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Abstract: The generalized abc-block edge transformation graph Q+0−(G) is a graph whose

vertex set is the union of the edges and blocks of G, in which two vertices are adjacent

whenever corresponding edges of G are adjacent or one corresponds to an edge and other to

a block of G are not incident with each other. In this paper, we study the girth, covering

invariants and the domination number of Q+0−(G). We present necessary and sufficient

conditions for Q+0−(G) to be planar, outerplanar, minimally nonouterplanar and maximal

outerplanar. Further, we establish a necessary and sufficient condition for the generalized

abc-block edge transformation graph Q+0−(G) have crossing number one.

Key Words: Line graph, abc-block edge transformation, generalized abc-block edge trans-

formation graph, Smarandachely block-edge H-graph.

AMS(2010): 05C10, 05C40.

§1. Introduction

Throughout the paper, we only consider simple graphs without isolated vertices. Definitions

not given here may be found in [5]. A cut vertex of a connected graph is the one whose removal

increases the number of components. A nonseparable graph is connected, nontrivial and has

no cut vertices. A block of a graph is a maximal nonseparable subgraph. Let G = (V,E) be a

graph with block set U(G)={Bi; Bi is a block of G}. If a block B ∈ U(G) with the edge set

{e1, e2, · · · , em;m ≥ 1}, then we say that the edge ei and block B are incident with each other,

where 1 ≤ i ≤ m. The girth of a graph G, denoted by g(G) , is the length of the shortest cycle

if any in G. Let ⌈x⌉(⌊x⌋) denote the least (greatest) integer greater (less) than or equal to x.

A vertex and an edge are said to cover each other if they are incident. A set of vertices in

a graph G is a vertex covering set, which covers all the edges of G. The vertex covering number

α0(G) of G is the minimum number of vertices in a vertex covering set of G. A set of edges

in a graph G is an edge covering set, which covers all vertices of G. The edge covering number

1Supported by UGC-SAP DRS-III, New Delhi, India for 2016-2021: F.510/3/DRS-III/2016(SAP-I) Dated:
29th Feb. 2016.

2Received December 23, 2017, Accepted May 8, 2018.
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α1(G) of G is the minimum number of edges in an edge covering set of G. A set of vertices in

a graph G is independent if no two of them are adjacent. The maximum number of vertices in

such a set is called the vertex independence number of G and is denoted by β0(G). The set of

edges in a graph G is independent if no two of them are adjacent. The maximum number of

edges in such a set is called the edge independence number of G and is denoted by β1(G).

The line graph L(G) of a graph G is the graph with vertex set as the edge set of G and two

vertices of L(G) are adjacent whenever the corresponding edges in G have a vertex in common

[5]. The plick graph P (G) of a graph G is the graph whose set of vertices is the union of the set

of edges and blocks of G and in which two vertices are adjacent if and only if the corresponding

edges of G are adjacent or one is corresponds to an edge and other is corresponds to a block are

incident [8]. In [2], we generalized the concept of plick graph and were termed as generalized

abc-block edge transformation graphs Qabc(G) of a graph G and obtained 64 kinds of graphs.

In this paper, we consider one among those 64 graph which is defined as follows:

Definition 1.1 The generalized abc-block edge transformation graph Q+0−(G) is a graph whose

vertex set is the union of the edges and blocks of G, in which two vertices are adjacent whenever

corresponding edges of G are adjacent or one corresponds to an edge and other to a block of G

are not incident with each other.

Generally, a Smarandachely block-edge H-graph is such a graph with vertex set E(G)
⋃
B(G)

and two vertices e1, e2 ∈ E(G)
⋃
B(G) are adjacent if e1, e2 ∈ E(H) are adjacent, or at least

one of e1, e2 not in E(H) and they are non-adjacent, or one in E(H) and other in B(G) which

are not incident, where H is a subgraph of G with property P. Clearly, a Smarandachely

block-edge E(G)
⋃
B(G)-graph is nothing else but a generalized abc-block edge transformation

graph.

In this paper, we study the girth, covering invariants and the domination number of

Q+0−(G). We present necessary and sufficient conditions for Q+0−(G) to be planar, outer-

planar, minimally nonouterplanar and maximal outerplanar. Further, we establish a necessary

and sufficient condition for the generalized abc-block edge transformation graph Q+0−(G) have

crossing number one. Some other graph valued functions were studied in [3, 4, 7, 8, 9, 11, 12].

In Figure 1, a graph G and its generalized abc-block edge transformation graph Q+0−(G) are

shown.

Figure 1. Graph G and its Q+0−(G).
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In Q+0−(G), the vertices correspond to edges of G denoted by circles and vertices corre-

spond to blocks of G denoted by squares. The vertex e
′

i (B
′

i) of Q+0−(G) corresponding to edge

ei (block Bi) of G and is refereed as edge (block)-vertex.

The following theorems will be useful in the proof of our results.

Theorem 1.1([8]) If G is a nontrivial connected (p, q) graph whose vertices have degree di and

if bi the number of blocks to which vertex vi belongs in G, then P (G) has q − p + 1 +

p∑

i=1

bi

vertices and
1

2

p∑

i=1

d2
i edges.

Theorem 1.2([5]) For any nontrivial connected graph G with p vertices,

α0(G) + β0(G) = p = α1(G) + β1(G).

Theorem 1.3([6]) If L(G) is the line graph of a nontrivial connected graph G with q edges,

then

α1(L(G)) = ⌈ q
2
⌉.

§2. Basic Results on Q+0−(G)

We start with preliminary remarks.

Remark 2.1 L(G) is an induced subgraph of Q+0−(G).

Remark 2.2 If G is a block, then Q+0−(G) = L(G) ∪K1.

Remark 2.3 Let G be a graph with edge set E(G) = {e1, e2, · · · , em} and r blocks. Then

dQ+0−(G)e
′
i = dGei + r − 1.

Remark 2.4 Let G be a (p, q)-graph with block set U(G) = {B1, B2, · · · , Br} such that

| E(Bi) |= ni. Then dQ+0−(G)B
′
i = q − ni.

Theorem 2.1 Let G be a (p, q)−connected graph whose vertices have degree di with r ≥ 1

blocks and bi (1 ≤ i ≤ p) the number of blocks to which vertex vi belongs in G. Then

(1) The order of Q+0−(G) = q − p+ 1 +
p∑

i=1

bi;

(2) The size of Q+0−(G) = q(r − 2) + 1
2

p∑
i=1

d2
i .

Proof It is shown in [5] that for a connected graph G with p vertices and bi number of

blocks to which vertex vi (1 ≤ i ≤ p) belongs in G. Then the number of blocks of G is given

by b(G) = 1 +
p∑

i=1

(bi − 1). The order of Q+0−(G) is the sum of the number of edges of G and
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number of blocks of G. Hence the order of Q+0−(G)

= q + 1 +

p∑

i=1

(bi − 1) = q − p+ 1 +

p∑

i=1

bi.

The total number of edges formed by joining each of the r block-vertices to all the q

edge-vertices is rq. The number of edges in line graph L(G) is −q+
1

2

p∑

i=1

d2
i . Thus, the size of

Q+0−(G) = rq − q − q +
1

2

p∑

i=1

d2
i = q(r − 2) +

1

2

p∑

i=1

d2
i . 2

An immediate consequence of the above theorem is the following corollary.

Corollary 2.2 Let G be a (p, q) graph whose vertices have degree di with r blocks and m

components. If bi (1 ≤ i ≤ p) is the number of blocks to which vertex vi belongs in G, then

(1) The order of Q+0−(G) = q − p+m+

p∑

i=1

bi;

(2) The size of Q+0−(G) = q(r − 2) +
1

2

p∑

i=1

d2
i .

Theorem 2.3 Let G be a graph. The graphs Q+0−(G) and P (G) are isomorphic if and only if

G has two blocks.

Proof Let G be a (p, q) graph with r ≥ 1 blocks. Suppose Q+0−(G) = P (G). Then

|E(Q+0−(G))| = |E(P (G))|. By Theorems 1.1 and 2.1, we have

q(r − 2) +
1

2

p∑

i=1

d2
i =

1

2

p∑

i=1

d2
i

q(r − 2) = 0.

Since G has at least one edge and hence equality holds only when r = 2. Therefore G has

two blocks.

Conversely, suppose G has two blocks B1 and B2. Then by definitions of Q+0−(G) and

P (G), L(G) is induced subgraph of Q+0−(G) and P (G). In Q+0−(G), block-vertex B′
1 is

adjacent all the edge-vertices corresponding to edges of B2 and block-vertex B′
2 is adjacent to all

the edge-vertices corresponding to edges ofB1. In P (G), block-vertexB′
1 is adjacent all the edge-

vertices corresponding to edges of B1 and block-vertex B′
2 is adjacent to all the edge-vertices

corresponding to edges of B2. This implies that there exist a one-to-one correspondence between

vertices of Q+0−(G) and P (G) which preserves adjacency. Therefore the graphs Q+0−(G) and

P (G) are isomorphic. 2
The following theorem gives the girth of Q+0−(G).
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Theorem 2.4 For a graph G 6= 2K2,K2, P3,

g(Q+0−(G)) =






3 if G contains K1,3 or K3 or G = Pn; n ≥ 4 or G is union of at least

two cycles or paths or G is union of paths and cycles,

4 if G = mK2,m ≥ 4,

6 if G = 3K2,

n if G = Cn, n ≥ 4.

Proof If G contains a triangle or K1,3, then the line graph L(G) of G contains triangle.

By Remark 2.1, it follows that girth of Q+0−(G) is 3. Assume that G is triangle free and K1,3

free. Then we have the following cases:

Case 1. Assume G has every vertex of degree is 2. We have two subcases:

Subcase 1.1 If G is connected, then clearlyG = Cn ; n ≥ 4, we haveQ+0−(G) = Cn

⋃
K1,

n ≥ 4. Therefore girth of Q+0−(G) is n.

Subcase 1.2 If G is disconnected, then G is union of at least two cycles and Q+0−(G)

contains at least two wheels. Therefore girth of Q+0−(G) is 3.

Case 2. Assume that G 6= 2K2,K2 has every vertex of degree is one. It is easy to see that

g(Q+0−(G))=





6 if G = 3K2,

4 if G = mK2; m ≥ 4.

Case 3. Assume that G 6= P3 has vertices of degree one or two. Then G is either union of

paths Pn or union of paths and cycles. Therefore girth of Q+0−(G) is 3. 2
§3. Covering Invariants of Q+0−(G)

Theorem 3.1 For a connected (p, q)-graph G with r blocks, if Q+0−(G) is connected, then

α0(Q
+0−(G)) = q and β0(Q

+0−(G)) = r.

Proof Let G be a connected (p, q)-graph. By Remark 2.1, L(G) is an induced subgraph of

Q+0−(G). Therefore by definition of Q+0−(G), the edge-vertices covers all the edges of L(G).

Since Q+0−(G) is connected, it follows that for each block-vertex B′ of Q+0−(G), there exists

a edge-vertex e′ such that e′ and B are adjacent in Q+0−(G). Therefore the vertex set of L(G)

covers all the edges of Q+0−(G) and this is minimum covering. Hence α0(Q
+0−(G)) = q. Since

Q+0−(G) is connected. By Theorem 1.2, we have α0(Q
+0−(G)) + β0(Q

+0−(G)) = q + r. Thus

β0(Q
+0−(G)) = r. 2

Theorem 3.2 Let G be a connected (p, q)-graph with r blocks. If Q+0−(G) is connected, then

α1(Q
+0−(G))=





r if G is a tree,

r + ⌈ q−r
2 ⌉ otherwise.



6 K.G.Mirajkar, Pooja B. and Shreekant Patil

and

β1(Q
+0−(G))=





q if G is a tree,

q − ⌈ q−r
2 ⌉ otherwise.

Proof Let T be the set of minimum edges covering all block-vertices of Q+0−(G). i.e.,

|T | = r. Let S be the set of minimum edge cover of L(G). By Theorem 1.3, |S| = ⌈ q
2⌉. We

consider the following two cases:

Case 1. If G is a tree, then q = r. By the definition, T covers all block-vertices and edge-

vertices of Q+0−(G). Thus α1(Q
+0−(G)) = r.

Case 2. If G is not a tree, then q > r. By the definition, T covers all block-vertices and only r

edge-vertices of Q+0−(G). Therefore there exists a set of edge-vertices F , say of Q+0−(G) such

that no element of T is incident with any element of F in Q+0−(G). i.e., |F | = q − r. Since

each element of S covers two elements of L(G) and F ⊂ V (Q+0−(G)), it follows that we need⌈
|F |
2

⌉
elements from S to cover all elements of F . Thus α1(Q

+0−(G))= r + ⌈ q−r
2 ⌉.

Therefore, α1(Q
+0−(G))=





r if G is a tree,

r + ⌈ q−r
2 ⌉ otherwise.

Since Q+0−(G) is connected. By Theorem 1.2, we have α1(Q
+0−(G)) + β1(Q

+0−(G)) =

q + r. Thus

β1(Q
+0−(G))=





q if G is a tree,

q − ⌈ q−r
2 ⌉ otherwise.

2
§4. Domination Number of Q+0−(G)

A set D of vertices in a graph G = (V,E) is called a dominating set of G if every vertex in

V −D is adjacent to some vertex in D. A dominating set D is called minimal dominating set

if no proper subset of D is a dominating set. The domination number γ(G) of a graph G is the

minimum cardinality of a dominating set in G ([10]).

The following result is immediate from Remark 2.2.

Theorem 4.1 If G is a block, then γ(Q+0−(G)) = γ(L(G)) + 1.

Theorem 4.2 If G has two blocks, then γ(Q+0−(G)) = 2.

Proof Suppose G has two blocks B1 and B2. Then B′
1 dominates all the edge-vertices

in Q+0−(G) corresponding to edges of B2 and B′
2 dominates all the edge-vertices in Q+0−(G)

corresponding to edges of B1. Therefore γ(Q+0−(G))= |{B′
1, B

′
2}| = 2 where {B′

1, B
′
2} is a

minimal dominating set in Q+0−(G). 2
Theorem 4.3 For any graph G with at least three blocks,
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γ(Q+0−(G))=





2 if G contain an edge is adjacent to every other edge of its block,

3 otherwise.

Proof Let G be a graph having at least three blocks. We consider following two cases:

Case 1. If G contain an edge e is adjacent to every other edge of its block B, then block-

vertex B′ dominates the edge-vertices corresponding to the edges not in B. And edge-vertex e′

dominates the block-vertices except B′ and dominates the edge-vertices corresponding to edges

of B. Therefore γ(Q+0−(G)) = |{e′, B′}| = 2 where {e′, B′} is a minimal dominating set in

Q+0−(G).

Case 2. If G contain no edge is adjacent to every other edge of its block, then there exist two

block-vertices B′, B′
1 and one edge-vertex e′, where e is in B in G, such that B′ dominates the

edge-vertices corresponding to the edges not in B and edge-vertex e′ dominates all the block-

vertices except B′ and block vertex B′
1 dominates the edge-vertices which are not dominated

from e′ and B′. Therefore γ(Q+0−(G))= |{e′, B′, B′
1}| = 3 where {e′, B′, B′

1} is a minimal

dominating set in Q+0−(G). 2
§5. Planarity of Graphs Q+0−(G)

A graph is planar if it can be drawn on the plane in such a way that no two of its edges intersect.

A planar graph is outerplanar if it can be embedded in the plane so that all its vertices lie on

the exterior region. In [1], Kulli introduced the concept of a minimally nonouterplanar graph.

The inner vertex number i(G) of a planar graph G is the minimum possible number of vertices

not belonging to the boundary of the exterior region in any embedding of G in the plane.

Obviously G is outerplanar if and only if i(G) = 0. A graph G is minimally nonouterplanar if

i(G) = 1. An outerplanar graph G is maximal outerplanar if no edge can be added without

losing outerplanarity. The crossing number Cr(G) of a graph G is the minimum number of

pairwise intersections of its edges when G is drawn in the plane. Obviously, Cr(G) = 0 if and

only if G is planar. A cactus is a connected graph in which every block is an edge or a cycle.

If G and H are graphs with the property that the identification of any vertex of G with an

arbitrary vertex of H results in a unique graph, then we write G ·H for this graph.

The condition for the planar, outerplanar, minimally nonouterplanar, maximal outerplanar

and crossing number of line graph of G and generalized abc-block edge transformation graph

Q+0−(G) are same when G is a block. So that in this section we assume graph G under

consideration is not a block in what follows.

Lemma 5.1 If G is not a tree having more than two blocks, then Q+0−(G) is nonplanar.

Proof LetG be not a tree having more than two blocks, i.e., G has a blockB contains a cycle

C. Then Q+0−(G) has a subgraph homeomorphic to Q+0−(2K2 ∪K3), and Cr(Q+0−(2K2 ∪
K3)) = 1. Therefore Q+0−(G) is nonplanar. 2
Theorem 5.2 Let G be a connected graph with more than one block. Then generalized abc-
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block edge transformation graph Q+0−(G) is planar if and only if G satisfies one of the following

conditions:

(1) G is a cactus having two blocks;

(2) G is a tree of order ≤ 5.

Proof Suppose Q+0−(G) is planar. Assume a connected graph G has atleast 5 blocks. We

consider the following cases:

Case 1. If G is not a tree, then by Lemma 5.1, Q+0−(G) is nonplanar, a contradiction.

Case 2. If G is a tree, i.e., every block ofG isK2, then Q+0−(G) has a subgraph homeomorphic

to Q+0−(5K2) and Cr(Q+0−(5K2)) = 4. Therefore Q+0−(G) is nonplanar, a contradiction.

In either case we arrive at a contradiction. Hence G contains at most four blocks. We

discuss two possibilities on number of blocks:

Subcase 2.1 If G is not a cactus having two blocks, i.e., some block B of G contains a

subgraph homeomorphic to Cn + e, then edge-vertices corresponding to edges of Cn + e and

block-vertex corresponding to block other than B forms a subgraph with at least one crossing

in Q+0−(G). Therefore Q+0−(G) is nonplanar, a contradiction. This proves (1).

Subcase 2.2 If G is not a tree having 3 or 4 blocks, then by Lemma 5.1, Q+0−(G) is

nonplanar, a contradiction. This proves (2).

Conversely, suppose G satisfies (1) or (2). Then G = Cn ·K2 or Cn · Cm or P4 or K1,3 or

K1,3 ·K2 or P3 or P5. Therefore it is easy to check that Q+0−(G) is planar. 2
Theorem 5.3 Let G be a connected graph with more than one block. Then generalized abc-block

edge transformation graph Q+0−(G) is outerplanar if and only if G is a tree of order ≤ 4.

Proof Suppose Q+0−(G) is outerplanar. Then Q+0−(G) is planar. By Theorem 5.2, we

have, G is a cactus having two blocks or G is a tree of order ≤ 5. Assume G is a tree of

order 5. Then Q+0−(G) has a subgraph homeomorphic to Q+0−(4K2) and i(Q+0−(4K2)) = 4.

Therefore Q+0−(G) is nonouterplanar, a contradiction. Assume G = Cm ·Cm or Cn ·K2. Then

Q+0−(G) is nonouterplanar, a contradiction. In either case we arrive at a contradiction. Hence

G is a tree of order ≤ 4.

Assume G is not a tree of order ≤ 4, i.e., G has a block B contains a cycle C. Then

edge-vertices corresponding to edges of C and a block-vertex corresponding to block other than

B forms a subgraph wheel in Q+0−(G). Therefore Q+0−(G) is nonouterplanar, a contradiction.

Hence G is a tree of order ≤ 4.

Conversely, suppose G is a tree of order ≤ 4. Then G = P3 or P4 or K1,3. Therefore

Q+0−(G) is outerplanar. 2
Theorem 5.4 Let G be a connected graph with more than one block. Then generalized abc-block

edge transformation graph Q+0−(G) is minimally nonouterplanar if and only if G = Cn ·K2.

Proof Suppose Q+0−(G) is minimally nonouterplanar. Then Q+0−(G) is planar. By

Theorem 5.2, we have, G is either cactus having two blocks or tree of order ≤ 5. If G is a tree
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of order ≤ 4, then by Theorem 5.3, Q+0−(G) is outerplanar, a contradiction. If G is a tree of

order 5, then Q+0−(G) has a subgraph homeomorphic to Q+0−(4K2), and i(Q+0−(4K2)) = 4.

Therefore Q+0−(G) is not minimally outerplanar, a contradiction.

Suppose G 6= Cn ·K2 is cactus having two blocks. Then G = P3 or Cn · Cm. Therefore

Q+0−(G) is not minimally nonouterplanar, a contradiction. Thus G is Cn ·K2.

Conversely, suppose G = Cn ·K2. Then Q+0−(G) is minimally nonouterplanar. 2
Theorem 5.5 Let G be a connected graph with more than one block. Then generalized abc-block

edge transformation graph Q+0−(G) is maximal outerplanar if and only if G = K1,3.

Proof Suppose Q+0−(G) is maximal outerplanar. Then Q+0−(G) is outerplanar. By

Theorem 5.3, we have, G is a tree of order ≤ 4. Assume G 6= K1,3 is a tree of order ≤ 4.

Then G = P3 or P4. Therefore Q+0−(G) is not maximal outerplanar, a contradiction. Hence

G = K1,3.

Conversely, suppose G = K1,3. Then Q+0−(G) is maximal outerplanar. 2
§6. Graphs Q+0−(G) and Crossing Number One

Lemma 6.1 Let G be a connected graph having two blocks. Then generalized abc-block edge

transformation graph Q+0−(G) has crossing number one if and only if G is either Ct · (Cs + e)

with △(G) ≤ 4 or K2 · (Cs + e).

Proof Suppose Q+0−(G) has crossing number one. Assume G 6= Ct ·(Cs+e) with △(G) ≤ 4

or K2 · (Cs + e). Then we have the following cases:

Case 1. If G is a cactus, then by Theorem 5.2, Q+0−(G) is planar, a contradiction.

Case 2. If G is not a cactus, then G is homeomorphic to K2 · (Ct + 2e) or K2 · (K2 ∪K3)

or (Ct + e) · (Cs + e) or Ct · (Cs + e) with △(G) = 5. Therefore Cr(K2 · (Ct + 2e)) ≥ 2,

Cr(K2 ·(K2 ∪K3)) ≥ 2, Cr((Ct+e)·(Cs+e)) ≥ 2, Cr(Ct ·(Cs+e)) = 2. Hence Cr(Q+0−(G)) ≥
2, a contradiction.

Conversely, suppose G is either Ct · (Cs + e) with △(G) ≤ 4 or K2 · (Cs + e). Then

Cr(Q+0−(G)) = 1. 2
Theorem 6.2 Let G be a connected graph with more than one block. Then generalized abc-block

edge transformation graph Q+0−(G) has crossing number one if and only if G = Ct · (Cs + e)

with △(G) ≤ 4 or K2 · (Cs + e) or Cn · P3.

Proof Suppose Q+0−(G) has crossing number one. Assume G 6= Ct ·(Cs+e) with △(G) ≤ 4

or K2 · (Cs + e) or Cn · P3. We consider the following cases:

Case 1. If G is a tree, then we consider following subcases:

Subcase 1.1 If G is a tree of order ≤ 5, then by Theorem 5.2, Q+0−(G) is planar, a

contradiction.
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Subcase 1.2 If G is a tree of order at least 6, then Q+0−(G) has a subgraph homoemorphic

to Q+0−(5K2) and Cr(Q+0−(5K2)) = 4. Therefore Cr(Q+0−(G)) ≥ 4, a contradiction.

Case 2. If G is not a tree, then G contains at least one cycle. We consider the following

subcases:

Subcase 2.1 If G has more than 3 blocks, then Q+0−(G) has a subgraph homeomorphic to

Q+0−(3K2∪K3) and Cr(Q+0−(3K2∪K3)) = 5. Therefore Cr(Q+0−(G)) ≥ 5, a contradiction.

Subcase 2.2 If G has three blocks, then Q+0−(G) has a subgraph homeomorphic to

Q+0−((C4+e) ·P3) or G1 where G1 = K+
3 −e, e is pendant edge, and Cr(Q+0−((C4+e) ·P3)) ≥

4, Cr(Q+0−(G1)) = 2. Therefore Cr(Q+0−(G)) ≥ 2, a contradiction.

Subcase 2.3 If G has two blocks, then by Lemma 6.1, crossing number of Q+0−(G) is

not equal to one, a contradiction.

Conversely, suppose G=Ct · (Cs + e) with △(G) ≤ 4 or K2 · (Cs + e) or Cn · P3. Then

Q+0−(G) has crossing number one. 2
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Abstract: In this study, we investigate the classical differential geometry of isotropic

curves in the complex space C4. We examine the constant breadth of isotropic curves and

obtain some results regarding these isotropic curves. We express some characterizations

of these curves via the É. Cartan derivative formula. We also indicate that the isotropic

vector of these curves and pseudo curvature satisfy a third order vector differential equation

with variable coefficients. We study this differential equation in some special cases. We

dene evolute and involute of the isotropic curve and express some characterizations of these

curves in terms of É. Cartan equations. The isotropic rectifying curve and isotropic helix

are characterized in C4. Finally, we present the conditions for an isotropic curve to be an

isotropic helix.
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curves, iotropic rectifying curves.
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§1. Introduction

At the beginning of the nineteenth century, V. Pancelet’s isotropic curve opened a door for a

number of new concepts. The imaginary curve in the complex space was pioneered by Cartan.

He defined his moving frame and the Cartan equations in C3. Altınışık extended the Cartan

apparatus of isotropic curves to C4. Furthermore, isotopic Bertrand curves and isotropic helices

in C3 were characterized, [9], [10], [16]. Also, the concept of a slant helix in the complex space

in C4 was offered by Yılmaz [13].

Curves of constant breadth were introduced by Euler [3]. The curves have been studied

in different spaces by researchers. For instance, Izumiya and Takeuchi defined slant helices [5].

Ali and Lopez gave some characterizations of slant helices in Minkowski 3-space [1]. Yılmaz

1Received January 24, 2018, Accepted August 2, 2018.
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studied spherical indicatrices of curves in Euclidean 4-space and Lorenzian 4-space [14], [15]. In

[7], Mağden and Yılmaz extended the well known properties of constant breadth of the curves

in four dimensional Galilean space G4.

Many researchers have studied involute-evolute curves in other spaces. The Frenet appa-

ratus of involute-evolute curves couple in the space E3 and E4 is given [4], [8]. In [12], Turgut

and Yılmaz studied involute-evolute curve couple in Minkowksi space-time. Şemin mentioned

involute-evolute isotropic curve in [11]. In Euclidean 4-space, rectifying curves are introduced

by İlarslan and Nesoviç in [6] as space curves whose position vector always lies in its rectifying

plane, spanned by tangent, the first binormal and second binormal vector fields T , B1 and

B2.The position vector of a rectifying curve α in E4 according to chosen origin satisfies the

equation

α(s) = λ(s)T (s) + ϕ(s)B1(s) + µ(s)B2(s),

where λ, ϕ and µ are some differentiable functions of the pseudo arc-length parameter s.

Thus, the main goal of this paper is to define some isotropic curves in the four dimensional

complex space C4. In the present paper, we first study isotropic curves of constant breadth

and the involute-evolute of the curve in C4. Then we introduce the Bertrand curve and present

some characterizations of the mentioned curves in terms of É. Cartan equations. Also, we give

a new characterization of the isotropic helix. Throughout this study some complex curves are

characterized in the complex space C4.

§2. Preliminaries

To meet the requirements in the next sections, the basic elements of the theory of imaginary

curves in the space C4 are briefly presented (a more complete elementary operation can be

found in [11]).

Let xp be a complex analytic function of a complex variable t. Then the vector function

x(t) =

4∑

p=1

xp(t)kp,

is called an imaginary curve, where t = t1 + it2, x : C → C4 and kp are standard basis unit

vectors of E4, i2 = −1. An arbitrary vector x ∈ C4, is called an isotropic vector if and only if

x2 = 0, (x 6= 0). In this space, the curves for which the square of the distance between any two

points equal to zero, are called minimal or isotropic curves [11]. Let s denote pseudo arc-length

(for details, see [10] or [11]). Then, a curve is an isotropic curve if and only if

ds2 = dx2 = 0.

The complex four dimensional space C4, is the real vector space E4 endowed with the

standard flat Euclidean metric given by

g = dx2
1 + 2dx1dx3 − dx2

4,
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where (x1, x2, x3, x4) is the complex coordinate system of C4.

The É. Cartan frame moving along the isotropic curve x in the space C4 is denoted by

{e1, e2, e3, e4}. This frame is defined ([11]) as

e1 = x′

e2 = ix′′

e3 = −β
2
x′ + x′′′

e4 = µ(e1 ∧ e2 ∧ e3) (2.1)

where β = (x′′′)2, µ is taken as ±1. If µ is taken as +1, the determinant of matrix [e1, e2, e3, e4],

the É. Cartan frame becomes positively oriented. Here, the triple vector product is cross product

expressed as in [2]. The inner products of these frame vectors are given by

ei · ej =





0 if i+ j ≡ 1, 2, 3mod 4

1 if i+ j = 4

−1 if i+ j = 8

where the vectors e1 and e3 are isotropic vectors; e2 is real and e4 is a complex vector. É.

Cartan derivative formulas can be expressed as follows:

e′1 = −ie2

e′2 = ike1 + ie3

e′3 = −ike2 (2.2)

e′4 = −ξ(k′′ + ξk)e1 − ξke3 +
ξ′

ξ
e4

where k(s) = 1
2β(s) is the pseudo curvature of the isotropic curve in the class C5 and ξ(s) =

± 1√
β2(s)+γ(s)

, where γ(s) = (x(iv))2, the derivative being taken with respect to the pseudo arc-

length s. In the rest of the paper, we shall suppose pseudo curvature is non-vanishing except

in the case of an isotropic cubic.

An isotropic hypersphere with centre m and radius r > 0 in C4 is defined as

S3 = {p = (p1, p2, p3, p4) ∈ C4 : (p− m)2 = r2}.

Definition 2.1 An isotropic curve x = x(s) in C4 is called an isotropic cubic if the pseudo

curvature k(s) = 0, where s is the pseudo arc-length parameter of the curve.

Definition 2.2 Let x = x(s) be a complex curve in C4. If the pseudo curvature of the curve is

constant, then x(s) is called a pseudo helix or isotropic helix in C4.

Definition 2.3 An isotropic curve x = x(s) in C4 is called an isotropic helix if inner product

of its tangent vector e1 is constant with some fixed isotropic vector v, that is, e1.v = constant.
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Definition 2.4 Let x = x(s) be an isotropic curve in C4. If there exists another isotropic curve

x∗ = x∗(s) in C4 such that principal normal vector field x∗ coincides with that normal vector

field of x, then x is called a Bertrand curve and x∗ is called the Bertrand mate of x and vice

versa, where x(s) and x∗(s) are opposite points of the curve.

Definition 2.5 Let ϕ and δ be two unit speed complex curves in C4. If the tangent vector of

the curve ϕ at the point ϕ(s0) is orthogonal to the tangent vector of the curve δ at the δ(s0)

then curve δ is called the involute of the curve ϕ as follows:

g(e1ϕ, e1δ) = 0,

where {e1ϕ, e2ϕ, e3ϕ, e4ϕ} and {e1δ, e2δ, e3δ, e4δ} are Frenet frames of ϕ and δ, respectively.

Also, the curve ϕ is called the evolute of the curve δ. This definition suffices to define this

curve mate as δ = ϕ+ λe1ϕ.

Definition 2.6 Let α be a complex curve in C4. A rectifying curve is defined in C4 as an α

isotropic curve whose position vector always lies in orthogonal complement e⊥2 of its principal

normal vector field e2.

§3. Isotropic Curves of Constant Breadth and Their Characterizations

Let x(s) and x∗(s) be isotropic curves in C4. If the tangent isotropic vector e1 of x(s) coincides

with the tangent isotropic vector e∗1 of x∗(s) opposite directions at the corresponding points

and the distance between these points is always constant, then x(s) is a constant breadth of the

isotropic curve. Suppose that x(s) and x∗(s) are isotropic curves of constant breadth. Then e∗1
can be expressed by

e1 = −e∗1

where e1 and e∗1 are inverse direction and parallel vectors.

Let x(s) and x∗(s) be isotropic curves of constant breadth in C4. Taking into account the

Cartan equations, it can be decomposed by

X∗(s) = X(s) +m1(s)e1 +m2(s)e2 +m3(s)e3 +m4(s)e4, (0 ≤ s ≤ 1), (3.1)

where X(s) and X∗(s) are opposite points and e1, e2, e3, e4 denote the É. Cartan frame in C4.

Differentiating the equation (3.1) with respect to s, we get

dX∗

ds
=

dX∗

ds∗
· ds

∗

ds
= e∗1

ds∗

ds

= (
dm1

ds
+m2ik +m4η1)e1 + (−m1i+

dm2

ds
−m3ik)e2

+(m2i+
dm3

ds
+m4η2)e3 + (

dm4

ds
+m4η3)e4, (3.2)

where η1(s) = −ξ(k′′ + ξk), η2(s) = −ξk, η3(s) = ξ′

ξ and k = 1
2β is a pseudo curvature of the
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isotropic curve in the class C5. Since e∗1 = −e1, we obtain

1 +
dm1

ds
+m2ik +m4η1 = −ds

∗

ds

−m1i+
dm2

ds
−m3ik = 0

m2i+
dm3

ds
−m4η2 = 0

dm4

ds
+m4η3 = 0. (3.3)

Putting f(s) = −1 − ds∗

ds , in the equation (3.3), it can be written as

dm1

ds
= −m2ik −m4η1 + f(s)

dm2

ds
= m1i+m3ik

dm3

ds
= −m2i−m4η2

dm3

ds
= −m4η3. (3.4)

By virtue of the equation (3.4)4 (i.e. the fourth expression of the equation (3.4)) we have

m4 = c is constant. Rearranging the equation (3.4) we get

dm1

ds
= −m2ik − c(k′′ + ξk) + f(s)

dm2

ds
= m1i+m3ik

dm3

ds
= −m2i− ck. (3.5)

The following corollary is a consequence of the equations (3.4) and (3.5).

Corollary 3.1 Let x = x(s) be an isotropic cubic. The isotropic position vector of x with

respect to É. Cartan frame can be formed by the equations (3.5) and can be obtained as

x(s) = x∗(s) +

(∫
f(s)ds+ k1(s)

)
e1

+

([∫ (∫
f(s)ds

)
+ k1(s)ds

]
+ k2(s)

)
e2

+

(∫
((

∫
f(s)ds)ds) + k1(s)

s2

2
ds+ ik2(s) + k3(s)

)
e3 + ce4.

Proof Let x = x(s) be an isotropic cubic. Then, k = 0 from Definition 2.1. From equation

(3.5)1 we get dm1

ds = f(s). Integrating this expression we have,

m1 =

∫
f(s)ds+ k1,
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where k1 is a complex constant, from equations (3.4),(3.5)2 and (3.5)3,

m2 = i(

∫
(

∫
f(s)ds) + k1(s)ds) + k2(s)

m3 =

∫
((

∫
(

∫
f(s)ds) + k1(s)

s2

2
)ds) + ik2(s) + k3(s)

and m4 = c is constant. After m1,m2,m3 and m4 are substituted into the isotropic position

vector x = x(s), the proof is completed. 2
Theorem 3.1 Let x = x(s) be complex curve of constant breadth with pseudo arc-length in C4.

If x = x(s) lies fully in the e3e4 subspace, then x = x(s) is an isotropic helix.

Proof Let x = x(s) be the pseudo arc-length parameter of constant breadth of complex

curve in C4. From equations (3.5), if we take m1 = m3 = 0, then we have m2 = c1 (where c1 is

a constant). Using this expression in the third equation of (3.5), we obtain k = c1

c i is constant.

From Definition 2.3), it is clear that the curve x = x(s) is an isotropic helix. 2
Theorem 3.2 Let x = x(s) be complex curve of constant breadth with pseudo arc-length in C4.

There is no constant breadth of isotropic curve that lies fully in the e1e2 subspace.

Proof Let x = x(s) be the pseudo arc-length parameter of constant breadth of complex

curve in C4. If we take m3 = m4 = 0 in equation (3.5), we get m1 = 0 and m2 = cki. So

x = x(s) lies fully in the e1e2 subspace. 2
Theorem 3.3 Let x = x(s) be complex curve of constant breadth with pseudo arc-length in

C4. There is no constant breadth of complex curve which lies fully in the e1e4 subspace, and

x = x(s) is isotropic cubic.

Proof Let x = x(s) be the pseudo arc-length parameter of constant breadth of complex

curve in C4. From equation (3.5), we get m1 = 0, m4 = c and k = 0. So x = x(s) lies fully in

the e1e4 subspace. From Definition 2.1, x = x(s) is an isotropic cubic. 2
Theorem 3.4 A pseudo arc-length isotropic x = x(s) in C4 is of constant breadth if and only

if it satisfies the following third order differential equation.

Proof From equation (3.5)1, we get

m2 =
ck′′ + cξk − f(s) + dm1

ds

−ik .

Substituting into (3.5)2, this expression m3 is obtained

m3 =

d
ds

[
ck′′+cξk−f(s)+

dm1
ds

−ik

]
−m1i

ik
.
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Taking the derivative of this expression, we obtain

dm3

ds
=

d

ds




d
ds

(
ck′′+cξk−f(s)+

dm1
ds

−ik

)
−m1

k


 .

