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Abstract. Graph theory provides a mathematical framework for modeling relationships among entities via

vertices (nodes) and edges [1, 2]. A hypergraph extends this framework by allowing hyperedges to connect

any number of vertices, thereby capturing complex multi-way interactions [3]. The SuperHyperGraph concept

generalizes hypergraphs further through iterated power-set constructions and has recently drawn significant

research interest [4, 5].

Graph Neural Networks (GNNs) propagate and aggregate node features across graph topologies via learn-

able message-passing to capture structural context [6–8]. Extensions such as Hypergraph Neural Networks,

SuperHyperGraph Neural Networks, Multigraph Neural Networks, and MultiHyperGraph Neural Networks

have likewise been explored [9, 10].

In this paper, we introduce and analyze theMulti n-SuperHyperGraph Neural Network, a theoretical extension

of SuperHyperGraph Neural Networks built upon Multi-SuperHyperGraph structures. We expect that this

framework will stimulate further advances in the study and application of GNNs.

Keywords: Graph Neural Networks (GNNs), HyperGraph, SuperHyperGraph, Multigraph Neural Net-

works, MultiHyperGraph Neural Networks, Hypergraph Neural Networks, SuperHyperGraph Neural Networks

—————————————————————————————————————————-

1. Preliminaries

This section introduces the basic concepts and terminology required for the developments

in this paper. Throughout, all sets and structures are assumed to be finite. Unless otherwise

specified, the parameter n denotes a nonnegative integer.

1.1. SuperHyperGraph

A hypergraph generalizes a classical graph by introducing hyperedges that may connect any

number of vertices, not only two. This property makes hypergraphs well suited for modeling
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complex multiway relationships [11–15]. A SuperHyperGraph extends this concept further.

Recently introduced and increasingly investigated in the literature [4,5,16–18], a SuperHyper-

Graph is obtained by iteratively applying the powerset operator to a base vertex set, thereby

embedding recursive hierarchical structures into hypergraphs [19–21]. The formal definitions

are presented below.

Definition 1.1 (Powerset [22]). Let S be a set. The powerset of S, denoted P(S), is the

collection of all subsets of S:

P(S) = {A | A ⊆ S }.

In particular, ∅ ∈ P(S) and S ∈ P(S).

Definition 1.2 (n-th Powerset). (cf. [23–26])

Let H be a set. The hierarchy of iterated powersets of H, denoted Pn(H), is defined

inductively as

P1(H) := P(H), Pn+1(H) := P
(
Pn(H)

)
, n ≥ 1.

Hence, for the first few cases one obtains

P2(H) = P(P(H)), P3(H) = P(P(P(H))).

Similarly, the n-th nonempty powerset, denoted P∗
n(H), is defined recursively by

P∗
1 (H) := P∗(H), P∗

n+1(H) := P∗(P∗
n(H)

)
, n ≥ 1,

where P∗(H) = P(H) \ {∅}.

Example 1.3 (Feature Selection with P2(H) in Machine Learning). Feature selection in ma-

chine learning chooses the most relevant input variables, reducing dimensionality, improving ac-

curacy, and enhancing model interpretability (cf. [27–30]). Let H = {age, income, education}
be a set of features for a classification task.

• The first powerset P1(H) = P(H) contains all possible feature subsets, e.g.

{age, income}, {education}, etc. This corresponds to conventional feature selection.

• The second powerset P2(H) = P(P(H)) contains collections of such feature subsets,

e.g.
{
{age, income}, {education}

}
. This can be used in ensemble feature selection,

where different subsets of features are grouped together to construct meta-models.

Example 1.4 (Model Architecture Search with P3(H)). LetH = {CNN, RNN, Transformer}
be a set of candidate neural network components.

• The first powerset P1(H) enumerates all possible model architectures that select a

subset of components.

• The second powerset P2(H) enumerates sets of such architectures, useful for defining

search spaces in AutoML.
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• The third powerset P3(H) = P(P(P(H))) then represents collections of model-

architecture families, enabling higher-order reasoning in meta-learning or neural ar-

chitecture search frameworks.

