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Fuzzy Product Rule for Solving Fully Fuzzy Linear Systems
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Abstract: In this paper we construct solutions of the fuzzy matrix equation Âx̂ = b̂ for

x̂ when the elements in Â and b̂ are MMCE-triangular fuzzy numbers. Here we apply the

product rule to solve the equation without any restriction on the signs of multiplied fuzzy

numbers. Then we give two examples of the fuzzy product rule.

Key Words: Neutrosophic fuzzy set, fuzzy number, fully fuzzy linear system (FFLS), fuzzy

product, MMCE-representation.

AMS(2010): 34A07, 34L10.

§1. Introduction

The systems of linear equations play important role in various areas of mathematics, statis-

tic and engineering systems. Fuzzy systems represented by fuzzy numbers rather then crisp

numbers have a major role for fuzzy modelling which can formulate uncertainty in real world

problems. Fuzzy arithmetic operations have an essential role for treat linear systems whose

parameters are all or partially fuzzy numbers. Firstly, the basic arithmetic structure for fuzzy

numbers was introduced by Zadeh [11] and later this was developed many researcher such as

Mizumoto and Tanaka [15], Dubois and Prade [7], Klir [9]. The fuzzy addition operation is

practically easy to use. But, the other three fuzzy operations see various difficulties. Here we

consider the multiplication operation for use the system of linear equations. A main disadvan-

tage of this operation is that the shape of type fuzzy numbers (L-R, triangular or trapezoidal

numbers) is not preserved. For this reason the researchers sought alternative ways for the

product of fuzzy numbers.

Ma et al. introduced a new multiplicative operation of product type in [4]. They defined

easily computable arithmetic operations based on split representation. But it has a drawback

about the support. This problem has been solved by using middle-core-ecart representation

(MCE-representation) of fuzzy numbers. Later, Zeinali and Maheri [6] introduced the modified

MCE-product (MMCE, for short).

The system of linear equations Ax̂ = b̂, where A is a crisp matrix and b̂ is a fuzzy number

vector, is called a fuzzy system of linear equation (FSLE) have been solved firstly Friedman et

al. [12]. Following general model for solving such a fuzzy linear systems was proposed by many

1Received December 29, 20243, Accepted June 10,2024.
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researchers ([13], [16], [4]). The linear system Âx̂ = b̂, where Â fuzzy matrix and b̂ is a fuzzy

number vector, is called a fully fuzzy linear system (FFLS). A lot of works have been done this

area with different methods ([ [17], [14], [8], [10]).

In this paper we will investigate the solutions of FFLS with MMCE-representation of

triangular fuzzy numbers. This paper is organized as follows. In Section 2, we briefly present the

necessary preliminaries on fuzzy theory and MMCE-representation. In section 3, we summarise

the definition and some properties of the FFLS. Then the solution of FFLS is constructed via

MMCE-representation of fuzzy numbers. The proposed method is illustrated by solving some

examples. Section 4 conclusion and some suggestions for future works are given.

§2. Preliminaries

In this section, we recall the basic notation of fuzzy numbers, the cross product and FFLS.

Definition 2.1([2]) Let E be a universal set. A fuzzy subset Â of E is given by its membership

function µÂ : E → [0, 1], where µÂ (t) represents the degree to which t ∈ E belongs to Â. We

denote the class of the fuzzy subsets of E by the sembol F (E).

Generally, a neutrosophic fuzzy set A(NFSA) is characterized by truth membership func-

tion TA(x), an indeterminacy membership functions IA(x) and a falsity membership function

FA(x).

Definition 2.2([9]) The α−level of a fuzzy set Â ⊆ E, denoted by
[
Â
]α

, is defined as

[
Â
]α

=
{
x ∈ E : Â (t) ≥ α

}
, ∀α ∈ (0, 1] .

Furthermore, if E is also topological space, then the 0−level is defined as the closure of the

support of Â. That is, [
Â
]0

=
{
x ∈ E : Â (t) > 0

}
.

The 1−level of a fuzzy subset Â is also called as core of Â and denoted by
[
Â
]1

= core
(
Â
)

.

Definition 2.3([9]) A fuzzy subset û on R is called a fuzzy real number (fuzzy interval), whose

α− cut set is denoted by [û]
α

, i.e., [û]
α

= {x : û (t) ≥ 0}, if it satisfies two axioms:

(i) There exists r ∈ R such that û (r) = 1;

(ii) For all 0 < α ≤ 1 , there exist real numbers −∞ < u−α ≤ u+
α < +∞ such that [û]

α
is

equal to the closed interval [u−α , u
+
α ].

Similarly, we can also define a neutrosophic fuzzy real number and fuzzy interval.

Definition 2.4([2]) A fuzzy number Â is said to be triangular if the parametric representation

of its α−level is of the form[
Â
]α

= [(a2 − a1)α+ a1, a3 − (a3 − a2)α]
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for all α ∈ [0, 1], where
[
Â
]0

= [a1, a3] and core
(
Â
)

= a2. A triangular fuzzy number is

denoted by the triple (a1, a2, a3).

The set of all fuzzy real numbers (fuzzy intervals) and triangular fuzzy numbers are denoted

by RF and RT , respectively.

Definition 2.5([1]) An arbitrary fuzzy number û in the parametric form is represented by an

ordered pair of functions [u−α , u
+
α ], 0 ≤ α ≤ 1, which satisfy the following requirements

(i) u−α is a bounded non-decreasing left continuous function on (0, 1] and right- continuous

for α = 0;

(ii) u+
α is bounded non- increasing left continuous function on (0, 1] and right- continuous

for α = 0;

(iii) u−α ≤ u+
α , 0 < α ≤ 1.

Definition 2.6([4],[3]) For û ∈ RF , consider the functions θ−u , θ
+
u → R+ defined by

θ−u (α) = mu − u−α , θ+
u (α) = u+

α −mu

where mu =
u−1 +u+

1

2 . Then, û = (mu; θ−u ; θ+
u ) is MCE-representation of û. Note that the

semicolon symbol makes this different from the well-known notation of a general triangular

fuzzy number denoted by (a, b, c). From now on, this notation is used for fuzzy numbers.

From reference [5], clearly, (mu; θ−u ; θ+
u ) represents a fuzzy number if and only if θ−u , θ

+
u are

bounded, positive, non-increasing, left-continuous on (0; 1] and right-continuous at 0.

Although the MCE-product is easy to use, it doesn’t preserve the shapes of triangular and

trapezoidal fuzzy numbers in reference [4].

First, we note that for a triangular fuzzy number û = (a; b; c), MCE-representation is in

the form

û = (b; (b− a) (1− α); (c− b) (1− α)),

which means that if û ∈ RT , then û can be presented by (mu; k−u (1 − α); k+
u (1 − α)), where

k−u , k
+
u ∈ R+. Now, the modification of MCE-product can be done as follows:

Definition 2.7([6]) Let û = (mu; k−u (1 − α); k+
u (1 − α)) and v̂ = (mv; k

−
v (1 − α); k+

v (1 − α))

be two triangular fuzzy numbers. The modified MCE-product (denoted by MMCE-product for

short) is defined by

û~ v̂ = (mumv; k
−
u k
−
v (1− α); k+

u k
+
v (1− α)),

the α−cut of û~ v̂ is

(û~ v̂)α = [mumv − k−u k−v (1− α);mumv + k+
u k

+
v (1− r)]

and its support is

sup pû~ v̂ = [mumv − k−u k−v ;mumv + k+
u k

+
v ].
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The triple representation for û~ v̂ as a triangular fuzzy number is

û~ v̂ =
(
mumv − k−u k−v ,mumv, k

+
u k

+
v

)
.

For û, v̂ ∈ RT and t ∈ R, the sum and scalar multiplication are defined by

û⊕ v̂ =
(
mu +mv; k

−
u (1− α) + k−v (1− α); k+

u (1− α) + k+
v (1− α)

)
tu =

 (tmu; tk−u (1− α); tk+
u (1− α)) , t ≥ 0,

(tmu;−tk+
u (1− α);−tk−u (1− α)) , t < 0

and the MMCE-product is invertible and the inverse of û = (mu; k−u (1− α); k+
u (1− α)) is

û−1 =

(
1

mu
;

1

k−u
(1− α);

1

k+
u

(1− α)

)
.

Example 2.8 Consider Â = (−1, 1, 3) and B̂ = (1, 3, 6), then Â = (1; 2(1− α), 2(1− α))

and B̂ = (3; 2(1− α), 3(1− α)) are MMCE triangular fuzzy numbers. The below algebraic

operations can be easily done.

A⊕B = (4; 4(1− α), 5(1− α)) = (0, 4, 9);

A	B = (−2; 5(1− α), 4(1− α)) = (−7,−2, 2);

A~B = (3; 4(1− α), 6(1− α)) = (−1,−3, 9);

A \B = A~B−1 = (−3; 2(1− α), 2(1− α)) = (−5,−3,−1).

Definition 2.9([7]) A matrix Ĉ = (ĉij) is called a fuzzy matrix,if each element of Ĉ is a

MMCE triangular fuzzy number.

Up to rest of this paper, we represent n × m fuzzy matrix Ĉ = (ĉij)n×m with ĉij =

((mc)ij ; (k−u )ij (1 − α); (k+
u )ij (1 − α)) and a new notation Ĉ = (C,E, F ), where C = (mc)ij ,

E = (k−u )ij (1− α) and F = (k+
u )ij (1− α) are three n×m crisp matrix.

Definition 2.10([7]) Consider the n× n linear system of equations:
(ĉ

11
~ x̂

1
)⊕ (ĉ

12
~ x̂

2
) ... (ĉ

1n
~ x̂

n
) = b̂

1

(ĉ
21
~ x̂

1
)~ (ĉ

22
~ x̂

2
) · · · (ĉ

2n
~ x̂

n
) = b̂2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(ĉ
n1
⊗ x̂

1
)~ (ĉ

n2
~ x̂

2
) ... (ĉ

nn
~ x̂

n
) = b̂n.

The matrix form of the above equations is

Ĉ ~ x̂ = b̂ (1)
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where the coefficient matrix Ĉ = (ĉij) is a n×n fuzzy matrix for integers 1 ≤ i, j ≤ n and x̂i, b̂i

are MMCE triangular fuzzy numbers, 1 ≤ i ≤ n. Such a system is called a fully fuzzy linear

system (FFLS).

§3. The Solution of FFLS

In this section we solve a FFLS Ĉ~ x̂ = b̂ using Computational methods given by [8]. However,

in this fuzzy system we use MMCE triangular fuzzy numbers instead of LR fuzzy numbers.

Thus, a FFLS will be solved not only for positive fuzzy numbers but also for all fuzzy numbers.

In this paper, we suppose that all fuzzy numbers are MMCE triangular fuzzy numbers.

Definition 3.1([8]) We say x̂ is a fuzzy approximate solution or more shortly, fuzzy solution of

Ĉ ~ x̂ = b̂ with the left and right shape functions similar to that L(.) and R(.) which used in Ĉ

and b̂ if and only if Ĉ~ x̂ = b̂ with approximate operators as mentioned above, i.e. x̂ = (x, y, z)

is said to be fuzzy solution of (C,E, F )⊗ x̂ = (b, q, s) iff

Cx = b, Cy + Ex = q, Cz + Fx = s (2)

where the membership function of each element of {x p µx̂ > 0} can be defined with the same

functions L and R which used in Ĉ and b̂.

Note that we use MMCE triangular fuzzy number with semicolon notation which is p-

resented by (mu; k−u (1 − α); k+
u (1 − α)) = (C;E;F ) instead of LR fuzzy number denoted by

(C,E, F ) in (2).

Now, we use the Eq (1) as follow

((mc)ij ;
(
k−c
)
ij

(1− r);
(
k+
c

)
ij

(1− α))~ ((mx)j ;
(
k−x
)
j

(1− α);
(
k+
x

)
j

(1− α))

= ((mb)j ;
(
k−b
)
j

(1− α);
(
k+
b

)
j

(1− α)).

If we rearrange the Eqs in (2), we get the following equations

n∑
j=1

(mc)ij . (mx)j = (mb)i

n∑
j=1

(mc)ij .
(
k−x
)
j

(1− α) +

n∑
j=1

(
k−c
)
ij

(1− α). (mx)j =
(
k−b
)
j

(1− α)

n∑
j=1

(mc)ij .
(
k+
x

)
j

(1− α) +

n∑
j=1

(
k+
c

)
ij

(1− α). (mx)j =
(
k+
x

)
j

(1− α)

where C is a nonsingular crisp matrix (1 ≤ j ≤ n).

If we assume that C is a nonsingular crisp matrix, we can write similarly from reference

[8] that

(Cx,Cy + Ex,Cz + Fx) = (b, q, s) .
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So, we have 
Cx = b,

Cy = q − Ex,

Cz = s− Fx.

(3)

Thus, we can easily get

x = C−1b, (4)

y = C−1q − C−1Ex, (5)

z = C−1s− C−1Fx, (6)

by using the inverse matrix of C, which enables us to get the following result.

Theorem 3.2 Let Â = (A;M ;N) and b̂ = (b; g;h) be non-negative fuzzy matrix and non-

negative fuzzy vector, respectively, and Â be the product of a permutation matrix by a di-

agonal matrix with positive diagonal entries. Moreover let h ≥ MA−1b, g ≥ NA−1b and(
MA−1 + I

)
b ≥ h. Then the system Âx̂ = b̂ has a positive fuzzy solution.

Proof See [8] for its proof. �

Now we consider two examples, one consisting of positive triangular fuzzy numbers and for

the other example it does not matter the sign of the triangular fuzzy numbers.

Example 3.3 Consider the following FFLS for positive fuzzy numbers (Test 3.2 in [8]) 5̂x̂1 + 6̂x̂2 = 5̂0,

7̂x̂1 + 4̂x̂2 = 4̂8

where 4̂ = (4, 4, 5), 5̂ = (4, 5, 6), 6̂ = (5, 6, 8), 7̂ = (6, 7, 7), 4̂8 = (43, 48, 55) and 5̂0 = (40, 50, 67)

are triangular fuzzy numbers. Using MMCE triangular fuzzy numbers instead of triangular

fuzzy numbers we mean
(5; (1− α); (1− α))~ (x1; y1(1− α); z1(1− α))⊕ (6; (1− α); 2 (1− α))

~ (x2; y2(1− α); z2(1− α)) = (50; 10(1− α); 17 (1− α))

(7; (1− α); 0)~ (x1; y1(1− α); z1(1− α))⊕ (4; 0; (1− α))~ (x2; y2(1− α); z2(1− α))

= (48; 5(1− α); 7 (1− α))

So with Eq. (4) we get 5 6

7 4

 x1

x2

 =

 50

48

 =⇒

 x1

x2

 =

 4

5

 .
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Similarly by Eqs. (5) and (6) we have 5 6

7 4

 y1 (1− α)

y2 (1− α)

 =

 10 (1− α)

5 (1− α)

−
 1 (1− α) 1 (1− α)

1 (1− α) 0 (1− α)

 4

5



=⇒

 y1

y2

 =

 1/11

1/11


and  5 6

7 4

 z1 (1− α)

z2 (1− α)

 =

 17 (1− α)

7 (1− α)

−
 1 (1− α) 2 (1− α)

0 (1− α) 1 (1− α)

 4

5



=⇒

 z1

z2

 =

 0

1/2

 .
So, the solution is

x̂ =

 (
4; 1

11 (1− α) ; 0
)(

5; 1
11 (1− α) ; 1

2 (1− α)
)


where this solution is a fuzzy solution; also we consider that our solution is the same as the

solution in [8].

Example 3.4 Consider the following FFLS for all fuzzy numbers (Example 2 in [10]) −̂1x̂1 + 2̂x̂2 = −̂2,

−̂3x̂1 + 3̂x̂2 = 4̂

where,

−̂3 = (−4,−3,−2), −̂1 = (−3,−1, 2),

2̂ = (1, 2, 4), 3̂ = (1, 3, 6),

−̂2 = (−3,−2,−1), 4̂ = (1, 4, 5)

are triangular fuzzy numbers. Using MMCE triangular fuzzy numbers instead of triangular

fuzzy numbers we mean
(−1; 2(1− α); 3 (1− α))~ (x1; y1(1− α); z1(1− α)) + (2; (1− α); 2 (1− α))

~ (x2; y2(1− α); z2(1− α)) = (−2; (1− α); (1− α))

(−3; (1− α); (1− α))~ (x1; y1(1− α); z1(1− α)) + (3; 2 (1− α) ; 3 (1− α))

~ (x2; y2(1− α); z2(1− α)) = (4; 3(1− α); (1− α))
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So with Eq. (4) we get −1 2

−3 3

 x1

x2

 =

 −2

4

 =⇒

 x1

x2

 =

 −14/3

−10/3

 .
Similarly by Eq. (5) and (6) we have

 −1 2

−3 3

 y1 (1− α)

y2 (1− α)

 =

 1 (1− α)

3 (1− α)

−
 2 (1− α) 1 (1− α)

1 (1− α) 2 (1− α)

 −14/3

−10/3



=⇒

 y1

y2

 =

 1/11

1/11


and −1 2

−3 3

 z1 (1− α)

z2 (1− α)

 =

 1 (1− α)

1 (1− α)

−
 5 (1− α) 2 (1− α)

1 (1− α) 3 (1− α)

 −14/3

−10/3



=⇒

 z1

z2

 =

 11.22

16.44

 .
So, the solution of system is

x̂ =

 (−4.66;−8.77 (1− α) ; 11.22 (1− α))

(−3.33; 8.88 (1− α) ; 16.44 (1− α))

 =

 (−8.77,−4.66, 15.33)

(−12.21,−3.33, 13.11)


where this solution is a fuzzy solution; but the solution in [10] is not a fuzzy solution. So the

method we used in this paper is more convenient.

§4. Conclusion

In this study, we introduced the Direct method in [8] for finding the solution of fully fuzzy linear

system (FFLS) by using the MMCE triangular fuzzy numbers with the product rule instead of

LR fuzzy numbers. We presented two examples to implement the given method. We verified

that the sign of fuzzy numbers does not matter in the fuzzy solution of the system.

This product rule easy to use for multiplication of fuzzy numbers which are not depend on

the signs . For this reason, it provides a great advantage in solving fuzzy equation systems. So,

for future work, we can apply this new method to find fuzzy eigenvalues and fuzzy eigenvectors

of the the system of linear equations Âx̂ = λ̂x̂.
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Abstract: The objective of this article is to establish a condition by which we are able to

state that an ellipsoidal fragment formed by a plane cutting the ellipsoid can always contain

a sphere in any position inside in it. A method to construct a chain of mutually tangent

spheres inscribed in the ellipsoidal segment has been proposed. The locus of the centroid as

well as the radii of the mutually tangent spheres have been computed. The prime concern of

our work is to explore some geometrical properties of such a chain of spheres which includes

the condition of inscribability of a sphere in any position inside the ellipsoid along with the

computation of points of tangency between consecutive spheres.

Key Words: Spherical chain, ellipsoidal segment, ellipsoid.

AMS(2010): 51M04, 51M05.

§1. Introduction

The proposed problem can be considered as a novel problem as there is not so much information

present about this in the literature. The proposed problem is the enhancement of the same type

of problem in 2-dimensions in which a chain of circles was considered in an elliptical segment.

The purpose of this article is to extend the same problem to 3-dimensions in which a chain of

spheres are considered to be inscribed in an ellipsoidal segment formed by a cutting plane to the

ellipsoid. Lucca (2009) described the properties of the chain of mutually tangent circles inside

a circular segment. In this paper, the authors discussed the locus of the centers of mutually

tangent circles inside a circle. They also explored the points of tangency of the these circles and

later they derived the recursive and non recursive formula for centers and radii of the circles in

the chain. In their paper, Poelaert et al. (2011) discussed about the surface area and curvature

of a general ellipsoid. They also derived the expressions for mean and Gaussian curvature

of the ellipsoid. Pal et al. (2016) explored the properties related to the chain of mutually

tangent spheres inside a spherical segment. In this article all the properties that has been

found for a circular chain is recalled for a chain of spheres. Finally, Lucca (2021) enhanced his

previous work to explore the properties of mutually tangent circles inside an elliptical segment.

1Received March 1, 2024, Accepted August 2,2024.
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The organization of the proposed article is as follows. The introduction is given in section 1.

Section 3 contains the basic concepts used to formulate the results. In section 4, radii and

centers of the chain spheres are derived. In section 5, the condition for inscribing the chain

of spheres inside the ellipsoidal segment has been obtained. Some geometrical properties are

derived in section 6. Section 7 contains the conclusion.

§2. Motivation of Work

The research work done in the above articles motivates us to extend this idea for a 3-dimensional

objects like ellipsoid. The novelty of our work is the extension of the geometrical properties

of the objects inscribed in a conic to the properties in a conicoid. In this paper, we have

considered an ellipsoid cutting by a plane vertically to form an ellipsoidal segment. A vertical

chain of mutually tangent spheres are considered inside the ellipsoidal fragment to describe

various properties like point of tangency, locus of centroid of the spheres.

§3. Basic Concepts

Let us consider a chain of spheres inscribed in an ellipsoid. It is assumed that a plane cutting

the ellipsoid to form an ellipsoidal fragment MQN to which the spheres are inscribed. Now

our aim is to explore some geometrical properties of the chain of mutually tangent spheres in

an ellipsoidal segment. For this, it is better to deal with the problem in spherical coordinates.

Therefore we consider the coordinate system as

x = ρ(θ, φ) cos θ sinφ

y = ρ(θ, φ) sin θ sinφ

z = ρ(θ, φ) cos θ.

Figure 1. A chain of spheres inscribed in an ellipsoidal fragment
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The equation of ellipsoid with principle semi axes a, b and c(a > b > c) and with eccentric

anomalies (0 6 θ 6 180) and (0 6 φ < 360) is given by

ρe(θ, φ) =
abc√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
. (1)

The equation of a plane cutting the ellipsoid in spherical coordinates is given by

ρr(θ, φ) =
p

l sin θ cosφ+m sin θ sinφ+ n cos θ
, (2)

where l, m, n be the direction cosines of the line perpendicular to the plane and p be the

distance of the plane from the origin.

Equating equations (1) and (2) and simplifying, we get the expression for p as

p =
abc(l cosφ+m sinφ+ n cot θ)√

b2c2 cos2 φ+ c2a2 sin2 φ+ a2b2 cot2 θ
. (3)

§4. Radii and Centers of the Spheres Under Two Tangent Planes

In order to inscribe a generic sphere inside an ellipsoidal segment, it is obvious to determine

its radius and center. For this, it is mandatory that the centers of the spheres must lie on the

bisector of the angle formed by the plane intersecting the ellipsoid and the tangent plane to the

ellipsoid in the point of tangency between the spheres and the ellipsoid.

Figure 2. Spherical chain inside the ellipsoidal fragment under two planes

Theorem 1 The radii ri(θ, φ) and centers [Xc(θ, φ), Yc(θ, φ), Zc(θ, φ)] of spheres inscribed in

an ellipsoidal segment under two tangent planes are

kG

W
and

[
(kb2c2 + 1)abc sin θ cosφ

W
,

(kc2a2 + 1)abc sin θ sinφ

W
,

(ka2b2 + 1)abc cos θ)

W

]
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respectively, where

k =
GM +N

abc(GS + T )
,

G = abc

√
b4c4 sin2 θ cos2 φ+ a4c4 sin2 θ sin2 φ+ a4b4 cos2 θ,

M = pW − abc(l sin θ cosφ+m sin θ sinφ+ n cos θ),

N = a2b2c2(W 2 − b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ),

S = lb2c2 sin θ cosφ+mc2a2 sin θ sinφ+ na2b2 cos θ,

T = abc(b4c4 − a4c4 − a4b4),

W =

√
b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ.

Proof Let us consider a point Q be the generic tangancy point of the sphere with the

ellipsoid. The coordinates of Q are

xe(θ, φ) =
abc sin θ cosφ√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
,

ye(θ, φ) =
abc sin θ sinφ√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
,

ze(θ, φ) =
abc cos θ√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
.

The equation of tangent plane to the ellipsoid at Q is given by

xxe(θ, φ)

a2
+
yye(θ, φ)

b2
+
zze(θ, φ)

c2
= 1. (4)

The equation of a plane cutting the ellipsoid is

lx+my + nz = p. (5)

The equation of angle bisector between the planes (4) and (5) is given by

lx+my + nz − p− a2b2c2 − b2c2xxe(θ, φ)− c2a2yye(θ, φ)− a2b2zze(θ, φ)√
b4c4x2

e(θ, φ) + c4a4y2
e(θ, φ) + a4b4z2

e(θ, φ)
= 0. (6)

The equation of normal to the ellipsoid at Q given by equation

x− xe(θ, φ)

b2c2xe(θ, φ)
=
y − ye(θ, φ)

a2c2ye(θ, φ)
=
z − ze(θ, φ)

a2b2ze(θ, φ)
= k(say). (7)

Now, substituting the values of xe(θ, φ), ye(θ, φ) and ze(θ, φ) in equation (7), we get the

coordinates of the centers [Xc(θ, φ), Yc(θ, φ), Zc(θ, φ)] of the spheres inside the the ellipsoidal

segment. Next using the distance formula between the points (xe(θ, φ), ye(θ, φ), ze(θ, φ)) and

(Xc(θ, φ), Yc(θ, φ), Zc(θ, φ)) , we get the radii ri(θ, φ) of the spheres inside the ellipsoidal seg-

ment. �
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§5. Inscribability Condition

In this section, we derived the condition for inscribability of a sphere inside an ellipsoidal

segment.

Theorem 2 A generic sphere can always be inscribed in an ellipsoidal segment formed by a

vertical plane cutting the ellipsoid if

A2 sin2 θ +B2 cos2 θ = (C sin θ +D cos θ − U)2

where,

A2 = k2[b4c4 cos2 φ+ c4a4 sin2 φ],

B2 = k2a4b4,

C = l(kb2c2 + 1) cosφ+m(kc2a2 + 1)) sinφ,

D = n(ka2c2 + 1),

U =
pW

abc
.

Proof Notice that the equation of sphere having center (Xc(θ, φ), Yc(θ, φ), Zc(θ, φ)) and

radius r(θ, φ) is

(x−Xc(θ, φ))2 + (y − Yc(θ, φ))2 + (z − Zc(θ, φ))2 = r2(θ, φ). (8)

and the equation of the ellipsoid circumscribing the sphere is

x2

a2
+
y2

b2
+
z2

c2
= 1. (9)

Considering a generic sphere touches the ellipsoid at the point (xe(θ, φ), ye(θ, φ), ze(θ, φ))

of Q in Figure 2 and lx+my+ nz = p be the plane cutting the ellipsoid and also touching the

sphere. It is obvious that a sphere will be completely inscribed inside the ellipsoid if the distance

between the center of the sphere from the point Q is equal to the length of the perpendicular

from the center to the plane lx+my + nz = p.

Now, the distance between the center of the sphere and point Q is√
(Xc(θ, φ)− xe(θ, φ))2 + (Yc(θ, φ)− ye(θ, φ))2 + (Zc(θ, φ)− ze(θ, φ))2

and the length of perpendicular on the given plane from the center of the sphere is

lXc(θ, φ) +mYc(θ, φ) + nZc(θ, φ)− p√
l2 +m2 + n2

.
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Equating the above two expressions and squaring both the sides, we have

(Xc(θ, φ)− xe(θ, φ))2 + (Yc(θ, φ) − ye(θ, φ))2 + (Zc(θ, φ)− ze(θ, φ))2

= (lXc(θ, φ) +mYc(θ, φ) + nZc(θ, φ)− p)2, (10)

where l2 +m2 + n2 = 1.

Substituting the values of Xc(θ, φ), Yc(θ, φ), Zc(θ, φ) and xe(θ, φ), ye(θ, φ), ze(θ, φ) in the

above expression, we have

A2 sin2 θ +B2 cos2 θ = (C sin θ +D cos θ − U)2, (11)

which is the desired result. �

§6. Geometrical Properties of a Spherical Chain Inside an Ellipsoidal Segment

In this section we have explored some of the properties of a spherical chain inside an ellipsoidal

segment.

Theorem 3 The locus of the centers of mutually tangent spheres inscribed in an ellipsoidal

fragment formed by a plane cutting the ellipsoid is

(I + t2 + z2)2 = 4(I + J)

where, I = a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ and J = t2 + y2 + z2.

Figure 3. Locus of centers of Chain of spheres inscribed in an ellipsoidal fragment

Proof Let us consider a chain of mutually tangent spheres inscribed inside an ellipsoidal

fragment formed by plane cutting the ellipsoid and tangent to the spheres. Let the origin O be
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the center of the ellipsoid. Now a generic point R on ellipsoid will be (a sin θ cosφ, b sin θ sinφ, c cos θ).

Let (t, y, z) be the center C1 of spheres inside the ellipsoidal fragment MNQ. Now the line OR

can be defined as

OR =

√
a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ.

Similarly, the line OC1 =
√
t2 + y2 + z2.

Using the geometry, we have√
a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ − y =

√
t2 + y2 + z2,

i.e.,

y =

√
a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ −

√
t2 + y2 + z2.

Squaring both the sides, we have

y2 = a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ + t2 + y2 + z2

−2

√
(a2 sin2 θ cos2 φ+ b2 sin2 θ sin2 φ+ c2 cos2 θ)(t2 + y2 + z2).

Again, squaring both the sides and simplifying the above expression, we have the required

result. �

Theorem 4 The locus of points of tangency between consecutive spheres of the chain lie on

PT 2
i − t2 − b2 − 2rib− z2

i = 0,

where ri be the radii of the spheres inscribed in the ellipsoidal segment and P is a point on

ellipsoid in y-axis and T be the point of tangency.

Figure 4. Point of tangancy of the spheres inside ellipsoidal fragment

Proof Let us assume that the two neighbouring spheres having centers Ci(t, yi, zi) and
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Ti(t, yi + 1, zi + 1) with respective radii ri and ri + 1 and tangent to each other at Ti and also

touching the ellipsoidal fragment and the plane Y=0. From the above figure it is observed that

the coordinate of point P is (0,−b, 0). Then we have,

PC2
i = t2 + (yi + b)2 + z2

i = t2 + b2 + y2
i + 2yib+ z2

i .

But it is obvious that r2
i = y2

i and hence using it we can write

PC2
i = t2 + b2 + r2

i + 2rib+ z2
i .

