














where p(k) is the k-th prime: [ mean any number is between two consecutive primes.

For another example:
97 is between 23 and 29. thus 27=23+1, but 4 is between 3 and 5 therefore 4=3+1, therefore

27=234+341 in the SPB (a unique lepleseutahon)
Not allowed to say that 27 = 19 + 3 because 27 is not between 19 and 29 l)ut between

23 and 29.
The proof that all digits are 0 or 1 relies on the Chebyshev's theotem that between a
nuinber n and 2n there is at least a prime. Thus, between a prime ¢ and 2¢ there is as least

a prime. Thus 2p(k) > p(k + 1) where p(k) means the k-th prime.
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3. PROPOSED PROBLEM

Let p be a positive prime, and S(n) the Smarandache Function, defined as the smallest
integer such that S(n)! be divisible by n. The factorial of m is the product of all integers

from 1 to m. Prove that
S(pP) = ph

Solution by Alecu Stuparu, 0945 Balcesti, Valcea, Romania

Because p is prime and $(p”) must be divisible by p, one gets that S(p”) = p, or 2p. or
3p, etc.
More, S(p*) must be divisible by p?, therefore

S(P)y=p=p o p=(p+1), or pE(p+2), etc.

But the smallest one is p = p [because p = (p — 1)! is not divisible by p*, but by P
Therefore

S(P) = ph
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4. PROPOSED PROBLEM

Let $3f(n) be the triple Smarandache function. i.e. the smallest integer m such that m!!!
is divisible by n. Here m!! is the triple factorial, i.e. m!!! = m(m —3)(m —6)... the product
of all such pOsiti\e non-zero integers. For example S!!! = 3(3 — 3)(8 — 6) = 8(5)(2) = 80.
S3£(10) = 5 because 5! = 5(5 — 3) = 5(2) = 10, which is divisible by 10, and it is the
smallest one with this property. S3f(30) = 15,53f(9) = 6.53f(21) = 21.

Question: Prove that il n is divisible by 3 then S3f(n) is also divisible by 3.

Solution by K. L. Ramsharan, Madras, India

Let S3f(n) =m.

S3/(n)N! = m! has to be divisible by n according to the definition of this function, i.e.
m has to be a multiple of 3. because n is a multiple of 3. In m is not a multiple of 3, then
no factor of m!"! = m(m — 3)(m = 6)... will be a multiple of 3, therefore m!!! would not he

divisible by n. Absurd.

5. PROPOSED PROBLEM

Let Sdf(n) represent the Simarandache double [actorial function, i.e. the smallest positive
integer such that Sdf(n)!!is divisible by n, where double factorial m!! = 1 x3 x5 x ... xm
if mis odd, and m!' = 2 x4 x 6 x ... x m il m is even. Solve the diophantine equation
Sdf(x) = p. when p is prime. How many solutions are there?

Solution by Carlos Gustave Moreira, Rio de Janeiro, Brazil

For the equation Sdf(x) = p =prime, the number of solutions is > 2%, where k =
(1 —3)/2. The general solution of the equation Sdf(.r) = p =prime is p x m, where m is any
divisor of (p —2)!.

Let us consider the example for the Smarandache double factorial function Sdf{.r) = 17.
The solutions are 17 x m. where m is any divisor of (17 —2)!! which is equal to 3x5x 7x9x
HxI3x15 = (3')x(5%)xTx LI x 13 which has (44 1) x (24 1) x (14+ 1) x (L +1)x (1+1) = 120
divisor, therefore 120 solutions < 27 = 128.

The number of solutions is not 27 = 128 because some solutions were counted twice, for
example: 17 x 3 x 5 is the same as 17 x 15 or 17 x 3 x 15 is the same as 17 x 5 x 9.

Comment by Gilbert Johnson,
Red Rock State Park. Church Rock, Box 1228, NM 87311, USA
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How to determine the solutions and how to find a superior limit for the number of

solutions.

Using the definition of Sdf, we find that: p!lis divisible by .r, and pis the smallest positive
integer with this property. Because p is prime, r should be a multiple of p (otherwise p
would not be the smallest positive integer with that property). p!!is a multiple of x.
a)lfp=2, then r =2.
b)Ifp>2 thenpisodd and pl! =1 x3x 5% .. xp=.Mr (multiple of ).

Solutions are formed by all combinations of p, times none, one, or more factors from 3,
5 ey p—=2.

Let (p — 3)/2 = k and rC's represent combinations of s elements taken by r.

