
Foundations for a new theory
of plausible and paradoxical reasoning

Jean Dezert

Onera, DTIM/IED,
29 Avenue de la Division Leclerc, 92320 Châtillon, France

Jean.Dezert@onera.fr

Abstract. This paper brings foundations for a new theory of plausible
and paradoxical reasoning and describes a rule of combination of sources
of information in a very general framework where information can be
both uncertain and paradoxical. In this new theory, the rule of combina-
tion which takes into account explicitly both conjunctions and disjunc-
tions of assertions in the fusion process, appears to be more simple and
general than the Dempster’s rule of combination. Through several simple
examples, we show the strong ability of this new theory to solve practical
but difficult problems where the Dempster-Shafer theory usually fails.

1 Introduction

The processing of uncertain information has always been a hot topic of research
since mainly the 18th century. Up to middle of the 20th century, most theoretical
advances have been devoted to the theory of probabilities through the works
of eminent mathematicians like J. Bernoulli (1713), A. De Moivre (1718), T.
Bayes (1763), P. Laplace (1774), K. Gauss (1823), S. Poisson (1837), E. Borel
(1909), R. Fisher (1930), A. Kolmogorov (1933), B. De Finetti (1958), L. Savage
(1967), T. Fine (1973), E. Jaynes (1995) to name just few of them. With the
development of computer science, the last half of the 20th century has became
very prolific for the development of new original theories dealing with uncertainty
and imprecise information. Mainly three major theories are available now as
alternative of the theory of probabilities for the automatic plausible reasoning
in expert systems: the fuzzy set theory developed by L. Zadeh in sixties (1965),
the Shafer’s theory of evidence in seventies (1976) and the theory of possibilities
by D. Dubois and H. Prade in eighties (1985) and, very recently, the unifying
avant-gardiste neutrosophy theory proposed by F. Smarandache (2000) in [54,
55, 2]. This paper is focused on the development of a new theory of plausible and
paradoxical reasoning which can be interpreted as a generalization of the theory
of evidence. After a brief presentation of the Dempster-Shafer theory in section
2, we set up the foundations of our new theory in section 3 and discuss about the
justification of the new rule of combination of uncertain and paradoxical sources
of evidences. Several illustrative examples of the power and the usefulness of our
new theory are also presented and compared with the classical results drawn
from the classical Dempster-Shafer theory.
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2 The Dempster-Shafer theory of evidence

We present here briefly the basis of the Dempster-Shafer theory (DST) or the
Mathematical Theory of Evidence (MTE) [47, 10] called also sometimes the the-
ory of probable or evidential reasoning. The DST is usually considered as a
generalization of the bayesian theory of subjective probability [52] and offers a
simple and direct representation of ignorance. The DST has shown its compati-
bility with the classical probability theory, with boolean logic and has a feasible
computational complexity [44] for problems of small dimension. The DST is
a powerful theoretical tool which can be applied for the representation of in-
complete knowledge, belief updating, and for combination of evidence [41, 19]
through the Demspter-Shafer’s rule of combination presented in the following.
The Dempster-Shafer model of representation and processing of uncertainty has
led to a huge number of practical applications in a wide range of domains (for
example for the pattern classification [12], the integration of knowledge from
heterogeneous sources for object identification and tracking [46], autonomous
navigation [14], technical and medical diagnosis under unreliable measuring de-
vices, information retrieval, multisensor image segmentation, network reliability
computation, safety control in large plants, map construction and maintenance,
just to mention a few).

2.1 Basic belief masses

Let Θ = {θi, i = 1, . . . , n} be a finite discrete set of exhaustive and exclusive
elements (hypotheses) called elementary elements. Θ has been called the frame of
discernment of hypotheses or universe of discourse by G. Shafer. The cardinality
(number of elementary elements) of Θ is denoted |Θ|. The power set P(Θ) of Θ
which is the set of all subsets of Θ is usually denoted by P(Θ) = 2Θ because
its cardinality is exactly 2|Θ|. Any element of 2Θ is then a composite event
(disjunction) of the frame of discernment.

Definition 1. The DST starts by defining a map associated to a body of evidence
B (source of information), called basic belief assignment (bba)1 or information
granule m(.) : 2Θ → [0, 1] such that

m(∅) = 0 (1)∑
A∈2Θ

m(A) ≡
∑
A⊆Θ

m(A) = 1 (2)

m(.) represents the strength of some evidence provided by the source of infor-
mation under consideration. Condition (1) reflects the fact that no belief ought
to be committed to ∅ and condition (2) reflects the convention that one’s to-
tal belief has measure one [47]. m(A) corresponds to the measure of the partial
1 This terminology suggested by Professor Philippe Smets to the author appears to

be less confusing than the basic probability assignment terminology (bpa) originally
adopted by Glenn Shafer.
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belief that is committed exactly to A (degree of truth supported exactly by A)
by the body of evidence B but not the total belief committed to A. All subsets
A for which m(A) > 0 are called focal elements of m. The set of all focal ele-
ments of m(.) is called the core K(m) of m. Note that m(A1) and m(A2) can
be both equal to zero even if m(A1 ∪ A2) 6= 0. Even more peculiar, note that
A ⊂ B ; m(A) < m(B) (i.e. m(.) is not monotone to inclusion). Hence, the
bba m(.) is in general different from a probability distribution p(.).

Example 1. Consider Θ = {θ1, θ2, θ3}, then 2Θ = {∅, θ1, θ2, θ3, θ1∪θ2, θ1∪θ3, θ2∪
θ3, θ1 ∪ θ2 ∪ θ3}. An information granule m(.) on this frame of discernment Θ
could be defined as

m(∅) , 0 m(θ1 ∪ θ2 ∪ θ3) = 0.05
m(θ1) = 0.40 m(θ1 ∪ θ2) = 0.10
m(θ2) = 0.20 m(θ2 ∪ θ3) = 0.10
m(θ3) = 0.05 m(θ1 ∪ θ3) = 0.10

In this particular example K(m) = {θ1, θ2, θ3, θ1∪θ2, θ1∪θ3, θ2∪θ3, θ1∪θ2∪θ3}
and note that θ1 ⊂ {θ1 ∪ θ2} with m(θ1) > m(θ1 ∪ θ2).

2.2 Belief functions

Definition 2. To measure the total belief committed to A ∈ 2Θ, Glenn Shafer
has defined the belief (or credibility) function Bel(.) : 2Θ → [0, 1] associated with
bba m(.) as

Bel(A) =
∑
B⊆A

m(B) (3)

Bel(A) summarizes all our reasons to believe in A (i.e. the lower probability
to believe in A). More generally, a belief function Bel(.) can be characterized
without reference to the information granule m(.) if Bel(.) satisfies the following
three conditions ∀n > 0,∀A1, . . . , An ⊂ Θ,

Bel(Θ) = 1 (4)

Bel(∅) = 0 (5)

Bel(A1 ∪ . . . ∪An) ≥
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1Bel(
⋂
i∈I

Ai) (6)

For any given belief function Bel(.), one can always associate an unique infor-
mation granule m(.), called the Möbius inverse of the belief function [42], and
defined by [47]

∀A ⊆ Θ, m(A) =
∑
B⊆A

(−1)|A−B|Bel(B) (7)
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Definition 3. The vacuous belief function having Bel(Θ) = 1 but Bel(A) = 0
for all A 6= Θ describes the full ignorance on the frame of discernment Θ. The
corresponding bba mv(.) is such that mv(Θ) = 1 and mv(A) = 0 for all A 6= Θ.

Proposition 1. For any given belief function Bel(.) defined on Θ, one has

∀A,B ⊆ Θ, max(0,Bel(A) + Bel(B)− 1) ≤ Bel(A ∩B) ≤ min(Bel(A),Bel(B))

Definition 4. Any belief function satisfying Bel(∅) = 0, Bel(Θ) = 1 and Bel(A∪
B) = Bel(A) + Bel(B) whenever A,B ⊂ Θ and A ∩ B = ∅ is called a bayesian
belief function.

In this case, (6) coincides exactly with the well-known Poincaré’s equality

P{A1 ∪ . . . ∪An} =
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1
P{

⋂
i∈I

Ai} (8)

A probability function P (.) can then be interpreted as a particular Dempster-
Shafer’s belief function. In this sense, the Dempster-Shafer theory is usually
considered as a generalization of the probability theory.

Proposition 2. If Bel(.) is a bayesian belief function, then all focal elements
are only single points of P(Θ). The basic belief assignement m(.) commits a
positive number m(θi) only to some elementary θi ∈ Θ (possibly all θi) and zero
to all possible disjunctions of θ1, . . . , θn. In other words, there exists a bayesian
bba m(.) : Θ → [0, 1] such that∑

θi∈Θ

m(θi) = 1 and ∀A ⊆ Θ, Bel(A) =
∑
θi∈A

m(θi) (9)

2.3 Plausibility functions

Since the degree of belief Bel(A) does not reveal to what extent one believes its
negation Ac, G. Shafer has introduced the degree of doubt of A as the total belief
of Ac. The degree of doubt is less useful than the plausibility Pl(A) of A which
measures the total belief mass that can move into A (interpreted sometimes as
the upper probability of A).

Definition 5. More precisely, the plausibility Pl(A) of any assertion A ⊂ 2Θ is
defined by

Pl(A) , 1− Bel(Ac) =
∑
B⊆Θ

m(B)−
∑

B⊆Ac

m(B) =
∑

B∩A 6=∅

m(B) (10)

The dual of (6) implies ∀n > 0,∀A1, . . . , An ⊂ Θ,

Pl(A1 ∩ . . . ∩An) ≤
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1Pl(
⋃
i∈I

Ai) (11)

The comparison of (3) with (10) indicates that ∀A ⊆ Θ, Bel(A) ≤ Pl(A).
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Proposition 3. For any given plausibility function Pl(.) defined on frame of
discernment Θ, the following inequality holds [47]

∀A,B ⊆ Θ, max(Pl(A),Pl(B)) ≤ Pl(A ∪B) ≤ min(1,Pl(A) + Pl(B)) (12)

Let Θ be a given frame of discernment and m(.) a general bba (neither a vacuous
bba, nor a bayesian bba) provided by a body of evidence, then it is always possi-
ble to build the following pignistic2 probability [56, 62] (bayesian belief function)
by choosing ∀θi ∈ Θ,P{θi} =

∑
B⊆Θ|θi∈B

1
|B|m(B). In such case, one always has

∀A ⊆ Θ, Bel(A) ≤ [P (A) =
∑
θi∈A

P{θi}] ≤ Pl(A) (13)

Since Bel(A) summarizes all our reasons to believe in A and Pl(A) expresses
how much we should believe in A if all currently unknown were to support A,
the true belief in A is somewhere in the interval [Bel(A),Pl(A)]. Now suppose
that the true value of a parameter under consideration is known with some
uncertainty [Bel(A),Pl(A)] ⊆ [0, 1], then its corresponding bba m(A) can always
be constructed by choosing

m(A) = Bel(A) m(A ∪Ac) = Pl(A)− Bel(A) m(Ac) = 1− Pl(A)

2.4 The Dempster’s rule of combination

Glenn Shafer has proposed the Dempster’s rule of combination (orthogonal sum-
mation), symbolized by the operator ⊕, to combine two so-called distinct bodies
of evidences B1 and B2 over the same frame of discernment Θ. Let Bel1(.) and
Bel2(.) be two belief functions over the same frame of discernment Θ and m1(.)
and m2(.) their corresponding bba masses. The combined global belief function
Bel(.) = Bel1(.) ⊕ Bel2(.) is obtained from the combination of the information
granules m1(.) and m2(.) as follows: m(∅) = 0 and for any C 6= ∅ and C ⊆ Θ,

m(C) , [m1 ⊕m2](C) =
∑

A∩B=C m1(A)m2(B)∑
A∩B 6=∅ m1(A)m2(B)

=
∑

A∩B=C m1(A)m2(B)
1−

∑
A∩B=∅ m1(A)m2(B)

(14)

∑
A∩B=C represents the sum over all A,B ⊆ Θ such that A∩B = C (the inter-

pretation for other summation notations follows directly by analogy). The or-
thogonal sum m(.) is a proper bba if K , 1−k = 1−

∑
A∩B=∅ m1(A)m2(B) 6= 0.

