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Abstract. Graph theory models pairwise relationships through vertices and edges, while hypergraphs gener-

alize this framework by allowing hyperedges to connect multiple vertices simultaneously. SuperHyperGraphs,

introduced by Smarandache [26,27], extend hypergraphs via iterated powerset constructions. Directed Acyclic

Graphs (DAGs) are cycle-free directed graphs widely used for dependency modeling, and Directed Acyclic Hy-

pergraphs (DAHs) further generalize DAGs by capturing multi-way dependencies [18, 23]. In this paper, we

introduce Directed Acyclic SuperHypergraphs (DASH), which unify and extend both DAGs and DAHs within

the SuperHyperGraph framework. We present a formal definition of DASH, characterize acyclicity through

directed superhyperedges, and establish fundamental properties such as the existence of source supervertices

and topological orderings. Our work provides a rigorous theoretical foundation for hierarchical dependency

modeling in complex systems and paves the way for future advances in both the theory and applications of

Hypergraph and SuperHyperGraph Theory.

Keywords: Superhypergraph, Hypergraph, Directed graph, Directed Hypergraph, Directed Superhyper-
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—————————————————————————————————————————-

1. Preliminaries and Definitions

This section provides an introduction to the foundational concepts and definitions required

for the discussions in this paper. For fundamental operations, concepts, and principles of

graphs, refer to [7, 17]. Throughout this paper, we assume that all graphs are finite.
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1.1. Graph and Hypergraph

Graph theory is the study of mathematical structures consisting of vertices connected by

edges, used to model various types of relationships. A hypergraph is a generalized graph con-

cepts that extends traditional graph concepts by allowing hyperedges, which connect multiple

vertices rather than just pairs, enabling more complex relationships between elements [8, 9].

The basic definitions of graphs and hypergraphs are provided below.

Definition 1.1 (Graph). [6] A graph G is a mathematical structure consisting of a set of

vertices V (G) and a set of edges E(G) that connect pairs of vertices, representing relationships

or connections between them. Formally, a graph is defined as G = (V,E), where V is the vertex

set and E is the edge set.

Definition 1.2 (Cycle in a Graph). [6] A cycle in a graph G = (V,E) is a path that starts

and ends at the same vertex, with no repeated edges or vertices, except for the starting/ending

vertex. Formally, a cycle is a sequence of vertices v1, v2, . . . , vk such that:

v1 = vk and (vi, vi+1) ∈ E for all 1 ≤ i < k.

The length of the cycle is k − 1, which is the number of edges in the cycle.

Definition 1.3 (Hypergraph [2, 3]). A hypergraph H = (V (H), E(H)) is a pair where:

• V (H): A non-empty set of vertices.

• E(H): A set of hyperedges, each of which is a subset of V (H).

This paper focuses exclusively on finite hypergraphs.

1.2. SuperHyperGraph

A SuperHyperGraph is an extension of the traditional concept of a hypergraph, recently

introduced and actively investigated in the literature [4, 5, 11–13, 27]. It can be regarded as a

graph-theoretical construct that integrates recursive structures into hypergraphs. A SuperHy-

perGraph is characterized by an iteratively generated structure known as the n-th powerset,

obtained through repeated application of the powerset operation. The formal definition is

presented below. Here, the parameter n is assumed to be a natural number.

Definition 1.4 (n-th Powerset). (cf. [25, 28])

The n-th powerset of a set H, denoted Pn(H), is constructed iteratively. Beginning with

the standard powerset, the process is defined as:

P1(H) = P (H), Pn+1(H) = P (Pn(H)), for n ≥ 1.
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In a similar manner, the n-th non-empty powerset, represented as P ∗
n(H), is recursively defined

as:

P ∗
1 (H) = P ∗(H), P ∗

n+1(H) = P ∗(P ∗
n(H)).

Here, P ∗(H) refers to the powerset of H excluding the empty set.

