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E-mail: zakca@ogu.edu.tr

Abstract: This paper investigates the structural properties of the Klein cubic threefold F
in 4−dimensional projective space over the finite field GF (2). We focus on the intersection

properties of the lines and the planes with F in PG(4, 2). Notably, it is identified six spreads,

each containing five lines in F . Additionally, two distinct affine plane models are presented

by using the tangent planes of F . Furthermore, it is shown that Desargues’ theorem does

not hold in F .
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§1. Introduction

Cubic surfaces have been extensively studied in algebraic geometry and have applications in

fields such as those of the computer graphics, physics and engineering. One notable early exam-

ple is the non-singular Klein cubic threefold studied by Klein in 1879, [11]. The classification of

non-singular cubic surfaces, particularly over finite fields, remains a significant area of research.

For instance, it has been shown that a non-singular cubic surface over the field GF (2) can have

15, 9, 5, 3, 2, 1, or 0 lines in [5,6,10]. In [13], Rosati further demonstrated that when q is

odd, the number of lines must be one of 27, 15, 9, 7, 5, 3, 2, 1, or 0. In the 1960s, Hirschfeld

initiated a program to classify cubic surfaces with 27 lines over finite fields, [8]. This work is

a substantial contribution to this problem. Some examples of the nonsingular cubic surfaces

were given in [9].

In order to classify projective spaces, tools from Veronesean embedding and quadric theory

were used [1]-[4], [7], [12].

In this paper, we delve into the structural properties of the Klein cubic threefold F situated

in 4−dimensional projective space over the finite field GF (2). Our investigation primarily

focuses on the intricate intersection properties of lines and planes with F . Notably, every

point on the Klein cubic threefold is identified as an Eckardt point, marking a fundamental

characteristic of F .

Utilizing Schläfli labeling, we systematically notate the 15 lines comprising F . Through our

analysis, we observe that each line intersects six others while remaining skew to eight additional
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lines. Moreover, F has six spreads, each consisting of five lines.

An important finding in our study is the determination of the point (1, 1, 1, 1, 1), which is

the nucleus of F . We meticulously examine the tangent planes to F and present two distinct

affine plane models based on their specific properties.

Furthermore, we rigorously demonstrate that Desargues’ theorem, a cornerstone of pro-

jective geometry, does not hold in F . This observation underscores the unique geometric and

algebraic characteristics that distinguish F .

Throughout this paper, we aim to provide a comprehensive exploration of these structural

properties, offering insights into the rich interplay between algebraic geometry and combinato-

rial structure in the context of cubic threefold PG(4, 2).

§2. Preliminaries

Let GF (q) denote Galois field of order q = pk where p is a prime. If any (n+ 1)−dimensional

vector space V , the n−dimensional projective space PG(n, q) over GF (q) is the set of all sub-

spaces of V distinct from the trivial subspaces. 1−dimensional subspaces are called the points

of PG(n,K), 2−dimensional subspaces are called the (projective) lines and 3−dimensional ones

are called (projective) planes. We remark that by going from a vector space to the associated

projective space, the dimension drops by one unit. Hence an (n+ 1)−dimensional vector space

V gives rise to an n−dimensional projective space PG(n,K) [3]-[7].

This is, the points in projective space PG(n, q) are defined by equivalence classes of non-

zero vectors in the vector space V .

For example, for 4−dimensional vector space, the associated 3−dimensional projective s-

pace would be where points are represented by equivalence classes of vectors (w, x, y, z), reducing

the dimension by one unit.