Definition 1.5 (Hypergraph [3, 31]). A hypergraph H = (V (H), E(H)) consists of

• a nonempty set V (H) of vertices, and

• a set E(H) ⊆ P(V (H)) of hyperedges.

This paper considers only finite hypergraphs.

Definition 1.6 (n-SuperHyperGraph). (cf. [5,18]) Let V0 be a finite base set of vertices, and

define the iterated powersets

P0(V0) := V0, Pk+1(V0) := P
(
Pk(V0)

)
(k ≥ 0).

An n-SuperHyperGraph is a pair

SHG(n) = (V,E),

where

V ⊆ Pn(V0), E ⊆ P(V ).

The elements of V are called n-supervertices, and the elements of E are called n-superedges.

The condition E ⊆ P(V ) ensures that every n-superedge is a subset of the n-supervertex set

V , preserving the incidence relation between vertices and edges as in graphs and hypergraphs.

Example 1.7 (2-SuperHyperGraph). Let the base set be

V0 = {a, b}.

Then

P 1(V0) = {∅, {a}, {b}, {a, b}}, P 2(V0) = P
(
P 1(V0)

)
.

Choose the set of 2-supervertices

V =
{
v1 = {{a}}, v2 = {{b}, {a, b}}

}
⊆ P 2(V0),

and the set of 2-superedges

E =
{
e1 = {v1, v2}, e2 = {v2}

}
⊆ P(V ).

Thus

SHG(2) = (V,E)

is a 2-SuperHyperGraph in which

• v1 and v2 are distinct 2-supervertices drawn from P 2(V0);

• e1 and e2 are 2-superedges, each a subset of the supervertex set V ;

• all vertices and edges lie within P 2(V0), illustrating the hierarchical construction.

Takaaki Fujita, Multi-SuperHyperGraph Neural Networks: A Generalization of
Multi-HyperGraph Neural Networks



Neutrosophic Computing and Machine Learning, Vol. 39, 2025 4 of 19

1.2. Multi n-SuperHyperGraph

A multigraph is a graph in which multiple edges connecting the same pair of vertices are

allowed, enabling edge multiplicities [32,33]. A multihypergraph is a hypergraph variant where

hyperedges, each potentially connecting any number of vertices, can appear repeatedly with

multiplicities [34–36]. A Multi n-SuperHyperGraph generalizes hypergraphs by iteratively

lifting vertices and edges into n-th powerset hierarchies, enabling supervertex and superedge

multiplicities [17].

Definition 1.8 (MultiHypergraph). (cf. [34, 35]) A multihypergraph is a triple

H = (V, E , µ),

where

• V is a finite set of vertices,

• E is a (multi)set of nonempty subsets of V , called hyperedges,

• µ : E → N>0 is a multiplicity function, assigning to each hyperedge e ∈ E the number

of times it appears.

Equivalently, one may regard E itself as a multiset, in which each hyperedge e occurs with

multiplicity µ(e).

Example 1.9 (MultiHypergraph). Let the vertex set be

V = {v1, v2, v3}.

Define the multiset of hyperedges

E =
{
e1, e1, e2, e3, e3, e3

}
,

where

e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v1}.

The multiplicity function µ is given by

µ(e1) = 2, µ(e2) = 1, µ(e3) = 3.

Thus the multihypergraph

H = (V, E , µ)

has:

• three vertices v1, v2, v3,

• one hyperedge {v1, v2} appearing twice,

• one hyperedge {v2, v3} appearing once,

• one hyperedge {v1} appearing three times.
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Definition 1.10 (Multi n-SuperHyperGraph). (cf. [17]) Let V0 be a finite base set of vertices.

