Open Distance-Pattern Uniform Graphs

Bibin K. Jose

(Department of Mathematics of Union Christian College, Post Box No.5, Aluva-683102, Kerala, India.)

Email: bibinkjose2002@yahoo.com

Abstract: Given an arbitrary non-empty subset M of vertices in a graph $G=(V, E)$, each vertex u in G is associated with the set $f_M^u(u) = \{d(u, v) : v \in M, u \neq v\}$, called its open M-distance-pattern. A graph G is called a Smarandachely uniform k-graph if there exist subsets M_1, M_2, \ldots, M_k for an integer $k \geq 1$ such that $f_{M_i}^u(u) = f_{M_j}^u(u)$ and $f_{M_i}^u(v) = f_{M_j}^u(v)$ for $1 \leq i, j \leq k$ and $\forall u, v \in V(G)$. Such subsets M_1, M_2, \ldots, M_k are called a k-family of open distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called the Smarandachely odpu-number of G, denoted by $od^S_k(G)$. Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its odpu-number $od^S_k(G)$ of G is abbreviated to $od(G)$. In this paper we present several fundamental results on odpu-graphs and odpu-number of a graph.

Key Words: Smarandachely uniform k-graph, open distance-pattern, open distance-pattern uniform graphs, open distance-pattern uniform (odpu-) set, Smarandachely odpu-number, odpu-number.

AMS(2000): 05C12

§1. Introduction

All graphs considered in this paper are finite, simple, undirected and connected. For graph theoretic terminology we refer to Harary [6].

The concept of open distance-pattern and open distance-pattern uniform graphs were suggested by B.D. Acharya. Given an arbitrary non-empty subset M of vertices in a graph $G=(V, E)$, the open M-distance-pattern of a vertex u in G is defined to be the set $f_M^u(u) = \{d(u, v) : v \in M, u \neq v\}$, where $d(x, y)$ denotes the distance between the vertices x and y in G. A graph G is called a Smarandachely uniform k-graph if there exist subsets M_1, M_2, \ldots, M_k for an integer $k \geq 1$ such that $f_{M_i}^u(u) = f_{M_j}^u(u)$ and $f_{M_i}^u(v) = f_{M_j}^u(v)$ for $1 \leq i, j \leq k$ and $\forall u, v \in V(G)$. Such subsets M_1, M_2, \ldots, M_k are called a k-family of open distance-pattern uniform (odpu-) set of G and the minimum cardinality of odpu-sets in G, if they exist, is called the Smarandachely odpu-number of G, denoted by $od^S_k(G)$. Usually, a Smarandachely uniform 1-graph G is called an open distance-pattern uniform (odpu-) graph. In this case, its odpu-number $od^S_k(G)$ of G is abbreviated to $od(G)$. We need the following theorem.
Theorem 1.1([5]) Let G be a graph of order $n, n \geq 4$. Then the following conditions are equivalent.

(i) The graph G is self-centred with radius $r \geq 2$ and for every $u \in V(G)$, there exists exactly one vertex v such that $d(u, v) = r$.

(ii) The graph G is r-decreasing.

(iii) There exists a decomposition of $V(G)$ into pairs $\{u, v\}$ such that $d(u, v) = r(G) > \max(d(u, x), d(x, v))$ for every $x \in V(G) \setminus \{u, v\}$.

In this paper we present several fundamental results on odpu-graphs and odpu-number of a graph G.

§2. Odpu-Sets in Graphs

It is clear that an odpu-set in any nontrivial graph must have at least two vertices. The following theorem gives a basic property of odpu-sets.

Theorem 2.1 In any graph G, if there exists an odpu-set M, then $M \subseteq Z(G)$ where $Z(G)$ is the center of the graph G. Also $M \subseteq Z(G)$ is an odpu-set if and only if $f_M^o(v) = \{1, 2, \ldots, r(G)\}$, for all $v \in V(G)$.

proof Let G have an odpu-set $M \subseteq V(G)$ and let $v \in M$. Suppose $v \notin Z(G)$. Then $e(v) > r(G)$. Hence there exists a vertex $u \in V(G)$ such that $d(u, v) > r(G)$. Since $v \in M$, $f_M^o(u)$ contains an element, which is greater than $r(G)$. Now let $w \in V(G)$ be such that $e(w) = r(G)$. Then $d(w, v) \leq r(G)$ for all $v \in M$. Hence $f_M^o(w)$ does not contain an element greater than $r(G)$, so that $f_M^o(u) \neq f_M^o(w)$. Thus M is not an odpu-set, which is a contradiction. Hence $M \subseteq Z(G)$.

Now, let $M \subseteq Z(G)$ be an odpu-set. Then $\max f_M^o(v) = r(G)$. Let $u \in M$ be such that $d(u, v) = r(G)$. Let the shortest $u - v$ path be $(u = v_1, v_2, \ldots, v_{r(G)} = v)$. Then v_1 is adjacent to u. Therefore, $1 \in f_M^o(v_1)$. Since M is an odpu-set, $1 \in f_M^o(x)$ for all $x \in V(G)$.

Now, $d(v_2, u) = 2$, whence $2 \in f_M^o(v_2)$. Since M is an odpu-set, $2 \in f_M^o(x)$ for all $x \in V(G)$. Proceeding like this, we get $\{1, 2, 3, \ldots, r(G)\} \subseteq f_M^o(x)$ and since $M \subseteq Z(G)$, $f_M^o(x) = \{1, 2, 3, \ldots, r(G)\}$ for all $x \in V$. The converse is obvious.