If K = 0,which means
∑

A∩B=∅ m1(A)m2(B) = 1 then orthogonal sum m(.) does
not exist and the bodies of evidences B1 and B2 are said to be totally (flatly) con-
tradictory or in full contradiction. Such case arises whenever the cores of Bel1(.)
2 We adopt here the historical definition of the pignistic probability coined by P. Smets

(but already proposed independently in the meantime in [13]). New pignistic prob-
abilities have recently been proposed by J. Sudano in [65, 66].
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and Bel2(.) are disjoint or equivalently when there exists A ⊂ Θ such that
Bel1(A) = 1 and Bel2(Ac) = 1. The same problem of existence has already been
pointed out in the presentation of the optimal bayesian fusion rule in [15]. The
quantity log 1/K is called the weight of conflict between the bodies of evidences
B1 and B2. It is easy to show that the Dempster’s rule of combination is commu-
tative (m1⊕m2 = m2⊕m1) and associative ([m1⊕m2]⊕m3 = m1⊕ [m2⊕m3]).
The vacuous belief function such that mv(Θ) = 1 and mv(A) = 0 for A 6= Θ is
the identity element for ⊕ fusion operator, i.e. mv⊕m = m⊕mv ≡ m. If Bel1(.)
and Bel2(.) are two combinable belief functions and if Bel1(.) is bayesian, then
Bel1 ⊕ Bel2 is a bayesian belief function.

This ad hoc rule of combination proposed by G. Shafer in [47] (see also
discussion in [49]) has been strongly criticized in the past decades but is now
accepted since the axiomatic of the transferable belief model developed by Smets
in [57, 18, 27, 60, 61] from an idea initiated by Cheng and Kashyap in [5]. Another
approach for the justification of Dempster’s rule of combination based on the
Mathematical Theory of Hint (MTH) has been also proposed by Kohlas in [32].
Discussions on justifications and interpretations of the DST and the Dempster’s
rule of combination can be also found in [17, 30, 31, 33, 41, 43, 69]. An interesting
discussion on the justification of Dempster’s rule of combination from the in-
formation entropy viewpoint based on the measurement projection and balance
principles can be found in [67]. Connection of the DST with the fuzzy set theory
can be found in [3, 63] and relationship between foundations of the fuzzy set
theory and the probability theory is discussed in [8]. The relationship between
experimental observations and the DST belief functions is currently a hot topic
of research. Several models have been developed for fitting belief functions with
experimental data. A very recent detailed presentation and discussion on this
problem can be found in [70].

In the bayesian framework, if we consider M independent sources of informa-
tion (bodies of evidence) B1, . . . ,BM providing M subjective probability func-
tions P1{.}, . . . , PM{.} over the same space Θ, then the optimal bayesian fusion
rule is given by (see [15] for a general and a theoretical justification)

P1,...,M{θi} , [P1 ⊕ . . .⊕ PM ]{θi} =
p1−M

i

∏
m=1,M Pm{θi}∑

i=1,n p1−M
i

∏
m=1,M Pm{θi}

(15)

where pi is the prior probability of θi. It is easy to check (when the fusion rule
is numerically well defined) that this optimal rule of combinations reduces to

P1,...,M{θi} = [P1 ⊕ . . .⊕ PM ]{θi} =

∏
m=1,M Pm{θi}∑

i=1,n

∏
m=1,M Pm{θi}

(16)

if we admit the principle of indifference (by setting all pi = 1/n).
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In the last case, one can see a strong similarity between the Dempster’s
rule and the optimal bayesian fusion rule. Actually, the classical bayesian infer-
ence P{A | B} = P{B | A}P{A}/P{B} can be interpreted as a special case
of bayesian rule of combination (16) between two sources of information (be-
tween prior and posterior information). The Dempster’s and Bayes’ fusion rules
coincide exactly when m1(.) and m2(.) become bayesian basic probability mass
assignments and if we accept the principle of indifference within the optimal
bayesian fusion rule.

The complexity of DS rule of combination is important in general (when we
deal with large frames of discernment) since the computational burden for finding
all pairs A and B of subsets of Θ such that A ∩B = C is o(2|Θ|−|C| × 2|Θ|−|C|)
becomes a huge number. For example, if |Θ| = 10 and |C| = 2, we will have
o(216) = o(65536) tests to do to find {A ∩ B|A ∩ B = C}. But there exists
fortunately a fast Möbius transform which allows an efficient implementation of
DS rule of combination [25, 26] to deal with problems of high dimension.

Example 2. A simple example of the Dempster’s rule of combination

Consider the simple frame of discernment Θ = {S(unny), R(ainy)} about the
true nature of the weather at a given location L for the next day and let consider
two independent bodies of evidence B1 and B2 providing the following weather
forecasts at L

m1(S) = 0.80 m1(R) = 0.12 m1(S ∪R) = 0.08

m2(S) = 0.90 m2(R) = 0.02 m2(S ∪R) = 0.08

The Dempster’s rule yields the following result (where K = 1− 0.108− 0.016)

m(S) = (m1 ⊕m2)(S) = (0.72 + 0.072 + 0.064)/K ≈ 0.977
m(R) = (m1 ⊕m2)(R) = (0.0024 + 0.0096 + 0.0016)/K ≈ 0.016
m(S ∪R) = (m1 ⊕m2)(S ∪R) = 0.0064/K ≈ 0.007

Hence, in this example, the fusion of the two sources of evidence reinforces the
belief that tomorrow will be a sunny day at location L (assuming that both
bodies of evidence are equally reliable).

Example 3. Another simple but disturbing example

In 1982, Lofti Zadeh [74] has given to Philippe Smets during a dinner at
Acapulco, the following example of a use of the Dempster’s rule which shows an
unexpected result drawn from the DST. Two doctors examine a patient and agree
that it suffers from either meningitis (M), concussion (C) or brain tumor (T).
Thus Θ = {M,C, T}. Assume that the doctors agree in their low expectation of
a tumor, but disagree in likely cause and provide the following diagnosis

m1(M) = 0.99 m1(T ) = 0.01 and m2(C) = 0.99 m2(T ) = 0.01
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If we now combine belief functions using Dempster’s rule of combination, one
gets the unexpected final conclusion m(T ) = 0.0001

1−0.0099−0.0099−0.9801 = 1 which
means that the patient suffers with certainty from brain tumor !!!. This unex-
pected result arises from the fact that the two bodies of evidence (doctors) agree
that patient does not suffer from tumor but are in almost full contradiction for
the other causes of the disease. This very simple but practical example shows the
limitations of practical use of the DST for automated reasoning. Some extreme
caution on the degree of conflict of the sources must always be taken before tak-
ing a final decision based on the Dempster’s rule of combination. A justification
of non effectiveness of the Dempster’s rule in such kind of example based on an
information entropy argument has already been reported in [67].

Example 4. Blackman’s example

Let’s consider now the example3 provided by Samuel Blackman in [4] (pp.
207-209). Consider only two attribute types corresponding to the frame of dis-
cernment Θ = {θ1, θ2} and the assignment problem for a single observation and
two tracks (T1 and T2). Assume now the following two predicted bba for the two
tracks:

mT1(θ1) = 0.5 mT1(θ2) = 0.5 mT1(θ1 ∪ θ2) = 0

mT2(θ1) = 0.1 mT2(θ2) = 0.1 mT2(θ1 ∪ θ2) = 0.8

Now assume to receive the new following bba drawn from attribute observation
Z of the system

mZ(θ1) = 0.5 mZ(θ2) = 0.5 mZ(θ1 ∪ θ2) = 0

The observation bba mZ(.) fits perfectly with the predicted bba mT1(.) whereas
mZ(.) has some disagreement with the predicted bba mT2(.). If we use the DST
to solve this very simple assignment problem between the observation and several
predicted bba, one gets from the DS rule of combination exactly the same result,
i.e. for mT1Z , mT1 ⊕mZ and mT2Z , mT2 ⊕mZ :

mT1Z(θ1) = 0.5 mT1Z(θ2) = 0.5 mT1Z(θ1 ∪ θ2) = 0

mT2Z(θ1) = 0.5 mT2Z(θ2) = 0.5 mT2Z(θ1 ∪ θ2) = 0

From these two same results only, it is impossible to find the correct solution
of this simple assignment problem. Moreover the weights of conflict between
sources for the two combinations of evidences are respectively equal to

kT1Z = 0.5 for the fusion mT1 ⊕mZ

kT2Z = 0.1 for the fusion mT2 ⊕mZ

3 This example has been pointed out to the author by Dr. Albena Tchamova from
CLPP, Bulgarian Academy of Sciences during NM&A 02 Conference in Borovetz,
Bulgaria, Aug 20-24, 2002
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Therefore the resultant conflict terms provides a larger discrepancy between
observation bba mZ with the predicted bba mT1 than with the predicted bba
mT2 , despite their bba are equal. Within such conditions, the search for the
minimum weight of conflict between sources cannot be taken as a reliable solution
for the assignment problem. To solve this anomaly, S. Blackman has proposed to
use a relative, rather than an absolute, attribute likelihood function as follows

L(Z | T ) , (1− kTZ)/(1− kmin
TZ )

where kmin
TZ is the minimum conflict factor that could occur for either the ob-

servation Z or the track T in the case of perfect assignment (when mZ(.) and
mT (.) coincide). By adopting this relative likelihhod function, one gets

L(Z | T1) = (1−0.5)/(1−0.5) = 1 and L(Z | T2) = (1−0.1)/(1−0.02) = 0.92

Using the Blackman’s approach, there is now a larger likelihood associated with
the first assignment (hence the right assignment solution can be obtained now
based on the max likelihood criteria) but the difference between the two likeli-
hood values is not so big . . . . As reported by S. Blackman in [4], more study in
this area is required. Dr. Tchamova has recently proposed, in a private communi-
cation to the author, to use the city-block and Euclidean distances d1(T, TZ) =∑

A∈2Θ | mT (A) −mTZ(A) | or d2(T, TZ) =
√∑

A∈2Θ [mT (A)−mTZ(A)]2 to
measure the closeness between mT1Z and mT1 and between mT2Z and mT2 and
then to choose the assignment which corresponds to the minimum distance. Us-
ing her approach, one gets

d1(T1, T1Z) = d2(T1, T1Z) = 0 d1(T2, T2Z) = 1.6 d2(T2, T2Z) ' 0.98

The Tchamova’s approach can therefore solve the anomaly of the DS result
in this assignment problem.

