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Abstract: The Arakawa-Kaneko zeta function has been introduced ten years ago by T.
Arakawa and M. Kaneko in [22]. In [22], Arakawa and Kaneko have expressed the special
values of this function at negative integers with the help of generalized Bernoulli numbers
B® called poly-Bernoulli numbers. Kim-Kim [4] introduced Multi poly- Bernoulli numbers
and proved that special values of certain zeta functions at non-positive integers can be
described in terms of these numbers. The study of Multi poly-Bernoulli and Euler numbers
and their combinatorial relations has received much attention [2,4,6,7,12,13,14,19,22,27]. In
this paper we introduce the generalization of Multi poly-Bernoulli and Euler numbers and
consider some combinatorial relationships of the Generalized Multi poly-Bernoulli and Euler
numbers of higher order. The present paper deals with Generalization of Multi poly-Bernouli
numbers and polynomials of higher order. In 2002, Q. M. Luo and et al (see [11, 23, 24])
defined the generalization of Bernoulli polynomials and Euler numbers. Some earlier results
of Luo in terms of generalized Multi poly-Bernoulli and Euler numbers, can be deduced.

Also we investigate some relationships between Multi poly-Bernoulli and Euler polynomials.
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81. Introduction

Bernoulli numbers are the signs of a very strong bond between elementary number theory,
complex analytic number theory, homotopy theory(the J-homomorphism, and stable homo-
topy groups of spheres), differential topology(differential structures on spheres), the theory of

modular forms(Eisenstein series) and p-adic analytic number theory(the p-adic L-function) of
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Mathematics. For n € Z,n > 0, Bernulli numbers B,, originally arise in the study of finite sums
of a given power of consecutive integers. They are given by By =1,B1 = —1/2,B2 =1/6,Bs =
0,By = —1/30, ..., with B, 11 =0 for n > 1, and

n—1
1 n+1
= — >
B, P E ( )Bm, n>1 (1)

m=0

The modern definition of Bernoulli numbers B,, can be defined by the contour integral

n! z dz

n=7—-¢0 ————7, 2
21 J e* —1 zntl (2)

where the contour encloses the origin, has radius less than 2.
Also Bernoulli polynomials By, (z) are usualy defined(see[1], [4], [5])by the generating func-

tion

G(z,t) =

te;ﬂt & tn
= ZBn(x)ﬁ, It| < 2 (3)
n=0

and consequently, Bernoulli numbers B, (0) := B,, can be obtained by the generating function

o0

t gt
et—l_; "nl

Bernoulli polynomials, first studied by Euler (see[1]), are employed in the integral representation
of differentiable periodic functions, and play an important role in the approximation of such
functions by means of polynomials (see[14]-[18]).

Euler polynomials E,, (x) are defined by the generating function

2 S mwh < (4)
e n\T —, i
et +1 o n!

Euler numbers F,, can be obtained by the generating function

2 Z‘X’ tn
et +1 = n! ()
The first four such polynomials, are

Bo(x) =1,By(x) =2 —1/2,Ba(x) = 2®> — 2 +1/6
Bs(x) = 2 — 3/22% +1/2x, ...

and
Eo(z) =1,E(z) = 2 — 1/2, By(2) = 2° — x,
Bs(x) =2 —3/20% +1/4, ...

Euler polynomials are strictly connected with Bernoulli ones, and are used in the Taylor ex-

pansion in a neighborhood of the origin of trigonometric and hyperbolic secant functions.



Some Results on Generalized Multi Poly-Bernoulli and Euler Polynomials 119

In the sequel, we list some properties of Bernoulli and Euler numbers and polynomials as

well as recurrence relations and identities.

