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&e W/S test under neutrosophic statistics is proposed in this paper. &e Monte Carlo simulation under the neutrosophic
statistical interval method is proposed and applied to study the sensitivity of various neutrosophic statistical distributions. &e
power of test curves for neutrosophic distributions is presented. &e efficiency of the proposed W/S test under neutrosophic
statistics is compared with that of the W/S test under classical statistics. &e proposed test is explained with the aid of an example.

1. Introduction

&e statistical tools are very important to achieve useful
information from the data. Before discovering the useful
information from the data in hand, it is necessary to check
the behavior of the data. Several statistical tests including t-
test, analysis of variance test, and Kruskal–Wallis test have
been widely applied for testing the symmetry or asymmetry
assumptions of the data. For the earlier case, the tests are
applied to assume the normality, see [1]. On the other hand,
for the latter case, the tests based on nonnormal distribu-
tions or nonparametric tests are selected.&e sample size has
a significant effect on the selection of the test for the data
analysis. &e tests under the normality assumptions cannot
be applied for small sample size [2]. More details about the
statistical analysis can be seen in [3, 4].

&e W/S test for testing the normality assumption of the
data was proposed by Shapiro and Wilk and later on
modified by Shapiro and Francia, see [5–9] for more details.
Note here that W and S are the range and standard deviation
of the data, respectively. Although the W/S test is much
simpler than Fisher’s cumulant test, it is seldom applied for
the testing of normality of the data because of its sensitivity
for nonnormal statistical distributions. A detailed study on
the W/S test can be seen in [9].

&e existing W/S test under classical statistics (CS) is
applied for testing the normality of the data when all ob-
servations in the data are determined, precise and exact. As
mentioned by [10, 11], “quite often the results of an ex-
periment are imprecisely observed because of the significant
measurement error or are so uncertain that they are
recorded as intervals containing the precise outcomes.
Moreover, sometimes the exact value of a variable is hidden
deliberately for some confidentiality reasons.” &e various
problems related to interval data in regression are given by
[12], in time series by [13], in principle components by [14],
in classification by [15], in the analysis of variance by [16],
and testing of the hypothesis by [17]. &e fuzzy logic is an
alternative to analyze the data given in interval. &e authors
of [18–20] applied the fuzzy sets for modeling the interval
data.

Recently, neutrosophic logic developed by [21] attracted
researchers due to its flexibility and generalization over the
fuzzy logic. Several authors worked using neutrosophic logic
in a variety of fields, see [22–26]. Based on the neutrosophic
logic, Smarandache [27] introduced the idea of neutrosophic
statistics (NS). &e NS is an extension of CS and applied if
observations are imprecise, indeterminate, and neu-
trosophic. &e authors of [28, 29] analyzed the neutrosophic
data in rock measuring problems. Aslam introduced the NS
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in statistical quality control (SQC), the statistical test using
NS the first time, the analysis of variance method under NS,
the test of outliers using the NS, and the tests of homogeneity
of variance for uncertainty environment [30–34]. For in-
formation on NS, the reader may refer to [35, 36].

As mentioned above, several authors worked on theW/S
test using CS and fuzzy logic. To the best of our knowledge,
there is no work on the W/S test under NS. In this paper, we
will propose the W/S test and introduce the Monte Carlo
simulation under the neutrosophic statistical interval
method (NSIM). We will discuss the sensitivity of the
proposed W/S test for various neutrosophic statistical dis-
tributions. We expect that the proposed W/S test will be
more effective than the W/S test under CS in indeterminacy.

2. The W/S Test under NS

&e tests under CS are applied under the assumption that the
random sample having determined observations is drawn
from the normal population. However, in practice, as
mentioned above, it may not be possible that all observations
are determined or exact. In such cases, the tests under CS
cannot be applied for testing the normality of the data.
&erefore, the tests under CS can be replaced with the tests
under NS. In the next section, we present the methodology
of the proposed W/S test under NS.