So: ,

- for one factor: p, we have 1 solution: x = p; i.e. 0C'k solution;
- for two factors:
pX3px5.,px(p=2)

we have & solutions:
r=px3,px5,..,px(p-2)

i.e. 1C'k solutions;
- for three factors:

PXIXEPXIX T pX3IX(P=2)ipX5XT,...ip X5 X (p=2)upx(p—4)x(p-2),
we have 2C'k solutions; etc. and so ou: - for k factors:
PXIXHIX.ox(p=12),

we have AC'k solutions.
Thus, the general solution has the form:

r=pXcpXepX .. X,

with all ¢; distinct integers and belonging to {3,5,....p— 2},0<j <k and k= (p-3)/2
The smallest solution is r = p, the largest solution is x = pll.

The total number of solutions is less than or equal to 0Ck + 1Ck+2Ck+ ...+ kCk = 2k,
where k= (p—3)/2.

Therefore, the number of solutions of this equation is equal to the number of divisors of
(p =2 :
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ON SOME PROBLEMS RELATED TO
SMARANDACHE NOTIONS

Edited by M. Perez

1. Problem of Number Theory by L. Seagull, Glendale Community College
Let n be a composite integer > -1 Prove that in between n and S(n) there exists at least

a prime number.
Solution:

T.Yau proved that the Smarandache Function has the foliowing property: S(n) < § for
any composite number n, because: if n = pq, with p < ¢ and (p,q) =1, then

. - . . 1
S(n)max(S(p), S(q) = S(¢) S q = = < ';
p =2

Now, using Bertrand-Tchebichev's theorem, we get that in between 5 and n there exists at
least a prime number.

2. Proposed Problem by Antony Begay

Let S(n) be the smallest integer number such that S(n)! is divisible by n, where m! =
1.2.3.....m (factoriel of m ), and S(1) = I (Smarandache Function). Prove that if p is
prime then S(p) = p. Calculate S(-12).

Solotion:

S(p) cannot be less than p, because if S(p) = n < p then n'=1.2.3.....nis not divisible
by p (p being prime). Thus S{p) > p. But pl = 1.23....pis divisible by p. and is the
smallest one with this property. Therefore S(p) = p.

42 = 2.3.7. 70 = 1.2.3.0.5.6.7 which is divisible by 2. by 3, and by 7. Thus S(12) < 7.
But §(:42) can not be less than 7, because for example 6! = 1.2.3..1.5.6 is not divisible by
Hence S(42) = 1T. ’

-1

3. Proposed Problem by Leonardo Motta
Let n be a square free integer, and p the largest prime which devides n. Show that

S(n) = p, where S(n) is the Smarandache Function, i.e. the smallest integer such that
S(n)!is divisible by n.
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Solution:

Because n is a square free number, there is no prime ¢ such that ¢? divides n. Thus n is
a product of distinct prime numbers, each one to the first power only. For example 105 is
squate free because 105=3.5.7 . i.e. 105is a product of distinct prime numbers, each of them
to the power 1 only. While 945 is not a square [ree number because 945 = 32.5.7, therefore
045 is divisible by 32 (which is 9, i.e. a square). Now, if we compute the Smarandache
Function S(105) = 7 because 7!=1.2.3.4.5.6.7 which is divisible by 3,5, and 7 in the same
time. and T is smallest number with this property. But S§(945) = 9, not 7. Therefore, if
no=ab... p, where all @ < b < ... < p are distinct two by two primes, then S(n) =

max(a.b,....p = p. because the factorial of p, the largest prime which divides n, includes
the factors @, b, ... in its development: p! =1..... a..... b..... 1.

4. Proposed Problem by Gilbert Johnson
Let Sdf(n) be the Smarandache Double Factorial Function, i.e. the smallest integer such
‘that Sdf(n)! is divisible by n, where m!l = 1.3.5.....m if m is odd and m!! = 2.4.6.....m

il m is even. If n is an even square free number and p the largest prime which divides n,
then Sdf(n) = 2p.

Solution:
Because n is even and square free, then n = 2.a.b.....p where all 2 < a < b<...<p
ave distinct primes two by two, occuring to the power 1 only. Sdf{n) cannot be less that 2p

because if it is 2p — k, with 1 < &k < 2p, then (2p — k)!! would not be divisible by p.

2t =2.4....(2a)..... (2h)..... (2p)

is divisible by n and it is the smallest number with this property.
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GENERALIZED SMARANDACHE PALINDROME
Edited by George Gregory, New York, USA

A Generalized Smarandache Palindrome is a number of the form: aya;...a,ap...aza; or
A1y, Ay yApln_y...azy, Where all ay,ay, ..., a, are positive integers of various number of
digits.

