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Abstract. Many real-world concepts exhibit hierarchical organization, and mathematics has explored numer-

ous hierarchical structures. Mathematical frameworks can often be extended into hyperstructures and superhy-

perstructures by employing the powerset and the n-th iterated powerset constructions (cf. [21,22]). The concept

of SuperHyperStructures was defined by F. Smarandache and has been studied in the context of graphs, alge-

braic structures, and functions [19,22,25]. These extensions are particularly well suited for modeling hierarchical

relationships across diverse conceptual domains.

Knot theory studies smooth embeddings of circles in three-dimensional space, classifying knots by algebraic

and geometric invariants and exploring their topological properties. Beyond its intrinsic theoretical interest,

knot theory has found applications in chemistry, computer science, and other fields.

In this paper, we develop HyperKnot Theory and SuperHyperKnot Theory as extensions of classical knot

theory. We provide rigorous definitions, examine fundamental properties, and present illustrative examples of

these new frameworks. We anticipate that this work will foster further advances in both the mathematical

theory and practical applications of knots.

Keywords: Hyperstructure, SuperHyperstructure, Knot Theory, HyperKnot Theory, SuperHyperKnot

Theory

—————————————————————————————————————————-

1. Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essential for

the discussions in this paper. Throughout this paper, we assume that all concepts and sets

under consideration are finite.
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1.1. Classical Structures, Hyperstructures, and n-Superhyperstructures

A Classical Structure is a fundamental algebraic framework defined over a base set. A

Hyperstructure generalizes this notion by defining operations on the powerset of the base

set [1,3,16]. An n-Superhyperstructure further extends the idea by employing the n-th iterated

powerset [2,6,17,24]. Intuitively, each iteration applies the powerset operation to the result of

the previous level [7, 9, 23].

The concept of SuperHyperStructures was introduced by F. Smarandache and has been

studied in various mathematical contexts, including graphs, algebraic structures, and functions

[19, 22, 25]. The parameter n is assumed to be a natural number. Related notions, such

as superhyperalgebras [5, 20] and superhypergraphs [8, 10, 11, 19], have also been explored.

Relevant definitions and illustrative examples follow.

Definition 1.1 (Set). [12] A set is a well-defined collection of distinct objects, called its

elements. We write x ∈ A to indicate that x is an element of the set A.

Definition 1.2 (Subset). [12] Given two sets A and B, we say that A is a subset of B, written

A ⊆ B, if every element of A is also an element of B:

A ⊆ B ⇐⇒ ∀x (x ∈ A =⇒ x ∈ B).

Definition 1.3 (Base Set). A base set S is the underlying set from which more complex

constructions—such as powersets and hyperstructures—are built:

S = {x | x belongs to the domain of interest}.

All elements of P(S) and Pn(S) are subsets whose members lie in S.

Definition 1.4 (Powerset). The powerset of a set S, denoted P(S), is the collection of all

subsets of S, including the empty set and S itself:

P(S) = {A | A ⊆ S}.

Definition 1.5 (n-th Powerset). [18, 24] The n-th powerset of a set H, denoted Pn(H), is

defined recursively by

P1(H) = P(H), Pk+1(H) = P
(
Pk(H)

)
, k ≥ 1.

Analogously, the n-th nonempty powerset P∗
n(H) is given by

P∗
1 (H) = P∗(H), P∗

k+1(H) = P∗(P∗
k(H)

)
,

where P∗(H) denotes the powerset of H with the empty set removed.
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Definition 1.6 (Classical Structure). (cf. [18, 24]) A Classical Structure is a mathematical

framework defined on a non-empty set H, equipped with one or more Classical Operations

that satisfy specified Classical Axioms. Specifically:

A Classical Operation is a function of the form:

#0 : H
m → H,

where m ≥ 1 is a positive integer, and Hm denotes the m-fold Cartesian product of H.

Common examples include addition and multiplication in algebraic structures such as groups,

rings, and fields.

Definition 1.7 (Hyperoperation). [26,27] A hyperoperation on a set S is a binary rule whose

value is a subset of S rather than a single element. Formally, a hyperoperation ◦ is a map

◦ : S × S −→ P(S),

where P(S) denotes the powerset of S.