Corollary 2.2 A connected graph G is an odpu-graph if and only if the center $Z(G)$ of G is an odpu-set.

proof Let G be an odpu-graph with an odpu-set M. Then $f_M^o(v) = \{1, 2, \ldots, r(G)\}$ for all $v \in V(G)$. Since $f_M^o(G) \supseteq f_M^o(v)$ and $d(u, v) \leq r(G)$ for every $v \in V(G)$ and $u \in Z(G)$, it follows that $Z(G)$ is an odpu-set of G. The converse is obvious.

Corollary 2.3 Every self-centered graph is an odpu-graph.
Remark 2.4 The converse of Corollary 2.3 is not true. For example the graph $K_2 + \overline{K}_2$, is not self-centered but it is an odpu-graph. Moreover, there exist self-centered graphs having a proper subset of $Z(G) = V(G)$ as an odpu-set.

Theorem 2.5 If G is an odpu-graph with $n \geq 3$, then $\delta(G) \geq 2$ and G is 2-connected.

Proof Let G be an odpu-graph with $n \geq 3$ and let M be an odpu-set of G. If G has a pendant vertex v, it follows from Theorem 2.1 that $v \notin M$. Also, v is adjacent to exactly one vertex $w \in V(G)$. Since M is an odpu-set, $\max f^o_M(w) = r(G)$. Therefore, there exists $u \in M$ such that $d(u, w) = r(G)$. Now $d(u, v) = r(G) + 1$ and $f^o_M(v)$ contains $r(G) + 1$. Hence $f^o_M(v) \neq f^o_M(w)$, a contradiction. Thus $\delta(G) \geq 2$.

Now suppose G is not 2-connected. Let B_1 and B_2 be blocks in G such that $V(B_1) \cap V(B_2) = \{u\}$. Since, the center of a graph lies in a block, we may assume that the center $Z(G) \subseteq B_1$. Let $v \in B_2$ be such that $vw \in E(G)$. Then there exists a vertex $w \in M$ such that $d(u, w) = r(G)$ and $d(v, w) = r(G) + 1$, so that $r(G) + 1 \in f^o_M(u)$, which is a contradiction. Hence G is 2-connected.

Corollary 2.6 A tree T has an odpu-set M if and only if T is isomorphic to P_2.

Corollary 2.7 If G is a unicyclic odpu-graph, then G is isomorphic to a cycle.

Corollary 2.8 A block graph G is an odpu-graph if and only if G is complete.

Corollary 2.9 In any graph G, if there exists an odpu-set M, then every subset M' of $Z(G)$ such that $M \subseteq M'$ is also an odpu-set.

Thus Corollary 2.9 shows that in a limited sense the property of subsets of $V(G)$ being odpu-sets is super-hereditary within $Z(G)$. The next remark gives an algorithm to recognize odpu-graphs.

Remark 2.10 Let G be a finite simple connected graph. The following algorithm recognizes odpu-graphs.

Step-1: Determine the center of the graph G.

Step-2: Generate the $c \times n$ distance matrix $D(G)$ of G where $c = |Z(G)|$.

Step-3: Check whether each column C_i has the elements $1, 2, \ldots, r$.

Step-4: If then, G is an odpu-graph.

Or else G is not an odpu-graph.

The above algorithm is efficient since we have polynomial time algorithm to determine $Z(G)$ and to compute the matrix $D(G)$.

Theorem 2.11 Every odpu-graph G satisfies, $r(G) \leq d(G) \leq r(G) + 1$. Further for any positive integer r, there exists an odpu-graph with $r(G) = r$ and $d(G) = r + 1$.

Proof Let G be an odpu-graph. Since $r(G) \leq d(G)$ for any graph G, it is enough to prove that $d(G) \leq r(G) + 1$. If G is a self-centered graph, then $r(G) = d(G)$. Assume G is not self-centered and let u and v be two antipodal vertices of G. Since G is an odpu-graph, $Z(G)$ is an odpu-set and hence there exist vertices $u', v' \in Z(G)$ such that $d(u, u') = 1$ and $d(v, v') = 1$. Now, G is not self-centered, and $d(u, v) = d$, implies $u, v \notin Z(G)$. If $d > r + 1$; since $d(u, u') = d(v, v') = 1$, the only possibility is $d(u', v') = r$, which implies $d(u, v') = r + 1$. But $v' \in Z(G)$ and hence $r + 1 \in f^*_M(u)$, which is not possible. Hence $d(u, v) = d \leq r + 1$ and the result follows.

Now, let r be any positive integer. For $r = 1$ take $G = K_2 + \tilde{K}_n, n \geq 2$. For $r \geq 2$, let G be the graph obtained from C_{2r} by adding a vertex v_e corresponding to each edge e in C_{2r} and joining v_e to the end vertices of e. Then, it is easy to check that an odpu-set of the resulting graph is $V(C_{2r})$.

However, it should be noted that $d = r + 1$ is not a sufficient condition for the graph to be an odpu-graph. For the graph G consisting of the cycle C_r with exactly one pendent edge at one of its vertices, $d = r + 1$ but G is not an odpu-graph.

Remark 2.12 Theorem 2.11 states that there are only two classes of odpu-graphs, those which are self-centered or those for which $d(G) = r(G) + 1$. Hence, the problem of characterizing odpu-graphs reduces to the problem of characterizing odpu-graphs with $d(G) = r(G) + 1$.

The following theorem gives a complete characterization of odpu-graphs with radius one.

Theorem 2.13 A graph with radius 1 and diameter 2 is an odpu-graph if and only if there exists a subset $M \subset V(G)$ with $|M| \geq 2$ such that the induced subgraph $\langle M \rangle$ is complete, $\langle V - M \rangle$ is not complete and any vertex in $V - M$ is adjacent to all the vertices of M.

