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Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1].
The objective of this paper is to present the concept of bicoset of a bivector space and obtain

some of its elementary properties.
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biprojection.
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§1. Introduction and Preliminaries

The study of bialgebraic structures is a new development in the field of abstract algebra.
Some of the bialgebraic structures already developed and studied and now available in several
literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi-
rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic
structure is pivoted on the union of two non-empty subsets of a given algebraic structure for
example a group, the usual problem arising from the union of two substructures of such an
algebraic structure which generally do not form any algebraic structure has been resolved.
With this new concept, several interesting algebraic properties could be obtained which are not
present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of
bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy
and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector

space and obtain some of its elementary properties.

Definition 1.1([2]) A set (G,+,-) with two binary operations + and - is called a bigroup if
there exists two proper subsets G1 and Go of G such that:

(Z) G = Gl U GQ;
(ii) (G1,+) is a group;

1Received Sep.16, 2009. Accepted Oct. 8, 2009.
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(11) (G2,.) is a group.

Definition 1.2([2]) A nonempty subset H of a bigroup (G,+,-) is called a subbigroup if H is
itself a bigroup under + and - defined on G.

Theorem 1.3([2]) Let (G,+,") be a bigroup. The nonempty subset H of G is a subbigroup if

and only if there exists two proper subsets G1 and Go such that:

(1) G = G1 UGa, where (G1,+) and (Ge,.) are groups;
(i1) (H NGy, +) is a subgroup of (G1,+);
(151) (H NGa,.) is a subgroup of (Ga,.).

Definition 1.4([2]) Let (G, +,") be a bigroup where G = G1UGs2. G is said to be commutative
if both (G1,+) and (Ga,-) are commutative.

Definition 1.5([1]) Let V = V4 UV, where Vi and Va are proper subsets of V.. V is said to
be a bivector space over the field F if V1 and Vo are vector spaces over the same field F. In this
case, V is a bigroup.

Definition 1.6([1]) Let V =V U Vs be a bivector space. If dimVy = m and dimVa = n, then
dimV = m + n. Thus there exists only m + n linearly independent elements that can span V.
In this case, V is said to be finite dimensional.

If one of V1 or V4 is infinite dimensional, we call V an infinite dimensional bivector space.

Theorem 1.7([1]) The bivector spaces of the same dimension over the same field need not be

isomorphic in general.

Theorem 1.8([1]) Let V. = Vi UV, and W = Wy U Wa be two bivector spaces of the same
dimension over the same field F'. Then V is isomorphic to W if and only if V1 is isomorphic

to W1 and Vs is isomorphic to Ws.

Example 1.9 Let V=1V, UV, and W = W7 UWs be two bivector spaces over a field F' = R.

va v .

Suppose that Vi = F4, V5 = 2 i vk e Fi=1,2,35, Wy = P3(F) (a space of
0 v

polynomials of degrees < 3 with coefficients in F) and Wy = F3. Clearly dimV = dimW = 7,

dimV; = dimW; = 4 and dimV, = dimWs; = 3. Since V7 = W and Vo =& W; in this case, it

follows that V' and W are isomorphic bivector spaces.

Theorem 1.10 Let V = Vi U Vy be a bivector space over a field F. A nonempty subset
W =Wy UWs of V is a sub-bivector space of V if and only if W1 = W NVy and Wy =W NV,
are subspaces of V1 and Va respectively.

Proof Suppose that W = W71 U W5 is a sub-bivector space of a bivector space V = V3 UV,
over F'. It is clear that W NV, and W NV, are subspaces of Vi and V5 respectively over F.
The required result follows immediately by taking W7 = W NV; and Wy = W N V5.

Conversely, suppose that V' = V3 U V4 is a bivector space over ' and and W = Wy UWj is
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a nonempty subset of V' such that W; = W NV, and Wo = W NV, are subspaces of V7 and Vs,
respectively. We then have to show that W is a bivector space over F'. To do this, it suffices to
show that W = (W N V) U (W NVz). Obviously, W CVEUW WUV, CVand W C WUV,
Now,

WnWVHuWnly) = [(WnW)UuWNn[(WnV)UuVs
(WuW)n(ViuW)In[(WuVz)n (ViU V)]
WnWAuW)N[(WUlh)nV]
wn(WuWs)

= W

This shows that W = (W N Vy) U (W NVs) is a bivector space over F. O

82. Main Results

Definition 2.1 Let V = Vi3 UV, be a bivector space over a field F' and let W = W1 U Ws be
a sub-bivector space of V.. Let vg € V and w € W be such that vy = v{ Uvg and w = w! U w?
where v§ € Vi = 1,2 and w® € W;,i = 1,2. Let P be a set defined by

P = {vpu+W:peV}

= {(véUv(Q))—I—(wlUw?):véEVi,izl,Z}
{(vé—l—Wl)U(vg—l—Wg):vée%,izl,Z}

{(vg +w') U (0§ +w?) : 0§ € Vi,w' € Wi =1,2}.

Then P is called a bicoset of V' determined by W and vg is a fized bivector in V.

Example 2.2 Let W = W; U W5 be any sub-bivector space of a bivector space V =V, UV,
over a field F = R. Let V; = F3 and Vo = P,(F) (a space of polynomials of degrees < 2 with
coefficients in F'). Let W7 and W5 be defined by

Wiy = {(a,b,c):3a+2b+c=0,a,b,ce F},
Wa {p(z) : p(x) = aza® + a1z + ag,a; € F,i =0,1,2}.

If v = v1 Uws is any bivector in V, then v; = (U%,’U%,v%) € Vi, where v} € F,i = 1,2,3 and
also vy = box? + bix + by, where b; € F,i = 0,1,2. Now, the bicoset of V' determined by W is

obtained as

B(a—vi) +2(b—v7) + (c—v})] U[(ba —az)a® + (by — a1) 2" + (bo — ao)] .
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Proposition 2.3 Let S be a collection of bicosets of a bivector space V.=V UV, over a field
F determined by sub-bivector space W = W1 U Wy . Then S is not a bivector space over F.

Proof Let P=P,UP, = (v% + Wl) U (v% + Wg) and Q = Q1UQ2 = (vi+ W)U (v3+Wa)
be arbitrary members of S with vg € Vi, i,j=1,2. Clearly, P, = vi + Wy, P, = v? + W, Q1 =
vs + W1, Q2 = v3 + Wy are vector spaces over F and PUQ = [Py U(PLUQ1)]U[PLU(P2UQ5)].
Since [P U (P, U Q1)] and [Py U (P, U Q2)] are obviously not vector spaces over F, it follows
that S is not a bivector space over F. ([

This is another marked difference between a vector space and a bivector space. We also
note that PNQ =[(PLNQ1) U (P NQ1)]U[(PLNQ2) U (P2NQ2)] is also not a bivector space
over F' since it is a union of two bivector spaces and not a union of two vector spaces over F.

Proposition 2.4 Let W = Wy U W5 be a sub-bivector space of a bivector space V =V, UV,
and let P = (v} + W1) U (v} + Wa) be a bicoset of V determined by W where vy = vh Uvd is
any bivector in V. Then P is a sub-bivector space of V if and only if v € W.

Proof Suppose that vy = v3 + Wa € W = Wy U Wa. It follows that v§ € W and v € Ws
and consequently, P = (v} + W)U (v3 +Wa) = Wi UW, = W. Since W is a sub-bivector space
of V| it follows that P is a sub-bivector space of V.

The converse is obvious. O

Proposition 2.5 Let W = Wy UWs be a sub-bivector space of a bivector space V.=V, UVs and
let P = (v} +W1)U (v3 +Wa) and Q = (vl + W1) U (v? + Wa) be two bicosets of V determined
by W where vg = v Uvg and vy = vi Uv?. Then P = Q if and only if vo — vy € W.

Proof Suppose that P = Q. Then (v + Wi) U (v + Wa) = (vi + Wi) U (v3 + Wa)
and this implies that Ué + Wy = U% + Wy or v(z) + Wy = U% + Ws which also implies that
vy — vl € Wy or v} — v} € Wy from which we obtain (vi —vi) U (v — v?) € Wi U Ws and thus
(v Uvd) — (vi Uv?) € Wi U Wy that is vg — vy € W.

The converse is obvious and the proof is complete. O

Proposition 2.6 Let P = (v} + W1) U (v + Wa) be a bicoset of V = V4 U Vy determined by
W = W1 UWs where vo = v} Uv3. If vi = v} Uv? is any bivector in V such that v; € P, then
P can be expressed as P = (vi + W1) U (v + Wa).

Proof This result is obvious. O

Proposition 2.7 Let W = Wy UWy and W' = W3 U Wy be two distinct sub-bivector spaces of
a bivector space V.=V; UV, and let P = (vi + W1)U (v? +Wa) and Q = (v3 + W3) U (v3 + Wy)
be two bicosets of V' determined by W and W' respectively. If vg = vs Uvd is any bivector in V.
such that vg € P and vy € Q, then PUQ is also a bicoset of V and PUQ = vy + (W UW').

Proof Suppose that vg € P and vy € Q. It follows from Proposition 2.6 that P =
(vg + W1) U (v + Wa) and Q = (v{ + W3) U (v3 + W) and therefore
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PUQ = [(vg+W1)U Wi+ W)U |(vg +Wa) U (v3 + Wy)]
= [(vg Uud) + (Wi UW2)] U [(vg Unh) + (Ws U Wy)]
= [vo+ W]U v+ W]
= v+ (WUW’).

The required results follow. U

Definition 2.8([2]) Let V = V1 UV, be a bivector space over the field F. An inner biproduct on
V is a bifunction <, >=<, >1 U <, >9 which assigns to each ordered pair of bivectors x = x1Uzs,
y=y1 Uy in V with x;,y; € V; (i =1,2) a pair of scalars < x,y >=< x1,y1 >1 U < T2,y2 >2
in F in such a way that Vx,y,z = 21 Uzo € V and all scalars a = a1 U ag in F, the following
conditions hold:

(i) <x+y,z>=<z1+1y1,21 >1 U< 29+ Yo, 22 >0;

(i) < ax,y >=a < z,y >;

(i) < gy, >= <&y >;

(iv) <z,z>>0ifz#00U0.

V = V1 UV, together with a specified inner biproduct <, >=<,>1 U <, > is called an inner
biproduct space over the field F.

If V is a finite dimensional real inner biproduct space, it is called a Fuclidean bispace. A

complex inner biproduct space is called a unitary bispace.

Definition 2.9 Let V = V3 UV, be an inner biproduct space over a field F. If x = x1 Uxy and
y=vy1 Uys in V with z;,y; € V; (i =1,2) are such that

<z,y >=< 21,y >1 U < x2,y2 >o=0U0,

we say that x is biorthogonal to y. If < z,y ># 0UO0 but < 1,51 >1= 0 or < x2,ya >2= 0,
then we say that x and y are semi biorthogonal.
If B= B1 U By is any set in V = V13 U Vs such that all pairs of distinct vectors in By and
all pairs of distinct vectors in Bo are orthogonal, then we say that B is a biorthogonal set.
IfW =W1UWs is any set in V. =V1UVs and Vv € V,w € W with v = v1 Uvg, w = wy Uwy
is such that

<v,w >=< v, w; >1 U< vg,we >o=0U0,
then we call the set
W =WluUWs ={veV <uv,w > U<vg,wy >=00U0,Yw € W}
biorthogonal complement of W.

Definition 2.10 Let W1 = W} UWZ and Wa = W} UW3Z be sub-bivector spaces of a bivector
space V.= V3 U Vs, The bisum of Wy and Wy denoted by W1 + Wy is defined by
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Wi+ Wy = {(WLUWR) + (Wi uWwg): W/ c Vi, j=1,2}
= {W] + W)U (W} +W5), W/ C Vy,i,j = 1,2},

Definition 2.11 Let V = V3 U V4 be a bivector space over a field F' and let W1 = Wll U Wf
and Wy = Wi U W3 be sub-bivector spaces of V. If Vi = Wi @& W and Vo = WE & W3, then
we call

Vi = Wi e W,
= WleWwy)uW?ews)

a direct bisum of W; and W5 and any bivector v = v; Uwvy in V can be expressed uniquely as

v=(w} +wh) U w? +wd), w e W/, i,j=1,2.

Proposition 2.12 Let Wy = W UWE and Wa = WHUW3 be sub-bivector spaces of a bivector
space V.=V, UVa. Then the bisum of Wy and Wy is also a sub-bivector space of V.

Proof Obviously, (W1 +Ws3)NV; and (W1+Wa)NVs are subspaces of V4 and V3 respectively.
Direct expansion of [(W; + Wa) NV41] U [(W7 + W) N V2] shows that

Wi+ Wy = [(Wl + Wg) N Vl] U [(Wl + WQ) n ‘/2]
Consequently by Theorem 1.10 it follows that Wi 4+ W5 is a sub-bivector space of V. O

Proposition 2.13 Let Wy = W UWE and Wa = WRUWZ be sub-bivector spaces of a bivector
space V.=V UVy. Then V =Wy & W if and only if:

(i) V = Wi + W
(i5) Wy N Wy = {0}.

Proof Suppose that V' = W; & Ws. Then any bivector v = W} UW?2 in V can be written
uniquely as v = (w! +w}) U (w? +w?), w! € W/, i,j = 1,2, which is an element of W 4+ W,
and therefore, V = W + Wa. Also since V. = Wy @ Wa, it follows that V; = W} @& W and
Vo = W2@eW3. Now, let v =W UWEZ € Wy UW,. Then v € Wi and v € Wy and thus, v € V3

and v € V. If v € V4, then we can write v = Wi UWZ = W) U W3 from which we obtain
v =wi +wy =v; + 0,0 € WiH,0€ W,  and also,

v =wi +wy=04+v1,0 € Wl € Wi

Since V3 = Wl @ W, it follows that v; = 0. By similar argument, we obtain v = 0 and
therefore, v = 0 U 0. Hence, W7 N Wy = {0}.
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Conversely, suppose that V = W; + Wy and Wi U Wy = {0}. Let v = W} U W2 be an
arbitrary bivector in V. Suppose we can write v in two ways as

v=WIUWE = (0] +wh) U (wf +w3) = (wi; +wly) U (wh; +wdy), w!,wl; € Wi,i,j=1,2.

Then we have wl + w} = wl + wiy, w} + wi = w? + w3, from which we obtain wi — w}; =

1 1,2 2 9 2 1,01 2 2 1 1,2 2
Wie — Wy, Wi — W], = Wiy —w;. But then wy —wi, wi —wi; € Wi and wyy — w3, wiy —ws € W
and since W1 UWs = {0}, it follows that w} —w}; = 0 = w? —w}, and wl, —wi = 0 = w3, — w3
from which we obtain wi = wi;, w} = w};, wl, = wi, w3, = w3. This shows that v € V can be
expressed uniquely as v = (w} +w3) U (w? +w3),w] € W/, 4,5 =1,2 and hence V = Wy & W,

and the proof is complete. O

Proposition 2.14 Let Wy = W} UWE and Wa = W} UWZ be two distinct sub-bivector spaces
of a bivector space V.= V; U Vy such that V.= Wy + Wa. If P = (v} + W}) U (v? + W) and
Q = (v + W3 ) U (v3 +W2) are two bicosets of V determined by Wy and Wa respectively, then
PNQ is also a bicoset of V.

Proof Suppose that V- = W1 +W,. Let v = 17Uz and u = y;Uys be bivectors in V. Clearly,
u—v e Vand u—v = (y1 —21)U(y2—22) = (wl+wh)U(w?+ws),w! € W7 from which we obtain
Y1 — T = w% —|—w§,y2 — X9 = w% —|—w§ which implies that y; —w% =1 —|—w§,y2 —w% = x9 —|—w§
and thus, (y1 —wi) U (y2 — w}) = (x1 +wd) U (22 +w3) = vo = v Uv3. Since the LHS belongs
to P and RHS belongs to @, it follows that vg € PN @ and therefore, P N Q is a bicoset of V
that iSPﬁQZ’UQ—l—(Wlng). O

Definition 2.15 Let V = V3 UV, be a finite dimensional inner biproduct space and W =
W1 U Way a sub-bispace of V. Let Wt = Wit U W3t be a biorthogonal complement of W and
P = (v1 + W1)U (v +Wa) a bicoset of V' determined by W, where v = v1 Uvs is a fized bivector
in V. It can be shown that

V=WeW" =W eW)uW,sWs)
and consequently we have
WUWL =W, UWi)u (W, UuWsh) = {0} U {0}.

Suppose that x = x1 Uze and y = y1 Uys are bivectors such that x; € W; and y; € Wf,z' =1,2.
Suppose also that v =v1 Uvs = (1 + y1) U (x2 + y2). Then P can be represented by

P = (x1+y1+Wi)U (22 +y2 + Wa)
= (y1+ Wh) U (y2 + Wa), since z; € W;,i=1,2.

This representation is called the biprojection of v on W and it is unique.

To establish the uniqueness, let z = z; U 23 be any bivector in W+ and let P have another
representation P = (21 + W)U (22 + Wa), z; € Wf‘,i =1,2. Then we have y; + Wy = 21 + W71,
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Yo + Wo = 25 + Wo so that y; — 21 € Wy, y2 — 22 € Wy and thus y; — 23 € Wy N Wit = {0},
Yo — 29 € Wo N W3- = {0} which implies that y; — 21 = 0, y2 — 22 = 0 from which we obtain
Y1 = 21, Y2 = z2 and the uniqueness of P is established.
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Abstract: A dominating set D of a graph G is called a Smarandachely dominating s-
set if for an integer s, each vertex v in V — D is adjacent to a vertex u € D such that
degu 4+ s = degv. The minimum cardinality of Smarandachely dominating s-set in a graph
G is called the Smarandachely dominating s-number of G, denoted by 7v&(G). Such a set
with minimum cardinality is called a Smarandachely dominating s-set. The Smarandachely
bondage s-number bg(G) of a graph G is defined to be the minimum cardinality among all
sets of edges E' C E such that v$(G — E') > 75(G). Particularly, the set with minimum
Smarandachely bondage s-number for all integers s > 0 or s < 0 is called the strong or weak
dominating number of G, denoted by s(G) or v, (G), respectively. In this paper, we present
some bounds on bs(G) and b, (G) and give exact values for bs(G) and b, (G) for complete

graphs, paths, wheels and bipartite complete graphs. Some general bounds are also given.

Key Words: Smarandachely dominating s-set, Smarandachely dominating s-number,

Smarandachely bondage s-number, strong or weak bondage numbers.

AMS(2000): 05C69.

§1. Introduction

In this paper, we follow the notation of [6,7]. Specifically, let G = (V, E) be a graph with vertex
set V and edge set E. A set D C V is a dominating set of G if every vertex v in V — D there
exists a vertex w in D such that w and v are adjacent in G. The domination number of G,
denoted v(G), is the minimum cardinality of a dominating set of G. The concept of domination
in graphs, with its many variations, is well studied in graph theory. A thorough study of
domination appears in [6,7]. Let uv € E. Then, v and v dominate each other. A dominating

set D of a graph G is called a Smarandachely dominating s-set if for an integer s, each vertex

1Received Sep.28, 2009. Accepted Oct. 12, 2009.
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vin V — D is adjacent to a vertex u € D such that degu + s = degv. The minimum cardinality
of Smarandachely dominating s-set in a graph G is called the Smarandachely dominating s-
number of G, denoted by v&(G). Such a set with minimum cardinality is called a Smarandachely
dominating s-set. The Smarandachely bondage s-number b (G) of a graph G is defined to be
the minimum cardinality among all sets of edges E C E such that v¢(G — E') > ~&(G).
Particularly, the set with minimum Smarandachely bondage s-number for all integers s > 0
or s < 0 is called the strong or weak dominating number of G, denoted by 7s(G) or 7., (G),
respectively.

As a special case of Smarandachely bondage number, the strong (weak) domination was
introduced by E. Sampathkumar and L.Pushpa Latha in [8]. For any undefined term, we refer
Harary [4]. By definition, the bondage number b(G) of a nonempty graph G is the minimum
cardinality among all sets of edges E' C E for which v(G — E’) > v(G). Thus, the bondage
number of GG is the smallest number of edges whose removal renders every minimum dominating
set of G a nondominating set in the resulting spanning subgraph. Since the domination number
of every spanning subgraph of a nonempty graph G is at least as great as y(G), the bondage
number of a nonempty graph is well defined. This concept was introduced by Bauer, Harary,
Nieminen and Suffel [1] and has been further studied by Fink, Jacobson, Kinch and Roberts [2],
Hartnell and Rall [5], etc. The strong bondage number of G, denoted bs(G), as the minimum
cardinality among all sets of edges E’ C E such that (G — E’) > vs(G). This concept was
introduced by J. Ghoshal, R. Laskar, D. Pillone and C. Wallis [3].

We define the weak bondage number of G, denoted b, (G), as the minimum cardinality
among all sets of edges E' C F such that v, (G — E’) > v, (G), and we deal with the strong

bondage number of a nonempty graph G.

§2. Exact Values for b;(G) and b, (G)

We begin our investigation of the strong and weak bondage numbers by computing its value for
several well known classes of graphs. In several instances we shall have cause to use the ceiling
function of a number z. This is denoted [x] and takes the value of the least integer greater
than or equal to x. We begin with a rather straightforward evaluation of the strong and weak
bondage numbers of the complete graph of order n.

Proposition 2.1 The strong bondage number of the complete graph K, (n > 2) is

bs(Ky) = [n2].

Proof. Let ui,us,...,u, be the n vertices of degree n — 1. Then clearly removal of fewer
than n,2 edges results in a graph H having maximum degree n — 1. Hence bs(K,,) > [n,2].
Now we consider the following cases.

Case 1. If nis even, then the removal of n2 independent edges ujus, usuy, ..., Un—1 Uy results
in a graph H' regular of degree n — 2. Hence bs(K,,) =n, 2.

Case 2. If nis odd, then the removal of (n —1) /2 independent edges ujug, ugtig, ..., Up—2Up_1
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yields a graph H” containing exactly one vertex u, of degree m — 1. Thus by removing an

edge incident with w, we obtain a graph H"” with maximum degree n — 2. Hence bs(K,) =
(n—1),/2+1.
Combining cases (1) and (2) it follows that bs(K,,) = [n,2]. O

Proposition 2.2 The weak bondage number of the complete graph K,, (n > 2) is

b (Ky) = 1.

Proof If H is a spanning subgraph of K, that is obtained by removing any edge from
K, then H contains two vertices of degree n — 2. Whence ~,,(H) =2 > 1 = v,,(K,,). Hence
by (Ky) = 1. O

If G is a regular graph, then v(G) = v:(G) because in a regular graph, the degrees of all
the vertices are equal. We next consider paths P, and cycles C,, on n vertices and find that
v(Cy) = vs(Cy) because Cy, is a regular graph. Also v(P,) = v(P,) since we can choose from
all the ~ sets of P,,, one which dose not include either end vertex. Such a  set is also a v, set
and hence we get v(P,,) > vs(Py) but since v(G) > v,(G) for all graphs G, which follows

Lemma 2.3 The strong domination number of the n-cycle and the path of order n are respec-
tively

(1) vs(Cr) =1n/3] forn >3 and

(i1) vs(Pn) = [n/3] forn > 2.

Lemma 2.4 The weak domination number of the n — cycle and the path of order n are

respectively
(7’) ’Yw(cn) = (n/?’—' forn >3 and
(i)
[n/3] if n =1 (mod3),
Yo (Pr) = .
[n/3] 4+ 1 otherwise.
Proof (i) Since C), is a regular graph, so v, (Cy) = v(C),) and proof techniques in [2].
(1) yw(Ppn) = [(n—4)/3] + 2 = v(Pn—4) + 2, the proof is the same as in [2]. O

Theorem 2.5 The strong bondage number of the n-cycle (with n > 3) is

be(Ch) = 3 ifn=1 (mod3),

2 otherwise.

Proof Since v5(Cy) = vs(Py,) for n > 3, we see that b5(C,) > 2. If n = 1 (mod3) the
removal of two edges from C,, leaves a graph H consisting of two paths P and Q. If P has

order nq and @ has order ng, then either ny = ny = 2 (mod3), or, without loss of generality,
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n1 = 0 (mod3) and ne = 1 (mod3). In the former case,

Vs(H) V5(P) +7s(Q) = [n1/3] + [n2/3]

(nm+1)/3+(n2+1)/3=(n1+n2+2)/3=(n+2)/3=[n/3]=7:(Cp).

In the latter case.

Ys(H) = 7s(P) +7:(Q) =n1/3 + (n2 +2)/3 = (n +2)/3 = [n/3] = 7s(Cr).
In either case, when n =1 (mod3) we have bs(C,,) > 3. Now we consider two cases.

Case 1 Suppose that n = 0,2 (mod3). The graph H obtained removing two adjacent edges

from C,, consist of an isolated vertex and a path of order n — 1. Thus
Vs(H) =75(P1) +7s(Poo1) =1+ [(n = 1)/3] = 14 [n/3] = 1+ 74(Cn),

Whence bs(C,) < 2 in this case. Combining this with the upper strong bondage obtained
earlier, we have bs(Cp,) =2 if n = 0,2 (mod3).

Case 2 Suppose now that n = 1 (mod3). The graph H resulting from the deletion of three
consecutive edges of C), consists of two isolated vertices and a path of order n — 2. Thus,

Vs(H) =24 [(n=2)/31 =2+ (n—1)/3=24([n/3] = 1) = 1+ 7,(Cn),

So that b,5(Cy,) < 3. With the earlier inequality we conclude that bs(Cy,) = 3 when n =1
(mod3). O

Theorem 2.6 The weak bondage number of the n-cycle (with n > 3) is

b (Co) = 2 ifn=1 (mod3),

1 otherwise.

Proof Assume n #Z 1 (mod3) since v, (Pp) = [n/3] 4+ 1 = 7 (Cn) + 1 > v, (C,,). Hence
bw(Cr) = 1. Now assume n = 1 (mod3) since vy, (Cp) = Y (Py) it follows that b, (Cp) > 2.

Let H be the graph obtained by the removal of two edges from C,, such that P; and P,,_3
are formed. Then vy, (H) = Y (Ps3) + Yo (Pn—3) =2+ [(n—3)/3] =24+ [n/3]-1=[n/3]+1 >
~Yw(Cr). Hence by, (Cr) < 2 thus b, (Cy,) = 2. O

As an immediate Corollary to Theorem 2.5 we have the following.
Corollary 2.7 The strong bondage number of the path (with n > 3) is given by

ba(Pa) = 2 ifn=1 (mod3),
e 1 otherwise.

Theorem 2.8 The weak bondage number of the path (with n > 3) is
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2 ifn=23,5,
bu(P) = if n
1 otherwise.

Proof Tt is easy to verify that b, (P,) = 2 for n = 3, 5.
Let H be the graph obtained by the removal of one edge from P, such that P; and P,_3
are formed. Then 7, (H) = Y (Ps) + Yw(Pn—3). Now we consider the following cases.

Case 1 If n =1 (mod3) then vy (H) = v (P3) + Yw(Prn—3) =2+ [(n—3)/3] =2+ [n/3] - 1=
[n/3] 4+ 1 then 7, (H) > v (P, ). Hence b, (P,,) = 1.

Case 2 If n # 1 (mod3) we have v, (H) =2+ [(n—3)/3]+1=2+[n/3]—-1+1=2+[n/3] >
Y (Py) then vy, (H) > v, (Py). Hence by, (P,) = 1. -

Lemma 2.9 The strong and weak domination numbers of the wheel Wy, (with n > 4) are

(i) vs(Wn) =1;
(”) ’Yw(Wn) = |_(TL - 1)/3~|

Proof (i) Since v(W,,) = v5(W,,) so proof techniques same in [2].
(i) Since v (W) = v(Cr—1) = [(n — 1)/3] so proof techniques same in [2]. O

Proposition 2.10 The strong bondage number of the wheel Wy, (with n > 4) is bs(W,,) = 1.