For each integer k ≥ 0, define the iterated powerset

P 0(V0) := V0, P k+1(V0) := P
(
P k(V0)

)
,

where P(·) denotes the standard powerset operator. A Multi n-SuperHyperGraph is a triple

MSHG(n) = (V,E, µ),

with

V ⊆ Pn(V0), E ⊆ P(V ),

and a multiplicity function

µ : E −→ N

assigning to each n-superedge e ∈ E a positive integer µ(e) indicating how many parallel

occurrences of e are present. Elements of V are called n-supervertices; elements of E are

called n-superedges. The incidence condition E ⊆ P(V ) makes each n-superedge a subset of

the n-supervertex set.

Remark 1.11. If µ(e) = 1 for all e ∈ E, then MSHG(n) reduces to an ordinary n-

SuperHyperGraph.

Example 1.12 (Multi 2-SuperHyperGraph). Let the base set be V0 = {a, b}. Then

P 1(V0) = {∅, {a}, {b}, {a, b}}, P 2(V0) = P
(
P 1(V0)

)
.

Choose the 2-supervertices

v1 = {{a}}, v2 = {{b}, {a, b}},

and set

V = {v1, v2} ⊆ P 2(V0).

Define 2-superedges on V

e1 = {v1, v2}, e2 = {v2},

so that

E = {e1, e2} ⊆ P(V ),

and specify the multiplicity function

µ(e1) = 2, µ(e2) = 1.

Thus MSHG(2) = (V,E, µ) is a Multi 2-SuperHyperGraph in which edges are subsets of the

supervertex set V , with e1 occurring twice and e2 once.
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Example 1.13 (Multi 3-SuperHyperGraph). Let the base set be V0 = {a}. Then

P 1(V0) = {∅, {a}}, P 2(V0) =
{
∅, {∅}, {{a}}, {∅, {a}}

}
,

and

P 3(V0) = P
(
P 2(V0)

)
.

Select two 3-supervertices

U1 = {∅, {∅}}, U2 = {{{a}}, {∅, {a}}},

and set

V = {U1, U2} ⊆ P 3(V0).

Define 3-superedges on V

E1 = {U1, U2}, E2 = {U2},

so that

E = {E1, E2} ⊆ P(V ),

and assign multiplicities

µ(E1) = 2, µ(E2) = 4.

Then MSHG(3) = (V,E, µ) is a Multi 3-SuperHyperGraph with vertices U1, U2 ∈ P 3(V0) and

edges taken as subsets of V , where E1 occurs twice and E2 four times.

1.3. MultiHypergraph Neural Network

Graph Neural Networks and Hypergraph Neural Networks have been the subject of extensive

research across a multitude of publications [37–39]. A Multigraph Neural Network processes

multiple graph instances via parallel graph convolutional layers, then aggregates their vertex

embeddings into a unified representation [40–42]. A Hypergraph Neural Network generalizes

GNNs by learning on hypergraphs, capturing higher-order relationships among groups of ver-

tices [9, 43–47]. A MultiHypergraph Neural Network generalizes this by applying hypergraph

convolution to several hypergraph structures in parallel, integrating both hyperedge and vertex

features into a combined embedding [48–50].

Definition 1.14 (MultiHypergraph Neural Network). (cf. [51]) Let
{
Hm = (V, Em)

}M
m=1

be

a collection of M hypergraphs over the same vertex set V . Denote by

Hm ∈ {0, 1}|V |×|Em| the incidence matrix of Hm,

and let X ∈ R|V |×F be the matrix of input vertex features. Define for each m the hypergraph

Laplacian

H̃m = D
− 1

2
v,mHmD−1

e,mH⊤
mD

− 1
2

v,m, (1)
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where Dv,m and De,m are the diagonal degree matrices of vertices and hyperedges respectively.

A MultiHypergraph Neural Network with L layers is defined by the layerwise propagation

Z(ℓ+1)
m = σ

(
H̃m Z(ℓ)

m W (ℓ)
m

)
, Z(0)

m = X, (2)

for ℓ = 0, 1, . . . , L − 1, where each W
(ℓ)
m is a learnable weight matrix and σ an activation

function. Finally, the outputs from all hypergraphs are fused by

Z = AGG
(
Z

(L)
1 , Z

(L)
2 , . . . , Z

(L)
M

)
, (3)

where AGG is an aggregation operator (e.g. average or concatenation). This architecture pro-

cesses multiple hypergraph structures in parallel and integrates their learned representations.

