}, {a, b, d}, {b, c, d}, X}, µ1µ2-closed = {φ, {a},
{c}, {b, c}, {c, d}, {a, c, d}, {b, c, d},X}, supra(1,2) bO(X) = {φ, {a}, {a, b}, {b, d}, {a, b, c}, {a, b, d},
{b, c, d}, X}, supra(1,2) SO(X) = {φ, {a}, {a, b}, {a, b, c}, {a, b, d}, {b, c, d}}, X}. Here {b, d} ∈
supra(1, 2)b-open set but {b, d} /∈ supra(1,2) semi-open.
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Theorem 3.15 Every supra(1,2) α-open is supra(1,2) b-open.

Proof Let A be an supra(1,2) α-open in X . Then A ⊆ µ1int(µ1µ2cl(µ1int(A))). It is obvi-

ous that µ1int(µ1µ2cl(µ1int(A))) ⊆ µ1µ2cl(µ1int(A)) ⊆ µ1µ2cl(µ1int(A)) ∪ µ1int(µ1µ2cl(A)).

Hence A ⊆ µ1µ2cl(µ1int(A)) ∪ µ1int(µ1µ2cl(A)). Thus A is supra(1,2) b-open set. �

Remark 3.16 The reverse claim in Theorem 3.15 is not usually true.

Example 3.17 Let X = {a, b, c, d},µ1 = {φ, {a, c}, {a, b, c}, {a, b, d}, X},µ2 = {φ, {c, d}, {b, c, d},
{a, b, d}X},µ1µ2-open= {φ, {a, c}, {c, d}, {a, b, c}, {a, b, d{b, c, d}, X}µ1µ2-closed = {φ, {a}, {c},
{d}, {a, b}, {b, d}, X}, supra(1,2) αO(X) = {φ, {a, c}, {a, b, c}, {a, c, d}, {a, b, d}},X}, supra(1,2)

bO(X) = {φ, {a, c}, {a, d}, {b, c}, {c, d}{a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}, X}. Here {a, d} ∈
supra(1,2) b-open but {a, d} /∈ supra(1,2) α-open.

Theorem 3.18 In a supra bitopological space (X, µ1, µ2), any supra open set in (X, µ1) is

supra(1,2) semi-open set and any supra open set in (X, µ2) is supra (2,1) semi-open set.

Proof This follows immediately from Theorems 3.6 and 3.9. �

Remark 3.19 The converse of the above theorem need not be true as shown in the Example

3.8, {a, c, d} is both supra(1,2) semi-open and supra(2,1) semi-open but it is not supra µ1-open

and also is not µ2-open.

Remark 3.20 From the above discussions we have the following diagram. A →B represents A

implies B, A 9 B represents A does not implies B.

2

3

1

4

¸

Fig. 1 1=supra (1,2) b-open, 2=µ1-open,¸

3=supra (1,2) α-open, 4=supra (1,2) semi-open

§4. Properties of Supra(1,2) b-Open Sets

Theorem 4.1 A finite union of supra(1,2) b-open sets is always supra(1,2) b-open.

Proof Let A and B be two supra(1,2) b-open sets. Then A ⊆ µ1µ2cl(µ1int(A)) ∪
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µ1int(µ1µ2cl(A)) and B ⊆ µ1µ2cl(µ1int(B))∪µ1int(µ1µ2cl(B)). Now, A∪B ⊆ µ1µ2cl(µ1int(A∪
B)) ∪ µ1int(µ1µ2cl(A ∪ B)). Hence A ∪ B is supra(1,2) b-open set. �

Remark 4.2 Finite intersection of supra(1,2) b-open sets may fail to be supra(1,2) b-open

since, in Example 3.14, both {a, b} and {b, d} are supra(1,2) b-open sets, but their intersection

{c} is not supra(1,2) b-open.

Definition 4.3 The supra(1,2) b-closure of a set A is denoted by supra(1, 2)bcl(A) and defined

as supra(1, 2)bcl(A) = ∩{B : B is a supra(1,2) b-closed set and A ⊂ B}. The supra(1,2)

interior of a set A is denoted by supra(1,2)bint(A), and defined as supra(1,2)b int(A)= ∪{B : B

is a supra(1,2) b-open set and A ⊇ B}.

Remark 4.4 It is clear that supra(1, 2)bint(A) is a supra(1,2) b-open and supra(1, 2)bcl(A) is

supra(1,2) b-closed set.

Definition 4.5 A subset A of supra bitopological space X is called

(1) supra(1,2)locally-closed if A = U∩V, where U ∈ µ1 and V is supraµ1µ2 closed;

(2) supra(1,2) locally b-closed if A = U ∩ V , where U ∈ µ1 and V is supra(1,2) b-closed;

(3) supra (1,2)D(c,b) set if µ1int(A) = supra(1, 2)bint(A).

Theorem 4.6 The intersection of a supra open in (X, µ1) and a supra(1,2) b-open set is a

supra(1,2) b-open set.

Proof Let A be supra open in (X, µ1). Then A is supra(1,2) b-open and A = µ1int(A) ⊆
supra(1, 2)bint(A). Let B be supra(1,2) b-open then B = supra(1, 2)bint(B). Now A ∩ B ⊆
supra(1, 2)bint(A) ∩ supra(1, 2)bint(B) = supra(1, 2)bint(A ∩ B). Hence the intersection of

supra open set in (X, µ1) and a supra(1,2) b-open set is a supra(1,2) b-open set. �

Theorem 4.7 For a subset A of X, the following are equivalent:

(1) A is supra-open in (X, µ1);

(2) A is supra (1,2) b-open and supra(1,2) D(c,b)-set.

Proof (1)⇒(2) If A is supra-open in (X, µ1), then A is supra (1,2) b-open and A =

µ1int(A), A = supra(1, 2)bint(A). Hence µ1int(A) = supra(1, 2)bint(A). Therefore, A is

supra(1, 2)D(c, b)-set.

(2)⇒(1) Let A be supra (1,2) b-open and supra (1, 2)D(c, b)-set. Then A = supra(1, 2)bint(A)

and µ1int(A) = supra(1, 2)bint(A). Hence A = µ1int(A). This implies that A is supra-open in

(X, µ1). �

Definition 4.8 A space X is called an supra(1,2) extremely disconnected space (briefly supra(1,2)

E.D) if supraµ1µ2 closure of each supra-open in (X, µ1) is supra open set in (X, µ1). Similarly

supraµ1µ2 closure of each supra-open in (X, µ2) is supra open set in (X, µ2).

Example 4.9 Let X = {a, b, c}, µ1 = {φ, {b}, {a, b}, {a, c}, X}, µ2 = {φ, {a}, {b, c}, {a, c}},
µ1µ2open = {φ, {a}, {b}, {a, b}, {a, c}, {b, c}, X}, µ1µ2 closed = {φ, {a}, {b}, {c}, {a, c}{b, c}, X}.
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Hence every µ1µ2 closure of supra-open is (X, µ1) and also every supraµ1µ2 closure of supra-

open in (X, µ2).

Theorem 4.10 Let A be a subset of supra bitopological space (X, µ1, µ2) if A is supra(1,2)

locally b-closed, then

(1) supra(1, 2)bcl(A) − A is supra(1,2) b-closed set:

(2) [A ∪ (X − supra(1, 2)bcl(A))] is supra(1,2) b-open;

(3) A ⊆ supra(1, 2)bint(A ∪ (X − supra(1, 2)bcl(A)).

Proof (1) If A is an supra(1,2) locally b-closed, there exist an U is supra-open in (X, µ1)

such that A = U ∩ supra(1, 2)bcl(A). Now, supra(1, 2)bcl(A) − A = supra(1, 2)bcl(A) − [U ∩
supra(1, 2)bcl(A)] = supra(1, 2)bcl(A) ∩ [X − (U ∩ supra(1, 2)bcl(A))] = supra(1, 2)bcl(A) ∩
[(X −U)∪ (X − supra(1, 2)bcl(A))] = supra(1, 2)bcl(A)∩ (X −U), which is supra(1,2) b-closed

by Theorem 4.5.

(2) Since supra(1, 2)bcl(A)− A is supra(1,2) b closed, then [X − (supra(1, 2)bcl(A)− A)]

is supra(1,2) b-open and [X − (supra(1, 2)bcl(A)− A)] = (X − supra(1, 2)bcl(A)) ∪ (X ∩ A) =

A ∪ [X − supra(1, 2)bcl(A)]. Hence [A ∪ (X − supra(1, 2)bcl(A))] is supra(1,2) b-open.

(3) It is clear that

A ⊆ [A ∪ (X − supra(1, 2)bcl(A)] = supra(1, 2)bint[A ∪ (X − supra(1, 2)bcl(A))]. �

§5. Supra (1,2) b-Continuous Functions

In this section, We introduce a new class of continuous maps called a supra (1,2) b-continuous

maps and obtain some of their properties.

Definition 5.1 Let (X, τ1, τ2) and (Y, σ1, σ2) be two bitopological spaces and µ1, µ2 be an

associated supra bitopology with τ1, τ2. A map f : (X, τ1, τ2) → (Y, σ1, σ2) is called a supra

(1,2) b-continuous map [resp. supra (1,2) α-continuous, supra (1,2) semi-continuous] if the

inverse image of each σ1σ2-open set in Y is supra (1,2) b-open set [resp. supra (1,2 ) α-open,

supra (1,2) semi-open] in X.

Definition 5.2 Let (X, τ1, τ2) and (Y, σ1, σ2) be two bitopological spaces and µ1, µ2 be an

associated supra bitopology with τ1, τ2. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is called supra

(1,2) continuous if f−1(V ) is µ1-open in X for each σ1σ2-open set V of Y .

Theorem 5.3 Every (1,2) continuous is supra (1,2) b-continuous.

Proof Let f : (X, τ1, τ2) → (Y, σ1, σ2) be an (1,2)-continuous map and let A be an σ1σ2-

open set in (Y, σ1, σ2). Then f−1(A) is an τ1-open set in (X, τ1, τ2). Since µ1 and µ2 are

associated with τ1 and τ2, then τ1 ⊆ µ1. This implies that f−1(A) is µ1-open in X and it is

supra (1,2) b-open in X . Hence f is supra (1,2)b-continuous. �

Theorem 5.4 Every supra (1,2)-continuous is supra (1,2) b-continuous function.



16 M.Lellis Thivagar and B.Meera Devi

Proof Let f : (X, τ1, τ2) → (Y, σ1, σ2) be an supra (1,2)-continuous and let A be an σ1σ2

open set in Y . Since f is supra (1,2)-continuous and µ1, µ2 associated with τ1, τ2, f−1(A) is

µ1-open in X and it is supra (1,2) b-open in X. Hence f is supra (1,2) b-continuous. �

Remark 5.5 The converse of Theorems 5.3 and 5.4 need not be true. We can shown this by

the following example.

Example 5.6 Let X = {a, b, c, d}, Y = {p, q, r, s}, τ1 = {φ, {a}, {a, b}, {a, d}, X} and τ2 =

{φ, {a}, {a, b}, X} are topologies on (X, τ1, τ2), σ1 = {φ, {p}, {r}, {p, r}, Y }, σ2 = {φ, {p, r}, Y },
σ1σ2-open = {φ, {p}, {r}, {p, r}, Y }. The supra topologies µ1, µ2 are defined as follows:

µ1 = {φ, {a}, {a, b}, {a, d}, {b, c}, X}, µ2 = {φ, {a}, {a, b}, {b, c}, X}, µ1µ2 open = {φ, {a},
{a, b}, {a, d}, {b, c}, X}, µ1µ2 closed = {φ, {a, d}, {b, c}, {b, d}, {b, c, d}, X}, supra (1,2) b-open =

{φ, {a}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {a, b, c}, {a, c, d}, {a, b, d}, X}. Define a map f : (X, τ1, τ2)

→ (Y, σ1, σ2) by f(a) = p, f(b) = q, f(c) = r, f(d) = s. Clearly f is supra (1,2) b-continuous.

But f−1({p, r}) = {a, c} is not µ1-open set in X where {p, r} is σ1σ2-open in Y . So f is not supra

(1,2) continuous. And also f is not (1,2)-continuous functions because f−1({p, r}) = {a, c} is

not τ1-open in X where where {p, r} is σ1σ2-open in Y .

Theorem 5.7 Every supra (1,2) α-continuous map is supra (1,2)b-continuous.

Proof It is obvious that every supra (1,2) α-open is (1,2) b-open. �

Remark 5.8 The converse of the above theorem need not be true as shown in the following

example.

Example 5.9 Let X = {a, b, c, d}, Y = {p, q, r, s}, τ1 = {φ, {a, b, c}, X} and τ2 = {φ, {a, b, d}, X}
are topologies on (X, τ1, τ2), σ1 = {φ, {p, r}, Y }, σ2 = {φ, {p, q}, {p, q, s}, Y }, σ1σ2-open =

{φ, {p, q}, {p, r}, {p, q, s}, Y }. The supra topologies µ1, µ2 are defined as follows:

µ1 = {φ, {a, c}, {a, b, c}, {a, b, d}, X}, µ2 = {φ, {c, d}, {b, c, d}, {a, b, d}, X}. Define a func-

tion f : (X, τ1, τ2) → (Y, σ1, σ2) by f(a) = q, f(b) = r, f(c) = p, f(d) = s. Then f is supra

(1,2) b-continuous but not (1,2) α-continuous because f−1({p, r}) = {b, c} is not supra (1,2)

α-open where {p, r} is σ1σ2-open in Y .

Theorem 5.10 Let (X, τ1, τ2), (Y, σ1, σ2) and (Z, η1, η2) be three bitopological spaces. If a

map f : (X, τ1, τ2 → (Y, σ1, σ2) is supra(1,2) b-continuous and g : (Y, σ1, σ2) → (Z, η1, η2) is a

(1,2)-continuous map, then g ◦ f : (X, τ1, τ2) → (Z, η1, η2) is a supra(1,2) b-continuous.

Proof Let A be a η1η2-open set in Z. Since g is (1,2)-continuous, then g−1(A) is σ1-open

in Y . Every σ1-open is σ1σ2-open. Thus g−1(A) is σ1σ2-open in Y . Since f is supra (1,2)

b-continuous, then f−1(g−1(A)) = (g ◦ f)−1(A) is supra (1,2) b-open set in X . Therefore g ◦ f

is supra(1,2) b-continuous. �

Theorem 5.11 Let (X, τ1, τ2) and (Y, σ1, σ2) be bitopological spaces. Let µ1, µ2 and v1, v2 be

the associated supra bitopologies with τ1, τ2 and σ1, σ2, respectively. Then f : (X, τ1, τ2) →
(Y, σ1, σ2) is a supra(1,2) b-continuous map if one of the following holds:
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(1) f−1(supra(1, 2)bint(A)) ⊆ τ1int(f−1(A)) for every set A in Y ;

(2) τ1τ2cl(f
−1(A)) ⊆ f−1(supra(1, 2)bcl(A)) for every set A in Y ;

(3) f(τ1τ2cl(B)) ⊆ supra(1, 2)bcl(f(B)) for every set B in X.

Proof Let A be any σ1σ2-open set of Y . If condition (1) is satisfied, then

f−1(supra(1, 2)bint(A)) ⊆ τ1int(f−1(A)).

We get, f−1(A) ⊆ τ1int(f−1(A)). Therefore f−1(A) is supra open set in (X, µ1). Every supra

open set in (X, µ1) is supra(1,2) b-open set. Hence f is supra (1,2) b-continuous function.

If condition (2) is satisfied, then we can easily prove that f is supra(1,2) b-continuous

function.

Now if the condition (3) is satisfied and A be any σ1σ2-open set of Y . Then f−1(A) is a set

in X and f(τ1τ2cl(f
−1(A))) ⊆ supra(1, 2)bcl(f(f−1(A))). This implies f(τ1τ2cl(f

−1(A))) ⊆
supra(1, 2)bcl(A). It is nothing but just the condition (2). Hence f is a supra(1,2) b-continuous

map. �

§6. Applications

Now we introduce a new class of space called a supra(1,2)-extremely disconnected space.

Definition 6.1 A space X is called an supra(1,2)-extremely disconnected space (briefly supra

(1,2)-E.D) if µ1µ2 closure of each supra-open in (X, µ1) is supra-open set in (X, µ1). Similarly

µ1µ2-closure of each supra-open in (X, µ2) is supra-open set in (X, µ2).

Theorem 6.2 For a subset A of a supra(1,2) extremely disconnected space X, the following

are equivalent:

(1) A is supra-open in (X, µ1);

(2) A is supra(1,2) b-open and supra(1,2) locally closed.

Proof (1)⇒(2) It is obvious.

(2)⇒(1) Let A be supra(1,2) b-open and supra(1,2) locally closed. Then

A ⊆ µ1µ2cl(µ1int(A)) ∪ µ1int(µ1µ2cl(A)) and A = U ∩ µ1µ2cl(A),

where U is supra-open in (X, µ1). So A ⊆ U ∩ (µ1int(µ1µ2cl(A)) ∪ µ1µ2cl(µ1int(A)) ⊆
[µ1int(U∩µ1µ2cl(A))]∪[U∩µ1µ2cl(µ1int(A))] ⊆ [µ1int(U∩µ1µ2cl(A))]∪[U∩µ1int(µ1µ2cl(A))]

(since X is supra(1,2) E.D)⊆ [µ1int(U ∩ µ1µ2cl(A))] ∪ [µ1int(U ∩ µ1µ2cl(A))] = µ1int(A) ∪
µ1int(A) = µ1int(A). Hence A ⊆ µ1int(A). Therefore A is supra-open in (X, µ1). �

Theorem 6.3 Let (X, τ1, τ2) and (Y, σ1, σ2) be two bitopological spaces and µ1, µ2 be associated

supra topologies with τ1, τ2. Let f : X → Y be a map. Then the following are equivalent.

(1) f is supra (1,2) b-continuous map;

(2) The inverse image of a σ1σ2-closed set in Y is a supra (1,2) b-closed set in X;
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(3) Supra (1, 2)bcl(f−1(A) ⊆ f−1(σ1σ2cl(A)) for every set A in Y ;

(4) f(supra(1, 2)bcl(A)) ⊆ σ1σ2cl(f(A)) for every set A ∈ X;

(5) f−1(σ1(B)) ⊆ supra(1, 2)int(f−1(B)) for every B in Y .

Proof (1)⇒(2) Let A be a σ1σ2 closed set in Y , then Y −A is σ1σ2 open set in Y . Since

f is supra (1,2) b-continuous, f−1(Y −A) = X − f−1(A) is a supra (1,2) b-open set in X . This

implies that f−1(A) is a supra (1,2) b-closed subset of X .

(2)⇒(3) Let A be any subset of Y . Since σ1σ2cl(A) is σ1σ2 closed in Y , then f−1(σ1σ2cl(A))

is supra (1,2) b-closed in X . Hence supra (1, 2)bcl(f−1(A) ⊆ supra(1, 2)bcl(f−1(σ1σ2cl(A))) =

f−1(σ1σ2cl(A)).

(3)⇒(4) Let A be any subset of X . By (3), we obtain

f−1(σ1σ2cl(f(A))) ⊇ supra(1, 2)bclf−1(f(A)) ⊇ supra(1, 2)bcl(A).

Hence f(supra(1, 2)cl(A)) ⊆ σ1σ2cl(f(A)).

(4)⇒(5) Let B be any subset of Y . By (5), f(supra(1, 2)bcl(X−f−1(B))) ⊂ σ1σ2cl(f(X−
f−1(B))) and f(X − supra(1, 2)bint(f−1(B))) ⊆ σ1σ2cl(Y −B) = Y −σ1int(B). Therefore we

have

X − supra(1, 2)bint(f−1(B)) ⊂ f−1(Y − σ1int(B))

and

f−1(σ1int(B)) ⊂ supra(1, 2)bint(f−1(B)).

(5)⇒(1) Let B be a σ1-open set in Y . Then by (4), f−1(σ1int(B)) ⊆ supra(1, 2)int(f−1(B)).

Therefore f−1(B) ⊆ supra(1, 2)int(f−1(B)). But supra(1, 2)bint(f−1(B)) ⊆ f−1(B). Hence

f−1(B) = supra(1, 2)bint(f−1(B)). Therefore f−1(B) is supra (1,2) b-open in X . Thus f is

supra (1,2) b-continuous map. �

We introduce the following definition.

Definition 6.4 Let (X, τ1, τ2) and (Y, σ1, σ2) be two bitopological spaces and µ1, µ2 be associated

supra bitopologies with τ1, τ2. A map f : (X, τ1, τ2) → (Y, σ1, σ2) is called a supra (1,2) locally

closed continuous [resp. supra (1,2) D(c,b) continuous, supra (1,2) locally b-closed continuous]

if f−1(B) is supra (1,2) locally closed [resp. supra (1,2) D(c,b) set, supra (1,2) locally b-closed]

in X for each σ1σ2 open set V of Y .

Theorem 6.5 Let X be supra (1,2) extremely disconnected space, the function f : (X, τ1, τ2) →
(Y, σ1, σ2) is supra (1,2)-continuous iff f is supra (1,2) b-continuous and supra (1,2) locally

closed continuous.

Proof Let V be a σ1σ2-open set in Y . Since f is supra (1,2)-continuous, f−1(V ) is µ1-open

in X . Then by Theorem 3.3, f−1(V ) is supra (1,2) b-open and supra (1,2) locally closed in

X . Hence f is supra (1,2) b-continuous and supra (1,2) locally closed continuous. Conversely,

let U be a σ1σ2-open set in Y . Since f is supra (1,2) b-continuous and supra (1,2) locally

closed continuous, f−1(U) is supra (1,2) b-open and supra (1,2) locally-closed in X . Since X is

supra (1,2) extremely disconnected, by Theorem 6.1, f−1(U) is µ1-open in X. Hence f is supra

(1,2)-continuous. �



On Bitopological Supra B-Open Sets 19

Theorem 6.6 The function f : (X, τ1, τ2) → (Y, σ1, σ2) is supra (1,2) continuous iff f is supra

(1,2) b-continuous and supra (1,2) D(c,b)-continuous.

Proof Let V be a σ1σ2 open set in Y . Since f is supra (1,2) continuous, f−1(V ) is µ1-open

in X. By Theorem 4.7, f−1(V ) is supra (1,2) b-open and supra (1,2) D(c,b)set. Then f is supra

(1,2) b-continuous and supra (1,2) D(c,b)continuous. Conversely, let U be a σ1σ2 open in Y .

Since f is supra (1,2) b-continuous and supra (1,2) D(c,b)-continuous, f−1(U) is supra (1,2)

b-open and supra (1,2) D(c,b)set. By Theorem 4.7, f−1(U) is supra open in (X,µ1). Hence f

is supra (1,2) continuous. �
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Abstract: Let Mn be an n-dimensional differentiable manifold and F n be a Finsler space

equipped with a fundamental function L(x, y), (yi = ẋi) of Mn. In the present paper we

define Randers conformal change as

L(x, y) → L∗(x, y) = eσ(x)L(x, y) + β(x, y)

where σ(x) is a function of x and β(x, y) = bi(x)yi is a 1- form on Mn.

This transformation is more general as it includes conformal, Randers and homothetic trans-

formation as particular cases. In the present paper we have found out the expressions for

scalar curvature and main scalar of two-dimensional Finsler space obtained by Randers con-

formal change of F n. We have also obtained equation of geodesic for this transformed space.

Key Words: two-dimensional Finsler space, β-change, homothetic change, conformal

change, one form metric, main scalar, scalar curvature, geodesic.
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§1. Introduction

Let Mn be an n-dimensional differentiable manifold and Fn be a Finsler space equipped with a

fundamental function L(x, y), (yi = ẋi) of Mn. If a differential 1-form β(x, y) = bi(x)yi is given

on Mn, then M. Matsumoto [1] introduced another Finsler space whose fundamental function

is given by

L̄(x, y) = L(x, y) + β(x, y)

This change of Finsler metric has been called β-change [2,3].

The conformal theory of Finsler spaces has been initiated by M.S. Knebelman [4] in 1929

and has been investigated in detail by many authors [5-8] etc. The conformal change is defined

as

L(x, y) → eσ(x)L(x, y),

where σ(x) is a function of position only and known as conformal factor.

1Received July 15, 2012. Accepted August 24, 2012.
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In the present paper, we construct a theory which generalizes all the above mentioned changes.

In fact, we consider a change of the form

L(x, y) → L∗(x, y) = eσ(x)L(x, y) + β(x, y), (1)

where σ(x) is a function of x and β(x, y) = bi(x)yi is a 1- form on Mn, which we call a Randers

conformal change. This change generalizes various types of changes. When β = 0, it reduces

to a conformal change. When σ = 0, it reduces to a Randers change. When β = 0 and σ is a

non-zero constant then it reduces to homothetic change.

In the present paper we have obtained the relations between

(1) the main scalars of F 2 and F ∗2;

(2) the scalar curvatures of F 2 and F ∗2.

Further, we have derived the equation of geodesic for F ∗n.

§2. Randers Conformal Change

Definition 2.1 Let (Mn, L) be a Finsler space Fn, where Mn is an n-dimensional differentiable

manifold equipped with a fundamental function L. A change in fundamental metric L, defined by

equation (1), is called Randers conformal change, where σ(x) is conformal factor and function

of position only and β(x, y) = bi(x)yi is a 1- form on Mn. A space equipped with fundamental

metric L∗(x, y) is called Randers conformally changed space F ∗n.

This change generalizes various changes studied by Randers [11], Matsumuto [12], Shibata

[13], Pandey [10] etc. Differentiating equation (1) with respect to yi, the normalized supporting

element l∗i = ∂̇iL
∗ is given by

l∗i (x, y) = eσ(x)li(x, y) + bi(x), (2)

where li = ∂̇iL is the normalized supporting element in the Finsler space Fn. Differentiating

(2) with respect to yj, the angular metric tensor h∗
ij = L∗∂̇i∂̇jL

∗ is given by

h∗
ij = eσ(x) L

∗

L
hij (3)

where hij = L∂̇i∂̇jL is the angular metric tensor in the Finsler space Fn .

Again the fundamental tensor g∗ij = ∂̇i∂̇j
L∗2

2 = h∗
ij + l∗i l∗j is given by

g∗ij = τgij + bibj + eσ(x)L−1(biyj + bjyi) − βeσ(x)L−3yiyj (4)

where we put yi = gij(x, y)yj , τ = eσ(x) L∗

L
and gij is the fundamental tensor of the Finsler

space Fn. It is easy to see that the det(g∗ij) does not vanish, and the reciprocal tensor with

components g∗ij is given by

g∗ij = τ−1gij + φyiyj − L−1τ−2(yibj + yjbi) (5)
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where φ = e−2σ(x)(Leσ(x)b2 + β)L∗−3, b2 = bib
i, bi = gijbj and gij is the reciprocal tensor of

gij . Here it will be more convenient to use the tensors

hij = gij − L−2yiyj, ai = βL−2yi − bi (6)

both of which have the following interesting property:

hijy
j = 0, aiy

i = 0 (7)

Now differentiating equation (4) with respect to yk and using relation (6), the Cartan covariant

tensor C∗ with the components C∗
ijk = ∂̇k(

g∗
ij

2 ) is given as:

C∗
ijk = τ [Cijk − 1

2L∗
(hijak + hjkai + hkiaj)] (8)

where Cijk is (h)hv-torsion tensor of Cartan’s connection CΓ of Finsler space Fn.

In order to obtain the tensor with the components C∗
ijk , paying attention to (7), we obtain

from (5) and (8),

C∗j
ik = Cj

ik − 1

2L∗
(hj

iak + hj
kai + hikaj) (9)

−(τL)−1Cikry
jbr − τ−1

2LL∗
(2aiaj + a2hij)y

j

where aia
i = a2.

Proposition 2.1 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the

Randers conformal change of the Finsler space Fn = (Mn, L), then the normalized supporting

element l∗i , angular metric tensor h∗
ij, fundamental metric tensor g∗ij and (h)hv-torsion tensor

C∗
ijk of F ∗n are given by (2), (3), (4) and (8) respectively.

§3. Main Scalar of Randers Conformally Changed Two-Dimensional Finsler Space

The (h)hv-torsion tensor for a two-dimensional Finsler space F 2 is given by [9]:

Cijk = Imimjmk (10)

where I = C222 is the main scalar of F 2.

Similarly, the (h)hv-torsion tensor for a two-dimensional Finsler space F ∗2 is given by

C∗
ijk = I∗m∗

i m
∗
jm

∗
k (11)

where I∗ is the main scalar of F ∗2, and m∗
i is unit vector orthogonal to l∗i in two-dimensional

Finsler space.

Putting j = k in equation (9), we get

C∗
i = Ci −

(n + 1)

2L∗
ai (12)
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The normalized torsion vectors are mi = Ci

C
in F 2 and m∗i = C∗i

C∗ in F ∗2, where C and C∗ are

the lengths of Ci and C∗i in F 2 and F ∗2 respectively. The equation (12) can also be written as

m∗
i = λmi + µai (13)

where λ = C
C∗ and µ = − (n+1)

2C∗ L∗−1.

Now

C∗2 = g∗ijC∗
i C∗

j = τ−1[C2 +
(n + 1)

L∗
Aγ ], (14)

where Aγ = Cγ + (n+1)
4L∗ a2 and Cγ = Cib

i are scalars.

The contravariant components of l∗i and m∗
i are given below:

l∗i = g∗ij l∗j = Ali + Bbi (15)

where A = eσ(x)τ−1 − τ−2βeσ(x) + βφL − b2τ−2 + eσ(x)L2 and B = (−eσ(x)τ−2 − τ−1 −
βL−1τ−2) are scalars, lil

i = 1 and bil
i = bili = Lβ. Also

m∗i = Dmi + Eli + Fai (16)

where D = τ−1λ, E = (−τ−2λH − τ−2µ(β2L−1 − b2)), F = µτ−1 and H = mib
i are scalars.

