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In this article, a repetitive sampling control chart for the gamma distribution under the indeterminate environment has been
presented. )e control chart coefficients, probability of in-control, probability of out-of-control, and average run lengths have
been determined under the assumption of the symmetrical property of the normal distribution using the neutrosophic interval
method. )e performance of the designed chart has been evaluated using the average run length measurements under different
process settings for an indeterminate environment. In-control and out-of-control nature of the proposed chart under different
levels of shifts have been described. )e comparison of the proposed chart has been made with the existing chart. A real-world
example from the healthcare department has been included for the practical application of the proposed chart. It has been
observed from the simulation study and real example that the proposed control chart is efficient in quick monitoring of the out-of-
control process. It can be concluded that the proposed control chart can be applied effectively in uncertainty.

1. Introduction

)e control chart is considered as the most efficient, fab-
ulous, and powerful tool of statistical process control. )e
control charts have been widely used in various fields.
Suman and Prajapati [1] discussed the application in the
healthcare department. Zaman et al. [2] applied a control
chart in the wind turbine field. Hossain et al. [3] discussed
the application of a control chart for monitoring the glass
fiber process. )e effectiveness and efficiency of the control
chart are judged by its reaction behavior against changes in
its designed parameters. )ere are two types of changes
observed in the control chart literature, i.e., common
changes and special changes. Common changes also known
as common causes are natural and have no threatening effect
on the interested quality characteristic as compared to the
special changes or special causes [4]. )e early and quick
detection of the special cause of variation is the prime
property of any control chart which not only detects the out-
of-control process quickly but also timely stops the process
from producing a bulk of defective items which ultimately

cause a bad impression for the producer and results in heavy
losses [5]. )e idea of the control chart was floated by
Shewhart during the 1920s [6], and researchers are en-
deavoring to propose a robust control chart since its in-
ception but remained unsuccessful. )e proposed chart is an
efficient struggle for the quick monitoring of the
manufacturing process. )e variable control chart is used
when the data obtained from the measurement process and
attribute control charts are applied when the data is obtained
from the counting process. Abbas et al. [7] proposed the
control chart for monitoring healthcare. Aslam et al. [8]
designed the control chart for the process capability index.
Nazir et al. [9] proposed the improved control chart for the
industrial processes. Saghir et al. [10] proposed the improved
control chart for modified gamma data. Saghir et al. [11]
incorporated auxiliary information and repetitive sampling
for the monitoring of the process.

Repetitive sampling scheme (RSS) is an efficient sam-
pling scheme for the statistical process control techniques
that attracted the attention of many researchers during the
last two decades. )e RSS was basically introduced by
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Sherman [12] in the attribute acceptance sampling plans.
)e acceptance sampling plans for the normal distribution
and the log-normal distribution using the variable RSS were
proposed by Balamurali et al. [13]. Later on, the RSS for the
variable acceptance sampling plan was developed by Bala-
murali and Jun [14]. )e efficiency of the RSS for the average
sample number is intermediate between the single sampling
scheme and the probability to ratio sampling scheme
Balamurali et al. [13]. Ahmad et al. [15] developed the
Shewhart X-bar control chart for the RSS for monitoring the
mean value of the process capability index Cp. Ahmad et al.
[15] applied the RSS for the efficient monitoring of the coal
quality. Azam et al. [16] developed plans for the exponen-
tially weighted moving average regression estimators. Re-
petitive sampling plans based on one-sided specifications
limits were presented by Yen et al. [17] Recently, Saghir et al.
[10] developed a repetitive control chart for exponentially
weighted moving average (EWMA) statistic using auxiliary
information for monitoring process means. During the last
few years, repetitive sampling has been explored by many
authors including Adeoti and Olaomi [18], Aslam et al. [19],
Aslam et al. [19], Aslam et al. [20], Balamurali and Jun [14],
Balamurali et al. [13], Jun et al. [21], Liu and Wu [22], and
Radhakrishnan and Sivakumaran [23].