The 4−dimensional projective space PG(4, q) over GF (q) contains q4 + q3 + q2 + q + 1

points and PG(4, 2) has 31 points. The points of PG(4, 2) are respectively listed as follows:

P1(0, 0, 0, 0, 1), P2(0, 0, 0, 1, 0), P3(0, 0, 1, 0, 0), P4(0, 0, 1, 0, 1), P5(0, 0, 1, 1, 1),

P6(0, 1, 0, 0, 0), P7(0, 1, 0, 0, 1), P8(0, 1, 0, 1, 0), P9(0, 1, 1, 1, 0), P10(1, 0, 0, 0, 0),

P11(1, 0, 0, 1, 0), P12(1, 0, 0, 1, 1), P13(1, 0, 1, 0, 0), P14(1, 1, 0, 0, 1), P15(1, 1, 1, 0, 0),

P16(0, 0, 0, 1, 1), P17(0, 0, 1, 1, 0), P18(0, 1, 1, 0, 0), P19(1, 0, 0, 0, 1), P20(1, 1, 0, 0, 0),

P21(0, 1, 0, 1, 1), P22(0, 1, 1, 0, 1), P23(1, 0, 1, 0, 1), P24(1, 0, 1, 1, 0), P25(1, 1, 0, 1, 0),

P26(0, 1, 1, 1, 1), P27(1, 0, 1, 1, 1), P28(1, 1, 0, 1, 1), P29(1, 1, 1, 0, 1), P30(1, 1, 1, 1, 0),

P31(1, 1, 1, 1, 1).

The Klein cubic threefold F is given by the equation

F : x2y + y2z + z2v + v2w + w2x = 0,

where x, y, z, v and w represent the coordinates of a point (v, w, x, y, z) in the projective space
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PG(4, q) over GF (q). In algebraic geometry, a cubic threefold is a hypersurface of degree 3 in

4−dimensional projective space. This Klein cubic threefold F over the field F (q) is the zero

set of a homogeneous cubic equation in five variables over GF (q).

2.1. Klein Cubic Threefold F with 15 Lines

We use the combinatorial definition where a line is considered as a subsets of points on F .

Proposition 2.1 Every Klein cubic threefold F over the field GF (2) contains 15 points and

15 lines. Every line has three points on it.

Proof In PG(4, 2), a point is denoted by P (a0, a1, a2,a3, a4). A line through the points

P (a0, a1, a2, a3, a4) and P (b0, b1, b2,b3, b4) is denoted by

l =

 a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

 .

Let F be Klein cubic threefold over the field GF (2). F can be identified with a set of the

points Pi satisfying the equation x2y + y2z + z2v + v2w + w2x = 0 in PG(4, 2) such that

P1(0, 0, 0, 0, 1), P2(0, 0, 0, 1, 0), P3(0, 0, 1, 0, 0), P4(0, 0, 1, 0, 1), P5(0, 0, 1, 1, 1), P6(0, 1, 0, 0, 0),

P7(0, 1, 0, 0, 1), P8(0, 1, 0, 1, 0), P9(0, 1, 1, 1, 0), P10(1, 0, 0, 0, 0), P11(1, 0, 0, 1, 0), P12(1, 0, 0, 1, 1),

P13(1, 0, 1, 0, 0), P14(1, 1, 0, 0, 1) and P15(1, 1, 1, 0, 0). The incidence relation on F over the field

GF (2) is given as the following table: We define the incidence matrix A = [aij ] of F such that

aij = 1, where i, j ∈ {1, 2, · · · , 15} if and only if the line li is incident to the point Pj and 0

otherwise; here the rows represent the lines and the columns the points of F . This matrix rep-

resents the incidence relation between the points Pj and the lines li of the Klein cubic threefold

over the field GF (2) in Table 1.

Table 1. Incidence relation between the points and the lines of F

This completes the proof. �
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Proposition 2.2 Every point of Klein cubic threefold over the field GF (2) is an Eckardt point,

and the three Eckardt points lie on a line on the cubic threefold F .

Proof Let F be Klein cubic threefold over the field GF (2) of characteristic 2. Every point

of Klein cubic threefold lies on three lines in F . So, the number of Eckardt points of Klein

cubic threefold over the field GF (2) is 15. Eckardt points with their coordinates as the point

of concurrency of three labeled lines can be seen in Table 1. Also, the three Eckardt points lie

on a line on the cubic threefold F . For example, P1, P3 and P4 lie on the line l1 of F . �

Proposition 2.3 Each line in F intersects exactly six others and is skew to the remaining

eight lines in F .