Substituting into equation (3.5)3, this expression, we have a differential equation of third

order with complex variable coefficients as follows:

d

ds

[
− 1

ik

d

ds

(
ck′′ + cξk − f(s) + dm1

ds

−ik

)]
+

d

ds

(m1

k

)

−1

k

(
ck′′ + cξk − f (s) +

dm1

ds

)
+ ck = 0. (3.6)

The differential equation of third order with variable coefficients in equation (3.6) is char-

acterized for the constant breadth of isotropic curve x = x(s).

Now, we characterize the distance between opposite points of the curves of constant breadth

in C4. Remember the equation (3.1)

X∗(s) = X(s) +m1(s)e1 +m2(s)e2 +m3(s)e3

+m4(s)e4, (0 ≤ s ≤ 1).

If the distance between opposite points of (C) and (C∗) is constant, then we can write that

‖x∗ − x‖ = m2
1 + 2m1m3 −m2

4 = l2 = constant. (3.7)

Hence, we write

m2
dm2

ds
+m3

dm1

ds
+m1

dm3

ds
−m4

dm4

ds
= 0 (3.8)

from equations (3.5) since m4 = c is constant. Rearranging the equation (3.8), we obtain

m2
dm2

ds
+m3

dm1

ds
+m1

dm3

ds
= 0. (3.9)

Considering equations (3.5), we have

m3

[
µ (s) − k2i− m′

2ck

m3

]
= 0. (3.10)

We write m3 = 0 or µ (s) − k2i− m′

2ck
m3

= 0, obviously, m3 6= 0. Then it can be expressed

in the following cases:

Case 1. Let us suppose m3 = c1 6= 0 constant. From equations (3.5)2 and (3.5)3 we easily

have m2 = cki,m1 = −c1k. Then the isotropic position vector of ϕ∗ can be written as follows:

ϕ∗ = ϕ+ c1ke1 + ckie2 + c1e3 + ce4.
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Case 2. Let us suppose that m3 is constant and ϕ is isotropic helix. Thus, the equation (3.6)

takes the form
d2g(s)

ds2
− kh(s) + ck3 = 0, (3.11)

where h(s) = cξk − f(s). The solution of the equation (3.11) is

h(s) = L1e
√

kx + L2e
−
√

kx +
1

2
− 1√

2
, (3.12)

where L1 and L2 are real numbers.

Case 3. Let us suppose

µ(s) − k2i− m′
2ck

m3
= 0. (3.13)

In this case, (C∗) is transformed by the constant vector η = m1e1 +m2e2 +m3e3 +m4e4

of (C). Now, let us investigate the solution to Case 3.

Suppose that µ is an isotropic cubic. Then, we get from equation (3.13) µ(s) = 0 and from

equation (3.5) we get m1 =constant, m2 = 0,m3 = − c
k . 2

§4. Involute and Evolute of Isotropic Curves in C4

Theorem 4.1 Let ϕ and δ be complex curves and ϕ be an evolute of δ. The Cartan apparatus of

ϕ{e1ϕ, e2ϕ, e3ϕ, e4ϕ, kϕ} can be formed according to the Cartan apparatus of δ{e1, e2, e3, e4, k}.

Proof Let ϕ and δ be complex curves and ϕ be an evolute of δ. According to the property

of involute-evolute curve couples, we have

ϕ = δ + λe1. (4.1)

Differentiating both sides of the equation (4.1) with respect to s, we obtain

dϕ

dsϕ
.
dsϕ

ds
= e1 +

dλ

ds
e1 + λ(−ie2). (4.2)

Rearranging equation (4.2), we have

dϕ

dsϕ

dsϕ

ds
= (1 +

dλ

ds
)e1 − λie2. (4.3)

Similarly, based on the definition of involute and evolute curves, we can say e1ϕ⊥e1.

Obviously, we get

1 +
dλ

ds
= 0. (4.4)

We get λ = c− s, where c is constant. Rearranging the equation (4.1), we get

ϕ = δ + (c− s)e1. (4.5)
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By differentiating the equation (4.5), we have the following equation

ϕ′ = e1ϕ.
dsϕ

ds
= (c− s)(−ie2). (4.6)

Taking the norm of both sides, we get

e1ϕ = −e2 (4.7)

and
dsϕ

ds
= (c− s)i. (4.8)

Differentiating the equation (4.6) two times with respect to s, we get

ϕ′′ = −(c− s)ke1 + ie2 + (c− s)e3 (4.9)

and

ϕ′′′ = [−2k + (c− s)k′] e1 + [−2i(c− s)k]e2 − 2e3. (4.10)

Thus, we have the following expressions for e2ϕ, e3ϕ and kϕ.

e2ϕ = (c− s)kie1 − e2 + (c− s)ie3

e3ϕ = [−2k + (c− s)k′] e1 + i(c− s)(
β

2
− 2k)e2 − 2e3 (4.11)

and

kϕ = −2 [−2k + (c− s)k′] + [−2(c− s)k]
2
. (4.12)

Using the exterior product σ(e1ϕ ∧ e2ϕ ∧ e3ϕ), we get

e4ϕ = σ [2(c− s)ik(1 + (c− s)k)e4] , (4.13)

where σ = ±1. 2
Since from equation (4.7), it follows that e1ϕ is not an isotropic vector, we can state the

following.

Remark 4.1 Let ϕ be an evolute of a complex curve in C4. The curve ϕ cannot be an isotropic

curve.

Theorem 4.2 Let ϕ and δ be complex curve and ϕ be an evolute of δ in C4. The evolute ϕ

cannot be an isotropic helix in C4.

Proof Considering the definition of isotropic helix, we write

e1ϕ.v = constant, (4.14)
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where v is a constant isotropic vector. From equation (4.7), we easily have

−e2.v = constant, (4.15)

Differentiating both sides of equation (4.15), we get

−(ike1 + ie3).v = 0. (4.16)

Therefore v⊥e1 and v⊥e3. Let us decompose v as

v = t1e2 + t2e4. (4.17)

Differentiating equation (4.17) consecutively and using Cartan equations, we have t1 = 0

and t2 = 0. According to the result, we write

v = 0. (4.18)

Equations (4.14) and (4.18) yield a contradiction. Therefore, evolute ϕ cannot be an

isotropic helix in space C4. 2
§5. Bertrand Couple Curves of Isotropic Curves in C4

Theorem 5.1 Let α∗ and α be Bertrand curves in complex space C4. The Cartan apparatus

of α∗{e∗1, e∗2, e∗3, e∗4, k∗} can be formed by the Cartan apparatus of α{e1, e2, e3, e4, k}.

Proof Suppose that {α(s), α∗(s∗)} is an isotropic Bertrand pair of curves. Then α∗(s∗)

can be expressed by

α∗(s∗) = α(s) + λ(s)e2, (5.1)

where λ(s) is the non zero analytic function and s∗ is the pseudo arc-length parameter of α∗(s∗).

Differentiating both sides of the equation (5.1) with respect to s, we get

α∗ =
dα∗

ds∗
ds∗

ds
= e∗1

ds∗

ds
= (1 + λki) e1 +

dλ

ds
e2 + λie3. (5.2)

The definition of Bertrand curves yields e∗1⊥e2. Multiplying both sides of equation (5.2)

with e2 we have
dλ

ds
= 0 (5.3)

which implies that λ is constant. Using this in the equation (5.2) and taking the norm of the

both sides, we get
ds∗

ds
=
√

2(1 + λki)λi
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and the tangent vector e∗1 is equal to

e∗1 =
(1 + λki)√

2 (1 + λki)λi
e1 +

λi√
2 (1 + λki)λi

e3. (5.4)

Taking the derivative of the equation (5.2) two times with respect to s, we get

α∗′′

= (1 + λk′i)e1 + (−1 − λki+ λk)e2 (5.5)

and

α∗′′′

= (1 + λk′′i− ki+ λk2 + λk2i)e1 + (−1 − λk′i+ λk′)e2 + (−i− λk + λki)e3. (5.6)

Using the equation (5.6), we get the vectors e∗2, e∗3 and pseudo curvature k∗, as follows:

e∗2 =
1

i
[(1 + λk′i)e1 + (−1 − λki+ λk)e2],

e∗3 =
1

2
{[−1 − λk′i+ 2(1 + λk′′i− ki+ λk2i)(−i− λk + λki)]e1

+(−1 − λk′i+ λk′)e2 + [−1 − λki+ λk]e3}

and

k∗ =
1

2
{−1 − λk′i+ λk′ + 2(1 + λk′′i− ki+ λk2 + λk2i)(−i− λk + λki)}.

So, the pseudo curvature k∗(s) is a non zero constant. 2
Remark 5.1 Obviously, e∗1 isn’t an isotropic vector from equation (5.4). So, the Bertrand

curve α∗ cannot be an isotropic curve.

Remark 5.2 Let α∗ and α be Bertrand curves in C4. If one of the Bertrand curves lies fully

in e1e2e3 subspace, then the Bertrand mate also lies fully in the same subspace of C4.

Theorem 5.2 Let x = x(s) be an isotropic curve in C4. Then, x(s) is a pseudo isotropic helix

if and only if the following statements are equivalent:

(a) det(x′′(s),x′′′(s),x(iv)(s)) = 0;

(b) det(e′1(s), e
′′
1(s), e′′′1 (s)) = 0

c) det(e′3(s), e
′′
3(s), e′′′3 (s)) = 0.

Proof Taking the 2nd, 3rd and 4th derivatives of equation (2.1), we obtain

x′ = e1, x′′ = −ie2, x′′′ = ke1 + e3, x(iv) = k′e1 − 2ike2. (5.7)
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We calculate that

det(x′′(s),x′′′(s),x(iv)(s)) =

∣∣∣∣∣∣∣∣

0 −i 0

k 0 1

k′ −2ik 0

∣∣∣∣∣∣∣∣
= −ik′.

Since x = x(s) is an isotropic helix, then det(x′′(s),x′′′(s),x(iv)(s)) = 0. Conversely, let the

statement ”a)” be true. Then det(x′′(s),x′′′(s),x(iv)(s)) = −ik′ = 0. Thus, k is constant and

x(s) is an isotropic helix. This completes the proof ”a)”. Similarly, denoting x′ = e1,x
′′ =

e′1,x
′′′ = e′′1 and x(iv) = e′′′1 , we easily see that ”a)” and ”b)” are equivalent. Also, because of

the fact that the equations

e′3 = −ike2

e′′3 = k2e1 − ik′e2 + ke3

e′′′3 = 3kk′e1 − (2k2 + ik′′)e2 + 2k′e3,

are hold, we can calculate that

det(e′3(s), e
′′
3(s), e′′′3 (s)) = −k3k′ = 0.

Since x = x(s) is an isotropic helix, then det(e′3(s), e
′′
3(s), e′′′

3 (s)) = 0. Conversely, let us

say that in the determinant,

det(e′3(s), e
′′
3(s), e′′′3 (s)) =

∣∣∣∣∣∣∣∣

0 ik 0

k2 −ik′ k

3kk′ −
(
2k2 + ik′′

)
2k′

∣∣∣∣∣∣∣∣
= −k3k′ = 0, (5.8)

we get dk
ds = 0 then k is a constant. As an immediate consequence of Definition 2.2, x = x(s)

is an isotropic helix. 2
§6. Isotropic rectifying curves in C4

In this section, we firstly characterize the rectifying curves in C4 in terms of their pseudo

curvature. In analogy with Euclidean four dimensional case, we define the rectifying curves in

complex space C4 as a curve whose position vector always lies in the orthogonal complement

e⊥2 of its principal normal vector field e2. Hence, e⊥2 is a three dimensional subspace of C4,

spanned by vector filed e1, e3 and e4. Therefore the position vector with respect to some chosen

origin of a rectifying curve α in C4, satisfies the equation

α(s) = λ(s)e1(s) + µe3(s) + δ(s)e4(s) (6.1)

for differentiable functions λ(s), µ(s) and δ(s) with pseudo arc-length parameter s. Firstly, let
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us characterize the rectifying curve α in C4 in terms of its pseudo curvature. Let α = α(s) be a

unit speed complex rectifying curve in C4, with non zero pseudo curvature k(s). By definition,

the position vector of complex curve α satisfies equation (6.1) for some differentiable functions

λ(s), µ(s) and δ(s). Differentiating the equation (6.1) and using Cartan derivative formulas

(2.2), we get

[λ′ − 1 − δξ(k′′ + ξk)]e1 + [λi − µik]e2 + [λ′ − δξk]e3 + [δ′ + δ
ξ′

ξ
]e4 = 0.

It follows that

λ′(s) − δ(s)ξ(s)(k′′(s) + ξ(s)k(s)) = 1

λ(s)i− µ(s)k(s)i = 0

λ′(s) − δ(s)ξ(s)k(s) = 0

δ′(s) + δ(s)
ξ′(s)

ξ(s)
= 0 (6.2)

and thus

λ(s) = c

∫ s

0

k(s)ds

µ(s) =
c

k(s)

∫ s

0

k(s)ds

δ(s) =
c

ξ(s)
. (6.3)

Conversely, assuming that the pseudo curvature k(s) of an arbitrary unit speed complex

curve α in C4, satisfied the following equation

α(s) =

(
c

∫ s

0

k(s)ds

)
e1(s) +

(
c

k(s)

∫ s

0

k(s)ds

)
e3(s) +

(
c

ξ(s)

)
e4(s)

Remark 6.1 (i) α cannot be an isotropic cubic, since c
k(s) 6= 0;

(ii) If α is a helix, then α(s) = s
[
(ck)e1 + (c)e3 +

(
c

ξ(s)

)
e4

]
.
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§1. Introduction

The notion of quasi Einstein manifold was introduced in a paper [8] by M.C.Chaki and R.K.Maity.

According to them a non-flat Riemannian manifold (Mn, g),(n ≥ 3) is defined to be a quasi

Einstein manifold if its Ricci tensor S of type (0, 2) satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ) (1)

and is not identically zero, where a, b are scalars b 6= 0 and A is a non-zero 1-form such that

g(X, ξ1) = A(X), ∀X ∈ TM, (2)

where, ξ1 is a unit vector field.

In such a case a, b are called the associated scalars. A is called the associated 1-form. Such

an n-dimensional manifold is denoted by the symbol(QE)n.

Again, U.C.De and G.C.Ghosh defined generalized quasi Einstein manifold. A non-flat

Riemannian manifold is called a generalized quasi Einstein manifold if its Ricci-tensor S of

type (0,2) is non-zero and satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + cB(X)B(Y ), (3)

where a, b, c are non-zero scalars and A,B are two 1-forms such that

g(X, ξ1) = A(X) and g(X, ξ2) = B(X) (4)

1Received March 6, 2018, Accepted August 3, 2018.
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with ξ1, ξ2 unit vectors which are orthogonal, i.e,

g(ξ1, ξ2) = 0. (5)

This type of manifold are denoted by G(QE)n.

In [16], H.G. Nagaraja introduced the concept of N(k)-mixed quasi Einstein manifold and

mixed quasi constant curvature.A non flat Riemannian manifold (Mn, g) is called a N(k)-mixed

quasi Einstein manifold if its Ricci tensor of type (0, 2) is non zero and satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)B(Y ) + cB(X)A(Y ), (6)

where a, b, c are smooth functions and A,B are non zero 1-forms such that

g(X, ξ1) = A(X) and g(X, ξ2) = B(X) ∀ X, (7)

with ξ1, ξ2 the orthogonal unit vector fields. Such aa manifold is denoted by the symbol N(k)−
(MQE)n.

The notion of hyper-generalized quasi Einstein manifold has been introduced by A.A.Shaikh,

C. Özgür and A.Patra[17] in 2011. An n-dimensional Riemannian manifold (Mn, g) (n > 2) is

called a hyper generalized quasi-Einstein manifold if its Ricci tensor of type (0, 2) is non zero

and satisfies the following condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + c[A(X)B(Y ) +A(Y )B(X)]

+d[A(X)D(Y ) +A(Y )D(X)] (8)

for all X,Y ∈ χ(M), where a, b, c and d are real valued, non-zero scalars functions on (Mn, g).

A,B and D are non zero 1-forms such that

g(X, ξ1) = A(X), g(X, ξ2) = B(X) and g(X, ξ3) = D(X), (9)

wheer ξ1, ξ2, ξ3 are three unit vector fields mutually orthogonal to each other at every point on

M .Here a, b, c, d are called the associated scalars, A,B,D are called the associated main and

auxiliary 1-forms. We denote this type of manifold (HGQE)n.

§2. Preliminaries

From (8) and (9), we get

S(X,X) = a|X |2 + b|g(X, ξ1)|2 + 2c|g(X, ξ1)g(X, ξ2)| + 2d|g(X, ξ1)g(X, ξ3)|, ∀ X. (10)

Let θ1 be the angle between ξ1 and any vector X; θ2 be the angle between ξ2 and any
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vector X; θ3 be the angle between ξ3 and any vector X. Then

cos θ1 =
g(X, ξ1)√

g(ξ1, ξ1)
√
g(X,X)

=
g(X, ξ1)√
g(X,X)

as g(ξ1, ξ1) = 1), and

cos θ2 =
g(X, ξ2)√
g(X,X)

and cos θ3 =
g(X, ξ3)√
g(X,X)

.

If b > 0, c > 0, we have from (10)

(a+ b+ 2c+ 2d)|X |2 ≥ a|X |2 + b|g(X, ξ1)|2 + 2c|g(X, ξ1)g(X, ξ2)|
+2d|g(X, ξ1)g(X, ξ3)| = S(X,X). (11)

Now, contracting (8) over X and Y , we get

r = na, (12)

where r is the scalar curvature. Since ξ1, ξ2 and ξ3 are orthogonal unit vector fields, therefore

g(ξ1, ξ1) = 1, g(ξ2, ξ2) = 1, g(ξ3, ξ3) = 1, g(ξ1, ξ2) = 0, g(ξ1, ξ3) = 0 and g(ξ2, ξ3) = 0.

Again, putting X = Y = ξ1 in (8) we get S(ξ1, ξ1) = a+ b. Putting X = Y = ξ2 in (8) we

get S(ξ2, ξ2) = a. Putting X = Y = ξ3 in (8) we get S(ξ3, ξ3) = a.

If X is a unit vector field, then S(X,X) is the Ricci-curvature in the direction of X .

Notice that Q is the symmetric endomorphism of the tangent space at each point corre-

sponding to the Ricci-tensor S, where

g(QX,Y ) = S(X,Y ) ∀ X,Y ∈ TM. (13)

Let l2 denote the squares of the lengths of the Ricci-tensor S. Then

l2 =

n∑

i=1

S(Qei, ei), (14)

where {ei}, i = 1, 2, · · · , n is an orthonormal basis of the tangent space at a point of (HGQE)n.

Now from (8) we get

S(Qei, ei) = ag(Qei, ei) + bA(Qei)A(ei) + c[A(Qei)B(ei) +A(ei)B(Qei)]

+d[A(Qei)D(ei) +A(ei)D(Qei)],

i.e,

l2 = (n− 2)a2 + (a+ b)2 + 2c2 + 2d2. (15)

These result will be used in the sequel.
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§3. Ricci Semi-symmetric (HGQE)n(n > 3)

Chaki and Maity proved that (QE)n(n > 3) is Ricci Semi-symmetric if and only if

A(R(X,Y )Z = 0.

Let us suppose that (HGQE)n (n > 3) is Ricci-Semi symmetric. Then

A(R(X,Y )Z = 0. (16)

From (16) we get

A(Q(X)) = 0, (17)

where Q be the symmetric endomorphism of the tangent space at each point corresponding to

the Ricci tensor S. Then

g(QX,Y ) = S(X,Y ). (18)

Then from (8) we get

A(Q(X)) = (a+ b)A(X) + cB(X) + dD(X). (19)

From (17) and (19) it follows that

(a+ b)A(X) + cB(X) + dD(X) = 0. (20)

Thus we can state the following.

Theorem 3.1 If a (HGQE)n is Ricci Semi symmetric than (a+b)A(X)+cB(X)+dD(X)=0.

§4. Sufficient Condition for a Compact Orientable (HGQE)n(n≥3)

Without Boundary to be Isometric to a Sphere

In this section we consider a compact, orientable (HGQE)n without boundary having constant

associated scalars a, b, c and d. Then from (11) and (15), it follows that the scalar curvature is

constant and so also is the length of the Ricci-tensor.

We further suppose that (HGQE)n under consideration admits a non-isometric conformal

motion generated by a vector field X. Since l2 is constant, it follows that

£X l
2 = 0, (21)

where £X denotes Lie differentiation with respect to X.

Now, it is known ([2], [4], [5], [9], [12], [13], [14], [15]) that if a compact Riemannian manifold

M of dimension n > 2 with constant scalar curvature admits an infinitesimal non-isometric

conformal transformation X such that £X l
2 = 0 then M is isometric to a sphere. But a sphere

is Einstein so that b, c and d vanish which is a contradiction.This leads to the following theorem.
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Theorem 4.1 A compact orientable hyper generalized quasi Einstein manifold (HGQE)n (n ≥
3) without boundary does not admit a non-isometric conformal vector field.

§5. Killing Vector Field in a Compact Orientable (HGQE)n(n ≥3)

Without Boundary

In this section, we consider a compact, orientable (HGQE)n(n ≥3) without boundary with

a, b, c and d as associated scalars.

It is known [4] that in such a manifold M , the following relation holds

∫

M

[S(X,X) − |∇X |2 − (divX)2]dv ≤ 0 ∀X. (22)

If X is a killing vector field, then divX = 0 ([4]). Hence (22) takes the form

∫

M

[S(X,X) − |∇X |2]dv = 0. (23)

Let b > 0, c > 0, d > 0. Then by (11)

(a+ b+ 2c+ 2d)|X |2 ≥ S(X,X). (24)

Therefore,

(a+ b+ 2c+ 2d)|X |2 − |∇X |2 ≥ S(X,X)− |∇X |2. (25)

Consequently,

∫

M

[(a+ b+ 2c+ 2d)|X |2 − |∇X |2]dv ≥
∫

M

[S(X,X) − |∇X |2]dv, (26)

and by (23) ∫

M

[(a+ b+ 2c+ 2d)|X |2 − |∇X |2]dv ≥ 0. (27)

If a+ b + 2c+ 2d <0, then

∫

M

[(a+ b+ 2c+ 2d)|X |2 − |∇X |2]dv = 0. (28)

Therefore, X = 0. This leads to the following.

Theorem 5.1 If in a compact orientable (HGQE)n(n ≥3) without boundary and the associated

scalars are such that b > 0, c > 0, d > 0 and a+ b+ 2c+ 2d < 0, then there exists no non-zero

killing vector field in this manifold.

Corollary 5.1 If in a compact orientable (HGQE)n(n≥3) without boundary, and each of

the associated scalars a, b, c, d, is greater than zero, then any harmonic vector field X in the

(HGQE)n is parallel and orthogonal to one of the generators of the manifold which makes

greatest angle with the vector X.
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Abstract: In this paper, we are developing Quadrature Methods (numerical integration

method) of continuous function f(x) on a compact interval [a, b] and deriving a polynomial

Pm(x) of degree m such that integration of Pm(x) from a to b is equal to integration of f(x)

from a to b. We are using least square method to fit the polynomial Pm(x). Also derive

Newton-Cotes formulas and composite formula from this method, estimate errors and given

MATLAB codes.
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§1. Introduction

With the advent of the modern high speed electronic digital computers, the Numerical Integra-

tion have been successfully applied to study problems in Mathematics, Engineering, Computer

Science and Physical Sciences. Numerical integration, also called Quadrature, is the study of

how the numerical value of an integral can be found. The purpose of this paper is quadrature

methods for approximate calculation of definite integrals

I[f ] =

∫ b

a

f(x)dx (1.1)

where f(x) is integrable, in the Riemann sense on [a, b]. The limit of the integration may

be finite. Numerical integration is always carried out by mechanical quadrature and its basic

scheme is as follows: ∫ b

a

f(x) =
n−1∑

i=0

Aifi +R[f ], (1.2)

where fi = f(xi) is continuous function in[a, b]. Aiand xi are called Coefficients(Weights) and

nodes for Numerical Quadrature, respectively, and R[f] is error of Quadrature method. Once

the coefficients and nodes are set down, the scheme (1) can be determined.

1Received January 10, 2018, Accepted August 6, 2018.
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§2. Preliminaries

2.1 Order of Quadrature Method

Order of accuracy, or precision, of a Quadrature formula is the largest positive integer n such

that the formula is exact for xk, for each k = 0, 1, · · · , n.

2.2 Error of Quadrature Method

The integration (1.1) is approximated by a finite linear combination of value of f(x) in the form

(1.2). The error of approximation of (1.2) is given as

Rn =
C

(m+ 1)!
f (m+1)(ξ), (2.1)

where ξ = (a, b), m ≥ n is order of (1.2) and error constant of (1.2) is

C =

∫ b

a

xm+1 −
n−1∑

i=0

Aix
m+1
i . (2.2)

2.3 Interpolation Polynomial

Let f(x) be a continuous function defined on some interval [a, b], and be prescribed at n + 1

distinct tabular points x0, x1, · · · , xn such that a = x0 < x1 < x2 < · · · < xn = b. The distinct

tabular points x0, x1, · · · , xn are equispaced, that is xk+1 − xk = h, k = 0, 1, 2, · · · , n− 1. The

problem of polynomial approximation is to find a polynomial Pn(x), of degree≤ n, which fits

the given data exactly, that is,

Pn(xi) = f(xi), i = 0, 1, 2, · · · , n. (2.3)

The polynomial Pn(x) is called the interpolating polynomial. The conditions given in

(5)are called the interpolating conditions.

2.4 Least Squares Interpolation Polynomial

Let the polynomial of the mth degree

Pm(x) = a0 + a1x+ a2x
2 + · · · + amx

m

be fitted to the data points (xi, f(xi)) i = 0, 1, 2, · · · , n, where m < n and a′is are satisfy the

the system of equations

(n+ 1)a0 + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i + · · · + am

n∑

i=0

xm
i =

n∑

i=0

f(xi), (2.4)
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a0

n∑

i=0

xi + a1

n∑

i=0

x2
i + · · · + am

n∑

i=0

xm+1
i =

n∑

i=0

xif(xi)

· · · · · · · · · · · · · · · · · · · · ·

a0

n∑

i=0

xm
i + a1

n∑

i=0

xm+1
i + · · · + am

n∑

i=0

x2m
i =

n∑

i=0

xm
i f(xi).

There are m+ 1 equations in m+ 1 unknowns.

Lemma 2.1 Let Pm(x) be the least squares interpolation equation of f(x) on [a, b]. Then

n∑

i=0

Pm(xi) ≈
n∑

i=0

f(xi), (2.5)

where x0 = a, xn = b , xi = a+ ih and h = (b− a)/n.

Proof Let the Pm(x) = a0 + a1x + a2x
2 + · · · + amx

m is least squares interpolation

equation of f(x) on [a, b]. Then Pm(x0) = a0 + a1x0 + a2x
2
0 + · · · + amx

m
0 and Pm(x1) =

a0 + a1x1 + a2x
2
1 + · · · + amx

m
1 , and so on Pm(xn) = a0 + a1xn + a2x

2
n + · · · + amx

m
n . Adding

all we get
n∑

i=0

Pm(xi) = (n+ 1)a0 + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i + · · · + am

n∑

i=0

xm
i

apply Equation (2.4), we get
n∑

i=0

Pm(xi) ≈
n∑

i=0

f(xi). 2
Theorem 2.2 Let Pm(x) is least squares interpolation equation of the integrable function f(x)

on finite interval [a, b] and
n∑

i=0

Pm(xi) ∼=
n∑

i=0

f(xi),

where x0 = a, xn = b if and only if

∫ xn

x0

Pm(x)dx ∼=
∫ xn

x0

f(x)dx. (2.6)

Proof Multiplying with h = (b− a)/n and take limit h −→ 0 in (2.5), we get

lim
h−→0

h

n∑

n=0

Pm(xn) = lim
h−→0

h

n∑

n=0

f(xn).

This completes the theorem. 2
§3. Least Square Quadrature Method

Consider the integral in the form (1.2) for each i = 0, 1, 2, · · · , n. Now we are dividing the
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interval [a, b] into n (finite) equal sub interval and take the nodes x′s are equispaced points such

that xi = x0+ih ∈ [a, b], i = 0, 1, 2, · · · , n, where x0 = a, xn = b and h = (b−a)/(n). So we have

data points (xi, f(xi)) i = 0, 1, 2, · · · , n for fit a polynomial Pm(x) = a0+a1x+a2x
2+· · ·+amx

m.

we have

∫ xn

x0

f(x)dx =

∫ xn

x0

Pm(x)dx

= a0(xn − x0) + a1
x2

n − x2
0

2
+ a2

x3
n − x3

0

3
+ · · · + am

xm+1
n − xm+1

0

m+ 1
. (3.1)

This method is called Ln
m -Quadrature method(Ln

m − rule), here m is donate degree of

polynomial and n is donate number of data points. To solve the least square Quadrature

method we have at least m+1 points. Order of this method is greater then or equal to m, since

it’s exact for polynomial of degree m. The error constant of (3.1) is

C =

∫ xn

x0

xk − a0 +

n∑

i=1

xi
n − xi

0

i
ai

and error

R =
C

k!
f (k)(ξ),

where k > m, a 6 ξ 6 b. Now following cases arise:

Case 1. m = 0, that is P0 is a constant function.

From (2.4) we have a0(n+ 1) =
∑n

i=0 f(xi) and a1 = a2 = · · · = am = 0, substituting this

values in (9) web get ∫ xn

x0

f(x)dx =
(xn − x0)

n+ 1

n∑

i=1

f(xi). (3.2)

Case 2. m = 1, that is P1 is a linear polynomial.

From (2.4) we have

a0(n+ 1) + a1

n∑

i=0

xi =
n∑

i=0

fi, a0

n∑

i=0

xi + a1

n∑

i=0

x2
i =

n∑

i=0

xifi

and a2 = a3 = · · · = am = 0. Solving for a1 and a2 we get

a0 =

∑n
i=0 fi

∑n
i=0 x

2
i −

∑n
i=0 xi

∑n
i=0 xifi

(n+ 1)
∑n

i=0 x
2
i − (

∑n
i=0 xi)2

,

a1 =
(n+ 1)

∑n
i=0 xifi −

∑n
i=0 xi

∑n
i=0 fi

(n+ 1)
∑n

i=0 x
2
i − (

∑n
i=0 xi)2

.

After simplification we get

a0 =
2

nh(n+ 1)(n+ 2)

[
n(3x0 + h(n+ 1))

n∑

i=0

fi − 3(x0 + xn)
n∑

i=0

ifi

]
,
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a1 =
6

nh(n+ 1)(n+ 2)

[
2

n∑

i=0

ifi − i

n∑

i=0

fi

]
.

Substituting this values in (3.1), and simplification we get

∫ xn

x0

f(x)dx =
nh

n+ 1

n∑

i=1

f(xi).

This is same as m = 0. The method (3.2) is called Ln
1 - Quadrature method and the error

constant of (3.2) is

C =

∫ xn

x0

x2dx− nh

n+ 1

n∑

i=0

(x+ ih)2 =
−h3n2

6
=

−(xn − xa)3

6n
= − (b− a)3

6n

and error of (3.2) is

R =
−(b− a)3

6n · 2!
f (2)(ξ) =

−(b− a)3

12n
f (2)(ξ), (3.3)

where x0 6 ξ 6 xn. To solve this method, we have at least 2 data points and the order of (3.2)

is 2.

Case 3. m = 2, that is P2 is a polynomial of degree two.

From (2.4) we have

(n+ 1)a0 + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i =

n∑

i=0

fi = A,

a0

n∑

i=0

xi + a1

n∑

i=0

x2
i + a2

n∑

i=0

x3
i =

n∑

i=0

(x0 + ih)fi = Ax0 + hB,

a0

n∑

i=0

x2
i + a1

n∑

i=0

x3
i + a2

n∑

i=0

x4
i =

n∑

i=0

(x0 + ih)2fi = Ax2
0 + 2Bhx0 + Ch2,

where A =
∑n

i=0 fi, B =
∑n

i=0 ifi, and C =
∑n

i=0 i
2fi. we have a3 = a4 = · · · = am = 0.

Solving the three linear system of equation for a0, a1 and a2 by MATLAB, we get

a0 =
3

(n+ 1)(n3 + 4n2 + n− 6)h2n

×(3Ah2n4 + 12Ahn3x0 − 12Bh2n3 −Ah2n2 − 6Ahn2x0 + 10An2x2
0

+6Bh2n2 − 64Bhn2x0 + 10Ch2n2 − 2Ah2n− 6Ahnx0 − 10Anx2
0

+6Bh2n− 8Bhnx0 − 60Bnx2
0 − 10Ch2n+ 60Chnx0 + 12Bhx0 + 60Cx2

0)

a1 = −{6(6Ahn3 − 3Ahn2 + 10An2x− 32Bhn2 − 3Ahn− 10Anx

−4Bhn− 60Bnx+ 30Chn+ 6Bh+ 60Cx)}/h2n(n2 + 3n+ 2)(n2 + 2n− 3)
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and

a2 =
30(An2 −An− 6Bn+ 6C)

h2n(n4 + 5n3 + 5n2 − 5n− 6)
.

Substituting these values in (3.1), and simplification we get

∫ xn

x0

f(x)dx =
hn(An3 −An2 + 6An+ 30Bn− 6A− 30C)

(n− 1)(n+ 3)(n+ 2)(n+ 1)
.

Substituting A,B and C we get

∫ xn

x0

f(x)dx =
hn

(n− 1)(n+ 3)(n+ 2)(n+ 1)

n∑

i=0

(n3 − n2 + 6n− 6 + 30ni− 30i2)fi. (3.4)

This method is called Ln
2 -Quadrature method. To solve this method, we have at least 3 data

points.

Case 4. m = 3, that is P3 is a polynomial of degree three.

Following previous case we get the same as (3.3). The error constant of (3.4) is

C =

∫ xn

x0

x4dx− hn

(n− 1)(n+ 3)(n+ 2)(n+ 1)

n∑

i=0

(n3 − n2 + 6n− 6 + 30ni− 30i2)(x + ih)4

= − (3n2 − 8n+ 18)n2h5

210
= − (3n2 − 8n+ 18)(xn − x0)

5

210n3
= − (3n2 − 8n+ 18)(b− a)5

210n3
.

The error of (3.4) is

R = − (3n2 − 8n+ 18)(b− a)5

210n3 · 4!
f (4)(ξ), (3.5)

where a 6 ξ 6 b. The order of (3.4) is 4.

Note 3.1 If m > 0 is even number then Ln
m method same as Ln

m+1 method.

§4. Newton-Cotes Formulas from Least Square Method

We can derive trapezoidal rule, Simpson 1-3rd rule and Simpson 3-8th rule from least square

method.

Taking n = 1 in (3.2) we get

∫ x1

x0

f(x)dx =
h

2
(f0 + f1).

This formula is called trapezoidal rule. The error of trapezoidal rule is, from (3.3)

R =
−(b− a)3

12
f (2)(ξ), a 6 ξ 6 b.
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Taking n = 2 in (3.4) we get

∫ x2

x0

f(x)dx =
2h

1 · 5 · 4 · 3
2∑

i=0

(10 + 60i− 30i2)fi

=
h

30
(10f0 + 40f1 + 10f2) =

h

3
(f0 + 4f1 + f2).

This formula is called Simpson 1-3rd rile rule. The error Simpson 1-3rd rule of is, from (3.5)

R =
−(b− a)5

90
f (4)(ξ), a 6 ξ 6 b.

Similarly, Simpson 3-8th rule come from (3.4) with n = 3, that is

∫ x3

x0

f(x)dx =
3h

8
(f0 + 3f1 + 3f2 + f3)

and error come from (3.5), R = −(3/80)h5f (4)(ξ), a 6 ξ 6 b.

The weights of the integration method of (3.4) with equispaced point for n ≤ 6 are given

in Table 1.

n comman ratio Newton-Cotes weight common ratio Ln
2 Method

1 1/2 1 1 — —

2 1/3 1 4 1 1/3 1 4 1

3 3/8 1 3 3 1 3/8 1 3 3 1

4 2/45 7 32 12 32 7 4/105 11 26 31 26 11

5 5/288 19 75 50 50 75 19 5/336 31 61 78 78 61 31

6 1/140 41 216 27 272 27 216 41 1/14 7 12 15 16 15 12 7

Table 1. Weight of Newton-cote rules and Weights of Ln
2 Quadrature Method

Figure 1 a, b, c
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§5. Graphically Meaning of Least Square Integration Method

Let the polynomial Pm(x) of degree m is fitted by least square interpolation method by using

data points (xi, fi) i = 0, 1, 2 · · · , n,. If m=1, take n is large number then the the polynomial

P1(x) is going to exact fit polynomial such that the area A+C=B (fib : 1(a)). That’s way the

integration of P1(x) on [a, b] is gives exact value of integration of f(x) on [a, b]. Similarly P2(x)

(or P3(x)) is best interpolation polynomial such that the area A+C=B, such as those shown in

Figure 1.

§6. Problems

Problem 6.1 Find approximate value of

I =

∫ 3

1

sin(x)exdx

fit a straight line y(x) such that
∫ 3

1 y(x)dx = I.

