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Abstract: In this paper, we study a special case of Smarandache breadth curves, and

give some characterizations of the space-like curves of constant breadth according to Bishop

frame in Minkowski 3-space.
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§1. Introduction

Curves of constant breadth were introduced by Euler in [3]. Fujivara presented a problem to

determine whether there exist space curves of constant breadth or not, and defined the concept

of breadth for space curves and also obtained these curves on a surface of constant breadth in

[5]. Some geometric properties of curves of constant breadth were given in a plane by [8]. The

similar properties were obtained in Euclidean 3-space E3 in [9]. These kind curves were studied

in four dimensional Euclidean space E4 in [1].

In this paper, we study a special case of Smarandache breadth curves in Minkowski 3-

space E3
1 . A Smarandache curve is a regular curve with 2 breadths or more than 2 breadths in

Minkowski 3-space E3
1 . Also we investigate position vectors of simple closed space-like curves

and give some characterizations of curves of constant breadth according to Bishop frame of

type-1 in E3
1 . Thus, we extend this classical topic to the space E3

1 , which is related to the

time-like curves of constant breadth in E3
1 , see [10] for details. We also use a method which is

similar to one in [9].

§2. Preliminaries

The Minkowski 3-space E3
1 is an Euclidean 3-space E3 provided with the standard flat metric

1Received July 3, 2014, Accepted November 26, 2014.
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given by

< , >= −dx2
1 + dx2

2 + dx2
3

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since < , > is an indefinite metric

recall that a vector v ∈ E3
1 can be one of three Lorentzian characters; it can be space-like if

< v, v >> 0 or v = 0, time-like if < v, v >< 0 and null if < v, v >= 0 and v 6= 0. Similarly, an

arbitrary curve ϕ = ϕ(s) in E3
1 can locally be space-like, time-like or null (light-like) if all of

its velocity vector ϕp is respectively space-like, time-like or null (light-like) for every s ∈ J ∈ R.

The pseudo-norm of an arbitrary vector a ∈ E3
1 is given by ‖a‖ =

√
|< a, a >|. The curve ϕ is

called a unit speed curve if its velocity vector ϕp satisfies ‖ϕp‖ = ∓1. For any vectors u,w ∈ E3
1 ,

they are said to be orthogonal if and only if < u,w >= 0.
Denote by {T,N,B} the moving Frenet frame along curve ϕ in the space E3

1 . Let ϕ be

a space-like curve with a space-like binormal in the space E3
1 , as similar to in [11], the Frenet

formulae are given as 


T p

N p

Bp


 =




0 κ 0

κ 0 τ

0 τ 0







T

N

B


 (2.1)

where κ and τ are the first and second curvatures with

< T, T >=< B,B >= 1, < N,N >= −1,

< T,N >=< T,B >=< N,B >= 0.

The construction of the Bishop frame is due to L.R.Bishop in [4]. This frame or parallel

transport frame is an alternative approach to defining a moving frame that is well defined even

the space-like curve with a space-like binormal has vanishing second derivative [2]. He used

tangent vector and any convenient arbitrary basis for the remainder of the frame. Then, as

similar to in [2], the Bishop frame is expressed as




T p

N p

1

N p

2


 =




0 k1 −k2

k1 0 0

k2 0 0







T

N1

N2


 (2.2)

and

κ(s) =
√
|k2

1 − k2
2 |, τ(s) =

dθ
ds
, θ(s) = tanh−1 k2

k1
(2.3)

where k1and k2 are Bishop curvatures.

§3. Spacelike Curves of Constant Breadth According to Bishop Frame in E3
1

Let −→ϕ = −→ϕ (s) and −→ϕ ∗ = −→ϕ ∗(s) be simple closed curves of constant breadth in Minkowski

3-space. These curves will be denoted by C and C∗. The normal plane at every point P on the

curve meets the curve in the class Γ having parallel tangents
−→
T and

−→
T∗ in opposite directions
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at the opposite points ϕ and ϕ∗ of the curve as in [5]. A simple closed curve of constant

breadth having parallel tangents in opposite directions at opposite points can be represented

with respect to Bishop frame by the equation

ϕ∗(s) = ϕ(s) +m1T +m2N1 +m3N2 (3.1)

wheremi(s), 1 ≤ i ≤ 3 are arbitrary functions, also ϕ and ϕ∗ are opposite points. Differentiating

(3.1) and considering Bishop equations, we have

dϕ∗

ds
=
−→
T ∗ ds

∗

ds
= (

dm1

ds
+m2k1+m3k2+1)T

+(
dm2

ds
+m1k1)N1 +(

dm3

ds
-m1k2)N2.

(3.2)

Since T ∗ = −T , rewriting (3.2), we obtain the following equations





dm1

ds
= −m2k1 −m3k2 − 1 − ds∗

ds

dm2

ds
= −m1k1

dm3

ds
= m1k2.

(3.3)

If we call θ as the angle between the tangent of the curve (C) at point ϕ(s) with a given

direction and consider
dθ
ds

= τ , we can rewrite (3.3) as follow;





dm1

dθ
= −m2

k1

τ
−m3

k2

τ
− f(θ)

dm2

dθ
= −m1

k1

τ
dm3

dθ
= m1

k2

τ

(3.4)

where

f(θ) = δ + δ∗ δ =
1

τ
, δ∗ =

1

τ∗
(3.5)

denote the radius of curvature at the points ϕ and ϕ∗, respectively. And using the system (3.4),

we have the following differential equation with respect to m1 as

d3m1

dθ3
− (

κ
τ

)2
dm1

dθ
+

[
k2

τ
d
dθ

(
k2

τ
) − d

dθ
(
κ
τ

)2 − κ
τ
d
dθ

(
k2

τ
)

]
m1

+(
θ∫
0

m1
k2

τ
dθ)

d2

dθ2
(
k2

τ
) − (

θ∫
0

m1
k1

τ
dθ)

d2

dθ2
(
k1

τ
) +

d2f
dθ2

= 0.

(3.6)

The equation (3.6) is characterization of the point ϕ∗. If the distance between opposite
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points of (C) and (C∗) is constant, then we write that

‖ϕ∗ − ϕ‖ = −m2
1 +m2

2 +m2
3 = l2 is constant. (3.7)

Hence, from (3.7) we obtain

−m1
dm1

dθ
+m2

dm2

dθ
+m3

dm3

dθ
= 0 (3.8)

Considering system (3.4), we get

m1

[
2m3

k2

τ
+ f(θ)

]
= 0 (3.9)

From (3.9), we study the following cases which are depended on the conditions 2m3
k2

τ
+

f(θ) = 0 or m1 = 0.

Case 1. If 2m3
k2

τ
+ f(θ) = 0 then by using (3.4), we obtain

dm1

dθ
− (

θ∫

0

m1
k1

τ
dθ)

k1

τ
+
f(θ)
τ

= 0. (3.10)

Now let us to investigate solution of the equation (3.6) and suppose that m2, m3 and f(θ)
are constants, m1 6= 0, then using (3.4) in (3.6), we have the following differential equation

d3m1

dθ3
− (

κ
τ

)2
dm1

dθ
− d
dθ

(
κ
τ

)2m1 = 0. (3.11)

The general solution of (3.11) depends on the character of the ratio
κ
τ

. Suppose that ϕ is

not constant breadth. For this reason, we distinguish the following sub-cases.

Subcase 1.1 Suppose that ϕ is an inclined curves then the solution of the differential

equation (3.11) is

m1 = c1 + c2e
−
κ
τ

θ
+ c3e

κ
τ

θ
. (3.12)

Therefore, we have m2 and m3, respectively,

m2 = −
θ∫
0

(c1 + c2e
−
κ
τ

θ
+ c3e

−
κ
τ

θ
)
k1

τ
dθ

m3 =
θ∫
0

(c1 + c2e
−
κ
τ

θ
+ c3e

κ
τ

θ
)
k2

τ
dθ

(3.13)

where c1, c2 and c3 are real numbers.
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Subcase 1.2 Suppose that ϕ is a line. The solution is in the following form

m1 = A1
θ2

2
+A2θ +A3. (3.14)

Hence, we have m2 and m3 as follows

m2 = −
θ∫
0

(A1
θ2

2
+A2θ +A3)

k1

τ
dθ

m3 =
θ∫
0

(A1
θ2

2
+A2θ +A3)

k2

τ
dθ

(3.15)

where A1, A2 and A3 are real numbers.

Case 2. If m1 = 0, then m2 = M2 and m3 = M3 are constants. Let us suppose that

m2 = m3 = c (constant). Thus, the equation (3.4) is obtained as

f(θ) =
−c(k1 + k2)

τ
.

This means that the curve is a circle. Moreover, the equation (3.6) has the form

d2f
dθ2

= 0. (3.16)

The solution of (3.16) is

f(θ) = l1θ + l2 (3.17)

where l1 and l2 are real numbers. Therefore, we write the position vector ϕ∗ as follows

ϕ∗ = ϕ+M2N1 +M3N2 (3.18)

where M2 and M3 are real numbers.

Finally, the distance between the opposite points of the curves (C) and (C∗) is

‖ϕ∗ − ϕ‖ = M2
2 +M2

3 = constant. (3.19)
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[7] N.Ekmekçi, The Inclined Curves on Lorentzian Manifolds,(in Turkish) PhD dissertation,

Ankara Universty, 1991.

[8] Ö. Köse, Some properties of ovals and curves of constant width in a plane, Doğa Turk
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of a circle which lies on the dual unit sphere in D-module. In order to do this we use matrix

equation of Study mapping. Finally we give some special cases each of which is a geometric

result.
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AMS(2010): 53A04, 53A25

§1. Introduction

In linear algebra, dual numbers are defined by W. K. Clifford (1873) by using real numbers.

Dual numbers are extended the real numbers by adjoining one new element ε with the property

ε2 = 0. Dual numbers have the form x + εy, where x, y ∈ R. The dual numbers set is two-

dimensional commutative unital associative algebra over the real numbers. Its first application

was made by E. Study. He used dual numbers and dual vectors in his research on the geometry

of lines and kinematics [15]. He devoted special attention to the representation of directed line

by dual unit vectors and defined the mapping which is called with his name. There exists one

to one correspondence between dual unit points of dual unit sphere and the directed lines of

the Euclidean line space E3.
Let α be a regular curve and

−→
T be its tangent, and u be a source. Orthotomic of α with

respect to the source (u) is the locus of reflection of u about the tangents
−→
T [7]. Bruce and

Giblin studied the unfolding theory to the evolutes and orthotomics of plane and space curves

[3], [4] and [5]. Georgiou, Hasanis and Koutroufiotis investigated the orthotomics in Euclidean

(n + 1)-space En+1 [6]. Alamo and Criado studied the antiorthotomics in Euclidean (n+1)-

space En+1 [1]. Xiong defined the spherical orthotomic and the spherical antiorthotomic [16].

In this paper we examine the Study Map of the spherical orthotomic of a circle which lies on

the dual unit sphere in D-Module.

§2. Preliminaries

If a and a∗ are real numbers and ε2 = 0 but ε /∈ R, a dual number can be written as A = a+εa∗,

1Received May 16, 2014, Accepted November 28, 2014.
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where ε = (0, 1) is the dual unit.

The set D = {A = a+ εa∗ |a, a∗ ∈ R} of dual numbers is a commutative ring over the real

number field and is denoted by D. Then the set

D3 =
{−→
A = (A1, A2, A3) |Ai ∈ D, 1 ≤ i ≤ 3

}

is a module over the ring D which is called a D-Module, under the addition and the scalar

multiplication on the set D ([12]). The elements of D3 are called dual vectors. Thus a dual

vector has the form
−→
A = −→a + ε−→a ∗, where −→a and −→a ∗ are real vectors at R3. Then, for any

vectors
−→
A and

−→
B in D3, the inner product and the vector product of these vectors are defined

as 〈−→
A,

−→
B
〉

=
〈−→a ,−→b

〉
+ ε

(〈−→a ,−→b ∗
〉

+
〈−→a ∗,

−→
b
〉)

and −→
A ∧ −→

B = −→a ∧ −→
b + ε

(−→a ∧ −→
b ∗ + −→a ∗ ∧ −→

b
)
,

respectively. The norm
∥∥∥−→A
∥∥∥ of

−→
A = −→a + ε−→a ∗ is defined as

∥∥∥−→A
∥∥∥ = ‖−→a ‖ + ε

〈−→a ,−→a ∗〉
‖−→a ‖ , −→a 6= 0.

The dual vector
−→
A with norm 1 is called a dual unit vector. The set of dual unit vectors

S2 =
{−→
A = −→a + ε−→a ∗ ∈ D3

∣∣∣
∥∥∥−→A
∥∥∥ = 1;∈ D,−→a ,−→a ∗ ∈ R3

}

is called the dual unit sphere.

Now, we give the definition of spherical normal, spherical tangent and spherical orthotomic

of a spherical curve α.
{−→
T ,

−→
N,

−→
B
}

be the Frenet frame of α. The spherical normal of α is the

great circle which passing through α(s) and normal to α at α(s) and is given by





〈−→x ,−→x 〉 = 1〈−→x ,−→T
〉

= 0

where x is an arbitrary point of spherical normal. The spherical tangent of α is the great circle

which tangent to α at α(s) and is given by





〈−→y ,−→y 〉 = 1〈−→y , (−→α ∧−→
T )
〉

= 0

where y is an arbitrary point of spherical tangent.

Let u ∈ S2 be a source. Xiong defined the spherical orthotomic of α relative to u to be

([17]) the set of reflections of u about the planes whose lie on the above great circles for all

s ∈ I and given by −→̃
u = 2 〈(−→α −−→u ) ,−→v 〉 −→v + −→u
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where −→v =

−→
B −

〈−→
B,−→α

〉−→α
∥∥∥−→B −

〈−→
B,−→α

〉−→α
∥∥∥

.

§3. Study Mapping

Definition 3.1 The Study mapping is an one to one mapping between the dual points of a dual

unit sphere, in D-Module, and the oriented lines in the Euclidean line space E3.

Let K,O and
{
O;

−→
E 1,

−→
E 2,

−→
E 3

}
denote the unit dual sphere, the center of K and dual

orthonormal system at O, respectively where

−→
E i = −→e i + ε−→e ∗

i ; 1 ≤ i ≤ 3. (3.1)

Let S3 be the group of all the permutations of the set {1, 2, 3} , then it can be written as





−→
E σ(1) = sgn(σ)

−→
E σ(2) ∧

−→
E σ(3), sgn(σ) = ±1,

σ =


 1 2 3

σ(1) σ(2) σ(3)


 (3.2)

In the case that the orthonormal system

{O;−→e 1,−→e 2,−→e 3}

is the system of the line space E3. We can write the moment vectors −→e ∗
i as

−→e ∗
i =

−−→
MOΛ−→e i, 1 ≤ i ≤ 3. (3.3)

Since these moment vectors are the vectors of R3, we may write that

−→e ∗
i =

3∑
λij

−→e i, λij ∈ R, 1 ≤ i ≤ 3. (3.4)

Hence (3.3) and (3.4) give us

λii = 0, λij = −λji, 1 ≤ i, j ≤ 3

and so the scalars λij are denoted by λi, that is,

λij = λi.
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Then (3.4) reduces to




−→e ∗
1

−→e ∗
2

−→e ∗
3


 =




0 λ1 −λ3

−λ1 0 λ2

λ3 −λ2 0







−→e 1

−→e 2

−→e 3


 . (3.5)

Hence the Study mapping

K → E3

can be given as a mapping from the dual orthonormal system to the real orthonormal system.

By using the relations (3.1) and (3.5), we can express Study mapping in the matrix form as

follows: 


−→
E 1

−→
E 2

−→
E 3


 =




1 λ1ε −λ3ε

−λ1ε 1 λ2ε

λ3ε −λ21ε 1







−→e 1

−→e 2

−→e 3


 (3.6)

which says that Study mapping corresponds with a dual orthogonal matrix. Since we know [14]

that the linear mappings are in one to one correspondence with the matrices we may give the

following theorem.

Theorem 3.2 A Study mapping is a linear isomorphism.

Since the Euclidean motions in E3 leave do not change the angle and the distance between

two lines, the corresponding mapping in D-Module leave the inner product invariant.

This is the action of an orthogonal matrix with dual coefficients. Since the center of the

dual unit sphere K must remain fixed the transformation group in D-module (the image of

the Euclidean motions) does not contain any translations. Hence, in order to represents the

Euclidean motions in D-Module we can apply the following theorem [8].

Theorem 3.3 The Euclidean motions in E3 are in one to one correspondence with the dual

orthogonal matrices.

Definition 3.4 A ruled surface is a surface that can be swept out by moving a line in space.

This line is the generator of surface.

A differentiable curve

t ∈ R→ −→
X (t) ∈ K

on the dual unit sphere K,depending on a real parameter t,represents differentiable family of

straight lines of which is ruled surface ( [2], [8]). The lines
−→
X (t) are the generators of the

surface.

Let X,Y be two different points of K and Φ be the dual angle
(−−→
OX,

−−→
OY

)
. The dual angle

Φ has a value ϕ+ εϕ∗ which is a dual number, where ϕ and ϕ∗ are the angle and the minimal

distance between the two lines
−→
X and

−→
Y , respectively. Then we have the following theorem

([8]).
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Theorem 3.5 Let
−→
X ,

−→
Y ∈ K. Then we have

〈−→
X ,

−→
Y
〉

= cosΦ,

where

cosΦ = cosϕ− εϕ∗ sinϕ. (3.7)

The following special cases of Theorem 3.5 are important ([9]):

〈−→
X ,

−→
Y
〉

= 0 =⇒ ϕ =
π
2

and ϕ∗ = 0; (3.8)

meaning that the lines
−→
X and

−→
Y meet at a right angle.

〈−→
X ,

−→
Y
〉

= pure dual =⇒ ϕ =
π
2

and ϕ∗ 6= 0; (3.9)

meaning that the lines
−→
X and

−→
Y are orthogonal skew lines.

〈−→
X ,

−→
Y
〉

= pure real =⇒ ϕ 6= π
2

and ϕ∗ = 0; (3.10)

this means that the lines
−→
X and

−→
Y intersect each other.

〈−→
X ,

−→
Y
〉

= ±1 =⇒ ϕ∗ = 0 and ϕ = 0(or ϕ = π); (3.11)

meaning that the lines
−→
X and

−→
Y are coincide (their senses are either same or opposite).

§4. The Study Map of a Circle

Let g be the straight line corresponding to the unit dual vector
−→
E 3. If we choose the point M

on g then we have

λ2 = λ3 = 0

and so the matrix, from (3.6) reduces to




−→
E 1

−→
E 2

−→
E 3


 =




1 λ1ε 0

−λ1ε 1 0

0 0 1







−→e 1

−→e 2

−→e 3


 (4.1)

The inverse of this mapping is




−→e 1

−→e 2

−→e 3


 =




1 −λ1ε 0

λ1ε 1 0

0 0 1







−→
E 1

−→
E 2

−→
E 3


 (4.2)
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Let

S = {−→X |
〈−→
X ,

−→
E 3

〉
= cosΦ = constant,

−→
X ∈ K}

be the circle on the unit dual sphere K. The spherical orthotomic of the great circle which lies

on the plane spanned by
{−→
E 1,

−→
E 2

}
relative to S is a reflection of S about this plane and for

−→
X = (X1, X2, X3) ∈ S, it is given by

−→̃
X = (X1, X2,−X3). Thus the dual vector

−→̃
X can be

expressed as −→̃
X = sinΦ cosΨ

−→
E 1 + sin Φ sin Ψ

−→
E 2 − cosΦ

−→
E 3 (4.3)

where Φ = ϕ+ εϕ∗ and Ψ = ψ + εψ∗ are the dual angles. Since we have the relations





−→̃
X =

−→̃
x + ε

−→̃
x ∗

sin Φ = sinϕ+ εϕ∗ cosϕ, sin Ψ = sinψ + εψ∗ cosψ

cosΦ = cosϕ− εϕ∗ sinϕ, cosΨ = cosψ − εψ∗ sinψ

These equations (4.1) and (4.3) give us the vectors
−→̃
x and

−→̃
x ∗ in the matrix form:





−→̃
x =

[
−→e 1

−→e 2
−→e 3

]



sinϕ cosψ

sinϕ sinψ

− cosϕ




−→̃
x ∗ =

[ −→e 1
−→e 2

−→e 3

]



ϕ∗ cosϕ cosψ − (ψ∗ + λ1) sinϕ sinψ

ϕ∗ cosϕ sinψ + (ψ∗ + λ1) sinϕ cosψ

ϕ∗ sinϕ




(4.4)

On the other hand, the point
−→
X is on the circle with center on the axis

−→
E 3. As

−→̃
X is

spherical orthotomic of
−→
X ,

−→̃
X is on the circle which is reflected about the plane spanned by{−→

E 1,
−→
E 2

}
.Thus we may write

〈−→̃
X ,

−→
E 3

〉
= cosΦ = cosϕ− εϕ∗ sinϕ = constant (4.5)

which means that ϕ = c1(constant) and ϕ∗ = c2(constant).

The equation (4.4) and (4.5) let us to write the following relations:





〈−→̃
x ,

−→̃
x
〉

= 1〈−→̃
x ,

−→̃
x ∗
〉

= 0〈−→̃
x ,−→e 3

〉
− cosϕ = 0〈−→̃

x ,−→e ∗
3

〉
+
〈−→̃
x ∗,−→e 3

〉
+ ϕ∗ sinϕ = 0

(4.6)

The equations (4.6) have only two parameter ψ and ψ∗ so (4.6) represents a line congruence in

R3. This congruence is called spherical orthotomic congruence.
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Now we may calculate the equations of this spherical orthotomic congruence in Plucker

coordinates. Let −→y be a point of the spherical orthotomic congruence then we have ([12]).

−→y =
−→̃
x (ψ, ψ∗) ∧ −→̃

x ∗(ψ, ψ∗) + v
−→̃
x (ψ, ψ∗). (4.7)

If the coordinates of −→y are (y1, y2, y3) then (4.7) give us





y1 = ϕ∗ sinψ + (ψ∗ + λ1) sinϕ cosϕ cosψ + v sinϕ cosψ

y2 = −ϕ∗ cosψ + (ψ∗ + λ1) sinϕ cosϕ sinψ + v sinϕ sinψ

y3 = (ψ∗ + λ1) sin2 ϕ− v cosϕ

(4.8)

In this case that ϕ 6= π
2

(4.8) give us

y2
1

c22
+
y2
2

c22
− [y3 − (ψ∗ + λ1)]

2

[c2 cot c1]2
= 1 (4.9)

which has two parameters ψ∗ and λ1 so it represents a line congruence with degree two. The

lines of this congruence are located so that

a) The shortest distance of these lines and the line g is ϕ∗ = c2;

b) The angle of these lines and the line g is ϕ = c1.

Thus, it can be seen that the lines of spherical orthotomic congruence intersect the genera-

tors of a cylinder whose radius is ϕ∗ =constant, and the axis is g, under the angle ϕ∗ =constant.

Definition 4.1 If all the lines of a line congruence have a constant angle with a definite line

then the congruence is called an inclined congruence.

According to this definition, (4.9) represents an inclined congruence. Then, we have the

following theorem.

Theorem 4.2 Let S be a circle with two parameter on the unit dual sphere K The Study map

of orthotomic of S is an inclined congruence with degree two.

In other respect, we know that the shortest distance between the axis g of the cylinder and

the lines of the spherical orthotomic congruence is c2. Therefore, this cylinder is the envelope

of the lines of the spherical orthotomic congruence. So, we have the following theorem.

Theorem 4.3 Let K be a unit dual sphere and

S = {−→X |
〈−→
X ,

−→
G
〉

= cos(ϕ+ εϕ∗) = constant,
−→
X ∈ K,−→G ∈ K}

be a circle on K. Let ζ and g be the Study maps of spherical orthotomic ofS and G, respectively.

Then the lines of ζ has an envelope which is a circular cylinder whose axis is g and radius is

c2.
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In the case that ψ∗ = −λ1, ϕ 6= 0 and ϕ∗ 6= 0 (4.9) reduces to

y2
1

c21
+
y2
2

c21
− y2

3

k2
= 1, k = c2 cot c1 = constant, c1 = ϕ, c2 = ϕ∗ (4.10)

which represents an hyperboloid of one sheet.

Since ψ∗ and λ1 are two independent parameters, it can be said that the Study map

of spherical orthotomic of S is, in general, a family of hyperboloids of one sheet with two

parameters. Therefore we can give the following theorem.

Theorem 4.4 Let S be a circle on the unit dual sphere K. Then the Study map of spherical

orthotomic of S is a family of hyperboloid of one sheet with two parameters.

4.1 The Case that ϕ∗ 6= 0 and ϕ = π
2

In this case the lines of the spherical orthotomic congruence (4.9) orthogonally intersect the

generators of the cylinder whose axis is g and the radius is ϕ∗. Since (4.8) reduces to





y1 = ϕ∗ sinψ + v cosψ

y2 = −ϕ∗ cosψ + v sinψ

y3 = ψ∗ + λ1

(4.11)

Then (4.9) becomes 


y2
1 + y2

2 = c22 + v2

y3 = ψ∗ + λ1

(4.12)

4.2 The Case that ϕ∗ 6= 0 and ϕ = 0 (or ϕ = π)

In this case the lines of the spherical orthotomic congruence ζ coincide with the generators of

the cylinder which is the envelope of the lines of ϕ. This means noting but the Study map of

spherical orthotomic of S reduces to cylinder whose equations, from (4.8), are




y2
1 + y2

2 = c22
y3 = −v

4.3 The Case ϕ∗ = 0 and ϕ = 0 (or ϕ = π)

In this case all of the lines of the spherical orthotomic congruence ζ are coincided with the line

g. Indeed, in this case, (4.8) reduces to




y2
1 + y2

2 = 0

y3 = −v

which represents the line g.
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4.4 The Case ϕ∗ = 0 and ϕ 6= 0

In this case, all of the lines of ζ intersect the axis g under the constant angle ϕ. So, we can say

that the lines of the spherical orthotomic congruence ζ are the common lines of two linear line

complexes [13]. From (4.8), the equations of ζ give us that

y2
1 + y2

2 − [y3 − (ψ∗ + λ1)]
2

[cot c1]
2 = 0.

4.5 The Case that ϕ∗ = 0 and ϕ = π
2

In this case S is a great circle on K. Then all of the lines of ζ orthogonaly intersect the axis g.
This means that the spherical orthotomic inclined congruence reduces to a linear line complex

whose axis is g. Then (4.8) gives us that the equation of ζ as





y1 = v cosψ

y2 = v sinψ

y3 = λ1 + ψ∗

or 


y2
1 + y2

2 = v2

y3 = λ1 + ψ∗

Definition 4.5 If all the lines of a line congruence orthogonally intersect a constant line then

the congruence is called a recticongruence.

Therefore we can give the following theorem.

Theorem 4.6 Let S be a great circle on K, that is,

S = {−→X |
〈−→
X ,

−→
G
〉

= 0,
−→
X,

−→
G ∈ K}.

Then the Study map ζ of orthotomic of S is a recticongruence.

In the case that λ1 = c3ψ and (4.11) reduces to





y1 = v cosψ

y2 = v sinψ

y3 = c3ψ

or

y3 = c3 arctan
y2
y1

which represents a right helicoid

Since λ1 is a parameter, we can choose it as λ1 = c3ψ and so under the corresponding
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mapping the image of spherical orthotomic congruence reduce to a right helicoid. Hence we

can give the following theorem.

Theorem 4.8 It is possible to choose the Study mapping such that the Study maps of spherical

orthotomic of dual circles are right helicoids.

For the spherical orthotomic of great circle which lies on Sp
{−→
E 1,

−→
E 3

}
, we have the fol-

lowing theorem.

Theorem 4.9 The Study map of spherical orthotomic of S is given by

y2
1

c22
+
y2
3

c22
− [y2 − (ψ∗ + λ3)]

2

[c2 cot c1]
2 = 1

which has two parameters, so it represents a line congruence with degree two.

For a plane spanned by
{−→
E 2,

−→
E 3

}
, we obtain the following theorem.

Theorem 4.10 The Study map of spherical orthotomic of S is given by

y2
2

c22
+
y2
3

c22
− [y1 − (ψ∗ + λ2)]

2

[c2 cot c1]
2 = 1

which has two parameters, so it represents a line congruence with degree two.

By using the above two theorems, one way modify the study of this paper with choosing

the plane spanned by
{−→
E 1,

−→
E 3

}
or
{−→
E 2,

−→
E 3

}
.
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Abstract: As we known, an objective thing not moves with one’s volition, which implies

that all contradictions, particularly, in these semiotic systems for things are artificial. In clas-

sical view, a contradictory system is meaningless, contrast to that of geometry on figures of

things catched by eyes of human beings. The main objective of sciences is holding the global

behavior of things, which needs one knowing both of compatible and contradictory systems

on things. Usually, a mathematical system including contradictions is said to be a Smaran-

dache system. Beginning from a famous fable, i.e., the 6 blind men with an elephant, this

report shows the geometry on contradictory systems, including non-solvable algebraic linear

or homogenous equations, non-solvable ordinary differential equations and non-solvable par-

tial differential equations, classify such systems and characterize their global behaviors by

combinatorial geometry, particularly, the global stability of non-solvable differential equa-

tions. Applications of such systems to other sciences, such as those of gravitational fields,

ecologically industrial systems can be also found in this report. All of these discussions

show that a non-solvable system is nothing else but a system underlying a topological graph

G 6≃ Kn, or ≃ Kn without common intersection, contrast to those of solvable systems under-

lying Kn being with common non-empty intersections, where n is the number of equations

in this system. However, if we stand on a geometrical viewpoint, they are compatible and

both of them are meaningful for human beings.

Key Words: Smarandache system, non-solvable system of equations, topological graph,

GL-solution, global stability, ecologically industrial systems, gravitational field, mathemati-

cal combinatorics.
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§1. Introduction

A contradiction is a difference between two statements, beliefs, or ideas about something that

con not both be true, exists everywhere and usually with a presentation as argument, debate,

disputing, · · · , etc., even break out a war sometimes. Among them, a widely known contradic-

tion in philosophy happened in a famous fable, i.e., the 6 blind men with an elephant following.
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Fig.1

In this fable, there are 6 blind men were asked to determine what an elephant looked like by

feeling different parts of the elephant’s body. The man touched the elephant’s leg, tail, trunk,

ear, belly or tusk respectively claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or

a solid pipe, such as those shown in Fig.1. Each of them insisted on his own and not accepted

others. They then entered into an endless argument. All of you are right! A wise man explains

to them: why are you telling it differently is because each one of you touched the different part

of the elephant. So, actually the elephant has all those features what you all said. Thus, the

best result on an elephant for these blind men is

An elephant = {4 pillars}
⋃

{1 rope}
⋃

{1 tree branch}
⋃ {2 hand fans}

⋃
{1 wall}

⋃
{1 solid pipe},

i.e., a Smarandache multi-space ([23]-[25]) defined following.

Definition 1.1([12]-[13]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical systems,

different two by two. A Smarandache multi-system Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri

on Σ̃, denoted by
(
Σ̃; R̃

)
.

Then, what is the philosophical meaning of this fable for one understanding the world? In

fact, the situation for one realizing behaviors of things is analogous to the blind men determin-

ing what an elephant looks like. Thus, this fable means the limitation or unilateral of one’s

knowledge, i.e., science because of all of those are just correspondent with the sensory cognition

of human beings.

Besides, we know that contradiction exists everywhere by this fable, which comes from

the limitation of unilateral sensory cognition, i.e., artificial contradiction of human beings, and

all scientific conclusions are nothing else but an approximation for things. For example, let

µ1, µ2, · · · , µn be known and νi, i ≥ 1 unknown characters at time t for a thing T . Then, the
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thing T should be understood by

T =

(
n⋃

i=1

{µi}
)
⋃

⋃

k≥1

{νk}




in logic but with an approximation T ◦ =
n⋃

i=1

{µi} for T by human being at time t. Even for

T ◦, these are maybe contradictions in characters µ1, µ2, · · · , µn with endless argument between

researchers, such as those implied in the fable of 6 blind men with an elephant. Consequently,

if one stands still on systems without contradictions, he will never hold the real face of things

in the world, particularly, the true essence of geometry for limited of his time.

However, all things are inherently related, not isolated in philosophy, i.e., underlying an

invariant topological structure G ([4],[22]). Thus, one needs to characterize those things on con-

tradictory systems, particularly, by geometry. The main objective of this report is to discuss

the geometry on contradictory systems, including non-solvable algebraic equations, non-solvable

ordinary or partial differential equations, classify such systems and characterize their global be-

haviors by combinatorial geometry, particularly, the global stability of non-solvable differential

equations. For terminologies and notations not mentioned here, we follow references [11], [13] for

topological graphs, [3]-[4] for topology, [12],[23]-[25] for Smarandache multi-spaces and [2],[26]

for partial or ordinary differential equations.

§2. Geometry on Non-Solvable Equations

Loosely speaking, a geometry is mainly concerned with shape, size, position, · · · etc., i.e., local

or global characters of a figure in space. Its mainly objective is to hold the global behavior of

things. However, things are always complex, even hybrid with other things. So it is difficult to

know its global characters, or true face of a thing sometimes.

Let us beginning with two systems of linear equations in 2 variables:

(LESS
4 )





x+ 2y = 4

2x+ y = 5

x− 2y = 0

2x− y = 3

(LESN
4 )





x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

Clearly, (LESS
4 ) is solvable with a solution x = 2 and y = 1, but (LESN

4 ) is not because

x+2y = −2 is contradictious to x+2y = 2, and so that for equations 2x−y = −2 and 2x−y = 2.

Thus, (LESN
4 ) is a contradiction system, i.e., a Smarandache system defined following.

Definition 2.1([11]-[13]) A rule in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.



Geometry on Non-Solvable Equations – A Review on Contradictory Systems 21

In geometry, we are easily finding conditions for systems of equations solvable or not. For

integers m,n ≥ 1, denote by

Sfi
= {(x1, x2, · · · , xn+1)|fi(x1, x2, · · · , xn+1) = 0} ⊂ Rn+1

the solution-manifold in Rn+1 for integers 1 ≤ i ≤ m, where fi is a function hold with conditions

of the implicit function theorem for 1 ≤ i ≤ m. Clearly, the system

(ESm)





f1(x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn+1) = 0

is solvable or not dependent on
m⋂

i=1

Sfi
6= ∅ or = ∅.