Hence, we have

Proposition 3.1 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the

Randers conformal change of the Finsler space Fn = (Mn, L), then contravariant components of

the Berwald frame (l, m) in two-dimensional Finsler space are given by (15) and (16), whereas

covariant components are given by (2) and (13) respectively.

Proposition 3.2 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the

Randers conformal change of the Finsler space Fn = (Mn, L), then the relationship between

the lengths of the components Ci and C∗
i is given by (14).

Since the (h)hv-torsion tensor given by (8) can be rewritten in two-dimensional form as

follows:

I∗m∗
i m

∗
jm

∗
k = τ [Imimjmk − 3

2L∗
a2mimjmk] (17)

where hij = mimj and ai = a1li + a2mi, then aiy
i = 0 =⇒ a1 = 0. So, ai = a2mi, a1 and a2

are certain scalars.

From equations (13) and (17), we have

I∗(λ + µa2)
3mimjmk = τ [Imimjmk − 3

2L∗
a2mimjmk] (18)

Contracting (18) by mimjmk, we have

I∗ =
τ

(λ + µa2)3
[I − 3

2L∗
a2] (19)
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Theorem 3.1 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the Ran-

ders conformal change of the Finsler space Fn = (Mn, L), then the relationship between the

Main scalars I∗ and I of the Finsler space F ∗2 and F 2 is given by (19).

Corollary 3.1 For σ(x) = 0, i.e. for Randers change, the relationship between the Main

scalars I∗ and I of the Finsler space F ∗2 and F 2 is given by [10]:

I∗ =
(L + β)L−1

(λ + µa2)3
I − 3L−1

2(λ + µa2)3
a2.

Corollary 3.2 For β = 0, i.e. for conformal change, the relationship between the Main scalars

I∗ and I of the Finsler space F ∗2 and F 2 is given by

I∗ =
eσ(x)

λ3
I.

Corollary 3.3 For β = 0 and σ = a non-zero constant i.e. for homothetic change, the

relationship between the Main scalars I∗ and I of the Finsler space F ∗2 and F 2 is given by

I∗ =
eσ

λ3
I.

§4. Geodesic of Randers Conformally Changed Space

Let s be the arc-length, then the equation of a geodesic [14] of Fn = (Mn, L) is written in the

well-known form:
d2xi

ds2
+ 2Gi(x,

dx

ds
) = 0, (20)

where functions Gi(x, y) are given by

2Gi = gir(yj ∂̇r∂jF − ∂rF ), F =
L2

2
.

Now suppose s∗ is the arc-length in the Finsler space F ∗n = (Mn, L∗), then the equation

of geodesic in F ∗n can be written as

d2xi

ds∗2
+ 2G∗i(x,

dx

ds∗
) = 0, (21)

where functions G∗i(x, y) are given by

2G∗i = g∗ir(yj ∂̇r∂jF
∗ − ∂rF

∗), F ∗ =
L∗2

2
.

Since ds∗ = L∗(x, dx), this is also written as

ds∗ = eσ(x)L(x, dx) + bi(x)dxi = eσ(x)ds + bi(x)dxi

Since ds = L(x, dx), we have
dxi

ds
=

dxi

ds∗
[eσ(x) + bi

dxi

ds
] (22)
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Differentiating (22) with respect to s, we have

d2xi

ds2
=

d2xi

ds∗2
[eσ(x) + bi

dxi

ds
]2 +

dxi

ds∗
(
deσ(x)

ds
+

dbi

ds

dxi

ds
+ bi

d2xi

ds2
).

Substituting the value of
dxi

ds∗
from (22), the above equation becomes

d2xi

ds2
=

d2xi

ds∗2
[eσ(x) + bi

dxi

ds
]2 (23)

+
dxi

ds

[eσ(x) + bi
dxi

ds
]
(
deσ(x)

ds
+

dbi

ds

dxi

ds
+ bi

d2xi

ds2
)

Since 2G∗i = g∗ir(yj ∂̇r∂j
L∗2

2 − ∂r
L∗2

2 ), we have

2G∗
i = e2σ(x)Gi + yj[eσ(x)L∂̇i(∂je

σ(x))L + eσ(x)L∂̇i∂jβ + (24)

β∂̇i(∂je
σ(x))L + βeσ(x)∂̇i∂jL + β∂̇i∂jβ + (eσ(x)li + bi)((∂je

σ(x))L

+∂jβ) + eσ(x)br∂jL] − [eσ(x)L(∂ie
σ(x))L + eσ(x)L∂iβ + β∂i(e

σ(x))L

+βeσ(x)∂iL + β∂iβ]

Now we have

2G∗i = g∗irG∗
r = JGi + M i (25)

where J = e2σ(x)τ−1 and

M i = e2σ(x)Gr[φyiyr − L−1τ−2(yibr + yrbi)] + [τ−1gir + φyiyr (26)

−L−1τ−2(yibr + yrbi)][yj [eσ(x)L∂̇r(∂je
σ(x))L + eσ(x)L∂̇r∂jβ

+β∂̇r(∂je
σ(x))L + βeσ(x)∂̇r∂jL + β∂̇r∂jβ + (eσ(x)lr + br)((∂je

σ(x))L

+∂jβ) + eσ(x)br∂jL] − [eσ(x)L(∂re
σ(x))L + eσ(x)L∂rβ + β∂r(e

σ(x))L

+βeσ(x)∂rL + β∂rβ]

Proposition 4.1 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the

Randers conformal change of the Finsler space Fn = (Mn, L), then the relationship between

the Berwald connection function G∗i and Gi is given by (25).

Theorem 4.1 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the Ran-

ders conformal change of the Finsler space Fn = (Mn, L), then the equation of geodesic of F ∗n

is given by (21), where
d2xi

ds∗2
and G∗i are given by (23) and (25) respectively.

Corollary 4.1 For σ(x) = 0, i.e. for Randers change, the equation of geodesic of F ∗n is given

by (21), where
d2xi

ds∗2
and G∗i are given below [10]:

d2xi

ds2
=

d2xi

ds∗2
[1 + bi

dxi

ds
]2 +

dxi

ds∗
(
dbi

ds

dxi

ds
+ bi

d2xi

ds2
)
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and

2G∗i = L(L + β)−1Gi + Gr[−L(L + β)−2((yibr + yrbi) + (Lb2 + β)(L + β)−3yiyr]

+[L(L + β)−1gir − L(L + β)−2((yibr + yrbi) + (Lb2 + β)(L + β)−3yiyr][yj(2L∂jbr

+β∂̇j∂rL + 2β∂jbr + br∂jL+) − (βlr + (L + β)∂jbry
j)].

Corollary 4.2 For β = 0, i.e. for conformal change, the equation of geodesic of F ∗n is given

by (21), where d2xi

ds∗2 and G∗i are given below:

d2xi

ds2
=

d2xi

ds∗2
e2σ(x) +

dxi

ds∗
deσ(x)

ds

and

2G∗i = Gi + e−2σ(x)gir[yj[eσ(x)L∂̇r(∂je
σ(x))L + eσ(x)lr(∂je

σ(x))L] − eσ(x)L(∂re
σ(x))L].

Corollary 4.3 For β = 0 and σ = a non-zero constant i.e. for homothetic change, the equation

of geodesic of F ∗n is given by (21), where
d2xi

ds∗2
and G∗i are given below

d2xi

ds2
=

d2xi

ds∗2
e2σ

and 2G∗i = Gi.

§5. Scalar Curvature of Randers Conformally Changed Two-Dimensional

Finsler Space

The (v)h-torsion tensor Ri
jk in two-dimensional Finsler space may be written as [9]

Ri
jk = LRmi(ljmk − lkmj), (27)

where R is the h-scalar curvature in F 2.

Similarly the (v)h-torsion tensor R∗i
jk in Finsler space F ∗2 is given by

R∗i
jk = L∗R∗m∗i(l∗j m∗

k − l∗km∗
j ), (28)

where R∗ is the h-scalar curvature in F ∗2. If we are concerned with Berwald connection BΓ,

the non-vanishing (v)h-torsion tensor Ri
jk [9] is given as

Ri
jk = δkGi

j − δjG
i
k = ∂kGi

j − ∂jG
i
k + Gr

jG
i
rk − Gr

kGi
rj , (29)

where δi = ∂i − Gr
i ∂̇r, Gi

j = ∂̇jG
i and Gi

jk = ∂̇kGi
j .

Similarly the (v)h-torsion tensor R∗i
jk for Berwald connection BΓ in F ∗n is

R∗i
jk = δkG∗i

j − δjG
∗i
k = ∂kG∗i

j − ∂jG
∗i
k + G∗r

j G∗i
rk − G∗r

k G∗i
rj , (30)
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where δi = ∂i − G∗r
i ∂̇r, G∗i

j = ∂̇jG
∗i and G∗i

k = ∂̇kG∗i
j .

Using relation (25) we have

G∗i
j = ∂̇jG

∗i =
1

2
[JGi

j + M i
j ], (31)

where ∂̇jM
i = M i

j , and

G∗i
jk = ∂̇kG∗i

j =
1

2
[JGi

jk + M i
jk], (32)

where ∂̇kM i
j = M i

jk.

Using equation (30) and (31) in (29), we have

R∗i
jk =

J

2
[∂kGi

j − ∂jG
i
k] +

1

2
[∂kM i

j − ∂jM
i
k] +

J2

4
[Gr

jG
i
kr − Gr

kGi
jr] (33)

+
J

2
[Gr

jM
i
kr + M r

j Gi
kr − Gr

kM i
jr − M r

kGi
jr ] + [M r

j M i
kr − M r

kM i
jr]

From equation (27) we have

R∗i
jk

R∗
= L∗m∗i(l∗j m∗

k − l∗km∗
j ).

In view of (1), (2), (13) and (16), we have

R∗i
jk

L∗R∗
= Dλeσ(x)mi(ljmk − lkmj) + Dλmi(bjmk − bkmj) (34)

+(Eli + µeσ(x)mi(ljbk − lkbj)

+Fai)[λeσ(x)(ljmk − lkmj)µeσ(x)(ljbk − lkbj) + λ(bjmk − bkmj)]

Using (26), (28), (32) and (33), we have

1

R∗
(
J

2
[∂kGi

j − ∂jG
i
k] +

1

2
[∂kM i

j − ∂jM
i
k] +

J2

4
[Gr

jG
i
kr − Gr

kGi
jr] (35)

+
J

2
[Gr

jM
i
kr + M r

j Gi
kr − Gr

kM i
jr − M r

kGi
jr ] + [M r

j M i
kr − M r

kM i
jr])

=
Dλτ

R
(∂kGi

j − ∂jG
i
k + Gr

jG
i
rk − Gr

kGi
rj) + (eσ(x)L + β)(µeσ(x)mi(ljbk

−lkbj) + Dλmi(bjmk − bkmj) + (Eli + Fai)[λeσ(x)(ljmk − lkmj)

+µeσ(x)(ljbk − lkbj) + λ(bjmk − bkmj)])

Theorem 5.1 Let F ∗n = (Mn, L∗) be an n-dimensional Finsler space obtained from the Ran-

ders conformal change of the Finsler space Fn = (Mn, L), then the relationship between scalar

curvatures of the Finsler space F ∗2 and F 2 is given by (34).

Corollary 5.1 For σ(x) = 0, i.e. for Randers change, the relationship between scalar curvatures
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of the Finsler space F ∗2 and F 2 is given as [10]:

1

R∗
(
J1

2
[∂kGi

j − ∂jG
i
k] +

1

2
[∂kM i

1j − ∂jM
i
1k] +

J2
1

4
[Gr

jG
i
kr − Gr

kGi
jr ]

+
J1

2
[Gr

jM
i
1kr + M r

1jG
i
kr − Gr

kM i
1jr − M r

1kGi
jr ] + [M r

1jM
i
1kr − M r

1kM i
1jr])

=
D1λτ1

R
(∂kGi

j − ∂jG
i
k + Gr

jG
i
rk − Gr

kGi
rj) + (L + β)(µ1m

i(ljbk − lkbj)

+D1λmi(bjmk − bkmj) + (E1l
i + F1a

i)[λ(ljmk − lkmj) + µ1(ljbk − lkbj)

+λ(bjmk − bkmj)]),

where

J1 =
L(L + β)−1

2
, τ1 =

L + β

L
, µ1 = − (n + 1)

2C∗
(L + β)−1,

D1 =
L

L + β

C

C∗
, E1 = −(

L + β

L
)−2(λH + µ1(β

2L−1 − b2)), F1 = µ1
L

L + β

and

M i
1 =

1

2
[Gr[−L(L + β)−2((yibr + yrbi) + (Lb2 + β)(L + β)−3yiyr]

+[L(L + β)−1gir − L(L + β)−2((yibr + yrbi) + (Lb2 + β)(L + β)−3yiyr]

×[yj(2L∂jbr + β∂̇j∂rL + 2β∂jbr + br∂jL) − (βlr + (L + β)∂jbry
j)]],

M i
1j = ∂̇jM

i
1, M i

1jk = ∂̇kM i
1j .

Corollary 5.2 For β = 0, i.e. for conformal change, the relationship between scalar curvatures

of the Finsler space F ∗2 and F 2 is given as:

1

R∗
(
1

2
[∂kGi

j − ∂jG
i
k] +

1

2
[∂kM i

2j − ∂jM
i
2k] +

1

4
[Gr

jG
i
kr − Gr

kGi
jr ]

+
1

2
[Gr

jM
i
2kr + M r

2jG
i
kr − Gr

kM i
2jr − M r

2kGi
jr ] + [M r

2jM
i
2kr − M r

2kM i
2jr ])

=
D2λτ2

R
(∂kGi

j − ∂jG
i
k + Gr

jG
i
rk − Gr

kGi
rj),

where

τ2 = eσ(x), D2 = e−σ(x) C

C∗

and

M i
2 = e−2σ(x)gir[yj [eσ(x)L∂̇r(∂je

σ(x))L + eσ(x)lr(∂je
σ(x))L] − eσ(x)L(∂re

σ(x))L],

M i
2j = ∂̇jM

i
2, M i

2jk = ∂̇kM i
2j.

Corollary 5.3 For β = 0 and σ = a non-zero constant i.e. for homothetic change, the

relationship between scalar curvatures of the Finsler space F ∗2 and F 2 is given as:

1

R∗
(
1

2
[∂kGi

j − ∂jG
i
k] +

1

4
[Gr

jG
i
kr − Gr

kGi
jr ]) =

D3λτ3

R
(∂kGi

j − ∂jG
i
k + Gr

jG
i
rk − Gr

kGi
rj),

where

τ3 = eσ, D3 = e−σ C

C∗
.
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Abstract: For a connected graph G = (V, E), let a set M be a minimum monophonic hull

set of G. A subset T ⊆ M is called a forcing subset for M if M is the unique minimum

monophonic hull set containing T . A forcing subset for M of minimum cardinality is a

minimum forcing subset of M . The forcing monophonic hull number of M , denoted by

fmh(M), is the cardinality of a minimum forcing subset of M . The forcing monophonic

hull number of G, denoted by fmh(G), is fmh(G) = min {fmh(M)}, where the minimum is

taken over all minimum monophonic hull sets in G. Some general properties satisfied by this

concept are studied. Every monophonic set of G is also a monophonic hull set of G and so

mh(G) ≤ h(G), where h(G) and mh(G) are hull number and monophonic hull number of

a connected graph G. However, there is no relationship between fh(G) and fmh(G), where

fh(G) is the forcing hull number of a connected graph G. We give a series of realization

results for various possibilities of these four parameters.

Key Words: hull number, monophonic hull number, forcing hull number, forcing mono-

phonic hull number, Smarandachely geodetic k-set, Smarandachely hull k-set.

AMS(2010): 05C12, 05C05

§1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic

terminology, we refer to Harary [1,9]. A convexity on a finite set V is a family C of subsets of

V , convex sets which is closed under intersection and which contains both V and the empty set.

The pair(V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed

by a finite connected graph G = (V, E) and a convexity C on V such that (V, E) is a convexity

space satisfying that every member of C induces a connected subgraph of G. Thus, classical

convexity can be extended to graphs in a natural way. We know that a set X of Rn is convex if

1Received March 14, 2012. Accepted August 26, 2012.
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every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a

finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain

kind of path connecting vertices of W [2,8]. The distance d(u, v) between two vertices u and v in

a connected graph G is the length of a shortest u− v path in G. An u− v path of length d(u, v)

is called an u − v geodesic. A vertex x is said to lie on a u − v geodesic P if x is a vertex of P

including the vertices u and v. For two vertices u and v, let I[u, v] denotes the set of all vertices

which lie on u−v geodesic. For a set S of vertices, let I[S] =
⋃

(u,v)∈S I[u, v]. The set S is convex

if I[S] = S. Clearly if S = {v}or S = V , then S is convex. The convexity number, denoted

by C(G), is the cardinality of a maximum proper convex subset of V . The smallest convex set

containing S is denoted by Ih(S) and called the convex hull of S. Since the intersection of two

convex sets is convex, the convex hull is well defined. Note that S ⊆ I[S] ⊆ Ih[S] ⊆ V . For an

integer k ≥ 0, a subset S ⊆ V is called a Smarandachely geodetic k-set if I[S
⋃

S+] = V and a

Smarandachely hull k-set if Ih(S
⋃

S+) = V for a subset S+ ⊂ V with |S+| ≤ k. Particularly, if

k = 0, such Smarandachely geodetic 0-set and Smarandachely hull 0-set are called the geodetic

set and hull set, respectively. The geodetic number g(G) of G is the minimum order of its

geodetic sets and any geodetic set of order g(G) is a minimum geodetic set or simply a g- set

of G. Similarly, the hull number h(G) of G is the minimum order of its hull sets and any hull

set of order h(G) is a minimum hull set or simply a h- set of G. The geodetic number of a

graph is studied in [1,4,10] and the hull number of a graph is studied in [1,6].A subset T ⊆ S is

called a forcing subset for S if S is the unique minimum hull set containing T . A forcing subset

for S of minimum cardinality is a minimum forcing subset of M . The forcing hull number of

S, denoted by fh(S), is the cardinality of a minimum forcing subset of S. The forcing hull

number of G, denoted by fh(G),is fh(G) = min {fh(S)}, where the minimum is taken over all

minimum hull sets S in G. The forcing hull number of a graph is studied in[3,14]. A chord of

a path uo, u1, u2, ..., un is an edge uiuj with j ≥ i + 2(0 ≤ i, j ≤ n). A u − v path P is called

a monophonic path if it is a chordless path. A vertex x is said to lie on a u − v monophonic

path P if x is a vertex of P including the vertices u and v. For two vertices u and v, let J [u, v]

denotes the set of all vertices which lie on u − v monophonic path. For a set M of vertices, let

J [M ] = ∪u,v∈MJ [u, v]. The set M is monophonic convex or m-convex if J [M ] = M . Clearly if

M = {v} or M = V , then M is m-convex. The m-convexity number, denoted by Cm(G), is the

cardinality of a maximum proper m-convex subset of V . The smallest m-convex set containing

M is denoted by Jh(M) and called the monophonic convex hull or m-convex hull of M . Since

the intersection of two m-convex set is m-convex, the m-convex hull is well defined. Note that

M ⊆ J [M ] ⊆ Jh(M) ⊆ V . A subset M ⊆ V is called a monophonic set if J [M ] = V and

a m-hull set if Jh(M) = V . The monophonic number m(G) of G is the minimum order of

its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or

simply a m- set of G. Similarly, the monophonic hull number mh(G) of G is the minimum

order of its m-hull sets and any m-hull set of order mh(G) is a minimum monophonic set or

simply a mh- set of G. The monophonic number of a graph is studied in [5,7,11,15] and the

monophonic hull number of a graph is studied in [12]. A vertex v is an extreme vertex of a

graph G if the subgraph induced by its neighbors is complete.Let G be a connected graph and

M a minimum monophonic hull set of G. A subset T ⊆ M is called a forcing subset for M
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if M is the unique minimum monophonic hull set containing T . A forcing subset for M of

minimum cardinality is a minimum forcing subset of M . The forcing monophonic hull number

of M , denoted by fmh(M), is the cardinality of a minimum forcing subset of M . The forcing

monophonic hull number of G, denoted by fmh(G), is fmh(G) = min {fmh(M)}, where the

minimum is taken over all minimum monophonic hull sets M in G.For the graph G given in

Figure 1.1, M = {v1, v8} is the unique minimum monophonic hull set of G so that mh(G) = 2

and fmh(G) = 0. Also S1 = {v1, v5, v8} and S2 = {v1, v6, v8} are the only two h-sets of G

such that fh(S1) = 1, fh(S2) = 1 so that fh(G) = 1 . For the graph G given in Figure 1.2,

M1 = {v1, v4} , M2 = {v1, v6} , M3 = {v1, v7} and M4 = {v1, v8} are the only four mh-sets of

G such that fmh(M1) = 1, fmh(M2) = 1, fmh(M3) = 1 and fmh(M4) = 1 so that fmh(G) = 1.

Also, S = {v1, v7} is the unique minimum hull set of G so that h(G) = 2 and fh(G) = 0.

Throughout the following G denotes a connected graph with at least two vertices.

v1 v2

v3

v8

v9

v7

v4
v5 v6

G

Figure 1.1

v1 v2

v3

v7
v4

v5

v6

G

Figure 1.2

v8

The following theorems are used in the sequel

Theorem 1.1 ([6]) Let G be a connected graph. Then

a) Each extreme vertex of G belongs to every hull set of G;
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(b) h(G) = p if and only if G = Kp.

Theorem 1.2 ([3]) Let G be a connected graph. Then

(a) fh(G) = 0 if and only if G has a unique minimum hull set;

(b) fh(G) ≤ h(G) − |W |, where W is the set of all hull vertices of G.

Theorem 1.3 ([13]) Let G be a connected graph. Then

(a) Each extreme vertex of G belongs to every monophonic hull set of G;

(b) mh(G) = p if and only if G = Kp.

Theorem 1.4 ([12]) Let G be a connected graph. Then

(a) fmh(G) = 0 if and only if G has a unique mh-set;

(b) fmh(G) ≤ mh(G) − |S|, where S is the set of all monophonic hull vertices of G.

Theorem 1.5 ([12]) For any complete Graph G = Kp(p ≥ 2), fmh(G) = 0.

§2. Special Graphs

In this section, we present some graphs from which various graphs arising in theorem are

generated using identification.

Let Ui : αi, βi, γi, δi, αi(1 ≤ i ≤ a) be a copy of cycle C4. Let Vi be the graph obtained from

Ui by adding three new vertices ηi, fi, gi and the edges βiηi, ηifi, figi, giδi, ηiγi, fiγi, giγi(1 ≤
i ≤ a). The graph Ta given in Figure 2.1 is obtained from Vi’s by identifying γi−1 of Vi−1 and

αi of Vi(2 ≤ i ≤ a).

f1

g1

f2

g2

fa

ga

Ta

Figure 2.1
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β1 β2 βa

η2

γa

ηa

δ2δ1 δa

γ1
γ2 αa

η1

Let Pi : ki, li, mi, ni, ki(1 ≤ i ≤ b) be a copy of cycle C4. Let Qi be the graph obtained from

Pi by adding three new vertices hi, pi and qi and the edges lihi, hipi, piqi, and qimi(1 ≤ i ≤ b).

The graph Wb given in Figure 2.2 is obtained from Qi’s by identifying mi−1 of Qi−1 and ki of

Qi(2 ≤ i ≤ b).
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Figure 2.2

The graph Zb given in Figure 2.3 is obtained from Wb by joining the edge lini(1 ≤ i ≤ b).
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Figure 2.3

Let Fi : si, ti, xi, wi, si(1 ≤ i ≤ c) be a copy of cycle C4. Let Ri be the graph obtained from

Fi by adding two new vertices ui, vi and joining the edges tiui, uiwi, tiwi, uivi and vixi(1 ≤ i ≤
c). The graph Hc given in Figure 2.4 is obtained from Ri’s by identifying the vertices xi−1 of

Ri−1 and si of Ri(1 ≤ i ≤ c).
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Figure 2.4

Every monophonic set of G is also a monophonic hull set of G and so mh(G) ≤ h(G),

where h(G) and mh(G) are hull number and monophonic hull number of a connected graph G.

However, there is no relationship between fh(G) and fmh(G), where fh(G) is the forcing hull

number of a connected graph G. We give a series of realization results for various possibilities

of these four parameters.
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§3. Some Realization Results

Theorem 3.1 For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G

such that fmh(G) = fh(G) = 0, mh(G) = a and h(G) = b.

Proof If a = b, let G = Ka. Then by Theorems1.3(b) and 1.1(b), mh(G) = h(G) = a and

by Theorems 1.5 and 1.2(a), fmh(G) = fh(G) = 0. For a < b, let G be the graph obtained from

Tb−a by adding new vertices x, z1, z2, · · · , za−1 and joining the edges xα1, γb−az1, γb−az2, · · · ,

γb−aza−1. Let Z = {x, z1, z2, · · · , za−1} be the set of end-vertices of G. Then it is clear that Z

is a monophonic hull set of G and so by Theorem 1.3(a), Z is the unique mh-set of G so that

mh(G) = a and hence by Theorem 1.4(a), fmh(G) = 0. Since Ih(Z) 6= V, Z is not a hull set of

G. Now it is easily seen that W = Z ∪ {f1, f2, · · · , fb−a} is the unique h-set of G and hence by

Theorem 1.1(a) and Theorem 1.2(a), h(G) = b and fh(G) = 0. �

Theorem 3.2 For every integers a, b and c with 0 ≤ a < b < c and c > a + b, there exists a

connected graph G such that fmh(G) = 0, fh(G) = a, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph Tb constructed in Theorem 3.1 satisfies the requirements of

the theorem.

Case 2. a ≥ 1. Let G be the graph obtained from Wa and Tc−(a+b) by identifying the vertex

ma of Wa and α1 of Tc−(a+b) and then adding new vertices x, z1, z2, · · · , zb−1 and joining the

edges xk1, γc−b−az1, γc−b−az2, · · · , γc−b−azb−1. Let Z = {x, z1, z2, · · · , zb−1}. Since Jh(Z) = V ,

Z is a monophonic hull set G and so by Theorem 1.3(a), Z is the unique mh- set of G so that

mh(G) = b and hence by Theorem 1.4(a), fmh(G) = 0. Next we show that h(G) = c. Let S be

any hull set of G. Then by Theorem 1.1(a), Z ⊆ S. It is clear that Z is not a hull set of G. For

1 ≤ i ≤ a, let Hi = {pi, qi}. We observe that every h-set of G must contain at least one vertex

from each Hi(1 ≤ i ≤ a) and each fi(1 ≤ i ≤ c−b−a) so that h(G) ≥ b+a+c−a−b = c. Now,

M = Z∪{q1, q2, · · · , qa}∪{f1, f2, · · · , fc−b−a} is a hull set of G so that h(G) ≤ b+a+c−b−a = c.

Thus h(G) = c. Since every h-set contains S1 = Z ∪ {f1, f2, · · · , fc−b−a}, it follows from

Theorem 1.2(b) that fh(G) = h(G) − |S1| = c− (c− a) = a. Now, since h(G) = c and every h-

set of G contains S1, it is easily seen that every h-set S is of the form S1∪{d1, d2, · · · , da},where

di ∈ Hi(1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then it is clear that there

exists some j such that T ∩ Hj = φ, which shows that fh(G) = a. �

Theorem 3.3 For every integers a, b and c with 0 ≤ a < b ≤ c and b > a + 1, there exists a

connected graph G such that fh(G) = 0, fmh(G) = a, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of

the theorem.

Case 2. a ≥ 1.
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Subcase 2a. b = c. Let G be the graph obtained from Za by adding new vertices x, z1, z2, · · · ,

zb−a−1 and joining the edges xk1, maz1, maz2, · · · , mazb−a−1. Let Z = {x, z1, z2, · · · , zb−a−1}
be the set of end-vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), Z ⊆ S.

It is clear that Z is not a hull set of G. For 1 ≤ i ≤ a, let Hi = {hi, pi, qi}. We observe that

every h-set of G must contain only the vertex pi from each Hi so that h(G) ≤ b − a + a = b.

Now S = Z ∪ {p1, p2, p3, · · · , pa} is a hull set of G so that h(G) ≥ b − a + a = b. Thus

h(G) = b. Also it is easily seen that S is the unique h-set of G and so by Theorem 1.2(a),

fh(G) = 0.Next we show that mh(G) = b. Since Jh(Z) 6= V, Z is not a monophonic hull set of

G. We observe that every mh-set of G must contain at least one vertex from each Hi so that

mh(G) ≥ b−a+a = b. Now M1 = Z ∪{q1, q2, q3, · · · , qa} is a monophonic hull set of G so that

mh(G) ≤ b− a + a = b. Thus mh(G) = b. Next we show that fmh(G) = a. Since every mh-set

contains Z, it follows from Theorem 1.4(b) that fmh(G) ≤ mh(G)−|Z| = b− (b−a) = a. Now,

since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set M is of

the form Z ∪ {d1, d2, d3, · · · , da}, where di ∈ Hi(1 ≤ i ≤ a). Let T be any proper subset of M

with |T | < a. Then it is clear that there exists some j such that T ∩Hj = φ, which shows that

fmh(G) = a.

