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,e exponential distribution has always been prominent in various disciplines because of its wide range of applications. In this
work, a generalization of the classical exponential distribution under a neutrosophic environment is scarcely presented. ,e
mathematical properties of the neutrosophic exponential model are described in detail. ,e estimation of a neutrosophic pa-
rameter by the method of maximum likelihood is discussed and illustrated with examples. ,e suggested neutrosophic ex-
ponential distribution (NED) model involves the interval time it takes for certain particular events to occur. ,us, the proposed
model may be themost widely used statistical distribution for the reliability problems. For conceptual understanding, a wide range
of applications of the NED in reliability engineering is given, which indicates the circumstances under which the distribution is
suitable. Furthermore, a simulation study has been conducted to assess the performance of the estimated neutrosophic parameter.
Simulated results show that imprecise data with a larger sample size efficiently estimate the unknown neutrosophic parameter.
Finally, a complex dataset on remission periods of cancer patients has been analyzed to identify the importance of the proposed
model for real-world case studies.

1. Introduction

One of the most common continuous distributions is the
exponential distribution. ,e exponential model can be
considered as a continuous description of the geometric
distribution [1]. For reliability concerns, the exponential
distribution is probably the most commonly used statistical
distribution. ,e exponential distribution is especially ap-
propriate and easier to implement in engineering to model
the existence of nonwearing materials [2]. For specific
measurement variables, such as interarrival time (IAT) and
time to failure (TTF), an exponential model provides the
best distributional postulate [3]. ,e IAT variable is derived
from counting processes and represents the space (or time)
between two adjacent events. For example, waiting lines,
communication networks, and industrial processes with
congested segments are popular applications [4]. ,e IAT is
exactly exponential when the underlying counting process is

Poisson, so the two models are identical representations of
the process. ,e TTF variable is used in component or
system reliability analysis [5]. Because of its memoryless
property, the exponential distribution is often used exten-
sively in reliability theory. ,e exponential distribution
models the TTF well when these components are subjected
to the constant hazard of randomly occurring failure-
causing loads [6]. ,e expectation of a constant rate is rarely
met in real-world scenarios. Most engineering systems, such
as electronic devices, are prone to wear, meaning their life
history influences the failure hazard [7]. As a result, over the
life cycle of a more general object, the hazard function is not
constant [8]. However, the hazard function is constant for
some types of systems in engineering applications [9]. ,is
category includes the majority of electronic components.
Most systems (particularly electronic ones) have a life cycle
that follows the bathtub curve [10, 11]. It is a good fit for
modeling the steady hazard rate part of the bathtub curve in
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reliability studies. Exponential variables may also be
employed to describe scenarios in which events happen with
a fixed probability per unit distance, such as the length of a
DNA strand between mutations or on a given lane, the gap
between road kills, and so on [12, 13]. ,e IAT, that is, the
time between clients joining the system, are frequently
modeled as an exponentially followed variable in queuing
theory. In physics, the heights of the different molecules in a
gas at a steady pressure and temperature in a uniformly
gravitational environment adopt an estimated exponential
distribution [14]. ,e exponential distribution is often ap-
plied in hydrology to look at extreme values of annual or
monthly maximum river discharge volumes and total
rainfall [15].

In this work, a new generalization of the exponential
distribution is suggested in the hopes of expanding its
applicability in the field of reliability modeling. ,is
generalization is based on the notion of neutrosophy
presented by Smarandache [16]. ,e analysis of false or
true statements, but indeterminate, neutral, inconsistent,
or something in between, is oriented by neutrosophy
logic [17]. Every area has its neutrosophic component,
namely, the indeterminacy part, on the mathematical
side. Smarandache made the first effort to use the neu-
trosophic approach in statistics, precalculus, and calculus
to cope with imprecision in study variables [18]. As a
result, neutrosophic statistics have given rise to research
topics that deal with the effect of indeterminacy in sta-
tistical modeling. Some recent literature has recently
made the first step toward describing the neutrosophic
principle of statistical modeling [19–21]. Neutrosophic
measures probability and descriptive statistical are dis-
cussed in [22]. Neutrosophic decision-making applica-
tions in quality control seem to be very efficient [23].
Salama et al. first looked at the neutrosophic algebraic
structures of probability distributions [24]. Nevertheless,
works focusing on neutrosophic statistics have always
relied on the applications side of the neutrosophic logic,
and algebraic structures of probability distributions have
rarely been addressed.

In this study, the notion of the NED has been described
with the primary goal of incorporating vague information
about the study variables. Vagueness in study parameters
cannot be overlooked for practical analyses and should be
integrated with the model being employed to describe a
system. To the best of our knowledge, no published study has
addressed the neutrosophic calculus of the exponential
model. As a result, it is one of the factors that motivate us
forward in our work.