2.1. Method of the W/S Test under NS. &e main aim of the
proposed W/S test is to check whether the data follows the
neutrosophic normal distribution or not. Furthermore, we
will discuss the sensitivity of the proposed W/S test under
various statistical distributions. &e proposed test will be an
application under the assumption that the random variable
is selected from the neutrosophic normal distribution.
Furthermore, it is assumed that the data contain the neu-
trosophic numbers. Based on this information, the neu-
trosophic null, say H0Nϵ[H0L, H0U], and alternative
hypothesis, say H1Nϵ[H1L, H1U], for the proposed test are
stated as follows:

H0Nϵ[H0L, H0U]: the neutrosophic normal distribu-
tion is suitable for the neutrosophic data
H1Nϵ[H1L, H1U]: the neutrosophic normal distribu-
tion is not suitable for the neutrosophic data

&e null hypothesis H0Nϵ[H0L, H0U] will be accepted if
the calculated values fall within the indeterminacy interval of
critical values; otherwise, H1Nϵ[H1L, H1U] will be accepted.
Let WNϵ[WL, WU] and SNϵ[SL, SU] are the neutrosophic
range (NR) and neutrosophic standard deviation (NSD) of
the neutrosophic random sample XNiϵ[XLi, XUi], i �

1, 2, 3, . . . , nN, where nNϵ[nL, nU] be the size of XNiϵ
[XLi, XUi]. &e NR is defined as follows:

WN � XmN − X0N,

WN ϵ WL, WU ,

XmNϵ XmL, XmU ,

X0Nϵ X0L, X0U ,

(1)

where XmNϵ[XmL, XmU] and X0Nϵ[X0L, X0U] represent the
neutrosophic maximum and minimum values of the data.

&e neutrosophic form of WN ϵ[WL, WU] can be given
by

WN � WL + WUIN; INϵ IL, IU . (2)

Note here that WL and WUIN are determinate and
indeterminate parts of WN ϵ[WL, WU], where INϵ[IL, IU]

denotes the indeterminacy interval. WN ϵ[WL, WU] reduces
to range under CS when IL � 0.

&e NSD is defined as follows:

SN �

��������������


nN

i�1 XNi − XNi( 

nN − 1



,

SNϵ SL, SU ,

XNiϵ XLi, XUi ,

nNϵ nL, nU .

(3)

&e neutrosophic form of SNϵ[SL, SU] can be given by

SN � SL + SUIN; INϵ IL, IU . (4)

Note here that SL and SUIN are determinate and inde-
terminate parts of SN ϵ[SL, SU], where INϵ[IL, IU] denotes
the indeterminacy interval. SNϵ[SL, SU] reduces to standard
deviation under CS when IL � 0. Also, let XNiϵ[XLi, XUi] be
the neutrosophic sample mean and is given as follows:

XNi �


nN

i�1 XNi

nN

,

XNiϵ XLi, XUi ,

nNϵ nL, nU .

(5)

&e neutrosophic form of XNiϵ[XLi, XUi] can be given
by

XNi � XLi + XUiIN; INϵ IL, IU . (6)

Note here that SL and SUIN are determinate and inde-
terminate parts of XNiϵ[XLi, XUi], where INϵ[IL, IU] de-
notes the indeterminacy interval. XNiϵ[XLi, XUi] reduces to
sample mean under CS when IL � 0.

Based on this information, we define the test statistic, say
QNϵ[QL, QU], for the W/S test under neutrosophic statistics
as follows:

QN �
WN

SN

,

QNϵ QL, QU ,

WN ϵ WL, WU ,

SNϵ SL, SU .

(7)

&e neutrosophic form of statistic QNϵ[QL, QU] can be
given by
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QN � QL + QUIN; INϵ IL, IU . (8)

Note here that SL and SUIN are determinate and inde-
terminate parts of QNϵ[QL, QU], where INϵ[IL, IU] denotes
the indeterminacy interval. QNϵ[QL, QU] reduces to statistic
under CS when IL � 0. H0Nϵ[H0L, H0U] will be accepted if
the calculated neutrosophic values of QNϵ[QL, QU] are
within the indeterminacy interval of critical values; other-
wise, H0Nϵ[H0L, H0U] will be rejected.