Now, using the Pythagoras theorem in the right angled triangle PCiTi, we have

PT 2
i = PC2

i − r2
i = t2 + b2 + 2rib+ z2

i .

This proves the theorem. �

§7. Conclusion

In this paper, we have analyzed various properties of a chain of spheres inscribed in an ellip-

soidal segment formed by a vertical plane cutting the ellipsoid. We have derived the radii and

coordinates of centers of mutually tangent spheres inside the ellipsoidal segment. An inscrib-

ability condition for the vertical chain of spheres along with the locus of the centers of such a

chain has been also derived. Finally some geometrical properties are also developed for such an

arrangement. From a very short literature review, it has been observed that not so much work

has been done so far in this field. A symmetrical extension has been done by Pal et al. (2016)

of the work done by Lucca (2009) which pulls the properties of chain of circles inside a circular

segment to the chain of spheres inside spherical segment. In this article, we have accomplished

the task of unsymmetrical extension which extends the properties of chain of circle inside an

ellipse to the chain of spheres inside an ellipsoidal fragment.
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Appendix A

Substituting the values of xe(θ, φ), ye(θ, φ), ze(θ, φ) in equation(7), we have

x =
(kb2c2 + 1)abc sin θ cosφ√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
=

(kb2c2 + 1)abc sin θ cosφ

W
,

y =
(kc2a2 + 1)abc sin θ sinφ√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
=

(kc2a2 + 1)abc sin θ sinφ

W
,

z =
(ka2b2 + 1)abc cos θ√

b2c2 sin2 θ cos2 φ+ a2c2 sin2 θ sin2 φ+ a2b2 cos2 θ
=

(ka2b2 + 1)abc cos θ

W
.

Substituting the above values of x, y and z along with xe(θ, φ), ye(θ, φ) and ze(θ, φ) in

equation (6), we have

l(kb2c2 + 1)abc sin θ cosφ

W
+
m(kc2a2 + 1)abc sin θ sinφ

W

+
n(ka2b2 + 1)abc cos θ

W
− Wabc√

b4c4 sin2 θ cos2 φ+ c4a4 sin2 θ sin2 φ+ a4b4 cos2 θ

+
b2c2k(b2c2 + 1)abc sin2 θ cos2 φ

W
√
b4c4 sin2 θ cos2 φ+ c4a4 sin2 θ sin2 φ+ a4b4 cos2 θ

+
a2c2k(a2c2 + 1)abc sin2 θ sin2 φ

W
√
b4c4 sin2 θ cos2 φ+ c4a4 sin2 θ sin2 φ+ a4b4 cos2 θ

+
a2b2k(a2b2 + 1)abc cos2 θ

W
√
b4c4 sin2 θ cos2 φ+ c4a4 sin2 θ sin2 φ+ a4b4 cos2 θ

= p.

Simplifying the above expression for k, we have the desired value of k.

Appendix B

Substituting the values of (Xc(θ, φ), Yc(θ, φ), Zc(θ, φ)) and ((xe(θ, φ), ye(θ, φ), ze(θ, φ)) in equa-

tion (10), we have

k2b4c4a2b2c2 sin2 θ cos2 φ

W 2
+
k2a4c4a2b2c2 sin2 θ sin2 φ

W 2
+
k2a4b4a2b2c2 cos2 θ

W 2

=

[
l(kb2c2 + 1)abc sin θ cosφ

W
+
m(ka2c2 + 1)abc sin θ sinφ)

W
+
n(ka2b2 + 1)abc cos θ

W
− p
]2

k2a2b2c2

W 2
((b4c4 cos2 φ+ c4a4 sin2 φ) sin2 θ + a4b4 cos2 θ)

=
a2b2c2

W 2

[
(l(kb2c2 + 1) cosφ+m(kc2a2 + 1) sinφ) sin θ + n(ka2b2 + 1) cos θ − pW

abc

]2

k2((b4c4 cos2 φ+ c4a4 sin2 φ) sin2 θ + a4b4 cos2 θ)

=

[
(l(kb2c2 + 1) cosφ+m(kc2a2 + 1) sinφ) sin θ + n(ka2b2 + 1) cos θ − pW

abc

]2

.
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§1. Introduction

The Dedekind eta function is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn),

where q = e2πiτ , with Im(τ) > 0. A Dedekind eta function identity is said to be of level n, if

it involves Dedekind eta functions η(d1τ), η(d2τ), . . . , η(dkτ), where the least common multiple

of d1, d2, · · · , dk is n.

Recently Z. S. Aygin and P. C. Toh [2] determined all eta quotients whose derivative is

also an eta quotient up to level 36 by employing the theory of modular forms. In fact, they

have obtained one hundred of level 12 and four of level 16 of above said type. Further they

have conjectured that these are the only identities of level 12 and 16 of this nature. Also they

have shown application of these identities to the theory of partitions, integral representation of

eta functions and many more. Some of the identities of Aygin and Toh [2] exist before their

discovery, see for example [6], [5] and [10]. The purpose of this article is to give an elementary

proof for level 12 and 16 eta quotient identities by using the theory developed in [5] and [10].

In Section 2, we provide alternative proof for level 12 identities. In Section 3, we give proof

for level 16 identities. We close this section by recalling the definitions, notations and certain

existing eta function identities which are required to prove the above said identities.

Let

k =
η5

2η
2
3η

2
12

η2
1η

2
4η

5
6

.

1Received March 15, 2024, Accepted August 15,2024.
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We require following eta function identities:

k2 − 1 = 4
η3

2η
3
3η

6
12

η1η
2
4η

9
6

, (1.1)

k2 + 1 = 2
η3

2η
6
3η

3
12

η2
1η4η

9
6

, (1.2)

3− k2 = 2
η2

1η2η
2
3η

3
12

η4η7
6

(1.3)

and

3 + k2 = 4
η2η

3
3η

2
4η

2
12

η1η
7
6

, (1.4)

where ηk = η(kτ). The proofs of the above four identities are found in [4], [8], [3]. S. Ramanujan

recorded two of the above four theta function identities in the form of modular equations in his

notebook [7, p.230]. We denote

ηn[k1, k2, · · · , kl] = ηk11 ηk2d1η
k3
d2
ηk4d3 , · · · , η

kl−1

ds
ηkln ,

where d1, d2, · · · , ds are proper divisors of n and k1, k2, . . . , kl ∈ Z.

§2. Level 12 Identities

Theorem 2.1 Let k =
η5

2η
2
3η

2
12

η2
1η

2
4η

5
6

. Then we have

q
d

dq
(log k) = 2

η2
1η

2
4η

2
3η

2
12

η2
2η

2
6

, (2.1)

η6
2η

9
3η

9
12

η3
1η

3
4η

18
6

=
k4 − 1

8
, (2.2)

η4
1η

4
4η

4
6

η4
2η

4
3η

4
12

=
9− k4

k4 − 1
(2.3)

and
η24

2 η12
3 η12

12

η12
1 η12

4 η24
6

=
k4(k4 − 1)

9− k4
. (2.4)

The parameter k is almost the same as the p defined in [1]. In fact k = 2p + 1, where

p = 1
2

[
η102 η43η

4
12

η41η
4
4η

10
6
− 1
]
. The (2.1) is due to Ramanujan and the proof of the same was given by

B. C. Berndt [4]. The proof of (2.2)− (2.4) are found in [5].

From the above, one can easily deduce that

η48
2

η24
1 η24

4

=
84k12

(k4 − 1)(9− k4)3
, (2.5)
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η48
6

η24
3 η24

12

=
84k4

(k4 − 1)3(9− k4)
, (2.6)

and
η6

2

η6
6

=
k2(9− k4)

k4 − 1
. (2.7)

Also, from [9], we have

x : =
η4

1η
2
6

η2
2η

4
3

=
3− k2

1 + k2
. (2.8)

From [5], we have
η12

1 η12
6

η12
2 η12

3

=
x2(1− x2)

9− x2
(2.9)

and
η9

1η
3
6

η9
2η

3
3

=
8x2

9− x2
. (2.10)

From (2.8), (2.9) and (2.10), one can easily deduce that

η24
1

η24
2

=
(1 + k2)2(3− k2)6

k6(3 + k2)3(k2 − 1)
(2.11)

and
η24

3

η24
6

=
(3− k2)2(1 + k2)6

k2(3 + k2)(k2 − 1)3
. (2.12)

From (2.5), (2.6), (2.11) and (2.12), we have

η24
2

η24
4

=
84k6(1 + k2)(3− k2)3

(3 + k2)6(k2 − 1)2
(2.13)

and
η24

6

η24
12

=
84k2(1 + k2)3(3− k2)

(k2 − 1)6(3 + k2)2
. (2.14)

Now, we prove two out of one hundred level-12 identities.

Theorem 2.2 If X = η12[10,−36, 18, 8, 0, 0], then

q
d

dq
(log(X)) = η12[10,−7,−6, 1, 9,−3].

Proof By the definition of X, we have

X12 =

(
η24

1

η24
2

)5(
η6

6

η6
2

)36(
η24

4

η24
2

)4(
η24

3

η24
6

)9

. (2.15)

Employing (2.11), (2.7), (2.13) and (2.12) in the above, we find that

X =
(k2 − 1)(1 + k2)8

16 k12(3 + k2)3
. (2.16)
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Taking logarithm on both sides and differentiating with respect to q, we obtain

q
d

dq
(log(X)) =

4(3− k2)2

(1 + k2)(k2 − 1)(3 + k2)

q

k

dk

dq
. (2.17)

Using (1.1), (1.2), (1.3), (1.4) and (2.1) in the right hand side of the above, we find that

q
d

dq
(log(X)) = η12[10,−7,−6, 1, 9,−3]. (2.18)

This completes the proof. �

Theorem 2.3 If Y = η12[−18, 0,−10, 0, 36,−8], then

q
d

dq
(log(Y )) = 3η12[−6, 9, 10,−3,−7, 1].

Proof By the definition of Y , we have

Y 12 =

(
η24

2

η24
1

)9(
η24

6

η24
3

)5(
η24

6

η24
12

)4(
η6

6

η6
2

)36

. (2.19)

Employing (2.7), (2.11), (2.12) and (2.14) in the above, we find that

Y =
16(k2 − 1)3

(3− k2)8(3 + k2)
. (2.20)

Taking logarithm on both sides and differentiating with respect to q, we obtain

q
d

dq
(log(Y )) =

12k2(1 + k2)2

(k2 − 1)(3− k2)(3 + k2)

q

k

dk

dq
. (2.21)

Using (1.1), (1.2), (1.3), (1.4) and (2.1) in the right hand side of the above, we find that

q
d

dq
(log(Y )) = 3η12[−6, 9, 10,−3,−7, 1]. (2.22)

This completes the proof. �

We proved the remaining 98 identities of level 12 [2], in the same way. Let

f(τ) = ηn(k1, k2, · · · , kl).

We first express f(τ) in terms of product of powers of k, k2±1, k2±3 and then, we display

the q times of logarithmic differentiation of f(τ) in terms of k, k2±1, k2±3 and q dkdq , and finally

we represent

q
d

dq
log(f)

in terms of ηn(k1, k2, · · · , kl) in the following Table 1- Table 7.



O
n

D
eriv

a
tiv

e
o
f

E
ta

Q
u

o
tien

ts
o
f

L
ev

els
1
2

a
n

d
1
6

23

SI.No eta quotient (f) k-parameter representation [f(k)] q ddq (log f(k)) logarithmic derivative of f

1 η12[4,−18, 0, 5, 0, 9]
(k2−1)4

√
(k2+1)

27k6(3−k2)3/2
4(k2+3)2

(k4−1)(3−k2)
q
k
dk
dq 4η12[1,−7,−3, 10, 9,−6]

2 η12[0, 0,−4,−9, 18,−5] 27(1+k2)3/2√
(3−k2)(3+k2)4

6k2(k2−1)2

(k2+1)(3−k2)(k2+3)
q
k
dk
dq 12η12[−3, 9, 1,−6,−7, 10]

3 η12[−2, 4, 6, 0,−16, 8] (k2−1)(3+k2)
24

4k2(k2+1)
(k2−1)(3+k2)

q
k
dk
dq η12[−2, 7, 6,−3,−5, 1]

4 η12[6,−16,−2, 8, 4, 0] (k2−1)(3+k2)
24k4

4(k2−3)
(k2−1)(k2+3)

q
k
dk
dq η12[6,−5,−2, 1, 7,−3]

5 η12[−4, 8, 0,−3,−2, 1] 2k2√
(1+k2)(3−k2)

4(k2+3)
(k2+1)(3−k2)

q
k
dk
dq 4η12[1,−5,−3, 6, 7,−2]

6 η12[0,−2,−4, 1, 8,−3] 2√
(1+k2)(3−k2)

4k2(k2−1)
(1+k2)(3−k2)

q
k
dk
dq 4η12[−3, 7, 1,−2,−5, 6]

7 η12[2, 0,−6,−8, 12, 0] (k2−1)
(3+k2)3

4k2(3−k2)
(k2−1)(3+k2)

q
k
dk
dq η12[2, 5, 2,−3,−3, 1]

8 η12[6,−12,−2, 0, 0, 8] (k2−1)3

24k4(3+k2)
12(1+k2)

(k2−1)(3+k2)
q
k
dk
dq 3η12[2,−3, 2, 1, 5,−3]

9 η12[−4, 0, 0, 1, 6,−3] 2
√

(1+k2)
(3−k2)3

4k2(3+k2)
(1+k2)(3−k2)

q
k
dk
dq 4η12[−3, 5, 1, 2,−3, 2]

10 η12[0,−6, 4, 3, 0,−1]
√

(1+k2)3

22k4(3−k2)
(k2−1)

(1+k2)(3−k2)
q
k
dk
dq 12η12[1,−3,−3, 2, 5, 2]

11 η12[6,−12,−18, 24, 0, 0] (k2−1)(3+k2)9

84(1+k2)8
4k2(3−k2)2

(k2−1)(3+k2)(1+k2)
q
k
dk
dq η12[6, 3,−2,−3,−1, 1]

12 η12[−6, 0, 2, 0,−4, 8] 3

√
(k2−1)9(3+k2)
k4(3−k2)8

12(1+k2)2

(k2−1)(3+k2)(3−k2)
q
k
dk
dq 3η12[−2,−1, 6, 1, 3,−3]

13 η12[−12, 6, 0,−3, 0, 9]
√

(k2−1)8

82(1+k2)(3−k2)9
2k2(3+k2)2

(k2−1)(1+k2)(3−k2)
q
k
dk
dq 4η12[−3, 3, 1, 6,−1,−2]

14 η12[0, 0,−4, 3, 2,−1] 6

√
k4(3−k2)(3+k2)8

84(1+k2)9
36(k2−1)2

(3−k2)(3+k2)(1+k2)
q
k
dk
dq 12η12[1,−1,−3,−2, 3, 6]

15 η12[9,−30, 9, 12, 0, 0] (1+k2)4(k2−1)
k9

(3−k2)2

(1+k2)(k2−1)
q
k
dk
dq η12[9,−6,−3, 3, 2,−1]

Table 1
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SI.No eta quotient (f) k-parameter representation [f(k)] q ddq (log f(k)) logarithmic derivative of f

16 η12[−3, 0,−3, 0, 10,−4] 3

√
82k

(3−k2)4(3+k2)
3(1+k2)2

(3−k2)(3+k2)
q
k
dk
dq 3η12[−3, 2, 9,−1,−6, 3]

17 η12[12,−30, 0, 9, 0, 9] (1+k2)(k2−1)4

k9
(3+k2)2

(k2−1)(1+k2)
q
k
dk
dq 4η12[3,−6,−1, 9, 2,−3]

18 η12[0, 0,−4,−3, 10,−3] 3

√
83k

(3−k2)(3+k2)4
3(k2−1)2

(3−k2)(3+k2)
q
k
dk
dq 12η12[−1, 2, 3,−3,−6, 9]

19 η12[−8,−2,−8, 0, 26,−8] 84(k2−1)3

(3−k2)12(3+k2)3
8k4(1+k2)

(k2−1)(3−k2)(3+k2)
q
k
dk
dq η12[−8, 16, 8,−6,−8, 2]

20 η12[8,−26, 8, 8, 2, 0] (1+k2)4(k2−1)
k8(3+k2)

8(3−k2)
(1+k2)(k2−1)(3+k2)

q
k
dk
dq η12[8,−8,−8, 2, 16,−6]

21 η12[4,−13, 0, 4, 1, 4]
√

(k2−1)4(1+k2)
k8(3−k2)

4(3+k2)
(k2−1)(1+k2)(3−k2)

q
k
dk
dq 2η12[2,−8,−6, 8, 16,−8]

22 η12[0,−1,−4,−4, 13,−4]
√

84(1+k2)3

(3−k2)3(3+k2)12
4k4(k2−1)

(1+k2)(3−k2)(3+k2)
q
k
dk
dq 2η12[−6, 16, 2,−8,−8, 8]

23 η12[−4, 6, 12, 4,−30, 12] (k2−1)(3+k2)3

28
8k4

(k2−1)(3+k2)
q
k
dk
dq η12[−4, 14, 4,−6,−6, 2]

24 η12[−2,−3,−6, 2, 15,−6] 1√
(1+k2)(3−k2)3

4k4

(1+k2)(3−k2)
q
k
dk
dq 2η12[−6, 14, 2,−4,−6, 4]

25 η12[12,−30,−4, 12, 6, 4] (3+k2)(k2−1)3

28k8
24

(3+k2)(k2−1)
q
k
dk
dq 3η12[4,−6,−4, 2, 14,−6]

26 η12[−6, 15,−2,−6,−3, 2]
√

k8

(1+k2)3(3−k2)
12

(1+k2)(3−k2)
q
k
dk
dq 6η12[2,−6,−6, 4, 14,−4]

27 η12[−1,−3,−9,−5, 27,−9]
√

214(1+k2)
(3−k2)3(3+k2)6

8k6

(1+k2)(3+k2)(3−k2)
q
k
dk
dq η12[−9, 23, 3,−10,−9, 6]

28 η12[−10,−6,−18,−2, 54,−18] 210(k2−1)
(3−k2)6(3+k2)3

16k6

(k2−1)(3+k2)(3−k2)
q
k
dk
dq η12[−10, 23, 6,−9,−9, 3]

29 η12[18,−54, 10, 18, 6, 2] (1+k2)6(k2−1)3

k16(3+k2)
48

(1+k2)(k2−1)(3+k2)
q
k
dk
dq 3η12[6,−9,−10, 3, 23,−9]

Table 2
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SI.No eta quotient (f) k-parameter q ddq (log f(k)) logarithmic derivative of f

representation [f(k)]

30 η12[9,−27, 1, 9, 3, 5]
√

(1+k2)3(k2−1)6

214k16(3−k2)
24

(1+k2)(k2−1)(3−k2)
q
k
dk
dq 3η12[3,−9,−9, 6, 23,−10]

31 η12[−6, 6, 18, 18,−54, 18] (k2−1)(3+k2)9

(1+k2)2
16k6

(k2−1)(3+k2)(1+k2)
q
k
dk
dq η12[−6, 21, 2,−9,−7, 3]

32 η12[−9,−3,−9, 3, 27,−9] 4

√
84(k2−1)2

(1+k2)(3−k2)9
8k6

(k2−1)(1+k2)(3−k2)
q
k
dk
dq η12[−9, 21, 3,−6,−7, 2]

33 η12[−3, 9,−3,−3,−1, 1] 3

√
82k16(3+k2)2

(1+k2)9(3−k2)
144

(3+k2)(1+k2)(3−k2)
q
k
dk
dq 3η12[3,−7,−9, 2, 21,−6]

34 η12[6,−18,−2, 6, 2, 6] 3

√
(3+k2)(k2−1)9

86k16(3−k2)2
48

(3+k2)(k2−1)(3−k2)
q
k
dk
dq 3η12[2,−7,−6, 3, 21,−9]

35 η12[−12,−12,−36,−12, 108,−36] 88(k2−1)(1+k2)
(3+k2)9(3−k2)9

32k8

(k2−1)(1+k2)(3+k2)(3−k2)
q
k
dk
dq η12[−12, 30, 4,−12,−10, 4]

36 η12[12,−36, 4, 12, 4, 4] 3

√
(1+k2)9(k2−1)9

88k32(3+k2)(3−k2)
(1+k2)9(k2−1)9

88k32(3+k2)(3−k2)
q
k
dk
dq 3η12[4,−10,−12, 4, 30,−12]

37 η12[−1, 6,−9, 4, 0, 0] k3(3+k2)3

22(1+k2)4
(3−k2)2

(3+k2)(1+k2)
q
k
dk
dq η12[9,−4,−3,−1, 0, 3]

38 η12[−9, 0,−1, 0, 6, 4] (k2−1)3

k(3−k2)4
3(1+k2)2

(3−k2)(k2−1)
q
k
dk
dq 3η12[−3, 0, 9, 3,−4,−1]

39 η12[−4,−6, 0, 1, 0, 9] (k2−1)4

25k3(3−k2)3
(3+k2)2

(k2−1)(3−k2)
q
k
dk
dq 4η12[−1,−4, 3, 9, 0,−3]

40 η12[0, 0,−4, 9,−6, 1] k(3+k2)4

25(1+k2)3
3(k2−1)2

(3+k2)(1+k2)
q
k
dk
dq 12η12[3, 0,−1,−3,−4, 9]

41 η12[7,−21, 3, 8, 3, 0] (1+k2)2(k2−1)
24k6

2(3−k2)
(1+k2)(k2−1)

q
k
dk
dq η12[7,−7,−5, 4, 9,−4]

42 η12[8,−21, 0, 7, 3, 3] (1+k2)(k2−1)2

25k6
2(3+k2)

(1+k2)(k2−1)
q
k
dk
dq 2η12[4,−7,−4, 7, 9,−5]

43 η12[−3,−3,−7, 0, 21,−8] 24

(3−k2)2(3+k2)
6k2(1+k2)

(3−k2)(3+k2)
q
k
dk
dq 3η12[−5, 9, 7,−4,−7, 4]

Table 3
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44 η12[0,−3,−8,−3, 21,−7] 25

(3+k2)2(3−k2)
4k4

(3+k2)(3−k2)
q
k
dk
dq 6η12[−4, 9, 4,−5,−7, 7]

45 η12[−1, 4,−1,−4, 2, 0] 2k
(3+k2)

(3−k2)
(3+k2)

q
k
dk
dq η12[5,−2, 1,−1,−2, 3]

46 η12[1,−2, 1, 0,−4, 4] (k2−1)
k

(1+k2)
(k2−1)

q
k
dk
dq η12[1,−2, 5, 3,−2,−1]

47 η12[0,−2, 4, 1,−4, 1] (1+k2)
22k

(k2−1)
(1+k2)

q
k
dk
dq 4η12[3,−2,−1, 1,−2, 5]

48 η12[−4, 4, 0,−1, 2,−1] 22k
(3−k2)

(3+k2)
(3−k2)

q
k
dk
dq 4η12[−1,−2, 3, 5,−2, 1]

49 η12[5,−12,−3, 4, 6, 0] (k2−1)
22k3

(3−k2)
(k2−1)

q
k
dk
dq η12[5,−4, 1, 3, 0,−1]

50 η12[−3, 6, 5, 0,−12, 4] k(3+k2)
22

3(1+k2)
(3+k2)

q
k
dk
dq 3η12[1, 0, 5,−1,−4, 3]

51 η12[−4, 12, 0,−5,−6, 3] 2k3

(1+k2)
(3+k2)
(1+k2)

q
k
dk
dq 4η12[3,−4,−1, 5, 0, 1]

52 η12[0,−6,−4, 3, 12,−5] 22

k(3−k2)
3(k2−1)
(3−k2)

q
k
dk
dq 12η12[−1, 0, 3, 1,−4, 5]

53 η12[−7, 0,−3, 1, 12,−3] 2(k2−1)
(3−k2)3

4k4

(k2−1)(3−k2)
q
k
dk
dq η12[−7, 14, 5,−3,−6, 1]

54 η12[−1, 0, 3, 7,−12, 3] (3+k2)2

25(1+k2)
4k4

(3+k2)(1+k2)
q
k
dk
dq η12[−3, 14, 1,−7,−6, 5]

55 η12[3,−12,−1, 3, 0, 7] (k2−1)3

25k4(3−k2)2
12

(k2−1)(3−k2)
q
k
dk
dq 3η12[1,−6,−3, 5, 14,−7]

56 η12[−3, 12,−7,−3, 0, 1] 22k4(3+k2)
(1+k2)3

12
(3+k2)(1+k2)

q
k
dk
dq 3η12[5,−6,−7, 1, 14,−3]

57 η12[−1, 3, 3,−8, 3, 0] 24(1+k2)2

(3+k2)3
2k2(3−k2)

(1+k2)(3+k2)
q
k
dk
dq η12[3, 5,−1,−4,−3, 4]

Table 4
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SI.No eta quotient (f) k-parameter representation [f(k)] q ddq (log f(k)) logarithmic derivative of f

58 η12[−8, 3, 0,−1, 3, 3] (k2−1)2

2(3−k2)3
2(3+k2)k2

(k2−1)(3−k2)
q
k
dk
dq 2η12[−4, 5, 4, 3,−3,−1]

59 η12[−3,−3, 1, 0,−3, 8] (k2−1)3

24k2(3−k2)
6(1+k2)

(3−k2)(k2−1)
q
k
dk
dq 3η12[−1,−3, 3, 4, 5,−4]

60 η12[0,−3, 8,−3,−3, 1] (1+k2)3

k2(3+k2)2
6(k2−1)

(1+k2)(3+k2)
q
k
dk
dq 6η12[4,−3,−4,−1, 5, 3]

61 η12[−1,−2,−5,−1, 14,−5] 8
(3−k2)(3+k2)

4k4

(3−k2)(3+k2)
q
k
dk
dq η12[−7, 16, 5,−7,−8, 5]

62 η12[5,−14, 1, 5, 2, 1] (1+k2)(k2−1)
8k4

4
(1+k2)(k2−1)

q
k
dk
dq η12[5,−8,−7, 5, 16,−7]

63 η12[−1, 3, 3,−2,−9, 6] (k2−1)
4

2k2

(k2−1)
q
k
dk
dq η12[−1, 5, 3, 0,−3, 0]

64 η12[−2, 3, 6,−1,−9, 3] (1+k2)
16

2k2

(1+k2)
q
k
dk
dq 2η12[0, 5, 0,−1,−3, 3]

65 η12[−3, 9, 1,−6,−3, 2] 4k2

(3+k2)
6

(3+k2)
q
k
dk
dq 3η12[3,−3,−1, 0, 5, 0]

66 η12[−6, 9, 2,−3,−3, 1] 2k2

(3−k2)
6

(3−k2)
q
k
dk
dq 6η12[0,−3, 0, 3, 5,−1]

67 η12[−3, 6, 9,−3,−18, 9] (1+k2)(k2−1)
8

4k4

(1+k2)(k2−1)
q
k
dk
dq η12[−3, 12, 1,−3,−4, 1]

68 η12[−3, 6, 1,−3,−2, 1] 3

√
8k4

(3−k2)(3+k2)
12

(3−k2)(3+k2)
q
k
dk
dq 3η12[1,−4,−3, 1, 12,−3]

69 η12[−4,−1, 0, 0, 1, 4] (k2−1)2

26k(3−k2)2
(3+k2)(1+k2)
(k2−1)(3−k2)

q
k
dk
dq 2η12[−2,−2, 6, 6,−2,−2]

70 η12[0,−1, 4,−4, 1, 0] 26(1+k2)2

k(3+k2)2
(k2−1)(3−k2)
(1+k2)(3+k2)

q
k
dk
dq 2η12[6,−2,−2,−2,−2, 6]

Table 5
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71 η12[4,−9, 0, 2,−3, 6] (k2−1)2

24k3
(3+k2)
(k2−1)

q
k
dk
dq 2η12[2,−4, 2, 6, 0,−2]

72 η12[−2, 9,−6,−4, 3, 0] 22k3

(1+k2)2
(3−k2)
(1+k2)

q
k
dk
dq 2η12[6,−4,−2, 2, 0, 2]

73 η12[−6, 3,−2, 0, 9,−4]
√

24k
(3−k2)2

3(1+k2)
(3−k2)

q
k
dk
dq 6η12[−2, 0, 6, 2,−4, 2]

74 η12[0,−3, 4, 6,−9, 2] (3+k2)2

24k
3(k2−1)
(3+k2)

q
k
dk
dq 6η12[2, 0, 2,−2,−4, 6]

75 η12[4,−6,−12, 8, 6, 0] (3+k2)3(k2−1)
24(1+k2)4

8k2(3−k2)
(3+k2)(k2−1)(1+k2)

q
k
dk
dq η12[4, 2,−4,−2, 6,−2]

76 η12[−4, 3, 0,−2,−3, 6] (k2−1)4

24(1+k2)(3−k2)3
4(3+k2)k2

(k2−1)(1+k2)(3−k2)
q
k
dk
dq 2η12[−2, 2,−2, 4, 6,−4]

77 η12[−12, 6, 4, 0,−6, 8] (k2−1)3(3+k2)
28(3−k2)4

24k2(1+k2)
(k2−1)(3+k2)(3−k2)

q
k
dk
dq 3η12[−4, 6, 4,−2, 2,−2]

78 η12[0,−3,−4, 6, 3,−2] (3+k2)4

24(3−k2)(1+k2)3
12k2(k2−1)

(3+k2)(3−k2)(1+k2)
q
k
dk
dq 6η12[−2, 6,−2,−4, 2, 4]

79 η12[12,−33, 0, 12, 9, 0] (1+k2)2(k2−1)2

82k9
(3−k2)(3+k2)
(1+k2)(k2−1)

q
k
dk
dq 2η12[6,−6,−2, 6, 2,−2]

80 η12[0,−3,−4, 0, 11,−4] 3

√
82

k(3−k2)2(3+k2)2
3(k2−1)(1+k2)
(3−k2)(3+k2)

q
k
dk
dq 6η12[−2, 2, 6,−2,−6, 6]

81 η12[1, 0− 3,−1, 0, 3] (k2−1)
2(1+k2)

4k2

(k2−1)(1+k2)
q
k
dk
dq η12[1, 2,−3, 1, 6,−3]

82 η12[−3, 0, 1, 3, 0,−1] (3+k2)
(3−k2)