Example 1.15 (MultiHypergraph Neural Network). Let the base vertex set be

V = {v1, v2, v3}, M = 2.

We define two hypergraphs on V :

H1 : E1 = {{v1, v2}, {v2, v3}}, H2 : E2 = {{v1, v3}, {v2}}.

Their incidence matrices (rows v1, v2, v3; columns ordered as the hyperedges above) are

H1 =

1 0

1 1

0 1

 , H2 =

1 0

0 1

1 0

 .

Compute the degree matrices:

Dv,1 = diag(1, 2, 1), De,1 = diag(2, 2), Dv,2 = diag(2, 1, 1), De,2 = diag(2, 1).

The normalized Laplacians (cf. (1)) are

H̃1 = D
− 1

2
v,1 H1D

−1
e,1 H

⊤
1 D

− 1
2

v,1 ≈

0.5000 0.3536 0

0.3536 0.5000 0.3536

0 0.3536 0.5000

 ,

H̃2 = D
− 1

2
v,2 H2D

−1
e,2 H

⊤
2 D

− 1
2

v,2 =

0.5000 0 0.5000

0 1.0000 0

0.5000 0 0.5000

 .

Choose input features

X =

1 0

0 1

1 1

 ,
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use weight matrices W
(0)
m = I, and the identity activation σ(x) = x. Then one propagation

layer (2) yields

Z
(1)
1 = H̃1X ≈

0.5000 0.3536

0.7071 0.8536

0.5000 0.8536

 , Z
(1)
2 = H̃2X =

1.0000 0.5000

0.0000 1.0000

1.0000 0.5000

 .

Finally, fuse the two outputs by averaging (3):

Z = 1
2

(
Z

(1)
1 + Z

(1)
2

)
≈

0.7500 0.4268

0.3536 0.9268

0.7500 0.6768

 .

This example illustrates a concrete forward pass of a MultiHypergraph Neural Network with

two hypergraph structures.

1.4. Undirected n-SuperHyperGraph Neural Network (n-SHGNN)

The definition of the Undirected n-SuperHyperGraph Neural Network (n-SHGNN) is pre-

sented as follows [10].

Definition 1.16 (n-SuperHyperGraph Neural Network (n-SHGNN)). [10] Let H(n) =(
V (n), E(n)

)
be an n-SuperHyperGraph over a base vertex set V0, and let

H ′ =
(
V0, E

′)
be its Expanded Hypergraph, where

E′ =
{
e′ ⊆ V0

∣∣ e′ = ⋃
v∈e

v, e ∈ E(n)
}
.

Let

X ∈ R|V0|×d

be the input feature matrix whose i-th row xi ∈ Rd is the feature vector of base vertex vi ∈ V0.

Define:

• The incidence matrix H ′ ∈ {0, 1}|V0|×|E′| with entries

H ′
ij =

1, vi ∈ e′j ,

0, otherwise.

• The diagonal vertex-degree matrix DV ∈ R|V0|×|V0| and hyperedge-degree matrix DE ∈
R|E′|×|E′| defined by

(DV )ii =

|E′|∑
j=1

H ′
ij w(e

′
j), (DE)jj =

|V0|∑
i=1

H ′
ij ,

where w(e′j) > 0 is a learnable weight for hyperedge e′j ∈ E′.
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• A learnable hyperedge-weight matrix

W ∈ R|E′|×|E′|, Θ ∈ Rd×c,

and a non-linear activation σ(·) (e.g. ReLU).

Then one layer of the n-SHGNN is given by the convolution

Y = σ
(
D

−1/2
V H ′W D−1

E H ′⊤D
−1/2
V X Θ

)
,

where Y ∈ R|V0|×c is the updated feature matrix.