Proof Assume that G is an odpu-graph with radius $r = 1$ and diameter $d = 2$. Then, $f^*_M(v) = \{1\}$ for all $v \in V(G)$. If $\langle M \rangle$ is not complete, then there exist two vertices $u, v \in M$ such that $d(u, v) \geq 2$. Hence, both $f^*_M(u)$ and $f^*_M(v)$ contains a number greater than 1, which is not possible. Therefore, $\langle M \rangle$ is complete. Next, if $x \in V - M$ then, since $f^*_M(x) = \{1\}$, x is adjacent to all the vertices of $\langle M \rangle$. Now, if $\langle V - M \rangle$ is complete, then since $\langle M \rangle$ is complete the above argument implies that G is complete, whence diameter of G would be one, a contradiction. Thus, $\langle V - M \rangle$ is not complete.

Conversely assume $\langle M \rangle$ is complete with $|M| \geq 2$, $\langle V - M \rangle$ is not complete and every vertex of $\langle V - M \rangle$ is adjacent to all the vertices in $\langle M \rangle$. Then, clearly, the diameter of G is two and radius of G is one. Also, since $|M| \geq 2$, there exist at least two universal vertices in M (i.e. each is adjacent to every other vertices in M). Therefore $f^*_M(v) = \{1\}$ for every $v \in V(G)$. Hence G must be an odpu-graph with M as an odpu-set.

Theorem 2.14 Let G be a graph of order $n \geq 3$. Then the following are equivalent.

(i) Every k-element subset of $V(G)$ forms an odpu-set, where $2 \leq k \leq n$.
(ii) Every 2-element subset of \(V(G) \) forms an odpu-set.

(iii) \(G \) is complete.

Proof Trivially (i) implies (ii).
If every 2-element subset \(M \) of \(V(G) \) forms an odpu-set, then \(f_{M}^o(v) = \{1\} \) for all \(v \in V(G) \) and hence \(G \) is complete.
Obviously (iii) implies (i). \(\square \)

Theorem 2.15 Any graph \(G \) (may or may not be connected) with \(\delta(G) \geq 1 \) and having no vertex of full-degree can be embedded into an odpu-graph \(H \) with \(G \) as an induced subgraph of \(H \) of order \(|V(G)| + 2 \) such that \(V(G) \) is an odpu-set of the graph \(H \).

Proof Let \(G \) be a graph with \(\delta(G) \geq 1 \) and having no vertex of full-degree. Let \(u, v \in V(G) \) be any two adjacent vertices and let \(a, b \notin V(G) \). Let \(H \) be the graph obtained by joining \(a \) to \(b \) and also, joining \(a \) to all vertices of \(G \) except \(u \) and joining the vertex \(b \) to all vertices of \(G \) except \(v \). Let \(M = V(G) \subset V(H) \). Since \(a \) is adjacent to all the vertices except \(u \) and \(d(a, u) = 2 \), implies \(f_{M}^o(a) = \{1, 2\} \). Similarly \(f_{M}^o(b) = \{1, 2\} \). Since \(u \) is adjacent to \(v \), \(1 \in f_{M}^o(u) \). Since \(u \) does not have full degree, there exists a vertex \(x \), which is not adjacent to \(u \). But \((u, b, x) \) is a path in \(H \) and hence \(d(u, x) = 2 \) in \(H \) for all such \(x \in V(G) \). Therefore \(f_{M}^o(u) = \{1, 2\} \). Similarly \(f_{M}^o(v) = \{1, 2\} \). Now let \(w \in V(G) \), \(w \neq u, v \). Now since no vertex \(w \) is an isolated vertex and \(w \) does not have full-degree, there exist vertices \(x \) and \(y \) in \(V(G) \) such that \(wx \in E(H) \) and \(wy \notin E(H) \). But then, there exists a path \((w, a, y) \) or \((w, b, y) \) with length 2 in \(H \). Also every vertex which is not adjacent to \(w \) is at a distance 2 in \(H \). Therefore \(f_{M}^o(w) = \{1, 2\} \). Hence \(f_{M}^o(x) = \{1, 2\} \) for all \(x \in V(H) \). Hence \(H \) is an odpu-graph and \(V(G) \) is an odpu-set of \(H \). \(\square \)

Remark 2.16 Bollobás [1] proved that almost all graphs have diameter 2 and almost no graph has a node of full degree. Hence almost no graph has radius one. Since \(r(G) \leq d(G) \), almost all graphs have \(r(G) = d(G) = 2 \), that is, almost all graphs are self-centered with diameter 2. Since self-centered graphs are odpu-graphs, the following corollary is immediate.

Corollary 2.17 Almost all graphs are odpu-graphs.

§3. Odpu-Number of a Graph

As we have observed in section 2, if \(G \) has an odpu-set \(M \) then \(M \subseteq Z(G) \) and if \(M \subseteq M' \subseteq Z(G) \), then \(M' \) is also an odpu-set. This motivates the definition of odpu-number of an odpu-graph.

Definition 3.1 The Odpu-number of a graph \(G \), denoted by \(od(G) \), is the minimum cardinality of an odpu-set in \(G \).

In this section we characterize odpu-graphs which have odpu-number 2 and also prove that
there is no graph with odpu-number 3 and for any positive integer \(k \neq 1, 3 \), there exists a graph with odpu-number \(k \). We also present several embedding theorems. Clearly,

\[
2 \leq od(G) \leq |Z(G)| \quad \text{for any odpu - graph } G. \tag{3.1}
\]

Since the upper bound for \(|Z(G)| \) is \(|V(G)| \), the above inequality becomes,

\[
2 \leq od(G) \leq |V(G)|. \tag{3.2}
\]

The next theorem gives a characterization of graphs attaining the lower bound in the above inequality.

Theorem 3.2 For any graph \(G \), \(od(G) = 2 \) if and only if there exist at least two vertices \(x, y \in V(G) \) such that \(d(x) = d(y) = |V(G)| - 1 \).