12k2

(3+k2)(3−k2)
q
k
dk
dq 3η12[−3, 6, 1,−3, 2, 1]

83 η12[−1, 1,−1,−1,−1, 3]
√

(k2−1)2

4(1+k2)(3−k2)
8k2

(k2−1)(1+k2)(3−k2)
q
k
dk
dq η12[−1, 1,−5, 2, 13,−6]

84 η12[2,−2,−6, 2, 2, 2] (3+k2)(k2−1)
(1+k2)2

16k2

(3+k2)(k2−1)(1+k2)
q
k
dk
dq η12[2, 1,−6,−1, 13,−5]

Table 6
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SI.No eta quotient (f) k-parameter representation [f(k)] q ddq (log f(k)) logarithmic derivative of f

85 η12[−1,−1,−1, 3, 1,−1]
√

(3+k2)2

22(1+k2)(3−k2)
4k4

(3+k2)(1+k2)(3−k2)
q
k
dk
dq η12[−5, 13,−1,−6, 1, 2]

86 η12[−6, 2, 2, 2,−2, 2] (k2−1)(3+k2)
(3−k2)2

16k4

(k2−1)(3+k2)(3−k2)
q
k
dk
dq η12[−6, 13, 2,−5, 1,−1]

87 η12[−2, 6, 6,−10,−6, 6] 22(1+k2)2(k2−1)
(3+k2)3

16k4

(1+k2)(k2−1)(3+k2)
q
k
dk
dq η12[−2, 11,−2,−5, 3,−1]

88 η12[−5, 3, 3,−1,−3, 3]
√

24(1+k2)(k2−1)2

(3−k2)3
8k4

(1+k2)(k2−1)(3−k2)
q
k
dk
dq η12[−5, 11,−1,−2, 3,−2]

89 η12[−3, 3, 5,−3,−3, 1]
√

22(1+k2)3

(3−k2)(3+k2)2
24k2

(1+k2)(3−k2)(3+k2)
q
k
dk
dq 3η12[−1, 3,−5,−2, 11,−2]

90 η12[−6, 6, 2,−6,−6, 10] (k2−1)3

(3−k2)2(3+k2)
48k2

(k2−1)(3−k2)(3+k2)
q
k
dk
dq 3η12[−2, 3,−2,−1, 11,−5]

91 η12[−4, 4, 4,−4,−4, 4] (1+k2)(k2−1)
(3−k2)(3+k2)

32k4

(1+k2)(k2−1)(3−k2)(3+k2)
q
k
dk
dq η12[−4, 10,−4,−4, 10,−4]

92 η12[3,−7,−1, 2, 1, 2] (k2−1)
4k2

2
(k2−1)

q
k
dk
dq η12[3,−5,−1, 4, 7,−4]

93 η12[−1, 1, 3, 2,−7, 2] (3+k2)
4

k2

2(3+k2)
q
k
dk
dq η12[−1, 7, 3,−4,−5, 4]

94 η12[−2,−1,−2, 1, 7,−3] 2
(3−k2)

2k2

(3−k2)
q
k
dk
dq 2η12[−4, 7, 4,−1,−5, 3]

95 η12[−2, 7,−2,−3,−1, 1] 2k2

(1+k2)
2

(1+k2)
q
k
dk
dq 2η12[4,−5,−4, 3, 7,−1]

96 η12[−3, 2, 1,−1,−2, 3] (k2−1)
2(3−k2)

4k2

(3−k2)(k2−1)
q
k
dk
dq η12[−3, 4, 1, 1, 4,−3]

97 η12[−1, 2, 3,−3,−2, 1] 2(1+k2)
(3+k2)

4k2

(1+k2)(3+k2)
q
k
dk
dq η12[1, 4,−3,−3, 4, 1]

98 η12[−2, 5, 2,−2,−5, 2] k q
k
dk
dq 2η12[2,−2, 2, 2,−2, 2]

Table 7
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§3. Level 16 Identities

Let

h =
η2η

2
16

η2
1η8

. (3.1)

From [10], we have

z = q
d

dq
(log(h)) =

η2η
6
4η8

η2
1η

2
16

, (3.2)

1 + 2h =
η2η

5
8

η2
1η

2
4η

2
16

, (3.3)

1 + 4h =
η6

2

η4
1η

2
4

, (3.4)

1 + 6h+ 8h2 =
η7

2η
5
8

η6
1η

4
4η

2
16

, (3.5)

1 + 4h+ 8h2 =
η10

4

η4
1η

2
2η

4
8

, (3.6)

η24
1 = z6 h

(1 + 2h)5(1 + 4h)2(1 + 4h+ 8h2)5
, (3.7)

η24
2 = z6 h2(1 + 4h)2

(1 + 2h)4(1 + 4h+ 8h2)4
, (3.8)

η24
4 = z6 h4

(1 + 2h)2(1 + 4h)2(1 + 4h+ 8h2)2
, (3.9)

824
8 = z6 h8(1 + 2h)2

(1 + 4h)4(1 + 4h+ 8h2)4
, (3.10)

and

η24
16 = z6 h16

(1 + 2h)2(1 + 4h)5(1 + 4h+ 8h2)5
. (3.11)

Now, we prove one out of four level-16 identities.

Theorem 3.1 Let Z = η16[2,−5, 2,−1, 2] then, prove that

q
d

dq
(log(Z)) = η16[2,−5, 8, 1,−2].

Proof By the definition of Z, we have

Z24 =
η48

1 η48
4 η48

16

η120
2 η24

8

. (3.12)

Employing (3.7), (3.8), (3.9), (3.10) and (3.11) in the above, we find that

Z =
h

1 + 4h
. (3.13)
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Taking logarithm on both sides and differentiating with respect to q, we obtain

q
d

dq
(log(Z)) =

8h2

1 + 4h

q

h

dh

dq
. (3.14)

Using (3.1), (3.2) and (3.4) in the right hand side of the above, we find that

q
d

dq
(log(Z)) = η12[10,−7,−6, 1, 9,−3]. (3.15)

This completes the proof. �

We proved the remaining 3 identities of level 16 [10], in the same way. Let g(τ) =

ηn(k1, k2, · · · , kl). We first express f(τ) in terms of product of powers of h, 1 + 2h, 1 + 4h, and

then we display the q times of logarithmic differentiation of g(τ) in terms of h, 1+2h, 1+4hand

q dhdq , and finally we represent q ddq log(g) in terms of ηn(k1, k2, · · · , kl) in the following Table 8.

SI.No eta quotient h-parameter q d
dq

(log f(h)) logarithmic

(f) representation [f(h)] derivative of f

1 η16[−2, 1,−2, 5,−2] 1 + 2h 2h
1+2h

q
h
dh
dq

2η16[−2, 1, 8,−5, 2]

2 η16[−2, 1, 0,−1, 2] h q
h
dh
dq

η16[−2, 1, 6, 1,−2]

3 η16[−2, 5, 0,−5, 2] 1+4h
1+2h

2h
(1+2h)(1+4h)

q
h
dh
dq

2η16[2,−5, 10,−5, 2]

Table 8
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Abstract: The general connectivity indices (including the general Randić index, the gen-

eral sum-connectivity index, the general ABC index and the general ABS index) are an

important degree-based topological index in chemical informatics. In this paper, the general

connectivity entropies of a graph are defined as the Shannon’s entropy based on the infor-

mation functional that associates the general connectivity indices. We compute the general

connectivity entropies for certain interconnection networks like butterfly networks, Benes

networks, and mesh derived networks, which can be helpful to understand their underlying

topologies and structural complexity.

Key Words: Shannon’s entropy, interconnection network, connectivity index.

AMS(2010): 94A17, 68R10, 05C09.

§1. Introduction

In 1948, Shannon [17] introduced the concept of entropy in communication theory to measure

the uncertainty of a system, which is defined as follows:

Definition 1.1 Let p = (p1, p2, · · · , pn) be a probability vector, namely, 0 ≤ pi ≤ 1 and

p1 + p2 + · · ·+ pn = 1. The Shannon’s entropy of p is defined as

I(p) =

n∑
i=1

pi log
1

pi
= −

n∑
i=1

pi log pi,

where the notation log denotes the logarithm based on 2.

Due to the ubiquitous uncertainty, the Shannon’s entropy has found extensive applications

in various disciplines such as discrete mathematics, computer science, information theory, s-

tatistics, chemistry, biology, etc., see [2, 9, 19]. On this basis, the concept of graph entropy

introduced by Rashevsky [16] and Trucco [18] has been used to measure the structural com-

plexity of graphs (or networks) [7, 8]. An extensive overview on graph entropy measures can

be found in [10]. A statistical analysis of topological graph measures has been performed by

Emmert-Streib and Dehmer [11].
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In chemical informatics, many degree-based topological indices have been introduced and

extensively studied. Let f(x, y) be the information function with the property f(x, y) = f(y, x).

Then, their general formula is

DTI(G) =
∑

uv∈E(G)

f(du, dv),

where E(G) is the edge set of a graph G, and du is the degree of the vertex u. From the

definition of Shannon’s entropy, we can obtain the degree-based graph entropy [5, 6, 14] as

follows:

I(G) = log DTI(G)− 1

DTI(G)

∑
uv∈E(G)

f(du, dv) log f(du, dv). (1)

In this paper, we use the following classic general connectivity indices as the information

function:

• The general Randić index [3]: Rα(G) =
∑
uv∈E(G)(dudv)

α;

• The general sum-connectivity index [20]: Hα(G) =
∑
uv∈E(G)(du + dv)

α;

• The general ABC index [12]: ABCα(G) =
∑
uv∈E(G)

(
du+dv−2
dudv

)α
;

• The general ABS index [1]: ABSα(G) =
∑
uv∈E(G)

(
du+dv−2
du+dv

)α
.

Further, the Shannon’s entropy corresponding to these general connectivity indices is called

the general connectivity entropies of a graph, denoted by IRα(G), IHα(G), IABCα(G) and

IABSα(G), respectively. The main purpose of this paper is to provide quantitative calculation

formulas for the general connectivity entropies of certain important interaction networks (in-

cluding the butterfly networks, Benes networks, and mesh derived networks, see [4, 13, 15]),

which can be helpful to understand their underlying topologies and structural complexity.

(a)Normal representation of butterfly BF (3); (b)Diamond representation of butterfly BF (3).

Figure 1

§2. The General Connectivity Entropies of Butterfly Networks

Certainly, the most popular bounded-degree derivative network of hypercube is the butterfly

network. The set V of vertices of an r-dimensional butterfly network correspond to pairs [w, i],
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where i is the dimension or level of a node (0 ≤ i ≤ r) and w is an r-bit binary number that

denotes the row of the node. Two nodes [w, i] and [w′, i′] are linked by an edge if and only

if i′ = i + 1 and either: w and w′ are identical, or w and w differ in precisely the ith bit. A

r-dimensional butterfly network is denoted by BF (r). Manuel et el. [15] proposed the diamond

representations of these networks. The normal and diamond representations of 3-dimensional

butterfly network are given in Figure 1, in which the number of vertices and number of edges

in a butterfly network are

2r(r + 1) and r2r+1.

Theorem 2.1 For an r-dimensional butterfly network, the general connectivity entropies are

equal to

IRα(BF (r)) = log[23α+r+2(1 + 2α−1(r − 2))]− α log 2[3 + 2α+1(r − 2)]

1 + 2α−1(r − 2)
,

IHα(BF (r)) = log[2α+r+2(3α + 22α−1(r − 2))]

−α[3α log 6 + 22α−1(r − 2) log 8]

3α + 22α−1(r − 2)
,

IABCα(BF (r)) = log[2r+2−α(1 + 2−2α−1(r − 2)3α)]

−
α[log 1

2 + 2−2α−1(r − 2)3α log 3
8 ]

1 + 2−2α−1(r − 2)3α
,

IABSα(BF (r)) = log[2α+r+2 × 3−α(1 + 2−3α−1(r − 2)32α)]

−
α[log 2

3 + 2−3α−1(r − 2)32α log 3
4 ]

1 + 2−3α−1(r − 2)32α
.

Proof Let mdu,dv be the number of edges in BF (r) joining vertices of degree du and dv.

From the definition of r-dimensional butterfly network, we know that there are two types of

edges in BF (r) based on degrees of end vertices of each edge, see Table 1.

mdu,dv m2,4 m4,4

Number of edges 2r+2 2r+1(r − 2)

Table 1. The basic information on BF (r).

Thus, we have

Rα(BF (r)) = 2r+2(2× 4)α + 2r+1(r − 2)(4× 4)α

= 23α+r+2[1 + 2α−1(r − 2)],

Hα(BF (r)) = 2r+2(2 + 4)α + 2r+1(r − 2)(4 + 4)α

= 2α+r+2[3α + 22α−1(r − 2)],

ABCα(BF (r)) = 2r+2

(
2 + 4− 2

2× 4

)α
+ 2r+1(r − 2)

(
4 + 4− 2

4× 4

)α
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= 2r+2−α[1 + 2−2α−1(r − 2)3α],

ABSα(BF (r)) = 2r+2(
2 + 4− 2

2 + 4
)α + 2r+1(r − 2)

(
4 + 4− 2

4 + 4

)α
= 2α+r+2 × 3−α[1 + 2−3α−1(r − 2)32α].

By Formula (1), we get

IRα(BF (r)) = log[23α+r+2(1 + 2α−1(r − 2))]− α log 2[3 + 2α+1(r − 2)]

1 + 2α−1(r − 2)
,

IHα(BF (r)) = log[2α+r+2(3α + 22α−1(r − 2))]− α[3α log 6 + 22α−1(r − 2) log 8]

3α + 22α−1(r − 2)
,

IABCα(BF (r)) = log[2r+2−α(1 + 2−2α−1(r − 2)3α)]

−
α[log 1

2 + 2−2α−1(r − 2)3α log 3
8 ]

1 + 2−2α−1(r − 2)3α
,

IABSα(BF (r)) = log[2α+r+2 · 3−α(1 + 2−3α−1(r − 2)32α)]

−
α[log 2

3 + 2−3α−1(r − 2)32α log 3
4 ]

1 + 2−3α−1(r − 2)32α
.

This completes the proof. �

By Theorem 2.1, we obtain the following corollaries.

Corollary 2.2 For a 3-dimensional butterfly network, the general connectivity entropies are

equal to

IRα(BF (3)) = log[23α+5(1 + 2α−1)]− α log 2[3 + 2α+1]

1 + 2α−1
,

IHα(BF (3)) = log[2α+5(3α + 22α−1)]− α[3α log 6 + 22α−1 log 8]

3α + 22α−1
,

IABCα(BF (3)) = log[25−α(1 + 2−2α−1 · 3α)]−
α[log 1

2 + 2−2α−1 · 3α log 3
8 ]

1 + 2−2α−1 · 3α
,

IABSα(BF (3)) = log[2α+5 · 3−α(1 + 2−3α−1 · 32α)]−
α[log 2

3 + 2−3α−1 · 32α log 3
4 ]

1 + 2−3α−1 · 32α
.

Corollary 2.3 For a 3-dimensional butterfly network with α = 1
2 , the general connectivity

entropies are equal to

IR 1
2

(BF (3)) = log[2
13
2 (1 + 2−

1
2 )]− log 2[3 + 2

3
2 ]

2 + 2
1
2

,

IH 1
2

(BF (3)) = log[2
11
2 (3

1
2 + 1)]− 3

1
2 log 6 + log 8

2 · 3 1
2 + 2

,
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IABC 1
2

(BF (3)) = log[2
9
2 (1 + 2−2 · 3 1

2 )]−
log 1

2 + 1
4 · 3

1
2 log 3

8

2 + 2−1 · 3 1
2

,

IABS 1
2

(BF (3)) = log[2
11
2 · 3− 1

2 (1 + 2−
5
2 · 3)]−

log 2
3 + 2−

5
2 · 3 log 3

4

2 + 2−
3
2 · 3

.

§3. The General Connectivity Entropies of Benes Networks

A r-dimensional Benes network is nothing but back-to-back butterflies. A r-dimensional Benes

network has 2r + 1 levels, each level with 2r nodes. The level 0 to level r nodes in the net-

work form an r-dimensional butterfly. The middle level of the Benes network is shared by

these butterflies. An r-dimensional Benes is denoted by B(r). Manuel et al. [15] proposed

the diamond representation of the Benes network. The normal representation and diamond

representation of B(3) network is shown in Figure 2. The number of vertices and number of

edges in a r-dimensional Benes network are 2r(2r + 1) and r2r+2, respectively.

(c)Normal representation of Benes network B(3); (d)Diamond representation of Benes network B(3).

Figure 2

Theorem 3.1 For an r-dimensional Benes network, the general connectivity entropies are

equal to

IRα(B(r)) = log[23α+r+2(1 + 2α(r − 1))]− α log 2[3 + 2α+2(r − 1)]

1 + 2α(r − 1)
,

IHα(B(r)) = log[2α+r+2(3α + 22α(r − 1))]− α[3α log 6 + 22α(r − 1) log 8]

3α + 22α(r − 1)
,

IABCα(B(r)) = log[2r+2−α(1 + 2−2α(r − 1)3α)]−
α[log 1

2 + 2−2α(r − 1)3α log 3
8 ]

1 + 2−2α(r − 1)3α
,

IABSα(B(r)) = log[2α+r+2 · 3−α(1 + 2−3α(r − 1)32α)]−
α[log 2

3 + 2−3α(r − 1)32α log 3
4 ]

1 + 2−3α(r − 1)32α
.
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Proof Let mdu,dv be the number of edges in B(r) joining vertices of degree du and dv.

From the definition of r-dimensional Benes network, we know that there are two types of edges

in B(r) based on degrees of end vertices of each edge, see Table 2.

md(u),d(v) m2,4 m4,4

Number of edges 2r+2 2r+2(r − 1)

Table 2. The basic information on B(r).

Thus, we have

Rα(B(r)) = 2r+2 · (2 · 4)α + 2r+2(r − 1) · (4 · 4)α = 23α+r+2[1 + 2α(r − 1)],

Hα(B(r)) = 2r+2 · (2 + 4)α + 2r+2(r − 1) · (4 + 4)α = 2α+r+2[3α + 22α(r − 1)],

ABCα(B(r)) = 2r+2 · (2 + 4− 2

2 · 4
)α + 2r+2(r − 1) · (4 + 4− 2

4 · 4
)α

= 2r+2−α[1 + 2−2α(r − 1)3α],

ABSα(B(r)) = 2r+2 · (2 + 4− 2

2 + 4
)α + 2r+2(r − 1) · (4 + 4− 2

4 + 4
)α

= 2α+r+2 · 3−α[1 + 2−3α(r − 1)32α].

By Formula (1), we get

IRα(B(r)) = log[23α+r+2(1 + 2α(r − 1))]− α log 2[3 + 2α+2(r − 1)]

1 + 2α(r − 1)
,

IHα(B(r)) = log[2α+r+2(3α + 22α(r − 1))]− α[3α log 6 + 22α(r − 1) log 8]

3α + 22α(r − 1)
,

IABCα(B(r)) = log[2r+2−α(1 + 2−2α(r − 1)3α)]−
α[log 1

2 + 2−2α(r − 1)3α log 3
8 ]

1 + 2−2α(r − 1)3α
,

IABSα(B(r)) = log[2α+r+2 · 3−α(1 + 2−3α(r − 1)32α)]−
α[log 2

3 + 2−3α(r − 1)32α log 3
4 ]

1 + 2−3α(r − 1)32α
.

This completes the proof. �

By Theorem 3.1, we obtain the following corollaries.

Corollary 3.2 For a 3-dimensional Benes network, the general connectivity entropies are equal

to

IRα(B(3)) = log[23α+5(1 + 2α+1)]− α log 2[3 + 2α+3]

1 + 2α+1
,

IHα(B(3)) = log[2α+5(3α + 22α+1)]− α[3α log 6 + 22α+1 log 8]

3α + 22α+1
,
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IABCα(B(3)) = log[25−α(1 + 2−2α+1 · 3α)]−
α[log 1

2 + 2−2α+1 · 3α log 3
8 ]

1 + 2−2α+1 · 3α
,

IABSα(B(3)) = log[2α+5 · 3−α(1 + 2−3α+1 · 32α)]−
α[log 2

3 + 2−3α+1 · 32α log 3
4 ]

1 + 2−3α+1 · 32α
.

Corollary 3.3 For a 3-dimensional Benes network with α = 1
2 , the general connectivity en-

tropies are equal to

IR 1
2

(B(3)) = log[2
13
2 (1 + 2

3
2 )]− log 2[3 + 2

7
2 ]

2 + 2
5
2

,

IH 1
2

(B(3)) = log[2
11
2 (3

1
2 + 4)]− 3

1
2 log 6 + 4 log 8

2 · 3 1
2 + 8

,

IABC 1
2

(B(3)) = log[2
9
2 (1 + 3

1
2 )]−

log 1
2 + 3

1
2 log 3

8

2 + 2 · 3 1
2

,

IABS 1
2

(B(3)) = log[2
11
2 · 3− 1

2 (1 + 2−
1
2 · 3)]−

log 2
3 + 2−

1
2 · 3 log 3

4

2 + 2
1
2 · 3

.

§4. The General Connectivity Entropies of Mesh Derived Networks

The dual of a planar graph G, denoted by G∗, is a graph whose vertex set is the set of faces

of G, where two vertices f∗ and g∗ in G∗ are joined by an edge e∗ if the faces f and g are

separated by the edge e. Clearly, the number of vertices of G∗ is equal to the number of faces

of G and the number of edges of G∗ is equal to the number of edges in G. Since every planar

graph has exactly one unbounded face. By deleting the vertex placed in unbounded face, we

get the bounded dual of that graph. The medial of a planar graph, denoted by G∗∗ is obtained

from graph G in a special way: Add a vertex at the middle of each edge in G, i.e. barycentric

subdivision of G and then join two such newly added vertices whose original edges span an

angle in G. By deleting the vertex placed in unbounded face, we get the bounded medial of

that graph as shown in Figure 3.

Now, we introduce two new architectures using m × n mesh network in which defining

parameters m and n are number of vertices in any row and column respectively. It can be

easily observed that the bounded dual of m× n mesh is m− 1× n− 1 mesh. We apply medial

operation on m×n mesh and then by deleting vertex placed on unbounded face we get bounded

medial of m×n mesh. By taking union of m×n mesh and its bounded medial in a way that the

vertices of bounded medial are placed in the middle of each edge of m× n mesh, the resulting

architecture will be the planar named as mesh derived network of first type i.e. MDN1(m,n)

network as depicted in Figure 4(e). The vertex and edge cardinalities of MDN1(m,n) network

are

3mn−m− n and 8mn− 6(m+ n) + 4,

respectively.
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Figure 3. Bounded dual and bounded medial of graphs.

The second architecture is obtained from the union of m × n mesh and its bounded dual

m−1×n−1 mesh by joining each vertex of m−1×n−1 mesh to each vertex of corresponding

face of m×n mesh. The resulting architecture will be mesh derived network of second type i.e.

MDN2(m,n) network as depicted in Figure 4(f). This non planar graph has number of vertices

and edges are 2mn − m − n + 1 and 8(mn − m − n + 1) respectively. Some other types of

mesh derived networks are defined and studied in [4]. The important graph parameter which is

discussed in [4] for mesh derived networks is the metric dimension/location number of networks.

Figure 4. Mesh derived networks MDN1(m,n) and MDN2(m,n) with m = n = 5.

Theorem 4.1 For a Mesh derived network MDN1(m,n), the general connectivity entropies

are equal to

IRα(MDN1(m,n)) = logRα(MDN1(m,n))

− 8 · (8)α log(8)α + 4(m+ n− 4) · (12)α log(12)α

Rα(MDN1(m,n))

− 2(m+ n− 4) · (18)α log(18)α + 4(mn−m− n) · (24)α log(24)α

Rα(MDN1(m,n))

− 4 · (16)α log(16)α + 4(mn− 2m− 2n+ 4) · (36)α log(36)α

Rα(MDN1(m,n))
,
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IHα(MDN1(m,n)) = logHα(MDN1(m,n))

− 8 · (6)α log(6)α + 4(m+ n− 4) · (7)α log(7)α

Hα(MDN1(m,n))

− 2(m+ n− 4) · (9)α log(9)α + 4(mn−m− n) · (10)α log(10)α

Hα(MDN1(m,n))

− 4 · (8)α log(8)α + 4(mn− 2m− 2n+ 4) · (12)α log(12)α

Hα(MDN1(m,n))
,

IABCα(MDN1(m,n)) = logABCα(MDN1(m,n))

−
8 · ( 1

2 )α log( 1
2 )α + 4(m+ n− 4) · ( 5

12 )α log( 5
12 )α

ABCα(MDN1(m,n))

−
2(m+ n− 4) · ( 7

18 )α log( 7
18 )α + 4(mn−m− n) · ( 1

3 )α log( 1
3 )α

ABCα(MDN1(m,n))

−
4 · ( 3

8 )α log( 3
8 )α + 4(mn− 2m− 2n+ 4) · ( 5

18 )α log( 5
18 )α

ABCα(MDN1(m,n))
,

IABSα(MDN1(m,n)) = logABSα(MDN1(m,n))

−
8 · ( 2

3 )α log( 2
3 )α + 4(m+ n− 4) · ( 5

7 )α log( 5
7 )α

ABSα(MDN1(m,n))

−
2(m+ n− 4) · ( 7

9 )α log( 7
9 )α + 4(mn−m− n) · ( 4

5 )α log( 4
5 )α

ABSα(MDN1(m,n))

−
4 · ( 3

4 )α log( 3
4 )α + 4(mn− 2m− 2n+ 4) · ( 5

6 )α log( 5
6 )α

ABSα(MDN1(m,n))
.

Proof Let mdu,dv be the number of edges in MDN1(m,n) joining vertices of degree du and

dv. From the definition of mesh derived network MDN1(m,n), we know that the types of

edges in MDN1(m,n) based on degrees of end vertices of each edge, see Table 3.

mdu,dv m2,4 m3,4 m3,6 m4,6

Number of edges 8 4(m+ n− 4) 2(m+ n− 4) 4(mn−m− n)

mdu,dv m4,4 m6,6

Number of edges 4 4(mn− 2m− 2n+ 4)

Table 3. The basic information on MDN1(m,n).

Thus, we have

Rα(MDN1(m,n)) = 8(2× 4)α + 4(m+ n− 4)(3× 4)α + 2(m+ n− 4)(3× 6)α

+ 4(mn−m− n)(4× 6)α + 4(4× 4)α + 4(mn− 2m− 2n+ 4)(6× 6)α

= 8× 8α + 4(m+ n− 4)12α + 2(m+ n− 4)18α

+ 4(mn−m− n)24α + 4× 16α + 4(mn− 2m− 2n+ 4)36α,

Hα(MDN1(m,n)) = 8(2 + 4)α + 4(m+ n− 4)(3 + 4)α + 2(m+ n− 4)(3 + 6)α
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+ 4(mn−m− n)(4 + 6)α + 4(4 + 4)α + 4(mn− 2m− 2n+ 4)(6 + 6)α

= 8× 6α + 4(m+ n− 4)7α + 2(m+ n− 4)9α

+ 4(mn−m− n)10α + 4× 8α + 4(mn− 2m− 2n+ 4)12α,

ABCα(MDN1(m,n)) = 8

(
2 + 4− 2

2× 4

)α
+ 4(m+ n− 4)

(
3 + 4− 2

3× 4

)α
+ 2(m+ n− 4)

(
3 + 6− 2

3× 6

)α
+ 4(mn−m− n)

(
4 + 6− 2

4× 6

)α
+ 4

(
4 + 4− 2

4× 4

)α
+ 4(mn− 2m− 2n+ 4)

(
6 + 6− 2

6× 6

)α
= 8

(
1

2

)α
+ 4(m+ n− 4)

(
5

12

)α
+ 2(m+ n− 4)

(
7

18

)α
+ 4(mn−m− n)

(
1

3

)α
+ 4

(
3

8

)α
+ 4(mn− 2m− 2n+ 4)

(
5

18

)α
,

ABSα(MDN1(m,n)) = 8

(
2 + 4− 2

2 + 4

)α
+ 4(m+ n− 4)

(
3 + 4− 2

3 + 4

)α
+ 2(m+ n− 4)

(
3 + 6− 2

3 + 6

)α
+ 4(mn−m− n)

(
4 + 6− 2

4 + 6

)α
+ 4

(
4 + 4− 2

4 + 4

)α
+ 4(mn− 2m− 2n+ 4)

(
6 + 6− 2

6 + 6

)α
= 8

(
2

3

)α
+ 4(m+ n− 4)

(
5

7

)α
+ 2(m+ n− 4)

(
7

9

)α
+ 4(mn−m− n)

(
4

5

)α
+ 4

(
3

4

)α
+ 4(mn− 2m− 2n+ 4)

(
5

6

)α
.

By Formula (1), we get

IRα(MDN1(m,n)) = logRα(MDN1(m,n))

− 8× 8α log 8α + 4(m+ n− 4)12α log 12α

Rα(MDN1(m,n))

− 2(m+ n− 4)18α log 18α + 4(mn−m− n)24α log 24α

Rα(MDN1(m,n))

− 4× 16α log 16α + 4(mn− 2m− 2n+ 4)36α log 36α

Rα(MDN1(m,n))
,

IHα(MDN1(m,n)) = logHα(MDN1(m,n))

− 8× 6α log 6α + 4(m+ n− 4)7α log 7α

Hα(MDN1(m,n))

− 2(m+ n− 4)9α log 9α + 4(mn−m− n)10α log 10α

Hα(MDN1(m,n))

− 4× 8α log 8α + 4(mn− 2m− 2n+ 4)12α log 12α

Hα(MDN1(m,n))
,
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IABCα(MDN1(m,n)) = logABCα(MDN1(m,n))

−
8
(

1
2

)α
log
(

1
2

)α
+ 4(m+ n− 4)

(
5
12

)α
log
(

5
12

)α
ABCα(MDN1(m,n))

−
2(m+ n− 4)

(
7
18

)α
log
(

7
18

)α
+ 4(mn−m− n)

(
1
3

)α
log
(

1
3

)α
ABCα(MDN1(m,n))

−
4
(

3
8

)α
log
(

3
8

)α
+ 4(mn− 2m− 2n+ 4)

(
5
18

)α
log
(

5
18

)α
ABCα(MDN1(m,n))

,

IABSα(MDN1(m,n)) = logABSα(MDN1(m,n))

−
8
(

2
3

)α
log
(

2
3

)α
+ 4(m+ n− 4)

(
5
7

)α
log
(

5
7

)α
ABSα(MDN1(m,n))

−
2(m+ n− 4)

(
7
9

)α
log
(

7
9

)α
+ 4(mn−m− n)

(
4
5

)α
log
(

4
5

)α
ABSα(MDN1(m,n))

−
4
(

3
4

)α
log
(

3
4

)α
+ 4(mn− 2m− 2n+ 4)

(
5
6

)α
log
(

5
6

)α
ABSα(MDN1(m,n))

.