Proof Let x be the vertex of maximum degree of W,,. Let v be a vertex of W,, such that
degv < deg x. Let H be the graph obtained from W, by removing edge xv. Then no one
vertex strongly dominates H. So vs(W,, — zv) > v,(W,,). Hence bs(W,,) = 1. O

Proposition 2.11 The weak bondage number of Wy, (with n > 4) is given by

2 if n =2 (mod3),
b (W) = ( )
1 otherwise.

Proof Assume n = 0,1 (mod3), let e be an edge on the (n — 1)-cycle. Then ~,(W,, —e) =
[(n—5)/3142=[(n—=2)/3]+1=[(n—1)/3]4+1 > [(n—1)/3] = Yuw(W,), whence b,,(W,,) =1

Now assume n = 2 (mod3), the removal of any one edge from W,, will not alter ~,,(W,,).
So when n = 2 (mod3) we have b,,(W,,) > 2.

Let H be the graph obtained by the removal of two adjacent edges from W), such that these
edges are not incident with the vertex of maximum degree. Then v,,(H) = [(n —6)/3] +3 =
[n/3]+1=[(n—1)/31+1>[(n—1)/3] = vw(W,), whence b, (W,,) = 2. O

Lemma 2.12 The strong and weak domination numbers of the K, are
(4)
2 if2<r=t,

’Ys(Kr,t) = .
r if1<r<t.
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t ifl1<r<t,
Y (Krt) =
2 if2<r=t¢t

Proof (i) see [3].

(77) Note that the vertices in the second partite set have the smallest degree. If 1 <r < ¢,
then to weakly dominate these vertices, we need include all of them in any wd-set and these
suffice to weakly dominate the rest. If r = ¢t > 2, we claim =, = 2. Since t > 2, none of
the vertices in the graph are of full degree hence =, in this case is greater than 1. Now to
demonstrate a wd-set of cardinality 2, we can take one vertex from the first partite set which
weakly dominate the rest of the vertices in the first partite set, we use a vertex from the second
partite set. Note that a vertex from the second partite set has equal degree as the vertices in
the first set since r = t. O

The next theorem establishes the strong and weak bondage numbers of the complete bi-
partite graph K, ;.

Theorem 2.13 Let K, ; be a complete bipartite graph, where 4 <r <t, then

2r ift=r-+1,
bs(K'rt) =

)

r otherwise.

Proof Let V. = Vi UV, be the vertex set of K, such that [Vi| = r and |Va| = t. We

consider the following cases.

Case 1 Suppose t =7+ 1 and v € V5, then by removing all edges incident whit v, we obtain
a graph H containing two components K; and K, ;_;. Hence

Vs(H) = vs (K1) + vs(Krp—1) =14+ 2 <7 =~5(K, ). Now let v € V5 and u € V; be a vertex
of K, ., then by removing all edges incident to both » and v, we obtain a graph H containing
two components 2K, and K,_; ;—1, thus

'YS(H) = 2’75(K1) + ’YS(KT—l,t—l) =2+4+r—-1l=r+l>r= ’YS(KM)-

Hence

bs(Krt) =degu+degv—1=|Vao|+|Vi|—1=t+r—1=2r
fort=r+1.

Case 2 Suppose r = t, then by Lemma 2.12, v,(K, ;) = 2. Let v € V3, then by removing all
edges incident whit v, we obtain a graph H containing two components K; and K, ;_1, thus
Yo(H) = 3(K1) +76(Krpm1) = L+t =1 =t = 7 > 2 = 7,(K,,). Hence by(Ky) = deg v =
|[Vi| =r for r =t.

Case 3 Suppose r+1 < t, then by Lemma 2.12, v4(K, ;) = r. Let v € V3, then by removing all

edges incident whit v, we obtain a graph H containing two components K; and K, ;1. Hence
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Ys(H) = vs(K1) + vs(Kpt—1) = 1+ 7 > 1 = v5(K, ). Thus b5(K,¢) = degv = |Vi| = r for
r4+1<t. O

Theorem 2.14 Let K, be a complete bipartite graph, where 1 <r <t, then by, (K, ) =t.

Proof Let V =V UVa be the vertex set of K, ; where |[Vi| =7 and |Vo| =t. Let v € V3
and r =t > 2, then by removing all edges incident whit v, we obtain a graph H containing two

components Ky and K,_; ;. Hence
Yo (H) = 7w (K1) + Y (Kr-14) = 1+t > 2 = 7, (K,;). Thus
by(Kr i) =degv=|Va| =t.

Now suppose r < t and v € Vp, then by removing all edges incident whit v, we obtain a

graph H containing two components K; and K, _; ;. Hence

PYw(H) = P)/w(Kl) + P)/w(Krfl,t) =1l+t>t= P)/w(K'r7t)~ Thus

by (Kr i) = degv = [Va| = t. O

83. The Strong and Weak Bondage Numbers of a Tree

We now consider the strong and weak bondage numbers for a tree T'. Define a support to be a
vertex in a tree which is adjacent to an end-vertex (see [3]).

Proposition 3.1 Every tree T with (n > 4) has at least one of the following characteristics.

(1) A support adjacent to at least 2 end-vertez.

(2) A support is adjacent to a support of degree 2.

(3) A vertex is adjacent to 2 support of degree 2.

(4) The support of a leaf and the vertex adjacent to the support are both of degree 2.

Proof See [3] for the proof. O

Theorem 3.2 If T is a nontrivial tree then bs(T) < 3.

Proof See [3] for the proof. O

Proposition 3.3 If any vertex of tree T is adjacent with two or more end-vertices, then
bs(T) = 1.

Proof Let u be a cut vertex adjacent two or more end-vertices. Then u belongs to every
minimum strong dominating set of 7. Let v be an end-vertex adjacent to w. Then T — wv
contains an isolated vertex and a tree T of order n — 1. Therefore v,(T — wv) = v5(T") + 1 >
~vs(T). Hence bs(T) = 1. O
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Fig.1: End characteristics of trees in Case 2 of the Proof of Theorem 3.4

Theorem 3.4 If T is a nontrivial tree, then b, (T) < A(T).

Proof The statement is obviously true for trees order 2 or 3, so we shall suppose that T’
has at least 4 vertices. Now we consider the following cases.

Case 1 Suppose T has a support vertex s that is adjacent to two (and possibly more) end-
vertex, that dose not belong to a weak dominating set. Let E, denote the set of edges incident
with s. And let D be a minimum weak dominating set for T'— E,. Then s isin D and D\ {s} is
a weak dominating set for T'. Hence v, (T — E5) > v (T) thus b, (T) < |Es| = deg s < A(T).

Case 2 Suppose a support vertex is adjacent to a support vertex of degree 2. Delete the edge
(s,1). The vertex x then has two end-vertices an adjacent to s and m. Let D be wd-set of
T —{(s,)}. Then sisin D and D\ {s} is a weak dominating set for T". Hence b,,(7T") in this

case equals 1.

Case 3 In this case delete the edge (s,1). If v, (T — {(s,1)}) < v (T), then it will contradict
the assumption that the +,,-set was the smallest wd-set for T'. If ~,, (T — {(s,1)}) is greater that
Yw(T) then we have done. If v, (T — {(s,1)}) = v (T), then the vertex x has a one support
vertex s in T'— {(s, 1)}, that adjacent to it. then by Case 2, deleting on more edge ({m, k}) will
increase the weak domination number of the resulting graph. So in this case b,,(T) = 2.

Case 4 In the last case, either s or [ is any weak dominating set of T. By removing edges
(k,z) and (z, s), we make the necessary for any ~,-set for the resulting graph to contain x and
80 by, (T) = 2 this completes the proof. O

Theorem 3.5 Let T be a tree. Then by, (T) = A(T) if and only if T = K ;.

Proof This follows from Theorem 3.4. (I

84. General Bounds on Strong and Weak Bondage Numbers

Proposition 4.1([2]) If G is a nonempty graph, then

b(G) < min{degu+degv—1: w and v are adjacent}.
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Theorem 4.2 If v(G) = v,(G) and v(G) = v (G) then,

(1) bs(G) < b(G);
(i) bw(G) < b(G).

Proof Let E be a b-set of G. Then 7,(G) = v(G) < v(G — E) < 74(G — E). Thus
bs(G) < b(G) and for (ii) proof is same. O

Theorem 4.3 If G is a nonempty graph and v(G) = vs(G) then
bs(G) < min{degu+degv—1| u and v are adjacent}.

Proof This follows from Proposition 4.1 and Theorem 4.2. O

Theorem 4.4 For any graph G,

bs(G) <q—p+7:(G)+1

Proof Let D be a ~,-set of a graph G. For each vertex v € V'\ D choose exactly one edge
which is incident to v and to a vertex in D. Let Ey be the set of all such edges. Then clearly
vs(G—(E—Eyp)) =s(G) and |E — Eo| = ¢g—p+7s(G). So for any edge e € G— (E— Ey) = Ey
we see that {E — Ep} U{e} is a strong bondage set of G. Thus

bs(G) <q—p+7:(G)+1 O

Corollary 4.5 For any graph G,

bs(G) <q—A(G) +1
Proof In [8], We have known that v5(G) < p — A(G). By applying Theorem 4.4, we get
that bs(G) < q¢— A(G) + 1. O

Theorem 4.6 If G is a nonempty graph with strong domination number ~vs(G) > 2, Then
b,(G) < (76(G) — DA(G) + 1.

Proof We proceed by induction on the strong domination number v5(G). Let G be a
nonempty graph with v,(G) = 2, and assume that bs(G) > A(G) + 2, then, if u is a vertex of
maximum degree in G, we have v5(G —u) = v,(G) —1 =1, and bs(G —u) > 2. Since 75(G) = 2
and v5(G — u) = 1, there is a vertex v that is adjacent with every vertex of G but u, that
degav = A(G) also, and u is adjacent with every vertex of G except v. Since bs(G —u) > 2, the
removal from G —u of any one edge incident with v again leaves a graph with strong domination
number 1. Thus there is a vertex w # v that is adjacent with every vertex of G —u. But, since
v is the only vertex of G that is not adjacent with u, vertex w must be adjacent in G with w.
This however implies that vs(G) = 1, a contradiction. Thus b,(G) < A(G) + 1 if v4(G) = 2.

Now, let (k > 2) be any integer for which the following statement is true: If H is nonempty
graph with v, (G) = k, then v, (H) < (k—1)-A(H)+1. Let G be a graph nonempty graph with
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7s(G) = k+1, and assume that bs(G) > k-A(G)+1. Then. But then, bs(G) < bs(G—u)+deg u,
and by the inductive hypothesis we have

bo(G) < [(k—1)- A(G —u) + 1] +degu < (k—1)- A(G) + 1+ A(G),
or
bs(G) < k- A(G) + 1,

a contradiction to our assumption that bs(G) > k- A(G) + 1. Thus, bs(G) < k- A(G) +1, and,
by the principle of mathematical induction, the proof is complete. ([

Theorem 4.7 If G is a planar graph, then

bu(G) < A(G).

Proof Suppose G has a vertex u with maximum degree that dose not belong to a weak
dominating set. Let E, denote the set of edges incident with w. And let D be a minimum weak
dominating set for G — E,. Then v is in D and D \ u is a weak dominating set for G. Hence
Y (G — Ey) > 7 (G) thus b, (G) < |E,| = deg u < A(G). O

85. Open Problems

We strongly believe the following to be true.

Theorem 5.1 If G is a nonempty graph of order (n > 2) then b,(G) <n — 1.
Theorem 5.2 If G is a nonempty graph of order (n > 2) then b, (G) < n —4§(G).
Theorem 5.3 If G is a nonempty graph of order (n > 2) then bs(G) <n — 1.

Other bounds for the strong and weak bondage of a graph exist. For several classes
of graphs, b5(G) < A(G) and b,(G) < A(G). Let F be the set of edges incident with a
vertex of maximum degree. Then it can be shown that v,(G — F') > ~5(G) and similarly
Yw(G — F) > v,(G). But it is not necessary that this action would result in an increase in
the strong and weak domination numbers. See Fig.2. The calculation for the strong and weak
bondage for multipartite graphs remains open. Unions, joins and product of graphs could be
investigated for their strong and weak bondage in terms of the constituent graphs. This implies
that we need to calculate the strong and weak domination of these graphs. The problem of
strong and weak domination is virtually unexplored and so there are several classes of graphs
for which the strong and weak domination numbers could be calculated.



Smarandachely Bondage Number of a Graph 19

References

[1] D. Bauer, F. Harary, J. Nieminen, C. L. Suffel, Domination alteration sets in graph, Dis-
crete Math., 47(1983), 153-161.

[2] J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts. The bondage number of a graph,
Discrete Math., 86(1990), 47-57.

[3] J. Ghoshal, R. Laskar, D. Pillone, C. Wallis. Strong bondage and strong reinforcement
numbers of graphs, (English) Congr, Numerantium, 108(1995), 33-42.

[4] F. Harary, Graph Theory, 10th Reprint, Narosa Publishing House, New Delhi(2001).

[5] B. L. Hartnell, D. F. Rall, Bounds on the bondage number of a graph, Discrete Math.,
128(1994), 173-177.

[6] T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, Inc, New York(1998).

[7] T. W. Haynes, S. T. Hedeniemi, P. J. Slater, Domination in graphs, Advanced Topic,
Marcel Dekker, Inc, New York(1998).

[8] E. Sampathkumar and L.Pushpa Latha, strong (weak) domination and domination balance
in graph, Discrete Math., 161(1996), 235-242.



International J.Math. Combin. Vol.4 (2009), 20-30

Domination Number in 4-Regular Graphs

H.Abdollahzadeh Ahangar

(Department of Basic Science, Babol University of Technology, Babol, Iran)

Pushpalatha L.

(Departmant of Mathematics, Yuvaraja’s College, Mysore-570005, India)

E-mail: ha.ahangar@yahoo.com, pushpakrishna@yahoo.com

Abstract: A set of vertices S in a graph G is said to be a Smarandachely k-dominating
set if each vertex of G is dominated by at least k vertices of S. Particularly, if £ = 1, such
a set is called a dominating set of G. The Smarandachely k-domination number v, (G) of
G is the minimum cardinality of a Smarandachely k-dominating set of G. For abbreviation,
we denote v1(G) by 7(G). In [9], Reed proved that the domination number v(G) of every
n—vertex graph G with minimum degree at least 3 is at most 3n/8. In this note, we present
a sequence of Hamiltonian 4-regular graphs whose domination numbers are sharp. Here
we state some results which will pave the way in characterization of domination number in
regular graphs. Also, we determine independent, connected, total and forcing domination

number of those graphs.
Key Words: Regular graph, Smarandachely k-dominating set, Hamiltonian graph.
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81. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without mul-
tiple edges. We refer the reader to [11] for terminology in graph theory.

Let G = (V,E) be a graph with vertex set V and edge set E, and let v € V. The
neighborhood of v, denoted by N (v), is defined as the set of vertices adjacent to v, i.e., N(v) =
{u € Vlww € E}. For S C V, the neighborhood of S, denoted by N(S5), is defined by N(S) =
Upes N (v), and the closed neighborhood N[S] of S is the set N[S] = N(S)U S and the degree
of x is degg () = |Ng(z)].

A set of vertices S in a graph G is said to be a Smarandachely k-dominating set, if each
vertex of G is dominated by at least k vertices of S. Particularly, if £ = 1, such a set is called

a dominating set of G. The Smarandachely k-domination number v;(G) of G is the minimum
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cardinality of a Smarandachely k-dominating set of G. For abbreviation, we denote v1(G) by
~(G). The domination number has received considerable attention in the literature.

A dominating set S is called a connected dominating set if the subgraph G[S] induced by
S is connected. The connected domination number of G denoted by 7.(G) is the minimum
cardinality of a connected dominating set of G. A dominating set S is called an independent
dominating set if S is an independent set. The independent domination number of G denoted
by i(G) is the minimum cardinality of an independent dominating set of G. A dominating
set S is a total dominating set of G if G[S] has no isolated vertex and the total domination
number of G, denoted by 7; (G), is the minimum cardinality of a total dominating set of G. A
subset F' of a minimum dominating set S is a forcing subset for S if S is the unique minimum
dominating set containing F. The forcing domination number f(G,~) of S is the minimum
cardinality among the forcing subsets of S, and the forcing domination number f (G,~) of G is
the minimum forcing domination number among the minimum dominating sets of G ([1]-[7]).
For every graph G, f (G,7v) <v(G).

The problem of finding the domination number of a graph is NP-hard, even when restricted
to 4-regular graphs. One simple heuristic is the greedy algorithm [10]. Let d, be the size
of the dominating set returned by the greedy algorithm. In 1991 Parekh [8] showed that
dg <n+1—+/2e+1. Reed [9] proved that v (G) < 3n. Fisher et al. [3]-[4] repeated this result
and showed that if G has girth at least 5 then v (G) < Zn. In the light of these bounds on ~,
in 2004 Seager considered bounds on d, for r-regular graphs and showed that:

Theorem 1.1([10]) Forr >3, dy < r(?;jl_r;)gl % .

Theorem 1.2([3]) For any graph of order n, [H%-‘ <7 (G).

The authors of [7] studied domination number in Hamiltonian cubic graphs, and stated in
it the following problem.

Problem 1.3 What are the domination numbers of the Hamiltonian 4-regular graphs?

The aim of this article is to study the domination number «(G), independent domination
number i(G), connected domination number ~.(G), total domination number v (G) and forcing
domination number f(G,~) for 4-regular graphs and give a sharp value for the domination

numbers of these graphs.

§2. Domination Number

In this section we obtain a sharp value for the domination number of some 4-regular graph. In
the following, we construct graphs G, G; and G4 of which the graphs G and G2 are 4-regular.
The graph G is not 4-regular but degg, (v;) = 4 where 2 < i < m—1 and for the two remaining
vertices, degg, (v1) = degg, (vm) = 3. Moreover, the graph Go will be obtained from the graphs
Gl.

Remark 2.1 (i) Let G be a graph with V(G) = {v1,v2,...,v,} and E(G) = {vv; | [j —i] =
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1ortort+1}U{vive, vep1v2:} where n = 2¢, t > 3;

(ii) Let Gi be a graph with V(G1) = {vi,vs,...,vn} and E(G1) = {viv; | |j — 1
lorsors+1} wherem=2s+1, s > 2;

(iii) Let Go = UL, G, where Gy, = G1, |V (G, )| = m; for all possible i and [V (G, )|
[V(Gm,)| < ... <[V(Gm,)|, such that V(G2) = UL, Uk, {vv;} and E(Ge) = U, E(Gy,)

{/l]imiv(i+1)1 (mod q)| i=1,2,...,q}.

<
U

By Theorem 1.1, we have d, < (33/81)n for r-regular graphs where r = 4. In the following
Theorems, we obtain the exact number for constructed 4-regular graphs.

In all following theorems, let m, n be odd and even respectively and n = l; (mod 5), m = lo
(mod 5) then m = 5p + Iy and n = 5k + I where 0 <ly,ls <4 and p, k are integers.

By Theorem 1.2, we have the following observation.

Observation 2.2 ~(G) > f%] and y(G1) > [L’;lﬂ_

k if n=0 (mod 5)
k+1 otherwise

Theorem 2.3 Let G be a graph of order n, then v(G) =

Proof We proceed by proving the series cases of following.

Case 1 If n =0 (mod 5) then n = 5k. Let S = {v3,vs,v13, "+ , Vi, Vigs,"* , V2 _7,VUn 2,05 41,
Un g, U, Ujks, 5 Un—a}. 1t is easy to verify that |S| = (2 x (§ —5)/5) + 2 = k. Further-
more, every vertex in S dominates four vertices and itself and N[z] N N[y] = 0} for any pair of
vertices z,y € S. It follows that S is a dominating set, so v(G) < k. Using Observation 2.2 it
is now straightforward to see that v(G) = k.

Case 2 If n =1 (mod 5) then n =5k + 1. Let S = {v3,vs, v13, ..., Vs, Vit5, LU 5, Un 1, Un g,
Un 46, ,Uj, Vjts, s Un—2} Which implies [S| = k + 1. Clearly, every vertex in S — {vn_1}
dominates four vertices and itself. Then the non-dominated vertex vz _1 is dominated by itself.
Also, N[z] N N[y] = 0 for every pair vertices 2,y € S — {v=_1}. Thus S is a dominating set
and v(G) < k + 1. Using Observation 2.2 it is now straightforward to see that v(G) = k + 1.

Case 3 If n =2 (mod 5) so n = 5k + 2. Assign S = {va,v7,++ ,0i,Viys5, ++ , V2 _9,Un _4, U,
Va5, Vg, Vs, s Un—1} and m € {5, 5 + 1}. One can see that any vertex in S — {vn}
dominates four vertices and itself and the two non-dominated vertices vz and vz are dom-
inated by vertex v,,. Obviously, |S| = k 4+ 1. Moreover, for every pair of vertices x and y
from S — {v,,}, we have N[z] N N[y] = 0. Therefore S is a dominating set for G that implies

v(G) < k+ 1. Using Observation 2.2 it is now straightforward to see that v(G) = k + 1.

Case 4 If n = 3 (mod 5) so n = 5k + 3. Let S = {va,v7,v12,+ , Vi, Vits, V2 2, U,

n

2
every vertex in S — {v,,} dominates four vertices and itself and the three vertices vz, vn iy

and v,, are dominated by vertex v,,. Clearly, |S| =k + 1 and N[z] N N[y] = 0 for all possible
vertices x,y € S — {vp}. Therefore S is a dominating set for G that implies v(G) < k + 1.

Un g, U, Ujks, 0, Un—a}, Where m € {5, & +1,n}. By simple verification one can see that

Using Observation 2.2 it is now straightforward to see that v(G) =k + 1.

Case 5 If n =4 (mod 5), so n = 5k + 4. Let S = {va, v7, ..., v;, Viys5, VB 5, UR VR 45, V),
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Vjts, ,Un—2}. We see every vertex in S — {vn} dominated four vertices and itself and
the vertex vn dominates three vertices {vn_1,vn,1,v,} and itself. Since |S| = k + 1 and
N[z]N N[y] = 0 for all possible vertices x,y € S — {vz}. Then S is a dominating set for G that
implies v(G) < k + 1. By Observation 2.2 it is straightforward to see that v(G) =k+1. O

Theorem 2.4 Let Gy be a graph of order m = 5p + la where Iy € {0,1,2,3,4} and p is an
if m=0 (mod 5);
integer, then v(G1) = pif ( )
p+1 otherwise.

Proof We consider the following sets such that m = Iy (mod 5) for 0 < s < 4.

For ly = 0. We say S = {v2, 07, ..., Ui, Ui5, ..., Us, Us 5, -ovy Ujy Uj455 ooy Um—3

For ZQ =1. We say S = {’UQ, U7y ey Uiy Vig 55 o0y Us—3, Usy Us-5, Us 10y +-+5 Ujy Ujp5, -eny Um—l}-

For Iy = 2. We say S = {v2,07, .., 0, Vit5, ., Us—1, Us15 Vs 55 Us£105 -5 Vg Vj 5y vy Um—4 } -

For ZQ =3. We say S = {’UQ, U7y ey Uiy Vig 55 o0y Us—4 Usy Us-5, Us 10y +-+5 Ujy UVjp55 -eny Um_g}.

For Iy = 4. We say S = {v2,07, ..., Vi, Vit5, .oos Vs—2, Us, Us 5, Us 105 =+ Uy Ujt5 ooy Um—5 }-

A method similar to that described in proof of Theorem 2.3 can be applied for proof of
this Theorem. From this, one can see that all of the considered sets are dominating sets. Using
Observation 2.2 it is now straightforward to obtain the stated results in this Theorem. O

Now we are ready to study domination number of more 4-regular graphs which are stated
in Theorem 2.3.

Remark 2.5 We construct graph G’ = G,,, UG, U ... UG, in which between every two
4-regular graphs we add an edge such that d(v) = 5 to each of first and end vertices of G,,, for
all possible ¢ and G,,, = G, |V(Gp,)| < |V(Gp,)| < ... <|V(Gp,.)l-

Theorem 2.6 v(G') =>_._, 7(Gy,) such that there exists a G with G, = G for each i.

Proof The result follows by Theorem 2.3. O

Let Gll and G,l, be the graphs in which these are two induced subgraphs of G such that
V(GY) = V(G1) = {v1,0m} and V(GY) = V(G1) = {u1} (or V(GY) = V(G1) = {vm}).

Proposition 2.7 (i) v(G}) = v(G}) = v(G1) where V(G1) =1 to modulo 5 and | € {0,2,3,4};
(ii)Let V(Gy) = 1 to modulo 5. Then (a): v(G}) = ~v(G1) —1 (b): v(G}) = v(Gy) where
VIGY) = V(Gr) = {ui} (¢): 7(GY) =7(Gr) = 1 where V(GY) = V(G1) = {vm}-

Proof (i) The result follows by Observation 2.2 and Theorem 2.4.

(ii) Let V(G1) =1 (mod 5). We say S = {vy, Vg, ..., Us—1, Vg2, Us 7y -y Um—a}. Clearly S
is a dominating set for G} and G| where V(G}) = V(G1) — {v,n}. Therefore v(G;) = v(G;) =
7(G1) — 1 because |S| = ==L Finally if V(G]) = V(G1) — {v1}, one can check by simple
verification that v(G}) = 7(Gy). U

Proposition 2.8 Let Gy be the graph with V(Gy,) = 1 (mod 5) for all i. Then v(Gz) =
©_7(Grm,) — (8],
1_1’7 mq 2
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Proof The result follows by Proposition 2.7 (ii)(c). Moreover, It is sufficient to show the
truth of the statement when ¢ =2 (G2 = G, U Gy

Let S = {U14,1)19, T U1 V1(i45) " 9 V1 (smy —1) > Vl(smy 42) V(sm, +7)0 777 5 V15, V1(5+5) "
V1(m1—4)> V21,0265 " 5 V20, V2(i/+5)5 " 5 V2(siy —4)) V2(smq+1)5 ~ " 5 V2575 V2(574+5), " 702(m2—2)}-

Obviously, v(G2) = Y(Gm,) + 7(Gm,) — 1. Tt is now straightforward to prove the result
for ¢ > 2, by Proposition 2.7(ii) and a method similar to that described for ¢ = 2. Thus
Y(G2) = 371 Y(Gm,) — [ ] with V(Gp,) =1 (mod 5) for all i. O

Let [ be the number of occurrences of consecutive Gi’s with V(G1) = 1 (mod 5). For

1< <1 let H = {Gy—e¢| G2 = U;ilej, i+ is the number of consecutive Gp,;s with

V(Gu;) =1 (mod 5) for all j, e(= U{lvi;,mm) ¢ Gm,}-

Theorem 2.9 Let G3 = UL, G,,, which contains the induced subgraph H; for 1 < i <1 and
G3 = Gy. Then v(Gs) = 35, 7(Gm) — (3] + 1] + -+ [5)):

Proof The result follows by Theorem 2.4 and Propositions 2.7 and 2.8. O

83. Independent Domination Number of Some Graphs

Theorem 3.1 Ifn =1 (mod 5) where 0 <1 <4, then i(G) = v (G).

Proof We Suppose that n = 0 (mod 5) and n is even. Since i(G) > 7 (G), The-
orem 2.3 implies that i(G) > k. Let S = S U Sy = {vs,...,vi,Viy5, -, v2 7,08 2} U
{'U%+1,/U%+6, s Vj, Vg5, oy Un—a}. 1t is sufficient to prove that there exists no pair of ver-
tices (z,y) with xy € E(G) in S. Because, on the one hand dp, (z,y) =5 (Let P, = v1vs...vp)
for any two consecutive vertices with x,y € Sy (or x,y € S3). On the other hand each v; € S
is adjacent to vertices v;_1, vit1, itz and v;yn4q. So by simple verification one can see that
there exists no vertex in S from {v;_1,vi41,vi42,vi4 211} Hence S is an independent set of
G, then i(G) = v (G).

