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Abstract: The goal of this article is to study conformal Yamabe soliton and conformal

gradient Yamabe soliton on the para-Kenmotsu manifold. Firstly, we have proved some

results of para-Kenmotsu manifold when its admit conformal Yamabe soliton. Later, we

have worked on conformal gradient Yamabe soliton on the para-Kenmotsu manifold.

Key Words: Yamabe soliton, conformal Yamabe soliton, gradient Yamabe soliton, con-

formal gradient Yamabe soliton, para-Kenmotsu manifold.
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§1. Introduction

The concept of Yamabe flow was introduced by Hamilton [9] in order to produce Yamabe metrics

on compact Riemannian manifolds. The evaluation of the metric g0 in time t to g = g(t) using

the equation is known as Yamabe flow. The equation of this is

∂

∂t
g(t) = −r(t)g(t), g(0) = 0, t ≥ 0,

where r is the scalar curvature of the Riemannian metric g. In dimension 2, the Yamabe flow

is similar to the Ricci flow. However, the Yamabe flow and the Ricci flow exhibit distinct

behaviors at higher dimensions. The Yamabe soliton [1] is a specific solution of the Yamabe

flow that moves via a homothetic family of one-parameter difeomorphisms, much like the Ricci

soliton [9]. The equation of the Yamabe soliton is

1

2
LXg = (r − λ)g,

where LX is the Lie derivative along the vector field X. Many researches have studied on

Yamabe soliton such as [5, 6, 8, 11, 17] and many others.

In 2021, Roy, Dey and Bhattacharyya [13] generalized the notation of Yamabe solition and

1Received July 24,2024, Accepted October 20,2024.
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they introduced conformal Yamabe soliton which is

(LXg)(U, V ) =
[
2r − 2λ+

(
p+

2

n

)]
g(U, V ), (0.1)

where LX denotes the Lie derivative along X, r is the scalar curvature, λ is a constant and p

is the time dependent scalar field. λ < 0, λ = 0 and λ > 0 confirmed that conformal Yamabe

soliton is expanding, steady and shrinking respectively.

When a smooth function f ’s gradient is represented by X, it can be substituted by Df

to create the conformal gradient Yamabe soliton, for which the equation (1.1) takes on the

following form

∇2f =
{
r − λ+ (p+

2

n
)
}
, (1.1)

where, ∇2f is the Hessian of f and this defined as Hessf (U, V ) = g(∇UDf, V ), D denotes the

gradient [1] operator.

This paper is constructed as follows:

After a brief introduction, we have covered some necessary results of para-Kenmotsu man-

ifold in section two. In section 3, we have worked on conformal Yamabe soliton on para-

Kenmotsu manifold. Here we have proved that the scalar r curvature is dependent on p, the

soliton vector field X and the Reeb vector field ξ are Killing, X is constant multiple of ξ, the

soliton is shrinking, steady and expanding if p > 34
3 , p = 34

3 and p < 34
3 respectively and some

other results are also proved. In section 4, we have worked on conformal gradient Yamabe

soliton.

§2. Preliminaries

An n− dimensional smooth manifold Mn is said to be an almost para-contact manifold ([3],

[10], [12]) if it admits an (1, 1) tensor field φ, a unit vector field ξ, the smooth 1-form η and the

pseudo-Riemannian metric g such that

φ2U = U − η(U)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (2.1)

g(U, ξ) = η(U), (2.2)

g(ξ, ξ) = 1, (2.3)

g(φU, φV ) = −g(U, V ) + η(U)η(V ), (2.4)

for ∀U, V ∈ χ(M), where χ(M) denotes Lie algebra of smooth vector fields on M .

dη(U, V ) = g(U, φV ), (2.5)

for every U, V ∈ χ(M).
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An almost para-contact metric manifold is said to be paraKenmotsu manifold if it satisfies

(∇Uφ)V = g(φU, V )− η(V )φU, (2.6)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian metric g.

Moreover, in a para-Kenmotsu manifold, we have the following relations [7]

∇Uξ = U − η(U)ξ, (2.7)

(∇Uη)V = g(U, V )− η(U)η(V ), (2.8)

R(U, V )ξ = η(U)V − η(V )U, (2.9)

R(ξ, U)V = η(V )U − g(U, V )ξ, (2.10)

R(ξ, U)ξ = U − η(U)ξ,

S(U, ξ) = −(n− 1)η(U), (2.11)

where Q and R denotes the Ricci operator and the Riemann curvature tensor respectively and

g(QU, V ) = S(U, V ).

It’s known that the Ricci tensor of a 3−dimensional para-Kenmotsu manifold is

S(U, V ) =
1

2

[
(r + 2)g(U, V )− (r − 6)η(U)η(V )]. (2.12)

Several authors have studied on para-Kenmotsu manifold such as [2, 14, 15, 16] and many

others.

§3. Conformal Yamabe Soliton

Theorem 3.1 If a para-Kenmotsu manifold Mn admits conformal Yamabe soliton (g, ξ, λ, p),

then the scalar curvature is dependent on p and the Reeb vector field ξ is Killing.

Proof If ξ is the Reeb vector field then

(Lξg)(U, V ) = g(∇Uξ, V ) + g(U,∇V ξ).

Using (2.7) in the above equation and then applying (2.2), we get

(Lξg)(U, V ) = 2[g(U, V )− η(U)η(V )]. (3.1)

Again from equation (1.1), we have

(Lξg)(U, V ) =
[
2r − 2λ+

(
p+

2

n

)]
g(U, V ). (3.2)
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Equating (3.1) and (3.2), we get[
2r − 2λ+

(
p+

2

n

)]
g(U, V ) = 2[g(U, V )− η(U)η(V )]. (3.3)

Substituting ξ in the place of V in the previous equation, we get[
2r − 2λ+

(
p+

2

n

)]
η(U) = 0. (3.4)

Since η(U) 6= 0, it gives

r = λ−
(p

2
+

1

n

)
, (3.5)

where λ is a constant so, the scalar curvature r is dependent on p.

Using (3.5) in (3.2), we get (Lξg) = 0. Hence, the Reeb vector field ξ is Killing. �

Theorem 3.2 Let a 3−dimensional para-Kenmotsu manifold M3 admits conformal Yamabe

soliton (g, ξ, λ, p), ξ being the Reeb vector field and if the manifold is Ricci symmetric, then

6λ− 3p = −34.

Proof Using (3.5) in (2.12) for 3−dimensional, we obtain

S(U, V ) =
1

2

[{
λ−

(p
2

+
1

3

)
+ 2
}
g(U, V )

−
{
λ−

(p
2

+
1

3

)
+ 6
}
η(U)η(V )

]
. (3.6)

Taking covariant derivative of the above equation along Z, we get

(∇ZS)(U, V ) = −1

2

[{
λ−

(p
2

+
1

3

)
+ 6
}

×
{
η(U)(∇Zη)V + η(V )(∇Zη)U

]
. (3.7)

The manifold is Ricci symmetric i,e, (∇ZS)(U, V ) = 0, then from (3.7), we get{
λ−

(p
2

+
1

3

)
+ 6
}{

η(U)(∇Zη)V + η(V )(∇Zη)U
}

= 0. (3.8)

Applying (2.8), in the foregoing equation (3.8), we obtain{
λ−

(p
2

+
1

3

)
+ 6
}{

g(φU, φV
}

= 0. (3.9)

Since g(φU, φV ) 6= 0, it yields

λ−
(p

2
+

1

3

)
+ 6 = 0,
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Hence, from the above

6λ− 3p = −34. (3.10)

This completes the proof. �

Corollary 3.3 If a 3−dimensional para-Kenmotsu manifold M3 admits conformal Yamabe

soliton (g, ξ, λ, p) and if the manifold is Ricci symmetric, then the soliton is shrinking if p > 34
3 ,

steady if p = 34
3 and expanding if p < 34

3 .

Proof From equation (3.10), we get

6λ = 3p− 34.

The definition of shrinking, steady and expanding is that λ > 0, λ = 0 and λ < 0 respec-

tively.

So, from the above soliton is shrinking, steady and expanding if p > 34
3 , p = 34

3 and p < 34
3

respectively. �

Theorem 3.4 Let a n−dimensional para-Kenmotsu manifold admits conformal Yamabe soliton

(g,X, λ, p), such that the soliton vector field X is pointwise collinear with ξ, then X is a constant

multiple of ξ and X is a Killing vector field.

Proof Let X = cξ, where c is a function and ξ is the Reeb vector field then

(Lcξg)(U, V ) = g(∇Ucξ, V ) + g(U,∇V cξ).

Using (2.7) in the above equation and then applying (2.2), we get

(Lcξg)(U, V ) = (Uc)η(V ) + (V c)η(U) + 2c{g(U, V )− η(U)η(V )}. (3.11)

Again from equation (1.1), we have

(Lcξg)(U, V ) =
[
2r − 2λ+

(
p+

2

n

)]
g(U, V ). (3.12)

Equating (3.11) and (3.12), we get[
2r − 2λ+

(
p+

2

n

)]
g(U, V ) = (Uc)η(V ) + (V c)η(U)

+2c{g(U, V )− η(U)η(V )}. (3.13)

Putting V = ξ, in the previous equation, we obtain

(Uc) =
[
2r − 2λ+

(
p+

2

n

)
− ξc

]
η(U). (3.14)
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Again, Substituting U = ξ in above equation, we get

(ξc) =
[
r − λ+

(p
2

+
1

n

)]
. (3.15)

Using (3.15) in (3.14) becomes

(Uc) =
[
r − λ+

(p
2

+
1

n

)]
η(U). (3.16)

Now, taking exterior differentiation of (3.16), we get[
r − λ+

(p
2

+
1

n

)]
dη = 0. (3.17)

Since dη 6= 0, the above equation becomes[
r − λ+

(p
2

+
1

n

)]
= 0. (3.18)

Using (3.18) in (3.16) gets

Uc = 0,

which implies that c is constant.

If we are using (3.18) in (1.1) yields

(LXg)(U, V ) = 0.

Hence, X is a Killing vector field. �

§4. Conformal Gradiant Yamabe Soliton

Theorem 4.1 If a n−dimensional para-Kenmotsu manifold admits conformal gradient Yamabe

soliton with potential function f , then if the scalar curvature is constant then the potential

function f is also constant and conversely.

Proof From equation (1.2), we gets

∇UDf =
[
r − λ+

(
p+

2

n

)]
U. (4.1)

Taking covariant differentiation (4.1) along the vector field V , we get

∇V∇UDf = (V r)U +
{
r − λ+

(
p+

2

n

)}
∇V U. (4.2)

Interchanging U and V in the above equation, we get

∇U∇VDf = (Ur)V +
{
r − λ+

(
p+

2

n

)}
∇UV. (4.3)
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Again, from (4.1) we have

∇[U,V ]Df =
[
r − λ+

(
p+

2

n

)]
(∇UV −∇V U). (4.4)

As is widely known that

R(U, V )Df = ∇U∇VDf −∇V∇UDf −∇[U,V ]Df,

Using (4.2),(4.3) and (4.4) in the previous equation, we get

R(U, V )Df = (Ur)V − (V r)U. (4.5)

Contracting (4.5) over U , we get

S(V,Df) = −(n− 1)g(V,Dr). (4.6)

Substituting, V = ξ and using (2.11) in (4.6), we get ξf = ξr.

Putting U = ξ in (4.5), we obtain

R(ξ, V )Df = (ξr)V − (V r)ξ. (4.7)

Taking inner product with U , yields

g(R(ξ, V )Df,U) = (ξr)g(U, V )− (V r)η(U). (4.8)

From (2.10)

g(R(ξ, V )Df,U) = [η(U)(V f)− g(U, V )(ξf)]. (4.9)

As we know,

g(R(ξ, V )Df,U) = −g(R(ξ, V )U,Df).

So, from equation (4.8) and (4.9) we get,

(ξr)g(V,U)− (V r)η(U) = −[η(U)(V f)− g(U, V )(ξf)], (4.10)

which gives the following after antisymmetrizing

(Ur)η(V )− (V r)η(U) = (Uf)η(V )− (V f)η(U). (4.11)

Replacing V by ξ in the previous equation (4.11) and using ξf = ξr implies that Df = Dr.

So, if the scalar curvature is constant, then the potential function is also constant and conversely.

This completes the proof. �
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On the Klein Cubic Threefold in PG(4, 2)
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Abstract: This paper investigates the structural properties of the Klein cubic threefold F
in 4−dimensional projective space over the finite field GF (2). We focus on the intersection

properties of the lines and the planes with F in PG(4, 2). Notably, it is identified six spreads,

each containing five lines in F . Additionally, two distinct affine plane models are presented

by using the tangent planes of F . Furthermore, it is shown that Desargues’ theorem does

not hold in F .

Key Words: Klein cubic threefold, projective spaces, spread, Galois field.

AMS(2010): 51E20, 51E30.

§1. Introduction

Cubic surfaces have been extensively studied in algebraic geometry and have applications in

fields such as those of the computer graphics, physics and engineering. One notable early exam-

ple is the non-singular Klein cubic threefold studied by Klein in 1879, [11]. The classification of

non-singular cubic surfaces, particularly over finite fields, remains a significant area of research.

For instance, it has been shown that a non-singular cubic surface over the field GF (2) can have

15, 9, 5, 3, 2, 1, or 0 lines in [5,6,10]. In [13], Rosati further demonstrated that when q is

odd, the number of lines must be one of 27, 15, 9, 7, 5, 3, 2, 1, or 0. In the 1960s, Hirschfeld

initiated a program to classify cubic surfaces with 27 lines over finite fields, [8]. This work is

a substantial contribution to this problem. Some examples of the nonsingular cubic surfaces

were given in [9].

In order to classify projective spaces, tools from Veronesean embedding and quadric theory

were used [1]-[4], [7], [12].

In this paper, we delve into the structural properties of the Klein cubic threefold F situated

in 4−dimensional projective space over the finite field GF (2). Our investigation primarily

focuses on the intricate intersection properties of lines and planes with F . Notably, every

point on the Klein cubic threefold is identified as an Eckardt point, marking a fundamental

characteristic of F .

Utilizing Schläfli labeling, we systematically notate the 15 lines comprising F . Through our

analysis, we observe that each line intersects six others while remaining skew to eight additional

1Received August 25,2024, Accepted October 22,2024.
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lines. Moreover, F has six spreads, each consisting of five lines.

An important finding in our study is the determination of the point (1, 1, 1, 1, 1), which is

the nucleus of F . We meticulously examine the tangent planes to F and present two distinct

affine plane models based on their specific properties.

Furthermore, we rigorously demonstrate that Desargues’ theorem, a cornerstone of pro-

jective geometry, does not hold in F . This observation underscores the unique geometric and

algebraic characteristics that distinguish F .

Throughout this paper, we aim to provide a comprehensive exploration of these structural

properties, offering insights into the rich interplay between algebraic geometry and combinato-

rial structure in the context of cubic threefold PG(4, 2).

§2. Preliminaries

Let GF (q) denote Galois field of order q = pk where p is a prime. If any (n+ 1)−dimensional

vector space V , the n−dimensional projective space PG(n, q) over GF (q) is the set of all sub-

spaces of V distinct from the trivial subspaces. 1−dimensional subspaces are called the points

of PG(n,K), 2−dimensional subspaces are called the (projective) lines and 3−dimensional ones

are called (projective) planes. We remark that by going from a vector space to the associated

projective space, the dimension drops by one unit. Hence an (n+ 1)−dimensional vector space

V gives rise to an n−dimensional projective space PG(n,K) [3]-[7].

This is, the points in projective space PG(n, q) are defined by equivalence classes of non-

zero vectors in the vector space V .

For example, for 4−dimensional vector space, the associated 3−dimensional projective s-

pace would be where points are represented by equivalence classes of vectors (w, x, y, z), reducing

the dimension by one unit.

The 4−dimensional projective space PG(4, q) over GF (q) contains q4 + q3 + q2 + q + 1

points and PG(4, 2) has 31 points. The points of PG(4, 2) are respectively listed as follows:

P1(0, 0, 0, 0, 1), P2(0, 0, 0, 1, 0), P3(0, 0, 1, 0, 0), P4(0, 0, 1, 0, 1), P5(0, 0, 1, 1, 1),

P6(0, 1, 0, 0, 0), P7(0, 1, 0, 0, 1), P8(0, 1, 0, 1, 0), P9(0, 1, 1, 1, 0), P10(1, 0, 0, 0, 0),

P11(1, 0, 0, 1, 0), P12(1, 0, 0, 1, 1), P13(1, 0, 1, 0, 0), P14(1, 1, 0, 0, 1), P15(1, 1, 1, 0, 0),

P16(0, 0, 0, 1, 1), P17(0, 0, 1, 1, 0), P18(0, 1, 1, 0, 0), P19(1, 0, 0, 0, 1), P20(1, 1, 0, 0, 0),

P21(0, 1, 0, 1, 1), P22(0, 1, 1, 0, 1), P23(1, 0, 1, 0, 1), P24(1, 0, 1, 1, 0), P25(1, 1, 0, 1, 0),

P26(0, 1, 1, 1, 1), P27(1, 0, 1, 1, 1), P28(1, 1, 0, 1, 1), P29(1, 1, 1, 0, 1), P30(1, 1, 1, 1, 0),

P31(1, 1, 1, 1, 1).

The Klein cubic threefold F is given by the equation

F : x2y + y2z + z2v + v2w + w2x = 0,

where x, y, z, v and w represent the coordinates of a point (v, w, x, y, z) in the projective space
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PG(4, q) over GF (q). In algebraic geometry, a cubic threefold is a hypersurface of degree 3 in

4−dimensional projective space. This Klein cubic threefold F over the field F (q) is the zero

set of a homogeneous cubic equation in five variables over GF (q).

2.1. Klein Cubic Threefold F with 15 Lines

We use the combinatorial definition where a line is considered as a subsets of points on F .

Proposition 2.1 Every Klein cubic threefold F over the field GF (2) contains 15 points and

15 lines. Every line has three points on it.

Proof In PG(4, 2), a point is denoted by P (a0, a1, a2,a3, a4). A line through the points

P (a0, a1, a2, a3, a4) and P (b0, b1, b2,b3, b4) is denoted by

l =

 a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

 .

Let F be Klein cubic threefold over the field GF (2). F can be identified with a set of the

points Pi satisfying the equation x2y + y2z + z2v + v2w + w2x = 0 in PG(4, 2) such that

P1(0, 0, 0, 0, 1), P2(0, 0, 0, 1, 0), P3(0, 0, 1, 0, 0), P4(0, 0, 1, 0, 1), P5(0, 0, 1, 1, 1), P6(0, 1, 0, 0, 0),

P7(0, 1, 0, 0, 1), P8(0, 1, 0, 1, 0), P9(0, 1, 1, 1, 0), P10(1, 0, 0, 0, 0), P11(1, 0, 0, 1, 0), P12(1, 0, 0, 1, 1),

P13(1, 0, 1, 0, 0), P14(1, 1, 0, 0, 1) and P15(1, 1, 1, 0, 0). The incidence relation on F over the field

GF (2) is given as the following table: We define the incidence matrix A = [aij ] of F such that

aij = 1, where i, j ∈ {1, 2, · · · , 15} if and only if the line li is incident to the point Pj and 0

otherwise; here the rows represent the lines and the columns the points of F . This matrix rep-

resents the incidence relation between the points Pj and the lines li of the Klein cubic threefold

over the field GF (2) in Table 1.

Table 1. Incidence relation between the points and the lines of F

This completes the proof. �
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Proposition 2.2 Every point of Klein cubic threefold over the field GF (2) is an Eckardt point,

and the three Eckardt points lie on a line on the cubic threefold F .

Proof Let F be Klein cubic threefold over the field GF (2) of characteristic 2. Every point

of Klein cubic threefold lies on three lines in F . So, the number of Eckardt points of Klein

cubic threefold over the field GF (2) is 15. Eckardt points with their coordinates as the point

of concurrency of three labeled lines can be seen in Table 1. Also, the three Eckardt points lie

on a line on the cubic threefold F . For example, P1, P3 and P4 lie on the line l1 of F . �

Proposition 2.3 Each line in F intersects exactly six others and is skew to the remaining

eight lines in F .

Proof Consider the subset of 15 lines of the Klein cubic threefold over the field GF (2)

labeled according to the Schläfli notation. The intersection properties of these lines indicate that

each line intersects exactly six others and is skew to the remaining eight. The intersection table

for these 15 lines is provided in Table 2, where intersections are marked and non-intersecting

lines are represented by 0.

Table 2. Pairwise intersection table of the 15 lines of F

This completes the proof. �

§3. Classifications the Lines of the Klein Cubic Threefold F Modulo 2

3.1. Line Spreads of F

A (crisp) k−spread, or simply spread of the projective geometry PG(n,K) is a partition of the

point set of PG(n,K) into k−spaces, for some k, 1 ≤ k ≤ n − 1. We now give line spreads of

Klein cubic threefold F over the field GF (2).

Proposition 3.1 Every Klein cubic threefold F over the field GF (2) has 6 spreads with five
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lines. Moreover, every line of the threefold F belongs to exactly two spreads.