Example 1.17 (Concrete Undirected 2-SuperHyperGraph Neural Network). Let the base

vertex set be

V0 = {1, 2, 3}, n = 2.

Define an n-SuperHyperGraph

H(2) =
(
V (2), E(2)

)
by choosing

V (2) =
{
{1, 2}, {2, 3}

}
, E(2) =

{
e1 = {{1, 2}}, e2 = {{2, 3}}

}
.

Its expanded hypergraph is

H ′ =
(
V0, E

′), E′ = { {1, 2}, {2, 3}}.

The incidence matrix H ′ ∈ {0, 1}3×2 (rows 1, 2, 3; cols e′1, e
′
2) is

H ′ =

1 0

1 1

0 1

 .

Assign learnable hyperedge weights

w(e′1) = 1, w(e′2) = 2,

so that

DV = diag
(
H ′w(E′)

)
= diag(1, 3, 2), DE = diag

(
H ′⊤1

)
= diag(2, 2),

and form

W = diag(1, 2).

Let the input feature vector be

X =

1

2

3

 ,
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choose a single output channel (Θ = 1) and identity activation σ(x) = x. Then one layer of

the 2-SHGNN computes

Y = D
− 1

2
V H ′W D−1

E H ′⊤D
− 1

2
V X ≈

1.0774

2.5133

2.3165

 .

Thus each base-vertex’s new feature is a weighted, normalized aggregation of its neighbors

according to the 2-SuperHyperGraph structure.

2. Results: Multi-SuperHyperGraph Neural Networks

We now present the definition of the Multi-SuperHyperGraph Neural Network. This

construction extends the n-SuperHyperGraph Neural Network by employing the Multi-

SuperHyperGraph framework. As this is a theoretical extension, we envision future empirical

studies on real datasets to assess its effectiveness.

Definition 2.1 (Multi n-SuperHyperGraph Neural Network). Let {MSHG
(n)
m =

(V
(n)
m , E

(n)
m , µm)}Mm=1 be a collection of M Multi n-SuperHyperGraphs over the same base set

V0, each satisfying the incidence condition E
(n)
m ⊆ P(V

(n)
m ). For k ≥ 0 define the level-to-base

flattening map

flat0(X) := X, flatk+1(X) :=
⋃
Y ∈X

flatk(Y ).

For each m and each e ∈ E
(n)
m , set

expn(e) := flatn−1

(⋃
v∈e

v
)

∈ P(V0),

and define the expanded hypergraph

H′
m =

(
V0, E

′
m

)
, E′

m := { expn(e) | e ∈ E(n)
m }.

Let H ′
m ∈ {0, 1}|V0|×|E(n)

m | be the incidence matrix of H′
m with columns indexed by e ∈ E

(n)
m

(i.e., the j-th column is the indicator of expn(ej) ⊆ V0). Define

DV,m = diag
(
H ′

mWm 1
)
, DE,m = diag

(
H ′

m
⊤1
)
, Wm = diag

(
µm(e)

)
e∈E(n)

m
.

Given input features X ∈ R|V0|×F , a Multi n-SuperHyperGraph Neural Network with L layers

computes, for each m and ℓ = 0, . . . , L− 1,

Z(ℓ+1)
m = σ

(
D

−1
2

V,mH ′
mWmD−1

E,mH ′
m
⊤D

−1
2

V,m Z(ℓ)
m Θ(ℓ)

m

)
, Z(0)

m = X,

where each Θ
(ℓ)
m is a learnable weight matrix and σ an activation. Finally, the per-graph

outputs are fused by an aggregation operator AGG (e.g., mean or concatenation):

Z = AGG
(
Z

(L)
1 , Z

(L)
2 , . . . , Z

(L)
M

)
.
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Example 2.2 (Concrete Multi 1-SuperHyperGraph Neural Network). Let V0 = {1, 2, 3},
n = 1, M = 2. Define two Multi 1-SuperHyperGraphs (with E

(1)
m ⊆ P(V

(1)
m )):

MSHG
(1)
1 : V

(1)
1 =

{
{1, 2}, {2, 3}

}
, E

(1)
1 =

{
{{1, 2}}, {{2, 3}}

}
, µ1({{1, 2}}) = 1, µ1({{2, 3}}) = 2.