Solution Let f(x) = sin(x)ex and yn be the straight line by fit n+1 data points (xi, f(xi)),

i = 0, 1, 2, · · · , n. Now we divide the interval [1 3] into two equal subinterval, that is n = 2

or h = 1. then 3 data points are (1, f(1)), (2, f(2)) and (3, f(3)). we fit a straight line y2 by

normal equation (5) we get

y2 = 0.27x+ 3.4

following this we get

y4 = 0.78x+ 3.15,

y8 = 1.17x+ 2.77

y16 = 1.39x+ 2.51

y32 = 1.51x+ 2.36

and

y64 = 1.57x+ 2.28.

But we know if n → ∞ then
∫ 3

1
yn(x)dx →

∫ 3

1
f(x)dx. Therefore, I =

∫ 3

1
(1.57x + 2.28)dx =

10.84.

Problem 6.2 Fit quadratic equation P2(x) such that

∫ 1

0

P2(x)dx =

∫ 1

0

x
√
x+ 1dx

and find approximate value of
∫ 1

0 x
√
x+ 1dx.

Solution Let P2n
be the quadratic equation by fit n equal space data points in [0, 1]. By
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least square method we have

P23
(x) = 0.37893738x2 + 1.03527618x+ 3.61400724(E − 20),

P211
(x) = 0.37892845x2 + 1.03956285x− 0.00227848,

P251
(x) = 0.37839273x2 + 1.04141576x− 0.00304322,

P2101
(x) = 0.3783134x2 + 1.0416701x− 0.00314653.

Let In =
∫ 1

0
P2n

(x)dx then I3 = 0.643950551, I11 = 0.643812428, I51 = 0.643795564 and

I101 = 0.643792992. The exact value of
∫ 1

0 x
√
x+ 1dx upto five decimal is 0.64379.

Problem 6.3 Find the approximate value of

I =

∫ 1

0

1

2 + x
dx,

using Ln
1 and Ln

2 rules with different equal subintervals. Using the exact solution, find the

absolute errors.

Solution Results for the Ln
1 and Ln

2 rules to estimate the integral of f(x) = 1/(2+x) from

x = 0 to 1. The exact value is Iexact =
∫ 1

0 1/(2+x)dx = ln(x+2)]10 = ln(3)− ln(2)=0.4054651.

We get

n In
1 = Ln

1 method Error=In
1 − Iexact

1 0.4167 0.0112

2 0.4111 0.0056

4 0.4083 0.0028

8 0.4069 0.0014

16 0.4062 0.0007

32 0.4058 0.0003

64 0.4056 0.0001

n In
2 = Ln

2 method Error=In
2 − Iexact

2 0.4055556 0.0000905

4 0.4054930 0.0000279

8 0.4054801 0.0000150

16 0.4054735 0.0000084

32 0.4054696 0.0000045

64 0.4054675 0.0000024

128 0.4054663 0.0000012

§7. Conclusion

We develop this new method for easy to solve Definite Integral of finite interval with equispaced

nodes and derived Simpson 1/3rd rule and Simpson 3/8th rule from Ln
2 Quadrature Method.

In this method (Ln
2 ) weights are increasing from a to midpoint(i.e (a + b)/2) of interval and

decreasing from midpoint to b. The advances is the weights of Ln
2 − method are positive

(since(n3−n2+6n−6+30ni−30i2) ≥ 0 for all n ≥ 2 for all i) . We have given the MATLAB code

also, give any continuous function f(x) on [a, b] that will be give an approximation integration

value of f(x) from a to b. Also, we are developing this concept to high degree polynomials and

high dimension.
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Abstract: In this paper, we examine the motion of a robot end-effector by using the

Blaschke approach of a ruled surface generated by a line fixed in the robot end-effector. In

this way, we determine time dependent linear and angular differential properties of motion

such as velocity and acceleration which play important roles in robot trajectory planning.
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additional parameter called spin angle is investigated as a practical example.
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§1. Introduction

In robotics, a robot end-effector is a device at the end of a robotic arm. Robot end-effectors are

widely used in transportation, welding industry, medical science, military and many other areas.

Recently, they can be used in the research areas which have critical importance of accurate

motion such as surgical operations and bomb disposal. So accurate trajectory planning of a

robot end-effector becomes an important research area of robotics. In this area, one of the

most interesting problems is determining time dependent differential properties of motion of a

robot end-effector which are linear and angular velocities and accelerations. These differential

properties play important roles in robot trajectory planning.

As a robot end-effector moves on a specified trajectory in space, a line fixed in the end-

effector generates a ruled surface [13]. There is an important relationship between time depen-

dent properties of motion of the robot end-effector and differential geometry of the ruled surface.

By using this relationship, Ryuh and Pennock proposed a method based on the curvature theory

of a ruled surface generated by a line fixed in the end-effector to determine linear and angular

properties of motion [12, 13, 14]. After that, this research area was also studied in Lorentzian

space. Ekici et al. examined motion of a robot end-effector in Lorentzian space by using the

curvature theory of timelike ruled surface with timelike ruling [7]. Ayyıldız and Turhan also

1Received January 29, 2018, Accepted August 8, 2018.
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determined differential properties of motion of a robot end-effector whose trajectory is a null

curve [3].

On the other hand, there is also an efficient relationship between directed lines and dual

unit vectors. This relationship known as “E. Study mapping” or “transference principle” which

can be stated as: “there exists one-to-one correspondence between the directed lines in line

space and dual unit vectors in dual space” [11, 16]. By the aid of this correspondence, W.

Blaschke defined a frame called Blaschke frame on a ruled surface by taking directed lines pass

through striction curve of the ruled surface instead of real unit vectors used in Frenet frame

of ruled surface. He also gave some invariants which characterize the shape of a ruled surface.

Several authors used Blaschke frame in their researches concerning with kinematics, spatial

mechanisms and many other areas [1, 2, 18].

In this paper, we use the relationships between kinematic, ruled surfaces and dual vector

algebra. First, we represent motion of a robot end-effector on a specified trajectory in space

as a ruled surface generated by a line fixed in the end-effector and an additional parameter

called spin angle. We define a dual frame called dual tool frame on robot end-effector in order

to obtain a relationship between Blaschke frame of the ruled surface, which is used to study

the differential geometry of a ruled surface by means of dual quantities, and time dependent

differential properties of robot end-effector. By using this relation, we determine time dependent

differential properties of motion of a robot end-effector which are linear (translational) and

angular (rotational) velocities and accelerations. These differential properties have important

roles in robot trajectory planning. In this method, we use just a dual vector called dual

instantaneous rotation vector of dual tool frame to determine the differential properties. So, this

method has more advantages than traditional methods which based on matrix representations

in terms of being simple and systematic.

§2. Preliminaries

In this section, we give a brief summary of basic concepts for the reader who is not familiar

with dual numbers, dual vectors and dual space.

As introduced by W. Clifford, a dual number can be defined as ā = a+ εa∗, where a and

a∗ are real numbers and called real part and dual part of dual number ā, respectively, and ε is

dual unit which satisfies the condition ε2 = 0, [17]. The set of all dual numbers can be denoted

by D. Addition and multiplication of two dual numbers ā = a + εa∗ and b̄ = b + εb∗ can be

defined as

ā+ b̄ = (a+ b) + ε(a∗ + b∗)

and

ā b̄ = ab+ ε(ab∗ + a∗b)

respectively [4, 10]. The set D is a commutative ring, not a field. A function of a dual number

f(ā) can be expanded in a Maclaurin series as

f(ā) = f(a+ εa∗) = f(a) + εa∗f ′(a),



44 Burak Şahiner, Mustafa Kazaz and Hasan Hüseyin Uğurlu

where the prime indicates derivation of f(a) with respect to a [5].

A dual vector can also be defined as ã= a+εa∗, where a and a∗ are three dimensional

vectors in real space and ε2 = 0. The set of all dual vectors is a module over the ring D and

is called dual space or D-module, denoted by D3, [15]. Dual scalar and vector products of two

dual vectors ã= a+εa∗ and b̃= b+εb∗ can be defined as

〈
ã, b̃
〉

= 〈a, b〉 + ε (〈a, b∗〉 + 〈a∗, b〉)

and

ã× b̃ = a× b+ ε (a× b∗ + a∗ × b)

respectively [16]. The norm of a dual vector ã can also be given by [10, 17]

‖ã‖ = ‖a‖ + ε
〈a, a∗〉
‖a‖ , (a 6= 0).

If ‖ã‖ = 1, then ã is called a dual unit vector. The set

S2 =
{
ã= a+εa∗ | ‖ã‖ = 1; a, a∗ ∈ R3

}

is called dual unit sphere.

Theorem 2.1([8]) The set of all directed straight lines in R3 are in one-to-one correspondence

with the set of all points of the dual unit sphere in D3.

A dual angle between two oriented lines in three dimensional real space can be defined as

θ̄ = θ + ε θ∗, where θ and θ∗ are the real angle and the shortest distance between these lines,

respectively, [4].

§3. A Robot End-Effector and its Dual Tool Frame

In this section, we introduce tool frame of a robot end-effector which consists of three mutually

perpendicular unit vectors described by Ryuh and Pennock [13] in detail. Then, we represent

motion of a robot end-effector by using a ruled surface generated by a line fixed in the end-

effector and an additional parameter called spin angle. By taking three lines instead of three

unit vectors, we define a dual frame called dual tool frame on robot end-effector which will be

used to study the motion.

The tool frame consists of three orthogonal unit vectors strictly attached to robot end-

effector. These are; orientation vector O which is a unit vector in the direction of the gripper

motion as it opens and closes, approach vector A which is a unit vector in the direction normal

to the palm of robot end-effector, and normal vector N which is a unit vector in the direction

perpendicular to the plane of the gripper (see Figure 1), [12]. The origin of the tool frame

is called tool center point and denoted by TCP. By using tool frame and tool center point,

location and orientation of a robot end-effector can be described completely.
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As a robot end-effector moves on a specified trajectory in space, a line called tool line

fixed in the end-effector which passes through TCP and whose direction vector is parallel to

the orientation vector O generates a ruled surface [12]. This ruled surface can be expressed as

X(t, v) = α(t) + v u(t),

where α is the specified trajectory which robot end-effector follows (directrix of the ruled sur-

face), u is a unit vector called ruling parallel to the orientation vector O, t is the parameter of

time, and v is an arbitrary parameter.

During motion, the approach vector A may not be always perpendicular to the ruled

surface. As seen in Figure 1, there may be an angle between the approach vector A and the

surface normal vector on the directrix which is denoted by Sn. This angle is called spin angle

and denoted by η [12]. Thus, a robot end-effector motion which has six degrees of freedom in

space can be completely described by a ruled surface generated by a line in robot end-effector

which provides five independent parameters and a spin angle.

Figure 1 Robot end-effector and spin angle

Figure 2 Dual tool frame of a robot end-effector
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Now, we define dual tool frame by taking three directed lines instead of three unit vectors of

the tool frame. These lines pass through the TCP and their direction vectors are the orientation

vector O, the approach vector A and the normal vector N , respectively. From Theorem 2.1,

these lines correspond to three dual unit vector which can be called dual orientation vector,

dual approach vector and dual normal vector and can be denoted by Õ, Ã and Ñ , respectively

(see Figure 2).

§4. Blaschke Approach to the Motion

In this section, we give Blaschke frame of a ruled surface generated by a line fixed in the robot

end-effector. By relating Blaschke frame and dual tool frame, we determine linear and angular

differential properties of motion. Furthermore, we give corollaries for some special cases of

motion.

From Theorem 2.1, it can be said that a ruled surface can be represented by a dual unit

vector based on a real parameter. So, we can consider the ruled surface generated by motion

of robot end-effector as a dual unit vector ũ(t) = u(t) + εu∗(t), where u is ruling of the ruled

surface, u∗ is moment vector of u about the origin, t is the parameter of time, and ε2 = 0.

The moment vector can be found as u∗ = c× u, where c is striction curve of the ruled surface

satisfies the condition that 〈c′, u′〉 = 0, [6]. In this paper, we consider the case without u(t) = c1

which means ruled surface is a cylinder and u∗(t) = c1 which means ruled surface is a cone,

where c1 is a constant. In order to simplify formulations, arc-length parameter of the striction

curve denoted by s can be used instead of the parameter of time t and it can be obtained as

s(t) =

∫ t

0

∥∥∥∥
dc

dt

∥∥∥∥ dt.

The Blaschke frame of a ruled surface is defined on striction curve and it consists of three

orthogonal dual unit vectors given as follows [4]:

ũ1 = ũ , ũ2 =
ũ′1
p̄
, ũ3 = ũ1 × ũ2,

where p̄ = p+ εp∗ = ‖ũ′1‖, ũ2 and ũ3 are normal line and tangent line of the ruled surface on

the striction curve, respectively, and the prime indicates the derivation with respect to s, [4].

The derivative formulae of Blaschke frame can be given as

d

ds




ũ1

ũ2

ũ3


 =




0 p̄ 0

−p̄ 0 q̄

0 −q̄ 0







ũ1

ũ2

ũ3


 , (1)

where q̄ = q + εq∗ =
det(ũ1, ũ′1, ũ′′1)

‖ũ′1‖2 . p̄ and q̄ which are called the Blaschke’s invariants

characterize the shape of a ruled surface. If p = 0, ruled surface is a cylinder; if p∗ = 0, ruled
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surface is a developable ruled surface which is a surface that can be flattened onto a plane

without distortion; if q = 0, all rulings of ruled surface are parallel to a plane; if q̄ = 0, ruled

surface consists of binormal vectors of a curve, [4].

Let ϕ̄ = ϕ + ε ϕ∗ be a dual angle between dual unit vectors Ã and ũ2, where ϕ = η + σ

is real angle, where η is the spin angle mentioned in Section 3 and σ is an angle between two

normal vectors of ruled surface, one is on the directrix and other is on the striction curve, and

ϕ∗ is the shortest distance from striction curve to directrix, i.e., ϕ∗ =
〈α′, u′〉
‖u′‖2 (see Figure 3).

Figure 3 Dual angle between the dual unit vectors Ã and ũ2

By the aid of dual angle ϕ̄, we can give dual tool frame relative to Blaschke frame in matrix

form as 


Õ

Ã

Ñ


 =




1 0 0

0 cos ϕ̄ sin ϕ̄

0 − sin ϕ̄ cos ϕ̄







ũ1

ũ2

ũ3


 . (2)

By differentiating equation (2) and substituting equation (1) into the result, we have




Õ′

Ã′

Ñ ′


 =




0 p̄ 0

−p̄ cos ϕ̄ −δ̄ sin ϕ̄ δ̄ cos ϕ̄

p̄ sin ϕ̄ −δ̄ cos ϕ̄ −δ̄ sin ϕ̄







ũ1

ũ2

ũ3


 ,

where δ̄ = ϕ̄′ + q̄. By using equation (2), derivative formulas of the dual tool frame can be

obtained in terms of itself in matrix form as




Õ′

Ã′

Ñ ′


 =




0 p̄ cos ϕ̄ −p̄ sin ϕ̄

−p̄ cos ϕ̄ 0 δ̄

p̄ sin ϕ̄ −δ̄ 0







Õ

Ã

Ñ


 .

From the above matrix equality, dual instantaneous rotation vector of the dual tool frame
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which plays an important role to determine both linear and angular differential properties of

motion of a robot end-effector can be obtained as

w̃O = δ̄ Õ + p̄ sin ϕ̄ Ã+ p̄ cos ϕ̄ Ñ .

By using equation (2), the dual instantaneous rotation vector can also be expressed in

terms of the Blaschke frame as

w̃O = δ̄ ũ1+p̄ ũ3. (3)

This dual vector is similar to dual Pfaff vector in terms of playing role in motion. The dual

Pfaff vector is considered as dual velocity vector in dual spherical motion (see ref. [9]). So,

we can consider the dual instantaneous rotation vector of dual tool frame w̃O as dual velocity

vector of the motion of robot end-effector.

The dual tool frame attached to robot end-effector moves along unit direction
w̃O

‖w̃O‖ with

dual angle ‖w̃O‖. This dual motion contains both rotational and translational motion in real

space. The real and dual parts of the dual vector w̃O correspond to instantaneous angular

velocity and instantaneous linear velocity, respectively. By separating equation (3) into the real

and dual parts, these velocity vectors can be found as follows

wO = δ u1 + p u3, (4)

and

w∗
O = δu∗1 + δ∗u1 + pu∗3 + p∗u3. (5)

In order to find dual acceleration vector of the motion, we should differentiate dual velocity

vector. By differentiating equation (3) and using equation (1), the dual acceleration vector can

be obtained in terms of the Blaschke frame as

w̃
′

O = δ̄′ ũ1 + ϕ̄′p̄ ũ2 + p̄′ũ3, (6)

where the prime indicates differentiation with respect to s. By separating equation (6) into

the real and dual parts, instantaneous angular acceleration vector and instantaneous linear

acceleration vector can be found as

w
′

O = δ′ u1 + ϕ′p u2 + p′u3 (7)

and

w∗′

O = δ′ u∗1 + δ∗
′

u1 + ϕ′p u∗2 + (ϕ′p∗ + ϕ∗′

p)u2 + p′u∗3 + p∗
′

u3, (8)

respectively. Thus, linear and angular velocities and accelerations which are important dif-

ferential properties of motion of a robot end-effector are found in terms of the parameter s

which is the arc-length parameter of striction curve of the generating ruled surface. In order

to determine time dependent differential properties, the vectors given in equations (4), (5), (7)

and (8) should be related to the parameter of time. Now, we give time dependent linear and

angular differential properties of motion of a robot end-effector as corollaries.



Blaschke Approach to the Motion of a Robot End-Effector 49

Corollary 4.1 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t)+ v u(t) and a spin angle η, where α is specified trajectory of robot end-effector, u is a unit

vector parallel to the orientation vector O, and t is the parameter of time. Angular and linear

velocities of robot end-effector can be given, respectively, as

vA = wO ṡ (9)

and

vL = w∗
O ṡ, (10)

where wO and w∗
O are given by equations (4) and (5), respectively, and the dot indicates differ-

entiation with respect to time, i.e., ṡ =
ds

dt
.

Corollary 4.2 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t)+ v u(t) and a spin angle η, where α is specified trajectory of robot end-effector, u is a unit

vector parallel to the orientation vector O, and t is the parameter of time. Angular and linear

accelerations of the robot end-effector can be given, respectively, as

aA = wO s̈+w
′

Oṡ
2 (11)

and

aL = w∗
O s̈+w∗′

O ṡ
2, (12)

where w
′

O and w∗′

O are as given by equations (7) and (8), respectively.

Now, we consider some special cases of motion of a robot end-effector and give some

corollaries about these cases.

Case 1. As a robot end-effector moves on a specified trajectory in real space, spin angle η

may be constant. Then, the derivative of the spin angle is equal to zero. For this case, by

substituting the value of spin angle into equations (4), (5), (7), and (8), and by rearranging

these equations, we can give time dependent linear and angular differential properties of the

motion of a robot end-effector as in the following corollaries.

Corollary 4.3 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t) + v u(t) and a spin angle η, where α is specified trajectory of the robot end-effector, u is

a unit vector parallel to the orientation vector O, and t is the parameter of time. If the spin

angle η is a constant, then angular and linear velocities of robot end-effector can be given as

vA = ((σ′ + q) u1 + p u3) ṡ

and

vL = ((σ′ + q)u∗1 + δ∗u1 + pu∗3 + p∗u3) ṡ,

respectively.

Corollary 4.4 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =
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α(t) + v u(t) and a spin angle η, where α is the specified trajectory of the robot end-effector, u

is a unit vector parallel to the orientation vector O, and t is the parameter of time. If the spin

angle η is constant, then angular and linear accelerations of robot end-effector can be respectively

given as

aA = ((σ′ + q) u1 + p u3) s̈+((σ′′ + q′) u1 + σ′pu2 + p′u3) ṡ
2,

aL = ((σ′ + q)u∗1 + δ∗u1 + pu∗3 + p∗u3) s̈

+((σ′′ + q′) u∗1 + δ∗
′

u1 + σ′p u∗2 + (σ′p∗ + ϕ∗′

p)u2 + p′u∗3 + p∗
′

u3)ṡ
2.

Case 2. A specified trajectory which robot end-effector follows may be striction curve of ruled

surface generated by a line fixed in the robot end-effector. Namely, directrix and striction curve

of generating ruled surface may be the same curve. Then, the angle σ which is the angle between

two normal vectors on directrix and striction curve and the distance between these curves are

equal to zero. For this case, by rearranging equations (4), (5), (7), and (8), we can give time

dependent linear and angular differential properties of the motion of a robot end-effector as in

the following corollaries.

Corollary 4.5 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t) + v u(t) and a spin angle η, where α is specified trajectory of the robot end-effector, u is a

unit vector parallel to the orientation vector O, and t is the parameter of time. If the specified

trajectory is also the striction curve of the ruled surface, then angular and linear velocities of

robot end-effector can be given as

vA = ((η′ + q) u1 + p u3) ṡ

and

vL = ((η′ + q)u∗1 + q∗u1 + pu∗3 + p∗u3) ṡ,

respectively.

Corollary 4.6 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t) + v u(t) and a spin angle η, where α is specified trajectory of robot end-effector, u is a

unit vector parallel to the orientation vector O, and t is the parameter of time. If the specified

trajectory is also the striction curve of the ruled surface, then angular and linear accelerations

of robot end-effector can be given as

aA = ((η′ + q) u1 + p u3) s̈+((η′′ + q′) u1 + η′pu2 + p′u3) ṡ
2

and

aL = ((η′ + q)u∗1 + q∗u1 + pu∗3 + p∗u3) s̈

+((η′′ + q′) u∗1 + q∗
′

u1 + η′p u∗2 + η′p∗u2 + p′u∗3 + p∗
′

u3)ṡ
2,

respectively.
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Case 3. Ruled surface generated by a line fixed in a robot end-effector may be a developable

ruled surface (except a cylinder and a cone). So, the dual part of Blaschke’s invariant p̄ is equal

to zero, i.e., p∗ = 0. For this case, by making the necessary arrangement in equations (4), (5),

(7), and (8), we can give time dependent linear and angular differential properties of the motion

of a robot end-effector as in the following corollaries.

Corollary 4.7 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t)+ v u(t) and a spin angle η, where α is specified trajectory of robot end-effector, u is a unit

vector parallel to the orientation vector O, and t is the parameter of time. If the ruled surface

is developable, then angular and linear velocities of robot end-effector can be given as

vA = ((η′ + q) u1 + p u3) ṡ

and

vL = ((η′ + q)u∗1 + δ∗u1 + pu∗3) ṡ,

respectively.

Corollary 4.8 Let the motion of a robot end-effector be represented by a ruled surface X(t, v) =

α(t)+ v u(t) and a spin angle η, where α is specified trajectory of robot end-effector, u is a unit

vector parallel to the orientation vector O, and t is the parameter of time. If the ruled surface

is a developable, then angular and linear accelerations of the robot end-effector can be given as

aA = ((η′ + q) u1 + p u3) s̈+((η′′ + q′) u1 + η′pu2 + p′u3) ṡ
2

and

aL = ((η′ + q)u∗1 + δ∗u1 + pu∗3) s̈+((η′′ + q′) u∗1 + δ∗
′

u1 + η′p u∗2 + ϕ∗′

p u2 + p′u∗3)ṡ
2,

respectively.

§5. An Example

Let the motion of a robot end-effector be represented a right conoid given by the equation

X(t, v) = (v cos t, v sin t, 2 sin t) and a spin angle η, where t is the parameter of time (see Figure

4). Directrix and ruling of the right conoid are α(t) = (0, 0, 2 sin t) and u(t) = (cos t, sin t, 0),

respectively. Since 〈α′, u′〉 = 0, directrix and striction curve of the ruled surface are the same

curve, i.e., c = α. The right conoid can be expressed as a dual unit vector

ũ(s) = u(s) + εu∗(s) = (cos t, sin t, 0) + ε(−2 sin2 t, sin 2t, 0)

where s is the arc-length parameter of striction curve. The first dual unit vector of Blaschke

frame is ũ1(s) = ũ(s). The second and third dual unit vectors of Blaschke frame can be found
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as

ũ2(s) = (− sin t, cos t, 0) + ε(− sin 2t, −2 sin2 t, 0)

and

ũ3(s) = (0, 0, 1) ,

respectively. The Blaschke’s invariants can be obtained as p̄ = p + εp∗ = 1 + ε2 cos t and

q̄ = q + εq∗ = 0 + ε0. Let ϕ̄ = ϕ + εϕ∗ be a dual angle between dual unit vectors Ã and ũ2,

where ϕ and ϕ∗ are the real angle and the shortest distance between the lines correspond to the

dual vectors Ã and ũ2, respectively. Since directrix is also striction curve, the distance between

these curves equals to zero, i.e., ϕ∗ = 0, and the angle between two normal vectors on directrix

and on striction curve equals to zero, i.e., σ = 0. Thus, we have ϕ̄ = η+ε0. Dual instantaneous

rotation vector of dual tool frame can be found as

w̃O = wO + εw∗
O = (η′ cos s, η′ sin s, 1) + ε(−2η′ sin2 s, η′ sin 2s, 2 cos s).

Angular and linear velocities of the robot end-effector can be obtained by substituting wO and

w∗
O into equations (9) and (10), respectively. By differentiating the dual instantaneous rotation

vector, we get

w̃′
O = w

′

O + εw∗′

O = (η′′ cos s− η′ sin s, η′′ sin s+ η′ cos s)

+ε(−2η′′ sin2 s− 2η′ sin 2s, η′′ sin 2s+ 2η′ cos 2s, −2 sin s).

Angular and linear accelerations of the robot end-effector can also be obtained by substi-

tuting w
′

O and w∗′

O into equations (11) and (12), respectively.

Figure 4 Motion of a robot end-effector
which can be represented by a right conoid and a spin angle η
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§6. Conclusions

In this paper, time dependent differential properties which are linear and angular velocities and

accelerations of the motion of a robot end-effector are determined by using Blaschke approach

of a ruled surface generated by a line fixed in the end-effector. These differential properties are

important information in robot trajectory planning. By the aid of Blaschke approach which

uses dual numbers and dual vectors as basic tool, both linear and angular differential properties

can be determined. This is achieved only by using a dual vector which is dual instantaneous

rotation vector of dual tool frame. Thus, Blaschke approach presents a simple and systematic

method to study motion of a robot end-effector without redundant parameter. This paper

does not contain a computer program which compares Blaschke approach and conventional

method of scalar curvature theory of ruled surfaces in real space. This is the subject of ongoing

research works. However, it is believed that the presented method based on Blaschke approach

will reduce computation time in computer programming for determining differential properties

of motion and contribute to research area of robot trajectory planning.
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§1. Introduction

Let G(V,E) be a simple finite graph. The order of G is the number of vertices of G. A set

S ⊆ V is a dominating set if every vertex v ∈ V − S is adjacent to at least one vertex in S.

The domination number of G, denoted by γ(G), is the minimum cardinality of the dominating

sets in G. Generally, a dominating set S is said to be a Smarandachely k-dominating set if each

vertex of G is dominated by at least k vertices of S. Let D(G, i) be the family of dominating

sets of G with cardinality i and let d(G, i) = |D(G, i)|. The polynomial

D(G, x) =

|V (G)|∑

i=γ(G)

d(G, i)xi

is defined as domination polynomial of G. For more information on this polynomial the reader

may refer to [8]. A root of D(G, x) is called a domination root of G. It is easy to see that

the domination polynomial is monic with no constant term. Consequently, 0 is a root of every

domination polynomial (in fact, 0 is a root whose multiplicity is the domination number of the

graph).

§2. d-Number

In this section we mainly focus on the number of real domination roots of some specific graphs.

So we introduce a new definition as follows.

1Received March 8, 2018, Accepted August 11, 2018.
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Definition 2.1 Let G be a graph. The number of distinct real domination roots of the graph

G is called d-number of G and is denoted by d(G).

Theorem 2.1 For any graph G, d(G) ≥ 1.

Proof It follows from the fact that 0 is a domination root of any graph. 2
Theorem 2.1 If a graph G consists of m components G1, G2, . . . , Gm, then

d(G) ≤
m∑

i=1

d(Gi) −m+ 1.

Proof It follows from the fact that D(G, x) =
m∏

i=1

D(Gi, x). 2
Theorem 2.3 If G and H are isomorphic, then d(G) = d(H).

Proof It follows from the fact that if G and H are isomorphic, then D(G, x) = D(H,x).2
Theorem 2.4 If G has exactly two distinct domination roots, then d(G) = 2.

Proof It follows from the fact that 0 is a domination root and complex roots occurs in

conjugate pairs. 2
Theorem 2.5 Let G be a graph without pendent vertices. If G has exactly three distinct

domination roots, then d(G) = 1.

Proof It follows from the fact that with the given conditions in theorem, Z(D(G, x)) ⊆
{0,−2± i

√
2, −3±i

√
3

2 } ([8]). 2
Theorem 2.6 For all n we have the following :

d(Kn) =





1 ; if n is odd,

2 ; if n is even.

Proof We have known the domination polynomial of Kn is

D(Kn, x) = (1 + x)n − 1. (1)

The result follows from the transformation y = 1 + x in equation (1). 2
Theorem 2.7 For any graph G, d(G ◦K1) = 2.

Proof Notice that D(G ◦K1, x) = xn(x + 2)n ([8]), where n is the order of G. Therefore

d(G ◦K1) = 2. 2
Theorem 2.8 For any graph G, d(G ◦K2) = 3.
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Proof Notice that D(G ◦ K2, x) = x
n

3 (x2 + 3x + 1)
n

3 ([8]), where n is the order of G.

Therefore Z(D(G, x)) = {0, −3±
√

5
2 }. This implies that d(G ◦K2) = 3. 2

Theorem 2.9 For all n the d-number of the star graph Sn is

d(Sn) =





2 ; if n is odd,

3 ; if n is even.

Proof We have known the domination polynomial of Sn is

D(Sn, x) = x(1 + x)n + xn. (2)

Therefore it suffices to prove that f(x) = (1 + x)n + xn−1 has exactly one real root if n is

odd and two real roots if n is even. But the number of real roots of f(x) is equal to the number

of real roots of g(x) =
(
1 + 1

x

)n
+ 1

x . Again the number of real roots of g(x) is equal to the

number of real roots of g( 1
x) = (1 + x)n + x. Consider g( 1

y−1) = yn + y− 1, we find the number

of real roots of h(y) = yn + y − 1. We have h(0) = −1 < 0 and h(1) = 1 > 0. Therefore by

the intermediate value theorem, h(y) has at least one real root in (0, 1). Also by De Gua’s rule

[11] for imaginary roots, there are at least n− 1 complex roots for odd n and there are at least

n− 2 complex roots for even n. Therefore we can conclude that h(y) has exactly one real root

for odd n and two real roots for even n. It remains to show that all the real roots of f(x) are

distinct. Suppose a ∈ R is a double root of f(x). Whence,

(1 + a)n + an−1 = 0, (3)

n(1 + a)n−1 + (n− 1)an−2 = 0. (4)

From equation (3) we get

(1 + a)n−1 = − an−1

1 + a
( since a 6= −1). (5)

Putting the value of (1 + a)n−1 in (4) and simplify, we obtain a = n − 1. Which is a

contradiction since a < 0. 2
Theorem 2.10 For all n the d-number of K2n,2n is 1.

Proof Notice that the domination polynomial of K2n,2n is

D(K2n,2n, x) =
(
(1 + x)2n − 1

)2
+ 2x2n. (6)

Suppose for a ∈ R,
(
(1 + a)2n − 1

)2
+ 2a2n = 0, then

(
(1 + a)2n − 1

)2
= −2a2n. But this

is true only if a = 0, hence d(K2n,2n) = 1. 2
Theorem 2.11 The d-number of K2n+1,2n+1 is greater than or equal to 3 for all n.
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Proof We have known the domination polynomial of K2n+1,2n+1 is

D(K2n+1,2n+1, x) =
(
(1 + x)2n+1 − 1

)2
+ 2x2n+1. (7)

It is easy to verify that

D

(
K2n+1,2n+1,−

1

2

)
= 1 +

1

22n−1

(
1

22n+3
− 1

)
> 0

D (K2n+1,2n+1,−1) = −1 < 0

D (K2n+1,2n+1,−2) = 22(1 − 22n) < 0

D (K2n+1,2n+1,−3) = (22n+1 + 1)2 − 2 × 32n+1 > 0

Therefore by the intermediate value theorem, K2n+1,2n+1 has at least one real domination

root in (−1,− 1
2 ) and at least one in (−3,−2), hence d(K2n+1,2n+1) ≥ 3. 2

The Dutch-Windmill graph Gn
3 is the graph obtained by selecting one vertex in each of n

triangles and identifying them.

Theorem 2.12 For n ≥ 2 the domination polynomial of the Dutch-Windmill graph Gn
3 is

D(Gn
3 , x) = x(1 + x)2n + (2x+ x2)n.

Proof Let v be the center vertex of Gn
3 . It is clear that {v} is the only dominating

set of cardinality 1. Therefore γ(Gn
3 ) = 1 and d(Gn

3 , 1) = 1. The number of ways of selecting

dominating set of cardinality which containing the center is
(

2n
i−1

)
. Also there are 2n dominating

sets of cardinality n which does not contain the center vertex v. Similarly there are
(
n
i

)
2n−i

ways to select a dominating set of cardinality n+ i which does not contain the center vertex v.

Therefore D(Gn
3 , x) = x(1 + x)2n + (2x+ x2)n. 2

Theorem 2.13 For all n the d-number of the Dutch windmill graph G2n+1
3 is 1.

Proof We have known the domination polynomial of the Dutch windmill graph G3
2n+1 is

D(G2n+1
3 , x) = x(1 + x)4n+2 + (2x+ x2)2n+1.

Suppose there is a number a ∈ R with a 6= 0 such that a(1 + a)4n+2 + (2a+ a2)2n+1 = 0.

Then we have a < 0 and by a simple calculation we have

a = −
(

1 − 1

(1 + a)2

)
. (7)

Suppose −2 < a < 0, then the left side of the equation (7) is negative but the right side is

positive, a contradiction. Now suppose a ≤ −2. Then the left side of the equation (7) is less

than or equal to −2 but the right side is greater than −1, a contradiction. Therefore there is

no nonzero real domination root for G2n+1
3 and hence d(G2n+1

3 ) = 1. 2
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Theorem 2.14 The d-number of G2n
3 is greater than or equal to 3 for all n.

Proof Notice that the domination polynomial of the Dutch windmill graph G2n
3 is

D(G2n
3 , x) = x(1 + x)4n + (2x+ x2)2n.

It is easy to verify that D(G2n
3 ,−1) > 0 and D(G2n

3 ,−2) < 0. Also if a is a negative real

number near to 0, then D(G2n
3 , a) < 0. Therefore by the intermediate value theorem, we have

G2n
3 has a real domination root in (−2,−1) and a real domination root in (−1, 0) and hence

d(G2n
3 ) ≥ 3. 2
The lollipop graph Ln,1 is the graph obtained by joining a complete graph Kn to a path

P1, with a bridge.

Theorem 2.15 For n ≥ 2 the domination polynomial of the lollipop graph Ln,1 is

D(Ln,1, x) = x
(
(1 + x)n + (1 + x)n−1 − 1

)
.

Proof Let {v1, v2, · · · , vn} be the vertices of the complete graph Kn and v be the path

P1 and let v is adjacent to v1. Clearly, γ(Ln,1) = 1 and d(Ln,1, 1) = 1. For 2 ≤ i ≤ n − 1,

the only non dominating sets of i vertices of Ln,1 are the subset of {v2, v3, · · · , vn}. Therefore

d(Ln,1, i) =
(

n+1
i

)
−
(
n−1

i

)
. Also d(Ln,1, n) = n+ 1 and d(Ln,1, n+ 1) = 1. 2

Theorem 2.16 For all n ≥ 2 the d-number of the lollipop graph Ln,1 is

d(Ln,1) =





2 if n is odd,

3 if n is even.

Proof By Theorem 2.15 it is enough to prove that f(y) = yn + yn−1 − 1 has only one real

root if n is odd and has exactly two real roots if n is even. By De Gua’s rule for imaginary

roots, there are at least n − 1 complex roots if n is odd and there are at least n − 2 complex

roots if n is even. Now, f(0) = −1 < 0 and f(1) = 2 > 0 for all n and f(−1) = −1 < 0 and

f(−2) = 2n−1−1 > 0 for all even n. Therefore by the intermediate value theorem, we have the

result. 2
The generalized barbell graph Bm,n,1 is the simple graph obtained by connecting two

complete graphs Km and Kn by a path P1.

Theorem 2.17 For m ≤ n, the domination polynomial of generalized barbell graph Bm,n,1 is

D(Bm,n,1, x) = [(1 + x)m − 1] [(1 + x)n − 1] .

Proof Let V = {v1, v2, · · · , vm} and U = {u1, u2, · · · , un} be the vertices of Bm,n,1 such
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that if i 6= j every vertices V are adjacent, every vertices U are adjacent and vm and un is

adjacent. There is no one element dominating set and {vi, uj} is a dominating set of cardinality

2 of Bm,n,1. Therefore γ(Bm,n,1) = 2 and d(Bm,n,1, 2) = mn. Also observe that for 2 ≤ i ≤ 2n,

a subset S of vertices Bm,n,1 of cardinality i is not a dominating set if either S ⊂ V or S ⊂ U .