This completes the proof. �

Theorem 4.2 For Mesh derived network MDN2(m,n), the general connectivity entropies are

equal to

IRα(MDN2(m,n)) = logRα(MDN2(m,n))

− 4× 18α log 18α + 8× 15α log 15α

Rα(MDN2(m,n))

− 8× 30α log 30α + 2(m+ n− 6)25α log 25α + 4× 48α log 48α

Rα(MDN2(m,n))

− 2(m+ n− 4)× 40α log 40α + 4(m+ n− 6)35α log 35α

Rα(MDN2(m,n))

− 2(m+ n− 8)× 49α log 49α + 8× 42α log 42α

Rα(MDN2(m,n))

− 6(m+ n− 6)56α log 56α + [8mn− 24(m+ n) + 72]64α log 64α

Rα(MDN2(m,n))
,

IHα(MDN2(m,n)) = logHα(MDN2(m,n))

− 4× 9α log 9α + 8× 8α log 8α + 8× 11α log 11α

Hα(MDN2(m,n))

− 2(m+ n− 6)10α log 10α + [8mn− 24(m+ n) + 72]16α log 16α

Hα(MDN2(m,n))

− 2(m+ n)13α log 13α + 4(m+ n− 6)12α log 12α

Hα(MDN2(m,n))
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− 2(m+ n− 6)14α log 14α + 6(m+ n− 6)15α log 15α

Hα(MDN2(m,n))
,

IABCα(MDN2(m,n)) = logABCα(MDN2(m,n))

−
4
(

7
18

)α
log
(

7
18

)α
+ 8

(
2
5

)α
log
(

2
5

)α
ABCα(MDN2(m,n))

−
8
(

3
10

)α
log
(

3
10

)α
+ 2(m+ n− 6)

(
8
25

)α
log
(

8
25

)α
+ 4

(
1
4

)α
log( 1

4 )α

ABCα(MDN2(m,n))

−
2(m+ n− 4)

(
11
40

)α
log
(

11
40

)α
+ 4(m+ n− 6)

(
2
7

)α
log
(

2
7

)α
ABCα(MDN2(m,n))

−
2(m+ n− 8)

(
12
49

)α
log
(

12
49

)α
+ 8

(
11
42

)α
log
(

11
42

)α
ABCα(MDN2(m,n))

−
6(m+ n− 6)

(
13
56

)α
log
(

13
56

)α
+ [8mn− 24(m+ n) + 72]

(
7
32

)α
log
(

7
32

)α
ABCα(MDN2(m,n))

,

IABSα(MDN2(m,n)) = logABSα(MDN2(m,n))

−
4
(

7
9

)α
log
(

7
9

)α
+ 8

(
3
4

)α
log
(

3
4

)α
ABSα(MDN2(m,n))

−
2(m+ n− 6)

(
4
5

)α
log
(

4
5

)α
+ [8mn− 24(m+ n) + 72]

(
7
8

)α
log
(

7
8

)α
ABSα(MDN2(m,n))

−
2(m+ n)

(
11
13

)α
log
(

11
13

)α
+ 4(m+ n− 6)

(
5
6

)α
log
(

5
6

)α
+ 8

(
9
11

)α
log
(

9
11

)α
ABSα(MDN2(m,n))

−
2(m+ n− 6)

(
6
7

)α
log
(

6
7

)α
+ 6(m+ n− 6)

(
13
15

)α
log
(

13
15

)α
ABSα(MDN2(m,n))

.

Proof Let mdu,dv be the number of edges in MDN2(m,n) joining vertices of degree du and

dv. From the definition of mesh derived network MDN2(m,n), we know that the types of

edges in MDN2(m,n) based on degrees of end vertices of each edge, see Table 4.

mdu,dv m3,6 m3,5 m5,6 m5,5 m6,8 m5,8 m5,7

Number of edges 4 8 8 2(m+ n− 6) 4 2(m+ n− 4) 4(m+ n− 6)

mdu,dv m7,7 m6,7 m7,8 m8,8

Number of edges 2(m+ n− 8) 8 6(m+ n− 6) 8mn− 24(m+ n) + 72

Table 4. The basic information on MDN2(m,n).

Thus, we have

Rα(MDN2(m,n)) = 4× (3 · 6)α + 8× (3 · 5)α + 8× (5 · 6)α

+ 2(m+ n− 6)(5× 5)α + 4× (6× 8)α + 2(m+ n− 4)(5× 8)α
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+ 4(m+ n− 6)(5× 7)α + 2(m+ n− 8)(7× 7)α + 8(6× 7)α

+ 6(m+ n− 6)(7× 8)α + [8mn− 24(m+ n) + 72](8× 8)α

= 4× 18α + 8× 15α + 8× 30α

+ 2(m+ n− 6)25α + 4× 48α + 2(m+ n− 4)40α

+ 4(m+ n− 6)35α + 2(m+ n− 8)49α + 8× 42α

+ 6(m+ n− 6)56α + [8mn− 24(m+ n) + 72]64α,

Hα(MDN2(m,n)) = 4(3 + 6)α + 8(3 + 5)α + 8(5 + 6)α

+ 2(m+ n− 6)(5 + 5)α + 4(6 + 8)α + 2(m+ n− 4)(5 + 8)α

+ 4(m+ n− 6)(5 + 7)α + 2(m+ n− 8)(7 + 7)α + 8(6 + 7)α

+ 6(m+ n− 6)(7 + 8)α + [8mn− 24(m+ n) + 72](8 + 8)α

= 4× 9α + 8× 8α + 8× 11α + 2(m+ n− 6)10α + 2(m+ n)13α

+ 4(m+ n− 6)12α + 2(m+ n− 6)14α + 6(m+ n− 6)15α

+ [8mn− 24(m+ n) + 72]16α,

ABCα(MDN2(m,n)) = 4

(
3 + 6− 2

3 · 6

)α
+ 8

(
3 + 5− 2

3× 5

)α
+ 8

(
5 + 6− 2

5× 6

)α
+ 2(m+ n− 6)

(
5 + 5− 2

5× 5

)α
+ 4

(
6 + 8− 2

6× 8

)α
+ 2(m+ n− 4)

(
5 + 8− 2

5× 8

)α
+ 4(m+ n− 6)

(
5 + 7− 2

5× 7

)α
+ 2(m+ n− 8)

(
7 + 7− 2

7× 7

)α
+ 8

(
6 + 7− 2

6× 7

)α
+ 6(m+ n− 6)

(
7 + 8− 2

7× 8

)α
+ [8mn− 24(m+ n) + 72]

(
8 + 8− 2

8× 8

)α
= 4

(
7

18

)α
+ 8

(
2

5

)α
+ 8

(
3

10

)α
+ 2(m+ n− 6)

(
8

25

)α
+ 4

(
1

4

)α
+ 2(m+ n− 4)

(
11

40

)α
+ 4(m+ n− 6)

(
2

7

)α
+ 2(m+ n− 8)

(
12

49

)α
+ 8

(
11

42

)α
+ 6(m+ n− 6)

(
13

56

)α
+ [8mn− 24(m+ n) + 72]

(
7

32

)α
,

ABSα(MDN2(m,n)) = 4

(
3 + 6− 2

3 + 6

)α
+ 8

(
3 + 5− 2

3 + 5

)α
+ 8

(
5 + 6− 2

5 + 6

)α
+ 2(m+ n− 6)

(
5 + 5− 2

5 + 5

)α
+ 4

(
6 + 8− 2

6 + 8

)α
+ 2(m+ n− 4)

(
5 + 8− 2

5 + 8

)α
+ 4(m+ n− 6)

(
5 + 7− 2

5 + 7

)α
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+ 2(m+ n− 8)

(
7 + 7− 2

7 + 7

)α
+ 8

(
6 + 7− 2

6 + 7

)α
+ 6(m+ n− 6)

(
7 + 8− 2

7 + 8

)α
+ [8mn− 24(m+ n) + 72]

(
8 + 8− 2

8 + 8

)α
= 4

(
7

9

)α
+ 8

(
3

4

)α
+ 8

(
9

11

)α
+ 2(m+ n− 6)

(
4

5

)α
+ 2(m+ n)

(
11

13

)α
+ 4(m+ n− 6)

(
5

6

)α
+ 2(m+ n− 6)

(
6

7

)α
+ 6(m+ n− 6)

(
13

15

)α
+ [8mn− 24(m+ n) + 72]

(
7

8

)α
.

By Formula (1), we get

IRα(MDN2(m,n)) = logRα(MDN2(m,n))

− 4× 18α log 18α + 8× 15α log 15α

Rα(MDN2(m,n))

− 8× 30α log(30)α + 2(m+ n− 6)25α log 25α + 4× 48α log(48)α

Rα(MDN2(m,n))

− 2(m+ n− 4)40α log 40α + 4(m+ n− 6)35α log 35α

Rα(MDN2(m,n))

− 2(m+ n− 8)49α log 49α + 8× 42α log 42α

Rα(MDN2(m,n))

− 6(m+ n− 6)56α log 56α + [8mn− 24(m+ n) + 72]64α log 64α

Rα(MDN2(m,n))
,

IHα(MDN2(m,n)) = logHα(MDN2(m,n))

− 4× 9α log 9α + 8× 8α log 8α + 8× 11α log(11)α

Hα(MDN2(m,n))

− 2(m+ n− 6)10α log 10α + [8mn− 24(m+ n) + 72]16α log 16α

Hα(MDN2(m,n))

− 2(m+ n)13α log 13α + 4(m+ n− 6)12α log 12α

Hα(MDN2(m,n))

− 2(m+ n− 6)14α log 14α + 6(m+ n− 6)15α log 15α

Hα(MDN2(m,n))
,

IABCα(MDN2(m,n)) = logABCα(MDN2(m,n))

−
4
(

7
18

)α
log
(

7
18

)α
+ 8

(
2
5

)α
log
(

2
5

)α
ABCα(MDN2(m,n))

−
8
(

3
10

)α
log
(

3
10

)α
+ 2(m+ n− 6)

(
8
25

)α
log
(

8
25

)α
+ 4

(
1
4

)α
log
(

1
4

)α
ABCα(MDN2(m,n))
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−
2(m+ n− 4)

(
11
40

)α
log
(

11
40

)α
+ 4(m+ n− 6)

(
2
7

)α
log
(

2
7

)α
ABCα(MDN2(m,n))

−
2(m+ n− 8)

(
12
49

)α
log
(

12
49

)α
+ 8

(
11
42

)α
log
(

11
42

)α
ABCα(MDN2(m,n))

−
6(m+ n− 6)

(
13
56

)α
log
(

13
56

)α
+ [8mn− 24(m+ n) + 72]

(
7
32

)α
log
(

7
32

)α
ABCα(MDN2(m,n))

,

IABSα(MDN2(m,n)) = logABSα(MDN2(m,n))

−
4
(

7
9

)α
log
(

7
9

)α
+ 8

(
3
4

)α
log
(

3
4

)α
ABSα(MDN2(m,n))

−
2(m+ n− 6)

(
4
5

)α
log
(

4
5

)α
+ [8mn− 24(m+ n) + 72]

(
7
8

)α
log
(

7
8

)α
ABSα(MDN2(m,n))

−
2(m+ n)

(
11
13

)α
log
(

11
13

)α
+ 4(m+ n− 6)

(
5
6

)α
log
(

5
6

)α
+ 8

(
9
11

)α
log
(

9
11

)α
ABSα(MDN2(m,n))

−
2(m+ n− 6)

(
6
7

)α
log
(

6
7

)α
+ 6(m+ n− 6)

(
13
15

)α
log
(

13
15

)α
ABSα(MDN2(m,n))

.

This completes the proof. �
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Abstract: Let a graph G = (V,E) be a (p, q) graph. Define

ρ =


p

2
, p is even

p− 1

2
, p is odd,

and M = {±1,±2, · · · ± ρ} called the set of labels. Consider a mapping λ : V → M by

assigning different labels in M to the different elements of V when p is even and different

labels in M to p− 1 elements of V and repeating a label for the remaining one vertex when

p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for

each edge uv of G, there exists a labeling λ(u)+λ(v)
2

if λ(u) + λ(v) is even and λ(u)+λ(v)+1
2

if

λ(u) + λ(v) is odd such that |S̄λ1 − S̄λc1 | ≤ 1 where S̄λ1 and S̄λc1 respectively denote the

number of edges labeled with 1 and the number of edges not labeled with 1. A graph G

with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we

discuss here the pair mean cordial labeling of union graphs like Lm ∪Ln, Pm ∪Ln, Cm ∪Ln,

Wm ∪ Ln, Sm ∪ Ln.

Key Words: Pair mean cordial labeling, Smarandachely pair mean cordial labeling, S-

marandachely pair mean cordial labeling graph, path, cycle, shell, wheel and ladder.

AMS(2010): 05C78.

§1. Introduction

In this paper, we will deal with finite, simple, connected and undirected graphs. We follow

Harary [3] for basic terms and notations of graph theory and see Gallian [2] for more details

on graph labeling. The concept of graph labeling was introduced by A. Rosa in 1967 [16]. The

concept of cordial graphs was introduced by Cahit [1] and also studied some cordial related

graphs in [4-7,13-15,17-20]. We have introduced the notion of pair mean cordial labeling of

1Received January 31, 2024, Accepted August 18, 2024.
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graphs in [8] and studied their properties in [9-12]. In this paper, we discuss here the pair mean

cordial labeling of union graphs like Lm ∪ Ln, Pm ∪ Ln, Cm ∪ Ln, Wm ∪ Ln, Sm ∪ Ln.

§2. Preliminaries

Definition 2.1 A graph labeling is an assignment of integers to the vertices or edges, or both,

subject to certain conditions.—vskip3mm

Definition 2.2 The union of two graphs G1 and G2 is the graph G1 ∪G2 with V (G1 ∪G2) =

V (G1) ∪ V (G2) and E(G1 ∪G2) = E(G1) ∪ E(G2).

Definition 2.3 The shell Sn is the graph obtained by taking n − 3 concurrent chord in cycle

Cn. The vertex at which all the chords are concurrent is called the apex vertex.

Definition 2.4 A wheel Wn is a graph with n+1 vertices, formed by connecting a single vertex

to all the vertices of the cycle Cn. It is denoted by Wn = Cn +K1.

Definition 2.5 A ladder graph Ln is a planar, undirected graph with 2n vertices and 3n − 2

edges.

§3. Pair Mean Cordial Labeling

Definition 3.1 Let a graph G = (V,E) be a (p, q) graph. Define

ρ =


p

2
, p is even

p− 1

2
, p is odd,

and M = {±1,±2, · · ·±ρ} called the set of labels. Consider a mapping λ : V →M by assigning

different labels in M to the different elements of V when p is even and different labels in M

to p − 1 elements of V and repeating a label for the remaining one vertex when p is odd. The

labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there

exists a labeling λ(u)+λ(v)
2 if λ(u) + λ(v) is even and λ(u)+λ(v)+1

2 if λ(u) + λ(v) is odd such that

|S̄λ1
− S̄λc1 | ≤ 1 where S̄λ1

and S̄λc1 respectively denote the number of edges labeled with 1 and

the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a

pair mean cordial graph.

Otherwise, if |S̄λ1
− S̄λc1 | ≥ 2, such a labeling on G is said to be Smarandachely pair mean

cordial labeling and G is called a Smarandachely pair mean cordial labeling graph.

Theorem 3.2 Lm ∪ Ln is pair mean cordial for all m,n ≥ 2.

Proof Let V (Lm ∪ Ln) = {ui, vi, xj , yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Lm ∪ Ln) =

{uivi, xjyj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {uiui+1, vivi+1, xjxj+1, yjyj+1 : 1 ≤ i ≤ m − 1, 1 ≤ j ≤
n− 1}. Note that Lm ∪ Ln has 2m+ 2n vertices and 3m+ 3n− 4 edges.
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Case 1. m ≡ 0 (mod 4)

Let us assign the labels 2, 6, . . . ,m − 2 to the vertices u1, u5, · · · , um−3 respectively and

−2,−6, · · · ,−m + 2 respectively to the vertices u2, u6, · · · , um−2. Next we assign the labels

−3,−7, · · · ,−m+1 to the vertices u3, u7, · · · , um−1 respectively and 5, 9, · · · ,m+1 respectively

to the vertices u4, u8, · · · , um. Now we give the labels −1,−5, · · · ,−m + 3 to the vertices

v1, u5, · · · , vm−3 respectively and 3, 7, · · · ,m − 1 respectively to the vertices v2, v6, · · · , vm−2.

Then, we give the labels 4, 8, · · · ,m to the vertices v3, v7, · · · , vm−1 respectively and−4,−8, · · · ,
−m respectively to the vertices v4, v8, · · · , vm. There are four subcases arise:

Subcase 1.1 n ≡ 0 (mod 4)

First we assign the labels m + 2,m + 6, · · · ,m + n − 2 to the vertices x1, x5, · · · , xn−3

respectively and m + 3,m + 7, · · · ,m + n − 1 respectively to the vertices x2, x6, · · · , xn−2.

Now we assign the labels −m − 3,−m − 7, · · · ,−m − n + 1 to the vertices x3, x7, · · · , xn−1

respectively and −m− 4,−m− 8, · · · ,−m−n respectively to the vertices x4, x8, · · · , xn. Then

we give the labels −m− 1,−m− 5, · · · ,−m−n+ 3 to the vertices y1, y5, · · · , yn−3 respectively

and −m− 2,−m− 6, · · · ,−m−n+ 2 respectively to the vertices y2, y6, · · · , yn−2. Also we give

the labels m+ 4,m+ 6, · · · ,m+ n to the vertices y3, y7, · · · , yn−1 respectively and m+ 5,m+

9, · · · ,m+ n− 3 respectively to the vertices y4, y8, · · · , yn−4. Fix the label 1 to the vertex yn.

Subcase 1. n ≡ 1 (mod 4)

In this case, we assign the labels m+ 2,m+ 6, · · · ,m+ n− 3 respectively to the vertices

x1, x5, · · · , xn−4 andm+3,m+7, · · · ,m+n−2 to the vertices x2, x6, · · · , xn−3 respectively. Also

we assign the labels −m−3,−m−7, · · · ,−m−n+2 respectively to the vertices x3, x7, · · · , xn−2

and −m−4,−m−8, · · · ,−m−n+1 to the vertices x4, x8, · · · , xn−1 respectively. Fix the label

1 to the vertex xn. Further more we give the labels −m−1,−m−5, · · · ,−m−n respectively to

the vertices y1, y5, · · · , yn and −m− 2,−m− 6, · · · ,−m−n+ 3 to the vertices y2, y6, · · · , yn−3

respectively. We give the labels m + 4,m + 8, · · · ,m + n − 1 respectively to the vertices

y3, y7, · · · , yn−2 and m+ 5,m+ 9, · · · ,m+ n to the vertices y4, y8, · · · , yn−1 respectively.

Subcase 1.3 n ≡ 2 (mod 4)

We now assign the labels m+2,m+6, . . . ,m+n respectively to the vertices x1, x5, · · · , xn−1

and m+ 3,m+ 7, · · · ,m+ n− 3 to the vertices x2, x6, · · · , xn−4 respectively. Then we assign

the labels −m − 3,−m − 7, · · · ,−m − n + 3 respectively to the vertices x3, x7, · · · , xn−3 and

−m− 4,−m− 8, · · · ,−m− n+ 2 to the vertices x4, x8, · · · , xn−2 respectively. Fix the label 1

to the vertex xn. More over we give the labels −m − 1,−m − 5, · · · ,−m − n + 1 respectively

to the vertices y1, y5, · · · , yn−1 and −m− 2,−m− 6, · · · ,−m− n to the vertices y2, y6, · · · , yn
respectively. Finally we give the labels m+ 4,m+ 8, · · · ,m+ n− 2 respectively to the vertices

y3, y7, · · · , yn−3 and m+ 5,m+ 9, · · · ,m+ n− 1 to the vertices y4, y8, · · · , yn−2 respectively.

Subcase 1.4 n ≡ 3 (mod 4)

Let us assign the labels m + 2,m + 6, · · · ,m + n − 1 to the vertices x1, x5, · · · , xn−2

respectively and m + 3,m + 7, · · · ,m + n respectively to the vertices x2, x6, · · · , xn−1. Next

we assign the labels −m − 3,−m − 7, · · · ,−m − n to the vertices x3, x7, · · · , xn respectively
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and −m − 4,−m − 8, · · · ,−m − n + 3 respectively to the vertices x4, x8, · · · , xn−3. We give

the labels −m − 1,−m − 5, · · · ,−m − n + 2 to the vertices y1, y5, · · · , yn−2 respectively and

−m − 2,−m − 6, · · · ,−m − n + 1 respectively to the vertices y2, y6, · · · , yn−1. We give the

labels m+ 4,m+ 8, · · · ,m+ n− 3 to the vertices y3, y7, · · · , yn−4 respectively and m+ 5,m+

9, · · · ,m+ n− 2 respectively to the vertices y4, y8, · · · , yn−3. Fix the label 1 to the vertex yn.

Case 2. m ≡ 1 (mod 4)

First we assign the labels 2, 6, · · · ,m + 1 to the vertices u1, u5, · · · , um respectively and

−2,−6, · · · ,−m + 3 respectively to the vertices u2, u6, · · · , um−3. We now assign the labels

−3,−7, · · · ,−m + 2 to the vertices u3, u7, · · · , um−2 respectively and 5, 9, · · · ,m respective-

ly to the vertices u4, u8, · · · , um−1. Then we give the labels −1,−5, · · · ,−m to the vertices

v1, u5, · · · , vm respectively and 3, 7, · · · ,m− 2 respectively to the vertices v2, v6, · · · , vm−3. Al-

so, we give the labels 4, 8, · · · ,m−1 to the vertices v3, v7, · · · , vm−2 respectively and −4,−8, · · · ,
−m+ 1 respectively to the vertices v4, v8, · · · , vm−1. There are four subcases arise:

Subcase 2.1 n ≡ 0 (mod 4)

Now we assign the labels −m− 1,−m− 5, · · · ,−m−n+ 3 to the vertices x1, x5, · · · , xn−3

respectively and m + 3,m + 7, · · · ,m + n − 1 respectively to the vertices x2, x6, · · · , xn−2.

Now we assign the labels m+ 4,m+ 8, · · · ,m+ n to the vertices x3, x7, · · · , xn−1 respectively

and −m − 4,−m − 8, · · · ,−m − n respectively to the vertices x4, x8, · · · , xn. Then we give

the labels m + 2,m + 6, · · · ,m + n − 2 to the vertices y1, y5, . . . , yn−3 respectively and −m −
2,−m− 6, · · · ,−m−n+ 2 respectively to the vertices y2, y6, · · · , yn−2. Also we give the labels

−m− 3,−m− 7, · · · ,−m− n+ 1 to the vertices y3, y7, · · · , yn−1 respectively and m+ 5,m+

9, · · · ,m+ n− 3 respectively to the vertices y4, y8, · · · , yn−4. Fix the label 1 to the vertex yn.

Subcase 2.2 n ≡ 1 (mod 4)

Also we assign the labels −m−1,−m−5, · · · ,−m−n respectively to the vertices x1, x5, · · · ,
xn and m + 3,m + 7, · · · ,m + n − 2 to the vertices x2, x6, · · · , xn−3 respectively. Next we

assign the labels m+ 4,m+ 8, · · · ,m+ n− 1 respectively to the vertices x3, x7, · · · , xn−2 and

−m − 4,−m − 8, · · · ,−m − n + 1 to the vertices x4, x8, · · · , xn−1 respectively. More over we

give the labels m + 2,m + 6, · · · ,m + n − 3 respectively to the vertices y1, y5, · · · , yn−4 and

−m − 2,−m − 6, · · · ,−m − n + 3 to the vertices y2, y6, · · · , yn−3 respectively. Then we give

the labels −m − 3,−m − 7, · · · ,−m − n + 2 respectively to the vertices y3, y7, · · · , yn−2 and

m + 5,m + 9, · · · ,m + n to the vertices y4, y8, · · · , yn−1 respectively. Fix the label 1 to the

vertex yn.

Subcase 2.3 n ≡ 2 (mod 4)

We now assign the labels −m − 1,−m − 5, · · · ,−m − n + 1 respectively to the vertices

x1, x5, · · · , xn−1 and m+ 3,m+ 7, · · · ,m+ n− 3 to the vertices x2, x6, · · · , xn−4 respectively.

Then we assign the labels m+4,m+8, · · · ,m+n−2 respectively to the vertices x3, x7, · · · , xn−3

and −m − 4,−m − 8, · · · ,−m − n + 2 to the vertices x4, x8, · · · , xn−2 respectively. Fix the

label 1 to the vertex xn. More over we give the labels m + 2,m + 6, · · · ,m + n respectively

to the vertices y1, y5, · · · , yn−1 and −m− 2,−m− 6, · · · ,−m− n to the vertices y2, y6, · · · , yn
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respectively. Finally we give the labels−m−3,−m−7, · · · ,−m−n+3 respectively to the vertices

y3, y7, · · · , yn−3 and m+ 5,m+ 9, · · · ,m+ n− 1 to the vertices y4, y8, · · · , yn−2 respectively.

Subcase 2.4 n ≡ 3 (mod 4)

Then we assign the labels −m−1,−m−5, · · · ,−m−n+ 2 to the vertices x1, x5, · · · , xn−2

respectively and m+ 3,m+ 7, · · · ,m+n respectively to the vertices x2, x6, · · · , xn−1. Next we

assign the labels m+ 4,m+ 8, · · · ,m+ n− 3 to the vertices x3, x7, · · · , xn−4 respectively and

−m− 4,−m− 8, · · · ,−m− n+ 3 respectively to the vertices x4, x8, · · · , xn−3. Fix the label 1

to the vertex xn. We give the labels m+ 2,m+ 6, · · · ,m+n−1 to the vertices y1, y5, · · · , yn−2

respectively and −m− 2,−m− 6, . . . ,−m− n+ 1 respectively to the vertices y2, y6, · · · , yn−1.

We give the labels −m− 3,−m− 7, · · · ,−m− n to the vertices y3, y7, · · · , yn respectively and

m+ 5,m+ 9, · · · ,m+ n− 2 respectively to the vertices y4, y8, · · · , yn−3.

Case 3. m ≡ 2 (mod 4)

Assign the labels 2, 6, · · · ,m to the vertices u1, u5, · · · , um−1 respectively and −2,−6, · · · ,
−m respectively to the vertices u2, u6, · · · , um. Then we assign the labels −3,−7, · · · ,−m+ 3

to the vertices u3, u7, · · · , um−2 respectively and 5, 9, · · · ,m − 1 respectively to the vertices

u4, u8, · · · , um−3. Also we give the labels −1,−5, · · · ,−m + 1 to the vertices v1, u5, · · · , vm−1

respectively and 3, 7, · · · ,m + 1 respectively to the vertices v2, v6, · · · , vm. Next we give the

labels 4, 8, · · · ,m − 2 to the vertices v3, v7, · · · , vm−2 respectively and −4,−8, · · · ,−m + 2

respectively to the vertices v4, v8, · · · , vm−3.

Subcase 3.1 n ≡ 0 (mod 4)

Assign the labels to the vertices xj and yj for 1 ≤ j ≤ n as in Subcase 1.1 of Case 1.

Subcase 3.2 n ≡ 1 (mod 4)

Let us assign the labels to the vertices xj and yj for 1 ≤ j ≤ n as in Subcase 1.2 of Case 1.

Subcase 3.3 n ≡ 2 (mod 4)

Also, we assign the labels to vertices xj and yj for 1 ≤ j ≤ n as in Subcase 1.3 of Case 1.

Subcase 3.4 n ≡ 3 (mod 4)

Now, we assign the labels to vertices xj and yj for 1 ≤ j ≤ n as in Subcase 1.4 of Case 1.

Case 4: m ≡ 3 (mod 4)

Let us assign the labels 2, 6, · · · ,m − 1 to the vertices u1, u5, · · · , um−2 respectively and

−2,−6, · · · ,−m respectively to the vertices u2, u6, · · · , um−1. Then we assign the labels −3,−7,

· · · ,−m to the vertices u3, u7, · · · , um respectively and 5, 9, · · · ,m−2 respectively to the vertices

u4, u8, · · · , um−3. Also we give the labels −1,−5, · · · ,−m + 2 to the vertices v1, u5, · · · , vm−2

respectively and 3, 7, · · · ,m respectively to the vertices v2, v6, · · · , vm−1. Next we give the labels

4, 8, · · · ,m+ 1 to the vertices v3, v7, · · · , vm respectively and −4,−8, · · · ,−m+ 3 respectively

to the vertices v4, v8, · · · , vm−3.

In this case, there are 4 subcases should be discussed.
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Subcase 4.1 n ≡ 0 (mod 4)

Assign the labels to the vertices xj and yj for 1 ≤ j ≤ n as in Subcase 2.1 of Case 2.

Subcase 4.2 n ≡ 1 (mod 4)

Let us assign the labels to the vertices xj and yj for 1 ≤ j ≤ n as in Subcase 2.2 of Case 2.

Subcase 4.3 n ≡ 2 (mod 4)

Also, we assign the labels to vertices xj and yj for 1 ≤ j ≤ n as in Subcase 2.3 of Case 2.

Subcase 4.4 n ≡ 3 (mod 4)

Now, we assign the labels to vertices xj and yj for 1 ≤ j ≤ n as in Subcase 2.4 of Case 2.