Definition 1.8 (Hyperstructure). [18,24] A hyperstructure extends a classical algebraic struc-

ture by defining its operations on the powerset of a base set. Concretely, given a set S and a

hyperoperation ◦, the pair

H =
(
P(S), ◦

)
is called a hyperstructure, where ◦ acts on subsets of S.

Definition 1.9 (SuperHyperOperation). [24] Let H be a nonempty set and define its iterated

powersets by

P0(H) = H, Pk+1(H) = P
(
Pk(H)

)
, k ≥ 0.

An (m,n)-SuperHyperOperation is an m-ary mapping

◦(m,n) : Hm −→ Pn
∗ (H),

where Pn
∗ (H) denotes the n-th powerset of H, either excluding the empty set (classical type)

or including it (neutrosophic type). Such operations generalize hyperoperations by producing

outputs in higher–order powersets.

Definition 1.10 (n-Superhyperstructure). [18, 24] An n-Superhyperstructure on a set S is

given by the pair

SHn =
(
Pn(S), ◦

)
,

where Pn(S) is the n-th iterated powerset of S and ◦ is an operation defined on elements of

Pn(S). This framework captures hierarchical algebraic behaviors across n levels of powerset

iteration.
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Example 1.11 (n-Superhyperstructure of integer “sum-difference” hyperoperations). Let S =

Z. For each k ≥ 0 define the k-th iterated powerset

P0(Z) = Z, Pk+1(Z) = P
(
Pk(Z)

)
.

We construct a family of binary SuperHyperOperations ◦(k) for k = 0, 1, . . . , n by induction:

◦(0): Define

◦(0) : Z× Z −→ P1(Z), a ◦(0) b = { a+ b, a− b}.

Clearly a ◦(0) b ⊆ Z is nonempty, so ◦(0) is a hyperoperation on Z.
◦(k+1): Suppose ◦(k) : Pk(Z)× Pk(Z) → Pk+1(Z) is defined. Then set

◦(k+1) : Pk+1(Z)× Pk+1(Z) −→ Pk+2(Z),

X ◦(k+1) Y =
{
A ◦(k) B

∣∣ A ∈ X, B ∈ Y
}
,

which is a well-defined map into Pk+2(Z) because each A ◦(k) B is itself a nonempty

subset of Pk(Z).

Then

SHn =
(
Pn(Z), ◦(n)

)
is an n-Superhyperstructure:

(1) Nonempty values: By induction, for any X,Y ∈ Pn(Z), X ◦(n) Y is a nonempty

collection of nonempty subsets of Pn−1(Z).
(2) Closure: X ◦(n) Y ⊆ Pn(Z) by construction.

(3) Hyperoperation property: The result of ◦(n) is a set of elements of Pn(Z), not a single

element.

Hence SHn forms a concrete example of an n-Superhyperstructure on Z.

1.2. Knot Theory

Knot theory studies embeddings of circles in three-dimensional spaces, classifying knots by

algebraic and geometric invariants and understanding topological properties (cf. [4, 13–15]).

Definition 1.12 (Knot). A knot is a smooth embedding

K : S1 ↪→ R3

considered up to ambient isotopy in R3. Equivalently, a knot is the image K(S1) of such

an embedding, where two embeddings K0,K1 define the same knot if there exists a smooth

one-parameter family of diffeomorphisms

Φt : R3 → R3, t ∈ [0, 1],

with Φ0 = id and Φ1 ◦K0 = K1.
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Example 1.13 (Unknot). Let

Kunknot : S
1 → R3, Kunknot(θ) = (cos θ, sin θ, 0), θ ∈ [0, 2π).

This is a smooth embedding of the circle into the xy–plane:

• Smoothness: Each coordinate is a smooth function of θ.

• Injectivity : If θ0 ̸= θ1 mod 2π, then (cos θ0, sin θ0) ̸= (cos θ1, sin θ1).

• No self-intersections: The image is the unit circle, a simple closed curve.

Since any smooth simple closed curve in R3 that lies in a plane is ambient-isotopic to the

standard unit circle, Kunknot represents the trivial (unknot) class.