Proof Let F be Klein cubic threefold over the field GF (2). Let Si be the set of lines

spreads of Klein cubic threefold F . 1−spread Si of F must be five lines because of a partition

of the point set of F . It is easily obtained that there are six line spreads of F from Table 1.

l1 = {P1, P3, P4} l6 = {P2, P10, P11} l11 = {P5, P12, P13}

l2 = {P1, P6, P7} l7 = {P3, P8, P9} l12 = {P6, P13, P15}

l3 = {P1, P11, P12} l8 = {P3, P10, P13} l13 = {P7, P10, P14}

l4 = {P2, P4, P5} l9 = {P4, P14, P15} l14 = {P8, P12, P14}

l5 = {P2, P6, P8} l10 = {P5, P7, P9} l15 = {P9, P11, P15} .

Table 3. Lines spreads of Klein cubic threefold F

and lines spreads of Klein cubic threefold F are Si, i = 1, 2, · · · , 6, where

S1 = {l1, l5, l11, l13, l15}, S2 = {l1, l6, l10, l12, l14} , S3 = {l2, l4, l8, l14, l15} ,

S4 = {l2, l6, l7, l9, l11} , S5 = {l3, l4, l7, l12, l13} , S6 = {l3, l5, l8, l9, l10} .

From Table 3, two different spreads of F have a common line. �

3.2. Skew-Tangent-Secant Lines to F

The study of lines in relation to the Klein cubic threefold F reveals geometric properties and

relationships. The classification of lines as skew, tangent, or secant provides insight into the

structure and interaction of F within the projective space PG(4, 2). The following theorem

presents detailed characteristics of these lines in relation to F .

Theorem 3.2 Let F be a Klein cubic threefold with exactly 15 lines. Then,

(1) There are four tangent lines and eight secant lines passing through any point in F ;

(2) PG(4, 2) has exactly 20 lines not intersecting with F , 60 tangent lines to F , and 60

secant lines to F ;

(3) Four lines of the lines passing through any point in PG(4, 2)\F intersect with F at two

points; seven lines of them intersect with F at one point; and four lines of them intersect with

F at no point;

(4) Eight lines of the lines passing through any point on F intersect with F at two points;

four lines of them intersect with F at one point; and three lines of them intersect with F at

three points.

Proof (1) Let F be the Klein cubic threefold with exactly 15 lines. Since the incidence

relation between the points and the lines of F , there are three points on any line and three

lines passing through any point Pi, i = 1, 2, · · · , 15 in F . Also, three of the 15 lines in PG(4, 2)

passing through any point of F belong to F . There are seven points of F on these three lines,

and there are eight points of F apart from these lines. Therefore, 8 lines passing through any

point Pi, i = 1, 2, · · · , 15 of F are formed secant lines. Thus, the remaining 4 lines passing

through any point Pi of F are tangent lines.
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(2) Since the number of tangent lines passing through each of the 15 points on F is 4, the

total number of tangent lines to F in PG(4, 2) is 60. In addition, since the number of secant

lines passing through a point on F is 8, the total number of secant lines is calculated 15.8
2 = 60.

(3) Let the points of PG(4, 2) be denoted by their indices, and the lines of PG(4, 2) denoted

by the points on them. There exist 15 lines passing through any point in PG(4, 2). It is easily

seen that four lines of them do not intersect with F , four lines of them intersect with the F at

two points, and seven lines of them intersect with F at one point. The lines in PG(4, 2) through

the points not on F are listed according to the intersection points with F in the following tables.

16-20-28 17-19-27 18-19-29 19-26-30 21-24-29

16-18-26 17-20-30 18-24-25 20-22-23 22-24-28

16-23-24 17-21-22 18-27-28 20-26-27 22-25-27

16-29-30 17-28-29 19-21-25 21-23-30 23-25-26

Table 4. Lines not intersecting with F

16- 4 -17 17- 12 -23 19- 5 -24 21- 3 -26 23- 8 -31 26- 10 -31

16- 6 -21 17- 15 -25 19- 7 -20 21- 13 -31 23- 9 -28 26- 11 -29

16- 9 -22 17- 14 -31 19- 8 -28 21- 15 -27 24- 1 -27 26- 13 -28

16- 11 -19 18- 1 -22 19- 9 -31 21- 10 -28 24- 6 -30 27- 6 -31

16- 13 -27 18- 5 -21 19- 15 -22 22- 2 -26 24- 7 -31 27- 7 -30

16- 14 -25 18- 11 -30 20- 2 -25 22- 11 -31 24- 14 -26 27- 8 -29

16- 15 -31 18- 12 -31 20- 4 -29 22- 10 -29 25- 1 -28 28- 3 -31

17- 7 -26 18- 13 -20 20- 5 -31 22- 12 -30 25- 3 -30 28- 4 -30

17- 8 -18 18- 14 -23 20- 9 -24 23- 2 -27 25- 4 -31 29- 2 -31

17- 10 -24 19- 3 -23 20- 12 -21 23- 6 -29 25- 5 -29 30- 1 -31

Table 5. Tangent lines to F

16- 1 -2 18- 4 -7 21- 1 -8 23- 5 -11 26- 1 -9 28- 6 -12

16- 3 -5 18- 10 -15 21- 2 -7 23- 7 -15 26- 4 -8 28- 7 -11

16- 7 -8 19- 1 -10 21- 4 -9 24- 2 -13 26- 5 -6 29- 1 -15

16- 10 -12 19- 2 -12 21- 11 -14 24- 3 -11 26- 12 -15 29- 3 -14

17- 1 -5 19- 4 -13 22- 3 -7 24- 4 -12 27- 3 -12 29- 9 -12

17- 2 -3 19- 6 -14 22- 4 -6 24- 8 -15 27- 4 -11 29- 7 -13

17- 6 -9 20- 1 -14 22- 5 -8 25- 11 -6 27- 9 -14 30- 2 -15

17- 11 -13 20- 3 -15 22- 13 -14 25- 7 -12 27- 5 -10 30- 5 -14

18- 2 -9 20- 6 -10 23- 1 -13 25- 8 -10 28- 2 -14 30- 8 -13

18- 3 -6 20- 8 -11 23- 4 -10 25- 9 -13 28- 5 -15 30- 9 -10

Table 6. Secant lines to F
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(4) It is easily seen that eight lines of the lines passing through any point on F intersect

with F at two points from Table 6; four lines of them intersect with F at one point from Table

5; and three lines of them intersect with F at three points from Table 3. �

Let Bn be a set of qn−1 + qn−2 + · · · + q + 1 points, not all on a hyperplane in the

n−dimensional projective space PG(n, q) over the Galois field GF (q), n ≥ 2. A point not in

Bn is called a nucleus of Bn if every line through it meets Bn (exactly once, of course). The

set of all nuclei of Bn is denoted by N(Bn).

Proposition 3.3 The point P31 = (1, 1, 1, 1, 1) not on F in PG(4, 2) is nucleus of F .

Proof Let F be Klein cubic threefold over the fieldGF (2) of characteristic 2. The projective

space PG(4, 2) contains 31 points and 135 lines. There are 15 lines through every point. 15

points of these 31 points are on F and these points are labeled Pi, i = 1, · · · , 15. Consider the

point P31 = (1, 1, 1, 1, 1) in PG(4, 2) not satisfying the equation

x2y + y2z + z2v + v2w + w2x = 0

and every line passing through the point P31 is a tangent line of F from Table 6. So, P31 is a

nucleus of F . �

§4. Geometric Structures Associated with the Klein Cubic Threefold F

In this section, we investigate well-known geometric structures such as the Fano plane, affine

plane, and Desargues configuration associated with the Klein cubic threefold F .

First of all, we show that F does not include any projective plane. Then, we determine

the planes that are tangent to F . We give two different affine plane models with these tangent

planes. Finally, we show that the Desarg theorem is not valid in F .

Proposition 4.1 There is no any projective plane in Klein cubic threefold F over the field

GF (2).

Proof Let F be Klein cubic threefold over the field GF (2). If there is a projective plane in

Klein cubic threefold F over the field GF (2),then there are seven points and seven lines such

that three points on any line and three lines passing through any point in this projective plane

in F . It is well known that seven points of the projective plane on three lines passing through

any point. But the remaining 4 lines of the projective plane are secant lines from Table 7 in

PG(4, 2). So, there is no any projective plane in Klein cubic threefold F . �

Proposition 4.2 Let F be Klein cubic threefold over the field GF (2) in PG(4, 2). There is

a single tangent projective plane at every point of the Klein cubic threefold F over the field

GF (2).

Proof Let F be Klein cubic threefold over the field GF (2). Let the points of F be

shown with their indices. Table 7 shows the tangent projective planes πi at the points Pi,
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i = 1, 2, · · · , 15, to F over the field GF (2).

Table 7. Tangent projective planes to F

This completes the proof. �

The following results are obtained from the Table 7.

Corollary 4.3 (i) Each tangent plane of the surface F contains three tangent lines passing

through the tangent point on F and four lines not intersecting the surface F .

(ii) Three tangent planes of F intersect along a line not intersecting with F .

(iii) The nucleus of F is not on any tangent planes of F in PG(4, 2).

(iv) There are four tangent lines any point in F .

Theorem 4.4 Three of the planes passing through the nucleus of F intersect along a line with

F , and four of them intersect with F at two points.

Proof The planes Di, i = 1, · · · , 7, passing through the nucleus of F can be listed as

It is easily seen that the planes D1, D2, and D3 intersect along a line with F , and the

others intersect with F at two points. �

Theorem 4.5 There are six-tangent planes of F passing through any point not on F in

PG(4, 2). Moreover, these planes form four different plane bundles that intersect a line three

by three, so that two different bundles have a common tangent plane.

Proof It is seen from Table 7 that any point Pi, Pi ∈ {16, · · · , 30} not on F in PG(4, 2) is
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contained in six-tangent planes. For example, the point (0, 1, 1, 0, 1) not on F is on the tangent

planes π1, π2, π9, π10, π12,and π15. The triplets of different tangent planes passing through a

common line are {π1, π2, π10}, {π1, π12, π15}, {π2, π9, π12} and {π10, π12, π15}. �

Theorem 4.6 An affine plane in PG(4, 2) can be formed with six tangent planes that passes

through a point outside the surface F .

(1) Let each of the triplets of different tangent planes tangent to the surface from a point

outside the surface in PG(4, 2) passing through a common line be called a point and each of the

tangent planes be called a line. The incidence relation between a point and a line means that

each point is on the three tangent planes (three lines) that form it;

(2) Let each of the triplets of different tangent planes that are tangent to the surface from

a point outside the surface in PG(4, 2) not containing a common line be a point and each of

the tangent planes be a line. The incidence relation means that every point is on the tangent

planes that form it.

Proof Let F be Klein cubic threefold over the field GF (2). An affine plane is a collection

of points and lines in space that follow the following fairly sensible rules:

(A1) Given any two points, there is a unique line joining any two points.

(A2) Given a point P and a line L not containing P , there is a unique line that contains

P and does not intersect L.

(A3) There are four points, no three of which are collinear.

Since every tangent plane in only two triplets of different tangent planes, A1 is satisfied.

Since a tangent plane is in only two triplets and not in two triplets of different tangent planes,

A2 is satisfied. Since there are only four triplets, and any three of these have not common

tangent plane, A3 is satisfied. �

Example 4.7 The six tangent planes passing through the point (0, 1, 1, 0, 1), which is not on

the surface F are π1, π2, π9, π10, π12 and π15. The triplets of different tangent planes passing

through a common line are

{π1, π2, π10}, {π1, π12, π15}, {π2, π9, π12} and {π10, π12, π15}.

If we define respectively the points set, line set and the incidence relation as:

the point set

P = {{π1, π2, π10}, {π1, π12, π15}, {π2, π9, π12}, {π10, π12, π15}},

the line set

L = {π1, π2, π9, π10, π12, π15},

the incidence relation

I : the point {πi, πj , πk} I the lines πi, πj , and πk
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then, the structure (P,L, I) is an affine plane of order 2.

Example 4.8 The six tangent planes passing through the point 22, which is not on the surface

F are π1, π2, π9, π10, π12 and π15. The triplets of different tangent planes not containing a

common line are

{π1, π2, π9}, {π1, π10, π15}, {π2, π12, π15} and {π9, π10, π12}.

If we define respectively the points set, line set and the incidence relation as:

the point set

P ′= {{π1, π2, π9}, {π1, π10, π15}, {π2, π12, π15}, {π9, π10, π12}},

the line set

L′= {π1, π2, π9, π10, π12, π15},

the incidence relation

I ′ : the point {πi, πj , πk} I ′ the lines πi, πj , and πk,

then, the structure (P ′,L′,I ′) is an affine plane of order 2.

Proposition 4.9 If two triangles are in perspective centrally in Klein cubic threefold F over

the field GF (2), then they are not in perspective from an axis in PG(4, 2)\F .

Proof Let F be Klein cubic threefold over the field GF (2). Denote the three vertices of one

triangle by P3, P6 and P11 and those of the other by P4, P7 and P12. Central perspectivity means

that the three lines P3P4, P6P7, and P11P12 are concurrent at the point P1 called the center of

perspectivity. Axial perspectivity means that lines P3P6 and P4, P7 meet in the point P18, lines

P3P11 and P4P12 meet in a second point P24 and lines P6P11 and P7P12 meet in a third point

P25 and that these three points all lie on a common line called the axis of perspectivity. This

axis {P18, P24, P25} of perspectivity is not on F . The line joining the three collinear points of

intersection of the extensions of corresponding sides in perspective triangles is not intersecting

with F . �

§5. Conclusion

This study has delved into the structural properties of the cubic threefold F over the field GF (2)

in 4−dimensional projective space, focusing particularly on its intersection properties with lines

and planes. The analysis has revealed the presence of six spreads, each composed of five lines,

offering insights into the combinatorial structure of F . Exploring tangent planes to F has led

to the formulation of two distinct affine plane models, highlighting its geometric versatility.

Additionally, the non-validity of Desargues’ theorem within F underscores its departure from

classical projective geometry norms. This research contributes to advancing our understanding
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of cubic threefolds over finite fields, pointing towards further investigations into their algebraic

and geometric intricacies.
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Abstract: The aim of this manuscript is to discuss the existence of coupled fixed points

in the context of partially ordered partial metric spaces via implicit relations. Moreover,

we provide some consequences of the established results. We also state an example to illus-

trate our work. Our main result extends and generalizes various results in the literature.

Especially, our result extends and generalizes the corresponding result of Bhaskar and Lak-

shmikantham [9] from partially ordered complete metric spaces to partially ordered complete

partial metric spaces. Finally, an application to the integral equation is included.
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§1. Introduction

The notion of coupled fixed point for a partially ordered set Ω was introduced by Bhashkar and

Lakshmikantham [9]. Several other authors such as Ćirić and Lakshmikantham [10], Sabet-

ghadam et al. [33] and Oleleru et al. [26] have established some coupled fixed point theorems

in metric spaces. Afterwards, many researchers have obtained coupled fixed point results for

mappings under various contractive conditions in the setting of metric spaces and generalized

metric spaces (see [1], [6], [14], [19], [24], [37]).

In 1994, the notion of partial metric space was introduced by Matthews (see, [23]) as part

of the study of denotational semantics of dataflow networks. It is well-known that partial metric

spaces play an important role in the theory of computation (see, e.g., [15], [21], [32], [36]). The

PMS is a generalization of usual metric spaces in which the self-distance need not be zero.

Later, Matthews proved the partial metric version of Banach fixed point theorem [8].

Several famous mathematicians have contributed to the development of this research fields.

Masiha et al. [22] proved some fixed point results for weakly contractive type mappings in par-

tially ordered partial metric spaces. They applied their results to nonlinear fractional boundary

value problem. Altun et al. [5] established some fixed point theorems for generalized contrac-

tive type mappings on partial metric spaces. They also proved a homotopy result. Aydi et

1Received September 8,2024, Accepted December 8,2024.
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al. [7] introduced the concept of partial Hausdorff metric and they initiated the study of fixed

point theory for multi-valued mappings on partial metric spaces using the partial Hausdorff

metric and proved an analogous to the well-known Nadler’s fixed poin theorem. Heckmann [15]

introduced the concept of weak partial metric function and established some fixed point results.

Oltra ans Valero [27] generalized the Matthews results in the sense of O’Neil [28] in complete

partial metric space (see, also [2], [3], [6], [12], [13], [17], [20], [25]).

The practice of improving contraction conditions in proving fixed point and common fixed

point theorems is still in fashion. Recently, with a view to accommodate many contraction

conditions, Popa [29] and Popa et al. [31] introduced implicit functions which are proving

fruitful due to their unifying power besides admitting new contractive conditions.

In nonlinear analysis, especially in fixed point theory, implicit relations on metric spaces

have been investigated highly in many articles (see, e.g., [4], [16], [30], [34] and references

therein).

Inspired and motivated by the works of [6, 9, 29] and others, the purpose of this article is to

examine the existence of a coupled fixed point theorem for mappings satisfying mixed monotone

property in the context of partial metric spaces by using implicit relations. In addition, we

provide some consequences of the established result. We also state an example to illustrate

our result. Finally, an application to the integral equation is included. Our results extend,

generalize and enrich several results in the existing literature.

§2. Preliminaries

In this section, we give some definitions and lemmas related to partial metric spaces which will

be useful in the proof of our main results.

Definition 2.1([23]) Let Ω be a nonempty set. A partial metric on Ω is a function p : Ω×Ω→
[0,+∞) such that for all v1, v2, u ∈ Ω the followings are satisfied:

(p1) v1 = v2 ⇔ p(v1, v1) = p(v1, v2) = p(v2, v2);

(p2) p(v1, v1) ≤ p(v1, v2);

(p3) p(v1, v2) = p(v2, v1);

(p4) p(v1, v2) ≤ p(v1, u) + p(u, v2)− p(u, u).

Then, p is called a partial metric on Ω and the pair (Ω, p) is called a partial metric space.

It is clear that if p(v1, v2) = 0, then from (p1), (p2), and (p3), v1 = v2. But if v1 = v2,

p(v1, v2) may not be 0.

If p is a partial metric on Ω, then the function dp : Ω× Ω→ [0,+∞) given by

dp(v1, v2) = 2p(v1, v2)− p(v1, v1)− p(v2, v2), (2.1)

is a usual metric on Ω.

Each partial metric p on Ω generates a T0 topology τp on Ω with the family of open p-balls

{Bp(y, ε) : y ∈ Ω, ε > 0} where Bp(y, ε) = {z ∈ Ω : p(y, z) < p(y, y) + ε} for all y ∈ Ω and
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ε > 0. Similarly, closed p-ball is defined as Bp[y, ε] = {z ∈ Ω : p(y, z) ≤ p(y, y) + ε} for all

y ∈ Ω and ε > 0.

Example 2.2([7]) Let Ω = [0,+∞) and p : Ω× Ω→ [0,+∞) be given by p(y, z) = max{y, z}
for all y, z ∈ Ω. Then (Ω, p) is a partial metric space.

Example 2.3([7]) Let Ω = I, where I denote the set of all intervals [y1, z1] for any real numbers

y1 ≤ z1. Let p : Ω × Ω → [0,∞) be a function such that p
(
[y1, z1], [y2, z2]

)
= max{z1, z2} −

min{y1, y2}. Then, (Ω, p) is a partial metric space.

Example 2.4([11]) Let Ω = R and p : Ω × Ω → R+ be given by p(y, z) = emax{y,z} for all

y, z ∈ Ω. Then (Ω, p) is a partial metric space.

Definition 2.5([23]) Let (Ω, p) be a partial metric space. Then,

(A) A sequence {yn} converges to a point y ∈ Ω if and only if limn→∞ p(y, yn) = p(y, y);

(B) A sequence {yn} in Ω is called a Cauchy sequence if and only if limm,n→∞

p(ym, yn) exists (and finite);

(C) A partial metric space (Ω, p) is said to be complete if every Cauchy sequence {yn} in

Ω converges, with respect to τp, to a point y ∈ Ω, such that, limm,n→∞ p(ym, yn) = p(y, y);

(D) A mapping f : Ω→ Ω is said to be continuous at y0 ∈ Ω if for every ε > 0, there exists

η > 0 such that f
(
Bp(y0, η)

)
⊂ Bp

(
f(y0), ε

)
.

Definition 2.6([23]) A partial metric space (Ω, p) is said to be complete if every Cauchy

sequence {yn} in Ω converges to a point y ∈ Ω with respect to τp. Furthermore,

lim
m,n→∞

p(ym, yn) = lim
n→∞

p(yn, y) = p(y, y).

Definition 2.7([9]) Let (Ω,≤) be a partially ordered set. The mapping H : Ω×Ω→ Ω is said to

have the mixed monotone property if H(x, y) is monotone non-decreasing in x and is monotone

non-increasing in y, that is, for any x, y ∈ Ω,

x1, x2 ∈ Ω, x1 ≤ x2 ⇒ H(x1, y) ≤ H(x2, y),

and

y1, y2 ∈ Ω, y1 ≤ y2 ⇒ H(x, y1) ≥ H(x, y2).

