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(e D’Agostino test has been widely applied for testing the normality of the data. (e existing D’Agostino test cannot be applied
when the data have some indeterminate observations or observations which are obtained from the complex systems. In this paper,
we present a D’Agostino test under neutrosophic statistics.We propose the D’Agostino test to test the normality of the data having
indeterminate observations. (e design of the proposed test is given and implemented with the help of real data. From the
comparison, it is concluded that the proposed test is effective, adequate, and suitable to be applied in the presence
of indeterminacy.

1. Introduction

(e data obtained from various fields such as medical, phys-
iological, education, and chemical process are assumed to
follow the approximately normal distribution. (erefore, be-
fore some estimation and forecasting, the normality of the data
in hand is checked first. If the data follow the normal distri-
bution, the statistical techniques based on normal distribution
are used; otherwise, the nonparametric methods are applied for
the analysis of the data. Among many statistical tests, the
D’Agostino test has been widely applied for testing the nor-
mality of the data. (is test is used to test the null hypothesis
that the data do not significantly differ from the normal dis-
tribution versus the alternative hypothesis that the data sig-
nificantly differ from the normality. D’Agostino and Stephens
[1] introduced statistical tests when the data follow the normal
distribution. Öztuna et al. [2] studied the power of the test and
type-I error rate for various tests under normality assumptions.
Yap and Sim [3] discussed various statistical tests and showed
that the D’Agostino test has better power. Chen and Xia [4]
presented tests when data are nonnormal. Mishra et al. [5]
presented the descriptive statistic for the test. More details on
the statistical test for normality can be seen in [6–9].

(e traditional statistical tests are applied to test the hy-
pothesis that the data follow approximately normal distribution
with exact mean and variance. In some situations, such as the
measure of the water level, a lifetime of a product and melting
of a material cannot be expressed in the exact form and have
approximatemean and variances. In this case, the statistical test
using the fuzzy logic is preferable to apply for the analysis of the
data [10]. Hesamian and Akbari [11] presented the tests using
fuzzy logic. Chachi and Taheri [12] worked on the optimal test
using the fuzzy approach. Haktanır and Kahraman [13] dis-
cussed the role of tests in decision-making issues. For details,
the reader may refer to [14–24].

(e neutrosophic logic which is more efficient than the
fuzzy logic and interval-based analysis was proposed by
Smarandache [25]. (is logic estimates the measures of truth,
falsehood, and indeterminacy, while the fuzzy logic is unable to
estimate the measure of indeterminacy. More applications of
neutrosophic logic can be read in [26–36]. Based on the idea of
neutrosophic logic, Smarandache [37] introduced the de-
scriptive neutrosophic statistics which are applied for the
analysis of the data having indeterminate observations. Kan-
dasamy and Smarandache [38] introduced the neutrosophic
numbers for the first time. Chen et al. [39] applied the
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neutrosophic numbers in rock measuring. Aslam [40] intro-
duced a new branch of statistical quality control under neu-
trosophic statistics. Kolmogorov–Smirnov tests and Bartlett
and Hartley tests using neutrosophic statistics were developed
by Aslam [41, 42], respectively. More details on the application
of neutrosophic statistics can be seen in [43, 44].

Although the D’Agostino test under classical statistics is
available in the literature, the existing D’Agostino test
cannot be applied if observations are imprecise, vague, and
indeterminate. By exploring the literature and according to
the best of our knowledge, there is work on the D’Agostino
test. In this paper, we will propose and design the D’Ag-
ostino test under indeterminacy. (e operational process of
the proposed test is explained. (e application of the pro-
posed test will be given with the help of water data. We
expect that the proposed test will be informative and

adequate than the existing D’Agostino test under classical
statistics in the indeterminate environment.

2. Preliminary

Suppose that ai and biIN; INε[IL, IU] are determinate and
indeterminate parts of neutrosophic random variable
zN � ai + biIN; INϵ[IL, IU], i � 1, 2, . . . , nN, where nN de-
notes the neutrosophic sample size. (e values of zN reduce
to ai when IN � 0. Based on this information, compute the
neutrosophic average for variable zNϵ[zL, zU] as follows:

zN � a + bIN, INϵ IL, IU􏼂 􏼃, (1)

where a � (1/nN) 􏽐
nN

i�1 ai and b � (1/nN) 􏽐
nN

i�1 bi.
(e neutrosophic sum of squares (NSS) by following

[39] is computed as follows:
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, INϵ IL, IU􏼂 􏼃. (2)

3. Designof theProposedD’AgostinoTestunder
Neutrosophic Statistics

(e main objective is to design D’Agostino test under
neutrosophic statistics for testing the null hypothesis H0N

that the neutrosophic data follow the neutrosophic normal
distribution versus the alternative hypothesis H1N that the
data do not belong to the neutrosophic normal distribution.
(e acceptance of the null hypothesis means that the data are
not significantly away from the normal distribution. (e
operational procedure of the proposed test is stated as
follows.