Example 1.14 (Trefoil Knot). Define the map

Ktrefoil : S
1 → R3, Ktrefoil(t) =

(
x(t), y(t), z(t)

)
, t ∈ [0, 2π),

with the parametric functions 
x(t) =

(
2 + cos(3t)

)
cos(2t),

y(t) =
(
2 + cos(3t)

)
sin(2t),

z(t) = sin(3t).

Properties:

• Smoothness: x(t), y(t), z(t) are all infinitely differentiable in t.

• Injectivity : One checks that for t0 ̸= t1 mod 2π, the points (x(t0), y(t0), z(t0)) ̸=
(x(t1), y(t1), z(t1)), so there are no self-intersections.

• Nontrivial knot type: This embedding has three crossings in its minimal planar pro-

jection and is not ambient-isotopic to the unknot.

Thus Ktrefoil is a smooth embedding whose image is the (right-handed) trefoil knot.

2. Result of this paper

As the main result of this paper, we investigate the definitions, properties, and examples of

HyperKnots and SuperHyperKnots.

2.1. HyperKnot

We present the definition of a HyperKnot as follows.

Definition 2.1 (HyperKnot). Let C(R3) be the hyperspace of nonempty compact subsets of

R3, equipped with the Hausdorff metric dH . A HyperKnot is a continuous map

KH : S1 → C(R3)

such that

Takaaki Fujita, Toward a Unified Framework for Knot Theory, Hyperknot Theory, and
Superhyperknot Theory via Superhyperstructures



Neutrosophic Knowledge, Vol. 6, 2025 60 of 71

(1) There exists a smooth classical knot embedding

K : S1 ↪→ R3 with {K(t)} ⊆ KH(t) (∀ t ∈ S1),

(2) The map KH is continuous in the Hausdorff metric: for all t0 ∈ S1,

limt→t0 dH
(
KH(t),KH(t0)

)
= 0.

Two HyperKnots K0
H ,K1

H are ambient hyperisotopic if there exists a continuous family of

homeomorphisms

Φt : C(R3) → C(R3), t ∈ [0, 1],

with Φ0 = id and Φ1 ◦K0
H = K1

H .

Example 2.2 (Arc-based HyperKnot). Let

K : S1 → R3, K(θ) = (cos θ, sin θ, 0)

be the standard unit circle in the xy-plane. Fix a small ε > 0. Define

KH(θ) =
{
K(ϕ) | ϕ ∈ [θ − ε, θ + ε]

}
, θ ∈ S1,

where intervals are taken mod 2π. Then:

(1) Each KH(θ) is a nonempty compact arc in R3 containing the core point K(θ).

(2) As θ → θ0, the endpoints of the arc move continuously, so dH
(
KH(θ),KH(θ0)

)
≤

max{∥K(θ ± ε)−K(θ0 ± ε)∥} → 0.

(3) A smooth core embedding is K itself, and obviously {K(θ)} ⊆ KH(θ).

Thus KH : S1 → C(R3) is a HyperKnot.

Example 2.3 (Tubular-neighborhood HyperKnot). Let K : S1 ↪→ R3 be any smooth knot

embedding and choose a radius r > 0 smaller than the reach of K. Define

KH(t) =
{
x ∈ R3 | ∥x−K(t)∥ ≤ r

}
, t ∈ S1;

each KH(t) is the closed ball of radius r around the core point K(t). Then:

(1) KH(t) is nonempty, compact, and contains {K(t)}.
(2) Continuity in the Hausdorff metric follows since

dH
(
B(K(t), r), B(K(t0), r)

)
= ∥K(t)−K(t0)∥ −−−→

t→t0
0.

(3) The core inclusion condition is immediate from the construction.

Hence KH : S1 → C(R3) defines a HyperKnot which is a “thickening” of the classical knot.