The following table shows that this vertex labeling λ is a pair mean cordial of Lm ∪Ln for

all m,n ≥ 2.

m n S̄λ1 S̄λc1
n ≡ 0 (mod 4) 3m+3n−4

2
3m+3n−4

2

m ≡ 0, 2 (mod 4) n ≡ 1 (mod 4) 3m+3n−5
2

3m+3n−3
2

n ≡ 2 (mod 4) 3m+3n−4
2

3m+3n−4
2

n ≡ 3 (mod 4) 3m+3n−5
2

3m+3n−3
2

n ≡ 0 (mod 4) 3m+3n−5
2

3m+3n−3
2

m ≡ 1, 3 (mod 4) n ≡ 1 (mod 4) 3m+3n−4
2

3m+3n−4
2

n ≡ 2 (mod 4) 3m+3n−5
2

3m+3n−3
2

n ≡ 3 (mod 4) 3m+3n−4
2

3m+3n−4
2

Table 1

This completes the proof. �

Example 3.3 A pair mean cordial labeling of L5 ∪ L6 is shown in Figure 1.

Figure 1

Theorem 3.4 Wm ∪ Ln is pair mean cordial for all m ≥ 3 and n ≥ 2.

Proof Let V (Wm ∪ Ln) = {u0, ui, vj , wj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Wm ∪ Ln) =

{u0ui, vjwj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {uiui+1, umu1, vjvj+1, wjwj+1 : 1 ≤ i ≤ m − 1, 1 ≤ j ≤
n− 1}. Note that Wm ∪ Ln has m+ 2n+ 1 vertices and 2m+ 3n− 2 edges.
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Case 1. m is odd.

Fix the label 2 to the vertex u0. Let λ(v1) = m+5
2 and λ(w1) = −m−3

2 . Then we as-

sign the labels −1,−2, · · · , −m−1
2 to the vertices u1, u3, . . . , um respectively and 3, 4, · · · , m+3

2

respectively to the vertices u2, u4, · · · , um−1. Hence there are four subcases arise:

Subcase 1.1 n ≡ 0 (mod 4)

Next we assign the labels −m−5
2 , −m−13

2 , · · · ,−m − n + 4 to the vertices v2, v6, · · · , vn−2

respectively and m+9
2 , m+17

2 , · · · ,m+ n− 2 respectively to the vertices v3, v7, · · · , vn−1. Then

we give the labels m+11
2 , m+19

2 , · · · ,m+ n− 5 to the vertices v4, v8, · · · , vn−4 respectively and
−m−11

2 , −m−19
2 , · · · ,−m − n + 5 respectively to the vertices v5, v9, · · · , vn−3. Fix the label

1 to the vertex vn. More over we assign the labels m+7
2 , m+15

2 , · · · ,m + n − 3 to the ver-

tices w2, w6, · · · , wn−2 respectively and −m−7
2 , −m−15

2 , · · · ,−m− n+ 3 respectively to the ver-

tices w3, w7, · · · , wn−1. Also we give the labels −m−9
2 , −m−17

2 , · · · ,−m − n + 2 to the ver-

tices w4, w8, · · · , wn respectively and m+13
2 , m+21

2 , · · · ,m + n − 4 respectively to the vertices

w5, w9, · · · , wn−3.

Subcase 1.2 n ≡ 1 (mod 4)

Now we assign the labels −m−5
2 , −m−13

2 , · · · ,−m − n + 5 to the vertices v2, v6, · · · , vn re-

spectively and m+9
2 , m+17

2 , · · · ,m+n−3 respectively to the vertices v3, v7, · · · , vn−1. Therefore

we give the labels m+11
2 , m+19

2 , · · · ,m+ n− 2 to the vertices v4, v8, · · · , vn−2 respectively and
−m−11

2 , −m−19
2 , · · · ,−m − n + 2 respectively to the vertices v5, v9, · · · , vn. More over we as-

sign the labels m+7
2 , m+15

2 , · · · ,m + n − 4 to the vertices w2, w6, · · · , wn−3 respectively and
−m−7

2 , −m−15
2 , · · · ,−m − n + 4 respectively to the vertices w3, w7, · · · , wn−2. Also we give

the labels −m−9
2 , −m−17

2 , · · · ,−m − n + 3 to the vertices w4, w8, · · · , wn−1 respectively and
m+13

2 , m+21
2 , · · · ,m+ n− 5 respectively to the vertices w5, w9, · · · , wn−4. Finally fix the label

1 to the vertex wn.

Subcase 1.3 n ≡ 2 (mod 4)

In this case, we assign the labels −m−5
2 , −m−13

2 , · · · ,−m−n+2 to the vertices v2, v6, · · · , vn
respectively and m+9

2 , m+17
2 , · · · ,m + n − 4 respectively to the vertices v3, v7, · · · , vn−3. Next

we give the labels m+11
2 , m+19

2 , · · · ,m+ n− 3 to the vertices v4, v8, · · · , vn−2 respectively and
−m−11

2 , −m−19
2 , · · · ,−m− n+ 3 respectively to the vertices v5, v9, · · · , vn−1. Further more we

assign the labels m+7
2 , m+15

2 , · · · ,m + n − 5 to the vertices w2, w6, · · · , wn−4 respectively and
−m−7

2 , −m−15
2 , · · · ,−m − n + 5 respectively to the vertices w3, w7, · · · , wn−3. Also we give

the labels −m−9
2 , −m−17

2 , · · · ,−m − n + 4 to the vertices w4, w8, · · · , wn−2 respectively and
m+13

2 , m+21
2 , · · · ,m+ n− 2 respectively to the vertices w5, w9, · · · , wn−1. Finally fix the label

1 to the vertex wn.

Subcase 1.4 n ≡ 3 (mod 4)

In this case, we assign the labels −m−5
2 , −m−13

2 , · · · ,−m−n+3 to the vertices v2, v6, · · · , vn−1

respectively and m+9
2 , m+17

2 , · · · ,m+ n− 5 respectively to the vertices v3, v7, · · · , vn−4. Then

we give the labels m+11
2 , m+19

2 , · · · ,m+ n− 4 to the vertices v4, v8, · · · , vn−3 respectively and
−m−11

2 , −m−19
2 , · · · ,−m − n + 4 respectively to the vertices v5, v9, · · · , vn−2. Fix the label
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1 to the vertex wn. More over we assign the labels m+7
2 , m+15

2 , · · · ,m + n − 2 to the ver-

tices w2, w6, · · · , wn−1 respectively and −m−7
2 , −m−15

2 , · · · ,−m − n + 2 respectively to the

vertices w3, w7, · · · , wn. Also we give the labels −m−9
2 , −m−17

2 , · · · ,−m − n + 5 to the ver-

tices w4, w8, · · · , wn−3 respectively and m+13
2 , m+21

2 , · · · ,m+ n− 3 respectively to the vertices

w5, w9, · · · , wn−2. Finally fix the label 1 to the vertex wn.

Case 2. m is even.

Fix the label 3 to the vertex u0. Then we assign the labels 2, · · · , m+2
2 to the vertices

u1, u3, · · · , um−1 respectively and −1,−2, · · · , −m2 respectively to the vertices u2, u4, · · · , um.

Hence there are four subcases arise:

Subcase 2.1 n ≡ 0 (mod 4)

In this case, we assign the labels m+4
2 , m+12

2 , · · · ,m+n− 5 to the vertices v1, v5, · · · , vn−3

respectively and m+6
2 , m+14

2 , · · · ,m + n − 4 respectively to the vertices v2, v6, · · · , vn−2. Now

we give the labels −m−6
2 , −m−14

2 , · · · ,−m − n + 4 to the vertices v3, v7, · · · , vn−1 respectively

and −m−8
2 , −m−16

2 , · · · ,−m − n + 3 respectively to the vertices v4, v8, · · · , vn. More over we

assign the labels −m−2
2 , −m−10

2 , · · · ,−m − n + 6 to the vertices w1, w5, · · · , wn−3 respectively

and −m−4
2 , −m−12

2 , · · · ,−m − n + 5 respectively to the vertices w2, w6, · · · , wn−2. We also

give the labels m+8
2 , m+16

2 , · · · ,m + n − 3 to the vertices w3, w7, · · · , wn−1 respectively and
m+10

2 , m+18
2 , · · · ,m+ n− 6 respectively to the vertices w4, w8, · · · , wn−4. Finally fix the label

1 to the vertex wn.

Subcase 2.2 n ≡ 1 (mod 4)

We now assign the labels m+4
2 , m+12

2 , · · · ,m+n− 6 to the vertices v1, v5, · · · , vn−4 respec-

tively and m+6
2 , m+14

2 , · · · ,m + n − 5 respectively to the vertices v2, v6, · · · , vn−3. Therefore

we give the labels −m−6
2 , −m−14

2 , · · · ,−m − n + 5 to the vertices v3, v7, · · · , vn−2 respectively

and −m−8
2 , −m−16

2 , · · · ,−m − n + 4 respectively to the vertices v4, v8, · · · , vn−1. Fix the la-

bel 1 to the vertex vn. Furthermore we assign the labels −m−2
2 , −m−10

2 , · · · ,−m − n + 3 to

the vertices w1, w5, · · · , wn−3 respectively and −m−4
2 , −m−12

2 , · · · ,−m − n + 6 respectively to

the vertices w2, w6, · · · , wn−3. We also give the labels m+8
2 , m+16

2 , · · · ,m + n − 4 to the ver-

tices w3, w7, · · · , wn−2 respectively and m+10
2 , m+18

2 , · · · ,m+ n− 3 respectively to the vertices

w4, w8, · · · , wn−1.

Subcase 2.3 n ≡ 2 (mod 4)

In this case, let us assign the labels m+4
2 , m+12

2 , · · · ,m+n−3 to the vertices v1, v5, · · · , vn−1

respectively and m+6
2 , m+14

2 , · · · ,m + n − 6 respectively to the vertices v2, v6, · · · , vn−4. Now

we give the labels −m−6
2 , −m−14

2 , · · · ,−m − n + 6 to the vertices v3, v7, · · · , vn−3 respective-

ly and −m−8
2 , −m−16

2 , · · · ,−m − n + 5 respectively to the vertices v4, v8, · · · , vn−2. Fix the

label 1 to the vertex vn. More over we assign the labels −m−2
2 , −m−10

2 , · · · ,−m − n + 4 to

the vertices w1, w5, · · · , wn−1 respectively and −m−4
2 , −m−12

2 , · · · ,−m − n + 3 respectively to

the vertices w2, w6, · · · , wn. We also give the labels m+8
2 , m+16

2 , · · · ,m + n − 5 to the ver-

tices w3, w7, · · · , wn−3 respectively and m+10
2 , m+18

2 , · · · ,m+ n− 4 respectively to the vertices

w4, w8, · · · , wn−2.
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Subcase 2.4 n ≡ 3 (mod 4)

In this case, we assign the labels m+4
2 , m+12

2 , · · · ,m+n− 4 to the vertices v1, v5, · · · , vn−2

respectively and m+6
2 , m+14

2 , · · · ,m + n − 3 respectively to the vertices v2, v6, · · · , vn−1. Next

we give the labels −m−6
2 , −m−14

2 , · · · ,−m − n + 3 to the vertices v3, v7, · · · , vn respectively

and −m−8
2 , −m−16

2 , · · · ,−m − n + 6 respectively to the vertices v4, v8, · · · , vn−3. Then we

assign the labels −m−2
2 , −m−10

2 , · · · ,−m − n + 5 to the vertices w1, w5, · · · , wn−2 respectively

and −m−4
2 , −m−12

2 , · · · ,−m − n + 4 respectively to the vertices w2, w6, · · · , wn−1. We also

give the labels m+8
2 , m+16

2 , · · · ,m + n − 6 to the vertices w3, w7, · · · , wn−4 respectively and
m+10

2 , m+18
2 , · · · ,m+n− 5 respectively to the vertices w4, w8, · · · , wn−3. Fix the label 1 to the

vertex wn.

The following table shows that this vertex labeling λ is a pair mean cordial of Wm ∪ Ln
for all m ≥ 3 and n ≥ 2.

m n S̄λ1 S̄λc1
n ≡ 0 (mod 4) 2m+3n−2

2
2m+3n−2

2

m is odd n ≡ 1 (mod 4) 2m+3n−3
2

2m+3n−1
2

n ≡ 2 (mod 4) 2m+3n−2
2

2m+3n−2
2

n ≡ 3 (mod 4) 2m+3n−3
2

2m+3n−1
2

n ≡ 0 (mod 4) 2m+3n−2
2

2m+3n−2
2

m is even n ≡ 1 (mod 4) 2m+3n−3
2

2m+3n−1
2

n ≡ 2 (mod 4) 2m+3n−2
2

2m+3n−2
2

n ≡ 3 (mod 4) 2m+3n−3
2

2m+3n−1
2

Table 2

This completes the proof. �

Example 3.5 A pair mean cordial labeling of W8 ∪ L7 is shown in Figure 2.

Figure 2

Theorem 3.6 Pm ∪ Ln is pair mean cordial for all m,n ≥ 2.

Proof Let Pm be the path u1u2 · · ·un. Note that Pm∪Ln has m+2n vertices and m+3n−3

edges.
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Case 1. m is even.

First we assign the labels 1, 2, · · · , m2 to the vertices u1, u3, · · · , um−1 respectively and

−1,−2, · · · , −m+2
2 respectively to the vertices u2, u4, · · · , um−2. Fix the label −m−2n

2 to the

vertex um. Hence there are four subcases that arise:

Subcase 1.1 n ≡ 0 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−6
2 to vertices v1, v5, · · · , vn−3 re-

spectively and m+4
2 , m+12

2 , · · · , m+2n−4
2 respectively to vertices v2, v6, · · · , vn−2. Next, we give

the labels −m−4
2 , −m−12

2 , · · · , −m−2n+4
2 to vertices v3, v7, · · · , vn−1 respectively and the labels

−m−6
2 , −m−14

2 , · · · , −m−2n+2
2 respectively to vertices v4, v8, · · · , vn. Moreover, we assign the la-

bels −m2 , −m−8
2 , · · · , −m−2n+8

2 to vertices w1, w5, · · · , wn−3 respectively and −m−2
2 , −m−10

2 , · · · ,
−m−2n+6

2 respectively to the vertices w2, w6, · · · , wn−2. Also, we give the labels m+6
2 , m+14

2 , · · · ,
m+2n−2

2 to the vertices w3, w7, · · · , wn−1 respectively and m+8
2 , m+16

2 , · · · , m+2n
2 respectively

to vertices w4, w8, · · · , wn.

Subcase 1.2 n ≡ 1 (mod 4)

Furthermore we assign the labels m+2
2 , m+10

2 , · · · , m+2n
2 to the vertices v1, v5, · · · , vn re-

spectively and m+4
2 , m+12

2 , · · · , m+2n−6
2 respectively to the vertices v2, v6, · · · , vn−3. Therefore

we assign the labels −m−4
2 , −m−12

2 , · · · , −m−2n+6
2 to the vertices v3, v7, · · · , vn−2 respective-

ly and −m−6
2 , −m−14

2 , · · · , −m−2n+4
2 respectively to the vertices v4, v8, · · · , vn−1. More over

we assign the labels −m2 , −m−8
2 , · · · , −m−2n+2

2 to the vertices w1, w5, · · · , wn respectively and
−m−2

2 , −m−10
2 , · · · , −m−2n+8

2 respectively to the vertices w2, w6, · · · , wn−3. Also we give the la-

bels m+6
2 , m+14

2 , · · · , m+2n−4
2 to the vertices w3, w7, · · · , wn−2 respectively and m+8

2 , m+16
2 , · · · ,

m+2n−2
2 respectively to the vertices w4, w8, · · · , wn−1.

Subcase 1.3 n ≡ 2 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−2
2 to the vertices v1, v5, · · · , vn−1

respectively and m+4
2 , m+12

2 , · · · , m+2n
2 respectively to the vertices v2, v6, · · · , vn. Therefore

we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+8
2 to the vertices v3, v7, · · · , vn−3 respectively

and −m−6
2 , −m−14

2 , · · · , −m−2n+6
2 respectively to the vertices v4, v8, · · · , vn−2. Furthermore we

assign the labels −m2 , −m−8
2 , · · · , −m−2n+4

2 to the vertices w1, w5, · · · , wn−1 respectively and
−m−2

2 , −m−10
2 , · · · , −m−2n+2

2 respectively to the vertices w2, w6, · · · , wn. We give the label-

s m+6
2 , m+14

2 , · · · , m+2n−6
2 to the vertices w3, w7, · · · , wn−3 respectively and m+8

2 , m+16
2 , · · · ,

m+2n−4
2 respectively to the vertices w4, w8, · · · , wn−2.

Subcase 1.4 n ≡ 3 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−4
2 to the vertices v1, v5, · · · , vn−2

respectively and m+4
2 , m+12

2 , · · · , m+2n−2
2 respectively to the vertices v2, v6, · · · , vn−1. There-

fore we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+2
2 to the vertices v3, v7, · · · , vn respectively

and −m−6
2 , −m−14

2 , · · · , −m−2n+8
2 respectively to the vertices v4, v8, · · · , vn−3. More over we

assign the labels −m2 , −m−8
2 , · · · , −m−2n+6

2 to the vertices w1, w5, · · · , wn−2 respectively and
−m−2

2 , −m−10
2 , · · · , −m−2n+4

2 respectively to the vertices w2, w6, · · · , wn−1. Then we give the

labels m+6
2 , m+14

2 , · · · , m+2n
2 to the vertices w3, w7, · · · , wn respectively and m+8

2 , m+16
2 , · · · ,
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m+2n−6
2 respectively to the vertices w4, w8, · · · , wn−3.

Case 2. m is odd.

In this case, assign the labels to the vertices ui, 1 ≤ i ≤ m− 2 and vj , wj , 1 ≤ j ≤ n as in

Case 1, λ(um−1) = −m+3
2 and λ(um) = −m−2n

2 .

In general, we shows that this vertex labeling λ is a pair mean cordial of Pm ∪ Ln for all

m,n ≥ 2 in Table 3.

m n S̄λ1 S̄λc1
n ≡ 0 (mod 4) m+3n−3

2
m+3n−3

2

m is odd n ≡ 1 (mod 4) m+3n−4
2

m+3n−2
2

n ≡ 2 (mod 4) m+3n−3
2

m+3n−3
2

n ≡ 3 (mod 4) m+3n−4
2

m+3n−2
2

n ≡ 0 (mod 4) m+3n−4
2

m+3n−2
2

m is even n ≡ 1 (mod 4) m+3n−3
2

m+3n−3
2

n ≡ 2 (mod 4) m+3n−4
2

m+3n−2
2

n ≡ 3 (mod 4) m+3n−3
2

m+3n−3
2

Table 3

This completes the proof. �

Example 3.7 A pair mean cordial labeling of P7 ∪ L5 is shown in Figure 3.

Figure 3

Theorem 3.8 Cm ∪ Ln is pair mean cordial for all m ≥ 3 and n ≥ 2.

Proof Let Cm be the cycle u1u2 · · ·umu1. Note that Cm ∪ Ln has m + 2n vertices and

m+ 3n− 2 edges.

Case 1. m is even.

In this case, we assign the labels to the vertices ui, 1 ≤ i ≤ m as in Case 1 of Theorem 3.7.

Hence there are four subcases that arise:

Subcase 1.1 n ≡ 0 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−6
2 to the vertices v1, v5, · · · , vn−3
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respectively and −m−2
2 , −m−10

2 , · · · , −m−2n+6
2 respectively to the vertices v2, v6, · · · , vn−2. Nex-

t we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+4
2 to the vertices v3, v7, · · · , vn−1 respective-

ly and m+8
2 , m+16

2 , · · · , m+2n
2 respectively to the vertices v4, v8, · · · , vn. More over we as-

sign the labels −m2 , −m−8
2 , · · · , −m−2n+8

2 to the vertices w1, w5, · · · , wn−3 respectively and
m+4

2 , m+12
2 , · · · , m+2n−4

2 respectively to the vertices w2, w6, . . . , wn−2. Also we give the labels
m+6

2 , m+14
2 , · · · , m+2n−2

2 to the vertices w3, w7, · · · , wn−1 respectively and −m−6
2 , −m−14

2 , · · · ,
−m−2n+2

2 respectively to the vertices w4, w8, · · · , wn.

Subcase 1.2 n ≡ 1 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n
2 to the vertices v1, v5, · · · , vn re-

spectively and −m−2
2 , −m−10

2 , · · · , −m−2n
2 respectively to the vertices v2, v6, · · · , vn−3. There-

fore we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+6
2 to the vertices v3, v7, · · · , vn−2 respec-

tively and m+8
2 , m+16

2 , · · · , m+2n−2
2 respectively to the vertices v4, v8, · · · , vn−1. More over

we assign the labels −m2 , −m−8
2 , · · · , −m−2n+2

2 to the vertices w1, w5, · · · , wn respectively and
m+4

2 , m+12
2 , · · · , m+2n−6

2 respectively to the vertices w2, w6, · · · , wn−3. More over we give the la-

bels m+6
2 , m+14

2 , · · · , m+2n−4
2 to vertices w3, w7, · · · , wn−2 respectively and −m−6

2 , −m−14
2 , · · · ,

−m−2n+4
2 respectively to the vertices w4, w8, · · · , wn−1.

Subcase 1.3 n ≡ 2 (mod 4)

Furthermore assign the labels m+2
2 , m+10

2 , · · · , m+2n−2
2 to the vertices v1, v5, · · · , vn−1 re-

spectively and −m−2
2 , −m−10

2 , · · · , −m−2n+2
2 respectively to the vertices v2, v6, · · · , vn. There-

fore we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+8
2 to the vertices v3, v7, · · · , vn−3 respec-

tively and m+8
2 , m+16

2 , · · · , m+2n−4
2 respectively to the vertices v4, v8, · · · , vn−2. Next we as-

sign the labels −m2 , −m−8
2 , · · · , −m−2n+4

2 to the vertices w1, w5, · · · , wn−1 respectively and
m+4

2 , m+12
2 , · · · , m+2n

2 respectively to the vertices w2, w6, · · · , wn. Finally we give the labels
m+6

2 , m+14
2 , · · · , m+2n−6

2 to the vertices w3, w7, · · · , wn−3 respectively and −m−6
2 , −m−14

2 , · · · ,
−m−2n+6

2 respectively to the vertices w4, w8, · · · , wn−2.

Subcase 1.4 n ≡ 3 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−4
2 to the vertices v1, v5, · · · , vn−2

respectively and −m−2
2 , −m−10

2 , · · · , −m−2n+4
2 respectively to the vertices v2, v6, · · · , vn−1. Al-

so we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+2
2 to the vertices v3, v7, · · · , vn respective-

ly and m+8
2 , m+16

2 , · · · , −m−2n+6
2 respectively to the vertices v4, v8, · · · , vn−3. More over we

assign the labels −m2 , −m−8
2 , · · · , −m−2n+6

2 to the vertices w1, w5, · · · , wn−2 respectively and
m+4

2 , m+12
2 , · · · , m+2n−2

2 respectively to the vertices w2, w6, · · · , wn−1. Then we give the labels
m+6

2 , m+14
2 , · · · , m+2n

2 to vertices w3, w7, · · · , wn respectively and −m−6
2 , −m−14

2 , · · · , −m−2n+8
2

respectively to the vertices w4, w8, · · · , wn−3.

Case 2. m is even.

In this case, assign the labels to the vertices ui, 1 ≤ i ≤ m and vj , wj , 1 ≤ j ≤ n as in Case

1. If m = 3, λ(um−1) = 1 and Table 4 shows that this vertex labeling λ is a pair mean cordial

of Cm ∪ Ln for all m ≥ 3 and n ≥ 2.
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m n S̄λ1
S̄λc1

n ≡ 0 (mod 4) m+3n−3
2

m+3n−1
2

m is odd n ≡ 1 (mod 4) m+3n−2
2

m+3n−2
2

n ≡ 2 (mod 4) m+3n−3
2

m+3n−1
2

n ≡ 3 (mod 4) m+3n−2
2

m+3n−2
2

n ≡ 0 (mod 4) m+3n−2
2

m+3n−2
2

m is even n ≡ 1 (mod 4) m+3n−3
2

m+3n−1
2

n ≡ 2 (mod 4) m+3n−2
2

m+3n−2
2

n ≡ 3 (mod 4) m+3n−3
2

m+3n−1
2

Table 4

This completes the proof. �

Example 3.9 A pair mean cordial labeling of C7 ∪ L8 is shown in Figure 4.

Figure 4

Theorem 3.10 Sm ∪ Ln is pair mean cordial for all m ≥ 3 and n ≥ 2.

Proof Let us define

V (Sm ∪ Ln) = {ui, vj , wj : 1 ≤ i ≤ m and 1 ≤ j ≤ n},

E(Sm ∪ Ln) = {uiui+1, umu1, vjwj : 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n}⋃
{u1ui+2, vjvj+1, wjwj+1 : 1 ≤ i ≤ m− 3 and 1 ≤ j ≤ n− 1}.

Clearly, the graph Sm ∪ Ln has m+ 2n vertices and m+ 3n− 2 edges.

Case 1. m is even.

In this case, we assign the labels to the vertices ui, 1 ≤ i ≤ m as in case (i) of theorem 3.9.

Hence there are four subcases that arise:

Subcase 1.1 n ≡ 0 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−6
2 to the vertices v1, v5, · · · , vn−3
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respectively and −m−2
2 , −m−10

2 , · · · , −m−2n+6
2 respectively to the vertices v2, v6, · · · , vn−2. Nex-

t we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+4
2 to the vertices v3, v7, · · · , vn−1 respective-

ly and m+8
2 , m+16

2 , · · · , m+2n
2 respectively to the vertices v4, v8, · · · , vn. More over we as-

sign the labels −m2 , −m−8
2 , · · · , −m−2n+8

2 to the vertices w1, w5, · · · , wn−3 respectively and
m+4

2 , m+12
2 , · · · , m+2n−4

2 respectively to the vertices w2, w6, · · · , wn−2. Also we give the labels
m+6

2 , m+14
2 , · · · , m+2n−2

2 to the vertices w3, w7, · · · , wn−1 respectively and −m−6
2 , −m−14

2 , · · · ,
−m−2n+2

2 respectively to the vertices w4, w8, · · · , wn.

Subcase 1.2 n ≡ 1 (mod 4)

Assign the labels m+2
2 , m+10

2 , · · · , m+2n
2 to the vertices v1, v5, · · · , vn respectively and

−m−2
2 , −m−10

2 , · · · , −m−2n
2 respectively to the vertices v2, v6, · · · , vn−3. Then we give the labels

−m−4
2 , −m−12

2 , · · · , −m−2n+6
2 to the vertices v3, v7, · · · , vn−2 respectively and m+8

2 , m+16
2 , · · · ,

m+2n−2
2 respectively to the vertices v4, v8, · · · , vn−1. More over we assign the labels −m2 , −m−8

2 ,

· · · , −m−2n+2
2 to the vertices w1, w5, · · · , wn respectively and m+4

2 , m+12
2 , · · · , m+2n−6

2 respec-

tively to the vertices w2, w6, · · · , wn−3. We give the labels m+6
2 , m+14

2 , · · · , m+2n−4
2 to the ver-

tices w3, w7, · · · , wn−2 respectively and −m−6
2 , −m−14

2 , · · · , −m−2n+4
2 respectively to the vertices

w4, w8, · · · , wn−1.

Subcase 1.3 n ≡ 2 (mod 4)

In this case, we assign the labels m+2
2 , m+10

2 , · · · , m+2n−2
2 to the vertices v1, v5, · · · , vn−1

respectively and −m−2
2 , −m−10

2 , · · · , −m−2n+2
2 respectively to the vertices v2, v6, · · · , vn. Then

we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+8
2 to the vertices v3, v7, · · · , vn−3 respectively and

m+8
2 , m+16

2 , · · · , m+2n−4
2 respectively to the vertices v4, v8, · · · , vn−2. We also assign the labels

−m
2 , −m−8

2 , · · · , −m−2n+4
2 to vertices w1, w5, · · · , wn−1 respectively and m+4

2 , m+12
2 , · · · , m+2n

2

respectively to the vertices w2, w6, · · · , wn. Furthermore we give labels m+6
2 , m+14

2 , · · · , m+2n−6
2

to the vertices w3, w7, · · · , wn−3 respectively and −m−6
2 , −m−14

2 , · · · , −m−2n+6
2 respectively to

the vertices w4, w8, · · · , wn−2.

Subcase 1.4 n ≡ 3 (mod 4)

More over we assign the labels m+2
2 , m+10

2 , · · · , m+2n−4
2 to the vertices v1, v5, · · · , vn−2 re-

spectively and −m−2
2 , −m−10

2 , · · · , −m−2n+4
2 respectively to the vertices v2, v6, · · · , vn−1. There-

fore we give the labels −m−4
2 , −m−12

2 , · · · , −m−2n+2
2 to the vertices v3, v7, · · · , vn respective-

ly and m+8
2 , m+16

2 , · · · , −m−2n+6
2 respectively to the vertices v4, v8, · · · , vn−3. Next we as-

sign the labels −m2 , −m−8
2 , · · · , −m−2n+6

2 to the vertices w1, w5, · · · , wn−2 respectively and
m+4

2 , m+12
2 , · · · , m+2n−2

2 respectively to the vertices w2, w6, · · · , wn−1. Furthermore we give the

labels m+6
2 , m+14

2 , · · · , m+2n
2 to the vertices w3, w7, · · · , wn respectively and −m−6

2 , −m−14
2 , · · · ,

−m−2n+8
2 respectively to the vertices w4, w8, · · · , wn−3.

Case 2. m is even.

In this case, assign the labels to the vertices ui, 1 ≤ i ≤ m and vj , wj , 1 ≤ j ≤ n as in Case

1. If m = 3, λ(um−1) = 1 and Table 5 shows that this vertex labeling λ is a pair mean cordial

of Sm ∪ Ln for all m ≥ 3 and n ≥ 2.
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m n S̄λ1
S̄λc1

n ≡ 0 (mod 4) m+3n−3
2

m+3n−1
2

m is odd n ≡ 1 (mod 4) m+3n−2
2

m+3n−2
2

n ≡ 2 (mod 4) m+3n−3
2

m+3n−1
2

n ≡ 3 (mod 4) m+3n−2
2

m+3n−2
2

n ≡ 0 (mod 4) m+3n−2
2

m+3n−2
2

m is even n ≡ 1 (mod 4) m+3n−3
2

m+3n−1
2

n ≡ 2 (mod 4) m+3n−2
2

m+3n−2
2

n ≡ 3 (mod 4) m+3n−3
2

m+3n−1
2

Table 5

This completes the proof. �

Example 3.11 A pair mean cordial labeling of S9 ∪ L12 is shown in Figure 5.

