Laplacian Energy of Certain Graphs

P.B. Sarasija and P. Nageswari

Department of Mathematics, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India

E-mail: sijavk@gmail.com

Abstract: Let G be a graph with n vertices and m edges. Let $\mu_1, \mu_2, \cdots, \mu_n$ be the eigenvalues of the Laplacian matrix of G. The Laplacian energy $LE(G) = \sum_{i=1}^{n} |\mu_i - \frac{2m}{n}|$. In this paper, we calculate the exact Laplacian energy of complete graph, complete bipartite graph, path, cycle and friendship graph.

Key Words: Complete graph, complete bipartite graph, path, cycle, friendship graph.

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph G with n vertices and m edges. Let d_i be the degree of the i^{th} vertex of G, $i = 1, 2, \cdots, n$.

Definition 1.1([3]) Let $A(G) = [a_{ij}]$ be the $(0, 1)$ adjacency matrix, $D(G) = \text{diag}(d_1, d_2, \cdots, d_n)$, the diagonal matrix with vertex degrees d_1, d_2, \cdots, d_n of its vertices v_1, v_2, \cdots, v_n of a graph G. Then $L(G) = D(G) - A(G)$ is called the Laplacian matrix of the graph G.

It is symmetric, singular and positive semi-definite. All its eigenvalues $\mu_1, \mu_2, \cdots, \mu_n$ are real and nonnegative and form the Laplacian spectrum. It is well known that one of the eigenvalues is zero.

Definition 1.2([3]) If G is a graph with n vertices and m edges, and its Laplacian eigen values are $\mu_1, \mu_2, \cdots, \mu_n$ then the Laplacian energy of G, denoted by $LE(G)$, is $\sum_{i=1}^{n} |\mu_i - \frac{2m}{n}|$. i.e.,

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.$$

This quantity has a long known chemical application for details see the surveys [1,4,5]. If the graph G has one vertex then the Laplacian energy is zero.

Property 1.3([3])

(1) $LE(G) \leq \sqrt{2Mn}$;

\footnote{Received July 20, 2011. Accepted March 8, 2012.}
(2) \[LE(G) \leq \frac{2m}{n} + \sqrt{(n-1) \left[2M - \left(\frac{2m}{n} \right)^2 \right]}; \]

(3) \[2\sqrt{M} \leq LE(G) \leq 2M, \text{ where } M = m + \frac{1}{2} \sum_{i=1}^{n} \left(d_i - \frac{2m}{n} \right)^2. \]

§2. The Laplacian Energy of Complete Graphs

\textbf{Definition 2.1} ([2]) A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph.

\textbf{Theorem 2.2} The Laplacian energy of the complete graph \(K_n \) on \(n \) vertices is \(2(n-1) \).

\textit{Proof} The eigenvalues of the Laplacian matrix of the complete graph \(K_n \) on \(n \) vertices and \(\frac{n(n-1)}{2} \) edges are \(\mu_1 = 0 \) and multiplicity of the eigen values \(n \) as \(n-1 \), i.e., \(\mu_1 = 0, \mu_2 = \mu_3 = \cdots = \mu_n = n \). Thus

\[LE(K_n) = \sum_{i=1}^{n} |(\mu_i - (n-1)| = |0-(n-1)| + (n-1)|n-(n-1)| = 2(n-1). \] \[\square \]

§3. The Laplacian Energy of Complete Bipartite Graphs

\textbf{Definition 3.1} ([2]) A bipartite graph is one whose vertex set can be partitioned into two subsets \(X \) and \(Y \), so that each edge has one end in \(X \) and one end in \(Y \); such a partition \((X,Y)\) is called a bipartition of the graph.

\textbf{Definition 3.2} ([2]) A complete bipartite graph is a simple bipartite graph with bipartition \((X,Y)\) in which each vertex of \(X \) is joined to each vertex of \(Y \); if \(|X| = m \) and \(|Y| = n \), such a graph is denoted by \(K_{m,n} \).

\textbf{Definition 3.3} ([6]) The Star graph \(K_{1,n} \) is a tree on \(n+1 \) vertices with one vertex having degree \(n \) and the other \(n \) vertices having degree 1.

\textbf{Theorem 3.4} The Laplacian energy of the complete bipartite graph \(K_{m,n} \) with \(m + n \) vertices and \(mn \) edges is

\[\frac{(m+n)^2 + |m-n| (2mn - (m+n))}{(m+n)}. \]

\textit{Proof} In this graph, the Laplacian spectrum is \(\mu_1 = 0 \), the multiplicity of the eigen values \(m \) as \(n-1 \), the multiplicity of the eigen values \(n \) as \(m-1 \) and \(\mu_{m+n} = m+n \).
The Laplacian energy

\[LE(K_{m,n}) = \sum_{i=1}^{n+m} \left| \mu_i - \frac{2mn}{m+n} \right| \]

\[= |0 - \frac{2mn}{m+n}| + (n-1)|m - \frac{2mn}{m+n}| + (m-1)|n - \frac{2mn}{m+n}| + (m+n) - \frac{2mn}{m+n} \]

\[= \frac{2mn}{m+n} + \frac{m(n-1)}{m+n}|m-n| + \frac{n(m-1)}{m+n}|n-m| \]

\[= \frac{(m+n)^2 + |m-n|(2mn - (m+n))}{m+n} \].

\[\square \]

Corollary 3.5 The Laplacian energy of a star graph \(K_{1,n} \) is \(\frac{2(n^2+1)}{n+1} \).

