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Abstract. Graph theory explores the relationships between objects through mathematical structures com-

posed of vertices (nodes) and edges (connections). A hypergraph generalizes the classical graph by introducing

hyperedges, which can connect any number of vertices rather than just two, thus allowing the modeling of more

complex multi-way relationships [1]. Building upon this, the concept of a SuperHyperGraph has been introduced

as a further extension of hypergraphs and has recently become a subject of active research [2–4].

A cognitive graph is a structure designed to represent mental models of spatial environments, using nodes,

edges, and labels to encode information such as location, direction, and navigational cues [5,6]. Closely related

concepts include cognitive maps, which are widely studied in fields such as artificial intelligence, social science,

and computer science.

In this paper, we propose two new extended models: the Cognitive HyperGraph and the Cognitive Super-

HyperGraph, which enhance the traditional cognitive graph framework using hypergraph and superhypergraph

theory (cf. [7]). We hope these contributions will promote further development in cognitive modeling and its

applications across disciplines such as AI, social sciences, and computational sciences.
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—————————————————————————————————————————-

1. Preliminaries

This section introduces the fundamental concepts and definitions necessary for the discus-

sions throughout this paper. Unless otherwise stated, all structures considered in this paper

are assumed to be finite.

1.1. SuperHyperGraph

A hypergraph is a generalization of a classical graph in which hyperedges may connect any

number of vertices rather than being restricted to two [8]. This framework enables the modeling
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of more intricate, multi-way relationships [1, 9–12]. A SuperHyperGraph is a more recent

extension of the hypergraph concept that has attracted growing attention in the literature

[2, 3, 13, 14]. It can be regarded as a recursive structure built upon hypergraphs, where the

construction involves successive applications of the powerset operation, giving rise to the notion

of the n-th powerset [15]. Due to its ability to capture hierarchical structures observed in real-

world systems, the SuperHyperGraph has been the subject of extensive studies in various

domains [16–20]. The formal definition is provided below.

Definition 1.1 (Powerset). For a given set S, the powerset of S, written as P(S), is the

family of all subsets of S:

P(S) = {A ⊆ S }.

By construction, both the empty set ∅ and the set S itself belong to P(S).

Definition 1.2 (n-th Powerset). (cf. [21–23])

Let H be a set. The hierarchy of iterated powersets of H, denoted Pn(H), is defined

inductively as

P1(H) := P(H), Pn+1(H) := P
(
Pn(H)

)
, n ≥ 1.

Hence, for the first few cases one obtains

P2(H) = P(P(H)), P3(H) = P(P(P(H))).

Similarly, the n-th nonempty powerset, denoted P∗
n(H), is defined recursively by

P∗
1 (H) := P∗(H), P∗

n+1(H) := P∗(P∗
n(H)

)
, n ≥ 1,

where P∗(H) = P(H) \ {∅}.

Example 1.3 (Family and Subgroup Organization). Let the base set be the members of a

family

H = {Ayako, Taro, Kenji}.

First powerset:

P1(H) = P(H) = {∅, {Ayako}, {Taro}, {Kenji}, {Ayako,Taro}, {Ayako,Kenji}, {Taro,Kenji}, H}.

This represents all possible subgroups of family members.

Second powerset:

P2(H) = P(P(H)).

Here, each element of P2(H) is a collection of subgroups. For instance,

{ {Ayako}, {Taro,Kenji} } ∈ P2(H),
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which represents choosing one subgroup containing Ayako and another subgroup containing

Taro and Kenji simultaneously. This captures higher-level groupings such as “alliances” within

the family.

Example 1.4 (Course Curriculum Design). Let the base set be a small set of academic

subjects

H = {Mathematics, Physics, Computer Science}.

First powerset:

P1(H) = P(H)

lists all possible combinations of subjects (e.g. Mathematics only, Physics and Computer Sci-

ence, etc.).

Second powerset:

P2(H) = P(P(H))

represents sets of such combinations. For example,

{ {Mathematics,Physics}, {Computer Science} } ∈ P2(H),

which can be interpreted as a curriculum design that simultaneously considers a “science

module” and a “computing module” as separate study tracks.