Let’s consider now the previous predicted gbba mT1(.) and mT2(.) but with
an observation bba which agrees with mT2(.) so that Z ↔ T2 becomes now the
correct assignment we are looking for. In other words, let’s consider

mZ(θ1) = 0.1 mZ(θ2) = 0.1 mZ(θ1 ∪ θ2) = 0.8 mZ(θ1 ∩ θ2) = 0

Using the DS rule of combination, we get now the following results

mT1Z(θ1) = 0.5 mT1Z(θ2) = 0.5 mT1Z(θ1 ∪ θ2) = 0
mT2Z(θ1) = 0.173 mT2Z(θ2) = 0.173 mT2Z(θ1 ∪ θ2) = 0.654

with resulting conflict factors kT1Z = 0.1 and kT2Z = 0.02. From these bba
mT1Z(.), mT1Z(.) and conflict factors kT1Z , kT2Z it is clear that the assignment
solution is directly given here by the fusion mT2 ⊕mZ which has the minimum
conflict factor. In this second case, we do not need to look for any additional ap-
proach to reach the right solution. Nevertheless, it is still interesting to examine
the result of the distance approach in this case.
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We get then the following distances:

d1(T1, T1Z) = d2(T1, T1Z) = 0 d1(T2, T2Z) = 0.292 d2(T2, T2Z) ' 0.1788

The decision drawn from the minimum distance criteria will yield here the wrong
assignment if this approach is chosen.

Therefore, as seen in this simple example, there is no unique and reliable
approach to solve the assignment problem based on DST for both cases. In
general, we will always have to look for the suitable approach (minimum con-
flict, Blackman or Tchamova approaches) which allows us to get (hopefully) the
correct solution of the problem. The best approach to use can become rather
difficult to find by an automatic inference system depending on the complexity
of the assignment problem. We will present at the end of this paper how our new
theory of plausible and paradoxical reasoning can help to solve this assignment
problem. By using only an unique and simple criteria based on our generalized
entropy like measure, we will be able to provide the correct solution for the two
cases of the assignment problem presented in this example.

2.5 Conditional belief functions

Let mB(A) = 1 if B ⊆ A and mB(A) = 0 for if B 6⊂ A (the subset B is the only
focal element of BelB and its basic belief number is one). Then BelB(.) is a belief
function that focuses all of the belief on B (note that BelB is not in general a
bayesian belief function unless | B |= 1).

Definition 6. Consider now a belief function Bel defined on Θ and a specific
belief function BelB, then the orthogonal sum denoted as Bel(. | B) = Bel⊕BelB
is defined for all A ⊂ Θ by [47]

Bel(A | B) =
Bel(A ∪Bc)− Bel(Bc)

1− Bel(Bc)
(17)

and

Pl(A | B) =
Pl(A ∩B)

Pl(B)
(18)

Proposition 4. If Bel(.) is a bayesian belief function, then

Bel(A | B) =
Bel(A ∩B)

Bel(B)
= Pl(A | B) (19)

which coincides exactly with the classical conditional probability

P{A | B} =
P{A ∩B}

P{B}
(20)
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3 A new theory for plausible and paradoxical reasoning

3.1 Introduction

As seen in the previous Zadeh’s disturbing example, the use of the DST must be
done only with extreme caution if one has to take a final and important decision
from the result of the Dempter’s rule of combination. In most of practical ap-
plications based on the DST, some ad-hoc or heuristic recipes must be added to
the fusion process to correctly manage or reduce the possibility of high degree of
conflict between sources. Otherwise, the fusion results lead to a very dangerous
conclusion (or cannot provide a reliable result at all). Even if the DST provides
fruithfull results in many applications (mainly in artificial intelligence and sys-
tems expert areas) in past decades, we strongly argue that this theory is still too
limited because it is based on the two following restrictive constraints :

C1- The DST considers a discrete and finite frame of discernment based on a set
of exhaustive and exclusive elementary elements.

C2- The bodies of evidence are assumed independent (each source of information
does not take into account the knowledge of other sources) and provide a
belief function on the power set 2Θ.

These two constraints are very strong in many practical problems involving un-
certain and probable reasoning and dealing with fusion of uncertain,imprecise
and paradoxical information. A discussion about this important remark had al-
ready been discussed earlier in [34, 35, 45]. In [45], the author has proposed a
new partitioning management technique to overcome mainly the C2 constraint.
The first constraint is very severe actually since it does not allow paradoxes on
elements of the frame of discernment Θ. The DST accepts as foundation the
commonly adopted principle of the third exclude. Even if, at the first glance, it
makes sense in the traditional classical thought, we develop here a new theory
which does not accept this principle of the third exclude and accepts and deals
with paradoxes. This is the main purpose and innovation of our new theory re-
ferred as the DSmT (standing for Dezert-Smarandache Theory of paradoxical
reasoning) in [55].

The constraint C1 assumes that each elementary hypothesis of the frame of
discernment Θ is finely and precisely well defined and we are able to discriminate
between all elementary hypotheses without ambiguity and difficulty. We argue
that this constraint is too limited and that it is not always possible in practice
to choose and define a frame of discernment satisfying C1 even for some very
simple problems wherein each elementary hypothesis corresponds to a fuzzy or
vague concept or attributes. In such cases, the elementary elements of the frame
of discernment cannot be precisely separated without ambiguity such that no
refinement of the frame of discernment satisfying the first constraint is possible.

Example 5. As a simple example, consider an armed robbery situation having a
witness and the frame of discernment (associated to the possible size of the thief)
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having only two elementary imprecise classes Θ = {θ1 = small, θ2 = tall}. An
investigator asks the witness about the size of the thief and the witness declares
that the thief was tall with bba number m(θ2) = 0.80, small with bba number
m(θ1) = 0.15 and is uncertain (either tall or small) with m(θ1 ∪ θ2) = 0.05. The
investigator will have to deal only with this information although the smallness
and the tallness have not been precisely defined. The use of this testimony by the
investigator (having in other side extra-information about the thief from other
sources of information) to infer on the true size of the thief is delicate especially
with the important missing information about the size of the witness (who could
be either a basketball player, a dwarf or most probably has a size on the average
as you and me - assuming you are neither a dwarf nor a basketball player. These
both hypotheses are not incompatible actually since some dwarfs really enjoy to
play basketball).

Hence, in many situations, the frame of discernment Θ can only be described
in terms of imprecise elements which cannot be clearly separated and which can-
not be considered as fully disjoint so that the refinement of initial frame into a
new one satisfying C1 is like a graal quest and cannot be accomplished. Our last
remark about C1 constraint concerns the universal nature of the frame of discern-
ment. It is clear that, in general, the same frame of discernment is interpreted
differently by the bodies of evidence or experts. Some subjectivity, or at least
some fortuitious biases, on the information provided by a source of information
is almost unavoidable, otherwise this would assume, as within the DST, that all
bodies of evidence have an objective/universal (possibly uncertain) interpreta-
tion or measure of the phenomena under consideration. This vision seems to be
too restrictive because usually independent bodies of evidence provide their be-
liefs about some hypotheses only with respect to their own worlds of knowledge
and experience. We don’t go deeper here in the techniques of refinements and
coarsenings of compatible frame of discernments which is a prerequesite to the
Dempster’s rule of combination (see [47] for details). We just want to emphasize
here that the DST cannot be used at all in all cases where C1 cannot be satisfied
and we have more generally to accept the idea to deal directly with paradoxical
information.

To convince the reader to accept our radical new way of thought, just think
about the true nature of a photon? For experts working in particle physics, pho-
tons look like particles, for physicists working in electromagnetic field theory,
photons are only considered as electromagnetic waves. Both interpretations are
true, there is no unicity on the true nature of the photon and actually a photon
holds both aspects which appears as a paradoxe for most of human minds. This
notion has been accepted in modern physics only with great difficulty and many
vigourous discussions about this fondamental question have held at the begin-
ning of the 20th century between all eminent physicists at that time [40].

The constraint C2 hides also a strong difficulty. To apply the Dempter’s rule
for two independent bodies of evidence B1 and B2, it is necessary that both
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frames of discernment Θ1 and Θ2 (related to each source B1 and B2) have to be
compatible and to correspond to the same universal vision of the possibilities
of the answer of the question under consideration. This constraint is itself very
difficult to satisfy actually since each source of information has usually only its
own (and maybe biaised) interpretation of elements of frame of discernment.
The belief provided by each local source of information mainly depends on the
own knowledge frame of the source without reference to the (inaccessible) ab-
solute truth of the space of possibilities. Therefore, C2 is, in many cases, also a
too strong hypothesis to accept as foundations for a general theory of probable
and paradoxical reasoning. A general theory should include the possibility to
deal with evidences arising from different sources of information which have no
access to absolute interpretation of the elements of the frame of discernment
Θ under consideration. This yields to accept paradoxical information as basis
for a new general theory of probable reasoning. Actually we will show in the
forthcoming examples that the paradoxical information arising from the fusion
of several bodies of evidence is very informative and can be used to help us to
take legitimous final decision.

In other words, our new theory can be interpreted as a general and direct
extension of probability theory and the Dempster-Shafer theory in the following
sense. Let Θ = {θ1, θ2} be the simpliest frame of discernment involving only
two elementary hypotheses (with no more additional assumptions on θ1 and θ2),
then

– the probability theory deals with basic probability assignments m(.) ∈ [0, 1]
such that

m(θ1) + m(θ2) = 1

– the Dempster-Shafer theory extends the probability theory by dealing with
basic belief assignments m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

– our general theory extends the two previous theories by accepting the possi-
bility for paradoxical information and deals with new basic belief assignments
m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

3.2 Notion of hyper-power set

Let Θ = {θ1, . . . , θn} be a set of n elementary elements considered as exhaustive
which cannot be precisely defined and separated so that no refinement of Θ
in a new larger set Θref of disjoint elementary hypotheses is possible and let’s
consider the classical set operators ∪ (disjunction) and ∩ (conjunction). The
exhaustive hypothesis about Θ is not a strong constraint since when θi, i = 1, n
does not constitute an exhaustive set of elementary possibilities, we can always
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add an extra element θ0 such that θi, i = 0, n describes now an exhaustive set.
We will assume therefore, from now on, that Θ characterizes an exhaustive frame
of discernment. Θ will be called a general frame of discernment in the sequel to
emphasize the fact that Θ does not satisfy the Dempster-Shafer C1 constraint.