Conversely, if D is a geometrical space consisting of m manifolds D1,D2, · · · ,Dm in Rn+1,

where,

Di = {(x1, x2, · · · , xn+1)|f [i]
k (x1, x2, · · · , xn+1) = 0, 1 ≤ k ≤ mi} =

mi⋂

k=1

S
f
[i]
k

.

Then, the system

f [i]
1 (x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . . .

f [i]
mi(x1, x2, · · · , xn+1) = 0





1 ≤ i ≤ m

is solvable or not dependent on the intersection

m⋂

i=1

Di 6= ∅ or = ∅.

Thus, we obtain the following result.

Theorem 2.2 If a geometrical space D consists of m parts D1,D2, · · · ,Dm, where, Di =

{(x1, x2, · · · , xn+1)|f [i]
k (x1, x2, · · · , xn+1) = 0, 1 ≤ k ≤ mi}, then the system (ESm) consisting

of

f [i]
1 (x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

f [i]
mi(x1, x2, · · · , xn+1) = 0





1 ≤ i ≤ m

is non-solvable if
m⋂

i=1

Di = ∅.
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Now, whether is it meaningless for a contradiction system in the world? Certainly not! As

we discussed in the last section, a contradiction is artificial if such a system indeed exists in the

world. The objective for human beings is not just finding contradictions, but holds behaviors of

such systems. For example, although the system (LESN
4 ) is contradictory, but it really exists,

i.e., 4 lines in R2, such as those shown in Fig.2.

-
6

O
x

y

x+ 2y = 2

x+ 2y = −2

2x− y = −2

2x− y = 2

A

B

C

D

Fig.2

Generally, let

AX = (b1, b2, · · · , bm)T (LEq)

be a linear equation system with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1. A vertex-edge labeled graph GL[LEq] on such a system is defined by:

V (GL[LEq]) = {P1, P2, · · · , Pm}, where Pi = {(x1, x2, · · · , xn)|ai1x1+ax2x2+· · ·+ainxn =

bi}, E(GL[LEq]) = {(Pi, Pj), Pi

⋂
Pj 6= ∅, 1 ≤ i, j ≤ m} and labeled with L : Pi → Pi,

L : (Pi, Pj) → Pi

⋂
Pj for integers 1 ≤ i, j ≤ m with an underlying graph Ĝ[LEq] without

labels.

For example, let L1 = {(x, y)|x+2y = 2}, L2 = {(x, y)|x+2y = −2}, L3 = {(x, y)|2x−y =

2} and L3 = {(x, y)|2x − y = −2} for the system (LESN
4 ). Clearly, L1

⋂
L2 = ∅, L1

⋂
L3 =

{B}, L1

⋂
L4 = {A}, L2

⋂
L3 = {C}, L2

⋂
L4 = {D} and L3

⋂
L4 = ∅. Then, the system

(LESN
4 ) can also appears as a vertex-edge labeled graph Cl

4 in R2 with labels vertex labeling
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l(Li) = Li for integers 1 ≤ i ≤ 4, edge labeling l(L1, L3) = B, l(L1, L4) = A, l(L2, L3) = C and

l(L2, L4) = D, such as those shown in Fig.3.

L1

L2L3

L4A

B

C

D

Fig.3

We are easily to determine Ĝ[LEq] for systems (LEq). For integers 1 ≤ i, j ≤ m, i 6= j,
two linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 6= bj/bi.

Otherwise, non-parallel. The following result is known in [16].

Theorem 2.3([16]) Let (LEq) be a linear equation system for integers m,n ≥ 1. Then

Ĝ[LEq] ≃ Kn1,n2,··· ,ns
with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family by

the property that all equations in a family Ci are parallel and there are no other equations par-

allel to lines in Ci for integers 1 ≤ i ≤ s, ni = |Ci| for integers 1 ≤ i ≤ s in (LEq) and (LEq)
is non-solvable if s ≥ 2.

Particularly, for linear equation system on 2 variables, let H be a planar graph with edges

straight segments on R2. The c-line graph LC(H) on H is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| L1 = e11e12 · · · e1l , L2 = e21e22 · · · e2s, l, s ≥ 1

and there adjacent edges e1i , e2j in H, 1 ≤ i ≤ l, 1 ≤ j ≤ s}.

Then, a simple criterion in [16] following is interesting.

Theorem 2.4([16]) A linear equation system (LEq2) on 2 variables is non-solvable if and only

if Ĝ[LEq2] ≃ LC(H), where H is a planar graph of order |H | ≥ 2 on R2 with each edge a

straight segment

Generally, a Smarandache multi-system is equivalent to a combinatorial system by follow-

ing, which implies the CC Conjecture for mathematics, i.e., any mathematics can be recon-
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structed from or turned into combinatorization (see [6] for details).

Definition 2.5([11]-[13]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multi-system

consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topo-

logical structure GL
[
S̃
]

of
(
Σ̃; R̃

)
is a topological vertex-edge labeled graph defined following:

V
(
GL
[
S̃
])

= {Σ1,Σ2, · · · ,Σm},

E
(
GL
[
S̃
])

= {(Σi,Σj) |Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L (Σi) = Σi and L : (Σi,Σj) → L (Σi,Σj) = Σi

⋂
Σj

for integers 1 ≤ i 6= j ≤ m.

Therefore, a Smarandache system is equivalent to a combinatorial system, i.e.,
(
Σ̃; R̃

)
≃

GL
[
S̃
]
, a labeled graph ĜL

[
S̃
]

by this notion. For examples, denoting by a = {tusk}b =

{nose}c1, c2 = {ear}d = {head} e = {neck} f = {trunk} g1, g2, g3, g4 = {leg}h = {tail} for an

elephantthen a topological structure for an elephant is shown in Fig.4 following.

a

b

d

c1

c2

e f

g1 g2

h

g3 g4

a ∩ d c1 ∩ d

b ∩ d c2 ∩ d

d ∩ e e ∩ f
g1 ∩ f g2 ∩ f

g3 ∩ f g4 ∩ f

f ∩ h

Fig.4 Topological structure of an elephant

For geometry, let these mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be geomet-

rical spaces, for instance manifolds M1,M2, · · · ,Mm with respective dimensions n1, n2, · · · , nm

in Definition 2.3, we get a geometrical space M̃ =
m⋃

i=1

Mi underlying a topological graph

GL
[
M̃
]
. Such a geometrical space GL

[
M̃
]

is said to be combinatorial manifold, denoted

by M̃(n1, n2, · · · , nm). Particularly, if ni = n, 1 ≤ i ≤ m, then a combinatorial manifold

M̃(n1, · · · , nm) is nothing else but an n-manifold underlying GL
[
M̃
]
. However, this presen-

tation of GL-systems contributes to manifolds and combinatorial manifolds (See [7]-[15] for

details). For example, the fundamental groups of manifolds are characterized in [14]-[15] fol-

lowing.

Theorem 2.6([14]) For any locally compact n-manifold M , there always exists an inherent

graph Gin
min[M ] of M such that π(M) ∼= π(Gin

min[M ]).
Particularly, for an integer n ≥ 2 a compact n-manifold M is simply-connected if and only

if Gin
min[M ] is a finite tree.

Theorem 2.7([15]) Let M̃ be a finitely combinatorial manifold. If for ∀(M1,M2) ∈ E(GL
[
M̃
]
),
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M1 ∩M2 is simply-connected, then

π1(M̃) ∼=


 ⊕

M∈V (G[M̃ ])

π1(M)


⊕π1(G

[
M̃
]
).

Furthermore, it provides one with a listing of manifolds by graphs in [14].

Theorem 2.8([14]) Let A [M ] = { (Uλ;ϕλ) | λ ∈ Λ} be a atlas of a locally compact n-manifold

M . Then the labeled graph GL
|Λ| of M is a topological invariant on |Λ|, i.e., if HL1

|Λ| and GL2

|Λ| are

two labeled n-dimensional graphs of M , then there exists a self-homeomorphism h : M → M
such that h : HL1

|Λ| → GL2

|Λ| naturally induces an isomorphism of graph.

For a combinatorial surface consisting of surfaces associated with homogenous polynomials

in R3, we can further determine its genus. Let

P1(x), P2(x), · · · , Pm(x) (ESn+1
m )

be m homogeneous polynomials in variables x1, x2, · · · , xn+1 with coefficients in C and

∅ 6= SPi
= {(x1, x2, · · · , xn+1)|Pi (x) = 0} ⊂ PnC

for integers 1 ≤ i ≤ m, which are hypersurfaces, particularly, curves if n = 2 passing through

the original of Cn+1.

Similarly, parallel hypersurfaces in Cn+1 are defined following.

Definition 2.9 Let P (x), Q(x) be two complex homogenous polynomials of degree d in n + 1

variables and I(P,Q) the set of intersection points of P (x) with Q(x). They are said to be

parallel, denoted by P ‖ Q if d > 1 and there are constants a, b, · · · , c (not all zero) such that

for ∀x ∈ I(P,Q), ax1 + bx2 + · · · + cxn+1 = 0, i.e., all intersections of P (x) with Q(x) appear

at a hyperplane on PnC, or d = 1 with all intersections at the infinite xn+1 = 0. Otherwise,

P (x) are not parallel to Q(x), denoted by P 6‖ Q.

Then, these polynomials in (ESn+1
m ) can be classified into families C1,C2, · · · ,Cl by this

parallel property such that Pi ‖ Pj if Pi, Pj ∈ Ck for an integer 1 ≤ k ≤ l, where 1 ≤ i 6= j ≤ m
and it is maximal if each Ci is maximal for integers 1 ≤ i ≤ l, i.e., for ∀P ∈ {Pk(x), 1 ≤
k ≤ m}\Ci, there is a polynomial Q(x) ∈ Ci such that P 6‖ Q. The following result is a

generalization of Theorem 2.3.

Theorem 2.10([19]) Let n ≥ 2 be an integer. For a system (ESn+1
m ) of homogenous polynomials

with a parallel maximal classification C1,C2, · · · ,Cl,

Ĝ[ESn+1
m ] ≤ K(C1,C2, · · · ,Cl)

and with equality holds if and only if Pi ‖ Pj and Ps 6‖ Pi implies that Ps 6‖ Pj, where
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K(C1,C2, · · · ,Cl) denotes a complete l-partite graphs. Conversely, for any subgraph G ≤
K(C1,C2, · · · ,Cl), there are systems (ESn+1

m ) of homogenous polynomials with a parallel max-

imal classification C1,C2, · · · ,Cl such that

G ≃ Ĝ[ESn+1
m ].

Particularly, if all polynomials in (ESn+1
m ) be degree 1, i.e., hyperplanes with a parallel

maximal classification C1,C2, · · · ,Cl, then

Ĝ[ESn+1
m ] = K(C1,C2, · · · ,Cl).

The following result is immediately known by definition.

Theorem 2.11 Let (ESn+1
m ) be a GL-system consisting of homogenous polynomials P (x1), P (x2),

· · · , P (xm) in n+1 variables with respectively hypersurfaces SPi
, 1 ≤ i ≤ m. Then, M̃ =

m⋃
i=1

SPi

is an n-manifold underlying graph Ĝ[ESn+1
m ] in Cn+1.

For n = 2, we can further determine the genus of surface M̃ in R3 following.

Theorem 2.12([19]) Let S̃ be a combinatorial surface consisting of m orientable surfaces

S1, S2, · · · , Sm underlying a topological graph GL[S̃] in R3. Then

g(S̃) = β(Ĝ
〈
S̃
〉
) +

m∑

i=1

(−1)i+1
∑

i⋂
l=1

Skl
6=∅

[
g

(
i⋂

l=1

Skl

)
− c

(
i⋂

l=1

Skl

)
+ 1

]
,

where g
(

i⋂
l=1

Skl

)
, c
(

i⋂
l=1

Skl

)
are respectively the genus and number of path-connected com-

ponents in surface Sk1

⋂
Sk2

⋂ · · ·⋂Ski
and β(Ĝ

〈
S̃
〉
) denotes the Betti number of topological

graph Ĝ
〈
S̃
〉
.

Notice that for a curve C determined by homogenous polynomial P (x, y, z) of degree d in

P2C, there is a compact connected Riemann surface S by the Noether’s result such that

h : S − h−1(Sing(C)) → C − Sing(C)

is a homeomorphism with genus

g(S) =
1

2
(d− 1)(d− 2) −

∑

p∈Sing(C)

δ(p),

where δ(p) is a positive integer associated with the singular point p in C. Furthermore, if

Sing(C) = ∅, i.e., C is non-singular then there is a compact connected Riemann surface S

homeomorphism to C with genus
1

2
(d− 1)(d− 2). By Theorem 2.12, we obtain the genus of S̃



Geometry on Non-Solvable Equations – A Review on Contradictory Systems 27

determined by homogenous polynomials following.

Theorem 2.13([19]) Let C1, C2, · · · , Cm be complex curves determined by homogenous polyno-

mials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component, and let

RPi,Pj
=

deg(Pi)deg(Pj)∏

k=1

(cijk z − b
ij
k y)

e
ij

k , ωi,j =

deg(Pi)deg(Pj)∑

k=1

∑

e
ij

k
6=0

1

be the resultant of Pi(x, y, z), Pj(x, y, z) for 1 ≤ i 6= j ≤ m. Then there is an orientable surface

S̃ in R3 of genus

g(S̃) = β(Ĝ
〈
C̃
〉
) +

m∑

i=1


(deg(Pi) − 1)(deg(Pi) − 2)

2
−

∑

pi∈Sing(Ci)

δ(pi)




+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1

⋂ ···⋂ Cki
6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]

with a homeomorphism ϕ : S̃ → C̃ =
m⋃

i=1

Ci. Furthermore, if C1, C2, · · · , Cm are non-singular,

then

g(S̃) = β(Ĝ
〈
C̃
〉
) +

m∑

i=1

(deg(Pi) − 1)(deg(Pi) − 2)

2

+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1

⋂ ···⋂ Cki
6=∅

[
c
(
Ck1

⋂
· · ·
⋂
Cki

)
− 1
]
,

where

δ(pi) =
1

2

(
Ipi

(
Pi,

∂Pi

∂y

)
− νφ(pi) + |π−1(pi)|

)

is a positive integer with a ramification index νφ(pi) for pi ∈ Sing(Ci), 1 ≤ i ≤ m.

Notice that Ĝ
[
ES3

m

]
= Km. We then easily get conclusions following.

Corollary 2.14 Let C1, C2, · · · , Cm be complex non-singular curves determined by homoge-

nous polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component, any inter-

section point p ∈ I(Pi, Pj) with multiplicity 1 and





Pi(x, y, z) = 0

Pj(x, y, z) = 0,

Pk(x, y, z) = 0

∀i, j, k ∈ {1, 2, · · · ,m}

has zero-solution only. Then the genus of normalization S̃ of curves C1, C2, · · · , Cm is

g(S̃) = 1 +
1

2
×

m∑

i=1

deg(Pi) (deg(Pi) − 3) +
∑

1≤i6=j≤m

deg(Pi)deg(Pj).
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Corollary 2.15 Let C1, C2, · · · , Cm be complex non-singular curves determined by homogenous

polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component and Ci

⋂
Cj =

m⋂
i=1

Ci with

∣∣∣∣
m⋂

i=1

Ci

∣∣∣∣ = κ > 0 for integers 1 ≤ i 6= j ≤ m. Then the genus of normalization S̃ of

curves C1, C2, · · · , Cm is

g(S̃) = g(S̃) = (κ− 1)(m− 1) +

m∑

i=1

(deg(Pi) − 1)(deg(Pi) − 2)

2
.

Particularly, if all curves in C3 are lines, we know an interesting result following.

Corollary 2.16 Let L1, L2, · · · , Lm be distinct lines in P2C with respective normalizations

of spheres S1, S2, · · · , Sm. Then there is a normalization of surface S̃ of L1, L2, · · · , Lm with

genus β(Ĝ
〈
L̃
〉
). Particularly, if Ĝ

〈
L̃
〉
) is a tree, then S̃ is homeomorphic to a sphere.

§3. Geometry on Non-Solvable Differential Equations

Why the system (ESm) consisting of

f [i]
1 (x1, x2, · · · , xn) = 0

f [i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

f [i]
mi(x1, x2, · · · , xn) = 0





1 ≤ i ≤ m

is non-solvable if
m⋂

i=1

Di = ∅ in Theorem 2.2? In fact, it lies in that the solution-manifold of

(ESm) is the intersection of Di, 1 ≤ i ≤ m. If it is allowed combinatorial manifolds to be

solution-manifolds, then there are no contradictions once more even if
m⋂

i=1

Di = ∅. This fact

implies that including combinatorial manifolds to be solution-manifolds of systems (ESm) is a

better understanding things in the world.

3.1 GL-Systems of Differential Equations

Let 



F1(x1, x2, · · · , xn, u, ux1, · · · , uxn
) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn
) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn
) = 0

(PDESm)

be a system of ordinary or partial differential equations of first order on a function u(x1, · · · , xn, t)
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with continuous Fi : Rn → Rn such that Fi(0) = 0. Its symbol is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn) = 0,

i.e., substitutes ux1 , ux2, · · · , uxn
by p1, p2, · · · , pn in (PDESm).

Definition 3.1 A non-solvable (PDESm) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.

Then, we know conditions following characterizing non-solvable systems of partial differ-

ential equations.

Theorem 3.2([18],[21]) A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0 (x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p01, p

0
2, · · · , p0n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0

−
n−1∑

i=0

p0i
∂x0

i

∂sj0

6= 0.

Particularly, the following conclusion holds with quasilinear system (LPDESC
m).

Corollary 3.3 A Cauchy problem (LPDESC
m) on quasilinear, particularly, linear system of
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partial differential equations with initial values u|xn=x0
n

= u0 is non-solvable if and only if the

system (LPDESm) of partial differential equations is algebraically contradictory. Particularly,

the Cauchy problem on a quasilinear partial differential equation is always solvable.

Similarly, for integers m, n ≥ 1, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order and





x(n) + a[0]
11x(n−1) + · · · + a[0]

1nx = 0

x(n) + a[0]
21x(n−1) + · · · + a[0]

2nx = 0

· · · · · · · · · · · ·
x(n) + a[0]

m1x(n−1) + · · · + a[0]
mnx = 0

(LDEn
m)

a linear differential equation system of order n with

Ak =




a[k]
11 a[k]

12 · · · a[k]
1n

a[k]
21 a[k]

22 · · · a[k]
2n

· · · · · · · · · · · ·
a[k]

n1 a[k]
n2 · · · a[k]

nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n. Then it is known a

criterion from [16] following.

Theorem 3.4([17]) A differential equation system (LDES1
m) is non-solvable if and only if

(|A1 − λIn×n|, |A2 − λIn×n|, · · · , |Am − λIn×n|) = 1.

Similarly, the differential equation system (LDEn
m) is non-solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) = 1,

where Pi(λ) = λn + a[0]
i1 λn−1 + · · · + a[0]

i(n−1)λ + a[0]
in for integers 1 ≤ i ≤ m. Particularly,

(LDES1
1) and (LDEn

1 ) are always solvable.

According to Theorems 3.3 and 3.4, for systems (LPDESC
m), (LDES1

m) or (LDEn
m), there

are equivalent systems GL[LPDESC
m], GL[LDES1

m] or GL[LDEn
m] by Definition 2.5, called

GL[LPDESC
m]-solution, GL[LDES1

m] -solution or GL[LDEn
m]-solution of systems (LPDESC

m),

(LDES1
m) or (LDEn

m), respectively. Then, we know the following conclusion from [17]-[18], [21].

Theorem 3.5([17]-[18],[21]) The Cauchy problem on system (PDESm) of partial differential

equations of first order with initial values x[k0]
i , u[k]

0 , p
[k0]
i , 1 ≤ i ≤ n for the kth equation in
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(PDESm), 1 ≤ k ≤ m such that

∂u[k]
0

∂sj

−
n∑

i=0

p[k
0]

i

∂x[k0]
i

∂sj

= 0,

and the linear homogeneous differential equation system (LDES1
m) (or (LDEn

m)) both are

uniquely GL-solvable, i.e., GL[PDES], GL[LDES1
m] and GL[LDEn

m] are uniquely determined.

For ordinary differential systems (LDES1
m) or (LDEn

m), we can further replace solution-

manifolds S[k] of the kth equation in GL[LDES1
m] and GL[LDEn

m] by their solution basis

B[k] = { β[k]

i (t)eα
[k]
i

t | 1 ≤ i ≤ n } or C [k] = { tleλ
[k]
i

t | 1 ≤ i ≤ s, 1 ≤ l ≤ ki } because each

solution-manifold of (LDES1
m) (or (LDEn

m)) is a linear space.

For example, let a system (LDEn
m) be





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x
dt2

and ẋ =
dx
dt

. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} with its GL[LDEn
m] shown in Fig.5.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.5

Such a labeling can be simplified to labeling by integers for combinatorially classifying

systems GL[LDES1
m] and GL[LDEn

m], i.e., integral graphs following.

Definition 3.6 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

For two integral labeled graphs GIθ

1 and GIτ

2 , they are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃
E(G1), denoted by GIθ

1 = GIτ

2 .

Otherwise, non-identical.
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For example, the graphs shown in Fig.6 are all integral on K4 − e, but GIθ

1 = GIτ

2 , GIθ

1 6=
GIσ

3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.6

Applying integral graphs, the systems (LDES1
m) and (LDEn

m) are combinatorially classi-

fied in [17] following.

Theorem 3.7([17]) Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear homo-

geneous differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃
(LDES1

m)′ (or (LDEn
m)

ϕ≃ (LDEn
m)′) if and only if H = H ′.

3.2 Differential Manifolds on GL-Systems of Equations

By definition, the union M̃ =
m⋃

k=1

S[k] is an n-manifold. The following result is immediately

known.

Theorem 3.8([17]-[18],[21]) For any simply graph G, there are differentiable solution-manifolds

of (PDESm), (LDES1
m), (LDEn

m) such that Ĝ[PDES] ≃ G, Ĝ[LDES1
m] ≃ G and Ĝ[LDEn

m] ≃
G.

Notice that a basis on vector field T (M) of a differentiable n-manifold M is

{
∂
∂xi

, 1 ≤ i ≤ n
}

and a vector field X can be viewed as a first order partial differential operator

X =

n∑

i=1

ai

∂
∂xi

,

where ai is C∞-differentiable for all integers 1 ≤ i ≤ n. Combining Theorems 3.5 and 3.8
enables one to get a result on vector fields following.

Theorem 3.9([21]) For an integer m ≥ 1, let Ui, 1 ≤ i ≤ m be open sets in Rn underlying a

graph defined by V (G) = {Ui|1 ≤ i ≤ m}, E(G) = {(Ui, Uj)|Ui

⋂
Uj 6= ∅, 1 ≤ i, j ≤ m}. If Xi

is a vector field on Ui for integers 1 ≤ i ≤ m, then there always exists a differentiable manifold
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M ⊂ Rn with atlas A = {(Ui, φi)|1 ≤ i ≤ m} underlying graph G and a function uG ∈ Ω0(M)

such that Xi(uG) = 0, 1 ≤ i ≤ m.

§4. Applications

In philosophy, every thing is a GL-system with contradictions embedded in our world, which

implies that the geometry on non-solvable system of equations is in fact a truthful portraying

of things with applications to various fields, particularly, the understanding on gravitational

fields and the controlling of industrial systems.

4.1 Gravitational Fields

An immediate application of geometry on GL-systems of non-solvable equations is that it can

provides one with a visualization on things in space of dimension≥ 4 by decomposing the space

into subspaces underlying a graph GL. For example, a decomposition of a Euclidean space into

R3 is shown in Fig.7, where GL ≃ K4, a complete graph of order 4 and P1,P2,P3,P4 are

the observations on its subspaces R3. This space model enable one to hold well local behaviors

of the spacetime in R3 as usual and then determine its global behavior naturally, different from

the string theory by artificial assuming the dimension of the universe is 11.

R3 R3

R3 R3

P1 P2

P3 P4

- ? ?�
- 6 �6

Fig.7

Notice that R3 is in a general position and maybe R3
⋂

R3 6≃ R3 here. Generally, if GL ≃ Km,

we know its dimension following.

Theorem 4.1([9],[13]) Let EKm
(3) be a Km-space of R3

1, · · · ,R3

︸ ︷︷ ︸
m

. Then its minimum dimension

dimminEKm
(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11
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and maximum dimension

dimmaxEKm
(3) = 2m− 1

with R3
i

⋂
R3

j =
m⋂

i=1

R3
i for any integers 1 ≤ i, j ≤ m.

For the gravitational field, by applying the geometrization of gravitation in R3, Einstein

got his gravitational equations with time ([1])

Rµν − 1

2
Rgµν + λgµν = −8πGT µν

where Rµν = Rµαν
α = gαβRαµβν , R = gµνRµν are the respective Ricci tensor, Ricci scalar

curvature, G = 6.673 × 10−8cm3/gs2, κ = 8πG/c4 = 2.08 × 10−48cm−1 · g−1 · s2, which has a

spherically symmetric solution on Riemannian metric, called Schwarzschild spacetime

ds2 = f(t)
(
1 − rs

r

)
dt2 − 1

1 − rs

r

dr2 − r2(dθ2 + sin2 θdφ2)

for λ = 0 in vacuum, where rg is the Schwarzschild radius. Thus, if the dimension of the

universe≥ 4, all these observations are nothing else but a projection of the true faces on our six

organs, a pseudo-truth. However, we can characterize its global behavior byKL
m-space solutions

of R3 (See [8]-[10] for details). For example, if m = 4, there are 4 Einstein’s gravitational

equations for ∀v ∈ V
(
KL

4

)
. We can solving it locally by spherically symmetric solutions in R3

and construct a KL
4 -solution Sf1 , Sf2 , Sf3 and Sf4 , such as those shown in Fig.8,

Sf1 Sf2

Sf3 Sf4

Fig.8

where, each Sfi
is a geometrical space determined by Schwarzschild spacetime

ds2 = f(t)
(
1 − rs

r

)
dt2 − 1

1 − rs

r

dr2 − r2(dθ2 + sin2 θdφ2)

for integers 1 ≤ i ≤ m. Certainly, its global behavior depends on the intersections Sfi

⋂
Sfj
, 1 ≤

i 6= j ≤ 4.

4.2 Ecologically Industrial Systems

Determining a system, particularly, an industrial system on initial values being stable or not is
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an important problem because it reveals that this system is controllable or not by human beings.

Usually, such a system is characterized by a system of differential equations. For example, let





A→ X

2X + Y → 3X

B +X → Y +D

X → E

be the Brusselator model on chemical reaction, where A,B,X, Y are respectively the concentra-

tions of 4 materials in this reaction. By the chemical dynamics if the initial concentrations for

A, B are chosen sufficiently larger, then X and Y can be characterized by differential equations

∂X
∂t

= k1∆X +A+X2Y − (B + 1)X,
∂Y
∂t

= k2∆Y +BX −X2Y.

As we known, the stability of a system is determined by its solutions in classical sciences.

But if the system of equations is non-solvable, what is its stability? It should be noted that

non-solvable systems of equations extensively exist in our daily life. For example, an industrial

system with raw materials M1,M2, · · · ,Mn, products (including by-products) P1, P2, · · · , Pm

but W1,W2, · · · ,Ws wastes after a produce process, such as those shown in Fig.9 following,

Fi(x)

M1

M2

Mn

6?-
x1i

x2i

xni

P1

P2

Pm

--
-

xi1

xi2

xin

W1 W2 Ws

? ? ?
Fig.9

which is an opened system and can be transferred to a closed one by letting the environment

as an additional cell, called an ecologically industrial system. However, such an ecologically

industrial system is usually a non-solvable system of equations by the input-output model in

economy, see [20] for details.

Certainly, the global stability depends on the local stabilities. Applying the G-solution of

a GL-system (DESm) of differential equations, the global stability is defined following.

Definition 4.2 Let (PDESC
m) be a Cauchy problem on a system of partial differential equations

of first order in Rn, H ≤ G[PDESC
m] a spanning subgraph, and u[v] the solution of the vth
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equation with initial value u[v]
0 , v ∈ V (H). It is sum-stable on the subgraph H if for any

number ε > 0 there exists, δv > 0, v ∈ V (H) such that each G(t)-solution with

∣∣∣u′[v]
0 − u[v]

0

∣∣∣ < δv, ∀v ∈ V (H)

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (H)

u′[v] −
∑

v∈V (H)

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by G[t] H∼ G[0] and G[t] Σ∼ G[0] if H = G[PDESC
m]. Furthermore, if there exists

a number βv > 0, v ∈ V (H) such that every G′[t]-solution with

∣∣∣u′[v]
0 − u[v]

0

∣∣∣ < βv, ∀v ∈ V (H)

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (H)

u′[v] −
∑

v∈V (H)

u[v]

∣∣∣∣∣∣
= 0,

then the G[t]-solution is called asymptotically stable, denoted by G[t] H→ G[0] and G[t] Σ→ G[0]

if H = G[PDESC
m].

Let (PDESC
m) be a system

∂u
∂t

= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m (APDESC

m)

A point X [i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for an integer 1 ≤

i ≤ m is called an equilibrium point of the ith equation in (APDESm). A result on the

sum-stability of (APDESm) is known in [18] and [21] following.

Theorem 4.3([18],[21]) Let X [i]
0 be an equilibrium point of the ith equation in (APDESm) for

each integer 1 ≤ i ≤ m. If

m∑

i=1

Hi(X) > 0 and
m∑

i=1

∂Hi

∂t
≤ 0

for X 6=
m∑

i=1

X [i]
0 , then the system (APDESm) is sum-stability, i.e., G[t] Σ∼ G[0]. Furthermore,

if
m∑

i=1

∂Hi

∂t
< 0

for X 6=
m∑

i=1

X [i]
0 , then G[t] Σ→ G[0].
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Particularly, if the non-solvable system is a linear homogenous differential equation systems

(LDES1
m), we further get a simple criterion on its zeroGL-solution, i.e., all vertices with 0 labels

in [17] following.

Theorem 4.4([17]) The zero G-solution of linear homogenous differential equation systems

(LDES1
m) is asymptotically sum-stable on a spanning subgraph H ≤ G[LDES1

m] if and only if

Reαv < 0 for each βv(t)eαvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H).

§5. Conclusions

For human beings, the world is hybrid and filled with contradictions. That is why it is said

that all contradictions are artificial or man-made, not the nature of world in this paper. In

philosophy, a mathematics is nothing else but a set of symbolic names with relations. However,

as Lao Zi said name named is not the eternal name, the unnamable is the eternally real and

naming is the origin of things for human beings in his TAO TEH KING, a well-known Chinese

book. It is difficult to establish such a mathematics join tightly with the world. Even so, for

knowing the world, one should develops mathematics well by turning all these mathematical

systems with artificial contradictions to a compatible system, i.e., out of the classical run in

mathematics but return to their origins. For such an aim, geometry is more applicable, which

is an encouraging thing for mathematicians in 21th century.

References

[1] M.Carmeli, Classical Fields–General Relativity and Gauge Theory, World Scientific, 2001.

[2] Fritz John. Partial Differential Equations(4th Edition). New York, USA: Springer-Verlag,

1982.

[3] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM,2002.

[4] John M.Lee, Introduction to Topological Manifolds, Springer-Verlag New York, Inc., 2000.

[5] F.Klein, A comparative review of recent researches in geometry, Bull. New York Math.

Soc., 2(1892-1893), 215-249.

[6] Linfan Mao, Combinatorial speculation and combinatorial conjecture for mathematics,

International J.Math. Combin. Vol.1(2007), No.1, 1-19.

[7] Linfan Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry and Topology,

Vol.7, No.1(2007),65-114.

[8] Linfan Mao, Combinatorial fields-an introduction, International J. Math.Combin., Vol.1(2009),

Vol.3, 1-22.

[9] Linfan Mao, A combinatorial decomposition of Euclidean spaces Rn with contribution to

visibility, International J. Math.Combin., Vol.1(2010), Vol.1, 47-64.

[10] Linfan Mao, Relativity in combinatorial gravitational fields, Progress in Physics, Vol.3(2010),

39-50.

[11] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, First

edition published by American Research Press in 2005, Second edition is as a Graduate



38 Linfan MAO

Textbook in Mathematics, Published by The Education Publisher Inc., USA, 2011.

[12] Linfan Mao, Smarandache Multi-Space Theory, First edition published by Hexis, Phoenix

in 2006, Second edition is as a Graduate Textbook in Mathematics, Published by The

Education Publisher Inc., USA, 2011.

[13] Linfan Mao, Combinatorial Geometry with Applications to Field Theory, First edition pub-

lished by InfoQuest in 2005, Second edition is as a Graduate Textbook in Mathematics,

Published by The Education Publisher Inc., USA, 2011.

[14] Linfan Mao, Graph structure of manifolds with listing, International J.Contemp. Math.

Sciences, Vol.5, 2011, No.2,71-85.

[15] Linfan Mao, A generalization of Seifert-Van Kampen theorem for fundamental groups, Far

East Journal of Math.Sciences, Vol.61 No.2 (2012), 141-160.

[16] Linfan Mao, Non-solvable spaces of linear equation systems, International J. Math. Com-

bin., Vol.2 (2012), 9-23.

[17] Linfan Mao, Global stability of non-solvable ordinary differential equations with applica-

tions, International J.Math. Combin., Vol.1 (2013), 1-37.

[18] Linfan Mao, Non-solvable equation systems with graphs embedded in Rn, International

J.Math. Combin., Vol.2 (2013), 8-23, Also in Proceedings of the First International Confer-

ence on Smarandache Multispace and Multistructure, The Education Publisher Inc. July,

2013

[19] Linfan Mao, Geometry onGL-systems of homogenous polynomials, International J.Contemp.

Math. Sciences, Vol.9 (2014), No.6, 287-308.

[20] Linfan Mao, A topological model for ecologically industrial systems, International J.Math.

Combin., Vol.1 (2014), 109-117.

[21] Linfan Mao, Cauchy problem on non-solvable system of first order partial differential equa-

tions with applications, Methods and Applications of Analysis (Accepted).

[22] Linfan Mao, Mathematics on non-mathematics - A combinatorial contribution, Interna-

tional J.Math. Combin., Vol.3(2014), 1-34.

[23] F.Smarandache, Paradoxist Geometry, State Archives from Valcea, Rm. Valcea, Romania,

1969, and in Paradoxist Mathematics, Collected Papers (Vol. II), Kishinev University

Press, Kishinev, 5-28, 1997.

[24] F.Smarandache, Multi-space and multi-structure, in Neutrosophy. Neutrosophic Logic, Set,

Probability and Statistics, American Research Press, 1998.