Third powerset:

P3(H) = P(P(P(H))).

An element here might be a set of curricula, modeling multiple possible program structures

chosen collectively, such as a university catalog containing different degree plans.

Definition 1.5 (Hypergraph [1, 8]). A hypergraph H = (V (H), E(H)) is a pair where:

• V (H): A non-empty set of vertices.

• E(H): A set of hyperedges, each of which is a subset of V (H).

This paper focuses exclusively on finite hypergraphs.

Definition 1.6 (n-SuperHyperGraph). (cf. [3, 24])

Let V0 be a finite base set of vertices. For every integer k ≥ 0, define the iterated powerset

of V0 inductively by

P0(V0) := V0, Pk+1(V0) := P
(
Pk(V0)

)
,

where P(·) denotes the standard powerset operator.

An n-SuperHyperGraph is an ordered pair

SHG(n) = (V,E),

such that

V ⊆ Pn(V0), E ⊆ P(V ).
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The elements of V are called n-supervertices, and the elements of E are called n-superedges.

In particular, each n-superedge is a subset of V , thereby generalizing the notion of hyperedges

to the n-th powerset level.

Example 1.7 (Organizational Hierarchies). Consider a company with a finite base set of

employees

V0 = {Ayano,Taro,Hiroko,Dave}.

At the first level, P(V0) consists of all possible teams of employees. At the second level, P2(V0)

contains collections of teams, which may represent departments. An n-SuperHyperGraph with

n = 2 can thus model the structure of a company where

V ⊆ P2(V0)

represents departments as 2-supervertices, and

E ⊆ P(V )

represents inter-department collaborations as 2-superedges. This framework naturally encodes

the hierarchical nature of modern organizations.

Example 1.8 (Social Media Communities). Let the base set of vertices be

V0 = {User1,User2, . . . ,Userm}.

At level one, P(V0) corresponds to possible user groups. At level two, P2(V0) represents

collections of such groups, such as communities of communities. In this setting, a 2-

SuperHyperGraph

SHG(2) = (V,E)

can represent large-scale social media structures where 2-supervertices are meta-communities

(clusters of groups), while 2-superedges capture relations such as shared interests or overlap-

ping memberships between these meta-communities. This model allows the representation of

complex multi-layered social dynamics.

1.2. Cognitive Graph

A cognitive graph models mental representations of spatial environments by using nodes,

edges, and labels to encode locations and navigational knowledge [5, 6, 25]. A closely related

concept is the cognitive map, which has been widely studied in cognitive science [26–28]. The

formal definition is provided below.
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Definition 1.9 (Cognitive Graph). (cf. [5, 6]) Let S be a nonempty set of distinguished

locations (e.g. landmarks or junctions). A cognitive graph is a quadruple

G =
(
V, E, ℓV , ℓE

)
,

where

• V ⊆ S is a finite set of nodes (significant places),

• E ⊆
{
{u, v} | u, v ∈ V, u ̸= v

}
is a set of undirected edges (path segments),

• ℓV : V → LV is a node–label function assigning each v ∈ V an identifying label (e.g. a

name or local features),

• ℓE : E → LE is an edge–label function assigning each {u, v} ∈ E a label encoding local

metric information (e.g. distance, direction, or action sequence).

If ℓE is trivial (or omitted), G is called a topological cognitive graph, encoding only connectivity.

Otherwise, G is a labeled cognitive graph, which incorporates local geometric or metric cues.

Example 1.10 (Urban Metro Network as a Cognitive Graph). Let

S = {Central, Museum, University, Stadium,

Airport, Harbor}

be the set of key transit stops in a city. We model a commuter’s mental map of the metro as

the cognitive graph

G = (V, E, ℓV , ℓE),

where:

• V = S (all major stations are nodes).

• Edges represent direct metro connections:

E =
{
{Central,Museum}, {Central,University}, {University, Stadium},

{Stadium,Airport}, {Central,Harbor}
}
.