Definition 2.8([9,10]) An element (x, y) ∈ Ω × Ω is said to be a coupled fixed point of the

mapping H : Ω× Ω→ Ω if H(x, y) = x and H(y, x) = y.

Example 2.9 Let Ω = [0,+∞) and H : Ω × Ω → Ω be defined by H(x, y) = x+y
3 for all

x, y ∈ Ω. Then one can easily see that H has a unique coupled fixed point (0, 0).

Example 2.10 Let Ω = [0,+∞) and H : Ω × Ω → Ω be defined by H(x, y) = x+y
2 for all

x, y ∈ Ω. Then we see that H has two coupled fixed point (0, 0) and (1, 1), that is, the coupled
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fixed point is not unique.

Lemma 2.11([6, 23]) (1) A sequence {yn} is Cauchy in a partial metric space (Ω, p) if and

only if {yn} is Cauchy in a metric space (Ω, dp) where

dp(y, z) = 2p(y, z)− p(y, y)− p(z, z) for all y, z ∈ Ω.

(2) A partial metric space (Ω, p) is complete if a metric space (Ω, dp) is complete, i.e.,

lim
n→∞

dp(yn, y) = 0 ⇔ p(y, y) = lim
n→∞

p(yn, y) = lim
n,m→∞

p(yn, ym).

Lemma 2.12([17]) Let (Ω, p) be a partial metric space.

(1′) If y, z ∈ Ω, p(y, z) = 0, then y = z;

(2′) If y 6= z, then p(y, z) > 0.

One of the characterization of continuity of mappings in partial metric spaces was given

by Samet et al. [35] as follows.

Lemma 2.13([35]) Let (Ω, p) be a partial metric space. The function F : Ω→ Ω is continuous

if given a sequence {yn}n∈N and y ∈ Ω such that p(y, y) = limn→∞ p(y, yn), then p(Fy, Fy) =

limn→∞ p(Fy, Fyn).

Example 2.14([35]) Let Ω = [0,+∞) endowed with the partial metric p : Ω × Ω → [0,+∞)

defined p(y, z) = max{y, z} for all y, z ∈ Ω. Let F : Ω→ Ω be a non-decreasing function. If F

is continuous with respect to the standard metric d(y, z) = |y − z| for all y, z ∈ Ω, then F is

continuous with respect to the partial metric p.

Lemma 2.15([11]) Let yn → y as n → ∞ in a partial metric space (Ω, p) where p(y, y) = 0.

Then limn→∞ p(yn, u) = p(y, u) for all u ∈ Ω.

A set of implicit relations, denoted by V, is the collection of all continuous functions

V : (R+)5 → R which satisfy:

(V 1) V (t1, t2, t3, t4, t5) is non-increasing in t4 and t5, and

(V 2) there exists a function ψ ∈ Ψ such that

V (u, v, w, u+ v, u+ v) ≤ 0 implies u ≤ v + ψ(w),

where Ψ denotes the set of all functions ψ : R+ → R+ with the properties:

(i) ψ is continuous and non-decreasing;

(ii) ψ(t) < t for each t > 0 and ψ(0) = 0.

Example 2.16 It is easy to check that the following functions are in V.

(V1′) V (t1, t2, t3, t4, t5) = t1 − a t2 − b t3 − c t4 − d t5, where a, b, c, d are non-negative real
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numbers such that a+ b+ 2c+ 2d < 1;

(V2′) V (t1, t2, t3, t4, t5) = t1 − a max
{
t2, t3,

t4
2 ,

t5
2

}
, where a ∈ (0, 1);

(V3′) V (t1, t2, t3, t4, t5) = t1 − ψ(max{t2, t3}), where ψ ∈ Ψ.

§3. Main Results

In this section, we shall prove a coupled fixed point theorem via implicit function in the frame-

work of partially ordered partial metric spaces.

Theorem 3.1 Let (Ω, p,≤) be a partially ordered complete partial metric space. Suppose that

H : Ω×Ω→ Ω be a mapping such that H has the mixed monotone property. Assume that there

exists V ∈ V such that

V

(
p(H(u, v), H(y, z)), p(u, y), p(v, z),

p(H(u, v), u) + p(H(y, z), y), p(H(u, v), y)

)
≤ 0, (3.1)

for all u, v, y, z ∈ Ω with u ≥ y and v ≤ z. Suppose that either

(a) H is continuous or

(b) Ω has the following property

(i) if a non-decreasing sequence {un} in Ω converges to some point u ∈ Ω, then un ≤ u

for all n;

(ii) if a non-increasing sequence {vn} in Ω converges to some point v ∈ Ω, then v ≤ vn for

all n.

If there exist two elements u0, v0 ∈ Ω with u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0), then H has

a coupled fixed point in Ω.

Proof Let u0, v0 ∈ Ω be such that u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0). We construct the

iterative sequences {un} and {vn} in Ω as follows: let u1 = H(u0, v0) and v1 = H(v0, u0). Then

u0 ≤ u1 and v0 ≥ v1. Again, let u2 = H(u1, v1) and v2 = H(v1, u1). Since H has the mixed

monotone property on Ω, then we have u1 ≤ u2 and v1 ≥ v2. Continuing the same way as

above, we get

un+1 = H(un, vn) and vn+1 = H(vn, un) for all n ≥ 0, (3.2)

and

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ . . . , v0 ≥ v1 ≥ · · · ≥ vn ≥ vn+1 ≥ . . . . (3.3)

If there exists n0 ∈ N ∪ {0} such that un0
= un0+1 and vn0

= vn0+1, then

un0 = un0+1 = H(un0 , vn0) and vn0 = vn0+1 = H(vn0 , un0),

which concludes that (un0
, vn0

) is a coupled fixed point of H. So, we assume that un0
6= un0+1

or vn0
6= vn0+1 for all n. By Lemma 2.12 (2′), we have p(un+1, un) > 0 and p(vn+1, vn) > 0 for

all n.

Since un+1 ≥ un and vn+1 ≤ vn, from equation (3.1) with u = un+1, v = vn+1, y = un
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and z = vn, we have

V

(
p(H(un+1, vn+1), H(un, vn)), p(un+1, un), p(vn+1, vn),

p(H(un+1, vn+1), un+1) + p(H(un, vn), un), p(H(un+1, vn+1), un)

)
≤ 0,

or

V

(
p(un+2, un+1), p(un+1, un), p(vn+1, vn),

p(un+2, un+1) + p(un+1, un), p(un+2, un)

)
≤ 0. (3.4)

By PMS condition (p4), we have

p(un+2, un) ≤ p(un+2, un+1) + p(un+1, un)− p(un+1, un+1)

≤ p(un+2, un+1) + p(un+1, un). (3.5)

By the properties of V and equation (3.5), the inequality (3.4) reduces to

V

(
p(un+2, un+1), p(un+1, un), p(vn+1, vn),

p(un+2, un+1) + p(un+1, un), p(un+2, un+1) + p(un+1, un)

)
≤ 0, (3.6)

which yields that

p(un+2, un+1) ≤ p(un+1, un) + ψ(p(vn+1, vn)). (3.7)

Similarly, we can show that

p(vn+2, vn+1) ≤ p(vn+1, vn) + ψ(p(un+1, un)). (3.8)

By adding equations (3.7)-(3.8) and using the properties of ψ, we have

Sn ≤ Sn−1 + ψ(Sn−1), (3.9)

where Sn = p(un+2, un+1) + p(vn+2, vn+1).

If there exists n1 ∈ N ∪ {0} such that p(un1+2, un1+1) = 0, p(vn1+2, vn1+1) = 0, then

un1+1 = un1+2 = H(un1+1, vn1+1), vn1+1 = vn1+2 = H(vn1+1, un1+1) and (un1+1, vn1+1) is

a coupled fixed point of H and thus the proof is finished. Suppose, on the contrary, that

p(un1+2, un1+1) 6= 0, p(vn1+2, vn1+1) 6= 0 for all n ∈ N. Then by the properties of function ψ,

we have

Sn ≤ Sn−1 + ψ(Sn−1) ≤ Sn−1, (3.10)

where Sn is a non-negative sequence and hence convergent to a limit, say S∗. Taking the limit

when n→∞ in equation (3.10), we get

S∗ ≤ S∗ + ψ(S∗) (3.11)

and consequently, we have ψ(S∗) = 0. By the property of function ψ, we obtain S∗ = 0, that

is, limn→∞ Sn = 0. Thus

lim
n→∞

Sn = lim
n→∞

p(un+1, un) + p(vn+1, vn) = 0



26 Gurucharan Singh Saluja

⇒ lim
n→∞

p(un+1, un) = lim
n→∞

p(vn+1, vn) = 0. (3.12)

Next, we prove that {un} and {vn} are Cauchy sequences. Suppose, to the contrary, that at

least one of {un} or {vn} is not a Cauchy sequence, then there exists an ε > 0 for which we can

find subsequences {un(k)}, {um(k)} of {un} and {vn(k)}, {vm(k)} of {vn} with n(k) > m(k) ≥ k
such that

p(un(k), um(k)) ≥ ε, for all k = 1, 2, 3, · · · . (3.13)

Furthermore, corresponding to m(k), we can choose n(k) in such a way that it is the

smallest integer with n(k) > m(k) ≥ k and satisfies equation (3.13). Then, we have

p(un(k)−1, um(k)) < ε. (3.14)

Using the triangle inequality, we have

p(un(k), um(k)) ≤ p(un(k), un(k)−1) + p(un(k)−1, um(k))

− p(un(k)−1, un(k)−1)

≤ p(un(k), un(k)−1) + p(un(k)−1, um(k))

< p(un(k), un(k)−1) + ε. (3.15)

Similarly, we have

p(vn(k), vm(k)) ≤ p(vn(k), vn(k)−1) + p(vn(k)−1, vm(k))

− p(vn(k)−1, vn(k)−1)

≤ p(vn(k), vn(k)−1) + p(vn(k)−1, vm(k))

< p(vn(k), vn(k)−1) + ε. (3.16)

From equations (3.13) and (3.15), we have

ε ≤ p(un(k), um(k)) ≤ p(un(k), un(k)−1) + ε. (3.17)

Letting k →∞ in equation (3.17) and using equation (3.12), we get

lim
k→∞

p(un(k), um(k)) = ε. (3.18)

Similarly, one can prove that

lim
k→∞

p(vn(k), vm(k)) = ε. (3.19)

By the triangle inequality, we have

p(um(k), un(k)) ≤ p(um(k), un(k)−1) + p(un(k)−1, un(k))− p(un(k)−1, un(k)−1)

≤ p(um(k), un(k)−1) + p(un(k)−1, un(k)), (3.20)
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and

p(um(k), un(k)−1) ≤ p(um(k), un(k)) + p(un(k), un(k)−1)− p(un(k), un(k))

≤ p(um(k), un(k)) + p(un(k), un(k)−1). (3.21)

Taking the limit as k → ∞ in equations (3.20), (3.21) and using equations (3.12), (3.18),

we get

lim
k→∞

p(un(k)−1, um(k)) = ε. (3.22)

Again, by triangle inequality, we have

p(un(k)−1, um(k)) ≤ p(un(k)−1, um(k)−1) + p(um(k)−1, um(k))

− p(um(k)−1, um(k)−1)

≤ p(un(k)−1, um(k)−1) + p(um(k)−1, um(k)), (3.23)

and

p(un(k)−1, um(k)−1) ≤ p(un(k)−1, um(k)) + p(um(k), um(k)−1)

− p(um(k), um(k))

≤ p(un(k)−1, um(k)) + p(um(k), um(k)−1). (3.24)

Taking the limit as k → ∞ in equations (3.23), (3.24) and using equations (3.12), (3.22),

we get

lim
k→∞

p(un(k)−1, um(k)−1) = ε. (3.25)

Once again using triangle inequality, we have

p(un(k)−1, um(k)−1) ≤ p(un(k)−1, un(k)) + p(un(k), um(k)−1)

− p(un(k), un(k))

≤ p(un(k)−1, un(k)) + p(un(k), um(k)−1), (3.26)

and

p(un(k), um(k)−1) ≤ p(un(k), un(k)−1) + p(un(k)−1, um(k)−1)

− p(un(k)−1, un(k)−1)

≤ p(un(k), un(k)−1) + p(un(k)−1, um(k)−1). (3.27)

Taking the limit as k → ∞ in equations (3.26), (3.27) and using equations (3.12), (3.25),

we get

lim
k→∞

p(un(k), um(k)−1) = ε. (3.28)

Since n(k) > m(k), un(k)−1 ≥ um(k)−1 and vn(k)−1 ≤ vm(k)−1. From equation (3.1), we
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have

V



p(H(un(k)−1, vn(k)−1), H(um(k)−1, vm(k)−1)),

p(un(k)−1, um(k)−1), p(vn(k)−1, vm(k)−1),

p(H(un(k)−1, vn(k)−1), un(k)−1)

+p(H(um(k)−1, vm(k)−1)), um(k)−1),

p(H(un(k)−1, vn(k)−1), um(k)−1)


≤ 0,

or

V

(
p(un(k), um(k)), p(un(k)−1, um(k)−1), p(vn(k)−1, vm(k)−1),

p(un(k), un(k)−1) + p(um(k), um(k)−1), p(un(k), um(k)−1)

)
≤ 0. (3.29)

Letting k → ∞ in equation (3.29), using equations (3.12), (3.18), (3.25) and (3.28), we

obtain

V (ε, ε, ε, 0, ε) ≤ 0. (3.30)

Hence, we find

V (ε, ε, ε, 0 + ε, ε+ 0) ≤ V (ε, ε, ε, 0, ε) ≤ 0,

which implies ε ≤ ε + ψ(ε). Thus, ψ(ε) = 0 and so ε = 0 by the property of ψ. Which is a

contradiction. Thus {un} is a Cauchy sequence. Using the same arguments as above, we can

show that {vn} is also a Cauchy sequence. Since Ω is complete, there exist u, v ∈ Ω such that

lim
n,m→∞

p(un, um) = lim
n→∞

p(un, u) = p(u, u),

lim
n,m→∞

p(vn, vm) = lim
n→∞

p(vn, v) = p(v, v). (3.31)

Now, we want to show that

p(u, u) = 0 = p(v, v).

Suppose, on the contrary, that

p(u, u) = µ > 0 and p(v, v) = ν > 0. (3.32)

Then, we see that

V



p(H(un−1, vn−1), H(um−1, vm−1)),

p(un−1, um−1), p(vn−1, vm−1),

p(H(un−1, vn−1), un−1)

+p(H(um−1, vm−1)), um−1),

p(H(un−1, vn−1), um−1)


≤ 0,

or

V

(
p(un, um), p(un−1, um−1), p(vn−1, vm−1),

p(un, un−1) + p(um, um−1), p(un, um−1)

)
≤ 0.
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By using the triangle inequality (p4), we get

V


p(un, um), p(un−1, um−1), p(vn−1, vm−1),

p(un, un−1) + p(um, um−1),

p(un, un−1) + p(un−1, um−1)

 ≤ 0.

Letting n,m→∞ and using equation (3.12), we obtain

V (µ, µ, 0, 0, µ) ≤ 0.

Hence, we get that

V (µ, µ, µ, 0 + µ, µ+ 0) ≤ V (µ, µ, µ, 0, µ) ≤ 0,

which implies that µ ≤ µ + ψ(µ). Thus, ψ(µ) = 0 and so µ = 0 by the property of ψ. Hence

p(u, u) = 0. By similar fashion, we can show that p(v, v) = 0.

Now, suppose that the assumption (a) holds. Then, we have

p(u,H(un, vn)) ≤ p(u, un+1) + p(un+1, H(un, vn))

−p(un+1, un+1)

≤ p(u, un+1) + p(un+1, H(un, vn))

= p(u,H(un, vn)) + p(H(un, vn), H(un, vn)). (3.33)

Taking the limit as n→∞ in equation (3.33), using equation (3.31) and continuity of H,

we obtain

p(u,H(u, v)) = 0.

Similarly, we can show that

p(v,H(v, u)) = 0.

Therefore, u = H(u, v) and v = H(v, u). This shows that (u, v) is a coupled fixed point of

H in Ω.

Finally, suppose that assumption (b) holds. Since {un} is a non-decreasing sequence and

un → u as n → ∞ and {vn} is a non-increasing sequence and vn → v as n → ∞, by the

assumption, we have un ≤ u and vn ≥ v for all n. From equations (3.1) and (3.31), we have

lim
n→∞

p(un, u) = p(u, u) = lim
n→∞

p(H(un, vn), u), (3.34)

and

lim
n→∞

p(vn, v) = p(v, v) = lim
n→∞

p(H(vn, un), v). (3.35)
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We also have

V

 p(H(un, vn), H(u, v)), p(un, u), p(vn, v),

p(H(un, vn), un) + p(H(u, v), u), p(H(un, vn), u)

 ≤ 0.

Letting n→∞ and using equations (3.34) and (3.35), we have

V (p(u,H(u, v)), 0, 0, p(u,H(u, v)), p(u,H(u, v))) ≤ 0,

which implies that p(u,H(u, v)) ≤ 0 + ψ(0) = 0. Hence u = H(u, v).

Similarly, one can show that v = H(v, u). Thus in all the above cases, we proved that H

has a coupled fixed point in Ω. This completes the proof. �

From Example 2.16 and Theorem 3.1, we obtain the following results.

Corollary 3.2 Let (Ω, p,≤) be a partially ordered complete partial metric space. Suppose that

H : Ω×Ω→ Ω be a mapping such that H has the mixed monotone property. Assume that there

exists V ∈ V such that

p(H(u, v), H(y, z)) ≤ a1 p(u, y) + a2 p(v, z) + a3 [p(H(u, v), u)

+p(H(y, z), y)] + a4 p(H(u, v), y) (3.36)

for all u, v, y, z ∈ Ω with u ≥ y and v ≤ z, where a1, a2, a3, a4 are non-negative reals such that

a1 + a2 + 2a3 + 2a4 < 1. Suppose that either

(a) H is continuous or

(b) Ω has the following property:

(i) if a non-decreasing sequence {un} in Ω converges to some point u ∈ Ω, then un ≤ u

for all n;

(ii) if a non-increasing sequence {vn} in Ω converges to some point v ∈ Ω, then v ≤ vn for

all n.

If there exist two elements u0, v0 ∈ Ω with u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0), then H has

a coupled fixed point in Ω.

Corollary 3.3 Let (Ω, p,≤) be a partially ordered complete partial metric space. Suppose that

H : Ω×Ω→ Ω be a mapping such that H has the mixed monotone property. Assume that there

exists V ∈ V such that

p(H(u, v), H(y, z)) ≤ a max
{
p(u, y), p(v, z),

1

2
[p(H(u, v), u)

+p(H(y, z), y)],
1

2
p(H(u, v), y)

}
(3.37)

for all u, v, y, z ∈ Ω with u ≥ y and v ≤ z, where a ∈ (0, 1) is a constant. Suppose that either

(a) H is continuous or

(b) Ω has the following property:
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(i) if a non-decreasing sequence {un} in Ω converges to some point u ∈ Ω, then un ≤ u

for all n;

(ii) if a non-increasing sequence {vn} in Ω converges to some point v ∈ Ω, then v ≤ vn for

all n.

If there exist two elements u0, v0 ∈ Ω with u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0), then H has

a coupled fixed point in Ω.

Corollary 3.4 Let (Ω, p,≤) be a partially ordered complete partial metric space. Suppose that

H : Ω×Ω→ Ω be a mapping such that H has the mixed monotone property. Assume that there

exists V ∈ V such that

p(H(u, v), H(y, z)) ≤ ψ
(

max
{
p(u, y), p(v, z)

})
(3.38)

for all u, v, y, z ∈ Ω with u ≥ y and v ≤ z, where ψ ∈ Ψ. Suppose that either

(a) H is continuous or

(b) Ω has the following property:

(i) if a non-decreasing sequence {un} in Ω converges to some point u ∈ Ω, then un ≤ u

for all n;

(ii) if a non-increasing sequence {vn} in Ω converges to some point v ∈ Ω, then v ≤ vn

for all n.

If there exist two elements u0, v0 ∈ Ω with u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0), then H has

a coupled fixed point in Ω.

If we take a1 = k, a2 = l and a3 = a4 = 0 where k, l ∈ (0, 1) in Corollary 3.2, then we

obtain the following result.

Corollary 3.5 Let (Ω, p,≤) be a partially ordered complete partial metric space. Suppose that

H : Ω×Ω→ Ω be a mapping such that H has the mixed monotone property. Assume that there

exists V ∈ V such that

p(H(u, v), H(y, z)) ≤ k p(u, y) + l p(v, z) (3.39)

for all u, v, y, z ∈ Ω with u ≥ y and v ≤ z, where k, l are non-negative reals such that k+ l < 1.

Suppose that either

(a) H is continuous or

(b) Ω has the following property:

(i) if a non-decreasing sequence {un} in Ω converges to some point u ∈ Ω, then un ≤ u

for all n;

(ii) if a non-increasing sequence {vn} in Ω converges to some point v ∈ Ω, then v ≤ vn for

all n.