MSHG
(1)
2 : V

(1)
2 =

{
{1}, {2}, {3}

}
, E

(1)
2 =

{
{{1}, {2}, {3}}

}
, µ2({{1}, {2}, {3}}) = 1.

For n = 1, exp1(e) =
⋃

v∈e v, hence the expanded hyperedges are

E′
1 =

{
{1, 2}, {2, 3}

}
, E′

2 =
{
{1, 2, 3}

}
.

Thus the incidence matrices (rows 1, 2, 3; columns enumerate E
(1)
m ) are

H ′
1 =

1 0

1 1

0 1

 , H ′
2 =


1

1

1

 ,

and

W1 = diag(1, 2), W2 = diag(1).

Degrees:

DV,1 = diag(1, 3, 2), DE,1 = diag(2, 2), DV,2 = diag(1, 1, 1), DE,2 = diag(3).

With

X =


1 0

0 1

1 1

 , Θ
(0)
1 = Θ

(0)
2 = I2, σ = id,

one layer yields

Z
(1)
1 ≈

0.5000 0.2887

0.6969 0.9082

0.5000 0.9082

 , Z
(1)
2 =

1

3


1 1 1

1 1 1

1 1 1

X =


2
3

2
3

2
3

2
3

2
3

2
3

 .

Fuse by averaging:

Z = 1
2

(
Z

(1)
1 + Z

(1)
2

)
≈

0.5833 0.4777

0.6818 0.7875

0.5833 0.7875

 .

Example 2.3 (Concrete Multi 1-SuperHyperGraph Neural Network with M = 3). Let V0 =

{1, 2, 3}, n = 1, M = 3. Define

MSHG
(1)
1 : V

(1)
1 =

{
{1}, {2}, {3}

}
, E

(1)
1 =

{
{{1}, {2}}, {{2}, {3}}

}
, µ1 = (2, 1).
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MSHG
(1)
2 : V

(1)
2 =

{
{1}, {2}, {3}

}
, E

(1)
2 =

{
{{1}, {2}}, {{1}, {3}}, {{2}, {3}}

}
, µ2 ≡ 1.

MSHG
(1)
3 : V

(1)
3 =

{
{1}, {2}, {3}

}
, E

(1)
3 =

{
{{1}}, {{2}, {3}}

}
, µ3 = (1, 2).

Then

H ′
1 =

1 0

1 1

0 1

 , H ′
2 =

1 1 0

1 0 1

0 1 1

 , H ′
3 =

1 0

0 1

0 1

 ,

with W1 = diag(2, 1), W2 = I3, W3 = diag(1, 2). With DV,m = diag(H ′
mWm1), DE,m =

diag(H ′
m
⊤1), input X =


1 0

0 1

1 1

 , Θ
(0)
m = I2, σ = id, one layer gives

Z
(1)
1 ≈

0.5000 0.4082

0.6969 0.7887

0.5000 0.7887

 , Z
(1)
2 ≈

0.7500 0.5000

0.5000 0.7500

0.7500 0.7500

 , Z
(1)
3 =

1.0000 0.0000

0.5000 1.0000

0.5000 1.0000

 .

Averaging yields

Z = 1
3

(
Z

(1)
1 + Z

(1)
2 + Z

(1)
3

)
≈

0.7500 0.3027

0.5656 0.8462

0.5833 0.8462

 .

Example 2.4 (Concrete Multi 2-SuperHyperGraph Neural Network). Let V0 = {1, 2}, n = 2,

M = 2. Define

MSHG
(2)
1 : V

(2)
1 =

{
v1 = {{1}}, v2 = {{2}, {1, 2}}

}
, E

(2)
1 =

{
{v1, v2}, {v2}

}
, µ1 = (1, 2).