• The node–label function ℓV assigns each station its name and line color:

ℓV (Central) =
(
“Central”, Red Line

)
,

ℓV (Museum) =
(
“Museum”, Red Line

)
, . . .

• The edge–label function ℓE assigns each connection its approximate travel time (in

minutes):

ℓE
(
{Central,Museum}

)
= 2,

ℓE
(
{Central,University}

)
= 3, . . .

Usage: A commuter uses this cognitive graph to plan routes by considering connectivity,

line transfers, and estimated travel times between significant stops.
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2. Result: Cognitive HyperGraph

In this section, we present the formal definition of the Cognitive HyperGraph(cf. [7]).

Definition 2.1 (Cognitive HyperGraph). Let S be a nonempty set of distinguished locations

(e.g. landmarks or junctions). A Cognitive HyperGraph is a quadruple

CH = (V, E, ℓV , ℓE),

where

• V ⊆ S is a finite set of nodes (significant places),

• E ⊆ P∗(V ) is a set of nonempty hyperedges, each hyperedge e ∈ E being a subset of

V of arbitrary cardinality,

• ℓV : V → LV is a node–label function assigning each v ∈ V a semantic label (e.g. name,

type, or feature vector),

• ℓE : E → LE is a hyperedge–label function assigning each e ∈ E a label encoding

relational information (e.g. type of spatial relation, corridor, or region).

Example 2.2 (University Campus Cognitive HyperGraph). Let

S = {Library, LectureHall, Cafeteria, StudentUnion, Gymnasium, AdministrationBuilding, Park}

be the set of significant campus locations. We construct a Cognitive HyperGraph CH =

(V,E, ℓV , ℓE) as follows:

• V = S, so every landmark is a node.

• Define hyperedges grouping related locations:

e1 = {Library, LectureHall}, ℓE(e1) = “Academic Zone”,

e2 = {Cafeteria, StudentUnion}, ℓE(e2) = “Social Zone”,

e3 = {Gymnasium, Park}, ℓE(e3) = “Recreational Zone”,

e4 = {AdministrationBuilding}, ℓE(e4) = “Admin Cluster”.

Thus

E = { e1, e2, e3, e4} ⊆ P∗(V ).

• The node–label function ℓV assigns each v ∈ V its name:

ℓV (v) = v.

• The hyperedge–label function ℓE is given above, encoding each zone’s type.

Interpretation: This Cognitive HyperGraph models how a student mentally groups

campus buildings into functional zones—academic, social, recreational, and administra-

tive—thereby supporting navigation and planning across the campus.

Takaaki Fujita, Cognitive HyperGraphs and SuperHyperGraphs: A Novel Framework for
Complex Relational Modeling



Neutrosophic Computing and Machine Learning, Vol. 39, 2025 7 of 16

Theorem 2.3 (Cognitive Graphs as Special Cases). Every Cognitive Graph G =

(V,E2, ℓV , ℓE), where E2 ⊆ {{u, v} | u, v ∈ V, u ̸= v}, can be viewed as a Cognitive Hy-

perGraph by treating its edges as 2-element hyperedges.

Proof. Let G = (V,E2, ℓV , ℓE) be a Cognitive Graph. Define

E = E2 ⊆ P∗(V ),

since each {u, v} ∈ E2 is a nonempty subset of V . Then CH = (V,E, ℓV , ℓE) satisfies all

conditions of a Cognitive HyperGraph. Hence G is embedded as the special case in which

every hyperedge has cardinality two.

Theorem 2.4 (Cognitive HyperGraphs Are Hypergraphs). If CH = (V,E, ℓV , ℓE) is a Cog-

nitive HyperGraph, then the pair (V,E) forms a (finite) hypergraph.

Proof. By definition, V is a finite set and E ⊆ P∗(V ) is a collection of nonempty subsets of

V . This exactly matches the definition of a finite hypergraph H = (V,E). Therefore, (V,E)

is a hypergraph.