Figure 5
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§1. Introduction

In 2002, Branciari [2] introduced the integral contraction as follows.

Theorem 1.1 Let (Ωs, d) be a complete metric space, k ∈ (0, 1) and let Υ : Ωs → Ωs be a

mapping such that for each γs, ζs ∈ Ωs∫ d(Υγs,Υζs)

0

ξ(t) dt ≤ k
∫ d(γs,ζs)

0

ξ(t) dt

where ϕ : [0,∞)→ [0,∞) is a Lebesgue-integrable map which is summable, (i.e., with finite inte-

gral) on each compact subset of [0,∞), nonnegative, and such that for each ε > 0,
∫ ε

0
ξ(t) dt > 0,

then Υ has a unique fixed point.

For some motivated results on integral type contractions, see [10, 12, 5].

In 2012, Samet et al. [13] introduced α − ψ contractive type mappings and shown some

fixed point results for them. Wardowski [15, 16, 17] identified a new sort of contraction mapping

called F̃-contraction and shown that this mapping is a Banach contraction. Wardowski’s result

has been generalized by many authors (see [9, 1, 4, 14, 6]).

We begin by recalling a few definitions and lemmas. In 1992, Matthews [7] presented the

concept of partial metric space (PMS) as follows:

Definition 1.1 Let Ωs be a non-empty set. A function %pm : Ωs × Ωs → [0,∞) is said to be a

1Corresponding author: Heeramani Tiwari, Email: toravi.tiwari@gmail.com
2Received June 4, 2024, Accepted August 20,2024.
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partial metric on Ωs if the following conditions hold:

(PMS1) γs = ζs ⇔ %pm(γs, γs) = %pm(ζs, ζs) = %pm(γs, ζs);

(PMS2) %pm(γs, γs) ≤ %pm(γs, ζs);

(PMS3) %pm(γs, ζs) = %pm(ζs, γs);

(PMS4) %pm(γs, ζs) ≤ %pm(γs, ιs) + %pm(ιs, ζs)− %pm(ιs, ιs). for all γs, ζs, ιs ∈ Ωs.

Lemma 1.2([7]) Let (Ωs, %pm) be a partial metric space.

(a) A sequence {γsn} in (Ωs, %pm) converges to a point γs ∈ Ωs ⇔

%pm(γs, γs) = lim
n→∞

%pm(γsn , γs).

(b) A sequence {γsn} in (Ωs, %pm) is a Cauchy sequence if limm,n→∞ %pm(γsn , γsm) exists

and finite.

(c) (Ωs, %pm) is complete if every Cauchy {γsn} in Ωs converges to a point γs ∈ Ωs, such

that

%pm(γs, γs) = lim
m,n→∞

%pm(γsn , γsm) = lim
n→∞

%pm(γsn , γs) = %pm(γs, γs).

Lemma 1.3([7],[8]) Let %pm be a partial metric on Ωs, then the function d%pm : Ωs ×Ωs → R+

such that

d%pm(γs, ζs) = 2%pm(γs, ζs)− %pm(γs, γs)− %pm(ζs, ζs)

is metric on Ωs. Let (Ωs, %pm) be a partial metric space. Then,

(1) A sequence {γsn} in (Ωs, %pm) is a Cauchy sequence ⇔ {γsn} is a Cauchy sequence in

the metric space (Ωs, d
%
pm).

(2) (Ωs, %pm) is complete ⇔ (Ωs, d
%
pm) is complete. Moreover,

lim
n→∞

d%pm(γsn , γs) = 0⇔ %pm(γs, γs) = lim
n→∞

%pm(γsn , γs) = lim
n,m→∞

%pm(γsn , γsm).

Lemma 1.4([11]) Assume that γsn → ιs as n → ∞ in a partial metric space (Ωs, %pm) such

that %pm(ιs, ιs) = 0 Then limn→∞ %pm(γsn , ζs) = %pm(ιs, ζs) for every ζs ∈ Ωs.

Lemma 1.5([3]) Let (Ωs, %pm) be a partial metric space.

(1) if %pm(γs, ζs) = 0 then γs = ζs.

(2) If γs 6= ζs then %pm(γs, ζs) > 0.

Samet et al. [13] introduced α-admissible mapping as follows:

Definition 1.6 Let Υ : Ωs → Ωs and α : Ωs × Ωs → [0,∞). Υ is said to α-admissible if

α(γs, ζs) ≥ 1 ⇒ α(Υγs,Υζs) ≥ 1

for all γs, ζs ∈ Ωs.

Wardowski [15] presented a new class of contraction mappings as follows:
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Definition 1.7 Let ∆F be family of all functions F̃ : R+ → R satisfying

(F1) F̃ is strictly increasing, i.e. for all ω, υ ∈ R+ if ω < υ then F̃(ω) < F̃(υ);

(F2) for each sequence {ωn} of positive numbers,

lim
n→∞

ωn = 0 ⇔ lim
n→∞

F̃(ωn) = −∞;

(F3) there exists λ ∈ (0, 1) such that

lim
ω→0+

ωλF̃(ω) = 0.

Wardowski [15] defined F̃-contraction as follows:

Definition 1.8 Let (Ωs, d) be a metric space, then the mapping Υ : Ωs → Ωs is said to be an

F̃-contraction, if there exist F ∈ ∆F and τ > 0 such that for all γs, ζs ∈ Ωs with d(Υγs.Υζs) > 0

we have

τ + F̃(d(Υγs,Υζs)) ≤ F̃(d(γs, ζs)).

§2. Main Results

Let Φ be family of all functions ϕ : [0,∞) → [0,∞) such that ϕ is a Lebesgue-integrable

mapping which is summable on each compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0

ξ(t) dt > 0

Definition 2.1 Let (Ωs, %pm) be partial metric space and let Υ : Ωs → Ωs be a self map.Then

Υ is said to be generalized integral type α− F̃-contractive mapping if there exists two functions

α : Ωs × Ωs → [0,∞) and F̃ ∈ ∆F such that for τ > 0 with %pm(Υγs.Υζs) > 0

τ + F̃
(
α(γs, ζs)

∫ %pm(Υγs,Υζs)

0

ξ(t) dt

)
≤ F̃

(∫ Λ(γs,ζs)

0

ξ(t) dt

)
, (2.1)

where ϕ ∈ Φ and

Λ(γs, ζs) = max{%pm(γs, ζs), %pm(γs,Υγs), %pm(ζs,Υζs)}

Theorem 2.1 Let (Ωs, %pm) be a complete partial metric space and Υ : Ωs → Ωs be self

mapping. Suppose α : Ωs × Ωs → [0,∞) be the mapping satisfying the conditions:

(i) Υ is α-admissible mapping;

(ii) Υ is generalized integral type α− F̃-contractive mapping;

(iii) There exists γs0 ∈ Ωs such that α(γs0 ,Υγs0) ≥ 1;

(iv) Υ is continuous,
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then Υ has a fixed point in Ωs.

Proof Let γs0 be an arbitrary point such that α(γs0 ,Υγs0) ≥ 1. Consider a sequence {γsn}
in Ωs such that γsn+1

= Υγsn for all n ∈ N.

If γsn = γsn+1
for some n ∈ N, γsn is a fixed point of Υ, completing the existence proof.

Assume γsn 6= γsn+1
for every n ∈ N, Lemma 1.5 states that

%pm(γsn , γsn+1) = %pm(Υγsn−1 ,Υγsn) > 0.

Now, since Υ is α-admissible, so

α(Υγs0 ,Υγs1) = α(γs1 , γs2) ≥ 1

α(Υγs1 ,Υγs2) = α(γs2 , γs3) ≥ 1

and using induction we have α(γsn , γsn+1
) ≥ 1 for all n ∈ N.

Now, Using the property (F1 ) we get

τ + F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
≤ τ + F̃

(
α(γsn , γsn+1

)

∫ %pm(γsn ,γsn+1
)

0

ξ(t) dt

)

= τ + F̃
(
α(γsn , γsn+1

)

∫ %pm(Υγsn−1
,Υγsn )

0

ξ(t) dt

)

≤ F̃
(∫ Λ(γsn−1

,γsn )

0

ξ(t) dt

)
(2.2)

where

Λ(γsn−1 , γsn) = max{%pm(γsn−1 , , γsn), %pm(γsn−1 ,Υγsn−1), %pm(γsn ,Υγsn)}

= max{%pm(γsn−1
, γsn), %pm(γsn−1

, γsn), %pm(γsn , γsn+1
)}

= max{%pm(γsn−1
, γsn), %pm(γsn , γsn+1

)}. (2.3)

Now, using (2.3) in (2.2) we get that

τ + F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
≤ F̃

(∫ max{%pm(γsn−1
,γsn ),%pm(γsn ,γsn+1

)}

0

ξ(t) dt

)
. (2.4)

Now, if %pm(γsn , γsn+1
) > %pm(γsn−1

, γsn), then we get

τ + F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(γsn ,γsn+1
)

0

ξ(t) dt

)
,

which is a contradiction, Therefore

Λ(γsn−1
, γsn) = %pm(γsn−1

, γsn). (2.5)
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Again, Using (2.5) in (2.4) we get

F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(γsn−1
,γsn )

0

ξ(t) dt

)
− τ. (2.6)

Continuing in the same way, we obtain

F̃
(∫ %pm(γsn ,γsn−1

)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(γsn−1
,ξpn−2

)

0

ξ(t) dt

)
− τ. (2.7)

Using (2.7) in (2.6) we get that

F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(γsn−1
,γsn )

0

ξ(t) dt

)
− τ

≤ F̃
(∫ %pm(γsn−1

,ξpn−2
)

0

ξ(t) dt

)
− 2τ

On generalizing

F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
< F̃

(∫ %pm(ξp0 ,ξp1 )

0

ξ(t) dt

)
− nτ. (2.8)

Letting the limit n→∞ in (??) and using the definition of F̃ we get

lim
n→∞

F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
= −∞⇔ lim

n→∞
%pm(γsn , γsn+1

) = 0. (2.9)

Consequently, we get

lim
n→∞

%pm(γsn , γsn+1) = 0. (2.10)

Now, we show that {γsn} is a Cauchy sequence in Ωs, i.e., we prove that

lim
n,m→∞

%pm(γsn , γsm) = 0.

Put en = %pm(γsn , γsn+1
) for n ∈ N. Then, from the property (F3) of F̃ contraction there

exists k ∈ (0, 1) such that

lim
n→∞

eknF̃(en) = 0. (2.11)

Following (2.8) for all n ∈ N we obtain

ekn

(
F̃
(∫ %pm(γsn ,γsn+1

)

0

ξ(t) dt

)
− F̃

(∫ %pm(ξp0 ,ξp1 )

0

ξ(t) dt

))
≤ −eknnτ ≤ 0. (2.12)

Considering (2.10), (2.11) and letting n→∞ in (2.12) we get

lim
n→∞

(n(%pm(γsn , γsn+1
)k) = 0. (2.13)
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Since (2.13) holds, there exists np ∈ N such that n(%pm(γsn , γsn+1))k ≤ 1 for all n ≥ np or

%pm(γsn , γsn+1
) ≤ 1

n
1
k

(2.14)

for all n ≥ np.
Using PMS4 (triangular inequality) and (2.14) we obtain that for m > n ≥ np,

%pm(γsn , γsm) ≤ %pm(γsn , γsn+1
) + %pm(γsn+1

, γsn+2
) + · · ·+ %pm(γsm−1

, γsm)

− [%pm(γsn+1 , γsn+1) + %pm(γsn+2 , γsn+2) + · · ·+ %pm(γsm−1 , γsm−1)]

≤ %pm(γsn , γsn+1
) + %pm(γsn+1

, γsn+2
) + · · ·+ %pm(γsm−1

, γsm)

=

m−1∑
i=n

%pm(γsi , γsi+1) ≤
∞∑
i=n

%pm(γsi , γsi+1) ≤
∞∑
i=n

1

n
1
k

Since k ∈ (0, 1), the series
∑∞
i=n

1

n
1
k

is convergent, so

lim
n,m→∞

%pm(γsn , γsm) = 0.

This implies that {γsn} is a Cauchy sequence in (Ωs, %pm). Due to Lemma 1.3, {γsn} is a

Cauchy sequence in (Ωs, d
%
pm) which is complete. Therefore the sequence {γsn} is convergent

in the space (Ωs, d
%
pm) as a result there exist ιs ∈ Ωs such that limn→∞ d%pm(γsn , ιs) = 0. Again

from Lemma 1.2, we get

%pm(ιs, ιs) = lim
n→∞

%pm(γsn , ιs) = lim
m,n→∞

%pm(γsn , γsm) = 0. (2.15)

Moreover, As Υ is continuous, we have

ιs = lim
n→∞

γsn+1
= lim
n→∞

Υγsn = Υιs

This completes the proof. �

Theorem 2.2 Let (Ωs, %pm) be a complete partial metric space and Υ : Ωs → Ωs be self

mapping. Suppose α : Ωs × Ωs → [0,∞) be the mapping satisfying the conditions:

(i) Υ is α-admissible mapping;

(ii) Υ is integral type generalized α− F̃-contractive mapping;

(iii) There exists γs0 ∈ Ωs such that α(γs0 ,Υγs0) ≥ 1;

(iv) If {γsn} s a sequence in Ωs such that α(γsn , γsn+1
) ≥ 1 for all n and γsn → ιs ∈ Ωs

as n→∞, then there exists a subsequence γsn(i)
of {γsn} such that α(γsn(i)

, ιs) ≥ 1 for all i;

(v) F̃ is continuous,

then Υ has a fixed point in Ωs.Further if ιs, ιt are fixed points of Υ with α(ιs, ιt) ≥ 1, then Υ

has a unique fixed point in Ωs.

Proof From the proof of the Theorem 2.1, the sequence {γsn} defined by γsn+1 = Υγsn is
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a Cauchy sequence in (Ωs, %pm). Due to Lemma 1.3, {γsn} is a Cauchy sequence in (Ωs, d
%
pm)

which is complete. Therefore the sequence {γsn} is convergent in the space (Ωs, d
%
pm) as a result

there exist ιs ∈ Ωs such that limn→∞ d%pm(γsn , ιs) = 0. Again from Lemma 1.2, we get

%pm(ιs, ιs) = lim
n→∞

%pm(γsn , ιs) = lim
m,n→∞

%pm(γsn , γsm) = 0. (2.16)

We now prove that Υ has a fixed point.

On contrary we suppose that (Υιs, ιs) > 0. Then from condition (iii) there exists a

subsequence γsn(i)
of {γsn} such that α(γsn(i)

, ιs) ≥ 1 for all i. By Using given contractive

condition (2.1) for γs = γsn(i)
and ζs = ιs and property of F̃ we have

τ + F̃
(∫ %pm(ξpn(i)+1

,Υιs)

0

ξ(t) dt

)
= τ + F̃

(∫ %pm(Υγsn(i)
,Υιs)

0

ξ(t) dt

)

≤ τ + F̃
(
α(γsn(i)

, ιs)

∫ %pm(Υγsn(i)
,Υιs)

0

ξ(t) dt

)

≤ F̃
(∫ Λ(γsn(i)

,ιs)

0

ξ(t) dt

)
(2.17)

where

Λ(γsn(i)
, ιs) = max{%pm(γsn(i)

, ιs), %pm(γsn(i)
,Υγsn(i)

), %pm(ιs,Υιs)}

= max{%pm(γsn(i)
, ιs), %pm(γsn(i)

, ξpn(i)+1
), %pm(ιs,Υιs)}. (2.18)

Taking n→∞ in (2.18) and using (2.16) we get that

lim
n→∞

Λ(γsn(i)
, ιs) = %pm(ιs,Υιs). (2.19)

Now, Letting n→∞ in (2.17) and using (2.19) and the continuity of F̃ we get that

τ + F̃
(∫ %pm(ιs,Υιs)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(ιs,Υιs)

0

ξ(t) dt

)
which is a contradiction since τ > 0, Thus we have Υιs = ιs. This shows that ιs is a fixed point

of Υ. Further, suppose ιs and ιt be two fixed point of Υ such that %pm(ιs, ιt) > 0. From (2.1)

we have

τ + F̃
(∫ %pm(ιs,ιt)

0

ξ(t) dt

)
= τ + F̃

(∫ %pm(Υιs,Υιt)

0

ξ(t) dt

)

≤ τ + F̃
(
α(ιs, ιt)

∫ %pm(Υιs,Υιt)

0

ξ(t) dt

)

≤ F̃
(∫ Λ(ιs,ιt)

0

ξ(t) dt

)
, (2.20)
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where

Λ(ιs, ιt) = max{%pm(ιs, ιt), %pm(ιs,Υιs), %pm(ιt,Υιt)}

= max{%pm(ιs, ιt), %pm(ιs, ιs), %pm(ιt, ιt)} = %pm(ιs, ιt). (2.21)

Putting (2.21) in (2.20) we get

τ + F̃
(∫ %pm(ιs,ιt)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(ιs,ιt)

0

ξ(t) dt

)
, (2.22)

which is a contradiction. Hence Υ has a unique fixed point. �

Following are consequences of the theorems.

Corollary 2.3 Let (Ωs, %pm) be a complete partial metric space and let Υ : Ωs → Ωs be a self

map. Suppose that there exist F̃ ∈ ∆F and τ > 0 with %pm(Υγs.Υζs) > 0 be such that

τ + F̃
(∫ %pm(Υγs,Υζs)

0

ξ(t) dt

)
≤ F̃

(∫ %pm(γs,ζs)

0

ξ(t) dt

)
(2.23)

for all γs, ζs ∈ Ωs and ϕ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which is summable

on each compact subset of [0,∞), nonnegative and for each ε > 0∫ ε

0

ξ(t) dt > 0

and F̃ or Υ is continuous. Then Υ has a unique fixed point in Ωs.

Corollary 2.4 Let (Ωs, %pm) be a complete partial metric space and let Υ : Ωs → Ωs be a

continuous self map. Suppose that there exist k ∈ (0, 1) with %pm(Υγs.Υζs) > 0 such that∫ %pm(Υγs,Υζs)

0

ξ(t) dt ≤ k
∫ %pm(γs,ζs)

0

ξ(t) dt (2.24)

and ϕ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which is summable on each compact

subset of [0,∞), nonnegative and for each ε > 0∫ ε

0

ξ(t) dt > 0,

then Υ has a unique fixed point in Ωs.

Example 2.5 Let Ωs = [0, 1] and define %pm : Ωs × Ωs → R+ by %pm(γs, ζs) = max{γs, ζs}.
Then (Ωs, %pm) is a complete partial metric space. Consider the mapping Υ : Ωs → Ωs defined

by Υ(ιs) = ιs
4 . Suppose that ξ(t) = 2t. Define the function F̃ : R+ → R by F̃(a) = ln a for all

a ∈ R+ > 0 and α : Ωs × Ωs → [0,∞) by α(γs, ζs) = 4 for all γs, ζs ∈ Ωs.

We show that contractive condition of Theorem 2.1 is satisfied. Let γs, ζs ∈ Ωs, without

loss of generality we assume that γs ≥ ζs. Suppose that %pm(Υγs,Υζs) > 0 and let τ = ln(2),
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then

τ + F̃
(
α(γs, ζs)

∫ %pm(Υγs,Υζs)

0

ξ(t) dt

)
= τ + F̃

(
4

∫ %pm( γs4 ,
ζs
4 )

0

2t dt

)
= τ + F̃(

γ2
s

4
)

= ln(2) + ln(
γ2
s

4
) = ln(

γ2
s

2
)

≤ ln(γ2
s ) = F̃(γ2

s ) = F̃
(∫ Λ(γs,ζs)

0

ξ(t) dt

)
. (2.25)

Hence, Υ has a fixed point, which in this case is 0.

Example 2.6 Let Ωs = [0, 1] and define %pm : Ωs × Ωs → R+ by %pm(γs, ζs) = max{γs, ζs}.
Then (Ωs, %pm) is a complete partial metric space. Consider the mapping Υ : Ωs → Ωs defined

by Υ(ιs) =
ι2s+0.045

12 . Suppose that τ = ln(1.5) and ξ(t) = 1 for t > 0. Define the function

F̃ : R+ → R by F̃(a) = ln(a) for all a ∈ R+ > 0.

We show that contractive condition of Corollary 2.3 is satisfied. Let γs, ζs ∈ Ωs, without

loss of generality we assume that γs ≥ ζs. Suppose that Υγs 6= Υζs, then

τ + F̃
(∫ %pm(Υγs,Υζs)

0

ξ(t) dt

)
= τ + F̃

(∫ %pm

(
γ2s+0.045

12 ,
ζ2s+0.045

12

)
0

dt

)
= τ + F̃

(
γ2
s + 0.045

12

)
= ln(1.5) + ln

(
γ2
s + 0.045

12

)
≤ ln(γs) = F̃

(∫ %pm(γs,ζs)

0

ξ(t) dt

)
. (2.26)

Therefore, it satisfies the condition of Corollary 2.3. Hence Υ has a fixed point, which in this

case is 0.003751.

§3. Conclusion

In this article, we prove fixed point theorems for generalized integral type α − F̃ contraction

in complete partial metric spaces and provide corollaries of the results. We also provided some

examples to validate the results. This article extends and generalises previous research findings.
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Abstract: The spectral graph theory explores connections between combinatorial features

of graphs and algebraic properties of associated matrices. In this paper, we introduce modi-

fied maximum degree matrix MM (ζ) of a simple graph ζ and obtain a bound for eigenvalues

of MM (ζ). We also introduce modified maximum degree energy EMM (ζ) of a graph ζ and

obtain bounds for EMM (ζ).
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values, energy of a graph.
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§1. Introduction

The spectral graph theory plays an important role in analyzing the matrices of graphs with the

help of matrix theory and linear algebra. Now, spectral graph theory has attracted the attention

of both pure and applied mathematicians whose benefit lies far from the spectral graph theory,

which may be surprised because graph energy is a special kind of matrix norm. They will then

recognize that the concept of graph energy (under different names) is encountered in several

seemingly unrelated areas of their own expertise.

The eigenvalues are closely related to almost all major invariants of a graph, linking one

extremal property to another, they play a central role in the fundamental understanding of

graph. In 1978, I. Gutman related the Graph energy and total π-electron energy in a molecular

graph; it was defined as, the sum of absolute values of the eigenvalues of the associated adjacency

matrix of a graph ζ. Later, many matrices were defined based on distance and adjacency among

the vertices, degree of the vertices involved in forming the graph structure like: Zagreb matrix

[5], Randic matrix [10], distance matrix [1], Seidel matrix [2], Laplacian matrix [6], Seidel

Laplacian matrix [9], signless Laplacian matrix [3], Seidel signless Laplacian matrix [8], degree

sum matrix [7], etc.

In the study of spectral graph theory, we use the spectra of certain matrix associated with

the graph, such as the adjacency matrix, the Laplacian matrix and other related matrices. Some

useful information about the graph can be obtained from the spectra of these various matrices.

1Received April 9, 2024, Accepted August 22, 2024.
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Throughout the paper, we consider a simple graph ζ, that is nonempty, finite, having no

loops, no multiple and directed edges. Let V (ζ) = {δ1, δ2, · · · , δ|V (ζ)|}. The adjacency matrix

A(ζ) of the graph ζ is a square matrix of order |V (ζ)| whose (i, j)- entry is equal to unity if the

vertices δi and δj are adjacent and is equal to zero otherwise. The eigenvalues λ1, λ2, · · · , λ|V (ζ)|

of A(ζ), assumed in non-increasing order, are the eigenvalues of the graph ζ. As we defined

before the energy of ζ is

E(ζ) =

n∑
i=1

|λi|.

The concept of graph energy arose in chemistry. An interesting quantity in Huckel theory is

the sum of the energies of all the electrons in a molecule, the so-called total π−electron energy.

In this article, we introduce modified maximum degree Matrix MM (ζ) of a simple graph

ζ and obtain a bound for eigenvalues of MM (ζ). We also introduce modified maximum degree

energy EMM
(ζ) of a graph ζ and obtain bounds for EMM

(ζ). Also we define the concept of

HDR energy of graph with some interesting results.

§2. Modified Maximum Degree Matrix of a Graph

Definition 2.1 Let ζ be a simple graph with vertices δ1, δ2, · · · , δ|V (ζ)| and let di be the degree

of δi, i = 1, 2, · · · , |V (ζ)|. Define,

bij =

 max{dδi , dδj}+ 1, if δi and δj are adjacent,;

0, otherwise.

Then, the |V (ζ)| × |V (ζ)| matrix MM (ζ) = [bij ] is called the modified maximum degree matrix

of graph ζ.

The characteristic polynomial of modified maximum degree matrix MM (ζ) is defined by

ψ(ζ;λ) = Det(λI −MM (ζ))

= λ|V (ζ)| + a1 λ
|V (ζ)|−1 + a2 λ

|V (ζ)|−2 + ...+ a|V (ζ)|,

where I is the unit matrix of order |V (ζ)|. The roots λ1, λ2, · · · , λ|V (ζ)| assumed in non-

increasing order are the modified maximum degree eigenvalues of ζ. The modified maximum

degree energy of a graph ζ is defined as

EMM
(ζ) =

|V (ζ)|∑
i=1

|λi|.

Since MM (ζ) is a real symmetric matrix with zero trace, these modified maximum degree

eigenvalues are real numbers with sum equal to zero. Thus λ1 ≥ λ2 ≥ ... ≥ λ|V (ζ)| and

λ1 + λ2 + · · ·+ λ|V (ζ)| = 0.
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Example 2.2 The modified maximum degree matrix of the graph ζ1 in Figure 1 is

MM (ζ1) =


0 3 0 3

3 0 3 0

0 3 0 3

3 0 3 0

 .

The characteristic polynomial of the modified maximum degree matrix MM (ζ) is

ψ(ζ1;λ) = Det(λI −MM (ζ1))

=


λ −3 0 −3

−3 λ −3 0

0 −3 λ −3

−3 0 −3 λ



= λ


λ −3 0

−3 λ −3

0 −3 λ

+ 3


−3 −3 0

0 λ −3

−3 −3 λ

+ 0


−3 λ 0

0 −3 −3

−3 0 λ



+ 3


−3 λ −3

0 −3 λ

−3 0 −3


= λ

(
λ(λ2 − 9) + 3(−3λ− 0) + 0

)
+ 3

(
−3(λ2 − 9) + 3(0− 9) + 0

)
+ 3

(
−3(9− 0)− λ(0 + 3λ)− 3(0− 9)

)
= λ4 − 36λ2

and the modified maximum degree eigenvalues of ζ1 are

λ1 = 0, λ2 = 0, λ3 = 6, λ4 = −6.

r r

r r

1 2

34

Figure 1. The graph ζ1
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Definition 2.3 dhr(v) = |{u, v ∈ V (ζ)|d(u, v) = dR2 e}| and d(u, v) is the distance between the

vertices u and v in V (ζ) and R is the radius of graph ζ.

Definition 2.4 Let ζ be a simple graph with n vertices v1, v2, ..., vn and let dhri be the degree

of vi, i = 1, 2, ..n defined

dhrij = max{dhri, dhrj}

if the vhri, vhrj adjacent and 0 otherwise. Then the n × n matrix H(ζ) = [dhrij] is called

maximum HDR degree matrix of ζ. The characteristic polynomial of the maximum degree

matrix H(ζ) is defined by

α(ζ; ε) = det(εI −H(ζ))

= εn + a1ε
n−1 + a2ε

n−2 + · · ·+ an,

where I is the unit matrix of order n.

§3. Some Bounds of Modified Maximum Degree Energy

We now give the explicit expression for the coefficient ai of λ|V (ζ)|−i (i = 1, 2, 3, · · · , |V (ζ)|) in

the modified characteristic polynomial of the maximum degree matrix MM (ζ). It is clear that

a0 = 1 and a1 = trace MM (ζ) = 0. We have

a2 =
∑

1≤L≤J≤|V (ζ)|

∣∣∣∣∣∣ 0 δLJ + 1

δJL + 1 0

∣∣∣∣∣∣
and ∣∣∣∣∣∣ 0 dLJ + 1

dJL + 1 0

∣∣∣∣∣∣ =

 −(max{dJ + 1, dL + 1})2, if δJ and δL are adjacent;

0, otherwise.

Thus,

a2 = −
|V (ζ)|∑
k=1

(rk + zk)(dk + 1)2

= −
|V (ζ)|∑
k=1

(rk + zk)(d(δk) + 1)2

where rk = the number of vertices in the neighborhood of δk whose degrees are less than d(δk)

and zk = the number of vertices δj j > k in the neighborhood of δk whose degrees are equal to



On Modified Maximum Degree Energy of Graph and HDR Energy of Graph 79

d(δk).

a3 = (−1)−3
∑

1≤L≤J≤h≤|V (ζ)|

∣∣∣∣∣∣∣∣
dLL + 1 dLJ + 1 dLh + 1

dJL + 1 dJJ + 1 dJh + 1

dhL + 1 dhJ + 1 dhh + 1

∣∣∣∣∣∣∣∣
= −2

∑
1≤L≤J≤h≤|V (ζ)|

(dLJ + 1)(dJh + 1)(dhL + 1)

= −2
∑

d(δL)≤d(δJ )≤d(δh)

(d(δh) + 1)2(d(δJ) + 1)

Example 3.1 For the graph ζ1 in Figure 1, the coefficient a2 of λ2 in the characteristic

polynomial of the modified maximum degree matrix MM (ζ1) is equal to

a2 = −
4∑
k=1

(rk + zk)(d(δk) + 1)2

= −
(

(0 + 2)(2 + 1)2 + (0 + 1)(2 + 1)2 + (0 + 1)(2 + 1)2 + (0 + 0)(2 + 1)2

)
= −36.

Theorem 3.2 If λ1, λ2, · · · , λ|V (ζ)| are the modified maximum degree eigenvalues of a graph ζ,

then
|V (ζ)|∑
i=1

λ2
i = −2a2.

Proof We have

|V (ζ)|∑
i=1

λ2
i = trace of M2

M (ζ) =

|V (ζ)|∑
i=1

(|V (ζ)|∑
j=1

dijdji

)

= 2

|V (ζ)|∑
i=1

(ri + zi)(d(δi) + 1)2 = −2a2.