Similar argument settles proof of cases n =1 where 1 <[ < 4. O

Theorem 3.2 If m =1 (mod 5) where 0 <[ <4, then i(G1) = v(G1).

Proof Similar to that of Theorem 3.1, we settle the proof of this Theorem. O

Theorem 3.3 i(Gy) = v(G) where x = 2, 3.

Proof The result follows by Theorems 2.4 and 2.9. (]

84. Connected Domination Number of Some Graphs
Let Np[v;] = Nv;] — (N(v;) NS) where S is an arbitrary set.

Theorem 4.1 Ifn=1 (mod5 ), where 0 <1 <4, then 7.(G) = 5 — 1.
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Proof Let n = 0 (mod 5). Since 7.(G) > v(G), Theorem 2.3 implies v.(G) > k. We
introduce Sy = {v2, vs, ..., vz }. Obviously, Sy is a connected dominating set for G, then 7.(G) <
% — 1. Now we suppose that S is an arbitrary connected dominating set for G with |S| =
I < § —2. Clearly, (S) is containing a path of length I < § — 2, and |Ny[z]|, |Np[y]| < 4
and |Np[z]| = 3 where x,y are pendant vertices of path and z € S — {z,y}. Furthermore
|Np[u] N Np[v]| = 1 where u, v are two consecutive vertices from S. By the assumptions we have
| Uges Nplz]] < (2x4)+ (5 —4) x3— (5 —3)=n—1. Then S cannot dominate all vertices
of G. This implies that Sy is minimum connected dominating set of G, hence 7.(G) = § — 1.

Similar argument settles proof of cases n =1 where 1 <[ < 4. O

Theorem 4.2 If m =1 (mod 5) where 0 <1 <4 then v.(G1) = s — 1.

Proof In a manner similar to Theorem 4.1 we can prove the Theorem. U

Theorem 4.3 7.(G2) = > (8m, +1) — 2.

Proof Theorem 4.2 implies that v.(G2) > Y% (sm, — 1). Because if S; and S are
arbitrary v.-sets for G,,, and G,,, with |Si| = s;,, — 1, |S2| = Sm, — 1 then (51 U S3) is
disconnected. Furthermore, any v.-set for G,,, does not contain first or endvertex of G,,,.
Therefore, to obtain a 7.-set for Go, we must add all of the end and first vertices of the graph
G, except for two graphs. For the first graph, say (G,,,), we can add the endvertex and the
last graph, say (G, ), we may add its first vertex (note that we may choose in a similar manner
for two other graphs). Then v.(G2) = >, (sm, + 1) — 2. O

85. Total Domination Number of Some Graphs

Let S be a minimum total dominating set, then we have the following Observations.

Observation 5.1 For any vertex x € S, there exists at least one vertex y € S such that
zy € E(G).

Observation 5.2 Let G be a 4-regular graph then |N[z] U N[y]| < 8, where z,y € S and
zy € E(G).

Immediately we have the following lemma.

Lemma 5.3 Let G and Gy be the graphs defined in Remark 2.1. For any x,y € S with xy € S
then |N[z] U N[y]| < 7.

Proof Let x = v; and y = v;41 (or y = v;—1) then |N[z] U N[y]| = 7. Now suppose that
r=wv; and y = viyn (or y = viyz41) then [N[z] U N[y]| = 6. Hence |[N[z] U N[y]| < 7. O

We consider the following Theorem.

1 n=1(mod 7) where l € {0,3,4,5,6}

Theorem 5.4 ~(G) = 7
2]4+1 n=1lor2 (mod7)
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Proof The proof is divided into the following cases by considering n = (mod7).
Case 1 n=0 (mod 7)

Let S = {Ul, V2,UV8,V9, "+ yVjy Uj41," " ,Ug_ﬁ, Ug_5,’0%+5,v%+6,’u%+12, Ug_;,_lg, U5, V54,

© ,Up—2,Un_1}. It is easy to verify that S is a ~-set for G where n = 0 (mod 7). Moreover

any two adjacent vertices from S have 7 vertices as neighbors, so by Lemma 5.3, S is minimum
total dominating set for G and v;(G) = |S| = 2[ %] where n =0 (mod 7).

Case 2 n=1 (mod 7)

Let S1 = {v1, 02,08, V9, , Vi, Vig1,"*+ ,Un_3,Un _2,Un 45,08 46,08 112,U8413," " ,Uj, Ujt1,
© ,Un—6,Un—5}. It is easy to verify that (N[z] U N[y]) N (N[z] U N[t]) = 0 for each two pairs
of vertices (z,y) and (z,t) and xy, 2t € E(G) and z,y, z,t € S1. Also, [N[r] U N|s]| = 7 for all
possible r, s € S1 and rs € F(G). Meanwhile, Lemma 5.3 implies that the set S; is a minimum
~i-set for G — M where My = {v,}. Now, we give Sy = {vg,l}. Clearly S = S1USs is a
ye-set of G where n = 7k + 1. Then +(G) = |S| =2|%] 4+ 1 where n =1 (mod 7).

Case 3 n =2 (mod 7)

Let Sl = {’Ul, V2, V8, V9, y Uiy Ui41, " ,’U%,%v%,ﬁ, vg+5,v%+6,v%+12, v%+137 U5, V41,
© ,Un—3,Un—2}. It is easy to verify that (N[z] U N[y]) N (N[z] U N[t]) = 0 for each two pairs
of vertices (z,y) and (z,t) with zy, 2t € E(G) and z,y,z,t € S;. Also, |[N[r]UN]s]| = 7 for
all possible r, s € S1 and rs € E(G). Hence, Lemma 5.3 implies that the set S; is a minimum
~¢-set for G — My where My = {U%,l,vn}. Now, let Sy = {v,_1}. Clearly S = S;USs is a
7y¢-set of G where n = 7Tk + 2. Then v(G) = |S| = 2[ 2] + 1 where n = 2 (mod 7).

Case 4 n =3 (mod 7)

Let Sl = {Ul, V2, VU8, Vgy «ovy Uy Ujt1y ey ’U%,4, 0%73, ’Ug+5, 'U%+6, ’U%Jrlg, v%+137 U5, V4,

© ,Un—7,Un—¢}. It is easy to verify that (N[z]UN[y]) N (N[z]UNJt]) = 0 for each two pairs of

vertices (z,y) and (z,t) with zy, 2zt € E(G) and z,y, z,t € S1. Furthermore, |[N[rJUN[s]| = 7 for

all possible r, s € S7 and rs € E(G). Clearly, Lemma 5.3 implies that the set .57 is a minimum

~¢-set for G — M3 where M3 = {v%_l,vn_l,vn}. Now, let S5 be 2-subset from M3 which are

adjacent in G. Clearly S = S; US> is a y;-set of G where n = 7Tk + 3. Then v(G) = |S| = 2] ]
where n = 3 (mod 7).

Case 5 n =4 (mod 7)

We assign S1 = {v1,v2,08,V9," "+ , Vi, Vig1, *+ ,Un_g,Un _7,Un45,Un16,Vn 112,V 413, ,
Vj, Vjq1, ey Un—a, Un—3}. It is easy to verify that (N[z] U N[y]) N (N[z] U N[t]) = 0 for each two
pairs of vertices (z,y) and (z,t) with xy, 2t € E(G). Also, |N[r] U N[s]| = 7 for all possible
r,s € S1 and rs € FE(G). Hence, Lemma 5.3 implies that the set S is a minimum ~;-set for
G — My, where My = {vg,g,v%,l,vn,l,vn}. Now, let S5 be a 2-subset from M, which are
adjacent in G. Clearly S = S; US> is a y;-set of G where n = 7Tk +4. Then v(G) = |S| = 2] Z]
where n =4 (mod 7).

Case 6 n=5 (mod 7)

Say S1 = {v1,v2,V8,V9, * *+ , Vi, Vit1, + ,Un 5,0 _4,Vn 45, Un 16, Un 112,08 413, , Vj, Vj11,
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© ,Up—s,Un_7}. It is easy to verify that (N[z] U N[y]) N (N[z] U N[t]) = 0 for each two pairs
of vertices (z,y) and (z,t) with a2y, 2t € E(G) and z,y,z,t € S1. Also, [N[r] U N[s]| = 7 for
all possible r, s € S1 and rs € E(G). Hence, Lemma 5.3 implies that the set S; is a minimum
yi-set for G — My, where M5 = {vn_9,vn_1,0n_2,Un—1,Vn}. Now, let So = {vz_o,vn_1}.
Clearly S = S1 U Sy is a y-set of G where n = 7k 4 5. Then v(G) = [S| = 2[%] where n =5
(mod 7).

Case 7 n =06 (mod 7)

Let 51 = {’Ul,’UQ,’Ug, V9y ooy Uy Vjg1y*° ,’U%_g, Ug_g,’U%+5,’U%+6,’U%+12,’U%+13, 5, U5, U541,

©  Un—5,Vn—4}. It is easy to verify that (N[z] U N[y]) N (N[z] U N[t]) = 0 for each two pairs
of vertices (x,y) and (z,t) with zy, 2zt € E(G) and z,y, z,¢ € S1. Also, [N[r]UN|[s]| = 7 for all
possible ;s € S; and rs € E(G). Hence, Lemma 5.3 implies that the set S7 is a minimum ;-
set for G — Mg, where Mg = {v%_g,vg_g,v%_l,vn_g,vn_l,vn}. Now, let Sy = {’U%_Q,U%_l}.
Clearly S = S1 U Sy is a y-set of G where n = 7k 4- 6. Then v(G) = [S| = 2[ %] where n = 6
(mod 7). O

2[%] if m=1 (mod T) where | € {0,3,4,5,6}

Theorem 5.5 v:(G1) =
2[%|+1 if m=1or 2 (mod7)

Proof Lemma 5.3 implies that 7;(G1) > 2[%%]. Now we consider the following cases.
Case 1 m =0 (mod 7)

We assign Sy, = {Us,V6, V12,013, , Uiy Vig 1, Vs—5, Vs—ds Vg2, Us43, " Vg Vjpl, =" *
m

Um—2,Um—1}. It is easy to see that S, is a y-set for G1. Hence 7;(G1) < 2[*%]. Moreover
Lemma 5.3 implies v;(G1) > 2[%]. It follows that v;(G1) = 2[ %] with m = 0 (mod 7).

Case 2 m =1 (mod 7) where [ € {1,2,3,4,5,6}.

We assign Sy, to each [ as follows:

Stl = {’Ul, V2, V3, V9, V10, +++y Uiy Vi1, Vit 7y -y Us—5,Us—4, Us+6, Us+7, ...,’Uj, 'Uj+17 cery Um—2, ’Umfl}.

St2 = {1]2, V3,V9, V10, +++5 Uiy Vj41, Vit75 ooy Vg—2,Vg—1, Vg, Us4+6, Us+7, ...,Uj,’Uj_H, vees Um—6, Um_5}.

St3 = {’U3, V4,010, V11 ++oy Uiy Uit1, V474 ooy Us—5, Us—4, Vg, Ug41, Us+7, Us+8, ...,’Uj, 'Uj+17 cersy Um—2,
Umfl}.

St4 = {1]1, V2,V7,V8, -evy Uiy Vit 1, Vit Ty -y Us—5,VUs—4, Us44,Us45, -y Uj, Uj41, -y Um—2, Um—l}-

St5 = {'U4a U5, V11, V12, V185 ++y Uiy Vi1, Vit Ty oy Us—5, Vs—4, Us15 Us+2 Us+85 Us+95 ++5 Ujy Ujp 1y -eny
Um72avm71}~

Sts = {1]1, V2,V8,V9y ey Uiy Vit1yVit7y .0y Vs—5,Vs—4,Vs4+5, Us+6, ..,Uj, vj+1...,vm_2, Um—l}-

In the same manner as in Case 1 we settle this Case. Hence v¢(G1) = 2[ %] where m =3
or 4 or 5 or 6 (mod 7) and v(G1) = 2[ %] + 1 where m =1 or 2 (mod 7). O

Motivated by Theorem 5.5, we are now really ready to state of following Theorem.

Theorem 5.6 v(G2) =Y 7, 7(Gm,)-
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86. Forcing Domination Number of Some Graphs

Observation 6.1 f(H,v) > 1 where H € {G,G1,G2}.

Proof 1t is easy to see that the graphs G, G; and G5 have at least two y-sets. Then it
immediately implies that f(H,v) > 1 where H € {G,G1,G2}. O

Observation 6.2 f(G,v), f(G1,7) > 2 where |V(G)|,|V(G1)| =1 with 1 € {1,2,3,4} (mod 5).

Proof 1t is straightforward to see that with any 1-subset, say T' from any arbitrary domi-
nating set, we can obtain at least two different v-sets for G containing T'. Then f(G,~) > 2.
Similar argument settles that f(G1,7) > 2 too. O

Theorem 6.3 (i) If n =0 (mod 5) then f(G,~) =1;
(i)If m =0 (mod 5) then f(G1,7) =1;
(iii) f(Ga,7v) = q where V(Gp,) =0 (mod 5) for all i.

Proof (i) We apply Observation 6.1 with H = G, so f(G,y) > 1. Now let S =
{3, V8, oy Vi, Vi, oo+ VB 2, VR 41, VR 46,0, U, Vg5, Un—a ). It IS easy to see that P =
{vs} C S is a forcing subset for G which implies f (G,~) < 1. It is now straightforward to give
f(Gy)=1.

(ii) By Observation 6.1 with H = G1, it implies that f (G1,7v) > 1. Let F = {vs}. Obvi-
ously, F' is a forcing subset for G;. From this and by Theorem 2.4, it follows that f (G1,v) = 1.

(iii) The Case(ii) settles this case. Moreover, let F' = {vi2, v22, V32, ..., Us2, ..., Ug2 } then it
implies that f(G2,v) = q. O

Theorem 6.4 (i) Ifn=1 (mod 5), then f(G,7) = 2;
(i)If m =1 (mod 5), then f(G1,v) =2;
(iii) f(Ga,v) = 2[4] where V(Gp,) =1 (mod 5) for all i.

Proof (i) Observation 6.2 implies that f (G,v) > 2. Say S = {v1,vg, ..., Vi, Vit5, " - ,Vn g,
Vn41,Un 46,0 ,Vj,Vjts, ", Un—a}. Suppose that F' = {v1,vz 11} C S, clearly F is a forcing
subset for G and it follows that f(G,~) < 2. This implies that f (G,~) = 2.

(i) Using Observation 6.2 we have f (G1,7) > 2. Now we define F' = {vg, vy,—1}. Clearly,
|N[vs]UN[vs,—1]] = 6. On the other hand, since m = 1 (mod 5) then cardinality of the set of re-
maining vertices is multiple of 5. It immediately follows that the set {ve, v7, ..., Vs, Vits, .., Us—3,
Vs5, Us4105 -3 Ujs Uj45, -oy Um—6 + U F' is the unique y-set containing F'. Thus f(G1,v) = 2.

(iii) We consider the following cases. (a): If ¢ is even, let F1 = U{_,{vi1,vi(s,+1)} Where
i is even. (b): If ¢ is odd let Fp = Ufz_gl{vﬂ,vi(siﬂ)} U {v(q)15 Vg(s,+1)} Where i is even. By
simple verification one can check that F; and F» are forcing subsets for G2 in two stated cases.
Hence, it follows that f(Ga,v) =2[%]. O

Theorem 6.5 (i) If n =2 (mod 5), then f(G,vy) = 2;
(i) If m =2 (mod 5), then f(G1,v) =2;
(iii) f(Ga2,7y) = 2q where V(Gp,;) =2 (mod 5) for all i.
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Proof (i)Using Observation 6.2 we have f (G,v) > 2. Now we define F' = {vn_1,vn} C S.
Clearly, [N[vn 1] U N[va]| = 7. Moreover, since m = 2 (mod 5) then cardinality of the set of
remaining vertices is a multiple of 5. It immediately follows that the set {vs, V10, .., Vi, Vit5, --vs
Un 6, Un 43,Un 18, s Vj, Ujt5, - Un—3 ) UF is the unique y-set containing F'. Thus f(G,v) = 2.

(ii) Using Observation 6.2 we have f(G1,7v) > 2. Now we define F' = {vs41,vs42}. It
immediately follows that the set {va, vg, ..., Vs, Uit5, ..., Us—4, Ust7, Us£12, +oey Uj, Ujt 5, «ovy Um—2 JUF
is the unique 7-set containing F. Thus f(G1,v) = 2.

(iii): Clearly, the obtained forcing subset in the case (ii) is extendible to Ga. Therefore,
we can assert that f(Ga,v) = 2g¢. O

Theorem 6.6 (i) If n =3 (mod 5), then f(G,vy) = 2;
(i) If m =3 (mod 5), then f(G1,7) = 2;
(i1i) f(Ga,v) = 2q where V(Gp,) =3 (mod 5) for all i.

Proof (i) Using Observation 6.2 we have f (G,v) > 2. Now we define F' = {v1,v= 43} C S.
Clearly, [N[v1] U N[vz13]| = 8. On the other hand, since m = 2 (mod 5) then cardinal-
ity of the set of remaining vertices is a multiple of 5. It immediately follows that the set
{5, V105 +oes Vi Vi oy U2 4, V2 48, V8 113, o0 Uj, Vjit 5 -ony Up—1 } U F' is the unique y-set contain-
ing F. Thus f(G,v) = 2.

(ii) Using Observation 6.2 we have f (G1,7v) > 2. Let F' = {v1,v3}. Since |N[v]UV[vs]| =
8, cardinality of the set of non-dominated vertices is a multiple of 5. From this it immediately
follows that S consists of vsy6, Vs, Us+11, U13y+yUm—1, Us—3. LThus f(G1,7y) = 2.

(iii) Clearly, the obtained forcing subset in Case (ii) is extendible to G5. Therefore, it
implies that f(G2,v) = 2q. O

Theorem 6.7 (i) If n =4 (mod 5), then f(G,vy) = 2;
(i) If m =4 (mod 5), then f(G1,7) = 2;
(i) f(Ga,v) = 2q where V(Gp,;) =4 (mod 5) for all i.

Proof (i) Using Observation 6.2 we have f (G,v) > 2. Now we define F' = {vz_5,vn} C
S. Clearly, |[N[vz_»] U Nfvz]| = 9. Furthermore, since m = 2 (mod 5) then cardinal-
ity of the set of remaining vertices is a multiple of 5. It immediately follows that the set
{5,010, + Viy Vi U 7,
Un43,Un 48,0V, V45, ,Un—a} U F is the unique v-set containing F'. Thus f(G,~) = 2.

(ii) By Observation 6.2 we have f (G1,7) > 2. Let F = {vs,vs42}. It immediately follows
that the set {va, vg, -+, Vs, Vigs, -+ , Vs—5, Vg7, Us12, -+ , Uj, Uj45, - -, Um—3} UF is the unique
~v-set containing F. Thus f(G1,7) = 2.

(iii) Clearly, the obtained forcing subset in Case (ii) is extendible to G5. Therefore, it
implies that f(G2,v) = 2g. O

We close this section by the following Theorem for which we are motivated by the results

of this section.
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Theorem 6.8 Let G3 be the graph defined in Section 2. Then f(Gs,v) = >0, f(Gmi,7) —
(15 + %]+ o+ 13D
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Abstract: Let S be a set consist of chosen components in G — X. The Smarandachely
scattering number of a graph G is defined by

vs(G) = max{w(G — X) — |X| = > |[H|: X C V(G),w(G - X) > 1}.
HeS
Particularly, if S = @ or S = {the largest component in G — X}, then vs(G) is
the scattering number or rupture degree of a graph (. In this paper, general results on
the Smarandachely scattering number of a graph are considered. Firstly the relationships
between the Smarandachely scattering number and some vulnerability parameters, namely
scattering, integrity and toughness are given. Further, we calculate the Smarandachely
scattering number of total graphs. Also several results are given about total graphs and

graph operations.

Key Words: Smarandachely scattering number, connectivity, network design and com-

munication, graph operations, rupture degree.

AMS(2000): 05C40, 05C76, 68M10, 63R10.

§1. Introduction

In a communication network, the vulnerability measures the resistance of network to disruption
of operation after the failure of certain stations or communication links. The stability of com-
munication networks is of prime importance to network designers.In analysis of vulnerability of

a communication network to disruption, two quantities that come to mind are:

(1)the size of the largest remaining group within which mutual communication can still
oceur,

(2)the number of elements that are not functioning.

If we think of the graph as a model of a communication network, many graph theoreti-

1Received Sep.28, 2009. Accepted Oct. 18, 2009.
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cal parameters have been used to describe the stability of communication networks including
connectivity, integrity, toughness, tenacity, binding number and scattering number (see [2]-[3],
[7]-[9] and [13]).

A graph G is denoted by G = (V(G), E(G)), where V(G) is the vertex set of G and E(G)
is the edges set of G. The number of vertices and the number of edges of the graph G are
denoted by |V| = n, |E| = q respectively.

In this paper we will deal with the Smarandachely scattering number. But first we will
give some basic definitions and notation. After that we give the the Smarandachely scattering

number of total graph of specific families of graphs (see [4],[6],[10] and [12]).
ot(G) : The toughness of a graph G is defined by

o | X|
H&) = Xglxl/r(lc) w(G—X)’

where X is a vertex cut of G and w(G — X) is the number of the components of G — X.

oI(G) : The integrity of a graph is given by

1(G) = ngn‘i}(lc){lXI +m (G- X)},

where m(G — X) is the maximum number of vertices in a component of G — X.

e5(G) : The scattering number of a graph is defined by

$(G) = max{w(G — X) — |X|: X CV(G), w(G - X) > 2},
where w(G — X)) denotes the number of components of the graph G — X.

ovs(G): The Smarandachely scattering number of a graph G is defined by

v5(G) = max{w(G — X) — [X| = Y [H|: X C V(G),w(G - X) > 1}.
HesS

Particularly, if S = () or S = {the largest component in G — X}, then v5(G) is the scattering
number or rupture degree of a graph G (see [11]).

Definition 1.1 Two vertices are said to cover each other in a graph G if they are incident in
G. A vertex cover in G is a set of vertices that covers all edges of G. The minimum cardinality

of a vertex cover in a graph G is called the verter covering number of G and is denoted by

a(G) (see [4],[6],[10] and [12]).

Definition 1.2([4],[6],[10] and [12]) An independent set of vertices of a graph G is a set of
vertices of G whose elements are pairwise nonadjacent. The independence number 5(G) of G

s the maxzimum cardinality among all independent sets of vertices of G.

Theorem 1.1([10],[12]) For any graph G of order n,

a(GQ) + B(G) = n.
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Definition 1.3 The vertez-connectivity or simply connectivity k(G) of a graph G is the min-
imum number of vertices whose removal from G result in a disconnected or trivial graph. The
complete graph K, cannot be disconnected by the removal of vertices, but the deletion of any

n—1 vertices result in K,; thus k(K,) =n — 1.
kE(G) = min{|X|: X CV(G),w(G - X) > 1},

where [x] is the smallest integer greater than or equal to x. |x| is the greatest integer less than

or equal to x.

82. Some Results

We use P, and C), to denote the path and cycle with n vertices, respectively. A comet Cy, is
defined as the graph obtained by identifying one end of the path P, (¢t > 2) with the center of
the star K ,. In this section we review the Smarandachely scattering number of P,, Cy,, C; ,

and the k-complete partite graph Ky, n,,... ny-
Theorem 2.1([11]) The Smarandachely scattering number of the comet Ct , the path Py, (n >
3), the star Ki n—1,(n = 3) and the cycle C,, are given in the following.

a) The Smarandachely scattering number of the comet Cy, is

r—1, iftiseven

s (Ct,r) =
r—2, iftisodd

b) The Smarandachely scattering number of the path P, (n > 3) is

—1, ifn iseven

0, ifn isodd

c) The Smarandachely scattering number of the star K1 n—1 (n > 3) is n-3.
d) The Smarandachely scattering number of the cycle Cy, is

—1, ifn iseven

—2, ifn isodd

Theorem 2.2([11]) The Smarandachely scattering number of the complete k-partite graph

k
Ky ng....mp 08 2max{ny,no, ...,npt — >, n; — 1.
i=1

Theorem 2.3([11]) Let G1 and G2 be two connected graphs of order ny and na, respectively.
Then v5(G1 + G2) = maz{vys(G1) — na2,vs(G2) — n1}.

Theorem 2.4([11]) Let G be an incomplete connected graph of order n. Then
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a) 20(G) —n—1 < 75(G) < [DLE=rGla(@lon
<

§3. Bounds for Smarandachely Scattering Number

In this section, we consider the relations between the Smarandachely scattering number and
toughness, integrity and scattering number. Parameters that will be used in this paper are as

the following:

a(G), the covering number;

=

(G), the independence number;

o~

(G), the connectivity number;
o(

A(G), the maximum vertex degree.

(), the minimum vertex degree and

Theorem 3.1 Let G be a connected graph of order n such that t(G) = t, vs(G) = vs and
§(G)=4. Then vs < 775 — (0 +1).

Proof Let X be cut set of vertices of G. From the definition of ¢(G), we know that
|X]
t< w(G—-X)"*

Therefore,

X
w(G - X) < %
We also have w(G — X) + |X| < n. In this inequality, | X| < n — w(G — X)and get

w(G — X) + | X| < n. In this inequality, | X| < n — w(G — X). Therefore,

w(G — X) g'%‘
w(G-X) | < w
w(G — X) < i

On the other hand, for every graph G, it’s known that

J(@Q)+1< I(G) < a(G) +1

and

I(G) = |X]| +m(G — X) > 6(G) + 1.

Then, we have m(G — X) 2 6(G—X)+126(G) — | X|+ 1.
Therefore, we have m(G — X) > 6(G) + 1 — | X|.

Let’s construct the definition of the Smarandachely scattering number.
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w(G—-—X)—|X|-m(G-X) | w(G-X)—|X|-06(G) —1+|X]
vs(G) <w(G-X)-46(G)—1
75(G) < -6(@) -1

The proof is completed. U

Theorem 3.2 Let G be a connected graph of order n such that t(G) =t, v7s(G) =~vs, a(G) = «
and k(G) = k. Then vs(G) > % — (a +1).

Proof Let X be a cut set of vertices of G. From the definition of vs(G), we know that
w(G — X) — | X| —m(G — X) < vs. Moreover, for every graph G, it is known that I(G) <
a(G) + 1. So, we have I(G) = | X|+ m(G — X) < a(G) 4+ 1. We have the following inequality:

w(G — X) <v5(G) + a(G) + 1.

_1 > 1
w(G=X) = vs+a+1
|X] |X]
w@-X) | 2 sstasr | X[ZK(G)
|X| > k
w(G—X) = vs+a+1
; Xy > mi _k
N w(G=X) Z TN Sstatl
k
t 2 jetadl
Vs > E_(a+1)
The proof is completed. O

Theorem 3.3 LelG be a non-complete connected graph such that s(G) = s, vs(G) = s,
I(G) =1 and a(G) = « is the covering number of graph G. Thenvs < s-1+a.

Proof Let X be a vertex cut of G, then from the definition of s(G) we know that w(G —
X)—|X| <s.
When we subtract m (G — X) from both sides of this inequality, we have the following.
w(G—X)—|X|—-m(G—-X)<s—m(G—X).
From the definition of I(G) we know that I(G) < |X|+ m(G — X).
I |X|+m(GE-X)= m(G-X)>1-]|X]|
-m(G—-X)<-I+]|X|.