Ba(z) = an (Z) Bz F, (6)

k=0
n+1
E,(z) = ni : > o(2—2 <”Z 1) Btk (7)
k=1
Bn(x +1) — By(z) = na" ™, (8)
E,(zx+1)+ E,(x) = 22" 9)

Lemma 1.1(see[20],[21]) For any integer n > 0, we have

n

Bue+1) =Y <Z> B (z) (10)

k=0

En(z+1) = an (Z)Ek(:c) (11)

k=0

Consequently, from (8), (9) and lemma 1.1, we obtain,

Lemma 1.3 For any positive integer n > 0, we have

p—1
B, (px) = p"! Z By (z + z) (p is a positive integer) (14)
p
r=0

p—1
E, (px) =p" Z(—l)rEn(x + z) (p is an odd integer) (15)
p
r=0

Let us briefly recall k — th polylogarithm. The polylogarithm is a special function Li(z),
that is defined by the sum

o0 s

Lig(z) := Z z_k (16)

s=1
For formal power series Lik(z) is the k — th polylogarithm if k¥ > 1, and a rational function if
k < 0. The name of the function come from the fact that it may alternatively be defined as the
repeated integral of itself, namely that

Ligp1(z) = /O Lir(®) (17)

t
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for integer values of k, we have the following explicit expressions

Lii(2) = —log(1 — 2), Lig(z) = % Li_q(z) = a _22)2
z z Z z+2°
Li_o(z) = H, Li_3(z) = (1(—;%—2—;—4)’

The integral of the Bose-Einstein distribution is expressed in terms of a polylogarithm,

k+1

[e’e} k
Lz’k+1(z)zr(1 )/0 A (18)

Lemma 1.3(see[18]) For n € N U{0}, we have an explicit formula for Li_,(z) as follow

n+1 n
Lion(2) = i (-1) +k+1(k: 1)]!€S(n+ 1,k) (19)
pot (1-2)
(n=1,2,..)

where s(n, k) are Stirling numbers of the second kind.

Now, we introduce the generalization of Lig(z). Let r be an integer with a value greater

than one.

Definition 1.1 Let k1, ks, ...k, be integers. The generalization of polylogarithm are defined by

zMmr

Lig, ko,... .k, (2) = Z k1 K (20)

mi,ma,...,m.€Z 1 T

O<mi<mo<...<m.,

The rational numbers Bflk), (n=0,1,2,...) are said to be poly-Bernoulli numbers if they satisfy

Lig(l—e™) 3 [NCES (21)

l—e*

In addition, for any n >0, BY is the classical Bernoulli number, By, (see[7], [12]). Also , the
rational numbers HS" (u),(n=0,1,2,...)are said to be poly-Euler numbers if they satisfy

Lij(1 — et tn
I oS P’ (22)
n=0 ’

u—et
where u is an algebraic real number and k > 1. (see[13],[19])

Let us now introduce a generalization of poly-Bernoulli numbers, making use of Li, ...k, (2).

Definition 1.1(see[7]) Multi poly-Bernoulli numbers BlForkr) (n=0,1,2,...) are defined for
each integer ki, ke, ..., ky by the generating series

Liky k(1 —€7F) ko)
R e
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By Definition 1.2, the left hand side of (23) is

1 (1 — e tymr=r
Ly e (1)
k1 9k Er k Er
1k12k2 O <, myt..my
me#r
hence we have
(k1peoskr) _ L
B = g 25)

1
ZEPY ; (26)
0<mi<...<my mlfl...mTfll (1 + 1)k

Definition 1.3 Multi poly-Euler numbers H,(lkl"" kr)

ki,....,k. by the generating series

,(n=20,1,...) are defined for each integer

Li(kl k)(l — 8(17u)) > t"
R — H(kl,...,kr) . 27
CHELUN s o

Kaneko [6] presented the following recurrence formulae for poly-Bernoulli numbers which
we state hear.

Theorem 1.1(Kaneko)([2,6,14,22]) For any k € Z and n > 0,we have

n—1
1 _ n
Bﬁ>=7l 1{3& RED (m—l)ngy (28)

m=1
() Hm-1)1q "
n+l m—1
B = (=)™ ) 5 (29)
k=1 m
min(n,k)
+1| [&+1
BR — nzd" n,k > 0) (30)
j=0 j+1 j+1
BLH =B (nk > 0) (31)
n B m _1)l m .
Bk — (™) gk ( M 39
=S () s ()8 (32)

where

n —(_1V1§5(‘U1C7>w nom > 0 (33)

called the second type stirling numbers.