Example 2.4 (Normal-Circle HyperKnot). Let

K : S1 → R3, K(t) = (cos t, sin t, 0)
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be the standard unit circle, which has everywhere nonzero curvature. Let T (t), N(t), B(t) be

its Frenet frame, and fix a radius r > 0. Define for each t ∈ S1

Ct =
{
K(t)

}
∪

{
K(t) + r

(
cosϕN(t) + sinϕB(t)

) ∣∣ ϕ ∈ [0, 2π]
}
.

Then Ct ⊂ R3 is a nonempty compact subset containing the core point K(t). Define

KH : S1 → C(R3), KH(t) = Ct.

We check:

(1) Core inclusion. By construction {K(t)} ⊂ Ct.

(2) Compactness. Each circle {K(t) + r(cosϕN(t) + sinϕB(t))} is compact, and the

union with {K(t)} remains compact.

(3) Continuity in the Hausdorff metric. As t → t0, the Frenet frame {T,N,B}
depends smoothly on t, so

dH
(
Ct, Ct0

)
≤ sup

ϕ

∥∥K(t)+r(cosϕN(t)+sinϕB(t)) − K(t0)−r(cosϕN(t0)+sinϕB(t0))
∥∥ −−−→

t→t0
0.

(4) Smooth core embedding. The map K : S1 → R3 is a smooth knot embedding and

{K(t)} ⊂ KH(t).

Therefore KH : S1 → C(R3) is a HyperKnot, giving a family of small normal-plane circles

thickening the core.

Theorem 2.5 (HyperKnot generalizes classical knots). The assignment

ι : {classical knots} → {HyperKnots}, ι
(
K
)
(t) = {K(t)}

is injective and respects ambient isotopy. Hence every classical knot yields a HyperKnot, and

distinct knot types give non-hyperisotopic HyperKnots.

Proof. Given a smooth embedding K : S1 ↪→ R3, define KH(t) = {K(t)}. Clearly:

• {K(t)} ∈ C(R3) for all t.

• Continuity in the Hausdorff metric follows since

dH
(
{K(t)}, {K(t0)}

)
= ∥K(t)−K(t0)∥ −−−→

t→t0
0.

• If K0 and K1 are ambient-isotopic via Ψt : R3 → R3, then Φt(A) = Ψt(A) for each

compact A ⊂ R3 defines an ambient hyperisotopy between ι(K0) and ι(K1).

Injectivity follows because if ι(K0) and ι(K1) are hyperisotopic then their cores {K0(t)} and

{K1(t)} are ambient-isotopic in R3, so K0 and K1 represent the same knot type.

Takaaki Fujita, Toward a Unified Framework for Knot Theory, Hyperknot Theory, and
Superhyperknot Theory via Superhyperstructures



Neutrosophic Knowledge, Vol. 6, 2025 62 of 71

Theorem 2.6 (HyperKnots form a hyperstructure). Let HK be the set of all HyperKnots.

Define a binary hyperoperation ⊙ on HK by

(K1
H ⊙K2

H)(t) = K1
H(t) ∪ K2

H(t) (∀ t ∈ S1).

Then (HK,⊙) is a hyperstructure: for any K1
H ,K2

H ∈ HK, {K1
H ⊙ K2

H} ⊆ HK and the

union-map is well-defined.

Proof. We must check that K1
H ⊙K2

H is again a HyperKnot:

(1) For each t, K1
H(t) ∪K2

H(t) is a nonempty compact subset of R3.

(2) Continuity in the Hausdorff metric holds because union is continuous on C(R3): if

dH(Ki
H(t),Ki

H(t0)) → 0 as t → t0 for i = 1, 2, then

dH
(
K1

H(t) ∪K2
H(t), K1

H(t0) ∪K2
H(t0)

)
≤ dH

(
K1

H(t),K1
H(t0)

)
+ dH

(
K2

H(t),K2
H(t0)

)
→ 0.

(3) There exists a classical knot K whose image lies in K1
H(t)∪K2

H(t) (for instance, choose

either core of K1
H or K2

H), so the core-inclusion condition holds.

Thus HK is closed under ⊙. By definition of a hyperstructure, (HK,⊙) is a hyperstructure.