Then we have,

w(G—X)—|X|-m(G-X)<s—1+|X]

since X is a cut set of vertices, |X| < « is always satisfied,

w(G—X)—|X|-m(G-X)<s—I+a
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max{w(G—X)—|X|-m(G—-X)} <max{s—I+a}
r<s—I+a«a

The proof is completed. O

84. The Smarandachely Scattering Number of of

Total Graphs Some Graph Types and Cartesian Product of Graphs

In this section, firstly, we will give definition of total graph of a graph and Cartesian prod-
uct operation on graphs. After that we will give some results about the The Smarandachely
scattering number of T'(P,), T(C,),T(S1n), T(KexP,) and T (KozCy,).

Definition 4.1 The vertices and edges of a graph are called its elements. Two elements of
a graph are neighbors if they are either incident or adjacent. The total graph T(G) of the
graph G = (V(G), E(G)), has vertex set V(G) U E(G), and two vertices of T(G) are adjacent
whenever they are neighbors in G. It is easy to see that T'(G)always contains both G and Line
graph L(G) as a induced subgraphs. The total graph is the largest graph that is formed by the

adjacent relations of elements of a graph.

%1

v x1 v2 vi v2
x4 2 %2
vd T 3 V5 vd V5
ca T(C4)
X3
Fig.1

Definition 4.2 The Cartesian product of two graphs G1 and G2, denoted by G1xGs, is defined
as follows:

V(G12Gy) = V(G1)xV(G2), two vertices (u1,us) and (vi,v2) are adjacent if and only
if up = v1 and ugve € E(G3) or uivy € E(G1) and us = vy. The Cartesian product of
n graphs Gy1,Ga, - ,G, denoted by GirxGaox---xG, is defined inductively as the Cartesian
product GixGox -+ - xGp_1 and G,.

Theorem 4.1 The Smarandachely scattering number of T(P,) order of 2n-1 is

1+2n—2[v1+2n]
[VI+2n]

vs(T'(Pp)) =2 — b/l + 2nJ —
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Proof 1f we remove p vertices from graph T'(P,), then the number of the remaining con-
nected components is at most L%J +1. In this case the order of the largest remaining component
is m(G — X) > 2n=1=p g,

(£

P 2n—1—p
15(T(Fa)) 2 mawp{§+1—29— ﬁ}

The function §+1—-p— Q"Q_il_p takes its maximum value at p = —2+42+v/1 + 2n. Then we write
2

this p value in the definitions of w and m to calculate the Smarandachely scattering number as

follows:
14+2n—2(vV1+2n
o |WIFT|, m— [ + L\/l%/nf—ﬂ’
vs = |V1+2n] — (=2+2|Vi+2n]) - F+2TWW
and
1s(T(P) =2 - [VI+ 2] - F”’[WJ w
This completes the proof. -

Theorem 4.2 The Smarandachely scattering number of T'(C,,) order of 2n is

15(T(Cr)) == |V2n| +2 - {LQ?;J .

Proof 1If we remove p vertices from graph T(C,), then the number of the remaining
connected components is at most LgJ . In this case the order of the largest remaining component
is m(T(Cp) — X) > QﬁP So,

3

2n —
W(T(C) > mazy {5 —p- 2L
2 .

The function § —p — NP takes its maximum value at p = 2v/2n. Then we write this p

2
value in the definitions of w and m to calculate the Smarandachely scattering number.

(e = 22 g | vaval -

2n —2|V2y/n|
2|vayn] 7

15(T(Cn)) = =2 | V2v/n | — %

then
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Theorem 4.3 The Smarandachely scattering number of T(S1 ) order of 2n+1 is

r(T(S1)) = —2.

Proof Our proof is divided into two cases following.

Case 1 Let | X| < a(Sin)+a(Ky,) =1+ (n—1)=n be a cut set of vertices of T(S1 ). The
number of the components inT'(S1 ,,)is at most p, after removing p vertices. If | X| = n, then
X = n. In this case the order of the largest remaining component is

m(T(S1.n) — X) > [2”21_”} > P‘ﬂ >2.

w(T(S1.n) —

Hence
w(T(S1n) — X) —|X| —m(T(S1n) —X)<n—n—2< —2.

Case 2 Let us take | X| > n. We assume | X| =n+ 1. In this case,

w(T(S1n) —X)<2n+1—|X|=2n+1-n—-1=n,

w(T(S1,n) — X) < n.

The order of the largest remaining component is

2n+1—-|X
m(T(S1) — X) > {W—:XH —1,

m(T(S10) — X) > 1.

)

Hence
w(T(S1,n) = X) = [X|=m(T(S10) = X)<n—(n+1) -1
w(T(S1.0) = X) = |X| = m(T(S1.) — X) < —2

From the choice of X and the definition of the Smarandachely scattering number, we obtain

Vs(T(S1,0)) = —2.
It is easy to see that there is a vertex cut set X* of T'(S1 ,,) such that | X*| =n, w(T(S1,n)—

X*) = nand m(T(S1.,) — X*) = 2. From the definition of the Smarandachely scattering num-
ber, we have r(T'(S1,n)) =2 w(T(S1,n) — X*) — | X*| —m(T(S1,n) — X*) = —2. This implies that
r(T(S1, ) = —2. O
Theorem 4.4 Forn > 3, the Smarandachely scattering number of T(KoxP,,) of order 5n — 2

8

vs(T(KzzP,)) = =2 [V6 + 15n]| + 8.
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Proof There exist at most L%J 41 components when p vertices are removed from the graph.
The order of the largest remaining component is m(T(KqxP,) — | X]) > TP_J%. So,
1

P 5n—2—p
’yS(T(KQxPn)) = maxry {Z +1—-—p— ﬁ}

The function £ +1—p— 5"§f;p takes its maximum value at p = —4+2,/(6 + 15n).

Then we obtain

vs(T(KqxPy)) = =2 [V6+ 15n] + 8.
This completes the proof. O

Theorem 4.5 The Smarandachely scattering number of T(KsxCy,) order of bn is

75 (T Ky Cp)) > 6 — [V60n + 24]

Proof The number of the components is at most V’%ﬂ — 1 when p vertices are removed.

The number of vertices in each component is at least m(T(K22C,y, ) - |X| ) > %. So,

p+6 20n — 4p
vs(T(KoxCy)) = max, {—4 —1—p— ETE

The function pT+6 —1-p-— 20:% takes its maximum value at p = —2+2./9 + 3 (20n + 5).
Hence we obtain

Vs (T (K22Cy)) = 6 — [v60n + 24] .

This completes the proof. O

85. Conclusion

If we want to design a communications network, we wish it as stable as possible. Any com-
munication network can be modeled by a connected graph. In graph theory, we have many
stability measures such as connectivity, toughness, integrity and tenacity. The Smarandachely
scattering number is the new parameter which measures the vulnerability of a graph G. When
we design two networks which have the same number of processors, if we want to choose the
more stable one from two graphs with the same number of vertices, it is enough to choose the
one whose The Smarandachely scattering number is greater.
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applications. In this paper, we give a proof of them.
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§1. Introduction

We follow the standard notation of g-series [4] and we always assume that |g| < 1. The ¢-shifted
factorials (a;q), and (a;q)~ are defined as

1, if n=0,

GO T (- - a1 - eyl —a), i a3

and
(@5 9)o0 = (@)oo = (1 — a)(1 — ag)(1 — ag?)--- .

The basic hypergeometric series ,41¢, is defined by

A1,02,+ 5 Aryl | = (a)n(@2)n - (@rs1)n

r4+19r 5 = z
i by bs,--- b — (@) (b1)n(b2)n - (by)n

n

|z| < 1.

One of the most classical identities in ¢-series is the g-binomial theorem, due to Cauchy:

1Received Oct.3, 2009. Accepted Nov. 8, 2009.



42 K. R.Vasuki and G.Sharath

1%0 2| = || <1, (1.1)

Another classical g-series identity in g-series is Heine’s g-analogue of the Gauss o F; summation
formula:

a,b | (¢/a)ss(c/)oo

| T O/

‘i’ <1 (1.2)

Heine deduced (1.2) as a particular case of his transformation formula [5]

a,b (0) oo (a2) 0o c/b, z
201 2| = 0 2¥1 sb| L |zl < 1, |b| < 1. 1.3
. (O (P o 2] < 1, b| (1.3)

Another interesting transformation formula due to Sear’s [7] is

abe de| _(efauldefic) | wdfvdfe

| = © sefal (1.4)
de abe|  (€)woldefabe)s *TP| g desbe

3¥2

|de/abc| < 1, |e/al < 1. The basic bilateral hypergeometric series .t,is defined by

Twr ay, a2, , A | = Z (al)n(GQ)n (Clr)n Zn’
bi,ba, - by e o (01)n(b2)n - -+ (br)n
% < |z| < 1. There are many generalizations of g-binomial theorem (1.1) of which, one

of the interesting is the following Ramanujan’s 141 summation [1] [6]:

|b/al < |z| < 1. (1.5)

191 ¢ iz = (a2)oo(b/a)oo(q/a2) oo (@)oo
’ (2)20(2/@) o0 (b/a2) e (b) o

A variety of proofs have been given of (1.5). For more details of (1.5), one may refer [1],
[4]. H. Exton [3, p. 305] has given following two 313 basic bilateral series summation formula
without proof :

| aber L 0/ /b) b)) wo)
dbge | (= (1/e)a/b)wa/@)n b (d)

|d| <1,|1/al <1 and

(1.7)

sy | @000 0| (= (/0)(d/b)oc (ba/a)oe )5
dbge | (1=0)(a/b)sc(q/a)oo(bg)oo(d)os
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|d/q] <1, |¢/a] < 1. Exton [3, p. 305] has incorrectly given (¢/c) instead of (¢/b)eo in the
denominator of (1.7). W. Chu [2], deduced (1.6) and (1.7) as a special cases of his integral-
summation formula. In this paper, we give a proof of (1.6) and (1.7) on the lines of G. E.
Andrews and R. Askey [1] proof of (1.5).

§2. Proof of (1.6) and (1.7)

Lemma 2.1 We have

b b
S —d) avg [ nee ] + (1~ (a/d)) wg[ ne ]
dye, f dg,e, f

Q-0 - (ffa) | ebacls
21— /)1~ (c/a)) defafla |

Wa-vn | [ave | @-a  [aane
-3 3¢3{d,e,f7 ] (¢—a) 3¢3{ de f ; ]

_ z((a/q) —b)(1 —¢) s a, bq, cq ,
(1_6)(1_f) d7eq7fq ' ’

b(d —1)(d — a) a,bec | a,bc
W 393 [ de f aZ] = (1 —(a/d)) 3%3 [ d.e. | 72']

[d=D(d=a)(1 — (/)1 = (f/0) , | efabela
=(@/9) — ®/a)( — (c/9)(g — a) defafla |’

~(a/q) 4= ) o/g.bae | ((d/g) = NS = (a/q))
{f (a/q) (q_a)] 3%[ def } = )
a/¢:bg.c | ((d/q) — f) abge
3¢3[ defq QI (1) 3w3[d7e,fq7 ]

Proof of (2.1). It is easy to see that

a7b,c a(l—d a7b,c
a 393 y2q| + ( ) 393 Pz
dg,e, f

(2.2)
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Also, we have

. [ b ] . [ b ;Zq] _ 3 @B,
d,e,f d7€7f

_ (1= (d/9)(1 = (e/q)A = (f/2)) i (@)n(6/@)n(/Dn__n
z(1 = (b/g))(1 = (¢/q)) (d/)n(e/Dn(f/D)n

n=—oo

Thus,
a,b,c a,b,c
33 iz —a 393 i 2q
d7 e? f d? e’ f

Q- @)~ ()~ (Ffa) | wblacls
2(1— (/)1 — (c/a)) daelafia |

Changing d to dq in (2.6) and then adding resulting identity with (2.5), we obtain (2.1).

(2.6)

Proof of (2.2). We have

((d/q) —b) i (@n(®)n(S)n_p _ (d—a) i (4/@)n (b@)n ()

A

(1-0) e oo (d)nle)n(f)n (q—a) e oo (d)n(€)n(f)n
S @aa®0aOn 1 ) (e (et (1 —
= 3 . [ 00— (@)~ /)b
_ = (a)n—l(bQ)n—l(C)nzn ala) — _ g n—1
Tl @, - a0 = b d

This proves (2.2).

Proof of (2.3). Changing b to b/q, c to ¢/q, e to e/q and f to f/q in (2.2), and multiplying

throughout by q(lfi)((ll_f((ce/q ';)))((dl:b()f /2) and adding the resulting identity with (2.1), we find (2.3).
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Proof of (2.4). From [8], we have

7b7 7b7
(1-1) w[ ¢ ;z]—((d/Q)—f) m[ “oe ;zq]
,€, d,e, fq

_ 2(l—a)1-0)(1—¢) s aq, bq, cq L,
(1-fg(l—e) d,eq, fq* Tl

and

(a=a) | abe | (=1 | aewbe
(1-a) de,f (1-1) defq |

BETEL RN R
C=N0—F00—¢) * | deq g

a ? b ) C . oy . .
Eliminating 313 400 ;2| between above two identities and then replacing a by a/q and

d,eq, fq
b by bg , we obtain(2.4).

Proof of (1.6). Setting c¢=cq, e=0bq, f =cand z=1/ain (2.4), we deduce that

e~ (ofa) - SZD gy | V0N o) =S ]
d,c (I-0) a

((d/a) —¢) a
—W 11 [ i 71/‘1] .

Employing (1.5) in the right side of the above, we obtain

2t [ a/a cq ;1/a] —0. (2.7)
d,c

Let
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As a function of d, f(d) is clearly analytic for |d| < 1and |a| > 1. Setting ¢ =cq, e =bq,
f=cand z=1/ain (2.3) and then employing (2.7), we find that

(1—(d/b))
(1-d)

fld) = f(dg). (2.8)

Iterating (2.8) n—1 times , we find that

(d/b)n

f(dq"™).

Since f(d) is analytic for |d| <1, |a| > 1, by letting n — oo , we obtain

(d/b)oo
(d)so

Setting c¢=cq, d=rc, e =bg in (1.4), we deduce that

a, b, cq
362 i1/a
bq, c

EbQ/a l/a oo Z C/b ;{qin (bq/a)n

fld) =

f(0).

_ (bg/a)o (@)oo (1 = a)(1 = (¢/b))(1 = 1/q (bq/a) i )n(€q/0)n(L)n
(bg)oo(1/a)oo (1-¢)(1-¢) — (Dnlc)n(@?)n

b1 (¢/D)(b/0) (@)
0= (g @/a)e
Thus,
(T =(b/c)(bq/a)o(q)oo
1D = T=(1/0) (bg)ma/a)o0

Setting d=g¢q in (2.9), and using the above, we find that

(1= (b/c))(bg/a)os(2)3
(1= (1/€))(bg)o0 (/@)oo (q/b)oc

f(0) =

Using this in (2.9), we deduce that

(1 — (b/))(bg/a)oc (d/b) oo (@),

T = W) bg) (@) @/0) e (D
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This completes the proof of (1.6).

Proof of (1.7). Setting ¢=c¢q, e=bq, f =c and z = g/a in (2.4) and then employing
(1.5), we find that

Let

As a function of d, f(d) is clearly analytic for |d| < 1, when |g/a|] < 1. Setting ¢ = cq,
e=bq, f=cand z=g¢/ain (2.3) and then employing (2.10), we find that

_ (1 —=(d/b))
Iterating the above n — 1 times , we get

Setting ¢ =bq, z=¢*/a in (1.3) and employing (1.1), we obtain

@b o, | (b4/a)c(@)oc.
291 [ by / ] "~ b(bg)oo(q/a) s

Also by (1.2), we deduce that

= (a)n(b)n (bg/a)oo(q)oo
2 aoae @~ Gomafalec
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Thus,
a,b, cq
f(a) =3 ¢2 sq/a
bq, c
1 a,b a,b
= 201 sqfa| —c 2 1 a
(I—c¢) bq bq

(1 = (¢/6))(bg/a) oo (@) o
(1= 0)(g/a)oo(b@)oc

Now setting in d = ¢ in (2.11) and employing above, we find that

(1= (¢/b))(bg/a)os (2)3

f(O) = (1 — c)(q/a)oo(bQ)oo(Q/b)OO

Using this in (2.11), we deduce (1.7).
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Abstract: A Smarandache multi-spacetime is such a union spacetime CJ S; of spacetimes
S1,S2,---,8, for an integer n > 1. In this article, we will be deducze:d1 the geodesics of
space-time, i.e., a Smarandache multi-spacetime with n = 1 by using Lagrangian equations.
The deformation retract of space-time onto itself and into a geodesics will be achieved. The
concept of retraction and folding of zero dimension space-time will be obtained.The relation

between limit of folding and retraction presented.
Key Words: Folding, deformation retract, space-time, Smarandache multi-spacetime.
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§81. Introduction

The folding of a manifold was, firstly introduced by Robertson in [1977] [14]. Since then many
authers have studied the folding of manifolds such as in [4,6,12,13]. The deformation retracts of
the manifolds defined and discussed in [5,7]. In this paper, we will discuss the folding restricted
by a minimal retract and geodesic. We may also mention that folding has many important
technical applications, for instance, in the engineering problems of buckling and post-buckling
of elastic and elastoplastic shells [1]. More studies and applications are discussed in [4], [8], [9],
[10], [13].

§2. Definitions

1. A subset A of a topological space X is called a retract of X, if there exists a continuous map
r: X — A such that ([2]):

(i) X is open;
(ii)r(a) = a, Ya € A.

2. A subset A of atopological space X is said to be a deformation retract if there exists a
retraction r : X — A, and a homotopy f : X x I — X such that([2]):

f(z,0)==V,zeX;

1Received Oct.15, 2009. Accepted Nov. 18, 2009.
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f(z,1) =r(z),Vor € X;

f(a,t) =a,Va € At €]0,1].
3. Let M and N be two smooth manifolds of dimensions m and n respectively. A map
f M — N is said to be an isometric folding of M into N if and only if for every piecewise
geodesic path v : J — M the induced path fo~vy:J — N is a piecewise geodesic and of the
same length as v ([14]). If fdoes not preserve the lengths, it is called topological folding.

4. Let M be an m-dimensional manifold. M is said to be minimal m-dimensional manifold if
the mean curvature vanishes everywhere, i.e., H(o.p) =0 for all p € M ([3]).

5. A subset A of a minimal manifold M is a minimal retraction of M, if there exists a continuous

map r : M — Asuch that ([12]):
)M is open;
i)r(M) = A;

ili)r(a) = a,Va € A4;
r

(
(
(
(

iv)r(M)is minimal manifold.

83. Main Results
Using the Neugebaure-Bcklund transformation, the space-time T take the form [11]

ds®> = dt* —dp? — d2* — p*d ¢? (1)

Using the relationship between the cylindrical and spherical coordinates, the metric be-

comes

ds’ = r2 (sin? @y — cos? 92)@5 — r2sin? 92@? + (cos? By — sin® 92)%2

—r? sin? 6, sin® 92d7<p2 — 47 sin 05 cos OB2dO2dr.

The coordinates of space-time T are:

Yy = \/cl(r, 02) — r2 sin? 0,602

y2 = V4rZ cos20; + k1

Y3 = /12 cos 205 + c3(02)

Yy = \/04(7‘, 01, 6) — 2 sin? 0 sin? fo 2

where c1, k1, c3, ¢4 are the constant of integrations. Applying the transformation

af =y} — a(r,62),
a3 = y3 — ki,

23 = y3 — c3(62),

22 = y2 — c4(r,01,02)

Then, the coordinates of space-time T becomes:
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xq = irsinfa60,

xo = 2r+/cos 20,

x5 = 7v/c0s 202

x, = ir sinf; sin f2¢.

Now, we apply Lagrangian equations

4. or,_ or
ds ' 0G,’  0G;

to find a geodesic which is a subset of the space-time T . Since

=0,i=1,23,4.

1
T = 5{—7’2 08 20205 — 12 sin? 0202 + cos 20572 — 12 sin” 6, sin? fy¢"?

—27 sin 260,041"}

then, the Lagrangian equations for space-time 7" are:

d /

d—( 2sin? 020') + (% sin 6 cos 6y sin” f2¢ 2) = 0 (4)
s

4 (12 cos 20204 + rsin Oar’) + (r? sin 20208 + 12 sin 05 cos 661!

+8in 2057"2 + 72 sin? 6 sin Oy cos H2¢'? + 21 cos 20,051") = 0

4 (cos205r" — rsin260504) + (1 cos 20205 + rsin® 62072+
rsin® 0; sin? 0,02 + sin 205057") = 0
d 2 1.2 102 !
— (r® sin” 61 sin” 03¢") = 0. (7)
ds
From equation (7) we obtain 72 sin? 6 sin® o = constant p. If ;u = 0, we obtain the following

cases:

(i) If r = 0, hence we get the coordinates of space-time T3, which are defined as

Tr1 = 0,%2 = 0,%3 = 0,x4 = 0,
which is a hypersphere Ty, 23 — 23 — 23 — 2% = 0 on the null cone since the distance between
any two different points equal zero, it is a minimal retraction and geodesic.

(ii) If sin26; = 0, we get

z; = 0,25 = 2ry/cos 20y, x4 = r\/cos20y, 2, = 0.

Thus, 2 +3+ 22+ 23=5r% cos 205, which is a hypersphere S; in space-time T’ with z; = 24 = 0.
It is a geodesic and retraction.

(i) If sin® @2 = 0 , then @ = 0 we obtain the following geodesic retraction
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=0,y =2r,23 =7, =0, 23+ a3+ 23— 2 =517
which is the hypersphere So C T with 1 = 24 = 0.
(iv) If ¢’ = 0 this yields the coordinate of T C T given by

r1 = irsinfq01, xo = 2r\/cos 20,5, x3 = ry/cos 205, x4 = 0.

It is worth nothing that x4 = 0 is a hypersurface 75 C T. Hence, we can formulate the following

theorem.

Theorem 1 The retractions of space-time is null geodesic, geodesic hyperspher and hypersur-

face.
Lemma 1 In space-time the minimal retraction induces null-geodesic.
Lemma 2 A minimal geodesic in space-time is a necessary condition for minimal retration.

The deformation retract of the space-time T is defined as

p:TxI—-T

where T is the space-time and I is the closed interval [0,1]. The retraction of the space-time T

is defined as

R:T— Tl,TQ, Sl and Sg.

The deformation retract of space-time T into a geodesic 77 C T is defined by

p(m,t) = (1 —t){ir sinby6;,2r\/cos 26y, 7/cos 205,
irsin 6y sin 626} 4+ t{0,0,0,0}.

where p(m,0) = {irsin 6261, 2r\/cos 205, 7\/cos 202, ir sin 0y sin O2¢}, p(m, 1) = {0,0,0,0}.

The deformation retract of space-time T into a geodesic To C T is defined as

p(m,t) = (1 —t){irsinbq6,, 2r\/cos 205, r\/cos 205, ir sin 0y sin 020}
+ t{irsinﬁgﬁl,2T\/cos292,r\/cos292,0}.

The deformation retract of space-time T into a geodesic S; C T is defined by

p(m,t) = (1 —t){irsinba6y,2r\/cos 20z, 7\/cos 205, ir sin 0, sin Oy}
+ t{O,2r\/605292,r\/605292,0}.
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The deformation retract of space-time 7T into a geodesic Sy C T is defined as

p(m,t) = (1 — t){ir sin 6261, 2r\/cos 205, 7/ cos 205, ir sin 0, sin B¢} + {0, 2r, r, 0}.

Now we are going to discuss the folding & of the space-time T'. Let & : T — T, where

s(331,3?2,3?3%4) = ($1,$2,$3,|$4|) (8)

An isometric folding of the space-time T into itself may be defined as

S {irsin 020, , 2r\/cos 205, r\/cos 203, ir sin 0y sin ¢}
—  {irsinfy6,, 2r\/cos 265, r\/cos 205, |ir sin 0y sin O2¢| }.

The deformation retract of the folded space-time 7" into the folded geodesic T} is

s {irsin 6201, 27“\/(305 205, r\/cos 205, |ir sin 0y sin 62|} x T
— {irsin 661, 2r\/cos 205, 7/ cos 20, |ir sin 0 sin O] }

with

ps(m,t) = (1 — t){irsin 6261, 2r\/cos 205, 7/ cos 205, |ir sin 0y sin B2¢|} + £{0,0, 0, 0}.

The deformation retract of the folded space-time 7" into the folded geodesicTs is

ps(m,t) = (1 —t){irsinfa0y,2r\/cos 20, r+/cos 20, |ir sin 6, sin O]}
+ t{irsin9291,2T\/cos292,r\/cos292,0}.

The deformation retract of the folded space-time 7" into the folded geodesic S is

ps(m,t) = (1 —t){irsinby0y,2r\/cos 20, r\/cos 20, |ir sin ; sin O¢|}
+ t{O,2r\/605292,r\/605292,0}.

The deformation retract of the folded space-time T into the folded geodesic S5 is

ps(m,t) = (1 —t){irsinby0y,2r\/cos 20, r\/cos 20, |ir sin ; sin O¢|}
+ t{0,2r,r,0}

Then, the following theorem has been proved.

Theorem 2 Under the defined folding, the deformation retract of the folded space-time into

the folded geodesics is the same as the deformation retract of space-time into the geodesics.
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Now, let the folding be defined as:

Q" (21, 22,23, 24) = (2, |22|, T3, T4). 9)

The isometric folded space-time $(T') is

R = {irsin 6,0, }QT\/COS 202} .7/ cos 20, ir sin 0, sin 50}

Hence, we can formulate the following theorem.

Theorem 3 The deformation retract of the folded space-time ,i.e., p<S*(T') is different from
the deformation retract of space-time under condition (9).

Now let & : T™ — T™,

o S (T") — S9(T™),

Sz 1 32(Su(T7)) — 2 (Sa(TT)), -+

Sn t Sn-1(Sn—2.(S1(T7)).)) = Sn—1(Sn—2...(S21(T7))...)),
nlirr;ogn,l(gn,g. (31(T™))...)) = n — 1 dimensional space-time 7" 1.

Let hy : TP~ — 771,

h by (T™1) — hy(T7),

hs : ha(hy(T"1)) — ho(hy (T 1), ...,

B = Bt (Bon—s (B (T71)).22)) = Bt (Ayn—s (A1 (T 1))...),

im Ay (R 2 hn—1 (hm—2 .. (h1 (T~ 1))...)) = n — 2 dimensional space-time T"~2.

Consequently, lim lim lim ..ks(hn,(3,(T"))) = O-dimensional space-time. Hence, we

S§—00M—00N—00

can formulate the following theorem.

Theorem 4 The end of the limits of the folding of space-time T™ is a 0-dimensional geodesic,

it 1s a minimal retraction.

Now let f; be the foldings and r; be the retractions. then we have

1 1 s el
lim f;
" L)Tln LTQ" — T m J "1,
r% 'r% limri1 _1
™m—1r =13 — - T | — T
2 2 se2
lim f;
R e i
1 2 -
r T lim r;
Tn—1 1 T"_l 2, T"_l Y A gorn=2 ..
1 2 n—1 ) )
T > lim f
T! f_1>T11 f_2,T21 — T m 70,

r r lim f*
y AL R S it o )

Then the end of the limits of foldings = the limit of retractions = 0-dimensional space-time.
Whence, the following theorem has been proved.
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Theorem 5 In space-time the end of the limits of foldings of T™ into itself coincides with the
minimal retraction.
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Abstract: A Cayley graph is constructed out of a group I' and its generating set X and it is
denoted by C(T", X). A Smarandachely n-Cayley graph is defined to be G = ZC(T", X ), where
V(G) = T x Zn and B(G) = {((z,0), (4, )a (2, 1), (1:2)as -+ , (2,0 — 2), (g0 — 1)+
z,y € I'a € X such that y = x % a}. Particularly, a Smarandachely 2-Cayley graph is
called as a Bi-Cayley graph, denoted by BC(T", X). Necessary and sufficient conditions for
the existence of an efficient dominating set and an efficient open dominating set in Bi-Cayley

graphs are determined.