Definition 1.5 (n-SuperHyperGraph). [26, 27] Let V0 be a finite base set of vertices. For

each k ≥ 0, define the iterative powerset Pk(V0) by

P0(V0) = V0, Pk+1(V0) = P
(
Pk(V0)

)
,

where P(·) denotes the power set. An n-SuperHyperGraph is a pair

SHT(n) = (V,E),

with

V ⊆ Pn(V0) and E ⊆ Pn(V0).

Each element of V is an n-supervertex, and each element of E is an n-superedge.

Example 1.6 (2-SuperHyperGraph: Corporate Collaboration Network). Let the base set of

employees be

V0 = {Alice, Bob, Carol, Dave, Eve}.

Form the first iterated powerset P1(V0) to obtain teams:

Team1 = {Alice,Bob}, Team2 = {Carol,Dave}, Team3 = {Eve}.

The second iterated powerset P2(V0) = P({Team1,Team2,Team3}) consists of all subsets of

these teams. We select two of them as our 2-supervertices:

V =
{
{Team1,Team2}, {Team2,Team3}

}
.

Each 2-supervertex represents a division that groups two teams. To model a cross-division

project involving both divisions, define the set of 2-superedges:

E =
{
{{Team1,Team2}, {Team2,Team3}}

}
.

Then

SHT(2) = (V,E)

is a 2-SuperHyperGraph capturing the structure of corporate collaboration across divisions.

Definition 1.7 (n-SuperHypertree). (cf. [16]) An n-SuperHypertree (n-SHT) is an n-

SuperHyperGraph SHTn = (V,E) that satisfies the following properties:

(1) Host Tree Condition: There exists a tree T = (VT , ET ), called the host tree, such that:

• The vertex set of T is VT = V , where V ⊆ Pn(V0).

Takaaki Fujita, Directed Acyclic SuperHypergraphs (DASH): A General Framework for
Hierarchical Dependency Modeling



Neutrosophic Knowledge, Vol. 6, 2025 75 of 86

• Each n-superedge e ∈ E corresponds to a connected subtree Te ⊆ T . Specifically,

for each e ∈ E, there exists a subtree Te such that:⋃
t∈V (Te)

Bt ⊇ e,

where Bt ⊆ V are subsets associated with the nodes of T .

(2) Acyclicity Condition: The host tree T must be acyclic, ensuring that SHTn inherits

the acyclic structure of T .

(3) Connectedness Condition: For any two n-supervertices v, w ∈ V , there must exist a

sequence of n-superedges e1, e2, . . . , ek ∈ E such that:

(a) v ∈ e1 and w ∈ ek.

(b) ei ∩ ei+1 ̸= ∅ for all 1 ≤ i < k.

Example 1.8 (1-SuperHypertree: Regional Supply Chain Network). Let the base set of

locations be

V0 = {Farm, Mill, Distributor, Retailer}.

For n = 1, we select the primary distribution hubs as our 1-supervertices:

V =
{
{Farm,Mill}, {Mill,Distributor}, {Distributor,Retailer}

}
.

We construct the host tree T = (VT , ET ) by taking VT = V and

ET =
{
({Farm,Mill}, {Mill,Distributor}), ({Mill,Distributor}, {Distributor,Retailer})

}
.

Next, we define the set of 1-superedges E, each corresponding to a connected subtree of T :

E =
{
{{Farm,Mill}, {Mill,Distributor}}, {{Mill,Distributor}, {Distributor,Retailer}}

}
.

Here:

• The first superedge links the Farm–Mill hub to the Mill–Distributor hub.

• The second superedge links the Mill–Distributor hub to the Distributor–Retailer hub.

Since T is acyclic and each superedge induces a connected subtree, SHT1 = (V,E) satisfies

the host tree, acyclicity, and connectedness conditions. This 1-SuperHypertree thus models

the hierarchical flow of goods through the regional supply chain.

1.3. Directed hypergraph

A directed graph consists of vertices connected by edges with assigned directions, indicating

relationships. A directed hypergraph is a hypergraph generalization of a directed graph. Sim-

ilar to undirected hypergraphs, directed hypergraphs have been extensively studied for their

various derivatives and applications (cf. [19, 21,22]). Its definition is provided below.