In probability theory, the gamma distribution is con-
sidered as the family of two-parameter continuous proba-
bility distributions and is extremely useful in quality control
literature when used under appropriate conditions. )e
normal probability distribution which is also very common
in quality control literature but may lead to erroneous results
when the shape of the underlying observations or the var-
iable of quality of interest is unknown [24] or does not follow
the normal distribution [25]. Another reason in which the
normal distribution is inappropriate is the size of the col-
lected data, particularly the single size data. However, these
situations are handled by using the gamma distribution as an
excellent substitute for the normal distribution in the study
carried out by Khan et al. [26] and Saghir et al. [11]. In
general, the gamma distribution is very common in mod-
eling the waiting time of the events or modeling the failure
time of the systems or the processes of Aksoy [27] and Saghir
et al. [10]. Many other distributions such as chi-square
distribution, Erlang distribution, and exponential distribu-
tion are the special cases of the gamma distribution. For
larger values of the shape parameter, the gamma distribution
approaches to the normal probability distribution [28]. )e
gamma distribution is considered as a better approximation
of the interested quality characteristic when its distribution
is skewed [29, 28]. Many control charts have been developed
for monitoring the skewed statistic and proved to be effective
and useful, for example, Jearkpaporn et al. [30] developed a
monitoring scheme to detect a shift in the shape parameter,
Zhang et al. [31] developed the gamma chart based on the
random shift model for monitoring the out-of-control
process, Chen and Yeh [32] developed an X-bar chart for
nonnormal distribution using the gamma distribution, and
Gonzalez and Viles [33] presented the method to monitor
the variable quality characteristic using the r-chart under the
gamma distribution.

Several control chart schemes have been developed for
the processes having clear, certain, determined, and crisp
observations of the interested quality characteristic. )ere
are many situations when the observations are unclear,
uncertain, vague, indeterminate, incomplete, and fuzzy.
Bradshaw [34] developed a control chart for monitoring the
observations from the fuzzy set theory. Williams and Zigli
[35] proposed charts for fuzzy logic for the service industry.
Taleb and Limam [36] constructed procedures for moni-
toring of linguistic data based on probability and fuzzy
theory. Gülbay et al. [37] developed a fuzzy control chart for
linguistic data. Hsieh et al. [38] explained a Poisson-based
control chart for monitoring wafer defects for fuzzy theory.
Sorooshian [39] investigated the fuzzy theory for monitoring
attribute quality characteristics.

)e neutrosophic logic which is the extension of the
fuzzy logic was proposed by Smarandache [40]. )e neu-
trosophic provides information about the measure of in-
determinacy which fuzzy logic is unable to provide.
Smarandache [41] discussed the generalization of intui-
tionistic fuzzy logic. Smarandache [42] introduced neu-
trosophic theory using the generalization form of the fuzzy
set theory. Abu Qamar and Hassan [43] and Abu Qamar and
Hassan [44] discussed Q-neutrosophic with appellations in
decision-making. More information on the applications of
neutrosophic logic can be found in the study carried out by
Alhabib et al. [45], Abdel-Baset et al. [46], and Jana and Pal
[47].

Smarandache [48] introduced the generalized class of the
traditional statistics under the neutrosophic logic and called
it the neutrosophic statistics. )e neutrosophic statistics
tend to transform to the classical statistics if all the obser-
vations are clear, certain, complete, or determined. Chen
et al. [49] analyzed the scale effect and anisotropy for
neutrosophic numbers of rock joint roughness coefficient
based on neutrosophic statistics. Aslam [50] introduced a
new sampling plan for the indeterminate environment
under the process loss consideration. Aslam et al. [51]
studied the indeterminate environment for testing of
grouped product using the Weibull distribution. Aslam and
Raza [8] developed a novel neutrosophic sampling plan for
the multiple manufacturing lines using an exponentially
weighted moving average and classical process capability
index under the neutrosophic optimization solution
method. Recently, Aslam et al. [52] designed the control
chart for the gamma distribution using the indeterminate
environment. More information regarding the control
charts can be found in the study carried out by Intaramo and
Pongpullponsak [53], Charongrattanasakul and Pongpull-
ponsak [54], Panthong and Pongpullponsak [55], Aslam
et al. [29], Aslam et al. [56], Fernández [57], Khan et al. [26],
Aslam et al. [58], and Mashuri and Ahsan [59].