Subcase 2b. b < c. Let G be the graph obtained from Za and Tc−b by identifying the

vertex ma of Za and α1 of Tc−b and then adding the new vertices x, z1, z2, · · · , zb−a−1 and

joining the edges xα1, γc−bz1, γc−bz2, · · · , γc−bzb−a−1. Let Z = {x, z1, z2, · · · , zb−a−1} be the

set of end vertices of G. Let S be any hull set of G. Then by Theorem 1.1(a), Z ⊆ S. Since

Ih(Z) 6= V, Z is not a hull set of G. For 1 ≤ i ≤ a, let Hi = {hi, pi, qi}. We observe that every

h-set of G must contain only the vertex pi from each Hi and each fi(1 ≤ i ≤ c − b) so that

h(G) ≥ b − a + a + c − b = c. Now S = Z ∪ {p1, p2, p3, · · · , pa} ∪ {f1, f2, f3, · · · , fc−b}is a hull

set of G so that h(G) ≤ b − a + a + c − b = c. Thus h(G) = c. Also it is easily seen that S

is the unique h-set of G and so by Theorem 1.2(a), fh(G) = 0. Since Jh(Z) 6= V , Z is not a

monophonic hull set of G. We observe that every mh-set of G must contain at least one vertex

from each Hi(1 ≤ i ≤ a) so that mh(G) ≥ b − a + a = b. Now, M1 = Z ∪ {h1, h2, h3, · · · , ha}
is a monophonic hull set of G so that mh(G) ≤ b − a + a = b. Thus mh(G) = b. Next we

show that fmh(G) = a. Since every mh-set contains Z, it follows from Theorem 1.4(b) that

fmh(G) ≤ mh(G) − |Z| = b − (b − a) = a. Now, since mh(G) = b and every mh-set of G

contains Z, it is easily seen that every mh-set S is of the form Z ∪ {d1, d2, d3, · · · , da}, where

di ∈ Hi(1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then it is clear that there

exists some j such that T ∩ Hj = φ, which shows that fmh(G) = a. �

Theorem 3.4 For every integers a, b and c with 0 ≤ a < b ≤ c and b > a + 1 , there exists a

connected graph G such that fmh(G) = fh(G) = a, mh(G) = b and h(G) = c.

Proof We consider two cases.

Case 1. a = 0, then the graph G constructed in Theorem 3.1 satisfies the requirements of the

theorem.

Case 2. a ≥ 1.
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Subcase 2a. b = c. Let G be the graph obtained from Ha by adding new vertices x, z1, z2, · · · ,

zb−a−1 and joining the edges xs1, xaz1, xaz2, · · · , xazb−a−1. Let Z = {x, z1, z2, · · · , zb−a−1} be

the set of end-vertices of G. Let M be any monophonic hull set of G. Then by Theorem 1.3(a),

Z ⊆ M . First we show that mh(G) = b. Since Jh(Z) 6= V, Z is not a monophonic hull set of

G. Let Fi = {ui, vi} (1 ≤ i ≤ a). We observe that every mh-set of G must contain at least one

vertex from each Fi(1 ≤ i ≤ a). Thus mh(G) ≥ b − a + a = b. On the other hand since the set

M = Z ∪ {v1, v2, v3, · · · , va} is a monophonic hull set of G, it follows that mh(G) ≤ |M | = b.

Hence mh(G) = b. Next we show that fmh(G) = a. By Theorem 1.3(a), every monophonic hull

set of G contains Z and so it follows from Theorem 1.4(b) that fmh(G) ≤ mh(G) − |Z| = a.

Now, since mh(G) = b and every mh-set of G contains Z, it is easily seen that every mh-set

M is of the form Z ∪ {c1, c2, c3, · · · , ca}, where ci ∈ Fi(1 ≤ i ≤ a). Let T be any proper subset

of S with |T | < a. Then it is clear that there exists some j such that T ∩ Fj = φ, which shows

that fmh(G) = a. By similar way we can prove h(G) = b and fh(G) = a.

Subcase 2b. b < c. Let G be the graph obtained from Ha and Tc−b by identifying the vertex

xa of Ha and the vertex α1 of Tc−b and then adding the new vertices x, z1, z2, · · · , zb−a−1 and

joining the edges xs1, γc−bz1, γc−bz2, · · · , γc−bzb−a−1. First we show that mh(G) = b. Since

Jh(Z) 6= V, Z is not a monophonic hull set of G. Let Fi = {ui, vi} (1 ≤ i ≤ a) .We observe that

every mh-set of G must contain at least one vertex from each Fi(1 ≤ i ≤ a). Thus mh(G) ≥
b−a+a = b. On the other hand since the set M = Z∪{v1, v2, v3, · · · , va} is a monophonic hull

set of G, it follows that mh(G) ≥ |M | = b. Hence mh(G) = b. Next, we show that fmh(G) = a.

By Theorem 1.3(a), every monophonic hull set of G contains Z and so it follows from Theorem

1.4(b) that fmh(G) ≤ mh(G) − |Z| = a. Now, since mh(G) = b and every mh-set of G

contains Z, it is easily seen that every mh-set is of the form M = Z ∪{c1, c2, c3, · · · , ca}, where

ci ∈ Fi(1 ≤ i ≤ a). Let T be any proper subset of M with |T | < a. Then it is clear that there

exists some j such that T ∪Fj = φ, which shows that fmh(G) = a. Next we show that h(G) = c.

Since Ih(Z) 6= V, Z is not a hull set of G. We observe that every h-set of G must contain at least

one vertex from each Fi(1 ≤ i ≤ a) and each fi(1 ≤ i ≤ c−b) so that h(G) ≥ b−a+a+c−b = c.

On the other hand, since the set S1 = Z ∪ {u1, u2, u3, · · · , ua} ∪ {f1, f2, f3, · · · , fc−b} is a hull

set of G, so that h(G) ≤ |S1| = c. Hence h(G) = c. Next we show that fh(G) = a. By

Theorem 1.1(a), every hull set of G contains S2 = Z ∪ {f1, f2, f3, · · · , fc−b} and so it follows

from Theorem 1.2(b) that fh(G) ≤ h(G) − |S2| = a. Now, since h(G) = c and every h-set of

G contains S2, it is easily seen that every h-set S is of the form S = S2 ∪ {c1, c2, c3, · · · , ca},
where ci ∈ Fi(1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then it is clear that

there exists some j such that T ∩ Fj = φ, which shows that fh(G) = a. �

Theorem 3.5 For every integers a, b, c and d with 0 ≤ a ≤ b < c < d, c > a + 1, d > c− a + b,

there exists a connected graph G such that fmh(G) = a, fh(G) = b, mh(G) = c and h(G) = d.

Proof We consider four cases.

Case 1. a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements

of this theorem.

Case 2. a = 0, b ≥ 1. Then the graph G constructed in Theorem 3.2 satisfies the requirements
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of this theorem.

Case 3. 1 ≤ a = b. Then the graph G constructed in Theorem 3.4 satisfies the requirements

of this theorem.

Case 4. 1 ≤ a < b. Let G1 be the graph obtained from Ha and Wb−a by identifying the vertex

xa of Ha and the vertex k1 of Wb−a. Now let G be the graph obtained from G1 and Td−(c−a+b)

by identifying the vertex mb−a of G1 and the vertex α1 of Td−(c−a+b) and adding new vertices

x, z1, z2, · · · , zc−a−1 and joining the edges xs1, γd−(c−a+b)z1, γd−(c−a+b)z2, · · · , γd−(c−a+b)zc−a−1.

Let Z = {x, z1, z2, · · · , zc−a−1} be the set of end vertices of G. Let Fi = {ui, vi} (1 ≤ i ≤ a).

It is clear that any mh-set S is of the form S = Z ∪ {c1, c2, c3, · · · , ca}, where ci ∈ Fi(1 ≤
i ≤ a). Then as in earlier theorems it can be seen that fmh(G) = a and mh(G) = c. Let

Qi = {pi, qi}. It is clear that any h-set W is of the form W = Z ∪
{

f1, f2, f3, · · · , fd−(c−a+b)

}

∪
{c1, c2, c3, · · · , ca}∪{d1, d2, d3, · · · , db−a}, where ci ∈ Fi(1 ≤ i ≤ a) and dj ∈ Qj(1 ≤ j ≤ b−a).

Then as in earlier theorems it can be seen that fh(G) = b and h(G) = d. �

Theorem 3.6 For every integers a, b, c and d with a ≤ b < c ≤ d and c > b + 1 there exists a

connected graph G such that fh(G) = a, fmh(G) = b, mh(G) = c and h(G) = d.

Proof We consider four cases.

Case 1. a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements

of this theorem.

Case 2. a = 0, b ≥ 1. Then the graph G constructed in Theorem 3.2 satisfies the requirements

of this theorem.

Case 3. 1 ≤ a = b. Then the graph G constructed in Theorem 3.4 satisfies the requirements

of this theorem.

Case 4. 1 ≤ a < b.

Subcase 4a. c = d. Let G be the graph obtained from Ha and Zb−a by identifying the

vertex xa of Ha and the vertex k1 of Zb−a and then adding the new vertices x, z1, z2, ..., zc−b−1

and joining the edges xs1, mb−az1, mb−az2, ..., mb−azc−b−1. First we show that mh(G) = c.

Let Z = {x, z1, z2, ..., zc−b−1} be the set of end vertices of G. Let Fi = {ui, vi} (1 ≤ i ≤ a)

and Hi = {hi, pi, qi} (1 ≤ i ≤ b − a). It is clear that any mh-set of G is of the form S =

Z∪{c1, c2, c3, ..., ca}∪{d1, d2, d3, ..., db−a}, where ci ∈ Fi(1 ≤ i ≤ a) and dj ∈ Hj(1 ≤ j ≤ b−a).

Then as in earlier theorems it can be seen that fmh(G) = b and mh(G) = c. It is clear that any

h-set W is of the form W = Z∪{p1, p2, p3, ..., pb−a}∪{c1, c2, c3, ..., ca}, where ci ∈ Fi(1 ≤ i ≤ a).

Then as in earlier theorems it can be seen that fh(G) = a and h(G) = c.

Subcase 4b. c < d. Let G1 be the graph obtained from Ha and Zb−a by identifying

the vertex xa of Ha and the vertex k1 of Zb−a. Now let G be the graph obtained from G1

and Td−c by identifying the vertex mb−a of G1 and the vertex α1 of Td−c and then adding

new vertices x, z1, z2, · · · , zc−b−1 and joining the edges xs1, γd−cz1, γd−cz2, · · · , γd−czc−b−1. Let

Z = {x, z1, z2, · · · , zc−b−1} be the set of end vertices of G. Let Fi = {ui, vi} (1 ≤ i ≤ a) and

Hi = {hi, pi, qi} (1 ≤ i ≤ b − a). It is clear that any mh-set of G is of the form S = Z ∪
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{c1, c2, c3, · · · , ca}∪{d1, d2, d3, · · · , db−a}, where ci ∈ Fi(1 ≤ i ≤ a) and dj ∈ Hj(1 ≤ j ≤ b−a).

Then as in earlier theorems it can be seen that fmh(G) = b and mh(G) = c. It is clear that any h-

set W is of the form W = Z ∪{p1, p2, p3, · · · , pb−a}∪{f1, f2, f3, · · · , fd−c}∪{c1, c2, c3, · · · , ca},
where ci ∈ Fi(1 ≤ i ≤ a). Then as in earlier theorems it can be seen that fh(G) = a and

h(G) = d. �
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§1. Introduction

In articles [5] and [6] we have given simplicial branched coverings of the Real Projective Plane

and the 2-Sphere respectively. The present article is in continuation of these articles. Here we

give, for each d > 1, a simplicial branched covering map, λd : S3
3(d+1) → S3

6 , from a 3(d+1)

vertex triangulation of the 3-sphere onto a 6 vertex triangulation of the 3-sphere. For d = 2, we

show that the simplicial branched covering map λ2 : S3
9 → S3

6 is a minimal triangulation of the

well known two fold branched covering map S3 → S3/(x, y) ∼ (y, x). Moreover the simplicial

map λ2 verifies a familiar topological fact that after identifying diagonally symmetric points

of the 3-sphere we get a homeomorphic copy of the 3-sphere. Branched coverings of the low

dimensional manifolds have been discussed extensively (e.g. see [1], [3] and [4]) but the explicit

constructions, which we are giving here are missing. The purpose here is to give some concrete

examples, which are not at all trivial but explain some important topological facts.

§2. Preliminary Notes

Definition 2.1 An abstract simplicial complex K on a finite set V is a collection of subsets

of V , which is closed under inclusion i.e. if s ∈ K and s′ ⊂ s then s′ ∈ K. The elements of

K are called simplices and in particular a set γ ∈ K of cardinality n+1 is called an n-simplex;

0-simplices are called vertices, 1-simplices are called edges and so on.

A geometric n-simplex is the convex hull of n + 1 affinely independent points of RN (see

[2]). A geometric simplicial complex is a collection of geometric simplices such that all faces of

1Received February 27, 2012. Accepted August 28, 2012.
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these simplices are also in the collection and intersection of any two of these simplices is either

empty or a common face of both of these simplices. It is easy to see that corresponding to each

geometric simplicial complex there is an abstract simplicial complex. Converse is also true i.

e. corresponding to any abstract simplicial complex K there is a topological space |K| ⊂ RN ,

made up of geometric simplices, called its geometric realization (see [2], [7], [8]). If K is an

abstract simplicial complex and M is a subspace of RN such that there is a homeomorphism

h : |K| → M then we say (|K|, h) is a triangulation of M or K triangulates the topological

space M .

Definition 2.2 A map f : K → L, between two abstract simplicial complexes K and L, is called

a simplicial map if image, f(σ) = {f(v0), f(v1), ..., f(vk)}, of any simplex σ = {v0, v1, ..., vk} of

K is a simplex of L. Further if |K| and |L| are geometric realizations of K and L respectively then

there is a piecewise-linear continuous map |f | : |K| → |L| defined as follows. As each point x of

|K| is an interior point of exactly one simplex (say σ = {v0, .., vk}) of |K|, so for each x ∈ σ we

have x =
∑k

i=1 λivi where λi ≥ 0,
∑

λi = 1. Therefore we may define |f |(x) =
∑k

i=1 λif(vi).

Definition 2.3 A simplicial branched covering map between two triangulated n-manifolds K

and L is defined by a dimension preserving piecewise linear map p : |K| → |L|, which is an

ordinary covering over the complement of some specific co-dimension 2 sub-complex L′ of L

(for more detailed definition see [1], [3], [4], [5]). The sub-complex L′ is called branch set of

the branched covering map and a point x ∈ p−1(L′) is called a singular point if p fails to be a

local homeomorphism at x.

§3. Main Results

3.1 Simplicial branched covering map λd : S3
3(d+1) → S3

6

We first define a simplicial branched covering map λ2 : S3
9 → S3

6 of degree 2 and then show that

the same method gives, for each d > 2, a simplicial branched covering map λd : S3
3(d+1) → S3

6

of degree d.

Since the join of two 1-spheres is a 3-sphere, so in order to get the desired 9 vertex 3-

sphere S3
9 , we take join of a three vertex 1-sphere S1

3 = {A0, E0, F0, A0E0, E0F0, F0A0} with

the six vertex 1-sphere S1
6 = {B0, C0, D0, B1, C1, D1, C0B0, B0D0, D0C1, C1B1, B1D1, D1C0}.

The 3-sipmlices of S3
9 = S1

3 ∗ S1
6 are shown in Figure 1.

We define a map on the vertex set of S3
9 , as A0 → A, E0 → E, F0 → F, Xi → X for

each X ∈ {B, C, D}, i ∈ {0, 1} and extend it linearly on the 3-simplices of S3
9 . The image of

this map is a simplicial complex whose 3-simplices are ABCE, ACDE, ABDE, EDBF, EBCF,

EDCF, CDAF, DBAF and CBAF. This simplicial complex triangulates the 3-sphere because

its geometric realization is homeomorphic to the 3-sphere as it is a disjoint union of two 3-

balls having a common boundary S2 (see figure 2 below). We denote this simplicial complex

by S3
6 and the map just defined is the simplicial map λ2 : S3

9 → S3
6 . Notice that the map

λ2 : S3
9 → S3

6 is a 2-fold simplicial branched covering map because pre-image of each 3-simplex

of S3
6 consists of exactly two 3-simplices of S3

9 ; each is being mapped, under the map λ2, with
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the same orientation. Branching set and the singular set of the map are AE + EF + FA and

A0E0 + E0F0 + F0A0 respectively.

Figure 1

In order to get a simplicial branched covering map, λd : S3
3(d+1) → S3

6 , of degree d (for

each d > 2) we consider the join of a 3 vertex 1-sphere with the 3d vertex 1-sphere. i.e.

S3
3(d+1) = S1

3 ∗S1
3d = {A0, E0, F0, A0E0, E0F0, F0A0}∗{Bi, Ci, Di, CiBi, BiDi, DiCi+1 : i ∈ Zd}.

Figure 2

The 3-simplices of S3
3(d+1) are {A0E0CiBi, A0E0BiDi, A0E0DiCi+1, E0F0CiBi, E0F0BiDi,

E0F0DiCi+1, F0A0CiBi, F0A0BiDi, F0A0DiCi+1 : i ∈ Zd, addition in the subscripts is mod d}.
Notice that a map, defined on the vertices of the simplicial complex S3

3(d+1), as A0 → A, E0 →
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E, F0 → F, Xi → X for each X ∈ {B, C, D} and for i ∈ {0, 1, , d − 1} is a simplicial branched

covering map λd : S3
3(d+1) → S3

6 of degree d.

Remark 3.1.1 We shall now show that the simplicial map λ2 : S3
9 → S3

6 triangulates the

2-fold branched covering map S3 → S3/(x, y) ∼ (y, x) but before that we prove the following

theorem.

Theorem 3.1.1 The simplicial map λ2 : S3
9 → S3

6 is a minimal triangulation of the 2-fold

branched covering map q: S3 → S3/(x, y) ∼ (y, x).

Proof Notice that branching of the map q occurs along the diagonal circle of the quotient

space and pre-image of the branching circle is the diagonal circle of the domain of the map q.

Let λ2 : S3
α0

→ S3
β0

be a minimal triangulation of the map q, so the branching circle and the

singular circle are at least triangles. Since the polygonal link of any singular 1-simplex of S3
α0

,

is to be mapped with degree 2 by the map λ2 so the link will have at least 6-vertices. The

image of this link will be a circle with at least 3 vertices, which are different from the vertices

of the branching circle. This implies that the domain 3-sphere of the map λ2 will have at least

9 vertices and its image will have at least 6 vertices i.e. α0 ≥ 9 and β0 ≥ 6. �

Note 3.1.1 Following description of the simplicial complex S3
9 enables us to show that the

simplicial map λ2 : S3
9 → S3

6 triangulates the 2-fold branched covering map q: S3 → S3/(x, y) ∼
(y, x). It also leads to a combinatorial proof of the fact that after identification of diagonally

symmetric points of the 3-sphere we get the 3-sphere again.

3.2 Diagonally Symmetric Triangulation of the 3-Sphere

The diagonal of the standard 3-sphere S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} is the subspace

∆ = {(z1, z2) ∈ S3 : z1 = z2}. A triangulation of S3 will be called diagonally symmetric

if whenever there is a vertex at a point (z1, z2) there is a vertex at the point (z2, z1) and

whenever there is a 3-simplex on the vertices (zi1 , zi2), (zi3 , zi4), (zi5 , zi6), (zi7 , zi8), there is a

3-simplex on the vertices (zi2 , zi1), (zi4 , zi3), zi6 , zi5), (zi8 , zi7). We show that the simplicial

complex S3
9 obtained above is a diagonally symmetric triangulation of the 3-sphere and the

simplicial branched covering map λ2 : S3
9 → S3

6 is equivalent to the map q: S3 → S3/(x, y) ∼
(y, x). In order to show this we consider the following description of the 3-sphere:

S3 = T1

⋃

T2,

where T1 = {(z1, z2) ∈ S3 : |z1| ≤ |z2|}, T2 = {(z1, z2) ∈ S3 : |z1| ≥ |z2|} and

T = T1

⋂

T2 = {(z1, z2) ∈ S3 : |z1| = |z2| = 1/
√

2} ∼= S1 × S1.

A map θ : S3 → S3 defined as (z1, z2) → (z2, z1) swaps the interiors of the solid tori T1

and T2 homeomorphically. We triangulate T1 and T2 in such a way that the homeomorphism θ

induces a simplicial isomorphism between the triangulations of T1 and T2. The triangulations

of T, T1 and T2 are described as follows.
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In Figure 3 below we give a triangulated 2-torus T, which is the common boundary of both

of the solid tori T1 and T2. The vertices X0, X1 for each X ∈ {B, C, D} are symmetric about

the diagonal ∆ and the vertices A0, E0, F0 triangulate the diagonal.

Since there are precisely two ways to fold a square to get a torus, viz (i) first identify vertical

boundaries and then identify horizontal boundaries of the square (ii) first identify horizontal

boundaries and then vertical boundaries of the square, so we use this fact to obtain the solid

tori T1 and T2.

Figure 3

The solid torus T1 has been obtained by first identifying the vertical edges, of the square of

Figure 3, and then top and bottom edges (see Figure 4 below). Its three, of the total nine,

3-simplices are A0B0C0E0, A0C0E0D1 and A0D1E0B1 and remaining six 3-simplices can be

obtained from an automorphism defined by A0 → E0 → F0 → A0, B0 → D1 → C1 → B0 and

C0 → B1 → D0 → C0.

The solid torus T2 has been obtained by first identifying the horizontal edges, of the square

of Figure 3, and then the other two sides as shown in Figure 4. The nine 3-simplices of T2 are

{A0D0E0B0, E0A0C1D0, A0B1C1E0, E0C0F0D1, F0E0B0C0, E0D0B0F0, F0B1A0C1, A0F0D1B1,

F0C0D1A0}. These simplices can also be obtained from the 3-simplices of T1 by using the per-

mutation ρ = (B0B1)(C0C1)(D0D1), which is equivalent to the Z2-action defined by the map

θ : (x, y) → (y, x) on S3.

The nine 3-simplices of T1 together with the nine 3-simplices of T2 constitute a diagonally

symmetric triangulation of the 3-sphere with 9 vertices. And since the list of 3-simplices of

S1
3 ∗ S1

6 is same as that of the 3-simplices of the simplicial complex obtained now, so the two

simplicial complexes are isomorphic.

Notice that the identification of diagonally symmetric vertices / simplices of the 3-sphere

(obtained now) is equivalent to the identifications provided by the simplicial map λ2. This

equivalence implies that the identification of diagonally symmetric points of the 3-sphere gives
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a 3-sphere.

Remark 3.2.1 In Figure 3 (triangulation of T) if we replace the edges A0D0 and A0D1 by

the edges B0C1 and B1C0 respectively then we get another triangulation of T , which is also

symmetric about the diagonal. But this triangulation under the diagonal action does not give

a simplicial branched covering map.

Figure 4
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§1. Introduction

The quaternions introduced by Hamilton in 1843 are the number system in four dimensional

vector space and an extension of the complex number. There are different types of quaternions,

namely: real, complex dual quaternions. A real quaternion is defined as q = q0 + q1e1 + q2e2 +

q3e3 is composed of four units {1, e1, e2, e3} where e1, e2, e3 are orthogonal unit spatial vectors,

qi (i = 0, 1, 2, 3) are real numbers and this quaternion can be written as a linear combination

of a real part (scalar) and vectorial part (a spatial vector) [1,5,8].

The space of quaternions Q are isomorphic to E4, four dimensional vector space over the

real numbers. Then, Clifford generalized the quaternions to bi-quaternions in 1873 [11]. Hence

they play an important role in the representation of physical quantities up to four dimensional

space. Also they are used in both theoretical and applied mathematics. They are important

number systems which use in Newtonian mechanics, quantum physics, robot kinematics, orbital

mechanics and three dimensional rotations such as in the three dimensional computer graphics

and vision. Real quaternions provide us with a simple and elegant representation for describing

finite rotation in space. On the other hand, dual quaternions offer us a better way to express

both rotational and translational transformations in a robot kinematic [5].

In 1985, the Serret-Frenet formulas for a quaternionic curve in Euclidean spaces E3 and E4

are given by Bharathi and Nagaraj [9]. By using of these formulas Karadağ and Sivridağ gave

some characterizations for quaternionic inclined curves in the terms of the harmonic curvatures

in Euclidean spaces E3 and E4 [10]. Gök et al. defined the real spatial quaternionic b-slant

1Received June 30, 2012. Accepted September 4, 2012.
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helix and the quaternionic B2-slant helix in Euclidean spaces E3 and E4 respectively and they

gave new characterization for them in the terms of the harmonic curvatures [7].

In the Euclidean space E3, there is a unique sphere for a curve α : I ⊂ R → E3 such

that the sphere contacts α at the third order at α(0). The intersection of the sphere with

the osculating plane is a circle which contacts α at the second order at α(0) [2,3,6]. In [4],

the osculating sphere and the osculating circle of the curve are studied for each of timelike,

spacelike and null curves in semi- Euclidean spaces; E3
1 , E4

1 and E4
2 .

In this paper, we define osculating sphere for a real quaternionic curve α : I ⊂ R → E4

such that it contacts α at the fourth order at α(0). Also some characterizations of the osculating

sphere are given in Euclidean space E4.

§2. Preliminaries

We give basic concepts about the real quaternions. Let QH denote a four dimensional vector

space over a field H whose characteristic grater than 2. Let ei (1 ≤ i ≤ 4) denote a basis for the

vector space. Let the rule of multiplication on QH be defined on ei (1 ≤ i ≤ 4) and extended

to the whole of the vector space by distributivity as follows:

A real quaternion is defined by q = a−→e1 + b−→e2 + c−→e3 + de4 where a, b, c, d are ordinary

numbers such that
−→e1 ×−→e2 = −→e3 = −−→e2 ×−→e1 ,

−→e2 ×−→e3 = −→e1 = −−→e3 ×−→e2 ,

−→e3 ×−→e1 = −→e2 = −−→e1 ×−→e3 ,

−→e1
2 = −→e2

2 = −→e3
2 = −1, e2

4 = 1.

We can write a real quaternion as a linear combination of scalar part Sq = d and vectorial

part Vq = a−→e1 + b−→e2 + c−→e3 . Using these basic products we can now expand the product of two

quaternions as

p × q = SpSq −
〈−→
Vp,

−→
Vq

〉

+ Sp

−→
Vq + Sq

−→
Vp +

−→
Vp ∧ −→

Vq for every p, q ∈ QH ,

where 〈, 〉 and ∧ are inner product and cross product on E3, respectively. There is a unique

involutory antiautomorphism of the quaternion algebra, denoted by the symbol γ and defined

as follows:

γq = −a−→e1 − b−→e2 − c−→e3 + d

for every q = a−→e1 + b−→e2 + c−→e3 + de4 ∈ QH which is called the Hamiltonian conjugation. This

defines the symmetric, real valued, non-degenerate, bilinear form h as follows:

h(p, q) =
1

2
(p × γq + q × γp) for every p, q ∈ QH .

Now we can give the definition of the norm for every quaternion. the norm of any q real

quaternion is denoted by

‖q‖2
= h(q, q) = q × γq = a2 + b2 + c2 + d2
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in [5,8].

The four-dimensional Euclidean space E4 is identified with the space of unit quaternions.

A real quaternionic sphere with origin m and radius R > 0 in E4 is

S3(m, R) = {p ∈ QH : h(p − m, p − m) = R2}.

The Serret-Frenet formulas for real quaternionic curves in E4 are as follows:

Theorem 2.1([10]) The four-dimensional Euclidean space E4 is identified with the space of

unit quaternions. Let I = [0, 1] denotes the unit interval in the real line R and −→e4 = 1. Let

α : I ⊂ R → QH

s → α(s) =
4
∑

i=1

αi(s)
−→ei ,

be a smooth curve in E4 with nonzero curvatures {K, k, r − K} and the Frenet frame of the

curve α is {T, N, B1, B2}. Then Frenet formulas are given by
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(2.1)

where K is the principal curvature, k is torsion and (r − K) is bitorsion of α.

§3. Osculating Sphere of a Real Quaternionic Curve in E4

We assume that the real quaternionic curve α : I ⊂ R → QH is arc-length parametrized,

i.e, ‖α′(s)‖ = 1. Then the tangent vector T (s) = α′(s) =
4
∑

i=1

α′
i(s)

−→ei has unit length. Let

(y1, y2, y3, y4) be a rectangular coordinate system of R
4. We take a real quaternionic sphere

h(y − d, y − d) = R2 with origin d and radius R, where y = (y1, y2, y3, y4). Let f(s) = h(α(s)−
d, α(s) − d) − R2. If we have the following equations

f(0) = 0, f ′(0) = 0, f ′′(0) = 0, f ′′′(0) = 0, f (4)(0) = 0

then we say that the sphere contacts at fourth order to the curve α at α(0). The sphere is called

osculating sphere.

Theorem 3.1 Let α : I ⊂ R → QH be a real quaternionic curve with nonzero curvatures

K(0), k(0) and (r − K)(0) at α(0). Then there exists a sphere which contacts at the fourth

order to the curve α at α(0) and the equation of the osculating sphere according to the Frenet

frame {T0, N0, B10
, B20

} is

x2
1+(x2−ρ0)

2+(x3−ρ′0σ0)
2+(x4−ω0((ρ

′
0σ0)

′+
ρ0

σ0
))2 = ρ2

0+(ρ′0σ0)
2+ω2

0((ρ
′
0σ0)

′+
ρ0

σ0
)2, (3.1)
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where

ρ0 =
1

K(0)
, σ0 =

1

k(0)
, ω0 =

1

r(0) − K(0)
.

Proof If f(0) = 0 then h(α(0) − d, α(0) − d) = R2. Since we have

f ′ = 2h(α′, α − d) and f ′(0) = 0

then

h(T0, α(0) − d) = 0. (3.2)

Similarly we have

f ′′ = 2[h(α′′, α − d) + h(α′, α′)] and f ′′(0) = 0

implies h(K(0)N0, α(0) − d) + h(T0, T0) = 0. Since h(T0, T0) = 1, then

h(N0, α(0) − d) = − 1

K(0)
= −ρ0. (3.3)

Considering

f ′′′ = 2[h(α′′′, α − d) + 3h(α′′, α′)] and f ′′′(0) = 0

we get

h(−K2(0)T0 + K ′(0)N0 + K(0)k(0)B10
, α(0) − d) = 0.