Step 1: Compute the neutrosophic averages of lower
values ai(i � 1, 2, . . . , nL) and upper values
bi(i � 1, 2, . . . , nU) as follows: a � (1/nN) 􏽐

nN

i�1 ai and.
b � (1/nN) 􏽐

nN

i�1 bi.
Step 2: Find neutrosophic average as follows:

zN � a + bIN, INϵ IL, IU􏼂 􏼃. (3)

Step 3: (e neutrosophic sum of squares (NSS) by
following [39] is calculated using the following
expression:
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Step 4: Compute the neutrosophic numerator
TNϵ[TL, TU] of the proposed test as follows:

TN � 􏽘 iN −
nN + 1

2
􏼒 􏼓􏼒 􏼓XiNTNϵ TL, TU􏼂 􏼃, (5)

where iN denotes the rank of neutrosophic observations
XiN for ai(i � 1, 2, . . . , nL) and bi(i � 1, 2, . . . , nU).
Step 5: Compute the neutrosophic test statistic
DNϵ[DL, DU] of the proposed test as follows:

DN �
TN�����������������

n
3
N 􏽐

nN

i�1 zi − ziN( 􏼁
2

􏼐 􏼑

􏽱 , TNϵ TL, TU􏼂 􏼃, DNϵ DL, DU􏼂 􏼃.

(6)

Step 6: Decide the level of significance α and select the
critical values from the D’Agostino table. (e null
hypothesis will be accepted if DNϵ[DL, DU] lies within
the range of the tabulated values.
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4. Application for Portuguese Mineral Water

In this section, we will give the application of the proposed test
using the Portuguese mineral water (PMW) data. D’Urso and
Giordani [45] used the same data and analyzed them using
classical statistics. D’Urso and Giordani [45] conidered six
mineral concentrations such as six mineral concentrations of
HCO−

3 , CI
− , N+

a , C2+
a , SiO2, and pH. (e PMW data are re-

ported in Table 1. Table 1 clearly indicates that the data are
reported in intervals. Before any prediction or estimation is
given for the data, it is necessary to see that the data do not
significantly differ from the normal distribution. (erefore, we
will apply the proposed test on these data to test whether the six
variables are from the neutrosophic normal distribution or not.

(e necessary computations for PMW data are given in
the following steps.

Step 1:(e neutrosophic averages of lower values ai(i �

1, 2, . . . , nL) and upper values bi(i � 1, 2, . . . , nU) of
PMW data of five different types of water are given in
Table 2.
Step 2: (e neutrosophic averages zN; INϵ[0, 1]for the
water data are also shown in Table 2.
Step 3: (e values of NSS are given in Table 3 by
following [39]:
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Step 4: (e values TNϵ[TL, TU] and DNϵ[DL, DU] are
also shown in Table 3.
Step 5: Let α � 0.05; the range of the tabulated values is
0.2513, 0.2849. (e null hypothesis that the data follow
the normal distribution is accepted if DNϵ[DL, DU] is
within the range of the tabulated values.(e acceptance
or rejection of H0N is shown in Table 3. From Table 3, it
is clear that the PMW data for all waters do not follow
the neutrosophic normal distribution.

5. Comparative Study and Discussion

(e proposed D’Agostino test under neutrosophic statistics is
the extension of the D’Agostino test under classical statistics.

(e proposed test reduces to D’Agostino test under classical
statistics when DN � DL � 0. We compare the proposed test
with the existing D’Agostino test using the PMW data of five
types of water with the same values of α. (e values of statistic
D for the existing test and the proposed test along with the
measure of indeterminacy are shown in Table 4. From Table 4,
it can be seen that the proposed test statistic DNϵ[DL, DU] has
the results in the neutrosophic form with the probability of the
indeterminacy. On the contrary, the existing test provides only
the determined values of statistic D. For example, when
α� 0.05 and n.1, the null hypothesis H0N will accepted the
probability of 0.95, the chance to do not acceptH0N is 0.05, and
the probability of indeterminacy is 0.0621. From the proposed
test, it can be seen that 0.95+0.05+0.062> 1 which shows the
case of paraconsistent neutrosophic probability, see [37].

Table 1: (e PMW data.

Portuguese mineral
n. 1 n. 2 n. 3 n. 4 n. 5

ai bi ai bi ai bi ai bi ai bi

HCO−
3 21 41 113 119 2.2 4.2 8 11.6 4.6 5

CI− 7 9 16.5 17.5 3.6 4 4.1 4.7 6.6 7.4
N+

a 10 16 10.3 10.7 2.8 3.8 2.8 3.6 5.4 5.6
C2+

a 3 4 15 21 0.01 1.01 1.9 2.9 0.72 0.84
SiO2 23 29 13.7 14.9 1.01 7.8 5.8 6.8 16.7 18.3
pH 6.1 6.5 6.7 7.1 5.71 5.81 5.9 6 5.4 5.8

Table 2: Neutrosophic means of five different types of water.

Water aN bN zN

n. 1 11.68 17.58 [11.68, 29.26]
n. 2 29.2 31.7 [29.2, 60.9]
n. 3 2.55 4.43 [2.55, 6.98]
n. 4 4.75 5.93 [4.75, 10.68]
n. 5 5.57 7.15 [5.57, 12.72]
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On the contrary, the existing test provides only the determined
value which is not adequate when the data have interval,
uncertain, and indeterminate values or the data are obtained
from the complex system. From this comparison, it is con-
cluded that the proposed test provides the values of statistic in
the indeterminate interval, and this theory is the same as in
[39]. (erefore, the use of the proposed test is adequate under
an indeterminate environment.

6. Concluding Remarks

In this paper, we presented a D’Agostino test under neu-
trosophic statistics. We proposed the D’Agostino test to
test the normality of the data having indeterminate ob-
servations. (e design of the proposed test was given and
implemented with the help of real data. (e proposed test
was the extension of an existing D’Agostino test under
classical statistics. From the comparison, it was concluded
that the proposed test is effective, adequate, and suitable to
be applied in the presence of indeterminacy. (e devel-
opment of software for the proposed test will be a fruitful
area of research.(e application of the proposed test for big
datasets such as testing the normality of ocean data,
Facebook user data, and rail data can be considered as
future research.
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