2.2. Error Rate of the Proposed Test. As XNiϵ[XLi, XUi] is
drawn from the unknown distribution, the sensitivity of the
proposed test will be studied using the error rate. &e error
rate is defined as the ratio of wrong conclusions to the
number of replications of the neutrosophic sample. &e
error rate is denoted by βNϵ[βL, βU] which is defined as the
probability of accepting H0Nϵ[H0L, H0U] when it is actually
false. &e sensitivity of the proposed test will be discussed
with the help of the power of the test. &e power of the test is
defined as follows:

Power � 1 − βN � PrN rejectH0Nϵ H0L, H0U (

· H1N

 ϵ H1L, H1U  is true; βNϵ βL, βU .

(9)

2.3. Neutrosophic Monte Carlo Simulation. &e following
neutrosophicMonte Carlo (NMC) simulation will be used to
evaluate the performance of the proposed W/S test:

Step 1: fix the neutrosophic parameters for the specified
distribution
Step 2: generate random numbers of size nNϵ[nL, nU]

from the specified distributions
Step 3: calculate WN ϵ[WL, WU] and SNϵ[SL, SU] and
compute the test statistic QNϵ[QL, QU]

Step 4: compute βNϵ[βL, βU] by the ratio of the wrong
conclusion to the number of replicates, 100
Step 5: calculate the power of the test and plot it

3. Data Analysis

Now, we will explain the methodology of the proposed test
with the help of NMC simulation data. &e data are
generated from the Weibull distribution with neutrosophic
shape parameter [2.5, 3] and neutrosophic scale parameter
[5, 7]. &e neutrosophic data from the neutrosophic
Weibull distribution are given in Table 1. &e neutrosophic
range WN ϵ[WL, WU] and standard deviation SNϵ[SL, SU]

for each sample are shown in Table 2. &e values of the test
statistics QNϵ[QL, QU], the tabulated values of the test, the
level of significance, 0.05, from [37], and the conclusion
about the acceptance H0Nϵ[H0L, H0U] are also shown in
Table 2.

&e error rate for the Weibull distribution for several of
nNϵ[nL, nU] is calculated and shown in Table 3. Similarly, we
applied the proposed NMC on neutrosophic chi-square

distribution, neutrosophic normal distribution, neu-
trosophic student t-distribution, and neutrosophic Cauchy
distribution. &e error rate of all these neutrosophic dis-
tributions for various neutrosophic shape and scale pa-
rameters is shown in Table 3.

From Table 3, it can be seen that the neutrosophic
Weibull distribution has a smaller error rate among other
neutrosophic distributions when nNϵ[5, 5]. For the neu-
trosophic sample nNϵ[nL, nU]> [5, 5], the neutrosophic
Cauchy distribution has a smaller error rate among other
distributions. From Table 3, it can be noted that the
neutrosophic sample size plays an important role to de-
termine the suitable distribution. &e power of the pro-
posed test for various neutrosophic statistical
distributions is shown in Table 4. From Table 4, we can
note that neutrosophic Weibull distribution has the larger
power of test when nNϵ[5, 5] and neutrosophic Cauchy
distribution has a higher power of test when
nNϵ[nL, nU]> [5, 5]. From this study, it can be concluded
that the W/S test under neutrosophic statistics will be
applied to the neutrosophic Weibull distribution when
nNϵ[5, 5] and on the neutrosophic Cauchy distribution
when nNϵ[nL, nU]> [5, 5]. &e behavior of the power of the
test is also shown with the help of curves for all distri-
butions in Figures 1–5. From Figures 1–5, it can be ob-
served that there is no specific trend in neutrosophic
Weibull distribution, neutrosophic chi-square distribu-
tion, and neutrosophic normal distribution. On the other
hand, we can note the increasing trend in power as the
neutrosophic sample size increases for neutrosophic t-
distribution and neutrosophic Cauchy distribution.
Among these curves, the neutrosophic Cauchy distribu-
tion is the best power curve.