From the equations (3.2) and (3.3) we obtain

h(B10
, α(0) − d) =

K ′(0)

K2(0)k(0)
= −ρ′0σ0. (3.4)

Since

f (4) = 2[h(α(4), α − d) + 4h(α′′′, α′) + 3h(α′′, α′′)] and f (4)(0) = 0,

from the equations (2.1), (3.1)-(3.4), we obtain

h(B20
, α(0) − d) = − 1

r(0) − K(0)

[

(ρ′0σ0)
′ +

ρ0

σ0
)

]

= −ω0

[

(ρ′0σ0)
′ +

ρ0

σ0
)

]

. (3.5)

Now we investigate the numbers u1, u2 , u3 and u4 such that

α(0) − d = u1T0 + u2N0 + u3B10
+ u4B20

.

From h(T0, α(0) − d) = u1 and the equation (3.2), then we find u1 = 0. From h(N0, α(0) −
d) = u2 and the equation (3.3), then we find u2 = −ρ0. From h(B10

, α(0) − d) = u3 and

the equation (3.4), then we obtain u3 = −ρ′0σ0. From the equation (3.5), we obtain u4 =

−ω0

[

(ρ′0σ0)
′ +

ρ0

σ0
)

]

. Also the origin of the sphere that contacts at the fourth order to the

curve at the point α(0) is

d = α(0) − u1T0 − u2N0 − u3B10
− u4B20

(3.6)

Given a real quaternionic variable P on the osculating sphere, suppose

P = α(0) + x1T0 + x2N0 + x3B10
+ x4B20
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and from the equation (3.6)

P − d = x1T0 + (x2 − ρ0)N0 + (x3 − ρ′0σ0)B10
+ (x4 − ω0

[

(ρ′0σ0)
′ +

ρ0

σ0
)

]

)B20
.

Also

h(P − d, P − d) = x2
1 + (x2 − ρ0)

2 + (x3 − ρ′0σ0)
2 + (x4 − ω0((ρ

′
0σ0)

′ +
ρ0

σ0
))2

and using (3.6), we obtain

R2 = h(α(0) − d, α(0) − d) = ρ2
0 + (ρ′0σ0)

2 + ω2
0((ρ

′
0σ0)

′ +
ρ0

σ0
)2. �

Definition 3.2 Let α : I ⊂ R → QH be a real quaternionic curve with nonzero curvatures K,

k and r − K. The functions mi : I → R, 1 ≤ i ≤ 4 such that



































m1 = 0,

m2 =
1

K
,

m3 =
m′

2

k
,

m4 =
m′

3 + km2

r − K

(3.7)

is called mi curvature function.

Corollary 3.3 Let α : I ⊂ R → QH be a real quaternionic curve with nonzero curvatures K,

k, r − K and the Frenet frame {T, N, B1, B2}. If d(s) is the center of the osculating sphere at

α(s), then

d = α(s) + m2(s)N(s) + m3(s)B1(s) + m4(s)B2(s). (3.8)

Moreover the radius of the osculating sphere at α(s) is

R =
√

m2
2(s) + m2

3(s) + m2
4(s). (3.9)

Let α : I ⊂ R → QH be a real quaternionic curve. If α(I) ⊂ S3(m, R), then α is called

spherical curve. We obtain new characterization for spherical curve α.

Theorem 3.4 Let α : I ⊂ R → QH be a real quaternionic curve and α(I) ⊂ S3(0, R). Then

h(α(s), Vj(s)) = −mj(s), 1 ≤ j ≤ 4,

where V1 = T, V2 = N, V3 = B1 and V4 = B2.

Proof Since α(s) ∈ S3(0, R) for all s ∈ I, then h(α(s), α(s)) = R2. Derivating of this

equation with respect to s four times and from the equation (3.7), we get

h(V1(s), α(s)) = h(T (s), α(s)) = 0,

h(V2(s), α(s)) = h(N(s), α(s)) = − 1

K(s)
= −m2(s),
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h(V3(s), α(s)) = h(B1(s), α(s)) = −
(

1

K(s)

)′
1

k(s)
= −m′

2(s)

k(s)
= −m3(s)

and

h(V4(s), α(s)) = h(B2(s), α(s))

= −
[(

(

1

K(s)

)′
1

k(s)

)′

+
k(s)

K(s)

]

1

r(s) − K(s)

= −m′
3(s) + k(s)m2(s)

r(s) − K(s)

= −m4(s). �

Theorem 3.5 Let α : I ⊂ R → QH be a real quaternionic curve. If α(I) ⊂ S3(0, R), then the

osculating sphere at α(s) for each s ∈ I is S3(0, R).

Proof We assume α(I) ⊂ S3(0, R). From the equation (3.8), the center of the osculating

sphere at α(s) is

d = α(s) + m2(s)N(s) + m3(s)B1(s) + m4(s)B2(s)

= α(s) + m2(s)V2(s) + m3(s)V3(s) + m4(s)V4(s).

According to Theorem 3.4

d = α(s) −
4
∑

j=2

h(α(s), Vj(s))Vj(s). (3.10)

On the other hand

α(s) =

4
∑

j=1

h(α(s), Vj(s))Vj(s)

and since h(α(s), V1(s)) = 0, we have

α(s) =

4
∑

j=2

h(α(s), Vj(s))Vj(s). (3.11)

From the equations (3.10) and (3.11), we get d = 0. In addition we have

h(α(s), d) = R. �

In general, above theorem is valid for the sphere S3(b, R) with the center b. As well as

S3(0, R) isometric to S3(b, R), the truth can be avowable. Now, we give relationship between

center and radius of the osculating sphere following.

Theorem 3.6 Let α : I ⊂ R → QH be a real quaternionic curve with nonzero curvatures K,

k, r − K and m4. The radii of the osculating spheres at α(s) for all s ∈ I is constant iff the

centers of the osculating spheres at α(s) are fixed.
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Proof We assume that the radius of the osculating sphere at α(s) for all s ∈ I is constant.

From the equation (3.9)

R(s)2 = m2
2(s) + m2

3(s) + m2
4(s).

Derivating of the equation with respect to s, we obtain

m2(s)m
′
2(s) + m3(s)m

′
3(s) + m4(s)m

′
4(s) = 0.

Since m3(s) =
m′

2(s)

k(s)
and m4(s) =

m′
3(s) + k(s)m2(s)

r(s) − K(s)
, then

(r(s) − K(s))m3(s) + m′
4(s) = 0. (3.12)

On the other hand derivating of the equation (3.8) with respect to s and from the equations

(3.7), (3.12), we get

d′(s) = 0.

Thus the center d(s) of the osculating sphere at α(s) is fixed.

Conversely, let the center d(s) of the osculating sphere at α(s) for all s ∈ I be fixed. Since

h(d(s) − α(s), d(s) − α(s)) = R2(s),

derivating of the equation with respect to s, we obtain

h(T (s), α(s) − d(s)) = R′(s)R(s).

Left hand side this equation is zero. Hence R′(s) = 0 and than the radius of the osculating

sphere at α(s) for all s ∈ I is constant. �

Theorem 3.7 Let α : I ⊂ R → QH be a real quaternionic curve. The curve is spherical iff the

centers of the osculating spheres at α(s) are fixed.

Proof We assume α(I) ⊂ S3(b, R). According to Theorem 3.6 the proof is clearly. Con-

versely, according to Theorem 3.5 if the centers d(s) of the osculating spheres at α(s) for all s ∈ I

are fixed point b, then the radii of the osculating spheres is constant R. Thus h(α(s), b) = R

and than α is spherical. �

Now we give a characterization for spherical curve α in terms of its curvatures K, k and

r − K in following theorem.

Theorem 3.8 Let α : I ⊂ R → QH be a real quaternionic curve with nonzero curvatures K,

k, r − K and m4. The curve α is spherical iff

r − K

k

(

1

K

)′

+

{[(

(

1

K

)′
1

k

)′

+
k

K

]

1

r − K

}′

= 0. (3.13)

Proof Let the curve α be spherical. According to Theorem 3.7 the centers d(s) of the

osculating spheres at α(s) for all s ∈ I are fixed. From the equations (3.7) and (3.12) we obtain

(3.13).
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Conversely we assume

r − K

k

(

1

K

)′

+

{[(

(

1

K

)′
1

k

)′

+
k

K

]

1

r − K

}′

= 0

From the equation (3.7), we get

(r − K)m3 + m′
4 = 0.

Derivating equation (3.8) with respect to s and from the last equation and (3.7), we obtain

d′(s) = 0. Hence d(s) is fixed point. According to Theorem 3.7 the curve α is spherical. �
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Abstract: Given a graph G and a configuration C of pebbles on the vertices of G, a pebbling

step (move) removes two pebbles from one vertex and places one pebble on an adjacent

vertex. The cover pebbling number γ(G) is the minimum number so that every configuration

of γ(G) pebbles has the property that after some sequence of pebbling steps(moves), every

vertex has a pebble on it. In this paper we determine the cover pebbling number for square

of a path.

Key Words: Cover pebbling, square of a path, Smarandachely cover H-pebbling.
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§1. Introduction

The game of pebbling was first suggested by Lagarias and Saks as a tool for solving a number-

theoretical conjecture of Erdos. Chung successfully used this tool to prove the conjecture and

established other results concerning pebbling numbers. In doing so she introduced pebbling to

the literature [1].

Begin with a graph G and a certain number of pebbles placed on its vertices. A pebbling

step consists of removing two pebbles from one vertex and placing one on an adjacent vertex.

In pebbling, the target is selected, and the goal is to move a pebble to the target vertex. The

minimum number of pebbles such that regardless of their initial placement and regardless of

the target vertex, we can pebble that target is called the pebbling number of G. In cover

pebbling, the goal is to cover all the vertices with pebbles, that is, to move a pebble to every

vertex simultaneously. Generally, for a connected subgraph H < G, a Smarandachely cover

H-pebbling is to move a pebble to every vertex in H but not in G \ H simultaneously. The

minimum number of pebbles required such that, regardless of their initial placement on G, there

is a sequence of pebbling steps at the end of which every vertex has at least one pebble on it, is

called the cover pebbling number of G. In [2], Crull et al. determine the cover pebbling number

of several families of graphs, including trees and complete graphs. Hulbert and Munyan [4]

have also announced a proof for the cover pebbling of the n-dimensional cube. In [5], Maggy

Tomova and Cindy Wyles determine the cover pebbling number for cycles and certain graph

products. In the next section, we determine the cover pebbling number for square of a path.

1Received November 7, 2011. Accepted September 6, 2012.
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§2. The Cover Pebbling Number for square of a Path

Definition([6]) Let G = (V(G), E(G)) be a connected graph. The nth power of G, denoted by

Gp, is the graph obtained from G by adding the edge uv to G whenever 2 ≤ d(u, v) ≤ p in G,

that is, Gp = (V (G), E(G) ∪ {uv : 2 ≤ d(u, v) ≤ p in G}). If p=1, we define G1=G. We know

that if p is large enough, that is, p ≥ n − 1, then Gp = Kn.

Notation 2.2 The Labeling of P 2
n is P 2

n : v1v2 · · · vn−1vn. Let p(vi) denote the number of

pebbles on the vertex vi and p(PA) denote the number of pebbles on the path PA.

It is easy to see that γ(P 2
3 ) = 5 since P 2

3
∼= K3 [2].

Theorem 2.3 The cover pebbling number of P 2
4 is γ(P 2

4 ) = 9.

Proof Consider the distribution of eight pebbles on v1. Clearly, we cannot cover at least

one of the vertices of P 2
4 . Thus,γ(P 2

4 ) ≥ 9.

Now, consider the distribution of nine pebbles on the vertices of P 2
4 . If v4 has zero pebbles

on it, then using at most four pebbles from P 2
3 : v1v2v3 we can move a pebble to v4. After

moving a pebble to v4, P 2
3 contains at least five pebbles and we are done. Next assume that

v4 has at least one pebble. If p(v4) ≤4, then p(P 2
3 ) ≥5 and we are done. If p(v4) = 5 or 6 or

7, clearly we are done. If p(v4) ≥8, then move as many as possible to the vertices of P 2
3 using

at most four moves while retaining one or two pebbles on v4, we cover all the vertices of P 2
4 in

these distributions also. Thus, γ(P 2
4 ) ≤ 9. Therefore, γ(P 2

4 ) = 9. �

Theorem 2.4 The cover pebbling number of P 2
5 is γ(P 2

5 ) = 13.

Proof Consider the distribution of twelve pebbles on v1. Clearly, we cannot cover at least

one of the vertices of P 2
5 . Thus,γ(P 2

5 ) ≥ 13.

Now, consider the distribution of thirteen pebbles on the vertices of P 2
5 . If v5 has zero

pebbles on it, then using at most four pebbles from P 2
4 : v1v2v3v4 we can move a pebble to v5.

After moving a pebble to v5, P 2
4 contains at least nine pebbles and we are done. Next assume

that v5 has at least one pebble. If p(v5) ≤4, then p(P 2
4 ) ≥9 and we are done. If p(v5) = 5 or 6

or 7, then clearly we are done. If p(v5) ≥ 8, then move as many as possible to the vertices of

P 2
4 using at most four moves while retaining one or two pebbles on v5, we cover all the vertices

of P 2
5 in these distributions also. Thus, γ(P 2

5 ) ≤ 13. Therefore, γ(P 2
5 ) = 13. �

Theorem 2.5 The cover pebbling number of P 2
n is

γ(P 2
n) =







2k+2 − 3 if n = 2k + 1 (k ≥ 1);

3(2k − 1) if n = 2k (k ≥ 2).

Proof Consider the following distribution

p(v1) =







2k+2 − 4 if n = 2k + 1 (k ≥ 1);

3(2k) − 4 if n = 2k (k ≥ 2).
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and p(vi) = 0, i 6= 1. Notice that we cannot cover at least one of the vertices of P 2
n . Thus,

γ(P 2
n) ≥







2k+2 − 3 if n = 2k + 1 (k ≥ 1);

3(2k − 1) if n = 2k (k ≥ 2).

. Next, we are going to prove the upper bound by induction on n. Obviously, the result is

true for n = 4 and 5, by Theorem 2.3 and Theorem 2.4. So, assume the result is true for

m ≤ n-1. If vn has zero pebbles on it, then using at most 2k pebbles from the vertices of

P 2
n−1 : v1v2 · · · vn−2vn−1 we can cover the vertex vn. Then P 2

n−1contains at least







3(2k − 1), where k =
n − 1

2
;

2k+1 − 3, where k =
n

2

pebbles and we are done by induction. Next, assume that vn has a pebble on it. If p(vn) ≤
2(2k − 1), then

p(P 2
n−1) ≥







2k+1 − 3 if n is odd;

2k − 1 if n is even.

In these both cases, either P 2
n−1 has enough pebbles or we can make it by retaining one or

two pebbles on vn and moving as many pebbles as possible from vn to vn−1 or vn−2. So, we

are done easily if p(vn) ≤ 2(2k − 1). Suppose p(vn) ≥ 2(2k − 1) + 1, then by moving as many

pebbles as possible to the vertices of P 2
n−1, using at most







2k+1 − 2 if n is odd;

3(2k−1) − 2 if n is even

pebbling steps while retaining one or two pebbles on vn, and hence we are done. Thus,

γ(P 2
n) ≤







2k+2 − 3 if n = 2k + 1 (k ≥ 1);

3(2k − 1) if n = 2k (k ≥ 2).

Therefore,

γ(P 2
n) =







2k+2 − 3 if n = 2k + 1 (k ≥ 1);

3(2k − 1) if n = 2k (k ≥ 2).
�
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Abstract: An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let

Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric

n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ)

(Sn = (G, µ)), where G = (V, E) is a graph called the underlying graph of Sn and σ : E → Hn

(µ : V → Hn) is a function. In this paper, we introduced a new notion S-antipodal symmetric

n-sigraph of a symmetric n-sigraph and its properties are obtained. Also we give the relation

between antipodal symmetric n-sigraphs and S-antipodal symmetric n-sigraphs. Further, we

discuss structural characterization of S-antipodal symmetric n-sigraphs.

Key Words: Symmetric n-sigraphs, Smarandachely symmetric n-marked graph, sym-

metric n-marked graphs, balance, switching, antipodal symmetric n-sigraphs, S-antipodal

symmetric n-sigraphs, complementation.
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§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the

reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let n ≥ 1 be an integer. An n-tuple (a1, a2, · · · , an) is symmetric, if ak = an−k+1, 1 ≤
k ≤ n. Let Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all

symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication, and the

order of Hn is 2m, where m = ⌈n

2
⌉.

A Smarandachely k-marked graph (Smarandachely k-signed graph) is an ordered pair

S = (G, µ) (S = (G, σ)) where G = (V, E) is a graph called underlying graph of S and

µ : V → {e1, e2, ..., ek} (σ : E → {e1, e2, ..., ek}) is a function, where ei ∈ {+,−}. An n-

tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let Hn = {(a1, a2, ..., an) :

ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric n-tuples. A Smaran-

dachely symmetric n-marked graph (Smarandachely symmetric n-signed graph) is an ordered

pair Sn = (G, µ) (Sn = (G, σ)) where G = (V, E) is a graph called the underlying graph of Sn

and µ : V → Hn (σ : E → Hn) is a function. Particularly, a Smarandachely 1-marked graph

(Smarandachely 1-signed graph) is called a marked graph (signed graph).

1Received February 25, 2012. Accepted September 9, 2012.
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In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-

tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple (a1, a2, · · · , an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise

it is a non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity

n-tuple is called an identity edge, otherwise it is a non-identity edge. Further, in an n-sigraph

Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product of the n-tuples on the edges of

A.

In [7], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See

also R. Rangarajan and P.S.K.Reddy [4]):

Definition 1.1 Let Sn = (G, σ) be an n-sigraph. Then,

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is

the identity n-tuple, and

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges.

Note 1.1 An i-balanced n-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [7].

Proposition 1.1 (E. Sampathkumar et al. [7]) An n-sigraph Sn = (G, σ) is i-balanced if, and

only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is

equal to the product of the n-tuples of u and v.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as

follows: each vertex v ∈ V , µ(v) is the n-tuple which is the product of the n-tuples on the

edges incident with v. Complement of Sn is an n-sigraph Sn = (G, σc), where for any edge

e = uv ∈ G, σc(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to

Proposition 1.1 ([10]).

In [7], the authors also have defined switching and cycle isomorphism of an n-sigraph

Sn = (G, σ) as follows (See also [2,5,6,10]):

Let Sn = (G, σ) and S′
n = (G′, σ′), be two n-sigraphs. Then Sn and S′

n are said to be

isomorphic, if there exists an isomorphism φ : G → G′ such that if uv is an edge in Sn with

label (a1, a2, · · · , an) then φ(u)φ(v) is an edge in S′
n with label (a1, a2, · · · , an).

Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is

the operation of changing the n-tuple of every edge uv of Sn by µ(u)σ(uv)µ(v). The n-sigraph

obtained in this way is denoted by Sµ(Sn) and is called the µ-switched n-sigraph or just switched

n-sigraph. Further, an n-sigraph Sn switches to n-sigraph S′
n (or that they are switching

equivalent to each other), written as Sn ∼ S′
n, whenever there exists an n-marking of Sn such

that Sµ(Sn) ∼= S′
n.

Two n-sigraphs Sn = (G, σ) and S′
n = (G′, σ′) are said to be cycle isomorphic, if there

exists an isomorphism φ : G → G′ such that the n-tuple σ(C) of every cycle C in Sn equals to

the n-tuple σ(φ(C)) in S′
n. We make use of the following known result (see [7]).

Proposition 1.2 (E. Sampathkumar et al. [7]) Given a graph G, any two n-sigraphs with G
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as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of S defined

as follows: each vertex v ∈ V , µ(v) is the product of the n-tuples on the edges incident

at v. Complement of S is an n-sigraph Sn = (G, σ′), where for any edge e = uv ∈ G,

σ′(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to Proposition

1.1.

§2. S-Antipodal n-Sigraphs

Radhakrishnan Nair and Vijayakumar [3] has introduced the concept of S-antipodal graph of a

graph G as the graph A∗(G) has the vertices in G with maximum eccentricity and two vertices

of A∗(G) are adjacent if they are at a distance of diam(G) in G.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion

of S-antipodal graphs to n-sigraphs as follows:

The S-antipodal n-sigraph A∗(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose

underlying graph is A∗(G) and the n-tuple of any edge uv is A∗(Sn) is µ(u)µ(v), where µ is the

canonical n-marking of Sn. Further, an n-sigraph Sn = (G, σ) is called S-antipodal n-sigraph, if

Sn
∼= A∗(S′

n) for some n-sigraph S′
n. The following result indicates the limitations of the notion

A∗(Sn) as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be

S-antipodal n-sigraphs.

Proposition 2.1 For any n-sigraph Sn = (G, σ), its S-antipodal n-sigraph A∗(Sn) is i-balanced.

Proof Since the n-tuple of any edge uv in A∗(Sn) is µ(u)µ(v), where µ is the canonical

n-marking of Sn, by Proposition 1.1, A∗(Sn) is i-balanced. �

For any positive integer k, the kth iterated S-antipodal n-sigraph A∗(Sn) of Sn is defined

as follows:

(A∗)0(Sn) = Sn, (A∗)k(Sn) = A∗((A∗)k−1(Sn))

Corollary 2.2 For any n-sigraph Sn = (G, σ) and any positive integer k, (A∗)k(Sn) is i-

balanced.

In [3], the authors characterized those graphs that are isomorphic to their S-antipodal

graphs.

Proposition 2.3(Radhakrishnan Nair and Vijayakumar [3]) For a graph G = (V, E), G ∼=
A∗(G) if, and only if, G is a regular self-complementary graph.

We now characterize the n-sigraphs that are switching equivalent to their S-antipodal

n-sigraphs.

Proposition 2.4 For any n-sigraph Sn = (G, σ), Sn ∼ A∗(Sn) if, and only if, G is regular
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self-complementary graph and Sn is i-balanced n-sigraph.

Proof Suppose Sn ∼ A∗(Sn). This implies, G ∼= A∗(G) and hence G is is a regular

self-complementary graph. Now, if Sn is any n-sigraph with underlying graph as regular self-

complementary graph, Proposition 2.1 implies that A∗(Sn) is i-balanced and hence if S is i-

unbalanced and its A∗(Sn) being i-balanced can not be switching equivalent to Sn in accordance

with Proposition 1.2. Therefore, Sn must be i-balanced.

Conversely, suppose that Sn is an i-balanced n-sigraph and G is regular self-complementary.

Then, since A∗(Sn) is i-balanced as per Proposition 2.1 and since G ∼= A∗(G), the result follows

from Proposition 1.2 again. �

Proposition 2.5 For any two vs Sn and S′
n with the same underlying graph, their S-antipodal

n-sigraphs are switching equivalent.

Remark 2.6 If G is regular self-complementary graph, then G ∼= G. The above result is holds

good for Sn ∼ A∗(Sn).

In [16], P.S.K.Reddy et al. introduced antipodal n-sigraph of an n-sigraph as follows:

The antipodal n-sigraph A(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose un-

derlying graph is A(G) and the n-tuple of any edge uv in A(Sn) is µ(u)µ(v), where µ is the

canonical n-marking of Sn. Further, an n-sigraph Sn = (G, σ) is called antipodal n-sigraph, if

Sn
∼= A(S′

n) for some n-sigraph S′
n.

Proposition 2.7(P.S.K.Reddy et al. [16]) For any n-sigraph Sn = (G, σ), its antipodal n-

sigraph A(Sn) is i-balanced.

We now characterize n-sigraphs whose S-antipodal n-sigraphs and antipodal n-sigraphs

are switching equivalent. In case of graphs the following result is due to Radhakrishnan Nair

and Vijayakumar [3].

Proposition 2.8 For a graph G = (V, E), A∗(G) ∼= A(G) if, and only if, G is self-centred.

Proposition 2.9 For any n-sigraph Sn = (G, σ), A∗(Sn) ∼ A(Sn) if, and only if, G is self-

centred.

Proof Suppose A∗(Sn) ∼ A(Sn). This implies, A∗(G) ∼= A(G) and hence by Proposition

2.8, we see that the graph G must be self-centred.

Conversely, suppose that G is self centred. Then A∗(G) ∼= A(G) by Proposition 2.8. Now,

if Sn is an n-sigraph with underlying graph as self centred, by Propositions 2.1 and 2.7, A∗(Sn)

and A(Sn) are i-balanced and hence, the result follows from Proposition 1.2.

In [3], the authors shown that A∗(G) ∼= A∗(G) if G is either complete or totally discon-

nected. We now characterize n-sigraphs whose A∗(Sn) and A∗(Sn) are switching equivalent.

Proposition 2.10 For any signed graph S = (G, σ), A∗(Sn) ∼ A∗(Sn) if, and only if, G is

either complete or totally disconnected.
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The following result characterize n-sigraphs which are S-antipodal n-sigraphs.

Proposition 2.11 An n-sigraph Sn = (G, σ) is a S-antipodal n-sigraph if, and only if, Sn is

i-balanced n-sigraph and its underlying graph G is a S-antipodal graph.

Proof Suppose that Sn is i-balanced and G is a A(G). Then there exists a graph H

such that A∗(H) ∼= G. Since Sn is i-balanced, by Proposition 1.1, there exists an n-marking

µ of G such that each edge uv in Sn satisfies σ(uv) = µ(u)µ(v). Now consider the n-sigraph

S′
n = (H, σ′), where for any edge e in H , σ′(e) is the n-marking of the corresponding vertex in

G. Then clearly, A∗(S′
n) ∼= Sn. Hence Sn is a S-antipodal n-sigraph.

Conversely, suppose that Sn = (G, σ) is a S-antipodal n-sigraph. Then there exists an

n-sigraph S′
n = (H, σ′) such that A∗(S′

n) ∼= Sn. Hence G is the A∗(G) of H and by Proposition

2.1, Sn is i-balanced. �

§3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs

(a sigraph) in the more general context of graphs with multiple signs on their edges. We look

at two kinds of complementation: complementing some or all of the signs, and reversing the

order of the signs on each edge.

For any m ∈ Hn, the m-complement of a = (a1, a2, · · · ., an) is: am = am. For any

M ⊆ Hn, and m ∈ Hn, the m-complement of M is Mm = {am : a ∈ M}. For any m ∈ Hn,

the m-complement of an n-sigraph Sn = (G, σ), written (Sm
n ), is the same graph but with each

edge label a = (a1, a2, ..., an) replaced by am. For an n-sigraph Sn = (G, σ), the A∗(Sn) is

i-balanced (Proposition 2.1). We now examine, the condition under which m-complement of

A(Sn) is i-balanced, where for any m ∈ Hn.

Proposition 3.1 Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if A∗(G) is

bipartite then (A∗(Sn))m is i-balanced.

Proof Since, by Proposition 2.1, A∗(Sn) is i-balanced, for each k, 1 ≤ k ≤ n, the number

of n-tuples on any cycle C in A∗(Sn) whose kth co-ordinate are − is even. Also, since A∗(G)

is bipartite, all cycles have even length; thus, for each k, 1 ≤ k ≤ n, the number of n-tuples on

any cycle C in A∗(Sn) whose kth co-ordinate are + is also even. This implies that the same

thing is true in any m-complement, where for any m,∈ Hn. Hence (A∗(Sn))t is i-balanced. �

Problem 3.2 Characterize these n-sigraphs for which

(1) (Sn)m ∼ A∗(Sn);

(2) (Sn)m ∼ A(Sn);

(3) (A∗(Sn))m ∼ A(Sn);

(4) A∗(Sn) ∼ (A(Sn))m;

(5) (A∗(S))m ∼ A∗(Sn);

(6) A∗(Sn) ∼ (A∗(Sn))m.



Switching Equivalence in Symmetric n-Sigraphs-V 63

References

[1] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.

[2] V.Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n-

sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.

[3] R.Radhakrishnan Nair and A.Vijaykumar, S-Antipodal graphs, Indian J. Pure Appl. Math.,

28(5) (1997), 641-645.

[4] R.Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings

of the Jangjeon Math. Soc., 11(2) (2008), 145-151.

[5] R.Rangarajan, P.S.K.Reddy and M.S.Subramanya, Switching Equivalence in Symmetric

n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.

[6] R.Rangarajan, P.S.K.Reddy and N.D.Soner, Switching equivalence in symmetric n-sigraphs-

II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.

[7] E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, Jump symmetric n-sigraph, Pro-

ceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.

[8] E.Sampathkumar, P.S.K.Reddy, and M.S.Subramanya, The Line n-sigraph of a symmetric

n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.

[9] R. Singleton, There is no irregular moore graph, Amer. Math. Monthly, 75(1968), 42-43.

[10] P.S.K.Reddy and B.Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances

and Applications in Discrete Mathematics, 4(1) (2009), 25-32.

[11] P.S.K.Reddy, S.Vijay and B.Prashanth, The edge C4 n-sigraph of a symmetric n-sigraph,

Int. Journal of Math. Sci. & Engg. Appls., 3(2) (2009), 21-27.

[12] P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric

n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.

[13] P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric

n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010),

172-178.

[14] P.S.K.Reddy, V.Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric

n-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.

[15] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric

n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.

[16] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n-

Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.



International J.Math. Combin. Vol.3(2012), 64-71

Further Results on Product Cordial Labeling

S.K.Vaidya

(Saurashtra University, Rajkot - 360005, Gujarat, India)

C.M.Barasara

(Atmiya Institute of Technology and Science, Rajkot - 360005, Gujarat, India)

E-mail: samirkvaidya@yahoo.co.in, chirag.barasara@gmail.com

Abstract: We prove that closed helm CHn, web graph Wbn, flower graph F ln, double

triangular snake DTn and gear graph Gn admit product cordial labeling.

Key Words: Graph labeling, cordial labeling, Smarandachely p-product cordial labeling,

product cordial labeling.

AMS(2010): 05C78

§1. Introduction

We begin with finite, connected and undirected graph G = (V (G), E(G)) without loops and

multiple edges. For any undefined notations and terminology we rely upon Clark and Holton

[3]. In order to maintain compactness we provide a brief summery of definitions and existing

results.

Definition 1.1 A graph labeling is an assignment of integers to the vertices or edges or both

subject to certain condition(s). If the domain of the mapping is the set of vertices (or edges)

then the labeling is called a vertex labeling (or an edge labeling).