Proof Consider the subset of 15 lines of the Klein cubic threefold over the field GF (2)

labeled according to the Schläfli notation. The intersection properties of these lines indicate that

each line intersects exactly six others and is skew to the remaining eight. The intersection table

for these 15 lines is provided in Table 2, where intersections are marked and non-intersecting

lines are represented by 0.

Table 2. Pairwise intersection table of the 15 lines of F

This completes the proof. �

§3. Classifications the Lines of the Klein Cubic Threefold F Modulo 2

3.1. Line Spreads of F

A (crisp) k−spread, or simply spread of the projective geometry PG(n,K) is a partition of the

point set of PG(n,K) into k−spaces, for some k, 1 ≤ k ≤ n − 1. We now give line spreads of

Klein cubic threefold F over the field GF (2).

Proposition 3.1 Every Klein cubic threefold F over the field GF (2) has 6 spreads with five
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lines. Moreover, every line of the threefold F belongs to exactly two spreads.

Proof Let F be Klein cubic threefold over the field GF (2). Let Si be the set of lines

spreads of Klein cubic threefold F . 1−spread Si of F must be five lines because of a partition

of the point set of F . It is easily obtained that there are six line spreads of F from Table 1.

l1 = {P1, P3, P4} l6 = {P2, P10, P11} l11 = {P5, P12, P13}

l2 = {P1, P6, P7} l7 = {P3, P8, P9} l12 = {P6, P13, P15}

l3 = {P1, P11, P12} l8 = {P3, P10, P13} l13 = {P7, P10, P14}

l4 = {P2, P4, P5} l9 = {P4, P14, P15} l14 = {P8, P12, P14}

l5 = {P2, P6, P8} l10 = {P5, P7, P9} l15 = {P9, P11, P15} .

Table 3. Lines spreads of Klein cubic threefold F

and lines spreads of Klein cubic threefold F are Si, i = 1, 2, · · · , 6, where

S1 = {l1, l5, l11, l13, l15}, S2 = {l1, l6, l10, l12, l14} , S3 = {l2, l4, l8, l14, l15} ,

S4 = {l2, l6, l7, l9, l11} , S5 = {l3, l4, l7, l12, l13} , S6 = {l3, l5, l8, l9, l10} .

From Table 3, two different spreads of F have a common line. �

3.2. Skew-Tangent-Secant Lines to F

The study of lines in relation to the Klein cubic threefold F reveals geometric properties and

relationships. The classification of lines as skew, tangent, or secant provides insight into the

structure and interaction of F within the projective space PG(4, 2). The following theorem

presents detailed characteristics of these lines in relation to F .

Theorem 3.2 Let F be a Klein cubic threefold with exactly 15 lines. Then,

(1) There are four tangent lines and eight secant lines passing through any point in F ;

(2) PG(4, 2) has exactly 20 lines not intersecting with F , 60 tangent lines to F , and 60

secant lines to F ;

(3) Four lines of the lines passing through any point in PG(4, 2)\F intersect with F at two

points; seven lines of them intersect with F at one point; and four lines of them intersect with

F at no point;

(4) Eight lines of the lines passing through any point on F intersect with F at two points;

four lines of them intersect with F at one point; and three lines of them intersect with F at

three points.

Proof (1) Let F be the Klein cubic threefold with exactly 15 lines. Since the incidence

relation between the points and the lines of F , there are three points on any line and three

lines passing through any point Pi, i = 1, 2, · · · , 15 in F . Also, three of the 15 lines in PG(4, 2)

passing through any point of F belong to F . There are seven points of F on these three lines,

and there are eight points of F apart from these lines. Therefore, 8 lines passing through any

point Pi, i = 1, 2, · · · , 15 of F are formed secant lines. Thus, the remaining 4 lines passing

through any point Pi of F are tangent lines.
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(2) Since the number of tangent lines passing through each of the 15 points on F is 4, the

total number of tangent lines to F in PG(4, 2) is 60. In addition, since the number of secant

lines passing through a point on F is 8, the total number of secant lines is calculated 15.8
2 = 60.