4. Comparative Study

We compare the efficiency of the proposed W/S test under
neutrosophic statistics over the existingW/S test under CS
proposed by [9]. Note here that the proposed test reduces
to [9] test if no uncertain or imprecise observations are
recorded in the data. To show the performance of the
proposed W/S test under neutrosophic statistics over the
existing W/S test, we set the same values of all parameters.
We plotted the values of power test for the proposed test
and the existing test in Figures 6–9. &e red lines in
Figures 6–9 show the power curve under the test proposed
by [9]. Figure 6 is displayed for the neutrosophic Weibull
distribution. From Figure 6, it can be noted that there is an
irregular trend in power curves.&e proposed test is better
than the [9] test when nNϵ[nL, nU]< [60, 60]. On the other

Table 1: &e neutrosophic data of size nNϵ[5, 5].

Sr# 1 2 . . . 100
1 [0.856, 0.789] [1.061, 0.489] . . . [0.815, 0.598]
2 [1.563, 1.116] [0.683, 1.01] [0.921, 0.565]
3 [1.113, 0.325] [0.735, 0.644] [1.621, 1.043]
4 [0.48, 0.461] [0.444, 0.923] [1.22, 1.166]
5 [0.722, 0.957] [0.935, 0.407] [0.847, 0.913]
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Table 2: &e calculation of the proposed test statistics.

Sr# 1 2 3 4 5 Range SD R/SD Tabl1 Conclusion

1 [0.856,
0.789]

[1.563,
1.116]

[1.113,
0.325]

[0.48,
0.461]

[0.722,
0.957]

[1.084,
0.791]

[0.414,
0.332]

[2.62,
2.383]

[2.15,
2.753]

[Accept,
Accept]

2 [1.061,
0.489]

[0.683,
1.01]

[0.735,
0.644]

[0.444,
0.923]

[0.935,
0.407]

[0.616,
0.603]

[0.238,
0.264]

[2.59,
2.283]

[2.15,
2.753]

[Accept,
Accept]

. . .

100 [0.815,
0.598]

[0.921,
0.565]

[1.621,
1.043]

[1.22,
1.166]

[0.847,
0.913]

[0.807,
0.601]

[0.34,
0.267]

[2.373,
2.249]

[2.15,
2.753]

[Accept,
Accept]

Table 3: Error rate for the proposed test.

nN

Asymmetric Symmetric
Weibull ([5, 7], [2.5, 3]) Chi-square ([4, 6]) Normal ([5, 7], [0.5, 1]) t ([8, 10]) Cauchy ([5, 7], [2.5, 3])

[5, 5] [0.94, 0.84] [0.88, 0.85] [0.89, 0.94] [0.9, 0.92] [0.92, 0.91]
[10, 10] [0.92, 0.88] [0.91, 0.9] [0.92, 0.89] [0.91, 0.92] [0.79, 0.83]
[15, 15] [0.91, 0.87] [0.93, 0.95] [0.94, 0.94] [0.9, 0.88] [0.55, 0.58]
[20, 20] [0.91, 0.83] [0.9, 0.92] [0.92, 0.87] [0.87, 0.9] [0.23, 0.32]
[25, 25] [0.97, 0.87] [0.87, 0.87] [0.87, 0.88] [0.86, 0.92] [0.18, 0.19]
[30, 30] [0.86, 0.88] [0.85, 0.82] [0.95, 0.92] [0.81, 0.75] [0.08, 0.13]
[35, 35] [0.85, 0.83] [0.82, 0.86] [0.9, 0.92] [0.77, 0.74] [0.11, 0.03]
[40, 40] [0.87, 0.88] [0.82, 0.84] [0.88, 0.79] [0.79, 0.74] [0.06, 0.06]
[45, 45] [0.89, 0.91] [0.88, 0.83] [0.9, 0.91] [0.74, 0.83] [0.03, 0.02]
[50, 50] [0.93, 0.92] [0.8, 0.8] [0.93, 0.88] [0.71, 0.76] [0, 0.01]
[55, 55] [0.91, 0.91] [0.78, 0.79] [0.89, 0.91] [0.72, 0.64] [0.01, 0.01]
[60, 60] [0.86, 0.9] [0.8, 0.89] [0.86, 0.92] [0.73, 0.7] [0.01, 0]
[65, 65] [0.89, 0.87] [0.77, 0.89] [0.92, 0.91] [0.7, 0.65] [0.01, 0]
[70, 70] [0.91, 0.91] [0.82, 0.79] [0.93, 0.92] [0.73, 0.67] [0, 0.01]
[75, 75] [0.93, 0.89] [0.83, 0.84] [0.91, 0.91] [0.63, 0.69] [0, 0.01]
[80, 80] [0.88, 0.9] [0.74, 0.75] [0.95, 0.85] [0.71, 0.66] [0, 0]
[85, 85] [0.88, 0.81] [0.78, 0.73] [0.93, 0.89] [0.72, 0.66] [0, 0]
[90, 90] [0.89, 0.93] [0.76, 0.88] [0.91, 0.95] [0.61, 0.59] [0, 0.01]
[95, 95] [0.86, 0.92] [0.8, 0.88] [0.97, 0.9] [0.68, 0.72] [0, 0]
[100, 100] [0.91, 0.86] [0.71, 0.82] [0.89, 0.85] [0.57, 0.64] [0, 0]