[25] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Neturosophic Probability, Set,

and Logic, American research Press, Rehoboth, 1999.

[26] Wolfgang Walter, Ordinary Differential Equations, Springer-Verlag New York, Inc., 1998.



International J.Math. Combin. Vol.4(2014), 39-46

On Generalized Quasi-Kenmotsu Manifolds

Barnali Laha and Arindam Bhattacharyya

(Department of Mathematics, Jadavpur University, Kolkata-700032, India)

E-mail: barnali.laha87@gmail.com, bhattachar1968@yahoo.co.in

Abstract: We present a brief analysis on some properties of generalized quasi-Sasakian

manifolds, discuss some important properties, particularly, regard the integrability conditions

of this kind of manifolds in this paper.

Key Words: Riemannian manifold, semi-Riemannian manifold, quasi-Sasakian structure,

integrability.

AMS(2010): 53C25

§1. Introduction

An interesting topic in the differential geometry is the theory of submanifolds in space endowed

with additional structures ([5], [6]). Cr-submanifolds of Kaehler manifolds were studied by

A.Bejancu, B.Y.Chen, N.Papaghiuc etc. have studied semi-invariant submnaifolds in Sasakian

manifolds ([1], [9]). The notion of Kenmotsu manifolds was defined by K.Kenmotsu in 1972

([10]). N.Papaghiuc have studied semi-invariant submanifolds in a Kenmotsu manifold ([11]).

He also studied the geometry of leaves on a semi-invariant ξ⊥-submanifolds in a Kenmotsu

manifolds ([12]).

§2. Preliminaries

Definition 2.1 An (2n + 1)-dimensional semi-Riemannian manifold (M̃, g̃) is said to be an

indefinite almost contact manifold if it admits an indefinite almost contact structure (φ, ξ, η),
where φ is a tensor field of type (1, 1), ξ is a vector field and η is a 1-form, satisfying

φ2X = −X + η(X)ξ, η ◦ φ = 0, φξ = 0, η(ξ) = 1, (2.1)

g̃(φX, φY ) = g̃(X,Y ) − ǫη(X)η(Y ), (2.2)

g̃(X, ξ) = ǫη(X), (2.3)

1The first author is supported by UGC-BSR fellowship, India.
2Received April 3, 2014, Accepted December 1, 2014.
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g̃(φX, φY ) = g̃(X,Y ) − η(X)η(Y ) (2.4)

for all vector fields X,Y on M̃ and where ǫ = g̃(ξ, ξ) = ±1 and ∇̃ is the Levi-Civita (L-C)

connection for a semi-Riemannian metric g̃. Let F (M̃) be the algebra of the smooth functions

on M̃ .

Definition 2.2 An almost contact manifold M̃(φ, ξ, η) is said to be normal if

Nφ(X,Y ) + 2dη(X,Y )ξ = 0

where

Nφ(X,Y ) = [φX, φY ] + φ2[X,Y ] − φ[φX, Y ] − φ[X,φY ] X,Y ∈ Γ(TM̃)

is the nijenhuis tensor field corresponding to the tensor fields φ. The fundamental 2-form Φ on

M̃ is defined by

Φ(X,Y ) = g̃(X,φY ).

In [7]-[8], the authors studied hypersurfaces of an almost contact metric manifold M̃ . In

this paper we define hypersurfaces of an almost contact metric manifold M̃ whose structure

tensor field satisfy the following relation

(∇̃Xφ)Y = g̃(∇̃φ2Xξ, Y )ξ − η(Y )∇̃φ2Xξ, (2.5)

where ∇̃ is the Levi-Civita connection of the metric tensor g̃. We name this manifold M̃
equipped with an almost contact metric structure satisfying from (2.5) as generalized Quasi-

Kenmotsu manifold, in short G.Q.K.

We define a (1, 1) tensor field F by

FX = ∇̃Xξ. (2.6)

Let us now state the following proposition:

Proposition 2.1 If M̃ is a G.Q.K manifold then any integral curve of the structure vector

field ξ is a geodesic i.e. ∇̃ξξ = 0. Again dΦ = 0 iff ξ is a Killing vector field.

Proof From equation (2.5) putting X = Y = ξ we can easily prove this assertion.

Next, we derive

3dΦ(X,Y, Z) = g̃((∇̃Xφ)Z, Y ) + g̃((∇̃Zφ)Y,X) + g̃((∇̃Y φ)X,Z)

+η(X)(g̃(Y, ∇̃φZξ) + g̃(φZ, ∇̃Y ξ))

+η(Y )(g̃(Z, ∇̃φXξ) + g̃(φX, ∇̃Zξ))

+η(Z)(g̃(X, ∇̃φY ξ) + g̃(φY, ∇̃Xξ)) = 0.

Therefore, if ξ is a killing vector field then dΦ = 0.
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Conversely, Suppose dΦ = 0. taking into account X = ξ, η(Y ) = η(Z) = 0, the last

equation implies

g̃(Y, ∇̃φZξ) + g̃(φZ, ∇̃Y ξ = 0

Now substituting Z = φZ and Y = Y − η(Y )ξ we get,

g̃(Y − η(Y )ξ, ∇̃φ2Zξ) + g̃(φ2Z, ∇̃Y −η(Y )ξξ = 0

This implies ξ is a killing vector field. 2
Let M̃ be a G.Q.K manifold and considering an m-dimensional submanifold M , isomet-

rically immersed in M̃ . Assuming g,∇, are the induced metric and levi-Civita connevtion on

M respectively. Let ∇⊥ and h be the normal connection induced by ∇̃ on the normal bundle

TM⊥ and the second fundamental form of M , respectively.

Therefore, we can decompose the tangent bundle as

TM̃ = TM ⊕ TM⊥.

The Gauss and Weingarten formulae are characterized by the equations

∇̃XY = ∇XY + h(X,Y ), (2.7)

∇̃XN = −ANX + ∇⊥
XN, (2.8)

where AN is the Weingarten map w.r.t the normal section N and satisfies

g(ANX,Y ) = g(h(X,Y ), N) X,Y ∈ Γ(TM), N ∈ Γ(TM⊥). (2.9)

Now we shall give the definition of semi-invariant ξ⊥-submanifold. According to Bejancu

([4]) M is a semi-invariant ξ⊥-submanifold if there exists two orthogonal distributions, D and

D⊥ in TM such that

TM = D ⊕D⊥, φD = D,φD⊥ ⊂ TM⊥, (2.10)

where ⊕ denotes the orthogonal sum.

If D⊥ = {0}, then M is an invariant ξ⊥-submanifold.The normal bundle can also be

decomposed as

TM⊥ = φD⊥ ⊕ µ,

where φµ ⊂ µ. Hence µ contains ξ.

§3. Integrability of Distributions on a Semi-Invariant ξ⊥-Submanifolds

Let M be a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ . We denote by P and Q
the projections of TM on D and D⊥ respectively, namely for any X ∈ Γ(TM).

X = PX +QX, (3.1)
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Again, for any X ∈ Γ(TM) and N ∈ Γ(TM⊥) we put

φX = tX + ωX, (3.2)

φN = BN + CN, (3.3)

with tX ∈ Γ(D), BN ∈ Γ(TM) and ωX,CN ∈ Γ(TM⊥). Again, for X ∈ Γ(TM), the decom-

position is

FX = αX + βX,αX ∈ Γ(D), βX ∈ Γ(TM⊥). (3.4)

This section deals with the study of the integrability of both distributions D and D⊥. We have

the following proposition:

Proposition 3.1 Let M be a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ . Then

we obtain

(∇X t)Y = AωYX +Bh(X,Y ) (3.5a)

(∇Xω)Y = Ch(X,Y ) − h(X, tY ) − g(FX, Y )ξ. (3.5b)

Proof Notice that

(∇̃Xφ)Y Z = −φ∇̃XY + ∇̃XφY

= −φ(∇XY + h(X,Y )) + ∇̃XTY + ∇̃XtY + ∇̃XωY.

Using (3.3) and (3.4) and the Gauss and Weingarten formula we get

(∇̃Xφ)Y = (−t∇XY +∇XtY )+(−ω∇XY +∇⊥
XωY )−Bh(X,Y )−Ch(X,Y )+h(X, tY )−AωYX.

After some brief calculations we deduce

(∇̃Xφ)Y = (∇X t)Y + (∇Xω)Y −Bh(X,Y ) − Ch(X,Y ) + h(X, tY ) −AωYX.

Again,

(∇̃Xφ)Y = g̃(∇̃φ2Xξ, Y )ξ − η(Y )∇̃φ2Xξ,

Using (2.1) and some steps of calculations, we obtain

(∇̃Xφ)Y = −g(∇̃Xξ, Y )ξ,

as(η(Y ) = 0, g(ξ, Y ) = 0 as ξ ⊥ D,D⊥). Hence,

(∇̃Xφ)Y = −g(FX, Y )ξ.

On comparing the tangential and normal components we shall obtain the results. 2
Taking into the consideration the decomposition of TM⊥, we can prove that:
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Proposition 3.2 Let M be a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ . Then

for nay N ∈ Γ(TM⊥), there are

(1) BN ∈ D⊥;

(2) CN ∈ µ.

Proof Let N ∈ Γ(TM⊥),

φN = BN + CN,

We know TM⊥ = φD⊥ ⊕ µ. Therefore we have

BN ∈ φD⊥ ⊆ D⊥, CN ∈ µ. 2
Proposition 3.3 Let M be a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ , then

AωXY = AωYX,

for any X,Y ∈ Γ(TM⊥).

Proof From equation (2.9) we have

g(AωXY, Z) = g(h(Y, Z), ωX) = g(∇̃ZY, ωX)

= −g(ω∇̃ZY,X) = g(ωY, h(Z,X))

= g(h(X,Z), ωY ) = g(AωYX,Z).

Hence the result. 2
Proposition 3.4 Let M be a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ . Then

the distribution D⊥ is integrable.

Proof Let Z,X ∈ Γ(D⊥). Then

∇ZtX = (∇Zt)X + t∇ZX

∇ZtX = AXωZ +Bh(Z,X) + t∇ZX.

Therefore, (i)
t∇ZX = ∇ZtX −AωXZ −Bh(X,Z)

Interchanging X and Z we have (ii)

t∇XZ = ∇X tZ −AωZX −Bh(Z,X).

Subtracting equation (ii) from (i) and using Proposition (3.3), we obtain

t([Z,X ]) = ∇ZtX −∇X tZ. 2
Theorem 3.1 If M is a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ , then the
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distribution D is integrable if and only if

h(Z, tW ) − h(W, tZ) = (Lξg̃)(Z,W )ξ, X, Y ∈ Γ(D).

Proof From the covariant derivative we have

∇ZωW = (∇̃ZωW ) + ω∇ZW,

∇ZωW = Ch(Z,W ) − h(Z, tW ) − g(FZ,W )ξ + ω(∇ZW + h(Z,W ))

for Z,W ∈ Γ(D). Again using Weingarten formulae we have

∇ZωW = −AωWZ + ∇⊥
ZωW.

Comparing both the equations we get

−AωWZ + ∇⊥
ZωW = Ch(Z,W ) − h(Z, tW ) − g(FZ,W )ξ + ω(∇ZW + h(Z,W )).

On a simplification we obtain

ω∇WZ = ∇⊥
ZωW − AωWZ − Ch(Z,W ) + h(W, tZ) − g(FW,Z)ξ.

Interchanging W and Z in the above equation, we get

ω∇ZW = ∇⊥
WωZ −AωZW − Ch(W,Z) + h(Z, tW ) − g(FZ,W )ξ.

Subtracting the above two equations and using Proposition 3.3 we get

ω[Z,W ] = h(Z, tW ) − h(W, tZ) − g(FZ,W )ξ + g(FW,Z)ξ.

We also know that

(Lξg̃)(Z,W )ξ = g(FZ,W )ξ − g(FW,Z)ξ.

Therefore the distribution D is integrable if

h(Z, tW ) − h(W, tZ) = (Lξ g̃)(Z,W )ξ. 2
Proposition 3.5 Let M be a semi-invariant ξ⊥-submanifold of a G.Q.K manifold M̃ . Then

αX = AξX and βX = −∇⊥
Xξ X ∈ Γ(TM).

Proof From Weingarten formulae we get

∇̃Xξ = −AξX + ∇⊥
Xξ.

Again we know from (3.4),

∇̃Xξ = −FX = −αX − βX.
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Comparing these formulae we get αX = AξX and βX = −∇⊥
Xξ by assuming

{ei, φei, e2p+j}, i = {1, · · · , p}, j = {1, · · · , q}

being an adapted orthonormal local frame on M , where q = dimD⊥ and 2p = dimD. 2
Similarly, the following theorem is obtained.

Theorem 3.2 If M is a ξ⊥-semiinvariant submanifold of a G.Q.K manifold M̃ one has

η(H) =
1

m
trace (Aξ);m = 2p+ q.

Proof From the mean curvature formula

H =
1

m

s∑

a=1

trace(Aξa
)ξa,

where {ξ1, · · · , ξs} is an orthonormal basis in TM⊥,

η(H) =
1

m

s∑

a=1

trace(Aξa
) · 1,

η(H) =
1

m
trace(Aξ). 2

Corollary 3.1 If the leaves of the integrable distribution D are totally geodesic in M then the

structures vector field ξ is D-killing, i.e. (Lξg)(X,Y ) = 0, X,Y ∈ Γ(D).

Proof We know that

(Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)

= g(∇XY, ξ) + g(ξ,∇YX) = 0, X, Y ∈ Γ(D).
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Abstract: The concept of labeling has its origin in the works of Stewart (1966), Kotzig

and Rosa (1970). Later on Enomoto, Llado, Nakamigawa and Ringel (1998) defined a super

(a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super

(a, 0)-edge-antimagic total graph. In the favour of this conjecture, the present paper deals

with different results on antimagicness of a class of trees, which is called subdivided stars.
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§1. Introduction

All graphs in this paper are finite, undirected and simple. For a graph G, V (G) and E(G)

denote the vertex-set and the edge-set, respectively. A (v, e)-graph G is a graph such that

|V (G)| = v and |E(G)| = e. A general reference for graph-theoretic ideas can be seen in [28].

A labeling (or valuation) of a graph is a map that carries graph elements to numbers (usually

to positive or non-negative integers). In this paper, the domain will be the set of all vertices

and edges and such a labeling is called a total labeling. Some labelings use the vertex-set only

or the edge-set only and we shall call them vertex-labelings or edge-labelings, respectively.

Definition 1.1 An (s, d)-edge-antimagic vertex (abbreviated to (s, d)-EAV) labeling of a (v, e)-
graph G is a bijective function λ : V (G) → {1, 2, · · · , v} such that the set of edge-sums of all

edges in G, {w(xy) = λ(x) + λ(y) : xy ∈ E(G)}, forms an arithmetic progression {s, s+ d, s+

2d, · · · , s+ (e− 1)d}, where s > 0 and d > 0 are two fixed integers.

Furthermore, let H ≤ G. If there is a bijective function λ : V (H) → {1, 2, · · · , |H |}
1Received October 23, 2013, Accepted December 2, 2014.
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such that the set of edge-sums of all edges in H forms an arithmetic progression {s, s+ d, s +

2d, · · · , s + (|E(H)| − 1)d} but for all edges not in H is a constant, such a labeling is called a

Smarandachely (s, d)-edge-antimagic labeling of G respect to H. Clearly, an (s, d)-EAV labeling

of G is a Smarandachely (s, d)-EAV labeling of G respect to G itself.

Definition 1.2 A bijection λ : V (G)∪E(G) → {1, 2, · · · , v+e} is called an (a, d)-edge-antimagic

total ((a, d)-EAT) labeling of a (v, e)-graph G if the set of edge-weights {λ(x) + λ(xy) + λ(y) :

xy ∈ E(G)} forms an arithmetic progression starting from a and having common difference d,
where a > 0 and d ≥ 0 are two chosen integers. A graph that admits an (a, d)-EAT labeling is

called an (a, d)-EAT graph.

Definition 1.3 If λ is an (a, d)-EAT labeling such that λ(V (G)) = {1, 2, · · · , v} then λ is called

a super (a, d)-EAT labeling and G is known as a super (a, d)-EAT graph.

In Definitions 1.2 and 1.3, if d = 0 then an (a, 0)-EAT labeling is called an edge-magic

total (EMT) labeling and a super (a, 0)-EAT labeling is called a super edge magic total (SEMT)

labeling. Moreover, in general a is called minimum edge-weight but particularly magic constant

when d = 0. The definition of an (a, d)-EAT labeling was introduced by Simanjuntak, Bertault

and Miller in [23] as a natural extension of magic valuation defined by Kotzig and Rosa [17-18].

A super (a, d)-EAT labeling is a natural extension of the notion of super edge-magic labeling

defined by Enomoto, Llado, Nakamigawa and Ringel. Moreover, Enomoto et al. [8] proposed

the following conjecture.

Conjecture 1.1 Every tree admits a super (a, 0)-EAT labeling.

In the favor of this conjecture, many authors have considered a super (a, 0)-EAT labeling

for different particular classes of trees. Lee and Shah [19] verified this conjecture by a computer

search for trees with at most 17 vertices. For different values of d, the results related to a super

(a, d)-EAT labeling can be found for w-trees [13], stars [20], subdivided stars [14, 15, 21, 22,

29, 30], path-like trees [3], caterpillars [17, 18, 25], disjoint union of stars and books [10] and

wheels, fans and friendship graphs [24], paths and cycles [23] and complete bipartite graphs [1].

For detail studies of a super (a, d)-EAT labeling reader can see [2, 4, 5, 7, 9-12].

Definition 1.4 Let ni ≥ 1, 1 ≤ i ≤ r, and r ≥ 2. A subdivided star T (n1, n2, · · · , nr) is a tree

obtained by inserting ni − 1 vertices to each of the ith edge of the star K1,r. Moreover suppose

that V (G) = {c} ∪ {xli
i |1 ≤ i ≤ r; 1 ≤ li ≤ ni} is the vertex-set and E(G) = {cx1

i |1 ≤ i ≤r} ∪
{xli

i x
li+1
i |1 ≤ i ≤ r; 1 ≤ li ≤ ni − 1} is the edge-set of the subdivided star G ∼= T (n1, n2, · · · , nr)

then v =
r∑

i=1

ni + 1 and e =
r∑

i=1

ni.

Lu [29,30] called the subdivided star T (n1, n2, n3) as a three-path tree and proved that it

is a super (a, 0)-EAT graph if n1 and n2 are odd with n3 = n2 +1 or n3 = n2 +2. Ngurah et al.

[21] proved that the subdivided star T (n1, n2, n3) is also a super (a, 0)-EAT graph if n3 = n2+3

or n3 = n2 + 4. Salman et al. [22] found a super (a, 0)-EAT labeling on the subdivided stars

T (n, n, n, · · · , n)︸ ︷︷ ︸
r−times

, where n ∈ {2, 3}.
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Moreover, Javaid et al. [14,15] proved the following results related to a super (a, d)-EAT

labeling on different subclasses of subdivided stars for different values of d:

• For any odd n ≥ 3, G ∼= T (n, n − 1, n, n) admits a super (a, 0)-EAT labeling with

a = 10n+ 2;

• For any odd n ≥ 3 and m ≥ 3, G ∼= T (n, n,m,m) admits a super (a, 0)-EAT labeling

with a = 6n+ 5m+ 2;

• For any odd n ≥ 3 and p ≥ 5, G ∼= T (n, n, n+ 2, n+ 2, n5, · · · , np) admits a super (a, 0)-

EAT labeling with a = 2v + s − 1, a super (a, 1)-EAT labeling with a = s + 3
2v and a super

(a, 2)-EAT labeling with a = v + s+ 1 where v = |V (G)|, s = (2n+ 6) +
p∑

m=5
[(n+ 1)2m−5 + 1]

and nr = 1 + (n+ 1)2r−4 for 5 ≤ r ≤ p.

However, the investigation of the different results related to a super (a, d)-EAT labeling

of the subdivided star T (n1, n2, n3, · · · , nr) for n1 6= n2 6= n2, · · · , 6= nr is still open. In this

paper, for d ∈ {0, 1, 2}, we formulate a super (a, d)-EAT labeling on the subclasses of subdivided

stars denoted by T (kn, kn, kn, kn, 2kn, n6, · · · , nr) and T (kn, kn, 2n, 2n+ 2, n5, · · · , nr) under

certain conditions.

§2. Basic Results

In this section, we present some basic results which will be used frequently in the main results.

Ngurah et al. [21] found lower and upper bounds of the minimum edge-weight a for a subclass

of the subdivided stars, which is stated as follows:

Lemma 2.1 If T (n1, n2, n3) is a super (a, 0)-EAT graph, then
1

2l
(5l2 + 3l+ 6) ≤ a ≤ 1

2l
(5l2 +

11l− 6), where l =
3∑

i=1

ni.

The lower and upper bounds of the minimum edge-weight a for another subclass of subdi-

vided stats established by Salman et al. [22] are given below:

Lemma 2.2 If T (n, n, · · · , n)︸ ︷︷ ︸
n−times

is a super (a, 0)-EAT graph, then
1

2l
(5l2 + (9− 2n)l+n2 −n) ≤

a ≤ 1

2l
(5l2 + (2n+ 5)l + n− n2), where l = n2.

Moreover, the following lemma presents the lower and upper bound of the minimum edge-

weight a for the most generalized subclass of subdivided stars proved by Javaid and Akhlaq:

Lemma 2.3([16]) If T (n1, n2, n3, · · · , nr) has a super (a, d)-EAT labeling, then
1

2l
(5l2 + r2 −

2lr + 9l − r − (l − 1)ld) ≤ a ≤ 1

2l
(5l2 − r2 + 2lr + 5l + r − (l − 1)ld), where l =

r∑
i=1

ni and

d ∈ {0, 1, 2, 3}.

Bača and Miller [4] state a necessary condition far a graph to be super (a, d)-EAT, which
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provides an upper bound on the parameter d. Let a (v, e)-graph G be a super (a, d)-EAT. The

minimum possible edge-weight is at least v+ 4. The maximum possible edge-weight is no more

than 3v + e − 1. Thus a + (e − 1)d ≤ 3v + e− 1 or d ≤ 2v + e− 5

e− 1
. For any subdivided star,

where v = e+ 1, it follows that d ≤ 3.

Let us consider the following proposition which we will use frequently in the main results.

Proposition 2.1([3]) If a (v, e)-graph G has a (s, d)-EAV labeling then

(1) G has a super (s+ v + 1, d+ 1)-EAT labeling;

(2) G has a super (s+ v + e, d− 1)-EAT labeling.

§3. Super (a, d)-EAT Labeling of Subdivided Stars

Theorem 3.1 For any even n ≥ 2 and r ≥ 6, G ∼= T (n+ 3, n+ 2, n, n+ 1, 2n+ 1, n6, · · · , nr)

admits a super (a, 0)-edge-antimagic total labeling with a = 2v + s− 1 and a super (a, 2)-edge-

antimagic total labeling with a = v + s + 1 where v = |V (G)|, s = (3n + 7) +
r∑

m=6
[2m−5n + 1]

and nm = 2m−4n+ 1 for 6 ≤ m ≤ r.

Proof Let us denote the vertices and edges of G, as follows:

V (G) = {c} ∪ {xli
i |1 ≤ i ≤ r; 1 ≤ li ≤ ni},

E(G) = {cx1
i |1 ≤ i ≤r} ∪ {xli

i x
li+1
i |1 ≤ i ≤ r; 1 ≤ li ≤ ni − 1}.

If v = |V (G)| and e = |E(G)|, then

v = (6n+ 8) +

r∑

m=6

[2m−64n+ 1] and e = v − 1.

Now, we define the labeling λ : V (G) → {1, 2, · · · , v} as follows:

λ(c) = (4n+ 8) +

r∑

m=6

[2m−62n+ 1].

For odd 1 ≤ li ≤ ni, where i = 1, 2, 3, 4, 5 and 6 ≤ i ≤ r, we define

λ(u) =





l1 + 1

2
, for u = xl1

1 ,

n+ 3 − l2 − 1

2
, for u = xl2

2 ,

(n+ 4) +
l3 − 1

2
, for u = xl3

3 ,

(2n+ 4) − l4 − 1

2
, for u = xl4

4 ,

(3n+ 5) − l5 − 1

2
, for u = xl5

5 .
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and

λ(xli
i ) = (3n+ 5) +

i∑

m=6

[2m−62n+ 1] − li − 1

2
,

respectively. For even 1 ≤ li ≤ ni, α = (3n+5)+
r∑

m=6
[2m−62n+1], i = 1, 2, 3, 4, 5 and 6 ≤ i ≤ r,

we define

λ(u) =





(α+ 1) +
l1 − 2

2
, for u = xl1

1 ,

(α+ n+ 2) − l2 − 2

2
, for u = xl2

2 ,

(α+ n+ 4) +
l3 − 2

2
, for u = xl3

3 ,

(α+ 2n+ 3) − l4 − 2

2
, for u = xl4

4 ,

(α+ 3n+ 3) − l5 − 2

2
, for u = xl5

5

and

λ(xli
i ) = (α+ 3n+ 3) +

i∑

m=6

[2m−62n] − li − 2

2
,

respectively.

The set of all edge-sums generated by the above formula forms a consecutive integer se-

quence s = α + 2, α + 3, · · · , α + 1 + e. Therefore, by Proposition 2.1, λ can be extended to

a super (a, 0)-edge-antimagic total labeling and we obtain the magic constant a = v + e+ s =

2v + (3n+ 6) +
r∑

m=6
[2m−62n+ 1].

Similarly by Proposition 2.2, λ can be extended to a super (a, 2)-edge-antimagic total

labeling and we obtain the magic constant a = v + 1 + s = v + (3n+ 8) +
r∑

m=6
[2m−62n+ 1]. 2

Theorem 3.2 For any odd n ≥ 3 and r ≥ 6, G ∼= T (n+ 3, n+ 2, n, n+ 1, 2n+ 1, n6, · · · , nr)

admits a super (a, 1)-edge-antimagic total labeling with a = s+
3v
2

if v is even, where v = |V (G)|,

s = (3n+ 7) +
r∑

m=6
[2m−5n+ 1] and nm = 2m−4n+ 1 for 6 ≤ m ≤ r.

Proof Let us consider the vertices and edges of G, as defined in Theorem 3.1. Now, we

define the labeling λ : V (G) → {1, 2, · · · , v} as in same theorem. It follows that the edge-

weights of all edges of G constitute an arithmetic sequence s = α+ 2, α+ 3, · · · , α+ 1 + e with

common difference 1, where

α = (3n+ 5) +
r∑

m=6

[2m−62n+ 1].

We denote it by A = {ai; 1 ≤ i ≤ e}. Now for G we complete the edge labeling λ for

super (a, 1)-edge-antimagic total labeling with values in the arithmetic sequence v + 1, v + 2,

· · · , v + e with common difference 1. Let us denote it by B = {bj ; 1 ≤ j ≤ e}. Define

C = {a2i−1 + be−i+1 ; 1 ≤ i ≤ e+ 1

2
} ∪ {a2j + b e−1

2 −j+1 ; 1 ≤ j ≤ e+ 1

2
− 1}. It is easy to see
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that C constitutes an arithmetic sequence with d = 1 and

a = s+
3v
2

= (12n+ 19) +
1

2

r∑

m=6

[2m−32n+ 5].

Since all vertices receive the smallest labels, λ is a super (a, 1)-edge-antimagic total labeling.2
Theorem 3.3 For any even n ≥ 2 and r ≥ 6, G ∼= T (n + 2, n, n, n+ 1, 2(n + 1), n6, · · · , nr)

admits a super (a, 0)-edge-antimagic total labeling with a = 2v + s− 1 and a super (a, 2)-edge-

antimagic total labeling with a = v + s + 1 where v = |V (G)|, s = (3n + 5) +
r∑

m=6
[2m−5n + 2]

and nm = 2m−4n+ 2 for 6 ≤ m ≤ r.

Proof Let us denote the vertices and edges of G as follows:

V (G) = {c} ∪ {xli
i |1 ≤ i ≤ r; 1 ≤ li ≤ ni};

E(G) = {cx1
i |1 ≤ i ≤r} ∪ {xli

i x
li+1
i |1 ≤ i ≤ r; 1 ≤ li ≤ ni − 1}.

If v = |V (G)| and e = |E(G)|, then

v = (6n+ 6) +

r∑

m=6

[2m−64(n+)] and e = v − 1.

Now, we define the labeling λ : V (G) → {1, 2, · · · , v} as follows:

λ(c) = (4n+ 5) +
r∑

m=6

[2m−62n+ 2].

For odd 1 ≤ li ≤ ni, where i = 1, 2, 3, 4, 5 and 6 ≤ i ≤ r, we define

λ(u) =





l1 + 1

2
, for u = xl1

1 ,

n+ 1 − l2 − 1

2
, for u = xl2

2 ,

(n+ 2) − l3 + 1

2
, for u = xl3

3 ,

(2n+ 2) − l4 − 1

2
, for u = xl4

4 ,

(3n+ 3) − l5 − 1

2
, for u = xl5

5 .

λ(xli
i ) = (3n+ 3) +

i∑

m=6

[2m−62n+ 2] − li − 1

2
,

respectively. For even 1 ≤ li ≤ ni, α = (3n + 43) +
r∑

m=6
[2m−62n + 2], i = 1, 2, 3, 4, 5 and
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5 ≤ i ≤ r, we define

λ(u) =





(α+ 1) +
l1 − 2

2
, for u = xl1

1 ,

(α+ n(α+ n+ 1) − l2 − 2

2
, for u = xl2

2 ,

(α+ n+ 3) − l3 − 2

2
, for u = xl3

3 ,

(α+ 2n+ 2) − l4 − 2

2
, for u = xl4

4 ,

(α+ 3n+ 3) − l5 − 2

2
, for u = xl5

5

and

λ(xli
i ) = (α+ 3n+ 3) +

i∑

m=6

[2m−64(n+ 1)] − li − 2

2
,

respectively.

The set of all edge-sums generated by the above formula forms a consecutive integer se-

quence s = α + 2, α+ 3, · · · , α+ 1 + e. Therefore, by Proposition 2.1, λ can be extended to a

super (a, 0)-edge-antimagic total labeling and we obtain the magic constant

a = v + e+ s = 2v + (3n+ 4) +

r∑

m=6

[2m−62n+ 2].

Similarly by Proposition 2.2, λ can be extended to a super (a, 2)-edge-antimagic total

labeling and we obtain the magic constant a = v + 1 + s = v + (3n+ 6) +
r∑

m=6
[2m−62n+ 2]. 2

Theorem 3.4 For any odd n ≥ 3 and r ≥ 6, G ∼= T (n + 2, n, n, n + 1, 2(n + 1), n6, · · · , nr)

admits a super (a, 1)-edge-antimagic total labeling with a = s+
3v
2

if v is even, where v = |V (G)|,

s = (3n+ 5) +
r∑

m=6
[2m−5n+ 2] and nm = 2m−4n+ 2 for 6 ≤ m ≤ r.

Proof Let us consider the vertices and edges of G, as defined in Theorem 3.3. Now, we

define the labeling λ : V (G) → {1, 2, · · · , v} as in same theorem. It follows that the edge-

weights of all edges of G constitute an arithmetic sequence s = α+ 2, α+ 3, · · · , α+ 1 + e with

common difference 1, where

α = (3n+ 3) +
r∑

m=6

[2m−62(n+ 1)].

We denote it by A = {ai; 1 ≤ i ≤ e}. Now for G we complete the edge labeling λ for

super (a, 1)-edge-antimagic total labeling with values in the arithmetic sequence v + 1, v + 2,

· · · , v + e with common difference 1. Let us denote it by B = {bj ; 1 ≤ j ≤ e}. Define

C = {a2i−1 + be−i+1 ; 1 ≤ i ≤ e+ 1

2
} ∪ {a2j + b e−1

2 −j+1 ; 1 ≤ j ≤ e+ 1

2
− 1}. It is easy to see
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that C constitutes an arithmetic sequence with d = 1 and

a = s+
3v
2

= (12n+ 14) +

r∑

m=6

[2m−5(4n+ 3) + 2].

Since all vertices receive the smallest labels, λ is a super (a, 1)-edge-antimagic total labeling.2
§4. Conclusion

In this paper, we have shown that two different subclasses of subdivided stars admit a super

(a, d)-EAT labeling for d ∈ {0, 1, 2}. However, the problem is still open for the magicness of

T (n1, n2, n3, · · · , nr), where ni = n and 1 ≤ i ≤ r.
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[3] Bača M., Y.Lin and F.A.Muntaner-Batle, Super edge-antimagic labelings of the path-like

trees, Utilitas Math., 73(2007), 117–128.
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[5] Bača M., A.Semaničová -Feňovč́ıková and M.K.Shafiq, A method to generate large classes

of edge-antimagic trees, Utilitas Math., 86(2011), 33–43.

[6] Baskoro E.T., I.W.Sudarsana and Y.M.Cholily, How to construct new super edge-magic

graphs from some old ones, J. Indones. Math. Soc. (MIHIM), 11:2 (2005), 155–162.
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Abstract: In this paper, we introduce a new type of graph labeling known as total mean

cordial labeling. A total mean cordial labeling of a graph G = (V,E) is a mapping f :

V (G) → {0, 1, 2} such that f(xy) =

⌈
f(x) + f(y)

2

⌉
where x, y ∈ V (G), xy ∈ G, and the

total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where

evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). If there

exists a total mean cordial labeling on a graph G, we will call G is Total Mean Cordial. In

this paper, we study some classes of graphs and their Total Mean Cordial behaviour.

Key Words: Smarandachely total mean cordial labeling, total mean cordial labeling, path,

cycle, wheel, complete graph, complete bipartite graph.

AMS(2010): 53C78

§1. Introduction

Unless mentioned otherwise, a graph in this paper shall mean a simple finite and undirected.

For all terminology and notations in graph theory, we follow Harary [3]. The vertex and edge

set of a graph G are denoted by V (G) and E(G) so that the order and size of G are respectively

|V (G)| and |E(G)|. Graph labeling is an assignment of integers to the vertices or edges, or

both, subject to certain conditions. Graph labeling plays an important role of various fields

of science and few of them are astronomy, coding theory, x-ray crystallography, radar, circuit

design, communication network addressing, database management, secret sharing schemes, and

models for constraint programming over finite domains [2]. The graph labeling problem was

introduced by Rosa and he has introduced graceful labeling of graphs [5] in the year 1967. In

1980, Cahit [1] introduced the cordial labeling of graphs. In 2012, Ponraj et al. [6] introduced

the notion of mean cordial labeling. Motivated by these labelings, we introduce a new type of

labeling, called total mean cordial labeling. In this paper, we investigate the total mean cordial

labeling behaviour of some graphs like path, cycle, wheel, complete graph etc. Let x be any

real number. Then the symbol ⌊x⌋ stands for the largest integer less than or equal to x and

⌈x⌉ stands for the smallest integer greater than or equal to x.