Proof Suppose that the graph \(G \) has an odpu-set \(M \) with \(|M| = 2 \). Let \(M = \{ x, y \} \). We claim that \(d(x) = d(y) = n - 1 \), where \(n = |V(G)| \). If not, there are two possibilities.

Case 1. \(d(x) = n - 1 \) and \(d(y) < n - 1 \).

Since \(d(x) = n - 1 \), \(x \) is adjacent to \(y \). Therefore, \(f^o_M(x) = \{ 1 \} \). Also, since \(d(y) < n - 1 \), it follows that \(2 \in f^o_M(w) \) for any vertex \(w \) not adjacent to \(v \), which is a contradiction.

Case 2. \(d(x) < n - 1 \) and \(d(y) < n - 1 \).

If \(xy \in E(G) \), then \(f^o_M(x) = f^o_M(y) = \{ 1 \} \) and for any vertex \(w \) not adjacent to \(u \), \(f^o_M(w) \neq \{ 1 \} \).

If \(xy \notin E(G) \), then \(1 \notin f^o_M(x) \) and for any vertex \(w \) which is adjacent to \(x \), \(1 \in f^o_M(w) \), which is a contradiction. Hence \(d(x) = d(y) = n - 1 \).

Conversely, let \(G \) be a graph with \(u, v \in V(G) \) such that \(d(u) = d(v) = n - 1 \). Let \(M = \{ u, v \} \). Then \(f^o_M(x) = \{ 1 \} \) for all \(x \in V(G) \) and hence \(M \) is an odpu-set with \(|M| = 2 \).

Corollary 3.3 For any odpu-graph \(G \) if \(|M| = 2 \), then \(\langle M \rangle \) is isomorphic to \(K_2 \).

Corollary 3.4 \(od(K_n) = 2 \) for all \(n \geq 2 \).

Corollary 3.5 If a \((p, q) \)-graph has an odpu-set \(M \) with odpu-number 2, then \(2p - 3 \leq q \leq \frac{p(p - 1)}{2} \).

Proof By Theorem 3.2, there exist at least two vertices having degree \(p - 1 \) and hence \(q \geq 2p - 3 \). The other inequality is trivial.

Theorem 3.6 There is no graph with odpu-number three.

Proof Suppose there exists a graph \(G \) with \(od(G) = 3 \) and let \(M = \{ x, y, z \} \) be an odpu-set in \(G \). Since \(G \) is connected, \(1 \in f^o_M(x) \cap f^o_M(y) \cap f^o_M(z) \).

We claim that \(x, y, z \) form a triangle in \(G \). Since \(1 \in f^o_M(x) \), and \(1 \in f^o_M(z) \), we may assume that \(xy, yz \in E(G) \). Now if \(xz \notin E(G) \), then \(d(x, z) = 2 \) and hence \(2 \in f^o_M(x) \cap f^o_M(Z) \) and \(f^o_M(y) = \{ 1 \} \), which is not possible. Thus \(xz \in E(G) \) and \(x, y, z \) forms a triangle in \(G \).
Now \(f_M^o(w) = \{1\} \) for any \(w \in V(G) - M \) and hence \(w \) is adjacent to all the vertices of \(M \). Thus \(G \) is complete and \(od(G) = 2 \), which is again a contradiction. Hence there is no graph \(G \) with \(od(G) = 3 \). \(\square \)

Next we prove that the existence of graph with odpu-numbers \(k \neq 1, 3 \). We need the following definition.

Definition 3.7 The shadow graph \(S(G) \) of a graph \(G \) is obtained from \(G \) by adding for each vertex \(v \) of \(G \) a new vertex \(v' \), called the shadow vertex of \(v \), and joining \(v' \) to all the neighbors of \(v \) in \(G \).

Theorem 3.8 For every positive integer \(k \neq 1, 3 \), there exists a graph \(G \) with odpu-number \(k \).

Proof Clearly \(od(P_2) = 2 \) and \(od(C_4) = 4 \). Now we will prove that the shadow graph of any complete graph \(K_n, n \geq 3 \) is an odpu-graph with odpu-number \(n + 2 \).

Let the vertices of the complete graph \(K_n \) be \(v_1, v_2, \ldots, v_n \) and the corresponding shadow vertices be \(v'_1, v'_2, \ldots, v'_n \). Since the shadow graph \(S(K_n) \) of \(K_n \) is self-centered with radius 2 and \(n \geq 3 \), by Corollary 2.3, it is an odpu-graph. Let \(M \) be the smallest odpu-set of \(S(K_n) \). We establish that \(|M| = n + 2 \) in the following three steps.

First, we show \(\{v'_1, v'_2, \ldots, v'_n\} \subseteq M \). If there is a shadow vertex \(v'_i \notin M \), then \(2 \notin f_M^o(v_i) \) since \(v_i \) is adjacent to all the vertices of \(S(K_n) \) other than \(v'_i \), implying thereby that \(M \) is not an odpu-set, contrary to our assumption. Thus, the claim holds.

Now, we show that \(M = \{v'_1, v'_2, \ldots, v'_n\} \) is not an odpu-set of \(S(K_n) \). Note that \(v'_1, v'_2, \ldots, v'_n \) are pairwise non-adjacent and if \(M = \{v'_1, v'_2, \ldots, v'_n\} \), then \(1 \notin f_M^o(v'_i) \) for all \(v'_i \in M \). But \(1 \in f_M^o(v_i) \), \(1 \leq i \leq n \), and hence \(M \) is not an odpu-set.