Definition 7. The classical power set P(Θ) = 2Θ has been defined as the set
of all proper subsets of Θ when all elements θi are disjoint. We extend here
this notion and define now the hyper-power set DΘ as the set of all compos-
ite possibilities build from Θ with ∪ and ∩ operators such that ∀A ∈ DΘ, B ∈
DΘ, (A ∪B) ∈ DΘ and (A ∩B) ∈ DΘ.

Obviously, one would always have DΘ ⊂ 2Θref if the refined power set 2Θref

could be defined and accessible which is not possible in general as already argued.

The cardinality of DΘ is majored by 22n

when Card(Θ) =| Θ |= n. The
generation of hyper-power set DΘ corresponds to the famous Dedekind’s problem
on enumerating the set of monotone Boolean functions (i.e., functions expressible
using only AND and OR set operators) [9]. This problem is also related with
the Sperner systems [64, 37] based on finite poset (called also as antichains in
literature) [6]. The number of antichains on the n-set Θ are equal to the number
of monotonic increasing Boolean functions of n variables, and also the number
of free distributive lattices with n generators [20, 22, 28, 29, 38, 53]. Determining
these numbers is exactly the Dedekind’s problem. The choice of letter D in
our notation DΘ to represent the hyper-power set of Θ is in honour of the great
mathematician R. Dedekind. The general solution of the Dedekind’s problem (for
n > 10) has not been found yet. We just know that the cardinality numbers of
DΘ follow the integers of the Dedekind’s sequence minus one when Card(Θ) = n
increases.

Example 6.

1. for Θ = {} (empty set), DΘ = {∅} and | DΘ |= 1
2. for Θ = {θ1}, DΘ = {∅, θ1} and | DΘ |= 2
3. for Θ = {θ1, θ2}, DΘ = {∅, θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2} and | DΘ |= 5
4. for Θ = {θ1, θ2, θ3},

DΘ = {∅, θ1, θ2, θ3,

θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∩ θ2, θ1 ∩ θ3, θ2 ∩ θ3, θ1 ∪ θ2 ∪ θ3, θ1 ∩ θ2 ∩ θ3,

(θ1∪θ2)∩θ3, (θ1∪θ3)∩θ2, (θ2∪θ3)∩θ1, (θ1∩θ2)∪θ3, (θ1∩θ3)∪θ2, (θ2∩θ3)∪θ1,

(θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3)}

and | DΘ |= 19

It is not difficult, although tedious, to check that ∀A ∈ DΘ, B ∈ DΘ, (A ∪
B) ∈ DΘ and (A ∩B) ∈ DΘ (see appendix for the proof).
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The extension to larger frame of discernment is possible but requires a higher
computational burden. The general and direct analytic computation of | DΘ |
for a n-set Θ with n > 10 is not known and is still under investigations in the
mathematical community. Cardinality numbers | DΘ | follow the Dedekind’s
sequence (minus one), 1, 2, 5, 19, 167, 7580, 7828353, . . . when Card(Θ) = n =
0, 1, 2, 3, 4, 5, 6, . . ..

3.3 The general basic belief masses m(.)

Definition 8. Let Θ be a general frame of discernment of the problem under
consideration. We define a map m(.) : DΘ → [0, 1] associated to a given body of
evidence B which can support paradoxical information, as follows

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (21)

The quantity m(A) is called A’s general basic belief number (gbba) or the gen-
eral basic belief mass for A.

As in the DST, all subsets A ∈ DΘ for which m(A) > 0 are called focal
elements of m(.) and the set of all focal elements of m(.) is also called the core
K(m) of m.

Definition 9. The belief and plausibility functions are defined in the same way
as in the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B) (22)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B) (23)

Note that, we don’t define here explicitly the complementary Ac of a proposition
A since m(Ac) cannot be precisely evaluated from ∪ and ∩ operators on DΘ

since we include the possibility to deal with a complete paradoxical source of
information such that ∀A ∈ DΘ,∀B ∈ DΘ,m(A ∩B) > 0. These definitions are
compatible with the DST definitions when the sources of information become
uncertain but rational (they do not support paradoxical information). We still
have ∀A ∈ DΘ,Bel(A) ≤ Pl(A).

3.4 Construction of pignistic probabilities from gbba m(.)

The construction of a pignistic probability measure from the general basic belief
masses m(.) over DΘ with |Θ| = n is still possible and is given by the general
expression of the form

∀i = 1, . . . , n P{θi} =
∑

A∈DΘ

αθi(A)m(A) (24)
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where αθi
(A) ∈ [0, 1] are weighting coefficients which depend on the inclusion or

non-inclusion of θi with respect to proposition A. No general analytic expression
for αθi(A) has been derived yet even if αθi(A) can be obtained explicitly for
simple examples. When general bba m(.) reduces to classical bba (i.e. the DS
bba without paradoxe), then αθi

(A) = 1
|A| if θi ⊆ A and therefore one gets

∀i = 1, . . . , n P{θi} =
∑

A⊆Θ|θi∈A

1
|A|

m(A) (25)

We present here an example of a pignistic probabilities reconstruction from a gen-
eral and non degenerated bba m(.) (i.e. @A ∈ DΘ withA 6= ∅ such thatm(A) =
0) over DΘ.

Example 7. If Θ = {θ1, θ2} then

P{θ1} = m(θ1) +
1
2
m(θ1 ∪ θ2) +

1
2
m(θ1 ∩ θ2)

P{θ2} = m(θ2) +
1
2
m(θ1 ∪ θ2) +

1
2
m(θ1 ∩ θ2)

Example 8. If Θ = {θ1, θ2, θ3} then

P{θ1} =m(θ1) +
1
2
m(θ1 ∪ θ2) +

1
2
m(θ1 ∪ θ3) +

1
2
m(θ1 ∩ θ2) +

1
2
m(θ1 ∩ θ3)

+
1
3
m(θ1 ∪ θ2 ∪ θ3) +

1
3
m(θ1 ∩ θ2 ∩ θ3)

+
1/2 + 1/3

3
m((θ1 ∪ θ2) ∩ θ3) +

1/2 + 1/3
3

m((θ1 ∪ θ3) ∩ θ2)

+
1/2 + 1/2 + 1/3

3
m((θ2 ∪ θ3) ∩ θ1)

+
1/2 + 1/2 + 1/3

5
m((θ1 ∩ θ2) ∪ θ3)

+
1/2 + 1/2 + 1/3

5
m((θ1 ∩ θ3) ∪ θ2)

+
1 + 1/2 + 1/2 + 1/3

5
m((θ2 ∩ θ3) ∪ θ1)

+
1/2 + 1/2 + 1/3

4
m((θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3))
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P{θ2} =m(θ2) +
1
2
m(θ1 ∪ θ2) +

1
2
m(θ2 ∪ θ3) +

1
2
m(θ1 ∩ θ2) +

1
2
m(θ2 ∩ θ3)

+
1
3
m(θ1 ∪ θ2 ∪ θ3) +

1
3
m(θ1 ∩ θ2 ∩ θ3)

+
1/2 + 1/3

3
m((θ1 ∪ θ2) ∩ θ3)

+
1/2 + 1/2 + 1/3

3
m((θ1 ∪ θ3) ∩ θ2)

+
1/2 + 1/3

3
m((θ2 ∪ θ3) ∩ θ1)

+
1/2 + 1/2 + 1/3

5
m((θ1 ∩ θ2) ∪ θ3)

+
1 + 1/2 + 1/2 + 1/3

5
m((θ1 ∩ θ3) ∪ θ2)

+
1/2 + 1/2 + 1/3

5
m((θ2 ∩ θ3) ∪ θ1)

+
1/2 + 1/2 + 1/3

4
m((θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3))

P{θ3} =m(θ3) +
1
2
m(θ1 ∪ θ3) +

1
2
m(θ2 ∪ θ3) +

1
2
m(θ1 ∩ θ3) +

1
2
m(θ2 ∩ θ3)

+
1
3
m(θ1 ∪ θ2 ∪ θ3) +

1
3
m(θ1 ∩ θ2 ∩ θ3)

+
1/2 + 1/2 + 1/3

3
m((θ1 ∪ θ2) ∩ θ3) +

1/2 + 1/3
3

m((θ1 ∪ θ3) ∩ θ2)

+
1/2 + 1/3

3
m((θ2 ∪ θ3) ∩ θ1)

+
1 + 1/2 + 1/2 + 1/3

5
m((θ1 ∩ θ2) ∪ θ3)

+
1/2 + 1/2 + 1/3

5
m((θ1 ∩ θ3) ∪ θ2) +

1/2 + 1/2 + 1/3
5

m((θ2 ∩ θ3) ∪ θ1)

+
1/2 + 1/2 + 1/3

4
m((θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3))

The evaluation of weighting coefficients αθi(A) has been obtained from the geo-
metrical interpretation of the relative contribution of the distinct parts of A with
the proposition θi under consideration. For example, consider A = (θ1 ∩ θ2)∪ θ3

which corresponds to the area a1∪a2∪a3∪a4∪a5 on the following Venn diagram.
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Fig.1 : Representation of A = (θ1 ∩ θ2) ∪ θ3 ≡ a1 ∪ a2 ∪ a3 ∪ a4 ∪ a5

a1 which is shared only by θ3 will contribute to θ3 with weight 1; a2 which
is shared by θ1 and θ3 will contribute to θ3 with weight 1/2; a3 which is not
shared by θ3 will contribute to θ3 with weight 0; a4 which is shared by θ2 and θ3

will contribute to θ3 with weight 1/2; a5 which is shared by both θ1,θ2 and θ3

will contribute to θ3 with weight 1/3. Since moreover, one must have ∀A ∈ DΘ

with m(A) 6= 0,
∑n

i=1 αθi
(A)m(A) = m(A), it is necessary to normalize αθi

(A).
Therefore αθ1(A), αθ2(A) and αθ3(A) will be given by

αθ1(A) = αθ2(A) =
1/2 + 1/2 + 1/3

5
αθ3(A) =

1 + 1/2 + 1/2 + 1/3
5

All αθi
(A),∀A ∈ DΘ entering in derivation of the pignistic probabilities P{θi}

can be obtained using a similar way.

3.5 General rule of combination of paradoxical sources of evidence

Let’s consider now two distinct (but potentially paradoxical) bodies of evidences
B1 and B2 over the same frame of discernment Θ with belief functions Bel1(.)
and Bel2(.) associated with information granules m1(.) and m2(.).