Y.Hamahata and H.Masubuchi in [12], presented the following recurrence formulae for

Multi poly-Bernoulli numbers.
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Theorem 1.2(H.Masubuchi & Y.Hamahata) Forn >0 and (k1, ...,k € Z) we have

Bfrkr) = (34)

n

n
(=1)m =" (my —1)!
ntr m, —r

SOUDY ) a—

r
my=r | 0<mi<...<m., my...my

If k. # land n > 1, then

Blkkeoad) . le - (36)
o) ()
Also, they proved (see[1]) if
——
B[T]g@) _ B7(10, veey 0,F) (37)
then for n,k > 0, we have
Bl = Bl (38)

In [23], [24], Q-M.Luo, F.Oi and L.Debnath defined the generalization of Bernoulli and

Euler polynomials B, (x,a,b,c) and E,(x,a,b,c) respectively, which are expressed as follows

t o tk
mc ¢ :ZBk(l',a?b,C)H (39)
k=0
2¢%t > tk
m = kZ_QEk(.’II,GJ), C)E (40)

In this paper, by the method of Q.M.Luo and et al [11], we give some properties on generalized
Multi poly-Bernoulli and Euler polynomials

Definition 1.4 Let a,b > 0 and a # b. The generalized Multi poly-Bernoulli numbers
Bl ’lm(a, b), the generalized Multi poly-Bernoulli polynomials

Bflkh”' 7k7‘) (x, a, b) and B,Elkl)m )kT)(xa a, b7 C)
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are defined by the following generating functions, respectively;

Lig,,.. k) (1= (b)) S 27
ek Bk (g, b " 41
@t_a%y g% (00) W< e (41)
Li(kl )( — (ab : tn 2w
ot e’ Bk b t < ————— 42
(bt —at)" Z (z3 a, ) ||<|1na—|—1nb| (42)
Ll(kl ok )(1 — (ab)_t) t ad tn 27T
SRL rot = N Bk (g b)), ] < 43
(bt _ a/ft)’r‘ c ng() n (./I:, a, 7C) n!’ | | < |1na + lnb| ( )

Definition 1.5 Leta,b > 0, and a # b, the generalized Multi poly- Euler numbers gkke) (u;a,b),the
generalized multi poly-Euler polynomial HF % (x;u, a,b) and HFvF (2;u,a,b, ¢) are defined

by the following generating functions, respectively,

Ligy, (L =e"™) SNk ¢ 2
seeey g — H( 1yeenskr) b R t . 44
(Ua,—t — bt)T Z n (u7 a )n' ’ | | < | Ina + In b| ( )
Ligy ...k, )(1 — e(1- U) . tn 2
Joees et H(kl’ oke) (e b)— t _ 45
(ua—t — bt)r Z (w5, a, )n!’ It < |Ina + Inb| (45)
Ligy, k) (1 =e""") 0 & t" 2
yeesRp rot _ B(kI)“')kT) . b R t _ 46
(ua—t — bl)r ¢ Z n (@50, a, ,c)n!, 1 < [Ina + Ind| (46)

n=0

§2. Main Theorems

In this section, we introduce our main results. We give some theorems and corollaries which
are related to generalized Multi poly-Bernoulli numbers and generalized Multi poly-Euler poly-
nomials. We present some recurrence formulae for generalized Multi-poly-Bernoulli and Euler

polynomials.