Theorem 2.5 (Intersection of Cognitive HyperGraphs). Let CH1 = (V,E1, ℓV , ℓE) and CH2 =

(V,E2, ℓV , ℓE) be two Cognitive HyperGraphs on the same vertex set V with identical label

functions. Then

E = E1 ∩ E2

together with ℓV and ℓE
∣∣
E

defines a Cognitive HyperGraph CH = (V,E, ℓV , ℓE).

Proof. Since E1, E2 ⊆ P∗(V ), their intersection E is also a collection of nonempty subsets of

V . Labels restrict consistently because for every e ∈ E, ℓE(e) is the same in both CH1 and

CH2. Thus (V,E) with those label functions satisfies the definition of a Cognitive HyperGraph.

Theorem 2.6 (Union of Cognitive HyperGraphs). Let CH1 = (V,E1, ℓV , ℓE) and CH2 =

(V,E2, ℓV , ℓE) be as above. Then

E = E1 ∪ E2

with ℓV and ℓE
∣∣
E

also defines a Cognitive HyperGraph CH = (V,E, ℓV , ℓE).

Proof. The union E1 ∪ E2 remains a collection of nonempty subsets of V . Labels agree on

overlaps and are well-defined on new hyperedges since ℓE was already specified on both E1

and E2. Hence (V,E) is a valid Cognitive HyperGraph.
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Theorem 2.7 (2-Section is a Cognitive Graph). Let CH = (V,E, ℓV , ℓE) be a Cognitive Hy-

perGraph. Its 2-section G = (V,E2, ℓV , ℓ
′
E), where

E2 =
{
{u, v} | ∃ e ∈ E, {u, v} ⊆ e

}
,

and ℓ′E({u, v}) =
{
ℓE(e) | e ∈ E, {u, v} ⊆ e

}
, is a Cognitive Graph.

Proof. By construction, E2 ⊆ {{u, v} | u, v ∈ V, u ̸= v}. Each edge {u, v} inherits labels from

all hyperedges containing it; we collect these in a set ℓ′E({u, v}). Since ℓV remains unchanged

on vertices, G = (V,E2, ℓV , ℓ
′
E) satisfies the definition of a Cognitive Graph.

Theorem 2.8 (Dual Cognitive HyperGraph). Let CH = (V,E, ℓV , ℓE) be a Cognitive Hyper-

Graph. Define its dual by

V ∗ = E, E∗ =
{
{ e ∈ E : v ∈ e} | v ∈ V

}
⊆ P∗(E),

with label functions ℓ∗V (e) = ℓE(e) and ℓ∗E({e | v ∈ e}) = ℓV (v). Then CH∗ = (V ∗, E∗, ℓ∗V , ℓ
∗
E)

is a Cognitive HyperGraph.

Proof. By definition, V ∗ = E ⊆ P∗(V ) and each element of E∗ is a nonempty subset of E. The

dual labels are well-defined by swapping the original node and hyperedge labels. Therefore

CH∗ meets all requirements of a Cognitive HyperGraph.

3. Result: Cognitive SuperHyperGraph

In this section, we present the formal definition of the Cognitive SuperHyperGraph (cf. [7]).

Definition 3.1 (Cognitive n-SuperHyperGraph). Let S be a nonempty base set and let n ≥ 0

be an integer. Define the iterated powersets by

P 0(S) = S, P k+1(S) = P
(
P k(S)

)
(k ≥ 0).

A Cognitive n-SuperHyperGraph is a quadruple

CSH(n) = (V, E, ℓV , ℓE),

where

• V ⊆ Pn(S) is a finite set of n-supervertices,

• E ⊆ P(V ) is a finite family of n-superedges (incidence constraint: every edge R ∈ E

satisfies R ⊆ V ),

• ℓV : V → LV assigns a label to each supervertex,

• ℓE : E → LE assigns a label to each superedge.

Equivalently, edges are subsets of the vertex set at the same level: E ⊆ P(V ).

Takaaki Fujita, Cognitive HyperGraphs and SuperHyperGraphs: A Novel Framework for
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Example 3.2 (Smart City Cognitive 2-SuperHyperGraph). Consider a small smart city di-

vided into four blocks:

S = {Block A,Block B,Block C,Block D}.