Examples:

a) 1235656312 is a GSP because we can group it as (12)(3)(56)(56)(3)(12), i.e. ABCCBA.
b) Of course, any inleger can be consider a GSP because we may consider the entire number
as equal to «y, which is smarandachely palindromic; say N = 176293 is GSP because we
may take a; = 176293 and thus N = a;. But one disregards this trivial case.

Very interesting GSP are formed from smarandacheian sequences.

Let us consider this one:

11,1221, 123321, ..., 123456789987654321,

1234567891010937654321, 123456 78910111110987654321, ...

all of them are GSP. :
It has been proven that 1234567891010937654321 is a prime (see

http: [ Jwww.kottke.org/notes/0103.html,

and the Prime Curios site). .
A question: How many other GSP are in the above sequence?
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ON 15-TH Sl\/IARANDACHE’S PROBLEM
Mladen V. Vassilev — Missana

5. V. Hugo Str., Sofia-1124. Bulgatia, e-mail: missana@abuv.by

Introduction

The 15-th Smarandache’s problem from [1] is the following: “Smarandache’s simple

numbers:
2.3.4,5,6.7.8,9,10, 11,13, L+, 15,17, 19, 21, 22, 23, 25, 26, 27, 29. 31, 33, ...

A number n is called “Smarandache’s simple number” if the product of its proper divisors
is less than or equal to n. Generally sl)eakillg. n has the form n = p, or n = p?, or n = p?,
or n = pq, where p and q are distinct primes”. ‘

Let us denote: by § - the sequence of all Smarandache’s simple numbers and by s, -
the n-th term of S; by P - the sequence of all primes and by p, - the n-th term of 7; by
P? - the sequence {p2}32,: by P? - the sequence {p}}3L,; by P& - the sequence {p-q}paer,
where p < q.

For an abitrary increasing sequence of natural numbers C = {ca}3%, we denote by
7c(n) the number of terms of C, which are not greater that n. When n < ¢; we must put
~we(n) =0.

[n the present paper we find m5(n) in an explicit form and using this, we find the n-th

term of .S in explicit form, too.
1. ms(n)-representation

First. we must note that instead of mp(n) we shall use the well known denotation x(n).
Hence
mpa(n) = m(y/n)., mpa(n) = a(In).
Thus, using the definition of §, we get
rs(n) = x(n) + 7(Vn) + 7(Vn) + 7pe(n). (1)

Our first aim is to express 7s(n) in an explicit form. For 7(n) some explicit formulae
are proposed in [2]. Other explicit [ormulae for m(n) are coutained in [3]. One of them is
known as Minaé¢'s formula. It is given below

k=04l (k=)
rin = (L, @
21— _

where [.] denotes the function integer part. Therefore, the question about explicit formulae
for functions m(n). 7(/n), () is solved successfully. It remains only to express mpo(n)
in an explicit form. »

Let k € {1,2,‘...,7r(\/;7)} he fixed. We consider all numbers of the kind py.q, where
q € P,q > pr for which py.q¢ < n. The number of these numbers is N(fk-) — m(px), or which

is the same
r(L) — k. (3)
Pk
When k = 1,2, ..., m(y/n), numbers pr.q, that were defined above, describe all numbers
of the kind p.q, where p,q € P,p < ¢,p.q < n. But the number of the last numbers is equeﬂ

to mpo(n). Hence

wmo
rpo(n) = Y _ (m(—) —k), (1)
k=1 P
because of (3). The equality (4), after a simple computation yields the formula
nm A
rpo(n) = Z K(l)————-————‘”(ﬁ)'(’ﬁﬁ)_’.l). (5)
k=1 Pk -
In [4] the identity
W Mo
m(—) =m(7).r{h) + m( ) (6)
Z; Pr b ; Pr )4k

is proved, under the condition b > 2 (b is a real number). When m(5) = (). the right

hand-side of (6) reduces to n(%).rr(b). In the case b = \/n and n > 1 equality (6) yields

Mmoo T )-mv/n) n
3= =)+ Y w(——). (7
i =t Pr(/m)+k

If we compare (3) with (7) we obtain for n > 1

m(3)-m(V/n)

nm(n)=_____—-—”(‘/’_')'(”_£‘/’7)_”+ S w(———). (8)
- k=1 Pa(/n)+k

Thus, we have two different explicit representations for mpg(n). These are formulae

2y aty/m)-1) "”‘;‘ 2= when

(5) and (8). We must note that the right hand-side of (8) reduces to

") = 7(Vin).
Finally, we observe that (1) gives an explicit representation for ms(n), since we may use

formula (2) for m(n) (or other explicit formulae for 7(n)) and (5), or (8) for mpo(n).
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2. Explicit formulae for s,

The {ollowing assettion decides the question abont explicit representalion of s,.