Average run length (ARL) is used very commonly in
control chart literature as the evaluation tool of any pro-
posed chart. ARL is defined as the average number of
samples falling inside the control limits before the process
shows an out-of-control condition Montgomery [4]. In a
statistically controlled process, the values of neutrosophic
ARL (NARL) must be larger, but for the shifted process, the
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smaller NARL values are preferred under the indeterminate
environment for quick indication of out-of-control process
and thus resulting in a smaller amount of defective items.
More information about ARL can be found in the study
carried out by Woodall [60], Molnau et al. [61], Kim [62],
Knoth [63], Li et al. [64], Chananet et al. [65], and Phanyaem
et al. [66].

In this article, a control chart scheme has been de-
veloped for a repetitive sampling scheme using the gamma
distribution for the indeterminate environment with the
objective that it will be an efficient monitoring scheme. To
the best of the author’s knowledge, no work has been done
on a repetitive sampling control chart for gamma distri-
bution using the indeterminate environment. )e rest of
the paper is organized as follows.)e Neutrosophic gamma
distribution is introduced in Section 2. )e design of the
proposed neutrosophic gamma distribution chart has been
given in Section 3. In Section 3, the control chart for
aN ∈ [3, 5] and bN ∈ [1.9, 2.1] and aN ∈ [5, 10] and
bN ∈ [1.45, 1.55] has been discussed. In addition, tables of
NARLs have been generated and the simulation study of
the neutrosophic statistics has been explained. In Section 4,
a comparison of the proposed chart with an existing chart
has been given. In Section 5, a real example has been
explained for the practical application of the proposed
chart. Conclusion and the direction for future research
have been given in the Section 6.

2. Neutrosophic Gamma Distribution

Let the neutrosophic failure time be TN ∈ [TL, TU], where
TL and TU represent the indeterminacy interval of lower and
upper failures of an item that follows the neutrosophic
gamma distribution with neutrosophic scale parameter
bN ∈ [bL, bU] and neutrosophic shape parameter
aN ∈ [aL, aU]. )en, the neutrosophic probability density
function (npdf) of the neutrosophic gamma distribution is
given as
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where Γ(x) describes the neutrosophic gamma function; for
more details, readers may refer to [20].

)e resultant neutrosophic cumulative distribution
(ncd) of the neutrosophic Gamma distribution (NGD) is
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It is to be noted that the NGD under the classic statistics
is the generalization of the traditional gamma distribution.
)e mean and variance of the neutrosophic statistics can be
written as
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To construct control chart, we need the neutrosophic
normal distribution which is developed using the approx-
imation developed by [67] as T∗N � T1/3

N andTN ∈ [TL, TU].
More information regarding neutrosophic distribution can
be found in the study carried out by Smarandache [48], Peng
and Dai [68], Peng and Dai [69], Aslam et al. [51], Aslam
et al. [51], Aslam and Raza [8], and Aslam [50]. )en, the
mean and variance of the transformed neutrosophic dis-
tribution T∗N ∈ [T∗L, T∗U] can be written as
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(4)

3. Design of the Proposed Control Chart

In this section, we described the designing of the proposed
neutrosophic control chart for the transformed variable
T∗N � T1/3

N , T∗N ∈ [TL, TU]. According toWilson and Hilferty
[67], the random variable T∗N � T1/3

N , T∗N ∈ [TL, TU], has the
symmetry property of the normal probability distribution.
We developed the neutrosophic control chart using the
neutrosophic statistical interval method under the condition
that the interested quality characteristic follows the NGD.