1Received April 30, 2014, Accepted December 4, 2014.
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§2. Main Results

Definition 2.1 Let f be a function f from V (G) → {0, 1, 2}. For each edge uv, assign the label⌈
f(u) + f(v)

2

⌉
. Then, f is called a total mean cordial labeling if |evf (i) − evf (j)| ≤ 1 where

evf (x) denote the total number of vertices and edges labeled with x(x = 0, 1, 2). A graph with a

total mean cordial labeling is called total mean cordial graph.

Furthermore, let H ≤ G be a subgraph of G. If there is a function f from V (G) → {0, 1, 2}
such that f |H is a total mean cordial labeling but

⌈
f(u) + f(v)

2

⌉
is a constant for all edges

in G \H, such a labeling and G are then respectively called Smarandachely total mean cordial

labeling and Smarandachely total mean cordial labeling graph respect to H.

Theorem 2.2 Any Path Pn is total mean cordial.

Proof Let Pn : u1u2 · · ·un be the path.

Case 1. n ≡ 0 (mod 3).

Let n = 3t. Define a map f : V (Pn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t

f(ut+i) = 1 1 ≤ i ≤ t

f(u2t+i) = 2 1 ≤ i ≤ t.

Case 2. n ≡ 1 (mod 3).

Let n = 3t+ 1. Define a function f : V (Pn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t+ 1

f(ut+1+i) = 1 1 ≤ i ≤ t

f(u2t+1+i) = 2 1 ≤ i ≤ t.

Case 3. n ≡ 2 (mod 3).

Let n = 3t+ 2. Define a function f : V (Pn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t+ 1

f(ut+1+i) = 1 1 ≤ i ≤ t

f(u2t+1+i) = 2 1 ≤ i ≤ t

and f(u3t+2) = 1. The following table Table 1 shows that the above vertex labeling f is a total

mean cordial labeling.
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Nature of n evf (0) evf (1) evf (2)

n ≡ 0 (mod 3) 2t− 1 2t 2t

n ≡ 1 (mod 3) 2t+ 1 2t 2t

n ≡ 2 (mod 3) 2t+ 1 2t+ 1 2t+ 1

Table 1

This completes the proof. 2
Theorem 2.3 The cycle Cn is total mean cordial if and only if n 6= 3.

Proof Let Cn : u1u2 . . . unu1 be the cycle. If n = 3, then we have evf (0) = evf(1) =

evf (2) = 2. But this is an impossible one. Assume n > 3.

Case 1. n ≡ 0 (mod 3).

Let n = 3t, t > 1. The labeling given in Figure 1 shows that C6 is total mean cordial.

b

b

b

b

b

b

0

2

2

0

2

0

Figure 1

Take t ≥ 3. Define f : V (Cn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t

f(ut+i) = 2 1 ≤ i ≤ t

f(u2t+i) = 1 1 ≤ i ≤ t− 2.

and f(u3t−1) = 0, f(u3t) = 1. In this case evf (0) = evf (1) = evf (2) = 2t.

Case 2. n ≡ 1 (mod 3).

The labeling f defined in case 2 of Theorem 2.1 is a total mean cordial labeling of here

also. In this case, evf (0) = evf (1) = 2t+ 1, evf (2) = 2t.

Case 3. n ≡ 2 (mod 3).

The labeling f defined in case 3 of Theorem 2.1 is a total mean cordial labeling. Here,

evf (0) = evf (2) = 2t+ 1, evf (1) = 2t+ 2. 2
The following three lemmas 2.4−2.6 are used for investigation of total mean cordial labeling

of complete graphs.

Lemma 2.4 There are infinitely many values of n for which 12n2 + 12n + 9 is not a perfect

square.



Total Mean Cordial Labeling of Graphs 59

Proof Suppose 12n2 + 12n+ 9 is a square, α2, say. Then 3/α. So α = 3β. This implies

12n2 + 12n+9 = 9β2. Hence we obtain 4n2 + 4n+ 3 = 3β2. On rewriting, we have (2n+ 1)2 −
3β2 = −2. Substituting 2n+ 1 = U , β = V , we get the Pell’s equation U2 − 3V 2 = −2. The

fundamental solutions of the equations U2−3V 2 = −2 and A2−3B2 = 1 are 1+
√

3 and 2+
√

3,

respectively. Therefore, all the integral solutions uk +
√

3vk of the equation U2 − 3V 2 = −2

are given by (1 +
√

3)(2 +
√

3)k, where k = 0,±1,±2, · · · Applying the result of Mohanty

and Ramasamy [4] on Pell’s equation, it is seen that the solutions uk +
√

3vk of the equation

U2−3V 2 = −2 are proved by the recurrence relationships u0 = −1, u1 = 1, uk+2 = 4uk+1−uk

and v0 = 1, v1 = 1, vk+2 = 4vk+1 − vk. Hence the square values of 12n2 + 12n+ 9 are given

by the sequence {nk} where n1 = 0, n2 = 2, nk+2 = 4nk+1 − nk + 1. It follows that such of

those integers of the form 12m2 + 12m+ 9 which are not in the sequence {nk} are not perfect

squares. 2
Lemma 2.5 There are infinitely many values of n for which 12n2 + 12n− 15 is not a perfect

square.

Proof As in Lemma 2.4 the square values of 12n2 + 12n − 15 are given by the sequence

{nk} where n1 = 1, n2 = 4, nk+2 = 4nk+1 − nk + 1. It follows that such of those integers of

the form 12m2 + 12m− 15 which are not in the sequence {nk} are not perfect squares. 2
Lemma 2.6 There are infinitely many values of n for which 12n2 + 12n+ 57 is not a perfect

square.

Proof As in Lemma 2.4 the square values of 12n2 + 12n + 57 are given by the sequence

{nk} where n1 = 1, n2 = 7, nk+2 = 4nk+1 − nk + 1. It follows that such of those integers of

the form 12m2 + 12m− 15 which are not in the sequence {nk} are not perfect squares. 2
Theorem 2.7 If n ≡ 0, 2 (mod 3) and 12n2 +12n+9 is not a perfect square then the complete

graph Kn is not total mean cordial.

Proof Suppose f is a total mean cordial labeling of Kn. Clearly |V (Kn)| + |E(Kn)| =
n(n+ 1)

2
. If n ≡ 0, 2 (mod 3) then 3 divides

n(n+ 1)

2
. Clearly evf (0) = m+

(
m
2

)
where m ∈ N.

Then

m(m+ 1)

2
=
n(n+ 1)

6

=⇒ m =
−3 ±

√
12n2 + 12n+ 9

2
,

a contradiction since 12n2 + 12n+ 9 is not a perfect square. 2
Theorem 2.8 If n ≡ 1 (mod 3), 12n2 + 12n− 15 and 12n2 + 12n+ 57 are not perfect squares

then the complete graph Kn is not total mean cordial.

Proof Suppose there exists a total mean cordial labeling of Kn, say f . It is clear that

evf (0) =
n2 + n− 2

6
or evf (0) =

n2 + n+ 4

6
.
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Case 1. evf (0) =
n2 + n− 2

6
= m.

Suppose k zeros are used in the vertices. Then k +
(
k
2

)
= m where k ∈ N.

=⇒ k(k + 1) =
n2 + n− 2

3

=⇒ 3k2 + 3k − (n2 + n− 2) = 0

=⇒ k =
−3 ±

√
12n2 + 12n− 15

6
.

a contradiction since 12n2 + 12n− 15 is not a perfect square.

Case 2. evf (0) =
n2 + n+ 4

6
= m.

Suppose k zeros are used in the vertices. Then k +
(
k
2

)
= m where k ∈ N.

=⇒ k(k + 1) =
n2 + n+ 4

3

=⇒ 3k2 + 3k − (n2 + n+ 4) = 0

=⇒ k =
−3 ±

√
12n2 + 12n+ 57

6
.

a contradiction since 12n2 + 12n+ 57 is not a perfect square. 2
Theorem 2.9 The complete graph Kn is not total mean cordial for infinitely many values of

n.

Proof Proof follow from Lemmas 2.4 − 2.6 and Theorems 2.7 − 2.8. 2
Theorem 2.10 The star K1,n is total mean cordial.

Proof Let V (K1,n) = {u, ui : 1 ≤ i ≤ n} and E(K1,n) = {uui : 1 ≤ i ≤ n}. Define a map

f : V (K1,n) → {0, 1, 2} by f(u) = 0,




f(ui) = 0 1 ≤ i ≤

⌊
n
3

⌋

f(u⌊n
3 ⌋+i

) = 2 1 ≤ i ≤
⌈

2n
3

⌉

The Table 2 shows that f is a total mean cordial labeling.

Values of n evf (0) evf (1) evf (2)

n ≡ 0 (mod 3) 2n+3
3

2n
3

2n
3

n ≡ 1 (mod 3) 2n+1
3

2n+1
3

2n+1
3

n ≡ 2 (mod 3) 2n−1
3

2n+2
3

2n+2
3

Table 2

This completes the proof. 2
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The join of two graphs G1 and G2 is denoted by G1 +G2 with

V (G1 +G2) = V (G1) ∪ V (G2),

E (G1 +G2) = E (G1) ∪ E (G2) ∪ {uv : u ∈ V (G1) , v ∈ V (G2)}.

Theorem 2.11 The wheel Wn = Cn +K1 is total mean cordial if and only if n 6= 4.

Proof Let Cn : u1u2 . . . unu1 be the cycle. Let V (Wn) = V (Cn) ∪ {u} and E(Wn) =

E(Cn) ∪ {uui : 1 ≤ i ≤ n}. Here |V (Wn)| = n+ 1 and |E(Wn)| = 2n.

Case 1. n ≡ 0 (mod 6).

Let n = 6k where k ∈ N. Define a map f : V (Wn) → {0, 1, 2} by f(u) = 0,





f(ui) = 0 1 ≤ i ≤ 2k

f(u5k+i) = 1 1 ≤ i ≤ k

f(u2k+i) = 2 1 ≤ i ≤ 3k.

In this case, evf(0) = evf (2) = 6k, evf (1) = 6k + 1.

Case 2. n ≡ 1 (mod 6).

Let n = 6k − 5 where k ∈ N and k > 1. Suppose k = 2 then the Figure 2 shows that W7

is total mean cordial.

b

b

b

b b

b b

b2 1

2

2

0

0

0

0

Figure 2

Assume k > 2. Define a function f : V (Wn) → {0, 1, 2} by f(u) = 0 and

f(ui) =





0 if 1 ≤ i ≤ 2k − 2 & i = 5k − 3

1 if 5k − 2 ≤ i ≤ 6k − 5

2 if 2k − 1 ≤ i ≤ 5k − 4.

It is clear that evf (0) = 6k − 4, evf (1) = evf (2) = 6k − 5.

Case 3. n ≡ 2 (mod 6).
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Let n = 6k − 4 where k ∈ N and k > 1. Define f : V (Wn) → {0, 1, 2} by f(u) = 0 and

f(ui) =





0 if 1 ≤ i ≤ 2k − 1

1 if 5k − 2 ≤ i ≤ 6k − 4

2 if 2k ≤ i ≤ 5k − 3.

Note that evf (0) = 6k − 3, evf (1) = evf (2) = 6k − 4.

Case 4. n ≡ 3 (mod 6).

Let n = 6k − 3 where k ∈ N. Define a function f : V (Wn) → {0, 1, 2} by f(u) = 0,





f(ui) = 0 1 ≤ i ≤ 2k − 1

f(u5k−2+i) = 1 1 ≤ i ≤ k − 1

f(u2k−1+i) = 2 1 ≤ i ≤ 3k − 1.

In this case evf (0) = evf (1) = 6k − 3, evf (2) = 6k − 2.

Case 5. n ≡ 4 (mod 6).

When n = 4 it is easy to verify that the total mean cordiality condition is not satisfied.

Let n = 6k − 2 where k ∈ N and k > 1. From Figure 3, it is clear that evf (0) = 11,

evf (1) = evf (2) = 10 and hence W10 is total mean cordial.
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b b
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Figure 3

Let k ≥ 3. Define a function f : V (Wn) → {0, 1, 2} by f(u) = 0, f(u6k−3) = 0, f(u6k−2) =

1 and 



f(ui) = 0 1 ≤ i ≤ 2k − 1

f(u5k−2+i) = 1 1 ≤ i ≤ k − 2

f(u2k−1+i) = 2 1 ≤ i ≤ 3k − 1.

In this case evf (0) = 6k − 1, evf (1) = evf (2) = 6k − 2.

Case 6. n ≡ 5 (mod 6).

Let n = 6k − 1 where k ∈ N. For k = 1 the Figure 4 shows that W5 is total mean cordial.
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b

b b

b b
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0

2
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0
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Assume k ≥ 2. Define a function f : V (Wn) → {0, 1, 2} by f(u) = 0 and

f(ui) =





0 if 1 ≤ i ≤ 2k

1 if 5k + 1 ≤ i ≤ 6k − 1 & i = 2k + 1

2 if 2k + 2 ≤ i ≤ 5k.

It is clear that evf (0) = 6k, evf (1) = evf (2) = 6k − 1. 2
Theorem 2.12 K2 +mK1 is total mean cordial if and only if m is even.

Proof Clearly |V (K2 +mK1)| = 3m+ 3. Let V (K2 +mK1) = {u, v, ui : 1 ≤ i ≤ m} and

E(K2 +mK1) = {uv, uui, vui : 1 ≤ i ≤ m}.

Case 1. m is even.

Let m = 2t. Define f : V (K2 +mK1) → {0, 1, 2} by f(u) = 0, f(v) = 2




f(ui) = 0 1 ≤ i ≤ t

f(ut+i) = 2 1 ≤ i ≤ t.

Then evf (0) = evf (1) = evf (2) = 2t+ 1 and hence f is a total mean cordial labeling.

Case 2. m is odd.

Let m = 2t + 1. Suppose f is a total mean cordial labeling, then evf (0) = evf (1) =

evf (2) = 2t+ 2.

Subcase 1. f(u) = 0 and f(v) = 0.

Then evf (2) ≤ 2t+ 1, a contradiction.

Subcase 2. f(u) = 0 and f(v) 6= 0.

Since the vertex u has label 0, we have only 2t+ 1 zeros. While counting the total number

of zeros each vertices ui along with the edges uui contributes 2 zeros. This implies evf (0) is an

odd number, a contradiction.

Subcase 3. f(u) 6= 0 and f(v) 6= 0.

Then evf (0) ≤ 2t+ 1, a contradiction. 2
The corona of G with H , G⊙H is the graph obtained by taking one copy of G and p copies
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of H and joining the ith vertex of G with an edge to every vertex in the ith copy of H . Cn ⊙K1

is called the crown, Pn ⊙K1 is called the comb and Pn ⊙ 2K1 is called the double comb.

Theorem 2.13 The comb Pn ⊙K1 admits a total mean cordial labeling.

Proof Let Pn : u1u2 . . . un be the path. Let V (Pn ⊙K1) = {V (Pn) ∪ {vi : 1 ≤ i ≤ n} and

E(Pn ⊙K1) = E(Pn) ∪ {uivi : 1 ≤ i ≤ n}. Note that |V (Pn ⊙K1)| + |E(Pn ⊙K1)| = 4n− 1.

Case 1. n ≡ 0 (mod 3).

Let n = 3t. Define a map f : V (Pn ⊙K1) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ 2t

f(u2t+i) = 1 1 ≤ i ≤ t

f(vi) = 2 1 ≤ i ≤ 3t.

Case 2. n ≡ 1 (mod 3).

Let n = 3t+ 1. Define a function f : V (Pn ⊙K1) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ 2t+ 1

f(u2t+1+i) = 1 1 ≤ i ≤ t

f(vi) = 2 1 ≤ i ≤ 3t+ 1.

Case 3. n ≡ 2 (mod 3).

Let n = 3t+ 2. Define a function f : V (Pn ⊙K1) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ 2t+ 2

f(u2t+2+i) = 1 1 ≤ i ≤ t

f(vi) = 2 1 ≤ i ≤ 3t+ 2.

From Table 3 it is easy that the labeling f is a total mean cordial labeling.

Nature of n evf (0) evf (1) evf (2)

n ≡ 0 (mod 3) 4t− 1 4t 4t

n ≡ 1 (mod 3) 4t+ 1 4t+ 1 4t+ 1

n ≡ 2 (mod 3) 4t+ 3 4t+ 2 4t+ 2

Table 3

This completes the proof. 2
Theorem 2.14 The double comb Pn ⊙ 2K1 is total mean cordial.

Proof Let Pn : u1u2 . . . un be the path. Let V (Pn ⊙ 2K1) = {V (Pn) ∪ {vi, wi : 1 ≤
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i ≤ n} and E(Pn ⊙ 2K1) = E(Pn) ∪ {uivi, uiwi : 1 ≤ i ≤ n}. Note that |V (Pn ⊙ 2K1)| +

|E(Pn ⊙ 2K1)| = 6n− 1.

Case 1. n ≡ 0 (mod 3).

Let n = 3t. Define a map f : V (Pn ⊙ 2K1) → {0, 1, 2} by





f(ui) = f(vi) = f(wi) = 0 1 ≤ i ≤ t

f(ut+i) = f(vt+i) = f(wt+i) = 1 1 ≤ i ≤ t

f(u2t+i) = f(v2t+i) = f(w2t+i) = 2 1 ≤ i ≤ t

Case 2. n ≡ 1 (mod 3).

Let n = 3t+ 1. Define a function f : V (Pn ⊙ 2K1) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t+ 1

f(ut+1+i) = 1 1 ≤ i ≤ t

f(u2t+1+i) = 2 1 ≤ i ≤ t

f(vi) = 0 1 ≤ i ≤ t

f(vt+i) = 1 1 ≤ i ≤ t+ 1

f(v2t+1+i) = 2 1 ≤ i ≤ t

f(wi) = 0 1 ≤ i ≤ t

f(wt+i) = 1 1 ≤ i ≤ t

f(w2t+i) = 2 1 ≤ i ≤ t+ 1

Case 3. n ≡ 2 (mod 3).

Let n = 3t+ 2. Define a function f : V (Pn ⊙ 2K1) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t+ 1

f(ut+1+i) = 1 1 ≤ i ≤ t+ 1

f(u2t+2+i) = 2 1 ≤ i ≤ t

f(vi) = 0 1 ≤ i ≤ t+ 1

f(vt+1+i) = 1 1 ≤ i ≤ t

f(v2t+1+i) = 2 1 ≤ i ≤ t+ 1

f(wi) = 0 1 ≤ i ≤ t

f(wt+i) = 1 1 ≤ i ≤ t+ 1

f(w2t+1+i) = 2 1 ≤ i ≤ t+ 1

The Table 4 shows that the labeling f is a total mean cordial labeling.



66 R.Ponraj, S.Sathish Narayanan and A.M.S.Ramasamy

Nature of n evf (0) evf (1) evf (2)

n ≡ 0 (mod 3) 6t− 1 6t 6t

n ≡ 1 (mod 3) 6t+ 1 6t+ 2 6t+ 2

n ≡ 2 (mod 3) 6t+ 3 6t+ 4 6t+ 4

Table 4

This completes the proof. 2
Theorem 2.15 The crown Cn ⊙K1 is total mean cordial.

Proof Let Cn : u1u2 . . . unu1 be the cycle. Let V (Cn ⊙K1) = {V (Cn) ∪ {vi : 1 ≤ i ≤ n}
and E(Cn ⊙K1) = E(Cn) ∪ {uivi : 1 ≤ i ≤ n}. Note that |V (Cn ⊙K1)| + |E(Cn ⊙K1)| = 4n.

Case 1. n ≡ 0 (mod 3).

Let n = 3t. For t = 1 we refer Figure 5.

b

b

b

b b

b0

0

2 1

20
Figure 5

Let t > 1. Define a map f : V (Cn ⊙K1) → {0, 1, 2} by





f(ui) = f(vi) = 0 1 ≤ i ≤ t

f(ut+i) = f(vt+i) = 1 1 ≤ i ≤ t− 1

f(u2t−1+i) = f(u2t−1+i) = 2 1 ≤ i ≤ t− 1

and f(u3t−1) = 2, f(u3t) = 1, f(v3t−1) = 1, f(v3t) = 0. Here evf (0) = evf (1) = evf(2) = 4t.

Case 2. n ≡ 1 (mod 3).

The labeling f defined in case 2 of Theorem 2.13 is a total mean cordial labeling. Here,

evf (0) = 4t+ 1, evf (1) = 4t+ 2, evf (2) = 4t+ 1.

Case 3. n ≡ 2 (mod 3).

The labeling f defined in case 3 of Theorem 2.13 is a total mean cordial labeling. Here,

evf (0) = evf (1) = 4t+ 3, evf (2) = 4t+ 2. 2
The triangular snake Tn is obtained from the path Pn by replacing every edge of the path

by a triangle.

Theorem 2.16 The triangular snake Tn is total mean cordial if and only if n > 2.
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Proof Let Pn : u1u2 . . . un be the path and V (Tn) = V (Pn) ∪ {vi : 1 ≤ i ≤ n − 1}. Let

E(Tn) = E(Pn) ∪ {uivi, viui+1 : 1 ≤ i ≤ n− 1}. If n = 2, T2
∼= C3, by Theorem 2.3, T2 is not

total mean cordial. Let n ≥ 3. Here |V (Tn)| + |E(Tn)| = 5n− 4.

Case 1. n ≡ 0 (mod 3).

Let n = 3t. For T3, the vertex labeling in Figure 6 is a total mean cordial labeling.

b b b

b b

2 0 2

0 2

Figure 6

Let t ≥ 2. Define a map f : V (Tn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t

f(ut+i) = 1 1 ≤ i ≤ t

f(u2t+i) = 2 1 ≤ i ≤ t− 1

f(vi) = 0 1 ≤ i ≤ t

f(vt+i) = 1 1 ≤ i ≤ t− 1

f(v2t−1+i) = 2 1 ≤ i ≤ t

and f(u3t) = 1.

Case 2. n ≡ 1 (mod 3).

Let n = 3t+ 1. Define f : V (Tn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t+ 1

f(ut+1+i) = 1 1 ≤ i ≤ t

f(u2t+1+i) = 2 1 ≤ i ≤ t

f(vi) = 0 1 ≤ i ≤ t

f(vt+i) = 1 1 ≤ i ≤ t

f(v2t+i) = 2 1 ≤ i ≤ t

Case 3. n ≡ 2 (mod 3).
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Let n = 3t+ 2. Define f : V (Tn) → {0, 1, 2} by





f(ui) = 0 1 ≤ i ≤ t+ 1

f(ut+1+i) = 2 1 ≤ i ≤ t

f(u2t+1+i) = 1 1 ≤ i ≤ t

f(vi) = 0 1 ≤ i ≤ t

f(vt+i) = 2 1 ≤ i ≤ t+ 1

f(v2t+1+i) = 1 1 ≤ i ≤ t

and f(u3t+2) = 0. The Table 5 shows that Tn is total mean cordial.

Nature of n evf (0) evf (1) evf (2)

n ≡ 0 (mod 3) 5t− 2 5t− 1 5t− 1

n ≡ 1 (mod 3) 5t+ 1 5t 5t

n ≡ 2 (mod 3) 5t+ 2 5t+ 2 5t+ 2

Table 5

This completes the proof. 2
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§1. Introduction

We note P>k = {p | p prime number, p > k} and two consecutive prime numbers pn, pn+1 ∈
P>2.

Smarandache Conjecture The equation

px
n+1 − px

n = 1 , (1.1)

has solutions > 0.5, for any n ∈ N∗ ([18], [25]).

Smarandache’s constant([18], [29]) is cS ≈ 0.567148130202539 · · · , the solution for the

equation

127x − 113x = 1 .

Smarandache Constant Conjecture The constant cS is the smallest solution of equation

(1.1) for any n ∈ N∗.

The function that counts the the prime numbers p, p 6 x, was denoted by Edmund Landau

in 1909, by π ([10], [27]). The notation was adopted in this article.

We present some conjectures and theorems regarding the distribution of prime numbers.

Legendre Conjecture([8], [20]) For any n ∈ N∗ there is a prime number p such that

n2 < p < (n+ 1)2 .

1Received August 15, 2014, Accepted December 5, 2014.
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The smallest primes between n2 and (n+ 1)2 for n = 1, 2, · · · , are 2, 5, 11, 17, 29, 37, 53,

67, 83, · · · , [24, A007491].

The largest primes between n2 and (n + 1)2 for n = 1, 2, · · · , are 3, 7, 13, 23, 31, 47, 61,

79, 97, · · · , [24, A053001].

The numbers of primes between n2 and (n+ 1)2 for n = 1, 2, · · · are given by 2, 2, 2, 3, 2,

4, 3, 4, · · · , [24, A014085].

Bertrand Theorem For any integer n, n > 3, there is a prime p such that n < p < 2(n− 1).

Bertrand formulated this theorem in 1845. This assumption was proven for the first time

by Chebyshev in 1850. Ramanujan in 1919 ([19]), and Erdös in 1932 ([5]), published two simple

proofs for this theorem.

Bertrand’s theorem stated that: for any n ∈ N∗ there is a prime p, such that n < p < 2n.

In 1930, Hoheisel, proved that there is θ ∈ (0, 1) ([9]), such that

π(x + xθ) − π(x) ≈ xθ

ln(x)
. (1.2)

Finding the smallest interval that contains at least one prime number p, was a very hot

topic. Among the most recent results belong to Andy Loo whom in 2011 ([11]) proved any for

n ∈ N∗ there is a prime p such that 3n < p < 4n . Even ore so, we can state that, if Riemann’s

hypothesis

π(x) =

∫ x

2

du
ln(u)

+O(
√
x ln(x)) , (1.3)

stands, then in (1.2) we can consider θ = 0.5 + ε, according to Maier ([12]).

Brocard Conjecture([17,26]) For any n ∈ N∗ the inequality

π(p2n+1) − π(p2n) > 4

holds.

Legendre’s conjecture stated that between p2n and a2, where a ∈ (pn, pn+1), there are at

least two primes and that between a2 and p2n+1 there are also at least two prime numbers.

Namely, is Legendre’s conjecture stands, then there are at least four prime numbers between

p2n and p2n+1.

Concluding, if Legendre’s conjecture stands then Brocard’s conjecture is also true.

Andrica Conjecture([1],[13],[17]) For any n ∈ N∗ the inequality

√
pn+1 −

√
pn < 1 , (1.4)

stands.

The relation (1.4) is equivalent to the inequality

√
pn + gn <

√
pn + 1 , (1.5)
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where we denote by gn = pn+1 − pn the gap between pn+1 and pn. Squaring (1.5) we obtain

the equivalent relation

gn < 2
√
pn + 1 . (1.6)

Therefore Andrica’s conjecture equivalent form is: for any n ∈ N∗ the inequality (1.6) is true.

In 2014 Paz ([17]) proved that if Legendre’s conjecture stands then Andirca’s conjecture is

also fulfilled. Smarandache’s conjecture is a generalization of Andrica’s conjecture ([25]).

Cramér Conjecture([4, 7, 21, 23]) For any n ∈ N∗

gn = O(ln(pn)2) , (1.7)

where gn = pn+1 − pn, namely

lim sup
n→∞

gn

ln(pn)2
= 1 .

Cramér proved that

gn = O
(√
pn ln(pn)

)
,

a much weaker relation (1.7), by assuming Riemann hypothesis (1.3) to be true.

Westzynthius proved in 1931 that the gaps gn grow faster then the prime numbers loga-

rithmic curve ([30]), namely

lim sup
n→∞

gn

ln(pn)
= ∞ .

Cramér-Granville Conjecture For any n ∈ N∗

gn < R · ln(pn)2 , (1.8)

stands for R > 1, where gn = pn+1 − pn.

Using Maier’s theorem, Granville proved that Cramér’s inequality (1.8) does not accu-

rately describe the prime numbers distribution. Granville proposed that R = 2e−γ ≈ 1.123 · · ·
considering the small prime numbers ([6, 13]) (a prime number is considered small if p < 106,

[3]).

Nicely studied the validity of Cramér-Grandville’s conjecture, by computing the ratio

R =
ln(pn)√gn

,

using large gaps. He noted that for this kind of gaps R ≈ 1.13 · · · . Since 1/R2 < 1, using the

ratio R we can not produce a proof for Cramér-Granville’s conjecture ([14]).

Oppermann Conjecture([16],[17]) For any n ∈ N∗, the intervals

[n2 − n+ 1, n2 − 1] and [n2 + 1, n2 + n]

contain at least one prime number p.



72 Octavian Cira

Firoozbakht Conjecture For any n ∈ N∗ we have the inequality

n+1
√
pn+1 < n

√
pn (1.9)

or its equivalent form

pn+1 < p
1+ 1

n
n .

If Firoozbakht’s conjecture stands, then for any n > 4 we the inequality

gn < ln(pn)2 − ln(pn) , (1.10)

is true, where gn = pn+1−pn. In 1982 Firoozbakht verified the inequality (1.10) using maximal

gaps up to 4.444 × 1012 ([22]), namely close to the 48th position in Table 1.

Currently the table was completed up to the position 75 ([15, 24]).

Paz Conjecture([17]) If Legendre’s conjecture stands then:

(1) The interval [n, n+ 2⌊√n⌋ + 1] contains at least one prime number p for any n ∈ N∗;

(2) The interval [n− ⌊√n⌋ + 1, n] or [n, n+ ⌊√n⌋ − 1] contains at leas one prime number

p, for any n ∈ N∗, n > 1 .

Remark 1.1 According to Case (1) and (2), if Legendre’s conjecture holds, then Andrica’s

conjecture is also true ([17]).

Conjecture Wolf Furthermore, the bounds presented below suggest yet another growth rate,

namely, that of the square of the so-called Lambert W function. These growth rates differ by

very slowly growing factors
(
like ln(ln(pn))

)
. Much more data is needed to verify empirically

which one is closer to the true growth rate.

Let P (g) be the least prime such that P (g)+g is the smallest prime larger than P (g). The

values of P (g) are bounded, for our empirical data, by the functions

Pmin(g) = 0.12 · √g · e
√

g ,

Pmax(g) = 30.83 · √g · e
√

g .

For large g, there bounds are in accord with a conjecture of Marek Wolf ([15, 31, 32]).

§2. Proof of Smarandache Conjecture

In this article we intend to prove that there are no equations of type (1.1), in respect to x with

solutions 6 0.5 for any n ∈ N∗.

Let f : [0, 1] → R,

f(x) = (p+ g)x − px − 1 , (2.1)

where p ∈ P>3, g ∈ N∗ and g the gap between p and the consecutive prime number p+ g. Thus
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the equation

(p+ g)x − px = 1 . (2.2)

is equivalent to equation (1.1).

Since for any p ∈ P>3 we have g > 2 (if Goldbach’s conjecture is true, then g = 2 · N∗1).

Figure 1 The functions (2.1) and (p+ g + ε)x − px − 1 for p = 89, g = 8 and ε = 5

Theorem 2.1 The function f given by (2.1) is strictly increasing and convex over its domain.

Proof If we compute the first and second derivative of function f , namely

f ′(x) = ln(p+ g)(p+ g)x − ln(p)px

and

f ′′(x) = ln(p+ g)2(p+ g)x − ln(p)2px .

it follows that f ′(x) > 0 and f ′′(x) > 0 over [0, 1], thus function f is strictly increasing and

convex over its domain. 2
Corollary 2.2 Since f(0) = −1 < 0 and f(1) = g − 1 > 0 because g > 2 if p ∈ P>3 and, also

since function f is strictly monotonically increasing function it follows that equation (2.2) has

a unique solution over the interval (0, 1).

12 · N∗ is the set of all even natural numbers
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Theorem 2.3 For any g that verifies the condition 2 6 g < 2
√p+ 1, function f (0.5) < 0 .

Proof The inequality
√
p+ g−√p−1 < 0 in respect to g had the solution −p 6 g < 2

√p+1 .

Considering the give condition it follows that for a given g that fulfills 2 6 g < 2
√p+1 we have

f (0.5) < 0 for any p ∈ P>3. 2
Remark 2.4 The condition g < 2

√p+ 1 represent Andrica’s conjecture (1.6).

Theorem 2.5 Let p ∈ P>3 and g ∈ N∗, then the equation (2.2) has a greater solution s then

sε, the solution for the equation (p+ g + ε)x − px − 1 = 0, for any ε > 0 .

Proof Let ε > 0, then p+g+ε > p+g. It follows that (p+g+ε)x−px−1 > (p+g)x−px−1,

for any x ∈ [0, 1]. Let s be the solution to equation (2.2), then there is δ > 0, that depends

on ε, such that (p + g + ε)s−δ − ps−δ − 1 = 0 . Therefore s, the solution for equation (2.2), is

greater that the solution sε = s− δ for the equation (p+ g + ε)x − px − 1 = 0, see Figure 1.2
Theorem 2.6 Let p ∈ P>3 and g ∈ N∗, then s < sε, where s is the equation solution (2.2) and

sε is the equation solution (p+ ε+ g)x − (p+ ε)x − 1 = 0, for any ε > 0 .

Figure 2 The functions (2.1) and (p+ ε+ g)x − (p+ ε)x − 1 for p = 113, ε = 408, g = 14

Proof Let ε > 0, Then p+ε+g > p+g, from which it follows that (p+ε+g)x−(p+ε)x−1 <
(p+ g)x − px − 1, for any x ∈ [0, 1] (see Figure 2). Let s the equation solution (2.2), then there

δ > 0, which depends on ε, so (p+ε+g)s+δ−(p+ε)s+δ−1 = 0 . Therefore the solution s, of the

equation (2.2), is lower than the solution sε = s+δ of the equation (p+ε+g)x−(p+ε)x−1 = 0,

see Figure 2. 2
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Remark 2.7 Let pn and pn+1 two prime numbers in Table maximal gaps corresponding

the maximum gap gn. The Theorem 2.6 allows us to say that all solutions of the equation

(q + γ)x − qx = 1, where q ∈ {pn, · · · , pn+1 − 2} and γ < gn solutions are smaller that the

solution of the equation px
n+1 − px

n = 1, see Figure 2.