Theorem 2.7 (Classical knots embed faithfully into HyperKnots). The map

ι : {classical knots up to ambient isotopy} →

{HyperKnots up to ambient hyperisotopy}, ι(K)(t) = {K(t)}

is well-defined and injective. In particular, if two classical knots K0,K1 satisfy ι(K0) ambient-

hyperisotopic to ι(K1), then K0 is ambient-isotopic to K1.

Proof. First, given a classical knot embedding K : S1 ↪→ R3, the assignment ι(K)(t) = {K(t)}
is a continuous map S1 → C(R3), and clearly {K(t)} contains the core K(t), so ι(K) is a

HyperKnot.

Next, suppose ι(K0) and ι(K1) are ambient-hyperisotopic via Φt : C(R3) → C(R3). Since

each singleton {x} ⊂ R3 is identified in C(R3), the family

Ψt(x) = the unique point in Φt

(
{x}

)
(x ∈ R3)

defines a continuous family of homeomorphisms of R3 with Ψ0 = id and Ψ1 ◦K0 = K1. Hence

K0 and K1 are ambient-isotopic.

Theorem 2.8 (Pointwise union of HyperKnots). Let K1
H ,K2

H be HyperKnots. Define

(K1
H ⊙K2

H)(t) = K1
H(t) ∪ K2

H(t).

Then K1
H ⊙K2

H is again a HyperKnot.
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Proof. (1) Each Ki
H(t) is a nonempty compact subset of R3, so the union K1

H(t) ∪K2
H(t)

is nonempty and compact.

(2) Continuity in the Hausdorff metric follows from the estimate

dH
(
K1

H(t) ∪K2
H(t), K1

H(t0) ∪K2
H(t0)

)
≤ dH

(
K1

H(t),K1
H(t0)

)
+ dH

(
K2

H(t),K2
H(t0)

)
,

which tends to zero as t → t0.

(3) Each Ki
H admits a smooth core embedding Ki : S1 → R3 with {Ki(t)} ⊂ Ki

H(t).

Choosing either core K1 or K2 gives a core for the union, so K1
H ⊙ K2

H satisfies the

core-inclusion condition.

Therefore K1
H ⊙K2

H is a HyperKnot.

Theorem 2.9 (Hyperstructure properties of HK). Let HK be the set of all HyperKnots. The

binary operation ⊙ : HK×HK → HK defined by pointwise union is

• Commutative: K1
H ⊙K2

H = K2
H ⊙K1

H .

• Associative: (K1
H ⊙K2

H)⊙K3
H = K1

H ⊙ (K2
H ⊙K3

H).

Hence (HK,⊙) is a commutative semihypergroup.

Proof. Both commutativity and associativity follow immediately from the corresponding prop-

erties of the set-union operation on compact subsets of R3. Specifically, for any t ∈ S1,

K1
H(t) ∪K2

H(t) = K2
H(t) ∪K1

H(t),

and (
K1

H(t) ∪K2
H(t)

)
∪K3

H(t) = K1
H(t) ∪

(
K2

H(t) ∪K3
H(t)

)
.

Since pointwise union preserves continuity and the core-inclusion condition, ⊙ makes HK into

a commutative semihypergroup.

2.2. SuperHyperKnot

We present the definition of a SuperHyperKnot as follows.

Definition 2.10 (n-SuperHyperKnot). Let n ≥ 1. Define recursively the k-th iterated hyper-

space of R3:C(0)(R3) = R3,

C(k)(R3) =
{
A ⊆ C(k−1)(R3) | A ̸= ∅, A is compact in the Hausdorff metric d

(k−1)
H

}
, k ≥ 1,

where d
(0)
H is the Euclidean distance on R3, and for k ≥ 1, d

(k)
H is the induced Hausdorff metric

on compact subsets of C(k−1)(R3).
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An n-SuperHyperKnot is a continuous map

K(n) : S1 → C(n)(R3)

satisfying the core inclusion condition: there exists a classical knot embedding

K : S1 ↪→ R3 and selections Ak(t) ∈ C(k)(R3) (1 ≤ k ≤ n, t ∈ S1)

with

An(t) = K(n)(t), Ak−1(t) ∈ Ak(t) (1 ≤ k ≤ n), A0(t) = {K(t)}.