As mentioned by Wilson and Hilferty [67], the trans-
formed variableT∗N � T1/3

N , T∗N ∈ [TL, TU], has the symmetry
property of the neutrosophic normal distribution. We
propose the following control chart under the NISM when
the quality of interest follows the NGD. )e following two
steps have been adopted to develop the neutrosophic control
chart:

(1) Determine T∗N � T1/3
N , where T∗N is the transformed

random variable based on the randomly selected
items from the manufacturing process.

(2) Using control limits, plot T∗N; then, declare the
process as out-of-control when T∗N ≥UCL1N or
T∗N ≤ LCL1N, where LCL1N ∈ [LCL1L, LCL1U] and
UCL1N ∈ [UCL1L,UCL1U] are neutrosophic lower
and upper control limits, respectively. Note here that
the decision about the process is out-of-control and
is taken if T∗N is beyond the outer of neutrosophic
control limits.

)e proposed neutrosophic control chart under the
neutrosophic statistical interval method is the extension of
the Sheu and Lin [70] control chart under the classical
statistics. )e proposed chart converts to Sheu and Lin [70]
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control chart when developed under the crisp, complete, or
certain observations. Let the process lie in-control state
under the neutrosophic scale parameter b0N ∈ [b0L, b0U].

)en, the control limits of the proposed neutrosophic
control chart can be developed as
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where k1N ∈ [k1L, k1U] and k2N ∈ [k2L, k2U] are the neu-
trosophic control limit coefficients.

Furthermore, we define
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)erefore, the neutrosophic control limits can be written
as follows:
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For a shifted process, note that a shift occurs in the
neutrosophic scale parameter, whereas the shape parameter
remains constant. )en, the probability under the neu-
trosophic statistical interval method of the in-control pro-
cess when the process shows the state of in-control can be
calculated as
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)e probability of out-of-control under neutrosophic
statistics is given by

P
0
out �

P
0
out,N

1 − P
0
rep,N

. (10)
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As mentioned earlier the ARL is used to evaluate the
developed scheme for its efficiency to declare the shifted
process as out-of-control quickly. So, the neutrosophic ARL
(NARL) for the in-control process ARL0N can be defined as

ARL0N �
1

P
0
out

; ARL0N ∈ ARL0L,ARL0U . (11)

We will measure the efficiency of the proposed control
chart under the neutrosophic average run length (NARL)
which shows on the average when the process is out-of-
control and is defined by

ARL0N �
1
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Let a shift occur in the process; then, the process is
shifted from the targeted b0N ∈ [b0L, b0U] to
b1N � cb0N, b1N ∈ [b1L, b1U], where the constant c shows the
shift in the process. )en, the probability of the out-of-
process under the neutrosophic statistical interval method
can be developed as
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)e probability of out-of-control under neutrosophic
statistics for the shifted process is given by

P
1
out �

P
1
out,N

1 − P
1
rep,N

. (15)

)us, the NARL for the shifted process ARL1N is defined
as

ARL1N �
1

P
1
out,N

; ARL1N ∈ ARL1L,ARL1U . (16)

Using the abovementioned equations, the R-language
code program was written to estimate the neutrosophic
parameters of the proposed chart for different process set-
tings. Tables 1 and 2 have been generated for aN ∈ [3, 5] and
bN ∈ [1.9, 2.1] and aN ∈ [5, 10] and bN ∈ [1.45, 1.55] with
NARL values for different shifts from 1.0 to 4.0.

Table 1 provides NARL values for the in-control
NARL0 � 200, 300, and 370 with
kaN � [4.594878, 5.233344], [5.282686, 5.430229], and
[5.000939, 5.409798] and krN � [1.527915, 2.881848],
[0.3242994, 2.66222], and [0.9223276, 4.060355]. Figure 1
has been given for the plotting of aN ∈ [3, 5] and
bN ∈ [1.9, 2.1].