This completes the proof. �

Theorem 3.3 Let ζ be a graph. Then,√√√√2

|V (ζ)|∑
i=1

(d(δi) + 1)2 + |V (ζ)|(|V (ζ)| − 1)β
2

|V (ζ)|

≤ EMM
(ζ) ≤

√√√√2|V (ζ)|
|V (ζ)|∑
i=1

(ri + zi)(d(δi) + 1)2.
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Proof We have

E2
MM

(ζ) =

(|V (ζ)|∑
i=1

|λi|
)2

=

|V (ζ)|∑
i=1

|λi|2 +
∑
i 6=l

|λi||λl|

≥ 2

|V (ζ)|∑
i=1

(ri + zi)(d(δi) + 1)2 + |V (ζ)|(|V (ζ)− 1|)β
2

|V (ζ)| ,

where

β =

|V (ζ)|∏
i=1

|λi|

and the last inequality is due to Theorem 3.2, the arithmetic mean, the geometric mean in-

equality. On employing Holder’s inequality, we obtain

EMM
(ζ) =

|V (ζ)|∑
i=1

|λi|

≤

√√√√|V (ζ)|∑
i=1

|λi|2.
√
|V (ζ)|

=

√√√√2|V (ζ)|
|V (ζ)|∑
i=1

(ri + zi)(d(δi) + 1)2

This completes the proof. �

Proposition 3.4 Let ζ be a graph such that ζ ∼= Cn,Kn,m,Wn, Fp. Then, the maximum HDR

degree energy of ζ is same as its maximum first degree energy.
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Abstract: A Grundy n-coloring of a graph G is a proper vertex coloring in which every

vertex in V (G) colored with Cn is adjacent with all Cn−1 colors. The Grundy cloring or

Grundy number Γ(G) is the maximum number which can also be predicted by greedy coloring

strategy by choosing some vertex order to obtain maximum colors. In this paper, we provide

some exact values for Grundy coloring of degree splitting graph of wheel graph, helm graph,

sunlet graph, crown graph and Friendship graph which are denoted by [DS(Wn)], [DS(Hn)],

[DS(Sn)], [DS(Hn,n)] and Γ[DS(Fn)] respectively.
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§1. Introduction

Throughout this, we consider only a simple, finite, undirected & connected graph. Graph

coloring is the allocation of colors to the vertices of a graph G. A proper k-coloring is defined

by the mapping σ : V (G) → Cs where σ(f) 6= σ(g) for ∀f ∼ g, (f, g) ∈ V (G) [1, 10]. The

Grundy k-coloring is a proper k-coloring in which f ∼ C1, f ∼ C2, f ∼ C3, · · · , f ∼ Cs−1 for ∀
σ(f) = Cs. This Grundy number Γ(G) was initially studied by P.M.Grundy for directed version

in 1939 but the undirected version was introduced by Christen and Selkow in 1979 [1, 2, 5]. This

can also be predicted by using greedy algorithm which consider the vertices in some sequence

and assign them its first available color. We know that, µ(G) ≤ χ(G) ≤ Γ(G) ≤ 4(G) + 1

where µ(G) is the clique number [3].

§2. Preliminaries

A Grundy n-coloring of G is an n-coloring of G such that ∀ color Ct, every node colored with Ct

is adjacent to at least one node colored with Cs, ∀ Cs < Ct and the Grundy chromatic number

Γ(G) is the maximum number n such that G is Grundy n-coloring [3]. Generally, if G \H is

Grundy n-colourable for a typical subgraph H ≺ G such as a path Ps, cycle Cs or K1,s for an

integer s ≥ 1, then G is said to be Smarandachely Grundy n-colourable on H. Clearly, such a

1Correspondence author: R. Pavithra, Email: rpavithra phd@kongunaducollege.ac.in
2Received March 5, 2024, Accepted August 23, 2024.
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Smarandachely Grundy n-colouring is nothing else but a Grundy n-colouring if H = ∅.
A graph with V (G) = S1 ∪ S2 ∪ · · · ∪ St ∪ T where each Si is a set of all vertices of same

degree with at least two elements and T = V (G)\{S1∪S2∪· · ·∪St}. The degree splitting graph

DS(G), is obtained from G by adding vertices w1, w2, · · · , wt and joining wi to each vertex of

Si for 1 ≤ i ≤ t [8, 10].

For any integer n ≥ 4, the wheel graph Wn is the n-vertex graph obtained by joining a

vertex v1 to each of the n-1 vertices w1, w2, · · · , wn−1 of the cycle graph Cn−1 [11].

A helm graph Hn is a graph formed from a wheel Wn by attaching a pendant edge to each

terminal vertex [7].

An n-sunlet graph on 2n vertices is obtained by attaching n-pendant edges to the cycle Cn

and is denoted by Sn [11].

A crown graph(also known as a cocktail party graph) Hn,n is a graph obtained from the

complete bipartite graph Kn,n by removing a perfect matching [6] and the friendship graph Fn

is the n-collection of cycle C3 with a common vertex.

§3. Main Results

Here, we concentrate on exact values of Grundy Coloring of Degree Splitting graph of wheel

graphs, helm graphs, sunlet graphs, crown graphs and friendship graphs which are symbolised

by [DS(Wn)], [DS(Hn)], [DS(Sn)], [DS(Hn,n)] and Γ[DS(Fn)] respectively.

Theorem 3.1 For n ≥ 4, the grundy coloring for degree splitting graph of wheel graph Wn is

given by

Γ[DS(Wn)] =


n+ 1, n = 4,

n− 2, n = 5,

4, n ≥ 6.

Proof Consider a wheel graph Wn with vertex set

V (Wn) =

n⋃
i=1

vi

where v1 is the hub vertex and edge set

E(Wn) = {v1vi : i ∈ (1, n]} ∪ {vivi+1 : i ∈ (1, n)}
⋃
{v2vn}

such that | V (Wn) |= n and | E(Wn) |= 2n − 2. Moreover, 4(Wn) = n − 1 and δ(Wn) = 3.

We have T = {vi : i ∈ [1, n]} for n = 4 otherwise T = {vi : i ∈ (1, n]}.
Thus, by the construction of degree splitting graph, we introduce a new vertex w corre-

sponding to the vertex set T and hve V [DS(Wn)] = {vi : i ∈ [1, n]} ∪ {w} and E[DS(Wn)] =

{v2vn} ∪ {v1vi : i ∈ (1, n]} ∪ {vivi+1 : i ∈ (1, n)} ∪ {wvi : i ∈ [1, n]} for n = 4 otherwise

E[DS(Wn)] = {v2vn} ∪ {v1vi : i ∈ (1, n]} ∪ {vivi+1 : i ∈ (1, n)} ∪ {wvi : i ∈ (1, n]} where
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| V [DS(Wn)] |= n+ 1 and

| E[DS(Wn)] |=

 3n− 2, n = 4,

3n− 3, n 6= 4

provided δ[DS(Wn)] = 4 and

4[DS(Wn)] =

 n, n = 4,

n− 1, n 6= 4.

Consider the colors C1, C2, C3, · · · and assign the colors as follows.

Case 1. n = 4

In this case, assign the colors by using the mapping π : V [DS(Wn)] → {Ck : 1 ≤ k ≤ 5}
such that

• π(w) = C5,

• π(vi) =


C4, i = 1,

C3, i = 2,

C2, i = 3,

C1, i = 4.

Thus, Γ[DS(Wn)] = 5 for n = 4 where Γ[DS(Wn)] > 5 is not possible since Γ ≤ 4 + 1 and

suppose Γ[DS(Wn)] < 5, eventhough it satisfies the definition of Grundy coloring it is not

maximum. Hence, Γ[DS(Wn)] = n+ 1 for n = 4.

Case 2. n = 5

In this case, consider the mapping φ : V [DS(Wn)] → {Ck : 1 ≤ k ≤ 3} and assign the

colors as follows.

• φ(w) = C3,

• φ(vi) =


C3, i = 1,

C2, i ≡ 0(mod)2,

C1, i ≡ 1(mod)2.

Thus, Γ[DS(Wn)] = 3 for n = 5.

Suppose Γ[DS(Wn)] > 3, then it makes the vertex v3 colored with C2 not adjacent with

C1 which contradicts grundy coloring for the mapping φ(w) = φ(v1) = C4,

φ(vi) =


C3, i ≡ 0(mod)2,

C2, i = 3,

C1, i = 5
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and suppose Γ[DS(Wn)] < 3, it contradicts the definition of proper coloring. Therefore,

Γ[DS(Wn)] = n− 2 for n = 5.

Case 3. n ≥ 6

Let us consider the mapping ψ : V [DS(Wn)]→ {Ck : 1 ≤ k ≤ 4} and assign the colors as

follows.

Subcase 3.1 n ≡ 0(mod)2

ψ(w) = ψ(v1) = C4,

ψ(v2) = C3,

ψ(vi) =

 C2, i ≡ 1(mod)2,

C1, i ≡ 0(mod)2.

Subcase 3.2 n ≡ 1(mod)2,

ψ(w) = ψ(v1) = C4,

ψ(v2) = ψ(vn−1) = C3,

ψ(vi) =

 C2, i ≡ 1(mod)2,

C1, i ≡ 0(mod)2 and i = n.

Thus, from the above subcases, Γ[DS(Wn)] = 4 for n ≥ 6.

Suppose Γ[DS(Wn)] > 4, then it makes some vertex colored with Ck not adjacent with all

Ck−1 colors. For instance, Γ[DS(W6)] = 5 in which the vertex v2 colored with C4 and v3 colored

with C3 are not adjacent with the color C1 for the mapping ψ(w) = ψ(v1) = C5, ψ(v2) = C4,

ψ(v3) = C3, ψ(v4) = ψ(v6) = C2 and ψ(v5) = C1. This contradicts Grundy coloring. Similarly

4 < Γ[DS(Wn)] ≤ n leads to contradiction of grundy coloring. And suppose Γ[DS(Wn)] < 4,

eventhough it satisfies grundy coloring it is not maximum. Therefore, Γ[DS(Wn)] = 4 for

n ≥ 6.

Thus, from all above cases, we have

Γ[DS(Wn)] =


n+ 1, n = 4,

n− 2, n = 5,

4, n ≥ 6

�

Theorem 3.2 For n ≥ 3, the Grundy coloring for degree splitting graph of sunlet graph Sn is

given by

Γ[DS(Sn)] =

 4, n = 4,

5, n 6= 4

Proof Consider a sunlet graph Sn with vertex set V (Sn) = {ui : i ∈ [1, n]}∪{vj : j ∈ [1, n]}
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and edge set E(Sn) = {uiui+1 : i ∈ [1, n)} ∪ {u1un} ∪ {uivj : i, j ∈ [1, n] and i = j} such

that | V (Sn) |=| E(Sn) |= 2n. Moreover, 4(Sn) = 3 and δ(Sn) = 1. Hence, we have

T1 = {ui : i ∈ [1, n]} and T2 = {vj : j ∈ [1, n]}.
Thus, by the construction of degree splitting graph, we introduce new vertices {w1, w2}

corresponding to vertex set T1 and T2 and therefore, V [DS(Sn)] = {ui : i ∈ [1, n]} ∪ {vj :

j ∈ [1, n]} ∪ {wk : k ∈ [1, 2]} and E[DS(Sn)] = {uiui+1 : i ∈ [1, n)} ∪ {u1un} ∪ {uivj : i, j ∈
[1, n] and i = j} ∪ {uiw1 : i ∈ [1, n]} ∪ {vjw2 : j ∈ [1, n]} where | V [DS(Sn)] |= 2n + 2 and

| E[DS(Sn)] |= 4n provided δ[DS(Sn)] = 2 and

4[DS(Sn)] =

 n+ 1, n = 3,

n, n 6= 3.

Consider the colors C1, C2, C3, · · · and assign the colors as follows.

Case 1. n = 4

Assign the colors by using the mapping ρ : V [DS(Sn)]→ {Ct : 1 ≤ t ≤ 4} such that

• ρ(wk) =

 C4, k = 1,

C3, k = 2;

• ρ(ui) = C3 for i ≡ 1(mod)2;

• for i ≡ 0(mod)2, ρ(ui) =

 C2, i = 2,

C1, i = 4;
;

• for 1 ≤ i ≤ n, ρ(vj) =

 C2, j = n,

C1, 1 ≤ j ≤ n− 1
.

Thus, Γ[DS(Sn)] = 4 for n = 4.

Suppose Γ[DS(Sn)] > 4 then it makes the vertex v4 colored with C2 not adjacent with C1

which contradicts grundy coloring for the mapping ρ(ui) = Ci, ρ(v1) = ρ(vn) = C2, ρ(v2) =

ρ(v3) = C1, ρ(w1) = C5 and ρ(w2) = C3 and suppose Γ[DS(Sn)] < 4, Even through it satisfies

the definition of Grundy coloring it is not maximum. Thus, Γ[DS(Sn)] = 4 for n = 4.

Case 2. n 6= 4

Let us consider the mapping λ : V [DS(Sn)] → {Ct : 1 ≤ t ≤ 5} and assign the colors as

follows.

Subcase 2.1 n = 3

• λ(ui) = Ci+2,∀1 ≤ i ≤ n;

• λ(vj) = C2,∀1 ≤ j ≤ n;

• λ(wk) = C1,∀k ∈
[
1,
⌈n

2

⌉]
.
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Subcase 2.2 n ≥ 5

• λ(w1) = C5 and λ(w2) = C3;

• λ(ui) = Ci+2,∀i ∈ [1, 2];

• for odd n, λ(ui) =

 C2, i ≡ 1(mod)2,

C1, i ≡ 0(mod)2;

λ(vj) =

 C2, j ≡ 0(mod)2,

C1, j = 2 and j ≡ 1(mod)2;

• for even n, λ(ui) =


C3, i = n− 1,

C2, i ≡ 1(mod)2 and i = n,

C1, i ≡ 0(mod)2;

λ(vj) =

 C2, j ≡ 0(mod)2 and 4 ≤ j < n,

C1, j = 2, n and j ≡ 1(mod)2.

Thus, from all above subcases, Γ[DS(Sn)] = 5 for n 6= 4.

Suppose Γ[DS(Sn)] > 5, it is not possible for n = 3 since Γ ≤ 4+ 1 whereas for n ≥ 5, it

makes some vertex colored with Ct not adjacent with all Ct−1 colors. For instance, Γ[DS(S5)] =

6 in which the vertex w1 colored with C6 is not adjacent with the color C5 for the mapping

λ(w1) = C6, λ(w2) = C3,

λ(vj) =

 C2, j = 1,

C1, 2 ≤ j ≤ 5
and λ(ui) =

 Ci, 1 ≤ i ≤ 4,

C2, i = 5.

This contradicts Grundy coloring. Similarly 7 ≤ Γ[DS(Sn)] ≤ 4[DS(Sn)] + 1 for n ≥ 6 leads

to contradiction and suppose Γ[DS(Sn)] < 5. Even though it satisfies Grundy coloring it is not

maximum. We get Γ[DS(Sn)] = 5 for n 6= 4.

Thus, from all above cases, we have

Γ[DS(Sn)] =

 4, n = 4,

5, n 6= 4.

This completes the proof. �

Theorem 3.3 For n ≥ 3, the grundy coloring for degree splitting graph of helm graph Hn is

given by

Γ[DS(Hn)] = 5.

Proof Consider a helm graph Hn with vertex set V (Hn) = {vi : i ∈ [0, n]}∪{uj : j ∈ [1, n]}
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and edge set E(Hn) = {v0vi : i ∈ [1, n]}∪{v1vn}∪{vivi+1 : i ∈ [1, n)}∪{viuj : i, j ∈ [1, n]andi =

j} such that | V (Hn) |= 2n+ 1 and | E(Hn) |= 3n. Moreover,

4(Hn) =

 4, n = 3, 4,

n, n ≥ 5
and δ(Hn) = d(uj : j ∈ [1, n]) = 1.

Hence, we have

T1 = {vi : i ∈ [0, n]} and T2 = {uj : j ∈ [1, n]}.

Thus, by the construction of degree splitting graph, we introduce a new set of vertices {w1, w2}
corresponding to vertex set T1 and T2. Consequently, V [DS(Hn)] = {vi : i ∈ [0, n]} ∪ {uj :

j ∈ [1, n]} ∪ {wk : k ∈ [1, 2]} and E[DS(Hn)] = {v0vi : i ∈ [1, n]} ∪ {v1vn} ∪ {vivi+1 : i ∈
[1, n)} ∪ {viuj : i, j ∈ [1, n] and i = j} ∪ {viw1 : i ∈ [0, n]} ∪ {ujw2 : j ∈ [1, n]} for n = 4.

Otherwise, E[DS(Hn)] = {v0vi : i ∈ [1, n]} ∪ {v1vn} ∪ {vivi+1 : i ∈ [1, n)} ∪ {viuj : i, j ∈
[1, n] and i = j} ∪ {viw1 : i ∈ [1, n]} ∪ {ujw2 : j ∈ [1, n]} where | V [DS(Hn)] |= 2n+ 3 and

| E[DS(Hn)] |=

 5n+ 1, n = 4,

5n, Otherwise

provided

4[DS(Hn)] =

 5, n = 3, 4,

n, n ≥ 5

and δ[DS(Hn)] = 2.

Consider the colors C1, C2, C3, · · · and assign the colors by using the mapping η : V [DS(Hn)]→
{Ct : 1 ≤ t ≤ 5}.

Case 1. n = 3

• η(v0) = η(wk : k ∈ [1, 2]) = C1;

• η(uj) = C2,∀j ∈ [1, n];

• η(vi) = Ci+2,∀i ∈ [1, n].

Case 2. n = 4

• η(w1) = C5 and η(w2) = η(v0) = C1;

• η(uj) =

 C3, j = 2,

C2, Otherwise, for ∀j ∈ [1, n];

• η(vi) =

 C3, i = 1,

Ci, i ≥ 2 for ∀i ∈ [1, n].



On Grundy Coloring of Degree Splitting Graphs 89

Case 3. n ≥ 5

• η(v0) = η(w1) = C5 and η(w2) = C3;

• η(uj) =

 C2, j = 1,

C1, j ≥ 2 ∀j ∈ [1, n];

• η(vi) =


Ci, 1 ≤ i ≤ 4,

C2, i ≡ 1(mod)2,

C3, i ≡ 0(mod)2 for ∀i ∈ [1, n].

Thus, from all above cases, Γ[DS(Hn)] = 5.

Suppose Γ[DS(Hn)] > 5, then it makes some vertex vi colored with Ct is not adjacent

with all Ct−1 colors. For instance, Γ[DS(H3)] = 6 in which the vertex v0 colored with C3 is

not adjacent with C2 and C1 for the mapping η(wk : k ∈ [1, 2]) = C1, η(vi : i ∈ [0, 3]) = Ci+3

and η(uj : j ∈ [1, 3]) = C2. This leads to the contradiction of Grundy coloring. Similarly,

7 ≤ Γ[DS(Hn)] ≤ n + 1 for n ≥ 5 leads to contradiction and suppose Γ[DS(Hn)] < 5. Even

though it satisfies the definition of Grundy coloring it is not maximum, i.e., Γ[DS(Hn)] = 5 for

n ≥ 3. �

Theorem 3.4 For n ≥ 2, the Grundy coloring for degree splitting graph of crown graph Hn,n

is given by

Γ[DS(Hn,n)] = n+ 1.

Proof Consider a crown graph Hn,n with vertex set V (Hn,n) = {ui : i ∈ [1, n]} ∪ {vj : j ∈
[1, n]} and edge set E(Hn,n) = {uivj : i, j ∈ [1, n] and i 6= j} such that | V (Hn,n) |= 2n and

| E(Hn,n) |= n(n− 1). Moreover, 4(Hn,n) = δ(Hn,n) = n− 1, i.e., we have T = ui ∪ vj where

i, j ∈ [1, n].

Thus, by the construction of degree splitting graph, we introduce a new vertex w corre-

sponding to the vertex set T, and so V [DS(Hn,n)] = {ui : i ∈ [1, n]} ∪ {vj : j ∈ [1, n]} ∪ {w}
and E[DS(Hn,n)] = {uivj : i, j ∈ [1, n] and i 6= j} ∪ {uiw : i ∈ [1, n]} ∪ {vjw : j ∈ [1, n]} where

| V [DS(Hn,n)] |= 2n + 1 and | E[DS(Hn,n)] |= n(n + 1) provided 4[DS(Hn,n)] = 2n and

δ[DS(Hn,n)] = n.

Consider the colors C1, C2, · · · and assign colors by using the mapping σ : V [DS(Hn,n)]→
{Ck : k = 1, 2, 3, · · · } as follows:

• σ(w) = Cn+1;

• σ(ui) = σ(vj) = Ci, ∀i, j ∈ [1, n].

Thus, Γ[DS(Hn,n)] = n+ 1.

Suppose Γ[DS(Hn,n)] > n+ 1, then some vertex ui or vj colored with Ck is not adjacent

with all Ck−1 colors. For instance, Γ[DS(Hn,n)] = n+2 for n = 2 in which the vertex u2 colored

with C3 and the vertex v1 colored with C2 are not adjacent with C1 for the mapping σ(w) = C4,
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σ(u1) = σ(v1) = C2, σ(un) = Cn+1 and σ(vn) = Cn−1. This leads to the contradiction of

Grundy coloring. Similarly, n+3 ≤ Γ[DS(Hn,n)] ≤ 2n+1 leads to contradiction. And suppose

Γ[DS(Hn,n)] < n+ 1, then it contradicts the definition of proper coloring, i.e., Γ[DS(Hn,n)] =

n+ 1 for n ≥ 2. �

Theorem 3.5 For n ≥ 1, the Grundy coloring for degree splitting graph of friendship graph Fn

is given by

Γ[DS(Fn)] =

 4, n = 1,

3, n 6= 1

Proof Consider a friendship graph Fn with vertex set V (Fn) =
2n⋃
i=0

{vi} and edge set

E(Fn) = {v0vi : i ∈ [1, 2n]} ∪ {vivi+1 : i ≡ 1(mod)2} such that | V (Fn) |= 2n + 1 and

| E(Fn) |= 3n. Moreover,

4(Fn) =

 2, n = 1,

2n, n 6= 1

and δ(Fn) = 2. We have T =
2n⋃
i=0

{vi} for n = 1 otherwise T =
2n⋃
i=1

{vi} for n ≥ 2.

Thus, by the construction of degree splitting graph, we introduce a new vertex w cor-

responding to vertex set T , i.e., V [DS(Fn)] = {vi : i ∈ [0, 2n]} ∪ {w} and E[DS(Fn)] =

{v0vi : i ∈ [1, 2n]} ∪ {vivi+1 : i ≡ 1(mod)2} ∪ {viw : i ∈ [0, 2n]} for n = 1 otherwise

E[DS(Fn)] = {v0vi : i ∈ [1, 2n]} ∪ {vivi+1 : i ≡ 1(mod2} ∪ {viw : i ∈ (0, 2n]} for n ≥ 2

where

| V [DS(Fn)] |= 2(n+ 1) and | E[DS(Fn)] |=

 3(n+ 1), n = 1,

5n, n 6= 1

provided

4[DS(Fn)] =

 3, n = 1,

2n, n 6= 1

and δ[DS(Fn)] = 3.

Consider the colors C1, C2, C3, · · · and assign the colors as follows.

Case 1. n = 1

Let us consider the mapping ζ : V [DS(Fn)]→ {Cs : 1 ≤ s ≤ 4} such that

• ζ(w) = C4;

• ζ(vi) = Ci+1 for 0 ≤ i ≤ 2n.

Obviously, Γ[DS(Fn)] = 4 for n = 1.

Case 2. n ≥ 1
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Assume the mapping τ : V [DS(Fn)]→ {Ct : 1 ≤ t ≤ 3} and assign the colors as follows.

• τ(w) = τ(v0) = C3;

• τ(vi) =

 C2, i ≡ 0(mod)2,

C1, i ≡ 1(mod)2 for 1 ≤ i ≤ 2n.

Thus, Γ[DS(Fn)] = 3. Suppose Γ[DS(Fn)] > 3 then the vertex vi colored with Ct is not

adjacent with all Ct−1 colors. For instance, Γ[DS(Fn)] = 4, the vertex v0 colored with C4 is

not adjacent with C1 for the mapping τ(v0) = C4,

τ(vi) =

 C3, i ≡ 1(mod)2,

C2, i ≡ 0(mod)2

for ∀i ∈ [1, 2n] and τ(w) = C1. This leads to the contradiction of Grundy coloring. Similarly,

5 ≤ Γ[DS(Fn)] ≤ 2n + 1 leads to contradiction. And suppose Γ[DS(Fn)] < 3, it contradicts

the definition of proper coloring. Therefore, Γ[DS(Fn)] = 3 for n 6= 1.

From all above cases, we have

Γ[DS(Fn)] =

 4, n = 1,

3, n 6= 1.

This completes the proof. �
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§1. Introduction

Let G = (V,E) be simple, undirected, and nontrivial graph with vertex set V = V (G) and

edge set E = E(G). Also |V | = n and |E| = m denote number of vertices and number of edges

in G. The open neighborhood N(v) of vertex v denotes number of vertices adjacent to v and

its closed neighborhood N [v] = N(v) ∪ {v}. The β1(G) is the minimum number of edges in

a maximal independent set of edge of G. For notation and graph theoretic terminology, we

generally follow [11].

A set D ⊆ V is a dominating set if every vertex not in S is adjacent to one or more vertices

in D. The cardinality of a smallest dominating set of G, denoted by γ(G), is the domination

number of G. For more details on domination theory, we refer to [12], [13], [14] and [19]. In 1985,

E. Sampathkumar and P. S. Neeralagi [17], introduced an innovative concept of domination

between the vertices and the edges, and vice-versa. They introduced a new parameter called

the neighborhood number of a graph, as follows. A set S ⊆ V is a neighborhood set of G, if

G =
⋃
v∈s〈N [v]〉, where 〈N [v]〉 is the sub graph of G induced by v and all vertices adjacent to

v. The neighborhood number η(G) is the minimum cardinality of a neighborhood set of G. For

more information on neighborhood number, we refer to [3], [15] and [16].

In 1993, Cockayne et al [7] introduced the concept of perfect domination following in this

sense. A subset D ⊆ V is a perfect dominating set of G if any vertex of G not in D is adjacent

to exactly one vertex of D. In 2010, Chaluvaraju et al [4] and [5] was generalized perfect

domination as follows. A vertex subset D of G is called a k - perfect dominating set of G, if

any vertex v of V not in D is adjacent to exactly k - vertices of D. The minimum cardinality

of a k - perfect dominating set of G is the k - perfect domination number γkp(G).

1March 24, 2024, Accepted August 25, 2024.



94 C. Nandeeshkumar

The following known results from [4] and [5] are used in the sequel.

Theorem 1.1 Let T be a tree and G be a connected graph. Then,

(i) kn
∆(G)+k ≤ γkP (G);

(ii) α(T ) ≤ γkP (T );

(iii) β1(T ) ≤ γkP (T );

(iv) ddiam(G)
2 e ≤ γ2P (G).

Theorem 1.2 Let k = ∆(G)− 1. Then the graph G is a kPD - graph if and only if G satisfy

one of the following conditions:

(i) there exists at least two adjacent vertices u and v in a graph G such that deg(u) =

deg(v) = ∆(G);

(ii) there exists a vertex u such that deg(u) = ∆(G)− 1.

Several papers have been written on the subject of k - domination in graphs and when

they exists, cf. [2], [6], [9] and [10]. Further, let k be a positive integer and G be a graph. A

subset S of vertices in a graph G is a k - neighborhood set, if every vertex of V −S is adjacent

to at least k - vertices in S. The k - neighborhood number ηk(G) is the minimum cardinality

of a k - neighborhood set of a graph G. Hence for k = 1, 1 - neighborhood sets are the classical

neighborhood set of a graph G, see [17].

Analogously, here we generalize the perfect neighborhood number as follows: A subset S of

vertices in a graph G is a k - neighborhood set, if every vertex of V −S is adjacent to exactly k

- vertices in S. The k - perfect neighborhood number ηkp(G) is the minimum cardinality of a k

- perfect neighborhood set of a graph G. Hence for k = 1, 1 - perfect neighborhood sets are the

usual perfect neighborhood sets. The concept of perfect neighborhood number was initiated by

Sampatkumar and Neerlagi [18].

Note that every nontrivial graph G has a k - perfect neighborhood set, since the entire

vertex set is such a set and there are graphs whose only k - perfect neighborhood set is V (G).

A graph G for which ηkp(G) < n is called a k - perfect neighborhood graph, abbreviated kPN

- graph and a tree T for which ηkp(T ) < n is called a kPN - tree.

§2. Specific Families of Graphs

Proposition 2.1 For any complete graph Kn; n ≥ 2 vertices with 1 ≤ k ≤ ∆(G),

ηkP (Kn) = k.

Proposition 2.2 For any path Pn with n ≥ 3 vertices,

(i) η1P (Pn) = n− 2;

(ii) η2P (Pn) =


⌈
n
2

⌉
if n is odd

n
2 + 1 if n is even.
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Proposition 2.3 For any Cycle Cn with n ≥ 4 vertices,

(i) η1P (Cn) does not exist;

(ii) η2P (Cn) =

n+1
2 if n is odd

n
2 if n is even.

Proposition 2.4 For any Fan graph Fn = Pn +K1 with n ≥ 1 vertices,

(i) η1P (Fn) = 1;

(ii) η2P (Fn) =


⌈
n
3

⌉
if n = 3t + 1 for t ≥ 1⌈

n
3

⌉
+ 1, otherwise;

(iii) η3P (Fn) =
⌈
n
2

⌉
+ 1 if n ≥ 4;

(iv) η(n−1)P (Fn) = n− 1 if n ≥ 3.

Proposition 2.5 For any wheel graph Wn = Cn +K1 with n ≥ 4 vertices,

(i) η1P (Wn) = 1;

(ii) η2P (Wn) =


⌊
n
2

⌋
+ 1, if n = 3t, t ≥ 2,⌊

n
2

⌋
, otherwise;

(iii) η3P (Wn) =

n
2 + 1 if n is even,

n+1
2 if n is odd;

(iv) η(n−1)P (Wn) = n− 1.