First level P 1(S) = P(S): neighborhoods

N1 = {Block A,Block B}, N2 = {Block C,Block D}, N3 = {Block B,Block C}.

Second level P 2(S) = P
(
P 1(S)

)
: districts

D1 = {N1, N2}, D2 = {N2, N3}.

Define the 2-supervertices and 2-superedges by

V = {D1, D2} ⊆ P 2(S), R1 = {D1}, R2 = {D1, D2}, E = {R1, R2} ⊆ P(V ).

Labels:

ℓV (D1) = “Commercial District”, ℓV (D2) = “Residential District”,

ℓE(R1) = “Downtown Zone”, ℓE(R2) = “Greater Metro Area”.

Thus CSH(2) = (V,E, ℓV , ℓE) respects E ⊆ P(V ).

Example 3.3 (University Course Planning as a Cognitive 2-SuperHyperGraph). Let the base

set of modules be

S = {IntroCS,DataStr,CalcI,CalcII,PhysI,PhysII}.

Level 1 (paths):

PCore = {IntroCS,DataStr,CalcI}, PSci = {CalcII,PhysI,PhysII}.

Level 2 (tracks):

TrackEng = {PCore, PSci}, TrackSci = {PSci}.

Take

V = {TrackEng, TrackSci} ⊆ P 2(S),

and define degree programs as edges on V :

DegreeBScCS = {TrackEng}, DegreeBScPhys = {TrackSci},

E = {DegreeBScCS, DegreeBScPhys} ⊆ P(V ).

Labels:

ℓV (TrackEng) = “CS+Science Track”, ℓV (TrackSci) = “Science Track”,

ℓE(DegreeBScCS) = “Bachelor of Science in CS”,

ℓE(DegreeBScPhys) = “Bachelor of Science in Physics”.

Takaaki Fujita, Cognitive HyperGraphs and SuperHyperGraphs: A Novel Framework for
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Example 3.4 (Global Spatial Cognitive 3-SuperHyperGraph). Let

S = {Tokyo,Osaka,Kyoto,New York,Los Angeles,London,Paris}.

Build

P 1(S) : C1 = {Tokyo,Osaka,Kyoto}, C2 = {New York,Los Angeles}, C3 = {London,Paris};

P 2(S) : K1 = {C1}, K2 = {C2}, K3 = {C3};

P 3(S) : D1 = {K1,K2}, D2 = {K3}.

Set

V = {D1, D2} ⊆ P 3(S), R = {D1, D2}, E = {R} ⊆ P(V ).

Labels:

ℓV (D1) = “Asia–Americas Cluster”, ℓV (D2) = “Europe Cluster”, ℓE(R) = “Global Network”.

Example 3.5 (Corporate Organizational Structure as a 3-SuperHyperGraph). Let

S = {Ayano,Taro,Hiroko,Dave,Eve,Frank}.

Teams (P 1(S)):

T1 = {Ayano,Taro,Hiroko}, T2 = {Dave,Eve,Frank}.

Departments (P 2(S)):

DTech = {T1}, DOps = {T2}.

Divisions (P 3(S)):

DivTech = {DTech},

DivOps = {DOps}.

Then

V = {DivTech, DivOps} ⊆ P 3(S),

C = {DivTech,DivOps},

E = {C} ⊆ P(V ).

Labels:

ℓV (DivTech) = “Technology Division”,

ℓV (DivOps) = “Operations Division”,

ℓE(C) = “Corporate Structure”.

Theorem 3.6 (Reduction to Cognitive HyperGraph and Cognitive Graph). Let CSH(n) =

(V,E, ℓV , ℓE) be a Cognitive n-SuperHyperGraph on S.

(i) If n = 1, then P 1(S) = P(S) and CSH(1) is a Cognitive HyperGraph (with E ⊆ P(V )).

Takaaki Fujita, Cognitive HyperGraphs and SuperHyperGraphs: A Novel Framework for
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(ii) If n = 0 and, in addition, E ⊆ {{u, v} | u, v ∈ V, u ̸= v}, then CSH(0) is a Cognitive

Graph.