From Tables 1 and 2, we made the following trends in
NARL:

(1) As the values of the shift c increase from 1.0 to 4.0,
the indeterminacy intervals
ARL1N ∈ [ARL1L,ARL1U] decrease

(2) As the values of aN ∈ [aL, aU] and bN ∈ [bL, bU]

increase from aN ∈ [3, 5] and bN ∈ [1.9, 2.1] to

aN ∈ [5, 10] and bN ∈ [1.45, 1.55], the indetermi-
nacy intervals decrease

4. Comparison of the Proposed Chart with the
Existing Chart

In this section, the comparative advantages and efficiency of
the proposed chart over the existing chart of the traditional
chart for gamma distribution under the indeterminacy
environment have been discussed with the help of the
simulated data. For the purpose of fair comparison, we fixed
the same values of the process parameters. Table 3 shows the
in-control NARL0 and out-of-control NARL1 values for
different shifts from 1.0 to 4.0.

A simple comparison shows that the proposed chart has
smaller NARL1 values as compared to the existing chart [52].
From example, when c � 1.1, the indeterminacy intervals of
NARL for the existing chart is ARL1N ∈ [89.86, 101.98] and
for the proposed chart is ARL1N ∈ [80.02, 86.99]. From this
comparison, it can be concluded that the proposed control
chart will indicate the shift in the process between 80th to
86th samples. On the contrary, the chart proposed by Aslam
et al. [8] will indicate the shift in the process between 89th

and 101st samples. )erefore, the proposed control chart has
the ability to detect a shift in the process earlier than the
existing control chart.

We will now discuss the efficiency of the proposed
control chart over the existing control chart using the
simulated data. According to the proposed chart, the process
is said to out-of-control if T∗N ≥UCL1N or T∗N ≤ LCL1N. )e
first 20 observations are generated from the neutrosophic
gamma distribution when the process is an in-control state.
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)enext 20 observations are from the out-of-control process
when c � 1.4. )e proposed control chart for simulated data
is shown in Figure 1. )e existing control chart for the
simulated data is shown in Figure 2. From Table 1, it is
expected that the shift should be detected between 16th

sample to 22nd sample. From Figure 1, it can be seen that the
proposed control chart detects a shift in the process
according to expectation.)e determinate part (lower value)
of the statistic T∗N is beyond UCL1N between 16th samples to
22nd sample. We also note that several observations are
within indeterminacy interval and resampling areas. On the
contrary, the existing control chart does not show any shift
in the process. From this simulation study, it is concluded
that the proposed chart has the ability to detect a shift in the
process as compared to the existing control chart.

5. Application of the Proposed Chart

In this section, we will discuss the application of the pro-
posed control chart in the healthcare department. A large
hospital management is interested to track the urinary tract
infections (UTIs) patients. According to Santiago and Smith
[71], “data were provided from a large hospital system
concerned with a very high rate of hospital-acquired UTIs.
Specifically, the hospital would like to track the frequency of
patients being discharged who had acquired a UTI while in
the hospital as a way to quickly identify an increase in in-
fection rate or, conversely, monitor whether the forth-
coming process or material changes result in fewer
infections because the root cause often differs based on
gender, male and female patients.” )e UTIs’ data of male

Table 1: Neutrosophic average run length of the proposed chart for aN ∈ [3, 5] and bN ∈ [1.9, 2.1].