Table 4: Power of test for the proposed test.

nN n
Asymmetric Symmetric

Weibull ([5, 7], [2.5, 3]) Chi-square ([4, 6]) Normal ([5, 7], [0.5, 1]) t ([8, 10]) Cauchy ([5, 7], [2.5, 3])

[5, 5] 5 [0.06, 0.16] [0.12, 0.15] [0.11, 0.06] [0.1, 0.08] [0.08, 0.09]
[10, 10] 10 [0.08, 0.12] [0.09, 0.1] [0.08, 0.11] [0.09, 0.08] [0.21, 0.17]
[15, 15] 15 [0.09, 0.13] [0.07, 0.05] [0.06, 0.06] [0.1, 0.12] [0.45, 0.42]
[20, 20] 20 [0.09, 0.17] [0.1, 0.08] [0.08, 0.13] [0.13, 0.1] [0.77, 0.68]
[25, 25] 25 [0.03, 0.13] [0.13, 0.13] [0.13, 0.12] [0.14, 0.08] [0.82, 0.81]
[30, 30] 30 [0.14, 0.12] [0.15, 0.18] [0.05, 0.08] [0.19, 0.25] [0.92, 0.87]
[35, 35] 35 [0.15, 0.17] [0.18, 0.14] [0.1, 0.08] [0.23, 0.26] [0.89, 0.97]
[40, 40] 40 [0.13, 0.12] [0.18, 0.16] [0.12, 0.21] [0.21, 0.26] [0.94, 0.94]
[45, 45] 45 [0.11, 0.09] [0.12, 0.17] [0.1, 0.09] [0.26, 0.17] [0.97, 0.98]
[50, 50] 50 [0.07, 0.08] [0.2, 0.2] [0.07, 0.12] [0.29, 0.24] [1, 0.99]
[55, 55] 55 [0.09, 0.09] [0.22, 0.21] [0.11, 0.09] [0.28, 0.36] [0.99, 0.99]
[60, 60] 60 [0.14, 0.1] [0.2, 0.11] [0.14, 0.08] [0.27, 0.3] [0.99, 1]
[65, 65] 65 [0.11, 0.13] [0.23, 0.11] [0.08, 0.09] [0.3, 0.35] [0.99, 1]
[70, 70] 70 [0.09, 0.09] [0.18, 0.21] [0.07, 0.08] [0.27, 0.33] [1, 0.99]
[75, 75] 75 [0.07, 0.11] [0.17, 0.16] [0.09, 0.09] [0.37, 0.31] [1, 0.99]
[80, 80] 80 [0.12, 0.1] [0.26, 0.25] [0.05, 0.15] [0.29, 0.34] [1, 1]
[85, 85] 85 [0.12, 0.19] [0.22, 0.27] [0.07, 0.11] [0.28, 0.34] [1, 1]
[90, 90] 90 [0.11, 0.07] [0.24, 0.12] [0.09, 0.05] [0.39, 0.41] [1, 0.99]
[95, 95] 95 [0.14, 0.08] [0.2, 0.12] [0.03, 0.1] [0.32, 0.28] [1, 1]
[100, 100] 100 [0.09, 0.14] [0.29, 0.18] [0.11, 0.15] [0.43, 0.36] [1, 1]
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hand, [9] test performs better when nNϵ[nL, nU]> [60, 60].
Figure 7 is presented for neutrosophic chi-square dis-
tribution. From Figure 7, it can be noted that the proposed
test is better for all values of nNϵ[nL, nU]. Figure 8 is shown
for neutrosophic t-distribution. From Figure 8, it is ob-
served that overall the proposed test performs better than
the existing test. Figure 9 is given for neutrosophic Cauchy
distribution. Again, the proposed test is better than the
existing test when nNϵ[nL, nU]> [15, 15]. From
Figures 6–9, we conclude that the proposed test is an
efficient test for all distributions [9]. In addition,
the proposed test provides the power curves in indeter-
minacy interval which is required under uncertainty
environment.