(3) Let the points of PG(4, 2) be denoted by their indices, and the lines of PG(4, 2) denoted

by the points on them. There exist 15 lines passing through any point in PG(4, 2). It is easily

seen that four lines of them do not intersect with F , four lines of them intersect with the F at

two points, and seven lines of them intersect with F at one point. The lines in PG(4, 2) through

the points not on F are listed according to the intersection points with F in the following tables.

16-20-28 17-19-27 18-19-29 19-26-30 21-24-29

16-18-26 17-20-30 18-24-25 20-22-23 22-24-28

16-23-24 17-21-22 18-27-28 20-26-27 22-25-27

16-29-30 17-28-29 19-21-25 21-23-30 23-25-26

Table 4. Lines not intersecting with F

16- 4 -17 17- 12 -23 19- 5 -24 21- 3 -26 23- 8 -31 26- 10 -31

16- 6 -21 17- 15 -25 19- 7 -20 21- 13 -31 23- 9 -28 26- 11 -29

16- 9 -22 17- 14 -31 19- 8 -28 21- 15 -27 24- 1 -27 26- 13 -28

16- 11 -19 18- 1 -22 19- 9 -31 21- 10 -28 24- 6 -30 27- 6 -31

16- 13 -27 18- 5 -21 19- 15 -22 22- 2 -26 24- 7 -31 27- 7 -30

16- 14 -25 18- 11 -30 20- 2 -25 22- 11 -31 24- 14 -26 27- 8 -29

16- 15 -31 18- 12 -31 20- 4 -29 22- 10 -29 25- 1 -28 28- 3 -31

17- 7 -26 18- 13 -20 20- 5 -31 22- 12 -30 25- 3 -30 28- 4 -30

17- 8 -18 18- 14 -23 20- 9 -24 23- 2 -27 25- 4 -31 29- 2 -31

17- 10 -24 19- 3 -23 20- 12 -21 23- 6 -29 25- 5 -29 30- 1 -31

Table 5. Tangent lines to F

16- 1 -2 18- 4 -7 21- 1 -8 23- 5 -11 26- 1 -9 28- 6 -12

16- 3 -5 18- 10 -15 21- 2 -7 23- 7 -15 26- 4 -8 28- 7 -11

16- 7 -8 19- 1 -10 21- 4 -9 24- 2 -13 26- 5 -6 29- 1 -15

16- 10 -12 19- 2 -12 21- 11 -14 24- 3 -11 26- 12 -15 29- 3 -14

17- 1 -5 19- 4 -13 22- 3 -7 24- 4 -12 27- 3 -12 29- 9 -12

17- 2 -3 19- 6 -14 22- 4 -6 24- 8 -15 27- 4 -11 29- 7 -13

17- 6 -9 20- 1 -14 22- 5 -8 25- 11 -6 27- 9 -14 30- 2 -15

17- 11 -13 20- 3 -15 22- 13 -14 25- 7 -12 27- 5 -10 30- 5 -14

18- 2 -9 20- 6 -10 23- 1 -13 25- 8 -10 28- 2 -14 30- 8 -13

18- 3 -6 20- 8 -11 23- 4 -10 25- 9 -13 28- 5 -15 30- 9 -10

Table 6. Secant lines to F
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(4) It is easily seen that eight lines of the lines passing through any point on F intersect

with F at two points from Table 6; four lines of them intersect with F at one point from Table

5; and three lines of them intersect with F at three points from Table 3. �

Let Bn be a set of qn−1 + qn−2 + · · · + q + 1 points, not all on a hyperplane in the

n−dimensional projective space PG(n, q) over the Galois field GF (q), n ≥ 2. A point not in

Bn is called a nucleus of Bn if every line through it meets Bn (exactly once, of course). The

set of all nuclei of Bn is denoted by N(Bn).