kaN [4.594878, 5.233344] [5.282686, 5.430229] [5.000939, 5.409798]
krN [1.527915, 2.881848] [0.3242994, 2.66222] [0.9223276, 4.060355]
aN [3, 5] [3, 5] [3, 5]
bN [1.9, 2.1] [1.9, 2.1] [1.9, 2.1]
c ARLN
1.0 [200, 200.01] [300.01, 300] [370, 370]
1.1 [80.02, 86.99] [101.62, 111.28] [149.4, 138.84]
1.2 [37.51, 43.40] [41.19, 48.86] [71.14, 61.11]
1.3 [19.92, 24.14] [19.33, 24.49] [38.39, 30.54]
1.4 [11.71, 14.68] [10.28, 13.69] [22.84, 16.95]
1.5 [7.50, 9.62] [6.11, 8.40] [14.7, 10.29]
1.6 [5.18, 6.72] [4.01, 5.58] [10.1, 6.75]
1.7 [3.81, 4.96] [2.88, 3.99] [7.32, 4.75]
1.8 [2.97, 3.85] [2.23, 3.03] [5.56, 3.55]
1.9 [2.42, 3.11] [1.84, 2.43] [4.39, 2.80]
2.0 [2.05, 2.60] [1.59, 2.03] [3.58, 2.31]
2.3 [1.55, 1.88] [1.28, 1.51] [2.44, 1.66]
2.5 [1.32, 1.54] [1.15, 1.29] [1.88, 1.37]
2.8 [1.18, 1.33] [1.08, 1.16] [1.53, 1.21]
3.0 [1.13, 1.25] [1.06, 1.11] [1.39, 1.15]
4.0 [1.03, 1.08] [1.01, 1.03] [1.12, 1.04]

Table 2: Neutrosophic average run length of the proposed chart for aN ∈ [5, 10] and bN ∈ [1.45, 1.55].

kaN [4.006202, 4.571112] [3.939843, 4.788404] [4.14799, 4.867394]
krN [1.086602, 2.200099] [2.939107, 1.818469] [1.414571, 1.799174]
aN [5, 10] [5, 10] [5, 10]
bN [1.45, 1.55] [1.45, 1.55] [1.45, 1.55]
c ARLN
1.0 [200.01, 200] [300.01, 300.01] [370, 370.02]
1.1 [58.89, 72.91] [77.12, 125.12] [91.79, 130.98]
1.2 [21.72, 31.51] [25.26, 61.28] [29.13, 55.15]
1.3 [9.65, 15.64] [10.15, 33.91] [11.36, 26.64]
1.4 [5.06, 8.74] [4.93, 20.64] [5.36, 14.42]
1.5 [3.09, 5.42] [2.87, 13.56] [3.04, 8.60]
1.6 [2.15, 3.68] [1.97, 9.48] [2.04, 5.60]
1.7 [1.68, 2.72] [1.53, 6.98] [1.57, 3.93]
1.8 [1.42, 2.15] [1.31, 5.37] [1.33, 2.95]
1.9 [1.27, 1.79] [1.19, 4.29] [1.20, 2.35]
2.0 [1.18, 1.57] [1.12, 3.54] [1.12, 1.96]
2.3 [1.07, 1.27] [1.04, 2.45] [1.04, 1.46]
2.5 [1.03, 1.15] [1.02, 1.90] [1.02, 1.25]
2.8 [1.01, 1.08] [1.01, 1.56] [1.01, 1.13]
3.0 [1.01, 1.05] [1, 1.42] [1, 1.09]
4.0 [1, 1.01] [1, 1.13] [1, 1.02]
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patients are selected from [8] and shown in Table 4. From the
UTIs’ data, it is clear that the data is presented in the interval.
)erefore, the existing control chart proposed by [71] cannot
apply for the monitoring of UTIs patients. )e hospital
management can apply the proposed control chart for
tracking UTIs patients. Suppose that ARL0N ∈ [370, 370],
aN ∈ [7.6666, 7.7777], bN ∈ [1.0959, 1.1559], and
nN ∈ [50, 50]. )e control limit coefficients are
k1N ∈ [3.3590, 3.7703] and k2N ∈ [0.1637, 2.0479]. Figure 3
shows the proposed control chart for UTIs patients. From
Figure 3, it can be seen that two points are outside the upper
control limits. Aslam et al. [8] presented a control chart for
UTIs data. )e neutrosophic control chart proposed by