From the above two steps, we conclude that \(|M| > n \). Now, \(M = \{v'_1, v'_2, \ldots, v'_n\} \cup \{v_i\} \) where \(v_i \) is any vertex of \(K_n \) is not an odpu-set. Further, since all the shadow vertices are pairwise nonadjacent and \(v_i \) is not adjacent to \(v'_i \), \(1 \notin f_M^o(v'_i) \). Hence \(|M| > n + 1 \). Let \(v_i, v_j \in V(K_n) \) be any two vertices of \(K_n \) and let \(M = \{v_i, v_j, v'_1, v'_2, \ldots, v'_n\} \). We prove that \(M \) is an odpu-set and thereby establish that \(od(G) = n + 2 \). Now, \(d(v_i, v_j) = 1 \) and \(d(v_i, v'_j) = d(v_j, v'_j) = 2 \), so that \(f_M^o(v_i) = f_M^o(v_j) = \{1, 2\} \). Also, for any vertex \(v_k \in V(K_n) \), \(d(v_k, v_i) = 1 \) and \(d(v_k, v'_i) = 2 \), so that \(f_M^o(v_k) = \{1, 2\} \). Again, \(d(v'_i, v_j) = d(v'_j, v_i) = 1 \) and for any shadow vertex \(v'_k \in V(S(K_n)) \), \(d(v'_k, v_i) = d(v'_k, v'_i) = 1 \) and since all the shadow vertices are pairwise non-adjacent, \(f_M^o(v'_k) = \{1, 2\} \). Thus, \(M \) is an odpu-set and \(od(G) = n + 2 \). \(\square \)

Remark 3.9 We have proved that 3 cannot be the odpu number of any graph. Hence, by the above theorem, for an odpu-graph the numbers 1 and 3 are the only two numbers forbidden as odpu-numbers of any graph.

Theorem 3.10 \(od(C_{2k+1}) = 2k \).

Proof Let \(C_{2k+1} = (v_1, v_2, \ldots, v_{2k+1}, v_1) \). Clearly \(M = \{v_1, v_2, \ldots, v_{2k}\} \) is an odpu-set of \(C_{2k+1} \). Now, let \(M \) be any odpu-set of \(C_{2k+1} \). Then, there exists a vertex \(v_i \in V(C_{2k+1}) \) such that \(v_i \notin M \). Without loss of generality, assume that \(v_i = v_{2k+1} \). Then, since \(1 \notin f_M^o(v_{2k+1}) \), either \(v_{2k} \in M \) or \(v_1 \in M \) or both \(v_1, v_{2k} \in M \). Without loss of generality, let \(v_1 \in M \). Since
\[d(v_1, v_{2k+1}) = 1 \text{ and } v_{2k+1} \notin M, \text{ and } v_2 \text{ is the only element other than } v_{2k+1} \text{ at a distance 1 from } v_1, \text{ we see that } v_2 \in M. \text{ Now, } d(v_2, v_{2k+1}) = 2 \text{ and } v_{2k+1} \notin M, \text{ and } v_3 \text{ is the only element other than } v_{2k+1} \text{ at a distance 2; this implies } v_4 \in M. \text{ Proceeding in this manner, we get } v_2, v_4, \ldots, v_{2k} \in M. \text{ Now since } d(v_2k, v_{2k+1}) = 1 \text{ and } v_{2k+1} \notin M, \text{ and } v_{2k−1} \text{ is the only element other than } v_{2k+1} \text{ at a distance 1 from } v_{2k}, \text{ we get } v_{2k−1} \in M. \text{ Next, since } d(v_{2k−1}, v_{2k+1}) = 2 \text{ and } v_{2k+1} \notin M, \text{ and } v_{2k−3} \text{ is the only element other than } v_{2k+1} \text{ at a distance 2 from } v_{2k−1}, \text{ we get } v_{2k−3} \in M. \text{ Proceeding like this, we get } M = \{v_1, v_2, \ldots, v_{2k}\}. \text{ Hence } od(C_{2k+1}) = 2k. \] □

Definition 3.11 \([2]\) A graph is an \(r \)-decreasing graph if \(r(G−v) = r(G) − 1 \) for all \(v \in V(G) \).

We now proceed to characterize odpu-graphs \(G \) with \(od(G) = |V(G)|. \) We need the following lemma.

Lemma 3.12 Let \(G \) be a self-centered graph with \(r(G) \geq 2 \). Then for each \(u \in V(G) \), there exist at least two vertices in every \(i^{th} \) neighborhood \(N_i(u) = \{v \in V(G) : d(u, v) = i\} \) of \(u \), \(i = 1, 2, \ldots, r−1 \).

Proof Let \(G \) be a self-centered graph and let \(u \) be any arbitrary vertex of \(G \). If possible, let for some \(i, 1 \leq i \leq r−1 \), \(N_i(u) \) contains exactly one vertex, say \(w \). Then, since \(e(w) = r \), there exists \(x \in V(G) \) such that \(d(x, w) = r \).

If \(x \in N_i(u) \) for some \(j > i \), then \(d(u, x) > r \), which is a contradiction. Again if \(x \in N_j(u) \) for some \(j < i \), then \(d(x, w) = r < i \leq r−1 \), which is again a contradiction. Hence \(N_i(u) \) contains at least two vertices. □

Theorem 3.13 Let \(G \) be a graph of order \(n \), \(n \geq 4 \). Then the following conditions are equivalent.

(i) \(od(G) = n. \)

(ii) the graph \(G \) is self-centered with radius \(r \geq 2 \) and for every \(u \in V(G) \), there exists exactly one vertex \(v \) such that \(d(u, v) = r \).

(iii) the graph \(G \) is \(r \)-decreasing.

(iv) there exists a decomposition of \(V(G) \) into pairs \(\{u, v\} \) such that \(d(u, v) = r(G) > \max(d(u, x), d(x, v)) \) for every \(x \in V(G) \) − \(\{u, v\} \).

Proof Let \(G \) be a graph of order \(n \), \(n \geq 4 \). The equivalence of (ii), (iii) and (iv) follows from Theorem 1.1. We now prove that (i) and (ii) are equivalent.