Definition 10. The combined global belief function Bel(.) = Bel1(.)⊕Bel2(.) is
obtained through the combination of the granules m1(.) and m2(.) by the simple
rule

∀C ∈ DΘ, m(C) , [m1 ⊕m2](C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B) (26)

Since DΘ is closed under ∪ and ∩ operators, this new rule of combination
guarantees that m(.) : DΘ → [0, 1] is a proper general information granule stat-
isfying (21). The global belief function Bel(.) is then obtained from the granule
m(.) through (22). This rule of combination is commutative and associative and
can always be used for the fusion of paradoxical or rational sources of informa-
tion (bodies of evidence). Obviously, the decision process will have to be made
with more caution to take the final decision based on the general granule m(.)
when internal paradoxical conflicts arise.
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It is important to note that any fusion of sources of information generates
either uncertainties, paradoxes or more generally both. This is intrinsic to the
general fusion process itself. For instance, let’s consider the frame of discernment
Θ = {θ1, θ2} and the following very simple examples:

Example 9. Consider the rational information granules

m1(θ1) = 0.80 m1(θ2) = 0.20 m1(θ1 ∪ θ2) = 0 m1(θ1 ∩ θ2) = 0

m2(θ1) = 0.90 m2(θ2) = 0.10 m2(θ1 ∪ θ2) = 0 m2(θ1 ∩ θ2) = 0

then

m(θ1) = 0.72 m(θ2) = 0.02 m(θ1 ∪ θ2) = 0 m(θ1 ∩ θ2) = 0.26

Example 10. Consider the uncertain information granules

m1(θ1) = 0.80 m1(θ2) = 0.15 m1(θ1 ∪ θ2) = 0.05 m1(θ1 ∩ θ2) = 0

m2(θ1) = 0.90 m2(θ2) = 0.05 m2(θ1 ∪ θ2) = 0.05 m2(θ1 ∩ θ2) = 0

then

m(θ1) = 0.805 m(θ2) = 0.0175 m(θ1∪θ2) = 0.0025 m(θ1∩θ2) = 0.175

Example 11. Consider the paradoxical information granules

m1(θ1) = 0.80 m1(θ2) = 0.15 m1(θ1 ∪ θ2) = 0 m1(θ1 ∩ θ2) = 0.05

m2(θ1) = 0.90 m2(θ2) = 0.05 m2(θ1 ∪ θ2) = 0 m2(θ1 ∩ θ2) = 0.05

then

m(θ1) = 0.72 m(θ2) = 0.0075 m(θ1 ∪ θ2) = 0 m(θ1 ∩ θ2) = 0.2725

Example 12. Consider the uncertain and paradoxical information granules

m1(θ1) = 0.80 m1(θ2) = 0.10 m1(θ1 ∪ θ2) = 0.05 m1(θ1 ∩ θ2) = 0.05

m2(θ1) = 0.90 m2(θ2) = 0.05 m2(θ1 ∪ θ2) = 0.03 m2(θ1 ∩ θ2) = 0.02

then

m(θ1) = 0.789 m(θ2) = 0.0105 m(θ1∪θ2) = 0.0015 m(θ1∩θ2) = 0.199

Note that this general fusion rule can also be used with intuitionist logic in
which the sum of bba is allowed to be less than one (

∑
m(A) < 1) and with

the paraconsistent logic in which the sum of bba is allowed to be greater than
one (

∑
m(A) > 1) as well. In such cases, the fusion result does not provide in

general
∑

m(A) = 1.
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By example, let’s consider the fusion of the paraconsistent source B1 with
m1(θ1) = 0.60, m1(θ2) = 0.30, m1(θ1 ∪ θ2) = 0.20, m1(θ1 ∩ θ2) = 0.10 with
the intuitionist source B2 with m2(θ1) = 0.50, m2(θ2) = 0.20, m2(θ1 ∪ θ2) =
0.10, m2(θ1 ∩ θ2) = 0.10. In such case, the fusion result of these two sources of
information yields the following global paraconsistent bba m(.)

m(θ1) = 0.46 m(θ2) = 0.13 m(θ1 ∪ θ2) = 0.02 m(θ1 ∩ θ2) = 0.47

which yields
∑

m = 1.08 > 1.

In practice, for the sake of fair comparison between several alternatives or
choices, it is better and simplier to deal with normalized bba to take a final
important decision for the problem under consideration. A nice property of the
new rule of combination of non-normalized bba is its invariance to the pre- or
post-normalization process as we will show right now. In the previous example,
the post-normalization of bba m(.) will yield the new bba m′(.)

m′(θ1) =
0.46
1.08

≈ 0.426 m′(θ2) =
0.13
1.08

≈ 0.12

m′(θ1 ∪ θ2) =
0.02
1.08

≈ 0.019 m′(θ1 ∩ θ2) =
0.47
1.08

≈ 0.435

The fusion of pre-normalization of bba m1(.) and m2(.) will yield the same
normalized bba m′(.) since

m′
1(θ1) =

0.6
1.2

= 0.50 m′
1(θ2) =

0.3
1.2

= 0.25

m′
1(θ1 ∪ θ2) =

0.2
1.2

≈ 0.17 m′
1(θ1 ∩ θ2) =

0.1
1.2

≈ 0.08

m′
2(θ1) =

0.5
0.9

≈ 0.56 m′
2(θ2) =

0.2
0.9

≈ 0.22

m′
2(θ1 ∪ θ2) =

0.1
0.9

≈ 0.11 m′
2(θ1 ∩ θ2) =

0.1
0.9

≈ 0.11

m′(θ1) ≈ 0.426 m′(θ2) ≈ 0.12 m′(θ1∪θ2) ≈ 0.019 m′(θ1∩θ2) ≈ 0.435

It is easy to verify from the general fusion table that the pre or post normalization
step yields always the same global normalized bba even for the general case (when
|Θ| = n) because the post-normalization constant

∑
m(A) is always equal to

the product of the two pre-normalization constants
∑

m1(A) and
∑

m2(A).
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3.6 Justification of the new rule of combination

Let’s consider two bodies of evidence B1 and B2 characterized respectively by
their bba m1(.),m2(.) and their cores K1 = K(m1), K2 = K(m2). Following Sun’s
notation [67], each source of information will be denoted

B1 =
[
K1

m1

]
=

[
f

(1)
1 f

(1)
2 . . . f

(1)
k

m1(f
(1)
1 ) m1(f

(1)
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k )

]
(27)

B2 =
[
K2

m2

]
=

[
f
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1 f
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l
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]
(28)

where f
(1)
i , i = 1, k are the focal elements of B1 and f

(2)
j , j = 1, l are the focal

elements of B2.

Let’s consider now the combined information associated with a new body of
evidence B resulting from the fusion of B1 and B2 having bba m(.) with core K.
We denote B as

B , B1 ⊕ B2 =
[
K
m

]
=
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The fusion of the two information granules can be represented with the general
table of fusion as follows
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We look for the optimal rule of combination, i.e. the bba m(.) = m1(.)⊕m2(.)
which maximizes the joint entropy of the two information sources. The justifi-
cation for the Maxent criteria is discussed in [23, 24]. Thus, one has to find m(.)
such that [67, 68].

max
m

[H(m)] ≡ max
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m
[−H(m)] (30)

satisfying both
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1. the measurement projection principle (marginal bba), i.e. ∀i = 1, . . . , k and
∀j = 1, . . . , l

m1(f
(1)
i ) =

l∑
j=1

m(f (1)
i ∩ f

(2)
j ) and m2(f
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These constraints state that the marginal bba m1(.) is obtained by the sum-
mation over each column of the fusion table and the marginal bba m2(.) is
obtained by the summation over each row of the table of fusion.

2. the measurement balance principle (the sum of all cells of the table of fusion
must be unity)
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m(f (1)
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j ) = 1 (32)

Using the concise notation mij , m(f (1)
i ∩f

(2)
j ), the Lagrangian associated with

this optimization problem under equality constraints is given by (we consider
here the minimization of −J(m) appearing in r.h.s of (30))
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which can be written more concisely as

L(m,λ) = −H(m) + λ′g(m) (36)

where m = [m11 m12 . . . mkl]′ and
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Following the classical method of Lagrange multipliers, one has to find opti-
mal solution (m∗, λ∗) such that

∂L
∂m

(m∗, λ∗) = 0 and
∂L
∂λ

(m∗, λ∗) = 0 (38)

The first k × l equations express the general solution m[λ] and the k + l + 1
last equations determine λ∗ and therefore by substitution into m[λ], the optimal
solution m∗ = m[λ∗]. One has to solve
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which yields ∀i, j,
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and

∂L
∂λ

=



∂L
∂λ1
...

∂L
∂λk
∂L
∂γ1
...

∂L
∂γl
∂L
∂η


=



0
...
0
0
...
0
0


= 0⇔



e−η−1
∑l

j=1 eλ1eγj

...
e−η−1

∑l
j=1 eλkeγj

e−η−1
∑k

i=1 eγ1eλi

...
e−η−1

∑k
i=1 eγleλi

e−η−1
∑k

i=1

∑l
j=1 eγleλi


=



m1(f
(1)
1 )

...
m1(f

(1)
k )

m2(f
(2)
1 )

...
m2(f

(2)
l )

1


(41)

The last constraint in (41) can also be written as
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Now with basic algebraic manipulation, the optimal global bba mij ∀i, j we are
searching for, can be expressed as

mij = e−η−1eλieγj

= e−η−1eλieγj ×
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Thus, the solution of the maximisation of the joint entropy is obtained by choos-
ing ∀i, j
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Since it may exist several combinations yielding to the same focal element, the
bba of all focal elements equal to f

(1)
i ∩ f

(2)
j over the fusion space is

m(f (1)
i ∩ f

(2)
j ) =

∑
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i )m2(f

(2)
j ) (44)

which coincides exactly with the new rule of combination expressed previously.

3.7 The generalized entropy like measure of a source

The evaluation of the entropy H(m) of a given source from the direct extension
of its classical definition, with convention (see [7]) 0 ln(0) = 0 and with bba m(.),
i.e.

H(m) = −
∑

A∈DΘ

m(A) ln(m(A))

seems to not be the best measure for the self-information of a general (uncertain
and paradoxical) source of information because it does not catch the intrinsic
informational strength (i.i.s. for short) s(A) of each proposition A involved in
the evaluation of the entropy of the source. An extension of the classical entropy
in the DST framework had already been proposed in 1983 by R. Yager based
on the weight of conflict between the belief function Bel and the certain support
function BelA focused on each proposition A (see [71] for details).

Definition 11. In the classical definition (based only on a probability measure),
one always has s(A) ≡ |A| = 1. This does not hold in our general theory of
plausible and paradoxical reasoning and we propose to generalize the notion of
entropy in the following manner to measure the self-information of a general
source of information:
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Hg(m) = −
∑

A∈DΘ

1
s(A)

m(A) ln(
1

s(A)
m(A)) (45)

Hg(m) will be called from now on the generalized entropy of the source as-
sociated with gbba m(.). This definition is coherent with the definition of the
classical entropy whenever the gbba m(.) reduces to a basic probability assign-
ment. However in the general case, Hg(m) does not satisfy the properties of
the classical entropy (see chap. 1 in [21]). Nevertheless, this generalized entropy
like measure can be useful in practice to solve important problems as it will
be seen through next examples. This general definition introduces the intrinsic
informational strength (called also here the hyper-cardinality) s(A) of a gen-
eral (irreductible) proposition A which can be derived from the two following
important rules

s

 ⋃
i=1,n

Bi

 = s (B1 ∪ . . . ∪Bn) =

∑
i=1,n 1/s (Bi)∏
i=1,n 1/s (Bi)

(46)

s

 ⋂
i=1,n

Bi

 = s (B1 ∩ . . . ∩Bn) =

∏
i=1,n s (Bi)∑
i=1,n s (Bi)

(47)

It is very important to note that these rules apply only on irreductible propo-
sitions (logical atoms) A. A proposition A is said to be irreductible (or equiva-
lently has a compact form) if and only if it does not admit other equivalent form
with a smaller number of operands and operators. For example (θ1∪θ3)∩(θ2∪θ3)
is not an irreductible proposition since it can be reduced to its equivalent log-
ical atom (θ1 ∩ θ2) ∪ θ3. To compute the i.i.s. s(A) of any proposition A using
the rules (46) and (47), the proposition has first to be reduced to its minimal
representation (irreductible form).