Two n-SuperHyperKnotsK
(n)
0 ,K

(n)
1 are ambient superhyperisotopic if there exists a continuous

family of homeomorphisms

Φ
(n)
t : C(n)(R3) → C(n)(R3), t ∈ [0, 1],

with Φ
(n)
0 = id and Φ

(n)
1 ◦K(n)

0 = K
(n)
1 .

Example 2.11 (n-SuperHyperKnot via iterated arc-neighborhoods). Let

K : S1 → R3, K(θ) = (cos θ, sin θ, 0)

be the standard unit circle. Fix a small ε > 0. We define a nested family of compact sets

A0(θ) = {K(θ)}, A1(θ) =
{
K(ϕ) | ϕ ∈ [θ − ε, θ + ε]

}
,

and for k = 2, . . . , n,

Ak(θ) =
{
Ak−1(ϕ) | ϕ ∈ [θ − ε, θ + ε]

}
.

Then:

• Each Ak(θ) is nonempty and compact in C(k−1)(R3) by continuity of ϕ 7→ Ak−1(ϕ) on

the compact interval [θ − ε, θ + ε].

• By construction Ak−1(θ) ∈ Ak(θ) for all 1 ≤ k ≤ n, and A0(θ) = {K(θ)} is the core.

• The map K(n) : S1 → C(n)(R3) defined by

K(n)(θ) = An(θ)

is continuous in the induced Hausdorff metric d
(n)
H , since each stage arises from a

continuous image of a compact interval.

Therefore K(n) satisfies the core-inclusion condition and continuity, hence is an n-

SuperHyperKnot.

Example 2.12 (n-SuperHyperKnot via iterated tubular neighborhoods). Let

K : S1 → R3, K(θ) = (cos θ, sin θ, 0)
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be the standard unit circle. Choose a radius r > 0 smaller than the reach of K and a small

ε > 0. Define for each θ ∈ S1:

A0(θ) = {K(θ)}, A1(θ) = {x ∈ R3 | ∥x−K(θ)∥ ≤ r},

and for 2 ≤ k ≤ n,

Ak(θ) =
⋃

ϕ∈[θ−ε,θ+ε]

Ak−1(ϕ),

where intervals are taken modulo 2π. Then:

(1) Nonempty compactness. Each Ak(θ) is nonempty and compact in C(k−1)(R3) because

it is a finite union of compact sets.

(2) Nested inclusion. By definition Ak−1(θ) ∈ Ak(θ) for all 1 ≤ k ≤ n, and A0(θ) = {K(θ)}
is the core.

(3) Continuity in the Hausdorff metric. For each k,

d
(k)
H

(
Ak(θ), Ak(θ0)

)
≤ sup

ϕ∈[θ−ε,θ+ε]
d
(k−1)
H

(
Ak−1(ϕ), Ak−1(ϕ+ θ0 − θ)

)
→ 0 (θ → θ0),

since ϕ 7→ Ak−1(ϕ) is continuous and the supremum over a small interval tends to zero.

Hence the map

K(n) : S1 → C(n)(R3), K(n)(θ) = An(θ)

is continuous and satisfies the core–inclusion condition. Therefore K(n) is an n-

SuperHyperKnot.

Theorem 2.13 (Generalization of knots and HyperKnots). The assignments

ι0 : {classical knots} → {n-SuperHyperKnots}, ι0
(
K
)
(t) = {{· · · {{K(t)}} · · · }}

(nested n times) and

ι1 : {HyperKnots} → {n-SuperHyperKnots}, ι1
(
KH

)
(t) = {{· · · {KH(t)} · · · }}

(nested n− 1 times) are injective and respect ambient isotopy. Thus every classical knot and

every HyperKnot embeds faithfully as an n-SuperHyperKnot.

Proof. Given a classical embedding K, define ι0(K)(t) by { { · · · {{K(t)}} · · · }} ⊂ C(n)(R3).