Aslam et al. [8] shows that all points are within the control
limits. In addition, it can be noted from the proposed chart that
several points are within the indeterminacy interval and be-
tween repetitive areas. It means that the hospital management
can be indeterminate about the several observations in the
UTIs data and need to repeat the process from those obser-
vations in the repetitive areas. By comparing the proposed
UTIs chart with the UTIs chart proposed by Aslam et al. [8], it
can be concluded that the proposed control chart clearly in-
dicates some issues in tracking the UTIs’ patient, and therefore,
the hospital management should take action to bring back the
process to in-control state. )e proposed control chart can be
applied to any other data in the same way.

xU
xL

UCL1U = 27.1238

UCL1L = 18.8307

UCL2U = 13.9249

UCL2L = 5.9478

LCL1L = 0.0391 LCL1U = 0.0016
LCL2L = 0.9023

Simulated data
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Figure 1: )e proposed control for simulated data when aN ∈ [3, 5], bN ∈ [1.9, 2.1], nN ∈ [20, 20], k1N ∈ [4.5948, 5.2333], and k2N ∈
[1.5279, 2.8818].

Table 3: Comparison of proposed control chart with neutrosophic Shewhart control chart.

Existing Proposed Existing Proposed Existing Proposed
[200, 200] [200, 200.01] [300, 300] [300.01, 300] [370.01, 370.01] [370, 370]
[89.86, 101.98] [80.02, 86.99] [128.26, 146.33] [101.62, 111.28] [154.21, 176.4] [138.84, 149.4]
[47.25, 58.86] [37.51, 43.40] [64.73, 81.41] [41.19, 48.86] [76.20, 96.30] [61.11, 71.14]
[27.98, 37.33] [19.92, 24.14] [37.02, 50.05] [19.33, 24.49] [42.82, 58.27] [30.54, 38.39]
[18.15, 25.47] [11.71, 14.68] [23.32, 33.26] [10.28, 13.69] [26.57, 38.20] [16.95, 22.84]
[12.64, 18.42] [7.50, 9.62] [15.84, 23.51] [6.11, 8.40] [17.82, 26.68] [10.29, 14.70]
[9.32, 13.95] [5.18, 6.72] [11.43, 17.45] [4.01, 5.58] [12.72, 19.61] [6.75, 10.1]
[7.2, 10.97] [3.81, 4.96] [8.66, 13.49] [2.88, 3.99] [9.54, 15.02] [4.75, 7.32]
[5.77, 8.90] [2.97, 3.85] [6.83, 10.77] [2.23, 3.03] [7.46, 11.90] [3.55, 5.56]
[4.77, 7.41] [2.42, 3.11] [5.56, 8.85] [1.84, 2.43] [6.03, 9.70] [2.80, 4.39]
[4.04, 6.30] [2.05, 2.60] [4.65, 7.43] [1.59, 2.03] [5.01, 8.10] [2.31, 3.58]
[2.92, 4.53] [1.55, 1.88] [3.27, 5.21] [1.28, 1.51] [3.47, 5.61] [1.66, 2.44]
[2.30, 3.52] [1.32, 1.54] [2.53, 3.97] [1.15, 1.29] [2.66, 4.23] [1.37, 1.88]
[1.88, 2.80] [1.18, 1.33] [2.02, 3.10] [1.08, 1.16] [2.10, 3.27] [1.21, 1.53]
[1.69, 2.48] [1.13, 1.25] [1.81, 2.72] [1.06, 1.11] [1.87, 2.85] [1.15, 1.39]
[1.27, 1.69] [1.03, 1.08] [1.31, 1.79] [1.01, 1.03] [1.33, 1.85] [1.04, 1.12]
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Figure 2: )e existing control chart for simulated data when aN ∈ [3, 5], bN ∈ [1.9, 2.1], nN ∈ [20, 20], k1N ∈ [4.5948, 5.2333], and
k2N ∈ [1.5279, 2.8818].