Definition 1.9 (Directed Graph). [31] A directed graph (digraph) G = (V,E) consists of:
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• V : A finite set of vertices.

• E ⊆ V × V : A set of directed edges, where each edge is an ordered pair (u, v) with

u, v ∈ V .

The edge (u, v) indicates a directed connection from vertex u (source) to vertex v (target).

Definition 1.10 (Directed Hypergraph). [1,14] ADirected Hypergraph H is a pairH = (V,E),

where:

• V is a finite set of vertices (or nodes).

• E is a finite set of hyperarcs. Each hyperarc e ∈ E is an ordered pair e =

(Tail(e),Head(e)), where:

– Tail(e) ⊆ V is a non-empty subset of vertices, called the tail of the hyperarc.

– Head(e) ∈ V is a single vertex, called the head of the hyperarc.

Properties.

• A hyperarc e = (Tail(e),Head(e)) connects all vertices in Tail(e) to the vertex Head(e).

• When |Tail(e)| = 1 for all e ∈ E, the directed hypergraph reduces to a standard

directed graph.

Definition 1.11 (Directed n-SuperHypergraph). [10] Let V0 be a finite base set, and define

its k-th iterated power set

P0(V0) = V0, Pk+1(V0) = P(Pk(V0)), k ≥ 0.

An Directed n-SuperHypergraph is an ordered pair

DSHn = (V,E),

where:

(1) V ⊆ Pn(V0) is the set of n-supervertices. Each v ∈ V may be

• a single element in V0,

• a subset of V0,

• a nested subset up to depth n,

• the empty set, or

• a fuzzy/indeterminate set (cf. [30]), depending on the application.

(2) E ⊆
(
P(V ) × P(V )

)
is a set of directed n-superhyperedges. Each directed n-

superhyperedge e ∈ E is an ordered pair

e =
(
T (e), H(e)

)
,

with

T (e) ⊆ V and H(e) ⊆ V,

where:
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• T (e) is called the tail set, representing the “source” supervertices.

• H(e) is called the head set, representing the “target” supervertices.

Example 1.12 (Real-World Example: Directed 2-SuperHypergraph in an IoT Data Network).

Consider an IoT deployment consisting of four sensors:

V0 = {S1,S2,S3, S4}.

The first iterated powerset P1(V0) = P (V0) yields all possible sensor clusters, for example

{{S1, S2}, {S3}, {S2, S4}, . . .}. The second iterated powerset P2(V0) = P
(
P (V0)

)
consists of

collections of these clusters. We select two such collections as our set of 2-supervertices:

V =
{
{{S1, S2}, {S3, S4}}, {{S1, S3}, {S2, S4}}

}
.

Here each 2-supervertex represents a regional aggregation unit grouping two sensor clusters.

Next, we define the set of directed 2-superhyperedges E as follows:

e1 =
(
{{S1, S2}, {S3, S4}}, {{S1, S3}, {S2, S4}}

)
,

e2 =
(
{{S1, S3}, {S2, S4}}, {{S1, S2}, {S3, S4}}

)
.

In this model:

• e1 represents a data-flow from the first regional aggregator {{S1, S2}, {S3, S4}} to the

second {{S1, S3}, {S2, S4}}.
• e2 captures the reverse synchronization flow.

Thus, DSH2 = (V,E) is a Directed 2-SuperHypergraph modeling high-level, multi-cluster

data exchanges in an IoT system.

1.4. Directed Acyclic Graph (DAG)

A Directed Acyclic Graph (DAG) is a directed graph that contains no cycles, where edges

represent dependencies. DAGs are commonly used in scheduling, data flow analysis, and

optimization [20, 24]. DAGs play a crucial role in various applications, including dependency

resolution, causal inference, and parallel computing. A related concept is the bidirected acyclic

graph, which is also well studied [15].