Therefore d(Bm,n,1, i) =
(
2n
i

)
−
(
n
i

)
−
(
m
i

)
; for 2 ≤ i ≤ m, d(Bm,n,1, i) =

(
2n
i

)
−
(
n
i

)
; for

m + 1 ≤ i ≤ n and d(Bm,n,1, i) =
(
2n
i

)
; for n + 1 ≤ i ≤ 2n. This implies that D(Bm,n,1, x) =

[(1 + x)m − 1] [(1 + x)n − 1] . 2
Theorem 2.18 For all m,n the d-number of the generalized barbell graph Bm,n,1 is

d(Bm,n,1) =





1 if both m and n are odd,

2 otherwise.

Proof The result follows from the transformation y = 1 + x in the domination polynomial

of Bm,n,1. 2
The n− barbell graph Bn,1 is the simple graph obtained by connecting two copies of

complete graph Kn by a bridge.

Corollary 2.19 The domination polynomial of the n-barbell graph Bn,1 is

D(Bn,1, x) = ((1 + x)n − 1)
2
.

Proof It follows from the fact that the n-barbell graph Bn,1 and the generalized barbell

graph Bn,n,1 are isomorphic. 2
Corollary 2.20 For all n, the d-number of the n-barbell graph Bn,1 is

d(Bn,1) =





1 if n is odd,

2 if n is even.

A bi-star graph B(m,n) is a tree obtained from the graph K2 with two vertices u and v by

attaching m pendant edges in u and n pendant edges in v.

Theorem 2.21 The domination polynomial of the bi-star graph B(m,n) is

D(B(m,n), x) = xm+n + x2(1 + x)m+n + xm+1(1 + x)n + xn+1(1 + x)m.

Proof Let {u, v}, U = {u1, u2, · · · , un} and V = {v1, v2, · · · , vm} be the vertices of Bm,n

such that u and v are adjacent, every vertices U are adjacent to u and every vertices V are

adjacent to v. Clearly there is no one element dominating set. The set {u, v} is the only
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dominating set of cardinality 2 of Bm,n. Therefore γ(Bm,n) = 2 and d(Bm,n, 2) = 1. For

3 ≤ i ≤ m, the i−element dominating set of Bm,n must contain {u, v}, and the i− 2 elements

can have
(
m+n
i−2

)
choice. For m+ 1 ≤ i ≤ n, there are

(
m+n
i−2

)
i−element dominating set of Bm,n

containing {u, v} and
(

n
i−m−1

)
i−element dominating set of Bm,n containing V

⋃{u}. For n+

1 ≤ i ≤ m+n−1, there are
(
m+n
i−2

)
i−element dominating set of Bm,n containing {u, v},

(
n

i−m−1

)

i−element dominating set of Bm,n containing V
⋃{u} and

(
m

i−n−1

)
i−element dominating set

of Bm,n containing U
⋃{v}. For i = m + n, there are

(
m+n
i−2

)
(m + n)−element dominating

set of Bm,n containing {u, v}, n (m+ n)−element dominating set of Bm,n containing V
⋃{u},

m (m + n)−element dominating set of Bm,n containing U
⋃{v} and one (m + n)−element

dominating set of Bm,n not containing {u, v}. Also d(Bm,n,m + n + 1) = m + n + 2 and

d(Bm,n,m+ n+ 2) = 1. That is,

d(Bm,n, i) =






1 if i = 2,m+ n+ 2
(
m+n
i−2

)
if 3 ≤ i ≤ m

(
m+n
i−2

)
+
(

n
i−m−1

)
if m+ 1 ≤ i ≤ n

(
m+n
i−2

)
+
(

n
i−m−1

)
+
(

m
i−n−1

)
if n+ 1 ≤ i ≤ m+ n− 1

(
m+n
i−2

)
+ n+m+ 1 if i = m+ n

m+ n+ 2 if i = m+ n+ 1

.

Hence

D(Bm,n) = xm+n + x2(1 + x)m+n + xm+1(1 + x)n + xn+1(1 + x)m. 2
Corollary 2.22 The domination polynomial of the bi-star graph B(n,n) is

D(B(n,n), x) = (x(1 + x)n + xn)
2
.

Theorem 2.23 For the bi-star graph B(m,n), m 6= n we have the following :

d(B(m,n)) =






3 if both m and n are odd,

5 if both m and n are even,

4 if m and n have opposite parity.

Proof By Theorem 2.21 we have,

D(B(m,n), x) = xm+n + x2(1 + x)m+n + xm+1(1 + x)n + xn+1(1 + x)m

= x2
(
xm+n−2 + (1 + x)m+n + xm−1(1 + x)n + xn−1(1 + x)m

)

= x2
(
xm−1

(
(1 + x)n + xn−1

)
+ (1 + x)m

(
(1 + x)n + xn−1

))

= x2
(
(1 + x)m + xm−1

) (
(1 + x)n + xn−1

)
.
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We have known that there is no real number satisfying both the equations (1+x)m+xm−1 =

0 and (1 + x)n + xn−1 = 0 simultaneously. Therefore it suffices to prove that (1 + x)m + xm−1

has exactly one real root for odd m and two real roots for even m. The remaining proof is

similar to the proof of Theorem 2.9. 2
Theorem 2.24 For bi-star graph B(n,n), we have the following :

d(B(n,n)) =





2 if n is odd,

3 if n is even.

Proof The proof similar to the proof of Theorem 2.9. 2
The corona H ◦ G of two graphs H and G is the graph formed from one copy of H and

|V (H)| copies of G, where the ith vertex of H is adjacent to every vertex in the ith copy of G.

Lemma 2.25([9]) Let G and H be nonempty graphs of order m and n respectively. Then

D(G ◦H,x) = (x(1 + x)n +D(H,x))m .

Theorem 2.26 If Km and Kn be the complete graphs with m and n vertices respectively. Then

the domination polynomial of Km ◦Kn is

D(Km ◦Kn, x) =
(
(1 + x)n+1 − 1

)m
.

Theorem 2.27 For the corona Km ◦Kn, we have the following :

d(Km ◦Kn) =





2 if n is odd,

1 if n is even.

Proof It follows from the transformation y = 1 + x in the domination polynomial D(Km ◦
Kn, x). 2

Consider the graph Km and m copies of Kn . The graph Q(m,n) is obtained by identifying

each vertex of Km with a vertex of a unique Kn.

Corollary 2.28 For m ≥ 2, the domination polynomial of Q(m,n) is

D(Q(m,n), x) = ((1 + x)n − 1)
m
.

Proof It follows from the fact that Q(m,n) and Km ◦Kn−1 are isomorphic. 2
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Corollary 2.29 For the graph Q(m,n), we have the following :

d(Q(m,n)) =





1 if n is odd,

2 if n is even.

§3. Domination Stable Graph

In this section we introduce d-stable and d-unstable graphs. We obtained some examples of

d-stable and d-unstable graphs.

Definition 3.1 Let G = (V (G), E(G)) be a graph. The graph G is said to be a domination

stable graph or simply d-stable graph if all the nonzero domination roots of G lie in the left open

half-plane, that is, if real part of the nonzero domination roots is negative. If G is not d-stable

graph, then G is said to be a domination unstable graph or simply d-unstable graph.

Theorem 3.1 If G and H are isomorphic graphs, then G is d-stable if and only if H is d-stable.

Proof It follows from the fact that if G and H are isomorphic graphs then D(G, x) =

D(H,x). 2
Corollary 3.2 If G and H are isomorphic graphs then G is d-unstable if and only if H is

d-unstable.

Theorem 3.3 If a graph G consists of m components G1, G2, . . . , Gm, then G is d-stable if

and only if each Gi is d-stable.

Proof It follows from the fact that

D(G, x) =

m∏

i=1

D(Gi, x). 2
Corollary 3.4 If a graph G consists of m components G1, G2, . . . , Gm, then G is d-unstable

if and only if one of the Gi is d-unstable.

Theorem 3.5 Let G be a connected graph of order n > 2 without pendent vertices. If G is

d-stable, then

n < 1 + 2 d(G,n− 3).

Proof Suppose G is d-stable. Then by Routh-Hurwitz criteria, we have Routh-Hurwitz

matrix H2 > 0. This implies that

d(G,n− 1)d(G,n− 3) − d(G,n− 2) > 0.
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Since G is connected and without pendent vertices we have

d(G,n− 1) = n and d(G,n− 2) =
1

2
n(n− 1).

This completes the proof. 2
Theorem 3.6 The complete graph Kn is d-stable graph for all n.

Proof The domination polynomial of Kn is

D(Kn, x) = (1 + x)n − 1.

Therefore

Z(D(Kn, x)) =

{
exp

(
2kπi

n

)
− 1|k = 0, 1, . . . , n− 1

}
.

Clearly, real part of all the roots are non-positive. This implies that Kn is d-stable for all n.2
Theorem 3.7 The complement of the complete graph Kn is d-stable graph for all n.

Proof It follows from the fact that the graph Kn has no nonzero domination roots. 2
We use the following definitions and results to prove some graphs which are d-unstable.

These definitions and theorems are taken from [10].

Definition 3.2 If fn(x) is a family of complex polynomials, we say that a number z ∈ C is a

limit of roots of fn(x) if either fn(z) = 0 for all sufficiently large n or z is a limit point of the

set Z(fn(x)), Z(fn(x)) is the set of the roots of the family fn(x).

Now, a family fn(x) of polynomials is a recursive family of polynomials if fn(x) satisfy a

homogeneous linear recurrence

fn(x) =

k∑

i=1

ai(x)fn−i(x), (8)

where the ai(x) are fixed polynomials, with ak(x) 6= 0. The number k is the order of the

recurrence. We can form from equation (8) its associated characteristic equation

λk − a1(x)λ
k−1 − a2λ

k−2 − · · · − ak(x) = 0 (9)

whose roots λ = λ(x) are algebraic functions, and there are exactly k of them counting multi-

plicity.

If these roots, say λ1(x), λ2(x), · · · , λk(x), are distinct, then the general solution to equation

(8) is known to be

fn(x) =
k∑

i=1

αi(x)λi(x)
n (10)
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with the usual variant if some of the λi(x) are repeated. The functions

α1(x), α2(x), · · · , αk(x)

are determined from the initial conditions, that is, the k linear equations in the αi obtained

by letting n = 0, 1, · · · , k − 1 in equation (10) or its variant. The details are available in [10].

Beraha, Kahane and Weiss [10] proved the following results on recursive families of polynomials

and their roots.

Theorem 3.8 If fn(x) is a recursive family of polynomials, then a complex number z is a limit

of roots of fn(x) if and only if there is a sequence (zn) in C such that fn(zn) = 0 for all n and

zn → z as n→ ∞.

Theorem 3.9 Under the non-degeneracy requirements that in equation (10) no αi(x) is iden-

tically zero and that for no pair i 6= j is it true that λi(x) ≡ ωλj(x) for some complex number

ω of unit modulus, then z ∈ C is a limit of roots of fn(x) if and only if either

(1) two or more of the λi(z) are of equal modulus, and strictly greater (in modulus) than

the others; or

(2) for some j, λj(z) has modulus strictly greater than all the other λi(z), and αj(z) = 0.

Corollary 3.10([6]) Suppose fn(x) is a family of polynomials such that

fn(x) = α1(x)λ1(x)
n + α2(x)λ2(x)

n + . . .+ αk(x)λk(x)n, (11)

where the αi(x) and the λi(x) are fixed non-zero polynomials, such that for no pair i 6= j is

λi(x) ≡ ωλj(x) for some ω ∈ C of unit modulus. Then the limits of roots of fn(x) are exactly

those z satisfying (1) or (2) of Theorem 3.9.

Theorem 3.11 The generalized barbell graph Bm,n,1 is d-stable for all m,n.

Proof We have known by Theorem 2.17 that the domination polynomial of Bm,n,1 is

D(Bm,n,1, x) = [(1 + x)m − 1] [(1 + x)n − 1] .

Therefore

Z(D(Bm,n,1, x)) =

{
exp

(
2kπi

m

)
− 1|k = 0, · · · ,m− 1

}

⋃{
exp

(
2kπi

n

)
− 1|k = 0, · · · , n− 1

}
.

Clearly, real part of all the roots are non-positive. This implies that the generalized barbell

graph Bm,n,1 is d-stable for all m,n. 2
The domination roots of the generalized barbell graph Bm,n,1 for 1 ≤ m,n ≤ 30 are shown

in Figure 1.
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Figure 1 Domination roots of Bm,n,1 for 1 ≤ m,n ≤ 30.

Corollary 3.12 The n-barbell graph Bn,1 is d-stable for all n.

Proof It follows from the fact that the n-barbell graph Bn,1 and the generalized barbell

graph Bn,n,1 are isomorphic. 2
The domination roots of the n-barbell graph Bn,1 for 1 ≤ n ≤ 60 are shown in Figure 2.

Figure 2 Domination roots of Bn,1 for 1 ≤ n ≤ 60.

Theorem 3.13 The corona Km ◦Kn is d-stable for all m,n.

Proof Notice that the domination polynomial of Km ◦Kn is

D(Km ◦Kn, x) =
(
(1 + x)n+1 − 1

)m
.

Therefore

Z(D(Km ◦Kn, x)) =

{
exp

(
2kπi

n+ 1

)
− 1|k = 0, 1, · · · , n

}
.
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Clearly, real part of all the roots are non-positive. This implies that the corona Km ◦ Kn is

d-stable for all m,n. 2
Corollary 3.14 The graph Q(m,n) is d-stable for all m,n.

Proof It follows from the fact that the graph Q(m,n) and Km ◦Kn−1 are isomorphic. 2
Theorem 3.15 Let G be a connected graph of order n and D(G, x) be its domination polynomial.

If D(G, x) has exactly two distinct domination roots, then G is d-stable for all n.

Proof It follows from the fact that the two distinct roots are real. 2
Theorem 3.16 Let G be a graph of order n, then the corona G ◦K1 is d-stable for all n.

Proof We have known the domination polynomial of G ◦K1 is

D(G ◦K1, x) = xn(x + 2)n.

Therefore Z(D(G ◦K1, x) = {0,−2} , that is, G ◦K1 is d-stable for all n. 2
Theorem 3.17 Let G be a graph of order n, then the corona G ◦K2 is d-stable for all n.

Proof Notice that the domination polynomial of G ◦K2 is

D(G ◦K2, x) = x
n

3 (x2 + 3x+ 1)
n

3 .

Therefore Z(D(G ◦K2, x) =
{
0, −3±

√
5

2

}
, That is, G ◦K2 is d-stable for all n. 2

Theorem 3.18 Let G be a graph without pendent vertices and let D(G, x) be its domination

polynomial. If D(G, x) has exactly three distinct roots, then G is d-stable.

Proof Notice that

Z(D(G, x)) ⊂
{

0,−2 ± i
√

2,
−3 ± i

√
3

2

}
.

This implies that G is d-stable. 2
Theorem 3.19 Any graph G with three distinct domination roots is d-stable.

Proof Notice that

Z(D(G, x)) ⊂
{
−2, 0,

−3 ±
√

5

2
,−2 ± i

√
2,

−3 ± i
√

3

2

}
.

This implies that G is d-stable. 2
Theorem 3.20 The Dutch windmill graph Gn

3 is not d-stable graph for all but finite values of

n.
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Proof Using maple, we find that the Dutch windmill graph Gn
3 is d-stable for n ≤ 6. Notice

that D(Gn
3 , x) = x(1 + x)2n + (2x+ x2)n. We rewrite fn(x) = D(Gn

3 , x) as

fn(x) = x
(
(1 + x)2

)n
+ (1)(2x+ x2)n = α1λ

n
1 + α2λ

n
2 ,

where, α1 = x, λ1 = (1 + x)2, α2 = 1, λ2 = 2x+ x2.

Clearly, 1 and x are not identically zero and λ1 6= ωλ2 for any complex number ω of

modulus 1. Therefore the initial conditions of Theorem .19 are satisfied. Now, for z = a+ ib ∈
C, |λ1(z)| = |λ2(z)| holds if and only if |(1 + z)2| = |2z + z2|. That is, |(1 + a + ib)2| =

|2(a+ ib) + (a+ ib)2|. By a simple calculation we have (a+ 1)2 + b2 = 1
2 . Therefore 0 and the

complex numbers z such that (1 + R(z))2 + (I(z))2 = 1
2 are limits of domination roots of Gn

3 .

This implies that the domination roots of Gn
3 have unbounded positive real part. Therefore the

Dutch windmill graph Gn
3 is not d-stable for all but finite values of n. 2

The domination roots of the Dutch windmill graph Gn
3 for 1 ≤ n ≤ 6 and for 1 ≤ n ≤ 30

are shown in Figures 3 and 4, respectively.

Figure 3 Domination roots of Gn
3 for 1 ≤ n ≤ 6.

Figure 4 Domination roots of Gn
3 for 1 ≤ n ≤ 30.
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Figure 5 Domination roots of Bn for 1 ≤ n ≤ 9.

Figure 6 Domination roots of Bn for 1 ≤ n ≤ 30.

The domination roots of the bipartite cocktail party graph Bn for 1 ≤ n ≤ 9 and for

1 ≤ n ≤ 30 are shown in Figures 5 and 6, respectively.

Remark 3.21 The domination polynomial of Sn is

D(Sn, x) = xn + x(1 + x)n

= 1(x)n + x(1 + x)n

= α1λ
n
1 + α2λ

n
2 ,

where α1 = 1, λ1 = x, α2 = x and λ2 = 1 + x. Clearly 1 and x are not identically zero and
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λ1 6= ωλ2 for any complex number ω of modulus 1. Therefore the initial conditions of Theorem

3.9 are satisfied. Now, |λ1| = |λ2| holds if and only if |x− 0| = |x− (−1)|, that is, if and only if

x is equidistant from 0 and −1. This holds if and only if real part of x is − 1
2 . Also α1 is never

0 and α2 = 0 if and only if x = 0 and in this case |λ2(0)| = 1 > 0 = |λ1(0)|. By these arguments

we have 0 and the complex numbers z such that R(z) = − 1
2 are the limits of roots of D(Sn, x).

Therefore we think that that there is no complex number z with positive real part is a root of

D(Sn, x). We conjectured that the star graph Sn is d-stable graph for all n.

The domination roots of the star graph Sn for 1 ≤ n ≤ 60 are shown in Figure 7.

Figure 7 Domination roots of Sn for 1 ≤ n ≤ 60.

Remark 3.22 The domination polynomial of Km,n is

D(Km,n, x) = ((1 + x)m − 1) ((1 + x)n − 1) + xm + xn.

Let m be fixed and rewrite D(Km,n, x) as :

D(Km,n, x) = ((1 + x)m − 1) (1 + x)n + ((1 + xm − (1 + x)m)) (1)n + 1(x)n

= α1λ
n
1 + α2λ

n
2 + α3λ

n
3 ,

where α1 = (1 + x)m − 1, λ1 = 1 + x, α2 = 1 + xm − (1 + x)m, λ2 = 1, α3 = 1 and λ3 = x.

Clearly α1,α2 and α3 are not identically zero and λi 6= ωλj for i 6= j and any complex number

ω of modulus 1. Therefore the initial conditions of Theorem 3.9 are satisfied. Now, applying

part(i) of Theorem 3.9, we consider the following four different cases:

(i) |λ1| = |λ2| = |λ3|,
(ii) |λ1| = |λ2| > |λ3|,
(iii) |λ1| = |λ3| > |λ2|,
(iv) |λ2| = |λ3| > |λ1|.
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Case 1. Assume that |1 + x| = |1| = |x|. Then |x− (−1)| = |x− 0| implies that x lies on the

vertical line z = − 1
2 , |x − (−1)| = 1 implies that x lies on the unit circle centered at (−1, 0)

and 1 = |x− 0| implies that x lies on the unit circle centered at the origin. Therefore the two

points of intersection, 1
2 ± i

√
3

2 are limits of roots.

Case 2. Assume that |1 + x| = |1| > |x|. Then |x− (−1)| = 1 implies that x lies on the unit

circle centered at (−1, 0), |x − (−1)| > |x − 0| implies that x lies to the right of the vertical

line z = − 1
2 . Therefore the complex numbers x that satisfy |x− (−1)| = 1 and R(x) > − 1

2 are

limits of roots.

Case 3. Assume that |1 + x| = |x| > |1|. Then |x − (−1)| = |x − 0| implies that x lies on

the vertical line x = − 1
2 and |x − 0| > 1 implies that x lies outside the unit circle centered at

the origin. Therefore the complex numbers x that satisfy |x| > 1 and R(x) > − 1
2 are limits of

roots.

Case 4. Assume that |1| = |x| > |1+x|. Then 1 = |x−0| implies that x lies on the unit circle

centered at the origin and |x− 0| > |x− (−1)| implies that x lies to the left of the vertical line

x = − 1
2 . Therefore the complex numbers x that satisfy |x| = 1 and R(x) < − 1

2 are limits of

roots.

Also there may be some additional isolated limits of roots, being roots of α2 inside |1+x| = 1

and |x| = 1. The union of the curves and points above yield that for m fixed, the limits of roots

of the domination polynomial of the complete bipartite graph Km,n consists of the part of the

circle |z| = 1 with real part at most − 1
2 , the part of the circle |z+ 1| = 1 with real part at least

− 1
2 and the part of the line R(z) = − 1

2 with modulus at least 1. So we conjectured that the

complete bipartite graph Km,n is d-stable for all m,n.

The domination roots of the complete bipartite graphs Km,n for 1 ≤ m ≤ 15, 1 ≤ n ≤ 30

and Kn,n for 1 ≤ n ≤ 30 are respectively shown in Figures 8 and 9.

Figure 8 Domination roots of Km,n for 1 ≤ m ≤ 15 and 1 ≤ n ≤ 30.
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Figure 9 Domination roots of Kn,n for 1 ≤ n ≤ 30.

Remark 3.23 We have that D(B(m,n), x) = x2
(
(1 + x)m + xm−1

) (
(1 + x)n + xn−1

)
. Let m

be fixed, we rewrite D(B(m,n), x) as fn(x) :

fn(x) =
(
xm+1 + x2(1 + x)m

)
(1 + x)n + (xm + x(1 + x)m)xn

= α1λ
n
1 + α2λ

n
2 ,

where

α1 =
(
xm+1 + x2(1 + x)m

)
, λ1 = 1 + x, α2 = (xm + x(1 + x)m) and λ2 = x.

Clearly
(
xm+1 + x2(1 + x)m

)
and (xm + x(1 + x)m) are not identically zero and λ1 6= ωλ2 for

any complex number ω of modulus 1. Therefore the initial conditions of Theorem 3.9 are

satisfied. Now, |λ1| = |λ2| holds if and only if |x − (−1)| = |x − 0|, that is, if and only if x is

equidistant from −1 and 0. The latter holds if and only if R(x) = − 1
2 . Notice that α1(0) = 0

and α1(0) = 1 + 0 = 1 has modulus strictly greater than λ2(0) = 0.

Note that there may be some additional limits of roots, being roots of α1 and α2. But from

the Remark 3.21, we can conclude that α1 and α2 have no roots in the right-half plane. By

these arguments we have 0 and the complex numbers z that satisfy R(z) = − 1
2 are the limits of

roots of D(B(m,n), x). So we conjectured that the bi-star graph B(m,n) is d-stable for all m,n.

The domination roots of the bi-star graph B(n,n) for 1 ≤ n ≤ 50 are shown in Figure 10.
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Figure 10 Domination roots of bi-star graph B(n,n) for 1 ≤ n ≤ 50.
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Abstract: Let Zn be the commutative ring of residue classes modulo n, PG(Zn) be the

prime graph of a ring over a ring Zn. In this paper we study Energy and Wiener index of

PG(Zn) and give some results of line graph of prime graph of a ring over a ring Zn, denote

it by L(PG(Zn)).
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§1. Introduction

Prime graph of a ring first introduced by Satyanarayana et al. [3]. Prime graph of a ring is

defined as a graph whose vertices are all elements of the ring and any two distinct vertices

x, y ∈ R are adjacent if and only if xRy = 0 or yRx = 0. This graph is denoted by PG(R). The

concept of energy and Wiener index of zero divisor graph was introduced by Mohammad Reza

and Reza Jahani in [4]. Motivated from the article in [4] in Section 2 of this paper we discuss

energy of prime graph of a ring and give general MATLAB code for our calculation. In section

3, We calculate Wiener index of PG(Zn), for n = p, n = p2 and n = p3. In last section of

paper, we introduce Line Graph of Prime Graph of a Ring denoted by L(PG(Zn)) and discuss

Planerity, Girth and degree of all vertices in L(PG(Zn)). Also, we find center, eccentricity,

point covering number, independence number, Energy, Wiener index and Chromatic number

of L(PG(Zn)), where n = p, p prime. Here, we also discuss complement of line graph of prime

graph of a ring over a ring Zn, denote it by L(PG(Zn))c. We study Girth of L(PG(Zn))c and

also find Eulerianity and degree of all vertices in L(PG(Zn))c, where n = p, p prime.

For more preliminary definitions and Notations the reader is referred to [5]-[8].

§2. Energy of Prime Graph of a Ring

In this section we give some examples and calculate the Energy of prime graph of a ring.

1Received April 19, 2018, Accepted August 12, 2018.
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Definition 2.1 The energy of the prime graph of a ring PG(Zn) is defined as the sum of the

absolute values of all the eigen values of its adjacency matrix M(PG[R]). i.e. if λ1, λ2, · · · , λn

are n eigen values of M(PG[R]), then the energy of PG(Zn) is -

E(PG[R]) =

n∑

i=1

|λi| .

Example 2.2 For p = 2, the adjacency matrix of PG(Z2) is

M(PG[Z2]) =



0 1

1 0





The characteristic polynomial is λ2 − 1.The eigen values are λ1 = 1, λ2 = −1. Therefore,

E(PG[Z2]) = 2.

Example 2.3 For p = 3, the adjancency matrix of PG(Z3) is

M(PG[Z3]) =




0 1 1

1 0 0

1 0 0




The characteristic polynomial is λ3 − 2λ. The eigen values are λ1 = −1.4142, λ2 =

1.4142, λ3 = 0. Therefore, E(PG[Z3]) = 2.8284.

Example 2.4 For p = 4, the adjancency matrix of PG(Z4) is

M(PG[Z4]) =




0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0




The characteristic polynomial is λ4 − 3λ2. The eigen values are λ1 = 1.7321, λ2 =

−1.7321, λ3 = 0, λ4 = 0. Therefore, E(PG[Z4]) = 3.4641.

Example 2.5 For p = 5, the adjancency matrix of PG(Z5) is

M(PG[Z5]) =




0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0




The characteristic polynomial is λ5 − 4λ3. The eigen values are λ1 = 2, λ2 = −2, λ3 =
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0, λ4 = 0, λ5 = 0. Therefore, E(PG[Z5]) = 4.

From the above Discussion we conclude the following theorem.

Theorem 2.6 If p is a prime number then energy of PG(Zp) is 2
√
p− 1.

General MATLAB code to find Energy of a Graph

syms λ To create Symbolic Variables;

A = [· · · ; · · · ; · · · ; · · · ] To create a matrix that has multiple rows, separate the rows with semicolons;

charpoly(A, λ) Returns the characteristic polynomial of A in terms of variable λ;

p = [ ] To input the coefficients of characteristic polynomial;

r = roots(p) Gives the eigen Values of matrix A;

s = sum(abs(r)) Gives the energy of a graph.

The values of E(PG[Zn]) for n = 2, 3, 4, 5, 6, 9 and 10 are given in table below.

Sr.No. n Characteristic Polynomial Energy

1 2 λ2 − 1 2

2 3 λ3 − 2λ 2.8284

3 4 λ4 − 3λ2 3.4641

4 5 λ5 − 4λ3 4

5 6 λ6 − 7λ4 − 4λ3 + 4λ2 6.6858

6 9 λ9 − 9λ7 − 2λ6 + 6λ5 7.4641

7 10 λ10 − 13λ8 − 8λ7 + 16λ6 9.2058

§3. Wiener Index of Prime Graph of a Ring

In this section, We calculate Wiener index of PG(Zn), for n = p, n = p2 and n = p3.

Definition 3.1 Let PG(R) be a Prime Graph of a Ring with vertex set V. We denote the length

of the shortest path between every pair of vertices x, y ∈ V with d(x, y). Then the Wiener index

of PG(R) is the sum of the distances between all pair of vertices of PG(R), i.e.

W (PG[R]) =
∑

x,y∈V

d(x, y).

The following results can be easily verified.

Theorem 3.2 W (PG[Zp]) = (p− 1)2 if p is a prime.

Theorem 3.3 W (PG[Zp2 ]) = p·(p−1)
2 ·

[
2p2 − 2p+ 1

]
if p is a prime.

Theorem 3.4 W (PG[Zp3 ]) = p·(p−1)
2

[
2p4 + 2p3 − 2p− 3

]
if p is a prime.
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§4. Line Graph of Prime Graph of a Ring

In this section we define line graph of prime graph of a ring, presented some examples and give

some results.

Definition 4.1 The line graph L(PG(Zn)) of the graph PG(Zn) is defined to the graph whose

set of vertices constitutes of the edges of PG(Zn), where two vertices are adjacent if the corre-

sponding edges have a common vertex in PG(Zn).

Consider Zn, the ring of integers modulo n.

Example 4.2 L(PG(Z2)) is a single vertex graph, there is no edge in L(PG(Z2)).

Example 4.3 In L(PG(Z3)), there is an edge between the vertices [0,1] to [0,2], as shown in

figure below. ���� ����
[0,1] [0,2]

Figure 1

Example 4.4 In L(PG(Z4)), there is an edge between the vertices [0,1] to [0,2], [0,2] to [0,3]

and [0,3] to [0,1] as shown in figure below.

���� ����
[0,1]

����
[0,2]

[0,3]

Figure 2

i.e. L(PG(Z4)) is a complete graph k3.

Example 4.5 In L(PG(Z5)), there is an edge between the vertices [0,1] to [0,2], [0,2] to [0,3],

[0,3] to [0,4], [0,4] to [0,1], [0,1] to [0,3] and [0,2] to [0,4] as shown in figure below.����
����

����
����[0,1] [0,2]

[0,3][0,4]

Figure 3

i.e. L(PG(Z5)) is a complete graph k4.
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Example 4.6 Let us construct L(PG(Z6)).���� ����
���� ����
���� ��������

[0,1]

[0,2]

[0,3]

[0,4]

[0,5]

[2,3] [3,4]

Figure 4

i.e. L(PG(Z6)) contains a complete subgraph k5.

Example 4.7 Let us construct L(PG(Z7)).���� ����
���� ����

���� ����
[0,1]

[0,2]

[0,3] [0,4]

[0,6]

[0,5]

Figure 5

i.e. L(PG(Z7)) is a complete graph k6.

Observations 4.8 Every L(PG(Zn)) contains a complete subgraph on n− 1 vertices.

Observations 4.9 If Zn is a prime ring then L(PG(Zn)) is a regular graph.

Observations 4.10 If n = p, a prime number then PG(Zn) is a star graph. So, its line

graph L(PG(Zn)) is a complete graph and hence its eccentricity e(v) = 1, ∀v ∈ V (L(PG(Zn))).

Therefore, centre is L(PG(Zn)).

Theorem 4.11 The graph L(PG(Zn)) is Hamiltonian if and only if n = p, a prime number

and n ≥ 4.

Proof When n = 2, L(PG(Zn)) is a single vertex graph, hence there is no cycle. For

n = 3, L(PG(Zn)) is a single edge graph, hence there is no cycle exist. For n = 4, L(PG(Zn))

is a triangle graph and there exist a cycle which containing every vertex. So, L(PG(Z4)) is a
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Hamiltonian graph. Now, for n = p, a prime number then L(PG(Zn)) is Hamiltonian graph

because there exist a cycle containing every vertex. Hence, the graph L(PG(Zn)) is Hamiltonian

if and only if n = p, a prime number and n ≥ 4. 2
Theorem 4.12 Let L(PG(Zn)) be a line graph of prime graph of a ring, where n = p and p

is an odd prime number then point covering number and independence number of L(PG(Zn))

both are one.

Proof When n = p, PG(Zn) is a star graph. So, there is a common vertex which is

adjacent to all other vertices and that vertex is called center of the graph. When we draw the

line graph of PG(Zn), for n = p, and let a1 = 0 be the common vertex of PG(Zn) which is

the end point of every edge of PG(Zn). Then a1 appears in every vertex of the line graph.

[a1, vi] ∈ V (L(PG(Zn))), where i = 1, 2, 3, · · · , (p− 1) forms a complete line graph of PG(Zn)

and here, [a1, v1] is adjacent with all other vertices of line graph. In other words, we can say

that single vertex cover all other vertices of line graph of PG(Zn). Thus, the point cover is one

and from that vertex an independence number is also one. 2
The following results can be immediately verified.

Theorem 4.13 The general formula for degree of vertex in L(PG(Zn)) is:

deg[u, v] = gcd(u, n) + gcd(v, n) − 2, if u2 6= 0 and v2 6= 0

= gcd(u, n) + gcd(v, n) − 3, if either u2 = 0 , v2 = 0

= gcd(u, n) + gcd(v, n) − 4, if u2 = 0 and v2 = 0

Theorem 4.14 L(PG(Zn)) is planer if and only if n = 2, 3, 4, 5 and is non-planer for n ≥ 6.

Theorem 4.15 The girth gr(L(PG(Zn))) = 3 if and only if n ≥ 4. If n = 2, 3 then

gr(L(PG(Zn))) = ∞.

Theorem 4.16 The chromatic number χ(L(PG(Zp))) = p− 1 for p = 2, 3, 5, · · · .

Theorem 4.17 The chromatic number χ(L(PG(Zpn))) = pn − 1, p prime.

Theorem 4.18 The energy E(L(PG(Zp))) = 2p− 4, for p = 3, 5, · · · and n = 4.

Theorem 4.19 The Wiener index W (L(PG(Zp))) = p(p−1)
2 , for p = 3, 5, · · · and n = 4.

Theorem 4.20 The graph L(PG(Zn))c is Eulerian if and only if n = p, a prime number and

n ≥ 4.

Proof When n = 2, there is no graph, as there is no edge between the vertices 0 and 1 in

(PG(Zn))c. For n = 3, L(PG(Zn))cis a single vertex graph. For n = 4, L(PG(Zn))c is triangle

graph and every vertex is of even degree. Now, For n = p, a prime number, every vertex of

L(PG(Zn))c have even degree. Hence, the graph L(PG(Zn))c is Eulerian if and only if n = p,
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a prime number and n ≥ 4. 2
Theorem 4.21 The general formula for degree of vertex in L(PG(Zn))c, where n = p a prime

number and n ≥ 5 is:

deg[u, v] = n+ φ(n) − 5

Theorem 4.22 The girth gr(L(PG(Zn))c) = 3 if and only if n ≥ 4. If n = 2, 3 then

gr(L(PG(Zn))c) = ∞.
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Abstract: A tree T contained in graph G is a Steiner tree with respect to W ⊆ V (G) if

T is a tree of minimum order with W ⊆ V (T ). The set S(W ) consists of all the vertices

of G which lie on some Steiner tree with respect to W . The set W is a Steiner set for G if

S(W ) = V (G). The minimum cardinality among the Steiner sets of G is the Steiner number

of G, denoted as s(G). The set W is called Steiner dominating set if W is both a Steiner set

and a dominating set. The minimum cardinality among such sets is a Steiner domination

number, denoted as γs(G). We investigate Steiner domination number of some splitting and

degree splitting graphs.

Key Words: Steiner distance, Steiner set, Steiner number, domination number, Steiner

domination number.
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§1. Introduction

We consider simple, finite, connected and undirected graph G with vertex set V and edge set

E. For the standard graph theoretic terminology and notation we follow Chatrand and Lesniak

[2] while the terms related to the theory of domination are used in the sense of Haynes et al.

[6].

Definition 1.1 The distance d(u, v) between two vertices u and v in a connected graph G is

the length of the shortest u− v path in G.

Definition 1.2 The Steiner distance sd(W ) of a subset W of vertices of a connected graph

G is the minimum number of edges in a connected subgraph of G that contains W . If H is a

subgraph of minimum size that contains a set W , then H is necessarily a tree, called a Steiner

tree for W or a Steiner W -tree.

1Received January 13, 2018, Accepted August 15, 2018.
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Chartrand et al. have introduced a generalization of distance in [3]. The sharp upper

and lower bounds for the Steiner k-diameter of G and G are given by Mao [9] while the same

author have identified some graph classes attaining these bounds. Let n be an integer such that

2 ≤ n ≤ |V (G)|, then the n diameter of G, diamn(G), is defined to be the maximum Steiner

distance of any n-subset(subset with n elements) of vertices of G. If G be any graph of order p

with minimum degree δ ≥ 2 and 2 ≤ n ≤ p then diamn(G) ≤ p

δ + 1
+ 2n− 5, is proved by Ali

et al. [1].

Definition 1.3 The set of all vertices of G that lie on some Steiner W -tree is denoted by S(W ).

If S(W ) = V (G), then W is called a Steiner set for G. A Steiner set of minimum cardinality

is a minimum Steiner set and this cardinality is the Steiner number s(G).

The concept of Steiner number was introduced by Chartrand and Zhang [4]. In the same

paper authors have proved many results on this newly defined concept. This concept was further

studied by Santhakumaran and John [8]. For the graph G of Figure 1, there are three Steiner

trees related to W = {w1, w2} which are shown in the same figure. Since S(W ) = V (G), W is

a Steiner set of G.

Figure 1 The graph G and its Steiner trees

Definition 1.4 A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating set if

every vertex v ∈ V is either an element of S or is adjacent to an element of S. A dominating set

S is a minimal dominating set if no proper subset S
′ ⊂ S is a dominating set. The domination

number γ(G) of a graph G is the minimum cardinality of a dominating set in graph G.