Key Words: Cayley graphs, Smarandachely n-Cayley graph, Bi-Cayley graphs, efficient

domination, efficient open domination, covering of a graph.

AMS(2000): 05C69.

§1. Introduction

The terminology and notation in this paper follows that found in [3]. The fact that Cayley
graphs are excellent models for interconnection networks, investigated in connection with par-
allel processing and distributed computation. The concept of domination for Cayley graphs
has been studied by various authors and one can refer to [2, 4, 6]. I.J. Dejter, O. Serra [2],
J.Huang, J-M. Xu [4] obtained some results on efficient dominating sets for Cayley graphs.
The existence of independent perfect dominating sets in Cayley graphs was studied by J.Lee
[6]. Tamizh Chelvam and Rani [8-10], obtained the domination, independent domination, total
domination and connected domination numbers for some Cayley graphs constructed on Z,, for
some generating set of Z,,.

Let (T, %) be a group with e as the identity and X be a symmetric generating set(if a € X,
then a=! € X) with e ¢ X. The Cayley graph G = C(I', X), where V(G) =T and E(G) =
{(z,y)a/z,y € V(G),a € X such that y = z*a}. Since X is a generating set for I', C(T', X ) is a
connected and regular graph of degree |X|. The Bi-Cayley graph is defined as G = BC(T, X),
where V(G) =T x {0,1} and E(G) = {((2,0), (y,1))o/z,y € I';a € X such that y = x *x a}.
Now the operation + is defined by (z,0) + (y,1) = (z *y,1) and (z,0) + (y,0) = (z * y,0).

IReceived Oct.9, 2009. Accepted Nov. 20, 2009.
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The Smarandachely n-Cayley graph is defined to be G = ZC(T', X ), where V(G) =T x Z,, and
E(G) ={((2,0), (y,1))a, (2, 1), (¥,2))a, -+, ((x,n = 2),(y,n — 1))y : 2,y € I',a € X such that
y = x*a}. When n = 2, the Smarandachely n-Cayley graphs are called as Bi-Cayley graphs.
By the definition of Bi-Cayley graph, it is a regular graph of degree | X|.

A set S C V of vertices in a graph G = (V, E) is called a dominating set if every vertex
v € V — S is adjacent to an element u of S. The domination number v(G) is the minimum
cardinality among all the dominating sets in G [3] and a corresponding dominating set is
called a 7-set. A dominating set S is called an efficient dominating set if for every vertex
v € V,|[N[v]nS| = 1. Note that if S is an efficient dominating set then {N[v] : v € S} is a
partition of V(G) and if G has an efficient dominating set, then all efficient dominating sets
in G have the same cardinality namely v(G). A set S C V is called a total dominating set
if every vertex v € V is adjacent to an element u(# v) of S. The total domination number
7(G) of G equals the minimum cardinality among all the total dominating sets in G [3] and a
corresponding total dominating set is called a y;-set. A dominating set S is called an efficient
open dominating set if for every vertex v € V, |[N(v) N S| = 1.

A graph G is called covering of G with projection f : G — G if there is a surjection
f:V(G) — V(G) such that f In@@) : N(0) — N(v) is a bijection for any vertex v € V(G) and
¥ € f~1(v). Also the projection f : G — G is said to be an n-fold covering if f is n—to-one.

In this paper, we prove that the Bi-Cayley graph obtained from Cayley graph for an Abelian
group (I, %) has an efficient dominating set if and only if it is a covering of the graph K,, x Ko.
It is also proved that the Bi-Cayley graph obtained from Cayley graph for an Abelian group

(T, %) has an efficient open dominating set if and only if it is a covering of the graph K, ,,.

Theorem 1.1([4]) Let G be a k—regular graph. Then v(G) > “g(ﬁ” , with the inequality if and

only if G has an efficient dominating set.

Theorem 1.2([6]) Let p : G — G be a covering and let S be a perfect dominating set of G.
The p~1(S) is a perfect dominating set of G. Moreover, if S is independent, then p~'(S) is

independent.

Theorem 1.3([3]) If G has an efficient open dominating set S, then |S| = %(G) and all

efficient open dominating sets have the same cardinality.

§2. Efficient Domination and Bi-Cayley Graphs

In this section, we find the necessary and sufficient condition for the existence of an efficient
dominating set in BC(I', X). Since BC(I', X) is regular bi-partite graph, in BC(I", X) every
efficient dominating set S is of the form S = AU B where AC ('x0)NSand BC (I'x1)NS
with [A| = |B| = 151,

Through out this section, the vertex set of V (K, x Ks) is taken to be {a1, az, - ,an, b1, ba,
-+ by} such that ({a1, a2, -+ ,an}), ({b1,b2, -+ ,b,}) are null graphs and (a;, b;) € E(K, x K»)
if and only if 7 # j.
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Lemma 2.1 Let S1,52, -, S, be n efficient dominating sets of BC(I', X)) which are mutually

pairwise disjoint. Then the induced subgraph G =< S; U SoU---U S, > is a m—fold covering

graph of the graph G = K,, X Ko, where m = |5;‘ foreachi=1,2,--- n.

Proof Note that in a graph all the efficient dominating sets have the same cardinality.
Since S; is efficient, S1 = A; U By where 47 C (I' x 0) N Sy and By C (I' x 1) N Sy with
|A1| = |B1] = % Define A; = N(B1)NS; and B; = N(A;)NS; for 2 <4 < n. Note that
A;cTx0and B;CTx1forl1<i<nand G=< A UB;UAyUBsU---UA, UB, >.

Let V(G) = {a1,a2, - ,an,b1,b2, -+ ,b,}. Define f : G — G by f(s) =a; if s € A
and f(s) = b; if s € By for 1 <i <n. Let v € V(G). Suppose v = a;. Then N(v) =
{b1,b2, ..., bi—1,bit1,bip2, by} and f71(v) = A;. Let © € f~1(v). Since S;’s are efficient,
N@) = {61,052, -, Bi=1,Bi+1, - ,Bn} where 3; € Bjfor 1 < j<i—landi+1<j<n.
By the definition of f, we have f(8;) = b;. Thus f : N(¥) — N(v) is a bijection when
v = a;. Similarly one can prove that f : N(¢) — N(v) is a bijection when v = b;. Since
‘S—;l =|A;| =|Bi| =m for all 1 <i<mn, fis an m—fold covering of the graph K,, x Ko. O

Theorem 2.2 Let G = BC(T', X) and n be a positive integer. Then G is a covering graph of
K, x Ky if and only if G has a vertex partition of n efficient dominating sets.

Proof Suppose G is a covering of K, x K. Since {a;,b;} is an efficient dominating
set in K, x Ky, by Theorem 1.2, we have f~1({a;,b;}) is an efficient dominating set in G
for 1 < i < n. Since f is a function, f~'({a;,b;}) N f~*({a;,b;}) = 0 for i # j. Hence
{f'({ai,b;}) : 1 < i < n} is a vertex partition of efficient dominating sets in G. The other

part follows from Lemma 2.1. O

Lemma 2.3 Let X = {x1,22, -+ ,x,} be a symmetric generating set for a group T' and let
S be an efficient dominating set for the Bi-Cayley graph G = BC(T', X). Then we have the
following:

(a) For each 1 <1i <mn,S+ (z;,0) is an efficient dominating set.
(b) {S,S + (21,0), 5 + (x2,0),--- , S + (xn,0)} is a vertex partition in BC(T', X).

Proof (a) Let (v,0) € V(G). If (z;' % v,0) € S, then (v,0) € S+ (x;,0). Suppose
1%v,0) ¢ S. Since S is efficient, there exists unique (s,1) € S such that s = (z; !
some x € X. That is x;xs = v*x. Hence the vertex (v, 0) is dominated by (x;xs,1) € S+ (x;,0).
Thus in all the cases we have (v,0) € N[S + (;,0)]. Similarly when (v,1) € V(G), one can
prove that (v,1) € N[S + (z;,0)]. Thus S+ (x;,0) is a dominating set for 1 < i < n. Since S is
efficient and |S + (x;,0)| = |S|, by Theorem 1.1, we have S + (x;,0) is an efficient dominating
set for 1 <17 <n.

(b) Since S is a dominating set, for every (u,0) € V(G), we have (u,0) € S or (u,0) is
adjacent to some vertex (s,1) € S and so u = s * z; for some z; € X. Similar thing is holds for
(u,1) € V(G). This means that V(G) = S U (S + (21,0)) U (S + (22,0)) U--- U (S + (zp,0)).
Since G is |X|—regular and S is an efficient dominating set, |S| = % That is 2|T'| =
(IX| 4+ 1)|S|. Since |S| = |S + (x1,0)] = |S + (z2,0)] = --- = |S + (2, 0)|, one can conclude

(x *v)*x for
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that {S,S + (21,0),S + (22,0),- -+, S+ (x,,0)} is a vertex partition of G. O

From Lemmas 2.1, 2.3 one can have the following:

Corollary 2.4 Let X = {x1,22, -+ ,2,} be a symmetric generating set for a group I' and let S
be an efficient dominating set in BC(T', X). If (z;,0)+ S = S+ (x;,0) for each 1 < i <n, then
there exist a covering f : BC(T', X) — Kny1 x Ky such that S,S + (21,0), S + (22,0),---, S +
(xn,0) are the fibers of {a;,b;} under the map f.

Now we define the following: For S C V(BC(T, X)), define S° = S U {(e,0)}.

Theorem 2.5 Let X = {x1,22, - ,2,} be a symmetric generating set for a group T' and let
M be a normal subset of T and S = (M x 0) U (M x 1). Then the following are equivalent.
(a) S is an efficient dominating set in BC(T, X).
(b) There exists a covering f : BC(T', X) — K,11 x Ko such that f~1({a;,b;}) = S for
some 1l <3 <n.

(c) 1S = 2} and S0V[S + (X x 0)° + (X x 0)°) — {(e,0)})] = 0.

Proof (a) = (b) : Since M is a normal subset, we have (z;,0) +S = S + (x;,0) for
1 <4 < n and so the proof follows from Corollary 2.4.

(b) = (a) : Since {a;,b;} is an efficient dominating set in K, x Ko, the proof follows from
Theorem 1.2.

(a) = (c) : Since S is an efficient dominating set and G is | X |—regular, the fact |S| = \>2(||F+‘1

follows from Theorem 1.1. Suppose SN[S+ (((X x 0)?+ (X x0)°) —{(e,0)})] # @ . Then there
exist (s,0)(or (s,1)) € S such that (s,0) = (s1,0) + (x,0) + (x1,0) with z,z; € X,z # 27" and
(51,0) (or (s1,1)) € S. Since z # a7 ", we have s # s1. Thus sxz~! = sy %2 and so (s * 21, 1)

is adjacent to two vertices (s,0), (s1,0) € S, a contradiction to S is efficient.

(¢) = (a) : Let z;,z; € X with z; # ;. Suppose (S + (2;,0)) N (S + (x;,0)) # 0. Let
a€ (S+(z;,0))N(S+(z;,0)). Then a = (s1,0)+ (x;,0) = (s2,0) + (2;,0) or (s1,1)+ (2;,0) =
(s2,1) + (x;,0). Hence s1 * x; = s2 % 2; and s0 §1 = s * &j * x{l. Since xz; # x;, we have
x; w2 # e. Thus (s1,0) € SN[S+ (((X x0)°+ (X x0)°) —{(e,0)})], a contradiction. Suppose
SN(S+(x,0)) # 0 for some x € X. Then (s,0) = (s1,0)+(z,0) or (s,1) = (s1,1)+(x,0). Thus
(5,0) = (51,0) + (x,0) + (e,0) or (s,1) = (s1,1) + (z,0) + (e,0). Since z # e, (5,0) € SN[S +
(X x0)°+(X x0)%)—{(e,0)})], a contradiction. Thus SU{S+(z;,0) : 1 <14 < n} is a collection

of pairwise disjoint sets. Now N[S] = [JN[s] = U[s+ (X x0)°] = U [S + (z,0)].
ses ses (z,0)€(X x0)°

Since S + (z,0)| = [S], [N[S]] = IS||(X x 0)°] = |S|(|X|+1) = S|(*l§) = 27| Thus S is a

dominating set. Since |S| = ‘ )2(“111, by Theorem 1.1, S is an efficient dominating set. g

83. Efficient Open Domination and Bi-Cayley Graphs

In this section, we find the necessary and sufficient condition for the existence of an efficient

open dominating set in BC(I", X'). Note that if S is an efficient open dominating set of a graph
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G, then {N(v) : v € S} is a partition of V(G) and if G has an efficient open dominating set,
then all efficient open dominating sets in G have the same cardinality namely 7;(G).
Through out this section, the vertex set of K, ,, is taken as {c1,¢2, -+ ,¢n,d1,da, - ,dn}

where no two ¢;’s are adjacent and no two d;’s are adjacent.

Remark 3.1 If S is an efficient open dominating set in G = BC(T', X), then |S| is even and
we can write S = C' U D where |C| = |D| = @ and every edge of (C'U D) has one end in C
and another end in D. Note that if G is a k—regular graph, then v¢(G) > @ and equality

holds if and only if G has an efficient open dominating set.

Lemma 3.1 Let 51,859, ,S, be n mutually pairwise disjoint efficient open dominating sets
of BC(I', X). Then the induced subgraph G= (S1USyU---US,) is a m—fold covering graph
of G = K, where m = |5;‘ for eachi=1,2,--- n.

Proof Since S; is efficient open for each 1 < i < n, we have S; = C;UD; where C; C (I'x0)N
S; and D; C (T'x1)NS; with |C;| = |D;| = % and every edge in the induced subgraph (C; U D;)
has one end in C; and other in D;. Note that G = (ChUD;UCUDsU---UC, UD,). Let
V(G) ={c1,¢2, - ,cn,di,day -+ ,dp}.

Deﬁnef:G—>Gbyf(s)zciifsEC’iandf(s):diifsEDiforl§i§n. Let
v € V(G). Suppose v = ¢;. Then N(v) = {d1,da,...,d,} and f~1(v) = C;. Let o € f~(v).
Since S;’s are efficient open, N(0) = {1,082, -, B} where 8; € D; for 1 < j < n. By the
definition of f, we have f(8;) = d;. Thus f : N(0) — N(v) is a bijection when v = ¢;. Similarly
one can prove that f : N(0) — N(v) is a bijection when v = d;. Since |ST‘ =|Ci| =|Di| =m
for all 1 <i <n, f is an m—fold covering of the graph K, . [l

Remark 3.3 Let f: G — G be a covering and S be an efficient open dominating set of G.
By the definition of an efficient open domination, S is perfect and so by Theorem 1.2, f~1(.9)
is perfect. That is |[N(3) N f~1(S)| = 1 for all 5 € G — f~1(S). Let © € f~1(S). Then
f(©) =v € S. Since S is an efficient open dominating set, there exist unique w € S such that v
and w are adjacent. Since f|n(s) : N(0) — N(v) is a bijection, @ = f~'(w) is the only vertex
adjacent to © in f~1(S). That is |N(2) N f~1(9)| =1 for all & € f~1(S). Hence inverse image
of an efficient open dominating set under a covering function is an efficient open dominating
set.

Theorem 3.4 Let G = BC(T', X) and n be a positive integer. Then G is a covering of K, n if
and only if G has a vertex partition of efficient open dominating sets.

Proof Suppose G is a covering graph of K, ,,. Since the pair {c;,d;} is an efficient open
dominating set in K, ,,, by Remark 3.3, f~({¢;,d;}) is an efficient open dominating set in G
for 1 <i < n. Since f is a function, {f~!({c;,d;}) : 1 <14 < n} is a partition of efficient open
dominating sets in G. The other part follows from Lemma 3.2. O

Lemma 3.5 Let X = {x1,22, - ,Tn} be a symmetric generating set for a group T' and let S
be an efficient open dominating set for the Bi-Cayley graph G = BC(I', X). Then we have the
following:
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(a) For each 1 < i <mn,S+ (z;,0) is an efficient open dominating set.
(b) {S + (21,0), 5 + (22,0), -+, S+ (xn,0)} is a vertex partition of BC(T', X).

Proof (a) Let (v,0) € V(G). Consider the vertex (z

open dominating set, there exists (s,1) € S such that s

1% v,0) € V(G). Since S is an
= (x;' % v) %z for some 2 € X.
That is z; * s = v * . Hence the vertex (v,0) is dominated by (z; * s,1) € S+ (x;,0) and so
(v,0) € N(S+(x;,0)). Similarly when (v, 1) € V(G), one can prove that (v,1) € N(S+ (z;,0)).
Thus S+ (z;,0) is an open dominating set for 1 <4 < n. Since S is an efficient open dominating
set and |S| = |S + (z4,0)|, by Remark 3.1, S + (z;,0) is an efficient open dominating set for
1<1<n.

(b) Since S is an open dominating set, for every (u,0) € V(G) there exists (s,1) € S such
that u = s * x; for some z; € X. Similar thing is holds for (u,1) € V(G). This means that
V(G) = (S + (21,0)) U(S + (22,0)) U--- U (S + (x,0)). Since G is | X|—regular and S is an
efficient open dominating set, |S| = % That is 2|I'| = | X]| |S]. Since |S| = |S + (z1,0)]
|S+(x2,0)| = -+ = |S+(2n, 0)], one can conclude that {S, S+(x1,0), S+(z2,0), - , S+ (zn,0)
is a vertex partition of G.

0o ==

From the proof of Lemma 3.2 and by Lemma 3.5, the following corollary follows:

Corollary 3.6 Let X = {x1,x2, -+ ,2,} be a symmetric generating set for a group I' and let S
be an efficient dominating set in BC(I', X). If (x;,0)+S = S+ (x;,0) for each 1 <i <n, then
there exists a covering f : BC(T', X) — K, such that S + (21,0),S + (z2,0),--- , S + (z4,0)
are the fibers of {c;,d;} under the map f.

Theorem 3.7 Let X = {x1,22, -+ ,Zn} be a symmetric generating set for a group T, M be a
normal subset of T' and S = (M x 0) U (M x 1). Then the following are equivalent.

(a) S is an efficient open dominating set in BC(T', X).

(b) There exists a covering f : BCI,X) — K, such that f~'({c;,d;})
=S for some 1 <i <n.

(¢)1S] = 2¢] and SN [S+ (X x 0) + (X x 0)) = {(e,0)})] = 0.

Proof (a) = (b) : Proof follows from Corollary 3.6.

(b) = (a) : Since {c;,d;} is an efficient open dominating set in K, ,,, the proof follows from
Remark 3.3.

(a) = (¢) : Since S is an efficient open and G is |X|—regular, the fact |S| = Q‘I)?” follows
from Remark 3.1. Suppose SN [S + (((X x0)+ (X x0)) —{(e,;0)})] # 0 . Then there exist
(5,0)(or (s,1)) € S such that (s,0) = (s1,0)+ (z,0)+ (z1,0) with 2,2, € X,z # 7" and (s1,0)
(or (s1,1)) € S. Since x # xl_l, we have s # s1. Since s = sy % x * x1, we have s* ™! = s * 11
and so (s1+x1, 1) is adjacent with two vertices (s, 0), (s1,0) € S, a contradiction to S is efficient

open.

(¢) = (a) : Let z;,z; € X with z; # ;. Suppose (S + (2;,0)) N (S + (x;,0)) # 0. Let
a € (S+(xi,0))N(S+(z;,0)). Thena = (51,0)+(z4,0) = (s2,0)+(z;,0) or a = (s1,1)+(x;,0) =
(s2,1) + (x4,0). Since x; * x L2£e (51,0) € SN[SH+ (X x0) + (X x0) — {(e,0)})], a
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contradiction. Thus {S + (z;,0) : 1 < i < n} is a collection of pairwise disjoint sets. Now

N(S) = UN(s) = U[s+ (X x0)] = U [S + (x,0)]. Since |S + (z;,0)] = |5],
ses seS (z,0)e(X x0)
IN(S)| = |S||(X x 0)] =|5]|X]| = |S|(%) = 2|T'|. Thus S is an open dominating set. Since
= 757, one can conclude that S is an efficient open dominating set.
S| =2 lude that S is an effici dominati O
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Abstract: A graph G = (V, E) is called to be Smarandachely uniform k-graph for an integer
k > 1 if there exists M1, Ma, -+, M, C V(G) such that fa,(u) = {d(u,v) : v € M;} for
Vu € V(G)— M, is independent of the choice of u € V(G)— M; and integer 4, 1 < ¢ < k. Each
such set M;, 1 <i <k is called a CDPU set [6, 7]. Particularly, for kK = 1, a Smarandachely
uniform 1-graph is abbreviated to a complementary distance pattern uniform graph, i.e.,

CDPU graphs. This paper studies independent CDPU graphs.

Key Words: Smarandachely uniform k-graph, complementary distance pattern uniform,
independent CDPU.

AMS(2000): 05C22.

§1. Introduction

For all terminology and notation in graph theory, not defined specifically in this paper, we refer
the reader to Harary [4]. Unless mentioned otherwise, all the graphs considered in this paper
are simple, self-loop-free and finite.

Let G = (V, E) represent the structure of a chemical molecule. Often, a topological index
(TI), derived as an invariant of G, is used to represent a chemical property of the molecule.
There are a number of TIs based on distance concepts in graphs [5] and some of them could
be designed using distance patterns of vertices in a graph. There are strong indications in the
literature cited above that the notion of CDPU sets in G could be used to design a class of T1s

that represent certain stereochemical properties of the molecule.

Definition 1.1([6]) Let G = (V, E) be a (p,q) graph and M be any non-empty subset of V(G).
Each vertex u in G is associated with the set fa(u) = {d(u,v) : v € M}, where d(u,v) denotes

the usual distance between u and v in G, called the M -distance pattern of u.

1Received Oct.9, 2009. Accepted Nov. 24, 2009.
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A graph G = (V, E) is called to be Smarandachely uniform k-graph for an integer k > 1 if
there exists My, Ma, -+ , My, C V(G) such that fu, (u) = {d(u,v) : v € M;} forVu € V(G)—M;
is independent of the choice of uw € V(G) — M; and integer i, 1 < i < k. Fach such set
M;, 1 <i<kis called a CDPU set. Particularly, for k =1, a Smarandachely uniform 1-graph

is abbreviated to a complementary distance pattern uniform graph, i.e., CDPU graphs. The
least cardinality of the CDPU set is called the CDPU number denoted by o(QG).

The following are some of the results used in this paper.

Theorem 1.2([7]) Every connected graph has a CDPU set.

Definition 1.3([7]) The least cardinality of CDPU set in G is called the CDPU number of G,
denoted o(G).

Remark 1.4([7]) Let G be a connected graph of order p and let (e1,e2,...,ex) be the non
decreasing sequence of eccentricities of its vertices. Let M consists of the vertices with eccen-
tricities eq, eq,...,ex—1 and let |V — M| = p —m where |M| = m. Then ¢(G) < m, since all
the vertices in V' — M have far(v) ={1,2,...,ep—1}.

Theorem 1.5([7]) A graph G has o(G) = 1 if and only if G has at least one vertex of full

degree.

Corollary 1.6([7]) For any positive integer n, o(G + K,) = 1.

Theorem 1.7([7]) For any integer n, o(P,) =n — 2.

Theorem 1.8([7]) For all integers a1 > az > -+ > an > 2, 0(Kqy a9,....an) = N

Theorem 1.9([7]) o(Cy) =n—2, if n is odd and
o(Cr) =n/2, if n > 8 is even. Also o(Cy) = o(Cs) = 2.

Theorem 1.10([7]) If 0(G1) = k1 and 0(G2) = ka, then o(G1 + G2) = min(ky, k2).

Theorem 1.11([7]) Let T be a CDPU tree. Then o(T) =1 if and only if T is isomorphic to
PQ,Pg or Kl,n-

Theorem 1.12([7]) The central subgraph of a mazimal outerplanar graph has CDPU number
1 or3.

Remark 1.13([7]) For a graph G which is not self centered, max fas(v) = diam(G) — 1.

Theorem 1.14([7]) The shadow graph of a complete graph K, has exactly two o(K,) disjoint
CDPU sets.

The following were the problems identified by B. D. Acharya [6, 7).

Problem 1.15 Characterize graphs G in which every minimal CDPU-set is independent.

Problem 1.16 What is the mazimum cardinality of a minimal CDPU set in G.
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Problem 1.17 Determine whether every graph has an independent CDPU-set.
Problem 1.18 Characterize minimal CDPU-set.
Fig.1 following depicts an independent CDPU graph.

U1 V2

{1} o

o 0{1}

V4 U3

Fig.1: An independent CDPU graph with M = {vq,v4}

82. Main Results

Definition 2.1 A graph G is called an Independent CDPU graph if there exists an independent
CDPU set for G.

Following two observations are immediate.

Observations 2.2 Complete graphs are independent CDPU.

Observations 2.3 Star graph K , is an Independent CDPU graph.

Proposition 2.4 C,, with n even is an Independent CDPU graph.

Proof Let C, be a cycle on n vertices and V(C,) = {v1,v2,...,v,}, where n is even.
Choose M as the set of alternate vertices on C,, say, {vs, v4,...,v,}. Then,
fu(vi) ={1,3,5,....m—1} fori =1,3,...,n— 1, if C,, = 2m and m is even and
fu(vi) ={1,3,5,...,m}, fori =1,3,...,n— 1 if C,, = 2m and m odd. Therefore, fps(v;) is
identical depending on whether m is odd or even. Hence, the alternate vertices {ve,vq, ..., 05}
forms a CDPU set M. Also all the vertices in M are non-adjacent. Hence C,,,n even is an
independent CDPU graph. O

Theorem 2.5 A cycle C, is an independent CDPU graph if and only if n is even.

Proof Let C, be a cycle on n vertices. Suppose n is even. Then from Proposition 2.4, C,,
is an independent CDPU graph.

Conversely, suppose that C,, is an independent CDPU graph. That is, there exist vertices
in M such that every pair of vertices are non adjacent. We have to prove that n is even.
Suppose n is odd. Then from Theorem 1.9, o(C,,) = n — 2, which implies that |M| > n — 2.
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But from n vertices, we cannot have n — 2 (or more) vertices which are non-adjacent. (]

Theorem 2.6 A graph G which contains a full degree vertex is an independent CDPU.

Proof Let G be a graph which contains a full degree vertex v. Then, from Theorem 1.5,
G is CDPU with CDPU set M = {v}. Also M is independent. Therefore, G is an independent
CDPU. 0

Remark 2.7 If the CDPU number of a graph G is 1, then clearly G is independent CDPU.

Theorem 2.8 A complete n-partite graph G is an independent CDPU graph for any n.

Proof Let G = Kg, a,,....a,, € a complete n-partite graph. Then, V(G) can be partitioned
into n subsets Vi, Va,...,V, where |V1| = a1, |Va| = aq,...,|VL| = a,. Take all the vertices
_____ a, tO constitute the set M. Since each element of a
partite set is non-adjacent to the other vertices in it and is adjacent to all other partite sets,
we get, far(u) = {1},VYu € V(K4 a5,....an) — M. Hence, the complete n-partite graph G is an

independent CDPU graph for any n. (]

Corollary 2.9 Complete n-partite graphs have n distinct independent CDPU sets.

Proof Let G = Kg, a,,....a,, b€ a complete n-partite graph. Then, V(G) can be partitioned
into n subsets V1, Va, ..., V,, where |Vi| = a1, |V2| = aq,...,|V,| = a,. Take M; as the vertices
corresponding to the partite set V7, My as the vertices corresponding to the partite set V5, ...,
M; corresponds to the vertices of the partite set V;, ..., M, corresponds to the vertices of the
partite set V,,. Then from Theorem 2.8, each M;,1 < i < n form a CDPU set. Hence there are
n distinct CDPU sets. O

Theorem 2.10 A path P, is an independent CDPU graph if and only if n = 2,3,4,5.