If there exist two elements u0, v0 ∈ Ω with u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0), then H has

a coupled fixed point in Ω.
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If we take k = l = m where m ∈ (0, 1) in Corollary 3.5, then we obtain the following result.

Corollary 3.6 Let (Ω, p,≤) be a partially ordered complete partial metric space. Suppose that

H : Ω×Ω→ Ω be a mapping such that H has the mixed monotone property. Assume that there

exists V ∈ V such that

p(H(u, v), H(y, z)) ≤ m

2

[
p(u, y) + p(v, z)

]
(3.40)

for all u, v, y, z ∈ Ω with u ≥ y and v ≤ z, where m ∈ (0, 1) is a constant. Suppose that either

(a) H is continuous or

(b) Ω has the following property:

(i) if a non-decreasing sequence {un} in Ω converges to some point u ∈ Ω, then un ≤ u

for all n;

(ii) if a non-increasing sequence {vn} in Ω converges to some point v ∈ Ω, then v ≤ vn for

all n.

If there exist two elements u0, v0 ∈ Ω with u0 ≤ H(u0, v0) and v0 ≥ H(v0, u0), then H has

a coupled fixed point in Ω.

Remark 3.7 Corollary 3.6 extends and generalizes Theorems 2.1 and 2.2 of [9] from partially

ordered complete metric spaces to partially ordered complete partial metric spaces.

Example 3.8([18]) Let Ω = [0,∞) with usual order ≤. Then, (Ω, p,≤) be a partially ordered

partial metric space where p(u, v) = max{u, v}. Suppose

H(u, v) =

 u−v
2 , if u ≥ v,

0, otherwise,

and V (t1, t2, t3, t4, t5) = t1 − 1
2 max{t2, t3}. It is clear that all conditions of Theorem 3.1 are

satisfied. Notice that (0, 0) is the coupled fixed point of the operator H.

Now, note that if (Ω,≤) is a partially ordered set, we endow the product space Ω×Ω with

the partial order relation given by

(a, b) ≤ (f, g) ⇔ f ≥ a and g ≤ b.

We say that two pairs (p, q) and (r, s) are comparable, that is, every pair of elements has either

a lower bound or an upper bound.

Theorem 3.9 In addition to the hypotheses of Theorem 3.1, suppose that, for every (a, b), (c, d) ∈
Ω×Ω, there exists a pair (n, p) ∈ Ω×Ω such that (n, p) is comparable to (a, b) and (c, d). Then

H has a unique coupled fixed point. Moreover p(t, t) = 0.

Proof Suppose that (x, y) and (s, t) are coupled fixed point of H, that is, x = H(x, y),

y = H(y, x), s = H(s, t) and t = H(t, s).
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Let (α, β) be an element of Ω × Ω comparable to both (x, y) and (s, t). Suppose that

(x, y) ≥ (α, β) (the proof is similar in other cases).

Assume that (x, y) and (s, t) are comparable, then from inequality (3.1), we have

V

(
p(H(x, y), H(s, t)), p(x, s), p(y, t),

p(H(x, y), x) + p(H(s, t), s), p(H(x, y), s)

)
≤ 0,

V (p(x, s), p(x, s), p(y, t), p(x, x) + p(s, s), p(x, s)) ≤ 0,

V (p(x, s), p(x, s), p(y, t), 0, p(x, s)) ≤ 0,

or

V (p(x, s), p(x, s), p(y, t), 0 + p(x, s), p(x, s) + 0)

≤ V (p(x, s), p(x, s), p(y, t), 0, p(x, s)) ≤ 0,

which implies

p(x, s) ≤ p(x, s) + ψ(p(y, t)). (3.41)

By similar fashion, one can show that

p(y, t) ≤ p(y, t) + ψ(p(x, s)). (3.42)

From equations (3.41) and (3.42), we obtain

p(x, s) + p(y, t) ≤ p(x, s) + p(y, t) + ψ[p(x, s) + p(y, t)]

⇒ p(x, s) + p(y, t) = 0

⇒ p(x, s) = p(y, t) = 0,

and so, x = s and y = t. Thus, (x, y) = (s, t). This shows the uniqueness of coupled fixed

point. This completes the proof. �

Theorem 3.10 In addition to the hypotheses of Theorem 3.1, if u0, v0 are comparable, then

the coupled fixed point (u, v) ∈ Ω× Ω satisfies u = v.

Proof Assume that u0 ≤ v0 (a similar argument applies for v0 ≤ u0). Then, by using the

mathematical induction

un+1 = H(un, vn) ≤ H(vn, un) = vn+1.

Taking the limit as n→∞, we have

u = lim
n→∞

un ≤ lim
n→∞

vn = v.



34 Gurucharan Singh Saluja

From the contractive condition (3.1), we have

V

(
p(H(u, v), H(v, u)), p(u, v), p(v, u),

p(H(u, v), u) + p(H(v, u), v), p(H(u, v), v)

)
≤ 0,

V (p(u, v), p(u, v), p(v, u), p(u, u) + p(v, v), p(u, v)) ≤ 0,

V (p(u, v), p(u, v), p(u, v), p(u, v) + p(u, v), p(u, v)) ≤ 0
(
by (p2),(p3)

)
or

V (p(u, v), p(u, v), p(u, v), p(u, v) + p(u, v), p(u, v) + p(u, v))

≤ V (p(u, v), p(u, v), p(u, v), p(u, v) + p(u, v), p(u, v)) ≤ 0,

which implies

p(u, v) ≤ p(u, v) + ψ(p(u, v))

⇒ p(u, v) = 0⇒ u = v,

by the property of ψ. This completes the proof. �

Theorem 3.11 Let Ω = [0, 1]. Then (Ω,≤) is a partially ordered set with a natural ordering

of real numbers. Let p : Ω×Ω→ [0, 1] be defined by p(u, v) = |u− v| for all u, v ∈ Ω. Consider

the mapping H : Ω× Ω→ [0, 1] defined by

H(u, v) =

 u2−v2+1
3 , if u ≤ v,
1
3 , if u > v,

for all u, v ∈ Ω. Then,

(1) (Ω, p) is a complete partial metric space since (Ω, dp) is complete;

(2) H has the mixed monotone property;

(3) H is continuous;

(4) 0 ≤ H(0, 1) and 1 ≥ H(1, 0);

(5) there exists a constant 0 < m < 1 such that

p
(
H(u, v), H(y, z)

)
≤ m

2

[
p(u, y) + p(v, z)

]
for all u, v, y, z ∈ Ω with u ≤ y and v ≥ z. Thus, by Corollary 3.6, H has a coupled fixed point.

Moreover, ( 1
3 ,

1
3 ) is the unique coupled fixed point of H.

Proof The proofs of (1)− (4) are obvious.

For any u ≤ y and v ≥ z, we have

p(u, y) = y − u, p(v, z) = v − z.
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The proof of (5) is divided into the following cases.

Case 1. If y ≤ z. In this case, u ≤ y ≤ z ≤ v, and so

H(u, v) =
u2 − v2 + 1

3
, H(y, z) =

y2 − z2 + 1

3
.

Hence, we get

p
(
H(u, v), H(y, z)

)
= p

(u2 − v2 + 1

3
,
y2 − z2 + 1

3

)
=

1

3
(y2 − z2 − u2 + v2) =

1

3
[(y2 − u2) + (v2 − z2)]

≤ 1

3
[(y − u) + (v − z)] =

1

3
[p(u, y) + p(v, z)]

=
m

2
[p(u, y) + p(v, z)]

with m = 2
3 < 1.

Case 2. If y > z. In this case, u ≤ y ≤ v, and so

H(u, v) =
u2 − v2 + 1

3
, H(y, z) =

1

3
.

Hence, we get

p
(
H(u, v), H(y, z)

)
= p

(u2 − v2 + 1

3
,

1

3

)
=

1

3
(v2 − u2)

≤ 1

3
(v2 − u2 + y2 − z2) =

1

3
[(y2 − u2) + (v2 − z2)]

≤ 1

3
[(y − u) + (v − z)] =

1

3
[p(u, y) + p(v, z)]

=
m

2
[p(u, y) + p(v, z)]

with m = 2
3 < 1.

Case 3. If u > v. In this case, y ≤ z ≤ v, and so

H(u, v) =
1

3
, H(y, z) =

y2 − z2 + 1

3
.

Hence, we get

p
(
H(u, v), H(y, z)

)
= p

(1

3
,
y2 − z2 + 1

3

)
=

1

3
(y2 − z2)

≤ 1

3
(y2 − z2 + v2 − u2) =

1

3
[(y2 − u2) + (v2 − z2)]

≤ 1

3
[(y − u) + (v − z)] =

1

3
[p(u, y) + p(v, z)]

=
m

2
[p(u, y) + p(v, z)]
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with m = 2
3 < 1.

Thus, in all the above cases, the condition (5) is satisfied. Since Ω = [0, 1] is a totally

ordered set, by Theorem 3.9, ( 1
3 ,

1
3 ) is the unique coupled fixed point of H. �

§4. An Application to the Integral Equation

In this section, we study the existence of solution of the nonlinear integral equations, as an

application of the coupled fixed point theorem proved in the previous section.

Consider the following nonlinear integral equations

x(t) = µ(t) +

∫ T

0

R(t, p)g(p, x(p), y(p))dp,

y(t) = µ(t) +

∫ T

0

R(t, p)g(p, y(p), x(p))dp, (4.1)

where t ∈ I = [0, T ], with T > 0.

We consider the space Ω = C(I,R) of continuous functions defined in I. Define p : Ω×Ω→
[0,+∞) by

p(x, y) = max
t∈I
|x(t)− y(t)| (4.2)

for all x, y ∈ Ω. Then (Ω, p) is a complete partial metric space.

Let Ω = C(I,R) with the natural partial order relation, that is, x, y ∈ C(I,R),

x ≤ y ⇔ x(t) ≤ y(t), t ∈ I.

We consider the following assumptions:

(i) the mapping g : I × R× R→ R and µ : I → R are continuous;

(ii) there exists a continuous 0 ≤ m < 1 such that

|g(p, x, y)− g(p, u, v)| ≤ m

2
(|x− u|+ |y − v|) (4.3)

for all x, y, u, v ∈ Ω and for all p ∈ I;

(iii) for all t, p ∈ I, there exists a continuous R : I × R→ R such that

sup
t∈T

∫ T

0

R(t, p)dp < 1; (4.4)

(iv) there exist x0, y0 ∈ Ω such that

x0(t) ≤ µ(t) +

∫ T

0

R(t, p)g(p, x0(p), y0(p))dp,

y0(t) ≤ µ(t) +

∫ T

0

R(t, p)g(p, y0(p), x0(p))dp, (4.5)
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where t ∈ I.

Theorem 4.1 Consider the Corollary 3.6 and assume that conditions (i) - (iv) are satisfied.

Then equation (4.1) has a unique solution in Ω.

Proof Define the mapping H : Ω2 → Ω, (x, y)→ H(x, y), where

H(x, y)(t) = µ(t) +

∫ T

0

R(t, p)g(p, x(p), y(p))dp, t ∈ I (4.6)

for all x, y ∈ Ω and t ∈ I.

Equation (4.1) can be stated as

x = H(x, y) and y = H(y, x). (4.7)

For x, y, u, v ∈ Ω be such that x ≤ u and y ≤ v and

H(x, y)(t) = µ(t) +

∫ T

0

R(t, p)g(p, x(p), y(p))dp

≤ µ(t) +

∫ T

0

R(t, p)g(p, u(p), v(p))dp

= H(u, v)(t) for all t ∈ I. (4.8)

From equations (4.2) and (4.3) for all t ∈ I, we have

p(H(x, y), H(u, v)) = max
t∈I
|H(x, y)(t)−H(u, v)(t)|

≤ max
t∈I

∫ T

0

R(t, p)
∣∣∣g(p, x(p), y(p))− g(p, u(p), v(p))

∣∣∣dp
≤

∣∣g(p, x(p), y(p))− g(p, u(p), v(p))
∣∣

≤ m

2
(|x(p)− u(p)|+ |y(p)− v(p)|)

=
m

2
[p(x, u) + p(y, v)],

where 0 ≤ m < 1.

So that

p(H(x, y), H(u, v)) ≤ m

2
[p(x, u) + p(y, v)],

which is the contractive condition in Corollary 3.6. Thus H has a coupled fixed point in Ω, that

is, the system of nonlinear integral equation has a solution. Finally, let (p, q) be a coupled lower

and upper solution of the integral equation (4.1), then by assumption (iv) of the Theorem 4.1,

we have p ≤ H(p, q) ≤ H(q, p) ≤ q. Corollary 3.6 gives us that H has a coupled fixed point, say

(m,n) ∈ Ω× Ω. Since p ≤ q, Theorem 3.10 says us that m = n and this implies m = H(m,m)

and m is the unique solution of the integral equation (4.1). �

The aforesaid application is illustrated by the following example.
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Example 4.2 Let Ω = C([0, 1],R), g : I × R × R → R and µ : I → R. Now consider the

following functional integral equation

x(t) =
t2

1 + t4
+

∫ 1

0

sin p 3−pe−p

9(t+ 3)

( |x(p)|
1 + |x(p)|

+
|y(p)|

1 + |y(p)|

)
dp

y(t) =
t2

1 + t4
+

∫ 1

0

sin p 3−pe−p

9(t+ 3)

( |y(p)|
1 + |y(p)|

+
|x(p)|

1 + |x(p)|

)
dp

for all x, y ∈ Ω and t ∈ I. Observe that the above equation is a special case of equation (4.1)

with

µ(t) =
t2

1 + t4
.

R(t, p) =
3−pe−p

t+ 3
.

g(p, x, y) =
sin p

9

( |x(p)|
1 + |x(p)|

+
|y(p)|

1 + |y(p)|

)
.

g(p, y, x) =
sin p

9

( |y(p)|
1 + |y(p)|

+
|x(p)|

1 + |x(p)|

)
.

It is also easily seen that these functions are continuous.

For arbitrary x, y, u, v ∈ Ω and for all p ∈ I, we have

|g(p, x, y)− g(p, u, v)| =
∣∣∣sin p

9

( |x(p)|
1 + |x(p)|

+
|y(p)|

1 + |y(p)|

)
−sin p

9

( |u(p)|
1 + |u(p)|

+
|v(p)|

1 + |v(p)|

)∣∣∣
≤ 1

9

(
|x− u|+ |y − v|

)
=
m

2

(
|x− u|+ |y − v|

)
.

Therefore, the function g satisfies equation (4.3) with m = 2
9 < 1.

For all t, p ∈ I, there exists R : I × R→ R such that∫ 1

0

R(t, p)dp =

∫ 1

0

3−pe−p

t+ 3
dp = −1

3

( e−1 − 3

(ln 3 + 1)(t+ 3)

)
=

(
1− 1

3e

) 1

(ln 3 + 1)(t+ 3)
≤ 1− 1

3e
≤ 9

10
< 1.

We put x0(t) = 5t2

7(1+t4) and obtain

x0(t) =
5t2

7(1 + t4)
≤ t2

1 + t4

≤ t2

1 + t4
+

∫ 1

0

sin p

9

( |x(p)|
1 + |x(p)|

+
|y(p)|

1 + |y(p)|

)
dp

= µ(t) +

∫ T

0

R(t, p)g(p, x0(p), y0(p))dp.



A Coupled Fixed Point Theorem via Implicit Function in Partially Ordered Partial Metric Spaces and Application 39

Similarly, we have

y0(t) ≤ µ(t) +

∫ T

0

R(t, p)g(p, y0(p), x0(p))dp.

This shows that equation (4.5) holds.

Hence, the integral equation (4.1) has a unique solution in Ω with Ω = C([0, 1],R).

§5. Conclusion

In this paper, we prove some coupled fixed point theorems via implicit relations in the setting

of partially ordered partial metric spaces. Furthermore, we give some consequences of the main

result. We provide some illustrative examples to validate the established results. An application

to the integral equation is also given. Our results extend and generalize various results in the

literature.
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§1. Introduction

The use of topological indices in chemistry began in 1947, when chemist Harnold Wiener devel-

oped the most widely known topological descriptor, the Wiener index and used it to determine

the physical properties of alkanes known as paraffin. A topological descriptor was computed

from a molecular graph representing the information about the corresponding chemical com-

pound. These descriptors are commonly used in mathematical chemistry, particularly QSPR

and QSAR research. Topological indices are useful for predicting the physico-chemical behavior

of chemical compounds. Encouraged by Manjunath Muddalapuram [7], we obtained the upper

and lower bounds for the additional topological indices of ξ-graph. Throughout this study,

we consider G = (V (G), E(G)) as a simple and connected undirected graph with |V (G)| = n

vertices and |E(G)| = m edges.

Now we recall some well known topological indices. In 2010, Vukicevic [14] introduced

inverse sum index and is defined as

I(G) =
∑

uv∈E(G)

d(u)d(v)

d(u) + d(v)
.

1Received May 27,2023, Accepted December 10,2024.
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In 2013, Ranjani et al. [10] introduced third redefined Zagreb index and is defined as

ReZG3(G) =
∑

uv∈E(G)

(dudv)(du + dv).

In 2015, Furtula and Gutman [2] introduced forgotten index and is defined as

F (G) =
∑

uv∈E(G)

(d2
u + d2

v).

In 2016, Shigehalli et al. [11] introduced the SK, SK1 and SK2 topological indices of a

graph G and is defined as

SK(G) =
1

2

∑
(vi,vj)∈E(G)

[d(vi) + d(vj)],

SK1(G) =
1

2

∑
(vi,vj)∈E(G)

[d(vi)d(vj)]

and

SK2(G) =
1

4

∑
(vi,vj)∈E(G)

[d(vi) + d(vj)]
2.

Definition 1.1([6]) The corona product of G�H of these two graphs is obtained by taking one

copy of G, n1 copies of H and by joining each vertex of the ith copy of H to the ith vertex of

G, where 1 ≤ i ≤ n1.

In order to study bounds on ξ-graph, we divide the paper into few sections. The section one

contains preliminaries, definitions of well known topological indices which are useful to prove

our main results. Section two deals with new class of operator graph with their properties. In

section three consisting of results related to bounds for defined class of graph using recalled

topological indices. Paper conclude with the conclusion and references.

§2. Essential Prerequisite

Throughout the article, we utilized finite simple connected graphs with the following notions.

Let G and H be graphs with vertex sets V (G), V (H) and edge sets E(G), E(H) respec-

tively. The degree of vertex v is the number of vertices adjacent to v.

Let V (G)
⋂
V (H) = ∅, g ∈ V (G), h ∈ V (H). The number of vertices and number of edges

in the graphs G and H are represented by n1 , n2 and m1, m2 respectively. we have

∆G ≥ degG(g), δG ≤ degG(g),

∆H ≥ degH(h), δH ≤ degH(h).

Now, the bounds for different topological indices are obtained by many researchers for
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graphs [4].

Definition 2.1([7]) The G�RH = ξ, is a graph obtained from one copy of graph G and m1

copies of H and joining a vertex of V (G), that is, on the ith vertex in G is adjacent to every

vertex of ith copy of H.

Furthermore, let H0 ≺ H be a typical subgraph of H. If the ith vertex in G is adjacent

to every vertex of ith copy of H \H0, such a ξ-graph is said to be a Smarandachely ξ-graph of

G,H on H0 and denoted by ξS. Certainly, if H0 = ∅ then ξS = ξ.

§3. Limits on Various Topological Indices of ξ Graph

In this section, we formulate the limits on the ISI, ReZG3, F , SK, SK1 and SK2 indices of

ξ-graph.

Theorem 3.1 Let G and H are two simple connected graphs, then the limits for the inverse

sum indeg index of ξ-graph are given by

ISI[ξ] ≤ m1

[
(2∆G + n2)

2
+

4(2∆G + n2)

2∆G + n2 + 2

]
+ n1m2

[
(∆H + 1)2

2(∆H + 1)

]

+ n1n2

[
(∆H + 1)(2∆G + n2)

2∆G + ∆H + n2 + 1

]
and

ISI[ξ] ≥ m1

[
(2δG + n2)

2
+

4(2δG + n2)

2δG + n2 + 2

]
+ n1m2

[
(δH + 1)2

2(δH + 1)

]

+ n1n2

[
(δH + 1)(2δG + n2)

2δG + δH + n2 + 1

]
.

Proof Using definition of inverse sum indeg index, we get

ISI(G) =
∑

uv∈E(G)

d(u)d(v)

d(u) + d(v)
,

ISI[ξ] = m1

[
(2dG + n2)(2dG + n2)

(2dG + n2) + (2dG + n2)

]
+ 2m1

[
2(2dG + n2)

2dG + n2 + 2

]

+ n1m2

[
(dH + 1)(dH + 1)

(dH + 1) + (dH + 1)

]
+ n1n2

[
(dH + 1)(2dG + n2)

(dH + 1) + (2dG + n2)

]
,

ISI[ξ] = m1

[
(2dG + n2)

2
+

4(2dG + n2)

2dG + n2 + 2

]
+ n1m2

[
(dH + 1)2

2(dH + 1)

]

+ n1n2

[
(dH + 1)(2dG + n2)

2dG + dH + n2 + 1

]
,
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ISI[ξ] ≤ m1

[
(2∆G + n2)

2
+

4(2∆G + n2)

2∆G + n2 + 2

]
+ n1m2

[
(∆H + 1)2

2(∆H + 1)

]

+ n1n2

[
(∆H + 1)(2∆G + n2)

2∆G + ∆H + n2 + 1

]
.