Let:

(1) gA(p) = 2
√p+ 1 , Andrica’s gap function ;

(2) gCG(p) = 2 · e−γ · ln(p)2 , Cramér-Grandville’s gap function ;

(3) gF (p) = g1(p) = ln(p)2 − ln(p) , Firoozbakht’s gap function;

(4) gc(p) = ln(p)2 − c · ln(p) , where c = 4(2 ln(2) − 1) ≈ 1.545 · · · ,

(5) gb(p) = ln(p)2 − b · ln(p) , where b = 6(2 ln(2) − 1) ≈ 2.318 · · · .

Theorem 2.8 The inequality gA(p) > gα(p) is true for:

(1) α = 1 and p ∈ P>3 \ {7, 11, · · · , 41};
(2) α = c = 4(2 ln(2) − 1) and p ∈ P>3;

(3) α = b = 6(2 ln(2) − 1) and p ∈ P>3 and the function gA increases at at a higher rate

then function gb.

Proof Let the function

dα(p) = gA(p) − gα(p) = 1 + 2
√
p+ α · ln(p) − ln(p)2

The derivative of function dα is

d′α(p) =
α− 2 ln(p) +

√p
p

.

The analytical solutions for function d′1 are 5.099 · · · and 41.816 · · · . At the same time, d′1(p) <
0 for {7, 11, · · · , 41} and d′1(p) > 0 for p ∈ P>3 \ {7, 11, · · · , 41}, meaning that the function d1

is strictly increasing only over p ∈ P>3 \ {7, 11, · · · , 41} (see Figure 3).

For α = c = 4(2 ln(2) − 1) ≈ 1.5451774444795623 · · · , d′c(p) > 0 for any p ∈ P>3, (d′c is

nulled for p = 16, but 16 /∈ P>3), then function dc is strictly increasing for p ∈ P>3 (see Figure

c). Because function dc is strictly increasing and dc(3) = ln(3)
(
8 ln(2)− 4− ln(3)

)
+ 2

√
3 + 1 ≈

4.954 · · · , it follows that dc(p) > 0 for any p ∈ P>3.

In α = b = 6(2 ln(2) − 1) ≈ 2.3177661667193434 · · · , function db is increasing fastest for

any p ∈ P>3 (because d′b(p) > d′α(p) for any p ∈ P>3 and α > 0, α 6= b). Since d′b(p) > 0 for

any p ∈ P>3 and because

db(3) = ln(3)
(
12 ln(2) − 6 − ln(3)

)
+ 2

√
3 + 1 ≈ 5.803479047342222 · · · .

It follows that db(p) > 0 for any p ∈ P>3 (see Figure 3). 2
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Figure 3 dα and d′α functions

Remark 2.9 In order to determine the value of c, we solve the equation d′α(p) = 0 in respect

to α. The solution α in respect to p is α(p) = 2 ln(p) − √p. We determine p, the solution of

α′(p) =
4−√

p

2p
. Then it follows that c = α(16) = 4(2 ln(2) − 1).

Remark 2.10 In order to find the value for b, we solve the equation d′′α(p) = 0 in respect to

α. The solution α in respect to p is α(p) = 2 ln(p) −
√p
2

− 2 . We determine p, the solution of

α′(p) =
8 −√p

4p
. It follows that b = α(8) = 6(2 ln(2) − 1).

Since function db manifests the fastest growth rate we can state that the function gA

increases more rapidly then function gb.

Let h(p, g) = f (0.5) =
√
p+ g −√p− 1 .

Figure 4 Functions hb, hc, hF and hCG
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Theorem 2.11 For

hCG(p) = h(p, gCG(p)) =
√
p+ 2e−γ ln(p)2 −√

p− 1

hCG(p) < 0 for p ∈ {3, 5, 7, 11, 13, 17}∪ {359, 367, · · · } and

lim
p→∞

hCG(p) = −1 .

Proof The theorem can be proven by direct computation, as observed in the graph from

Figure 4. 2
Theorem 2.12 The function

hF (p) = h1(p) = h(p, gF (p)) =
√
p+ ln(p)2 − ln(p) −√

p− 1

reaches its maximal value for p = 111.152 · · · and hF (109) = −0.201205 · · · while hF (113) =

−0.201199 · · · and

lim
p→∞

hF (p) = −1 .

Proof Again, the theorem can be proven by direct calculation as one can observe from the

graph in Figure 4. 2
Theorem 2.13 The function

hc(p) = h(p, gc(p)) =
√
p+ ln(p)2 − c ln(p) −√

p− 1

reaches its maximal value for p = 152.134 · · · and hc(151) = −0.3105 · · · while hc(157) =

−0.3105 · · · and

lim
p→∞

hc(p) = −1 .

Proof Again, the theorem can be proven by direct calculation as one can observe from the

graph in Figure 4. 2
Theorem 2.14 The function

hB(p) = h(p, gB(p)) =
√

ln(p)2 − b ln(p) + p−√
p− 1

reaches its maximal value for p = 253.375 · · · and hB(251) = −0.45017 · · · while hB(257) =

−0.45018 · · · and

lim
p→∞

hB(p) = −1 .

Proof Again, the theorem can be proven by direct calculation as one can observe from the

graph in Figure 4. 2



78 Octavian Cira

Table 1: Maximal gaps [24, 14, 15]

# n pn gn

1 1 2 1

2 2 3 2

3 4 7 4

4 9 23 6

5 24 89 8

6 30 113 14

7 99 523 18

8 154 887 20

9 189 1129 22

10 217 1327 34

11 1183 9551 36

12 1831 15683 44

13 2225 19609 52

14 3385 31397 72

15 14357 155921 86

16 30802 360653 96

17 31545 370261 112

18 40933 492113 114

19 103520 1349533 118

20 104071 1357201 132

21 149689 2010733 148

22 325852 4652353 154

23 1094421 17051707 180

24 1319945 20831323 210

25 2850174 47326693 220

26 6957876 122164747 222

27 10539432 189695659 234

28 10655462 191912783 248

29 20684332 387096133 250

30 23163298 436273009 282

31 64955634 1294268491 288
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# n pn gn

32 72507380 1453168141 292

33 112228683 2300942549 320

34 182837804 3842610773 336

35 203615628 4302407359 354

36 486570087 10726904659 382

37 910774004 20678048297 384

38 981765347 22367084959 394

39 1094330259 25056082087 456

40 1820471368 42652618343 464

41 5217031687 127976334671 468

42 7322882472 182226896239 474

43 9583057667 241160624143 486

44 11723859927 297501075799 490

45 11945986786 303371455241 500

46 11992433550 304599508537 514

47 16202238656 416608695821 516

48 17883926781 461690510011 532

49 23541455083 614487453523 534

50 28106444830 738832927927 540

51 50070452577 1346294310749 582

52 52302956123 1408695493609 588

53 72178455400 1968188556461 602

54 94906079600 2614941710599 652

55 251265078335 7177162611713 674

56 473258870471 13829048559701 716

57 662221289043 19581334192423 766

58 1411461642343 42842283925351 778

59 2921439731020 90874329411493 804

60 5394763455325 171231342420521 806

61 6822667965940 218209405436543 906

62 35315870460455 1189459969825483 916

63 49573167413483 1686994940955803 924

64 49749629143526 1693182318746371 1132
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# n pn gn

65 1175661926421598 43841547845541059 1184

66 1475067052906945 55350776431903243 1198

67 2133658100875638 80873624627234849 1220

68 5253374014230870 203986478517455989 1224

69 5605544222945291 218034721194214273 1248

70 7784313111002702 305405826521087869 1272

71 8952449214971382 352521223451364323 1328

72 10160960128667332 401429925999153707 1356

73 10570355884548334 418032645936712127 1370

74 20004097201301079 804212830686677669 1442

75 34952141021660495 1425172824437699411 1476

We denote by an = ⌊gA(pn)⌋ (Andrica’s conjecture), by cgn = ⌊gCG(pn)⌋ (Cramér-

Grandville’s conjecture) by fn = ⌊gF (pn)⌋ (Firoozbakht’s conjecture), by cn = ⌊gc(pn)⌋ and

bn = ⌊gb(pn)⌋.
The columns of Table 2 represent the values of the maximal gaps an, cgn, fn, cn, bn and

gn, [14, 2, 28, 15]. Note the Cramér-Grandville’s conjecture as well as Firoozbakht’s conjecture

are confirmed when n > 9 (for p9 = 23, the forth row in the table of maximal gaps).

Table 2: Approximative values of maximal gaps

# an cgn fn cn bn gn

1 3 0 -1 -1 -2 1

2 4 1 0 -1 -2 2

3 6 4 1 0 -1 4

4 10 11 6 4 2 6

5 19 22 15 13 9 8

6 22 25 17 15 11 14

7 46 43 32 29 24 18

8 60 51 39 35 30 20

9 68 55 42 38 33 22

10 73 58 44 40 35 34

11 196 94 74 69 62 36
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# an cgn fn cn bn gn

12 251 104 83 78 70 44

13 281 109 87 82 74 52

14 355 120 96 91 83 72

15 790 160 131 123 115 86

16 1202 183 150 143 134 96

17 1217 184 151 144 134 112

18 1404 192 158 151 141 114

19 2324 223 185 177 166 118

20 2330 223 185 177 166 132

21 2837 236 196 188 177 148

22 4314 264 220 211 200 154

23 8259 311 260 251 238 180

24 9129 318 267 257 244 210

25 13759 350 294 285 271 220

26 22106 389 328 317 303 222

27 27547 407 344 333 319 234

28 27707 408 344 334 319 248

29 39350 439 371 360 345 250

30 41775 444 375 365 349 282

31 71952 494 419 407 391 288

32 76241 499 423 412 396 292

33 95937 521 443 431 414 320

34 123978 546 464 452 435 336

35 131186 552 469 457 440 354

36 207142 598 510 497 479 382

37 287598 633 540 527 509 384

38 299113 637 544 531 512 394

39 316583 643 549 536 517 456

40 413051 672 574 561 542 464

41 715476 734 628 614 594 468

42 853761 754 646 632 612 474

43 982163 771 660 646 626 486

44 1090874 783 671 657 636 490
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# an cgn fn cn bn gn

45 1101584 784 672 658 637 500

46 1103811 785 672 658 637 514

47 1290905 803 689 674 653 516

48 1358957 810 694 679 659 532

49 1567786 827 709 694 673 534

50 1719108 838 719 704 683 540

51 2320599 875 752 736 715 582

52 2373770 878 754 739 717 588

53 2805843 899 773 757 735 602

54 3234157 918 788 773 751 652

55 5358046 983 846 830 807 674

56 7437486 1028 885 868 845 716

57 8850161 1051 906 889 865 766

58 13090804 1106 953 936 912 778

59 19065606 1159 1000 983 958 804

60 26171079 1206 1041 1023 998 806

61 29543826 1224 1057 1039 1013 906

62 68977097 1353 1170 1151 1124 916

63 82146088 1380 1194 1175 1148 924

64 82296594 1380 1194 1175 1148 1132

65 418767467 1648 1430 1409 1379 1184

66 470534915 1668 1447 1426 1396 1198

67 568765768 1701 1476 1455 1425 1220

68 903297246 1783 1548 1526 1496 1224

69 933883765 1789 1553 1532 1501 1248

70 1105270694 1820 1580 1558 1527 1272

71 1187469955 1833 1592 1570 1538 1328

72 1267169959 1844 1602 1580 1549 1356

73 1293108884 1848 1605 1583 1552 1370

74 1793558286 1908 1658 1636 1604 1442

75 2387612050 1962 1705 1682 1650 1476
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Table 2, the graphs in 5 and 6 stand proof that

gn = pn+1 − pn < ln(pn)2 − c · ln(pn) , (2.3)

for p ∈ {89, 113, · · · , 1425172824437699411}. By Theorem 2.6 we can say that inequality (2.3)

is true for any p ∈ P>89 \ P>1425172824437699413.

This valid statements in respect to the inequality (2.3) allows us to consider the following

hypothesis.

Conjecture 2.1 The relation (2.3) is true for any p ∈ P>29.

Figure 5 Maximal gaps graph
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Figure 6 Relative errors of cg, f , c and b in respect to g

Let gα : P>3 → R+,

gα(p) = ln(p)2 − α · ln(p)

and hα : P>3 × [0, 1] → R, with p fixed,

hα(p, x) = (p+ gα(p))x − px − 1

that, according to Theorem 2.1, is strictly increasing and convex over its domain, and according

to the Corollary 2.2 has a unique solution over the interval [0, 1].

We solve the following equation, equivalent to (2.2)

hc(p, x) =
(
p+ ln(p)2 − c ln(p)

)x − px − 1 = 0 , (2.4)

in respect to x, for any p ∈ P>29. In accordance to Theorem 2.5 the solution for equation

(2.2) is greater then the solution to equation (2.4). Therefore if we prove that the solutions to

equation (2.4) are greater then 0.5 then, even more so, the solutions to (2.2) are greater then

0.5 .

For equation hα(p, x) = 0 we consider the secant method, with the initial iterations x0 and

x1 (see Figure 7). The iteration x2 is given by

x2 =
x1 · hα(p, x0) − x0 · hα(p, x1)

hα(p, x1) − hα(p, x0)
. (2.5)



Smarandache’s Conjecture on Consecutive Primes 85

Figure 7 Function f and the secant method

If Andrica’s conjecture,
√
p+ g−√p−1 < 0 for any p ∈ P>3, g ∈ N∗ and p > g > 2, is true,

then hα(p, 0.5) < 0 (according to Remark 1.1 if Legendre’s conjecture is true then Andrica’s

conjecture is also true), and hα(p, 1) > 0 . Since function hα(p, ·) is strictly increasing and

convex, iteration x2 approximates the solution to the equation hα(p, x) = 0, (in respect

to x). Some simple calculation show that a the solution x2 in respect to hα, p, x0 and x1 is:

a(p, hα, x0, x1) =
x1 · hα(p, x0) − x0h− α(p, x1)

hα(p, x1) − hα(p, x0)
. (2.6)

Let aα(p) = a(p, hα, 0.5, 1), then

aα(p) =
1

2
+

1 +
√p−

√
ln(p)2 − α ln(p) + p

2
(
ln(p)2 − α ln(p) +

√p−
√

ln(p)2 − α ln(p) + p
) . (2.7)

Theorem 2.15 The function ac(p), that approximates the solution to equation (2.4) has values

in the open interval (0.5, 1) for any p ∈ P>29.

Proof According to Theorem 2.8 for α = c = 4(2 ln(2)−1) we have ln(p)2−c·ln(p) < 2
√p+1

for any p ∈ P>29.

We can rewrite function ac as

ac(p) =
1

2
+

1 +
√p−√

p+ c
2
(
c+

√p−√
p+ c

) .
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which leads to
1 +

√p−√
p+ c

2
(
c+

√p−√
p+ c

) > 0 ,

it follows that ac(p) > 1
2 for p ∈ P>3 (see Figure 8) and we have

lim
p→∞

ac(p) =
1

2
. 2

Figure 8 The graphs for functions ab, ac and a1

For p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23} and the respective gaps we solve the following equations

(2.2). 



(2 + 1)x − 2x = 1 , s = 1

(3 + 2)x − 3x = 1 , s = 0.7271597432435757 · · ·
(5 + 2)x − 5x = 1 , s = 0.7632032096058607 · · ·
(7 + 4)x − 7x = 1 , s = 0.5996694211239202 · · ·
(11 + 2)x − 11x = 1 , s = 0.8071623463868518 · · ·
(13 + 4)x − 13x = 1 , s = 0.6478551304201904 · · ·
(17 + 2)x − 17x = 1 , s = 0.8262031187421179 · · ·
(19 + 4)x − 19x = 1 , s = 0.6740197879899883 · · ·
(23 + 6)x − 23x = 1 , s = 0.6042842019286720 · · · .

(2.8)

Corollary 2.9 We proved that the approximative solutions of equation (2.4) are > 0.5 for any

n > 10, then the solutions of equation (2.2) are > 0.5 for any n > 10 . If we consider the

exceptional cases (2.8) we can state that the equation (1.1) has solutions in s ∈ (0.5, 1] for any

n ∈ N∗.

§3. Smarandache Constant

We order the solutions to equation (2.2) in Table 1 using the maximal gaps.
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Table 3: Equation (2.2) solutions

p g solution for (2.2)

113 14 0.5671481305206224.. .

1327 34 0.5849080865740931.. .

7 4 0.5996694211239202.. .

23 6 0.6042842019286720.. .

523 18 0.6165497314215637.. .

1129 22 0.6271418980644412.. .

887 20 0.6278476315319166.. .

31397 72 0.6314206007048127.. .

89 8 0.6397424613256825.. .

19609 52 0.6446915279533268.. .

15683 44 0.6525193297681189.. .

9551 36 0.6551846556887808.. .

155921 86 0.6619804741301879.. .

370261 112 0.6639444999972240.. .

492113 114 0.6692774164975257.. .

360653 96 0.6741127001176469.. .

1357201 132 0.6813839139412406.. .

2010733 148 0.6820613370357171.. .

1349533 118 0.6884662952427394.. .

4652353 154 0.6955672852207547.. .

20831323 210 0.7035651178160084.. .

17051707 180 0.7088121412466053.. .

47326693 220 0.7138744163020114.. .

122164747 222 0.7269826061830018.. .

3 2 0.7271597432435757.. .

191912783 248 0.7275969819805509.. .

189695659 234 0.7302859105830866.. .

436273009 282 0.7320752818323865.. .

387096133 250 0.7362578381533295.. .

1294268491 288 0.7441766589716590.. .

1453168141 292 0.7448821415605216.. .
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p g solution for (2.2)

2300942549 320 0.7460035467176455.. .

4302407359 354 0.7484690049408947.. .

3842610773 336 0.7494840618593505.. .

10726904659 382 0.7547601234459729.. .

25056082087 456 0.7559861641728429.. .

42652618343 464 0.7603441937898209.. .

22367084959 394 0.7606955951728551.. .

20678048297 384 0.7609716068556747.. .

127976334671 468 0.7698203623795380.. .

182226896239 474 0.7723403816143177.. .

304599508537 514 0.7736363009251175.. .

241160624143 486 0.7737508697071668.. .

303371455241 500 0.7745991865337681.. .

297501075799 490 0.7751693424982924.. .

461690510011 532 0.7757580339651479.. .

416608695821 516 0.7760253389165942.. .

614487453523 534 0.7778809828805762.. .

1408695493609 588 0.7808871027951452.. .

1346294310749 582 0.7808983645683428.. .

2614941710599 652 0.7819658004744228.. .

1968188556461 602 0.7825687226257725.. .

7177162611713 674 0.7880214782837229.. .

13829048559701 716 0.7905146362137986.. .

19581334192423 766 0.7906829063252424.. .

42842283925351 778 0.7952277512573828.. .

90874329411493 804 0.7988558653770882.. .

218209405436543 906 0.8005126614171458.. .

171231342420521 806 0.8025304565279002.. .

1693182318746371 1132 0.8056470803187964.. .

1189459969825483 916 0.8096231085041140.. .

1686994940955803 924 0.8112057874892308.. .

43841547845541060 1184 0.8205327998695296.. .

55350776431903240 1198 0.8212591131062218.. .
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p g solution for (2.2)

80873624627234850 1220 0.8224041089823987.. .

218034721194214270 1248 0.8258811322716928.. .

352521223451364350 1328 0.8264955008480679.. .

1425172824437699300 1476 0.8267652954810718.. .

305405826521087900 1272 0.8270541728027422.. .

203986478517456000 1224 0.8271121951019150.. .

418032645936712100 1370 0.8272229385637846.. .

401429925999153700 1356 0.8272389079572986.. .

804212830686677600 1442 0.8288714147741382.. .

2 1 1

§4 Conclusions

Therefore, if Legendre’s conjecture is true then Andrica’s conjecture is also true according to

Paz [17]. Andrica’s conjecture validated the following sequence of inequalities an > cgn > fn >
cn > bn > gn for any n natural number, 5 6 n 6 75, in Tables 2. The inequalities cn < gn for

any natural n, 5 6 n 6 75, from Table 2 allows us to state Conjecture 2.1.

If Legendre’s conjecture and Conjecture 2.1 are true, then Smarandache’s conjecture is

true.
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Abstract: A pseudocoloring of G is a coloring of G in which adjacent vertices can receive

the same color. The neighborhood pseudochromatic number of a non-trivial connected graph

G, denoted ψnhd(G), is the maximum number of colors used in a pseudocoloring of G such

that every vertex has at least two vertices in its closed neighborhood receiving the same

color. In this paper, we obtain ψnhd(G) of some standard graphs and characterize all graphs

for which ψnhd(G) is 1, 2, n− 1 or n.

Key Words: Coloring, pseudocoloring, neighborhood, domination.
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§1. Introduction

Historically, the coloring terminology comes from the map-coloring problem which involves

coloring of the countries in a map in such a way that no two adjacent countries are colored with

the same color. The committee scheduling problem is another problem which can be rephrased

as a vertex coloring problem. As such, the concept of graph coloring motivates varieties of graph

labelings with an addition of various conditions and has a wide range of applications - channel

assignment in wireless communications, traffic phasing, fleet maintenance and task assignment

to name a few. More applications of graph coloring can be found in [2,17]. A detailed discussion

on graph coloring and some of its variations can be seen in [1,5-8,16,18].

Throughout this paper, we consider a graph G which is simple, finite and undirected. A

vertex k-coloring of G is a surjection c : V (G) → {1, 2, · · · , k}. A vertex k-coloring c of a graph

G is said to be a proper k-coloring if vertices of G receive different colors whenever they are

adjacent in G. Thus for a proper k-coloring, we have c(u) 6= c(v) whenever uv ∈ E(G). The

minimum k for which there is a proper k-coloring of G is called the chromatic number of G,

denoted χ(G). It can be seen that a proper k-coloring of G is simply a vertex partition of V (G)

into k independent subsets called color classes. For any vertex v ∈ V (G), N [v] = N(v)
⋃{v}

1Received April 11, 2014, Accepted December 6, 2014.
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where N(v) is the set of all the vertices in V (G) which are adjacent to v. As discussed in [14],

a dominating set S of a graph G(V,E) is a subset of V such that every vertex in V is either an

element of S or is adjacent to an element of S. The minimum cardinality of a dominating set

of a graph G is called its dominating number, denoted γ(G). Further, a dominating set of G
with minimum cardinality is called a γ-set of G.

As introduced in 1967 by Harary et al. [10, 11], a complete k-coloring of a graph G is a

proper k-coloring of G such that, for any pair of colors, there is at least one edge of G whose

end vertices are colored with this pair of colors. The greatest k for which G admits a complete

k-coloring is the achromatic number α(G). In 1969, while working on the famous Nordaus

- Gaddum inequality [16], R. P. Gupta [9] introduced a new coloring parameter, called the

pseudoachromatic number, which generalizes the achromatic number. A pseudo k-coloring of G
is a k-coloring in which adjacent vertices may receive same color. A pseudocomplete k-coloring

of a graph G is a pseudo k-coloring such that, for any pair of distinct colors, there is at least one

edge whose end vertices are colored with this pair of colors. The pseudoachromatic number ψ(G)

is the greatest k for which G admits a pseudocomplete k-coloring. This parameter was later

studied by V. N. Bhave [3], E. Sampath Kumar [19] and V. Yegnanarayanan [20]. Motivated

by the above studies, we introduce here a new graph invariant and study some of its properties

in this paper. We use standard notations, the terms not defined here may be found in [4, 12,

14, 15].

v2 

v1 

v3 

v4 v5 

 

4 

3 1 

1 2 

 

Figure 1. The graph G Figure 2. A pseudo 4-coloring of G

2 

3 1 

3 1 

 

2 

3 1 

1 3 

 

Figure 3. A complete 3-coloring of G Figure 4. A pseudocomplete 3-coloring of G

1 

2 1 

1 2 

 

Figure 5. A neighborhood pseudo 2-coloring of G
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Definition 1.1 A neighborhood pseudo k-coloring of a connected graph G(V,E) is a pseudo

k-coloring c : V (G) → {1, 2, · · · , k} of G such that for every v ∈ V , c|N [v] is not an injection.

In other words, a connected graph G = (V,E) is said to have a neighborhood pseudo

k-coloring if there exists a pseudo k-coloring c of G such that ∀v ∈ V (G), ∃u,w ∈ N [v] with

c(u) = c(w).

Definition 1.2 The maximum k for which G admits a neighborhood pseudo k-coloring is called

the neighborhood pseudochromatic number of G, denoted ψnhd(G). Further, a coloring c for

which k is maximum is called a maximal neighborhood pseudocoloring of G.

The Figures 1-5 show a graph G and its various colorings. The above Definition 1.1 can

be extended to disconnected graphs as follows.

Definition 1.3 If G is a disconnected graph with k components H1, H2, . . . , Hk, then

ψnhd(G) =

k∑

i=1

ψnhd(Hi).

Observation 1.4 For any graph G of order n, 1 ≤ ψnhd(G) ≤ n. In particular, if G is

connected, then 1 ≤ ψnhd(G) ≤ n− 1.

Observation 1.5 If H is any connected subgraph of a graph G, then ψnhd(H) ≤ ψnhd(G).

§2. Preliminary Results

In this section, we study the neighborhood pseudochromatic number of standard graphs. We

also obtain certain bounds on the neighborhood pseudochromatic number of a graph. We end

the section with a few characterizations. We first state the following theorem whose proof is

immediate.

Theorem 2.1 If n is an integer and ni ∈ Z+ for each i = 1, 2, · · · ,

(1) ψnhd(Kn) = n for n ≥ 1;

(2) ψnhd(Kn) = n− 1 for n ≥ 2;

(3) ψnhd(Pn) = ⌊n
2
⌋ for n ≥ 2;

(4) ψnhd(Cn) =





2 for n = 3

⌊n
2
⌋ for n > 3

(5) ψnhd(K1,n) = 1 for n ≥ 1;

(6) ψnhd(Kn1,n2,...,nk
) =

k∑
i=1

ni − 2 where each ni ≥ 2.

Corollary 2.2 For any graph G having k components, ψnhd(G) ≥ k.
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Corollary 2.3 For a connected graph G with diameter d, ψnhd(G) ≥ ⌊d
2
⌋.

Corollary 2.4 If G is a graph with k non-trivial components H1, H2, . . . , Hk and ω(Hi) is the

clique number of Hi, then

ψnhd(G) ≥
k∑

i=1

ω(Hi) − k.

Corollary 2.5 ψnhd(G) ≤ n−k for a connected graph G of order n ≥ 3 with k pendant vertices.

Lemma 2.6 For a connected graph G, ψnhd(G) ≥ 2 if and only if G has a subgraph isomorphic

to C3 or P4.

Proof If G contains C3 or P4, from Observation 1.5 and Theorem 2.1, ψnhd(G) ≥ 2.

Conversely, let G be a connected graph with ψnhd(G) ≥ 2. If possible, suppose that G has

neither a C3 or nor a P4 as its subgraph, then G is isomorphic to K1,n. But then, ψnhd(G) = 1,

a contradiction by Theorem 2.1. 2
As a consequence of Lemma 2.6, we have a consequence following.

Corollary 2.7 A non-trivial graph G is a star if and only if ψnhd(G) = 1.

Theorem 2.8 A graph G of order n is totally disconnected if and only if ψnhd(G) = n.

Proof If a graph G of order n is totally disconnected, then by Theorem 2.1, ψnhd(G) = n.

Conversely, if G is not totally disconnected, then G has an edge, say, e. Now for an end vertex

of e, at least one color should repeat in G, so ψnhd(G) < |V | = n. Hence the theorem. 2
§3. Characterization of a Graph G with ψnhd(G) = n− 1

Theorem 3.1 For a connected graph G of order n, ψnhd(G) = n−1 if and only if G ∼= G1 +P2

for some graph G1 of order n− 2.

Proof Let G1 be any graph on n − 2 vertices and G = G1 + P2. By Observation 1.4,

ψnhd(G) ≤ n− 1. Now to prove the reverse inequality, let V (G) = {v1, v2, · · · , vn−2, vn−1, vn}
with v1, v2 being the vertices of P2. Define a coloring c : V (G) → {1, 2, · · · , n− 1} as follows:

c(vi) =





1 if i = 1, 2

i− 1 otherwise

It can be easily seen that c is a neighborhood pseudo k-coloring of G with k = n − 1 implies

that ψnhd(G) > n− 1. Hence ψnhd(G) = n− 1.

Conversely, let G = (V,E) be a connected graph of order n with ψnhd(G) = n− 1. Thus

there exists a neighborhood pseudo k-coloring, say c with k = n − 1 colors. This implies that

all vertices but two in V receive different colors under c. Without loss of generality, let the only

two vertices receiving the same color be v1 and v2 and other n−2 vertices of G be v3, v4, · · · , vn.
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Now, for each i, 3 6 i 6 n, we have known that c|N [vi] is an injection unless both v1 and v2
are in N [vi]. Thus each vi is adjacent to both v1 and v2 in G. Further, if v1 is not adjacent

to v2, then, as c assigns n− 1 colors to the graph G− {v2}, we get that c|N [v1] is an injection

from V (G) onto {1, 2, · · · , n− 1}, which is a contradiction to the fact that c is a neighborhood

pseudo n− 1 coloring of G. Thus, G ∼= P2 +G1 for some graph G1 on n− 2 vertices. 2
§4. A Bound in Terms of the Domination Number

In this section, we establish a bound on the neighborhood pseudochromatic number of a graph

in terms of its domination number. Using this result, we give a characterization of graphs G

with ψnhd(G) = 2.

Lemma 4.1 Every connected graph G(V,E) has a γ-set S satisfying the property that for every

v ∈ S, there exists a vertex u ∈ V − S such that N(u)
⋂
S = {v}.

Proof Consider any γ-set S of a connected graph G. We construct a γ-set with the

required property as follows. Firstly, we obtain a γ-set of G with the property that degG(v) ≥ 2

whenever v ∈ S. Let S1 be the set of all pendant vertices of G in S. If S1 = ∅, then S itself is

the required set. Otherwise, consider the set S2 = (S − S1)
⋃

v∈S1
N(v). It is easily seen that

S2 is a dominating set. Also, |S| = |S2| since each vertex of degree 1 in S1 is replaced by a

unique vertex in V − S. Otherwise, at least two vertices in S1, say u and v, are replaced by a

unique vertex in V − S, say w, in which case S′ = (S − {u, v})⋃{w} is a dominating set of G
with |S′| < |S|, a contradiction to the fact that S is a γ-set. Further, deg(v) ≥ 2 for all v ∈ S2

failing which G will not remain connected. In this case, S2 is the required set. Now, we replace

S by S2 and proceed further.

If for all v ∈ S, there exists u ∈ V − S such that N(u)
⋂
S = {v}, then we are done with

the proof. If not, let D = {v ∈ S : N(u)
⋂
S − {v} 6= ∅, u ∈ N(v)}. Then, for each vertex v

in D, every vertex u ∈ N(v) is dominated by some vertex w ∈ S − {v}. We now claim that

w is adjacent to another vertex x 6= u ∈ V − S. Otherwise, (S − {v, w})⋃{u} is a dominating

set having lesser elements than in S, again a contradiction. Now, replace S by (S − {v})⋃{u}.
Repeating this procedure for every vertex in D will provide a γ-set S of G with the property

that for all v ∈ S, there exists u ∈ V − S such that N(u)
⋂
S = {v}. 2

Theorem 4.2 For any graph G, ψnhd(G) ≥ γ(G).

Proof Let G = (V,E) be a connected graph with V = {v1, v2, · · · , vn} with γ(G) = k.
By Lemma 4.1, G has a γ-set, say S, satisfying the property that for all v ∈ S, there exists

u ∈ V − S such that N(u)
⋂
S = {v}. Without loss in generality, we take S = {v1, v2, · · · , vk},

S1 as the set of all those vertices in V − S which are adjacent to exactly one vertex in S and

S2 as the set of all the remaining vertices in V − S so that V = S ∪ S1 ∪ S2.
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We define a coloring c : V (G) → {1, 2, · · · , k} as follows:

c(vi) =





i if vi ∈ S

j if vi ∈ S1 where j is the index of the vertex in S adjacent to vi

k otherwise where k is the index of any vertex in S adjacent to vi

Then for every vertex vi ∈ S, there exists a vertex, say vj in V −S with c(vi) = c(vj) and vice-

versa. This ensures that c is a neighborhood pseudocoloring of G. Hence ψnhd(G) ≥ k = γ(G).

The result obtained for connected graphs can be easily extended to disconnected graphs. 2
§5. Characterization of a Graph G with ψnhd(G) = 2

Using the results in Section 4, we give a characterization of a graph G with pseudochromatic

number 2 through the following observation in this section.

Observation 5.1 The following are the six forbidden subgraphs in any non-trivial connected

graph G with ψnhd(G) ≤ 2, i. e., a non-trivial connected graph G has ψnhd(G) ≥ 3 if G has a

subgraph isomorphic to one of the six graphs in Figure 6.

Figure 6. Forbidden subgraphs in a non-trivial connected graph with ψnhd(G) ≤ 2

Proof The result follows directly from Observation 1.5 and the fact that the neighborhood

pseudochromatic number of each of the graphs in Figure 6 is 3. 2
Theorem 5.2 For a non-trivial connected graph G, ψnhd(G) = 2 if and only if G is iso-

morphic to one of the three graphs G1, G2 or G3 or is a member of one of the graph families

G4, G5, G6, G7 or G8 in Figure 7.

Proof Let G be a non-trivial connected graph. Suppose G is isomorphic to one of the three

graphs G1, G2 or G3 or is a member of one of the graph families G4, G5, G6, G7 or G8 in Figure

7. Then it is easy to observe that ψnhd(G) = 2.

Conversely, suppose ψnhd(G) = 2. By Theorem 4.2, γ(G) ≤ ψnhd(G) = 2 implies that
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either γ(G) = 1 or γ(G) = 2.

If γ(G) = 1, then G is a star K1,n, n ≥ 1 or is isomorphic to G1 or a member of the family

G4 in Figure 7 or has a subgraph isomorphic to H3 in Figure 6. Similarly, if γ(G) = 2, then G
is one of the graphs G2 or G3 or is a member of the family G5, G6, G7 or G8 in Figure 7 or has

a subgraph isomorphic to one of the graphs in Figure 6.