Definition 1.13 (Directed Acyclic Graph (DAG)). [24,29] A Directed Acyclic Graph (DAG)

is a directed graph G = (V,E) that contains no directed cycles. That is, there does not exist

a sequence of distinct vertices v1, v2, . . . , vk such that:

(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) ∈ E.
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Example 1.14 (Directed Acyclic Graph (DAG): Project Workflow). Consider a software

project composed of five tasks ordered by dependencies:

V = {Planning, Design, Implementation, Testing, Deployment}.

We model the precedence constraints by the edge set

E = {(Planning, Design), (Design, Implementation),

(Implementation, Testing), (Planning, Testing), (Testing, Deployment)}.

Here:

• Planning → Design and Planning → Testing ensure that both design and test planning

begin only after requirements are set.

• Design → Implementation enforces that coding starts after design is complete.

• Implementation → Testing and Testing → Deployment reflect the usual

build–test–release cycle.

Since no sequence of edges leads back to an earlier task, this graph contains no directed cycles

and thus is a valid DAG.

The concept of a Directed Acyclic Hypergraph (DAH), as a hypergraph-based generalization

of a DAG, has also been studied in the literature [18, 23]. Its formal definition is presented

below.

Definition 1.15 (Directed Acyclic Hypergraph (DAH)). (cf. [18, 23]) A Directed Acyclic

Hypergraph (DAH) is a directed hypergraph H = (V,E) that does not contain any hy-

percycle, which is defined as a sequence of distinct vertices v1, v2, . . . , vk such that for each

i = 1, . . . , k, there exists a hyperedge ei = (eTi , eHi) ∈ E with:

vi ∈ eTi and vi+1 ∈ eHi , where vk+1 = v1.

Example 1.16 (Directed Acyclic Hypergraph: Software Development Workflow). Consider a

software development pipeline modeled as a directed acyclic hypergraph H = (V,E), where

V = {Req, Design, Impl, Plan, Test, Deploy}

represents the key activities:

• Req: Requirements gathering

• Design: System design

• Impl: Implementation (coding)

• Plan: Test plan preparation

• Test: Testing

• Deploy: Deployment
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Define the set of hyperedges

E = {e1, e2, e3, e4, e5},

where each ei = (T (ei), H(ei)) models dependencies:

e1 =
(
{Req}, {Design}

)
,

e2 =
(
{Design}, {Impl}

)
,

e3 =
(
{Req}, {Plan}

)
,

e4 =
(
{Impl, Plan}, {Test}

)
,

e5 =
(
{Test}, {Deploy}

)
.

Here:

• e1 and e3 represent that both design and test-plan creation depend on the requirement

phase.

• e2 indicates design must complete before implementation.

• e4 is a hyperedge with two tails (Impl,Plan) leading to testing.

• e5 models deployment after successful testing.

Since there is no sequence of hyperedges leading back to any starting activity, H contains

no hypercycles and is therefore a Directed Acyclic Hypergraph.

2. Results

This section presents the results obtained in this study.

2.1. Directed Acyclic SuperHypergraph

A Directed Acyclic SuperHypergraph (DASH) is a hierarchical hypergraph with directed

superhyperedges, containing no cycles, used for complex dependency modeling and multi-level

data structures.

Definition 2.1 (Directed Cycle in a SuperHypergraph). Let DSHn = (V,E) be a Directed

n-SuperHypergraph. A directed cycle is a sequence of distinct n-supervertices

v1, v2, . . . , vk (k ≥ 2)

for which there exist directed n-superhyperedges

e1, e2, . . . , ek ∈ E

satisfying

vi ∈ T (ei) and vi+1 ∈ H(ei), for i = 1, . . . , k,

with the convention vk+1 = v1.
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Definition 2.2 (Directed Acyclic SuperHypergraph (DASH)). A

Directed n-SuperHypergraph DSHn = (V,E) is called a Directed Acyclic SuperHypergraph

(DASH) if it contains no directed cycle (as in Definition 2.1).

Definition 2.3 (Incoming SuperHyperedge and Source). For a supervertex v ∈ V in a Directed

n-SuperHypergraph DSHn = (V,E), define its set of incoming superhyperedges by

In(v) := {e ∈ E | v ∈ H(e)}.