Similarly,

ISI[ξ] ≥ m1

[
(2δG + n2)

2
+

4(2δG + n2)

2δG + n2 + 2

]
+ n1m2

[
(δH + 1)2

2(δH + 1)

]

+ n1n2

[
(δH + 1)(2δG + n2)

2δG + δH + n2 + 1

]
.

This completes the proof. �

Illustration 3.1 Let the ξ-graph of G and H be shown in Figure 1.

Figure 1

Then,

ISI(G) =
∑

uv∈E(G)

d(u)d(v)

d(u) + d(v)
,

=

(
6× 6

6 + 6

)
+ 8

(
6× 2

6 + 2

)
+ 2

(
8× 6

8 + 6

)
+ 5

(
8× 2

8 + 2

)
+

(
8× 4

8 + 4

)
+ 3

(
4× 2

4 + 2

)
+ 4

(
2× 2

2 + 2

)
= 40.37,

ISI[ξ] ≤ m1

[
(2∆G + n2)

2
+

4(2∆G + n2)

2∆G + n2 + 2

]
+ n1m2

[
(∆H + 1)2

2(∆H + 1)

]
+ n1n2

[
(∆H + 1)(2∆G + n2)

2∆G + ∆H + n2 + 1

]
,
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≤ 4

[
(2× 3 + 2)

2
+

4(2× 3 + 2)

2× 3 + 2 + 2

]
+ 4

[
(1 + 1)2

2(1 + 1)

]
+ 8

[
(1 + 1)(2× 3 + 2)

2× 3 + 1 + 2 + 1

]
= 45.6.

ISI[ξ] ≥ m1

[
(2δG + n2)

2
+

4(2δG + n2)

2δG + n2 + 2

]
+ n1m2

[
(δH + 1)2

2(δH + 1)

]
+ n1n2

[
(δH + 1)(2δG + n2)

2δG + δH + n2 + 1

]
.

≥ 4

[
(2× 1 + 2)

2
+

4(2× 1 + 2)

2× 1 + 2 + 2

]
+ 4

[
(1 + 1)2

2(1 + 1)

]
+ 8

[
(1 + 1)(2× 1 + 2)

2× 1 + 1 + 2 + 1

]
.

= 33.324

and therefore,

33.32 ≤ 40.37 ≤ 45.8.

Theorem 3.2 Let G and H are two simple connected graphs, then the limits for the redefined

third Zagreb index of ξ-graph are given by

ReZG3[ξ] ≤ m1

{
2(2∆G + n2)

[
(2∆G + n2)2 + 2(2∆G + n2 + 2)

]}
+ n1m2

[
2(∆H + 1)3

]
+ n1n2

[
(∆H + 1)(2∆G + n2)(∆H + 2∆G + n2 + 1)

]
.

and

ReZG3[ξ] ≥ m1

{
2(2δG + n2)

[
(2δG + n2)2 + 2(2δG + n2 + 2)

]}
+ n1m2

[
2(δH + 1)3

]
+ n1n2

[
(δH + 1)(2δG + n2)(δH + 2δG + n2 + 1)

]
.

Proof Using definition of redefined third Zagreb index, we get

ReZG3(G) =
∑

uv∈E(G)

(dudv)(du + dv),

ReZG3[ξ] = m1

[
(2dG + n2)(2dG + n2)(2dG + n2 + 2dG + n2)

]
+ 2m1

[
2(2dG + n2)(2dG + n2 + 2)

]
+ n1m2

[
(dH + 1)(dH + 1)(dH + 1 + dH + 1)

]
+ n1n2

[
(dH + 1)(2dG + n2)(dH + 2dG + n2 + 1)

]
,

ReZG3[ξ] = m1

{
2(2dG + n2)

[
(2dG + n2)2 + 2(2dG + n2 + 2)

]}
+ n1m2

[
2(dH + 1)3

]
+ n1n2

[
(dH + 1)(2dG + n2)(dH + 2dG + n2 + 1)

]
,



Limits for the Some Topological Indices of Vertex Corona Graph 47

ReZG3[ξ] ≤ m1

{
2(2∆G + n2)

[
(2∆G + n2)2 + 2(2∆G + n2 + 2)

]}
+ n1m2

[
2(∆H + 1)3

]
+ n1n2

[
(∆H + 1)(2∆G + n2)(∆H + 2∆G + n2 + 1)

]
.

Similarly,

ReZG3[ξ] ≥ m1

{
2(2δG + n2)

[
(2δG + n2)2 + 2(2δG + n2 + 2)

]}
+ n1m2

[
2(δH + 1)3

]
+ n1n2

[
(δH + 1)(2δG + n2)(δH + 2δG + n2 + 1)

]
.

This completes the proof. �

Illustration 3.2 Let the ξ-graph of G,H be shown in Figure 2.

Figure 2

Then,

ReZG3(G) =
∑

uv∈E(G)

(dudv)(du + dv),

= 3(4× 4) + 6(8× 6) + 2(24× 10) + 4(12× 8),

= 1200,

ReZG3[ξ] ≤ m1

{
2(2∆G + n2)

[
(2∆G + n2)2 + 2(2∆G + n2 + 2)

]}
+ n1m2

[
2(∆H + 1)3

]
+ n1n2

[
(∆H + 1)(2∆G + n2)(∆H + 2∆G + n2 + 1)

]
.

≤ 2

{
2(2× 2 + 2)

[
(2× 2 + 2)2 + 2(2× 2 + 2 + 2)

]}
+ 3

[
2(1 + 1)3

]
+ 6

[
(1 + 1)(2× 2 + 2)(1 + 2× 2 + 2 + 1)

]
= 1872,
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ReZG3[ξ] ≥ m1

{
2(2δG + n2)

[
(2δG + n2)2 + 2(2δG + n2 + 2)

]}
+ n1m2

[
2(δH + 1)3

]
+ n1n2

[
(δH + 1)(2δG + n2)(δH + 2δG + n2 + 1)

]
= 2

{
2(2× 1 + 2)

[
(2× 1 + 2)2 + 2(2× 1 + 2 + 2)

]}
+ 3

[
2(1 + 1)3

]
+ 6

[
(1 + 1)(2× 1 + 2)(1 + 2× 1 + 2 + 1)

]
= 784

and therefore,

784 ≤ 1200 ≤ 1872.

Theorem 3.3 Let G and H are two simple connected graphs, then the limits for the forgotten

index of ξ-graph are given by

F [ξ] ≤ 4m1

[
(2∆G + n2)2 + 2

]
+ 2n1m2(∆H + 1)2 + n1n2

[
(∆H + 1)2 + (2∆G + n2)2

]
and

F [ξ] ≥ 4m1

[
(2δG + n2)2 + 2

]
+ 2n1m2(δH + 1)2 + n1n2

[
(δH + 1)2 + (2δG + n2)2

]
.

Proof Using definition of forgotten index

F (G) =
∑

uv∈E(G)

(d2
u + d2

v),

F [ξ] = m1

[
(2dG + n2)2 + (2dG + n2)2

]
+ 2m1

[
(2dG + n2)2 + 22

]
+ n1m2

[
(dH + 1)2 + (dH + 1)2

]
+ n1n2

[
(dH + 1)2 + (2dG + n2)2

]
,

F [ξ] = 4m1

[
(2dG + n2)2 + 2

]
+ 2n1m2(dH + 1)2 + n1n2

[
(dH + 1)2 + (2dG + n2)2

]
,

F [ξ] ≤ 4m1

[
(2∆G + n2)2 + 2

]
+ 2n1m2(∆H + 1)2 + n1n2

[
(∆H + 1)2 + (2∆G + n2)2

]
.

Similarly,

F [ξ] ≥ 4m1

[
(2δG + n2)2 + 2

]
+ 2n1m2(δH + 1)2 + n1n2

[
(δH + 1)2 + (2δG + n2)2

]
.

This completes the proof. �
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Illustration 3.3 Let the ξ-graph of G,H be shown in Figure 3.

Figure 3

Then,

F (G) =
∑

uv∈E(G)

(d2
u + d2

v)

= 6(22 + 52) + 2(32 + 52) + 4(32 + 22) + (52 + 52)

= 344,

F [ξ] ≤ 4m1

[
(2∆G + n2)2 + 2

]
+ 2n1m2(∆H + 1)2

+ n1n2

[
(∆H + 1)2 + (2∆G + n2)2

]
= 4

[
(2× 1 + 3)2 + 2

]
+ 8(2 + 1)2 + 6

[
(2 + 1)2 + (2× 1 + 3)2

]
= 384,

F [ξ] ≥ 4m1

[
(2δG + n2)2 + 2

]
+ 2n1m2(δH + 1)2 + n1n2

[
(δH + 1)2 + (2δG + n2)2

]
= 4

[
(2× 1 + 3)2 + 2

]
+ 8(1 + 1)2 + 6

[
(1 + 1)2 + (2× 1 + 3)2

]
= 314

and therefore,

314 ≤ 344 ≤ 384.

Theorem 3.4 Let G and H are two simple connected graphs, then the limits for the SK index

of ξ-graph are given by

SK(G) ≤ 1

2

[
4m1(2∆G + n2 + 1) + 2n1m2(∆H + 1) + n1n2(∆H + 1 + 2∆G + n2)

]
.
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and

SK(G) ≥ 1

2

[
4m1(2δG + n2 + 1) + 2n1m2(δH + 1) + n1n2(δH + 1 + 2δG + n2)

]
.

Proof Using definition of SK index

SK(G) =
1

2

∑
(vi,vj)∈E(G)

[d(vi) + d(vj)],

=
1

2

[
m1(2dG + n2 + 2dG + n2) + 2m1(2 + 2dG + n2) + n1m2(dH + 1 + dH + 1)

+ n1n2(dH + 1 + 2dG + n2)

]
,

=
1

2

[
4m1(2dG + n2 + 1) + 2n1m2(dH + 1) + n1n2(dH + 1 + 2dG + n2)

]
,

≤ 1

2

[
4m1(2∆G + n2 + 1) + 2n1m2(∆H + 1) + n1n2(∆H + 1 + 2∆G + n2)

]
.

Similarly,

SK(G) ≥ 1

2

[
4m1(2δG + n2 + 1) + 2n1m2(δH + 1) + n1n2(δH + 1 + 2δG + n2)

]
.

This completes the proof. �

Illustration 3.4 Let the ξ-graph of G,H be shown in Figure 4.

Figure 4
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Then,

SK(G) =
1

2

∑
(vi,vj)∈E(G)

[d(vi) + d(vj)]

=
1

2

[
6(3 + 2) + 12(7 + 2) + 3(7 + 3) + 3(7 + 7)

]
= 106.5,

SK(G) ≤ 1

2

[
4m1(2∆G + n2 + 1) + 2n1m2(∆H + 1) + n1n2(∆H + 1 + 2∆G + n2)

]
=

1

2

[
12(2× 2 + 3 + 1) + 12(2 + 1) + 9(2 + 1 + 2× 2 + 3)

]
= 111,

SK(G) ≥ 1

2

[
4m1(2δG + n2 + 1) + 2n1m2(δH + 1) + n1n2(δH + 1 + 2δG + n2)

]
=

1

2

[
12(2× 2 + 3 + 1) + 12(1 + 1) + 9(1 + 1 + 2× 2 + 3)

]
= 105

and therefore,

105 ≤ 106.5 ≤ 111.

Theorem 3.5 Let G and H are two simple connected graphs, then the limits for the SK1 index

of ξ-graph are given by

SK1(ξ) ≤ 1

2

{
m1(2∆G + n2)[2∆G + n2 + 4] + n1m2(2∆H + 1)2

+ n1n2[(∆H + 1)(2∆G + n2)]

}
and

SK1(ξ) ≥ 1

2

{
m1(2δG + n2)[2δG + n2 + 4] + n1m2(2δH + 1)2 + n1n2[(δH + 1)(2δG + n2)]

}
.

Proof Using definition of SK1 index, we get

SK1(G) =
1

2

∑
(vi,vj)∈E(G)

[d(vi)d(vj)],

SK1(ξ) =
1

2

{
m1[(2dG + n2)(2dG + n2)] + 2m1[2(2dG + n2)] + n1m2[(2dH + 1)(2dH + 1)]

+ n1n2[(dH + 1)(2dG + n2)]

}

=
1

2

{
m1(2dG + n2)[2dG + n2 + 4] + n1m2(2dH + 1)2 + n1n2[(dH + 1)(2dG + n2)]

}
,
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SK1(ξ) ≤ 1

2

{
m1(2∆G + n2)[2∆G + n2 + 4] + n1m2(2∆H + 1)2

+ n1n2[(∆H + 1)(2∆G + n2)]

}
.

Similarly,

SK1(ξ) ≥ 1

2

{
m1(2δG + n2)[2δG + n2 + 4] + n1m2(2δH + 1)2 + n1n2[(δH + 1)(2δG + n2)]

}
.

This completes the proof. �

Illustration 3.5 Let the ξ-graph of G,H be shown in Figure 5.

Figure 5

Then,

SK1(G) =
1

2

∑
(vi,vj)∈E(G)

[d(vi)d(vj)]

=
1

2

[
8(3× 2) + 4(3× 7) + 16(7× 2) + 4(7× 7)

]
= 276,

SK1(ξ) ≤ 1

2

{
m1(2∆G + n2)[2∆G + n2 + 4] + n1m2(2∆H + 1)2

+ n1n2[(∆H + 1)(2∆G + n2)]

}
=

1

2

{
4(2× 2 + 3)(2× 2 + 3 + 4) + 8(2× 2 + 1)2 + 12

[
(2 + 1)(2× 2 + 3)

]}
= 380,
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SK1(ξ) ≥ 1

2

{
m1(2δG + n2)[2δG + n2 + 4] + n1m2(2δH + 1)2

+ n1n2[(δH + 1)(2δG + n2)]

}
=

1

2

{
4(2× 2 + 3)(2× 2 + 3 + 4) + 8(2× 1 + 1)2 + 12

[
(1 + 1)(2× 2 + 3)

]}
= 274

and therefore,

274 ≤ 276 ≤ 380.

Theorem 3.6 Let G and H are two simple connected graphs, then the limits for the Harmonic

index of ξ-graph are given by

SK2[ξ] ≤ 1

4

{
2m1

[
2(2∆G + n2)2 + (2∆G + n2 + 2)2

]
+ 4n1m2(∆H + 1)2

+ n1n2(∆H + 2∆G + n2 + 1)2

}
and

SK2[ξ] ≥ 1

4

{
2m1

[
2(2δG + n2)2 + (2δG + n2 + 2)2

]
+ 4n1m2(δH + 1)2

+ n1n2(δH + 2δG + n2 + 1)2

}
.

Proof Using definition of Harmonic index, we get

SK2(G) =
1

4

∑
(vi,vj)∈E(G)

[d(vi) + d(vj)]
2,

SK2[ξ] =
1

4

{
m1[(2dG + n2) + (2dG + n2)]2 + 2m1[(2dG + n2) + 2]2

+ n1m2[(dH + 1) + (dH + 1)]2 + n1n2[dH + 1 + 2dG + n2]2
}

=
1

4

{
2m1

[
2(2dG + n2)2 + (2dG + n2 + 2)2

]
+ 4n1m2(dH + 1)2

+ n1n2(dH + 2dG + n2 + 1)2

}
,

SK2[ξ] ≤ 1

4

{
2m1

[
2(2∆G + n2)2 + (2∆G + n2 + 2)2

]
+ 4n1m2(∆H + 1)2

+ n1n2(∆H + 2∆G + n2 + 1)2

}
.
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Similarly,

SK2[ξ] ≥ 1

4

{
2m1

[
2(2δG + n2)2 + (2δG + n2 + 2)2

]
+ 4n1m2(δH + 1)2

+ n1n2(δH + 2δG + n2 + 1)2

}
.

This completes the proof. �

Illustration 3.6 Let the ξ-graph of G,H be shown in Figure 6.

Figure 6

Then,

SK2(G) =
1

4

∑
(vi,vj)∈E(G)

[d(vi) + d(vj)]
2

=
1

4

[
5(2 + 2)2 + 3(4 + 2)2 + 5(2 + 8)2 + 12(2 + 6)2 + 2(6 + 6)2

+ 2(6 + 8)2 + (4 + 8)2

]
= 570,

SK2[ξ] ≤ 1

4

{
2m1

[
2(2∆G + n2)2 + (2∆G + n2 + 2)2

]
+ 4n1m2(∆H + 1)2

+ n1n2(∆H + 2∆G + n2 + 1)2

}
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=
1

4

{
10
[
2(2× 3 + 2)2 + (2× 3 + 2 + 2)2

]
+ 20(1 + 1)2

+ 10(1 + 2× 3 + 2 + 1)2

}
= 850,

SK2[ξ] ≥ 1

4

{
2m1

[
2(2δG + n2)2 + (2δG + n2 + 2)2

]
+ 4n1m2(δH + 1)2

+ n1n2(δH + 2δG + n2 + 1)2

}
=

1

4

{
10
[
2(2× 1 + 2)2 + (2× 1 + 2 + 2)2

]
+ 20(1 + 1)2

+ 10(1 + 2× 1 + 2 + 1)2

}
= 280

and therefore,

280 ≤ 570 ≤ 840.

§4. Conclusion

This work focused on six significant topological indices and determined their limits while con-

sidering the ξ-graph. Similarly, researchers can consider various classes of topological indices

and ascertain the limits that correspond to them for ξ-graphs.
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Abstract: The main objective of this article is to introduce four new inferences of fuzzy

soft T0 spaces by using the concept of fuzzy soft topological spaces. We present several new

theories and some implications of such spaces. We also show that all these notions preserve

some soft invariance properties such as soft hereditary and soft topological properties.
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§1. Introduction

It is an undeniable fact that the invention of fuzzy sets by Zadeh [1] in 1965 was a ground-

breaking event. This type of set is used in control system engineering, image processing, in-

dustrial automation, robotics, consumer electronics, and other branches of applied sciences.

Besides, it is connected to fuzzy logic giving the opportunity to model under conditions of

uncertainty that are vague or not precisely defined, thus succeeding to mathematically solve

problems whose statements are expressed in our natural language. Since then, a lot of research

has been carried out for generalizing and extending the fuzzy set theory for the purpose of tack-

ling more effectively the existing uncertainty in problems of science, technology, and everyday

life.

Consequently, the Russian mathematician Dmtri Molodstov [2] proposed the soft sets in

1999 to overcome the existing difficulty of properly defining the membership function of a fuzzy

set. After the introduction of the notion of soft sets, several researchers improved this concept.

Maji et al. [3]-[5] presented an application of soft sets in decision-making problems based on

the reduction of parameters to keep the optimal choice objects. Pei and Miao [6] showed that

soft sets are a class of special information systems.

Topological structures of soft sets were also studied by Sabir and Naz [7]. They defined the

1Corresponding author: fazlulmath@pust.ac.bd
2Received October 12,2024, Accepted December 11,2024.
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soft topological spaces over an initial universe with a fixed set of parameters and studied the

concepts of soft open sets, soft closed sets, soft closure, soft interior points, soft neighborhood

of a point, soft separation axioms as well as their basic properties. Later, Roy and Samanta [8]

gave the definition of fuzzy soft topology over the initial universe set. It was further extended

by Varol and Aygun [9] and Cetin and Aygun [10].

Sabir Hussain and Bashir Ahmad [11] redefined and explored several properties of soft Ti,

i = 0, 1, 2, soft regular, soft T3, soft normal, and soft T4 axioms using the soft points defined

by Zorlutuna [12]. They also discussed some soft invariance properties, namely soft topological

property and soft hereditary property. In this work, we newly define in four different ways the

notions of Fuzzy Soft T0 spaces, develop several theories, and discuss various properties, namely

hereditary and topological properties.

Throughout this paper, X and Y will be non-empty sets, φ will denote the empty set, and

E will be the set of all parameters. FE will denote the soft set, fA will denote the fuzzy soft

set, T̄ and τ will represent the soft topology and fuzzy soft topology, respectively.

The rest of this paper is organized as follows: Section 2 presents a brief review of the

relevant definitions such as fuzzy sets, soft sets, fuzzy soft sets, soft topology, fuzzy soft topology,

fuzzy soft mapping, and the image of fuzzy soft mapping. In Section 3, we develop four ideas of

fuzzy soft T0 spaces, show some implications among them, and introduce several new theories on

fuzzy soft T0 spaces. The concepts of, good extension, hereditary property, and related theorems

are given in Section 4. Finally, Section 5 presents the conclusion and further discussion of this

paper.