(i) \(\Rightarrow \) (ii)

Let \(G \) be a graph with \(od(G) = n = |V(G)|. \) Hence, \(e(u) = r \) for all \(u \in V(G) \) so that \(G \) is self-centered. Now, we show that for every \(u \in V(G) \), there exists exactly one vertex \(v \in V(G) \) such that \(d(u, v) = r \).

First, we show that for some vertex \(u_0 \in V(G) \), there exists exactly one vertex \(v_0 \in V(G) \) such that \(d(u_0, v_0) = r. \) Suppose for every vertex \(x \in V(G) \), there exist at least two vertices \(x_1 \) and \(x_2 \) in \(V(G) \) such that \(d(x, x_1) = r \) and \(d(x, x_2) = r \). Let \(M = V(G) \) − \(\{x_1\} \). Then, since \(d(x, x_2) = r \), \(f_M^r(x) = \{1, 2, \ldots, r\}. \) Further, since \(d(x, x_1) = r \), \(f_M^r(x_1) = \{1, 2, \ldots, r\}. \) Also, since \(d(x, x_2) = r \), and by Lemma 3.12, \(f_M^r(x_2) = \{1, 2, \ldots, r\}. \) Let \(y \) be any vertex other than
x, x_1 and x_2. Let $1 \leq k \leq r$, and if $d(y, x) = k$, then by Lemma 3.12 and by assumption, there exists another vertex $z \in M$ such that $d(y, z) = k$. Therefore, $f_M^y(y) = \{1, 2, \ldots, r\}$. Thus $M = V(G) - \{x_1\}$ is an odpu-set for G, which is a contradiction to the hypothesis. Thus, there exists a vertex $u_0 \in V(G)$ such that is exactly one vertex $v_0 \in V(G)$ with $d(u_0, v_0) = r$. Next, we claim that u_0 is the unique vertex for v_0 such that $d(u_0, v_0) = r$. Suppose there is a vertex $w_0 \neq u_0$ with $d(w_0, v_0) = r$. Let $M = V(G) - \{w_0\}$. Then, $d(u_0, v_0) = r$ implies $f_M^w(w_0) = \{1, 2, \ldots, r\}$ and $d(v_0, w_0) = r$ imply $f_M^v(v_0) = \{1, 2, \ldots, r\}$. Also, since $d(v_0, w_0) = r$, by Lemma 3.12, it follows that $f_M^v(v_0) = \{1, 2, \ldots, r\}$. Now let $x \in V(G) - \{u_0, v_0\}$. Since $d(x, u_0) < r$, we get $f_M^x(x) = \{1, 2, \ldots, r\}$. Hence, $M = V(G) - \{u_0\}$ is an odpu-set for G, which is a contradiction. Therefore, for the vertex v_0, u_0 is the unique vertex such that $d(u_0, v_0) = r$.

Next, we claim that there is some vertex $u_1 \in V(G) - \{u_0, v_0\}$ such that there exists exactly one vertex $v_1 \in V(G)$ at a distance r from u_1. If for every vertex $u_1 \in V(G) - \{u_0, v_0\}$, there are at least two vertices v_1 and w_1 in $V(G)$ at a distance r from u_1, then proceeding as above, we can prove that $M = V(G) - \{v_1\}$ is an odpu-set of G, a contradiction. Therefore, v_1 is the only vertex at a distance r from u_1. Continuing the above procedure we conclude that for every vertex $u \in V(G)$ there exists exactly one vertex $v \in V(G)$ at a distance r from u and for the vertex v, u is the only vertex at a distance r. Thus (i) implies (ii).

Now, suppose (ii) holds. Then M is the unique odpu-set of G and hence $od(G) = n$. □

Corollary 3.14 If G is an odpu-graph with $od(G) = |V(G)| = n$, then G is self-centered and n is even.

Corollary 3.15 If G is an odpu-graph with $od(G) = |V(G)| = n$ then $r(G) \geq 3$ and u_1, u_2 are different vertices of G, then, $N(u_1) \neq N(u_2)$.

Proof If $N(u_1) = N(u_2)$, then $d(u_1, v_1) = d(u_2, v_1)$, which contradicts Theorem 3.13. □

Corollary 3.16 The odpu-number $od(G) = |V(G)|$ for the n-dimensional cube and for even cycle C_{2n}.

Corollary 3.17 Let G be a graph with $r(G) = 2$. Then $od(G) = |V(G)|$ if and only if G is isomorphic to $K_{2,2,\ldots,2}$.

Proof If $G = K_{2,2,\ldots,2}$, then $r(G) = 2$ and G is self-centered and by Theorem 3.13, $od(G) = |V(G)| = 2n$.

Conversely, let G be a graph with $r(G) = 2$. Then G is self-centered and it follows from Theorem 3.13 that for each vertex, there exists exactly one vertex at a distance 2. Hence $G \cong K_{2,2,\ldots,2}$. □

Problem 3.1 Characterize odpu-graphs for which $od(G) = |Z(G)|$.

Theorem 3.18 If a graph G has odpu-number 4, then $r(G) = 2$.

Proof Let G be an odpu-graph with odpu-number 4. Let $M = \{u, v, x, y\}$ be an odpu-set of G. If $r(G) = 1$, then $f_M^y(x) = \{1\}$ for all $x \in V(G)$. Therefore, $\langle M \rangle$ is complete. Hence, any two elements of M forms an odpu-set of G which implies $od(G) = 2$, which is a contradiction.
Hence $r(G) \geq 2$.

Since $r(G) \geq 2$, none of the vertices in M is adjacent to all the other vertices in M and $\langle M \rangle$ has no isolated vertex. Hence $\langle M \rangle = P_4$ or C_4 or $2K_2$.