A supervertex v is called a source if

In(v) = ∅.

Example 2.4 (Directed Acyclic SuperHypergraph (DASH): Social Media Group Merging).

Let the base set of user groups be

V0 = {GA, GB, GC}.

We take n = 1, so our 1-supervertices are all nonempty subsets of V0:

V =
{
{GA}, {GB}, {GC}, {GA,GB}, {GB,GC}, {GA,GC}, {GA,GB,GC}

}
.

Define the set of directed superhyperedges E to model successive merge operations:

e1 =
(
{{GA}, {GB}}, {{GA,GB}}

)
,

e2 =
(
{{GB}, {GC}}, {{GB,GC}}

)
,

e3 =
(
{{GA,GB}, {GC}}, {{GA,GB,GC}}

)
,

e4 =
(
{{GA}, {GC}}, {{GA,GC}}

)
.

Here:

• e1 merges groups GA and GB.

• e2 merges groups GB and GC .

• e3 merges the combined group {GA, GB} with GC .

• e4 merges GA and GC .

No sequence of these superhyperedges forms a cycle, so DSH1 = (V,E) is a Directed Acyclic

SuperHypergraph.

Example 2.5 (Directed Acyclic SuperHypergraph (DASH): Manufacturing Assembly Pro-

cess). Let the base set of components be

V0 = {A, B, C},

where A,B,C denote basic parts. Taking n = 1, our 1-supervertices are the nonempty subsets

of V0:

V =
{
{A}, {B}, {C}, {A,B}, {B,C}, {A,B,C}

}
.

Takaaki Fujita, Directed Acyclic SuperHypergraphs (DASH): A General Framework for
Hierarchical Dependency Modeling



Neutrosophic Knowledge, Vol. 6, 2025 81 of 86

Define directed superhyperedges E to represent assembly steps:

e1 =
(
{{A}, {B}}, {{A,B}}

)
,

e2 =
(
{{B}, {C}}, {{B,C}}

)
,

e3 =
(
{{A,B}, {C}}, {{A,B,C}}

)
.

Here:

• e1 assembles parts A and B into subassembly AB.

• e2 assembles parts B and C into subassembly BC.

• e3 combines subassembly AB with part C to produce the final product ABC.

No directed sequence of these superhyperedges returns to a previous supervertex, so DSH1 =

(V,E) is a Directed Acyclic SuperHypergraph modeling the assembly process.

Theorem 2.6 (Existence of a Source). In any finite Directed Acyclic SuperHypergraph

DSHn = (V,E), there exists at least one supervertex v ∈ V with In(v) = ∅.

Proof. Assume, for the sake of contradiction, that every supervertex v ∈ V has at least one

incoming superhyperedge; that is, In(v) ̸= ∅ for all v ∈ V . Pick an arbitrary supervertex

v1 ∈ V . By assumption, there exists an edge e1 ∈ E such that v1 ∈ H(e1). Choose a

supervertex v2 ∈ T (e1). Again, since v2 has an incoming edge, there exists an edge e2 ∈ E

with v2 ∈ H(e2); choose v3 ∈ T (e2). Continue in this manner. Since V is finite, by the

pigeonhole principle, some vertex must eventually repeat. Let vi = vj for some i < j. Then

the sequence

vi, vi+1, . . . , vj = vi

forms a directed cycle, contradicting the acyclicity of DSHn. Hence, there must exist at least

one supervertex v with no incoming superhyperedges.

Theorem 2.7 (Topological Ordering). Every finite Directed Acyclic SuperHypergraph DSHn =

(V,E) admits a topological ordering of its supervertices.

Proof. We prove this by induction on the number of supervertices |V |.
Base Case: If |V | = 1, the unique ordering is trivial.