§2. Preliminaries

We recall some basic definitions and known results of soft sets, fuzzy soft sets, operations on

fuzzy soft sets, soft topology, fuzzy soft topology, and fuzzy soft mapping.

Definition 2.1([1]) Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a function

u : X → I which assigns to each element x ∈ X a degree of membership u(x) ∈ I.

Definition 2.2([16]) A pair (F,E) denoted by FE is called a soft set over X, where F is a

mapping given by F : E → P (X). We denote the family of all soft sets over X by SS(X,E).

Definition 2.3([16]) A soft set (F,E) over X is called a null soft set and denoted by φ̄ if

F (e) = φ for every e ∈ E.

Definition 2.4([16]) A soft set (F,E) over X is called an absolute soft set and denoted by X̄

if F (e) = X for every e ∈ E.

Definition 2.5([16]) Let X be an initial universal set, and A ⊆ E. Let T̄ be a subfamily of the

family of all soft sets S(X). We say that the family T̄ is a soft topology on X if the following

axioms hold:

(1) φ̄A, X̄A ∈ T̄ ;
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(2) If FA, GA ∈ T̄ , then FA ∩GA ∈ T̄ ;

(3) If GiA ∈ T̄ for each i ∈ Λ, then
⋃
i∈ΛGiA ∈ T̄ .

Then, the triple (X̄A, T̄ , A) is called a soft topological space (STS, for short) and the members

of T̄ are called soft open sets (SOS for short). A soft set FA is called soft closed set (SCS, for

short) if and only if its complement is a soft open set. That is, F cA ∈ T̄ .

Definition 2.6([7]) A soft topological space (FA, T̄ , A) is called soft T0 (ST0) space if for

each x1, x2 ∈ X with x1 6= x2, there exists a SOS FA ∈ T̄ such that x1 ∈ FA, x2 /∈ FA or

x1 /∈ FA, x2 ∈ FA.

Definition 2.7([9]) A fuzzy soft set fA on the universe X is a mapping from the parameter set

E to IX , i.e., fA : E → IX , where fA(e) 6= 0X if e ∈ A ⊆ E and fA(e) = 0X if e /∈ A, where

0X is the empty fuzzy set on X.

From now on, we will use F (X,E) instead of the family of all fuzzy soft sets over X. A

classical soft set FA over a universe X can be seen as a fuzzy soft set by using the characteristic

function of the set FA(e):

fA(e)(a) = χFA(e)(a) =

1, if a ∈ FA(e),

0, otherwise.

Definition 2.8([13]) Two fuzzy soft sets fA and gB on X, we say that fA is called a fuzzy soft

subset of gB and write fA ⊆ gB if fA(e) ≤ gB(e) for every e ∈ E.

Definition 2.9([13]) Two fuzzy soft sets fA and gB on X are called equal if fA ⊆ gB and

gB ⊆ fA.

Definition 2.10([13]) Let fA, gB ∈ (X,E). Then the union of fA and gB is also a fuzzy soft

set hC , defined by hC(e) = fA(e) ∨ gB(e) for all e ∈ E, where C = A ∪ B. Here we write

hC = fA ∪ gB.

Definition 2.11([13]) Let fA, gB ∈ (X,E). Then the intersection of fA and gB is also a fuzzy

soft set hC , defined by hC(e) = fA(e) ∧ gB(e) for all e ∈ E, where C = A ∩ B. Here we write

hC = fA ∩ gB.

Definition 2.12([13]) A fuzzy soft set fE on X is called a null fuzzy soft set, denoted by 0E,

if fE(E) = 0X for each e ∈ E.

Definition 2.13([13]) A fuzzy soft set fE on X is called an absolute fuzzy soft set, denoted by

1E, if fE(E) = 1X for each e ∈ E.

Definition 2.14([13]) Let fA ∈ (X,E). Then the complement of fA is denoted by f cA and is

defined by f cA(e) = 1− fA(e) for each e ∈ E.

Definition 2.15([14]) A fuzzy soft set gA is said to be a fuzzy soft point, denoted by egA , if for

the element e ∈ E, g(e) 6= φ̃ and g(e′) = φ̃ for all e′ ∈ A− {e}.
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Definition 2.16([14]) A fuzzy soft point egA is said to be in a fuzzy soft set hA, denoted by

egA ∈ hA, if for the element e ∈ A, g(e) ≤ h(e).

Definition 2.17([14]) Let fA be a fuzzy soft set, FS(fA) be the set of all fuzzy soft subsets

of fA, and τ be a subfamily of FS(fA). Then τ is called a fuzzy soft topology on fA if the

following conditions are satisfied:

(1) φ̃A, fA ∈ τ ;

(2) f1A, f2A ∈ τ ⇒ f1A∩f2A ∈ τ ;

(3) For any index set I, if fiA ∈ τ for any i ∈ I, then
⋃
i∈I fiA ∈ τ .

Then, the pair (fA, τ) is called fuzzy soft topological space (FSTS, for short), and the members

of τ are called fuzzy soft open sets (FSOS, for short). A fuzzy soft open set gA is called a fuzzy

soft closed set (FSCS, for short) if gcA ∈ τ , where gcA is the complement of gA.

Definition 2.18([14]) A fuzzy soft topological space (fA, τ) is said to be a fuzzy soft T0 space

if for every pair of distinct fuzzy soft points ehA
and egB , there exists a fuzzy soft open set

containing one but not the other.

Definition 2.19([9]) Let (fA, τ1) and (gB , τ2) be two fuzzy soft topological spaces (FSTSs), on

the two universal sets X and Y , respectively. Then a fuzzy soft mapping (ϕ,ψ) : (fA, τ1) →
(gB , τ2) is called:

(1) Fuzzy soft continuous if (ϕ,ψ)−1(gB) ∈ τ1, for all gB ∈ τ2;

(2) Fuzzy soft open if (ϕ,ψ)(fA) ∈ τ2, for all fA ∈ τ1;

(3) Fuzzy soft closed if (ϕ,ψ)(fA) is a fuzzy soft closed set of τ2 for each fuzzy soft closed

set fA of τ1;

(4) Fuzzy soft homeomorphism if (ϕ,ψ) is bijective, continuous, and open.

Definition 2.20([13]) Let ϕ : X → Y and ψ : E → F be two mappings, where E and F

are parameter sets for the crisp sets X and Y , respectively. Then (ϕ,ψ) is called a fuzzy soft

mapping from (X,E) into (Y, F ) and denoted by (ϕ,ψ) : (X,E)→ (Y, F ).

Definition 2.21([13]) Let fA and gB be two fuzzy soft sets over X and Y , respectively, and

(ϕ,ψ) be a fuzzy soft mapping from (X,E) into (Y, F ).

(1) The image of fA under the fuzzy soft mapping (ϕ,ψ), denoted by (ϕ,ψ)(fA), is defined

as

(ϕ,ψ)(fA)k(y) =

 ∨ϕ(x) = y ∨ ψ(e) = kfA(e)(x), if ϕ−1(y) 6= φ, ψ−1(k) 6= φ;

0, otherwise,

for all k ∈ F and y ∈ Y .

(2) The image of gB under the fuzzy soft mapping (ϕ,ψ), denoted by (ϕ,ψ)−1(gB), is

defined as

(ϕ,ψ)−1(gB)(e)(x) = gB(ψ(e))(ϕ(x)) for all e ∈ E and x ∈ X.
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Proposition 2.1([15]) Let (X̄A, T̄ , A) be a soft topological space over X. Then the collection

Te = {F (e) | (F,E) ∈ T̄} for each e ∈ E, defines a topology on X.

§3. Definitions and Properties of Fuzzy Soft T0 Spaces

Before we mentioned the definition of fuzzy soft T0 space, and now in this section we introduce

four new ideas of fuzzy soft T0 spaces, establish some implications among them and develop

several new theories on fuzzy soft T0 spaces. We denote the grade of membership and the grade

of non-membership of any point in fuzzy soft set is 1̄ and 0̄ respectively. Here ᾱ means that

the grade of membership of any point in fuzzy soft set lies between 0 and 1.

Definition 3.1 A fuzzy soft topological space (FSTS) (fA, τ) is called:

(a) FST0(i) if for any pair of x1, x2 ∈ X with x1 6= x2, and for all e ∈ A, there exists an

FSOS f1A ∈ τ such that f1A(e)(x1) = 1̄, f1A(e)(x2) = 0̄, or f1A(e)(x1) = 0̄, f1A(e)(x2) = 1̄;

(b) FST0(ii) if for any pair of x1, x2 ∈ X with x1 6= x2, and for all e ∈ A, there exists an

FSOS f1A ∈ τ such that f1A(e)(x1) = ᾱ, f1A(e)(x2) = 0̄, or f1A(e)(x1) = 0̄, f1A(e)(x2) = ᾱ

as 0 < α < 1;

(c) FST0(iii) if for any pair of x1, x2 ∈ X with x1 6= x2, and for all e ∈ A, there exists an

FSOS f1A ∈ τ such that f1A(e)(x1) > f1A(e)(x2), or f1A(e)(x2) > f1A(e)(x1);

(d) FST0(iv) if for any pair of x1, x2 ∈ X with x1 6= x2, and for all e ∈ A, there exists an

FSOS f1A ∈ τ such that f1A(e)(x1) 6= f1A(e)(x2) or f1A(e)(x2) 6= f1A(e)(x1).

Theorem 3.1 Let (fA, τ) be a fuzzy soft topological space. Then the above four notions of it

form the following implications:

-�FST0(i) FST0(ii)

-�FST0(iv) FST0(iii)

?

6 6

?)

1

q

i

Figure 1 The implications of four notions are shown by a quadrilateral with two diagonals

Proof Let (fA, τ) be a FST0(i). Then by definitions, for any pair of x1, x2 ∈ X, with x1 6=
x2, and for all e ∈ A, there exists an FSOS f1A ∈ τ such that f1A(e)(x1) = 1, f1A(e)(x2) = 0,

or f1A(e)(x1) = 0, f1A(e)(x2) = 1.

⇒

 f1A(e)(x1) = ᾱ, f1A(e)(x2) = 0, or

f1A(e)(x1) = 0, f1A(e)(x2) = ᾱ
as 0 < α < 1 (1)
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⇒

 f1A(e)(x1) > f1A(e)(x2), or

f1A(e)(x2) > f1A(e)(x1)
(2)

⇒

 f1A(e)(x1) 6= f1A(e)(x2), or

f1A(e)(x2) 6= f1A(e)(x1).
(3)

Hence, from (1), (2), and (3), we see that FST0(i)⇒ FST0(ii)⇒ FST0(iii)⇒ FST0(iv).

Again, suppose that (fA, τ) be a FST0(i). Then by definition, for any pair of x1, x2 ∈ X,

with x1 6= x2, and for all e ∈ A, there exists an FSOS f1A ∈ τ such that f1A(e)(x1) =

1, f1A(e)(x2) = 0, or f1A(e)(x1) = 0, f1A(e)(x2) = 1.

⇒

 f1A(e)(x1) > f1A(e)(x2), or

f1A(e)(x2) > f1A(e)(x1)
(4)

⇒

 f1A(e)(x1) 6= f1A(e)(x2), or

f1A(e)(x2) 6= f1A(e)(x1).
(5)

Hence, from (4) and (5), we see that FST0(i)⇒ FST0(iii), and FST0(i)⇒ FST0(iv).

Finally, let (fA, τ) be a FST0(i). Then from (1), for any pair of x1, x2 ∈ X, with x1 6= x2,

and for all e ∈ A, there exists an FSOS f1A ∈ τ such that f1A(e)(x1) = ᾱ, f1A(e)(x2) = 0, or

f1A(e)(x1) = 0, f1A(e)(x2) = ᾱ, as 0 < α < 1.

⇒

 f1A(e)(x1) 6= f1A(e)(x2), or

f1A(e)(x2) 6= f1A(e)(x1).
(6)

From (6), we see that FST0(ii)⇒ FST0(iv). �

None of the reverse implications is true in general, as can be seen in the following counter

examples.

Example 3.1 Let X = {x1, x2}, E = {e1, e2, e3, e4, e5} a set of parameters, A = {e1, e2} ⊂ E,

and τ be a fuzzy soft topology on a universal set X generated by τ = {0, 1, f1A} where f1A =

{e1 = {0.6/x1, 0.7/x2}, e2 = {0.7/x1, 0.6/x2}}. Here f1A(e1)(x1) = 0.6, f1A(e1)(x2) = 0.7 and

f1A(e2)(x1) = 0.7, f1A(e2)(x2) = 0.6.

Hence, we observe that (fA, τ) is FST0(iv) but not FST0(i), FST0(ii), or FST0(iii).

Therefore, FST0(iv) ; FST0(i), FST0(iv) ; FST0(ii), and FST0(iv) ; FST0(iii).

Example 3.2 Let X = {x1, x2}, E = {e1, e2, e3, e4, e5} be a set of parameters, A = {e1, e2} ⊂
E, and τ be a fuzzy soft topology on a universal set X generated by τ = {0, 1, f1A}, where

f1A = {e1 = {0.7/x1, 0.3/x2}, e2 = {0.3/x1, 0.7/x2}}.

Here, f1A(e1)(x1) = 0.7, f1A(e1)(x2) = 0.3, and f1A(e2)(x1) = 0.3, f1A(e2)(x2) = 0.7.

f1A(e1)(x1) = 0.7, f1A(e1)(x2) = 0.3
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f1A(e2)(x1) = 0.3, f1A(e2)(x2) = 0.7

Hence, we observe that (fA, τ) is FST0(iii) but not FST0(i) and FST0(ii). Therefore,

FST0(iii) ; FST0(i), and FST0(iii) ; FST0(ii).

Finally, if we consider f1A = {e1 = {ᾱ/x1, 0/x2}, e2 = {0/x1, ᾱ/x2}}, where 0 < α < 1,

then we have

f1A(e1)(x1) = ᾱ, f1A(e1)(x2) = 0̄

f1A(e2)(x1) = 0̄, f1A(e2)(x2) = ᾱ

Thus, (fA, τ) is FST0(ii) but not FST0(i).

Theorem 3.2 If a fuzzy soft topological space (FSTS) (fA, τ) is a fuzzy soft T0 space, then the

following statements are equivalent:

(a) for all x1, x2 ∈ X, x1 6= x2, and for all e ∈ A, f1A(e)(x1) ∧ f1A(e)(x2) ≤ 1;

(b) for all x1, x2 ∈ X, x1 6= x2, and for all e ∈ A there exists an FSOS f1A ∈ τ such that

f1A(e)(x1) > 0, f1A(e)(x2) = 0, or f1A(e)(x1) = 0, f1A(e)(x2) > 0.

Proof (a) ⇒ (b): We have from (a) that,

f1A(e)(x1) ∧ f1A(e)(x2) ≤ 1⇒ f1A(e)(x1) < 1 or f1A(e)(x2) < 1.

This implies

1− f1A(e)(x1) > 0 or 1− f1A(e)(x2) > 0.

Let f1A = 1− f1A. Then we have

f1A(e)(x1) > 0, f1A(e)(x2) = 0 or f1A(e)(x1) = 0, f1A(e)(x2) > 0,

which is (b).

(b) ⇒ (a): From (b) we have that, for all x1, x2 ∈ X, x1 6= x2, and for all e ∈ A, there

exists an FSOS f1A ∈ τ such that

f1A(e)(x1) > 0, f1A(e)(x2) = 0, or f1A(e)(x1) = 0, f1A(e)(x2) > 0.

That implies

1− f1A(e)(x1) < 1, 1− f1A(e)(x2) = 0, or 1− f1A(e)(x2) < 1, 1− f1A(e)(x1) = 0.

Since f1A is a fuzzy soft open set (FSOS), therefore 1−f1A is a fuzzy soft closed set (FSCS).

Hence, we have

f1A(e)(x1) < 1 or f1A(e)(x2) < 1 ⇒ f1A(e)(x1) ∧ f1A(e)(x2) ≤ 1,

which is (a). �
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Theorem 3.3 Let (fA, τ, A) be a fuzzy soft topological space (FSTS) over a universal set X,

and let ex1
, ex2

∈ fA such that ex1
6= ex2

as x1 6= x2 for every pair x1, x2 ∈ X. If there exist

FSOSs (f1A, A) and (f2A, A) such that ex1
∈ (f1A, A) and ex2

∈ (f1A, A)c or ex2
∈ (f2A, A)

and ex1
∈ (f2A, A)c, then

(a) (fA, τ, A) is an FST0 space;

(b) (FA, τ, A) is an ST0 space;

(c) (X, τe) is a T0 space.

Proof Firstly we prove (a). It is clear that ex2 ∈ (f1A, A)c = (f c1A, A) =⇒ ex2 /∈ (f1A, A),

which implies that f1A(e)(x2) = 0. Similarly, ex1 ∈ (f2A, A)c = (f c2A, A) =⇒ ex1 /∈ (f2A, A),

which implies that f2A(e)(x1) = 0. Thus, we have ex1
∈ (f1A, A), ex2

/∈ (f1A, A) or ex2
∈

(f2A, A), ex1
/∈ (f2A, A). This proves that (fA, τ, A) is an FST0 space.

Secondly we prove (b), that is (FA, τ, A) is an ST0 space. To do this, we define a charac-

teristic function 1FA
such that

fA(e)(x) = 1FA
(e) =

1 if x ∈ FA(e)

0 otherwise.

Let fA = (f1A, f2A) and FA = (F1A, F2A). Now, for any x1, x2 ∈ X with x1 6= x2 we

have f1A(e)(x1) = 1 =⇒ ex1
∈ (F1A, A) and f1A(e)(x2) = 0 =⇒ ex2

/∈ (F1A, A). Therefore,

ex1
∈ (F1A, A), ex2

/∈ (F1A, A) or ex2
∈ (F2A, A), ex1

/∈ (F2A, A). Thus, (FA, τ, A) is an ST0

space.

Finally to prove (c), for any e ∈ A, (X,Te) is a topological space on X (see Proposition

2.1) and ex1
∈ (F1A, A), ex2

∈ (F1A, A)c or ex2
∈ (F2A, A), ex1

∈ (F2A, A)c. So that x1 ∈
F1A(e), x2 /∈ F1A(e) or x2 ∈ F2A(e), x1 /∈ F2A(e). Thus, (X, τe) is a T0 space. �

§4. Good Extension, Hereditary and Topological Property

In this section, we discuss some fuzzy soft invariance properties, namely good extension, hered-

itary and soft topological properties.

Definition 4.1 Let (FA, T , A) be a soft topological space and τ = {1FA
: FA ∈ T}, and

1FA
= f1A. Then (fA, τ) is the corresponding fuzzy soft topological space of (FA, T , A). Let P

be a property of soft topological spaces and FP be its fuzzy soft topological analogue. Then FP

is called a Good extension of P if the statement (FA, T , A) has P if and only if (fA, τ) has FP

holds true for every soft topological space (FA, T , A).

Theorem 4.1 Let (FA, T̄ , A) be a soft T0 space and (fA, τ) be FST0(j) spaces, where j =

i, ii, iii, iv. Then (FA, T̄ , A) will be FST0(j) spaces if and only if FST0(j) will also be a soft T0

space.

Proof Suppose that (FA, T̄ , A) is a soft T0 (ST0) space. We prove that (FA, T̄ , A) is

FST0(j) spaces. Since (FA, T̄ , A) is a soft T0 space, for each x1, x2 ∈ X, with x1 6= x2, and
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for all e ∈ A, there exists a soft open set (SOS) FA ∈ T̄ such that x1 ∈ FA and x2 /∈ FA, or

x1 /∈ FA and x2 ∈ FA. Then, by a characteristic function 1FA
, we have

⇒

 1FA
(e)(x1) = 1̄, 1FA

(e)(x2) = 0̄, or

1FA
(e)(x1) = 0̄, 1FA

(e)(x2) = 1̄.

Let 1FA
= f1A. Therefore,

⇒

 f1A(e)(x1) = 1̄, f1A(e)(x2) = 0̄, or

f1A(e)(x1) = 0̄, f1A(e)(x2) = 1̄,
(7)

⇒

 f1A(e)(x1) = ᾱ, f1A(e)(x2) = 0̄, or

f1A(e)(x1) = 0̄, f1A(e)(x2) = ᾱ, as 0 < α < 1,
(8)

⇒

 f1A(e)(x1) > f1A(e)(x2) or

f1A(e)(x2) > f1A(e)(x1),
(9)

⇒

 f1A(e)(x1) 6= f1A(e)(x2) or

f1A(e)(x2) 6= f1A(e)(x1).
(10)

Hence, from (7), (8), (9), and (10), we see that a soft T0 space is FST0(i), FST0(ii),

FST0(iii), and FST0(iv) spaces. This implies that a soft T0 space is FST0(j) spaces, where

j = i, ii, iii, iv.

Conversely, assume that (fA, τ) is FST0(j) spaces. We will prove that (fA, τ) is a soft T0

space. To do this, we will first prove it for j = i. Since (fA, τ) is FST0(i), by definition, for all

x1, x2 ∈ X, with x1 6= x2, and for all e ∈ A, there exists an FSOS f1A ∈ τ such that

⇒

 f1A(e)(x1) = 1̄, f1A(e)(x2) = 0̄, or

f1A(e)(x1) = 0̄, f1A(e)(x2) = 1̄.