Proposition 3.3 The point P31 = (1, 1, 1, 1, 1) not on F in PG(4, 2) is nucleus of F .

Proof Let F be Klein cubic threefold over the fieldGF (2) of characteristic 2. The projective

space PG(4, 2) contains 31 points and 135 lines. There are 15 lines through every point. 15

points of these 31 points are on F and these points are labeled Pi, i = 1, · · · , 15. Consider the

point P31 = (1, 1, 1, 1, 1) in PG(4, 2) not satisfying the equation

x2y + y2z + z2v + v2w + w2x = 0

and every line passing through the point P31 is a tangent line of F from Table 6. So, P31 is a

nucleus of F . �

§4. Geometric Structures Associated with the Klein Cubic Threefold F

In this section, we investigate well-known geometric structures such as the Fano plane, affine

plane, and Desargues configuration associated with the Klein cubic threefold F .

First of all, we show that F does not include any projective plane. Then, we determine

the planes that are tangent to F . We give two different affine plane models with these tangent

planes. Finally, we show that the Desarg theorem is not valid in F .

Proposition 4.1 There is no any projective plane in Klein cubic threefold F over the field

GF (2).

Proof Let F be Klein cubic threefold over the field GF (2). If there is a projective plane in

Klein cubic threefold F over the field GF (2),then there are seven points and seven lines such

that three points on any line and three lines passing through any point in this projective plane

in F . It is well known that seven points of the projective plane on three lines passing through

any point. But the remaining 4 lines of the projective plane are secant lines from Table 7 in

PG(4, 2). So, there is no any projective plane in Klein cubic threefold F . �

Proposition 4.2 Let F be Klein cubic threefold over the field GF (2) in PG(4, 2). There is

a single tangent projective plane at every point of the Klein cubic threefold F over the field

GF (2).

Proof Let F be Klein cubic threefold over the field GF (2). Let the points of F be

shown with their indices. Table 7 shows the tangent projective planes πi at the points Pi,
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i = 1, 2, · · · , 15, to F over the field GF (2).

Table 7. Tangent projective planes to F

This completes the proof. �

The following results are obtained from the Table 7.

Corollary 4.3 (i) Each tangent plane of the surface F contains three tangent lines passing

through the tangent point on F and four lines not intersecting the surface F .

(ii) Three tangent planes of F intersect along a line not intersecting with F .

(iii) The nucleus of F is not on any tangent planes of F in PG(4, 2).

(iv) There are four tangent lines any point in F .

Theorem 4.4 Three of the planes passing through the nucleus of F intersect along a line with

F , and four of them intersect with F at two points.

Proof The planes Di, i = 1, · · · , 7, passing through the nucleus of F can be listed as

It is easily seen that the planes D1, D2, and D3 intersect along a line with F , and the

others intersect with F at two points. �

Theorem 4.5 There are six-tangent planes of F passing through any point not on F in

PG(4, 2). Moreover, these planes form four different plane bundles that intersect a line three

by three, so that two different bundles have a common tangent plane.

Proof It is seen from Table 7 that any point Pi, Pi ∈ {16, · · · , 30} not on F in PG(4, 2) is
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contained in six-tangent planes. For example, the point (0, 1, 1, 0, 1) not on F is on the tangent

planes π1, π2, π9, π10, π12,and π15. The triplets of different tangent planes passing through a

common line are {π1, π2, π10}, {π1, π12, π15}, {π2, π9, π12} and {π10, π12, π15}. �

Theorem 4.6 An affine plane in PG(4, 2) can be formed with six tangent planes that passes

through a point outside the surface F .

(1) Let each of the triplets of different tangent planes tangent to the surface from a point

outside the surface in PG(4, 2) passing through a common line be called a point and each of the

tangent planes be called a line. The incidence relation between a point and a line means that

each point is on the three tangent planes (three lines) that form it;

(2) Let each of the triplets of different tangent planes that are tangent to the surface from

a point outside the surface in PG(4, 2) not containing a common line be a point and each of

the tangent planes be a line. The incidence relation means that every point is on the tangent

planes that form it.