Table 4: )e neutrosophic UTIs’ data.

Sr# TN T∗N

1 [13.13, 13.56] [2.35, 2.38]
2 [3.57, 15.55] [1.52, 2.49]
3 [4.31, 16.50] [1.62, 2.54]
4 [2.76, 25.53] [1.40, 2.94]
5 [7.75, 15.38] [1.97, 2.48]
6 [11.45, 13.18] [2.25, 2.36]
7 [9.20, 15.18] [2.09, 2.47]
8 [5.51, 9.77] [1.76, 2.13]
9 [8.18, 13.07] [2.01, 2.35]
10 [7.07, 19.91] [1.91, 2.71]
11 [7.35, 14.89] [1.94, 2.46]
12 [5.62, 11.09] [1.77, 2.23]
13 [8.38, 16.72] [2.03, 2.55]
14 [9.49, 10.06] [2.11, 2.15]
15 [4.90, 23.67] [1.69, 2.87]
16 [4.45, 14.68] [1.64, 2.44]
17 [7.11, 16.44] [1.92, 2.54]
18 [9.37, 15.95] [2.10, 2.51]
19 [12.00, 16.38] [2.28, 2.53]
20 [7.41, 16.62] [1.95, 2.55]
21 [10.64, 15.15] [2.19, 2.47]
22 [6.63, 11.21] [1.87, 2.23]
23 [2.87, 14.27] [1.42, 2.42]
24 [6.87, 10.37] [1.90, 2.18]
25 [6.16, 18.85] [1.83, 2.66]
26 [6.53, 12.47] [1.87, 2.31]
27 [6.85, 12.13] [1.89, 2.29]
28 [8.08, 22.69] [2.00, 2.83]
29 [11.61, 17.14] [2.26, 2.57]
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6. Concluding Remarks

In this article, we presented the control chart using repetitive
sampling under neutrosophic statistics when the data follow
the gamma distribution. We presented some necessary
measures to evaluate the proposed control chart. A simu-
lation study and real example from the healthcare were
included to show the efficiency of the proposed control chart

over the existing control chart. From the study, it is observed
that the proposed chart is an efficient addition in the tool kit
of the quality control personnel. )e proposed scheme can
be extended for the multivariate case as future research. )e
proposed control using some other transformation for
nonnormal distribution and different datasets can be con-
sidered as future research. )e proposed chart using the cost
model can be studied as future research. )e proposed
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Figure 3: )e proposed control chart for UTIs’ patients.

Table 4: Continued.

Sr# TN T∗N

30 [3.98, 17.16] [1.58, 2.57]
31 [6.81, 17.25] [1.89, 2.58]
32 [4.42, 12.53] [1.64, 2.32]
33 [6.53, 13.96] [1.86, 2.40]
34 [8.73, 9.30] [2.05, 2.10]
35 [5.37, 9.43] [1.75, 2.11]
36 [8.44, 6.35] [2.03, 1.85]
37 [11.79, 17.01] [2.27, 2.57]
38 [5.33, 14.90] [1.74, 2.46]
39 [4.20, 21.20] [1.61, 2.76]
40 [5.74, 11.95] [1.79, 2.28]
41 [5.24, 11.09] [1.73, 2.23]
42 [5.10, 10.10] [1.72, 2.16]
43 [9.11, 24.54] [2.08, 2.90]
44 [8.39, 10.21] [2.03, 2.16]
45 [5.33, 18.03] [1.74, 2.62]
46 [7.90, 11.43] [1.99, 2.25]
47 [3.62, 13.00] [1.53, 2.35]
48 [5.01, 13.62] [1.71, 2.38]
49 [4.09, 12.88] [1.60, 2.34]
50 [9.38, 17.45] [2.10, 2.59]
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control chart for monitoring imbalanced data can be con-
sidered as future research.
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