If $\langle M \rangle = P_4$ or C_4 then the radius of $\langle M \rangle$ is 2. Hence, there exists a vertex v in M such that $f^o_M(v) = \{1, 2\}$ so that $r(G) = 2$.

Suppose $\langle M \rangle = 2P_2$ and let $E(\langle M \rangle) = \{uv, xy\}$. Since $|M| = 4$, $r(G) \leq 3$. If $r(G) = 3$, then $3 \in f^o_M(x)$ and $3 \in f^o_M(u)$. Hence, there exists a vertex $w \notin M$ such that $xw, uw \in E(G)$. Hence, $d(x, w) = d(u, w) = 1$. Also, $d(y, w) = d(v, w) = 2$. Therefore, $3 \notin f^o_M(w)$, which is a contradiction. Thus, $r(G) = 2$. □

A set S of vertices in a graph $G = (V, E)$ is called a dominating set if every vertex of G is either in S or is adjacent to a vertex in S; further, if $\langle S \rangle$ is isolate-free then S is called a total dominating set of G (see Haynes et al[7]). The next result establishes the relation between odpu-sets and total dominating sets in an odpu-graph.

Theorem 3.19 For any odpu-graph G, every odpu-set in G is a total dominating set of G.

Proof Let M be an odpu-set of the graph G. Since $1 \in f^o_M(u)$, for all $u \in V(G)$, for any vertex $u \in V(G)$ there exists a vertex $v \in M$ such that $uv \in E(G)$. Hence, M is a total dominating set of G. □

Recall that the total domination number $\gamma_t(G)$ of a graph G is the least cardinality of a total dominating set in G.

Corollary 3.20 For any odpu-graph G, $\gamma_t(G) \leq od(G)$.

Problem 3.2 Characterize odpu-graphs G such that $\gamma_t(G) = od(G)$.

Let H be a graph with vertex set $\{x_1, x_2, \ldots, x_n\}$ and let G_1, G_2, \ldots, G_n be a set of vertex disjoint graphs. Then the graph obtained from H by replacing each vertex x_i of H by the graph G_i and joining all the vertices of G_i to all the vertices of G_j if and only if $x_ix_j \in E(H)$, is denoted as $H[G_1, G_2, \ldots, G_n]$.

Theorem 3.21 Let H be a connected odpu-graph of order $n \geq 2$ and radius $r \geq 2$. Let $K = H[G_1, G_2, \ldots, G_n]$. Then $od(H) = od(K)$.

Proof Let $V(H) = \{x_1, x_2, \ldots, x_n\}$. Let G_i be the graph replaced at the vertex x_i in H. It follows from the definition of K that if $(x_{i_1}, x_{i_2}, \ldots, x_{i_r})$ is a shortest path in H, then $(x_{i_1,j_1}, x_{i_2,j_2}, \ldots, x_{i_r,j_r})$ is a shortest path in K where x_{i_k,j_k} is an arbitrary vertex in G_{i_k}. Hence $M \subseteq V(H)$ is odpu-set in H if and only if the set $M_1 \subseteq V(K)$, where M_1 has exactly one vertex from G_i if and only if $x_i \in M$, is an odpu-set for K. Hence $od(H) = od(K)$. □

Corollary 3.22 A graph G with radius $r(G) \geq 2$ is an odpu-graph if and only if its shadow graph is an odpu-graph.

Theorem 3.23 Given a positive integer $n \neq 1, 3$, any graph G can be embedded as an induced subgraph into an odpu-graph K with odpu-number n.
Proof If \(n = 2 \), then \(K = C_3[G, K_1, K_1] \) is an odpu-graph with \(od(K) = od(C_3) = 2 \) and \(G \) is an induced subgraph of \(K \). Suppose \(n \geq 4 \). Then by Theorem 3.8, there exists an odpu-graph \(H \) with \(od(H) = n \). Now by Theorem 3.21, \(K = H[G, K_1, K_1, \ldots, K_1] \) is an odpu-graph with \(od(K) = od(H) = n \) and \(G \) is an induced subgraph of \(K \). \(\square \)

Remark 3.24 If \(G \) and \(K \) are as in Theorem 3.23, we have

1. \(\omega(H) = \omega(G) + 2 \),
2. \(\chi(H) = \chi(G) + 2 \),
3. \(\beta_1(H) = \beta_1(G) + 1 \), and
4. \(\beta_0(H) = \beta_0(G) \)

where \(\omega(G) \) is the clique number, \(\chi(G) \) is the chromatic number, \(\beta_1(G) \) is the matching number and \(\beta_0(G) \) is the independence number of \(G \). Since finding these parameters are NP-complete for graphs, finding these four parameters for an odpu-graph is also NP-complete.

§4. Bipartite Odpu-Graphs

In this section we characterize complete multipartite odpu-graphs and bipartite odpu-graphs with odpu-number 2 and 4. Further we prove that there are no bipartite graph with odpu-number 5.

Theorem 4.1 The complete \(n \)-partite graph \(K_{a_1, a_2, \ldots, a_n} \) is an odpu-graph if and only if either \(a_i = a_j = 1 \) for some \(i \) and \(j \) or \(a_1, a_2, a_3, \ldots a_n \geq 2 \). Hence \(od(K_{a_1, a_2, \ldots, a_n}) = 2 \) or \(2n \).

Proof Suppose \(G = K_{a_1, a_2, \ldots, a_n} \) is an odpu-graph. If \(a_i = 1 \) for exactly one \(i \), then \(|Z(K_{a_1, a_2, \ldots, a_n})| = 1 \). Hence \(G \) is not an odpu-graph, which is a contradiction.