However, since ψnhd(G) = 2, by Observation 5.1, G cannot have a subgraph isomorphic to

any of the graphs in Figure 6. Thus, the only possibility is that G is isomorphic to one of the

three graphs G1, G2 or G3 or is a member of one of the graph families G4, G5, G6, G7 or G8 in

Figure 7. 2
G1 G2 G3 

G4 G5 G6 

G8 G7 

Figure 7. Graphs or graph families with ψnhd(G) = 2

§6. Conclusion

In this paper, we have obtained the neighborhood pseudochromatic number of some standard

graphs. We have established some trivial lower bounds on this number. Improving on these

lower bounds remains an interesting open problem.

We have also characterized graphs G for which ψnhd(G) = 1, 2, n− 1 or n. However, the

problem of characterizing graphs for which ψnhd(G) = 3 still remains open.
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Abstract: A function f : V → {−1, 1} is a signed dominating function (SDF) of a directed

graph D ([4]) if for every vertex v ∈ V ,

f(N−[v]) =
∑

u∈N−[v]

f(u) ≥ 1.

In this paper, we introduce the concept of signed efficient dominating function (SEDF) for

directed graphs. A SDF of a directed graph D is said to be SEDF if for every vertex v ∈ V ,

f(N−[v]) = 1 when |N−[v]| is odd and f(N−[v]) = 2 when |N−[v]| is even. We study

the signed domatic number dS(D) of directed graphs. Actually, we give a lower bound for

signed domination number γS(G) and an upper bound for dS(G). Also we characterize

some classes of directed circulant graphs for which dS(D) = δ−(D) + 1. Further, we find a

necessary and sufficient condition for the existence of SEDF in circulant graphs in terms of

covering projection.

Key Words: Signed graphs, signed domination, signed efficient domination, covering

projection.

AMS(2010): 05C69

§1. Introduction

Let D be a simple finite digraph with vertex set V (D) = V and arc set E(D) = E. For every

vertex v ∈ V , in-neighbors of v and out-neighbors of v are defined by N−[v] = N−
D [v] = {u ∈

V : (u, v) ∈ E} and N+[v] = N+
D [v] = {u ∈ V : (v, u) ∈ E} respectively. For a vertex v ∈ V ,

d+
D(v) = d+(v) = |N+(v)| and d−D(v) = d−(v) = |N−(v)| respectively denote the outdegree and

indegree of the vertex v. The minimum and maximum indegree of D are denoted by δ−(D)

and ∆−(D) respectively. Similarly the minimum and maximum outdegree of D are denoted by

δ+(D) and ∆+(D) respectively.

In [2], J.E. Dunbar et al. introduced the concept of signed domination number of an

undirected graph. In 2005, Bohdan Zelinka [1] extended the concept of signed domination in

directed graphs.

A function f : V → {−1, 1} is a signed dominating function (SDF) of a directed graph D

1Received February 1, 2014, Accepted December 7, 2014.
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([4]) if for every vertex v ∈ V ,

f(N−[v]) =
∑

u∈N−[v]

f(u) ≥ 1.

The signed domination number, denoted by γS(D), is the minimum weight of a signed domi-

nating function of D [4]. In this paper, we introduce the concept of signed efficient dominating

function (SEDF) for directed graphs. A SDF of a directed graph D is said to be SEDF if for

every vertex v ∈ V , f(N−[v]) = 1 when |N−[v]| is odd and f(N−[v]) = 2 when |N−[v]| is even.

A set {f1, f2, · · · , fd} of signed dominating functions on a graph (directed graph) G with

the property that
d∑

i=1

fi(x) ≤ 1

for each vertex x ∈ V (G), is called a signed dominating family on G. The maximum number

of functions in a signed dominating family on G is the signed domatic number of G, denoted

by dS(G).

The signed domatic number of undirected and simple graphs was introduced by Volkmann

and Zelinka [6]. They determined the signed domatic number of complete graphs and complete

bipartite graphs. Further, they obtained some bounds for domatic number. They proved the

following results.

Theorem 1.1([6]) Let G be a graph of order n(G) with signed domination number γS(G) and

signed domatic number dS(G). Then γS(G).dS(G) ≤ n(G).

Theorem 1.1([6]) Let G be a graph with minimum degree δ(G) , then 1 ≤ dS(G) ≤ δ(G) + 1.

In this paper, we study some of the properties of signed domination number and signed

domatic number of directed graphs. Also, we study the signed domination number and signed

domatic number of directed circulant graphs Cir(n,A). Further, we obtain a necessary and

sufficient condition for the existence of SEDF in Cir(n,A) in terms of covering projection.

§2. Signed Domatic Number of Directed Graphs

In this section, we study the signed domatic number of directed graphs. Actually, we give a

lower bound for γS(G) and an upper bound for dS(G).

Theorem 2.1 Let D be a directed graph of order n with signed domination number γS(D) and

signed domatic number dS(D). Then γS(D)dS(D) ≤ n.

Proof Let d = dS(D) and {f1, f2, · · · , fd} be a corresponding signed dominating family
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on D. Then

dγS(D) =

d∑

i=1

γS(D) ≤
d∑

i=1

∑

v∈V (D)

fi(v)

=
∑

v∈V (D)

d∑

i=1

fi(v) ≤
∑

v∈V (D)

1 = n. 2
In [4], H. Karami et al. proved the following result.

Theorem 2.2([4]) Let D be a digraph of order n in which d+(x) = d−(x) = k for each x ∈ V ,

where k is a nonnegative integer. Then γS(D) ≥ n
k + 1

.

In the view of Theorems 2.1 and 2.2, we have the following corollary.

Corollary 2.3 Let D be a digraph of order n in which d+(x) = d−(x) = k for each x ∈ V ,

where k is a nonnegative integer. Then dS(D) ≤ k + 1.

The next result is a more general form of the above corollary.

Theorem 2.4 Let D be a directed graph with minimum in degree δ−(D), then 1 ≤ dS(D) ≤
δ−(D) + 1.

Proof Note that the function f : V (D) → {+1,−1}, defined by f(v) = +1 for all v ∈ V (D),

is a SDF and {f} is a signed domatic family on D. Hence dS(D) ≥ 1. Let d = dS(D) and

{f1, f2, · · · , fd} be a corresponding signed dominating family of D. Let v ∈ V be a vertex of

minimum degree δ−(D).

Then,

d =

d∑

i=1

1 ≤
d∑

i=1

∑

x∈N−[v]

fi(x)

=
∑

x∈N−[v]

d∑

i=1

fi(x) ≤
∑

x∈N−[v]

1 = δ−(D) + 1. 2
Theorem 2.5([6]) The signed domination number is an odd integer.

Remark 2.6 The signed domination number of a directed graph may not be an odd integer.

For example, for the directed circulant graph Cir(10, {1, 2, 3, 4}), the signed domination number

is 2.

Theorem 2.7 Let D be a directed graph such that d+(x) = d−(x) = 2g for each x ∈ V and let

u ∈ V (D). If d = dS(D) = 2g + 1 and {f1, f2, · · · fd} is a signed domatic family of D, then

d∑

i=1

fi(u) = 1 and
∑

x∈N−[u]

fi(x) = 1
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for each u ∈ V (D) and each 1 ≤ i ≤ 2g + 1.

Proof Since
d∑

i=1

fi(u) ≤ 1, this sum has at least g summands which have the value −1.

Since
∑

x∈N−[u]

fi(x) ≥ 1 for each 1 ≤ i ≤ 2g + 1, this sum has at least g + 1 summands which

have the value 1.

Also the sum
∑

x∈N−[u]

d∑

i=1

fi(x) =

d∑

i=1

∑

x∈N−[u]

fi(x)

has at least dg summands of value −1 and at least d(g + 1) summands of value 1. Since the

sum
∑

x∈N−[u]

d∑

i=1

fi(x) =

d∑

i=1

∑

x∈N−[u]

fi(x)

contains exactly d(2g + 1) summands, it is easy to observe that

d∑

i=1

fi(u) have exactly g sum-

mands of value -1 and
∑

x∈N−[u]

fi(x) has exactly g+1 summands of value 1 for each 1 ≤ i ≤ r+1.

Hence we must have
d∑

i=1

fi(u) = 1 and
∑

x∈N−[u]

fi(x) = 1

for each u ∈ V (D) and for each 1 ≤ i ≤ 2g + 1. 2
§3. Signed Domatic Number and SEDF in Directed Circulant Graphs

Let Γ be a finite group and e be the identity element of Γ. A generating set of Γ is a subset

A such that every element of A can be written as a product of finitely many elements of A.

Assume that e /∈ A and a ∈ A implies a−1 ∈ A. Then the corresponding Cayley graph is a

graph G = (V,E), where V (G) = Γ and E(G) = {(x, y)a|x, y ∈ V (G), y = xa for some a ∈ A},
denoted by Cay(Γ, A). It may be noted that G is connected regular graph degree of degree |A|.
A Cayley graph constructed out of a finite cyclic group (Zn,⊕n) is called a circulant graph and

it is denoted by Cir(n,A), where A is a generating set of Zn. When we leave the condition that

a ∈ A implies a−1 ∈ A, then we get directed circulant graphs. In a directed circulant graph

Cir(n,A), for every vertex v, |N−[v]| = |N+[v]| = |A| + 1.

Throughout this section, n(≥ 3) is a positive integer, Γ = (Zn,⊕n), where Zn = {0, 1, 2,
· · · , n − 1} and D = Cir(n,A), where A = {1, 2, · · · , r} and 1 ≤ r ≤ n − 1. From here,

the operation ⊕n stands for modulo n addition in Zn. In this section, we characterize the the

circulant graphs for which dS(D) = δ−(D)+1. Also we find a necessary and sufficient condition

for the existence of SEDF in Cir(n,A) in terms of covering projection.

Theorem 3.1 Let n ≥ 3 and 1 ≤ r ≤ n−1 (r is even) be integers and D = Cir(n, {1, 2, · · · , r})
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be a directed circulant graph. Then dS(D) = r + 1 if, and only if, r + 1 divides n.

Proof Assume that dS(D) = r + 1 and {f1, f2, . . . fr+1} is a signed domatic family on D.

Since d+(v) = d−(v) = r, for all v ∈ V (D), by Theorems 2.1 and 2.2, we have γS(D) = n
r+1 .

Suppose n is not a multiple of r + 1. Then n = k(r + 1) + i for some 1 ≤ i ≤ r. Let

t = gcd(i, r + 1). Then there exist relatively prime integers p and q such that r + 1 = qt and

i = pt. Let a and b be the smallest integers such that a(r + 1) = bn. Then gcd(a, b) = 1;

otherwise a and b will not be the smallest.

Now aqt = a(r+1) = b(k(r+1)+i) = b(kqt+pt) = bt(kq+p). That is aq = b(kp+q). Note

that gcd(a, b) = gcd(p, q) = 1. Hence a = kp + q and b = q. Thus the subgroup < r + 1 > of

the finite cyclic group Zn, generated by r+ 1, must have kp+ q elements. But t = r+1
q

= n
kp+q

.

Thus the subgroup < t > of Zn, generated by the element t, also have kp + q elements and

hence < t >=< r + 1 >. Since dS(D) = r + 1 and {f1, f2, . . . fr+1} is a signed domatic family

of D, by Theorem 2.7, we have

d∑

i=1

fi(u) = 1 and
∑

x∈N−[u]

fi(x) = 1

for each u ∈ V (D) and each 1 ≤ i ≤ r + 1.

From the above fact and since |N−[v]| = r + 1 for all v ∈ V (D), it is follows that if

f(a) = +1, then f(a⊕n (r + 1)) = +1 and if f(a) = −1, then f(a⊕n (r + 1)) = −1. Thus all

the elements of the subgroup < t > have the same sign and hence all the elements in each of

the co-set of < t > have the same sign. By Lagranges theorem on subgroups, Zn can be written

as the union of co-sets of < t >=< r + 1 >. This means that γS(D) must be a multiple of the

number of elements of < t >, that is a multiple of n
t

(since n is a multiple of t). Since t < r+1,

it follows that n
r+1 <

n
t
≤ γS(D), a contradiction to γS(D) = n

r+1 .

Conversely suppose r + 1 divides n. By theorem 2.4, dS(D) ≤ r + 1. For each 1 ≤ i ≤
r + 1, define fi(i) = fi(i ⊕r+1 1) = . . . = fi(i ⊕r+1 (g − 1)) = −1 and fi(i ⊕r+1 g) = . . . =

fi(i⊕r+1 2g) = +1, where g = r
2 , and for the remaining vertices, fi(v) = fi(v mod(r + 1)) for

v ∈ {r + 2, r + 3, . . . , n}.

Notice that {f1, f2, · · · , fr+1} are SDFs on D with the property that

r+1∑

i=1

fi(x) ≤ 1 for each

vertex x ∈ V (D). Hence dS(D) ≥ r + 1. 2
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Example 3.2 Let n = 6 and r = 2. Then n is a multiple of r + 1, and r + 1 = 3 SDFs f1, f2
and f3 (as discussed in the above theorem) of D = Cir(6, {1, 2}) are as given in Fig.1 following,

where V (D) = {1, 2, 3, 4, 5, 6}.

Theorem 3.3 Let n ≥ 3 be an integer and 1 ≤ r ≤ n − 1 be an integer. Let D =

Cir(n, {1, 2, · · · , r}) be a directed circulant graph. If n is a multiple of r+1, then γS(D) =
n

r + 1
.

Proof Assume that n is a multiple of r + 1. By Theorem 2.2, we have γS(D) ≥ n
r+1 . It

remains to show that there exists a SDF f with the property that f(D) = n
r+1 .

Define a function f on V (D) by f(1) = f(2) = . . . = f(g) = −1 and f(g+ 1) = f(g+ 2) =

· · · = f(2g+ 1) = +1, where g = r
2 ; and for the remaining vertices, f(v) = f(v mod(r + 1)) for

v ∈ {r + 2, r + 3, · · · , n}.
It is clear that f is a SDF and

f(D) = (g + 1)

(
n

r + 1

)
− (g)

(
n

r + 1

)
=

n
r + 1

. 2
A graph G̃ is called a covering graph of G with covering projection f : G̃ → G if there is

a surjection f : V (G̃) → V (G) such that f |N(ṽ) : N(ṽ) → N(v) is a bijection for any vertex

v ∈ V (G) with ṽ ∈ f−1(v) ([5]).

In 2001, J.Lee has studied the domination parameters through covering projections ([5]).

In this paper, we introduce the concept of covering projection for directed graphs and we study

the SDF through covering projections.

A directed graph D is called a covering graph of another directed graph H with covering

projection f : D → H if there is a surjection f : V (D) → V (H) such that f |N+(u) : N+(u) →
N+(v) and f |N−(u) : N−(u) → N−(v) are bijections for any vertex v ∈ V (H) with u ∈ f−1(v).

Lemma 3.4 Let f : D → H be a covering projection from a directed graph D on to another

directed graph H. If H has a SEDF, then so is D.

Proof Let f : D → H be a covering projection from a directed graph D on to another

directed graph H . Assume that H has a SEDF h : V (H) → {1,−1}.
Define a function g : V (D) → {1,−1} defined by g(u) = h(f(u)) for all u ∈ V (D). Since

h is a function form V (H) to {1,−1} and f : V (D) → V (H), g is well defined. We prove that

for the graph D, g is a SEDF.

Firstly, we prove g(N−[u]) = 1 when u ∈ V (D) and |N−[u]| is odd. In fact, let u ∈ V (D)

and assume that |N−[u]| is odd. Since f is a covering projection, |N−(u)| and |N−(f(u))| are

equal. Also f |N−(u) : N−(u) → N−(f(u)) is a bijection. Also for each vertex x ∈ N−[u], we

have g(x) = h(f(x)). Since h(N−[f(u)]) = 1, we have g(N−[u]) = 1. Similarly, we can prove

that g(N−[u]) = 2 when u ∈ V (G) and |N−[u]| is even. Hence g is a SEDF on D. 2
Theorem 3.5 Let D = Cir(n, {1, 2, · · · , r}), r = 2g and γS(D) =

n
r + 1

. Then D has a

SEDF if and only if, there exists a covering projection from D onto the graph H = Cir(r +

1, {1, 2, · · · , r}).
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Proof Suppose D has a SEDF f . Then
∑

x∈N−[u]

f(x) = 1 for all u ∈ v(D). Thus we can

have f(a⊕n r + 1) = ±1 when ever f(a) = ±1. Thus the elements of the subgroup < r + 1 >,

generated by r + 1 have the same sign.

Suppose n is not a multiple of r + 1, then n = i(r + 1) + j for some 1 ≤ j ≤ r. Let

t = gcd(r + 1, j). Then by Theorem 3.1, we have γS(D) > n
r+1 , a contradiction. Hence n must

be a multiple of r + 1.

In this case, define F : D → H = Cir(r+1, {1, 2, · · · , r}), defined by F (x) = x (mod r+1).

Note that, |N−[x]| = |N+[x]| = |N−[y]| = |N+[y]| = r+ 1 for all x ∈ V (D) and y ∈ V (H). We

prove that the function F is a covering projection.

Let x ∈ V (D). Then F (x) = x(mod (r + 1)) = i for some i ∈ V (H) with 1 ≤ i ≤ r + 1.

Note that by the definition of D and H , N+(x) = {x ⊕n 1, x ⊕n 2, . . . , x ⊕n r} and N+(i) =

{i⊕r+1 1, i⊕r+1 2, . . . , i⊕r+1 r}.
Also, for each 1 ≤ g ≤ r + 1, we have F (x ⊕n g) = (x ⊕n g)(mod (r + 1)) = (x ⊕r+1

g)(mod (r + 1)) (since n is a multiple of r + 1).

Thus F (x ⊕n g) = (i ⊕r+1 g)(mod (r + 1)) (since x(mod(r + 1)) = i). Thus F |N+(x) :

N+(x) → N+(F (x)) is a bijection. Similarly, we can prove that F |N−(x) : N−(x) → N−(F (x))
is also a bijection and hence F is a covering projection from D onto H .

Conversely, suppose there exists a covering projection F from D onto the graph H =

Cir(r + 1, {1, 2, · · · , r}). Define h : V (H) → {+1,−1} defined by h(x) = −1 when 1 ≤ x ≤ g
and h(x) = +1 when g + 1 ≤ x ≤ 2g + 1. Then h is a SEDF of H and hence by Lemma 3.4, G
has a SEDF. 2
Theorem 3.6 Let D = Cir(n, {1, 2, · · · , r}), r be an odd integer and γS(D) =

n
r + 1

. Then

D has a SEDF if and only if, there exists a covering projection from D onto the graph H =

Cir(r + 1, {1, 2, · · · , r}).

Proof Suppose D has a SEDF f . Let H = Cir(r+ 1, {1, 2, · · · , r}). Note that, |N−[x]| =

|N+[x]| = |N−[y]| = |N+[y]| = r + 1 = 2g (say), an even integer, for all x ∈ V (D) and

y ∈ V (H). Thus ∑

x∈N−[u]

f(x) = 2

for all u ∈ v(D). Thus we can have f(a⊕nr+1) = ±1 when ever f(a) = ±1. Thus the elements

of the subgroup < r + 1 >, generated by r + 1 have the same sign.

Suppose n is not a multiple of r + 1, As in the proof of Theorem 3.5, we can get a

contradiction. Also the function F defined in Theorem 3.5 is a covering projection from D onto

H .

Conversely suppose there exists a covering projection F from D onto the graph H =

Cir(r+1, {1, 2, · · · , r}). Define h : V (H) → {+1,−1} defined by h(x) = −1 when 1 ≤ x ≤ g−1

and h(x) = +1 when g ≤ x ≤ 2g. Note that h is a SEDF of H and

∑

x∈N−[u]

f(x) = 2



Signed Domatic Number of Directed Circulant Graphs 107

for all u ∈ v(G). Thus by Lemma 3.4, G has a SEDF. 2
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Abstract: Let G = (V,E) be a graph without isolated vertices. A set S ⊆ V is called

the neighborhood total 2-dominating set (nt2d-set) of a graph G if every vertex in V − S is

adjacent to at least two vertices in S and the induced subgraph < N(S) > has no isolated

vertices. The minimum cardinality of a nt2d-set of G is called the neighborhood total 2-

domination number of G and is denoted by γ2nt(G). In this paper we initiate a study of this

parameter.
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§1. Introduction

The graph G = (V,E) we mean a finite, undirected graph with neither loops nor multiple edges.

The order and size of G are denoted by n and m respectively. For graph theoretic terminology

we refer to Chartrand and Lesniak [3] and Haynes et.al [5-6].

Let v ∈ V . The open neighborhood and closed neighborhood of v are denoted by N(v)
and N [v] = N(v) ∪ {v} respectively. If S ⊆ V then N(S) =

⋃

v∈S

N(v) and N [S] = N(S) ∪ S.

If S ⊆ V and u ∈ S then the private neighbor set of u with respect to S is defined by

pn[u, S] = {v : N [v]∩S = {u}}. The chromatic number χ(G) of a graph G is defined to be the

minimum number of colours required to colour all the vertices such that no two adjacent vertices

receive the same colour. H(m1,m2, · · · ,mn) denotes the graph obtained from the graph H by

attaching mi edges to the vertex vi ∈ V (H), 1 ≤ i ≤ n. H(Pm1 , Pm2 , · · · , Pmn
) is the graph

obtained from the graph H by attaching the end vertex of Pmi
to the vertex vi in H , 1 ≤ i ≤ n.

A subset S of V is called a dominating set if every vertex in V − S is adjacent to at least

one vertex in S. The minimum cardinality of a dominating set is called the domination number

of G and is denoted by γ(G). Various types of domination have been defined and studied by

several authors and more than 75 models of domination are listed in the appendix of Haynes

et al., Fink and Jacobson [4] introduced the concept of k-domination in graphs. A dominating

set S of G is called a k- dominating set if every vertex in V − S is adjacent to at least k
vertices in S. The minimum cardinality of a k-dominating set is called k-domination number of

G and is denoted by γk(G). F. Harary and T.W. Haynes [4] introduced the concept of double

1Received July 18, 2014, Accepted December 8, 2014.
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domination in graphs. A dominating set S of G is called a double dominating set if every vertex

in V −S is adjacent to at least two vertices in S and every vertex in S is adjacent to at least one

vertex in S. The minimum cardinality of a double dominating set is called double domination

number of G and is denoted by dd(G). S. Arumugam and C. Sivagnanam [1], [2] introduced the

concept of neighborhood connected domination and neighborhood total domination in graphs.

A dominating set S of a connected graph G is called a neighborhood connected dominating

set (ncd-set) if the induced subgraph < N(S) > is connected. The minimum cardinality of a

ncd-set of G is called the neighborhood connected domination number of G and is denoted by

γnc(G). A dominating set S of a graph G without isolate vertices is called the neighborhood

total dominating set (ntd-set) if the induced subgraph 〈N(S)〉 has no isolated vertices. The

minimum cardinality of a ntd-set of G is called the neighborhood total domination number of G
and is denoted by γnt(G). Sivagnanam et.al [8] studied the concept of neighborhood connected

2-domination in graphs. A set S ⊆ V is called a neighborhood conneccted 2-dominating set

(nc2d-set) of a connected graph G if every vertex in V − S is adjacent to at least two vertices

in S and the induced subgraph 〈N(S)〉 is connected. The minimum cardinality of a nc2d-set of

G is called the neighborhood connected 2-domination number of G and is denoted by γ2nc(G).
In this paper we introduce the concept of neighborhood total 2-domination and initiate a study

of the corresponding parameter.

Through out this paper we assume the graph G has no isolated vertices.

§2. Neighborhood Total 2-Dominating Sets

Definition 2.1 A set S ⊆ V is called the neighborhood total 2-dominating set (nt2d-set) of

a graph G if every vertex in V − S is adjacent to at least two vertices in S and the induced

subgraph < N(S) > has no isolated vertices. The minimum cardinality of a nt2d-set of G is

called the neighborhood total 2-domination number of G and is denoted by γ2nt(G).

Remark 2.2 (i) Clearly γ2nt(G) ≥ γnt(G) ≥ γ(G), γ2nt(G) ≤ γ2nc(G) and γ2nt(G) ≥ γ2(G).

(ii) A graph G has γ2nt(G) = 2 if and only if there exist two vertices u, v ∈ V such that

(a) deg u = deg v = n − 1 or (b) degu = deg v = n − 2, uv 6∈ E(G) with G − {u, v} has no

isolated vertices. Thus γ2nt(G) = 2 if and only if G is isomorphic to either H +K2 for some

graph H or H +K2 for some graph H with δ(H) ≥ 1.

Examples A

(1) γ2nt(Kn) = 2, n ≥ 2;

(2) γ2nt(K1,n−1) = n;

(3) Let Kr,s be a complete bipartite graph and not a star then

γ2nt(Kr,s) =





3 r or s = 2

4 r,s ≥ 3
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(4) γ2nt(Wn) =
⌈n

3

⌉
+ 1.

Theorem 2.3 For any non trivial path Pn,

γ2nt(Pn) =





⌈ 3n
5 ⌉ + 1 if n ≡ 0, 3 (mod 5)

⌈ 3n
5 ⌉ otherwise

Proof Let Pn = (v1, v2, · · · , vn) and n = 5k + r, where 0 ≤ r ≤ 4, S = {vi ∈ V : i =

5j + 1, 5j + 3, 5j + 4, 0 ≤ j ≤ k} and

S1 =





S if n ≡ 1, 4 (mod 5)

S ∪ {vn} if n ≡ 0, 2 (mod 5)

S ∪ {vn−1} if n ≡ 3 (mod 5)

Clearly S1 is a nt2d-set of Pn and hence

γ2nt(Pn) ≤





⌈ 3n
5 ⌉ + 1 if n ≡ 0, 3 (mod 5)

⌈ 3n
5 ⌉ otherwise

Let S be any γ2nt-set of Pn. Since any 2-dominating set D of order either ⌈ 3n
5 ⌉, n ≡

0, 3(mod 5) or ⌈ 3n
5 ⌉ − 1, n ≡ 1, 2, 4(mod 5), N(D) contains isolated vertices, we have

|S| ≥





⌈ 3n
5 ⌉ + 1 if n ≡ 0, 3 (mod 5)

⌈ 3n
5 ⌉ otherwise

Hence,

γ2nt(Pn) =





⌈ 3n
5 ⌉ + 1 if n ≡ 0, 3 (mod 5)

⌈ 3n
5 ⌉ otherwise.

2
Theorem 2.4 For the cycle Cn on n vertices γ2nt(Cn) = ⌈ 3n

5 ⌉.

Proof Let Cn = (v1, v2, · · · , vn, v1), n = 5k + r, where 0 ≤ r ≤ 4, S = {vi : i =

5j + 1, 5j + 3, 5j + 4, 0 ≤ j ≤ k} and

S1 =




S ∪ {vn} if n ≡ 2(mod 5)

S otherwise

Clearly S1 is a nt2d-set of Cn and hence γ2nt(Cn) ≤ ⌈ 3n
5 ⌉. Now, let S be any γ2nt-set of

Cn. Since any 2-dominating set D of order ⌈ 3n
5 ⌉ − 1, N(D) contains isolated vertices, we have



Neighborhood Total 2-Domination in Graphs 111

|S| ≥ ⌈ 3n
5 ⌉. Hence,

γ2nt(Cn) = ⌈3n
5
⌉. 2

We now proceed to obtain a characterization of minimal nt2d-sets.

Lemma 2.5 A superset of a nt2d-set is a nt2d-set.

Proof Let S be a nt2d-set of a graph G and let S1 = S ∪ {v}, where v ∈ V − S. Clearly

v ∈ N(S) and S1 is a 2-dominating set of G. Suppose there exists an isolated vertex y in

〈N(S1)〉. Then N(y) ⊆ S − N(S) and hence y is an isolated vertex in 〈N(S)〉, which is a

contradiction. Hence 〈N(S1)〉 has no isolated vertices and S1 is a nt2d-set. 2
Theorem 2.6 A nt2d-set S of a graph G is a minimal nt2d-set if and only if for every u ∈ S,

one of the following holds.

(1) |N(u) ∩ S| ≤ 1;

(2) there exists a vertex v ∈ (V − S) ∩N(u) such that |N(v) ∩ S| = 2;

(3) there exists a vertex x ∈ N(S − {u})) such that N(x) ∩N(S − {u}) = φ.

Proof Let S be a minimal nt2d-set and let u ∈ S. Let S1 = S − {u}. Then S1 is not a

nt2d-set. This gives either S1 is not a 2-dominating set or 〈N(S1)〉 has an isolated vertex. If

S1 is not a 2-dominating set then there exists a vertex v ∈ V −S1 such that |N(v)∩S1| ≤ 1. If

v = u then |N(u)∩(S−{u})| ≤ 1 which gives |N(u)∩S| ≤ 1. Suppose v 6= u. If |N(v)∩S1| < 1

then |N(v) ∩ S| ≤ 1 and hence S is not a 2-dominating set which is a contradiction. Hence

|N(v) ∩ S1| = 1. Thus v ∈ N(u). So v ∈ (V − S) ∩ N(u) such that |N(v) ∩ S| = 2. If S1 is

a 2-dominating set and if x ∈ N(S1) is an isolated vertex in 〈N(S1)〉 then N(x) ∩N(S1) = φ.
Thus N(x) ∩ N(S − {u}) = φ. Conversely, if S is a nt2d-set of G satisfying the conditions of

the theorem, then S is 1-minimal nt2d-set and hence the result follows from Lemma 2.5. 2
Remark 2.7 Any nt2d-set contains all the pendant vertices of the graph.

Remark 2.8 Since any nt2d-set of a spanning subgraph H of a graph G is a nt2d-set of G, we

have γ2nt(G) ≤ γ2nt(H).

Remark 2.9 If G is a disconnected graph with k components G1, G2, . . . , Gk then γ2nt(G) =

γ2nt(G1) + γ2nt(G2) + · · · + γ2nt(Gk).

Theroem 2.10 Let G be a connected graph on n ≥ 2 vertices. Then γ2nt(G) ≤ n and equality

holds if and only if G is a star.

Proof The inequality is obvious. LetG be a connected graph on n vertices and γ2nt(G) = n.
If n = 2 then nothing to prove. Let us assume n ≥ 3. Suppose G contains a cycle C. Let

x ∈ V (C). Then V (G) − x is a nt2d-set of G, which is a contradiction. Hence G is a tree.

Let u be a vertex such that degu = ∆. Let v be a vertex such that d(u, v) ≥ 2. Let

(u, x1, x2, . . . , xk, v), k ≥ 1 be the shortest u − v path. Then S1 = V − {xk} is a nt2d-set of G
which is a contradiction. Hence d(u, v) = 1 for all v ∈ V (G). Thus G is a star. The converse is
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obvious. 2
Corollary 2.11 Let G be a disconnected graph with γ2nt(G) = n. Then G is a galaxy.

Theorem 2.12 Let T be a tree with n ≥ 3 vertices. Then γ2nt(T ) = n− 1 if and only if T is

a bistar B(n− 3, 1) or a tree obtained from a bistar by subdividing the edge of maximum degree

once.

Proof Let u be a support with maximum degree. Suppose there exists a vertex v ∈ V (T )

such that d(u, v) ≥ 4. Let (u, x1, x2, · · · , xk, v), k ≥ 3 be the shortest u − v path then S1 =

V − {u, xk} is a nt2d-set of T which is a contradiction. Hence d(u, v) ≤ 3 for all v ∈ V (T ).

Case 1. d(u, v) = 3 for some v ∈ V (T ).

Suppose there exists an vertex w ∈ V (T ), w 6= v such that d(u, v) = d(u,w) = 3. Let P1

be the u− v path and P2 be the u− w path. Let P1 = (u, v1, v2, v) and P2 = (u,w1, w2, w). If

v1 6= w1 then V − {v1, w1} is a nt2d-set of T which is a contradiction. If v1 = w1 and v2 6= w2

then V −{v2, w2} is a nt2d-set of T which is a contradiction. Hence all the pendant vertices w
such that d(u,w) = 3 are adjacent to the same support. Let it be x. Let P = (u, v1, x) be the

unique u − x path in T . Let y ∈ N(u) − {v1}. If deg y ≥ 2 then V − {x, y} is a nt2d-set of T
which is a contradiction. Hence T is a tree obtained from a bistar by subdividing the edge of

maximum degree once.

Case 2. d(u, v) ≤ 2 for all v ∈ V (T ).

If d(u, v) = 1 for all v ∈ V (T ) and v 6= u then T is a star, which is a contradiction.Hence

d(u, v) = 2 for some v ∈ V (T ).Suppose there exist two vertices v and w such that d(u, v) =

d(u,w) = 2. Let P1 be the u − v path and P2 be the u − w path. Let P1 = (u, v1, v) and

P2 = (u,w1, w). If v1 6= w1 then V − {v1, w1} is a nt2d-set of T which is a contradiction. If

v1 = w1 then V −{u1, v1} is a nt2d-set of T which is a contradiction. Hence exactly one vertex

v ∈ V such that d(u, v) = 2. Hence T is isomorphic to B(n− 3, 1). The converse is obvious. 2
Theorem 2.13 Let G be an unicyclic graph. Then γ2nt(G) = n−1 if and only if G is isomorphic

to C3 or C4 or K3(n1, 0, 0), n1 ≥ 1.

Proof Let G be an unicyclic graph with cycle C = (v1, v2, · · · , vr, v1). If G = C then by

theorem 2.4, G = C3 or C4. Suppose G 6= C. Let A be the set of all pendant vertices in G.

Clearly A is a subset of any γ2nt-set of G.

Claim 1. Vertices of C of degree more than two or non adjacent.

Let vi and vj be the vertices of degree more than two in C. If vi and vj are adjacent then

V − {vi, vj} is a nt2d-set of G which is a contradiction. Hence vertices of C of degree more

than two or non adjacent.

Claim 2. d(C,w) = 1 for all w ∈ A.

Suppose d(C,w) ≥ 2 for some w ∈ A. Let (v1, w1, w2, · · · , wk, w) be the unique v1−w path

in G, k ≥ 1. Then V − {w1, v2} is a nt2d-set of G which is a contradiction. Hence d(C,w) = 1
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for all w ∈ A.

Claim 3. r = 3.

Suppose r ≥ 5. Let v1 ∈ V (C) such that deg v1 ≥ 3. Then V − {v1, v3} is a nt2d-set of G
which is a contradiction. If r = 4 then V − {v2, v4} is a nt2d-set of G which is a contradiction.

Hence r = 3 and G is isomorphic to K3(n1, 0, 0), n1 ≥ 1. The converse is obvious. 2
Problem 2.14 Characterize the class of graphs for which γ2nt(G) = n− 1.

Theorem 2.15 Let G be a graph with δ(G) ≥ 2 then γ2nt(G) ≤ 2β1(G).