According to Beineke and Hegde [1] labeling of discrete structure serves as a frontier

between graph theory and theory of numbers. A dynamic survey of graph labeling is carried

out and frequently updated by Gallian [4].

Definition 1.2 A mapping f : V (G) → {0, 1} is called binary vertex labeling of G and f(v) is

called the label of the vertex v of G under f .

The induced edge labeling f∗ : E(G) → {0, 1} is given by f∗(e = uv) = |f(u) − f(v)|. Let

us denote vf (0), vf (1) be the number of vertices of G having labels 0 and 1 respectively under

f and let ef(0), ef (1) be the number of edges of G having labels 0 and 1 respectively under f∗.

1Received March 26, 2012. Accepted September 12, 2012.
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Definition 1.3 A binary vertex labeling of a graph G is called a cordial labeling if |vf (0) −
vf (1)| ≤ 1 and |ef(0) − ef (1)| ≤ 1. A graph G is called cordial if it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit [2] in which he investigated several

results on this newly defined concept. After this some labelings like prime cordial labeling, A -

cordial labeling, H-cordial labeling and product cordial labeling are also introduced as variants

of cordial labeling.

This paper is aimed to report some new families of product cordial graphs.

Definition 1.4 For an integer p > 1. A mapping f : V (G) → {0, 1, 2, · · · , p} is called a

Smarandachely p-product cordial labeling if |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 for

any i, j ∈ {0, 1, 2, · · · , p − 1}, where vf (i) denotes the number of vertices labeled with i, ef (i)

denotes the number of edges xy with f(x)f(y) ≡ i(mod p). Particularly, if p = 2, i.e., a

binary vertex labeling of graph G with an induced edge labeling f∗ : E(G) → {0, 1} defined

by f∗(e = uv) = f(u)f(v), such a Smarandachely 2-product cordial labeling is called product

cordial labeling. A graph with product cordial labeling is called a product cordial graph.

The product cordial labeling was introduced by Sundaram et al. [5] and they investigated

several results on this newly defined concept. They have established a necessary condition

showing that a graph with p vertices and q edges with p ≥ 4 is product cordial then q <

(p2 − 1)/4 + 1.

The graphs obtained by joining apex vertices of k copies of stars, shells and wheels to a new

vertex are proved to be product cordial by Vaidya and Dani [6] while some results on product

cordial labeling for cycle related graphs are reported in Vaidya and Kanani [7].

Vaidya and Barasara [8] have proved that the cycle with one chord, the cycle with twin

chords, the friendship graph and the middle graph of path admit product cordial labeling. The

same authors in [9] have proved that the graphs obtained by duplication of one edge, mutual

vertex duplication and mutual edge duplication in cycle are product cordial graphs. Vaidya and

Vyas [10] have discussed product cordial labeling in the context of tensor product of some graphs

while Vaidya and Barasara [11] have investigated some results on product cordial labeling in

the context of some graph operations.

Definition 1.5 The wheel graph Wn is defined to be the join K1+Cn. The vertex corresponding

to K1 is known as apex vertex and vertices corresponding to cycle are known as rim vertices

while the edges corresponding to cycle are known as rim edges. We continue to recognize apex

of respective graphs obtained from wheel in Definitions 1.6 to 1.9.

Definition 1.6 The helm Hn is the graph obtained from a wheel Wn by attaching a pendant

edge to each rim vertex.

Definition 1.7 The closed helm CHn is the graph obtained from a helm Hn by joining each

pendant vertex to form a cycle.

Definition 1.8 The web graph Wbn is the graph obtained by joining the pendant vertices of a

helm Hn to form a cycle and then adding a pendant edge to each vertex of outer cycle.
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Definition 1.9 The flower Fln is the graph obtained from a helm Hn by joining each pendant

vertex to the apex of the helm.

Definition 1.10 The double triangular snake DTn is obtained from a path Pn with vertices

v1, v2, · · · , vn by joining vi and vi+1 to a new vertex wi for i = 1, 2, · · · , n − 1 and to a new

vertex ui for i = 1, 2, · · · , n − 1.

Definition 1.11 Let e = uv be an edge of graph G and w is not a vertex of G. The edge e is

subdivided when it is replaced by edges e′ = uw and e′′ = wv.

Definition 1.12 The gear graph Gn is obtained from the wheel by subdividing each of its rim

edge.

§2. Main Results

Theorem 2.1 Closed helm CHn is a product cordial graph.

Proof Let v be the apex vertex, v1, v2, . . . , vn be the vertices of inner cycle and u1, u2, . . . , un

be the vertices of outer cycle of CHn. Then |V (CHn)| = 2n + 1 and |E(CHn)| = 4n.

We define f : V (CHn) → {0, 1} to be f(v) = 1, f(vi) = 1 and f(ui) = 0 for all i. In view

of the above labeling patten we have vf (0) = vf (1)− 1 = n, ef(0) = ef (1) = 2n. Thus we have

|vf (0) − vf (1)| ≤ 1 and |ef(0) − ef (1)| ≤ 1. Hence CHn is a product cordial graph. �

Illustration 2.2 The Fig.1 shows the closed helm CH5 and its product cordial labeling.

Fig.1

Theorem 2.3 Web graph Wbn admits product cordial labeling.

Proof Let v be the apex vertex, v1, v2, · · · , vn be the vertices of inner cycle, vn+1, vn+2, · · · , v2n

be the vertices of outer cycle and v2n+1, v2n+2, · · · , v3n be the pendant vertices in Wbn. Then

|V (Wbn)| = 3n + 1 and |E(Wbn)| = 5n.

To define f : V (Wbn) → {0, 1} we consider following two cases.

Case 1. n is odd
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Define f(v) = 1, f(vi) = 1 for 1 ≤ i ≤ n, f(v2i) = 1 for
⌈n

2

⌉

≤ i ≤ n − 1 and

f(vi) = 0 otherwise. In view of the above labeling patten we have vf (0) = vf (1) =
3n + 1

2
,

ef (0) − 1 = ef (1) =
5n − 1

2
.

Case 2. n is even

Define f(v) = 1, f(vi) = 1 for 1 ≤ i ≤ n, f(v2i+1) = 1 for
n

2
≤ i ≤ n − 1 and f(vi) = 0

otherwise. In view of the above labeling patten we have vf (0) = vf (1) − 1 =
3n

2
, ef (0) =

ef (1) =
5n

2
. Thus in each case we have |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef(1)| ≤ 1. Hence Wbn

admits product cordial labeling. �

Illustration 2.4 The Fig.2 shows the web graph Wb5 and its product cordial labeling.

Fig.2

Theorem 2.5 Flower graph Fln admits product cordial labeling.

Proof Let Hn be a helm with v as the apex vertex, v1, v2, · · · , vn be the vertices of cycle

and vn+1, vn+2, · · · , v2n be the pendant vertices. Let Fln be the flower graph obtained from

helm Hn. Then |V (Fln)| = 2n + 1 and |E(Fln)| = 4n.

We define f : V (Fln) → {0, 1} to be f(v) = 1, f(vi) = 1 for 1 ≤ i ≤ n and f(vi) = 0

for n + 1 ≤ i ≤ 2n. In view of the above labeling patten we have vf (0) = vf (1) − 1 = n,

ef (0) = ef(1) = 2n. Thus we have |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. Hence Fln

admits product cordial labeling. �

Illustration 2.6 The Fig.3 shows flower graph Fl5 and its product cordial labeling.
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Fig.3

Theorem 2.7 Double triangular snake DTn is a product cordial graph for odd n and not a

product cordial graph for even n.

Proof Let v1, v2, · · · , vn be the vertices of path Pn and vn+1, vn+2, · · · , v3n−2 be the newly

added vertices in order to obtain DTn. Then |V (DTn)| = 3n − 2 and |E(DTn)| = 5n − 5.

To define f : V (DTn) → {0, 1} we consider following two cases.

Case 1. n is odd

f(vi) = 0 for 1 ≤ i ≤
⌊n

2

⌋

, f(vi) = 0 for n + 1 ≤ i ≤ n +
⌊n

2

⌋

and f(vi) = 1 otherwise. In

view of the above labeling patten we have vf (0) + 1 = vf (1) =

⌈

3n − 2

2

⌉

, ef (0) − 1 = ef (1) =

5n − 5

2
. Thus we have |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1.

Case 2. n is even

Subcase 1. n = 2.

The graph DT2 has p = 4 vertices and q = 5 edges since

p2 − 1

4
+ 1 =

19

4
< q.

Thus the necessary condition for product cordial graph is violated. Hence DT2 is not a product

cordial graph.

Subcase 2. n 6= 2

In order to satisfy the vertex condition for product cordial graph it is essential to assign

label 0 to
3n − 2

2
vertices out of 3n− 2 vertices. The vertices with label 0 will give rise at least

5n

2
− 1 edges with label 0 and at most

5n

2
− 4 edge with label 1 out of total 5n − 5 edges.

Therefore |ef (0) − ef (1)| = 3. Thus the edge condition for product cordial graph is violated.

Therefore DTn is not a product cordial graph for even n.

Hence Double triangular snake DTn is a product cordial graph for odd n and not a product

cordial graph for even n. �
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Illustration 2.8 The Fig.4 shows the double triangular snake DT7 and its product cordial

labeling.

Fig.4

Theorem 2.9 Gear graph Gn is a product cordial graph for odd n and not product cordial graph

for even n.

Proof Let Wn be the wheel with apex vertex v and rim vertices v1, v2, · · · , vn. To obtain

the gear graph Gn subdivide each rim edge of wheel by the vertices u1, u2, · · · , un. Where each

ui subdivides the edge vivi+1 for i = 1, 2, · · · , n − 1 and un subdivides the edge v1vn. Then

|V (Gn)| = 2n + 1 and |E(Gn)| = 3n.

To define f : V (Gn) → {0, 1} we consider following two cases.

Case 1. n is odd

f(v) = 1; f(vi) = 1 for 1 ≤ i ≤
⌈n

2

⌉

; f(vi) = 0, otherwise;

f(ui) = 1 for 1 ≤ i ≤ n +
⌊n

2

⌋

; f(ui) = 0, otherwise.

In view of the above labeling patten we have vf (0) = vf (1) − 1 = n, ef (0) = ef(1) + 1 =
3n + 1

2
. Thus we have |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1.

Case 2. n is even

In order to satisfy the vertex condition for product cordial graph it is essential to assign

label 0 to n vertices out of 2n + 1 vertices. The vertices with label 0 will give rise at least
3n

2
+1 edges with label 0 and at most

3n

2
−1 edge with label 1 out of total 3n edges. Therefore

|ef (0) − ef (1)| = 2. Thus the edge condition for product cordial graph is violated. So Gn is

not a product cordial graph for even n.

Hence gear graph is a product cordial graph for odd n and not product cordial graph for

even n. �

Illustration 2.10 The Fig.5 shows the gear graph G7 and its product cordial labeling.
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Fig.5

§3. Concluding Remarks

Some new families of product cordial graphs are investigated. To investigate some charac-

terization(s) or sufficient condition(s) for the graph to be product cordial is an open area of

research.
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Abstract: We say that a graph B is berge, if every graph B′ ∈ {B, B̄} does not contain an

induced cycle of odd length ≥ 5 [B̄ is the complementary graph of B]. A graph G is perfect if

every induced subgraph G′ of G satisfies χ(G′) = ω(G′), where χ(G′) is the chromatic number

of G′ and ω(G′) is the clique number of G′. The Berge conjecture states that a graph H is

perfect if and only if H is berge. Indeed, the difficult part of the Berge conjecture consists to

show that χ(B) = ω(B) for every berge graph B. The Hadwiger conjecture states that every

graph G satisfies χ(G) ≤ η(G) [ where η(G) is the hadwiger number of G (i.e., the maximum

of p such that G is contractible to the complete graph Kp)]. The Berge conjecture (see [1]

or [2] or [3] or [5] or [6] or [7] or [9] or [10] or [11] ) was proved by Chudnovsky, Robertson,

Seymour and Thomas in a paper of at least 140 pages (see [1]), and an elementary proof of

the Berge conjecture was given by Ikorong Nemron in a detailled paper of 37 pages long (see

[9]). The Hadwiger conjecture (see [4] or [5] or [7] or [8] or [10] or [11] or [12] or [13] or [15]

or [16]) was proved by Ikorong Nemron in a detailled paper of 28 pages long (see [13]), by

using arithmetic calculus, arithmetic congruences, elementary complex analysis, induction

and reasoning by reduction to absurd. That being so, in this paper, via two simple Theorems,

we rigorously show that the difficult part of the Berge conjecture (solved) and the Hadwiger

conjecture (also solved), are exactly the same conjecture. The previous immediately implies

that, the Hadwiger conjecture is only a non obvious special case of the Berge conjecture.

Key Words: True pal, parent, berge, the berge problem, the berge index, representative,

the hadwiger index, son.

AMS(2010): 05CXX

§0. Preliminary and Some Denotations

We recall that in a graph G = [V (G), E(G), χ(G), ω(G), Ḡ], V (G) is the set of vertices, E(G)

is the set of edges, χ(G) is the chromatic number, ω(G) is the clique number and Ḡ is the

complementary graph of G. We say that a graph B is berge if every B′ ∈ {B, B̄} does not

contain an induced cycle of odd length ≥ 5. A graph G is perfect if every induced subgraph

G′ of G satisfies χ(G′) = ω(G′). The Berge conjecture states that a graph H is perfect if

1Received January 15, 2012. Accepted September 14, 2012.



Around The Berge Problem And Hadwiger Conjecture 73

and only if H is berge. Indeed the difficult part of the Berge conjecture consists to show that

χ(B) = ω(B) for every berge graph B. Briefly, the difficult part of the Berge conjecture will

be called the Berge problem. In this topic, we rigorously show that the Berge problem and the

Hadwiger conjecture are exactly the same problem [the Hadwiger conjecture states that every

graph G is η(G) colorable (i.e. we can color all vertices of G with η(G) colors such that two

adjacent vertices do not receive the same color). η(G) is the hadwiger number of G and is the

maximum of p such that G is contractible to the complete graph Kp]. That being so, this paper

is divided into six simple Sections. In Section 1, we present briefly some standard definitions

known in Graph Theory. In Section 2 , we introduce definitions that are not standard, and

some elementary properties. In Section 3 we define a graph parameter denoted by β (β is

called the berge index ) and we give some obvious properties of this parameter. In Section 4

we introduce another graph parameter denoted by τ (τ is called the hadwiger index) and we

present elementary properties of this parameter. In Section 5 , using the couple (β, τ), we show

two simple Theorems which are equivalent to the Hadwiger conjecture and the Berge problem.

In Section 6, using the two simple Theorems stated and proved in Section 5, we immediately

deduce that the Berge problem and the Hadwiger conjecture are exactly the same problem, and

therefore, the Hadwiger conjecture is only a non obvious special case of the Berge conjecture.

In this paper, all results are simple, and every graph is finite, is simple and is undirected. We

start.

§1. Standard Definitions Known in Graph Theory

Recall (see [2] or [14]) that in a graph G = [V (G), E(G)], V (G) is the set of vertices and E(G)

is the set of edges. Ḡ is the complementary graph of G (recall Ḡ is the complementary graph

of G, if V (G) = V (Ḡ) and two vertices are adjacent in G if and only if they are not adjacent

in Ḡ). A graph F is a subgraph of G, if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). We say that a graph

F is an induced subgraph of G by Z, if F is a subgraph of G such that V (F ) = Z, Z ⊆ V (G),

and two vertices of F are adjacent in F , if and only if they are adjacent in G. For X ⊆ V (G),

G \ X denotes the subgraph of G induced by V (G) \ X . A clique of G is a subgraph of G that

is complete; such a subgraph is necessarily an induced subgraph (recall that a graph K is

complete if every pair of vertices of K is an edge of K); ω(G) is the size of a largest clique of

G, and ω(G) is called the clique number of G. A stable set of a graph G is a set of vertices of

G that induces a subgraph with no edges; α(G) is the size of a largest stable set, and α(G) is

called the stability number of G. The chromatic number of G (denoted by χ(G)) is the smallest

number of colors needed to color all vertices of G such that two adjacent vertices do not receive

the same color. It is easy to see:

Assertion 1.0 Let G be a graph. Then ω(G) ≤ χ(G)

The hadwiger number of a graph G (denoted by η(G)), is the maximum of p such that G

is contractible to the complete graph Kp. Recall that, if e is an edge of G incident to x and y,

we can obtain a new graph from G by removing the edge e and identifying x and y so that the

resulting vertex is incident to all those edges (other than e) originally incident to x or to y. This
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is called contracting the edge e. If a graph F can be obtained from G by a succession of such

edge-contractions, then, G is contractible to F . The maximum of p such that G is contractible

to the complete graph Kp is the hadwiger number of G, and is denoted by η(G). The Hadwiger

conjecture states that χ(G) ≤ η(G) for every graph G. Clearly we have:

Assertion 1.1 Let G be a graph, and let F be a subgraph of G. Then η(F ) ≤ η(G).

§2. Non-Standard Definitions and Some Elementary Properties

In this section, we introduce definitions that are not standard. These definitions are crucial

for the two theorems which we will use in Section 6 to show that the Berge problem and the

Hadwiger conjecture are exactly the same problem. We say that a graph B is berge, if every

B′ ∈ {B, B̄} does not contain an induced cycle of odd length ≥ 5. A graph G is perfect, if

every induced subgraph G′ of G is ω(G′)-colorable. The Berge conjecture states that a graph

G is perfect if and only if G is berge. Indeed, the Berge problem (i.e. the difficult part of the

Berge conjecture, see Preliminary of this paper) consists to show that χ(B) = ω(B), for every

berge graph B. We will see in Section6 that the Berge problem and the Hadwiger conjecture

are exactly the same problem.

We say that a graph G is a true pal of a graph F , if F is a subgraph of G and χ(F ) = χ(G);

trpl(F ) denotes the set of all true pals of F (so, G ∈ trpl(F ) means G is a true pal of F ).

Recall that a set X is a stable subset of a graph G, if X ⊆ V (G) and if the subgraph of

G induced by X has no edges. A graph G is a complete ω(G)-partite graph (or a complete

multipartite graph), if there exists a partition Ξ(G) = {Y1, · · · , Yω(G)} of V (G) into ω(G) stable

sets such that x ∈ Yj ∈ Ξ(G), y ∈ Yk ∈ Ξ(G) and j 6= k, ⇒ x and y are adjacent in G. It

is immediate that χ(G) = ω(G), for every complete ω(G)-partite graph. Ω denotes the set of

graphs G which are complete ω(G)-partite. So, G ∈ Ω means G is a complete ω(G)-partite

graph. Using the definition of Ω, then the following Assertion becomes immediate.

Assertion 2.0 Let H ∈ Ω and let F be a graph. Then we have the following two properties.

(2.0.0) χ(H) = ω(H);

(2.0.1) There exists a graph P ∈ Ω such that P is a true pal of F .

Proof Property (2.0.0) is immediate (use definition of Ω and note H ∈ Ω). Property (2.0.1)

is also immediate. Indeed, let F be graph and let Ξ(F ) = {Y1, · · · , Yχ(F )} be a partition of

V (F ) into χ(F ) stable sets (it is immediate that such a partition Ξ(F ) exists). Now let Q

be a graph defined as follows: (i) V (Q) = V (F ); (ii) Ξ(Q) = {Y1, ..., Yχ(F )} is a partition of

V (Q) into χ(F ) stable sets such that x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q) and j 6= k, ⇒ x and

y are adjacent in Q. Clearly Q ∈ Ω, χ(Q) = ω(Q) = χ(F ), and F is visibly a subgraph of

Q; in particular Q is a true pal of F such that Q ∈ Ω (because F is a subgraph of Q and

χ(Q) = χ(F ) and Q ∈ Ω). Now putting Q = P , the property (2.0.1) follows. �

So, we say that a graph P is a parent of a graph F , if P ∈ Ω
⋂

trpl(F ). In other words, P

is a parent of F , if P is a complete ω(P )-partite graph and P is also a true pal of F ( observe
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that such a P exists, via property (2.0.1) of Assertion 2.0). parent(F ) denotes the set of all

parents of a graph F ( so, P ∈ parent(F ) means P is a parent of F ). Using the definition of a

parent, then the following Assertion is immediate.

Assertion 2.1 Let F be a graph and let P ∈ parent(F ). We have the folowing two properties.

(2.1.0) Suppose that F ∈ Ω. Then χ(F ) = ω(F ) = ω(P ) = χ(P );

(2.1.1) Suppose that F 6∈ Ω. Then χ(F ) = ω(P ) = χ(P ).

§3. The Berge Index of a Graph

In this section, we define a graph parameter called the berge index and we define a representative

of a graph; we also give some elementary properties concerning the berge index. We recall that

a graph B is berge, if every B′ ∈ {B, B̄} does not contain an induced cycle of odd length ≥ 5. A

graph G is perfect, if every induced subgraph G′ of G is ω(G′)-colorable. The Berge conjecture

states that a graph G is perfect if and only if G is berge. Indeed the Berge problem, consists

to show that χ(B) = ω(B) for every berge graph B. Using the definition of a berge graph and

the definition of Ω the following assertion becomes immediate.

Assertion 3.0 Let G ∈ Ω. Then, G is berge.

Assertion 3.0 says that the set Ω is an obvious example of berge graphs. Now, we define

the berge index of a graph G. Let G be a graph. Then the berge index of G (denoted by β(G) )

is defined in the following two cases (namely case where G ∈ Ω and case where G 6∈ Ω).

First, we define the berge index of G in the case where G ∈ Ω.

Case i Suppose that G ∈ Ω, and put B(G) = {F ; G ∈ parent(F ) and F is berge}; clearly B(G)

is the set of graphs F such that G is a parent of F and F is berge. Then, β(G) = min
F∈B(G)

ω(F ).

In other words, β(G) = ω(F ′′), where F ′′ ∈ B(G), and ω(F ′′) is minimum for this property.

We prove that such a β clearly exists via the following remark.

Remark i Suppose that G ∈ Ω. Then, the berge index β(G) exists. Indeed put B(G) =

{F ; G ∈ parent(F ) and F is berge}. Recall G ∈ Ω, so G is berge (use Assertion 3.0); clearly

G ∈ B(G), so min
F∈B(G)

ω(F ) exists, and the previous clearly says that β(G) exists.

Now, we define the berge index of G, in the case where G 6∈ Ω.

Case ii Suppose that G 6∈ Ω and let parent(G) be the set of all parents of G. Then,

β(G) = min
P∈parent(G)

β(P ). In other words, β(G) = β(P ′′), where P ′′ ∈ parent(G), and β(P ′′) is

minimum for this property.

We prove that such a β clearly exists, via the following remark.

Remark ii Suppose that G 6∈ Ω. Then, the berge index β(G) exists. Indeed, let P ∈ Ω

such that P is a true pal of G [such a P exists (use property (2.0.1) of Assertion 2.0)], clearly

P ∈ parent(G); note P ∈ Ω, and Remark.(i) implies that β(P ) exists. So min
P∈parent(G)

β(P )

exists, and clearly β(G) also exists.
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Remark iii Let G be a graph. Then the berge index β(G) exists. In fact, applying Remark i

if G ∈ Ω, and Remark ii if G 6∈ Ω, we get the conclusion.

To conclude, note that the berge index of a graph G is β(G), where β(G) is defined as

follows.

β(G) = min
F∈B(G)

ω(F ) if G ∈ Ω; and β(G) = min
P∈parent(G)

β(P ) if G 6∈ Ω. Recall B(G) =

{F ; G ∈ parent(F ) and F is berge}, and parent(G) is the set of all parents of G.

We recall (see Section 1) that η(G) is the hadwiger number of G, and we clearly have.

Proposition 3.1 Let K be a complete graph and let G ∈ Ω. Then, we have the following three

properties.

(3.1.0) If ω(G) ≤ 1, then β(G) = ω(G) = χ(G) = η(G);

(3.1.1) β(K) = ω(K) = χ(K) = η(K);

(3.1.2) ω(G) ≥ β(G).

Proof Property (3.1.0) is immediate. We prove property (3.1.1). Indeed let B(K) =

{F ; K ∈ parent(F ) and F is berge}, recall K is complete, and clearly B(K) = {K}; observe

K ∈ Ω, so β(K) = min
F∈B(K)

ω(F ) (use definition of parameter β and note K ∈ Ω), and we easily

deduce that β(K) = ω(K) = χ(K). Note η(K) = χ(K) (since K is complete), and using the

previous, we clearly have β(K) = ω(K) = χ(K) = η(K). Property (3.1.1) follows.

Now we prove property (3.1.2). Indeed, let B(G) = {F ; G ∈ parent(F ) and F is berge},
recall G ∈ Ω, and so β(G) = min

F∈B(G)
ω(F ) (use definition of parameter β and note G ∈ Ω);

observe G is berge (use Assertion 3.0), so G ∈ B(G), and the previous equality implies that

ω(G) ≥ β(G). �

Using the definition of the berge index, then we clearly have:

Proposition 3.2 Let B be berge, and let P ∈ parent(B) . Then, β(P ) ≤ ω(B).

Proof Let B(P ) = {F ; P ∈ parent(F ) and F is berge}, clearly B ∈ B(P ); observe P ∈ Ω,

so β(P ) = min
F∈B(P )

ω(F ), and we immediately deduce that β(P ) ≤ ω(B). �

Now, we define a representative of a graph. Let G be a graph and let β(G) be the berge

index of G [observe β(G) exists, by using Remark iii]; we say that a graph S is a representative

of G if S is defined in the following two cases (namely case where G ∈ Ω and case where G 6∈ Ω.

First, we define a representative of G in the case where G ∈ Ω.

Case i′ Suppose that G ∈ Ω. Put B(G) = {F ; G ∈ parent(F ) and F is berge}. Then S is a

representative of G, if S ∈ B(G) and ω(S) = β(G). In other words, S is a representative of G,

if S is berge and G ∈ parent(S ) and ω(S) = β(G). In other terms again, S is a representative

of G if S is berge, G ∈ parent(S ), and ω(S) is minimum for this property. Via Remarks i′ and

i′.0, we prove that such a S exists, and we have χ(S) = χ(G) = ω(G).

Remark i′ Suppose that G ∈ Ω. Then, there exists a graph S such that S is a representative of
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G. Indeed, let β(G) be the berge index of G, recalling that G ∈ Ω, clearly β(G) = min
F∈B(G)

ω(F ),

where B(G) = {F ; G ∈ parent(F ) and F is berge} (use definition of parameter β and note

G ∈ Ω) ; now let B ∈ B(G) such that ω(B) = β(G) (such a B exists, since β(G) exists (use

Remark iii), clearly B is a representative of G. Now put B = S; then Remark i′ clearly follows.

Remark i′.0 Suppose that G ∈ Ω. Now let S be a representative of G (such a S exists, by

using Remark i′). Then, χ(S) = χ(G) = ω(G). Indeed, let B(G) = {F ; G ∈ parent(F ) and

F is berge}, and let S be a representative of G. Recall G ∈ Ω, and clearly S ∈ B(G) (use

definition of a representative and note G ∈ Ω) ; so G ∈ parent(S ), and clearly χ(S) = χ(G).

Note χ(G) = ω(G) (since G ∈ Ω), and the last two equalities immediately imply that χ(S) =

χ(G) = ω(G). Remark i′.0 follows.

Now, we define a representative of G, in the case where G 6∈ Ω.

Case ii′ Suppose that G 6∈ Ω. Now let parent(G) be the set of all parents of G, and let

P ′ ∈ parent(G) such that β(P ′) = β(G) (observe that such a P ′ exists, since G 6∈ Ω, and

by using the definition of β(G)); put B(P ′) = {F ′; P ′ ∈ parent(F ′) and F ′ is berge}. Then

S is a representative of G if S ∈ B(P ′) and ω(S) = β(P ′) = β(G). In other words, S is a

representative of G (recall G 6∈ Ω), if S is berge and P ′ ∈ parent(S ) and ω(S) = β(P ′) = β(G)

[where P ′ ∈ parent(G) and β(P ′) = β(G)]. Via Remarks ii′ and Remark ii′.0, we prove that

such a S exists, and we have χ(S) = χ(G).

Remark ii′ Suppose that G 6∈ Ω. Then, there exists a graph S such that S is a repre-

sentative of G. Indeed, let β(G) be the berge index of G, recalling that G 6∈ Ω, clearly

β(G) = min
P∈parent(G)

β(P ). Now, let P ′ ∈ parent(G) such that β(P ′) = β(G) [observe that

such a P ′ exists, since G 6∈ Ω, and by using the definition of β(G)]; note P ′ ∈ Ω, and clearly

β(P ′) = min
F ′∈B(P ′)

ω(F ′) ( note B(P ′) = {F ′; P ′ ∈ parent(F ′) and F ′ is berge}). Now, let

B′ ∈ B(P ′) such that ω(B′) = β(P ′). Clearly B′ is berge and ω(B′) = β(P ′) = β(G). It is easy

to see that B′ is a representative of G. Now put S = B′, then Remark ii′ follows.

Remark ii′.0 Suppose that G 6∈ Ω. Now let S be a representative of G (such a S exists by

using Remark ii′). Then χ(S) = χ(G). Indeed, let S be a representative of G, and consider

P ′ ∈ parent(G) such that P ′ is a parent of S and β(P ′) = β(G) (such a P ′ clearly exists, by

observing that S be a representative of G, G 6∈ Ω and by using the definition of a representative

of G), clearly χ(S) = ω(P ′) = χ(P ′) = χ(G) (since P ′ is a parent of G and S). So χ(S) = χ(G),

and Remark.(ii’.0) follows.

Remark iii′ Let G be a graph. Then, there exists a graph S such that S is a representative

of G. Applying Remark i′ if G ∈ Ω and applying Remark ii′ if G 6∈ Ω, we get the conclusion.

Remark iv Let G be a graph and let S be a representative of G (such a S exists, by using

Remark iii′). Then, χ(G) = χ(S). Applying Remark i′.0 if G ∈ Ω, and Remark ii′.0 if G 6∈ Ω,

the conclusion follows.