1 {1}

e ——— o

{1} (1,2} {1,2}
U1 2 U1 V2 U3 U1 V2 U3 V4
PQ P3 P4

{1,3}

U1 V2 U3 V4 Us

o o

Fig.2: An independent CDPU paths

Proof Let P, be a path on n vertices and V(P,) = {v1,v2,...,v,}. Whenn =2 and 3, P,

and P3 contains a vertex of full degree and hence from Theorem 2.6, P> and P are independent
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CDPU. When n = 4, take M = {v1,v4}. Then fa(v2) = far(vs) = {1,2}, whence M is
independent CDPU. When n = 5, let V(G) = {v1,v2,...,v5} and choose M = {v1,vs, vs}.
Then, fu(v2) = fam(ve) = {1,3}. Hence, Ps is an independent CDPU graph.

Conversely, suppose that P, is an independent CDPU graph. That is, there exists a CDPU
set M such that no two of the vertices are adjacent. From n vertices, we can have at most

5 or "T“ vertices which are non adjacent. From Theorem 1.7, o(P,) = n — 2,n > 3. When

n > 6, we cannot choose a CDPU set M such that n — 2 vertices are non-adjacent. Hence P,
is independent CDPU only for n = 2,3,4 and 5. O

0010

1010
° {1’3}

Fig3 : Q4

Theorem 2.11 n-cube Q,, is an independent CDPU graph with |[M| = 2"~1.

Proof We have @,, = K2 X @,—1 and has 2" vertices which may be labeled aias ... an,
where each a; is either 0 or 1. Also two points in @), are adjacent if their binary representations
differ at exactly one place. Take M as the set of all vertices whose binary representation differ
at two places. Clearly the vertices in M are non adjacent and also maximal. We have to check
whether M is CDPU. For let M = {v1,vs,...,v2n_1}. Consider a vertex v; which does not
belong to M. Clearly v, is adjacent to a vertex v; in M. Hence 1 € fas(v;). Then, since v; is in
M, v; is adjacent to a vertex vi not in M. Hence 2 does not belong to far(v;). Since vy is not
an element of M and vy, is adjacent to a vertex v; in M, 3 € fu(v;). Proceeding in the same
manner, we get far(v;) ={1,3,...,n — 1}. Hence @, is independent CDPU with |M| = % O

Theorem 2.12 Ladder P, x Ky is an independent CDPU graph if and only if n < 4.

Proof First we have to prove that P, x K is an independent CDPU graph for n < 4.
When n = 2, take M = {ve,v4}, so that fas(v;) = {1} for i =1, 3.



68 Germina K.A. and Beena Koshy

When n = 3, take M = {v1,v4}, so that far(v;) = {1,2}, for i = 2,4, 6.
When n = 4, take M = {v1, v3,vs,v7}, so that far(v;) = {1,3} for i = 2,4, 6,8. Therefore,
P, x K5 is an independent CDPU graph for n < 4.

U1 V2 U1 V2 U3
L]

{1,2}

1070 o .

{1,2}
{1,2}

{1,2}

QO — 0 1 [ ] [ ] o
Vg U3 Ve Vs Vg
G1 Go
V1 ] U7 Ve
o o . { 1 ’3}

11,3}

(1.3} 1,3

o ) o

V2 U3 V4 Us

G3

Fig.4: P, x Ky forn <4

Conversely, suppose that P, x K5 is an independent CDPU graph. We have to prove that
n < 4. If possible, suppose n = k > 5. In P, x Ks, since the number of vertices is even, and
the vertices in P, x Ky forms a Hamiltonian cycle, then the only possibility of M to be an
independent CDPU set is to choose M as the set of all alternate vertices of the Hamiltonian
cycle. Clearly, in this case M is a maximal independent set. Denote My = {v1,vs,...,van_1}

and My = {vg,v4,...,v2,}. Consider M1 = {va,v4,...,0i,..., 020}
Case 1 n is odd.

In this case, far (v1) = {1,3,...,n}. Since n is odd we have two central vertices, say, v;
and v; in P, x K. Since v; and v; are of the same eccentricity and M; is a maximal independent
set, v; does not belong to Mi. Then, far, (v;) = {1,3,..., 21},

Thus, far, (v1) # far, (vj). Hence M, is not a CDPU.

Case 2 n is even.

In this case, fa, (v1) = {1,3,...,n — 1}. Since n is even, there are four central vertices
Vi, V5, Uk, U in P, X Ko. Clearly the graph induced by T' = {v;,v;,vg, v} is a cycle on four
vertices. Since M; is maximal and consists of the alternate vertices of P, x Ky, v;,v; should
necessarily be outside M;. Thus, far, (vj) = {1,3,...,5}.

Thus, far, (v1) # far, (vj). Hence My is not a CDPU.

Therefore P, x K5 is not independent CDPU for n > 5. Hence the theorem. O

Theorem 2.13 If Gy and G2 are independent CDPU graphs, then G1 + Go is also an inde-
pendent CDPU graph.
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Proof Since G; and Go are independent CDPU graphs, there exist My C V(G1) and
My C V(G2) such that no two vertices in M7 (and in M») are adjacent. Now, in G + G, every
vertex of G is adjacent to every vertices of G3. Then clearly, independent CDPU set M; of
G1 (or Mj of G2) is an independent CDPU set for G; + Go. Hence the theorem. O

Remark 2.14 If G; and G5 are independent CDPU graphs, then the cartesian product G x G2
need not have an independent CDPU set. But G; x G; is independent CDPU for i = 1,2 as
illustrated in Fig.5.

N 2}
VAN

g .

{1} o +{1}
Gy Go x Gy G x Gy

Fig.5

Definition 2.15 An independent set that is not a proper subset of any independent set of G is
called mazimal independent set of G. The number of vertices in the largest independent set of

G is called the independence number of G and is denoted by B(G).

83. Independence CDPU Number

The least cardinality of the independent cdpu set in G is called the independent CDPU number
of G, denoted by ¢;(G). In general, for an independent CDPU graph, ¢;(G) < 8(G), where
B(G) is the independence number of G.

Theorem 3.1 If G is an independent CDPU graph with n vertices, then r(G) < 0;(G) < [5],
where r(G) is the radius of G.

Proof We have, 3(G) < [§] and hence 0;(G) < [§]. Now we prove that r(G) < 0;(G).
Suppose r(G) = k. Then, there are vertices with eccentricities k,k + 1,k + 2,...,d, where d
is the diameter of G. Let v be the central vertex of G and e = wv. Since the central vertex
v of a graph on n(> 3) vertices cannot be a pendant vertex, there exists a vertex w which is

adjacent to v. Hence, w is of eccentricity k 4+ 1. Also u is of eccentricity k + 1. By a similar
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argument there exists at least two vertices each of eccentricity k + 1,k + 2,...,d. Hence, the
CDPU set should necessarily consists of all vertices with eccentricity k,k+ 1,k +2,...,d— 1.
Thus, 0(G) > 1+ {2+ 2+ ...(d = 1 — k)times} > k. Whence, 0;(G) > r(G). Therefore,
r(G) < oi(G) < T3] O

Theorem 3.2 A graph G has 0;(G) =1 if and only if G has at least one vertex of full degree.

Fig.6: A graph with 0;,(G) =1

Proof Suppose that G has one vertex v; with full degree. Take M = {v;}. Then fus(u) =
{1}, for every u € V — M. Also M is independent. Hence o;(G) = 1.

Conversely, suppose that G is a graph with 0;(G) = 1. That is, there exists an independent
set M which contains only one vertex v; which is a CDPU set of G. Also, 0;(G) = 1 implies,
v; is adjacent to all other vertices. Hence v; is a vertex with full degree. O

Corollary 3.3 The independent CDPU number of a complete graph is 1.

Corollary 3.4 If M is the mazimal independent set of a graph G with |M| =1, then G is an
independent CDPU.

Proof The result follows since M is a maximal independent set and |M| = 1, there is a
vertex v of full degree. O

Theorem 3.5 Peterson Graph is an independent CDPU graph with o;(G) = 4.

Proof Let G be a Peterson Graph with V(G) = {v1,v2,...,v10}. Let M be such that
M contains two non adjacent vertices from the outer cycle and two non-adjacent vertices from
the inner cycle. Let it be {vs,vs,vs,v7}. Clearly, M is a maximal independent set of G. Also
fa(v) = {1,2}, for every i = 1,2,4,8,9,10. Thus, M is a CDPU set of G. Hence, G is an
independent CDPU graph with o;(G) < 4. To prove that ¢;(G) = 4, it is enough to prove that
the deletion of any vertex from M does not form a CDPU set. For, let My = {vs3,vs,v7}. Then,
fav(v;) ={1,2}, for i = 1,2,4,8,9,10 and far(vs) = {2}. Hence M; cannot be a CDPU set for
G. Thus 0;(G) = 4. O
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Ty

Uk o V2
v )
{12
Vg e . v
2y {1%{
’U4o 0’1}3
Fig.7

Theorem 3.6 Shadow graphs of K,, are independent CDPU with |M| = n.

Proof Let vy,vs,...,v, be the vertices of K,, and v],v},..., v/, be the corresponding
shadow vertices. Clearly, M = {v},v},...,v,,} is a maximal independent set of S(K,). Also,
from Theorem 1.14, M forms a CDPU set. Hence |M| = n. O

Definition 3.7 A set of points which covers all the lines of a graph G is called a point cover for
G. The smallest number of points in any point cover for G is called its point covering number
and is denoted by ap(G).

It is natural to rise the following question by definition:

Does there exist any connection between the point covering for a graph and independent
CDPU set?

Proposition 3.8 If ag(G) =1, then 0;(G) =1

Proof Since ap(G) = 1, we have to cover every edges by a single vertex. This implies that
there exists a vertex of full degree. Hence from Theorem 3.2, 0;(G) = 1. O

Remark 3.9 The converse of Proposition 3.8 need not be true. Note that in Figure 6, 0;(G) = 1,
but ap(G) = 6.

Theorem 3.10 The central subgraph < C(G) > of a mazimal outerplanr graph G is an
independent CDPU graph with 0;(G) = 1,2 or 3.

Proof Fig.8 depicts all the central subgraphs of maximal outerplanr graph [3]. Since
G1, G2, G3, Gy, Gs have a full degree vertex, those graphs are independent CDPU and ¢;(G;) =
1, for j = 1,2,3,4,5.

In Gg, let M = {v1,v4}. Then, fa(vi) = {1,2}, for every v; € V — M. Since M is
independent, Gy is independent CDPU and o;(Gg) = 2.
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In G7, let M = {vy1,v3,v5}. Then, far(v;) = {1,2} for every v; € V — M. Hence, Gy is

independent CDPU with ¢,(G7) = 3. O
(%1 V3 V4 V3
L]
V2
v v
2 1 o Vs
v
Gy Gs Gs Gy 5
Vg Us Uy
(%5 V4
Ve vy
U1 V2 U3 (%1 V2 U3 U1 V2 U3
Gs Gs G

Fig.8: Central subgraphs of a maximal outerplanar graph

Theorem 3.11 The independent CDPU number of an even cycle Cp,n > 8 is 3.

Proof From Proposition 2.4, the alternate vertices of the even cycle constitute the inde-
pendent CDPU set. As already proved, removal of any vertex from M does not give a cdpu

set. Hence, 0;(Cp) = 3. O

Remark 3.12 0;(Cs) = 2.

Theorem 3.13 For all integers a1 > az > -+ > ay > 2,04(Kq; a,....a,) = min{ai, az,...,an}.

Proof From Theorem 2.8 and Corollary 2.9, all the n partite sets form an independent
CDPU set. Hence the independent CDPU number is the minimum of all a/s. O

Theorem 3.14 If 0,(G1) = k1 and 0,(G2) = ka, then 0;,(G1 + G2) = min.{k1, ka2}.

Proof From Theorem 2.13, either M7 or Ms is an independent cdpu set for G; + Go. Also
0;(G1 + G2) is the minimum among M; and M. O

Theorem 3.15 If G and Gs are independent CDPU cycles with n, m(> 4) vertices respectively,
then G1 x Gy is independent CDPU with |M| = "3*.

Proof Since (G; has n vertices and G5 has m vertices, then G; x G2 has mn vertices.
Without loss of generality, assume that m > n. In the construction of Gy x G2, G2 is drawn n
times and then the corresponding adjacency is given according as the adjacency in G;. Since
Gy is an independent CDPU cycle, from Theorem 3.11, 0;(G2) = 3. Therefore in G1 x G»

there are “g* vertices in the CDPU set. O



Independent Complementary Distance Pattern Uniform Graphs 73

Remark 3.16 In Theorem 3.15, if any one of G1 or G4 is C3, then |M| = n, since 0;(Cs) = 1.

. . . . . . V1 e e Uy
. . . . . . V2 e e Us
Gi G G G4
U1 V2 U1 V2 U1 U2
. . ) . . .
e — o e — e e — o
U3 V4 U3 V4 U3 V4
G5 GG G7

Fig.9: Graphs whose subdivision graphs are bipartite complementary

Theorem 3.17 The connected graphs, whose subdivision graphs are bipartite complementary
are independent CDPU.

Proof Fig.9 depicts the seven graphs whose subdivision graphs are bipartite self-complementary
[2]. In G4, M7 = {v1,v2} gives far, (v3) = far, (va) = {1,2}.

In G5, My = {v1,v4} gives far,(vs) = far,(v2) = {1}

In Ge, M3 = {v2,v3} gives far, (v1) = fa, (va) = {1}.

In G7, My = {v1} gives far,(v2) = fa,(v3) = far,(va) = {1}. Hence My, Mo, M3, My
are independent CDPU sets. Thus the connected graphs G4, G5, Gg and G7 are independent
CDPU. 0O

84. Conclusion and Scope

As already stated in the introduction, the concept under study has important applications in
the field of Chemistry. The study is interesting due to its applications in Computer Networks
and Engineering, especially in Control System. In a closed loop control system, signal flow
graph representation is used for gain analysis. So in certain control systems specified by certain
characteristics, we can find out M, a set consisting of two vertices such that one vertex will be
the take off point and other vertex will be the summing point.

Following are some problems that are under investigation:

1. Characterize independent CDPU trees.

2. Characterize unicyclic graphs which are independent CDPU.

3. What is the independent CDPU number for a generalized Peterson graph.

4. What are those classes of graphs with 7(G) = 0;(G), where r(G) is the radius of G.
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Abstract: A graph G is said to be Smarandachely harmonic graph with property P if its
vertices can be labeled 1,2, - n such that the function fp : A — @ defined by
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veV(H)

is injective. Particularly, if A is the collection of all paths of length 1 in G (That is, A =
E(G)), then a Smarandachely harmonic graph is called Strongly harmonic graph. In this
paper we show that all cycles, wheels, trees and grids are strongly harmonic graphs. Also
we give an upper bound and a lower bound for u(n), the maximum number of edges in a

strongly harmonic graph of order n.
Key Words: Graph labeling, Smarandachely harmonic graph, strongly harmonic graph.

AMS(2000): 05C78.

81. Introduction

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain
conditions. After it was introduced in late 1960’s thousands of research articles on graph
labelings and their applications have been published.

Recently in 2001, L. W. Beineke and S. M. Hegde [7] introduced the concept of strongly
multiplicative graph. A graph with n vertices is said to be Strongly multiplicative if the vertices
of G can be labeled with distinct integers 1,2, - ,n such that the values on the edge obtained
as the product of the labels of their end vertices are all distinct. They have proved that certain
classes of graphs are strongly multiplicative. They have also obtained an upper bound for A(n),
the maximum number of edges for a given strongly multiplicative graph of order n. In [3],
C. Adiga, H.N. Ramaswamy and D. D. Somashekara gave a sharper upper bound for A(n).
Further C. Adiga, H. N. Ramaswamy and D. D. Somashekara [1] gave a lower bound for A(n)
and proved that the complete bipartite graph K., is strongly multiplicative if and only if r < 4.
In 2003, C. Adiga, H. N. Ramaswamy and D. D. Somashekara [2] gave a formula for A\(n) and

1Received Sept.28, 2009. Accepted Nov. 28, 2009.
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also showed that every wheel is strongly multiplicative. Seoud and Zid [9] and Germina and
Ajitha [8] have made further contributions to this concept of strongly multiplicative graphs.

In 2000, C. Adiga, and D. D. Somashekara [4] have introduced the concept of Strongly
* - graph and showed that certain classes of graphs are strongly * - graphs. Also they have
obtained a formula, upper and lower bounds for the maximum number of edges in a strongly *
- graph of order n. Baskar Babujee and Vishnupriya [6] have also proved that certain class of
graphs are strongly * - graphs.

A graph with n vertices is said to be Strongly quotient graph if its vertices can be labeled
1,2,--- ,n so that the values on the edges obtained as the quotient of the labels of their end
vertices are all distinct. In [5], C. Adiga, M. Smitha and R. Kaeshgas Zafarani showed that
certain class of graphs are strongly quotient graphs. They have also obtained a formula, upper
and two different lower bounds for the maximum number of edges in a strongly quotient graph
of order n.

In this sequel, we shall introduce the concept of Strongly Harmonic graphs.

Definition 1.1 A labeling of a graph G of order n is an injective mapping f : V(G) —
{1,2,...,n}.

Definition 1.2 Let G be a graph of order n and A be the set of all paths in G. Then G is said
to be Smarandachely harmonic graph with property P if its vertices can be labeled 1,2,---  n
such that the function fp: A — @ defined by

I[[ f(v)

veV (H)

f)’

veV (H)

fp(H) = HeA

is injective. In particular if A is the collection of all paths of length 1 in G (That is, A = E(QG)),

then a Smarandachely harmonic graph is called Strongly harmonic graph.

For example, the following graphs are strongly harmonic graphs.
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In Section 2, we show that certain class of graphs are strongly harmonic. In Section 3, we
give upper and lower bounds for u(n), the maximum number of edges in a strongly harmonic
graph of order n.

82. Some Classes of Strongly Harmonic Graphs

Theorem 2.1 The complete graph K, is strongly harmonic graph if and only if n < 11.

Proof For n < 11 it is easy to see that K, are strongly harmonic graphs. When n = 12,
4-3 12 24  12-2

4+3 7T 14 1242
any complete graph K,,, for n > 12 is not strongly harmonic. O

we have

Therefore K15 is not strongly harmonic graph and hence

Theorem 2.2 For all n > 3, the cycle C,, is strongly harmonic graph.

Proof Let C,, = [v1,v2,...,V,,0v1] be a cycle of order n. Then consider the following
k(k+1

labelling of the graph v1 = 1,v9 = 2,..., v, = n. Then the value of the edge vgvi41 is 2(167_—::1),
2 6 -1

for 1 < k < n. The value of the edge v,v; is nj—l' Since 3 < nLH < 5 < e < %

for all n > 3, it follows that the values of the edges are all distinct, proving that every cycle

C,, n > 3, is strongly harmonic. O
Theorem 2.3 FEvery wheel is strongly harmonic.

Proof Consider the wheel W, 11, whose rim is the cycle v, vs,...,v,,v1 and whose hub is
the vertex w.

Case (i) n+ 1 is odd.

Let p be a prime such that n < p < n. Such a prime p exists by Bertrand’s hypothesis.
Consider the following labeling of graphs:

U1:17v2:27"'7vpfl:p_17vp:p+17"'7vn:n+1aw:p'

+1)

The value of the edge vivg11 is 1l

for 1 < k < p—1 and the value of the edge viv4+1

kE+1)(k+2 -1 1
S %_ﬁ_;—) for p < k < n. The value of the edge v,_1v, is %Z()p—’_) and the value
1
of the edge v v is nt 5 Since
2 1 — — —
2_ntl 6 _(=2@-1 _ @-De+1) _@+Hp+2)
3 n+2 5 2p—3 2p 2p+3
n(n+1)
n+4+1"7
the value of the rim edges are all distinct.
2 1 2
The value of the spoke edges are P , P R (n+ )p. Since L < P <
p+1 p+2 n+1+p p+1 p+2

(b=Vp _(p+lp _  _ (n+1p
2p—1 2p+1 n+1l+p

, the value of the spoke edges are all distinct. The
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numerator in the values of spoke edges are all divisible by p and the numerator in the values of
the rim edges are not divisible by p. Hence the value of the edges of the wheel are all distinct.
Hence when n + 1 is odd, the wheel is strongly harmonic.

Case (ii) n+ 1 is even.

n+1

Let p be a prime such that < p < n+1. Proof follows in the same lines as in case(i).
Hence by the choice of p edges of the wheel are all distinct. Therefore wheel is strongly

harmonic. O

Theorem 2.4 FEvery tree is strongly harmonic graph.

Proof Label the vertices of the tree using breadth - first search method. To show that the

labeling is strongly harmonic it suffices to consider the following two cases.

Case (i) Let e; = (a,b) and es = (a,c) be the edges with a common vertex as shown in the
Fig.2.1.

Fig.2.1

From the breadth - first search method of labelling it follows that a < b < ¢. This implies

that a“—fb < %% Hence the values of the edges with common vertex form a strictly increasing

sequence of rational numbers.

Case (ii) Let e; = (a,c¢) and ez = (b,d), where the edges e; and ez fall in the same level as
shown in the Fig.2.2 or in two consecutive level as shown in Fig.2.3.

5
A VAR
3 / K /
Jd ed 6 ed
o9 [ ] [ ] [ ]




On Smarandachely Harmonic Graphs 79

From the breadth - first search method of labeling it follows that a < b < ¢ < d. This

implies that %% < &—dd. Hence as indicated by the arrows, the values of the edges form a

strictly increasing sequence of rational numbers.

Thus the values of the edges are all distinct. So each tree is strongly harmonic graph. O
Theorem 2.5 FEvery grid is strongly harmonic graph.

Proof Label the vertices of the grid using breadth - first search method. To show that the
labeling is strongly harmonic it suffices to consider the following three cases. The first three
cases are similar to the two cases considered in the proof of the Theorem 2.4. The last case is
when e; = (a,c¢) and ez = (b, ¢) as shown in the Fig.2.4.

® /; /; Pl  J

® Ob @ 9
€2
€1
a® c. @ L
@ @ @ ®
Fig.2.4

In this case from the breadth - first search method of labeling it follows that a < b < ¢
which implies that ;%% < %.

Therefore, as indicated by the arrows, the values of the edges form a strictly increasing
sequence of rational numbers. Thus, the values of the edges are all distinct proving that every

grid is strongly harmonic. U

§3. Upper and Lower Bounds for pu(n)

In this section we give an upper and a lower bound for p(n).

Theorem 3.1 If u(n) denotes the number of edges in a strongly harmonic graph of order n,
then

n(n —1) 2 [ Vank + k2 + k
Ho) < =50 [T

1

['n.+12

18 ][¢(4k_1)(4n+4k—1)+(4k—1)‘|

— 16k —4
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n+24
_[i] JEE 2t 8k —2) + (8k—2)]
= 32k — 8
n+12 n+24
2 1
++[48][96], (1)
where [z] denotes the greatest integer less than or equal to x.
) ) . n(n—1)
Proof Given n, the total number of edges in a complete graph of order n is ———=.
For 7k <t < n, and t = —k(mod 4k) where 1 < k < 2 the values of the edges e;
t+k t*—k? t+k t—k
with end vertices <%, 1 > and es with end vertices (+T, T) are equal provided
t2 _ .2
R <nort<+V4nk + k2. Since t = 4km — k, for some positive integer m, we have
Tk < 4km — k < v/4nk + k2.
This double inequality yields
2
9 < m < Viank +k* + k '
-~ 4k
Therefore, the number of such pairs of edges with equal values is
Viank + k% +k

Next for 28k — 7 < t < n, and t = —(4k — 1)(mod (16k — 4)) and 48k — 12 < n, the
t+ (4k — 1) t2 — (4k —1)?
4 ’ 16k — 4

values of the edges e; with end vertices < ) and e; with end vertices

t+ (4k —1) t— (4k —1) 2 — (4k — 1)?
- < < — —1).
< 5 : 5 T <nort<./(4k —1)(4n + 4k — 1)

Since t = (16k — 4)m — (4k — 1), for some positive integer m, we have

are equal provided

28k — 7 < (16k — 4)m — (4k — 1) < \/(4k — 1)(4n + 4k — 1).
This double inequality yields

2<m < <\/(4k—1)(4n+4k—1)+(4k_1)>'

16k — 4

Therefore, the number of such pairs of edges with equal values is

16k — 4 ®)

l\/(4k—1)(4n+4k—1)+(4k—1)1 .

For 56k — 14 < t < n, and t = —(8k — 2)(mod (32k — 8)) and 96k — 24 < n, the val-

t+ (8k —2) t? — (8k —2)2
4 T 32k -8

ues of the edges e; with end vertices < ) and e; with end vertices
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t k—2) t—(8k—2
( +(8 ) (8 ) are equal and proceeding as above we find that the number of

2 ’ 2
such pairs of edges with equal values is

(4)

V(4k —1)2n + 4k — 1) + (4k — 1) )
16k — 4 o

From equations (2), (3) and (4), we get

1(n) < n(n2— 1 Z <[\/4nk+k2 +k

4k

)

& <_\/(4k—1)(4n+4k—1)+(4k—1)_ _1>

k=1

16k —4

16k — 4

VEE=D@n+ k=1 + (@k—1)] 1)

which yields (1). O

Theorem 3.2

n—2

pn) 2 n+ S0 (), 0> 4, )

k=2

ahee 1) = min (- [2E=0 ] )

Proof Let A = {717::9;1 <r<s< n} Then clearly p(n) = |A|. Consider the array of

rational numbers:

1.2 1-3 14 1-(n—1) 1-n
1+2 143 1+4 1+(n—-1) 1+n
2.3 2.4 2. (n—1) 2.n

243 2+4 2+ (n—-1) 2+n

3.4 3-(n—1) 3-n

3+4 3+(n—-1) 3+n

m=2)-(n—=1) M—=2)-n
n—2)4(n—-1) (n—2)+n

(n—1)-n
n—1)+n
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Now, let A; denote the set of all elements of the first row. Let Ay, 2 <k < n — 2 denote

k—1)-
the set of all elements of the k-th row which are greater than ﬁ and hence greater
(n—1)-n
than every element of the (k — 1)-th row. Let 4,1 = W Clearly A; N A; = 0 for
n— n

1#jand A; C A, foralli=1,2,...,n— 1. Hence

n—1
pln) = Al = > |A4. (6)
i=1
Now one can easily see that
|A1| = n— ].,
nk(k —1)
— — -~ 7 <k<n-—
| Ag| n max{[k(k—l)—i—n]’k}’ 2<k<n-2
(7)
_ ) nk(k —1) B
= min {n [k(k—l)—i—n] N k} = f(k),
and |Ax] = L
Using (7) in (6) we obtain (5). O

The following table gives the values of p(n) and upper and lower bounds for u(n) found

using Theorems 3.1 and 3.2, respectively.

n | u(n) | Upper bound | Lower bound
4 6 6 6
5 10 10 10
6 15 15 15
7 21 21 21
8 28 28 28
9 36 36 34
10 | 45 45 41
11 55 55 48
12 64 65 95
13| 76 7 63
14 | 89 90 71
15 | 102 104 80
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n | u(n) | Upper bound | Lower bound
16 | 117 119 90
17 | 133 135 97
18 | 150 152 107
19 | 168 170 117
20 | 183 191 127

Acknowledgments

The authors are thankful to Prof. C. Adiga for proposing the problem and for his valuable
suggestions. The authors are also thankful to the Department of Science and Technology, Gov-
ernment of India, New Delhi for the financial support under the grant DST/SR/S4/MS:490/07.

The authors are greatful to the Referee for suggestions which has considerably improved

the quality of the paper.