Proof Let G be a graph with δ(G) ≥ 2 and M be a maximum set of independent edges

in G. Let S be the vertices in the set of edges of M . Since V − S is an independent set, each

v ∈ V − S must have at least two neighbors in S. Also since S contains no isolated vertices,

〈N(S)〉 = G and hence 〈N(S)〉 contains no isolated vertices.Hence S is a nt2d-set of G. Thus

γ2nt(G) ≤ 2β1(G). 2
Problem 2.16 Characterize the class of graphs for which γ2nt(G) = 2β1(G).

Notation 2.17 The graph G∗ is a graph with the vertex set can be partition into two sets V1

and V2 satisfying the following conditions:

(1) 〈V1〉 = K2 ∪Ks;

(2) 〈V2〉 is totally disconnected;

(3) degw = 2 for all w ∈ V2;

(4) 〈V2 ∪ {u, v}〉, where u, v ∈ V1 with deg〈V1〉u = deg〈V1〉v = 1, has no isolated vertices.

Theorem 2.18 For any graph G, γ2nt(G) ≥ 2n+1−m
2 and the equality holds if and only if G is

isomorphic to B(2, 2) or K3(1, 1, 0) or K4 − e or K2 +Kn−2 or G∗.

Proof Let S be a γ2nt-set of G. Then each vertex of V − S is adjacent to at least two

vertices in S and since 〈N(S)〉 has no isolated vertices either V − S or S contains at least one

edge. Hence the number of edges m ≥ 2 |V − S| + 1 = 2n− 2γ2nt + 1. Then γ2nt ≥ 2n+1−m
2 .

Let G be a graph with γ2nt(G) = 2n+1−m
2 and let S be the γ2nt− set of G. Suppose

|E(〈S〉 ∪ 〈V − S〉)| ≥ 2. Then m ≥ 2(|V − S|) + 2 and hence γ2nt(G) ≥ 2n+2−m
2 which is a

contradiction. Hence either |E(〈S〉)| = 1 or |E(〈V − S〉)| = 1. Suppose |E(〈V − S〉)| = 1 then

|E〈S〉)| = 0 and hence V − S = N(S). Since 〈N(S)〉 has no isolated vertices, V − S = K2. Let

V −S = {u, v}. If degu ≥ 3 or degv ≥ 3 then m ≥ 2(V −S)+2. Hence γ2nt ≥ 2n+2−m
2 which is

a contradiction. Hence degu = 2 and degv = 2. Then |S| ≤ 4. If |S| = 4 then G is isomorphic

to B(2, 2). If |S| = 3 then G is isomorphic to K3(1, 1, 0). If |S| = 2 then G is isomorphic to

K4 − e.
Suppose |E〈S〉| = 1 then |E〈V − S〉| = 0. Let |S| = 2. Since every vertex in V − S is

adjacent to both the vertices in S we have G is isomorphic to K2 +Kn−2. If |S| ≥ 3 then G is

isomorphic to G∗. The converse is obvious. 2
Corollary 2.19 For a tree T , γ2nt(T ) ≥ n+2

2 .
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Problem 2.20 Characterize the class of trees for which γ2nt(T ) = n+2
2 .

Theorem 2.21 For any graph G, γ2nt(G) ≥ 2n
(∆+2)

Proof Let S be a minimum nt2d-set and let k be the number of edges between S and

V − S. Since the degree of each vertex in S is at most ∆, k ≤ ∆γ2nt. But since each vertex in

V − S is adjacent to at least 2 vertices in S, k ≥ 2(n− γ2nt) combining these two inequalities

produce γ2nt(G) ≥ 2n
∆+2 . 2

Problem 2.22 Characterize the class of graphs for which γ2nt(G) = 2n
∆+2 .

§3. Neighborhood Total 2-Domination Numbers and Chromatic Numbers

Several authors have studied the problem of obtaining an upper bound for the sum of a domina-

tion parameter and a graph theoretic parameter and characterized the corresponding extremal

graphs. J. Paulraj Joseph and S. Arumugam [7] proved that γ(G) + χ(G) ≤ n + 1. They

also characterized the class of graphs for which the upper bound is attained. In the following

theorems we find an upper bound for the sum of the neighborhood total 2-domination number

and chromatic number of a graph, also we characterized the corresponding extremal graphs.

We define the following graphs:

(1) G1 is the graph obtained from K4 − e by attaching a pendant vertex to any one of the

vertices of degree two by an edge.

(2) G2 is the graph obtained from K4 − e by attaching a pendant vertex to any one of the

vertices of degree three by an edge.

(3) G3 is the graph obtained from (K4− e)∪K1 by joining a vertex of degree three, vertex

of degree two to the vertex of degree zero by an edge.

(4) G4 is the graph obtained from C5 + e by adding an edge between two non adjacent

vertices of degree two.

(5) G5 is the graph obtained from K4 by subdividing an edge once.

(6) G6 is the graph obtained from C5 + e by adding an edge between two non adjacent

vertices with one has degree three and another has degree two.

(7) G7 = K5 − Y1 where Y1 is a maximum matching in K5.

Theorem 3.1 For any connected graph G, γ2nt(G) +χ(G) ≤ 2n and equality holds if and only

if G is isomorphic to K2.

Proof The inequality is obvious. Now we assume that γ2nt(G) + χ(G) = 2n. This implies

γ2nt(G) = n and χ(G) = n. Then G is a complete graph and a star. Hence G is isomorphic to

K2. The converse is obvious. 2
Theorem 3.2 Let G be a connected graph. Then γ2nt(G) + χ(G) = 2n− 1 if and only if G is

isomorphic to K3 or P3.

Proof Let us assume γ2nt(G) + χ(G) = 2n − 1. This is possible only if (i) γ2nt(G) = n
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and χ(G) = n− 1 or (ii) γ2nt(G) = n− 1 and χ(G) = n. Let γ2nt(G) = n and χ(G) = n − 1.

Then G is a star and hence n = 3.Thus G is isomorphic to P3. Suppose (ii) holds. Then G is

a complete graph with γ2nt(G) = n − 1. Then n = 3 and hence G is isomorphic to K3. The

converse is obvious. 2
Theorem 3.3 For any connected graph G, γ2nt(G) + χ(G) = 2n − 2 if and only if G is

isomorphic to K4 or K1,3 or K3(1, 0, 0).

Proof Let us assume γ2nt(G) + χ(G) = 2n− 2. This is possible only if γ2nt(G) = n and

χ(G) = n− 2 or γ2nt(G) = n− 1 and χ(G) = n− 1 or γ2nt(G) = n− 2 and χ(G) = n.

Let γ2nt(G) = n and χ(G) = n−2. Since γ2nt(G) = n we haveG is a star with χ(G) = n−2.

Hence n = 4. Thus G isomorphic to K1,3.

Suppose γ2nt(G) = n − 1 and χ(G) = n− 1. Since χ(G) = n − 1, G contains a complete

subgraph K on n− 1 vertices. Let V (K) = {v1, v2, · · · , vn−1} and V (G)−V (K) = {vn}. Then

vn is adjacent to vi for some vertex vi ∈ V (K). If deg(vn) = 1 and n ≥ 4 then {vi, vj , vn}, i 6= j
is a γ2nt-set of G. Hence n = 4 and K = K3. Thus G is isomorphic to K3(1, 0, 0). If deg vn = 1

and n = 3 then G is isomorphic to P3 which is a contradiction to γ2nt = n− 1.If deg(vn) > 1

then γ2nt = 2. Then n = 3 which gives G is isomorphic to K3 which is a contradiction to

χ(G) = n− 1.

Suppose γ2nt(G) = n − 2 and χ(G) = n. Since χ(G) = n, G is isomorphic to Kn. But

γ2nt(Kn) = 2 we have n = 4. Hence G is isomorphic to K4. The converse is obvious. 2
Theorem 3.4 Let G be a connected graph. Then γ2nt(G) + χ(G) = 2n− 3 if and only if G is

isomorphic to C4 or K1,4 or P4 or K5 or K3(2, 0, 0) or K4(1, 0, 0, 0) or K4 − e.

Proof Let γ2nt(G)+χ(G) = 2n− 3. This is possible only if (i) γ2nt(G) = n, χ(G) = n− 3

or (ii) γ2nt(G) = n− 1, χ(G) = n− 2 or (iii) γ2nt(G) = n− 2, χ(G) = n− 1 or (iv) γ2nt(G) =

n− 3, χ(G) = n.

Suppose (i) holds. Then G is a star with χ(G) = n−3.Then n = 5. Hence G is isomorphic

to K1,4. Suppose (ii) holds. Since χ(G) = n − 2, G is either C5 + Kn−5 or G contains a

complete subgraph K on n− 2 vertices. If G = C5 +Kn−5 then γ2nt(G) +χ(G) 6= 2n− 3.Thus

G contains a complete subgraph K on n − 2 vertices. Let X = V (G) − V (K) = {v1, v2} and

V (G) = {v1, v2, v3, · · · , vn}.

Case 1. 〈X〉 = K2.

Since G is connected, without loss of generality we assume v1 is adjacent to v3. If |N(v1)∩
N(v2)| ≥ 2 then γ2nt(G) = 2 and hence n = 3 which is a contradiction. So |N(v1)∩N(v2)| ≤ 1.

Then {v2, v3, v4} is a γ2nt-set ofG and hence n = 4. If |N(v1)∩N(v2)| = 1 then G is eitherK4−e
or K3(1, 0, 0). For these graphs χ(G) = 3 which is a contradiction. If N(v1)∩N(v2) = φ. Then

G is isomorphic to P4 or C4 or K3(1, 0, 0). Since χ[K3(1, 0, 0)] = 3, we have G is isomorphic to

P4 or C4.

Case 2. 〈X〉 = K2.

Since G is connected v1 and v2 are adjacent to at least one vertex in K. If deg v1 =
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deg v2 = 1 and N(v1) ∩ N(v2) 6= φ then |V (K)| 6= 1. So |V (K)| ≥ 2. If |V (K)| = 2 then

G is isomorphic to K1,3 which is a contradiction.Hence |V (K)| ≥ 3.Then {v1, v2, v3, v4} is a

γ2nt-set of G. Hence n = 5. Thus G is isomorphic to K3(2, 0, 0). If deg v1 = deg v2 = 1 and

N(v1) ∩N(v2) = φ then |V (K)| ≥ 2. If |V (K)| = 2 then G is isomorphic to P4. If V (K) ≥ 3

then {v1, v2, v3, v4} is a γ2nt-set of G. Hence n = 5. Thus G is isomorphic to K3(1, 1, 0). But

γ2nt[K3(1, 1, 0)] = 3 which is a contradiction. Suppose deg v1 ≥ 2 and |N(v1) ∩ N(v2)| ≤ 1

then {v2, v3, v4} where v3, v4 ∈ N(v1) is a γ2nt-set of G. Hence n = 4. Then G is isomorphic

to K3(1, 0, 0). For this graph γ2nt(G) = 3 and χ(G) = 3 which is a contradiction. If deg v1 ≥ 2

and |N(v1) ∩N(v2)| ≥ 2 then {v3, v4} where v3, v4 ∈ N(v1) ∩ N(v2) is a γ2nt-set of G. Then

n = 3 which gives a contradiction.

Suppose (3) holds. Since χ(G) = n − 1, G contains a clique K on n − 1 vertices. Let

X = V (G)−V (K) = {v1}. If deg v1 ≥ 2 then γ2nt(G) = 2. Hence n = 4. Thus G is isomorphic

to K4 − e. If deg v1 = 1 then |V (K)| ≥ 3 and hence {v1, v2, v3} where v2 ∈ N(v1) is a γ2nt-set

of G and hence n = 5. Thus G is isomorphic to K4(1, 0, 0, 0).

Suppose (iv) holds. Since χ(G) = n, G is a complete graph. Then γ2nt(G) = 2 and hence

n = 5. Therefore G is isomorphic to K5. The converse is obvious. 2
Theorem 3.5 Let G be a connected graph. Then γ2nt(G)+χ(G) = 2n−4 if and only if G is iso-

morphic to one of the following graphs P5, K6, C5, K1,5, B(2, 1), K5(1, 0, 0, 0, 0), K4(2, 0, 0, 0),

K4(1, 1, 0, 0), K3(1, 1, 0),K3(3, 0, 0), C5 +e, 2K2 +K1 and K5−Y , where Y is the set of edges

incident to a vertex with |Y | = 1 or 2, Gi, 1 ≤ i ≤ 7.

Proof Let γ2nt(G) + χ(G) = 2n− 4. This is possible only if

(1) γ2nt(G) = n, χ(G) = n− 4, or

(2) γ2nt(G) = n− 1, χ(G) = n− 3, or

(3) γ2nt(G) = n− 2, χ(G) = n− 2, or

(4) γ2nt(G) = n− 3, χ(G) = n− 1, or

(5) γ2nt(G) = n− 4, χ(G) = n.

Case 1. γ2nt(G) = n, χ(G) = n− 4.

Then G is a star and hence G is isomorphic to K1,5.

Case 2. γ2nt(G) = n− 1, χ(G) = n− 3.

Since χ(G) = n − 3, G contains a clique K on n − 3 vertices. Let X = V (G) − V (K) =

{v1, v2, v3} and let V (G) = {v1, v2, · · · , vn}.

Subcase 2.1 〈X〉 = K3.

Let all v1, v2 and v3 be pendant vertices and |V (K)| = 1 then G is a star which is a

contradiction. So we assume that v1, v2 and v3 be the pendant vertices and |V (K)| = 2. If

all v1, v2 and v3 are adjacent to same vertices in K then G is isomorphic to K1,4 which is a

contradiction. If N(v1)∩N(v2) = {v4} and N(v3) = {v5} then G is isomorphic to B(2, 1). Let

v1, v2 and v3 be the pendant vertices and |V (K)| = 3. If all v1, v2 and v3 are adjacent to same

vertices in K then G is isomorphic to K3(3, 0, 0). If N(v1)∩N(vi) = φ, i 6= 1 then γ2nt 6= n− 1
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which is a contradiction. If |V (K)| ≥ 4 then γ2nt ≤ n− 2 which is a contradiction.

Suppose deg v1 ≥ 2 then {v2, v3, v4, v5} where v4, v5 ∈ N(v1) is a nt2d-set then γ2nt(G) ≤ 4.

Hence n ≤ 5. Since deg v1 ≥ 2, n = 5. Then G contains K3 and hence χ(G) 6= n− 3 which is a

contradiction.

Subcase 2.2 〈X〉 = K2 ∪K1.

Let v1v2 ∈ E(G) and deg v3 = 1. Suppose deg v2 = 1 and deg v1 = 2 and N(v1)∩N(v3) =

{v4}. If deg v4 = 2 then G is isomorphic to P4 and γ2nt(G) + χ(G) 6= 2n − 4 which is a

contradiction. If deg v4 ≥ 3 then {v2, v3, v4, v5} is γ2nt-set of G. Therefore n = 5. Then G is

isomorphic to a bistar B(2, 1). If N(v1) ∩ N(v3) = φ then K contains at least 2 vertices. If

|V (K)| ≥ 3 then γ2nt(G) = 4 and hence n = 5 which is a contradiction. So |V (K)| = 2 and

hence G is isomorphic to P5.

Suppose deg v3 = 1, deg v2 = 1 and deg v1 ≥ 3. Then γ2nt(G) ≤ 4 and hence n = 5.

This gives |V (K)| = 2. Then G is isomorphic to K3(1, 1, 0) and hence γ2nt(G) = 3 which is a

contradiction.

Suppose deg v1 ≥ 3, deg v2 ≥ 2 and deg v3 = 1. Then γ2nt(G) ≤ 4 and hence n = 5.

Then G is isomorphic to the either K4(1, 0, 0, 0) or a graph obtained from K4 − e by attaching

a pendant vertex to one of the vertices of degree 2. For this graphs χ(G) 6= n − 3 which is a

contradiction. If deg v1 ≥ 3, deg v2 ≥ 3 and deg v3 ≥ 2 then γ2nt(G) ≤ 4 and hence n = 5.

Then G is isomorphic to the graph which is obtained from K4 ∪ K1 by including two edges

between a vertex of degree zero and any two vertices of degree three. For this graph χ(G) = 4

which is a contradiction.

Subcase 2.3. 〈X〉 = P3.

Let 〈X〉 = (v1, v2, v3). Since G is connected at least one vertex of 〈X〉 is adjacent to

K. Let N(v1) ∩ V (K) 6= φ and N(vi) ∩ V (K) = φ for i = 2, 3. Let |N(v1) ∩ V (K)| = 1

then {v1, v3, v4, v5} is a γ2nt-set of G. Hence n = 5. Therefore G is isomorphic to P5. If

|N(v1) ∩ V (K)| ≥ 2 then γ2nt(G) ≤ 4. Hence n = 5. Then G is isomorphic to K3(P3, P1, P1).
For this graph γ2nt(G) = 3 which is a contradiction.

Suppose N(v2) ∩ V (K) 6= φ and N(vi) ∩ V (K) = φ for i = 1, 3. If |N(v2) ∩ V (K)| = 1

then G is isomorphic to B(2, 1). If |N(v2) ∩ V (K)| ≥ 2 then γ2nt(G) = 4 and hence n = 5.

Hence G is isomorphic to K3(2, 0, 0). For this graph χ(G) = 3 6= n− 3 which is a contradiction.

If |N(v1) ∩ V (K)| ≥ 2, |N(v2) ∩ V (K)| = 1 and N(v3) ∩ V (K) = φ then G is a graph obtained

from K4 − e by attaching a pendant vertex to one of the vertices of degree 2. For this graph

χ(G) 6= n− 3 which is a contradiction.

If |N(v1)∩V (K)| ≥ 2 and |N(v2)∩V (K)| ≥ 2 and N(v3)∩V (K) = φthen G is isomorphic

to K4(1, 0, 0, 0). For this graph χ(G) = 4 which is a contradiction. If |N(vi) ∩ V (K)| ≥ 1 for

all i = 1, 2, 3 then γ2nt(G) ≤ 4. Hence n = 5. Then G is isomorphic to any of the following

graphs:

(i) the graph obtained from K4−e by attaching a pendant vertex to any one of the vertices

of degree 3;

(ii) the graph obtained from K4 − e by subdividing the edge with the end vertices having
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degree 3 once;

(iii) C5 + e.

For these graphs either γ2nt(G) 6= n− 1 or χ(G) 6= n− 3 which is a contradiction.

Subcase 2.4 〈X〉 = K3.

Then any two vertices from X and two vertices from V − X form a nt2d-set and hence

γ2nt(G) ≤ 4. Then n ≤ 5. For these graphs χ(G) ≥ 3 which is a contradiction.

Case 3. γ2nt(G) = n− 2 and χ(G) = n− 2.

Since χ(G) = n− 2, G is either C5 +Kn−5 or G contains a clique K on n− 2 vertices. If

G = C5 +Kn−5 and n ≥ 6 then γ2nt(G)+χ(G) 6= 2n− 4 which is a contradiction.Hence n = 5.
Thus G = C5. Let G contains a clique K on n− 2 vertices. Let X = V (G) − V (K) = {v1, v2}.

Subcase 3.1 〈X〉 = K2.

Since G is connected v1 and v2 are adjacent to at least one vertex in K. If deg v1 =

deg v2 = 1 and N(v1) ∩N(v2) 6= φ then V (K) = 4. Hence G is isomorphic to K4(2, 0, 0, 0). If

deg v1 = deg v2 = 1 and N(v1)∩N(v2) = φ then G is isomorphic to K3(1, 1, 0) or K4(1, 1, 0, 0).

Suppose deg v1 ≥ 2 and |N(v1) ∩ N(v2)| ≤ 1 then {v2, v3, v4} where v3, v4 ∈ N(v1) is a

γ2nt-set of G. Hence n = 5. Then G is isomorphic to G1 or G2 or G3. If deg v1 ≥ 2 and

|N(v1) ∩N(v2)| ≥ 2 then γ2nt(G) = 2. Hence n = 4 with χ(G) = 3 which is a contradiction.

Subcase 3.2 〈X〉 = K2.

Since G is connected, without loss of generality we assume v1 is adjacent to v3. If |N(v1)∩
N(v2)| ≥ 2 then γ2nt(G) = 2 and hence n = 4. Thus G is K4 which is a contradiction. So

|N(v1) ∩N(v2)| ≤ 1. Then {v2, v3, v4} is a γ2nt-set of G and hence n = 5. If deg v2 = 1 then

G is isomorphic to K3(P3, P1, P1) or the graph obtained from K4 − e by attaching a pendant

vertex to any one of the vertices of degree 2. If deg (v2) ≥ 2 then G is isomorphic to C5 + e or

2K2 +K1 or G4 or G5 or G6 or G7.

Case 4. γ2nt(G) = n− 3 and χ(G) = n− 1.

Then G contains a clique K on n−1 vertices. Let X = V (G)−V (K) = {v1}. If deg v1 ≥ 2

then γ2nt(G) = 2. Hence n = 5. Thus G is isomorphic to K5 − Y where Y is the set of edges

incident to a vertex with |Y | = 1 or 2. If deg v1 = 1 then {v1, v2, v3} be the γ2nt-set of G.

Hence n = 6. Thus G is isomorphic to K5(1, 0, 0, 0, 0).

Case 5. γ2nt(G) = n− 4 and χ(G) = n

Then G is a complete graph. Hence n = 6. Therefore G is isomorphic to K6. The converse

is obvious. 2
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Abstract: In this paper, we introduce Smarandache - 2-algebraic structure of lattice S,

namely Smarandache lattices. A Smarandache 2-algebraic structure on a set N means a

weak algebraic structure A0 on N such that there exists a proper subset M of N which

is embedded with a stronger algebraic structure A1, where a stronger algebraic structure

means such a structure which satisfies more axioms, by proper subset one can understands

a subset different from the empty set, by the unit element if any, and from the whole set.

We obtain some of its characterization through pseudo complemented.
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lattice.
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§1. Introduction

New notions are introduced in algebra to study more about the congruence in number theory

by Florentin Smarandache [1]. By <proper subset> of a set A, we consider a set P included in

A, different from A, also different from the empty set and from the unit element in A - if any

they rank the algebraic structures using an order relationship.

The algebraic structures S1 ≪ S2 if both of them are defined on the same set; all S1

laws are also S2 laws; all axioms of S1 law are accomplished by the corresponding S2 law; S2

law strictly accomplishes more axioms than S1 laws, or in other words S2 laws has more laws

than S1. For example, a semi-group ≪ monoid ≪ group ≪ ring ≪ field, or a semi group ≪
commutative semi group, ring ≪ unitary ring, · · · etc. They define a general special structure

to be a structure SM on a set A, different from a structure SN, such that a proper subset of A

is an SN structure, where SM ≪ SN.

§2. Preliminaries

Definition 2.1 Let P be a lattice with 0 and x ∈ P . We say x∗ is a pseudo complemented of

1Received September 1, 2014, Accepted December 10, 2014.
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x iff x∗ ∈ P and x ∧ x∗ = 0, and for every y ∈ P , if x ∧ y = 0 then y ≤ x∗.

Definition 2.2 Let P be a pseudo complemented lattice. NP = { x∗ : x ∈ P} is the set of

complements in P . NP = { NP ,≤ N,¬N, 0N , 1N ,∧N,∨N} , where

(1) ≤N is defined by: for every x, y ∈ NP , x ≤N y iff x ≤P b;
(2) ¬N is defined by: for every x ∈ NP , ¬N(x) = x∗;
(3) ∧N is defined by: for every x, y ∈ NP , x ∧N y = x ∧P y;
(4) ∨N is defined by: for every x, y ∈ NP , x ∨N y = (x ∗ ∧P y∗)∗;
(5) 1N = 0P ∗, 0N = 0P .

Definition 2.3 Let P be a lattice with 0. Define IP to be the set of all ideals in P , i.e.,

IP =< IP ,≤I , ∧I ,∨I , 0I , 1I >, where

≤=⊆, i ∧I j = I ∩ J, i ∨I j = (I ∪ J ], 0I = 0A, 1I = A.

Definition 2.4 If P is a distributive lattice with 0, IP is a complete pseudo complemented

lattice, let P be a lattice with 0 and NIP , the set of normal ideals in P , is given by NIP =

{ I∗ ∈ IP : I ∈ IP }. Alternatively, NIP = { I ∈ IP : I = I ∗ ∗} . Thus NIP = { NIP ,⊆
,∩,∪,∧NI ,∨NI} , which is the set of pseudo complements in IP .

Definition 2.5 A Pseudo complemented distributive lattice P is called a stone lattice if, for all

a ∈ P , it satisfies the property a ∗ ∨a ∗ ∗ = 1.

Definition 2.6 Let P be a pseudo complemented distributive lattice. Then for any filter F of

P , define the set δ(F ) by δ(F ) = { a∗ ∈ P/a∗ ∈ F}.

Definition 2.7 Let P be a pseudo complemented distributive lattice. An ideal I of P is called

a δ-ideal if I = δ(F ) for some filter F of P .

Now we have introduced a definition by [4]:

Definition 2.8 A lattice S is said to be a Smarandache lattice if there exist a proper subset L
of S, which is a Boolean algebra with respect to the same induced operations of S.

§3. Characterizations

Theorem 3.1 Let S be a lattice. If there exist a proper subset NP of S defined in Definition

2.2, then S is a Smarandache lattice.

Proof By hypothesis, let S be a lattice and whose proper subset NP = { x∗ : x ∈ P} is the

set of all pseudo complements in P . By definition, if P is a pseudo complement lattice, then

NP = { x∗ : x ∈ P} is the set of complements in P , i.e., NP = { NP ,≤N ,¬N , 0N , 1N ,∧N ,∨N},
where
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(1) ≤N is defined for every x, y ∈ NP , x ≤N y iff x ≤P b;
(2) ¬N is defined for every x ∈ NP , ¬N(x) = x∗;
(3) ∧N is defined for every x, y ∈ NP , x ∧N y = x ∧P y;
(4) ∨N is defined for every x, y ∈ NP , x ∨N y = (x ∗ ∧P y∗)∗;
(5) 1N = 0P ∗, 0N = 0P .

It is enough to prove that NP is a Boolean algebra.

(1) For every x, y ∈ NP , x ∧N y ∈ NP and ∧N is meet under ≤N . If x, y ∈ NP , then

x = x ∗ ∗ and y = y ∗ ∗.
Since x ∧P y ≤P x, by result if x ≤N y then y∗ ≤N x∗, x∗ ≤P (x ∧P y)∗, and with by

result if x ≤N y then y∗ ≤N x∗, (x ∧P y) ∗ ∗ ≤P x. Similarly, (x ∧P y) ∗ ∗ ≤P y. Hence

(x ∧P y) ∗ ∗ ≤P (x ∧P y) ∗ ∗.
By result, x ≤N x ∗ ∗, (x ∧P y) ≤P (x ∧P y) ∗ ∗. Hence (x ∧P y) ∈ NP , (x ∧N y) ∈ NP . If

a ∈ NP and a ≤N x and a ≤N y, then a ≤P x and a ≤P y, a ≤P (x∧P y). Hence a ≤N (x∧N y).
So, indeed ∧N is meet in ≤N .

(2) For every x, y ∈ NP , x ∨N y ∈ NP and ∨N is join under ≤N . Let x, y ∈ NP . Then

x∗, y∗ ∈ NP . By (1), (x ∗ ∧P y∗) ∈ NP . Hence (x ∗ ∧P y∗)∗ ∈ NP , and hence (x ∨N y) ∈ NP ,

(x ∗ ∧P y∗) ≤P x∗. By result x ≤N x ∗ ∗, x ∗ ∗ ≤P (x ∗ ∧P y∗)∗ and NP = { x ∈ P ;x = x ∗ ∗},
x ≤P (x ∗ ∧P y∗)∗.

Similarly, y ≤P (x ∗∧P y∗)∗. If a ∈ NP and x ≤N a and y ≤N a, then x ≤P a and y ≤P a,
then by result if x ≤N y, then y∗ ≤N x∗, a∗ ≤P x∗ and a∗ ≤P y∗. Hence a∗ ≤P (x∗∧P y∗). By

result if x ≤N y then y∗ ≤N x∗, (x∗∧P y∗)∗ ≤P a∗∗. Thus, by resultNP = { x ∈ P : x = x∗∗},
(x ∗ ∧P y∗)∗ ≤P x and x ∨N y ≤N a. So, indeed ∨N is join in ≤N .

(3) 0N , 1N ∈ NP and 0N , 1N are the bounds of NP . Obviously 1N ∈ NP since 1N = 0P ∗
and for every a ∈ NP , a ∧P 0P = 0P . For every a ∈ NP , a ≤P 0P ∗. Hence a ≤N 1N , 0∗P ,

0P ∗ ∗ ∈ NP and 0P ∗ ∧P 0P ∗ ∗ ∈ NP . But of course, 0 ∗P ∧P , 0P ∗ ∗ = 0P . Thus, 0P ∈ NP ,

0N ∈ NP . Obviously, for every a ∈ NP , 0P ≤P a. Hence for every a ∈ NP , 0N ≤N a. So NP

is bounded lattice.

(4) For every a ∈ NP , ¬N(a) ∈ NP and for every a ∈ NP , a ∧N ¬N(a) = 0N , and for

every a ∈ NP , a ∨N ¬N(a) = 1N .

Let a ∈ NP . Obviously, ¬N (a) ∈ NP , a ∨N ¬N(a) = a ∨N a∗ = ((a ∗ ∧P b ∗ ∗))∗ =

(a∗∧P a)∗ = 0P ∗ = 1N , a∧N ¬N(a) = a∧P a∗ = 0P = 0N . So NP is a bounded complemented

lattice.

(5) Since x ≤N (x∨N (y∧N z)), (x∧N z) ≤N x∨N (y∧N z). Also (y∧N z) ≤N x∨N (y∧N z).
Obviously, if a ≤N b, then a∧N b∗ = 0N . Since b∧b∗ = 0N , so (x∧N z)∧N (x∨N (y∧N z))∗ = 0N

and (y ∧N z)∧N (x∨N (y ∧N z))∗ = 0N , x∧N (z ∧N (x∨N (y ∧N z))∗) = 0N , y ∧N (z ∧N (x∨N

(y ∧N z))∗) = 0N .

By definition of pseudo complement: z∧N (x∨N (y∧N z))∗ ≤N x∗, z∧N (x∨N (y∧N z))∗ ≤N

y∗, Hence, z ∧N (x ∨N (y ∧N z))∗ ≤N x ∗ ∧Ny∗. Once again, If a ≤N b, then a ∧N b∗ = 0N .

Thus, z ∧N (x ∨N (y ∧N z)) ∗ ∧(x ∗ ∧Ny∗)∗ = 0N , z ∧N (x ∗ ∧Ny∗)∗ ≤N (x ∨N (y ∧N z)) ∗ ∗.
Now, by definition of ∧N : z ∧N (x ∗ ∨Ny∗)∗ = z ∧N (x ∨N y) and by NP = { x ∈ P : x =

x ∗ ∗} : (x ∨N (y ∧N z)) ∗ ∗ = x ∨N (y ∧N z). Hence, z ∧N (x ∨N y) ≤N x ∨N (y ∧N z).
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Hence, indeed NP is a Boolean Algebra. Therefore by definition, S is a Smarandache

lattice. 2
For example, a distributive lattice D3 is shown in Fig.1,
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Fig.1

where D3 is pseudo coplemented because

0∗ = 17,

8∗ = 11∗ = 12∗ = 13∗ = 14∗ = 15∗ = 16∗ = 17∗ = 0,

1∗ = 10, 6∗ = 10∗ = 1,

2∗ = 9, 5∗ = 9∗ = 2,

3∗ = 7, 4∗ = 7∗ = 3

and its correspondent Smarandache lattice is shown in Fig.2.
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Theorem 3.2 Let S be a distributive lattice with 0. If there exist a proper subset NIP of S,

defined Definition 2.4. Then S is a Smarandache lattice.

Proof By hypothesis, let S be a distributive lattice with 0 and whose proper subset NIP =

{ I∗ ∈ IP , I ∈ IP } is the set of normal ideals in P . We claim that NIP is Boolean algebra since

NIP = { I∗ ∈ IP : I ∈ IP } is the set of normal ideals in P .

Alternatively, NIP = { I ∈ IP : I = I ∗ ∗}. Let I ∈ IP . Take I∗ = {y ∈ P : foreveryi ∈
I : y ∧ i = 0}, I∗ ∈ IP . Namely, if a ∈ I∗ then for every i ∈ I : a ∧ i = 0. Let b ≤ a. Then,

obviously, for every i ∈ I, b ∧ i = 0. Thus b ∈ I∗. If a, b ∈ I∗, then for every i ∈ I, a ∧ i = 0,

and for every i ∈ I, b ∧ i = 0.

Hence for every i ∈ I, (a ∧ i) ∨ (b ∧ i) = 0. By distributive, for every i ∈ I, i ∧ (a ∨ b) = 0,

i.e., a ∨ b ∈ I∗. Thus I∗ ∈ IP , I ∩ I∗ = I ∩ { y ∈ P, forevery i ∈ I, y ∧ i = 0} = { 0}.
Let I ∩ J = { 0} and j ∈ J. Suppose that for some i ∈ I, i ∧ j 6= 0. Then i ∧ j ∈ I ∩ J .

Because I and j are ideals, so I ∩ J 6= {0}. Hence, for every i ∈ I, j ∧ i = 0, and j ⊆ I∗.
Consequently, I∗ is a pseudo complement of I and IP is a pseudo complemented.

Therefore IP is a Boolean algebra. Thus NIP is the set of all pseudo complements lattice in

IP .

Notice that we have proved that pseudo complemented form a Boolean algebra in Theorem

3.1. Whence, NIP is a Boolean algebra. By definition, S is a Smarandache lattice. 2
Theorem 3.3 Let S be a lattice. If there exist a pseudo complemented distributive lattice P ,

X ∗ (P ) is a sub-lattice of the lattice Iδ(P ) of all δ-ideals of P , which is the proper subset of S.

Then S is a Smarandache lattice.

Proof By hypothesis, let S be a lattice and there exist a pseudo complemented distributive

lattice P , X ∗ (P ) is a sub-lattice of the lattice Iδ(P ) of all δ-ideals of P , which is the proper

subset of S.