Continuity follows by iterated Hausdorff estimates:

d
(k)
H

(
ι0(K)(t), ι0(K)(t0)

)
= d

(k−1)
H

(
ι0(K)(t), ι0(K)(t0)

)
→ 0,

and ambient isotopies lift at each level by Φ
(n)
t (A) = {· · · {Ψt(A)} · · · }. Injectivity holds since

the unique core {K(t)} recovers K. The argument for ι1 is identical, treating KH(t) as the

first level.
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Theorem 2.14 (n-SuperHyperKnots form an n-Superhyperstructure). Let SHKn = {K(n) :

S1 → C(n)(R3)}. Define the binary superhyperoperation

(K
(n)
1 ⋆ K

(n)
2 )(t) = K

(n)
1 (t) ∪ K

(n)
2 (t) ⊆ C(n)(R3).

Then
(
SHKn, ⋆

)
is an n-Superhyperstructure: ⋆ is a well-defined map SHKn × SHKn →

P
(
C(n)(R3)

)
, and SHKn is closed under ⋆.

Proof. For any K
(n)
1 ,K

(n)
2 , K

(n)
1 (t) ∪ K

(n)
2 (t) is nonempty compact in C(n−1)(R3), so lies in

C(n)(R3). Continuity under d
(n)
H follows from the union estimate

d
(n)
H

(
A ∪B, A0 ∪B0

)
≤ d

(n)
H (A,A0) + d

(n)
H (B,B0).

The core inclusion condition holds by choosing at each t one of the two nested core chains.

Hence SHKn is closed under ⋆ and defines an n-Superhyperstructure as in [24].

Theorem 2.15 (Projection to lower levels). For each 1 ≤ m < n, there is a natural “projec-

tion” map

π(n)
m : C(n)(R3) → C(m)(R3), π(n)

m (A) = Am

(
A ∈ C(n)(R3)

)
,

where Am is any nonempty compact subset with {K(t)} = A0 ∈ A1 ∈ · · · ∈ An = A. Then for

any n-SuperHyperKnot K(n), the composition

K(m) = π(n)
m ◦K(n)

is an m-SuperHyperKnot. Moreover, if K
(n)
0 ,K

(n)
1 are ambient superhyperisotopic via Φ

(n)
t ,

then π
(n)
m ◦K(n)

0 and π
(n)
m ◦K(n)

1 are ambient superhyperisotopic in level m.

Proof. Since each K(n)(t) ∈ C(n)(R3) admits a nested chain {K(t)} = A0(t) ∈ A1(t) ∈ · · · ∈
An(t), the map π

(n)
m (An(t)) = Am(t) is continuous in the Hausdorff metric d

(m)
H and contains

the core {K(t)}. Hence K(m) satisfies the definition of an m-SuperHyperKnot. If Φ
(n)
t is an

ambient superhyperisotopy at level n, then by restriction Φ
(m)
t = π

(n)
m ◦Φ(n)

t ◦ (π(n)
m )−1 defines

a family of homeomorphisms on C(m)(R3), giving an ambient superhyperisotopy of K
(m)
0 and

K
(m)
1 .

Theorem 2.16 (Core recovery). Every n-SuperHyperKnot K(n) : S1 → C(n)(R3) determines

uniquely a classical knot κ : S1 → R3 by the rule

κ(t) = the unique point in

n⋂
k=0

Ak(t),

where Ak(t) ∈ C(k)(R3) is any chain with An(t) = K(n)(t). Moreover, ambient superhyperiso-

topy of K(n) projects to ambient isotopy of κ.
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Proof. By the core inclusion condition there is a nested sequence {K(t)} = A0(t) ∈ A1(t) ∈
· · · ∈ An(t). Since A0(t) is a singleton, the intersection

⋂n
k=0Ak(t) equals {K(t)}. Continuity

of κ follows from continuity of K(n) and the fact that intersections of nested compact sets vary

continuously in d
(0)
H . If K

(n)
0 ,K

(n)
1 are related by Φ

(n)
t , then their cores satisfy Ψt({K0(t)}) =

{K1(t)} for Ψt the induced ambient isotopy on R3.

Theorem 2.17 (Commutative semihypergroup structure). Let SHKn be the set of all n-

SuperHyperKnots. Define

(K
(n)
1 ⋆ K

(n)
2 )(t) = K

(n)
1 (t) ∪ K

(n)
2 (t).