Proof. (i) When n = 1, vertices lie in P(S) and edges are subsets of V , which is the hypergraph

case with labels. (ii) When n = 0, V ⊆ S and edges are unordered pairs of distinct vertices,

yielding a (labeled) graph.

Theorem 3.7 (Underlying n-SuperHyperGraph). If CSH(n) = (V,E, ℓV , ℓE) is a Cognitive

n-SuperHyperGraph on S, then (V,E) is an n-SuperHyperGraph on S (with E ⊆ P(V )).

Proof. By definition V ⊆ Pn(S) and E ⊆ P(V ); hence (V,E) satisfies the n-SuperHyperGraph

axioms.

Theorem 3.8 (Intersection of Cognitive n-SuperHyperGraphs). Let {CSH(n)
α =

(Vα, Eα, ℓV,α, ℓE,α)}α∈A be Cognitive n-SuperHyperGraphs on the same base set S. Define

V :=
⋂
α∈A

Vα, E :=
⋂
α∈A

Eα,

and let ℓV , ℓE be the restrictions of the labelings to V,E, respectively, assuming label agreement

on overlaps. Then CSH(n) = (V,E, ℓV , ℓE) is a Cognitive n-SuperHyperGraph.

Proof. For any R ∈ E, we have R ∈ Eα for all α, hence R ⊆ Vα for all α. Therefore

R ⊆
⋂

α Vα = V , so E ⊆ P(V ). Since V ⊆ Pn(S), the claim follows.

Theorem 3.9 (Homomorphic Image). Let CSH(n)
S = (VS , ES , ℓV,S , ℓE,S) on S and CSH(n)

T =

(VT , ET , ℓV,T , ℓE,T ) on T . A homomorphism is a map f : VS → VT such that the induced map

on edges

f∗ : P(VS) → P(VT ), f∗(R) := { f(v) | v ∈ R },

satisfies f∗(ES) ⊆ ET , and labels are preserved: ℓV,T ◦ f = ℓV,S on VS, and ℓE,T ◦ f∗ = ℓE,S on

ES. Then
(
f(VS), f∗(ES)

)
with the inherited labels is a Cognitive n-SuperHyperGraph on T .

Proof. Because f(VS) ⊆ VT and f∗(ES) ⊆ P(f(VS)) ⊆ P(VT ), the image respects the incidence

constraint. Label compatibility gives well-defined labels on the image.

Theorem 3.10 (Hierarchy of Levels). Let CSH(n) = (V,E, ℓV , ℓE) be a Cognitive n-

SuperHyperGraph on S. For each k with 0 ≤ k ≤ n, set

Vk := V ∩ P k(S), Ek := {R ∈ E | R ⊆ Vk },

and define ℓV,k := ℓV |Vk
, ℓE,k := ℓE |Ek

. Then CSH(k) = (Vk, Ek, ℓV,k, ℓE,k) is a Cognitive

k-SuperHyperGraph on S.

Takaaki Fujita, Cognitive HyperGraphs and SuperHyperGraphs: A Novel Framework for
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Proof. Clearly Vk ⊆ P k(S). By definition of Ek, every edge in Ek is a subset of Vk, hence

Ek ⊆ P(Vk). Label restrictions are well-defined, so the claim follows.

4. Conclusion

In this paper, we introduced two extended models: the Cognitive HyperGraph and the Cogni-

tive SuperHyperGraph, which generalize the classical cognitive graph framework by employing

hypergraph and superhypergraph theory (cf. [7]).

For future research, we aim to explore the design of graph algorithms tailored to these

new structures, as well as potential extensions by incorporating other advanced mathematical

frameworks such as MetaGraphs [29,30], Fuzzy Sets [31–33], Bidirected Graphs [34–36], Neu-

trosophic Sets [37–39], Hyperfuzzy Sets [40–43], Soft Sets [44,45], Near Sets [46–48], Plithogenic

Sets [49–51], and Intuitionistic Fuzzy Sets [52,53].
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