Theorem: The n-th term s, of S admits the following three different explicit representa-

tions: ot |
Sp = [—-———] (9)
= ms(k)
sw= =2 (=2, (10)
k=0
a(n)
1
Sp= ) ————— (11)
k=0 F [”b(L)])
where 5
B(n) = [ii-—ﬂi], n=1,2... (12)

¢ is Riemaun's function zeta and ' is Eulet’s function gamma.

Remark. We must note that in (9)-(11) ms(k) is given by (1), #(k) is given by (2) (or by
others formulae like (2)) and wpo(n) is given by (5), or by (8). Therefore, formulae (9)-(11)
are explicit.

Proof of the Theorem. Iu [2] the following three universal formulae are proposed, using
7e(k) (k= 0,1....), which one could apply to represent c,. They are the [ollowing

(13)

LZ l+[TC(,‘)]
o= -2%«—2["—‘}—’1): (14)
- 1 ,

5)

=y . (1

= (1 - (2eikdyy

[n [5] is shown that the inequality

P SOM), n=1.2,.... (16)
holds. Heuce
sp=Hfn)on =12 .., (17)
since we have obviously
S Spnon= 12,00 (18)
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Then to prove the Theorem it remains ouly to apply (13)-(15) in the case C' = S, ie., for

Cn = s,. putting there 7s(k) instead of m¢-(k) and 0(n) instead of o.
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ON THE SECOND SMARANDACHE’S PROBLEM
Krassimir T. Atanassov ’
CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgana,
e-fnzul. krat@bas.bg.

The second problem from [1] (see also 16-th problem {rom [2]) is the following:

Smarandache circular sequence:

234,72 2,412
+ 12,21.123,231,312, 1234, 2341, 3412, 4123,
2 3 4

12305, 23451 34512, 45123, 51234, 123456, 234561, 345612, 456123, 56 123-L 612345, ..

(i}

Let ][ be the largest natural number strongly smaller than real (positive) number .

For example, ]7.1[= 7. but J7[=G.
Let f(n) is the n-th member of the above sequence. We shall prove the following

Theorem: For every natural number n:

f(n) = s{s+ 1) k2. (s = 1), (1)
where
= k(n) ..]______"\""'1"1[ . (2)
and ik
s=s(n) = n—-—(——~_zil—)-. (3)

Proof: When n = 1. then [rom (1) and (2) it follows that k = 0, s = 1 and from (3) - that
J() =1 Let us assume that the assertion is valid for some natuml number n. Then for
n + I we have the following two possibilities:

1. k(n 4 1) = k(n), i.e.. k is the same as above. Then

Ko+ D(k(n+1)+1) - L(tz)(l(ll)+l)
9 - 9

k4

s(n) + 1,

s(n+1l)=n+1-

fn41)=(s+ 1) .kl2.s
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2 ok(n+1)=kn)+ 1. Then

.s(n+l)=n+l—l‘(n+l)(kg"+”+l). (4)

On the other hand, it is seen directly, that in (2) number @ is an integer if and
. +1
only if n = L”‘L_:__’ Also, for every natural numbers n and m > 1 such that

(5)

m—1m 1
(m _ ym cn< m(nt)-l- )

m(m+1)
S VLSS R
2
RATRAEIY

Vi ¥1-1
9

it will be valid that

[ = m.
Thevefore, when k(n + 1) = k(n) + 1, then
nz(n; ) 1

and for it from (1) we obtain: )
s(n+1)=1,

fn+1)=12..(n+1).

Therefore, the assertion is valid.
Let
Sy =" fli).
=1

Then, we shall use again formulae (2) and (3). Therefore,

: ~(~)—Zf(z)+ Z U,

i=p+1

where
_m(m+1)
=—

It can be seen directly, that

i=1 i=1 i

On the other hand, if s = n — p, then

n

Z f()=12(m+D+23 (m+ 1L+ s(s+1)m(m+ 112, (s—l)
i=p+1
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m+41

I IR IR I B RY

2

).10m=,

i=0
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