Then (SHKn, ⋆) is a commutative semihypergroup:

(1) ⋆ is well-defined: each union is nonempty compact in C(n−1)(R3).

(2) ⋆ is commutative and associative by properties of set union.

(3) The core inclusion condition holds since one may choose the core chain from either

operand.

Proof. (1) follows as in the HyperKnot case, using continuity of union in d
(n)
H . For (2), for all

t,

K
(n)
1 (t) ∪K

(n)
2 (t) = K

(n)
2 (t) ∪K

(n)
1 (t),

and

(K
(n)
1 ∪K

(n)
2 ) ∪K

(n)
3 = K

(n)
1 ∪ (K

(n)
2 ∪K

(n)
3 ).

For (3), if Ai
k(t) are core chains for K

(n)
i , then

{
A1

k(t) ∪ A2
k(t)

}n

k=0
is a valid core chain for

K
(n)
1 ⋆ K

(n)
2 . Thus (SHKn, ⋆) satisfies all axioms of a commutative semihypergroup.

Theorem 2.18 (Transitivity of Projections). Let 0 ≤ ℓ < m < n. Then the projections

π(n)
m : C(n)(R3) → C(m)(R3), π

(m)
ℓ : C(m)(R3) → C(ℓ)(R3),

satisfy

π
(m)
ℓ ◦ π(n)

m = π
(n)
ℓ .

Proof. By definition, for any A ∈ C(n)(R3) there is a nested chain {K(t)} = A0 ∈ A1 ∈ · · · ∈
An = A. Then (

π
(m)
ℓ ◦ π(n)

m

)
(A) = π

(m)
ℓ

(
π(n)
m (A)

)
= π

(m)
ℓ (Am) = Aℓ = π

(n)
ℓ (A),

so the two compositions agree on every element.
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Theorem 2.19 (Projection of Core Injection). Let ι0 be the embedding of classical knots into

n-SuperHyperKnots given by ι0(K)(t) = {{· · · {{K(t)}} · · · }}. Then

π
(n)
0

(
ι0(K)(t)

)
= {K(t)}, ∀ t ∈ S1,

and hence π
(n)
0 ◦ ι0 is the identity on classical knots.

Proof. By construction ι0(K)(t) is an n-fold nested singleton whose level-0 element is exactly

{K(t)}. Therefore π
(n)
0 extracts that singleton, recovering K pointwise.

Theorem 2.20 (Classification Equivalence). The “core” map

core : {n-SuperHyperKnots}/∼ → {classical knots}/≈, [K(n)] 7→ [κ],

where κ(t) is the unique point in
⋂n

k=0Ak(t), is a bijection between superhyperisotopy classes

of n-SuperHyperKnots and ambient-isotopy classes of classical knots.

Proof. Injectivity : If two n-SuperHyperKnots K
(n)
0 ,K

(n)
1 satisfy core(K

(n)
0 ) ≈ core(K

(n)
1 ), then

their classical cores are isotopic. By Theorem “Generalization of knots and HyperKnots”, this

lifts to a superhyperisotopy between the superhyperknots, so [K
(n)
0 ] = [K

(n)
1 ].

Surjectivity : Given any classical knot K, the injection ι0(K) is an n-SuperHyperKnot whose

core is exactly K. Thus every classical knot type arises.

Theorem 2.21 (Lifting of Classical Invariants). Let I be any invariant of classical knots under

ambient isotopy, i.e.

I : {classical knots}/≈ → X .

Then

Î = I ◦ π(n)
0 : {n-SuperHyperKnots}/∼ → X

is invariant under ambient superhyperisotopy of n-SuperHyperKnots.

Proof. If K
(n)
0 ∼ K

(n)
1 , then their projections π

(n)
0 (K

(n)
0 ), π

(n)
0 (K

(n)
1 ) are ambient-isotopic clas-

sical knots. Hence Î([K
(n)
0 ]) = I([π

(n)
0 K

(n)
0 ]) = I([π

(n)
0 K

(n)
1 ]) = Î([K

(n)
1 ]).
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