Theorem 2.1 Let a,b >0 and a # b, we have

—1Inb

(klv 7 ) (klv"'va‘) -
B, (a,6) = By (lna—l—lnb

) (Ina+Ind)" (47)

proof By applying Definition 1.4, we have

Liggy,... 1) (1= (ab)™®) i Bl (g p)
ooy &l

Lik,,... .y (1 = (ab)™™) 1 Ligy... gy (1 — e—vnab)
(bx - aiz)r T per (1 _ efxlnab)r

_ e—wrlnb Lz(kl ----- r)(]‘ — e—iﬂln ab)
(1 e~ lnab)r
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So, we get

n

Ligg,,.. o) (1 -~ & —Inb z
yoonskir _ Bk (7 ) (] lnd)» 2=
(b® —a—)" Z n Ina+1Inb (na+mnb) n!

n=0
Therefore, by comparing the coefficients of %n, on both sides, proof will be complete

—1Inb

(]i}l,...,klr) e (k17---7k37‘) S—
By (a,0) = By (lna—!—lnb

) (Ina +Inb)"

O
The generalized Multi poly-Bernoulli and Euler numbers process a number of interesting

properties which we state here

Theorem 2.2 Let a,b >0 and a # b. For real algebraic u we have

Ina

HE k) (4 0 ) — HE k) (o

) (Ina+1nd)". (48)

Next, we investigate a strong relationships between Bk kr)(a, b) and Bk

Theorem 2.3 Let a,b > 0,a # band a > b > 0, we have

J .
Bk (a,b) = 3" (=) (Ina + In b) (In b)I ~* (3> Btk (49)
=0

By applying Definition 1.4, we have

Ligry,...oy(1 = (ab)™") 1 Ligk,..k,)(1 = (ab)™™)
(bLE _ a—w)r - pxr (1 —_e—zln ab)r

— (lnb)k kK k — ki,....k n"
= <Z g (-1) ) <ZB,(LI’ ) (Ina + Inb) F)

n=0

oo j (kyenskor) i j—i
_ <Z(‘T>j_iBJ (Ina + Inb)i(Inb) xj>

gt G — i)

By comparing the coefficient of %", on both sides, we get.

J .
B(klx"')kT) b) = R ] 1 Ind A Inb j—1 J B.(klwwkr)
b1k 0,1y = 3y~ + )by~ (1) B

O

By the same method proceeded in the proof of Theorem 2.3, we obtained similar relations
for H,(lk1 """ kr)(u;a,b) and Hflkl """ kr)
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Theorem 2.4 Let a,b >0, and b > a > 0. For algebraic real number u, we have
H(kl ..... T) b i 1 1 b 1 n—i " Hl(klr'wk;?")
n (u;a, Z r'(Ina +Inb) (Ina) <z

%
=0

Theorem 2.5 Let x € R and conditions of Theorem 2.3 holds true, then we get

Bk (z5a,b,0) =) (7> P ey B (0, b)an !

=0

HFvk) (g 2 a, b, ¢) Z ( ) Hne "_lHl(kl"“’kT)(UWab)xn_l
1=

Proof By applying Definitions 1.4 and 1.5, proof will be complete.

Theorem 2.6 Let conditions of Theorem 2.5 holds true, we obtain

2 1
P

" /n ek ek p(k1,enke),  — DD .
> L B —— " )(Ina+Inb
<k>r (HC) k (1Da+lnb)(na+ n )

125

Proof By applying Theorems 2.1 and 2.5, we get (53), and Obviously, the result of (54) is

similar with (53).

Theorem 2.7 Let conditions of Theorem 2.5 holds true, then we get

B7(1k17m7kqn) (Ia a, ba C) =

n k
= Z Z(—l)k_j (Z) (k> " Fne)" *(Inb)k I (Ina + In b)jBJ(-k1 """ k) gk

J

b
BlFvkn) (2 4150, b,¢) = BFo-*) (2 a¢, =, )
c

b
HFreok) (1 — 2, ae, b, ¢) = BFvk) (y, —x ac, -, ¢)
c

HEvkD) (us 4y, a,b,¢) =

(]
o
> 3
N——
bl
—
—
=}
o
~
3
=
F
=
D
—~
8
e
<
o
~
<
1
o
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Proof We only prove (59) and (55)-(60) can be derived by Definitions 1.4 and 1.5.