Conversely assume, either \(a_i = a_j = 1 \) for some \(i \) and \(j \) or \(a_1, a_2, a_3, \ldots a_n \geq 2 \). If \(a_i = a_j = 1 \) for some \(i \) and \(j \), then there exist two vertices of full degree and hence \(G \) is an odpu-graph with odpu-number 2. If \(a_1, a_2, a_3, \ldots a_n \geq 2 \), then for any set \(M \) which contains exactly two vertices from each partite set, we have \(f^i_M(v) = \{1, 2\} \) for all \(v \in V(G) \) and hence \(M \) is an odpu-set with \(|M| = 2n \). Further if \(M \) is any subset of \(V(G) \) with \(|M| < 2n \), there exists a partite set \(V_i \) such that \(|M \cap V_i| \leq 1 \) and \(f^i_M(v) = \{1\} \) for some \(v \in V_i \) and \(M \) is not an odpu-set. Hence \(od(G) = 2n \). \(\square \)

Theorem 4.2 Let \(G \) be a bipartite odpu-graph. Then \(od(G) = 2 \) if and only if \(G \) is isomorphic to \(P_2 \).

Proof Let \(G \) be a bipartite odpu-graph with bipartition \((X,Y)\). Let \(od(G) = 2 \). Then, by Theorem 3.2, there exist at least two vertices of degree \(n - 1 \). Hence \(|X| = |Y| = 1 \) and \(G \) is isomorphic to \(P_2 \). The converse is obvious. \(\square \)
Theorem 4.3 A bipartite odpu-graph G with bipartition (X,Y) has odpu-number 4 if and only if the set X has at least two vertices of degree $|Y|$ and the set Y has at least two vertices of degree $|X|$.

Proof Suppose $od(G) = 4$. Let M be an odpu-set of G with $|M| = 4$. Then, by Theorem 3.18, $r(G) = 2$ and hence $f_M^o(x) = \{1,2\}$ for all $x \in V(G)$.

First, we show that $|M \cap X| = |M \cap Y| = 2$. If $|M \cap X| = 4$, then $1 \notin f_M^o(v)$ for all $v \in M$. If $|M \cap X| = 3$ and $|M \cap Y| = 1$ then $2 \notin f_M^o(v)$ for the vertex $v \in M \cap Y$. Hence it follows that $|M \cap X| = |M \cap Y| = 2$. Let $M \cap X = \{u,v\}$ and $M \cap Y = \{x,y\}$. Since $f_M^o(w) = \{1,2\}$ for all $w \in V$, it follows that every vertex in X is adjacent to both x and y and every vertex in Y is adjacent to both u and v. Hence, $deg(u) = deg(v) = |Y|$ and $deg(x) = deg(y) = |X|$.

Conversely, suppose $u,v \in X$, $x,y \in Y$, $deg(u) = deg(v) = |Y|$ and $deg(x) = deg(y) = |X|$. Let $M = \{u,v,x,y\}$. Clearly $f_M^o(w) = \{1,2\}$ for all $w \in V$. Hence M is an odpu-set. Also, since there exists no full degree vertex in G, by Theorem 3.2 the odpu-number cannot be equal to 2. Also, since 3 is not the odpu-number of any graph. Hence the odpu-number of G is 4. □

Theorem 4.4 The number 5 cannot be the odpu-number of a bipartite graph.

Proof Suppose there exists a bipartite graph G with bipartition (X,Y) and $od(G) = 5$. Let $M = \{u,v,x,y,z\}$ be a odpu-set for G.

First, we shall show that $|X \cap M| \geq 2$ and $|Y \cap M| \geq 2$. Suppose, on the contrary, one of these inequalities fails to hold, say $|X \cap M| \leq 1$. If X has no element in M, then $1 \notin f_M^o(a)$ for all $a \in M$, which is a contradiction. Therefore, $|X \cap M| = 1$. Without loss of generality, let $\{u\} = X \cap M$. Then, since $1 \in f_M^o(v) \cap f_M^o(x) \cap f_M^o(y) \cap f_M^o(z)$, all the vertices v,x,y,z should be adjacent to u. Hence $2 \notin f_M^o(u)$, a contradiction. Thus, we see that each of X and Y must have at least two vertices in M. Without loss of generality, we may assume $u,v \in X$ and $x,y,z \in Y$.

Case 1. $r(G) = 2$.

Then $f_M^o(w) = \{1,2\}$ for all $w \in Y$. Then proceeding as in Theorem 4.3, we get $deg(u) = deg(v) = |Y|$ and $deg(x) = deg(y) = deg(z) = |X|$. Therefore, by Theorem 4.3, $\{u,v,x,y\}$ forms an odpu-set of G, a contradiction to our assumption that M is a minimum odpu-set of G. Therefore, $r = 2$ is not possible.

Case 2. $r(G) \geq 3$.

Since M is an odpu-set of G, $f_M^o(a) = \{1,2,\ldots,r\}$ for all $a \in V(G)$. Then, since $2 \in f_M^o(u)$, there exists a vertex $b \in Y$ such that $ub, bv \in E(G)$. But since $b \in Y$ and $ub, bv \in E(G)$, $3 \notin f_M^o(b)$, which is a contradiction. Hence the result follows. □

Conjecture 4.5 For a bipartite odpu-graph the odpu-number is always even.

Acknowledgment

The author is very much thankful to the Department of Science and Technology, Government of
India for its support as JRF under the projects SR/S4/MS:287/05 and SR/S4/277/06 at Centre for Mathematical Sciences, Pala and Mary Matha Arts & Science College, Mananthavady. I am thankful to Dr.B.D. Acharya, who suggested the concept of odpu-sets and to Prof. S.B. Rao and Dr.K.A. Germina for their helpful suggestions. I am thankful to Prof. S. Arumugam whose valuable suggestions led to substantial improvement in the presentation of the paper.

References