Definition 1.5 Let G be a connected graph with vertex set V (G). A set of vertices W in G is

called a Steiner dominating set if W is both a Steiner set and a dominating set. The minimum

cardinality of a Steiner dominating set of G is called its Steiner domination number, denoted

by γs(G).

The concept of Steiner domination number was introduced by John et al. [7]. It is very in-

teresting to investigate Steiner domination number of graph or graph families as it is known only

for handful number of graphs. Vaidya and Mehta [11] have investigated the Steiner domination

number of Wn, Hn and Fln and the same authors [12] have established some characterizations

for Steiner domination in graphs while Steiner domination number for S′(Pn), S′(Cn), M(Pn),
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M(Cn) and Fn are obtained by Vaidya and Karkar [10].

For the graph G of Figure 1, W = {w1, w2} is a Steiner dominating set of minimum

cardinality. Therefore, γs(G) = 2.

Definition 1.6 A vertex v is an extreme vertex of a graph G if the subgraph induced by neighbors

of v is complete.

Definition 1.7([5]) A systematic visit of each vertex of a tree is called a tree traversal.

Definition 1.8 The bistar Bm,n is the graph obtained by joining the center(apex) vertices of

K1,m and K1,n by an edge.

Definition 1.9 Let G be a graph with V (G) = S1 ∪ S2 ∪ S3 ∪ · · ·St ∪ T where each Si is a set

of all vertices of the same degree with at least two elements and T = V (G) \
t⋃

i=1

Si. The degree

splitting of G denoted by DS(G) is obtained from G by adding vertices w1, w2, w3, · · · , wt and

joining wi to each vertex of Si for 1 6 i 6 t. Note that if V (G) =
t∪

i=1
Si then T = ∅.

Definition 1.10 For a graph G the splitting graph S′(G) of a graph G is obtained by adding a

new vertex v′ corresponding to each vertex v of G such that N(v) = N(v′).

Definition 1.11 A friendship graph Fn is a one point union of n copies of cycle C3.

§2. Main Results

Observation 2.1 γ(Bm,n) = m+ n.

Theorem 2.2 γs(S
′(Bm,n)) = m+ n+ 2.

Proof Let u, u1, u2, · · ·um, v, v1, v2, · · · vn bem+n+2 vertices ofBm,n and u′, u′1, u
′
2, · · ·u′m,

v′, v′1, v
′
2, · · · , v′n be the corresponding vertices which are added to obtain S′(Bm,n). Then

V (S′(Bm,n)) = {u, u1, u2, · · · , um, v1, v2, · · · vn, v, u
′, u′1, u

′
2, · · ·u′m, v′, v′1, v′2, · · · v′n}. Now u′1, u

′
2,

· · ·u′m, v′1, v′2, · · · v′n are extreme vertices as the subgraph induced by their neighbors is com-

plete, namely, the complete graph K1. Therefore, they must be in Steiner dominating set

W . If u′1, u
′
2, · · ·u′m, v′1, v′2, · · · v′n ∈ W then u′1, u

′
2, · · ·u′m, v′1, v′2, · · · v′n, u, v ∈ S(W ). Now

there some trees between u′ and v′ which include remaining vertices u1, u2, · · ·um, v1, v2, · · · vn.

So if u′, u′1, u
′
2, · · ·u′m, v′, v′1, v′2, · · · v′n ∈ W then there are four Steiner W -trees which in-

clude all the vertices of the graph. That is, if u′, u′1, u
′
2, · · ·u′m, v′, v′1, v′2, · · · v′n ∈ W then

u1, u2, · · ·um, v1, v2, · · · vn, u
′, u′1, u

′
2, · · ·u′m, v′, v′1, v′2, · · · v′n ∈ S(W ). Therefore,W = {u′, u′1, u′2,

· · ·u′m, v′, v′1, v′2, · · · v′n} becomes a Steiner set of minimum cardinality m+ n+ 2 and it is also

a dominating set. Hence

γs(S
′(Bm,n)) = m+ n+ 2. 2

Theorem 2.3 γs(DS(Bm,n)) = 2.

Proof Let u, u1, u2, · · ·um, v, v1, v2, · · · vn be m+ n+ 2 vertices of Bm,n and x1, x2 be the
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corresponding vertices which are added in order to obtain DS(Bm,n). Then, V (DS(Bm,n)) =

{u, u1, u2, · · ·um, v, v1, v2, · · · vn, x1, x2}. Now if G is a connected graph of order n ≥ 2 then

2 ≤ S(G) ≤ n. Without loss of generality let x1, x2 ∈ W then there are four Steiner W -tree

traversal between x1 and x2 which together include all the vertices of DS(Bm,n). Therefore,

W = {x1, x2} becomes a Steiner set of minimum cardinality and it is also a dominating set.

Therefore, W = {x1, x2} becomes a Steiner dominating set of minimum cardinality. Hence

γs(DS(Bm,n)) = 2. 2
Lemma 2.4 S(DS(Pn)) = n− 5, n ≥ 7.

Proof Consider Pn with V (Pn) = {v1, v2, · · · vn} with partition V1 = {v2, v3, · · · vn−1}
and V2 = {v1, vn}. Now in order to obtain DS(Pn) from Pn we add x1 and x2 correspond-

ing to V1 and V2. Thus, V (DS(Pn)) = {x1, x2, v1, v2, · · · vn}. Let x1, v4 ∈ W then there

are some Steiner W -trees which include the vertices x1, v1, v2, v3, v4, x2. So, if x1, v4 ∈ W then

x1, v1, v2, v3, v4, x2 ∈ S(W ). Let x1, v4, vn−3 ∈ W then x1, v1, v2, v3, v4, x2, vn−3, vn−2, vn−1, vn ∈
S(W ). Then, there does not exist tree traversal containing x1, v4, vn−3 which includes v5, v6, · · · ,
vn−4. The vertices v5, v6, · · · , vn−4 must be included in W to obtain Steiner tree of minimum

size which include v5, v6, · · · , vn−4. Therefore, if x1, v4, v5, · · · vn−4, vn−3 ∈ W . Then there are

following four Steiner W - trees as listed below:

(1) x1v1v2v3 · · · vn−4vn−3,

(2) x1v1v2x2v4v5v6 · · · vn−3,

(3) x1vnvn−1vn−2vn−3 · · · v5v4,
(4) x1vnvn−1x2vn−2vn−3vn−4 · · · v5, v4,

which include all the vertices of the graph. Thus W = {x1, v4, v5, · · · vn−4, vn−3} becomes a

Steiner set of minimum size which include n− 6 vertices of Pn and a vertex x1. Hence

S(DS(Pn)) = n− 5. 2
Theorem 2.5 γs(DS(Pn)) = n− 3, n ≥ 7.

Proof From the Theorem 2.4 W = {x1, v4, v5, · · · vn−4, vn−3} is a Steiner set of mini-

mum cardinality. But it is not a dominating set as v2 and vn−1 are not dominated by any

of the vertices. Therefore, these two vertices must be in Steiner dominating set W . So,

{x1, v2, v4, v5, · · · vn−4, vn−3, vn−1} is a Steiner dominating set of minimum cardinality. Hence

γs(DS(Pn)) = n− 3. 2
Proposition 2.6([7]) γs(Km,n) = min{m,n} if m,n ≥ 2.

Theorem 2.7 γs(S
′(Km,n)) = m+ n.

Proof Let v1, v2, · · · vm, u1, u2, · · · , un be m+n vertices of Km,n. Now v′1, v
′
2, · · · v′m, u′1, u′2,

· · · , u′n be the corresponding vertices which are added in order to obtain S′(Km,n) with parti-
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tions W = {v′1, v′2, · · · v′m, u′1, u′2, · · ·u′n} and X = {v1, v2, · · · vm, u1, u2, · · ·un}. It is very clear

that W is a Steiner set as there are max{m,n} number of Steiner trees which include all the

vertices of the graph. Here W dominates all the vertices of the graph. Therefore, it is also a

dominating set. Thus, W is a Steiner dominating set. We claim that W is a Steiner dominating

set with minimum cardinality. If possible let U be any Steiner set such that |U | < |W | and

U ⊂ W . Then, there exists a vertex v′i ∈ W such that v′i /∈ U . But as the vertices of W are

mutually non adjacent, the Steiner U -tree containing v′j and v′k (j 6= i, k 6= i, 1 ≤ j, k ≤ n) will

not contain v′i. Therefore, U is not Steiner set. If U ⊂ X then some vertices of W and some

vertices of X which are not included in U are not in any Steiner U - trees. Therefore, U is not

Steiner set. Let U ⊂ W ∪ X such that U contain at least one vertex from each of W and X

then some vertices of W and X do not lie on any Steiner U -tree. Thus, U is not a Steiner set.

So, W is a Steiner dominating set of minimum cardinality m+ n. Hence

γs(S
′(Km,n)) = m+ n. 2

Proposition 2.8([4]) Let G be a connected graph of order p ≥ 2. Then γs(G) = 2 if and only

if there exists a Steiner dominating set S = {u, v} of G such that d(u, v) ≤ 3.

Theorem 2.9 γs(DS(Km,n)) = 2, m 6= n, m,n ≥ 2.

Proof Let v1, v2, · · · vm, u1, u2, · · ·un be m + n vertices of Km,n with partitions W =

{v1, v2, · · · vm} and X = {u1, u2, · · ·un}. In order to construct DS(Km,n) we add w1 and w2.

If we consider w1 and w2 in Steiner set W then S(W ) = V (G) and W is also a dominating set.

Therefore W becomes a Steiner dominating set and d(w1, w2) = 3. Hence by Proposition 2.8,

γs(DS(Km,n)) = 2. 2
Proposition 2.10([7]) Each extreme vertex of a connected graph G belongs to every Steiner

dominating set of G.

Theorem 2.11 γs(S
′(Fn)) = 2n+ 1.

Proof Let v0, v1, v2, . . . vn, vn+1, · · · v2n be the 2n+ 1 vertices of Fn where v0 is the apex

vertex. Now v′0, v
′
1, v

′
2, . . . v

′
n, v

′
n+1, · · · v′2n be the vertices which are added to obtain S′(Fn). The

vertices v′0, v
′
1, v

′
2, . . . v

′
n, v

′
n+1, · · · v′2n must be in Steiner dominating set W as they are extreme

vertices. But W = {v′0, v′1, v′2, . . . v′n, v′n+1, · · · v′2n} is not a Steiner dominating set as it is neither

a Steiner set nor a dominating set. Therefore, we must include some more vertices to obtain a

Steiner dominating set. Let v0 ∈W then S(W ) = V (S′(Fn)) and

W = {v′0, v′1, v′2, · · · v′n, v′n+1, · · · v′2n}

is a dominating set of minimum cardinality. Hence

γs(S
′(Fn)) = 2n+ 1. 2
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§3. Concluding Remarks

The Steiner domination in graphs is one of the interesting domination models. It is always

challenging to investigate Steiner domination number of a graph. We have obtained Steiner

domination number of larger graphs which are obtained by means of various graph operations.
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Abstract: Coloring the vertices of a graph G according to certain conditions can be con-

sidered as a random experiment and a discrete random variable X can be defined as the

number of vertices having a particular color in the proper coloring of G. In this paper, we

extend the concepts of mean and variance, two important statistical measures, to the theory

of graph coloring and determine the values of these parameters for a number of standard

graphs.
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§1. Introduction

Investigations on graph coloring problems have attracted wide interest among researchers since

its introduction in the second half of the nineteenth century. The vertex coloring or simply a

coloring of a graph is an assignment of colors or labels to the vertices of a graph subject to

certain conditions. For example, Smarandachely Λ-coloring of graph G by colors in C such that

ϕ(u) 6= ϕ(v) if u and v are elements of a subgraph isomorphic to graph Λ in G. In a proper

coloring of a graph, its vertices are colored in such a way that no two adjacent vertices in that

graph have the same color.

Different types of graph colorings have been introduced during several subsequent studies.

Many practical and real life situations paved paths to different graph coloring problems.

Several researchers have also introduced various parameters related to different types of

graph coloring and studied their properties extensively. The first and the most important

parameter in the theory of graph coloring is the chromatic number of graphs which is defined

as the minimum number of colors required in a proper coloring of the given graph. The concept

of chromatic number has been extended to almost all types of graph colorings.

The notion of chromatic sums of graphs related to various graph colorings have been

1Received February 27, 2018, Accepted August 16, 2018.
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introduced and studied extensively. Some of these studies can be found in [9, 10, 11]. The

notion of a general coloring sum of a graph has been explained in [9] as follows:

Let C = {c1, c2, c3, · · · , ck} be a particular type of proper k-coloring of a given graph

G and θ(ci) denotes the number of times a particular color ci is assigned to vertices of G.

Then, the coloring sum of a coloring C of a given graph G, denoted by ωC(G), is defined to be

ωC(G) =
k∑

i=1

i θ(ci).

Motivated by the studies on different types of graph coloring problems, corresponding

parameters and their applications, we discuss the concepts of mean and variance, two important

statistical parameters, to the theory of graph coloring in this paper.

For all terms and definitions, not defined specifically in this paper, we refer to [2, 3, 4,

6, 15, 16] and for the terminology of graph coloring, we refer to [5, 7, 8]. For the concepts in

Statistics, please see [12, 13]. Unless mentioned otherwise, all graphs considered in this paper

are simple, finite, connected and non-trivial.

§2. Coloring Mean and Variance of Graphs

We can identify the coloring of the vertices of a given graph G with a random experiment. Let

C = {c1, c2, c3, · · · , ck} be a proper k-coloring of G and let X be the random variable (r.v)

which denotes the color of an arbitrarily chosen vertex in G. Since the sum of all weights of

colors of G is the order of G, the real valued function f(i) defined by

f(i) =





θ(ci)
|V (G)| ; i = 1, 2, 3, · · · , k
0; elsewhere

is the probability mass function (p.m.f )of the r.v X . If the context is clear, we can also say

that f(i) is the p.m.f of the graph G with respect to the given coloring C.

Hence, analogous to the definitions of the mean and variance of random variables, the mean

and variance of a graph G, with respect to a general coloring of G can be defined as follows.

Definition 2.1 Let C = {c1, c2, c3, · · · , ck} be a certain type of proper k-coloring of a given

graph G and θ(ci) denotes the number of times a particular color ci is assigned to vertices of

G. Then, the coloring mean of a coloring C of a given graph G, denoted by µC(G), is defined

to be

µC(G) =

k∑
i=1

i θ(ci)

k∑
i=1

θ(ci)

.

Definition 2.2 For a positive integer r, the r-th moment of the coloring C is denoted by µCr(G)
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and is defined as

µCr(G) =

k∑
i=1

ir θ(ci)

k∑
i=1

θ(ci)

.

Definition 2.3 The coloring variance of a coloring C of a given graph G, denoted by σ2
C(G),

is defined to be

σ2
C(G =

k∑
i=1

i2 θ(ci)

k∑
i=1

θ(ci)

−




k∑
i=1

i2 θ(ci)

k∑
i=1

θ(ci)




2

.

2.1 χ-Chromatic Mean and Variance of Graphs

Coloring mean and variance corresponding to a particular type of minimal proper coloring of

the vertices of G are defined as follows.

Definition 2.4 A coloring mean of a graph G, with respect to a proper coloring C is said to be

a χ-chromatic mean of G, if C is the minimum proper coloring of G and the coloring sum ωG

is also minimum. The χ-chromatic mean of a graph G is denoted by µχ.

Definition 2.5 The χ-chromatic variance of G, denoted by σ2
χ(G), is a coloring variance of G

with respect to a minimal proper coloring C of G which yields the minimum coloring sum.

Let us now determine the χ-chromatic mean and variance of certain standard graph classes.

The following result discusses the χ-chromatic mean and variance of a complete graph Kn.

Proposition 2.6 The χ-chromatic mean of a complete graph Kn is n+1
2 and its χ-chromatic

variance is n2−1
12 .

Proof Note that all vertices of a complete graph Kn must have different colors as they are

all adjacent to each other. That is, θ(ci) = 1 for color ci, 1 6 i 6 n. Therefore,

µχ(Kn) =
1

n

n∑

i=1

i =
n+ 1

2

and

σ2
χ(Kn) =

1

n

n∑

i=1

i2 −
(
n+ 1

2

)2

=
(n+ 1)(2n+ 1)

6
− (n+ 1)2

2
=
n2 − 1

12
. 2

The following theorem gives the probability distribution of a proper coloring of a complete

graph.

Theorem 2.7 Any proper coloring of a complete graph Kn has the discrete uniform distribution

on {1, 2, · · · , k}(DU(k)).

Proof Let X be the r.v representing the number of colors in a proper k-coloring of a
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complete graph Kn. For any proper k-coloring C of the complete graph Kn, θ(ci) = 1 and

k = n. Hence, the corresponding p.m.f is

f(i) =





1
n ; n = 1, 2, 3, . . . , n,

0; elsewhere

which is that of the discrete uniform distribution on {1, 2, · · · , k}. Hence, X ∼ DU(k). 2
The following result determines the χ-chromatic mean and variance for a path Pn.

Proposition 2.8 The χ-chromatic mean of a path Pn is

µχ(Pn) =





3
2 ; if n is even,

3n−1
2n ; if n is odd,

and the χ-chromatic variance of Pn is

σ2
χ(Pn) =






1
4 ; if n is even,

n2−1
4n2 ; if n is odd.

Proof Consider a path Pn on n vertices. Being a bipartite graph, the vertices of Pn can

be colored using two colors, say c1 and c2. Then, we have the following cases.

(i) If n is even, exactly n
2 vertices of Pn have color c1 and n

2 vertices have color c2. Then,

the p.m.f of the corresponding r.v X is

f(i) =






1
2 ; i = 1, 2,

0; elsewhere.

Hence, the χ-chromatic mean is

µχ(Pn) =

2∑

i=1

i
1

2
=

3

2

and the χ-chromatic variance is

σ2
χ(Pn) =

2∑

i=1

i2
1

2
− (µχ)2 =

5

2
−
(

3

2

)2

=
1

4
.

(ii) If n is odd, then the p.m.f of the corresponding r.v X is

f(i) =





n+1
2n ; i = 1,

n−1
2n ; i = 2,

0; elsewhere.
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Then, the χ-chromatic mean of Pn is

µχ(Pn) = 1 · n+ 1

2n
+ 2 · n− 1

2n
=

3n− 1

2n

and its χ-chromatic variance is

σ2
χ(Pn) = 12 · n+ 1

2n
+ 22 · n− 1

2n
−
(

3n− 1

2n

)2

=
n2 − 1

4n2
. 2

The following result determines the values of these parameters for a cycle Cn.

Proposition 2.9 The χ-chromatic mean of a cycle Cn is

µχ(Cn) =





3
2 ; if n is even,

3n+3
2n ; if n is odd,

and the χ-chromatic variance of Cn is

σ2
χ(Cn) =






1
4 ; if n is even,

n2−8n+9
4n2 ; if n is odd.

Proof Consider a cycle Cn on n vertices. Then, we have the following cases.

(i) If n is even, then Cn is bipartite and is 2-colorable. Then, exactly n
2 vertices of Cn also

have color c1 and c2 each. Then, as explained in the first part of previous theorem, we have

µχ(Cn) = 3
2 and σ2

χ(Cn) = 1
4 .

(ii) If n is odd, then Cn is 3-colorable. Let C = {c1, c2, c3} be the minimal proper coloring

of Cn. Then, the p.m.f of the r.v X is given by

f(i) =





n−1
2n ; if i = 1, 2,

1
n ; if i = 3,

0; elsewhere.

Then, the χ-chromatic mean of G is

µχ(Cn) = 1 · n− 1

2n
+ 2 · n− 1

2n
+ 3 · 1

n
=

3n+ 3

2n

and the χ-chromatic variance of Cn is

σ2
χ(Cn) =

(
12 · n− 1

2n
+ 22 · n− 1

2n
+ 32 · 1

n

)
−
(

3n+ 3

2n

)2

=
n2 − 8n+ 9

4n2
. 2

In the following theorem, we determine the χ-chromatic mean and variance of a wheel

graph Wn = K1 + Cn−1.
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Proposition 2.10 The χ-chromatic mean of a wheel graph Wn is

µχ(Wn) =






3n+3
2n ; if n is odd,

3n+1
2n+2 ; if n is even,

and the χ-chromatic variance of Wn is

σ2
χ(Wn) =





n2+8n−9
4n2 ; if n is odd,

n2+32n−64
4n2 ; if n is even.

Proof Note that the wheel graph Wn is 3-colorable, when n is odd and 4-colorable when

is even. Then, we have the following cases.

(i) First, assume that n is an odd integer. Then, the outer cycle Cn−1 of Wn is an even

cycle. Hence, n−1
2 vertices of Cn−1 have color c1,

n−1
2 vertices of Cn−1 have color c2 and the

central vertex of Wn has color c3. Hence the corresponding p.m.f for Wn is given by

f(i) =






n−1
2n ; if i = 1, 2,

1
n ; if i = 3,

0; elsewhere.

Hence, the corresponding χ-chromatic mean is

µχ(Wn) = 1 · n− 1

2n
+ 2 · n− 1

2n
+ 3 · 1

n
=

3n+ 3

2n
.

Now, the χ-chromatic variance is

σ2
χ(Wn) = (12+22)·n− 1

2n
+32 · 1

n
−(µχ(Wn))

2
=

(
5(n− 1)

2n
+

9

n

)
−
(

3n+ 3

2n

)2

=
n2 + 8n− 9

4n2
.

(ii) Next, assume that n is an even integer. Then, the outer cycle Cn−1 of Wn is an odd

cycle. Hence, n−2
2 vertices of the outer cycle Cn−1 have color c1,

n−2
2 vertices of Cn−1 have

color c2 and one vertex of Cn−1 has color c3 and the central vertex of Wn has the c4. Hence,

the p.m.f for Wn is given by

f(i) =






n−2
2n ; if i = 1, 2,

1
n ; if i = 3, 4

0; elsewhere.

Hence, the corresponding χ-chromatic mean is

µχ(Wn) = 1 · n− 2

2n
+ 2 · n− 2

2n
+ 3 · 1

n
+ 4 · 1

n
=

3n+ 8

2n
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and the χ-chromatic variance is

σ2
χ(Wn) = (12 + 22) · n− 2

2n
+ (32 + 42) · 1

n
− (µχ(Wn))

2

=

(
5(n− 2)

2n
+

32 + 42

n

)
−
(

3n+ 8

2n

)2

=
n2 + 32n− 64

4n2
. 2

Remark 2.1 From the above discussion, we observe that the minimum proper coloring of

bipartite graph follows a two-point distribution. In general, for a bipartite graph G(V1, V2, E),

with |V1| = m1 > |V2| = m2,m1 +m2 = n, the p.m.f can be defined as

f(i) =






m1

n ; if i = 1,

m2

n ; if i = 2,

0; elsewhere.

Hence, we have µχ(G) = m1+2m2

n = 1 + m2

n and σ2
χ(G) = m1+4m2

n −
(
1 + m2

n

)2
=

1
n2 [(n− 1)m1 + 2(2n− 1)m2].

Remark 2.2 If G is a regular bipartite graph on n vertices, then there will be n
2 vertices in

each partition and hence with respect to a minimal proper coloring, exactly n
2 vertices having

the colors c1 and c2 each. Hence the p.m.f is

f(i) =





1
2 ; i = 1, 2,

0; elsewhere.

Hence, µχ(G) = 3
2 and σ2

χ(G) = 1
4 as mentioned in Proposition 2.9.

2.2 χ+-Chromatic Mean and Variance of Graphs

Coloring mean and variance corresponding to another type of a minimal proper coloring of the

vertices of G are defined as follows.

Definition 2.11 A coloring mean of a graph G, with respect to a proper coloring C is said to be

a χ+-chromatic mean of G, if C is a minimum proper coloring of G such that the corresponding

coloring sum ωG is maximum. The χ+-chromatic number of a graph G is denoted by µχ+(G).

Definition 2.12 The χ+-chromatic variance of G, denoted by σ2
χ+(G), is a coloring variance

of G with respect to a minimal proper coloring C of G such that the corresponding coloring sum

is maximum.

Invoking the definitions of two types of chromatic means and variances mentioned above,

we can infer the following.

Remark 2.3 For any arbitrary minimal proper coloring C of a given graph G, we have µχ(G) 6

µC(G) 6 µχ+(G) and σ2
χ(G) 6 σ2

C(G) 6 σ2
χ+(G).
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Remark 2.4 Since all vertices of a complete graph have different colors, the χ-chromatic mean

and the χ+-chromatic mean are equal and the χ-chromatic variance and the χ+-chromatic

variance are equal.

Let us now discuss the χ+-chromatic mean and variance of the graph classes mentioned in

the previous section.

Proposition 2.13 The χ+-chromatic mean of a path Pn is

µχ+(Pn) =






3
2 ; if n is even,

3n−1
2n ; if n is odd,

and the χ+-chromatic variance of Pn is

σ2
χ+(Pn) =






1
4 ; if n is even,

n2−1
4n2 ; if n is odd.

Proof As in Proposition 2.8, we consider the following cases.

(i) If n is even, as mentioned in Proposition 2.8, exactly n
2 vertices of Pn have color c1 and

n
2 vertices have color c2. Then, the p.m.f of the corresponding r.v X is also as defined there.

Hence, the χ+-chromatic mean is µχ+(Pn) = 3
2 and the χ+-chromatic variance is σ2

χ+(Pn) = 1
4 .

(ii) If n is odd, χ+-coloring assigns color c1 to n−1
2n vertices and color c2 to the remaining

n+1
2n vertices. Then the p.m.f is

f(i) =






n−1
2n ; i = 1,

n+1
2n ; i = 2,

0; elsewhere.

Then, the χ+-chromatic mean of Pn is given by

µχ+(Pn) = 1 · n− 1

2n
+ 2 · n+ 1

2n
=

3n+ 1

2n

and its χ+-chromatic variance is given by

σ2
χ+(Pn) = 12 · n− 1

2n
+ 22 · n+ 1

2n
−
(

3n+ 1

2n

)2

=
n2 + 1

4n2
. 2

The following proposition discusses the χ+-chromatic mean and variance of a cycle on n

vertices.
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Proposition 2.14 The χ+-chromatic mean of a cycle Cn is

µχ+(Cn) =






3
2 ; if n is even,

5n−3
2n ; if n is odd,

and the χ+-chromatic variance of Pn is

σ2
χ+(Cn) =






1
4 ; if n is even,

n2+8n−9
4n2 ; if n is odd.

Proof Here, we have to consider the following two cases.

(i) If n is even, as mentioned in Proposition 2.13, exactly n
2 vertices of Cn have color c1

and color c2 each. Then, exactly as explained there, we have, µχ+(Cn) = 3
2 and σ2

χ+(Cn) = 1
4 .

(ii) If n is odd, χ+-coloring assigns color c1 to one vertex, color c2 to n−1
2n vertices and

color c3 to the remaining n−1
2n vertices of the cycle Cn. Then the p.m.f is

f(i) =






1; i = 1,

n−1
2n ; i = 2, 3

0; elsewhere.

Then, the χ+-chromatic mean of Cn is

µχ+(Cn) = 1 · 1

2n
+ 2 · n− 1

2n
+ 3 · n− 1

2n
=

5n− 3

2n

and its χ+-chromatic variance is

σ2
χ+(Cn) = 12 · 1

n
+ 22 · n+ 1

2n
+ 32 · n− 1

2n
−
(

5n− 3

2n

)2

=
n2 + 8n− 9

4n2
. 2

The following proposition discusses the χ+-chromatic mean and variance of a wheel graph

on n vertices.

Proposition 2.15 The χ+-chromatic mean of a wheel graph Wn is

µχ+(Wn) =





5n−3
2n ; if n is odd,

3n+1
2n+2 ; if n is even,

and the χ+-chromatic variance of Wn is

σ2
χ+(Wn) =





n2+30n−31
4n2 ; if n is odd,

n2+32n−64
4n2 ; if n is even.
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Proof As mentioned in Proposition 1.10, the wheel graph Wn is 3-colorable, when n is odd

and 4-colorable when is even. Then, we have to consider the following cases.

(i) First, assume that n is an odd integer. Then, the outer cycle Cn−1 of Wn is an even

cycle. Hence, we can assign color c1 to the central vertex of Wn, color c2 to n−1
2 vertices of

Cn−1 and color c3 to the remaining n−1
2 vertices of Cn−1. Hence the corresponding p.m.f for

Wn is given by

f(i) =






1
n ; if i = 1,

n−1
2n ; if i = 2, 3,

0; elsewhere.

Hence, the χ+-chromatic mean is

µχ+(Wn) = 1 · 1

n
+ 2 · n− 1

2n
+ 3 · n− 1

2n
=

5n− 3

2n

and the χ+-chromatic variance is

σ2
χ+(Wn) = 12 · 1

n
+ (22 + 32) · n− 1

2n
− (µchi(Wn))

2

=

(
13(n− 1)

2n
+

1

n

)
−
(

5n− 3

2n

)2

=
n2 + 30n− 31

4n2
.

(ii) Let n be an even integer. Then, the outer cycle Cn−1 of Wn is an odd cycle. Hence, we

can assign color c1 to the central vertex of Wn, color c2 to one vertex of the outer cycle Cn−1,

color c3 to n−2
2 vertices of Cn−1 and color c4 to the remaining n−2

2 vertices of Cn−1. Therefore,

the corresponding p.m.f for Wn is given by

f(i) =






1
n ; if i = 1, 2

n−2
2n ; if i = 3, 4,

0; elsewhere.

Hence, the corresponding χ+-chromatic mean is

µχ+(Wn) = 1 · 1

n
+ 2 · 1

n
+ 3 · n− 2

2n
+ 4 · n− 2

2n
=

7n− 8

2n

and the χ+-chromatic variance is

σ2
χ+(Wn) = (12 + 22) · 1

n
+ (32 + 42) · n− 2

2n
− (µχ(Wn))

2

=

(
5 · 1

n
+ 25 · n− 2

2n

)
−
(

7n− 8

2n

)2

=
n2 + 32n− 64

4n2
. 2

2.3 Some Interpretations

A block graph or clique tree G is an undirected graph in which every biconnected component

(block) is a clique. By Theorem 2.7, minimum proper coloring of every component of G follows
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uniform distribution. Hence, we have

Theorem 2.16 The probability distribution of a block graph G is mixture of discrete uniform

distributions.

An n-partite graph is a graph whose set of vertices can be partitioned in to n subsets such

that no two vertices in the same partitions are adjacent. Then, we have the following result.

Theorem 2.17 Let G be a regular k-partite graph on vertices. Then, any minimal proper

coloring of G follows uniform distribution (in each partition).

proof Any minimal proper coloring of a k-partite graph contains k-colors. Let G be an

r-regular k-partite graph. Then, rk = n. Then, the p.m.f of G is

f(i) =





1
k ; i = 1, 2, 3, . . . , k,

0; elsewhere.

which is that of the DU(k) distribution. 2
Corollary 2.18 Let G be a k-partite graph. Then, the χ-chromatic mean (and χ+-chromatic

mean) of G is k+1
2 and the χ-chromatic variance (and χ+-chromatic variance) of G is k2−1

12 .

Proof The proof follows immediately from the fact that the minimal proper coloring of a

k-partite graph follows uniform distribution. 2
Certain areas where these notions can be made use of are: nodes in communication and

traffic networks.

§3. Scope for Further Studies

In this paper, we have extended the notions of mean and variance to the theory of graph coloring

and determined their values for certain graphs and graph classes. More problems in this area

are still open.

The χ-chromatic mean and variance of many other graph classes are yet to be studied.

Determining the sum, mean and variance corresponding to the coloring of certain generalized

graphs like generalized Petersen graphs, fullerence graphs etc. are some of the promising open

problems. Studies on the sum, mean and variance corresponding to different types of edge

colorings, map colorings, total colorings etc. of graphs also offer much for future studies.

We can associate many other parameters to graph coloring and other notions like covering,

matching etc. All these facts highlight a wide scope for future studies in this area.
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§1. Introduction

There are several molecular structural graph descriptors such as Weiner Index, Zagreb Index,

Hosoya Index etc which strongly correlate studies in graph theory with chemistry. Most of these

indices are based on the distance between vertices in a graph.Motivated by harmonic mean we

have harmonic index of a graph defined by Fajtlowicz [5]. For more work one can refer [6].

Further motivated by the same, Ramane and Yalnaik introduced the harmonic status index of

graphs [4].

Definition 1.1([1]) The status of a vertex u ∈ V (G) is defined as the sum of its distance from

every other vertex in V (G) and is denoted by σ(u). That is

σ(u) =
∑

u∈V (G)

d(u, v).

Definition 1.2 The first status connectivity index S1(G)and second status connectivity index

S2(G) of a connected graph G are defined respectively as

S1(G) =
∑

uv∈E(G)

[σ(u) + σ(v)] and S2(G) =
∑

uv∈E(G)

[σ(u)σ(v)].

1Received January 13, 2018, Accepted August 18, 2018.
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Similarly the first and second status connectivity coindices of a connected graph G are

defined as

S1(G) =
∑

uv/∈E(G)

[σ(u) + σ(v)] and S2(G) =
∑

uv/∈E(G)

[σ(u)σ(v)].

Definition 1.3([5]) The Harmonic index of a graph G is defined as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

The harmonic status index of a connected graph G as ([4])

HS(G) =
∑

uv∈E(G)

2

σ(u) + σ(v)
.

Similarly the harmonic status coindex of a connected graph G is defined as

HS(G) =
∑

uv/∈E(G)

2

σ(u) + σ(v)
.

§2. Status Connectivity Indices and Coindices of Some Graphs

In what follows, we consider a class of graphs constructed by first joining a path of length

l(≥ 1) to each vertex of G and then attaching k pendent vertices to each end vertex of the

path attached. Such a graph can be called l level thorn graph denoted by Gl(+k). The usual

thorny graph G+k can be regarded as 0 level thorn graph. If l = 1 we get first level thorn graph

G1(+k).

Example 2.1 A graph G and it’s first level thorn graph G∧1(+3) are as shown below.

Figure 1

First we evaluate the status connectivity index and coindex of 0 level thorn graphs denoted

by G+k.To obtain the harmonic status connectivity index and coindex of this graph we need
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to calculate status of each vertex and number of pairs of adjacent vertices and pairs of non

adjacent vertices in G+k.If G is a r regular graph then,with respect to degree there are two

types of vertices in G+k,nk pendent vertices (external),n vertices of degree ′r+nk′ we call them

as internal.

Theorem 2.1 The first and second status connectivity index of thorn graph K+k
n are given by

S1(K
+k
n ) = n(n− 1)(2nk + n− k − 1) + nk(5nk + 3n− 2k − 4)

S2(K
+k
n ) = (nk)C2 × (3nk + 2n− k − 3)2 + nC2 × (3nk + 2n− k − 3)(2nk + n− k − 1)

Proof The graph K+k
n is of diameter3and there are two types of vertices in it. A set of ′nk′

pendent vertices and n vertices of degree ′n + 1′. Let ui, i = 1, 2, · · · , nk denote the pendent

vertices and vi,i = 1, 2, · · · , n denote the vertices of degree ′n+ 1′. Then the status of pendent

vertex is

σ(ui) = 1 + 2(k − 1) + 2(n− 1) + 3k(n− 1) = 3nk + 2nk − 3

and the status of the internal vertex vi is

σ(vi) = 1(n− 1) + k + 2k(n− 1) = (2nk + n− k − 1).

Now in K+k
n there are n(n−1)

2 adjacent pairs internal vertices and nk pairs of vertices

forming edges formed by one internal and one external vertex. Hence by definition the status

connectivity index of K+k
n is

S1(K
+k
n ) =

n(n− 1)2(2nk + n− k − 1)

2
+ nk(3nk + 2n− k − 3 + 2nk + n− k − 1)

= n(n− 1)(2nk + n− k − 1) + nk(5nk + 3n− 2k − 4).

Also in K+k
n there are (nk)C2 pairs of nonadjacent pendent vertices and nk(n − 1) pairs of

nonadjacent pairs of vertices formed by one pendant and one internal vertex. So that status

connectivity coindex of K+k
n is

S2(K
+k
n ) = (nk)C2 × (3nk + 2n− k − 3)2 + nC2 × (3nk + 2n− k − 3)(2nk + n− k − 1). 2

Theorem 2.2 The harmonic status index and coindex of thorn graph K+k
n are given by

HS(K+k
n ) =

n(n− 1)

2

1

(2nk + n− k − 1)
+ nk

2

(5nk + 3n− 2k − 4)
,

HS(K+k
n ) = (nk)C2

1

(3nk + 2n− 2k − 4)
+ nk(n− 1)

2

(5nk + 3n− k − 3)
.

Proof The graph K+k
n is of diameter 4 and there are two types of vertices in it. A set

of ′nk′ pendent vertices and n vertices of degree ′n + 1′. Let ui, i = 1, 2, · · · , nk denote the
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pendent vertices and vi, i = 1, 2, · · · , n denote the vertices of degree ′n+ 1′. Then the status of

pendent vertex is

σ(ui) = 1 + 2(k − 1) + 2(n− 1) + 3k(n− 1) = 3nk + 2n− k − 3

and the status of the internal vertex vi is

σ(ui) = 1(n− 1) + k + 2k(n− 1) = 2nk + n− k − 1.