It is clear that a representative of a graph G is not necessarily unique, and in all the cases,

we have χ(G) = χ(S) for every representative S of G [use Remark iv].
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To conclude, note that a graph S is a representative of a graph G if S is defined in the

following two cases.

Case 1. Suppose that G ∈ Ω. Then S is a representative of G, if and only if S is berge and

G ∈ parent(S ) and ω(S) = β(G).

Case 2. Suppose that G 6∈ Ω. Now let P ∈ parent(G) such that β(P ) = β(G). Then S is

a representative of G if and only if S is berge and P ∈ parent(S ) and ω(S) = β(P ) = β(G);

in other words, S is a representative of G if and only if S is a representative of P , where

P ∈ parent(G) and β(P ) = β(G).

We will see in Section 5 that the berge index and a representative help to obtain an original

reformulation of the Berge problem, and this original reformulation of the Berge problem is

crucial for the result of Section 6 which clearly implies that the Hadwiger conjecture is only a

non obvious special case of the Berge conjecture.

§4. The Hadwiger Index of a Graph

Here, we define the hadwiger index of a graph and a son of a graph, and we also give some

elementary properties related to the hadwiger index. Using the definition of a true pal, the

following assertion is immediate.

Assertion 4.0 Let G be a graph. Then, there exists a graph S such that G is a true pal of S

and η(S) is minimum for this property.

Now we define the hadwiger index and a son. Let G be a graph and put A(G) = {H ; G ∈
trpl(H )}; clearly A(G) is the set of all graphs H , such that G is a true pal of H . The hadwiger

index of G is denoted by τ(G), where τ(G) = min
F∈A(G)

η(F ). In other words, τ(G) = η(F ′′),

where F ′′ ∈ A(G), and η(F ′′) is minimum for this property . We say that a graph S is a son

of G if G ∈ trpl(S ) and η(S) = τ(G). In other words, a graph S is a son of G, if S ∈ A(G) and

η(S) = τ(G). In other terms again, a graph S is a son of G, if G is a true pal of S and η(S) is

minimum for this property. Observe that such a son exists, via Assertion 4.0. It is immediate

that, if S is a son of a graph G, then χ(S) = χ(G) and η(S) ≤ η(G).

We recall that β(G) is the berge index of G, and we clearly have.

Proposition 4.1 Let K be a complete graph and let G ∈ Ω. We have the following three

properties.

(4.1.0) If ω(G) ≤ 1, then β(G) = ω(G) = χ(G) = η(G) = τ(G);

(4.1.1) β(K) = ω(K) = χ(K) = η(K) = τ(K);

(4.1.2) ω(G) ≥ τ(G).

Proof Properties (4.1.0) and (4.1.1) are immediate. Now we show property (4.1.2). Indeed,

recall G ∈ Ω, and clearly χ(G) = ω(G). Now, put A(G) = {H ; G ∈ trpl(H )} and let K ′ be a

complete graph such that ω(K ′) = ω(G) and V (K ′) ⊆ V (G); clearly K ′ is a subgraph of G and

χ(G) = ω(G) = χ(K ′) = ω(K ′) = η(K ′) = τ(K ′) (4 .1 .2 .0 ).
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In particular K ′ is a subgraph of G with χ(G) = χ(K ′), and therefore, G is a true pal of

K ′. So K ′ ∈ A(G) and clearly

τ(G) ≤ η(K ′) (4 .1 .2 .1 ).

Note ω(G) = η(K ′) (use (4.1.2.0)), and inequality (4.1.2.1) immediately becomes τ(G) ≤
ω(G). �

Observe Proposition 4.1 resembles to Proposition 3.1. Using the definition of τ , the fol-

lowing proposition becomes immediate.

Proposition 4.2 Let F be a graph and let G ∈ trpl(F ). Then τ(G) ≤ τ(F ).

Proof Put A(G) = {H ; G ∈ trpl(H )}, and let S be a son of F , recalling that G ∈ trpl(F ),

clearly G ∈ trpl(S ); so S ∈ A(G) and clearly τ(G) ≤ η(S). Now, observe η(S) = τ(F ) (because

S is a son of F ), and the previous inequality immediately becomes τ(G) ≤ τ(F ). �

Corollary 4.3 Let F be a graph and let P ∈ parent(F ). Then τ(P ) ≤ τ(F ).

Proof Observe that P ∈ trpl(F ) and apply Proposition 4.2. �

We will see in Section 5 that the hadwiger index and a son help to obtain an original

reformulation of the Hadwiger conjecture, and this original reformulation of the Hadwiger

conjecture is also crucial for the result of Section 6 which clearly implies that the Hadwiger

conjecture is only a non obvious special case of the Berge conjecture.

§5. An Original Reformulation of the Berge Problem and the Hadwiger Conjecture

In this section, we prove two simple Theorems which are equivalent to the Berge problem and

the Hadwiger conjecture. These original reformulations will help in Section 6 to show that the

Berge problem and the Hadwiger conjecture are exactly the same problem. That being so,

using the berge index β, then the following first simple Theorem is an original reformulation of

the Berge problem.

Theorem 5.1 The following are equivalent.

(1) The Berge problem is true (i.e. χ(B) = ω(B) for every berge graph B).

(2) χ(F ) = β(F ), for every graph F .

(3) ω(G) = β(G), for every G ∈ Ω.

Proof (2) ⇒ (3) Let G ∈ Ω, in particular G is a graph, and so χ(G) = β(G); observe

χ(G) = ω(G) (since G ∈ Ω), and the last two equalities imply that ω(G) = β(G). So (2) ⇒ (3)].

(3) ⇒ (1) Let B be berge and let P ∈ parent(B); Proposition 3.2 implies that β(P ) ≤
ω(B). Note β(P ) = ω(P ) (because P ∈ Ω), and the previous inequality becomes ω(P ) ≤ ω(B).

It is immediate that χ(B) = χ(P ) = ω(P ) [since P ∈ parent(B)], and the last inequality

becomes χ(B) ≤ ω(B); observe χ(B) ≥ ω(B), and the previous two inequalities imply that
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χ(B) = ω(B). So (3) ⇒ (1)].

(1) ⇒ (2) Let F be a graph and let S be a representative of F , in particular S is berge

(because S is a representative of F ) and clearly χ(S) = ω(S), now, observing that ω(S) = β(F )

(because S is a representative of F ), then the previous two equalities imply that χ(S) = β(F );

note χ(S) = χ(F ) (by observing that S is a representative of F and by using Remark iv of

Section 3), and the last two equalities immediately become χ(F ) = β(F ). So (1) ⇒ (2)], and

Theorem 5.1 follows. �

We recall that the Hadwiger conjecture states that χ(G) ≤ η(G) for every graph G. Us-

ing the hadwiger index τ , then the following is a corresponding original reformulation of the

Hadwiger conjecture.

Theorem 5.2 The following are equivalent.

(1) The Hadwiger conjecture is true, i.e., χ(H) ≤ η(H) for every graph H;

(2) χ(F ) ≤ τ(F ), for every graph F ;

(3) ω(G) = τ(G), for every G ∈ Ω.

Proof (2) ⇒ (3) Let G ∈ Ω, clearly G is a graph and so χ(G) ≤ τ(G). Note χ(G) = ω(G)

(since G ∈ Ω), and the previous inequality becomes ω(G) ≤ τ(G); now, using property (4.1.2)

of Proposition 4.1, we have ω(G) ≥ τ(G), and the last two inequalities imply that ω(G) = τ(G).

(3) ⇒ (1) Let H be a graph and let P ∈ parent(H ), then τ(P ) ≤ τ(H) (use Corollary

4.3); observe P ∈ Ω (since P ∈ parent(H )), clearly ω(P ) = τ(P ) (since P ∈ Ω ), and χ(H) =

χ(P ) = ω(P ) (since P ∈ parent(H )). Clearly τ(P ) = χ(H) and the previous inequality becomes

χ(H) ≤ τ(H). Recall τ(H) ≤ η(H), and the last two inequalities become χ(H) ≤ τ(H) ≤ η(H).

So χ(H) ≤ η(H), and clearly (3) ⇒ (1).

(1) ⇒ (2) Indeed, let F be a graph and let S be a son of F , clearly χ(S) ≤ η(S); now

observing that χ(S) = χ(F ) ( since F ∈ trpl(S )) and η(S) = τ(F ) (because S is a son of F ),

then the previous inequality immediately becomes χ(F ) ≤ τ(F ). So (1) ⇒ (2)] and Theorem

5.2 follows. �

Theorems 5.1 and 5.2 immediately imply that the Berge problem and the Hadwiger con-

jecture are exactly the same problem, and therefore, the Hadwiger conjecture is only a special

non-obvious case of the Berge conjecture.

§6. Conclusion

Indeed, the following two theorems follow immediately from Theorems 5.1 and 5.2.

Theorem 6.1 The following are equivalent.

(i) The Berge problem is true;

(ii) ω(G) = β(G), for every G ∈ Ω.

Proof Indeed, it is an immediate consequence of Theorem 5.1. �
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Theorem 6.2 The following are equivalent.

(i) The Hadwiger conjecture is true;

(ii) ω(G) = τ(G) for every G ∈ Ω.

Proof Indeed, it is an immediate consequence of Theorem 5.2. �

Using Theorems 6.1 and 6.2, the following Theorem becomes immediate.

Theorem 6.3 The Berge problem and the Hadwiger conjecture are exactly the same problem.

Proof Indeed observing that the Berge conjecture is true (see [1] or see [9]), then in

particular the Berge problem is true.Now using Theorem 6.1 and the previous, then it becomes

immediate to deduce that

ω(G) = β(G), for every G ∈ Ω (6 .3 .1 ).

That being so, noticing that the Hadwiger conjecture is true (see [13]) and using Theorem 6.2,

then it becomes immediate to deduce that

ω(G) = τ(G), for every G ∈ Ω (6 .3 .2 ).

(6.3.1) and (6.3.2) clearly say that the Berge problem and the Hadwiger conjecture are exactly

the same problem. �

From Theorem 6.3, then it comes:

Theorem 6.4(Tribute to Claude Berge) The Hadwiger conjecture is a special case of the Berge

conjecture.

Proof It is immediate to see that

the Berge conjecture implies the Berge problem (6 .4 .1 ).

Now by Theorem 6.3

the Berge problem and the Hadwiger conjecture are exactly the same problem (6 .4 .2 ).

That being so, using (6.4.1) and (6.4.2) , then it becomes immediate to deduce that the

Hadwiger conjecture is a special case of the Berge conjecture. �
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Abstract: In this paper we considered the set of regular CW-complexes or simply com-

plexes. We obtained the necessary and sufficient condition for the composition of cellular

maps to be a cellular folding. Also the necessary and sufficient condition for the composition

of a cellular folding with a cellular map to be a cellular folding is declared. Then we proved

that the Cartesian product of two cellular maps is a cellular folding iff each map is a cellular

folding. By using these results we proved some other results. Once again we generalized the

first three results and in each case we obtained the folding graph of the new map in terms

of the original ones.

Key Words: Graph, cellular folding, 2-manifold, Cartesian product.
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§1. Introduction

A cellular folding is a folding defined on regular CW-complexes first defined by E. El-Kholy

and H. Al-Khursani [1], and various properties of this type of folding are also studied by them.

By a cellular folding of regular CW-complexes, it is meant a cellular map f : K → L which

maps i-cells of K to i- cells of L and such that f |ei for each i-cells e is a homeomorphism onto

its image.

The set of regular CW-complexes together with cellular foldings form a category denoted

by C(K, L). If f ∈ C(K, L), then x ∈ K is said to be a singularity of f iff f is not a local

homeomorphism at x. The set of all singularities of f is denoted by
∑

f . This set corresponds

to the folds of map. It is noticed that for a cellular f , the set
∑

f of singularities of f is a proper

subset of the union of cells of dimension≤ n − 1. Thus, when we consider any f ∈ C(K, L),

where K and L are connected regular CW-complexes of dimension 2, the set
∑

f will consists

of 0- cells, 1-cells, and each 0-cell (vertex) has an even valency [2]. Of course,
∑

f need not be

connected. Thus in this case
∑

f has the structure of a locally finite graph Γf embedded in K,

for which every vertex has an even valency. Note that if K is compact, then Γf is finite, also any

1Received June 21, 2012. Accepted September 16, 2012.
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compact connected 2-manifold without boundary (surface) K with a finite cell decomposition

is a regular CW-complex, then the 0-and 1-cells of the decomposition K from a finite graph Γf

without loops and f folds K along the edges or 1-cells of Γf . Let K and L be complexes of the

same dimension n. A neat cellular folding f : K → L is a cellular folding such that Ln − Ln−1

consists of a single n-cell, IntL that is f satisfies the following:

(i) f maps i-cells to i-cells;

(ii) for each e which contains n vertices, f(e) is mapped on the single n- cell, IntL, [3].

The set of regular CW-complexes together with neat cellular foldings form a category which

is denoted by NC(K, L). This category is a subcategory of cellular foldings C(K, L). From

now we mean by a complex a regular CW-complex in this paper.

§2. Main Results

Theorem 2.1 Let M, N and L be complexes of the same dimension 2 such that L ⊂ N ⊂ M .

Let f : M → N , g : N → L be cellular maps such that f(M) = N , g(N) = L. Then g ◦ f is a

cellular folding iff f and g are cellular foldings. In this case, Γg◦f = Γf

⋃

f−1(Γg).

Proof Let M, N and L be complexes of the same dimension 2, let f : M → N be a cellular

folding such that
∑

f 6= ∅, i.e., f(M) = N 6= M . Then
∑

f form a graph Γf embedded in M .

Let g : N → N be a cellular folding such that g(N) = L 6= N ,
∑

g = Γg is embedded in N .

Now, let σ ∈ M (i), i = 0, 1, 2 be an arbitrary i-cell in M such that σ has S distinct vertices

then (g ◦ f)(σ) = g(f(σ)) = g(σ′), where σ′ ∈ N (i) such that σ has S distinct vertices since f is

a cellular folding. Also g(σ′) ∈ L(i) such that g(σ′) has S distinct vertices since g is a cellular

folding. Thus g ◦f is a cellular folding. In this case
∑

g ◦f is
∑

f
⋃

f−1(
∑

g). In other words,

Γf◦g = Γf

⋃

f−1(Γg).

Conversely, suppose f : M → N and g : N → L are cellular maps such that g ◦ f : M → L

is a cellular folding. Now, let σ ∈ M (i) be an i-cell in M . Suppose f(σ) = σ′ is a j-cell in

N , such that j 6= i. Then since f is a cellular map, then j ≤ i. But j 6= i, thus j < i. Since

f(σ) = σ′, then (g ◦ f)(σ) = g(f(σ)) = g(σ′). But g ◦ f is a cellular folding, thus (g ◦ f)(σ) is

an i- cell in L and so is g(σ′). Since σ′ is a j- cell in N and g is a cellular map, then i must

be less than j and this contradicts the assumption that j < i. Hence the only possibly is that

i = j. Note that the above theorem is true if we consider f and g are neat cellular foldings

instead of cellular folding. �

Example 2.2 Consider a complex on M = S2 with cellular subdivision consists of six-vertices,

twelve 1-cells and eight 2-cells. Let f : M → N be a cellular folding given by:

f(e0
1, e

0
2, e

0
3, e

0
4, e

0
5, e

0
6) = (e0

1, e
0
2, e

0
3, e

0
4, e

0
5, e

0
1),

f(e1
1, e

1
2, e

1
3, e

1
4, e

1
5, e

1
6, e

1
7, e

1
8, e

1
9, e

1
10, e

1
11, e

1
12) = (e1

1, e
1
2, e

1
3, e

1
4, e

1
5, e

1
6, e

1
7, e

1
8, e

1
3, e

1
4, e

1
1, e

1
2),

f(e2
1, e

2
2, e

2
3, e

2
4, e

2
5, e

2
6, e

2
7, e

2
8) = (e2

1, e
2
2, e

2
3, e

2
4, e

2
1, e

2
2).

In this case f(M) = N is a complex with five vertices, eight 1-cells and four 2-cells, see Fig.1(a).

The folding graph Γf is shown Fig.1(b).
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8

(b)

Fig.1

Now, let g : N → N be given by : g(e0
1, e

0
2, e

0
3, e

0
4, e

0
5) = (e0

1, e
0
2, e

0
3, e

0
4, e

0
5), g(e1

1, e
1
2, e

1
3, e

1
4, e

1
5,

e1
6, e

1
7, e

1
8) = (e1

4, e
1
2, e

1
3, e

1
4, e

1
6, e

1
6, e

1
8, e

1
8), g(e2

1, e
2
2, e

2
3, e

2
4) = (e2

1, e
2
2, e

2
1, e

2
2). See Fig.2(a). Again g

is a cellular folding and the folding graphs Γg and f−1(Γg) are shown in Fig.2(b).
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.......

e2
1

e2
2

Fig.2

Then g ◦ f : M → L is a cellular folding with folding graph Γg◦f shown in Fig.3.
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⋃
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Fig.3

Theorem 2.1 can be generalized for a series of cellular foldings as follows:

Theorem 2.3 Let M, M1, M2, · · · , Mn be complexes of the same dimension 2 such that Mn ⊂
Mn−1 ⊂ M1 ⊂ M , and consider the cellular maps M

f1→ M1
f2→ M2 · · · fn→ Mn. Then the

composition of these cellular maps φ :: M → Mn is a cellular folding iff each fr, r = 1, 2, · · · , n

is a cellular folding. In this case the folding graphs satisfy the condition

Γφ = Γf1

⋃

f−1
1 (Γf2

)
⋃

(f1 ◦ f1)
−1(Γf3

⋃

(f3 ◦ f2 ◦ f1)
−1(Γf4

))
⋃

· · ·
⋃

(fn−1 ◦ fn−2 ◦ · · · ◦ f1)
−1(Γfn

).

Theorem 2.4 Let M, N and L be complexes of the same dimension 2 such that L ⊂ N ⊂ M .

Let f : M → N be a cellular folding such that f(M) = N . Then a cellular map g : N → L is a

cellular folding iff g ◦f : M → L is a cellular folding. In this case Γg = f [(Γg◦f \E(Γf ))\{V }],
where E(Γf ) is the set of edges of Γf and {V } is the set of the isolated vertices remains in

Γg◦f .

Proof Suppose g ◦ f is a cellular folding, f ∈ C(M, N),
∑

f 6= ∅. Let σ ∈ M (i), i = 0, 1, 2

be an arbitrary i-cell in M such that σ has S vertices. Since g ◦ f is a cellular folding, then

g ◦ f(σ) = σ′ is an i-cell in L such that σ′ has S distinct vertices. But g ◦ f(σ) = g(f(σ)) and

f(σ) is an i-cell in N such that f(σ) has S distinct vertices, then g maps i-cells to i-cells and

satisfies the second condition of cellular folding, consequently, g is a cellular folding. In this

case, Γg = f [(Γg◦f \ E(Γf )) \ {V }],where E(Γf ) is the set of edges of Γf and {V } is the set of

the isolated vertices remains in Γg◦f .

Conversely, suppose g : N → L is a cellular folding. Since f : M → N is a cellular folding,

by Theorem 2.1, g ◦ f is a cellular folding. Notice that this conclusion is also true if we consider

g and g ◦ f neat cellular foldings instead of cellular foldings. �

Example 2.5 Consider a complex on |M | = S2 with cellular subdivision consisting of six
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vertices, twelve 1-cells and eight 2-cells. Let f : M → M, f(M) = N be a cellular folding given

as shown in Fig.1(a) with folding graph Γf shown in Fig.1(b).

Now, let L be a 2-cell with boundary consists of three 0-cells and three 1-cells , see Fig.4(a)

and let h : M → L be a cellular folding defined by:

h(e0
1, e

0
2, e

0
3, e

0
4, e

0
5, e

0
6) = (e0

1, e
0
2, e

0
3, e

0
2, e

0
3, e

0
1),

h(e1
1, e

1
2, e

1
3, e

1
4, e

1
5, e

1
6, e

1
7, e

1
8, e

1
9, e

1
10, e

1
11, e

1
12) = (e1

4, e
1
4, e

1
3, e

1
4, e

1
8, e

1
8, e

1
8, e

1
8, e

1
3, e

1
4, e

1
4, e

1
4),

h(e2
1, e

2
2, e

2
3, e

2
4, e

2
5, e

2
6, e

2
7, e

2
8) = (e2

1).

The folding graph Γh is shown in Fig.4(b).
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Fig.4

The cellular folding h is the composition of f with a cellular folding g : N → L which folds N

onto L. The graph Γg is given is given in Fig.5.

e0
1

e0
2e0

4 e0
3e0

5

e1
1 e1

2
e1
3 e1

4

Γg = f [(Γg◦f \ E(Γf )) \ {V }]
Fig.5

where E(Γf ) is the edges of Γf and {V } is the set of the isolated vertices remains in Γg◦f = Γh.

Theorem 2.4 can be generalized for a finite series of cellular foldings as follows:

Theorem 2.6 Let M, M1, M2, · · · , Mn be complexes of the same dimension 2 such that Mn ⊂
Mn−1 ⊂ · · · ⊂ M1 ⊂ M , and consider the cellular maps M

f1→ M1
f2→ M2 · · ·

fn−1→ Mn−1. Then

a cellular map fn : Mn−1 → Mn is a cellular folding iff the composition fn ◦ fn−1 ◦ · · · ◦ f1 :



88 E.M.El-Kholy and S.N.Daoud

M → Mn is a cellular folding. In this case the folding graph of fn is given by:

Γfn
= (fn−1 ◦ · · · ◦ f1)[(Γfn−1◦···◦f1

\ E(Γfn−1◦···◦f1
) \ {V }],

where E(Γfn−1◦···◦f1
) is the set of edges of Γfn−1◦···◦f1

and {V } is the set of the isolated vertices

remains in Γfn◦fn−1◦···◦f1
.

Theorem 2.7 Suppose K, L, X and Y are complexes of the same dimension 2. Let f : K → X

and g : L → Y be cellular maps. Then f × g : K × L → X × Y is a cellular folding iff f and g

are cellular foldings. In this case, Γf×g = (Γf × L)
⋃

(Γg × K).

Proof Suppose f and g are cellular foldings. We claim that f × g is a cellular folding. Let

ei be an arbitrary i-cell in K, e′j be an arbitrary j-cell in L. Then (ei, e
′j) is an (i + j)-cell in

K × L. Since (f × g)[(ei, e
′j)] = (f(ei), g(e′j)), thus (f × g)(ei, e

′j) is an (i + j)-cell in X × Y

(since f(ei) is an i-cell in X , g(e
′j) is a j - cell in Y , f and g are cellular foldings). Then f × g

sends cells to cells of the same dimension. Also, if σ = (ei, e
′j), σ and (f × g)(σ) contains the

same number of vertices because each of f and g is a cellular folding.

Suppose now f × g is a cellular folding, then f × g maps p-cells to p-cells, i.e., if (e, e′) is a

p-cell in K × L, then (f × g)(e, e′) = (f(e), g(e′)) is a p-cell in X × Y . Let e be an i-cell in K

and e′ be a (p − i)-cell in L. The all cellular maps must map i-cells to j-cells such that j ≤ i.

If i = j, there are nothing needed to prove. So let i > j. In this case g will map (p− i)-cells to

(p − j)-cells and hence it is not a cellular map. This is a contradiction and hence i = j is the

only possibility. The second condition of cellular folding certainly satisfied in this case. �

It should be noted that this conclusion is also true for neat cellular foldings, but it is not

true for simplecial complexes since the product of two positive-dimensional simplexes is not a

simplex any more.

Example 2.8 Let K be complex such that |K| = S1 with four vertices and four 1-cells, and let

f : K → K be a cellular folding defined by f(v1, v2, v3, v4) = (v1, v2, v1, v4) and L a complex

such that |L| = I with three vertices and two 1-cells and let g : L → L be a neat cellular folding

g(u1, u2, u3) = (u1, u62, u1), see Fig.6.

v1

v2

v3

v4

K

v1

v2

v4

-f

f(K)

v1

v4

Γf

u1

u2

u3

u1

u2

u2-g
L g(L) Γg

Fig.6

Then the folding graphs Γf × L and Γg × K have the form shown in Fig.7.
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Γf × L Γg × K

Fig.7

Now f × g : K ×L → K ×L is a cellular folding but not neat. The cell decomposition of K ×L

and (f × g)(K × L) are shown in Fig.8(a). In this case, Γf×g has the form shown in Fig.8(b).

.............................................

.......................................

-f × g

K × L (f × g)(K × L) Γf×g = (Γf × L)
⋃

(Γg × K)

Fig.8

Theorem 2.7 can be generalized for the product of finite numbers of complexes as follows:

Theorem 2.9 Suppose K1, K2, · · · , Kn and X1, X2, · · · , Xn are complexes of the same di-

mension 2 and fi : Ki → Xi for i = 1, 2, · · · , n are cellular maps. Then the product map

f1 × f2 × · · · fn : K1 × K2 × · · · × Kn → X1 × X2 × · · · × Xn is a cellular folding iff each of fi

is a cellular folding for i = 1, 2, · · · , n. In this case,

Γf1×f2×···×fn
= Γf1

× (K2 × K3 × · · · × Kn)
⋃

Γf2
× (K1 × K3 × · · · × Kn)

⋃

· · ·
⋃

Γfn
× (K1 × K2 × · · · × Kn−1).

Theorem 2.10 Let A, B, A1, A2, B1, B2 be complexes and let f : A → A1, g : B → B1,

h : A1 → A2, k : B1 → B2 be cellular foldings. Then (h × k) ◦ (f × g) = (h ◦ f) × (k ◦ g) is a

cellular folding with folding graph

Γ(h×k)◦(f×g) = Γf×g

⋃

(f × g)−1(Γh×k) = Γ(h◦f)×(k◦g) = (Γh◦f × B)
⋃

(Γk◦g × A).

Proof Since h : A1 → A2, k : B1 → B2 are cellular foldings, then h×k : A1×B1 → A2×B2

is a cellular folding. Also, since f : A → A1, g : B → B1 are cellular foldings, then so is



90 E.M.El-Kholy and S.N.Daoud

f × g : A × B → A1 × B1. Thus (h × k) ◦ (f × g) : A × B → A2 × B2 is a cellular folding with

folding graph Γ(h×k)◦(f×g) = Γf×g

⋃

(f × g)−1(Γh×k).

On the other hand, because both of (h◦f) and (k◦g) are cellular foldings, then (h◦f)×(k◦g)

is a cellular folding with folding graph

Γ(h◦f)×(k◦g) = (Γh◦f × B)
⋃

(Γk◦g × A). �

The above theorem can be generalized for a finite number of cellular foldings.

Example 2.11 Suppose A, B, A1, A2, B1, B2 are complexes such that A = S1, B = |A1| =

|A2| = |B1| = |B2| = I with cell decompositions shown in Fig.9.-f -h

A f(A) = A1 Γf A1 h(A1) = A2 Γh-g -k

B g(B) = B1 Γg B1 g(B1) = B2 Γk = ∅

Fig.9

Suppose f : A → A1, g : B → B1, h : A1 → A2 and k : B1 → B2 are cellular foldings. The

cellular foldings f × g, h × k and the folding graphs Γf×g, Γh×k, Γ(h×k)◦(f×g) are shown in

Fig.10.

.............................................

.......................................

-f × g

A × B(f × g)(A × B) = A1 × B1Γf×g

...................................

-h × k

A1 × B1(h × k)(A1 × B1) = A2 × B2

Γh×k

Γ(h×k)◦(f×g) = Γf×g

⋃

(f × g)−1(Γh×k)

Fig.10
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Also the cellular folding h ◦ f , k ◦ g and the folding graphs Γh◦f , Γk◦g, Γ(h◦f)×(k◦g) are

shown in Fig.11. - -
A

k ◦ f

(h ◦ f)(A) = A2 Γh◦f B

k × g

(k ◦ g)(B) = B2

Γk◦g

Γ(h◦f)×(k◦g) = (Γh◦f × B)
⋃

(Γk◦g × A)

Fig.11

Proposition 2.11 Let X be a complex and f : X → X any neat cellular folding. Then f

restricted to any subcomplex A of X is again a neat cellular folding over the image f(X) = Y .

This is due to the fact that fei with ei an i-cell of X , is a homeomorphism onto its image

and in the case of neat cellular folding of surfaces the image, Y must has only one 2-cell, IntY ,

and thus the restriction of f to any subcomplex of X will maps each 2-cells of A onto the 2-cell

of Y and it does so for the 0 and 1-cells of A since f in fact is cellular. Consequently f |A is a

neat cellular folding of A to Y .

Example 2.12 Consider a complex X such that |X | is a torus with a cellular subdivision

shown in Fig.12 and let f : X → X be given by
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1
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1
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1
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1
8, e

1
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1
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f(e2
n) = e2

1 for n = 1, 2, 3, 4.
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2
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1

e1
5

e1
8

f(X) = Y

Fig.12
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The map f is a neat cellular folding with image f(X) = Y which is a subcomplex of X consists of

two 0-cells, three 1-cells and a single 2-cell. Now let A ⊂ X shown in Fig.13. Then f |A : A → Y

given by

f |A(e0
1, e

0
2, e

0
3) = (e0

1, e
0
2, e

0
1),

f |A(e1
1, e

1
4, e

1
5, e

1
7, e

1
8) = (e1

1, e
1
1, e

1
5, e

1
1, e

1
8),

f |A(e2
n) = e2

1 forn = 1, 2, 3, 4

is a neat cellular folding.

-
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A Y
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Fig.13
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Abstract: The concept of triple connected graphs with real life application was introduced

in [7] by considering the existence of a path containing any three vertices of a graph G. In this

paper, we introduce a new domination parameter, called Smarandachely triple connected

domination number of a graph. A subset S of V of a nontrivial graph G is said to be

Smarandachely triple connected dominating set, if S is a dominating set and the induced

sub graph 〈S〉 is triple connected. The minimum cardinality taken over all Smarandachely

triple connected dominating sets is called the Smarandachely triple connected domination

number and is denoted by γtc. We determine this number for some standard graphs and

obtain bounds for general graphs. Its relationship with other graph theoretical parameters

are also investigated.