Proposition 2.6 For any complete bipartite graph Kr,s with n = r + s vertices,

(i) η1P (K1,s) = 1 if r = 1 and s = n - 1;

(ii) ηsP (K1,s) = s if r = 1 and s = n - 1;

(iii) ηrP (Kr,s) = r if 2 ≤ r ≤ s;
(iv) ηsP (Kr,s) = s if 2 ≤ r ≤ s.

§3. Properties and Bounds

Property 3.1 For every graph G and positive integer k, every vertex with degree at most k− 1

belongs to every k - perfect neighborhood set.

Property 3.2 Since v ∈ V − S should be adjacent to k - vertices in S, the graph G is not a

kPN - graph for k ≥ ∆(G).

Property 3.3 Let v be a vertex wit deg(v) = ∆(G) and let k = ∆(G). Then V − {v} is a ∆ -

perfect neighborhood set of G. Thus G is a kPN - graph for k = ∆(G).

Property 3.4 A graph will have two disjoint k - perfect neighborhood sets only if k ≤ δ(G),

since all the vertices with degree less than k belongs to every k - perfect neighborhood set.

Property 3.5 If S is a k - neighborhood set of a graph G, then S is a t - neighborhood set for
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every t ≤ k. But this is not true in case of k - perfect neighborhood set.

Property 3.6 Every k - perfect neighborhood set is a k neighborhood set of a graph G and

hence ηk(G) ≤ ηkP (G).

Observation 3.1 An k- perfect neighborhood set is a k - perfect dominating set, and hence

γkP (G) ≤ ηkP (G) for every graph G and positive integer k.

By above observation and Theorem 1.1, we have the following lower bounds.

Theorem 3.1 Let T be a tree and G be a connected graph. Then,

(i) kn
∆(G)+k ≤ ηkP (G);

(ii) α(T ) ≤ ηkP (T );

(iii) β1(T ) ≤ ηkP (T );

(iv)
⌈
diam(G)

2

⌉
≤ η2P (G).

Theorem 3.2 Let G be a kPN - graph with n ≥ 2 vertices. Then

n− (m/k) ≤ ηkP (G) ≤ n− 1.

Proof Let S be a ηkP - set of a nontrivial graph G and |V − S| = t. Then there are t -

times of k - edges from V − S to S with ηkP (G)= |S|. Since m > tk , the lower bound follows.

By the definition of kPN - graph, the upper bound follows. �

Theorem 3.3 Let {x1, x2, · · · , xn} be the degree sequence of a graph G with degvi = xi for

i = 1, 2, · · · , n. If k is an integer such that k ∈ {x1, x2, · · · , xn}, Then G is a kPN - graph.

Proof Let k ∈ {x1, x2, . . . , xn}. If S = V − v, where v is a vertex of degree k in a graph G,

then S is a k - PNS of a graph G. Therefore G is a kPN - graph. �

Observation 3.2 The converse of above theorem is not true.

For example, we consider the following graph G1.

bbb b

b b b b

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Figure 1. The graph G1.

Here, the degree sequence of G1 is {1, 4, 4, 1, 1, 4, 4, 1}, we have

(i) If k = 2, then η2P - set S is {v1, v2, v4, v5, v8} and V − S is {v3, v6, v7}.
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(ii) If k = 3, then η3P - set S is {v1, v2, v3, v4, v5, v8} and V − S is {v6, v7}.
Clearly, these graphs are 2PN - graph and 3PN - graph. But k = 2 and 3 does not belong

to the degree sequence of a graph G1.

Theorem 3.4 For any connected graph G,

kn

∆(G) + k
≤ ηkP (G).

Theorem 3.5 Let G be a connected graph with ηkP (G) = k. Then

∆(G) ≥Max.{k, n− k}.

Proof Let S be a ηkP - set of a graph G with ηkP (G) = k. Then we have the following

cases.

Case 1. Suppose if v ∈ V − S, then the degree of v is greater than |S| = k. There fore

∆(G) ≥ k.

Case 2. Suppose if v /∈ V −S, then the degree of v ∈ S is greater than |V −S| = n− k. There

fore ∆(G) ≥ n− k.

Thus, the result follows. �

§4. Concluding Remarks and Further Scope

Different graph theorists have defined wide varieties of neighborhood related graph parameters

by imposing extra conditions on the neighborhood set S of a graph G, because the neighborhood

number is closely related to the domination number of G. To stimulate further understanding or

advancement in this generalized perfect neigbor based graph parameters, we pose the following

open problems:

(i) Obtain the complexity issues of ηkP (G);

(ii) Characterize the class of graphs when γkP (G) = ηkP (G)?

(iii) Obtain some bound and characterization on ηkP (G) in terms of other domination

related parameters such as total domination, connected domination, independence domination

and so on.,

Acknowledgement. Thanks are due to Dr. B. Chaluvaraju, Professor of Mathematics, Ban-

galore University, Bengaluru for his help and valuable suggestions in the preparation of this

paper.
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§1. Introduction

We consider only finite, undirected and simple graphs. The notion of pair difference cordial

labeling of a graph was introduced in [4]. Also we have investigated pair difference cordial

labeling behavior of several graphs like path, cycle, star, wheel, some snake and butterfly graphs,

graphs derived from ladder graph, degree splitting graph of some graphs have been investigated

in [4,5,6,7,8,9,10]. Recently pair difference cordial number of a graph was introduced in [14]. In

this paper we determine the pair difference cordial number of degree splitting graph of bistar,

complete bipartite, ladder, wheel.

§2. Preliminaries

Definition 2.1([4]) Let G = (V,E) be a (p, q) graph. Define

ρ =

p
2 , if p is even

p−1
2 , if p is odd

and L = {±1,±2,±3, · · · ,±ρ} called the set of labels. Consider a mapping f : V −→ L by

assigning different labels in L to the different elements of V when p is even and different labels

in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The

labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G

there exists a labeling |f(u)− f(v)| such that
∣∣∆f1 −∆fc1

∣∣ ≤ 1, where ∆f1 and ∆fc1
respectively

denote the number of edges labeled with 1 and number of edges not labeled with 1. Otherwise, if

1Received April 9, 2024, Accepted August 26, 2024.
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∣∣∆f1 −∆fc1

∣∣ ≥ 2, such a labeling f is said to be a Smarandachely pair difference cordial labeling

and a graph G for which there exists a pair difference cordial labeling or a Smarandache pair

difference cordial labeling is called a pair difference cordial labeling graph or Smarandachely pair

difference cordial graph.

Definition 2.2([5]) Let G = (V,E) be a graph with V = S1 ∪ S2 ∪ · · · ∪ St ∪ T where each Si

is a set of vertices having at least two vertices and having the same degree and T = V −
t⋃
i=1

Si.

The degree splitting graph degree splitting graph of G denoted by DS (G) is obtained from G by

adding vertices w1, w2 . . . , wt and joining wi to each vertex of Si (1 ≤ i ≤ t).

Theorem 2.3([13]) DS(Kn,n) is pair difference cordial if and only if n = 2, where Kn,n is

complete bipartite graph.

Theorem 2.4([13]) DS(Ln) is pair difference cordial if and only if n ≤ 3, where Ln is the

ladder.

Theorem 2.5([13]) DS(Bn,n) is pair difference cordial if and only if n ≤ 2 , where Bn,n is the

bistar.

Theorem 2.6([13]) DS(B1,n) is pair difference cordial if and only if n ≤ 4.

Theorem 2.7([13]) DS(Wn) is not pair difference cordial for all n ≥ 3, where Wn is the wheel.

Theorem 2.8([4]) The cycle Cn is pair difference cordial if and only if n > 3.

§3. Pair Difference Cordial Number of a Graph

Definition 3.1 Let G be a (p, q) graph. Pair difference cordial number of a graph G is the least

positive integer m such that G ∪K2 is pair difference cordial. It is denoted by PDCη(G).

Remark 3.2 If G is pair difference cordial graph then PDCη(G) = 0.

Theorem 3.3 For any integer n ≥ 1,

PDCη(B1,n) =

 0 if n ≤ 4,

2n− 6 if n ≥ 5.

Proof Let V (B1,n ∪ mK2) = {x, v, w, u, ui : 1 ≤ i ≤ n} ∪ {vi, wi : 1 ≤ i ≤ m} and

E(B1,n ∪mK2) = {vw,wu, xun} ∪ {uui : 1 ≤ i ≤ n} ∪ {viwi : 1 ≤ i ≤ m}. Clearly B1,n ∪mK2

has n+ 2m+ 4 vertices and 2n+m+ 3 edges. There are two cases arises.

Case 1. n ≤ 4.

The proof follows from Theorem 2.6.

Case 2. n ≥ 5.
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Subcase 2.1 n is odd.

Take m = 2n−6. Define f : V (B1,n∪(2n−6)K2)→ {±1,±2, · · · ,±
⌊
n+2m+3

2

⌋
} as follows:

Assign the labels 1, 2, 3, 4, 4 to the vertices v, w, u, u1, u2 and assign the labels−1,−2,−3,−4

to the vertices x, un, u3, u4. Next, assign the labels 5, 7, 9, · · · , (n+2) to vertices v1, v2, v3, · · · , vm2
and assign the labels 6, 8, 10, · · · , (n + 3) to the vertices w1, w2, w3, · · · , wm

2
. Next, assign the

label −5,−7,−9, · · · ,−(n + 2) to the vertices vm
2 +1,vm

2 +1,vm
2 +1, · · · vm and assign the label

−6,−8,−10, · · · ,−(n+3) to the vertices wm
2 +1,wm

2 +1,wm
2 +1, · · · wm. Finally assign the distinct

labels to the vertices u5, u6, u7, · · · , un−1 from ±(n+ 1),±(n− 1), · · · ,±(n+2m+3
2 ).

Therefore, f is pair difference cordial labeling of B1,n∪ (2n−6)K2. The maximum number

of edges with labels 1 from the DS(B1,n) is, ∆f1 = 5, if n is odd.But the size of the DS(B1,n)

is 2n+3. Hence 2n−6 is the least integer such that B1,n∪ (2n−6)K2 is pair difference cordial.

Subcase 2.2 n is even.

Take m = 2n−6. Define f : V (B1,n∪(2n−6)K2)→ {±1,±2, · · · ,±
⌊
n+2m+4

2

⌋
} as follows:

Assign the labels 1, 2, 3, 4 to the vertices v, w, u, u1 and assign the labels −1,−2,−3,−4 to

the vertices x, un, u2, u3. Next assign the labels 5, 7, 9, · · · , (n+2) to the vertices v1, v2, v3, · · · , vm2
and assign the labels 6, 8, 10, · · · , (n + 3) to the vertices w1, w2, w3, · · · , wm

2
. Next assign the

label −5,−7,−9, · · · ,−(n + 2) to the vertices vm
2 +1,vm

2 +1,vm
2 +1, · · · vm and assign the label

−6,−8,−10, · · · ,−(n+3) to the vertices wm
2 +1,wm

2 +1,wm
2 +1, · · · wm. Finally assign the distinct

labels to the vertices u4, u5, u6, · · · , un−1 from ±(n+ 1),±(n− 1), · · · ,±(n+2m+3
2 ).

Therefore, f is pair difference cordial labeling of B1,n∪ (2n−6)K2. The maximum number

of edges with labels 1 from the DS(B1,n) is, ∆f1 = 4, if n is even.But the size of the DS(B1,n)

is 2n+3. Hence 2n−6 is the least integer such that B1,n∪ (2n−6)K2 is pair difference cordial.

�

Theorem 3.4 For any integer n ≥ 1,

PDCη(DS(Ln)) =


0 if n ≤ 3

n− 1 if n ≥ 5 and n is odd,

n− 2 if n ≥ 4 and n is even.

Proof Let V (DS(Ln) ∪ mK2) = {x, xi, y, yi : 1 ≤ i ≤ n} ∪ {vi, wi : 1 ≤ i ≤ m} and

E(DS(Ln) ∪mK2) = {xx1, xxn, xy1, xyn} ∪ {yyi, yxi : 2 ≤ i ≤ n − 1} ∪ {viwi : 1 ≤ i ≤ m}.
Clearly DS(Ln) ∪mK2 has 2n+ 2m+ 2 vertices and 5n+m− 2 edges. There are three cases

arises.

Case 1. n ≤ 3.

The proof follows from Theorem 2.4.

Case 2. n ≥ 5 and n is odd.

Take m = n−1. Define f : V (DS(Ln)∪(n−1)K2)→ {±1,±2, · · · ,±n+m+1} as follows:

Assign the labels 1, 2, 3,−1,−2,−3 to the vertices x1, x, xn, y1, y2, y and assign the la-
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bels 4, 5, 6, · · · , (n + 1) to the vertices xn−1, xn−2, xn−3, · · · , u3, u2. Next assign the labels

−4,−5,−6, · · · ,−(n+1) to the vertices y3, y4, y5, · · · , yn. Next assign the labels (n+2), (n+4),

(n+6), · · · , (n+m) to the vertices v1, v2, v3, · · · , vn−1
2

and assign the labels (n+3),(n+5), (n+

7), · · · , (n+m+1) to the vertices w1, w2, w3, · · · , wn−1
2

. Now we assign the labels −(n+2),−(n+

4), −(n+6), · · · ,−(n+m) to the vertices vn−1
2 +1, vn−1

2 +2, vn−1
2 +3, · · · , vn−1 and assign the labels

−(n+3),−(n+5),−(n+7), · · · ,−(n+m+1) to the vertices wn−1
2 +1, wn−1

2 +2, wn−1
2 +3, · · · , wn−1.

Therefore, f is pair difference cordial labeling of DS(Ln) ∪ (n − 1)K2. The maximum

number of edges with labels 1 from the DS(Ln) is, ∆f1 = 2n.But the size of the DS(Ln) is

5n− 2. Hence n− 1 is the least integer such that DS(Ln)∪ (n− 1)K2 is pair difference cordial.

Case 3. n ≥ 4 and n is even.

Take m = n− 2. Define f : V (Ln ∪ (n− 2)K2)→ {±1,±2, · · · ,±n+m+ 1} as follows:

Assign the labels 1, 2, 3,−1,−2,−3 to the vertices x1, x, xn, y1, y2, y and assign the la-

bels 4, 5, 6, · · · , (n + 1) to the vertices xn−1, xn−2, xn−3, · · · , u3, u2. Next assign the labels

−4,−5,−6, · · · ,−(n + 1) to the vertices y3, y4, y5, · · · , yn. Next assign the labels (n + 2),(n +

4),(n+6), · · · ,(n+m) to the vertices v1, v2, v3, · · · , vn−2
2

and assign the labels (n+3),(n+5),(n+

7), · · · ,(n+m+1) to the vertices w1, w2, w3, · · · , wn−2
2

. Now we assign the labels −(n+2),−(n+

4),−(n+6), · · · ,−(n+m) to the vertices vn−2
2 +1, vn−2

2 +2, vn−2
2 +3, · · · , vn−2 and assign the labels

−(n+3),−(n+5),−(n+7), · · · ,−(n+m+1) to the vertices wn−2
2 +1, wn−2

2 +2, wn−2
2 +3, · · · , wn−2.

Therefore, f is pair difference cordial labeling of DS(Ln) ∪ (n − 2)K2 and the maximum

number of edges with labels 1 from the DS(Ln) is ∆f1 = 2n. But the size of the DS(Ln) is

5n−2. Hence n−2 is the least integer such that DS(Ln)∪ (n−2)K2 is a pair difference cordial

graph. �

A pair difference cordial labeling on DS(L6) ∪ 4K2 is shown in Figure 1.

Figure 1
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Theorem 3.5 If n ≥ 3, then

PDCη(DS(Wn)) =

 n− 1 if n is odd,

n− 2 if n is even.

Proof Let V (DS(Wn) ∪ mK2) = {x, xi, y : 1 ≤ i ≤ n} ∪ {vi, wi : 1 ≤ i ≤ m} and

E(DS(Wn)∪mK2) = {x1xn, xixi+1 : 1 ≤ i ≤ n−1}∪{xxi, yxi : 1 ≤ i ≤ n}∪{viwi : 1 ≤ i ≤ m}.
Clearly, DS(Wn) ∪mK2 has n + 2m + 2 vertices and 3n + m edges. There are two cases

arises.

Case 1. n is odd.

Take m = n− 1. Define

f : V (DS(Wn) ∪ (n− 1)K2)→ {±1,±2, · · · ,±n+ 2m+ 2

2
}

as follows:

The maximum possible number of 1 occurs only when we assign the labels 3, 4, 5, · · · , n+1

to the vertices x3, x4, x5 · · · , xn and assign the labels 1, 2, n + 2 to the vertices x1, x2, x. Next

assign the labels −1,−3,−5, · · · ,−n to the vertices v1, v2, v3, · · · , vn+1
2

and assign the labels

−2,−4,−6, · · · ,−(n + 1) to the vertices w1, w2, w3, · · · , wn+1
2

and assign the labels −(n +

2),−(n+1) to the vertices vn+3
2

,wn+3
2

. Finally assign the labels (n+3),(n+4),−(n+3),−(n+4)

to the vertices vn+5
2

,wn+5
2

,vn+7
2

,wn+7
2

and assign the labels (n+ 5),(n+ 6),−(n+ 5),−(n+ 6) to

the vertices vn+9
2

,wn+9
2

,vn+11
2

,wn+11
2

. Proceeding like this until we reach vn−1, wn−1.

Therefore, f is pair difference cordial labeling of DS(Wn) ∪ (n − 1)K2. The maximum

number of edges with labels 1 from the DS(Wn) is, ∆f1 = n + 1.But the size of the DS(Wn)

is 3n. Hence n− 1 is the least integer such that DS(Wn)∪ (n− 1)K2 is pair difference cordial.

Case 2. n is even.

Take m = n−2. Define f : V (DS(Wn)∪ (n−2)K2)→ {±1,±2, · · · ,±n+2m+2
2 } as follows:

The maximum possible number of 1 occurs only when we assign the labels 3, 4, 5, · · · , n+1

to the vertices x3, x4, x5 · · · , xn and assign the labels 1, 2, n + 2 to the vertices x1, x2, x. Next

assign the labels −1,−3,−5, · · · ,−(n + 1) to the vertices v1, v2, v3, · · · , vn+2
2

and assign the

labels −2,−4,−6, · · · ,−(n + 2) to the vertices w1, w2, w3, · · · , wn+2
2

. Finally assign the labels

(n + 3),(n + 4),−(n + 3),−(n + 4) to the vertices vn+4
2

,wn+4
2

,vn+6
2

,wn+6
2

and assign the labels

(n+ 5),(n+ 6),−(n+ 5),−(n+ 6) to the vertices vn+8
2

,wn+8
2

,vn+10
2

,wn+10
2

. Proceeding like this

until we reach vn−2, wn−2.

Therefore, f is pair difference cordial labeling of DS(Wn) ∪ (n − 2)K2. The maximum

number of edges with labels 1 from the DS(Wn) is ∆f1 = n + 1. But the size of the DS(Wn)

is 3n. Hence n− 2 is the least integer such that DS(Wn)∪ (n− 2)K2 is pair difference cordial.

This completes the proof. �
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Theorem 3.6 For any integer n ≥ 1,

PDCη(DS(Kn,n)) =


1 if n = 1,

0 if n = 2,

5 if n = 3,

n2 − 2n− 2 if n ≥ 4.

Proof Let V (DS(Kn,n) ∪ mK2) = {xi, yi, x : 1 ≤ i ≤ n} ∪ {vi, wi : 1 ≤ i ≤ m} and

E(DS(Kn,n) ∪ mK2) = E(Kn,n) ∪ {xxi, xyi : 1 ≤ i ≤ n} ∪ {viwi : 1 ≤ i ≤ m}. Clearly,

DS(Kn,n) ∪mK2 has 2n+ 2m+ 1 vertices and n2 + 2n+m edges.

Case 1. n = 1.

In this case, Kn,n
∼= C3. Assign the labels 1, 1, 2,−1,−2 to the vertices x, x1, y1, v1, w1.

Case 2. n = 2 .

The proof follows from Theorem 2.3.

Case 3. n = 3.

In this case, A pair difference cordial labeling on DS(K3,3) ∪ 5K2 is shown in Figure 2.

Figure 2

Case 4. n ≥ 4.

Takem = n2−2n−2. Define f : V (DS(Kn,n)∪(n2−2n−2)K2)→ {±1,±2, · · · ,±
⌊
n+2m+4

2

⌋
}

as follows:

Assign the labels 1, 3, 5, · · · , 2n− 1 to the vertices x1, x2, x3, · · · , xn and assign the labels

2, 4, 6, · · · , 2n to the vertices y1, y2, y3, · · · , yn. Next assign the labels −1,−3,−5, · · · ,−(2n −
1) to the vertices v1, v2, v3, · · · , vn and assign the labels −2,−4,−6, · · · ,−2n to the vertices

w1, w2, w3, · · · , wm. Next assign the labels (2n+1),(2n+2),−(2n+1),−(2n+2) to the vertices

vn+1,wn+1,vn+2,wn+2 and assign the labels (2n+3),(2n+4),−(2n+3),−(2n+4) to the vertices

vn+3,wn+3,vn+4,wn+4. Proceeding like this until we reach vn2−2n−2, wn2−2n−2.
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Therefore, f is pair difference cordial labeling of Kn,n ∪ (n2 − 2n − 2)K2. The maximum

number of edges with labels 1 from the DS(Kn,n) is, ∆f1 = 2n+1.But the size of the DS(Kn,n)

is n2 + 2n. Hence n2 − 2n − 2 is the least integer such that Kn,n ∪ (n2 − 2n − 2)K2 is pair

difference cordial. �

Theorem 3.7 For any integer n ≥ 1,

PDCη(DS(Kn,n+1)) =

 0 if n = 1,2,

n2 − n− 2 if n ≥ 3.

Proof Let V (DS(Kn,n+1) ∪mK2) = {xi, yi, x, y : 1 ≤ i ≤ n} ∪ {vi, wi : 1 ≤ i ≤ m} and

E(DS(Kn,n+1) ∪mK2) = E(Kn,n+1) ∪ {xxi, yyi : 1 ≤ i ≤ n} ∪ {viwi : 1 ≤ i ≤ m}. Clearly

DS(Kn,n+1) ∪mK2 has 2n+ 3 vertices and n2 + 3n+ 1 edges.

Case 1. n = 1.

In this case, Kn,n
∼= C4. The proof follows from Theorem 2.8.

Case 2. n = 2.

In this case, a pair difference cordial labeling on DS(K2,3) is shown in Figure 3.

Figure 3

Case 3. n ≥ 3.

Subcase 3.1 n is even.

Take m = n2−n−2. Define f : V (DS(Kn,n+1)∪(n2−n−2)K2)→ {±1,±2, · · · ,±
⌊

2n+3
2

⌋
}

as follows:

Assign the labels 3, 5, 7, · · · , n + 1 to the vertices y1, y2, y3, · · · , yn2 and assign the labels

2, 4, 6, · · · , n to the vertices x1, x2, x3, · · · , xn2 . Next assign the labels −3,−5,−7, · · · ,−(n+ 1)

to the vertices xn
2 +1, xn2 +2, xn2 +3, · · · , xn and assign the labels −2,−4,−6, · · · ,−n to the ver-

tices yn
2 +1, yn2 +2, yn2 +3, · · · , yn. Now assign the labels 1,−1,−(n− 1) to the vertices x, y, xn+1.

Next assign the labels (n+ 2),(n+ 3),−(n+ 2),−(n+ 3) to the vertices v1,w1,v2,w2 and assign
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the labels (n+ 4),(n+ 5),−(n+ 4),−(n+ 5) to the vertices vn+3,w3,v4,w4. Proceeding like this

until we reach vn2−n−2, wn2−n−2.

Therefore, f is pair difference cordial labeling of Kn,n+1 ∪ (n2− 2n− 2)K2. The maximum

number of edges with labels 1 from the DS(Kn,n+1) is, ∆f1 = 2n + 1.But the size of the

DS(Kn,n+1) is n2 + 3n+ 1. Hence n2−n− 2 is the least integer such that DS(Kn,n+1)∪ (n2−
n− 2)K2 is pair difference cordial.

Subcase 3.2 n is odd.

Take m = n2−n−2. Define f : V (DS(Kn,n+1)∪(n2−n−2)K2)→ {±1,±2, · · · ,±
⌊

2n+3
2

⌋
}

as follows:

Assign the labels 3, 5, 7, · · · , n to the vertices y1, y2, y3, · · · , yn−1
2

and assign the labels

2, 4, 6, · · · , n+ 1 to the vertices x1, x2, x3, · · · , xn+1
2

. Next assign the labels −3,−5,−7, · · · ,−n
to the vertices xn+1

2 +1, xn+1
2 +2, xn+1

2 +3, · · · , xn and assign the labels −2,−4,−6, · · · ,−(n+ 1)

to the vertices yn−1
2 +1, yn−1

2 +2, yn−1
2 +3, · · · , yn. Now assign the labels 1,−1,−n to the vertices

x, y, xn+1. Next assign the labels (n+ 2),(n+ 3),−(n+ 2),−(n+ 3) to the vertices v1,w1,v2,w2

and assign the labels (n+4),(n+5),−(n+4),−(n+5) to the vertices vn+3,w3,v4,w4. Proceeding

like this until we reach vn2−n−2, wn2−n−2.

Therefore, f is pair difference cordial labeling of Kn,n+1 ∪ (n2− 2n− 2)K2. The maximum

number of edges with labels 1 from the DS(Kn,n+1) is, ∆f1 = 2n + 1.But the size of the

DS(Kn,n+1) is n2 + 3n+ 1. Hence n2−n− 2 is the least integer such that DS(Kn,n+1)∪ (n2−
n− 2)K2 is pair difference cordial. �
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Abstract: We give a counterexample to a theorem of Vadiraja and Shankar about orthog-

onality of Latin squares induced by bivariate polynomials in (Z/nZ)[X,Y ].
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The topic of orthogonal Latin squares has a rich history dating back to Euler. The main result

of a paper by Vadiraja and Shankar asserts that certain Latin squares are orthogonal to one

another. In this note we give a counterexample to this result. We need some preliminaries in

order to state the result.

Let n be a positive integer, write R := Z/nZ, and pick any polynomials f(X,Y ), g(X,Y ) ∈
R[X,Y ]. Let Sf be the n-by-n matrix with rows and columns indexed by 0, 1, 2, · · · , n− 1 and

whose entry in row i and column j is f(i, j). The matrix Sf is called a Latin square if, for each

c ∈ R, each of the polynomials f(X, c) and f(c, Y ) permutes R. If both Sf and Sg are Latin

squares then these Latin squares are orthogonal if, for each choice of u, v ∈ R, there exist unique

i, j ∈ R for which f(i, j) = u and g(i, j) = v. If Sf is a Latin square then we define its “mirror

image” to be Sf̂ where f̂(X,Y ) := f(X,−1−Y ). Note that Sf̂ is the matrix obtained from Sf

by reversing the order of the entries in each row. It is clear that if Sf is a Latin square then

also Sf̂ is a Latin square. In light of this, it is natural to ask when Sf and Sf̂ are orthogonal.

It is easy to see that this never occurs when n is even [1, Theorem 2.3]. Theorem 2.9 of [1] and

Theorem 6.2 of [2] each assert that it always occurs when n is odd.

Theorem A (Vadiraja–Shankar) If n is odd and Sf is a Latin square then Sf and Sf̂ are

orthogonal.

However, Theorem A is not true in general. One counterexample to this conclusion is

f(X,Y ) = −X3Y 2 −X2Y 3 −X2Y +XY 2 +X + Y with n = 5. For, we have

f(X, 0) = X, f(0, Y ) = Y,

f(X, 1) = −(X − 1)3, f(1, Y ) = −Y 3 + 1,

f(X, 2) = X3 + 2, f(2, Y ) = (Y − 2)3,

1Received August 10, 2024, Accepted September 15, 2024.
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f(X, 3) = X3 − 2, f(3, Y ) = (Y + 2)3,

f(X, 4) = −(X + 1)3, f(4, Y ) = −Y 3 − 1.

Since X3 permutes Z/5Z, we see that Sf is a Latin square. But f(0, 0) = 0 = f(−1,−1)

and

f̂(0, 0) = f(0,−1) = −1 = f(−1, 0) = f̂(−1,−1),

so that each of the pairs (i, j) = (0, 0) and (i, j) = (−1,−1) satisfies f(i, j) = 0 and f̂(i, j) = −1.

It follows that Sf and Sf̂ are not orthogonal. This concludes the proof that Theorem A is false.

In light of this counterexample, it is natural to reexamine the published proofs of Theorem

A. The proof of Theorem 2.9 in [1] consists of restating the orthogonality condition (incorrectly)

as pairwise distinctness of the pairs
(
f(i, j), f(−1 − i, j)

)
with i, j ∈ R, and then asserting

without further justification that this distinctness follows from Sf being a Latin square.

The proof of Theorem 6.2 in [2] notes that there are n2 distinct triples
(
i, j, f(i, j)

)
with

i, j ∈ R, and also n2 distinct triples
(
−1 − i, j, f(i, j)

)
with i, j ∈ R, and then asserts orthog-

onality without further justification. Thus, the mistake in the proofs of both [1] and [2] is

that the conclusion of Theorem A was claimed to follow at once from the hypothesis after an

immediate reformulation, when in fact the hypothesis does not imply the conclusion.
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In the proof of Theorem 2.9 ([1]), we clearly mentioned that the result applies to bivariate linear

polynomials. Unfortunately, the word linear was omitted from the theorem’s statement and in

the conclusion due to a typographical error. The corrected statement of the theorem should be

Theorem 2.9 For odd n, Latin square over Zn formed by a bivariate linear permutation

polynomial P (x, y) is orthogonal with its mirror image.

The reason of corrected conclusion is as follows:

Identifying a pair of bivariate polynomials modulo n which represent a pair of orthogonal

Latin squares is not obvious. But for odd n, a Latin square formed by a bivariate linear

polynomial is orthogonal to its mirror image. Moreover, no two bivariate polynomials over Zn,

when n is even can form orthogonal Latin squares.

And so, all words “In the general case, · · · . Hence they are orthogonal” in the Proof of

Theorem 2.9 should be deleted.
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Famous Words

Gravity explains the motions of the planets, but it can not explain who sets the planets in

motion.

By Isaac Newton, a British physicist, mathematician and philosopher.
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