Now in K+k
n there are n(n−1)

2 adjacent pairs internal vertices and nk pairs of vertices forming

edges formed by one internal and one external vertex. Hence by definition the harmonic status

index of K+k
n is

HS(K+k
n ) =

n(n− 1)

2

2

2(2nk + n− k − 1)
+ nk

2

(3nk + 2n− k − 3 + 2nk + n− k − 1)

=
n(n− 1)

2

1

(2nk + n− k − 1)
+ nk

2

(5nk + 3n− 2k − 4)
.

Also in K+k
n there are (nk)C2 pairs of nonadjacent pendent vertices and nk(n− 1) pairs of

nonadjacent pairs of vertices formed by one pendant and one internal vertex. So that harmonic

status coindex of K+k
n is

HS(K+k
n ) = (nk)C2

2

2(3nk + 2n − 2k − 4)
+ nk(n − 1)

2

(3nk + 2n − k − 3 + 2nk + n − k − 1)

= nkC2
1

(3nk + 2n − 2k − 4)
+ nk(n − 1)

2

(5nk + 3n − k − 3)
. 2

Now, we discuss the status connectivity indices and the coindices of regular graphs with

diameter 2.

Theorem 2.3 If G is ‘r′ regular graph of diameter 2 then the first and second status connectivity

index of G+k are given by

S1(G
+k) = nr(2n+ 2kr + k − r − 2) + nk(5n+ 5kr + 3k − 3r − 6),

S2(G
+k) =

nr

2
(2n+ 2kr + k − r − 2)2 + nk(3n+ 3kr + 2k − r − 2).

Proof The proof follows by direct counting. 2
Theorem 2.4 If G is ‘r′ regular graph of diameter 2 then the first and second status connectivity

co index of G+k are given by

S1(G
+k) =

nk(nk − 1)

2
2(3n+ 3kr + 2k − r − 4) + nk(n− 1)(5n+ 5kr + 3k − 3r − 6)

+(nC2 −
nr

2
)(4n+ 4kr + 2k − 2r − 4)
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= nk(nk − 1)(3n+ 3kr + 2k − r − 4) + nk(n− 1)(5n+ 5kr + 3k − 3r − 6)

+(nC2 −
nr

2
)(4n+ 4kr + 2k − 2r − 4),

S2(G
+k) =

nk(nk − 1)

2
(3n+ 3kr + 2k − r − 4)2

+nk(n− 1)(3n+ 3kr + 2k − 2r − 4)(2n+ 2kr + k − r − 2)

+(nC2 −
nr

2
)(2n+ 2kr + k − r − 2)2.

Proof The proof follows by direct counting. 2
Theorem 2.5 If G is ‘r′ regular graph of diameter 2 then the harmonic status index of G+k is

HS(G+k) =
nr

2

1

(2n+ 2kr + k − r − 2)
+ nk

2

(5n+ 5kr + 3k − 2r − 6)
.

Proof First, we observe that if G has diameter 2 then G+k has diameter 4. Hence from

the structure we have the status of each internal vertex vi as

σ(vi) = 1.(k + r) + 2kr + 2.(n− 1 − r) = 2n+ 2kr + k − r − 2.

Also the status of each pendant vertex ui as

σ(ui) = 1 + 2.r + 2(k − 1) + 3(n− 1 − r) = 3n+ 3rk + 2k − r − 4.

There are nr
2 internal edges giving harmonic status contribution

nr

2

2

2(2n+ 2kr + k − r − 2)
=
nr

2

1

(2n+ 2kr + k − r − 2)
.

Similarly the pendent ′nk′ vertices adjacent to ‘n′ internal vertices contribute,

nk
2

(5n+ 5kr + 3k − 2r − 6)
.

Hence the harmonic status index of G+k is

HS(G+k) =
nr

2

1

(2n+ 2kr + k − r − 2)
+ nk

2

(5n+ 5kr + 3k − 2r − 6)
. 2

Theorem 2.6 If G is ‘r′ regular graph of diameter 2 then the harmonic status coindex of G+k

is

HS(G+k) = (nkC2)
1

(3n+ 3kr + 2k − r − 4)
+nk(n−1)

2

(5n+ 5rk + 3k − 2r − 6)
+(nC2−

nr

2
).

Proof We note that there are n(k + 1)C2 − (nr
2 + nk) non adjacent pairs of vertices in
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G+k. There are (nk)C2 pendent nonadjacent pendent vertices, nk(n− 1) pairs of nonadjacent

vertices combining one pendant and one internal vertex and finally (nC2 − nr
2 ) nonadjacent

internal vertices. Taking contribution from each of them we have status connectivity coindex

of G+k as

HS(G+k) = (nk)C2
2

6n+ 6kr + 4k − 4r − 8
+ nk(n− 1)

2

5n+ 5rk + 3k − 2r − 6

+
(
nC2 −

nr

2

) 2

2(2n+ 2kr + k − r − 2)

= (nk)C2
1

(3n+ 3kr + 2k − 2r − 4)
+ nk(n− 1)

2

(5n+ 5rk + 3k − 2r − 6)

+(nC2 −
nr

2
)

1

(2n+ 2kr + k − r − 2)
. 2

§3. Status Connectivity Indices and Coindices of First Level Thorn Graphs

Now we discuss the harmonic status index and coindex of first level thorn graphs.We need to

calculate status of each vertex and number of pairs of adjacent vertices and pairs of non adjacent

vertices in G∧1(+k).With respect to degree there are three types of vertices in G∧1(+k).nk

pendent vertices,n vertices of degree ′k + 1′ we call them as internal and lastly ′n′ vertices

having degree sequence added by 1.We call them external, in particular if G is ‘r′ regular their

degrees will become ‘r + 1′.

Theorem 3.1 The first and second status connectivity index and coindex of first level thorn

graph of a ‘r′ regular graph of order ‘n′ and diameter 2 are given by

S1(G
1(+k)) =

nr

2
× (5n+ 4nk − rk − 2r − 2k − 4) + n(12n+ 9nk − 2rk − 4r − 4k − 10)

+2n2 × k(7n+ 5nk − rk − 2r − 3k − 6),

S2(G
1(+k)) =

nr

2
× (5n+ 4nk − rk − 2r − 2k − 4)2

+n(5n+ 4nk − rk − 2r − 2k − 4)(7n+ 5nk − 2r − 4k − rk − 6),

S1(G1(+k)) = (nk)C2 × 2(9n+ 6nk − rk − 4k − 2r − 8)

+(nC2 −
nr

2
) × 2(5n+ 4nk − rk − 2r − 2)

+2(nC2)(7n+ 5nk − rk − 2r − 3k − 6) + n2k(7n+ 5nk − rk − 2r − 3k − 6)

+2n(n− 1)(12n+ 9nk − 2rk − 4r − 6k − 10)

S2(G1(+k)) = (nk)C2 × (9n+ 6nk − rk − 4k − 2r − 8)2

+(nC2 −
nr

2
)(5n+ 4nk − rk − 2r − 2)2

+nC2(7n+ 5nk − rk − 2r − 3k − 6)2 + n2k(7n+ 5nk − rk − 2r − 3k − 6)2

+n(n− 1)(12n+ 9nk − 2rk − 4r − 6k − 10)2.

Proof The proof follows by direct counting. 2
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Theorem 3.2 If G is ‘r′ regular graph of diameter 2 then the harmonic status connectivity

index of G∧1(+k) is

HS(G∧1(+k)) =
nr

2

1

(5n+ 4nk − rk − 2r − 2k − 4)

+n
2

(5n+ 4nk − rk − 2r − 2k − 4 + 7n+ 5nk − 2r − 4k − rk − 6)

+n2k
2

(5n+ 4nk − rk − 2r − 2k − 4 + 9n+ 6nk − rk − 4k − 2r − 8)
.

Proof First, we observe that if G has diameter2 then G∧1(+k) has diameter 6. Hence from

the structure we have the status of each internal vertex vi as

σ(vi) = 1(r + 1) + 2(r + k) + 2.(n− 1 − r) + 3rk + 3(n− 1 − r) + 4k(n− 1 − r)

= 5n+ 4nk − rk − 2r − 2k − 4.

Also the status of each external vertex ui as

σ(ui) = 1(k + 1) + 2r + 3r + 3(n− 1 − r) + 4(n− 1 − r) + 4rk + 5k(n− 1 − r)

= 7n+ 5nk − 2r − 4k − rk − 6.

Finally the pendent vertices being the only vertices on the diametrical path have the status

σ(wi) = 1 + 2 × 1 + 2(k − 1) + 3r + 4(n− 1 − r) + 4r + 5kr + 5(n− 1 − r) + 6k(n− 1 − r)

= 9n+ 6nk − rk − 4k − 2r − 8.

In G∧1(+k) there are nr
2 pairs of internal adjacent vertices, n pair of adjacent vertices

formed of one internal and one external vertex and finally n2k pairs of adjacent vertices formed

of one internal and one pendant vertex.Hence the harmonic status index of G∧1(+k) is given by

HS(G∧1(+k)) =
nr

2

1

(5n + 4nk − rk − 2r − 2k − 4)

+n
2

(5n + 4nk − rk − 2r − 2k − 4 + 7n + 5nk − 2r − 4k − rk − 6)

+n
2
k

2

(5n + 4nk − rk − 2r − 2k − 4 + 9n + 6nk − rk − 4k − 2r − 8)

=
nr

2

1

(5n + 4nk − rk − 2r − 2k − 4)

+n
2

(12n + 9nk − 2rk − 4r − 4k − 10)
+ n

2
k

2

(14n + 10nk − 2rk − 4r − 6k − 12)

=
nr

2

1

(5n + 4nk − rk − 2r − 2k − 4)
+ n

2

(12n + 9nk − 2rk − 4r − 4k − 10)

+n
2
k

1

(7n + 5nk − rk − 2r − 3k − 6)
. 2



106 Sudhir R.Jog and Shrinath L. Patil

Theorem 3.3 The harmonic status coindex of G∧1(+k) is given by

HS(G∧1(+k)) = (nk)C2
1

(9n + 6nk − rk − 4k − 2r − 8)

+(nC2 −
nr

2
)

1

(5n + 4nk − rk − 2r − 2k − 4)

+nC2
1

(7n + 5nk − rk − 2r − 3k − 6)
+ n

2
k

1

(7n + 5nk − rk − 2r − 3k − 6)

+n(n − 1)
2

(12n + 9nk − 2rk − 4r − 6k − 10)
.

Proof In G∧1(+k) there are (nk)C2 pairs of nonadjacent pendent vertices,

(nC2 − nr
2 ) pairs of nonadjacent vertices formed by internal vertices, nC2 pairs of nonadjacent

vertices formed by external vertices, n2k nonadjacent pair of vertices formed by one pendant

and one internal vertex and finally n(n−1) pairs of nonadjacent vertices formed by one internal

and one external vertex.Hence the harmonic status connectivity coindex is given by

HS(G∧1(+k)) = (nk)C2
2

2(9n+ 6nk − rk − 4k − 2r − 8)

+(nC2 −
nr

2
)

2

2(5n+ 4nk − rk − 2r − 2k − 4)

+nC2
2

2(7n+ 5nk − rk − 2r − 3k − 6)

+n2k
2

(5n+ 4nk − rk − 2r − 2k − 4 + 9n+ 6nk − rk − 4k − 2r − 8)

+n(n− 1)
2

(5n+ 4nk − rk − 2r − 2k − 4 + 7n+ 5nk − 2r − 4k − rk − 6)

= (nk)C2
1

(9n+ 6nk − rk − 4k − 2r − 8)

+(nC2 −
nr

2
)

1

(5n+ 4nk − rk − 2r − 2k − 4)

+nC2
1

(7n+ 5nk − rk − 2r − 3k − 6)
+ n2k

1

(7n+ 5nk − rk − 2r − 3k − 6)

+n(n− 1)
2

(12n+ 9nk − 2rk − 4r − 6k − 10)
. 2

§4. Conclusion

We considered general l level thorn graphs and obtained in particular, status connectivity

indices and coindices as well as Harmonic status indices and coindices of 0 level and first level

thorn graphs for some class of graphs.
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Abstract: Representing a subset of vertices in a graph by means of a matrix was introduced
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replace the aii element by 1 if and only if, vi ∈ S. In this paper we study the set S being
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§1. Introduction

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of G

is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k = 1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

The concept of graph energy arose in theoretical chemistry where certain numerical quan-

tities like the heat of formation of a hydrocarbon are related to total π electron energy that

can be calculated as the energy of corresponding molecular graph. The molecular graph is a

representation of the molecular structure of a hydrocarbon whose vertices are the position of

carbon atoms and two vertices are adjacent if there is a bond connecting them.

Eigen values and eigenvectors provide insight into the geometry of the associated linear

transformation. The energy of a graph is the sum of the absolute values of the Eigen values of

its adjacency matrix. From the pioneering work of Coulson []1 there exists a continuous interest

towards the general mathematical properties of the total π electron energy ε as calculated within

the framework of the Huckel Molecular Orbital (HMO) model. These efforts enabled one to

get an insight into the dependence of ε on molecular structure. The properties of ε(G) are

discussed in detail in [2, 3, 4].

The importance of Eigen values is not only used in theoretical chemistry but also in ana-

lyzing structures. Car designers analyze Eigen values in order to damp out the noise to reduce

1Received February 18, 2018, Accepted August 19, 2018.
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the vibration of the car due to music. Eigen values can be used to test for cracks or deformities

in a solid. Oil companies frequently use Eigen value analysis to explore land for oil. Eigen

values are also used to discover new and better designs for the future.

§2. Definitions and Notations

Representation of a subset of vertices of a graph by means of a matrix was first introduced

by E.Sampath Kumar [5]. Let G(V,E) be a graph and S ⊆ V be a set of vertices. We can

represent the set S by means of a matrix as follows:

In the adjacency matrix A(G) of G replace the aii element by 1 if and only if vi ∈ S.

The matrix thus obtained from the adjacency matrix can be taken as the matrix of the set S

denoted by AS(G). The energy E(G) obtained from the matrix AS(G) is called the set energy

denoted by ES(G). In this paper we consider the set S as dominating set and the corresponding

matrix as domination matrix denoted by Aγ(G) of G. Thus the energy E(G) obtained from

the domination matrix Aγ(G) is defined as domination energy denoted by Eγ(G).

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The domination matrix of G is

defined to be the square matrix Aγ(G) corresponding to the dominating set of G. The Eigen

values of the domination matrix denoted by κ1, κ2, κ3, · · · , κn are said to be the Aγ Eigen

values of G. Since the Aγ matrix is symmetric, its Eigen values are real and can be ordered

κ1 > κ2 > κ3 > · · · > κn. Therefore, the domination energy

Eγ = Eγ(G) =

n∑

i=1

|κi|. (1)

This equation has been chosen so as to be fully analogous to the definition of graph energy

([2]).

E = E(G) =

n∑

i=1

|λi|, (2)

where λ1 > λ2 > λ3 > · · · > λn are the Eigen values of the adjacency matrix A(G). Recall

that in the last few years, the graph energy E(G) and domination energy [9,10] or covering

energy ([6]) has been extensively studied in the mathematics ([6,7]) and mathematic-chemical

literature ([8,12]).

Definition 2.1(Minimal domination energy) A dominating set D in G is a minimal dominating

set if no proper subset of D is a dominating set. The domination energy Eγ(G) obtained for a

minimal dominating set is called the minimal domination energy denoted by Eγ−min(G).

Definition 2.2(Maximal domination energy) A dominating set D in G is a maximal dominating

set if D contains all the vertices of G. The domination energy Eγ(G) obtained for a maximal

dominating set is called the maximal domination energy denoted by Eγ−max(G).

Similarly to domination energy of graph G, distance domination energy, Laplacian domi-
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nation energy and Laplacian distance domination energy can also be defined as follows.

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The distance matrix of G, denoted by

D(G) is defined to be the square matrixD(G) = [dij ], where dij is the shortest distance between

the vertex vi and vj in G. The Eigen values of the distance matrix denoted by µ1, µ2, µ3, · · · , µn

are said to be the D Eigen values of G. Since the D(G) matrix is symmetric, its Eigen values

are real and can be ordered µ1 > µ2 > µ3 > · · · > µn. Therefore, the distance energy

ED = ED(G) =

n∑

i=1

|µi|. (3)

In the distance matrix D(G) of G replace the aii element by 1 if and only if vi ∈ S. The

matrix thus obtained from the distance matrix can be considered as the distance matrix of the

set S denoted by DS(G). The energy E(G) obtained from the matrix DS(G) is called the

distance set energy denoted by DS(G). In this paper we consider the set S as dominating set

and the corresponding matrix is distance domination matrix denoted by Dγ(G) of G. Thus

the energy E(G) obtained from the distance domination matrix Dγ(G) is defined as distance

domination energy denoted by EDγ(G).

The distance domination matrix of G is defined to be the square matrix Dγ(G) correspond-

ing to the dominating set of G. The Eigen values of the distance domination matrix denoted

by σ1, σ2, σ3, · · · , σn are said to be the Dγ Eigen values of G. Since the Dγ(G) matrix is sym-

metric, its D-Eigen values are real and can be ordered as σ1 > σ2 > σ3 > · · · > σn. Therefore,

the distance domination energy

EDγ = EDγ(G) =
n∑

i=1

|σi|. (4)

Definition 2.3(Minimal distance domination energy) A dominating set D in G is a minimal

dominating set if no proper subset of D is a dominating set. The distance domination energy

EDγ(G) obtained for a minimal dominating set is called the minimal domination energy denoted

by EDγ−min(G).

Definition 2.4(Maximal distance domination energy) A dominating set D in G is a maximal

dominating set if D contains all the vertices of G. The distance domination energy EDγ(G)

obtained for a maximal dominating set is called the maximal domination energy denoted by

EDγ−max(G).

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The Laplacian matrix of G is denoted

by L(G) is defined to be the square matrix L(G) = d(G) − A(G), where A(G) and d(G) are

the adjacency matrix and diagonal matrix with vertex degree of G on the principal diagonal

element respectively. The Eigen values of the Laplacian matrix denoted by ψ1, ψ2, ψ3, · · · , ψn

are said to be the L Eigen values of G. Since the L(G) matrix is symmetric, its Eigen values
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are real and can be ordered ψ1 > ψ2 > ψ3 > · · · > ψn. Therefore, the Laplacian energy

EL = EL(G) =

n∑

i=1

|ψi|. (5)

The energyELγ(G) obtained from the matrix LS(G) = d(G)−AS(G) is called the Laplacian

set energy denoted by LS(G). In this paper we consider the set S as dominating set and the

corresponding matrix is Laplacian domination matrix denoted by Lγ(G) of G. Thus the energy

E(G) obtained from the Laplacian domination matrix Lγ(G) is defined as Laplacian domination

energy denoted by ELγ(G).

The Laplacian domination matrix of G is defined to be the square matrix Lγ(G) corre-

sponding to the dominating set of G. The Eigen values of the Laplacian domination matrix

denoted by α1, α2, α3, · · · , αn are said to be the Lγ Eigen values of G. Since the Lγ(G) matrix

is symmetric, its L-Eigen values are real and can be ordered as α1 > α2 > α3 > · · · > αn.

Therefore, the Laplacian domination energy

ELγ = ELγ(G) =
n∑

i=1

|αi|. (6)

Definition 2.5(Minimal lapalcian domination energy) A dominating set D in G is a minimal

dominating set if no proper subset of D is a dominating set. The Laplacian domination energy

ELγ(G) obtained for a minimal dominating set is called the minimal domination energy denoted

by ELγ−min(G).

Definition 2.6(Maximal lapalcian domination energy) A dominating set D in G is a maximal

dominating set if D contains all the vertices of G. The Laplacian domination energy ELγ(G)

obtained for a maximal dominating set is called the maximal domination energy denoted by

ELγ−max(G).

The energy ELDγ(G) obtained from the matrix LDS(G) = d(G) − DS(G) is called the

Laplacian distance set energy denoted by LDS(G). In this paper we consider the set S as

dominating set and the corresponding matrix is Laplacian distance domination matrix denoted

by LDγ(G) of G. Thus the energy E(G) obtained from the Laplacian distance domination

matrix LDγ(G) is defined as Laplacian distance domination energy denoted by ELDγ(G).

The Laplacian distance domination matrix of G is defined to be the square matrix LDγ(G)

corresponding to the dominating set of G. The Eigen values of the Laplacian distance domi-

nation matrix denoted by β1, β2, β3, · · · , βn are said to be the LDγ Eigen values of G. Since

the LDγ(G) matrix is symmetric, its L-Eigen values are real and can be ordered as β1 > β2 >

β3 > · · · > βn. Therefore, the Laplacian distance domination energy

ELDγ = ELDγ(G) =

n∑

i=1

|βi|. (7)

Definition 2.7(Minimal Lapalcian distance domination energy) A dominating set D in G is

a minimal dominating set if no proper subset of D is a dominating set. The Laplacian dis-
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tance domination energy ELDγ(G) obtained for a minimal dominating set is called the minimal

domination energy denoted by ELDγ−min(G).

Definition 2.8(Maximal Lapalcian distance domination energy) A dominating set D in G is a

maximal dominating set if D contains all the vertices of G. The Laplacian distance domination

energy ELDγ(G) obtained for a maximal dominating set is called the maximal domination energy

denoted by ELDγ−max(G).

§3. Various Domination Energies

Definition 3.1 A book graph (Bm) consists of m quadrilaterals sharing a common edge. That

is, it is a Cartesian product Sm+1 and P2, where Sm is a star graph and P2 is the path graph

on two nodes. Some book graphs are shown in Figure 1.

��� ��� SSS ��� ���r rr rr r r r pr r r rr rrr r r r r r r r r qr rr r r r r r r r r rr rr r r r r r
B3 B4 B5 B6

Figure 1 Book graph Bm, 3 6 m 6 6

Theorem 3.1 For m > 3, the minimum dominating energy of a book graph (Bm) is

2
(√

4m+ 1 +m− 1
)
.

Proof Calculation enables one to find the characteristic polynomial of Bm for m > 3

directly.

For m = 3, B3 is a book graph with 8 vertices. The minimum dominating set is S =

{v1, v2}. ��� ���r rr rr r r r
v3 v4

v1 v2

v5 v6 v7 v8

Figure 2 Book graph B3

Calculation shows that the domination matrix and the characteristic polynomial of B3 are



Various Domination Energies in Graphs 113

respectively given by

Aγ(G) =




1 1 1 0 1 0 1 0

1 1 0 1 0 1 0 1

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0




and κ8−2κ7−9κ6+12κ5+18κ4−18κ3−13κ2+8κ+3 = (κ− 1)
2
(κ+ 1)

2
(κ2−3κ−1)(κ2+κ−3).

And calculation shows that the domination matrix and the characteristic polynomial of B4

are respectively given by

Aγ(G) =




1 1 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 1

1 0 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0




and κ10−2κ9−12κ8+16κ7+38κ6−36κ5−52κ4+32κ3+33κ2−10κ−8 = (κ− 1)
3
(κ+ 1)

3
(κ2−

3κ− 2)(κ2 + κ− 4).

Similarly, the domination matrix and the characteristic polynomial of B5 are respectively

given by

Aγ(G) =




1 1 1 0 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 1 0
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and (κ− 1)4 (κ+ 1)4 (κ2 − 3κ− 3)(κ2 + κ− 5), respectively.

And the characteristic polynomial of B6 is given by

(κ− 1)5 (κ+ 1)5 (κ2 − 3κ− 4)(κ2 + κ− 6)

Generally, the characteristic polynomial of Bm using domination adjacency matrix is

(κ− 1)
m−1

(κ+ 1)
m−1

(κ2 − 3κ− (m− 2))(κ2 + κ−m).

Solving the equation we get

(κ− 1)m−1 = 0, or (κ+ 1)m−1 = 0, or (κ2 − 3κ− (m − 2)) = 0 or (κ2 + κ −m) = 0. So

κ = 1, 1, 1, · · · , 1 ((m− 1)times), or κ = −1,−1,−1, · · · ,−1((m− 1)times).

By (κ2 − 3κ− (m− 2)) = 0, we get

κ1 =
1

2

(
3 −

√
4m+ 1

)
and

κ2 =
1

2

(
3 +

√
4m+ 1

)
here m > 3.

By (κ2 + κ−m) = 0 we know that

κ3 =
1

2

(
−1 −

√
4m+ 1

)
and

κ4 =
1

2

(
−1 +

√
4m+ 1

)

Hence,

Eγ−min = Eγ−min(G) =

n∑

i=1

|κi|

= (m− 1) + (m− 1) +

∣∣∣∣
1

2

(
3 −

√
4m+ 1

)∣∣∣∣

+

∣∣∣∣
1

2

(
3 +

√
4m+ 1

)∣∣∣∣+
∣∣∣∣
1

2

(
−1 −

√
4m+ 1

)∣∣∣∣

+

∣∣∣∣
1

2

(
−1 +

√
4m+ 1

)∣∣∣∣ .

Therefore,

Eγ−min = Eγ−min (Bm) = 2
(√

4m+ 1 +m− 1
)
.

This completes the proof. 2
Theorem 3.2 For m > 3, the minimum distance domination energy of a book graph (Bm) is

4(m− 1) +
√

25m2 − 24m+ 36 +
√
m
√
m+ 4.

Proof Calculation enables one to find the characteristic polynomial of Bm for m > 3

directly.
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For m = 3, B3 is a book graph with 8 vertices. The minimum dominating set is S =

{v1, v2}. Calculation shows that the distance domination matrix and the characteristic poly-

nomial of B3 are respectively given by

Dγ(G) =




1 1 1 2 1 2 1 2

1 1 2 1 2 1 2 1

1 2 0 1 2 3 2 3

2 1 1 0 3 2 3 2

1 2 2 3 0 1 2 3

2 1 3 2 1 0 3 2

1 2 2 3 2 3 0 1

2 1 3 2 3 2 1 0




and σ8−2σ7−111σ6−512σ5−545σ4+504σ3+240σ2 = σ2 (σ + 4)2
(
σ2 − 13σ − 5

) (
σ2 + 3σ − 3

)
.

Similarly, calculation shows that the distance domination matrix and the characteristic

polynomial of B4 are respectively given by

Dγ(G) =




1 1 1 2 1 2 1 2 1 2

1 1 2 1 2 1 2 1 2 1

1 2 0 1 2 3 2 3 2 3

2 1 1 0 3 2 3 2 3 2

1 2 2 3 0 1 2 3 2 3

2 1 3 2 1 0 3 2 3 2

1 2 2 3 2 3 0 1 2 3

2 1 3 2 3 2 1 0 3 2

1 2 2 3 2 3 2 3 0 1

2 1 3 2 3 2 3 2 1 0




and σ10 − 2σ9 − 200σ8 − 1512σ7 − 4048σ6 − 2240σ5 + 4352σ4 + 1024σ3 = σ3 (σ + 4)
3 (
σ2

−18σ − 4)
(
σ2 + 4σ − 4

)
.

And the characteristic polynomial of B5 and B6 are respectively given by

σ4 (σ + 4)
4 (
σ2 − 23σ − 3

) (
σ2 + 5σ − 5

)
,

σ5 (σ + 4)
5 (
σ2 − 28σ − 2

) (
σ2 + 6σ − 6

)
.

Generally, the characteristic polynomial of Bm using the distance domination matrix is

σm−1 (σ + 4)
m−1 [

σ2 − (5m− 2)σ + (m− 8)
] (
σ2 +mσ −m

)
= 0.

Solving the equation we get



116 Shajidmon Kolamban and M. Kamal Kumar

σm−1 = 0, or (σ + 4)m−1 = 0, or (σ2− (5m−2)σ+(m−8)) = 0, or (σ2 +mσ−m) = 0. So

σ = 0, 0, 0, · · · , 0 ((m− 1)times), or σ = −4,−4,−4, · · · ,−4 ((m− 1)times), and (σ2 − (5m−
2)σ + (m− 8)) = 0,

σ1 =
1

2

(
5m− 2 −

√
25m2 − 24m+ 36

)
and

σ2 =
1

2

(
5m− 2 +

√
25m2 − 24m+ 36

)
here m > 3,

(σ2 +mσ −m) = 0,

σ3 =
1

2

(
−m−√

m
√
m+ 4

)
and

σ4 =
1

2

(
−m+

√
m
√
m+ 4

)

EDγ−min = EDγ−min(G)

=

n∑

i=1

|σi|

= 4(m− 1) +

∣∣∣∣
1

2

(
2
√

25m2 − 24m+ 36
)∣∣∣∣+

∣∣∣∣
1

2

(
2
√
m
√
m+ 4

)∣∣∣∣ .

Therefore,

EDγ−min = EDγ−min(G) = 4(m− 1) +
√

25m2 − 24m+ 36 +
√
m
√
m+ 4.

This completes the proof. 2
Theorem 3.3 For m > 3, the minimum Laplacian domination energy of a book graph (Bm) is

5m+
√
m2 + 4.

Proof Calculation enables one to find the characteristic polynomial of Bm for m > 3

directly.

For m = 3, B3 is a book graph with 8 vertices. The minimum dominating set is S =

{v1, v2}. The Laplacian domination matrix and the characteristic polynomial of B3 are respec-

tively calculated by

Lγ(G) =




3 −1 −1 0 −1 0 −1 0

−1 3 0 −1 0 −1 0 −1

−1 0 2 −1 0 0 0 0

0 −1 −1 2 0 0 0 0

−1 0 0 0 2 −1 0 0

0 −1 0 0 −1 2 0 0

−1 0 0 0 0 0 2 −1

0 −1 0 0 0 0 −1 2






Various Domination Energies in Graphs 117

and α8−18α7 +131α6−496α5 +1038α4−1154α3 +543α2 +36α−81 = (α− 1)2 (α− 3)2 (α2−
7α+ 9)(α2 − 3α− 1).

Similarly, the Laplacian domination matrix and the characteristic polynomial of B4 are

respectively given by

Lγ(G) =




4 −1 −1 0 −1 0 −1 0 −1 0

−1 4 0 −1 0 −1 0 −1 0 −1

−1 0 2 −1 0 0 0 0 0 0

0 −1 −1 2 0 0 0 0 0 0

−1 0 0 0 2 −1 0 0 0 0

0 −1 0 0 −1 2 0 0 0 0

−1 0 0 0 0 0 2 −1 0 0

0 −1 0 0 0 0 −1 2 0 0

−1 0 0 0 0 0 0 0 2 −1

0 −1 0 0 0 0 0 0 −1 2




and α10−24α9+243α8−1360α7+4618α6−9792α5+12774α4−9520α3+3141α2+216α−297 =

(α− 1)
3
(α− 3)

3
(α2 − 8α+ 11)(α2 − 4α− 1)

And the characteristic polynomial of B5 and B6 is given by (α− 1)
4
(α− 3)

4
(α2 − 9α +

13)(α2 − 5α− 1), (α− 1)
5
(α− 3)

5
(α2 − 10α+ 15)(α2 − 6α− 1), respectively.

Generally, the characteristic polynomial of Bm using the Laplacian domination matrix is

(α− 1)
m−1

(α− 3)
m−1

(α2 − (m+ 4)α+ (2m+ 3))(α2 −mα− 1) = 0.

solving the equation we get

(α− 1)m−1 = 0, or (α− 3)m−1 = 0, or (α2−(m+2)α+(2m+3)) = 0, or (α2−mα−1) = 0.

So α = 1, 1, 1, · · · , 1 ((m− 1)times), or α = 3, 3, 3, · · · , 3 ((m− 1)times), and (α2 − (m+ 2)α+

(2m+ 3)) = 0,

α1 =
1

2

(
m+ 4 −

√
m2 + 28

)
and

α2 =
1

2

(
m+ 4 +

√
m2 + 28

)
here m > 3,

(α2 −mα− 1) = 0,

α3 =
1

2

(
m−

√
m2 + 4

)
and

α4 =
1

2

(
m+

√
m2 + 4

)
,
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ELγ−min = ELγ−min(G) =
n∑

i=1

|αi|

= (m− 1) + 3(m− 1) +

∣∣∣∣
1

2

(
2
√
m2 + 4

)∣∣∣∣+
∣∣∣∣
1

2
(2(m+ 4))

∣∣∣∣

Therefore, ELγ−min = ELγ−min(G) = 5m+
√
m2 + 4. This completes the proof. 2

Theorem 3.4 For m > 3, the minimum Laplacian distance domination energy of a Book

Graph (Bm) is 10m− 5 +
√

36m2 − 48m+ 49.

Proof The characteristic polynomial of Bm for m > 3 can be found directly.

For m = 3, B3 is a book graph with 8 vertices. The minimum dominating set is S =

{v1, v2}. The Laplacian distance domination matrix and the characteristic polynomial of B3

are respectively calculated by

LDγ(G) =




3 −1 −1 −2 −1 −2 −1 −2

−1 3 −2 −1 −2 −1 −2 −1

−1 −2 2 −1 −2 −3 −2 −3

−2 −1 −1 2 −3 −2 −3 −2

−1 −2 −2 −3 2 −1 −2 −3

−2 −1 −3 −2 −1 2 −3 −2

−1 −2 −2 −3 −2 −3 2 −1

−2 −1 −3 −2 −3 −1 −1 2




and β8 − 18β7 + 29β6 + 1612β5 − 16629β4 + 75536β3 − 181032β2 + 222336β − 110160 =

(β − 2)2 (β − 6)2 (β2 − 9β + 17)(β2 + 7β − 45).

Similarly, calculation shows that the Laplacian distance domination matrix and the char-

acteristic polynomial of B4 are respectively given by

LDγ(G) =




4 −1 −1 −2 −1 −2 −1 −2 −1 −2

−1 4 −2 −1 −2 −1 −2 −1 −2 −1

−1 −2 2 −1 −2 −3 −2 −3 −2 −3

−2 −1 −1 2 −3 −2 −3 −2 −3 −2

−1 −2 −2 −3 2 −1 −2 −3 −2 −3

−2 −1 −3 −2 −1 2 −3 −2 −3 −2

−1 −2 −2 −3 −2 −3 2 −1 −2 −3

−2 −1 −3 −2 −3 −2 −1 2 −3 −2

−1 −2 −2 −3 −2 −3 −2 −3 2 −1

−2 −1 −3 −2 −3 −2 −3 −2 −1 2
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β10 − 24β9 + 55β8 + 4208β7 − 66192β6 + 494272β5 − 2178656β4 + 5934336β3 − 9801216β2 +

8985600β− 3504384 = (β − 2)
3
(β − 6)

3
(β2 − 11β + 26)(β2 + 11β − 78).

The characteristic polynomial of B5 is given by (β − 2)
4
(β − 6)

4
(β2−13β+37)(β2+15β−

121), and the characteristic polynomial of B6 is given by (β − 2)5 (β − 6)5 (β2 −15β+50)(β2 +

19β − 174).

Generally, the characteristic polynomial of Bm using the Laplacian distance domination

matrix is

(β − 2)
m−1

(β − 6)
m−1

(β2 − (2m+ 3)β + (m+ 1)2 + 1)(β2 + (4m− 5)β − (5m2 − 2m+ 6)).

Solving the equation we get (β − 2)
m−1

= 0, or (β − 6)
m−1

= 0, or β2 − (2m+ 3)β+ (m+

1)2 + 1 = 0, or β2 + (4m− 5)β − (5m2 − 2m+ 6) = 0. So β = 2, 2, 2, · · · , 2 ((m− 1)times), or

β = 6, 6, 6, · · · , 6 ((m− 1)times), and β2 − (2m+ 3)β + (m+ 1)2 + 1 = 0,

β1 =
1

2

(
2m+ 3 −

√
4m+ 1

)
and

β2 =
1

2

(
2m+ 3 +

√
4m+ 1

)
here m > 3,

β2 + (4m− 5)β − (5m2 − 2m+ 6) = 0,

β3 =
1

2

(
−
√

36m2 − 48m+ 49 − 4m+ 5
)

and

β4 =
1

2

(√
36m2 − 48m+ 49 − 4m+ 5

)
,

ELDγ−min = ELDγ−min(G)

=
n∑

i=1

|βi| = 8(m− 1) +

∣∣∣∣
1

2
(4m+ 6)

∣∣∣∣+
∣∣∣∣
1

2

(
2
√

36m2 − 48m+ 49
)∣∣∣∣ .

Whence, ELDγ−min = ELDγ−min(G) = 10m− 5 +
√

36m2 − 48m+ 49. This completes the

proof. 2
"""" ���
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Figure 3 Wheel graph Wn, 4 6 n 6 11

Definition 3.2 A wheel graph Wn of order n, sometimes simply called an n-wheel, is a graph
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that contains a cycle of order n− 1, and for which every graph vertex in the cycle is connected

to one other graph vertex (which is known as the hub). The edges of a wheel which include the

hub are called spokes. The wheel Wn can be defined as the graph K1 + Cn−1, where K1 is the

singleton graph and Cn is the cycle graph. Some wheel graphs are shown in Figure 3.

Theorem 3.5 For n > 4, the minimum dominating energy of a wheel graph (Wn) is >
√

4n− 3.

Proof We can find the characteristic polynomial of Wn for n > 4 by calculation directly.

"""" rrr rv1

v2

v3 v4

Figure 4 W4

For n = 4, W4 is a wheel graph with 4 vertices. The minimum dominating sets are S = {v1}
or S = {v2} or S = {v3}.

For S = {v1} the domination matrix and the characteristic polynomial of W4 are respec-

tively calculated by

Aγ(G) =




1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0




and κ4−κ3 − 6κ2− 5κ− 1 = (κ2 − 3κ− 1)(κ2 +2κ+1). The characteristic polynomial is found

to be same when S = {v2} or S = {v3}.
For n = 5, W5 is a wheel graph with 5 vertices. The minimum dominating sets is S = {v1}.