Key Words: Domination number, triple connected graph, Smarandachely triple connected

domination number.

AMS(2010): 05C69

§1. Introduction

By a graph we mean a finite, simple, connected and undirected graph G(V, E), where V denotes

its vertex set and E its edge set. Unless otherwise stated, the graph G has p vertices and q

edges. Degree of a vertex v is denoted by d(v), the maximum degree of a graph G is denoted

by ∆(G). We denote a cycle on p vertices by Cp, a path on p vertices by Pp, and a complete

graph on p vertices by Kp. A graph G is connected if any two vertices of G are connected by a

path. A maximal connected subgraph of a graph G is called a component of G. The number of

components of G is denoted by ω(G). The complement G of G is the graph with vertex set V in

which two vertices are adjacent if and only if they are not adjacent in G. A tree is a connected

acyclic graph. A bipartite graph (or bigraph) is a graph whose vertex set can be divided into

two disjoint sets V1 and V2 such that every edge has one end in V1 and another end in V2.

A complete bipartite graph is a bipartite graph where every vertex of V1 is adjacent to every

1Received May 31, 2012. Accepted September 18, 2012.
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vertex in V2. The complete bipartite graph with partitions of order |V1| = m and |V2| = n, is

denoted by Km,n. A star, denoted by K1,p−1 is a tree with one root vertex and p − 1 pendant

vertices. A bistar, denoted by B(m, n) is the graph obtained by joining the root vertices of

the stars K1,m and K1,n. A wheel graph, denoted by Wp is a graph with p vertices, formed by

joining a single vertex to all vertices of Cp−1. A helm graph, denoted by Hn is a graph obtained

from the wheel Wn by attaching a pendant vertex to each vertex in the outer cycle of Wn.

Corona of two graphs G1 and G2, denoted by G1 ◦G2 is the graph obtained by taking one copy

of G1 and |V (G1)| copies of G2 in which ith vertex of G1 is joined to every vertex in the ith

copy of G2. If S is a subset of V, then 〈S〉 denotes the vertex induced subgraph of G induced

by S. The open neighbourhood of a set S of vertices of a graph G, denoted by N(S) is the set

of all vertices adjacent to some vertex in S and N(S) ∪ S is called the closed neighbourhood

of S, denoted by N [S]. The diameter of a connected graph is the maximum distance between

two vertices in G and is denoted by diam(G). A cut-vertex (cut edge) of a graph G is a vertex

(edge) whose removal increases the number of components. A vertex cut, or separating set of

a connected graph G is a set of vertices whose removal results in a disconnected graph. The

connectivity or vertex connectivity of a graph G, denoted by κ(G) (where G is not complete)

is the size of a smallest vertex cut. A connected subgraph H of a connected graph G is called a

H-cut if ω(G − H) ≥ 2. The chromatic number of a graph G, denoted by χ(G) is the smallest

number of colors needed to colour all the vertices of a graph G in which adjacent vertices receive

different colours. For any real number x, ⌊x⌋ denotes the largest integer less than or equal to x.

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a

parameter of a graph and its complement. Terms not defined here are used in the sense of [2].

A subset S of V is called a dominating set of G if every vertex in V − S is adjacent to at

least one vertex in S. The domination number γ(G) of G is the minimum cardinality taken over

all dominating sets in G. A dominating set S of a connected graph G is said to be a connected

dominating set of G if the induced sub graph 〈S〉 is connected. The minimum cardinality taken

over all connected dominating sets is the connected domination number and is denoted by γc.

Many authors have introduced different types of domination parameters by imposing con-

ditions on the dominating set [11-12]. Recently, the concept of triple connected graphs has been

introduced by Paulraj Joseph et. al. [7] by considering the existence of a path containing any

three vertices of G. They have studied the properties of triple connected graphs and established

many results on them. A graph G is said to be triple connected if any three vertices lie on a

path in G. All paths, cycles, complete graphs and wheels are some standard examples of triple

connected graphs. In this paper, we use this idea to develop the concept of Smarandachely

triple connected dominating set and Smarandachely triple connected domination number of a

graph.

Theorem 1.1([7]) A tree T is triple connected if and only if T ∼= Pp; p ≥ 3.

Theorem 1.2([7]) A connected graph G is not triple connected if and only if there exists a

H-cut with ω(G − H) ≥ 3 such that |V (H) ∩ N(Ci)| = 1 for at least three components C1, C2

and C3 of G − H.
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Notation 1.3 Let G be a connected graph with m vertices v1, v2, . . . , vm. The graph obtained

from G by attaching n1 times a pendant vertex of Pl1 on the vertex v1, n2 times a pendant

vertex of Pl2 on the vertex v2 and so on, is denoted by G(n1Pl1 , n2Pl2 , n3Pl3 , . . . , nmPlm) where

ni, li ≥ 0 and 1 ≤ i ≤ m.

Example 1.4 Let v1, v2, v3, v4, be the vertices of K4. The graph K4(2P2, P3, P4, P3) is obtained

from K4 by attaching 2 times a pendant vertex of P2 on v1, 1 time a pendant vertex of P3 on

v2, 1 time a pendant vertex of P4 on v3 and 1 time a pendant vertex of P3 on v4 and is shown

in Figure 1.1.

Figure 1.1 K4(2P2, P3, P4, P3)

§2. Triple Connected Domination Number

Definition 2.1 A subset S of V of a nontrivial connected graph G is said to be a Smarandachely

triple connected dominating set, if S is a dominating set and the induced subgraph 〈S〉 is triple

connected. The minimum cardinality taken over all Smarandachely triple connected dominating

sets is called the Smarandachely triple connected domination number of G and is denoted by

γtc(G). Any Smarandachely triple connected dominating set with γtc vertices is called a γtc-set

of G.

Example 2.2 For the graph G1 in Figure 2.1, S = {v1, v2, v5} forms a γtc-set of G1. Hence

γtc(G1) = 3.

Figure 2.1 Graph with γtc = 3

Observation 2.3 Triple connected dominating set (tcd-set) does not exist for all graphs and

if exists, then γtc(G) ≥ 3.

Example 2.4 For the graph G2 in Figure 2.2, any minimum dominating set must contain all

the supports and any connected subgraph containing these supports is not triple connected and

hence γtc does not exist.
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Figure 2.2 Graph with no tcd-set

Throughout this paper we consider only connected graphs for which triple connected dom-

inating set exists.

Observation 2.5 The complement of the triple connected dominating set need not be a triple

connected dominating set.

Example 2.6 For the graph G3 in Figure 2.3, S = {v1, v2, v3} forms a triple connected

dominating set of G3. But the complement V −S = {v4, v5, v6, v7, v8, v9} is not a triple connected

dominating set.

Figure 2.3 Graph in which V − S is not a tcd-set

Observation 2.7 Every triple connected dominating set is a dominating set but not conversely.

Observation 2.8 For any connected graph G, γ(G) ≤ γc(G) ≤ γtc(G) and the bounds are

sharp.

Example 2.9 For the graph G4 in Figure 2.4, γ(G4) = 4, γc(G4) = 6 and γtc(G4) = 8. For the

graph G5 in Figure 2.4, γ(G5) = γc(G5) = γtc(G5) = 3.

Figure 2.4
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Theorem 2.10 If the induced subgraph of each connected dominating set of G has more than

two pendant vertices, then G does not contain a triple connected dominating set.

Proof The proof follows from Theorem 1.2. �

Some exact value for some standard graphs are listed in the following:

1. Let P be the petersen graph. Then γtc(P ) = 5.

2. For any triple connected graph G with p vertices, γtc(G ◦ K1) = p.

3. For any path of order p ≥ 3, γtc(Pp) =







3 if p < 5

p − 2 if p ≥ 5.

4. For any cycle of order p ≥ 3, γtc(Cp) =







3 if p < 5

p − 2 if p ≥ 5.

5. For any complete bipartite graph of order p ≥ 4, γtc(Km,n) = 3. (where m, n ≥ 2 and

m + n = p ).

6. For any star of order p ≥ 3, γtc(K1,p−1) = 3.

7. For any complete graph of order p ≥ 3, γtc(Kp) = 3.

8. For any wheel of order p ≥ 4, γtc(Wp) = 3.

9. For any helm graph of order p ≥ 7, γtc(Hn) = p−1
2 (where 2n − 1 = p).

10. For any bistar of order p ≥ 4, γtc(B(m, n)) = 3 (where m, n ≥ 1 and m + n + 2 = p).

Example 2.11 For the graph G6 in Figure 2.5, S = {v6, v2, v3, v4} is a unique minimum

connected dominating set so that γc(G6) = 4. Here we notice that the induced subgraph of S

has three pendant vertices and hence G does not contain a triple connected dominating set.

Figure 2.5 Graph having cd set and not having tcd-set

Observation 2.12 If a spanning sub graph H of a graph G has a triple connected dominating

set, then G also has a triple connected dominating set.

Observation 2.13 Let G be a connected graph and H be a spanning sub graph of G. If H

has a triple connected dominating set, then γtc(G) ≤ γtc(H) and the bound is sharp.

Example 2.14 Consider the graph G7 and its spanning subgraphs G8 and G9 shown in Figure

2.6.
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Figure 2.6

For the graph G7, S = {u2, u4, u7} is a minimum triple connected dominating set and so

γtc(G7) = 3. For the spanning subgraph G8 of G7, S = {u1, u3, u4, u5} is a minimum triple

connected dominating set so that γtc(G8) = 4. Hence γtc(G7) < γtc(G8). For the spanning

subgraph G9 of G7, S = {u2, u4, u7} is a minimum triple connected dominating set so that

γtc(G9) = 3. Hence γtc(G7) = γtc(G9).

Observation 2.15 For any connected graph G with p vertices, γtc(G) = p if and only if G ∼= P3

or C3.

Theorem 2.16 For any connected graph G with p vertices, γtc(G) = p − 1 if and only if

G ∼= P4, C4, K4, K1,3, K4 − {e}, C3(P2).

Proof Suppose G ∼= P4, C4, K4−{e}, K4, K1,3, C3(P2), then γtc(G) = 3 = p−1. Conversely,

let G be a connected graph with p vertices such that γtc(G) = p−1. Let S = {u1, u2, . . . , up−1}
be a γtc-set of G. Let x be in V − S. Since S is a dominating set, there exists a vertex vi in

S such that vi is adjacent to x. If p ≥ 5, by taking the vertex vi, we can construct a triple

connected dominating set S with fewer elements than p − 1, which is a contradiction. Hence

p ≤ 4. Since γtc(G) = p − 1, by Observation 2.5, we have p = 4. Let S = {v1, v2, v3} and

V − S = {v4}. Since S is a γtc-set of G, 〈S〉 = P3 or C3.

Case i 〈S〉 = P3 = v1v2v3

Since G is connected, v4 is adjacent to v1 (or v3) or v4 is adjacent to v2. Hence G ∼= P4 or

K1,3.

Case ii 〈S〉 = C3 = v1v2v3v1

Since G is connected, v4 is adjacent to v1 (or v2 or v3). Hence G ∼= C3(P2). Now by adding

edges to P4, K1,3 or C3(P2) without affecting γtc, we have G ∼= C4, K4 − {e}, K4. �

Theorem 2.17 For any connected graph G with p ≥ 5, we have 3 ≤ γtc(G) ≤ p − 2 and the

bounds are sharp.

Proof The lower bound follows from Definition 2.1 and the upper bound follows from

Observation 2.15 and Theorem 2.16. Consider the dodecahedron graph G10 in Figure 2.7, the

path P5 and the cycle C9.
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Figure 2.7

One can easily check that S = {u6, u7, u8, u9, u10, u11, u12, u13, u14, u15} is a minimum triple

connected dominating set of G10 and γtc(G10) = 10 > 3. In addition, γtc(G10) = 10 < p − 2.

For P5, the lower bound is attained and for C9 the upper bound is attained. �

Theorem 2.18 For a connected graph G with 5 vertices, γtc(G) = p− 2 if and only if G is iso-

morphic to P5, C5, W5, K5, K1,4, K2,3, K1◦2K2, K5−{e}, K4(P2), C4(P2), C3(P3), C3(2P2), C3(P2,

P2, 0), P4(0, P2, 0, 0) or any one of the graphs shown in Figure 2.8.

Figure 2.8 Graphs with γtc = p − 2

Proof Suppose G is isomorphic to P5, C5, W5, K5, K1,4, K2,3, K1 ◦ 2K2, K5 − {e},
K4(P2), C4(P2), C3(P3), C3(2P2), C3(P2, P2, 0), P4(0, P2, 0, 0) or any one of the graphs H1 to

H7 given in Figure 2.8., then clearly γtc(G) = p − 2. Conversely, let G be a connected graph

with 5 vertices and γtc(G) = 3. Let S = {x, y, z} be a γtc-set. Then clearly 〈S〉 = P3 or C3. Let

V − S = V (G) − V (S) = {u, v}. Then 〈V − S〉 = K2 or K2.

Case i 〈S〉 = P3 = xyz
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Subcase i 〈V − S〉 = K2 = uv

Since G is connected, there exists a vertex say x (or z) in P3 which is adjacent to u (or

v) in K2. Then S = {x, y, u} is a minimum triple connected dominating set of G so that

γtc(G) = p − 2. If d(x) = d(y) = 2, d(z) = 1, then G ≃ P5. Since G is connected, there exists

a vertex say y in P3 is adjacent to u (or v) in K2. Then S = {y, u, v} is a minimum triple

connected dominating set of G so that γtc(G) = p − 2. If d(x) = d(z) = 1, d(y) = 3, then

G ∼= P4(0, P2, 0, 0). Now by increasing the degrees of the vertices, by the above arguments, we

have G ∼= C5, W5, K5, K2,3, K5 − {e}, K4(P2), C4(P2), C3(P3), C3(2P2), C3(P2, P2, 0) and H1 to

H7 in Figure 2.8. In all the other cases, no new graph exists.

Subcase ii 〈V − S〉 = 2

Since G is connected, there exists a vertex say x (or z) in P3 is adjacent to u and v in K2.

Then S = {x, y, z} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = 3, d(y) = 2, d(z) = 1, then G ∼= P4(0, P2, 0, 0). In all the other cases, no new graph

exists. Since G is connected, there exists a vertex say y in P3 which is adjacent to u and v in K2.

Then S = {x, y, z} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = d(z) = 1, d(y) = 4, then G ∼= K1,4. In all the other cases, no new graph exists. Since

G is connected, there exists a vertex say x in P3 which is adjacent to u in K2 and y in P3 is

adjacent to v in K2. Then S = {x, y, z} is a minimum triple connected dominating set of G so

that γtc(G) = p − 2. If d(x) = 2, d(y) = 3, d(z) = 1, then G ∼= P4(0, P2, 0, 0). In all the other

cases, no new graph exists. Since G is connected, there exists a vertex say x in P3 which is

adjacent to u in K2 and z in P3 which is adjacent to v in K2. Then S = {x, y, z} is a minimum

triple connected dominating set of G so that γtc(G) = p − 2. If d(x) = d(y) = d(z) = 2, then

G ∼= P5. In all the other cases, no new graph exists.

Case ii 〈S〉 = C3 = xyzx

Subcase i 〈V − S〉 = K2 = uv

Since G is connected, there exists a vertex say x (or y, z) in C3 is adjacent to u (or v) in K2.

Then S = {x, y, u} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = 3, d(y) = d(z) = 2, then G ∼= C3(P3). If d(x) = 4, d(y) = d(z) = 2, then G ∼= K1 ◦2K2.

In all the other cases, no new graph exists.

Subcase ii 〈V − S〉 = K2

Since G is connected, there exists a vertex say x (or y, z) in C3 is adjacent to u and v in K2.

Then S = {x, y, z} is a minimum triple connected dominating set of G so that γtc(G) = p − 2.

If d(x) = 4, d(y) = d(z) = 2, then G ∼= C3(2P2). In all the other cases, no new graph exists.

Since G is connected, there exists a vertex say x(or y, z) in C3 is adjacent to u in K2 and y (or

z) in C3 is adjacent to v in K2. Then S = {x, y, z} is a minimum triple connected dominating

set of G so that γtc(G) = p − 2. If d(x) = d(y) = 3, d(z) = 2, then G ∼= C3(P2, P2, 0). In all

other cases, no new graph exists. �

Theorem 2.19 For a connected graph G with p > 5 vertices, γtc(G) = p − 2 if and only if G
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is isomorphic to Pp or Cp.

Proof Suppose G is isomorphic to Pp or Cp, then clearly γtc(G) = p− 2. Conversely, let G

be a connected graph with p > 5 vertices and γtc(G) = p − 2. Let S = {v1, v2, . . . , vp−2} be a

γtc-set and let V − S = V (G) − V (S) = {vp−1, vp}. Then 〈V − S〉 = K2, K2.

Claim. 〈S〉 is a tree.

Suppose 〈S〉 is not a tree. Then 〈S〉 contains a cycle. Without loss of generality, let

C = v1v2 · · · vqv1, q ≤ p−2 be a cycle of shortest length in 〈S〉. Now let 〈V −S〉 = K2 = vp−1vp.

Since G is connected and S is a γtc-set of G, vp−1(or vp) is adjacent to a vertex vk in 〈S〉. If

vk is in C, then S = {vp−1, vi, vi+1, . . . , vi−3} ∪ {x ∈ V (G) : x /∈ C} forms a γtc-set of G so

that γtc(G) < p − 2, which is a contradiction. Suppose vp−1 (or vp) is adjacent to a vertex vi

in 〈S〉 − C, then we can construct a γtc-set which contains vp−1, vi with fewer elements than

p − 2, which is a contradiction. Similarly if 〈V − S〉 = K2, we can prove that no graph exists.

Hence 〈S〉 is a tree. But S is a triple connected dominating set. Therefore by Theorem 1.1, we

have 〈S〉 ∼= Pp−2.

Case i 〈V − S〉 = K2 = vp−1vp

Since G is connected and S is a γtc-set of G, there exists a vertex, say, vi in Pp−2 which

is adjacent to a vertex, say, vp−1 in K2. If vi = v1 (or) vp−2, then G ∼= Pp. If vi = v1 is

adjacent to vp+1 and vp−2 is adjacent to vp, then G ∼= Cp. If vi = vj for j = 2, 3, . . . , p − 3,

then S1 = S −{v1, vp−2} ∪ {vp−1} is a triple connected dominating set of cardinality p− 3 and

hence γtc ≤ p − 3, which is a contradiction.

Case ii 〈V − S〉 = K2

Since G is connected and S is a γtc-set of G, there exists a vertex say vi in Pp−2 which is

adjacent to both the vertices vp−1 and vp in K2. If vi = v1 (or vp−2), then by taking the vertex

v1 (or vp−2), we can construct a triple connected dominating set which contains fewer elements

than p − 2, which is a contradiction. Hence no graph exists. If vi = vj for j = 2, 3, . . . , n − 3,

then by taking the vertex vj , we can construct a triple connected dominating set which contains

fewer elements than p−2, which is a contradiction. Hence no graph exists. Suppose there exists

a vertex say vi in Pp−2 which is adjacent to vp−1 in K2 and a vertex vj(i 6= j) in Pp−2 which is

adjacent to vp in K2. If vi = v1 and vj = vp−2, then S = {v1, v2, . . . , vp−2} is a γtc-set of G and

hence G ∼= Pp. If vi = v1 and vj = vk for k = 2, 3, . . . , n−3, then by taking the vertex v1 and vk,

we can construct a triple connected dominating set which contains fewer elements than p − 2,

which is a contradiction. Hence no graph exists. If vi = vk and vj = vl for k, l = 2, 3, . . . , n− 3,

then by taking the vertex vk and vl, we can construct a triple connected dominating set which

contains fewer elements than p − 2, which is a contradiction. �

Corollary 2.20 Let G be a connected graph with p > 5 vertices. If γtc(G) = p − 2, then

κ(G) = 1 or 2, ∆(G) = 2, χ(G) = 2 or 3, and diam(G) = p − 1 or ⌊p
2⌋.

Proof Let G be a connected graph with p > 5 vertices and γtc(G) = p− 2. Since γtc(G) =

p − 2, by Theorem 2.19, G is isomorphic to Pp or Cp. We know that for Pp, κ(G) = 1, ∆(G) =
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2, χ(G) = 2 and diam(G) = p − 1. For Cp, κ(G) = 2, ∆(G) = 2, diam(G) = ⌊p
2⌋ and

χ(G) =







2 if p is even,

3 if p is odd.
�

Observation 2.21 Let G be a connected graph with p ≥ 3 vertices and ∆(G) = p − 1. Then

γtc(G) = 3.

For, let v be a full vertex in G. Then S = {v, vi, vj} is a minimum triple connected

dominating set of G, where vi and vj are in N(v). Hence γtc(G) = 3.

Theorem 2.22 For any connected graph G with p ≥ 3 vertices and ∆(G) = p − 2, γtc(G) = 3.

Proof Let G be a connected graph with p ≥ 3 vertices and ∆(G) = p−2. Let v be a vertex

of maximum degree ∆(G) = p−2. Let v1, v2, . . . and vp−2 be the vertices which are adjacent to

v, and let vp−1 be the vertex which is not adjacent to v. Since G is connected, vp−1 is adjacent

to a vertex vi for some i. Then S = {v, vi, vj |i 6= j} is a minimum triple connected dominating

set of G. Hence γtc(G) = 3. �

Theorem 2.23 For any connected graph G with p ≥ 3 vertices and ∆(G) = p − 3, γtc(G) = 3.

Proof Let G be a connected graph with p ≥ 3 vertices and ∆(G) = p− 3 and let v be the

vertex of G with degree p−3. Suppose N(v) = {v1, v2, . . . , vp−3} and V −N(v) = {vp−2, vp−1}.
If vp−1 and vp−2 are not adjacent in G, then since G is connected, there are vertices vi and vj

for some i, j, 1 ≤ i, j ≤ p− 3, which are adjacent to vp−2 and vp−1 respectively. Here note that

i can be equal to j. If i = j, then {v, vi, vp−1} is a required triple connected dominating set of

G. If i 6= j, then {vi, v, vj} is a required triple connected dominating set of G. If vp−2 and vp−1

are adjacent in G, then there is a vertex vj , for some j, 1 ≤ j ≤ p− 3, which is adjacent to vp−1

or to vp−1 or to both. In this case, {v, vi, vp−1} or {v, vi, vp−2} is a triple connected dominating

set of G. Hence in all the cases, γtc(G) = 3. �

The Nordhaus - Gaddum type result is given below:

Theorem 2.24 Let G be a graph such that G and G are connected graphs of order p ≥ 5. Then

γtc(G) + γtc(G) ≤ 2(p − 2) and the bound is sharp.

Proof The bound directly follows from Theorem 2.17. For the cycle C5, γtc(G) + γtc(G) =

2(p − 2). �

§3. Relation with Other Graph Parameters

Theorem 3.1 For any connected graph G with p ≥ 5 vertices, γtc(G) + κ(G) ≤ 2p− 3 and the

bound is sharp if and only if G ∼= K5.

Proof Let G be a connected graph with p ≥ 5 vertices. We know that κ(G) ≤ p − 1 and

by Theorem 2.17, γtc(G) ≤ p − 2. Hence γtc(G) + κ(G) ≤ 2p − 3. Suppose G is isomorphic
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to K5. Then clearly γtc(G) + κ(G) = 2p − 3. Conversely, let γtc(G) + κ(G) = 2p − 3. This is

possible only if γtc(G) = p − 2 and κ(G) = p − 1. But κ(G) = p − 1, and so G ∼= Kp for which

γtc(G) = 3 = p − 2 so that p = 5. Hence G ∼= K5. �

Theorem 3.2 For any connected graph G with p ≥ 5 vertices, γtc(G) + χ(G) ≤ 2p− 2 and the

bound is sharp if and only if G ∼= K5.

Proof Let G be a connected graph with p ≥ 5 vertices. We know that χ(G) ≤ p and

by Theorem 2.17, γtc(G) ≤ p − 2. Hence γtc(G) + χ(G) ≤ 2p − 2. Suppose G is isomorphic

to K5. Then clearly γtc(G) + χ(G) = 2p − 2. Conversely, let γtc(G) + χ(G) = 2p − 2. This is

possible only if γtc(G) = p− 2 and χ(G) = p. Since χ(G) = p, G is isomorphic to Kp for which

γtc(G) = 3 = p − 2 so that p = 5. Hence G ∼= K5. �

Theorem 3.3 For any connected graph G with p ≥ 5 vertices, γtc(G) + ∆(G) ≤ 2p −
3 and the bound is sharp if and only if G is isomorphic to W5, K5, K1,4, K1 ◦ 2K2, K5 −
{e}, K4(P2), C3(2P2) or any one of the graphs shown in Figure 3.1.

Figure 3.1 Graphs with γtc + ∆ = 2p − 3

Proof Let G be a connected graph with p ≥ 5 vertices. We know that ∆(G) ≤ p − 1

and by Theorem 2.17, γtc(G) ≤ p − 2. Hence γtc(G) + ∆(G) ≤ 2p − 3. Let G be isomorphic to

W5, K5, K1,4, K1 ◦ 2K2, K5 − {e}, K4(P2), C3(2P2) or any one of the graphs G1 to G4 given in

Figure 3.1. Then clearly γtc(G)+∆(G) = 2p−3. Conversely, let γtc(G)+∆(G) = 2p−3. This is

possible only if γtc(G) = p− 2 and ∆(G) = p− 1. Since ∆(G) = p− 1, by Observation 2.21, we

have γtc(G) = 3 so that p = 5. Let v be the vertex having a maximum degree and let v1, v2, v3, v4

be the vertices which are adjacent to the vertex v. If d(v) = 4, d(v1) = d(v2) = d(v3) = d(v4) = 1,

then G ∼= K1,4. Now by adding edges to K1,4 without affecting the value of γtc, we have

G ∼= W5, K5, K1 ◦ 2K2, K5 −{e}, K4(P2), C3(2P2) and the graphs G1 to G4 given in Figure 3.1.

�
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Abstract: The labeling of discrete structures is a potential area of research due to its

wide range of applications. The present work is focused on one such labeling called odd

harmonious labeling. A graph G is said to be odd harmonious if there exist an injection f :

V (G) → {0, 1, 2, . . . , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, . . . , 2q − 1}

defined by f∗(uv) = f(u)+ f(v) is a bijection. Here we investigate odd harmonious labeling

of some graphs. We prove that the shadow graph and the splitting graph of bistar Bn,n are

odd harmonious graphs. Moreover we show that the arbitrary supersubdivision of path Pn

admits odd harmonious labeling. We also prove that the joint sum of two copies of cycle Cn

for n ≡ 0(mod 4) and the graph Hn,n are odd harmonious graphs.

Key Words: Harmonious labeling, Smarandachely p-harmonious labeling, odd harmonious

labeling, shadow graph, splitting graph, arbitrary supersubdivision.

AMS(2010): 05C78

§1. Introduction

We begin with simple, finite, connected and undirected graph G = (V (G), E(G)) with |V (G)| =

p and |E(G)| = q. For standard terminology and notation we follow Gross and Yellen [5]. We

will provide brief summary of definitions and other information which are necessary and useful

for the present investigations.

Definition 1.1 If the vertices are assigned values subject to certain condition(s) then it is

known as graph labeling.

Any graph labeling will have the following three common characteristics:

(1) a set of numbers from which the vertex labels are chosen;

(2) a rule that assigns a value to each edge;

(3) a condition that these values must satisfy.

1Received April 5, 2012. Accepted September 18, 2012.
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Graph labelings is an active area of research in graph theory which is mainly evolved

through its rigorous applications in coding theory, communication networks, optimal circuits

layouts and graph decomposition problems. According to Beineke and Hegde [1] graph labeling

serves as a frontier between number theory and structure of graphs. For a dynamic survey of

various graph labeling problems along with an extensive bibliography we refer to Gallian [2].

Definition 1.2 A function f is called graceful labeling of a graph G if f : V (G) → {0, 1, 2, . . . , q}
is injective and the induced function f∗ : E(G) → {1, 2, . . . , q} defined as f∗(e = uv) =

|f(u) − f(v)| is bijective.

A graph which admits graceful labeling is called a graceful graph. Rosa [8] called such

a labeling a β − valuation and Golomb [3] subsequently called it graceful labeling. Several

infinite families of graceful as well as non-graceful graphs have been reported. The famous

Ringel-Kotzig tree conjecture [7] and many illustrious works on graceful graphs brought a tide

of different ways of labeling the elements of graph such as odd graceful labeling, harmonious

labeling etc. Graham and Sloane [4] introduced harmonious labeling during their study of

modular versions of additive bases problems stemming from error correcting codes.

Definition 1.3 A graph G is said to be harmonious if there exist an injection f : V (G) → Zq

such that the induced function f∗ : E(G) → Zq defined by f∗(uv) = (f(u) + f(v)) (mod q) is a

bijection and f is said to be harmonious labelling of G.

If G is a tree or it has a component that is a tree, then exactly one label may be used

on two vertices and the labeling function is not an injection. After this many researchers have

studied harmonious labeling. A labeling is also introduced with minor variation in harmonious

theme, which is defined as follows.

Definition 1.4 Let k, p be integers with p ≥ 1 and k ≤ p. A graph G is said to be Smarandachely

p-harmonious labeling if there exist an injection f : V (G) → {0, 1, 2, . . . , kq − 1} such that the

induced function f∗ : E(G) → {1, p + 1, . . . , pq − 1} defined by f∗(uv) = f(u) + f(v) is a

bijection. Particularly, if p = k = 2, such a Smarandachely 2-harmonious labeling is called an

odd harmonious labeling of G, f and f∗ are called vertex function and edge function respectively.

Liang and Bai [6] have obtained a necessary conditions for the existence of odd harmonious

labelling of graph. It has been also shown that many graphs admit odd harmonious labeling

and odd harmoniousness of graph is useful for the solution of undetermined equations. In the

same paper many ways to construct an odd harmonious graph were reported. Vaidya and Shah

[9] have also proved that the shadow and the splitting graphs of path Pn and star K1,n are odd

harmonious graphs.