References

[1] C. Adiga, H. N. Ramaswamy and D. D. Somashekara, On strongly multiplicative graphs,
Proc. Nat. Conf. on Challenges of the 21st Century in Mathematics and its Alied topics,
(2001), 232-235.

[2] C. Adiga, H. N. Ramaswamy and D. D. Somashekara, On strongly multiplicative graphs,
South East Asian J. Math. and Math. Sci., 2 (2003), 45-47.

[3] C. Adiga, H. N. Ramaswamy and D. D. Somashekara, A note on strongly multiplicative
graphs, Discuss. Math. Graph Theory, 24 (2004), 81-83.

[4] C. Adiga and D. D. Somashekara, Strongly % - graph, Math. Forum, 13 (1999-2000), 31-36.

[5] C. Adiga, R. Kaseshgar Zafarani and M. Smitha, Strongly quotient graphs, South Fast
Asian J. Math. and Math. Sci., 5 (2007), 119-127.

[6] J. Baskar Babujee and V. Vishnupriya, Permutation labellings for some trees, Internat. J.
Math. Comput. Sci., 3 (2008), 31-38.

[7] L. W. Beineke and S. M. Hegde, Strongly multiplicative graphs, Discuss. Math. Graph
Theory, 21 (2001), 63-76.

[8] K. A. Germina and V. Ajitha, Strongly multiplicative graphs, preprint.

[9] M. A. Seoud and A. Zid, Strongly multiplicativity of unions and corona of paths and
complete graphs, Proc. Math. Phys. Soc. Egypt, 74 (1999) 59-71.



International J.Math. Combin. Vol.4 (2009), 84-88

Signed Graph Equation L¥(S) ~ S

P. Siva Kota Reddy' and M. S. Subramanya/!T

TDepartment of Mathematics, Rajeev Institute of Technology,

Industrial Area, B-M Bypass Road, Hassan 573 201, India

HDepartment of Studies in Mathematics, University of Mysore,

Manasagangotri, Mysore 570 006, India

E-mail: reddy —math@yahoo.com, subramanya_ms@rediffmail.com

Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered
pair S = (G,0) (S = (G, n)), where G = (V, E) is a graph called the underlying graph of S
and o : E — (€1,€2, - ,€ek) (u:V — (€1,82, -+ ,€k)) is a function, where each € € {+,—}.
Particularly, a Smarandachely 2-singed graph or 2-marked graph is called abbreviated to
a singed graph or a marked graph. We characterize signed graphs S for which L(S) ~ S,
S ~ Cg(S) and LF(S) ~ S, where ~ denotes switching equivalence and L(S), S and Cg(S)
are denotes line signed graph, complementary signed Graph and common-edge signed graph

of S respectively.

Key Words: Smarandachely k-signed graph, Smarandachely k-marked graph, signed
graphs, balance, switching, line signed graph, complementary signed graph, common-edge

signed graph.

AMS(2000): 05C22.

81. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [7]; the
non-standard will be given in this paper as and when required. We treat only finite simple
graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair S =
(G,0) (S = (G, ), where G = (V, E) is a graph called the underlying graph of S and ¢ : E —
(€1,€2,-+,€k) (u:V — (€1,€2, -+ ,€)) is a function, where each €; € {4, —}. Particularly, a
Smarandachely 2-singed graph or 2-marked graph is called abbreviated to a singed graph or a
marked graph. A signed graph S = (G, o) is balanced if every cycle in S has an even number
of negative edges (See [8]). Equivalently a signed graph is balanced if product of signs of the
edges on every cycle of S is positive.

A marking of S is a function p : V(G) — {4, —}; A signed graph S together with a marking

IReceived Oct.8, 2009. Accepted Dec. 10, 2009.
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i is denoted by S,,.

The following characterization of balanced signed graphs is well known.

Proposition 1 (E. Sampathkumar [10]) A signed graph S = (G, o) is balanced if, and only if,

there exist a marking p of its vertices such that each edge wv in S satisfies o(uv) = p(u)pu(v).

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed
graph S as follows: L(S) is a signed graph such that (L(S))* = L(S*) and an edge e;e; in L(S)
is negative if, and only if, both e; and e; are adjacent negative edges in S. Another notion of line
signed graph introduced in [6],is as follows: The line signed graph of a signed graph S = (G, 0)
is a signed graph L(S) = (L(G), 0’), where for any edge ee¢’ in L(S), o'(ee¢’) = o(e)o(e’) (see
also, E. Sampathkumar et al. [11]. In this paper, we follow the notion of line signed graph
defined by M. K. Gill [6].

Proposition 2 For any signed graph S = (G, o), its line signed graph L(S) = (L(G),d’) is
balanced.

Proof We first note that the labeling o of S can be treated as a marking of vertices of
L(S). Then by definition of L(S) we see that ¢'(ee’) = a(e)o(e’), for every edge ee’ of L(S)

and hence, by proposition-1, the result follows. O

Remark: In [2], M. Acharya has proved the above result. The proof given here is different
from that given in [2].

For any positive integer k, the k' iterated line signed graph, LF(S) of S is defined as
follows:

LO(S) = S, L*(S) = L(L*~1(9))
Corollary For any signed graph S = (G, ) and for any positive integer k, L*(S) is balanced.

Let S = (G,0) be a signed graph. Consider the marking p on vertices of S defined
as follows: each vertex v € V, u(v) is the product of the signs on the edges incident at v.
Complement of S is a signed graph S = (G, 0°), where for any edge ¢ = uv € G, o°(uv) =
p(u)pu(v). Clearly, S as defined here is a balanced signed graph due to Proposition 1.

The idea of switching a signed graph was introduced by Abelson and Rosenberg [1] in
connection with structural analysis of marking u of a signed graph S. Switching S with respect
to a marking p is the operation of changing the sign of every edge of S to its opposite whenever
its end vertices are of opposite signs. The signed graph obtained in this way is denoted by
S,.(S) and is called p-switched signed graph or just switched signed graph. Two signed graphs
S1 = (G,0) and Sy = (G',0’) are said to be isomorphic, written as S; = Ss if there exists
a graph isomorphism f : G — G’ (that is a bijection f : V(G) — V(G’) such that if wv is
an edge in G then f(u)f(v) is an edge in G’) such that for any edge e € G, o(e) = o'(f(e)).
Further, a signed graph S7 = (G, o) switches to a signed graph Sy = (G’, ¢’) (or that S; and Sy
are switching equivalent) written S; ~ So, whenever there exists a marking u of Sy such that
S,(S1) = Ss. Note that S; ~ Sy implies that G = G, since the definition of switching does

not involve change of adjacencies in the underlying graphs of the respective signed graphs.
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Two signed graphs S1 = (G,0) and Sy = (G',0’) are said to be weakly isomorphic (see
[14]) or cycle isomorphic (see [15]) if there exists an isomorphism ¢ : G — G’ such that the
sign of every cycle Z in Sy equals to the sign of ¢(Z) in Sa. The following result is well known
(See [15]).

Proposition 3 (T. Zaslavasky [15]) Two signed graphs Si and Sy with the same underlying

graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Switching Equivalence of Iterated Line Signed Graphs and

Complementary Signed Graphs

In [12], we characterized signed graphs that are switching equivalent to their line signed graphs
and iterated line signed graphs. In this paper, we shall solve the equation L*(S) ~ S.

We now characterize signed graphs whose complement and line signed graphs are switching
equivalent. In the case of graphs the following result is due to Aigner [3] (See also [13] where
H o K denotes the corona of the graphs H and K [7].

Proposition 4 (M. Aigner [3]) The line graph L(G) of a graph G is isomorphic with G if, and
only if, G is either C5 or Kso Kj.

Proposition 5 For any signed graph S = (G, o), L(S) ~ S if, and only if, G is either Cs or
Kg o Kl.

Proof Suppose L(S) ~ S. This implies, L(G) = G and hence by Proposition-4 we see that
the graph G must be isomorphic to either C5 or K3 o Kj.

Conversely, suppose that G is a Cs or K30 K. Then L(G) = G by Proposition-4. Now, if
S any signed graph on any of these graphs, By Proposition-2 and definition of complementary
signed graph, L(S) and S are balanced and hence, the result follows from Proposition 3. O

In [5], the authors define path graphs P (G) of a given graph G = (V, E) for any positive
integer k as follows: Py(G) has for its vertex set the set Py (G) of all distinct paths in G having
k vertices, and two vertices in Pi(G) are adjacent if they represent two paths P,Q € Pk(G)
whose union forms either a path P41 or a cycle Cy in G.

Much earlier, the same observation as above on the formation of a line graph L(G) of a
given graph G, Kulli [9] had defined the common-edge graph Cg(G) of G as the intersection
graph of the family P5(G) of 2-paths (i.e., paths of length two) each member of which is treated
as a set of edges of corresponding 2-path; as shown by him, it is not difficult to see that
Cg(G) = L*(G), for any isolate-free graph G, where L(G) := L'(G) and L*(G) denotes the t*"
iterated line graph of G for any integer ¢ > 2.

In [12], we extend the notion of Cg(G) to realm of signed graphs: Given a signed graph
S = (G,0) its common-edge signed graph Cg(S) = (Cg(G),o’) is that signed graph whose
underlying graph is Cg(G), the common-edge graph of G, where for any edge (ejes,ezes) in

CE(S) y U/(eleg,egeg) = 0(6162)0(6263).
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Proposition 6(E. Sampathkumar et al. [12]) For any signed graph S = (G, o), its common-
edge signed graph Cg(S) is balanced.

We now characterize signed graph whose complement S and common-edge signed graph
Cg(S) are switching equivalent. In the case of graphs the following result is due to Simic [13].
Proposition 7(S. K. Simic [13]) The common-edge graph Cg(G) of a graph G is isomorphic
with G if, and only if, G is either Cs or Ky o K.

Proposition 8 For any signed graph S = (G,0), S ~ Cg(S) if, and only if, G is either Cs or
KQ e} E

Proof Suppose S ~ Cg(S). This implies, G = C(G) and hence by Proposition-7, we see
that the graph G must be isomorphic to either Cs or K o K.

Conversely, suppose that G is a Cs or K9 0 Ky. Then G = Cg(G) by Proposition-7. Now,
if S any signed graph on any of these graphs, By Proposition-6 and definition of complementary
signed graph, Cg(S) and S are balanced and hence, the result follows from Proposition 3. [J

We now characterize signed graphs whose complement and its iterated line signed graphs
LF(S), where k > 3 are switching equivalent. In the case of graphs the following result is due
to Simic [13].

Proposition 9(S. K. Simic [13]) For any positive integer k > 3, L¥(G) is isomorphic with G
if, and only if, G is Cs.

Proposition 10 For any signed graph S = (G, o) and for any positive integer k > 3, L*(S) ~ S
if, and only if, G is Cs.

Proof Suppose L¥(S) ~ S. This implies, L*(G) = G and hence by Proposition-9 we see
that the graph G is isomorphic to Cs.

Conversely, suppose that G is isomorphic to Cs. Then L*(G) = G by Proposition-9. Now,
if S any signed graph on C5, By Corollary-2.1 and definition of complementary signed graph,
L*(S) and S are balanced and hence, the result follows from Proposition 3. O
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Abstract: Let G = (V,E) be a graph. Let V be a vector space of dimensional n. A
Smarandachely labeling on a graph G is labeling an edge uv € E(G) by an vector v € V
on (u,v) and —v on (v,u). Then turn the conception directional labeling as a special case
to Smarandachely labeling. By directional labeling (or d-labeling) of an edge ©* = uv of
G by an ordered n-tuple (ai,a2,...,an), we mean a labeling of the edge = such that we
consider the label on wv as (a1, a2,...,a,) in the direction from u to v, and the label on
z as (an,@n-1,...,a1) in the direction from v to u. Here, we study graphs, called (n, d)-
sigraphs, in which every edge is d-labeled by an n-tuple (a1, a2, ..., an), where ar € {+,—},
for 1 < k < n. In this paper, we obtain another characterization of i-balanced (n, d)-sigraphs,
introduced the notion of path balance and generalized the notion of local balance in sigraphs

to (n, d)-sigraphs. Further, we obtain characterization of path i-balanced (n, d)-sigraphs.

Key Words: Smarandachely labeling, sigraphs, directional labeling, complementation,

balance.

AMS(2000): 05C22.

§1. Introduction

For graph theory terminology and notation in this paper we follow the book [1]. All graphs
considered here are finite and simple.

Let V' be a vector space of dimensional n. A Smarandachely labeling on a graph G is
labeling an edge uv € E(G) by an vector v € V on (u,v) and —v on (v,u). Then turn the

1Received Oct.18, 2009. Accepted Dec. 20, 2009.
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conception directional labeling as a special case to Smarandachely labeling.

There are two ways of labeling the edges of a graph by an ordered n-tuple (a1, as, ..., a,)

(See [7]).

1. Undirected labeling or labeling. This is a labeling of each edge uv of G by an ordered n-
tuple (a1, as,...,a,) such that we consider the label on wv as (a1, as, ..., a,) irrespective of the
direction from w to v or v to wu.

2. Directional labeling or d-labeling. This is a labeling of each edge uv of G by an ordered
n-tuple (a1, ag, ..., a,) such that we consider the label on uv as (a1, as, ..., a,) in the direction
from w to v, and (an,an—1,...,a1) in the direction from v to w.

Note that the d-labeling of edges of G by ordered n-tuples is equivalent to labeling the
symmetric digraph G = (v, E), where uv is a symmetric arc in G if, and only if, uv is an edge
in G, so that if (a1, as, ..., a,) is the d-label on uv in G, then the labels on the arcs w0 and vt
are (a1, ag, ...,an) and (an,an—1,...,a1) respectively.

Let H, be the n-fold sign group, H, = {+,—}" = {(a1, a2, ...,a,) : a1, a2, ...,a, € {+,—}}
with co-ordinate-wise multiplication. Thus, writing a = (a1, ag, ...,an) and t = (t1,te, ..., tn)
then at := (aity, asts, ..., ant,). For any t € H,, the action of t on H, is a® = at, the co-
ordinate-wise product.

Let n > 1 be a positive integer. An n-sigraph (n-sidigraph) is a graph G = (V, E) in
which each edge (arc) is labeled by an ordered m-tuple of signs, i.e., an element of H,. A
sigraph G = (V,E) is a graph in which each edge is labeled by + or —. Thus a 1-sigraph
is a sigraph. Sigraphs are well studied in literature (See for example [2]-[4], [8]-[9]). In this
paper, we study graphs in which each edge is labeled by an ordered n-tuple a = (a1, ag, ..., an)
of signs (i.e, an element of H,,) in one direction but in the other direction its label is the reverse:
a” = (an,an_1,...,a1), called directionally labeled n-signed graphs (or (n,d)-sigraphs).

Note that an n-sigraph G = (V, E) can be considered as a symmetric digraph G = (v, E)),
where both u and vt are arcs if, and only if, uv is an edge in G. Further, if an edge uv in G
is labeled by the n-tuple (a1, as, ..., ay), then in 5 both the arcs wt and v are labeled by the
n-tuple (as,asg, ..., a,).

In [5,6], we have initiated a study of (3,d) and (4, d)-Sigraphs. Also, we discuss some
applications of (3,d) and (4, d)-Sigraphs in real life situations.

In [7], we introduce the notion of complementation and generalize the notion of balance
in sigraphs to the directionally n-signed graphs. We look at two kinds of complementation:
complementing some or all of the signs, and reversing the order of the signs on each edge. Also
we gave some motivation to study (n,d)-sigraphs in connection with relations among human
beings in society.

In this paper, we introduce the notion of path balance and we generalize the notion of local
balance in sigraphs (a graph whose edges have signs) to the more general context of graphs with
multiple signs on their edges.

In [7], we define complementation and isomorphism for (n, d)-sigraphs as follows: For any
t € Hy,, the t-complement of a = (ay, as, ...,a,) is: a® = at. The reversal of a = (a1, az, ..., an)
is: a” = (an,an_1,...,a1). For any T C H,, and t € H,, the t-complement of T is T* = {a® :
a€T}.
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For any ¢ € Hy,, the t-complement of an (n, d)-sigraph G = (V, E), written G*, is the same
graph but with each edge label a = (a1, as, ..., a,) replaced by a'. The reversal G” is the same
graph but with each edge label a = (a1, ag, ..., a,) replaced by a”.

Let G = (V,E) and G' = (V', E’) be two (n, d)-sigraphs. Then G is said to be isomorphic
to G’ and we write G = G, if there exists a bijection ¢ : V' — V' such that if wv is an edge in
G which is d-labeled by a = (a1, ag, ..., ay), then ¢(u)d(v) is an edge in G’ which is d-labeled
by a, and conversely.

For each t € H,, an (n,d)-sigraph G = (V, E) is t-self complementary, if G = G*. Further,
G is self reverse, if G = G".

Proposition 1(E. Sampathkumar et al. [7]) For allt € H,, an (n,d)-sigraph G = (V, E) is

t-self complementary if, and only if, G* is t-self complementary, for any a € Hy,.

Let vy,v2,...,um be a cycle C in G and (aki,ake, ..., ak,) be the n-tuple on the edge
VeUg+1,1 <k <m—1, and (am1,am2,---» Gmn) be the n-tuple on the edge v,,v1.

For any cycle C in G, let 73(8) denotes the product of the n-tuples on C given by

(0,11, aig, ...,aln)(agl, a2, ..., agn)...(aml, Am2y -+ amn) and

—
P(C) = (a’mna Am(n—1)) - aml)(a(m—l)na A(m—1)(n—1)» "'7a(m—1)1)"'(aln7 A1(n—1)s "'7a11)'

Similarly, for any path P in G, ’P(I_D)) denotes the product of the n-tuples on P given by

(@11, @12, .., G1n) (@21, 22, ooy G2p ) oo (Bm—1,1, Gm—1,2 e, Gm—1,n)

and

«—
P(P) = (a(m,l)n, a(m,l)(n,l), ...,a(m,l)l)...(aln, al(n,l), ...,all).

An n-tuple (a1, as, ...,ay) is identity n-tuple, if each a = +, for 1 < k < n, otherwise it is
a non-identity n-tuple. Further an n-tuple a = (a1, ag, ..., an,) is symmetric, if a” = a, otherwise
it is a non-symmetric n-tuple. In (n,d)-sigraph G = (V| F) an edge labeled with the identity
n-tuple is called an identity edge, otherwise it is a non-identity edge.

Note that the above products ’P(a) (”P(]_—’))) as well as ’P(E) (”P(?)) are n-tuples. In
general, these two products need not be equal. However, the following holds.

Proposition 2 For any cycle C (path P) of an (n,d)-sigraph G = (V, E), 73(8) = P(E’))T (77(15)
—
=P(P)").

Proof By the definition, we have
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S,

()

Qmn, CerL('n—l)a ceey aml)(a(m—l)na a(m—l)(n—l)a ceey a(m—l)l)"'(alna al(n—l)a ceey all))r

T

((
((@m1s @m2; --Gmn)" (Am—1)1, G(m—1)2; --A(m—1)n)" (011, @12, ...G17)")
((

Am1,Am2, ...amn)(a(m,1)1 y a(m,l)g, ...a(m,l)n)...(all, aio, ...aln))

P(O).

— —
Similarly, we can prove P(P) = P(P)". O

Corollary 2.1 For any cycle C (path P), 73(8) = 73(6’)) (P(?) = P(?’))) if, and only if,

77(6)) (P(?’))) is a symmetric n-tuple. Furthermore, 73(6) (P(?)) is the identity n-tuple if,
— —

and only if, P(C) (P(P)) is.

For any subset Y of E)(G) = {(u,v) : wv is an edge in G}, the set of all arcs in G, the
product of the set Y is the product of the n-tuples of its arcs and it is denoted by P(Y). If Y3
and Y5 are disjoint sets, the product of the union of Y7 and Y5 is the product of the n-tuples of
the two sets:

P(Y1UYs) =P(Y1).P(Y2).

The following Proposition gives a similar result about the symmetric difference of two sets
of arcs.

Proposition 3 IfY; and Ys are two subsets of ﬁ(G) of an (n,d)-sigraph G = (V, E), then
P(Y1®Ys) =P(Y1).P(Yz).

Proof We know that

Yi= (Vi —Y2)U(YiNYs) and Yz = (Ya — Y1) U (Y1 N Ya).

Since each of these is a union of disjoin sets, we have

P(Yl) = P(Yl — YQ)P(Yl n Yg) and P(Yz) = 'P(Yé — Yl)P(Yl N }/2)

Multiplying these equations we get that

P(Y1).P(Yz) = P(Y1 — Y2).P(Y2 — Y1).P(Y1 N Y2). P(Y1 NY2).

Since P(Y1NY3).P(Y1NY?2) is always identity n-tuple, and since Y7 —Ys and Y2 —Y; are disjoint,
P(Y1).P(Y2) = P[(Y1 — Y2) U (Y2 — Y1)].
Thus, P(Y1).P(Ya) = P(Y1 @ Ya). O

Corollary 3.1 Two sets of edges Y1 and Ys have the same n-tuple if, and only if, their
symmetric difference Y1 & Ys is identity.
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§2. Balance in an (n,d)-sigraph
In [7], we defined two notions of balance in an (n,d)-sigraph G = (V, E) as follows.

Definition. Let G = (V, E) be an (n,d)-sigraph. Then,

(i) G is identity balanced (or i-balanced), if P(Z”)) on each cycle of G is the identity
n-tuple, and

(i) G is balanced, if every cycle contains an even number of non-identity edges.
Note An i-balanced (n, d)-sigraph need not be balanced and conversely. For example, consider

the (4, d)-sigraphs in Fig.1. In Fig.1(a) G is an i-balanced but not balanced, and in Fig.1(b) G
is balanced but not i-balanced.

-+ <+ +-

Fig.1
2.1 Criteria for Balance

An (n,d)-sigraph G = (V, E) is i-balanced if each non-identity n-tuple appears an even number
of times in P(a) on any cycle of G.

However, the converse is not true. For example see Fig.2(a). In Fig.2(b), the number of
non-identity 4-tuples is even and hence it is balanced. But it is not i-balanced, since the 4-tuple
(++—-—) (as well as (— — ++)) does not appear an even number of times in P(a) of 4-tuples.

e - -
+--+ - -

+H++ +H++

—++- -

Fig.2

In [7], we obtained following characterizations of balanced and i-balanced (n, d)-sigraphs.

Proposition 4(E. Sampathkumar et al. [7]) An (n,d)-sigraph G = (V, E) is balanced if, and
only if, there exists a partition V1 U Vy of V' such that each identity edge joins two vertices in
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Vi or Vo, and each non-identity edge joins a vertex of Vi and a vertex of Vs.

As earlier we defined, let P(C) denote the product of the n-tuples in P(a) on any cycle
C in an (n,d)-sigraph G = (V, E).

Proposition 5(E. Sampathkumar et al. [7]) An (n,d)-sigraph G = (V, E) is i-balanced if, and
only if, for each k, 1 < k < n, the number of n-tuples in P(C) whose k*" co-ordinate is — is

even.

In H,, let S; denote the set of non-identity symmetric n-tuples and S, denote the set
of non-symmetric n-tuples. The product of all n-tuples in each Sg,1 < k < 2 is the identity
n-tuple.

Proposition 6(E. Sampathkumar et al. [7]) An (n,d)-sigraph G = (V, E) is i-balanced, if
both of the following hold:

(i) In P(C), each n-tuple in S1 occurs an even number of times, or each n-tuple in Si
occurs odd number of times (the same parity, or equal mod 2).

(it) In P(C), each n-tuple in Sy occurs an even number of times, or each n-tuple in So
occurs an odd number of times.

In this paper, we obtained another characterization of i-balanced (n, d)-sigraphs as follows:

Proposition 7 An (n,d)-sigraph G = (V, E) is i-balanced if, and only if, any two vertices u
—
and v have the property that for any two edge distinct u — v paths Py = (u = ug, U1, ..., Uy, = U
— ) — — — —
and Py = (u = vg, V1, ..., vy, =) in G, P(P) = (P(P))" and P(P2) = (P(P1))".

— —
Proof Suppose that G is i-balanced. The paths P, and P, may be combined to form is either
a cycle or union of cycles. That is, Py U Py = (4 = U0, U1, ey Uy = U = Uy Up—1, .., Vg = U).
—
Since P(P; U P»)=identity n-tuple e.

The converse is obvious. O

Corollary 7.1 In an i-balanced (n,d)-sigraph G if two vertices are joined by at least 3 paths

then the product of n tuples on any paths joining them must be symmetric.

A graph G = (V, E) is said to be k-connected for some positive integer k, if between any

two vertices there exists at least k disjoint paths joining them.

Corollary 7.2 If the underlying graph of an i-balanced (n,d)-sigraph is 3-connected, then all

the edges in G must be labeled by a symmetric n-tuple.

Corollary 7.3 A complete (n,d)-sigraph on p > 4 is i-balanced then all the edges must be
labeled by symmetric n-tuple.
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2.2 Complete (n,d)-sigraphs
An (n,d)-sigraph is complete, if its underlying graph is complete.

Proposition 8 The four triangles constructed on four vertices {a,b,c,d} can be directed so

that given any pair of vertices say (a,b) the product of the edges of these 4 directed triangles is
— —

the product of the n-tuples on the arcs ab and ba

Proof The four triangles constructed on these vertices are (abc), (adb), (cad), (bcd).
— —_— — —
Consider the 4 directed triangles (abc), (adb), (cad), (bed) for the pair ab. Then

P = Plabe).P(adb).P(acd).P(bed)
= [P(ab).P(a).P(be)]. [P(ad).P(db).P(ba)]
[P(ca). P(ad). P(cd)|[P(be). P(db).P(cd)]
= [P(ab).P(ba)]. [P(cd).P(d)). [P(be).P(be)]
[P(ad).P(ad)]. [P(db).P(db)]. [P(cd).P(cd)]
= P(ab)P(ba)

O

Corollary 8.1 The product of the n-tuples of the four triangles constructed on four vertices

{a,b,c,d} is identity if at least one edge is labeled by a symmetric n-tuple.

The i-balance base with axis a of a complete (n, d)-sigraph G = (V, E) consists list of the
product of the n-tuples on the triangles containing a.

Proposition 9 If the i-balance base with azis a and n-tuple of an edge adjacent to a is known,
the product of the n-tuples on all the triangles of G can be deduced from it.

Proof Given a base with axis a and the n-tuple of the arc ab be (a1,a9,- - ,ay).. Consider
— — EAY
a triangle (bed) whose n-tuple is not given by the base. Let P’ = P(abc).P(adb).P(acd). Hence,
P’ is known from the base with axis a. Let P be defined as in Proposition-8; we then have
— — — — — —
P =P’. P(bed). By Proposition-8, P = P(ab).P(ba). Thus, P(bed) = P’ P(ab).P(ba). O

Remark 10 In the statement of above Proposition, it is not necessary to know the n-tuple of

an edge incident at a. But it is sufficient that an edge incident at a is a symmetric n-tuple.

Proposition 11 A complete (n,d)-sigraph G = (V, E) is i-balanced if, and only if, all the
triangles of a base are identity.

Proof 1f all the triangles of a base are identity, all the triangles of the (n,d)-sigraph are
identity. Indeed, for any triangle (bed) not appearing in the base with axis a, we have
Plbed) = P(abe). P(abd). P(acd)=identity.
Conversely, if the (n, d)-sigraph is i-balanced, all these triangles are identity and particular
those of a base. O
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Corollary 11.1 All the triangles of a complete (n,d)-sigraph G = (V, E) are i-unbalanced if,
and only if, all the triangles of a base are non-identity.