Li(kl ----- k'r‘)(l - (a’b)_t) (z4y)rt (k1,eeeykr) "
_ Ll(kl ..... )(1 - (ab) ) xrt yrt
(bt aft)r
= <Z Bflkl""’kT‘)(x a,b,c) ) <Z y*(Ine) Z)
n=0

[ee) n tn
= Z(n)r”y"k(hw)"’“B;i’“"""“’u;a,b,c) S

n=0 \k=0 k nt

So by comparing the coefficients of % in the two expressions, we obtain the desired result 2.13.
O

Theorem 2.8 By the same method proceeded in the proof of previous Theorems, we find similar
relations for Bflkl""’kr)(t) and Hy(lkl""’kr)(u, t).

Bk () = Bl ko) (el et (61)
H»,(Ikl ..... kr)(u,t) _ H»,(Ikl ..... k) (u;et,elft) (62)

Now, we present formulae which show a deeper motivation of generalized poly-Bernoulli
and Euler polynomials.

Theorem 2.9 Let xz,y € R and conditions of Theorem 2.5 holds true, we get

B (4 a, b, ¢) = (Ina + Inb)” B ><%> (63)
Proof We can write
= ety < Lt

n! (bt —a=t)"

. iLi(klwnka)(l B (ab)it) xrt
Tt (1= (ab) by

— er(*lanrxlnc)t <L’L(k1,)k”(1 — etlnab))

(1 _ e—tlnab)r
By comparing the coefficients of % on both sides, we get

—Inb+zlnc
Bkinke) (p0 be) = (1 In b)" BUersskr) )
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O

GI-Sang Cheon and H.M.Srivastava in [8],[10] investigated the classical relationship be-
tween Bernoulli and Euler polynomials . Now we present a relationship between generalized
Multi poly-Bernoulli and generalized Euler polynomials. The following relation (65) are given

by Q.M.Luo, So by applying this recurrence formula, we obtain Theorem 2.10,

Ep(z+1,1,b,b) + Ei(x,1,b,b) = 22 (Inb)*

Theorem 2.10 Let a,b > 0, we have
Br(Lkl""’kT)(:v +y;a,b) =

I~ (n (k1,eeekr) (K1yeeeske n—k
32 (1) (B b+ B4 100 st 100

Proof We know

Bk (g 4y 1,0, b) = (Z) F(nb) R B R (41, b, b) 2

Er(x +y,1,b,b) + Ex(x, 1,,b,b) = 22%(Inb)*

So, we obtain

1 n
(k1 ) 1 n—k p(k1,eenkr)
Bk (4 4y 1,b,b) = 2;@:() F(nb)" B (41, b, b)

[% Enfk(xv 15 bv b) + Enfk('r =+ 17 15 bv b)):|

(n)Tn_kB;(ckl ..... 7‘)( .1, b, b)En_k(x;l,b,b)

k
0
1<~ /n ok n] AR k)
+§Z ; Ej(z;1,b,b) (y:1,b,b)
j=0 k=0
- lzn: M)k k) (1 b b) By (w5 1,0, B)
2 & \k k "

(65)
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So we have

1 n
= (") B (g, a,0) + B (g 4 1,0,0)| 7 B (,1,0,0)

Therefore we obtain the desired result (66). O

The following corollary is a straightforward consequence of Theorem 2.10.

Corollary 2.1(see [8],[10]) In Theorem 2.10, if we setr =1, k=1 and b = e, we obtain

Ba(z) = kznj (Z) By En_i(2). (67)

[

=Oo

Further work: In [25], Jang et al. gave new formulae on Genocchi numbers. They defined
poly-Genocchi numbers to give the relation between Genocchi numbers, Euler numbers, and
poly-Genocchi numbers. After Y. Simsek [26], gave a new generating functions which produce
Genocchi zeta functions. So by applying a similar method of Kim-Kim [4], we can introduce
generalized Genocchi Zeta functions and next define Multi poly-Genocchi numbers and obtain

several properties in this area.
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