Generally there are three types of problems that can be considered in this area.

(1) How odd harmonious labeling is affected under various graph operations;

(2) To construct new families of odd harmonious graph by investigating suitable function

which generates labeling;

(3) Given a graph theoretic property P, characterize the class/classes of graphs with prop-
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erty P that are odd harmonious.

The problems of second type are largely discussed while the problems of first and third

types are not so often but they are of great importance. The present work is aimed to discuss

the problems of first kind.

Definition 1.5 The shadow graph D2(G) of a connected graph G is constructed by taking two

copies of G say G′ and G′′. Join each vertex u′ in G′ to the neighbours of the corresponding

vertex v′ in G′′.

Definition 1.6 For a graph G the splitting graph S′(G) of a graph G is obtained by adding a

new vertex v′ corresponding to each vertex v of G such that N(v) = N(v′).

Definition 1.7 The arbitrary supersubdivision of a graph G produces a new graph by replacing

each edge of G by complete bipartite graph K2,mi
(where mi is any positive integer) in such

a way that the ends of each ei are merged with two vertices of 2-vertices part of K2,mi
after

removing the edge ei from the graph G.

Definition 1.8 Consider two copies of a graph G and define a new graph known as joint sum

is the graph obtained by connecting a vertex of first copy with a vertex of second copy.

Definition 1.9 Hn,n is the graph with vertex set V (Hn,n) = {v1, v2, · · · , vn, u1, u2, · · · , un}
and the edge set E(Hn,n) = {viuj : 1 6 i 6 n, n − i + 1 6 j 6 n}.

§2. Main Results

Theorem 2.1 D2(Bn,n) is an odd harmonious graph.

Proof Consider two copies of Bn,n. Let {u, v, ui, vi, 1 ≤ i ≤ n} and {u′, v′, u′
i, v′i, 1 ≤

i ≤ n} be the corresponding vertex sets of each copy of Bn,n. Denote D2(Bn,n) as G. Then

|V (G)| = 4(n + 1) and |E(G)| = 4(2n + 1). To define f : V (G) → {0, 1, 2, 3, . . . , 16n + 7}, we

consider following two cases.

Case 1. n is even

f(u) = 2, f(v) = 1, f(u′) = 0, f(v′) = 5,

f(ui) = 9 + 4(i − 1), 1 6 i 6 n, f(u′
i) = f(un) + 4i, 1 6 i 6 n,

f(v1) = f(u′
n) + 3, f(v2i+1) = f(v1) + 8i, 1 6 i 6 n

2 − 1,

f(v2) = f(u′
n) + 5, f(v2i) = f(v2) + 8(i − 1), 2 6 i 6 n

2 ,

f(v′1) = f(vn) + 6, f(v′2i+1) = f(v′1) + 8i, 1 6 i 6 n
2 − 1,

f(v′2) = f(vn) + 8, f(v′2i) = f(v′2) + 8(i − 1), 2 6 i 6 n
2

Case 2: n is odd
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f(u) = 2, f(v) = 1, f(u′) = 0, f(v′) = 5,

f(ui) = 9 + 4(i − 1), 1 6 i 6 n, f(u′
i) = f(un) + 4i, 1 6 i 6 n,

f(v1) = f(u′
n) + 3, f(v2i+1) = f(v1) + 8i, 1 6 i 6 n−1

2 ,

f(v2) = f(u′
n) + 5, f(v2i) = f(v2) + 8(i − 1), 2 6 i 6 n−1

2 ,

f(v′1) = f(vn) + 2, f(v′2i+1) = f(v′1) + 8i, 1 6 i 6 n−1
2 ,

f(v′2) = f(vn) + 8, f(v′2i) = f(v′2) + 8(i − 1), 2 6 i 6 n−1
2

The vertex function f defined above induces a bijective edge function f∗ : E(G) →
{1, 3, . . . , 16n + 7}. Thus f is an odd harmonious labeling for G = D2(Bn,n). Hence G is

an odd harmonious graph. �

Illustration 2.2 Odd harmonious labeling of the graph D2(B5,5) is shown in Fig. 1.
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Theorem 2.3 S′(Bn,n) is an odd harmonious graph.

Proof Consider Bn,n with vertex set {u, v, ui, vi, 1 ≤ i ≤ n}, where ui, vi are pendant

vertices. In order to obtain S′(Bn,n), add u′, v′, u′
i, v

′
i vertices corresponding to u, v, ui, vi where,

1 ≤ i ≤ n. If G = S′(Bn,n) then |V (G)| = 4(n + 1) and |E(G)| = 6n + 3. We define vertex

labeling f : V (G) → {0, 1, 2, 3, . . . , 12n + 5} as follows.

f(u) = 0, f(v) = 3, f(u′) = 2, f(v′) = 1,

f(ui) = 7 + 4(i − 1), 1 6 i 6 n, f(v1) = f(un) + 3,

f(vi+1) = f(v1) + 4i, 1 6 i 6 n − 1,

f(u′
1) = f(vn) + 5, f(u′

i+1) = f(u′
1) + 2i, 1 6 i 6 n − 1,

f(v′1) = f(u′
n) − 1, f(v′i+1) = f(v′1) + 2i, 1 6 i 6 n − 1.
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The vertex function f defined above induces a bijective edge function f∗ : E(G) → {1, 3, · · · ,

12n + 5}. Thus f is an odd harmonious labeling of G = S′(Bn,n) and G is an odd harmonious

graph. �

Illustration 2.4 Odd harmonious labeling of the graph S′(B5,5) is shown in Fig. 2.
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Theorem 2.5 Arbitrary supersubdivision of path Pn is an odd harmonious graph.

Proof Let Pn be the path with n vertices and vi (1 6 i 6 n) be the vertices of Pn.

Arbitrary supersubdivision of Pn is obtained by replacing every edge ei of Pn with K2,mi

and we denote this graph by G. Let uij be the vertices of mi-vertices part of K2,mi
where

1 6 i 6 n − 1 and 1 6 j 6 max{mi}. Let α =

n−1
∑

i=1

mi and q = 2α. We define vertex labeling

f : V (G) → {0, 1, 2, 3, · · · , 2q − 1} as follows.

f(vi+1) = 2i, 0 6 i 6 n − 1,

f(u1j) = 1 + 4(j − 1), 1 6 j 6 m1,

f(uij) = f(u(i−1)n) + 2 + 4(j − 1), 1 6 j 6 mi, 2 6 i 6 n.

The vertex function f defined above induces a bijective edge function f∗ : E(G) → {1, 3, · · · ,

2q − 1}. Thus f is an odd harmonious labeling of G. Hence arbitrary supersubdivision of path

Pn is an odd harmonious graph. �

Illustration 2.6 Odd harmonious labeling of arbitrary supersubdivision of path P5 is shown

in Fig. 3.
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Theorem 2.7 Joint sum of two copies of Cn admits an odd harmonious labeling for n ≡ 0(mod

4).

Proof We denote the vertices of first copy of Cn by v1, v2, . . . , vn and vertices of second

copy by vn+1, vn+2, . . . , v2n. Join the two copies of Cn with a new edge and denote the resultant

graph by G then |V (G)| = 2n and |E(G)| = 2n + 1. Without loss of generality we assume that

the new edge by vnvn+1 and v1, v2, · · · , vn,vn+1, vn+2, . . . , v2n will form a spanning path in G.

Define f : V (G) → {0, 1, 2, 3, · · · , 4n + 1} as follows.

f(v2i+1) = 2i, 0 6 i 6 3n
4 − 1,

f
(

v 3n
2

+2i−1

)

= 3n
2 + 2i, 1 6 i 6 n

4 ,

f(v2i) = 2i − 1, 1 6 i 6 n
4 ,

f
(

vn
2
+2i+2

)

= n
2 + 3 + 2i, 0 6 i 6 3n

4 − 1.

The vertex function f defined above induces a bijective edge function f∗ : E(G) → {1, 3, . . . ,

4n + 1}. Thus f is an odd harmonious labeling of G. Hence joint sum of two copies of Cn

admits odd harmonious labeling for n ≡ 0(mod 4). �

Illustration 2.8 Odd harmonious labeling of the joint sum of two copies of C12 is shown in

Fig. 4.
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Theorem 2.9 The graph Hn,n is on odd harmonious graph.
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Proof Let V = {v1, v2, · · · , vn}, U = {u1, u2, · · · , un} be the partition of V (Hn,n). Let

G = Hn,n then |V (G)| = 2n and |E(G)| =
n(n + 1)

2
. We define odd harmonious labeling

f : V (G) → {0, 1, 2, 3, · · · , (n2 + n − 1)} as follows.

f(vi) = i(i − 1), 1 6 i 6 n,

f(ui) = (2n + 1) − 2i, 1 6 i 6 n.

The vertex function f defined above induces a bijective edge function f∗ : E(G) → {1, 3, · · · ,

n2 + n − 1
}

. Thus f is an odd harmonious labeling of G. Hence the graph Hn,n is on odd

harmonious graph. �

Illustration 2.10 Odd harmonious labeling of the graph H5,5 is shown in Fig. 5.
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§3. Concluding Remarks

Liang and Bai have proved that Pn, Bn,n are odd harmonious graphs for all n and Cn is odd

harmonious graph for n ≡ 0(mod 4) while we proved that the shadow and the splitting graphs

of Bn,n admit odd harmonious labeling. Thus odd harmoniousness remains invariant for the

shadow graph and splitting graph of Bn,n. It is also invariant under arbitrary supersubdivision

of Pn. To investigate similar results for other graph families and in the context of various graph

labeling problems is a potential area of research.
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Abstract: Let G be a graph with vertex set V and edge set E, and Z2 = {0, 1}. Let f be

a labeling from E to Z2, so that the labels of the edges are 0 or 1. The edges labelled 1 are

called 1-edges and edges labelled 0 are called 0-edges. The edge labeling f induces a vertex

labeling f∗ : V −→ Z2 defined by

f
∗(v) =







1 if the number of 1-edges incident on v is odd,

0 if the number of 1-edges incident on v is even.

For i ∈ Z2 let ef (i) = e(i) = |{e ∈ E : f(e) = i}| and vf (i) = v(i) = |{v ∈ V : f∗(v) = i}|.

A labeling f is said to be edge-friendly if | e(0) − e(1) |≤ 1. The 1- edge balance index set

(OEBI) of a graph G is defined by {| vf (0)− vf (1) | : the edge labeling f is edge-friendly}.

The main purpose of this paper is to completely determine the 1-edge balance index set of

wheel and Mycielskian graph of a path.

Key Words: Mycielskian graph, edge labeling, edge-friendly, 1-edge balance index set,

Smarandachely induced vertex labeling, Smarandachely edge-friendly graph.

AMS(2010): 05C78

§1. Introduction

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain

conditions. Varieties of graph labeling have been investigated by many authors [2], [3] [5] and

they serve as useful models for broad range of applications.

Let G be a graph with vertex set V (G) and edge set E(G) and Z2 = {0, 1}. Let f be a

labeling from E(G) to Z2, so that the labels of the edges are 0 or 1. The edges labelled 1 are

called 1-edges and edges labelled 0 are called 0-edges. The edge labeling f induces a vertex

labeling f∗ : V (G) −→ Z2, defined by

f∗(v) =







1 if the number of 1-edges incident on v is odd,

0 if the number of 1-edges incident on v is even.

For i ∈ Z2, let ef (i) = e(i) = |{e ∈ E(G) : f(e) = i}| and vf (i) = v(i) = |{v ∈ V (G) :

f∗(v) = i}|. Generally, let f : E(G) → Zp be a labeling from E(G) to Zp for an integer

1Received June 28, 2011. Accepted September 20, 2012.
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p ≥ 2. A Smarandachely induced vertex labeling on G is defined by fv = (l1, l2, · · · , lp) with

nk(v) ≡ lk(modp), where nk(v) is the number of k-edges, i.e., edges labeled with an integer k

incident on v. Let

ek(G) =
1

2

∑

e∈E(G)

nk(v)

for an integer 1 ≤ k ≤ p. Then a Smarandachely edge-friendly graph is defined as follows.

Definition 1.1 A graph G is said to be Smarandachely edge-friendly if | ek(G)− ek+1(G) |≤ 1

for integers 1 ≤ k ≤ p. Particularly, if p = 2, such a Smarandachely edge-friendly graph is

abbreviated to an edge-friendly graph.

Definition 1.2 The 1-edge balance index set of a graph G, denoted by OEBI(G), is defined

as {| vf (1) − vf (0) |: f is edge-friendly}.

For convenience, a vertex is called 0-vertex if its induced vertex label is 0 and 1-vertex, if

its induced vertex label is 1.

In the mid 20th century there was a question regarding the construction of triangle-free

k-chromatic graphs, where k ≤ 3. In this search Mycielski [4] developed an interesting graph

transformation known as the Mycielskian which is defined as follows:

Definition 1.3 For a graph G = (V, E), the Mycielskian of G is the graph µ(G) with vertex

set consisting of the disjoint union V ∪ V
′ ∪ {v0}, where V

′

= {x′

: x ∈ V } and edge set

E ∪ {x′

y : xy ∈ E} ∪ {x′

v0 : x
′ ∈ V

′}.
u1

u2

u3

u4

un−2

un−1

un

v1

v2

v3

v4

vn−2

vn−1

vn

v0

Figure 1 Mycielskian graph of the path Pn

Recently Chandrashekar Adiga et al. [1] have introduced and studied the 1-edge bal-

ance index set of several classes of graphs. In Section 2, we completely determine the 1-

edge balance index set of the Mycielskian graph of path Pn. In Section 3, we establish that

OEBI(Wn) = {0, 4, 8 . . . , n} if n ≡ 0(mod 4), OEBI(Wn) = {2, 6, 10 . . . , n} if n ≡ 2(mod 4)

and OEBI(Wn) = {1, 2, 5 . . . , n} if n is odd.
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§2. The 1-Edge Balance Index Set of µ(Pn)

In this section we consider the Mycielskian graph of the path Pn (n ≥ 2), which consists of

2n+1 vertices and 4n−3 edges. To determine the OEBI(µ(Pn)) we need the following theorem,

whose proof is similar to the proof of the Theorem 1 in [6].

Theorem 2.1 If the number of vertices in a graph G is even(odd) then the 1-edge balance index

set contains only even(odd)numbers.

Now we divide the problem of finding OEBI(µ(Pn)) into two cases, viz,

n ≡ 0(mod 2) and n ≡ 1(mod 2),

Denoted by max{OEBI(µ(Pn))} the largest number in the 1-edge balance index set of

µ(Pn). Then we get the follpowing result.

Theorem 2.2 If n ≡ 0(mod 2) i.e, n = 2k(k ∈ N), then OEBI(µ(Pn)) = {1, 3, 5, . . . , 2n+1}.

Proof Let f be an edge-friendly labeling on µ(Pn). Since the graph contains 2n+1 = 4k+1

vertices, 4n − 3 = 8k − 3 edges, we have two possibilities: i) e(0) = 4k − 1, e(1) = 4k − 2

ii) e(0) = 4k − 2, e(1) = 4k − 1. Now we consider the first case namely e(0) = 4k − 1 and

e(1) = 4k−2. Denote the vertices of µ(Pn) as in the Figure 1. Now we label the edges u2q−1v2q,

u2q+1v2q for 1 ≤ q ≤ k − 1, uquq+1 for 1 ≤ q ≤ 2k − 3, u2k−2v2k−1, u2kv2k−1 and u2k−1u2k by

1 and label the remaining edges by 0. Then it is easy to observe that v(0) = 4k + 1 and there

is no 1-vertex in the graph. Thus | v(1) − v(0) |= 4k + 1 = 2n + 1 = max{OEBI(µ(Pn))}.
Now we interchange the labels of the edges to get the remaining 1-edge balance index

numbers. By interchanging the labels of edges u2qu2q+1 and u2qv2q+1 for 1 ≤ q ≤ k − 2,

we get, | v(0) − v(1) |= 4k + 1 − 4q. Further interchanging u2k−1u2k and u2k−1v2k, we get

| v(0) − v(1) |= 5.

In the next four steps we interchange two pairs of edges as follows to see that 1, 3, 7, 11 ∈
OEBI(µ(Pn))

u1v2 and v1v0, u2v3 and v2v0.

u3v2 and v3v0, u3v4 and v4v0.

u4v5 and v5v0, u5v4 and v6v0.

u5v6 and v7v0, u6v7 and v8v0.

Now we interchange u2⌊ q−1

2
⌋+7 v2⌈ q−1

2
⌉+6 and v2q+7 v0, u2q+6 v2q+7 and v2q+8 v0 for 1 ≤ q ≤

k − 5 to obtain | v(0) − v(1) |= 4q + 11. Finally by interchanging the labels of the edges

u2⌊ k−5

2
⌋+7 v2⌈ k−5

2
⌉+6 and u2k−2 u2k−1 we get | v(0) − v(1) |= 4k − 5 and u2⌊ k−4

2
⌋+7 v2⌈ k−4

2
⌉+6

and u2k−1 v0 we get | v(0) − v(1) |= 4k − 1.

Proof of the second case follows similarly. Thus

OEBI(µ(Pn)) = {1, 3, 5, · · · , 2n + 1}. �

Theorem 2.3 If n ≡ 1(mod 2) i.e, n = 2k + 1(k ∈ N), then OEBI(µ(Pn)) = {1, 3, 5, . . . ,

2n + 1}.
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Proof Let f be an edge-friendly labeling on µ(Pn). Since the graph contains 2n+1 = 4k+3

vertices, 4n − 3 = 8k + 1 edges, we have two possibilities: i) e(0) = 4k + 1, e(1) = 4k

ii) e(0) = 4k, e(1) = 4k + 1. Now we consider the first case namely e(0) = 4k + 1 and

e(1) = 4k. Denote the vertices of µ(Pn) as in the Figure 1. Now we label the edges u2q−1v2q,

u2q+1v2q for 1 ≤ q ≤ k and uquq+1 for 1 ≤ q ≤ 2k by 1 and label the remaining edges by

0. Then it is easy to observe that v(0) = 4k + 3 and there is no 1-vertex in the graph. Thus

| v(1) − v(0) |= 4k + 3 = 2n + 1 = max{OEBI(µ(Pn))}.
Now we interchange the labels of the edges to get the remaining 1-edge balance index

numbers. By interchanging the labels of edges u2qu2q+1 and u2qv2q+1 for 1 ≤ q ≤ k we get

| v(0)−v(1) |= 4k+3−4q. Further interchanging u2kv2k+1 and v2k+1v0 we get | v(0)−v(1) |= 1.

In the next four steps we interchange two pairs of edges as follows to see that 5, 9, 13.17 ∈
OEBI(µ(Pn))

u1v2 and v1v0, u2v3 and v2v0.

u3v2 and v3v0, u3v4 and v4v0.

u4v5 and v5v0, u5v4 and v6v0.

u5v6 and v7v0, u6v7 and v8v0.

And finally by interchanging the labels of edges u2⌊ q−1

2
⌋+7 v2⌈ q−1

2
⌉+6 and v2q+7 v0, u2q+6 v2q+7

and v2q+8 v0 for 1 ≤ q ≤ k − 4, we Obtain | v(0) − v(1) |= 4q + 17.

Proof of the second case follows similarly. Thus

OEBI(µ(Pn)) = {1, 3, 5, . . . , 2n + 1}. �

§3. The 1-Edge Balance Index Set of Wheel

In this section we consider the wheel, denoted by Wn which consists of n vertices and 2n − 2

edges. To determine the OEBI(Wn) we consider four cases, namely,

n ≡ 0(mod 4), n ≡ 1(mod 4),

n ≡ 2(mod 4), n ≡ 3(mod 4).

Theorem 3.1 If n ≡ 0(mod 4) i.e, n = 4k(k ∈ N), then OEBI(Wn) = {0, 4, 8, . . . , n}.

Proof Let f be an edge-friendly labeling on Wn. Since the graph contains n = 4k vertices,

2n − 2 = 8k − 2 edges, we must have e(0) = e(1) = 4k − 1. Denote the vertices on the rim of

the wheel by v0, v1, v2, · · · , v4k−1 and denote the center by v0. Now we label the edges vqvq+1

for 1 ≤ q ≤ 4k − 2 and v4k−1v1 by 1 and label the remaining edges by 0. Then it is easy to

observe that v(0) = 4k and there is no 1-vertex in the graph. Thus | v(1) − v(0) |= 4k = n =

max{OEBI(Wn)}.
Now we interchange the labels of the edges to get the remaining 1-edge balance index

numbers. By interchanging the labels of edges v2q−1v2q and v2q−1v0, v2qv2q+1 and v2qv0 for

1 ≤ q ≤ k we get | v(0) − v(1) |= 4k − 4q. Thus 0, 4, 8, · · · , n are elements of OEBI(Wn).
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Let ai = card{v ∈ V | number of 1-edges incident on v is equal to i }, i = 1, 2, 3, . . . , 4k−1.

Then we have
4k−1
∑

i=1

iai = a1 + 2a2 + 3a3+, . . . , +(4k − 1)a4k−1 = 8k − 2

implies that a1 + 3a3 + 5a5+, . . . , +(4k − 1)a4k−1 is even, which is possible if and only if,

a1 + a3 + a5+, . . . , +a4k−1 is even, that is, the number of 1-vertices is even and hence the

number of 0-vertices is also even. Therefore, the numbers 2, 6, 10, . . . , n− 2 are not elements of

OEBI(Wn). �

Theorem 3.2 If n ≡ 1(mod 4) i.e, n = 4k + 1(k ∈ N), then OEBI(Wn) = {1, 3, 5, . . . , n}.

Proof Let f be an edge-friendly labeling on Wn. Since the graph contains n = 4k + 1

vertices, 2n − 2 = 8k edges, we must have e(0) = e(1) = 4k. Denote the vertices on the rim of

the wheel by v0, v1, v2, · · · , v4k and denote the center by v0. Now we label the edges vqvq+1 for

1 ≤ q ≤ 4k − 1 and v4kv1 by 1 and label the remaining edges by 0. Then it is easy to observe

that v(0) = 4k + 1 and there is no 1-vertex in the graph. Thus | v(1) − v(0) |= 4k + 1 = n =

max{OEBI(Wn)}.
Now we interchange the labels of the edges to get the remaining 1-edge balance index

numbers. By interchanging the labels of edges v2q−1v2q and v2q−1v0, v2qv2q+1 and v2qv0 for

1 ≤ q ≤ 2k − 1, we get | v(0) − v(1) |=| 4k + 1 − 4q | and by interchanging the labels of edges

v4k−1v4k and v4k−1v0, v4kv1 and v4kv0, we get | v(0) − v(1) |= 4k − 1. Thus

OEBI(Wn) = {1, 3, 5, . . . , n}. �

Similarly one can prove the following results.

Theorem 3.3 If n ≡ 2(mod 4) i.e, n = 4k + 2(k ∈ N), then OEBI(Wn) = {2, 6, 10, . . . , n}.

Theorem 3.4 If n ≡ 3(mod 4) i.e, n = 4k + 3(k ∈ N), then OEBI(Wn) = {1, 3, 5, . . . , n}.
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Cătălin Barbu1 and Florentin Smarandache2
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§1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an attempt to understand

Euclid’s axiomatic basis of geometry. It is also known as a type of non-euclidean geometry,

being in many respects similar to euclidean geometry. Hyperbolic geometry includes similar

concepts as distance and angle. Both these geometries have many results in common but

many are different. Several useful models of hyperbolic geometry are studied in the literature

as, for instance, the Poincaré disc and ball models, the Poincaré half-plane model, and the

Beltrami-Klein disc and ball models [3] etc. Following [6] and [7] and earlier discoveries, the

Beltrami-Klein model is also known as the Einstein relativistic velocity model. Menelaus of

Alexandria was a Greek mathematician and astronomer, the first to recognize geodesics on a

curved surface as natural analogs of straight lines. The well-known Menelaus theorem states

that if l is a line not through any vertex of a triangle ABC such that l meets BC in D, CA in

E, and AB in F , then DB
DC

· EC
EA

· FA
FB

= 1 [2]. Here, in this study, we give hyperbolic version of

Menelaus theorem for quadrilaterals in the Poincaré disc model. Also, we will give a reciprocal

hyperbolic version of this theorem. In [1] has been given proof of this theorem, but to use

Klein’s model of hyperbolic geometry.

We begin with the recall of some basic geometric notions and properties in the Poincaré

disc. Let D denote the unit disc in the complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.

1Received July 28, 2012. Accepted September 22, 2012.
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The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of the disc to

be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex conjugate

of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕). If we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that obeys the

following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties. For all real

numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1 ⊗ a = a;

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a;

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a);

(G4) |r|⊗a

‖r⊗a‖ = a

‖a‖ ;

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a;

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1 ;

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional ”vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖;
(G8) ‖a ⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖.

Definition 1. The hyperbolic distance function in D is defined by the equation

d(a, b) = |a ⊖ b| =

∣

∣

∣

∣

a − b

1 − ab

∣

∣

∣

∣

.

Here, a ⊖ b = a ⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A.Ungar [7].
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Theorem 2(The Menelaus’s Theorem for Hyperbolic Gyrotriangle) Let ABC be a gyrotriangle

in a Möbius gyrovector space (Vs,⊕,⊗) with vertices A, B, C ∈ Vs, sides a,b, c ∈ Vs, and side

gyrolengths a, b, c ∈ (−s, s), a = ⊖B⊕C, b = ⊖C⊕A, c = ⊖A⊕B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ ,

and with gyroangles α, β, and γ at the vertices A, B, and C. If l is a gyroline not through any

vertex of an gyrotriangle ABC such that l meets BC in D, CA in E, and AB in F, then

(AF )γ

(BF )γ

· (BD)γ

(CD)γ

· (CE)γ

(AE)γ

= 1.

where vγ = v

1− v2

s2

[6].

§2. Main Results

In this section, we prove Menelaus’s theorem for hyperbolic quadrilateral.

Theorem 3(The Menelaus’s Theorem for Gyroquadrilateral) If l is a gyroline not through any

vertex of a gyroquadrilateral ABCD such that l meets AB in X, BC in Y , CD in Z, and DA

in W , then

(AX)γ

(BX)γ

· (BY )γ

(CY )γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1. (1)

Proof Let T be the intersection point of the gyroline DB and the gyroline XY Z (See
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Figure 1). If we use Theorem 2 in the gyrotriangles ABD and BCD respectively, then

(AX)γ

(BX)γ

· (BT )γ

(DT )γ

· (DW )γ

(AW )γ

= 1 (2)

and
(DT )γ

(BT )γ

· (CZ)γ

(DZ)γ

· (BY )γ

(CY )γ

= 1. (3)

Multiplying relations (2) and (3) member with member, we obtain

(AX)γ

(BX)γ

· (BY )γ

(CY )γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1.

�

Naturally, one may wonder whether the converse of Menelaus theorem for hyperbolic

quadrilateral exists. Indeed, a partially converse theorem does exist as we show in the fol-

lowing theorem.

Theorem 4(Converse of Menelaus’s Theorem for Gyroquadrilateral) Let ABCD be a gyro-

quadrilateral. Let the points X, Y, Z, and W be located on the gyrolines AB, BC, CD, and DA

respectively. If three of four gyropoints X, Y, Z, W are collinear and

(AX)γ

(BX)γ

· (BY )γ

(CY )γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1,

then all four gyropoints are collinear.

Proof Let the points W, X, Z are collinear, and gyroline WXZ cuts gyroline BC, at Y ′

say. Using the already proven equality (1), we obtain

(AX)γ

(BX)γ

· (BY ′)γ

(CY ′)γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1,

then we get
(BY )γ

(CY )γ

=
(BY ′)γ

(CY ′)γ

. (4)

This equation holds for Y = Y ′. Indeed, if we take x := |⊖B ⊕ Y ′| and b := |⊖B ⊕ C| , then

we get b ⊖ x = |⊖Y ′ ⊕ C| . For x ∈ (−1, 1) define

f(x) =
x

1 − x2
:

b ⊖ x

1 − (b ⊖ x)2
. (5)

Because b ⊖ x =
b − x

1 − bx
, then f(x) =

x(1 − b2)

(b − x)(1 − bx)
. Since the following equality holds

f(x) − f(y) =
b(1 − b2)(1 − xy)

(b − x)(1 − bx)(b − y)(1 − by)
(x − y), (6)

we get f(x) is an injective function. This implies Y = Y ′, so W, X, Z, and Y are collinear. �

We have thus obtained in (1) the following.
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Theorem 5(Transversal theorem for gyrotriangles) Let D be on gyroside BC, and l is a

gyroline not through any vertex of a gyrotriangle ABC such that l meets AB in M, AC in N ,

and AD in P , then
(BD)γ

(CD)γ

· (CA)γ

(NA)γ

· (NP )γ

(MP )γ

· (MA)γ

(BA)γ

= 1. (7)

Proof If we use a theorem 2 for gyroquadrilateral BCNM and collinear gyropoints D, A, P ,

and A (See Figure 2), we obtain the conclusion. �

The Einstein relativistic velocity model is another model of hyperbolic geometry. Many

of the theorems of Euclidean geometry are relatively similar form in the Poincaré model,

Menelaus’s theorem for hyperbolic gyroquadrilateral and the transversal theorem for gyro-

triangle are an examples in this respect. In the Euclidean limit of large s, s → ∞, gamma

factor vγ reduces to v, so that the gyroinequalities (1) and (7) reduces to the

AX

BX
· BY

CY
· CZ

DZ
· DW

AW
= 1

and
BD

CD
· CA

NA
· NP

MP
· MA

BA
= 1,

in Euclidean geometry. We observe that the previous equalities are identical with the equalities

of theorems of euclidian geometry.
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You can pay attention to the fact, in which case you will probably become a

mathematician, or you can ignore it, in which case you will probably become a

physicist.

By Len Evans, an mathematician of the United States.
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