Calculation shows that the domination matrix and the characteristic polynomial of W5 are

respectively given by

Aγ(G) =




1 1 1 1 1

1 0 1 1 0

1 1 0 0 1

1 1 0 0 1

1 0 1 1 0




and κ5 − κ4 − 8κ3 − 4κ2 = (κ2 − 3κ− 2)(κ3 + 2κ2).

Similarly the characteristic polynomial of W6, W7 and W8 are given by (κ2 − 3κ− 3)(κ2 +

κ− 1)2, (κ2 − 3κ− 4)(κ− 1)2(κ+ 1)2(κ+ 2) and (κ2 − 3κ− 5)(κ3 + κ2 − 2κ− κ)2, respectively.

Generally, the characteristic polynomial of Wn for n > 4 using domination matrix is

[
κ2 − 3κ− (n− 3)

]
P (κ).
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Solving the equation (κ2 − 3κ − (n − 3) = 0 we get κ1 = 1
2

(
3 −

√
4n− 3

)
and κ2 =

1
2

(
3 +

√
4n− 3

)
. Eγ−min = Eγ−min(G) >

2∑
i=1

|κi|, Eγ−min(G) >
√

4n− 3. This completes the

proof. 2
Theorem 3.6 For n > 4, the minimum distance dominating energy of a wheel graph (Wn) is

>
√

4n2 − 24n+ 45.

Proof The characteristic polynomial of Wn for n > 4 can be obtained by calculation

directly.

For n = 4, W4 is a wheel graph with 4 vertices. The minimum dominating sets are S = {v1}
or S = {v2} or S = {v3}. For S = {v1}, Calculation shows that the distance domination matrix

and the characteristic polynomial of W4 are respectively given by

Dγ(G) =




1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0




and σ4 − σ3 − 6σ2 − 5σ − 1 = (σ2 − 3σ − 1)(σ2 + 2σ + 1).

The characteristic polynomial is found to be same when S = {v2} or S = {v3}.
For n = 5, W5 is a wheel graph with 5 vertices. The minimum dominating sets is S = {v1}.

Calculation shows that the distance domination matrix and the characteristic polynomial of W5

are respectively given by

Dγ(G) =




1 1 1 1 1

1 0 1 1 2

1 1 0 2 1

1 1 2 0 1

1 2 1 1 0




and σ5 − σ4 − 16σ3 − 20σ2 = σ(σ2 − 5σ + 0)(σ + 2)2.

Similarly, the characteristic polynomial of W6, W7 and W8 are given by (σ2 − 7σ+1)(σ2 +

3σ + 1)2, σ(σ2 − 9σ + 2)(σ + 1)2(σ + 3)2 and (σ2 − 11σ + 3)(σ3 + 5σ2 + 6σ + 1)2, respectively.

Generally, the characteristic polynomial of Wn for n > 4 using distance domination matrix

is [
σ2 − (2n− 5)σ + (n− 5)

]
P (σ).

Solving the equation (σ2 − (2n− 5)σ + (n− 5)) = 0 we get

σ1 =
1

2

(
2n− 5 −

√
4n2 − 24n+ 45

)
,

σ2 =
1

2

(
2n− 5 +

√
4n2 − 24n+ 45

)
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and EDγ−min = EDγ−min(G) >
2∑

i=1

|σi|, EDγ−min(G) >
√

4n2 − 24n+ 45. Hence, we complete

the proof. 2
Theorem 3.7 For n > 4, the minimum Laplacian domination energy of a wheel graph (Wn)

is >
√
n2 − 2n+ 5.

Proof Calculation enables one to find the characteristic polynomial of Wn for n > 4

directly.

For n = 4, W4 is a wheel graph with 4 vertices. The minimum dominating sets are S = {v1}
or S = {v2} or S = {v3}. For S = {v1}, Calculation shows that the Laplacian domination

matrix and the characteristic polynomial of W4 are respectively given by

Lγ(G) =




2 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3




and α4 − 11α3 + 39α2 − 40α− 16 = (α2 − 3α− 1) (α− 4)
2
.

The characteristic polynomial is found to be same when S = {v2} or S = {v3}.
For n = 5, W5 is a wheel graph with 5 vertices. The minimum dominating sets is S = {v1}.

The Laplacian domination matrix and the characteristic polynomial of W5 are respectively

calculated by

Lγ(G) =




3 −1 −1 −1 −1

−1 3 −1 −1 0

−1 −1 3 0 −1

−1 −1 0 3 −1

−1 0 −1 −1 3




and α5 − 15α4 + 82α3 − 190α2 + 141α+ 45 = (α2 − 4α− 1) (α− 3)
2
(α− 5).

Similarly, the characteristic polynomial of W6, W7 and W8 are given by (α2 − 5α −
1)
(
α2 − 7α +11)

2
, (α2−6α−1) (α− 2)

2
(α− 4)

2
(α−5) and (α2−7α−1)

(
α3 − 10α2 + 31α− 29

)2
,

respectively.

Generally, the characteristic polynomial of Wn for n > 4 using Laplacian domination

matrix is [
α2 − (n− 1)α− 1

]
P (α).

Solving the equation (α2 − (n− 1)α− 1) = 0 we get

α1 =
1

2

(
n− 1 −

√
n2 − 2n+ 5

)

and

α2 =
1

2

(
n− 1 +

√
n2 − 2n+ 5

)
,
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ELγ−min = ELγ−min(G) >

2∑

i=1

|αi| =
√
n2 − 2n+ 5.

Hence the proof is completed. 2
Theorem 3.8 For n > 4, the minimum Laplacian distance dominating energy of a wheel graph

(Wn) is >
√

9n2 − 62n+ 117.

Proof The characteristic polynomial of Wn for n > 4 can be obtained by calculation

directly.

For n = 4, W4 is a wheel graph with 4 vertices. The minimum dominating sets are

S = {v1} or S = {v2} or S = {v3}. For S = {v1}, Calculation shows that the Laplacian

distance domination matrix and the characteristic polynomial of W4 are respectively given by

LDγ(G) =




2 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3




and β4 − 11β3 + 39β2 − 40β − 16 = (β2 − 3β − 1) (β − 4)2.

The characteristic polynomial is found to be same when S = {v2} or S = {v3}.
For n = 5, W5 is a wheel graph with 5 vertices. The minimum dominating sets is S =

{v1}. The Laplacian distance domination matrix and the characteristic polynomial of W5 are

respectively given by

LDγ(G) =




3 −1 −1 −1 −1

−1 3 −1 −1 −2

−1 −1 3 −2 −1

−1 −1 −2 3 −1

−1 −2 −1 −1 3




and

β5 − 15β4 + 74β3 − 94β2 − 235β + 525 = (β2 − 2β − 7) (β − 5)
2
(β − 3).

Similarly, the characteristic polynomial of W6, W7 and W8 are given respectively by

(β2 − β − 17)
(
β2 − 9β + 19

)2
,

(β2 + 0β − 31) (β − 6)
2
(β − 4)

2
(β − 3)

and

(β2 + β − 49)
(
β3 − 14β2 + 63β − 91

)2
.

Generally, the characteristic polynomial of Wn for n > 4 using Laplacian distance domi-

nation matrix is [
β2 + (n− 7)β − (2n2 − 12n+ 17)

]
p(β).
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Solving the equation β2 + (n− 7)β − (2n2 − 12n+ 17) = 0 we get

β1 =
1

2

(
−
√

9n2 − 62n+ 117 − n+ 7
)
,

β2 =
1

2

(√
9n2 − 62n+ 117 − n+ 7

)

and

ELDγ−min = ELDγ−min(G) >

2∑

i=1

|βi| =
√

9n2 − 62n+ 117.

Hence the proof is completed. 2
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f : V (G) → {1, 2, 3, · · · , q + 1} is injective and the induced function f∗ : E(G) →

{2, 3, 4, · · · , q + 1} defined by f∗(uv) =
⌈√

f(u)f(v)
⌉

for all uv ∈ E(G) is bijective. A

graph that admits a C-geometric mean labeling is called a C-geometric mean graph. In this

paper, we have discussed the C-geometric meanness of some ladder graphs.
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§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V,E)

be a graph with p vertices and q edges. For notations and terminology, we follow [5]. For a

detailed survey on graph labeling we refer to [4].

Path on n vertices is denoted by Pn. G⊙Sm is the graph obtained from G by attaching m

pendant vertices at each vertex of G. Let G1 and G2 be any two graphs with p1 and p2 vertices

respectively. Then the cartesian product G1 × G2 has p1p2 vertices which are {(u, v) : u ∈
G1, v ∈ G2}. The edges are obtained as follows: (u1, v1) and (u2, v2) are adjacent in G1 × G2

if either u1 = u2 and v1 and v2 are adjacent in G2 or u1 and u2 are adjacent in G1 and

v1 = v2. The ladder graph Ln is a graph obtained from the cartesian product of P2 and Pn.

The triangular ladder TLn, n ≥ 2 is a graph obtained by completing the ladder Ln by the edges

uivi+1 for 1 ≤ i ≤ n− 1, where Ln is the graph P2 × Pn. The slanting ladder SLn is a graph

that consists of two copies of Pn having vertex set {ui : 1 ≤ i ≤ n}⋃ {vi : 1 ≤ i ≤ n} and edge

set is formed by adjoining ui+1 and vi for all 1 ≤ i ≤ n− 1 ([2]).

Let Pn be a path on n vertices denoted by u1,1, u1,2, u1,3, · · · , u1,n and with n − 1 edges

denoted by e1, e2, · · · , en−1 where ei is the edge joining the vertices u1,i and u1,i+1. On each

edge ei, erect a ladder with n − (i − 1) steps including the edge ei, for i = 1, 2, 3, . . . , n − 1.

The graph thus obtained is called a one sided step graph and it is denoted by STn. Let P2n be

1Received February 21, 2018, Accepted August 22, 2018.
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a path on 2n vertices u1,1, u1,2, u1,3, · · · , u1,2n and with 2n− 1 edges e1, e2, . . . , e2n−1 where ei

is the edge joining the vertices u1,i and u1,i+1. On each edge ei, we erect a ladder with ‘i+ 1’

steps including the edge ei, for i = 1, 2, 3, . . . , n and on each ei erect a ladder with 2n+ 1 − i

steps including ei, for i = n+ 1, n+ 2, · · · , 2n− 1. The graph thus obtained is called a double

sided step graph and it is denoted by 2ST2n.

The study of graceful graphs and graceful labeling methods was first introduced by Rosa

[7]. The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [8]

and it was developed in [6] and [9]. In [11], R. Vasuki et al. discussed the mean labeling of

cyclic snake and armed crown. In [1, 3], some graph labelings of step graphs were analyzed.

In a study of traffic, the labeling problems in graph theory can be used by considering the

crowd at every junctions as the weights of a vertex and expected average traffic in each street

as the weight of the corresponding edge. If we assume the expected traffic at each street as the

arithmetic mean of the weight of the end vertices, that eases mean labeling of the graph. When

we consider a geometric mean instead of arithmetic mean in a large population of a city, the

rate of growth of traffic in each street will be more accurated. Motivated by this, we establish

the geometric mean labeling on graphs.

Motivated by the works of so many authors in the area of graph labeling, we introduced

a new type of labeling called C-geometric mean labeling. A function f is called a C-geometric

mean labeling of a graph G if f : V (G) → {1, 2, 3, · · · , q + 1} is injective and the induced

function f∗ : E(G) → {2, 3, 4, · · · , q + 1} defined as

f∗(uv) =
⌈√

f(u)f(v)
⌉

for all uv ∈ E(G)

is bijective. A graph that admits a C-geometric mean labeling is called a C-geometric mean

graph.

In [10], S. Somasundaram et al. defined the geometric mean labeling as follows.

A graph G = (V,E) with p vertices and q edges is said to be a geometric mean graph if it

is possible to label the vertices x ∈ V with distinct labels f(x) from 1, 2, · · · , q+ 1 in such way

that when each edge e = uv is labeled with f(uv) =
⌊√

f(u)f(v)
⌋

or
⌈√

f(u)f(v)
⌋

then the

edge labels are distinct.

In the above definition, the readers will get some confusion in finding the edge labels which

edge is assigned by flooring function and which edge is assigned by ceiling function. Generally,

a graph G = (V,E) with p vertices and q edges is said to be a Smarandache k-mean graph for

an integer k ≥ 2 if it is labeled vertices x ∈ V with distinct labels f(x) from 1, 2, · · · , q + 1 in

such way that edge e = uv is labeled with f(uv) =
⌊

k

√
f(u)kf(v)k

⌋
or
⌈

k

√
f(u)kf(v)k

⌋
then the

edge labels are distinct. Clearly, a Smarandache 2-mean graph is nothing else but a geometric

mean labeling graph.

In [10], S. Somasundaram et al. have given the geometric mean labeling of the graph

C5 ∪ C7 as shown in Figure 1.
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Figure 1 A geometric mean labeling of C5 ∪ C7.

From the above figure, for the edge uv, they have used flooring function
⌊√

f(u)f(v)
⌋

and

for the edge vw, they have used ceiling function
⌈√

f(u)f(v)
⌉

for fulfilling their requirement.

To avoid the confusion of assigning the edge labels in their definition, we just consider the

ceiling function
⌈√

f(u)f(v)
⌉

for our discussion. Based on our definition, the C-geometric

mean labeling of the same graph C5 ∪ C7 is given in Figure 2.rr rr r
rr rr rr r
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Figure 2 A C-geometric mean labeling of C5 ∪ C7

In this paper, we have discussed the C-geometric mean labeling of the ladder graphs Ln

for n ≥ 2, Ln ⊙ Sm for n ≥ 2 and m ≤ 2, TLn for n ≥ 2, TLn ⊙ Sm for n ≥ 2 and m ≤ 2, SLn

for n ≥ 2, SLn ⊙Sm for n ≥ 2 and m ≤ 2, step graph STn and double sided step graph 2ST2n.

§2. Main Results

Theorem 2.1 The graph Ln is a C-geometric mean graph for n ≥ 2.

Proof Let u1, u2, · · · , un and v1, v2, · · · , vn be the vertices of Ln = Pn × P2. Then the

ladder graph Ln having 2n vertices and 3n− 2 edges.

Define f : V (Ln) → {1, 2, 3, . . . , 3n− 1} as follows:

f(u1) = 1,

f(ui) = 3i− 1, for 2 ≤ i ≤ n ,

f(v1) = 3 and

f(vi) = 3i− 2, for 2 ≤ i ≤ n.



128 A.Durai Baskar and S.Arockiaraj

Then the induced edge labeling is obtained as follows:

f∗(u1u2) = 3,

f∗(uiui+1) = 3i+ 1, for 2 ≤ i ≤ n− 1,

f∗(v1v2) = 4,

f∗(vivi+1) = 3i, for 2 ≤ i ≤ n− 1 and

f∗(uivi) = 3i− 1, for 1 ≤ i ≤ n.

Hence, f is a C-geometric mean labeling of the ladder Pn × P2. Thus the ladder Pn × P2

is a C-geometric mean graph for n ≥ 2. 2
Theorem 2.2 The graph Ln ⊙ Sm is a C-geometric mean graph for n ≥ 2 and m ≤ 2.

Proof Let u1, u2, · · · , un and v1, v2, · · · , vn be the vertices of Ln = Pn ×P2. Let w
(i)
1 , w

(i)
2 ,

· · · , w(i)
m and x

(i)
1 , x

(i)
2 , · · · , x(i)

m be the pendent vertices attached at each vertex ui and vi of the

ladder Ln, for 1 ≤ i ≤ n.

Case 1. m = 1.

Define f : V (Ln ⊙ S1) → {1, 2, 3, · · · , 5n− 1} as follows:

f(u1) = 3,

f(ui) = 5i− 3, for 2 ≤ i ≤ n ,

f(v1) = 4,

f(vi) = 5i− 2, for 2 ≤ i ≤ n ,

f(w
(i)
1 ) = 5i− 4, for 1 ≤ i ≤ n ,

f(x
(1)
1 ) = 2 and

f(x
(i)
1 ) = 5i− 1, for 2 ≤ i ≤ n.

Then the induced edge labeling is obtained as follows:

f∗(uiui+1) = 5i, for 1 ≤ i ≤ n− 1 ,

f∗(vivi+1) = 5i+ 1, for 1 ≤ i ≤ n− 1 ,

f∗(u1v1) = 4,

f∗(uivi) = 5i− 2, for 2 ≤ i ≤ n ,

f∗(uiw
(i)
1 ) = 5i− 3, for 1 ≤ i ≤ n ,

f∗(v1x
(1)
1 ) = 3 and

f∗(vix
(i)
1 ) = 5i− 1, for 2 ≤ i ≤ n.

Case 2. m = 2.
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Define f : V (Ln ⊙ S2) → {1, 2, 3, · · · , 7n− 1} as follows:

f(ui) =






3 i = 1

7i− 2 2 ≤ i ≤ n and i is even

7i− 5 2 ≤ i ≤ n and i is odd ,

f(vi) =






5 i = 1

7i− 4 2 ≤ i ≤ n and i is even

7i− 1 2 ≤ i ≤ n and i is odd ,

f(w
(i)
1 ) =





1 i = 1

7i− 3 2 ≤ i ≤ n and i is even

7i− 6 2 ≤ i ≤ n and i is odd ,

f(x
(i)
1 ) =





3i+ 1 1 ≤ i ≤ 2

7i− 6 3 ≤ i ≤ n and i is even

7i− 3 3 ≤ i ≤ n and i is odd

and f(x
(i)
2 ) =






8 i = 1

7i− 5 2 ≤ i ≤ n and i is even

7i− 2 2 ≤ i ≤ n and i is odd .

Then the induced edge labeling is obtained as follows:

f∗(uiui+1) =





6 i = 1

7i 2 ≤ i ≤ n− 1,

f∗(vivi+1) = 7i+ 1, for 1 ≤ i ≤ n− 1 ,

f∗(uivi) = 7i− 3, for 1 ≤ i ≤ n ,

f∗(uiw
(i)
1 ) =





2 i = 1

7i− 2 2 ≤ i ≤ n and i is even

7i− 5 2 ≤ i ≤ n and i is odd ,

f∗(uiw
(i)
2 ) =





7i− 1 1 ≤ i ≤ n and i is even

7i− 4 1 ≤ i ≤ n and i is odd ,

f∗(vix
(i)
1 ) =





7i− 5 1 ≤ i ≤ n and i is even

7i− 2 1 ≤ i ≤ n and i is odd
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and f∗(vix
(i)
2 ) =





7 i = 1

7i− 4 2 ≤ i ≤ n and i is even

7i− 1 2 ≤ i ≤ n and i is odd .

Hence, f is a C-geometric mean labeling of the graph Ln ⊙ Sm. Thus the graph Ln ⊙ Sm

is a C-geometric mean graph for n ≥ 2 and m ≤ 2. 2
Theorem 2.3 The graph TLn is a C-Geometric mean graph for n ≥ 2.

Proof Let the vertex set of TLn be {u1, u2, · · · , un, v1, v2, · · · , vn} and the edge set of TLn

be {uiui+1; 1 ≤ i ≤ n−1}∪{vivi+1; 1 ≤ i ≤ n−1}∪{uivi; 1 ≤ i ≤ n}∪{viui+1; 1 ≤ i ≤ n−1}.
Then TLn has 2n vertices and 4n− 3 edges.

Define f : V (TLn) → {1, 2, 3, · · · , 4n− 2} as follows:

f(ui) = 4i− 3, for 1 ≤ i ≤ n,

f(vi) = 4i− 1, for 1 ≤ i ≤ n− 1 and

f(vn) = 4n− 2.

Then the induced edge labeling is obtained as follows:

f∗(uiui+1) = 4i− 1, for 1 ≤ i ≤ n− 1,

f∗(uivi) = 4i− 2, for 1 ≤ i ≤ n,

f∗(vivi+1) = 4i+ 1, for 1 ≤ i ≤ n− 1 and

f∗(viui+1) = 4i, for 1 ≤ i ≤ n− 1.

Hence f is a C-geometric mean labeling of TLn. Thus the triangular ladder TLn is a

C-geometric mean graph for n ≥ 2. 2
Theorem 2.4 The graph TLn ⊙ Sm is a C-geometric mean graph for n ≥ 2 and m ≤ 2.

Proof Let u1, u2, · · · , un and v1, v2, · · · , vn be the vertices of TLn. Let w
(i)
1 , w

(i)
2 , · · · , w(i)

m and

x
(i)
1 , x

(i)
2 , · · · , x(i)

m be the pendent vertices attached at each vertex ui and vi of the ladder Ln,

for 1 ≤ i ≤ n.

Case 1. m = 1.

Define f : V (TLn ⊙ S1) → {1, 2, 3, · · · , 6n− 2} as follows:

f(u1) = 3,

f(ui) = 6i− 4, for 2 ≤ i ≤ n ,
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f(vi) = 6i− 2, for 1 ≤ i ≤ n ,

f(w
(i)
1 ) = 6i− 5, for 1 ≤ i ≤ n ,

f(x
(1)
1 ) = 2 and

f(x
(i)
1 ) = 6i− 3, for 2 ≤ i ≤ n.

Then the induced edge labeling is obtained as follows:

f∗(uiui+1) = 6i− 1, for 1 ≤ i ≤ n− 1 ,

f∗(vivi+1) = 6i+ 1, for 1 ≤ i ≤ n− 1 ,

f∗(viui+1) = 6i, for 1 ≤ i ≤ n− 1 ,

f∗(u1v1) = 4,

f∗(uivi) = 6i− 3, for 2 ≤ i ≤ n ,

f∗(uiw
(i)
1 ) = 6i− 4, for 1 ≤ i ≤ n ,

f∗(v1x
(1)
1 ) = 3 and

f∗(vix
(i)
1 ) = 6i− 2, for 2 ≤ i ≤ n.

Case 2. m = 2.

Define f : V (TLn ⊙ S2) → {1, 2, 3, · · · , 8n− 2} as follows:

f(u1) = 3,

f(ui) = 8i− 3, for 2 ≤ i ≤ n ,

f(v1) = 5,

f(vi) = 8i− 5, for 2 ≤ i ≤ n ,

f(w
(1)
1 ) = 1,

f(w
(i)
1 ) = 8i− 4, for 2 ≤ i ≤ n ,

f(w
(1)
2 ) = 2,

f(w
(i)
2 ) = 8i− 2, for 2 ≤ i ≤ n ,

f(x
(1)
1 ) = 4,

f(x
(i)
1 ) = 8i− 7, for 2 ≤ i ≤ n ,

f(x
(1)
2 ) = 6 and

f(x
(i)
2 ) = 8i− 6, for 2 ≤ i ≤ n.

Then the induced edge labeling is obtained as follows:

f∗(u1u2) = 7,

f∗(uiui+1) = 8i+ 1, for 2 ≤ i ≤ n− 1 ,
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f∗(v1v2) = 8,

f∗(vivi+1) = 8i− 1, for 2 ≤ i ≤ n− 1 ,

f∗(uivi) = 8i− 4, for 1 ≤ i ≤ n ,

f∗(v1u2) = 9,

f∗(viui+1) = 8i, for 2 ≤ i ≤ n− 1 ,

f∗(u1w
(1)
1 ) = 2,

f∗(uiw
(i)
1 ) = 8i− 3, for 2 ≤ i ≤ n ,

f∗(u1w
(1)
2 ) = 3,

f∗(uiw
(i)
2 ) = 8i− 2, for 2 ≤ i ≤ n ,

f∗(v1x
(1)
1 ) = 5,

f∗(vix
(i)
1 ) = 8i− 6, for 2 ≤ i ≤ n ,

f∗(v1x
(1)
2 ) = 6 and

f∗(vix
(i)
2 ) = 8i− 5, for 2 ≤ i ≤ n.

Hence, f is a C-geometric mean labeling of the graph TLn⊙Sm. Thus the graph TLn⊙Sm

is a C-geometric mean graph for n ≥ 2 and m ≤ 2. 2
Theorem 2.5 The graph SLn is a C-geometric mean graph for n ≥ 2.

Proof Let the vertex set of SLn be {u1, u2, · · · , un, v1, v2, · · · , vn} and the edge set of SLn

be {uiui+1; 1 ≤ i ≤ n − 1} ∪ {vivi+1; 1 ≤ i ≤ n − 1} ∪ {viui+1; 1 ≤ i ≤ n − 1}. Then SLn has

2n vertices and 3n− 3 edges.

Define f : V (SLn) → {1, 2, 3, · · · , 3n− 2} as follows:

f(u1) = 1,

f(ui) = 3i− 4, for 2 ≤ i ≤ n,

f(vi) = 3i, for 1 ≤ i ≤ n− 1 and

f(vn) = 3n− 2.

Then the induced edge labeling is obtained as follows:

f∗(u1u2) = 2,

f∗(uiui+1) = 3i− 2, for 2 ≤ i ≤ n− 1,

f∗(vivi+1) = 3i+ 2, for 1 ≤ i ≤ n− 2,

f∗(vn−1vn) = 3n− 2 and

f∗(viui+1) = 3i, for 1 ≤ i ≤ n− 1.

Hence f is a C-geometric mean labeling of SLn. Thus the slanting ladder SLn is a C-

geometric mean graph for n ≥ 2. 2
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Theorem 2.6 The graph SLn ⊙ Sm is a C-geometric mean graph for n ≥ 2 and m ≤ 2.

Proof Let u1, u2, · · · , un and v1, v2, · · · , vn be the vertices of SLn. Letw
(i)
1 , w

(i)
2 , · · · , w(i)

m and

x
(i)
1 , x

(i)
2 , · · · , x(i)

m be the pendent vertices attached at each vertex ui and vi of the ladder Ln,

for 1 ≤ i ≤ n.

Case 1. m = 1 and n ≥ 3.

Define f : V (SLn ⊙ S1) → {1, 2, 3, · · · , 5n− 2} as follows:

f(u1) = 2,

f(ui) = 5i− 6, for 2 ≤ i ≤ n ,

f(v1) = 6,

f(vi) = 5i, for 2 ≤ i ≤ n− 1 ,

f(vn) = 5n− 2,

f(w
(1)
1 ) = 1,

f(w
(i)
1 ) = 5i− 7, for 2 ≤ i ≤ n ,

f(x
(1)
1 ) = 7,

f(x
(i)
1 ) = 5i+ 1, for 2 ≤ i ≤ n− 1 and

f(x
(n)
1 ) = 5n− 3.

Then the induced edge labeling is obtained as follows:

f∗(uiui+1) =





3i 1 ≤ i ≤ 2

5i− 3 3 ≤ i ≤ n− 1,

f∗(vivi+1) = 5i+ 3, for 1 ≤ i ≤ n− 2 ,

f∗(vn−1vn) = 5n− 3,

f∗(viui+1) = 5i, for 1 ≤ i ≤ n− 1 ,

f∗(u1w
(1)
1 ) = 2,

f∗(uiw
(i)
1 ) = 5i− 6, for 2 ≤ i ≤ n ,

f∗(v1x
(1)
1 ) = 7,

f∗(vix
(i)
1 ) = 5i+ 1, for 2 ≤ i ≤ n− 1 and

f∗(vnx
(n)
1 ) = 5n− 2.

Case 2. m = 2 and n ≥ 3.



134 A.Durai Baskar and S.Arockiaraj

Define f : V (SLn ⊙ S2) → {1, 2, 3, · · · , 7n− 2} as follows:

f(ui) =






2i+ 1 1 ≤ i ≤ 2

7i− 6 3 ≤ i ≤ n− 1 and i is even

7i− 9 3 ≤ i ≤ n− 1 and i is odd ,

f(un) =





7n− 10 n is even

7n− 9 n is odd ,

f(vi) =






9 i = 1

7i+ 2 2 ≤ i ≤ n− 3 and i is even

7i− 1 2 ≤ i ≤ n− 3 and i is odd ,

f(vn−2) =





7n− 13 n is even

7n− 15 n is odd ,

f(vn−1) = 7n− 5,

f(vn) = 7n− 3,

f(w
(i)
1 ) =





1 i = 1

6i− 8 2 ≤ i ≤ 3

7i− 7 4 ≤ i ≤ n− 1 and i is even

7i− 10 4 ≤ i ≤ n− 1 and i is odd ,

f(w
(n)
1 =





7n− 11 n is even

7n− 10 n is odd ,

f(w
(i)
2 ) =






4i− 2 1 ≤ i ≤ 2

7i− 5 3 ≤ i ≤ n− 1 and i is even

7i− 8 3 ≤ i ≤ n− 1 and i is odd ,

f(w
(n)
2 =





7n− 7 n is even

7n− 8 n is odd ,

f(x
(i)
1 ) =





8 i = 1

7i 2 ≤ i ≤ n− 3 and i is even

7i− 3 2 ≤ i ≤ n− 3 and i is odd ,

f(x
(n−2)
1 ) =





7n− 12 n is even

7n− 17 n is odd ,

f(x
(n−1)
1 ) =





7n− 8 n is even

7n− 7 n is odd ,

f(x
(n)
1 ) = 7n− 4,



C-Geometric Mean Labeling of Some Ladder Graphs 135

f(x
(i)
2 ) =





11 i = 1

7i+ 1 2 ≤ i ≤ n− 3 and i is even

7i− 2 2 ≤ i ≤ n− 3 and i is odd ,

f(x
(n−2)
2 ) =





7n− 9 n is even

7n− 16 n is odd ,

f(x
(n−1)
2 ) = 7n− 6

and f(x
(n)
2 ) = 7n− 2.

Then the induced edge labeling is obtained as follows:

f∗(uiui+1) =





4i 1 ≤ i ≤ 2

7i− 4 3 ≤ i ≤ n− 2 ,

f∗(un−1un) =





7n− 13 n is even

7n− 11 n is odd ,

f∗(vivi+1) =





12 i = 1

7i+ 4 2 ≤ i ≤ n− 3 ,

f∗(vn−2vn−1) =





7n− 9 n is even

7n− 10 n is odd ,

f∗(vn−1vn) = 7n− 4,

f∗(viui+1) = 7i, for 1 ≤ i ≤ n− 1 ,

f∗(uiw
(i)
1 ) =





2 i = 1

6i− 7 2 ≤ i ≤ 3

7i− 6 4 ≤ i ≤ n− 1 and i is even

7i− 9 4 ≤ i ≤ n− 1 and i is odd ,

f∗(unw
(n)
1 ) =





7n− 10 n is even

7n− 9 n is odd ,

f∗(uiw
(i)
2 ) =





3i 1 ≤ i ≤ 2

7i− 5 3 ≤ i ≤ n− 1 and i is even

7i− 8 3 ≤ i ≤ n− 1 and i is odd ,

f∗(unw
(n)
2 ) = 7n− 8,

f∗(vix
(i)
1 ) =






9 i = 1

7i+ 1 2 ≤ i ≤ n− 3 and i is even

7i− 2 2 ≤ i ≤ n− 3 and i is odd ,
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f∗(vn−2x
(n−2)
1 ) =





7n− 12 n is even

7n− 16 n is odd ,

f∗(vn−1x
(n−1)
1 ) = 7n− 6,

f∗(vnx
(n)
1 ) = 7n− 3,

f∗(vix
(i)
2 ) =






10 i = 1

7i+ 2 2 ≤ i ≤ n− 3 and i is even

7i− 1 2 ≤ i ≤ n− 3 and i is odd ,

f∗(vn−2x
(n−2)
2 ) =





7n− 11 n is even

7n− 15 n is odd ,

f∗(vn−1x
(n−1)
2 ) = 7n− 5

and f∗(vnx
(n)
2 ) = 7n− 2.

Case 3. m = 1, 2 and n = 2.

The C-geometric mean labeling of SL2 ⊙ S1 and SL2 ⊙ S2 is given in Figure 3.t tt tt tt t
t tt t t
t t t tt tt1
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Figure 3 The C-geometric mean labeling of SL2 ⊙ S1 and SL2 ⊙ S2.

Hence, f is a C-geometric mean labeling of the graph SLn⊙Sm. Thus the graph SLn⊙Sm

is a C-geometric mean graph for n ≥ 2 and m ≤ 2. 2
Theorem 2.7 The graph STn is a C-geometric mean graph for n ≥ 2.

Proof Let u1,1, u1,2, u1,3, · · · , u1,n, u2,1, u2,2, u2,3, · · · , u2,n, u3,1, u3,2, u3,3, · · · , u3,n−1, u4,1,

u4,2, u4,3, · · · , u4,n−2, · · · , un,1, un,2 be the vertices of the step graph STn.

In ui,j , i denotes the row (counted from bottom to top) and j denotes the column (counted

from left to right) in which the vertex occurs.
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Define f : V (STn) → {1, 2, 3, · · · , n2 + n− 1} as follows: For 1 ≤ i ≤ n− 1,

f(ui,j) =





(n+ 1 − i)2 + 2(j − 1) 1 ≤ j ≤
⌊

n+2−i
2

⌋

(n+ 1 − i)(n+ 3 − i) − 2j + 1
⌊

n+2−i
2

⌋
+ 1 ≤ j ≤ n+ 1 − i,

f(ui,n+2−i) = (n+ 1 − i)(n+ 3 − i), for 2 ≤ i ≤ n− 1 ,

f(un,1) = 3 and

f(un,2) = 1.

Then the induced edge labeling is obtained as follows:

For 1 ≤ i ≤ n− 2,

f∗(ui,jui,j+1) =






(n+ 1 − i)2 + 2j − 1 1 ≤ j ≤
⌊

n+2−i
2

⌋
− 1

(n+ 1 − i)2 + 2j − 1 j =
⌊

n+2−i
2

⌋
and i is odd

(n+ 1 − i)(n+ 3 − i) − 2j j =
⌊

n+2−i
2

⌋
and i is even

(n+ 1 − i)(n+ 3 − i) − 2j
⌊

n+2−i
2

⌋
+ 1 ≤ j ≤ n− i,

f∗(un−1,1un−1,2) = 5,

f∗(un,1un,2) = 2,

f∗(ui,n+1−iui+1,n+2−i) = (n+ 1 − i)(n+ 2 − i), for 2 ≤ i ≤ n− 1,

f∗(ui,1ui+1,1) = (n+ 1 − i)(n− i), for 1 ≤ i ≤ n− 2,

f∗(un−1,1un,1) = 4,

For 1 ≤ i ≤ n− 3,

f∗(ui,jui+1,j) =





(n+ 1 − i)(n− i) + 2j − 1 2 ≤ j ≤
⌊

n+2−i
2

⌋
− 1

(n+ 1 − i)(n− i) + 2j − 1 j =
⌊

n+2−i
2

⌋
and i is odd

(n+ 1 − i)(n+ 2 − i) − 2j j =
⌊

n+2−i
2

⌋
and i is even

(n+ 1 − i)(n+ 2 − i) − 2j
⌊

n+2−i
2

⌋
+ 1 ≤ j ≤ n− i,

f∗(un−2,2un−1,2) = 8,

f∗(un−1,2un,2) = 3,

f∗(ui,n+1−iui+1,n+1−i) = (n+ 1 − i)2, for 1 ≤ i ≤ n− 2

and f∗(un−1,2un,2) = 3.

Hence, f is a C-geometric mean labeling of STn. Thus the step graph STn is a C-geometric

mean graph, for n ≥ 2. 2
Theorem 2.8 The graph 2ST2n is a C-geometric mean graph, for n ≥ 2.

Proof Let u1,1, u1,2, u1,3, · · · , u1,n, u2,1, u2,2, u2,3, · · · , u2,2n, u3,1, u3,2, u3,3, · · · , u3,2n−2, u4,1,

u4,2, u4,3, · · · , u4,2n−4, · · · , un+1,1, un+1,2 be the vertices of the double sided step graph 2ST2n.
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In ui,j , i denotes the row (counted from bottom to top) and j denotes the column (counted

from left to right) in which the vertex occurs.

Define f : V (2ST2n) → {1, 2, 3, · · · , 2n2 + 3n} as follows:

f(u1,j) =





2n2 + n+ 1 + 2(j − 1) 1 ≤ j ≤ n

2n2 + 3n− 2(j − n− 1) n+ 1 ≤ j ≤ 2n,

for 2 ≤ i ≤ n and 2 ≤ j ≤ n+ 2 − i,

f(ui,j) = 2(n+ 1 − i)2 + (n+ 2 − i) + 2(j − 2),

for 2 ≤ i ≤ n and n+ 3 − i ≤ j ≤ 2n+ 3 − 2i,

f(ui,j) = 2(n+ 1 − i)2 + 3(n+ 1 − i) − 2(i+ j − n− 3),

f(u2,1) = 2n2 + n− 2,

f(u1,1) = 3,

f(u1,2) = 1,

f(ui,1) = 2(n+ 2 − i)2 + n− i, for 3 ≤ i ≤ n and

f(ui,2n+4−2i) = 2(n+ 2 − i)2 + n+ 1 − i, for 2 ≤ i ≤ n.