Proof Let F be Klein cubic threefold over the field GF (2). An affine plane is a collection

of points and lines in space that follow the following fairly sensible rules:

(A1) Given any two points, there is a unique line joining any two points.

(A2) Given a point P and a line L not containing P , there is a unique line that contains

P and does not intersect L.

(A3) There are four points, no three of which are collinear.

Since every tangent plane in only two triplets of different tangent planes, A1 is satisfied.

Since a tangent plane is in only two triplets and not in two triplets of different tangent planes,

A2 is satisfied. Since there are only four triplets, and any three of these have not common

tangent plane, A3 is satisfied. �

Example 4.7 The six tangent planes passing through the point (0, 1, 1, 0, 1), which is not on

the surface F are π1, π2, π9, π10, π12 and π15. The triplets of different tangent planes passing

through a common line are

{π1, π2, π10}, {π1, π12, π15}, {π2, π9, π12} and {π10, π12, π15}.

If we define respectively the points set, line set and the incidence relation as:

the point set

P = {{π1, π2, π10}, {π1, π12, π15}, {π2, π9, π12}, {π10, π12, π15}},

the line set

L = {π1, π2, π9, π10, π12, π15},

the incidence relation

I : the point {πi, πj , πk} I the lines πi, πj , and πk
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then, the structure (P,L, I) is an affine plane of order 2.

Example 4.8 The six tangent planes passing through the point 22, which is not on the surface

F are π1, π2, π9, π10, π12 and π15. The triplets of different tangent planes not containing a

common line are

{π1, π2, π9}, {π1, π10, π15}, {π2, π12, π15} and {π9, π10, π12}.

If we define respectively the points set, line set and the incidence relation as:

the point set

P ′= {{π1, π2, π9}, {π1, π10, π15}, {π2, π12, π15}, {π9, π10, π12}},

the line set

L′= {π1, π2, π9, π10, π12, π15},

the incidence relation

I ′ : the point {πi, πj , πk} I ′ the lines πi, πj , and πk,

then, the structure (P ′,L′,I ′) is an affine plane of order 2.

Proposition 4.9 If two triangles are in perspective centrally in Klein cubic threefold F over

the field GF (2), then they are not in perspective from an axis in PG(4, 2)\F .

Proof Let F be Klein cubic threefold over the field GF (2). Denote the three vertices of one

triangle by P3, P6 and P11 and those of the other by P4, P7 and P12. Central perspectivity means

that the three lines P3P4, P6P7, and P11P12 are concurrent at the point P1 called the center of

perspectivity. Axial perspectivity means that lines P3P6 and P4, P7 meet in the point P18, lines

P3P11 and P4P12 meet in a second point P24 and lines P6P11 and P7P12 meet in a third point

P25 and that these three points all lie on a common line called the axis of perspectivity. This

axis {P18, P24, P25} of perspectivity is not on F . The line joining the three collinear points of

intersection of the extensions of corresponding sides in perspective triangles is not intersecting

with F . �

§5. Conclusion

This study has delved into the structural properties of the cubic threefold F over the field GF (2)

in 4−dimensional projective space, focusing particularly on its intersection properties with lines

and planes. The analysis has revealed the presence of six spreads, each composed of five lines,

offering insights into the combinatorial structure of F . Exploring tangent planes to F has led

to the formulation of two distinct affine plane models, highlighting its geometric versatility.

Additionally, the non-validity of Desargues’ theorem within F underscores its departure from

classical projective geometry norms. This research contributes to advancing our understanding
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of cubic threefolds over finite fields, pointing towards further investigations into their algebraic

and geometric intricacies.
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Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, Vol. 38, No. 3, pp.

519–524, Dec. 2022.

[8] Hirschfeld JWP, Classical configurations over finite fields. I. The double- six and the cubic

surface with 27 lines, Rendiconti di Matematica e delle sue Applicazioni, 26 (5): 115–152,

1967.
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