Inductive Step: Assume that every Directed Acyclic SuperHypergraph with fewer than

|V | supervertices has a topological ordering. By Theorem 2.6, there exists a source v ∈ V (i.e.,

In(v) = ∅). Remove v from DSHn along with all superhyperedges incident to v (that is, all

e ∈ E with v ∈ T (e) or v ∈ H(e)); denote the resulting Directed Acyclic SuperHypergraph

by DSH′
n = (V \ {v}, E′). By the induction hypothesis, DSH′

n has a topological ordering.

Prepending v to this ordering yields a topological ordering for the entire DSHn.
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Theorem 2.8 (Partial Order Induced by Reachability). Let DSHn = (V,E) be a Directed

Acyclic SuperHypergraph. Define a binary relation ≺ on V by declaring

u ≺ v if there exists a directed path from u to v.

Then, ≺ is a strict partial order on V .

Proof. We show that the relation ≺ is irreflexive, transitive, and asymmetric.

(i) Irreflexivity: Suppose, toward a contradiction, that v ≺ v for some v ∈ V . Then

there exists a directed path from v back to itself, which forms a directed cycle. This

contradicts the acyclicity of DSHn. Thus, v ̸≺ v for any v ∈ V .

(ii) Transitivity: If u ≺ v and v ≺ w, then there exist a directed path from u to v and

one from v to w. By concatenating these paths, we obtain a directed path from u to

w, so u ≺ w.

(iii) Asymmetry: Assume that u ≺ v. If it were also the case that v ≺ u, then by

transitivity we would have u ≺ u, contradicting irreflexivity. Hence, if u ≺ v then it

cannot be that v ≺ u.

Thus, ≺ is a strict partial order on V .

Theorem 2.9 (Generalization Property of Directed Acyclic SuperHypergraphs). Let

DASHn = (V,E) be a Directed Acyclic SuperHypergraph with base set V0 and n ≥ 0. Then:

(1) Every Directed Acyclic Hypergraph is a special case of a Directed Acyclic SuperHyper-

graph. In particular, if H = (V,E) is a Directed Acyclic Hypergraph, then by taking

V0 = V (so that P0(V0) = V ) and interpreting each hyperedge e ∈ E as a superhy-

peredge with tail T (e) and head H(e), we obtain a Directed Acyclic SuperHypergraph

isomorphic to H.

(2) Every Directed Acyclic Graph is a special case of a Directed Acyclic SuperHypergraph.

Specifically, if G = (V,E) is a Directed Acyclic Graph where each edge e is an ordered

pair (u, v), then by defining for each edge the corresponding superhyperedge with

T (e) = {u} and H(e) = {v},

the resulting structure is a Directed Acyclic SuperHypergraph isomorphic to G.

Proof. We prove the two statements separately.

(1) Directed Acyclic Hypergraph ⇒ Directed Acyclic SuperHypergraph:

Let H = (V,E) be a Directed Acyclic Hypergraph. By definition, V is a finite set and each

hyperedge e ∈ E is an ordered pair

e =
(
eT , eH

)
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with eT , eH ⊆ V . Note that setting n = 0 yields

P0(V0) = V0.

Choosing V0 = V guarantees that V ⊆ P0(V0). Now, interpret each hyperedge e ∈ E as a

superhyperedge in a Directed Acyclic SuperHypergraph DASH0 = (V,E) by keeping the same

tail and head sets:

T (e) = eT and H(e) = eH .

Since the acyclicity property is inherent in H, the resulting structure is acyclic and hence a

Directed Acyclic SuperHypergraph that is isomorphic to H.

(2) Directed Acyclic Graph ⇒ Directed Acyclic SuperHypergraph:

Let G = (V,E) be a Directed Acyclic Graph. Each edge e ∈ E is an ordered pair (u, v) with

u, v ∈ V . Again, taking n = 0 and V0 = V gives us V ⊆ P0(V0). For each edge e = (u, v) in G,

define a corresponding superhyperedge in the Directed Acyclic SuperHypergraph DASH0 =

(V,E′) by setting:

T (e) = {u} and H(e) = {v}.

The acyclic nature of G ensures that no directed cycle is introduced in the superhypergraph

representation. Therefore, G is isomorphic to a Directed Acyclic SuperHypergraph.
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