Then the induced edge labeling is obtained as follows:

f∗(u1,ju1,j+1) =





2n2 + n+ 2 + 2(j − 1) 1 ≤ j ≤ n

2n2 + 3n+ 1 − 2(j − n) n+ 1 ≤ j ≤ 2n− 1,

for 2 ≤ i ≤ n− 1 and 2 ≤ j ≤ n+ 2 − i,

f∗(ui,jui,j+1) = 2(n+ 1 − i)2 + (n+ 3 − i) + 2(j − 2),

for 2 ≤ i ≤ n− 1 and n+ 3 − i ≤ j ≤ 2n+ 2 − 2i,

f∗(ui,jui,j+1) = 2(n+ 1 − i)2 + 3(n+ 1 − i) + 1 − 2(i+ j − n− 2),

f∗(ui,2n+3−2iui+1,2n+2−2i) = 2(n+ 1 − i)2 + (n+ 2 − i), for 2 ≤ i ≤ n− 1,

f∗(un,3un+1,2) = 3,

f∗(un,2un,3) = 5,

f∗(un+1,1un+1,2) = 2,

f∗(u1,1u2,1) = 2n2 + n,

f∗(u1,2nu2,2n) = 2n2 + n+ 1,

f∗(ui,2ui+1,1) = 2(n+ 1 − i)2 + n+ 1 − i, for 2 ≤ i ≤ n− 1,

f∗(un,2un+1,1) = 4,
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f∗(u1,ju2,j) =





2n2 − n+ 2 + 2(j − 2) 2 ≤ j ≤ n

2n2 + n− 1 − 2(j − n− 1) n+ 1 ≤ j ≤ 2n− 1,

for 2 ≤ i ≤ n− 1 and 3 ≤ j ≤ n+ 2 − i,

f∗(ui,jui+1,j−1) = 2(n+ 1 − i)2 − (n+ 1 − i) + 2(j − 2),

for 2 ≤ i ≤ n− 1 and n+ 3 − i ≤ j ≤ 2n+ 2 − 2i,

f∗(ui,jui+1,j−1) = 2(n+ 1 − i)2 + (n+ 4 − i) − 2(i+ j − n− 1),

f∗(ui,1ui,2) = 2(n+ 1 − i)2 + 3(n+ 1 − i) + 1, for 2 ≤ i ≤ n and

f∗(ui,2n+3−2iui,2n+4−2i) = 2(n+ 1 − i)2 + 3(n+ 1 − i) + 2, for 2 ≤ i ≤ n.

Hence, f is a C-geometric mean labeling of 2ST2n. Thus the double sided step graph 2ST2n

is a C-geometric mean graph, for n ≥ 2. 2
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Abstract: The maximum order of partition of the edge set E(G) into edge hub sets is

called edge hubtic number of G and denoted by ξe(G). In this paper, we determine the edge
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§1. Introduction

By a graph G = (V,E), we mean a finite and undirected graph without loops and multiple

edges. A graph G with p vertices and q edges is called a (p, q) graph, the number p is referred

to as the order of a graph G and q is referred to as the size of a graph G. In general, the degree

of a vertex v in a graph G denoted by deg(v) is the number of edges of G incident with v. The

degree of an edge uv is defined to be deg(u) + deg(v) − 2. Also ∆8(G) denotes the maximum

degree among the edges of G, and δ8(G) denotes the minimum degree among the edges of G.

⌊x⌋ is the greatest integer less than or equal to x. In a tree, a leaf is a vertex of degree one, a

leaf edge is an edge incident to a leaf. We refer to [6] for terminology and notations not defined

here.

Introduced by Walsh [13], a hub set in a graph G is a set H of vertices in G such that

any two vertices outside H are connected by a path whose internal vertices lie in H . The hub

number of G, denoted by h(G), is the minimum size of a hub set in G. A connected hub set in

G is a vertex hub set F such that the subgraph of G induced by F (denoted G[F ]) is connected.

Let G be a graph, let e = (u, v) and f = (u1, v1), a path between two edges e and f

is a path between one end vertex from e and another end vertex from f such that d(e, f) =

min{d(u, u1), (u, v1), (v, u1), (v, v1)}. Internal edges of a path between two edges e and f are

all the edges of the path except e and f [11]. A subset He ⊆ E(G) is called an edge hub set

of G if every pair of edges e, f ∈ E \He are connected by a path where all internal edges are

from He. The minimum cardinality of an edge hub set is called edge hub number of G, and

is denoted by he(G) [11]. An edge hub set He ⊆ E(G) is called a connected edge hub set, if

the subgraph [He] is connected. The minimum cardinality of a connected edge hub set of G

1Received January 24, 2018, Accepted August 24, 2018.
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is called a connected edge hub number and is denoted by hce(G) [1]. For more details on the

hub studies we refer to [10]. Graphs G1, and G2 have disjoint vertex sets V1 and V2 and edge

sets E1 and E2 respectively. Their union, G = G1 ∪ G2 has, as expected, V = V1 ∪ V 2 and

E = E1 ∪ E2 [6].

A set D of vertices in a graph G is called dominating set of G if every vertex in V \D is

adjacent to some vertex in D, the minimum cardinality of a dominating set in G is called the

domination number γ(G) of a graph G ([7].

A set B of edges in a graph G is called an edge dominating set of G if every edge in E \B
is adjacent to some edge in B, the minimum cardinality of an edge dominating set in G is called

the edge domination number γ′(G) of a graph G ([7]). An edge-domatic partition of G is a

partition of E(G), all of whose classes are edge-dominating sets in G. The maximum number of

classes of an edge-domatic partition of G is called the edge-domatic number of G and denoted

by ed(G) ([1]).

A double star Sn,m is the tree obtained from two disjoint stars K1,n−1 and K1,m−1 by

connecting their centers [5]. The line graph L(G) of G has the edges of G as it is vertices which

are adjacent in L(G) if and only if the corresponding edges are adjacent in G [6]. A friendship

graph, is the graph obtained by taking m copies of the cycle graph C3 with a vertex in common

and denoted by Fm. The following results will be useful in the proof of our results.

Theorem 1.1([10]) For any graph G, he(G) ≤ q − ∆′(G), and the inequality is sharp for any

path Pp, p ≥ 4.

Proposition 1.1([10]) For any graph G, he(G) ≤ p− 3.

Theorem 1.2([10]) For any tree T with p ≥ 3 vertices and l leaves,

he(T ) = hce(T ) = p− (l + 1).

Proposition 1.2([9]) For any graph G, ξ(G) ≤ δ(G) + 2.

§2. Main Results

Definition 2.1 The maximum order of partition of the edge set E(G) into edge hub sets is

called edge hubtic number of G and denoted by ξe(G). The maximum order of partition of the

edge set E(G) into connected edge hub sets is called connected edge hubtic number of G and

denoted by ξce(G).

It is obvious that ξe(G) ≥ ξce(G), since he(G) ≤ hce(G). We first determine the edge hubtic

number of some standard graphs.
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Observation 2.1 (1) For any cycle Cp,

ξe(Cp) =






3, if p = 3 ;

4, if p = 4 ;

2, if p = 5, 6 ;

1, if p ≥ 7.

(2) For any path Pp,

ξe(Pp) =





3, if p = 4 ;

2, if p = 3, 5 ;

1, if p ≥ 6.

(3) For the wheel graph W1,p−1, p ≥ 4,

ξe(W1,p−1) =





6, if p = 4 ;

4, if p = 5 ;

3, if p ≥ 6.

(4) For the star K1,p−1, ξe(K1,p−1) = p− 1.

(5) For the double star Sn,m, ξe(Sn,m) = 3.

(6) For the complete bipartite graph Kn,m, ξe(Kn,m) = max{n,m}.

We will check that if the edge hubtic number is a suitable measure of stability?. Now we

ask, does the edge hubtic number discriminate between graphs. There are many examples of

graphs which propose that ξe(G) is a suitable measure of stability which is able to discriminate

between graphs. For example, consider the graphs G1, G2 and G3 in Figure 1.v v v v v vv vv v vv
G1 G2 G3

Figure 1: G1, G2, and G3.

It is clear from Figure 1, that ed(G1) = ed(G2) = ed(G3) = 3, the edge domatic number

does not discriminate between graphs G1, G2 and G3, but ξe(G1) = 3, ξe(G2) = 4 and ξe(G3) =

5, therefore ξe(G1) 6= ξe(G2) 6= ξe(G3). So the edge hubtic number discriminates between

graphs G1, G2 and G3.
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Observation 2.2 For any graph G, 0 ≤ ξe(G) ≤ q.

Theorem 2.1 If a graph G is a tree with at least 3 non-leaf edges and the induced sub graph

G[(E \ L)] is not a star where L is the set of all leaf edges in G, then ξe(G) = 1.

Proof Let a graph G be a tree with at least 3 non-leaf edges and the induced sub graph

G[(E \ L)] is not a star, we discuss the following cases:

Case 1. Suppose that He is a set of all non-leaf edges, clearly any path between two leaf edges

does not pass through another leaf edge. So, He is an edge hub set of G, and by Theorem 1.2

it is minimum edge hub set. Now, suppose Ze ⊆ E \He be an edge hub set of G. Since G is a

tree with at least 3 non-leaf edges and the induced sub graph G[(E \L)] is not a star, then the

induced subgraph G[E \ Ze] is not complete. Also any path in a tree never passes through a

leaf edge. Therefore there are at least two non adjacent edges e, f ∈ E \ Ze such that no path

between them is in Ze, this is a contradiction. Hence He is the only edge hub set.

Case 2. Suppose that He is an edge hub set of G but not containing all non-leaf edges. Since G

has at least three non-leaf edges, let {e1, e2, e3} be non-leaf edges where e1 and e3 not adjacent,

let l1, l3 be two leaf edges adjacent to e1 and e3, respectively. Clearly, G[{l1, e1, e2, e3, l3}] is a

path P6. As he(P6) = 3, then He contains at least three edges from P6. Therefore any other

edge hub set of G must intersects He since size of P6 is 5. Then ξe(G) = 1. 2
Proposition 2.1 For any (p, q)-graph G, ξe(G) ≤ q

he(G) , where he(G) 6= 0.

Proof Let H = {H1, H2, H3, · · · , Ht}, be the edge hubtic partition of G and ξe(G) = t.

Clearly |Hi| ≥ he(G), i = 1, 2, · · · , t and we get q =
∑t

i=1 |Hi| ≥ the(G), hence the result. 2
Observation 2.4 Let G′ be a subgraph of G, then is not necessary ξe(G

′) ≤ ξe(G).

For example, G = K1 + P4, and G′ = K1 + P3, ξe(G
′) = 5 � 3 = ξe(G).

Proposition 2.2 For any (p, q)-graph G of order p ≥ 5,

ξe(G) ≤ δ′(G) + 2.

Proof By the definition of edge hub number it is obvious that he(G) = h(L(G)), so

ξe(G) = ξ(L(G)). By Proposition 1.2, ξe(G) = ξ(L(G)) ≤ δ(L(G)) + 2, since δ′(G) = δ(L(G)),

the result follows. 2
Corollary 2.1 For any (p, q)-graph G of order p ≥ 5,

ξe(G) + he(G) ≤ δ′(G) + p− 1.

Proof By Proposition 1.1 and Proposition 2.2, we get the result. 2
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Theorem 2.2 For any (p, q)-graph G of order p, ξe(G) + ξe(G) ≤ p(p−1)
2 , and the inequality is

sharp for stars K1,3, and K1,4.

Proof By Observation 2.2, ξe(G) ≤ q and ξe(G) ≤ q. Then

ξe(G) + ξe(G) ≤ q + q =
p(p− 1)

2
. 2

Theorem 2.3 Let G be a (p, q)-graph. Then

ξe(G) + he(G) ≤ q + 2.

Proof By Theorem 1.1, he(G) ≤ q − ∆′(G). Hence he(G) ≤ q − δ′(G). Proposition 2.2,

completes the proof. 2
Observation 2.5 If ξe(G1) = ξe(G2),then not necessary he(G1) = he(G2).

For example, G1 = K1,3, and G2 = F3 such that ξe(G1) = ξe(G2) = 3, and he(G1) = 0 6=
3 = he(G2).

Theorem 2.4 Let G be a graph of size q. Then ξe(G) = q if and only if G with δ′ ≥ q − 2.

Proof Assume that ξe(G) = q, then there is a q partition of E(G) into edge hub sets and

every partite set consists of one edge, we have the following cases:

Case 1. All edges of G are adjacent, so any edge of G is an edge hub set of G. So δ′ = q − 1.

Case 2. Any edge of degree q − 1, is adjacent to all edges and hence it constitute an edge

hub set of G, and since any edge of degree q − 2, is adjacent to all edges of G except one, so

every edge of them must be an edge hub set for G, hence δ′(G) = q − 2, if we consider any

edge f such that deg(f) < q− 2, in this case let deg(f) = q− 3, so there is two edges e1, e2 not

adjacent to f , now if the set {f} is an edge hub set for G then e1 must be adjacent to e2, but

by this assumption {e1} is not edge hub set for G, since e2 not adjacent to f and e1 not a path

between them. So ξe(G) = q only if the graph G satisfies δ′(G) ≥ q − 2. Converse is obvious.2
Proposition 2.3 For any two connected graphs G1 and G2,

ξe(G1 ∪G2) =





1, if G1 or G2 is with δ′ < q − 1;

2, if G1 and G2 are with δ′ = q − 1.

Proof Let G1, G2 be two graphs both with δ′ = q− 1, clearly E(G1) is an edge hub set for

G1 ∪G2 and E(G2) is an edge hub set of the same graph, therefore ξe(G1 ∪G2) = 2. Suppose

that G1 or G2 is with δ′ < q−1, then any edge hub set of G1 ∪G2 must contain all of the edges

of G1 and any edge hub set of G2, therefore ξe(G1 ∪G2) = 1. 2
Corollary 2.2 For any disconnected graph G with m ≥ 3 components, ξe(G) = 1.
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Abstract: There are 3 crises in the development of mathematics from its internal, and

particularly, the 3th crisis extensively made it to be consistency in logic, which finally led

to its more and more abstract, but getting away the reality of things. It should be noted

that the original intention of mathematics is servicing other sciences to hold on the reality

of things but today’s mathematics is no longer adequate for the needs of other sciences such

as those of theoretical physics, complex system and network, cytology, biology and economy

developments change rapidly as the time enters the 21st century. Whence, a new crisis

appears in front of mathematicians, i.e., how to keep up mathematics with the developments

of other sciences? I call it the 4th crisis of mathematics from the external, i.e., the original

intention of mathematics because it is the main topic of human beings.

Key Words: Mathematical crisis, reality, contradiction, TAO TEH KING, mathematical

universe hypothesis, Smarandachely denied axiom, Smarandache multispace, mathematical

combinatorics, traditional Chinese medicine.
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§1. Introduction

As we known, one or the main function of mathematics in science is it can establish exact math-

ematical expressions for scientific models on things. Certainly, a theory can not be without the

practice, and it can be only from the practice. By this view, the creating source of mathematics

can be only from solving problems appeared in practice of human beings, and then move its

method and technique upward a mathematica theory for understanding the reality of things in

the world.

Usually, a thing is complex, even hybrid with other things sometimes. Then, what is the

reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world,

1An extended version of the preface of my book Mathematical Reality – My Philosophy on Mathematics with

Reality, Published in USA, August, 2018.
2Received March 16, 2018, Accepted August 26, 2018.
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independent on the understanding of human beings, which implies that the reality holds on by

human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality

of things is the main objective of science in the history of human development.

But, a mathematical conclusion really reflects the reality of a thing? The answer is not cer-

tain because the practice of human beings shows the mathematical conclusion do not correspond

to the reality of a thing sometimes, for instance the Ames Room. Usually, the understanding

of a thing is by observation of human beings, which is dependent on the observable model,

data collection by scientific instruments with data processing by mathematics. Such an ob-

servation brings about a unilateral, or an incomplete knowledge on a thing. In this case, the

mathematical conclusion reflects partial datum, not all the collection, and in fact, all collection

data (by different observers with different model) with data processed is not a mathematical

system, even with contradictions in usual unless a data set, which implies that there are no

mathematical subfields applicable.

We all know that it appeared 3 crises in mathematical development. In each time, mathe-

matics itself was enriched, improved and completed. However, along with the solving process of

the 3th mathematical crisis, the trend of mathematical developing in 19th and 20th centuries

shows that a mathematical system is more concise, and its conclusion is more extended, then

farther to the reality of things because it abandons more and more characters of things. Besides,

more and more researchers only pay attention on questions or problems in himself branch along

with the mathematical branch divided, and few peoples consider his research whether is or not

valuable for developing the whole mathematics, for understanding the nature and beneficial to

human progress, which finally results in mathematics father to the practice of human beings,

weaker for hold on the true face of things in the world.

As the time enters the 21st century, science developments change rapidly, and meanwhile,

a few global questions constantly emerge, such as those of local war, food safety, epidemic

spreading network, environmental protection, multilateral trade dispute, more and more ques-

tions accompanied with the overdevelopment and applying the internet, · · · , etc. Clearly,

today’s mathematics is no longer adequate for the needs of other sciences. It is far falling be-

hind the development of society. A new crisis appears in front of mathematicians, i.e., how to

keep up mathematics with the developments of other sciences for hold on the reality of things?

I think this is a big and more important problem in the development of mathematics in the

21th century, and call it the mathematical 4th crisis because holding on the reality of things is

the central objective of human beings.

The main purpose of the review is analyzing this crisis and points out the way of one how

to out this crisis by establishing new mathematical theory, also provides an envelope theory,

i.e., mathematical combinatorics as the candidate for the way.

§2. Be Understood or Not

For reality of things, an elementary but fundamental question should be answered first. That

is, can one really holds on the reality of things? For this question, there are two but quite

opposite answers. One is the reality of things can not completely understanding, i.e., one can
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only holds on the approximate reality of things. Another is one can finally understanding the

reality of all things, i.e., Theory of Everything. We respectively discuss them following.

Not Understood. There is a well-known philosophical book: TAO TEH KING written

by an ideologist Lao Zi in ancient China. In this book, it discussed extensively on the relation

of TAO, a more general object than the reality with name and things, and shown in its first

but central chapter ([8]):

The Tao that experienced is not the eternal Tao;

The Name named is not the eternal Name;

The unnamable is the eternally real and naming is the origin of all particular things;

Freely desire, you realize the mystery but caught in desire, you see only the manifestations;

The mystery and manifestations arise from the same source called darkness;

The darkness within darkness, the gateway to all understanding.

For explaining the relation of Tao with knowing ability of human beings respectively in his

Chapter 42:

Tao gives birth to One, One gives birth to Two, Two gives birth to Three and Three gives birth to all things;

All things have their backs to the female and stand facing the male. When male and female combine, all things

achieve harmony.

and also in Chapter 25:

Human beings follow the earth, Earth follows the universe,

The universe follows the Tao and the Tao follows only itself.

By the view of Lao Zi, the reality of things is not understood because the Tao that expe-

rienced is not the eternal Tao, the Name named is not the eternal Name, and human beings

is born after Three along with Three gives birth to all things, particularly, the reality. I agree

Lao Zi’s notion, i.e., it is difficult to know the reality of all things, and all mathematical reality

is only approximate reality, not the reality. For Tao, One and Two before Three, we can only

analyze their various possibility by science, can not really hold on their true faces.

Be Understood. The notion is the supporting and main trending in scientific community

today, i.e., the reality of all things can be understood by human beings and one can finally holds

on and become the dominate of the world. Particularly, the physical world is nothing else but

a mathematical structure ([12], [13]) by Tegmark Max, a famous Swedish-American physicist

and cosmologist in MIT now.

Here, I would like to analyze 2 hypotheses, i.e., the Big Bang and mathematical universe

hypothesis on the physical world.

1. Big Bang Hypothesis. The Big Bang model states that the earliest state of the

Universe was an extremely hot and dense one, and that the Universe subsequently expanded

and cooled, which is based on general relativity following:

Applying his principle of general relativity, i.e. all the laws of physics take the same form

in any reference system and the equivalence principle, i.e., there are no difference for physical

effects of the inertial force and the gravitation in a field small enough, Einstein got the equation

of gravitational field

Rµν − 1

2
Rgµν + λgµν = −8πGTµν ,
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where Rµν = Rνµ = Rα
µiν ,

Rα
µiν =

∂Γi
µi

∂xν
− ∂Γi

µν

∂xi
+ Γα

µiΓ
i
αν − Γα

µνΓi
αi,

Γg
mn =

1

2
gpq(

∂gmp

∂un
+
∂gnp

∂um
− ∂gmn

∂up
)

and R = gνµRνµ.

Combining the Einstein’s equation of gravitational field with the cosmological principle,

i.e., there are no difference at different points and different orientations at a point of a universe

on the metric 104l.y., Friedmann got a standard model of universe. The metrics of the standard

universe are

ds2 = −c2dt2 + a2(t)[
dr2

1 −Kr2
+ r2(dθ2 + sin2 θdϕ2)]

and

gtt = 1, grr = − R2(t)

1 −Kr2
, gφφ = −r2R2(t) sin2 θ.

The standard model of cosmos finally enables the birth of Big Bang model for the cosmos

in thirties of the 20th century, and finally, the NASA’s explorer mission WMAP(Wilkinson

Microwave Anisotropy Probe) determined the radius of the universe was 13.7b.l.y on Big Bang

hypothesis.

Mathematical Universe Hypothesis. The mathematical universe hypothesis proposed

by Max Tegmark, is a speculative Theory of Everything, which claims that our external physical

reality is a mathematical structure([12], [13]), i.e., the physical universe is not merely described

by mathematics, but is mathematics (specifically, a mathematical structure), which implies

the mathematical existence equals to that the physical existence, and all structures that exist

mathematically exist physically as well. And observers, including humans ourself, are self-

aware substructures (SASs), and in any mathematical structure complex enough to contain

such a substructure, it will subjectively perceive itself as existing in a physically real’ world.

Big Bang Universe

(Visible Universe)

Non-Visible UniverseNon-Visible Universe

Non-Visible Universe Non-Visible Universe

s sAll Mathematical Structure

-�
6
?

Fig.1
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According to Lao Zi’s birth ruler, the WMAP is essentially determined the radius of visible

universe by human beings is 13.7b.l.y, but we can not claim the radius of universe is 13.7b.l.y

just by the Big Bang hypothesis. Otherwise, we are in an awkward situation and can not answer

what is the outer of the sphere of radius 13.7b.l.y unless its radius is finite. The advantage of

Max Tegmark’s hypothesis is it avoids the finite or not of the universe but claims its physical

reality is a mathematical structure. These 2 hypotheses are simply shown in Fig.1.

Therefore, the Big Bang hypothesis is only a notion locally on the universe. But why various

experimental of human beings verifies it maybe right just because our human beings are after

Three, i.e., after the Big Bang by Lao Zi, and the Friedmann’s standard model of universe is a

special solution of Einstein’s gravitational equations, which is essentially to explain the general

by special cases. However, we have many solutions on Einstein’s gravitational equations, even

with constant λ = 0 ([2]). Certainly, the Max Tegmark’s hypothesis is on the whole universe

but it also contains lethal deficiency following:

(1) If the Big Bang hypothesis is right, i.e., we can only hold on the reality of the visible

universe, how can we verify the external universe, i.e., non-visible unverse is mathematics or

not;

(2) Is our mathematical theory can already be used for understanding the reality of all

things in the world? The answer is not certain because mathematics is homogenous without

contradictions, i.e. a compatible one in logic but contradictions exist everywhere in the world

by philosophy. Thus, the reality known by mathematics on things can be only a subset of the

reality set ([4], [5]), i.e., the mathematical structure is not equal to the physical reality.

All of these show that even if the Big Bang and Max Tegmark’s hypotheses are both right,

we also need to establish a new mathematical theory so that the mathematical structure is

equal to the physical reality, i.e., a mathematical crisis is confronted with mathematicians.

§3. Mathematical Crisis in 21th Century

3.1 Brief Review 3 Crises of Mathematics in History

As we known, there are 3 crises in the development of mathematics following, each of them

motivates mathematics itself constantly enriched, improved and completed..

First Crisis. The early Pythagorean mathematics was based on the so-called commen-

surability principle, i.e., Pythagorean’s assertion: “everything is a number”. According to this

principle two geometric values Q and V have common measure, divisible by it, i.e., their ratio

can be expressed as the ratio of the relative prime numbers m and n. However, Hippasu, a

member of Pythagorean’s found the length of the diagonal of a unit square is
√

2, which can

not be as a ratio of two relative prime numbers, i.e., it is an irrational number. This discov-

ery became a turning point in mathematics development, which ruined the former system of

Pythagoreans, extended the rational to real numbers and finally resulted in new mathematical

theories.

Second Crisis. Even at present, calculus is a subject with the most widely applying
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to other science for hold on reality of things. However, its foundations refers to the rigorous

development of the subject in its early time. The cause was the unrigorous use of infinitesimal

quantities in that time, which resulted in the second crisis of mathematics, i.e., the foundation of

calculus. Certainly, there are many mathematicians work hard for going out this crisis, formed

new mathematical theories. For example, the limitation of Weierstrass eventually became

common of calculus base, instead of infinitesimal quantities as the rigorous approach, and

established real analysis which included full definitions, theorems with rigorous proof of calculus.

Third Crisis. The third crisis of mathematics came from the foundation of mathematics,

i.e., set theory by Russell paradox following:

Let R be the set of all sets that are not members of themselves. If R is not a member

of itself, then its definition dictates that it must contain itself, and if it contains itself, then it

contradicts its own definition as the set of all sets that are not members of themselves, i.e.,

R = {x|x /∈ x}, then R ∈ R ⇔ R /∈ R.

Russell paradox finally resulted in the establishing of axiomatic set theory, i.e., Russell’s

type theory and the Zermelo set theory in 1908.

3.2 Mathematical Crisis in 21th Century

The mathematical crisis, or the 4th crisis in 21th century does not come from its internal but in

the external needs or in its original intension. As we discussed, the axiomatic and abstract on

mathematics in the 19th and 20th centuries finally results in mathematics away from practice.

This trend also found by physicists in 20th century. Einstein once complain mathematics: as far

as the laws of mathematics refer to reality, they are not certain; and as far as they are certain,

they do not refer to reality. Besides, more and more problems appeared in the practice can not

find an applicable mathematics and don’t know how to hold on their characters. In fact, there

are more examples supporting this claim with social development in 21th century.

Elementary Particle. We have known matters consist of two classes particles, i.e.,

bosons with integer spin n, fermions with fractional spin n/2, n ≡ 1(mod2), and by a widely

held view, the elementary particles consists of quarks, leptons with interaction quanta including

photons and other particles of mediated interactions ([6], [7]), which constitute hadrons, i.e.,

mesons, baryons and their antiparticles.

Fig.2
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Although quark model is a formal classifying scheme for hadrons, i.e., the quarks and

antiquarks of Sakata, or Gell-Mann and Ne’eman, it appeared subconscious in the multiverse

interpretation of H.Everett on the superposition of particle. It should be noted that the mul-

tiverse interpretation or quark is proposed by physicist for explaining behavior of particles

without an applicable mathematics. However, it completely changed the usual notion that a

particle is an geometrical point or a subset of space, and opened a new way for understanding

the reality of a hadron in notion, i.e., we are not need to insist again that a hadron is a geo-

metrical point or a subset of space such as those of assumptions in determinable science. For

example, a baryon is predominantly formed by three quarks, and a meson is mainly composed

of a quark and an antiquark in quark models, such as those shown in the right of Fig.2, where

a particle consists of 5 quarks can be also found on the left.

Biological Population. The biological populations are dependent each other by food

web, i.e., a natural interconnection of food chains and a graphical representation of what-

eats-what in an ecological community on the earth. For example, a food chain starts from

producer organisms (such as grass or trees which use radiation from the sun to make their

food) and end at apex predator species (like grizzly bears or killer whales), detritivores (like

earthworms or woodlice), or decomposer species (such as fungi or bacteria). Usually, a model

of a biological system is converted into a system of equations. The solution of the equations, by

either analytical or numerical means, describes how the biological system behaves either over

time or at equilibrium. In fact, a food web is an interaction system in physics which can be

mathematically characterized by the strength of what action on what. For a biological 2-system,

let x, y be the two species with the action strength F ′(x → y), F (y → x) of x to y and y to x

on their growth rate, ([1]). Such a biological 2-system can be quantitatively characterized by

differential equations 



ẋ = F (y → x)

ẏ = F ′(x→ y)

on the populations of species x and y. However, this method can be only applied to the small

number (≤ 3) of populations in this web. If the number m of populations≥ 4, such as those

shown birds in Fig.3,

Fig.3
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a natural way for characterizing the behavior of m birds is to collect all dynamic equations of

cells, i.e., 



ẋ1 = F1(t, x1) +
∑
j 6=1

Hj(xj → x1)

ẋ2 = F2(t, x2) +
∑
j 6=2

Hj(xj → x2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
˙xm = Fm(t, xm) +

∑
j 6=m

Hj(xj → xm)

,

where Fi : R3 → R3 is generally a nonlinear function characterizing the external appearance of

ith cell and Hj(xj → xi) is the action strength of the jth cell to the ith cell in this system for

integers 1 ≤ i, j ≤ m.

However, this system maybe non-solvable, i.e., one can not characterize the behavior of

birds in the hope that of solutions. Thus, even in mathematical biology one has no a math-

ematical branch applicable for the reality of biology unless partially by differential equations

and statistical analysis.

Regional Economy. Today, the regional trade regulation enables each one of his member

develops extensively on other members. Achieving mutual benefit, and finally striving for trade

balance is the purpose of the regional trade organization. This situation appears both in the

global or area economy because there are few countries or areas still in self-sufficient today.

The trade surplus and deficit usually result in the trade disputing in members, processes the

multilateral negotiations, and then reachs a new regulation for members in the international

trade. Usually, one can obtains statistical data published by customs or statistical services in

a country or an area, but there are no a mathematical subfield for characterizing the global or

local changing in economy.

Furthermore, we can easily get other fields that there are no mathematical subfields appli-

cable. For example, the complex network, including community network, epidemic spreading

network with their behaviors.

Why I say it to be the 4th crisis of mathematics? The reason is that mathematics is

gradually ignored and replaced by computer simulation in society development. It already

become a subject of indulge in self-admiration by mathematician ourselves. If we do not turn

it around, it will be abandoned sooner or later by the society finally.

§4. Out of the Crisis

The essence of out of the 4th crisis of mathematics is return to the original intension, i.e.,

unveiling the reality of things. For such a objective, two main things should be processed

first on today’s mathematics. One is the contradiction between things such that different

things should be in equal rights, and another is the dependence of things because there is a

universal connection between things by philosophy, which implies one should redefine elements

in mathematics.

Let us discuss the two things flowing.
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1. Smarandache Multispace. Today, we have known a kind of geometry breaking

through the non-contradiction in classical mathematics, i.e., Smarandache geometry (1969) by

introducing a new type axiom for space. An axiom is said to be Smarandachely denied if the

axiom behaves in at least two different ways within the same space, i.e., validated and invalided,

or only invalided but in multiple distinct ways. A Smarandache geometry [10] is a geometry

which has at least one Smarandachely denied axiom (1969). If A is a Smarandache denied

axiom on space T , then all points in T with A validated or invalided consist of points sets

TH(A ) and TN(A ), and if it is in multiple distinct ways invalided, without loss of generality,

let s be its multiplicity. Then all points of T are classified into TA
1 , TA

2 , · · · , TA
s . Hence, we

get a partition on points of space T as follow:

T = TH(A )
⋃
TN(A ), or T = TA

1

⋃
TA

2

⋃
· · ·
⋃
TA

s .

This shows that T should be a Smarandace multispace.

Generally, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical spaces, different two

by two. A Smarandache multispace Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on Σ̃, i.e., the

rule Ri on Σi for integers 1 ≤ i ≤ m ([3],[9]-[10]). Thus, the reality of things, whatever its

accurate or approximate should be characterized or found out on Smarandache multispaces.

Whence, the Smarandache multispace solved better the contradiction in classical mathematics.

However, an abstract Smarandache multispace is nothing else but an algebraic or set problem

([11]), which worked out finely the equal rights, but

(1) To be also new conceptions accumulation;

(2) Not solve the universal connection of things;

(3) Can not extensively applies achievements in today’s mathematics, · · · , etc..

Thus, for understanding the reality of things, a new envelope theory should be established

on Smarandache multispace, i.e., mathematical combinatorics.t t
t ttt

- ?���6
v1 v2

v3vi
vi+1vn

f1

f2

f3fi

fn

Fig.4

2. Mathematical Combinatorics. What is mathematical combinatorics? The math-

ematical combinatorics is such a mathematics over topological graphs
−→
G , i.e., establish an

envelope mathematics on the elements of universal connection of things, which worked out

finely both the equal rights and universal connection of things. And how to combine classical

mathematics with topological graphs
−→
G? I found a typical set of labeled graphs

−→
GL, called
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continuity flows can be viewed as mathematical elements, i.e., labeling their edges by elements

in a Banach space B with two end-operators on B and holding on the continuity equation

on each vertex in
−→
G . For example, such a continuity flow over

−→
C n is shown in Fig.4, where,

A+
vivi+1

= 1, A+
vivi−1

= 2 and

fi =
f1 +

(
2i−1 − 1

)
F (t, x)

2i−1

for integers 1 ≤ i ≤ n Then, such a set of labeled graphs
−→
GL inherits the character of today’s

mathematics, i.e., if
−→
G1,

−→
G2, · · · ,

−→
Gn are oriented topological graphs and B a Banach space,

then all such labeled graphs
−→
GL with linear end-operators is also a Banach space, and further-

more, if B is a Hilbert space, all such labeled graphs
−→
GL with linear end-operators is a Hilbert

space too.

Now, there are 2 kinds of problems on continuity flows
−→
GL:

(1) Globally, given a graph family {−→G1,
−→
G2, · · · ,

−→
Gn}, n ≥ 1 and a Banach space B,

whether there exists continuity flows over graphs
−→
GL

1 ,
−→
GL

2 , · · · ,
−→
GL

n to be elements form a math-

ematical space;

(2) Locally, for a continuity flow
−→
GL, if some vertices are no longer conserved by outside

interference, how to make it conserved again such that it is still a continuity flow.

The first problem has been solved by a series papers of mine (See references of [5] in

details), but for the second problems, there are only a few local or partially results. In fact,

an independent energy system, including computer, car and human body, cell tissue, biological

populations, · · · , etc. adaptive system is nothing else but a continuity flow, and furthermore,

conservation flow. Thus, we can use continuity flows to characterize behavior of these systems

for reality.

Here, I would like to introduce the twelve meridians theory in traditional Chinese medicine

([14]), which can be viewed as a typical example of continuity flows, particularly, in treating

an illness. It is in fact to make the patient balance in Yin and Yang on acupoints of meridians,

i.e., conservation, where Yin (Y −) or Yang (Y +) can be viewed as negative or positive energy,

tendency, · · · , etc. are basic conceptions in traditional Chinese culture, i.e., Y + and Y − are

everywhere with that Y + in Y − and Y − in Y +, such as those shown in Fig.5, where the black

and white areas respectively represent Y − and Y +.

Fig.5

According to the characteristics of human body, the traditional Chinese medicine proposed
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12 meridian theory, i.e., there 12 meridians in human body completely reflects the physical

condition. They are respectively Hand Tai Yang small intestine meridian (H1), Hand Shao

Yang Tri-Jiao meridian (H2), Hand Yang Ming large intestine meridian (H3), Hand Tai Yin

lungs meridian (H4), Hand Shao Yin heart meridian (H5), Hand Jue Yin pericardium meridian

(H6), Foot Yang Ming stomach meridian (F1), Foot Jue Yin liver meridian (F2), Foot Tai

Yin spleen meridian (F3), Foot Shao Yin kidney meridian (F4), Foot Shao Yang gallbladder

meridian (F5), Foot Tai Yang bladder meridian (F6), such as those shown in Fig.6(these red

lines in human bodies without acupoint).

Fig.6

The balance of {Y −, Y +} at points on the 12 meridians is the basic ruler for human body

in traditional Chinese medicine. If there exists a point in one of the 12 meridians in which

{Y −, Y +} is imbalance, this person must be ill, and in turn, for a patient there are must be

points on the 12 meridians in which {Y −, Y +} are imbalance. This is the healing theory of

traditional Chinese medicine, and by thousands of years of testing, there are no counterexamples

appeared in China.

Certainly, the healing theory of traditional Chinese medicine is nothing else but continuity

flows. Notice that the 12 meridians are in fact 12 directed pathesH1, H2, H3, H4, H5, H6, F1, F2,

F3, F4, F5, F6 with vertices of acupoints. Define

−→
G =

(
6⋃

i=1

Hi

)
⋃
(

6⋃

i=1

Fi

)

with L : V (
−→
G) → {Y −, Y +}, then,

−→
GL should be conserved on its vertices in {Y −, Y +} for a

person, i.e., a continuity flow.

For a patient, i.e., there are points to be imbalance on the 12 meridians, the doctor detects

the points on which meridians, at which acupoints and the imbalance is Y − more than Y +, or

Y + more than Y −, and then by a natural ruler of the universe in traditional Chinese culture,

i.e., reducing the excess with supply the insufficient, the doctor regulates these related acupoints

by acupuncture or drugs so that the acupoints balance in {Y −, Y +} again. Clearly, this implies

a mathematical process for a continuity flow
−→
GL again.
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Certainly, there are no specific amount for the action strength H(xi → x0), where x0 is the

acupoint with {Y −, Y +} imbalance, xi is the related acupoints, 1 ≤ i ≤ s, which completely

depends on the judgement of the doctor, and continuous regulation based on the actual situation

of the patient, i.e., a process of response. This also implies that getting a continuity flow
−→
GL

again maybe by repeatedly regulation of the flows on conditions.
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we know nothing of what will happen in future, but by the analogy of past

experience.

By Abraham Lincoln, an American president.
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