Example 13. Here are few examples of the value of the hyper-cardinality for
some elementary and composite irreductible propositions A. We recall that θi

involved in A are singletons such that |θi| = 1.

A = θ1 ∪ θ2 ⇒ s(A) = 2
A = θ1 ∩ θ2 ⇒ s(A) = 1/2
A = θ1 ∪ θ2 ∪ θ3 = (θ1 ∪ θ2) ∪ θ3 = θ1 ∪ (θ2 ∪ θ3) = θ2 ∪ (θ1 ∪ θ3) ⇒ s(A) = 3
A = θ1 ∩ θ2 ∩ θ3 = (θ1 ∩ θ2) ∩ θ3 = θ1 ∩ (θ2 ∩ θ3) = θ2 ∩ (θ1 ∩ θ3) ⇒ s(A) = 1/3
A = (θ1 ∩ θ2) ∪ θ3 ⇒ s(A) = 3/2
A = (θ1 ∪ θ2) ∩ θ3 ⇒ s(A) = 2/3
A = (θ1 ∩ θ2) ∪ (θ3 ∩ θ4) ⇒ s(A) = 1
A = (θ1 ∪ θ2) ∩ (θ3 ∪ θ4) ⇒ s(A) = 1
A = (θ1 ∩ θ2) ∪ (θ3 ∩ θ4 ∩ θ5) ⇒ s(A) = 5/6
A = (θ1 ∪ θ2) ∩ (θ3 ∪ θ4 ∪ θ5) ⇒ s(A) = 6/5
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Thus the evaluation of s(A) for any general irreductible proposition A can
always be obtained from the two basic rules (46) and (47). This generalized
definition makes sense with the notion of entropy and is coherent with classical
definition (i.e. Hg(m) ≡ H(m) when m(.) becomes a bayesian bpa p(.)).

Proposition 5. Let Θ = {θ1, . . . , θn} be a general frame of discernment of the
problem under consideration and a general body of evidence with information
granule m(.) on DΘ, then the generalized entropy Hg(m) takes its minimal value
−n ln(n) when the source provides the maximum of paradoxe which is obtained
when m(θ1 ∩ . . . ∩ θn) = 1.

But it is important to note that the maximum of uncertainty is not obtained
when m(θ1 ∪ . . . ∪ θn) = 1 but rather for a specific bba m(.) which distributes
some weight of evidence assignment to each proposition A ∈ DΘ because there is
less information (from the information theory viewpoint) when there exists sev-
eral propositions with non nul bba rather than there is only one. One has also to
take into account the intrinsic self-information of the propositions to get a good
measure of global information provided by a source. The generalized entropy
includes both aspects of the information (the intrinsic and the classical aspect).
The uniform distribution for m(.) does not generate the maximum generalized-
entropy because of the different intrinsic self-information of each proposition
(see next example). The generalized entropy Hg(m) of any source, defined with
respect to a frame Θ with a given bba m(.), appears to be a very promising
and useful tool to measure the degree of uncertainty and paradoxe of any given
source of information.

Example 14. We give here some values of Hg(m) for different kinds of sources of
information over the same frame Θ = {θ1, θ2}. The sources have been classified
from the most informative one B1 up to the less informative one B16. B16 corre-
sponds to the source containing minimal information on the hyper-power set of
the frame Θ (thus B16 has the minimal discrimination power between all possible
propositions). There does not exist a source Bk such that HBk

g (m) > HB16
g (m)

for this simple example. Finding m∗(.) such that Hg(m∗) takes its maximal value
for a general frame Θ with |Θ| = n is called the general whitening source prob-
lem. No solution for now for this problem has been obtained so far.

B1 is the most informative source because all the weights of evidence about
the truth are focused only on the smaller element θ1 ∩ θ2 of hyper-powerset DΘ.
B2 is less informative than B1 because there exists an ambiguity between the
two propositions θ1 ∪ θ2 and θ1 ∩ θ2. B3 and B4 are less informative than B1

because the weights of evidence about the truth are focused on larger elements
(θ1 or θ2 respectively) of DΘ. B6 is less informative than B3 or B4 because the
weight of evidence about the truth is focused on a bigger element θ1 ∪ θ2 of
DΘ. B7 is less informative than previous sources since there exists an ambiguity
between the two propositions θ1 and θ2 but it is more informative than B9 since
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the discrimination power (our easiness to decide which proposition supports the
truth) is higher with B7 than with B9. Note that even if in this very simple
example, it is not obvious to see that B16 is the white source (less informative)
of information. Most of readers would have probably thought to choose either
B6 or B15. This comes from the confusion between the intrinsic information
supported by the proposition itself and the information supported by the whole
bba m(.).

m(θ1) m(θ2) m(θ1 ∪ θ2) m(θ1 ∩ θ2) Hg(m)
B1 0 0 0 1 −1.386
B2 0 0 0.3 0.7 −0.186
B3 1 0 0 0 0
B4 0 1 0 0 0
B5 0.1 0.2 0 0.7 0.081
B6 0 0 1 0 0.346
B7 0.8 0.2 0 0 0.500
B8 0 0 0.7 0.3 0.673
B9 0.5 0.5 0 0 0.693
B10 0.7 0.2 0.1 0 0.721
B11 0.7 0.2 0 0.1 0.893
B12 0.1 0.2 0.7 1 0.919
B13 0.1 0.2 0.3 0.4 1.015
B14 0.1 0.2 0.4 0.3 1.180
B15 0.25 0.25 0.25 0.25 1.299
B16 0.25 0.25 0.35 0.15 1.359

3.8 Blackman’s example revisited

Let’s take back the Blackman’s example described in example 4 for the very
simple assignment problem. In the DSmT framework, one has to deal with
the following prior (predicted) and observed gbba defined on hyper-power set
DΘ = {∅, θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2} as follows:

mT1(θ1) = 0.5 mT1(θ2) = 0.5 mT1(θ1 ∪ θ2) = 0 mT1(θ1 ∩ θ2) = 0
mT2(θ1) = 0.1 mT2(θ2) = 0.1 mT2(θ1 ∪ θ2) = 0.8 mT2(θ1 ∩ θ2) = 0
mZ(θ1) = 0.5 mZ(θ2) = 0.5 mZ(θ1 ∪ θ2) = 0 mZ(θ1 ∩ θ2) = 0

Using the DSm rule of combination, we get now easily the following results

mT1Z(θ1) = 0.25 mT1Z(θ2) = 0.25 mT1Z(θ1 ∩ θ2) = 0.5
mT2Z(θ1) = 0.45 mT2Z(θ2) = 0.45 mT2Z(θ1 ∩ θ2) = 0.1

The values of the generalized entropy of the updated gbba mT1Z and mT2Z

are Hg(mT1Z) ' 0.69 and Hg(mT2Z) ' 1.04. The increase of the generalized
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entropies (i.e. the difference between the predicted and updated generalized
entropies) are given by ∆1 , Hg(mT1Z) − Hg(mT1) = 0.69 − 0.69 = 0 and
∆2 , Hg(mT2Z) − Hg(mT2) = 1.04 − 0.83 = 0.21. This result means that the
incorrect assignment mT2⊕mZ has noticeably increased the generalized entropy
of the system as one would have rightfully expected. The best assignment so-
lution is obtained by selecting the fusion (assignment between a track T and
a measurement Z) which generates the smallest increase of the generalized en-
tropy. In this framework and in this case, the Tchamova’s approach based on the
minimum city-block or euclidean distances provides also the correct assignment
Z with track T1 since d1(T1, T1Z) < d1(T2, T2Z) and d2(T1, T1Z) < d2(T2, T2Z)
because one has

d1(T1, T1Z) = 1 and d1(T2, T2Z) = 1.6
d2(T1, T1Z) = 0.612 and d2(T2, T2Z) = 0.946

Neither the use of classical entropy H(m) nor the entropy evaluated from
pignistic probabilities allow us to get the correct assignment solution from the
DST framework in this example .

Let’s consider now the previous predicted gbba mT1(.) and mT2(.) but now
with an observation bba which agrees with mT2(.), i.e.

mZ(θ1) = 0.1 mZ(θ2) = 0.1 mZ(θ1 ∪ θ2) = 0.8 mZ(θ1 ∩ θ2) = 0

Using the DSm rule of combination, we get now the following results

mT1Z(θ1) = 0.45 mT1Z(θ2) = 0.45 mT1Z(θ1 ∪ θ2) = 0 mT1Z(θ1 ∩ θ2) = 0.1
mT2Z(θ1) = 0.17 mT2Z(θ2) = 0.17 mT1Z(θ1 ∪ θ2) = 0.64 mT2Z(θ1 ∩ θ2) = 0.02

The generalized entropies of the two possible assignments take now the follow-
ing values Hg(mT1Z) ' 1.0405 and Hg(mT2Z) ' 1.0958 which are very close but
the entropy increases become now ∆1 , Hg(mT1Z)−Hg(mT1) = 1.0405−0.69 =
0.35 and ∆2 , Hg(mT2Z) − Hg(mT2) = 1.095 − 0.83 = 0.265. By selecting
the smallest increase of the generalized entropies, we get again the correct as-
signment Z with track T2 for this second case. As within the same example
discussed in the DST framework, the minimum distance approach fails here to
obtain the correct assignment since one has now d1(T1, T1Z) < d1(T2, T2Z) and
d2(T1, T1Z) < d2(T2, T2Z) because

d1(T1, T1Z) = 0.2 and d1(T2, T2Z) = 0.32
d2(T1, T1Z) = 0.122 and d2(T2, T2Z) = 0.189

In concluding remark, we have shown through this simple example, how a simple
and unique criteria based on our generalized entropy like measure drawn from
our DSmT can serve as an useful tool to solve the assignment problem for both
cases investigated here. No case-dependent approach is then required here to
get the correct solution as we had already argued in example 4. However, more
theoretical investigations must be done to prove that our criteria is actually the
best one to solve the assignment problem in general.
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3.9 Zadeh’s example revisited