5. Example

In this example, we consider the approximate population
density of some villages of the USA. In practice, it may not
be possible to record the exact value of the population
density. &erefore, the use of CS on such data may mislead
the practitioners. Let us consider the population density of
17 villages. &e neutrosophic data are shown in Table 5.
From the neutrosophic data, it can be clear that we can
apply the proposed test under neutrosophic statistics. We
want to test either this data follows the neutrosophic
normal distribution. &e tabulated value at 0.05 level of
significance is [3.06, 3.06] and [4.31, 4.31]. We computed
the values of the test statistic as follows:
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Figure 1: Power curve for the neutrosophic Weibull distribution.
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Figure 2: Power curve for the neutrosophic chi-square
distribution.
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Figure 3: Power curve for the neutrosophic normal distribution.
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Figure 4: Power curve for the neutrosophic t-distribution.

Complexity 5



QNϵ
WN

SN

�
[3.6, 3.84]

[0.8657, 0.9075]
ϵ[4.15, 4.23]. (10)

&e neutrosophic form of the statistic QNϵ[QL, QU] for
the given data is given by

QN � 4.15 + 4.23IN; INϵ[0, 0.0189]. (11)

Note here that the value 4.14 presents the test value
under CS. From this neutrosophic form, the change of
accepting the null hypothesis is 0.95, the probability of

rejecting the null hypothesis H0Nϵ[H0L, H0U] is 0.05, and
the probability of indeterminacy about the test is 0.0189.
We note that the values of QNϵ[4.15, 4.23] are within the
critical values. &erefore, the null hypothesis
H0Nϵ[H0L, H0U] is accepted, and we conclude that the
given data follows the neutrosophic normal distribution.
From this study, it can be seen that the proposed test
provides information about the three probabilities. &e
proposed test provides information about the measure of
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Figure 5: Power curve for the neutrosophic Cauchy distribution.
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Figure 6: Comparison of the proposed test and the existing test for
neutrosophic Weibull distribution.
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Figure 7: Comparison of the proposed test and the existing test for
neutrosophic chi-square distribution.
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Figure 8: Comparison of the proposed test and the existing test for
neutrosophic t-distribution.
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indeterminacy. Hence, the proposed test is more infor-
mative and adequate to be applied in an indeterminacy
environment.

6. Concluding Remarks

In this paper, we presented the designing and application of
the W/S test under neutrosophic statistics. We applied the
proposedW/S test under neutrosophic statistics for various
statistical distributions. We note that the proposed test is
quite simple to apply in an uncertain environment. &e
comparison of the proposed test with the existing test
under CS is presented. It is concluded from the compar-
isons that the proposed test performs better in the power of
test than the existing test for all distributions. &e appli-
cation of the proposed test is also given for the example.
From the study, it is concluded that the proposed test
provides the results in an interval than the exact value as in
CS. &erefore, the proposed test is quite effective to be
applied in an indeterminate environment. In addition,
under uncertainty, the proposed test is more informative
than the test under CS. Based on the comparative study, we
recommend applying the proposed test when the data are

recorded from the complex system or the data having
imprecise or fuzzy observations. &e proposed test can be
applied for testing the data in regression, time series, and
marketing problems.
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