Thus

⇒

 f−1
1A (e)(1̄) = {x1}, f−1

1A (e)(0̄) = {x2}, or

f−1
1A (e)(0̄) = {x1}, f−1

1A (e)(1̄) = {x2}.

Let f−1
1A (1̄) = FA. Therefore, FA(e) = {x1} or FA(e) = {x2}. Hence, for each x1, x2 ∈ X,

with x1 6= x2, and for all e ∈ A, there exists a soft open set (SOS) FA ∈ T̄ such that x1 ∈ FA
and x2 /∈ FA, or x1 /∈ FA and x2 ∈ FA. Thus, FST0(i) is ST0. Similarly, FST0(ii), FST0(iii),

and FST0(iv) imply ST0 space. �

Definition 4.2 Let (fA, τ) be a fuzzy soft topological space (FSTS) and gA ⊂ fA. Then the

fuzzy soft topology τgA = {gA∩hA | hA ∈ τ} is called the fuzzy soft subspace topology, and

(gA, τgA) is called the fuzzy soft subspace of (fA, τ). A fuzzy soft topological property P is called

hereditary if each subspace of a fuzzy soft topological space with property P also has property P .
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Theorem 4.2 Let (fA, τ) be a fuzzy soft topological space (FSTS) and (gA, τ(gA)) be a subspace

of it. Then if (fA, τ) is FST0(j), it implies that (gA, τgA) is also FST0(j), where j = i, ii, iii, iv.

Proof We prove this theorem only for j = i. Suppose that (fA, τ) is FST0(i). It will

be shown that (gA, τgA) is FST0(i). Let x1, x2 ∈ X with x1 6= x2, and for all e ∈ A such

that gA(e)(x1) = 1̄, gA(e)(x2) = 0̄. Since (fA, τ) is FST0(i), by definition, for all x1, x2 ∈ X,

x1 6= x2, and for all e ∈ A, there exists an FSOS hA ∈ τ such that either hA(e)(x1) =

1̄, hA(e)(x2) = 0̄ or hA(e)(x1) = 0̄, hA(e)(x2) = 1̄. Since gA(e)(x1) = 1̄ and hA(e)(x1) =

1̄, we have (gA∩hA)(e)(x1) = 1 and similarly, (gA∩hA)(e)(x2) = 0 or (gA∩hA)(e)(x1) =

0, (gA∩hA)(e)(x2) = 1. Hence, (gA, τgA) is FST0(i). The cases for j = ii, iii, and iv can be

proved in a similar way. �

Theorem 4.3 Let (fA, τ1) and (gB , τ2) be two fuzzy soft topological spaces (FSTS’s) on the two

universal sets X and Y , respectively. Let (φ, ψ) : (fA, τ1)→ (gB , τ2) be a fuzzy soft one-to-one,

onto, and continuous map. Then these spaces maintain the following features:

(a) (fA, τ1) is FST0(i) ⇐⇒ (gB , τ2) is FST0(i);

(b) (fA, τ1) is FST0(ii) ⇐⇒ (gB , τ2) is FST0(ii);

(c) (fA, τ1) is FST0(iii) ⇐⇒ (gB , τ2) is FST0(iii);

(d) (fA, τ1) is FST0(iv) ⇐⇒ (gB , τ2) is FST0(iv).

Proof We prove only (a). Suppose (fA, τ1) is FST0(i). We will prove that (gB , τ2) is also

FST0(i). Let y1, y2 ∈ Y with y1 6= y2. Since (φ, ψ) is onto, there exist x1, x2 ∈ X with x1 6= x2,

such that φ(x1) = y1, φ(x2) = y2, and ψ(e) = k for all parameters e ∈ A and for all k ∈ B.

Hence, x1 6= x2 since φ is one-to-one. Since (fA, τ1) is FST0(i), we have that for all x1, x2 ∈ X,

x1 6= x2, and for all e ∈ A, there exists an FSOS f1A ∈ τ1 such that either f1A(e)(x1) = 1̄

and f1A(e)(x2) = 0̄, or f1A(e)(x1) = 0̄ and f1A(e)(x2) = 1̄. Now, there exists an FSOS

(φ, ψ)(f1A) ∈ τ2 such that (φ, ψ)(f1A)k(y1) = 1̄ as f1A(e)(x1) = 1̄ and (φ, ψ)(f1A)k(y2) =

0̄ as f1A(e)(x2) = 0̄. Similarly, (φ, ψ)(f1A)k(y1) = 0̄ and (φ, ψ)(f1A)k(y2) = 1̄. Hence,

(gB , τ2) is FST0(i).

Conversely, suppose that (gB , τ2) is FST0(i). We prove that (fA, τ1) is FST0(i). Let

x1, x2 ∈ X with x1 6= x2. This implies that φ(x1) 6= φ(x2) as φ is one-to-one. Put φ(x1) = y1

and φ(x2) = y2. Then y1 6= y2. Since (gB , τ2) is FST0(i), there exists an FSOS g1B ∈ τ2 such

that either g1B(k)(y1) = 1̄ and g1B(k)(y2) = 0̄, or g1B(k)(y1) = 0̄ and g1B(k)(y2) = 1̄. Now,

there exists an FSOS (φ, ψ)−1(g1B) ∈ τ1 such that (φ, ψ)−1(g1B)(e)(x1) = g1B(ψ(e))(φ(x1)) =

g1B(k)(y1) = 1̄ and (φ, ψ)−1(g1B)(e)(x2) = g1B(ψ(e))(φ(x2)) = g1B(k)(y2) = 0̄. Similarly,

(φ, ψ)−1(g1B)(e)(x1) = 0̄ and (φ, ψ)−1(g1B)(e)(x2) = 1̄. Hence, (fA, τ1) is FST0(i). In the

same way, (b), (c) and (d) can be proved. �

§5. Conclusion

This paper develops several new theories based on four new notions of α− separation axioms

on fuzzy soft T0 spaces. The good extension, soft hereditary and soft topological properties are
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widely discussed with examples and counter examples, which are extensively applicable in fuzzy

logic and fuzzy topology. The similar concepts of such notions and relevant new theories will

be investigated for lattice fuzzy soft T0 spaces in our further study.
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Abstract: A level index is a numerator of distance based Gini index which was introduced

in 2017. Then, the level index is used to evaluate the balance of rooted trees. Level ma-

trix and level characteristic polynomial concepts were introduced recently for rooted trees.

The level characteristic polynomial of rooted binary caterpillars was computed in terms of

distance characteristic polynomial of paths. In this paper, we compute the level index of

rooted binary caterpillars as Octahedral numbers and show that level characteristic poly-

nomials of the mentioned graphs can be computed by a recurrence relation in terms of

Chebyshev polynomials of first- and second-kind. So, we can give an affirmative answer to

a recent manuscript including a question about the computation of the level characteristic

polynomial of a graph with recursive formula.
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§1. Introduction

Corrado Gini [5] introduced in 1912 several economic summary statistics, among them what is

now known as the Gini index, which it is a parameter that measures how equitably a resource

is distributed throughout a population (for more details, see [4] and [7]. More recent, Balaji

and Mahmoud [1] presented two distance-based molecular descriptors level index and Gini

index. Clearly, the level index is a numerator of the distance-based Gini index which is used

to evaluate the measure for a tree. Balaji and Mahmoud obtained a general phrase of the level

index of trees. Level matrix and level characteristic polynomial concepts introduced recently

[3]. Level characteristic polynomials of rooted stars, rooted double stars, and rooted binary

caterpillars were obtained [3]. The level characteristic polynomials of rooted binary caterpillars

were computed in terms of distance characteristic polynomials of paths. Moreover, distance

characteristic polynomials of paths were obtained by Hosoya et al. in 1973 [6]. The spectrum

of the level matrix was studied very recently in [2].
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In this paper, we compute the level characteristic polynomial of rooted binary caterpillar

by a recurrence relation in terms of Chebyshev polynomials of the first-kind and second-kind.

Therefore, we can present an affirmative answer to the question (Question 4) which appeares

in [2] looking for a rooted tree that its level characteristic polynomial can be computed by a

recursive formula.

§2. Preliminaries

We only consider simple, connected, and undirected graphs. A graph G consists of a vertex set

V (G) and an edge set E(G). The notation d(u, v) is used to show the distance between two

vertices u and v in a graph. Generally, a Smarandachely rooted tree TS is a rooted tree T with

s rooted vertices and the level lSu of u ∈ V (T ) is the minimum distance between u to rooted

vertices. Particularly, if there are only one rooted vertex, such a TS is nothing else but a rooted

tree T . For a rooted tree T , the level of a vertex u is abbreviated to lu, i.e., the distance between

u and the rooted vertex, which is the objective in this paper. Certainly, the same question can

be also considered on Smarandachely rooted tree TS for a few of typical rooted vertices.

Definition 2.1([1]) The level index of a rooted tree T , denoted by LI(T ), is given by

LI(T ) =
∑

1≤i<j≤n

|li(T )− lj(T )| ,

where li(T ) shows the level of the vertex vi in T .

Definition 2.2([1]) The level index of a rooted tree T of maximum level h is computed by the

following equation such that Ni and Ni+j showing the number of vertices at level i and i + j

with the difference in depth of j

LI(T ) =

h∑
i=0

h−i∑
j=0

jNiNi+j

Definition 2.3([3]) Let T be a rooted tree and let its vertices be labeled as v1, v2, · · · , vn. The

level of v ∈ V (T ) is the distance from the root of T to v. The level matrix of T is defined as

the square matrix L = L(T ) = [lij ] where lij is the absolute value of the levels’ difference of

vertices vi and vj in T .

A rooted binary caterpillar Tk is obtained from a k vertex path by attaching a vertex to

each vertex of the path which is illustrated in Figure 1.

Figure 1. The rooted binary caterpillar Tk
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Definition 2.4 The level characteristic matrix of rooted binary caterpillar Tk is defined by

Matrix Mk of order 2k:

Mk =



A1 A2 A3 . . . Ak

A−2 A1 A2
. . .

...

A−3 A−2 A1
. . . A3

...
. . .

. . .
. . . A2

A−k . . . A−3 A−2 A1


where

A1 =

 x −1

−1 x

 , and Ak =

 −k + 1 −k

−k + 2 −k + 1


for all integers k ≥ 2, and A−k = Atk (transpose), for all k ≥ 1.

For instance, the level characteristic matrix of T5 is presented as follows

M5 =



x −1 −1 −2 −2 −3 −3 −4 −4 −5

−1 x 0 −1 −1 −2 −2 −3 −3 −4

−1 0 x −1 −1 −2 −2 −3 −3 −4

−2 −1 −1 x 0 −1 −1 −2 −2 −3

−2 −1 −1 0 x −1 −1 −2 −2 −3

−3 −2 −2 −1 −1 x 0 −1 −1 −2

−3 −2 −2 −1 −1 0 x −1 −1 −2

−4 −3 −3 −2 −2 −1 −1 x 0 −1

−4 −3 −3 −2 −2 −1 −1 0 x −1

−5 −4 −4 −3 −3 −2 −2 −1 −1 x



.

Theorem 2.5([6]) The distance characteristic polynomial of a path Pn is given by

Cn(x) = xn −
n∑
k=2

2k−2(k − 1)
n2(n2 − 1)(n2 − 22) . . . (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) . . . (k2 − (k − 1)2)
xn−k .

Theorem 2.6([3]) For k > 2, the characteristic polynomial of the rooted tree Tk is given by

ϕ(λ) = (2λ)k−1
(
λ · Ck(λ/2) + Ck+1(λ/2)

)
,

where Cn(x) is given in Theorem 2.5.

In order to obtain a general result, we can define a family T- of trees such that N0 = 1

,N1 = N2 = ... = Nk−1 = 2, and Nk = 1. Clearly Tk ∈ T-.
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§3. Main Result

In this section, we first compute the level index of the rooted trees of the family T- that the

level indices of the members of T- equal to Octahedral numbers. Moreover, we show that the

determinant of the matrix Mk equals to level characteristic polynomial of only the members of

T- with level k. Finally, we obtain the determinant of Mk in terms of Chebyshev polynomials

of the first-kind and second-kind.

Theorem 3.1 If a tree T ∈ T- with level k, then the level index of T is given by

LI(T ) =
k(2k2 + 1)

3
.

Proof By Definition 2.2, the level index of T can be computed by the following equation

such that the numbers of the vertices at level i are ordered as follows N0 = 1, N1 = N2 = · · · =
Nk−1 = 2, and Nk = 1. Then

LI(T ) =

k∑
i=0

k−i∑
j=0

jNiNi+j = k + 4

k−1∑
i=1

i(k − i)

= k + 4k

k−1∑
i=1

i− 4

k−1∑
i=1

i2

= k + 4k × k(k − 1)

2
− 4× (k − 1)k(2k − 1)

6

=
4k3 + 2k

6
=
k(2k2 + 1)

3
,

as claimed. �

For instance, by Theorem 3.1, the initial terms of the level index of Tk are LI(T1) = 1,

LI(T2) = 6, LI(T3) = 19, LI(T4) = 44, LI(T5) = 85, and LI(T6) = 146 (see Sequence A005900

in [8]).

Lemma 3.2 Let T be a rooted tree. Then the level characteristic polynomial of T equals to

determinant of Mk if and only if TεT- with level k.

Proof The sufficient condition is clear. Then we will prove only the necessary condition.

If T ∈ T-, then there are two vertices at each level except the last level k and there is one vertex

at the last level k. It means that every two rows of the level matrix of T are equal because the

vertices appeared on the same level. Since T is a rooted tree and there is one vertex at level k,

the first row and the last row of the level matrix of T are equal in the reverse order.

Now assume that T /∈ T-. It implies that there are at least three vertices at a level Then,

at least three rows of the level matrix of T are the same is a contradiction. It is obtained that

the level characteristic polynomial of T equals to determinant of Mk if and only if T ∈ T-. �

In order to find the determinant of the matrix Mk, we define the following matrices



72 Muhammed F. Killik and Bünyamin Şahin

• Ak (respectively, Bk, Ck) is the obtained matrix from Mk by removing the first row and

first column (respectively, second column, 2kth column).

• Dk is the obtained matrix from Ck by removing the first and last rows, and first and

second columns.

• Ek is the obtained matrix from Ck by removing the first, second, and last rows, and the

first three columns.

Then, by evaluating the determinant of the matrices Mk, Ak, Bk, Ck, Dk, Ek according to the

first row, we obtain the following recurrences

det(Mk) = 2(x+ 1) det(Ak) + xdet(Bk) + det(Ck),

det(Ak) = 2xdet(Mk−1)− x2 det(Ak−1),

det(Bk) = −x det(Mk−1) + xdet(Ck−1),

det(Ck) = x2 det(Ck−1)− 2xdet(Dk−1) + x2 det(Ek−1),

det(Dk) = 2(x+ 1) det(Ek)− x2 det(Dk−1),

det(Ek) = 2xdet(Dk−1)− x2 det(Ek−1).

By the recurrence of det(Dk) and det(Ek), we obtain

det(Dk) = 2x(x+ 2) det(Dk−1)− x4 det(Dk−2)

where det(D1) = 2(1 + x) and det(D2) = 4x(1 + x)(2 + x). Hence, by induction on k, we have

det(Dk) = 2(1 + x)x2k−2Uk−1(y),

where y = 1 + 2/x and Um is the mth Chebyshev polynomials of the second kind. Thus, by the

recurrence of det(Dk), we have

det(Ek) = x2k−2(Uk−1(y) + Uk−2(y)).

By the recurrence of det(Ck), we have

det(Ck) = −(1 + x)x2k−2 +

k−2∑
j=0

x2j(−2xdet(Dk−1−j) + x2 det(Ek−1−j))

= −(1 + x)x2k−2 + x2k−1
k−2∑
j=0

x2j(xUk−3−j(y)− (3x+ 4)Uk−2−j(y)).

Hence, by the recurrences of det(Mk), det(Ak), det(Bk) and det(Ck), we obtain that the

sequence det(Mk) satisfies

det(Mk) = 2x(x+ 2) det(Mk−1)− x4 det(Mk−2) + det(Ck) + 2x2 det(Ck−1) + x4 det(Ck−2),
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where det(M1) = x2− 1 and det(M2) = x(x+ 2)(x2− 2x− 4). Moreover, the sequence det(Ck)

satisfies

det(Ck) = x(3x+ 4) det(Ck−1)− x3(3x+ 4) det(Ck−2) + x6 det(Ck−3),

where det(C1) = −1− x, det(C2) = −x(x+ 2)2, det(C3) = −x2(x+ 1)(x+ 4)2, and det(C4) =

−x3(x2 + 8x+ 8)2. Hence,

∑
k≥

det(Ck)tk =
t(t2x5 − 2tx3 − 3tx2 + x+ 1)

(tx2 − 1)(t2x4 − 2tx2 − 4tx+ 1)
,

which implies the following result. �

Theorem 3.3 The generating function
∑
k≥ det(Mk)tk is given by

t(t4x10 − 4t3x8 − 8t3x7 − t3x6 + 6t2x6 + 16t2x5 + 13t2x4 − 4tx4 − 8tx3 − 3tx2 + x2 − 1)

(1− tx2)(t2x4 − 2tx2 − 4tx+ 1)2
.

On the other hand, we define the sequence mk as follows

m2k = x2k−1

(
1 + v

)2k
+
(
1− v

)2k
2

× (2kv + x) (1− v)
2k − (2kv − x) (1 + v)

2k

2
,

m2k+1 = −x2k

(
1 + v

)2k+1 −
(
1− v

)2k+1

2

× ((2k + 1)v + x) (1− v)
2k+1

+ ((2k + 1)v − x) (1 + v)
2k+1

2
,

where v =
√
x+ 1.

By finding the generating function for the sequence mk, namely
∑
k≥1mkt

k, and comparing

the result with Theorem 3.3, we obtain that det(Mk) = mk. Thus, we can state the following

result.

Proposition 3.4 For all k ≥ 1, det(Mk) = mk.

Note that the mk can be written in terms of Chebyshev polynomials of the second-kind,

Uk(y), and of the first-kind, Tk(y), which, by Proposition 3.4, leads to the following result.

Theorem 3.5 For all k ≥ 1,

det(M2k) = x4k−2Tk(y)(x2Tk(y)− 4k(1 + x)Uk−1(y)),

det(M2k+1) = x4k−2(1 + x)(2Uk(y)− xTk+1(y))

× (2(2k + 1)(1 + x)Uk(y)− x(2k + 1)Tk+1(y) + 2xUk(y)− x2Tk+1(y)).
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By this way we can give an affirmative answer to an open problem (Question 4) of the

paper [2].
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§1. Introduction

1.1. Background on Fuzzy Logic and Intuitionistic Fuzzy Sets

Fuzzy logic, introduced by Zadeh (1965), extends classical logic to handle uncertainty and im-

precision using membership functions. Intuitionistic fuzzy sets, proposed by Atanassov (1986),

further extend fuzzy sets by including both membership and non-membership degrees, with

their sum constrained to be less than or equal to one. This allows for a more nuanced repre-

sentation of uncertainty.

1.2. Overview of Metric Spaces

A metric space (X, d) consists of a set X and a metric d : X ×X → R that satisfies

• Non-negativity: d(x, y) ≥ 0;

• Identity of indiscernibles: d(x, y) = 0 if and only if x = y;

• Symmetry: d(x, y) = d(y, x);

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

1Received August 5,2024, Accepted December 14,2024.



76 Ram Milan Singh, Roshni Sahu and Uma Vishwakarma

1.3. Intuitionistic Fuzzy Metric Spaces

Intuitionistic fuzzy metric spaces integrate metric spaces with intuitionistic fuzzy sets. They

are represented as (X, d, µ), where X is a set, d is a metric, and µ is an intuitionistic fuzzy set

on X.

§2. Theoretical Framework

2.1. Intuitionistic Fuzzy Sets

An intuitionistic fuzzy set A is characterized by a membership function µA(x) and a non-

membership function νA(x), where µA(x) + νA(x) ≤ 1. Operations on intuitionistic fuzzy sets

include

• Union: µA∪B(x) = max(µA(x), µB(x));

• Intersection: µA∩B(x) = min(µA(x), µB(x));

• Complement: µ¬A(x) = 1− µA(x).

2.2. Metric Spaces

A metric space (X, d) is defined by the metric d satisfying the above axioms. The distance

function d provides a quantitative measure of ”closeness” between elements of X.

2.3. Intuitionistic Fuzzy Metric Spaces

An intuitionistic fuzzy metric space (X, d, µ) extends a metric space to handle uncertainty

through intuitionistic fuzzy sets. The intuitionistic fuzzy distance dµ(x, y) incorporates both

membership and non-membership values.

§3. Main Results

Theorem 3.1(Fixed Point Theorem) In an intuitionistic fuzzy metric space (X, d, µ), if T :

X → X is a contraction mapping, then T has a unique fixed point.