Let’s take back the disturbing Zadeh’s example [74] given in section 2.4. Two
doctors examine a patient and agree that it suffers from either meningitis (M),
concussion (C) or brain tumor (T). Thus Θ = {M,C, T}. Assume that the two
doctors agree in their low expectation of a tumor, but disagree in likely cause
and provide the following diagnosis

m1(M) = 0.99 m1(T ) = 0.01

and ∀A ∈ DΘ, A 6= T,A 6= M,m1(A) = 0

m2(C) = 0.99 m2(T ) = 0.01

and ∀A ∈ DΘ, A 6= T,A 6= C,m2(A) = 0
The new general rule of combination (26), yields the following combined infor-
mation granule

m(M ∩ C) = 0.9801 m(M ∩ T ) = 0.0099

m(C ∩ T ) = 0.0099 m(T ) = 0.0001

From this granule, one gets

Bel(M) = m(M ∩ C) + m(M ∩ T ) = 0.99
Bel(C) = m(M ∩ C) + m(T ∩ C) = 0.99
Bel(T ) = m(T ) + m(M ∩ T ) + m(C ∩ T ) = 0.0199

If both doctors can be considered as equally reliable, the combined information
granule m(.) mainly focuses weight of evidence on the paradoxical proposition
M ∩ C which means that patient suffers both meningitis and concussion but
almost surely not from brain tumor. This conclusion is coherent with the common
sense actually. Then, no therapy for brain tumor (like heavy and ever risky
brain surgical intervention) will be chosen in such case. This really helps to
take important decision to save the life of the patient in this example. A deeper
medical examination adapted to both meningitis and concussion will almost
surely be done before applying the best therapy for the patient. Just remember
that in this case, the DST had concluded that the patient had brain tumor with
certainty . . . .
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3.10 Mahler’s example revisited

Let’s consider now the following example excerpt from the Ronald Mahler’s
paper [36]. We consider that our classification knowledge base consists of the
three (imaginary) new and rare diseases corresponding to following frame of
discernment

Θ = {θ1 = kotosis, θ2 = phlegaria, θ3 = pinpox}

We assume that the three diseases are equally likely to occur in the patient
population but there is some evidence that phlegaria and pinpox are the same
disease and there is also a small possibility that kotosis and phlegaria might be
the same disease. Finally, there is a small possibility that all three diseases are
the same. This information can be expressed by assigning a priori bba as follows

m0(θ1) = 0.2 m0(θ2) = 0.2 m0(θ3) = 0.2
m0(θ2 ∩ θ3) = 0.2 m0(θ1 ∩ θ2) = 0.1 m0(θ1 ∩ θ2 ∩ θ3) = 0.1

Let Bel(.) the prior belief measure corresponding to this prior bba m(.). Now
assume that Doctor D1 and Doctor D2 examine a patient and deliver diagnoses
with following reports:

– Report for D1: m1(θ1 ∪ θ2 ∪ θ3) = 0.05 m1(θ2 ∪ θ3) = 0.95
– Report for D2: m2(θ1 ∪ θ2 ∪ θ3) = 0.20 m2(θ2) = 0.80

The combination of the evidences provided by the two doctors m′ = m1 ⊕m2

obtained by the general rule of combination (26) yields the following bba m′(.)

m′(θ2) = 0.8 m′(θ2 ∪ θ3) = 0.19 m′(θ1 ∪ θ2 ∪ θ3) = 0.01

The combination of bba m′(.) with prior evidence m0(.) yields the final bba
m = m0 ⊕m′ = m0 ⊕ [m1 ⊕m2] with

m(θ1) = 0.002 m(θ2) = 0.200 m(θ3) = 0.040
m(θ1 ∩ θ2) = 0.260 m(θ2 ∩ θ3) = 0.360 m(θ1 ∩ θ2 ∩ θ3) = 0.100
m(θ1 ∩ (θ2 ∪ θ3)) = 0.038

Therefore the final belief function given by (22) is

Bel(θ1) = 0.002 + 0.260 + 0.100 + 0.038 = 0.400
Bel(θ2) = 0.200 + 0.260 + 0.360 + 0.100 = 0.920
Bel(θ3) = 0.040 + 0.360 + 0.100 = 0.500
Bel(θ1 ∩ θ2) = 0.260 + 0.100 = 0.360
Bel(θ2 ∩ θ3) = 0.360 + 0.100 = 0.460
Bel(θ1 ∩ (θ2 ∪ θ3)) = 0.038 + 0.100 = 0.138
Bel(θ1 ∩ θ2 ∩ θ3) = 0.100

Thus, on the basis of all the evidences one has, we are able to conclude with
high a degree of belief that the patient has phlegaria which is coherent with the
Mahler’s conclusion based on his Conditioned Dempster-Shafer theory developed
from his conditional event algebra although a totally new and simpliest approach
has been adopted here.
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3.11 A thief identification example

Let’s revisit now a very simple and classical thief identification example. Assume
that a 75 years old grandfather is taking a walk with his 9 years old grandson
in a park. They saw at 50 meters away, a 45 years old pickpocket robbering
the bag of an old lady. A policeman looking for some witnesses of this event
asks separately the grandfather and his grandchild if they have seen the thief
(they both answer yes) and how old approximately was the thief (a young or an
old man). The grandfather (source of information B1 reports that the thief was
a young man with high confidence 0.99 and with only a low uncertainty 0.01.
His grandson reports that the thief was a old man with high confidence 0.99
and with only a low uncertainty 0.01. These two witnesses provide fair reports
(with respect to their own world of knowledge) even if apparently they appear
as almost fully paradoxical. The policeman then send the two reports with only
the minimal information about witnesses (saying only their names and that they
were a priori fully trustable) to an investigator. The investigator has no possi-
bility to meet or to call back the witnesses in order to get more details.

Under such condition, what would be the best reasoning of the investigator
to infer the age of the thief to eventually help to catch him? Such kind of simple
example occurs quite frequently in many witnesses problems actually. A rational
investigator will almost surely suspect a mistake or an error in one or both reports
since they appear apparently in (almost) full contradiction. The investigator will
then try to take his final decision with some other better information (if any).
If the investigator uses our new plausible and paradoxical reasoning, he will
defined the following bba with respect to the frame of discernment Θ = {θ1 =
young, θ2 = old} and the available reports B1 and B2 with bba

m1(θ1) = 0.99 m1(θ2) = 0 m1(θ1 ∪ θ2) = 0.01 m1(θ1 ∩ θ2) = 0

m2(θ1) = 0 m2(θ2) = 0.99 m2(θ1 ∪ θ2) = 0.01 m2(θ1 ∩ θ2) = 0

The fusion of these two sources of information yields the global bba m(.) with

m(θ1) = 0.0099 m(θ2) = 0.0099

m(θ1 ∪ θ2) = 0.0001 m(θ1 ∩ θ2) = 0.9801

Thus, from this global information, the investigator has no better choice but to
consider with almost certainty that the thief was both a young and old man. By
assuming that the expected life duration is around 80 years, the inspector will
deduce that the true age of the thief is around 40 years old which is not too far
from the truth. At least, this conclusion could be helpful to interrogate some
suspicious individuals.
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3.12 A model to generate information granules m(.) from intervals

We present here a model to generate information granules m(.) from information
represented by intervals. It is very common in practice that uncertain sources of
information provide evidence on a given proposition in term of basic intervals
[ε∗, ε∗] ⊂ [0, 1] rather than a direct bba m(.). In such cases, some preprocess-
ing must be done before applying the general rule of combination between such
sources to take the final decision.

In the DST framework, we recall that the simpliest and easiest transformation
to convert [ε∗, ε∗] into bba has already been proposed by A. Appriou in [1] and
successfully used in [14]. The basic idea was to interpret ε∗ as the minimal
credibility committed to A and ε∗ as the plausibility committed to A. In other
words, the Appriou’s transformation model within the DST framework is the
following one

ε∗ = m(A)
ε∗ = 1−m(Ac)

ε∗ − ε∗ = m(A ∪Ac)

This model can be directly extended within our new theory of plausible and
paradoxical reasoning by setting now4

ε∗ = m(A) +
1
2
m(A ∩Ac)

ε∗ = 1−m(Ac)− 1
2
m(A ∩Ac)

ε∗ − ε∗ = m(A ∪Ac)

or equivalently

m(A) +
1
2
m(A ∩Ac) = ε∗ (48)

m(Ac) +
1
2
m(A ∩Ac) = 1− ε∗ (49)

m(A ∪Ac) = ε∗ − ε∗ (50)

This appealing model presents nice properties specially when ε∗ = ε∗ = 0 or
when ε∗ = ε∗ = 1. This model is moreover coherent with the previous Appriou’s
model whenever the source becomes rational (i.e m(A ∩ Ac) = 0). This new
model presents however a degree of freedom since one has only two constraints
(48) and (49) for three unknowns m(A), m(Ac) and m(A∩Ac). Thus in general,
4 The notation Ac has been kept here for simplicity but in our DSmT Ac must not

be interpreted directly as the complement of A since m(A ∩Ac) can take a positive
value ≤ 1 but as a (partial overlapping) paradoxical alternative (see the forthcoming
numerical examples).
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without an additional constraint, there exists many possible choices for m(A),
m(Ac) and m(A ∩ Ac) and, therefore, several bba m(.) satisfying this transfor-
mation model. Without extra prior information, it becomes difficult to justify
the choice of a specific bba versus all other admissible possibilities for m(.).

To solve this important drawback, we propose to add the constraint on the
maximization of the generalized-entropy Hg(m). This will allow us to obtain from
[ε∗, ε∗] the unique bba m(.) having the minimum of specificity and admissible
with our transformation model. From definition of Hg(m) and previous equations
(48)-(50), one gets

Hg(m) =− (ε∗ −m(A ∩Ac)/2) ln(ε∗ −m(A ∩Ac)/2)
− (1− ε∗ −m(A ∩Ac)/2) ln(1− ε∗ −m(A ∩Ac)/2)

− 1
2
(ε∗ − ε∗) ln(

1
2
(ε∗ − ε∗))

− 2m(A ∩Ac) ln(2m(A ∩Ac))

The maximization of Hg(m) is obtained for the optimal value m?(A ∩Ac) such
that ∂Hg

∂m(A∩Ac) (m
?(A∩Ac)) = 0 and ∂2Hg

∂m(A∩Ac)2 (m?(A∩Ac)) < 0. The annulation
of the first derivative is obtained by the solution of the equation

1
2

ln(ε∗ −m?/2) +
1
2

ln(1− ε∗ −m?/2)− 2m? ln(2m?)− 1 = 0

or equivalently after basic algebraic manipulations

64e2(m?)4 − (m?)2 + 2(1− ε∗ + ε∗)m? − 4(1− ε∗)ε∗ = 0 (51)

The solution of this equation can be easily found using classical numerical meth-
ods. It is also easy to check that the second derivative is always negative and
therefore Hg(m) reaches its maximal value when

m(A) +
1
2
m?(A ∩Ac) = ε∗ (52)

m(Ac) +
1
2
m?(A ∩Ac) = 1− ε∗ (53)

m(A ∪Ac) = ε∗ − ε∗ (54)

This completes the definition of our new transformation model. Note that [ε∗, ε∗]
can also be generated from bba m(.) through (48)-(50).