Proof Let \(m \) be replaced by one in Theorem 3.4. We get the following

\[LE(K_{1,n}) = \frac{(1+n)^2 + |1-n|(2n-(1+n))}{1+n} = \frac{2(n^2+1)}{n+1} \].

\[\square \]

§4. The Laplacian Energy of Paths \(P_n \) and Cycles \(C_n \)

Definition 4.1 A path \(P_n \) with \(n \) vertices has \(V(P_n) = \{v_1, v_2, \ldots, v_n\} \) for its vertex set and \(E(P_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n\} \) is its edge set. This path \(P_n \) is said to have length \(n-1 \).

Definition 4.2 A cycle \(C_n \) with \(n \) points is a graph with vertex set \(V(C_n) = \{v_1, v_2, \ldots, v_n\} \) and edge set \(E(C_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\} \).

Theorem 4.3 The Laplacian energy of the path \(P_n \) with \(n \) vertices is

\[\sum_{i=0}^{n-1} \left| 2 \left(\frac{1}{n} - \cos \left(\frac{\pi i}{n} \right) \right) \right| . \]

Proof The eigen values of the Laplacian matrix of \(P_n \) are \(2 \left[1 - \cos \left(\frac{\pi i}{n} \right) \right] \), \(i = 0, 1, \ldots, n-1 \). Then,

\[LE(P_n) = \sum_{i=0}^{n-1} \left| 2 \left(1 - \cos \left(\frac{\pi i}{n} \right) \right) \right| - \frac{2(n-1)}{n} = \sum_{i=0}^{n-1} \left| 2 \left(\frac{1}{n} - \cos \left(\frac{\pi i}{n} \right) \right) \right| . \]

\[\square \]

Theorem 4.4 The Laplacian energy of the cycle \(C_n \) with \(n \) vertices is \(2 \sum_{i=0}^{n-1} \left| \cos \left(\frac{2\pi i}{n} \right) \right| . \)

Proof The Laplacian spectrum of the cycle \(C_n \) is \(2 \left[1 - \cos \left(\frac{2\pi i}{n} \right) \right] \), \(i = 0, 1, \ldots, (n-1) \). Then

\[LE(C_n) = \sum_{i=0}^{n-1} \left| 2 \left[1 - \cos \left(\frac{2\pi i}{n} \right) \right] - 2 \right| = 2 \sum_{i=0}^{n-1} \left| \cos \left(\frac{2\pi i}{n} \right) \right| . \]

\[\square \]
§5. The Laplacian Energy of Friendship Graphs

Definition 5.1\([6]\) The friendship graph \(F_r (r \geq 1)\) consists of \(r\) triangles with a common vertex.

Illustration. The Friendship graph \(F_4\) consists of 4 triangles with a common vertex is as shown in Fig.1.

![Fig.1 Friendship graph \(F_4\)](image)

The Laplacian matrix of \(F_2\) is

\[
\begin{bmatrix}
 4 & -1 & -1 & -1 & -1 \\
 -1 & 2 & -1 & 0 & 0 \\
 -1 & -1 & 2 & 0 & 0 \\
 -1 & 0 & 0 & 2 & -1 \\
 -1 & 0 & 0 & -1 & 2 \\
\end{bmatrix}
\]

Theorem 5.2 The Laplacian energy of the friendship graph \(F_r\) is \(\frac{8r^2 + 2r + 2}{2r + 1}\), where \(r \geq 1\).

Proof The friendship graph \(F_r\) has \(2r + 1\) vertices and \(3r\) edges. Its Laplacian matrix has \(2r + 1\) eigen values. These eigen values are \(\mu_1 = 2r + 1\), the multiplicity of the eigen value 3 as \(r\), the multiplicity of the eigen value 1 as \(r - 1\) and \(\mu_{2r+1} = 0\).

By definition, the Laplacian energy

\[
LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.
\]

Thus,

\[
LE(F_r) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right| = \sum_{i=1}^{n} \left| \mu_i - \frac{6r}{2r + 1} \right|
\]

\[
= \left| \frac{2r + 1 - 6r}{2r + 1} \right| + r \left| 3 - \frac{6r}{2r + 1} \right| + (r - 1) \left| 1 - \frac{6r}{2r + 1} \right| + 0 - \frac{6r}{2r + 1}
\]

\[
= \left| \frac{4r^2 - 2r + 1}{2r + 1} \right| + r \frac{3}{2r + 1} + (r - 1) \frac{4r - 1}{2r + 1} + \frac{6r}{2r + 1} = \frac{8r^2 + 2r + 2}{2r + 1}
\]
since \(4r^2 + 1 > 2r\) and \(1 - 4r < 0\).

Corollary 5.1 If \(G\) is the friendship graph of \(n\) vertices then \(LE(G) = \frac{2n^2 - 3n + 3}{n}\).

Proof Replacing \(r\) by \(\frac{n-1}{2}\) in Theorem 5.2, we get the result.

Corollary 5.2 If \(G\) is the friendship graph of \(m\) edges then \(LE(G) = \frac{2}{3} \left[\frac{4m^2 + 3m + 9}{2m + 3} \right]\).

Proof Let \(r\) be replaced by \(\frac{m}{3}\) in Theorem 5.2, we get the result. From [3], \(M = m + \frac{1}{2} \sum_{i=1}^{n} (d_i - \frac{2m}{n})^2\). In a friendship graph \(M = \frac{r}{2r+1} (4r^2 - 2r + 7)\). Therefore, \(2Mn = 2r (4r^2 - 2r + 7)\). Hence, using Property 1.3, we get the following

\[
2\sqrt{\frac{r}{2r+1} (4r^2 - 2r + 7)} \leq LE(G) \leq \frac{2r}{2r+1} (4r^2 - 2r + 7).
\]

References