MSHG
(2)
2 : V

(2)
2 =

{
u1 = {{1}}, u2 = {{2}}

}
, E

(2)
2 =

{
{u1}, {u2}

}
, µ2 = (1, 1).

Here exp2({v1, v2}) = {1, 2} and exp2({v2}) = {1, 2}; thus

H ′
1 =

(
1 1

1 1

)
, H ′

2 =

(
1 0

0 1

)
,

with W1 = diag(1, 2), W2 = diag(1, 1). Degrees:

DE,1 = diag(2, 2), DV,1 = diag(3, 3), DE,2 = diag(1, 1), DV,2 = diag(1, 1).

With X =

(
1

2

)
, Θ

(0)
1 = Θ

(0)
2 = (1), σ = id,

Z
(1)
1 =

(
1.5

1.5

)
, Z

(1)
2 =

(
1

2

)
, Z = 1

2

(
Z

(1)
1 + Z

(1)
2

)
=

(
1.25

1.75

)
.
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Example 2.5 (Concrete Multi 3-SuperHyperGraph Neural Network). Let V0 = {1, 2}, n = 3,

M = 2. Define

MSHG
(3)
1 : V

(3)
1 = {p1 = {{1}}, p2 = {{2}}, p3 = {∅}}, E

(3)
1 = {{p1, p2}, {p1, p3}}, µ1 = (1, 2).

MSHG
(3)
2 : V

(3)
2 = {q1 = {{1, 2}}, q2 = {{2}}, q3 = {∅}}, E

(3)
2 = {{q1, q3}, {q2, q3}}, µ2 = (3, 1).

Then

E′
1 =

{
{1, 2}, {1}

}
, E′

2 =
{
{1, 2}, {2}

}
,

so

H ′
1 =

(
1 1

1 0

)
, H ′

2 =

(
1 0

1 1

)
, W1 = diag(1, 2), W2 = diag(3, 1).

Degrees:

DE,1 = diag(2, 1), DV,1 = diag(3, 1), DE,2 = diag(2, 1), DV,2 = diag(3, 4).

With X =

(
1 0

0 1

)
, Θ

(0)
m = I2, σ = id,

Z
(1)
1 ≈

(
0.8333 0.2887

0.2887 0.5000

)
, Z

(1)
2 ≈

(
0.5000 0.4330

0.4330 0.6250

)
,

and the average

Z = 1
2

(
Z

(1)
1 + Z

(1)
2

)
≈

(
0.6667 0.3608

0.3608 0.5625

)
.

Theorem 2.6. The Multi n-SuperHyperGraph Neural Network generalizes both

(1) the MultiHypergraph Neural Network (n = 0), and

(2) the n-SuperHyperGraph Neural Network (M = 1).

Proof. If n = 0, then flat−1 is vacuous and exp0(e) = e, so the construction reduces to the

MultiHypergraph case. If M = 1, the aggregation is the identity and the update rule coincides

with that of the n-SuperHyperGraph Neural Network.

3. Conclusion

In this paper, we introduced and analyzed the Multi n-SuperHyperGraph Neural Network, a

theoretical extension of SuperHyperGraph Neural Networks based on Multi-SuperHyperGraph

structures. We anticipate that this framework will stimulate further developments in the study

and application of Graph Neural Networks. For future work, we aim to extend the framework

to encompass Directed Graph Neural Networks [39, 52–55], Dynamic Graph Neural Networks

[56–59], Fuzzy Graph Neural Networks [7,8,38,60], and Neutrosophic Graph Neural Networks

[10, 61], including the design of their corresponding algorithms and the implementation of

quantitative analyses on benchmark datasets. Moreover, we plan to explore extensions of the
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concepts discussed in this paper using HyperFuzzy Sets [62–64], Hesitant Fuzzy Sets [65, 66],

Quadripartitioned Neutrosophic Sets [67–69], MetaStructure [70,71], Picture Fuzzy Set [72–74],

and Plithogenic Sets [75–78], together with the design of suitable algorithms and quantitative

evaluations on real data.
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