Example 15. for [ε∗, ε∗] = [0.0, 0.0], one gets

m(A∩Ac) = 0.000 m(A) = 0.000 m(Ac) = 1.000 m(A∪Ac) = 0.000

Example 16. for [ε∗, ε∗] = [0.2, 0.2], one gets

m(A∩Ac) ≈ 0.164 m(A) ≈ 0.118 m(Ac) ≈ 0.718 m(A∪Ac) = 0.000



34 Information & Security, Tzv. Semerdjiev Editor, Bulgarian Academy of Sciences, Sofia, 2002

Example 17. for [ε∗, ε∗] = [0.5, 0.5], one gets

m(A∩Ac) ≈ 0.192 m(A) ≈ 0.404 m(Ac) ≈ 0.404 m(A∪Ac) = 0.000

Example 18. for [ε∗, ε∗] = [0.8, 0.8], one gets

m(A∩Ac) ≈ 0.164 m(A) ≈ 0.718 m(Ac) ≈ 0.118 m(A∪Ac) = 0.000

Example 19. for [ε∗, ε∗] = [1.0, 1.0], one gets

m(A∩Ac) = 0.000 m(A) = 1.000 m(Ac) = 0.000 m(A∪Ac) = 0.000

Example 20. for [ε∗, ε∗] = [0.2, 0.4], one gets

m(A∩Ac) ≈ 0.152 m(A) ≈ 0.124 m(Ac) ≈ 0.524 m(A∪Ac) = 0.200

Example 21. for [ε∗, ε∗] = [0.6, 0.8], one gets

m(A∩Ac) ≈ 0.152 m(A) ≈ 0.524 m(Ac) ≈ 0.124 m(A∪Ac) = 0.200

Example 22. for [ε∗, ε∗] = [0.4, 0.6], one gets

m(A∩Ac) ≈ 0.170 m(A) ≈ 0.315 m(Ac) ≈ 0.315 m(A∪Ac) = 0.200

Example 23. for [ε∗, ε∗] = [0.3, 0.9], one gets

m(A∩Ac) ≈ 0.100 m(A) ≈ 0.250 m(Ac) ≈ 0.050 m(A∪Ac) = 0.600

Example 24. for [ε∗, ε∗] = [0.0, 1.0], one gets

m(A∩Ac) = 0.000 m(A) = 0.000 m(Ac) = 0.000 m(A∪Ac) = 1.000

4 Conclusion

In this paper, the foundations for a new theory of paradoxical and plausible
reasoning have been developed. The DSmT takes into account in the combination
process itself the possibility for uncertain and paradoxical information. The basis
for the development of this theory is to work with the hyper-power set of the
frame of discernment relative to the problem under consideration rather than
its classical power set since, in general, the frame of discernment cannot be fully
described in terms of an exhaustive and exclusive list of disjoint elementary
hypotheses. In such general case, no refinement is possible to apply directly the
Dempster-Shafer theory (DST) of evidence. In DSmT, the rule of combination
is justified from the maximum entropy principle and there is no mathematical
impossibility to combine sources of evidence even if they appear at first glance in
contradiction (in the Shafer’s sense) since the paradox between sources is fully
taken into account in our formalism. We have also shown that in general, the
combination of evidence yields unavoidable paradoxes. This theory has shown,
through many illustrated examples, that conclusion drawn from it, can provide
a result which agrees with the human reasoning and can be very helpful to take
a decision for some complex problems where the classical DST usually fails.
This new theory provides also a theoretical bridge between the combination of
paradoxical source of information and the Smarandache’s logic.
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Appendix

We prove here that the hyper-power set DΘ of Θ = {θ1, θ2, θ3}, is given by the
set of the following 19 irreductible propositions:

α0 , ∅
α1 , θ1 α10 , θ1 ∪ θ2 ∪ θ3

α2 , θ2 α11 , θ1 ∩ θ2 ∩ θ3

α3 , θ3 α12 , (θ1 ∪ θ2) ∩ θ3

α4 , θ1 ∪ θ2 α13 , (θ1 ∪ θ3) ∩ θ2

α5 , θ1 ∪ θ3 α14 , (θ2 ∪ θ3) ∩ θ1

α6 , θ2 ∪ θ3 α15 , (θ1 ∩ θ2) ∪ θ3

α7 , θ1 ∩ θ2 α16 , (θ1 ∩ θ3) ∪ θ2

α8 , θ1 ∩ θ3 α17 , (θ2 ∩ θ3) ∪ θ1

α9 , θ2 ∩ θ3 α18 , (θ1 ∪ θ2) ∩ (θ1 ∪ θ3) ∩ (θ2 ∪ θ3)

We need to verify that ∀αi ∈ DΘ,∀αj ∈ DΘ, (αi∪αj) ∈ DΘ and (αi∩αj) ∈ DΘ.

First note that ∀αi, i = 0, . . . 18, one always has

α0 ∩ αi = α0 and α0 ∪ αi = αi

Let’s compute now all αi ∩ αj for i, j = 1, . . . , 18. Using classical intersection
operator on sets, we get the following result summarized in the following sym-
metric table

∩ α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α1 α1 α7 α8 α1 α1 α14 α7 α8 α11 α1 α11 α8 α7 α14 α14 α14 α1 α14

α2 α7 α2 α9 α2 α13 α2 α7 α11 α9 α2 α11 α9 α13 α7 α13 α2 α7 α13

α3 α8 α9 α3 α12 α3 α3 α11 α8 α9 α3 α11 α12 α9 α8 α3 α12 α12 α12

α4 α1 α2 α12 α4 α17 α16 α7 α8 α9 α4 α11 α12 α13 α14 α18 α16 α17 α18

α5 α1 α13 α3 α17 α5 α15 α7 α8 α9 α9 α11 α12 α13 α14 α18 α18 α17 α18

α6 α14 α2 α3 α16 α15 α6 α7 α8 α9 α6 α11 α12 α13 α14 α15 α16 α18 α18

α7 α7 α7 α11 α7 α7 α7 α7 α11 α11 α7 α11 α12 α7 α7 α7 α16 α7 α7

α8 α8 α11 α8 α8 α8 α8 α11 α8 α11 α8 α11 α12 α11 α8 α8 α8 α8 α8

α9 α11 α9 α9 α9 α9 α9 α11 α11 α9 α9 α11 α9 α9 α11 α9 α9 α9 α9

α10 α1 α2 α3 α4 α9 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11 α11

α12 α8 α9 α12 α12 α12 α12 α12 α12 α9 α12 α11 α12 α11 α8 α12 α12 α12 α12

α13 α7 α13 α9 α13 α13 α13 α7 α11 α9 α13 α11 α11 α13 α7 α13 α13 α13 α13

α14 α14 α7 α8 α14 α14 α14 α7 α8 α11 α14 α11 α8 α7 α14 α14 α14 α14 α14

α15 α14 α13 α3 α18 α18 α15 α7 α8 α9 α15 α11 α12 α13 α14 α15 α18 α18 α18

α16 α14 α2 α12 α16 α18 α16 α16 α8 α9 α16 α11 α12 α13 α14 α18 α16 α18 α18

α17 α1 α7 α12 α17 α17 α18 α7 α8 α9 α17 α11 α12 α13 α14 α18 α18 α17 α18

α18 α14 α13 α12 α18 α18 α18 α7 α8 α9 α18 α11 α12 α13 α14 α18 α18 α18 α18
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Hence we have just proved here that ∀αi, αj ∈ DΘ, αi ∩ αj ∈ DΘ. It remains
now to compute all αi ∪αj for i, j = 1, . . . , 18. Using classical union operator on
sets, we get the following result summarized in the following symmetric table

∪ α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α1 α1 α4 α5 α4 α5 α10 α1 α1 α17 α10 α1 α17 α17 α1 α5 α4 α17 α17

α2 α4 α2 α6 α4 α10 α6 α2 α16 α2 α10 α2 α16 α2 α16 α6 α16 α4 α16

α3 α5 α6 α3 α10 α5 α6 α15 α3 α3 α10 α3 α3 α15 α15 α15 α6 α5 α15

α4 α4 α4 α10 α4 α10 α10 α4 α4 α4 α10 α4 α4 α4 α4 α10 α10 α10 α10

α5 α5 α10 α5 α10 α5 α10 α5 α5 α5 α10 α5 α5 α5 α5 α5 α10 α5 α5

α6 α10 α6 α6 α10 α10 α6 α6 α6 α6 α10 α6 α6 α6 α6 α6 α6 α10 α6

α7 α1 α2 α15 α4 α5 α6 α7 α14 α13 α10 α7 α18 α13 α14 α15 α16 α17 α18

α8 α1 α16 α3 α4 α5 α6 α14 α8 α12 α10 α8 α12 α18 α14 α15 α16 α17 α18

α9 α17 α2 α3 α4 α5 α6 α13 α12 α9 α10 α9 α12 α13 α18 α15 α16 α17 α18

α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10 α10

α11 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

α12 α17 α16 α3 α4 α5 α6 α18 α12 α12 α10 α12 α12 α18 α18 α15 α16 α17 α18

α13 α17 α2 α15 α4 α5 α6 α13 α18 α13 α10 α13 α18 α13 α18 α15 α16 α17 α18

α14 α1 α16 α15 α4 α5 α6 α14 α14 α18 α10 α14 α18 α18 α14 α15 α16 α17 α18

α15 α5 α6 α15 α10 α5 α6 α15 α15 α15 α10 α15 α15 α15 α15 α15 α6 α5 α15

α16 α4 α16 α6 α4 α10 α6 α16 α16 α16 α10 α16 α16 α16 α16 α6 α16 α4 α16

α17 α17 α4 α5 α4 α5 α10 α17 α17 α17 α10 α17 α17 α17 α17 α5 α4 α17 α17

α18 α17 α16 α15 α4 α5 α6 α18 α18 α18 α10 α18 α18 α18 α18 α15 α16 α17 α18

Therefore, one has proved that ∀αi ∈ DΘ,∀αj ∈ DΘ, (αi∪αj) ∈ DΘ and (αi∩
αj) ∈ DΘ and the set {α0, . . . , α18} corresponds effectively to the hyper-power
set of Θ = {θ1, θ2, θ3} we were looking for.
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Editeur, Paris, 1968.

22. Hilton A.J., Milner E.C.,“Some Intersection Theorems of Systems of Finite Sets”,
Quart. J. Math. Oxford, 18, pp. 369-384, 1967.

23. Jaynes E.T.,“Where do we stand on Maximum Entropy ?”, presented at the Max-
imum Entropy Formalism Conference, 104 pages, MIT, May 2-4, 1978.

24. Jaynes E.T.,“Probability Theory: The Logic of Science”, Fragmentary Edition of
March 1996, full edition in preparation by Cambridge Univ. Press, MA, USA.

25. Kennes R., Smets Ph., “Fast algorithms for Dempster-Shafer theory”, in Uncer-
tainty in Knowledge Bases, B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh (Edi-
tors), Lecture Notes in Computer Science 521, Springer-Verlag, Berlin, pp. 14-23,
1991.

26. Kennes R., “Computational Aspects of the Möbius Transformation of Graphs”,
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