1

7

Proposition 12 The number of i-balanced complete (n,d)-sigraphs of m wvertices is p™~
where p = 2[m/21,

Proof In a graph G of m vertices, there are (m — 1) edges containing a; each of these
edges has p = 2/"/21 possibilities,since each edge must be labelled by an symmetric n-tuple, by
Corollary-7.3. Hence in all, p™~! possibilities, where p = 2["/21 Starting from each of these
possibilities, a base with axis a can be constructed, of which all the triangles are identity. [

§3. Path Balance in an (n,d)-sigraph

Definition Let G = (V, E) be an (n,d)-sigraph. Then G is

1. Path i-balanced, if any two vertices u and v satisfy the property that for any u—v paths
— —
Py and Py from u tov, P(P1) =P(Pa2).
2. Path balanced if any two vertices u and v satisfy the property that for any u — v paths
Py and Py from u to v have same number of non identity n-tuples.

Clearly, the notion of path balance and balance coincides. That is an (n,d)-sigraph is
balanced if, and only if, G is path balanced.

If an (n,d) sigraph G is i-balanced then G need not be path i-balanced and conversely.

The following result gives a characterization path i-balanced (n, d)-sigraphs.

Theorem 13 An (n,d)-sigraph is path i-balanced if, and only if, any two vertices u and

v satisfy the property that for any two vertexr disjoint w — v paths Py and Ps from u to v,
— —
P(P,)=P(Ps).

Proof Necessary: Suppose that G is path i-balanced. Then clearly for any two vertex
disjoint paths P; and P, from one vertex to another, ’P(]—-’}l) = ’P(]_3>2).

Sufficiency: Suppose that for any two vertex disjoint paths P; and P» from one vertex to
another, 73(1_31) = 73(1_52) and that G is not path i-balanced. Let S = {(u,v) : there exists
paths P and @ from u to v with 73(]_5) # P(a)} Let (u,v) € S such that there exists paths
Py and P» such that P; has length d(u,v). Then by the hypothesis, the paths P; and P, must
have a common point say w Let P3 and P4 be the subpaths from u to w and Ps and Py be the
subpaths from w to v. Now either (u,w) € S or (w,v) € S. This gives a contradiction to the

choice of u and v. This completes the proof. ([

§4. Local Balance in an (n,d)-Signed Graph

The notion of local balance in signed graph was introduced by F. Harary [3]. A signed graph
S = (G, o) is locally at a vertex v, or S is balanced at v, if all cycles containing v are balanced.

A cut point in a connected graph G is a vertex whose removal results in a disconnected graph.
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The following result due to Harary [3] gives interdependence of local balance and cut vertex of

a signed graph.

Theorem 14(F. Harary [3]) If a connected signed graph S = (G, o) is balanced at a vertex u.
Let v be a vertex on a cycle C' passing through uw which is not a cut point, then S is balanced at

V.

We now extend the notion of local balance in signed graph to (n,d)-signed graphs.

Definition Let G = (V, E) be a (n,d)-sigraph. Then for any vertices v € V(G), G is locally
i-balanced at v (locally balanced at v) if all cycles in G containing v is i-balanced (balanced).

Analogous to the theorem we have the following for an (n,d) sigraph.
Theorem 15 If a connected (n,d)-signed graph G = (V, E) is locally i-balanced (locally bal-
anced) at a vertex u and v be a vertex on a cycle C passing through u which is not a cut point,

then S is locally i-balanced(locally balanced) at v.

Proof Suppose that G is i-balanced at u and v be a vertex on a cycle C' passing through
u which is not a cut point. Assume that G is not i-balanced at v. Then there exists a cycle Cy
in G which is not i-balanced. Since G is balanced at u, the cycle C is i-balanced.

With out loss of generality we may assume that u ¢ C for if u is in C, then P(C) is identity,
since G is i-balanced at u. Let e = uw be an edge in C. Since v is not a cut point there exists
a cycle Cy containing e and v. Then Cj consists of two paths P; and P joining u and v.

Let v1 be the first vertex in P; and ve be a vertex in P, such that v; # vy € C, such points
do exist since v is not a cut point and v € C. Since u,v € Cy. Let Ps be the path on Cj from
v1 and vg, Py be a path in C containing v and Ps is the path from v; to va. Then P; U P,
and Ps3 U P5 are cycles containing u and hence are i-balanced, since they contain uw. That is
P(Ps) = (P(Ps))" so that C' = P3 U Ps is i-balanced. This completes the proof. By using the
same arguments we can prove the result for local balance. O
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§1. Introduction

We consider finite connected graphs. Surfaces are orientable 2-dimensional compact manifolds
without boundaries. Embeddings of a graph considered are always assumed to be orientable
2-cell embeddings. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is
a homeomorphism ¢: G — S such that ¢(G) on S has exactly k intersections in ¢(E(G)) for
an integer k. If k = 0, i.e., there are no intersections between in ¢(F(G)), or in another words,
each connected component of S — ¢(G) is homeomorphic to an open disc, then G has an 2-cell
embedding on S. If G can be embedded on surfaces S, and S; with genus r and ¢ respectively,
then it is shown in [1] that for any k with r < k < t, G has an embedding on S;. Naturally, the
genus of a graph is defined to be the minimum genus of a surface on which the graph can be
embedded. Given a graph, how many distinct embeddings does it have on each surface? This is
the genus distribution problem, first investigated by Gross and Furst [4]. As determining the
genus of a graph is NP-complete [15], it appears more difficult and significant to determine the
genus distribution of a graph.
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2Received Oct.20, 2009. Accepted Dec. 25, 2009.
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There have been results on genus distribution for some particular types of graphs (see [3],
[5], [8], [9], [11]-[17], among others). In [6], Liu discovered the joint trees of a graph which
provide a substantial foundation for us to solve the genus distribution of a graph. For a given
embedding G, of a graph G, one can find the surface, embedding surface or associate surface,
which G, embeds on by applying the associated joint tree. In fact, genus distribution of G is
that of the set of all of its embedding surfaces. This paper first study genus distributions of
some sets of surfaces and then investigate the genus distribution of a generic graph by using
the surface sorting method developed in [16].

Preliminaries will be briefed in the next section. In Section 3, surfaces Q; will be intro-
duced. We shall investigate the genus distribution of surface sets Q? and le- for1 <5< 24, and
derive the related recursive formulas. In Section 4, a recursion formula of the genus distribution
for a cubic graph is given. In the last section, we show that the genus distribution of a general
graph can be transformed into genus distribution of some cubic graphs by using a technique we

develop in this paper.

§2. Preliminaries

For a graph G, a rotation at a vertex v is a cyclic permutation of edges incident with v. A
rotation system of G is obtained by giving each vertex of G a rotation. Let p, denote the valence
of vertex v which is the number of edges incident with v. The number of rotations systems of G

is I (pv—1)!. Edmonds found that there is a bijection between the rotations systems of a
veV(G)
graph and its embeddings [2]. Youngs provided the first proof published [18]. Thus, the number

of embeddings of G'is  [] (py, —1)!. Let ¢;(G) denote the number of embeddings of G with
veV(G)
the genus ¢ (i > 0). Then, the genus distribution of G is the sequence go(G), 91(G), 92(G), - - .

The genus polynomial of G is fg(z) = Y g:(G)2".
i>0

Given a spanning tree T of G, the joint trees of G are obtained by splitting each non-tree
edge e into two semi-edges e and e~. Given a rotation system o of G, G, T, and 73% denote the
associated embedding, joint tree and embedding surface which G, embedded on respectively.
There is a bijection btween embeddings and joint trees of G such that G, corresponds to TU.
Given a joint tree T, a sub-joint tree Tl of Tisa graph consisting of 77 and semi-edges incident
with vertices of T} where Ty is a tree and V(T1) C V(T). A sub-joint tree Ty of T is called
mazximal if there is not a tree Ty such that V(T1) C V(Tz) C V(T).

A linear sequence S = abc- - -z is a sequence of letters satisfying with a relation a < b <
¢ < -+ < z. Given two linear sequences S1 and Ss, the difference sequence S1/52 is obtained
by deleting letters of S5 in S7. Since a surface is obtained by identifying a letter with its inverse
letter on a special polygon along the direction, a surface is regarded as that polygon such that
a and a~ occur only once for each a € S in this sense.

Let S be the collection of surfaces. Let v(S) be the genus of a surface S. In order to
determine v(S), an equivalence is defined by Opl, Op2 and Op3 on S as follows:

Op 1. AB ~ (Ae)(e” B) where e ¢ AB;
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Op 2. AejesBese] ~ AeBe™ = Ae” Be where e ¢ AB;
Op 3. Aee” B ~ AB where AB # ()

where AB is a surface.
Thus, S is equivalent to one, and only one of the canonical forms of surfaces agpa, and
[1 arbra, b, which are the sphere and orientable surfaces of genus i(i > 1).
k=1
Lemma 2.1 ([6]) Let A and B be surfaces. If a,b ¢ B, and if A ~ Baba~b~, then y(A) =

~v(B)+1.

Lemma 2.2 ([7]) Let A,B,C,D and E be linear sequences and let ABCDE be a surface. If
a,b¢ ABCDE, then AaBbCa~ Db~ E ~ ADCBEaba~b~.

Lemma 2.3 ([13],[16]) Let A, B,C and D be linear sequences and let ABCD be a surface. If
aZzbtc#a #b” #c¢ andif a,b,c ¢ ABCD, then each of the following holds.

(i) aABa~CD ~ aBAa~CD ~ aABa~ DC.
(i) AaBa~bCb~cDc™ ~ aBa~ AbCb~cDc™ ~ aBa~bCb~ AcDc™.
(i) AaBa~bCb~cDc™ ~ BaAa~bCb~cDc¢™ ~ CaAa~bBb~cDc¢™ ~ DaAa"bBb~cCc™.

For a set of surfaces M, let g;(M) denote the number of surfaces with the genus ¢ in

M. Then, the genus distribution of M is the sequence go(M), g1 (M), g2(M),---. The genus
polynomial is far(x) = > gi(M)zt.
i>0

83. Genus Distribution for Q}

Let a,b,¢,d,a,b~,c¢™,d” be distinct letters and let Ag, By, C, Do be linear sequences. Then,

surface sets Q;? are defined as follows for 7 =1,2,3,---,24:
Q% = {A,BxCD}} Q% = {A,.CDyaBra™} Q’g ={AyBrCaDra™}
ij = {A;BraCDra~} Q’g = {AyDraBpCa} Q’g = {A;D,CBy}
Q% = {B,.CDraAra™} Q% = {BiDyCaAra™} Q% = {ArLByDrC}
QY = {AxDrCaBra™} Q% = {AxBiDpaCa™} Q% = {AxDyBraCa™}
Qts = {AxCBy.Dy} Qty = {ArCByaDya~} Qfs = {AxC Dy By}
Q% = {AxCaByDya™} QY. = {AxDyBC} Q% = {CDraAra bBib~}

Qlfg = {BkaaAka_be_} QIQCO = {BkCaAka_kab_} ngl = {AkaaBka_be_}

QIQCQ = {AkCaBka*kab*} Q12€3 = {AkBkaCafkabf} Q]2€4 = {AkaBka*be*chc*}
where £ = 0 and 1, A € {dA(),A()d}, (Bl,Dl) S {(Bod_,Do),(Bo,d_Do)} and a,a”,b,b™,
c,c”,d,d” ¢ ABCD. Let fao () denote the genus polynomial of QY. If AYAY Do By B3C3C1 D,
= (), then fQ? (z) = 1. Otherwise, suppose that fQ? (z) are given for 1 < j < 24. Then,

Theorem 3.1 Let g;;(n) be the number of surfaces with genus i in Q7}. Each of the following
holds.
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9i2(0) + 9i5 (0) + 91, (0) + 945 (0), if j =1

iz (0) + Gizs (0) + g(i—1), (0) + g(i-1),5(0), if j =2

iz (0) + 9i55(0) + 9(i-1), (0) + g(i-1),,(0), if j =3

9i4(0) + 9irs (0) + g(i—1) (0) + g(i-1),(0), if j =4

Gi5(0) + i (0) + g(i—1)6(0) + g(i—1),5(0), if j =5

20is(0) + 2g;,(0), if 7 =6

2g(i_1)15 (0) +29(;—1),,(0), if j =7 and 16
49(i—1),(0), if j =8

29i,(0) + 29i,,(0), if j =9

9i10(0) + 9i15(0) + 9(i-1)6(0) + g(i—1),(0), if j =10
2Giy, (0) + 2g4,,(0), if j =11
9i; (1) = ¢ 2g4,,(0) + 2g;,,(0), if j =12
29i5(0) + 294, (0), if j =13
Gi14(0) + Ging (0) + g(i—1)4(0) + g(i-1),5(0), if j =14

9i(0) + gi1,(0) + gi,5 (0) + gi,4(0), if 5 =15

9i=(0) + 915 (0) + 9i16 (0) + 9i1-(0), if j =17

29(i—-1y,(0) +29(;—1),,(0), if j =18

49(i—1)10 (0), if j =19

29(i-1)5(0) + 2g(i-1),,(0), if j = 20

iz (0) + 9i54 (0) + g(i—1),, (0) + g(i—1),,(0), if j =21
9(i-1)2(0) + 9(i-1)5(0) + g(i-1)10(0) + g(i—1),4(0), if j =22
Gizs(0) + Gins (0) + g(i—1),, (0) + g(i—1),,(0), if j = 23
29(i—1)2, (0) 4 29(i—1),, (0), if j =24

Proof We shall prove the equation for g;,(1), and the proofs for others are similar. Let
U, = {AoddeocBo} U; = {dAoDocBodi}
Us = {AOdDQCBOdi} Uy = {dAodiDocBo}

By the definition of Q}, we have Q} = {U1,Ua, Us, Us}. By the definition of g;,

9is (1) = gi(U1) + gi(U2) + gi(Us) + gi(Ua).
By Op3,

AoddiD()CBO ~ A()D()OB(), and dAoD()CBodi = AoDocBodid ~ A()D()OB().

It follows that
9i(U1) = 9i(U2) = g5 (0). (8)
By Lemma 2.3 (i) and Op2, we have

AogdDoCBod™ = DoCBod™ Agd ~ BoDoCd™ Agd ~ BoDyCaAga™
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and

dA()d_ D()OB() = B()D()CdAod_ ~ B()D()CCLA()CL_.

So

9i(Us) = 9i(Us) = gis (0)- (9)

Combining (1) and (2), we have

Gis (1) = 2gi, (0) + 29 (O)

§84. Embedding Surfaces of a Cubic Graph

Given a cubic graph G with n non-tree edges y; (1 <1 < n), suppose that T is a spanning tree
such that T contains the longest path of G and that T is an associated joint tree. Let X;, Y], Z;
and Fj be linear sequences for 1 <1 < n such that X;UY; =y, Z1UF =y, , X; # Y, and
Zy # .

RECORD RULE: Choose a vertex u incident with two semi-edges as a starting vertex and
travel T along with tree edges of T. In order to write down surfaces, we shall consider three

cases below.

Case 1: If v is incident with two semi-edges ys and y;. Suppose that the linear sequence is

R when one arrives v. Then, write down RX,y,Ys going away from v.

Case 2: If v is incident with one semi-edge ys. Suppose that R; is the linear sequence
when one arrives v in the first time. Then the sequence is R; X; when one leaves v in the first
time. Suppose that Ry is the linear sequence when one arrives v in the second time. Then the

sequence is RoY; when one leaves v in the second time.

Case 3: If v is not incident with any semi-edge. Suppose that Ry, R and R3 are, respectively,
the linear sequences when one leaves v in the first time, the second time and the third time.
Then, the sequences are (R2/R1)R1(R3/R2) and Rs when one leaves v in the third time.

Here, 1 < s,t <n and s # t. If v is incident with a semi-edge y; , then replace X, with Z,
and replace Y with Fj.

Lemma 4.1 There is a bijection between embedding surfaces of a cubic graph and surfaces

obtained by the record rule.

Proof Let T be a spanning tree such that Tisa joint tree of G above. Suppose that o, is
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a rotation of v and that Ry, Ry and R3 are given above.

(Ys, ye, er), if Xy = ys or Fy =y

and v is incident with ys, y; and e,;
(yt,ys,er), ifYy =ys or Zg =y,

and v is incident with ys, y: and e,;
(ys, €1, €2), if Xy =y, or Fy =y,
B and v is incident with ys, e, and eg;
" (e1,Ys,€2), if Vs =ys or Z; =y

and v is incident with ys, e, and eg;
(e1,e2,€3), if the linear sequence is Rj

and v is incident with e,, e, and e,;

(e2,e1,e3), if the linear sequence is (R2/R1)R1(R3/R2)

and v is incident with e, e, and e,

where e,, e, and e, are tree-edges for 1 < p,q,r < 2n—3 and e, # e, # e, for p # ¢ # r. Hence
the conclusion holds. (]

By the definitions for X;, Y}, Z; and Fj, we have the following observation:

Observation 4.2 A surface set H(© of G has properties below.

(1) Either X;, V; € H® or X, V; ¢ HO);

(2) Either Z;, F; € H® or Z;, F;, ¢ H),

(3) If for some I with 1 < I < n, X;,Y;,Z;,F; € HO, then H® has one of the follow-

ing forms X;AQY; B0 7,0 F, DO y;A0 x; B0 7,00 [, DO X; A0y, BO) [, 7, DO or

YA X; BO F,C©) 7, D) These forms are regarded to have no difference through this paper.
If either X; € H®, 7, ¢ HO or X; ¢ H®, 7, € HO| then replace X;, Y}, Z; and F

according to the definition of X;,Y;, Z; and Fj.

RECURSION RULE: Given a surface set H = {X;AQY;BOZ,COFD®} where
A BO) ) and DO are linear sequences.

Step 1. Let A4g = A®, By = B, ¢ = C® and Dy = DIV, Q] is obtained for 2 < j < 5.
Then Hj(-l) is obtained by replacing a,a™ and le with aq,a; and Hj(-l) respectively.

Step 2. Given a surface set H](f)DB j,, for a positive integer k and 2 < j1, j2, j3, -, jk < 5,
without loss of generality, suppose that H;f)ﬁjsjk = {X,AWY, B z.C*) F,D*)} where

A®) B C®) and D® are linear sequences for certain s (1 < s < n). Let 4y = A®),

By = B® ¢ = C® and D, = D). le is obtained for 2 < j < 5. Then gD

(k1) J1,92:985 Tk sJ
+1 -
Hj1,j2 3J35 03Ik J respectively.

is

obtained by replacing a,a™ and Q]l with ag41,a,; and
(m)

Some surface sets Hjl,j2 e i

2 for a positive integer m, 2 < j1,72,73,  * ,Jjm < D and 1 < I < n. It is easy to compute

fypem ().

J1,32:33: »dm

which contain a;,a; ,¥,y; can be obtained by using step
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By Theorem 3.7,
(r)

_ o ggrt1) (pr(r+1)
gi( J1,J2,33, :jr) - l( J1,J2,93, ;ij) + 91( j1,j27j37'”7jm3)
+1 +1
G 5 ) F G ), (1)
ifogrgm_la2§jlaj27j37”' 7j’r S o.

Fig.1: G and Tvo

Example 4.3 The graph Gy is given in Fig.1. A joint tree TO is obtained by splitting non-tree
edges y; (1 <1 < 6). Travel To by regarded vy as a starting point. By using record rule we
obtain surface sets

{ X1y Y121 22 Z3ys F3Y6YsYaZ5 Zayg FaF5 X4 X5 X6 FoF1}
and
(X192 Y121 Z5Y6YsYa Zs Zayg FaFs X4 X5 X6FoF1 Z3ysF3}.

By replacing Zo, F, Z3, F3, X and Y according the definition 16 surface sets U, (1 < r < 16)
are listed below.

U = {X1y2Y121y5 Y5 y3yeYs YaZs Zayg FaFs X4 Xs5F1}
Us = {X1y2Y1Z1y5 y3 y3YsYaZs Zayg FaFs X4 X5y F1 }
Us = {X1y2Y121y5 y3ys Y6 YsYaZs Zayg FaFs X4 X5F1}
Us = {X1y2Y1 21y, y3ys Yo YaZ5 Zayg FaF5 XaX5ysF1}
Us = {X1y2Y121y5 y3ye Y5 YaZs Zayg FuFs X4 X5y, F1}
Us = {X1y2Y1Z1y5 y3YsYaZ5 Zayg FuF5 XaXsysys F1}
Ur = {X1y2Y1Z1y3y5 Y6 Y5 YaZs Zayg FaFs X4 X5y, F1}
Us = {X1y2Y1Z1y3ys YsYaZ5 Zayg FaFs X4 Xsyeys F1}
Ug = {X1y2Y1Z1y5 y6 Y5 YaZ5 Zayg FaFs X4 X5 F1ys ys}
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Uro = {X1y2Y1Z1y5 YsYaZ5 Zayg FaFs XaXsys F1yz ys}
Un = {X192Y1 2195 y6YsYaZs Zayg FaFs X4 X5 Frysys }
Ui = {X1y2Y1Z1y5 YsYaZs Zays FaFs X4 Xsys F1ysys }
Urs = {X12Y1 Z1y6YsYaZs Zayg FuFs X4 Xsy; Frys ys}
Ury = {X192Y1Z1Y5Ya Z5 Zayg FaFs X4 X5yeys Fiys ys}
Urs = {X192Y1 Z1y6Ys Y Zs Zayg FaFs XaX5y5 Fiysys }
Uie = {X1y2Y121Y5Y1Z5 Zays FaFs X4 X5y6y5 Fiysys }-

The genus distribution of U,. can be obtained by using the recursion rule. Since the method
is similar, we shall calculate the genus distribution of U; and leave the calculation of genus
distribution for others to readers.

U, is reduced to {X1y2Y1Z1ys y6YsYaZs5 Zays FaFs X4 X5F} by Op2. Let HO® = G,
Ao = o, Co = yyyeYsYaZs Zayg FuFsX4Xs and By = Dy = . Then HY = H{Y =
{y2ys y6YsYaZs Zayg FaFs XaXs} and H{" = HSY = {ysa1y; yoYsYaZ5 Zays FaF5 X4 Xsa7 }.

HY is reduced to {yYsYaZsZsyg FiF5X4X5} by Op2. Let Ag = XsyeYs, By = Zs,
00 = yg and Dy = F5. Then Hy) = {X5y6Y},y6_F5a2Z5a2_} HYY) = {X5y6Y5Z5y6_a2F5a2_}
H) = {X596Y525a296 Fyaz } and HY) = {X5y6Y5F5a2Z5Z/6 az}. H{Y) = {Xsa1 yoary; vsYs
Y Fsa2Zsa; }, H4,3 = {Xsa] y201y5 Y6 Y5 Z5yg azlsay }, H4,4 = {Xsa; y2a1Y5 y6Ys Z5a2ys Fs
ay } and Hfg = {Xsa] y201y5 y6Ys Fsa2Z5yg a5 } by letting Ay = Xsay yaa1y5 y6Ys, Bo = Zs,
Co =vyg and Dy = Fs.

Slmﬂaﬂ}’v 2 2) > = {Ysazay aBZ/ﬁ a3 |3 H2 2 3= = {Y6¥s a2a3a2 as } H2 2 1 = {Y6ys azazay az }
(3
and H2 2) 5 = Y60y a3Yg 203 }. H2 3.2 — = {Y6¥s a2a2 } H2 ,3,3 = {Y6Ys a2asa; az }, H2,§,4 =
- 3 _ _
{ysasys azay az } and H2(,3,5 = {ysay azyg azaz }. H2,4,2 = {yea2yg a5 }, HQ(,AZ,B = {ysa2ys aza,
_ 3 - 3 — - 3 - 3
az }, H§,£74 = {ysazazyg ay az } and H2(,42,5 = {ysay azazys az }. H2(75),2 = {ysa2ys as }, H§5)3 =
o 3 - 3 - — 3 _
{Z/6a2a3216 ag ag 1, H2(,5),4 = {y6a3a2y6 Qg a3 } and H§5)5 = {y6y6 Qg a3a203 } HAE,Q),Z = {a; y2as
- “aausas)y. H®) . = f47 - = “asl. g® s - = - —
Y2 Y6205 azyg az }, 423 = {a1 y2a1y5 yeys azasas agz }, 4,24 {a1 y2a1y5 yeys asazas az }
3 _ - 3 _ - 3 _ _
and Hzi,2)75 = {aj y2a1y; Ysay azys azagz }. Hi??z = {ay Y2015 Y6Ys 205 }, Hzi,?l:a = {aj Y201y,
_ _ 3 _ _ _ _ _ 3 _ _ _ _ _
Y6Ys azasas az }, Hzi732,4 = {aj y2a19; Yeasys azay ag } and Hzi732,5 = {ai y2a195 Y6 a5 asyg azag }.
_ _ _ 3 _ - - - 3 _ _
Hi i 2= {al y2alyg Y6a2Yg Qg b Hi i 3= {Ch Y2a1Yy y6a2y6 azay g b HMAL = {al y2alyg Yea3a2
Yg Ay ag } and H4 45 = = {ay 2/2@1212 Y6y a3a2yg az t. Hy 5) o = {ay yaaryy yeaz yg ag }, Hy 5) 3=
3) (3)
{ay Y2015 ysazasyg ay az }, H4 54 — = {a] y2a1y; Ysaszazyg as az } and H4 5,5 = {ay y2019; Yo
Yo Gy 30203 }.

By using (1),

fu, (x) = 4 + 322 + 2822,
Thus,

fao(x) = 64 + 512 + 44822,
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85. Genus Distribution for a Graph

Theorem 5.1 Given a graph, the genus distribution of G is determined by using the genus

distribution of some cubic graphs.

Proof Given a finite graph Gy, suppose that u is adjacent to k + 1 distinct vertices vg, v1,
vg, -+, v of Gy with k > 3. Actually, the supposition always holds by subdividing some edges
of G.

A distribution decomposition of a graph is defined below: add a vertex ug of valence 3 such
that us is adjacent to u, vg and vs for each s with 1 < s < k and then obtain a graph G by
deleting the edges uvg and uwvs.

Choose the spanning trees Ts of G4 such that uv,, uus and ugv, are tree edges for 0 < s < k.
Consider a joint tree T of G. Let fs* be the maximal joint tree of Ty such that v, € V(Ty)
and vy ¢ V(TF) for t # s and 0 < s,t < k.

Let v, be the starting vertex of fs* for 0 < s < k. Suppose that A is the set of all sequences
by travelling T and that Qs is the embedding surface set of G,. Then

Qo = {AvAr AryAry -+ A |Ar, € A 1 <y < kyrp # 1g for p# g}
and for 1 <s <k
QS = {AOAsArl ArgArg T ATk_17A0A’r‘1 AT‘QAT‘g T Ark_1A5|Arp S ATpa
1<rp,<krp#s1<pg<k—1, and r, # rq for p # q}.

Let fq.(x) denote the genus distribution of Q5. It is obvious that

1 k
fou(z) =5 > fo.(x).

Thus,

1 k
feul@) =5 > fa(@).
s=1

Since G has finite vertices, the genus distribution of Gy can be transformed into those of

some cubic graphs in homeomorphism by using the distribution decomposition. [

Next we give a simple application of Theorem 5.1.
Example 5.2 The graph Wj is shown in Fig.2. In order to calculate its genus distribution, we
use the distribution decomposition and then we obtain three graph G, for 1 < s < 3 (Fig.2).

It is obvious that G2 are isomorphic to Mébius ladder M Ls and G are isomorphic to Ringel
ladder RLy for s =1 and 3. Since (see [8], [15])

favrs(z) =40z + 242>

and since (see [9], [15])
frL, (%) = 2+ 38z + 2422,
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Il
rO| =
[

fwa () fa. (@)
s=1
1
= 5[4033 + 2422 + 2(2 + 38 + 242?)]
= 24582+ 3622
Vo U1 Vo V1 () V1 (%) V1
e U2 U3
u u
u u
V3 (%) V3 (%) U3 (%) U3 (%)
W4 Gl Gz GB

Fig.2: W, and G
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