Proof Our proof is divided into five steps following:

(1)(Contraction Mapping) A function T is a contraction if there exists a constant 0 ≤ k < 1

such that for all x, y ∈ X:

d(T (x), T (y)) ≤ k · d(x, y).

(2)(Cauchy Sequence) Define a sequence {xn} by xn+1 = T (xn). For m > n,

d(xm, xn) = d(Tm−n(xn), Tm−n(xn)) ≤ km−n · d(xn, xn).

Since k < 1, km−n → 0 as m,n→∞. Thus, {xn} is a Cauchy sequence.
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(3)(Convergence) In a complete metric space, every Cauchy sequence converges. Let x∗

be the limit of {xn}.
(4)(Fixed Point) Show x∗ is a fixed point by

T (x∗) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = x∗.

(5)(Uniqueness) Assume x∗ and y∗ are fixed points. Then:

d(x∗, y∗) = d(T (x∗), T (y∗)) ≤ k · d(x∗, y∗).

Since k < 1, d(x∗, y∗) = 0, hence x∗ = y∗. Therefore, the fixed point is unique. �

Theorem 3.2(Intuitionistic Fuzzy Convergence) In an intuitionistic fuzzy metric space, a

sequence {xn} converges to x if and only if for every ε > 0, there exists N such that for all

n ≥ N , d(xn, x) < ε.

Proof Our proof is divided into two steps following:

(1)(Sufficiency) If {xn} converges to x, then by definition, for every ε > 0, there exists N

such that for all n ≥ N :

d(xn, x) < ε.

This follows directly from the definition of convergence.

(2)(Necessity) Suppose for every ε > 0, there exists N such that for all n ≥ N , d(xn, x) < ε.

By definition, this implies that {xn} converges to x. �

§4. Applications in Image Processing

4.1. Image Segmentation

Intuitionistic fuzzy metric spaces improve image segmentation by handling uncertainty in pixel

classification. For instance,

Algorithm Fuzzy C-means clustering with intuitionistic fuzzy sets.

J(U, V ) =

n∑
i=1

c∑
j=1

umijd(xi, vj)

where uij represents the membership value of pixel xi in cluster j, d is the distance metric and

vj is the cluster center.

4.1. Image Enhancement

Enhancement techniques utilize intuitionistic fuzzy logic to adjust pixel values while preserving

important features. For example,
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Algorithm Intuitionistic fuzzy filters for contrast enhancement:

Ienhanced(x) =
µ(x) · I(x) + ν(x) · I(x)

µ(x) + ν(x)
,

where µ and ν are membership and non-membership functions, respectively.

4.3. Image Recognition

Intuitionistic fuzzy metrics improve recognition accuracy by dealing with uncertainties in image

features. For instance,

Algorithm Intuitionistic fuzzy logic-based neural networks. The training and

Algorithm Intuitionistic fuzzy logic-based neural networks. The training involves mini-

mizing the loss function:

L =

N∑
i=1

loss(yi, ŷi)

where yi is the true label and ŷi is the predicted label for each image.

§5. Case Studies and Examples

Example 5.1(Image Segmentation) Medical image segmentation using intuitionistic fuzzy C-

means.

Mathematical Model Define the objective function:

J(U, V ) =

n∑
i=1

c∑
j=1

umijd(xi, vj)

where uij is the membership value of pixel xi in cluster j, d is the distance metric, and vj is

the cluster center.

Results The segmentation results show improved accuracy compared to traditional meth-

ods. For instance, the segmentation of tumor regions in MRI scans exhibited better delineation,

reducing false positives and negatives.

Example 5.2(Image Enhancement) Application of intuitionistic fuzzy filters to enhance satel-

lite images.

Algorithm Detail the enhancement process and parameters used. For example, an intu-

itionistic fuzzy filter with membership function µ and non-membership function ν was applied

to adjust contrast:

Ienhanced(x) =
µ(x) · I(x) + ν(x) · I(x)

µ(x) + ν(x)

Results Enhanced satellite images exhibited clearer features, such as improved edge

detection and better visibility of geographical details.
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Example 5.3(Image Recognition) Intuitionistic fuzzy logic-based neural networks for facial

recognition.

Algorithm Train the neural network using an intuitionistic fuzzy logic-based approach

to handle uncertainty in facial features. The loss function used is:

L =

N∑
i=1

loss(yi, ŷi)

Results The recognition accuracy improved significantly compared to traditional methods.

The model demonstrated enhanced performance in distinguishing between similar faces in varied

lighting conditions.

§6. Conclusion

This paper has explored the theoretical aspects of intuitionistic fuzzy metric spaces and demon-

strated their practical applications in image processing. The integration of intuitionistic fuzzy

logic with metric spaces provides a powerful tool for handling uncertainty in various image

processing tasks. The case studies and examples illustrated the effectiveness of these methods

in improving image segmentation, enhancement, and recognition.
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§1. Introduction

The environmental consequences of warfare have become increasingly evident with ongoing

conflicts around the globe. The direct and indirect emissions from military operations contribute

significantly to environmental pollution, affecting air, water, and soil quality. As conflicts

continue to escalate, the cumulative impact on the environment raises critical concerns about

sustainability and ecological health.

Military activities produce substantial emissions of greenhouse gases, such as CO2, and

other pollutants, including particulate matter and toxic chemicals. These emissions arise from

various sources, including the combustion of fossil fuels in military vehicles and aircraft, the

detonation of explosives, and the destruction of infrastructure. Additionally, the environmental

damage extends beyond emissions, encompassing habitat destruction, soil contamination, and

long-term ecological degradation.

This paper aims to quantify the environmental impact of military conflicts by employing

mathematical models to analyze real-world data on pollutant emissions. By integrating data

from various conflicts, including recent and historical case studies, the study seeks to provide a

comprehensive assessment of how military operations contribute to environmental degradation.

The use of mathematical models allows for the estimation of emissions and their effects on the

environment, providing valuable insights into the scale and scope of the problem.

1Received September 2,2024, Accepted December 16,2024.
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The analysis focuses on several key aspects:

• Direct Emissions. Examining the greenhouse gases and pollutants released directly

from military activities, including fuel combustion, explosives, and military machinery;

• Indirect Environmental Impact. Assessing the broader ecological consequences

of military operations, such as habitat destruction, soil erosion, and contamination of water

sources;

• Geographical Variations. Exploring how environmental impacts vary across differ-

ent regions and types of conflicts, considering factors such as geography, climate, and local

ecosystems;

•Temporal Analysis: Analyzing the short-term and long-term effects of military conflicts

on environmental pollution and recovery processes.

By applying these models, the paper aims to highlight the substantial contribution of

military activities to environmental pollution and to underscore the need for integrating envi-

ronmental considerations into conflict management and military planning. Understanding the

extent of environmental damage caused by warfare is crucial for developing effective strategies

to mitigate its impact and promote sustainable practices.

The findings of this study will contribute to the broader discourse on environmental sus-

tainability in conflict zones and offer recommendations for reducing the ecological footprint of

military operations. Through this research, we seek to advance knowledge in this critical area

and support efforts to address the environmental challenges associated with armed conflicts.

§2. Data Collection

This section details the data collection methodology and includes calculations to quantify the

environmental impact of contemporary conflicts. We gathered data from reputable sources and

performed calculations to estimate the impacts on emissions, fuel consumption, and the extent

of affected areas.

2.1. Global Conflict Data

Data Source. All data from the Global Conflict Tracker, managed by the Council on Foreign

Relations, provides insights into conflict zones, including geographic areas affected by military

operations.

Example Calculation. For the Syrian Civil War, the Global Conflict Tracker estimates that

military operations impact an area of 500,000 square kilometers. To estimate the affected area,

we assume that military operations affect 10% of this region by

Operational Area = Total Area× Percentage Impacted, (1)

Operational Area = 500,000 km2 × 0.10 = 50,000 km2. (2)

Thus, the military operations impact 50,000 square kilometers of the Syrian conflict zone. See
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[6] for details.

2.2. Environmental Reports

Data Source. The Environmental Protection Agency (EPA) provides comprehensive data on

emissions, including annual inventories and environmental impact assessments.

CO2 Emissions Calculation. To estimate CO2 emissions from diesel fuel consumption in a

conflict zone, we use: Annual Fuel Consumption: 1,000,000 liters emission factor for CO2: 2.68

kg CO2/liter

The calculation is as follows:

ECO2 = F × EFCO2 , (3)

ECO2
= 1,000,000 liters× 2.68 kg CO2/liter, (4)

ECO2
= 2,680,000 kg CO2. (5)

Particulate Matter (PM) Calculation. Assuming an emission factor of 0.1 grams of PM

per liter of diesel fuel

EPM = F × EFPM, (6)

EPM = 1,000,000 liters× 0.1 g PM/liter, (7)

EPM = 100,000 g PM = 100 kg PM. (8)

See [7] for details.

2.3. Military Activity Data

Data Source. Reports from the Department of Defense provide detailed data on military

logistics, including fuel consumption and munitions usage.

Fuel Consumption Calculation. For a military unit consuming 50,000 liters of fuel per

day, the annual consumption is

Fannual = Fdaily ×Days per Year, (9)

Fannual = 50,000 liters/day× 365 days/year, (10)

Fannual = 18,250,000 liters/year. (11)

CO2 Emissions from Fuel Consumption. Using an emission factor of 2.68kg CO2/liter:

ECO2
= Fannual × EFCO2

, (12)

ECO2
= 18,250,000 liters/year× 2.68 kg CO2/liter, (13)

ECO2 = 48,900,000 kg CO2. (14)

Munitions Usage Calculation. For an annual usage of 500,000 rounds, with each round
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releasing 0.05kg of heavy metals:

EHeavy Metals = R×HM, (15)

EHeavy Metals = 500,000 rounds× 0.05 kg/round, (16)

EHeavy Metals = 25,000 kg. (17)

See the Defense Logistics Agency Reports of U.S. Department of Defense for details, which

is also available at https://www.dla.mil.

§3. Methodology

In this section, we outline the methodology used to estimate the environmental impact of

military activities, including pollutant emission models, statistical analysis, and detailed case

study calculations.

3.1. Pollutant Emission Models

To estimate emissions from military activities, we use mathematical models that consider fuel

consumption and the type of pollutants generated. The models used include:

3.1.1 Carbon Dioxide Emissions. The emission of CO2 from fuel combustion can be

calculated using the following formula:

ECO2 = F × EFCO2 , (18)

where

• ECO2 is the total CO2 emissions;

• F is the total fuel consumed (in liters);

• EFCO2 is the emission factor for CO2, which is approximately 2.68 kg CO2 per liter of

diesel fuel [4].

Example Calculation([4]) If a military force consumes 10 million liters of diesel fuel in a

year, the CO2 emissions are calculated as follows:

ECO2
= 10,000,000 liters× 2.68 kg CO2/liter, (19)

ECO2
= 26,800,000 kg CO2. (20)

3.1.2 Particulate Matter. Particulate matter (PM) emissions from fuel combustion are

calculated using

EPM = F × EFPM, (21)

where

• EPM is the total particulate matter emissions;
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• EFPM is the emission factor for particulate matter. For diesel engines, EFPM is approx-

imately 0.1 grams per liter of fuel [5].

Example Calculation([5]) For 1 million liters of diesel fuel

EPM = 1,000,000 liters× 0.1 g PM/liter, (22)

EPM = 100,000 g PM = 100 kg PM. (23)

3.2. Statistical Analysis

Regression models are used to analyze the relationship between military activities and pollution

levels. The model is represented as

P = α+ βM + ε, (24)

where

• P represents pollution levels (e.g., concentration of CO2 or PM);

• M represents military activity metrics (e.g., fuel consumption, munitions used);

• α and β are coefficients determined through regression analysis;

• ε is the error term, capturing unobserved influences [1].

Example([1]) To find the impact of increased fuel consumption on CO2 levels, a regression

analysis might show that β is positive, indicating a direct correlation between fuel consumption

and CO2 emissions.

3.3. Case Study Calculations

3.3.1 The Syrian Civil War

Data.

• Total fuel consumption by military forces: 10 million liters/year;

• Emission factor for CO2: 2.68 kg CO2/liter;

• Increase in local PM levels: 20% [2].

CO2 Emissions Calculation. Using the emission factor for CO2 following.

ECO2
= 10,000,000 liters× 2.68 kg CO2/liter, (25)

ECO2
= 26,800,000 kg CO2. (26)

Particulate Matter Increase. Assuming the base level of PM emissions is 50µg/m3, a 20%

increase would result in

Increased PM Level = Base PM Level× (1 + Percentage Increase), (27)
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Increased PM Level = 50µg/m
3 × (1 + 0.20) = 60µg/m

3
. (28)

See, [2] for details.

3.3.2 The Ukraine Conflict

Data.

• Total fuel consumption by military forces: 5 million liters/year;

• Emission factor for CO2: 2.68 kg CO2/liter;

• Increase in CO2 emissions: 15% [3].

CO2 Emissions Calculation. Using the emission factor for CO2 following

ECO2
= 5,000,000 liters× 2.68 kg CO2/liter, (29)

ECO2
= 13,400,000 kg CO2. (30)

Percentage Increase in CO2 Emissions. If the base level of CO2 emissions is considered,

a 15% increase would be calculated as

Increased CO2 = ECO2
× (1 + Percentage Increase), (31)

Increased CO2 = 13,400,000 kg CO2 × (1 + 0.15) = 15,410,000 kg CO2. (32)

See [3] for details.

§4. Results

The results section presents the findings of our analysis. The global temperature anomalies

over the past century is shown in Figure 1, which indicates a clear upward trend

Figure 1. Global temperature anomalies from 1900 to 2020

and the correlation between CO2 concentration and temperature anomalies are illustrated in
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Figure 2, highlighting the impact of greenhouse gases on climate change.

Figure 2. Correlation between CO2 concentration and temperature anomalies

§5. Further Discussions

5.1.Climate Change Impacts. The discussion section explores the implications of the results.

Climate change impacts include rising sea levels, increased frequency of extreme weather events,

and loss of biodiversity. Figure 3 illustrates key mitigation strategies.

Figure 3. Key mitigation strategies for climate change

The climate change poses a significant threat to our planet, but there are viable solutions

to mitigate its effects. By adopting renewable energy sources.

5.2.Pollutant Levels. This models indicate significant increases in pollutant levels at-

tributable to ongoing military activities. The environmental impact of such conflicts is profound

and multifaceted, with CO2 emissions being a critical component of the pollution profile.

For instance, the Syrian Civil War, which has persisted for over a decade, is estimated to

have contributed approximately 26.8 million kilograms of CO2 emissions annually. This sub-

stantial increase in CO2 levels is primarily due to the destruction of infrastructure, the use of

heavy military vehicles, and the frequent deployment of explosive weaponry. The environmental

degradation extends beyond just greenhouse gas emissions, encompassing widespread deforesta-

tion, soil contamination, and air quality deterioration, further exacerbating the ecological crisis

in the region.

Similarly, the ongoing conflict in Ukraine has added about 13.4 million kilograms of CO2
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to the atmosphere annually. The environmental impact of this conflict is also pronounced, with

emissions stemming from the combustion of fossil fuels by military machinery, destruction of

civilian infrastructure, and the resultant fires and explosions. Additionally, the conflict has led

to significant disruptions in agricultural activities, contributing indirectly to emissions through

land-use changes and the displacement of populations.

The cumulative effects of these conflicts have far-reaching implications for global climate

change, contributing to the overall increase in atmospheric CO2 levels. These emissions not only

exacerbate global warming but also lead to regional climatic shifts, with potential long-term

impacts on biodiversity, agricultural productivity, and human health.

Moreover, the ecological footprint of military activities extends beyond CO2 emissions. The

use of heavy metals, chemicals and other pollutants in weaponry, military operations leads to

soil and water contamination, posing severe risks to local ecosystems and populations. The re-

building efforts post-conflict also contribute to emissions, as the reconstruction of infrastructure

requires substantial energy input, often sourced from fossil fuels.

In conclusion, our findings underscore the significant environmental cost of military con-

flicts. The increase in CO2 emissions, coupled with the broader ecological damage, highlights

the urgent need for incorporating environmental considerations into conflict resolution and post-

conflict reconstruction strategies. Addressing the environmental impacts of military activities

is crucial for achieving long-term sustainability and mitigating the adverse effects of climate

change.

5.3.Military Conflicting. The results demonstrate that military conflicts contribute sub-

stantially to environmental pollution. The increases in CO2 and particulate matter levels are

linked directly to military activities such as fuel consumption and weaponry use. This under-

scores the importance of integrating environmental considerations into conflict management

and military planning.

The findings reveal that military conflicts are significant sources of both direct and indi-

rect environmental damage. Direct emissions from military operations include CO2 and other

greenhouse gases released during fuel combustion and explosives detonation. Indirect effects,

such as the destruction of natural landscapes, infrastructure, and the subsequent environmen-

tal degradation, also play a crucial role. For instance, large-scale deforestation and soil erosion

resulting from military activities exacerbate carbon release and diminish the earth’s capacity

to sequester carbon.

Furthermore, the study highlights the impact of military activities on air quality through

the emission of particulate matter and toxic substances. The use of heavy machinery, aircraft,

and artillery contributes to increased levels of pollutants such as nitrogen oxides (NOx) and

sulfur dioxide (SO2), which further degrade air quality and have detrimental effects on public

health.

The ecological consequences extend beyond immediate emissions. Military conflicts disrupt

local ecosystems, lead to habitat destruction, and cause long-term damage to biodiversity. The

contamination of water sources with chemicals and heavy metals from weaponry and military

waste poses significant risks to both human populations and wildlife.

Incorporating environmental considerations into conflict management requires a multi-
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faceted approach. This includes adopting sustainable military practices, improving energy

efficiency in military operations, and minimizing the use of environmentally harmful materials.

Post-conflict recovery efforts should prioritize environmental restoration, including reforesta-

tion, soil rehabilitation, and the clean-up of contaminated areas.

Additionally, policymakers and military planners must recognize the long-term environ-

mental costs of armed conflicts and integrate these considerations into strategic planning and

international agreements. This could involve the development of protocols for environmental

impact assessments before and after military operations, and the establishment of guidelines

for minimizing ecological damage during conflicts.

The findings of this study contribute to the broader discourse on the environmental impacts

of warfare and emphasize the need for a comprehensive approach to mitigating these effects.

Addressing the environmental consequences of military activities is crucial for achieving sus-

tainable development and preserving ecological integrity in conflict-affected regions.

In summary, the substantial environmental pollution associated with military conflicts

calls for urgent action to integrate environmental concerns into conflict management strategies.

By adopting environmentally conscious practices and prioritizing ecological restoration, it is

possible to mitigate the adverse effects of warfare on the environment and work towards a more

sustainable future.

§6. Conclusion

This paper provides a quantitative analysis of the environmental impact of wars. By employ-

ing mathematical models and analyzing real-world data, we have highlighted the significant

contribution of military activities to pollution, particularly in terms of CO2 emissions and par-

ticulate matter. Our findings reveal that military conflicts not only increase greenhouse gas

emissions but also lead to extensive environmental degradation through habitat destruction,

soil contamination, and disruption of local ecosystems.

The study demonstrates that the environmental footprint of military conflicts extends

beyond immediate emissions to encompass long-term ecological impacts. This underscores

the necessity of integrating environmental considerations into both conflict management and

military planning. Effective strategies should be developed to minimize the environmental

damage during and after conflicts, including adopting sustainable practices, enhancing energy

efficiency, and prioritizing ecological restoration.

Future research should focus on several key areas to build upon the findings of this s-

tudy. More detailed models are needed to account for a broader range of factors, including

geographical variations, which can influence the extent and nature of environmental impacts.

Additionally, incorporating specific details of military operations, such as types of weaponry

used and operational tactics, could provide a more nuanced understanding of their environmen-

tal consequences.

Research should also explore the long-term effects of military conflicts on climate change

and biodiversity. This includes assessing how prolonged exposure to pollutants and environmen-

tal degradation affects both human health and ecosystem stability. Longitudinal studies could
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offer insights into the recovery processes of affected regions and the effectiveness of different

mitigation strategies.

Moreover, interdisciplinary approaches that combine environmental science, military stud-

ies, and public policy could enhance the development of comprehensive frameworks for min-

imizing the environmental impacts of warfare. Engaging with international bodies and non-

governmental organizations to create guidelines and agreements for environmentally responsible

military practices would be beneficial.

In conclusion, the quantitative analysis presented in this paper underscores the critical

need to address the environmental impacts of military activities. By advancing research and

incorporating comprehensive environmental assessments into conflict planning and post-conflict

recovery, we can work towards reducing the ecological footprint of wars and promoting sustain-

able practices in military operations.
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Famous Words

Science should develop with a criteria that leads all human activities in harmony with

the nature, i.e., promoting the coexistence of humans with the nature in harmony on the

application rule of science by systematic or combined scientific conclusions rather than a partial

or an isolated one, actively terminates those of science that only satisfies the needs of humans

ourselves but intruding too much to the nature.

Extracted from Linfan Mao: Combinatorial science – How science leads humans with the

nature in harmony, International J.Math. Combin., Vol.3(2023), 1-15.
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