Let (a∗], (b∗] ∈ X ∗(P ) for some a, b ∈ P . Clearly, (a∗]∩(b∗] ∈ X ∗(P ). Again, (a∗]∪(b∗] =

δ([a))∪δ([b)) = δ[(a)∪ ([b)) = δ([a∩b)) = ((a∩b)∗] ∈ X ∗ (P ). Hence X ∗ (P ) is a sub-lattice of

Iδ(P ) and it is a distributive lattice. Clearly (0∗ ∗] and (0∗] are the least and greatest elements

of X ∗ (P ).

Now for any a ∈ P, (a∗]∩ (a∗∗] = (0] and (a∗]∪ (b∗∗] = δ([a))∪δ([a∗)) = δ([a))∪ ([a∗)) =

δ([a ∩ a∗)) = δ([0)) = δ(P ) = P . Hence (a**] is the complement of (a*] in X*(P).

Therefore { X*(P),∪ ,∩} is a bounded distributive lattice in which every element is comple-

mented.

Thus X ∗ (P ) is also a Boolean algebra, which implies that S is a Smarandache lattice. 2
Theorem 3.4 Let S be a lattice and P is a pseudo complemented distributive lattice. If S is

a Smarandache lattice. Then the following conditions are equivalent:

(1) P is a Boolean algebra;

(2) every element of P is closed;

(3) every principal ideal is a δ-ideal;
(4) for any ideal I, a ∈ I implies a ∗ ∗ ∈ I;
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(5) for any proper ideal I, I ∩D(P ) = φ;
(6) for any prime ideal A, A ∩D(P ) = φ;
(7) every prime ideal is a minimal prime ideal;

(8) every prime ideal is a δ-ideal;
(9) for any a, b ∈ P , a∗ = b∗ implies a = b;
(10) D(P ) is a singleton set.

Proof Since S is a Smarandache lattice. By definition and previous theorem, we observe

that there exists a proper subset P of S such that which is a Boolean algebra. Therefore, P is

a Boolean algebra.

(1) =⇒ (2) Assume that P is a Boolean algebra. Then clearly, P has a unique dense

element, precisely the greatest element. Let a ∈ P . Then a ∗ ∧a = 0 = a ∗ ∧a ∗ ∗. Also a ∗ ∨a,
a∗∨a∗∗ ∈ D(P ). Hence a∗∨a = a∗∨a∗∗. By the cancellation property of P , we get a = a∗∗.
Therefore every element of P is closed.

(2) =⇒ (3) Let I be a principal ideal of P . Then I = (a] for some a ∈ P . By condition

(2), a = a ∗ ∗. Now, (a] = (a ∗ ∗] = δ([a∗)). So (a)] is a δ-ideal.

(3) =⇒ (4) Notice that I be a proper ideal of P . Let a ∈ I. Then there must be (a] = δ(F )

for some filter F of P . Hence, we get that a ∗ ∗∗ = a∗ ∈ F . Therefore a ∗ ∗ ∈ δ(F ) = (a] ⊆ I.

(4) =⇒ (5) Let I be a proper ideal of P . Suppose a ∈ I ∩ D(P ). Then a ∗ ∗ ∈ P and

a∗ = 0. Therefore 1 = 0∗ = a ∗ ∗ ∈ P , a contradiction.

(5) =⇒ (6) Let I be a proper ideal of P , I ∩ D(P ) = φ. Then P is a prime ideal of P ,

A ∩D(P ) = φ.

(6) =⇒ (7) Let A be a prime ideal of P such that A ∩ D(P ) = φ and a ∈ A. Clearly

a ∧ a∗ = 0 and a ∨ a∗ ∈ D(P ). So a ∨ a∗ /∈ A, i.e., a∗ /∈ A. Therefore A is a minimal prime

ideal of P .

(7) =⇒ (8) Let A be a minimal prime ideal of P . It is clear that P \ A is a filter of P .

Let a ∈ A. Since A is minimal, there exists b /∈ A such that a ∧ b = 0. Hence a ∗ ∧b = b and

a∗ /∈ A. Whence, a∗ ∈ (P \ A), which yields a ∈ δ(P \A). Conversely, let a ∈ δ(P \ A). Then

we get a∗ /∈ A. Thus, we have a ∈ A and P = δ(P \A). Therefore A is δ-ideal of P .

(8) =⇒ (9) Assume that every prime ideal of P is a δ-ideal. Let a, b ∈ P be chosen that

a∗ = b∗. Suppose a 6= b. Then there exists a prime ideal A of P such that a ∈ A and b /∈ A.

By hypothesis, A is a δ- ideal of P . Hence A = δ(F ) for some filter F of P . Consequently,

a ∈ A = δ(F ), We get b∗ = a∗ ∈ F . Thus, b ∈ δ(F ) = A, a contradiction. Therefore a = b.

(9) =⇒ (10) Suppose x, y be two elements of D(P ). Then x∗ = 0 = y∗, which implies

that x = y. Therefore D(P ) is a singleton set.

(10) =⇒ (1) Assume that D(P ) = {d} is singleton set. Let a ∈ P . We always have

a ∨ a∗ ∈ D(P ). Whence, a ∧ a∗ = 0 and a ∨ a∗ = d. This true for all a ∈ P . Also 0 ≤ a ≤
a ∨ a∗ = d.

Therefore P is a bounded distributive lattice, in which every element is complemented,

Hence the above conditions are equivalent. 2
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Abstract: Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy,

not clearly defined objects. In this paper we introduced soft mixed neutrosophic N-algebraic

with the discussion of some of their characteristics. We also introduced soft mixed dual

neutrosophic N-algebraic structures, soft weak mixed neutrosophic N-algebraic structures,

soft Lagrange mixed neutrosophic N-algebraic structures, soft weak Lagrange mixed neu-

trosophic and soft Lagrange free mixed neutosophic N-algebraic structures. the so called

soft strong neutrosophic loop which is of pure neutrosophic character. We also introduced

some of new notions and some basic properties of this newly born soft mixed neutrosophic

N-structures related to neutrosophic theory.

Key Words: Neutrosophic mixed N-algebraic structure, soft set, soft neutrosophic mixed

neutrosophic N-algebraic structure.

AMS(2010): 53C78

§1. Introduction

Smarandache proposed the concept of neutrosophy in 1980, which is basically a new branch of

philosophy that actually deals the origion, nature, and scope of neutralities. He also introduced

the neutrosophic logic due to neutrosophy. In neutrosophic logic each proposition is approxi-

mated to have the percentage of truth in a subset T , the percentage of indeterminacy in a subset

I and the percentage of falsity in a subset F . Basically, a neutrosophic logic is an extension

of fuzzy logic. In fact the neutrosophic set is the generalization of classical set, fuzzy conven-

tional set, intuitionistic fuzzy set etc. Neutrosophic logic is used to overcome the problems

of imperciseness, indeterminate and inconsistentness of the data. The theoy of neutrosophy is

also applicable in the field of algebra. For example, Kandasamy and Smarandache introduced

neutrosophic fields, neutrosophic rings, neutrosophic vector spaces, neutrosophic groups, neu-

trosophic bigroups and neutrosophic N-groups, neutrosophic semigroups, neutrosophic bisemi-

1Received September 5, 2014, Accepted December 12, 2014.
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groups, and neutrsosophic N-semigroups, neutrosophic loops, nuetrosophic biloops, and neutro-

sophic N-loops, and so on. Mumtaz ali et.al. introduced nuetosophic LA-semigoups and also

give their generalization.

Molodtsov intorduced the theory of soft set. This mathematical tool is free from parame-

terization inadequacy, syndrome of fuzzy set theory, rough set theory, probability theory and so

on. This theory has been applied successfully in many fields such as smoothness of functions,

game theory, operation research, Riemann integration, Perron integration, and probability. Re-

cently soft set theory attained much attention of the researchers since its appearance and the

work based on several operations of soft set introduced in [5, 6, 7, 8, 10]. Some properties and

algebra may be found in [11]. Feng et.al. introduced soft semirings in [9].

In this paper we introduced soft mixed nuetrosophic N-algebraic structures. The organiza-

tion of this paper is follows. In section one we put the basic concepts about mixed neutrosophic

N-algebraic structures and soft sets with some of their operations. In the next sections we

introduce soft mixed neutrosophic N-algebraic structures with the construction of some their

related theory. At the end we concluded the paper.

§2. Basic Concepts

2.1 Mixed Neutrosophic N-Algebraic Structures

Definition 2.1 Let {〈M ∪ I〉 = (M1 ∪M2 ∪ · · · ∪MN , ∗1, ∗2, · · · , ∗N)} such that N ≥ 5. Then

〈M ∪ I〉 is called a mixed neutrosophic N -algebraic structure if

(1) 〈M ∪ I〉 = M1 ∪M2 ∪ · · · ∪MN , where each Mi is a proper subset of 〈M ∪ I〉 for all i;
(2) some of (Mi, ∗i) are neutrosophic groups;

(3) some of (Mj, ∗j) are neutrosophic loops;

(4) some of (Mk, ∗k) are neutrosophic groupoids;

(5) some of (Mr, ∗r) are neutrosophic semigroups.

(6) the rest of (Mt, ∗t) can be loops or groups or semigroups or groupoids. (‘or’ not used

in the mutually exclusive sense).

Definition 2.2 Let {〈D ∪ I〉 = (D1 ∪D2 ∪ · · · ∪DN , ∗1, ∗2, · · · , ∗N)}. Then 〈D ∪ I〉 is called

a mixed dual neutrosophic N -algebraic structure if

(1) 〈D ∪ I〉 = D1 ∪D2 ∪ · · · ∪DN , where each Di is a proper subset of 〈D ∪ I〉 for all i;
(2) some of (Di, ∗i) are neutrosophic groups;

(3) some of (Dj , ∗j) are neutrosophic loops;

(4) some of (Dk, ∗k) are neutrosophic groupoids;

(5) some of (Dr, ∗r) are neutrosophic semigroups;

(6) the rest of (Dt, ∗t) can be loops or groups or semigroups or groupoids. (‘or’ not used in

the mutually exclusive sense).

Definition 2.3 Let {〈W ∪ I〉 = (W1 ∪W2 ∪ · · · ∪WN , ∗1, ∗2, · · · , ∗N)}. Then 〈W ∪ I〉 is called

a weak mixed neutrosophic N -algebraic structure if
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(1) 〈W ∪ I〉 = W1 ∪W2 ∪ ... ∪WN , where each Wi is a proper subset of 〈W ∪ I〉 for all i;
(2) some of (Wi, ∗i) are neutrosophic groups or neutrosophic loops;

(3) some of (Wk, ∗k) are neutrosophic groupoids or neutrosophic semigroups;

(4) the Rest of (Wt, ∗t) can be loops or groups or semigroups or groupoids. i.e in the

collection , all the algebraic neutrosophic structures may not be present.

At most 3-algebraic neutrosophic structures are present and at least 2-algebraic neutro-

sophic structures are present. Rest being non-neutrosophic algebraic structures.

Definition 2.4 Let {〈V ∪ I〉 = (V1 ∪ V2 ∪ · · · ∪ VN , ∗1, ∗2, · · · , ∗N )}. Then 〈V ∪ I〉 is called a

weak mixed dual neutrosophic N -algebraic structure if

(1) 〈V ∪ I〉 = V1 ∪ V2 ∪ · · · ∪ VN , where each Wi is a proper subset of 〈V ∪ I〉 for all i;
(2) some of (Vi, ∗i) are neutrosophic groups or neutrosophic loops;

(3) some of (Vk, ∗k) are neutrosophic groupoids or neutrosophic semigroups;

(4) the rest of (Vt, ∗t) can be loops or groups or semigroups or groupoids.

Definition 2.5 Let {〈M ∪ I〉 = (M1 ∪M2 ∪ · · · ∪MN , ∗1, ∗2, · · · , ∗N )} be a neutrosophic N -

algebraic structure. A proper subset {〈P ∪ I〉 = (P1 ∪ P2 ∪ · · · ∪ PN , ∗1, ∗2, · · · , ∗N )}is called a

mixed neutrosophic sub N -structure if 〈P ∪ I〉 is a mixed neutrosophic N -structure under the

operation of 〈M ∪ I〉.

Definition 2.6 Let {〈W ∪ I〉 = (W1 ∪W2 ∪ · · · ∪WN , ∗1, ∗2, · · · , ∗N )} be a mixed neutrosophic

N -algebraic structure. We call a finite non-empty subset P of 〈W ∪ I〉 to be a weak mixed

deficit neutrosophic sub N -algebraic structure if {〈P ∪ I〉 = (P1 ∪ P2 ∪ · · · ∪ Pt, ∗1, ∗2, · · · , ∗t)},
1 < t < N with Pi = P ∩ Lk, 1 ≤ i ≤ t, and 1 ≤ k ≤ N and some P ′

is are neutrosophic groups

or neutrosophic loops, some P ′
js are neutrosophic groupoids or neutrosophic semigroups and the

rest of P ′
ks are groups or loops or groupoids or semigroups.

Definition 2.7 Let {〈M ∪ I〉 = (M1 ∪M2 ∪ · · · ∪MN , ∗1, ∗2, · · · , ∗N )} be a mixed neutrosophic

N -algebraic structure of finite order. A proper mixed neutrosophic sub N -structure P of 〈M ∪ I〉
is called Lagrange mixed neutrosophic sub N -structure if o(P )�o 〈M ∪ I〉.

If every mixed neutrosophic sub N -structure of 〈M ∪ I〉 is a Lagrange mixed neutrosophic

sub N -structures. Then 〈M ∪ I〉 is said to be a Lagrange mixed neutrosophic N -structure.

If some mixed neutrosophic sub N -structure of 〈M ∪ I〉 are Lagrange mixed neutrosophic

sub N -structures. Then 〈M ∪ I〉 is said to be a weak Lagrange mixed neutrosophicN -structure.

If every mixed neutrosophic sub N -structure of 〈M ∪ I〉 is not a Lagrange mixed neu-

trosophic sub N -structures. Then 〈M ∪ I〉 is said to be a Lagrange free mixed neutrosophic

N -structure.

2.2 Soft Sets

Throughout this subsection U refers to an initial universe, E is a set of parameters, P (U) is

the power set of U , and A ⊂ E. Molodtsov [12] defined the soft set in the following manner.
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Definition 2.8 A pair (F,A) is called a soft set over U where F is a mapping given by F :

A −→ P (U).

In other words, a soft set over U is a parameterized family of subsets of the universe U .

For e ∈ A, F (a) may be considered as the set of a-elements of the soft set (F,A), or as the set

of e-approximate elements of the soft set.

Definition 2.9 For two soft sets (F,A) and (H,B) over U , (F,A) is called a soft subset of

(H,B) if

(1) A ⊆ B and

(2) F (a) ⊆ G(a), for all a ∈ A.

This relationship is denoted by (F,A)
∼⊂ (H,B). Similarly (F,A) is called a soft superset

of (H,B) if (H,B) is a soft subset of (F,A) which is denoted by (F,A)
∼⊃ (H,B).

Definition 2.10 Two soft sets (F,A) and (H,B) over U are called soft equal if (F,A) is a soft

subset of (H,B) and (H,B) is a soft subset of (F,A).

Definition 2.11 (F,A) over U is called an absolute soft set if F (a) = U for all a ∈ A and we

denote it by FU .

Definition 2.12 Let (F,A) and (G,B) be two soft sets over a common universe U such that

A ∩ B 6= φ. Then their restricted intersection is denoted by(F,A) ∩R (G,B) = (H,C) where

(H,C) is defined as H(c) = F (a) ∩G(a) for all a ∈ C = A ∩B.

Definition 2.13 The extended intersection of two soft sets (F,A) and (G,B) over a common

universe U is the soft set (H,C), where C = A ∪B, and for all a ∈ C, H(a) is defined as

H(a) =





F (a) if a ∈ A−B
G(a) if a ∈ B −A

F (a) ∩G(a) if a ∈ A ∩B.

We write (F,A) ∩ε (G,B) = (H,C).

Definition 2.14 The restricted union of two soft sets (F,A) and (G,B) over a common universe

U is the soft set (H,C), where C = A ∪ B, and for all a ∈ C, H(a) is defined as the soft set

(H,C) = (F,A) ∪R (G,B) where C = A ∩B and H(a) = F (a) ∪G(a) for all a ∈ C.

Definition 2.15 The extended union of two soft sets (F,A) and (G,B) over a common universe

U is the soft set (H,C), where C = A ∪B, and for all a ∈ C, H(a) is defined as

H(a) =





F (a) if a ∈ A−B
G(a) if a ∈ B −A

F (a) ∪G(a) if a ∈ A ∩B.

We write (F,A) ∪ε (G,B) = (H,C).
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§3. Soft Mixed Neutrosophic N-Algebraic Structures

Definition 3.1 Let 〈M ∪ I〉 be a mixed neutrosophic N -algebraic structure and let (F,A) be a

soft set over 〈M ∪ I〉. Then (F,A) is called a soft mixed neutrosophic N -algebraic structure if

and only if F (a) is a mixed neutrosophic sub N -algebraic structure of 〈M ∪ I〉 for all a ∈ A.

Example 3.1 Let {〈M ∪ I〉 = M1 ∪M2 ∪M3 ∪M4 ∪M5, ∗1, ∗2, · · · , ∗5} be a mixed neuto-

sophic 5-structure, where

M1 = 〈Z3 ∪ I〉, a neutrosophic group under multiplication mod3,

M2 = 〈Z6 ∪ I〉, a neutrosophic semigroup under multiplication mod6,

M3 = {0, 1, 2, 3, I, 2I, 3I}, a neutrosophic groupoid under multiplication mod4,

M4 = S3, and

M5 = {Z10, a semigroup under multiplication mod10}.

Let A = {a1, a2, a3} ⊂ E be a set of parameters and let (F,A) be a soft set over 〈M ∪ I〉,
where

F (a1) = {1, I} ∪ {0, 3, 3I} ∪ {0, 2, 2I} ∪A3 ∪ {0, 2, 4, 6, 8} ,
F (a2) = {2, I} ∪ {0, 2, 4, 2I, 4I} ∪ {0, 2, 2I} ∪A3 ∪ {0, 5} ,
F (a3) = {1, 2} ∪ {0, 3} ∪ {0, 2} ∪A3 ∪ {0, 2, 4, 6, 8} .

Clearly (F,A) is a soft mixed neutrosophic 5-algebraic structure over 〈M ∪ I〉.

Proposition 3.1 Let (F,A) and (H,A) be two soft mixed neutrosophic N -algebraic structures

over 〈M ∪ I〉. Then their intersection is again a soft mixed neutrosophic N -algebraic structure

over 〈M ∪ I〉.

Proof The proof is straightforward. 2
Proposition 3.2 Let (F,A) and (H,B) be two soft mixed neutrosophic N -algebraic structures

over 〈M ∪ I〉. If A ∩ B = φ, then (F,A) ∩ (H,B) is a soft mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉.

Proof The proof is straightforward. 2
Proposition 3.3 Let (F,A) and (H,B) be two soft mixed neutrosophic N -algebraic structure

over 〈M ∪ I〉. Then

(1) their extended intersection is a soft mixed neutrosophic N -algebraic structure over

〈M ∪ I〉;
(2) their restricted intersection is a soft mixed neutrosophic N -algebraic structure over

〈M ∪ I〉;
(3) their AND operation is a soft mixed neutrosophic N -algebraic structure over 〈M ∪ I〉.

Remark 3.1 Let (F,A) and (H,B) be two soft mixed neutrosophic N -algebraic structure over
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〈M ∪ I〉. Then

(1) their restricted union may not be a soft mixed neutrosophic N -algebraic structure over

〈M ∪ I〉.
(2) their extended union may not be a soft mixed neutrosophic N -algebraic structure over

〈M ∪ I〉.
(3) their OR operation may not be a soft mixed neutrosophic N -algebraic structure over

〈M ∪ I〉.

To establish the above remark, see the following example.

Example 3.2 Let {〈M ∪ I〉 = M1 ∪M2 ∪M3 ∪M4 ∪M5, ∗1, ∗2, · · · , ∗5} be a mixed neuto-

sophic 5-structure, where

M1 = 〈Z3 ∪ I〉, a neutrosophic group under multiplication mod3,

M2 = 〈Z6 ∪ I〉, a neutrosophic semigroup under multiplication mod6,

M3 = {0, 1, 2, 3, I, 2I, 3I}, a neutrosophic groupoid under multiplication mod4,

M4 = S3, and

M5 = {Z10, a semigroup under multiplication mod10}.

Let A = {a1, a2, a3} ⊂ E be a set of parameters and let (F,A) be a soft set over 〈M ∪ I〉,
where

F (a1) = {1, I} ∪ {0, 3, 3I} ∪ {0, 2, 2I} ∪A3 ∪ {0, 2, 4, 6, 8} ,
F (a2) = {2, I} ∪ {0, 2, 4, 2I, 4I} ∪ {0, 2, 2I} ∪A3 ∪ {0, 5} ,
F (a3) = {1, 2} ∪ {0, 3} ∪ {0, 2} ∪A3 ∪ {0, 2, 4, 6, 8} .

Let B = {a1, a4} be a another set of parameters and let (H,B) be a another soft mixed

neutrosophic 5-algebraic structure over 〈M ∪ I〉, where

H (a1) = {1, I} ∪ {0, 3I} ∪ {0, 2, 2I} ∪A3 ∪ {0, 2, 4, 6, 8} ,
H (a4) = {1, 2} ∪ {0, 3I} ∪ {0, 2I} ∪A3 ∪ {0, 5} .

Let C = A ∩B = {a1}. The restricted union (F,A) ∪R (H,B) = (K,C), where

K (a1) = F (a1) ∪H (a1) = {1, I, 2} ∪ {0, 3I} ∪ {0, 2, 2I} ∪A3 ∪ {0, 2, 4, 5, 6, 8}

Thus clearly {1, 2, I} and {0, 2, 4, 5, 6, 8} in H (a1) are not subgroups. This shows that

(K,C) is not a soft mixed neutrosophic 5-algebraic structure over 〈M ∪ I〉. Similarly one can

easily show 2 and 3 by the help of examples.

Definition 3.2 Let 〈D ∪ I〉 be a mixed dual neutrosophic N -algebraic structure and let (F,A)

soft set over 〈D ∪ I〉. Then (F,A) is called a soft mixed dual neutrosophic N -algebraic structure

if and only if F (a) is a mixed dual neutrosophic sub N -algebraic structure 〈D ∪ I〉 of for all

a ∈ A.
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Example 3.3 Let {〈D ∪ I〉 = D1 ∪D2 ∪D3 ∪D4 ∪D5, ∗1, ∗2, · · · , ∗5} be a mixed dual neuto-

sophic 5-algebraic structure, where

D1 = L7 (4) , D2 = S4, D3 = {Z10, a semigroup under multiplication modulo 10},
D4 = {0, 1, 2, 3, a groupoid under multiplication modulo 4},
D5 = 〈L7 (4) ∪ I〉.

Let A = {a1, a2} be a set of parameters and let (F,A) be a soft set over 〈D ∪ I〉, where

F (a1) = {e, 2} ∪A4 ∪ {0, 2, 4, 6, 8} ∪ {0, 2} ∪ {e, eI, 2, 2I} ,
F (a2) = {e, 3} ∪ S4 ∪ {0, 5} ∪ {0, 2} ∪ {e, eI, 3, 3I}

Clearly (F,A) is a soft mixed dual neutrosophic -structure over 〈D ∪ I〉.

Theorem 3.1 If 〈D ∪ I〉 is a mixed dual neutrosophic N -algebraic structure. Then (F,A) over

〈D ∪ I〉 is also a soft mixed dual neutrosophic N -algebraic structure.

Proposition 3.4 Let (F,A) and (H,B) be two soft mixed dual neutrosophic N -algebraic struc-

tures over 〈D ∪ I〉. Then their intersection is again a soft mixed dual neutrosophic N -algebraic

structure over 〈D ∪ I〉.

Proof The proof is straightforward. 2
Proposition 3.5 Let (F,A) and (H,B) be two soft mixed dual neutrosophic N -algebraic struc-

tures over 〈D ∪ I〉. If A ∩ B = φ, then (F,A) ∩ (H,B) is a soft mixed dual neutrosophic

N -algebraic structure over 〈D ∪ I〉.

Proof The proof is straightforward. 2
Proposition 3.6 Let (F,A) and (H,B) be two soft mixed dual neutrosophic N -algebraic struc-

tures over 〈D ∪ I〉. Then

(1) their extended intersection is a soft mixed dual neutrosophic N -algebraic structure over

〈D ∪ I〉;
(2) their restricted intersection is a soft mixed dual neutrosophic N -algebraic structure over

〈D ∪ I〉;
(3) their AND operation is a soft mixed dual neutrosophic N -algebraic structure over

〈D ∪ I〉.

Remark 3.2 Let (F,A) and (H,B) be two soft mixed Dual neutrosophicN -algebraic structures

over 〈D ∪ I〉. Then

(1) their restricted union may not be a soft mixed dual neutrosophic N -algebraic structure

over 〈D ∪ I〉;
(2) their extended union may not be a soft mixed dual neutrosophic N -algebraic structure

over 〈D ∪ I〉;
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(3) their OR operation may not be a soft mixed dual neutrosophic N -algebraic structure

over 〈D ∪ I〉.

One can easily establish the above remarks by the help of examples.

Definition 3.3 Let 〈W ∪ I〉 be a weak mixed neutrosophic N -algebraic structure and let (F,A)

soft set over 〈W ∪ I〉. Then (F,A) is called a soft weak mixed neutrosophic N -algebraic structure

if and only if F (a) is a weak mixed neutrosophic sub N -structure of 〈W ∪ I〉 for all a ∈ A.

Theorem 3.2 If 〈W ∪ I〉 is a weak mixed neutrosophic N -algebraic structure. Then (F,A)

over 〈W ∪ I〉 is also a soft weak mixed neutrosophic N -algebraic structure.

The restricted intersection, extended intersection and the AND operation of two soft weak

mixed neutrosophic N -algebraic structures is again soft weak mixed neutrosophic N -algebraic

structures.

The restricted union, extended union and the OR operation of two soft weak mixed neutro-

sophic N -algebraic structures may not be soft weak mixed neutrosophic N -algebraic structures.

Definition 3.4 Let 〈V ∪ I〉 be a weak mixed dual neutrosophic N -algebraic structure and let

(F,A) soft set over 〈V ∪ I〉. Then (F,A) is called a soft weak mixed dual neutrosophic N -

algebraic structure if and only if F (a) is a weak mixed dual neutrosophic sub N -structure of

〈V ∪ I〉 for all a ∈ A.

Theorem 3.3 If 〈V ∪ I〉 is a weak mixed dual neutrosophic N -algebraic structure. Then (F,A)

over 〈V ∪ I〉 is also a soft weak mixed dual neutrosophic N -algebraic structure.

The restricted intersection, extended intersection and the AND operation of two soft weak

mixed dual neutrosophic N -algebraic structures is again a soft weak mixed dual neutrosophic

N -algebraic structures.

The restricted union, extended union and the OR operation of two soft weak mixed dual

neutrosophic N -algebraic structures may not be soft weak mixed dual neutrosophic N -algebraic

structures.

Definition 3.5 Let (F,A) and (H,B) be two soft mixed neutrosophic N -algebraic structures

over 〈M ∪ I〉. Then (H,B) is called soft mixed neutrosophic sub N -algebraic structure of (F,A),

if

(1) B ⊆ A;

(2) H (a) is a mixed neutrosophic sub N -structure of F (a) for all a ∈ A.

It is important to note that a soft mixed neutrosophic N -algebraic structure can have soft

weak mixed neutrosophic sub N -algebraic structure. But a soft weak mixed neutrosophic sub

N -structure cannot in general have a soft mixed neutrosophic N -structure.

Definition 3.6 Let 〈V ∪ I〉 be a weak mixed neutrosophic N -algebraic structure and let (F,A)

be a soft set over 〈V ∪ I〉. Then (F,A) is called a soft weak mixed deficit neutrosophic N -
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algebraic structure if and only if F (a) is a weak mixed deficit neutrosophic sub N -structure of

〈V ∪ I〉 for all a ∈ A.

Proposition 3.7 Let (F,A) and (H,B) be two soft weak mixed deficit neutrosophic N -algebraic

structures over 〈V ∪ I〉. Then

(1) their extended intersection is a soft weak mixed deficit neutrosophic N -algebraic struc-

ture over 〈V ∪ I〉;
(2) their restricted intersection is a soft weak mixed deficit neutrosophic N -algebraic struc-

ture over 〈V ∪ I〉;
(3) their AND operation is a soft weak mixed deficit neutrosophic N -algebraic structure

over 〈V ∪ I〉.

Remark 3.3 Let (F,A) and (H,B) be two soft weak mixed deficit neutrosophic N -algebraic

structures over 〈V ∪ I〉. Then

(1) their restricted union may not be a soft weak mixed deficit neutrosophic N -algebraic

structure over 〈V ∪ I〉;
(2) their extended union may not be a soft weak mixed deficit neutrosophic N -algebraic

structure over 〈V ∪ I〉;
(3) their OR operation may not be a soft weak mixed deficit neutrosophic N -algebraic

structure over 〈V ∪ I〉.

One can easily establish the above remarks by the help of examples.

Definition 3.7 Let 〈M ∪ I〉 be a mixed neutrosophic N -algebraic structure and let (F,A)

soft set over 〈M ∪ I〉. Then (F,A) is called a soft Lagrange mixed neutrosophic N -algebraic

structure if and only if F (a) is a Lagrange mixed neutrosophic sub N -structure of 〈M ∪ I〉 for

all a∈ A.

Theorem 3.4 If 〈M ∪ I〉 is a Lagrange mixed neutrosophic N -algebraic structure. Then (F,A)

over 〈M ∪ I〉 is also a soft Lagrange mixed neutrosophic N -algebraic structure.

Remark 3.4 Let (F,A) and (H,B) be two soft Lagrange mixed neutrosophic N -algebriac

structures over 〈M ∪ I〉. Then

(1) their restricted union may not be a soft Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(2) their extended union may not be a soft Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(3) their AND operation may not be a soft Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(4) their extended intersection may not be a soft Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(5) their restricted intersection may not be a soft Lagrange mixed neutrosophicN -algebraic

structure over 〈M ∪ I〉.



136 F.Smarandache and M.Ali

(6) their OR operation may not be a soft Lagrange mixed neutrosophic N -algebraic struc-

ture over 〈M ∪ I〉.

One can easily establish the above remarks by the help of examples.

Now on similar lines, we can define soft Lagrange weak deficit mixed neutrosophic N -

algebraic structures.

Definition 3.8 Let 〈M ∪ I〉 be a mixed neutrosophic N -algebraic structure and let (F,A) be

a soft set over 〈M ∪ I〉. Then (F,A) is called a soft weak Lagrange mixed neutrosophic N -

algebraic structure if and only if F (a) is not a Lagrange mixed neutrosophic sub N -structure

of 〈M ∪ I〉 for some a ∈ A.

Remark 3.5 Let (F,A) and (H,B) be two soft weak Lagrange mixed neutrosophic N -algebraic

structures over 〈M ∪ I〉. Then

(1) their restricted union may not be a soft weak Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(2) their extended union may not be a soft weak Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(3) their AND operation may not be a soft weak Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(4) their extended intersection may not be a soft weak Lagrange mixed neutrosophic N -

algebraic structure over 〈M ∪ I〉;
(5) their restricted intersection may not be a soft weak Lagrange mixed neutrosophic N -

algebraic structure over 〈M ∪ I〉;
(6) their OR operation may not be a soft weak Lagrange mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉.

One can easily establish the above remarks by the help of examples. Similarly we can

define soft weak Lagrange weak deficit mixed neutrosophic N -algebraic structures.

Definition 3.9 Let 〈M ∪ I〉 be a mixed neutrosophic N -algebraic structure and let (F,A) be a

soft set over 〈M ∪ I〉. Then (F,A) is called a soft Lagrange free mixed neutrosophic N -algebraic

structure if and only if F (a) is not a Lagrange mixed neutrosophic sub N -structure of 〈M ∪ I〉
for all a ∈ A.

Theorem 3.5 If 〈M ∪ I〉 is a Lagrange free mixed neutrosophic N -algebraic structure. Then

(F,A) over 〈M ∪ I〉 is also a soft Lagrange free mixed neutrosophic N -algebraic structure.

Remark 3.6 Let (F,A) and (H,B) be two soft Lagrange free mixed neutrosophic N -algebraic

structures over 〈M ∪ I〉. Then

(1) their restricted union may not be a soft Lagrange free mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(2) their extended union may not be a soft Lagrange free mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
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(3) their AND operation may not be a soft Lagrange free mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉;
(4) their extended intersection may not be a soft Lagrange free mixed neutrosophic N -

algebraic structure over 〈M ∪ I〉;
(5) their restricted intersection may not be a soft Lagrange free mixed neutrosophic N -

algebraic structure over 〈M ∪ I〉;
(6) their OR operation may not be a soft Lagrange free mixed neutrosophic N -algebraic

structure over 〈M ∪ I〉.

One can easily establish the above remarks by the help of examples. Similarly we can

define soft Lagrange free weak deficit mixed neutrosophic N -algebraic structures.

§4. Conclusion

This paper is an extension of soft sets to mixed neutrosophic N -algebraic structures. Their

related properties and results are explained with illustrative examples.
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1 Süha Yılmaz, Emin özyıLmaz and Ümit Ziya Savcı . . . . . . . . . . . . . . . . . . . . . . . . 06

3. Existence Results of Unique Fixed Point in 2-Banach Spaces

G.S.Saluja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Total Domination in Lict Graph

Girishi.V.R. and P.Usha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. The Genus of the Folded Hypercube

R.X.Hao, W.M.Cairen, H.Y.Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. Characteristic Polynomial & Domination Energy of Some Special Class of Graphs

M.Kamal Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7. On Variation of Edge Bimagic Total Labeling

A.Amara Jothi, N.G.David and J.Baskar Babujee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8. Characterization of Pathos Adjacency Blict Graph of a Tree

Nagesh H.M. and R.Chandrasekhar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9. Regularization and Energy Estimation of Pentahedra (Pyramids) Using Geometric

Element Transformation Method Buddhadev Pal and Arindam Bhattacharyya . . . . . 67

10. Algorithmic and NP-Completeness Aspects of a Total Lict Domination

Number of a Graph Girish V.R. and P.Usha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11. Upper Singed Domination Number of Graphs

H.B.Walikar et al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12. Star Chromatic and Defining Number of Graphs

D.A.Mojdeh et al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

13. Bounds for the Harmonious Coloring of Myceilskians

Vernold V.J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

14. A Topological Model for Ecologically Industrial Systems

Linfan Mao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Vol.2,2014

1. On Ruled Surfaces in Minkowski 3-Space
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