,e remainder of this study is outlined as follows. ,e
NED and some of its useful functions are described in
Section 2. Section 3 demonstrates some examples of the
NED. ,e method estimation for the parameter of NED is
provided in Section 4. ,e quantile function of NED is
discussed in Section 5. A simulation study for demonstrating
the performance of the neutrosophic estimator is carried out

in Section 6. Implementation procedure of the NED for the
real-world problem is given in Section 7. Finally, Section 8
concludes the research outcomes.

2. Proposed Model and Some Useful
Reliability Measures

,e neutrosophic random variable Z, which equals the
distance between successive events in a Poisson process,
follows the NED model with the following neutrosophic
density function (PDFN):

φN(z) � θN exp −zθN( I(0,∞)(z), z> 0. (1)

where θNε[θL, θU] and Z is a nonnegative variable usually
denotes the working time, age, or life expressed in miles,
hours, rounds, cycles, and so on, in reliability studies.

,e region under this function curve, say z1 to z2
directly, represents the probability that an item randomly
selected from the NED would fail during this period.
Figure 1 shows the form of the distribution with the
neutrosophic parameter θN � [0.5, 1.5] if the data are
believed to be NED.

Figure 1 shows the neutrosophic area because of the
indeterminate value of the failure rate parameter θN. Some
other useful functions of the NED can be developed in the
forms of the following theorems.

Theorem 1. 0e area under the curve characterized by the
NED is one.

Proof. Let φ: R⟶ P(R) be a continuous neutrosophic
exponential function concerning range such that

ϕ(z) � ϕL(z), ϕU(z) , 0< z<∞, (2)

where φ(z) is a sturdy curve, as represented by Figure 1.
,e neutrosophic area of the sturdy curve corresponds to

AN � 
∞

0
φN(z)dz

� 
∞

0
φL(z),φU(z) dz

� 
∞

0
φL(z)dz, 

∞

0
φU(z)dz 

� [a, b].

(3)

a � 
∞
0 θL exp(−zθL)dz � 1 and b � 

∞
0 θU exp(−zθU)dz �

1, hence proved. □

Theorem 2. 0e neutrosophic reliability function of the NED
is [exp(−zθL), exp(−zθU)] � exp(−zθN).
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Proof. ,e neutrosophic reliability function of the NED is
determined by

ωN(z) � P[Z> z]

� 1 − P[Z< z]

� 1 − 
z

0
φN(z)dz

� 1 − 
z

0
φL(z),φU(z) dz

� 1 − 
z

0
φL(z)dz, 1 − 

z

0
φU(z)dz 

� [c, d],

(4)

where c � 1 − 
z

0 ϕL(z)dz � exp(−zθL) and d � 1 − 
z

0 ϕU

(z)dz � exp(−zθU), hence proved.
,e function ωN(z) is most useful in reliability analysis,

which establishes a connection between a unit’s age and the
likelihood of that unit surviving to that age while beginning
the work at zero. ,e function ωN(z) of the NED with
neutrosophic parameter θN � [0.5, 1.5]would be shaped as
given in Figure 2. ,e failure neutrosophic rate function,
conditional neutrosophic function, and PDFN all can be
determined using this function. □

Corollary 1. 0e hazard function hN(z) of the NED is θN.

Proof. ,e ratio of φN(z) to ωN(z)results in the desired
hN(z). □

Corollary 2. 0e distribution function (ΦN(z)) of the NED
is 1 − exp(−zθN).

Proof. ,e result of the distribution function is obtained by
solving the following expression:

ΦN(z) � 
z

0
φN(z)dz

� 1 − exp −zθN( .

(5)

,us, in neutrosophy philosophy, the hazard rate for an
object of a given age (z) is referred to as an interval rate of
death. □

Theorem 3. 0e median of the NED is
[(ln(2)/θU), (ln(2)/θL)].

Proof. Neutrosophic median (MN) is the solution of the
following expression:


MN

0
ΦN(z)dz �

1
2
,
1
2

 ,


MN

0
ΦL(z)dz, 

MN

0
ΦU(z)d  �

1
2
,
1
2

 ,

(6)

where ΦL(z) � 1 − exp(zθL) and ΦU(z) � 1 − exp(zθU).
Analytical simplification of (6) implies

MNθL � ln(2),

MNθU � ln(2),
(7)

implying thereby

MN �
ln(2)

θU

,
ln(2)

θU

 . (8)
□

Corollary 3. First quantile (QIN) and the third quantile
(Q3N) of the NED are [(ln(4/3)/θU), (ln(4/3)/θL)] and
[(ln(4)/θU), (ln(4)/θL)], respectively.

Proof. QIN and Q3N by definition are corresponded to
solutions such that


QIN

0
ΦN(z)dz �

1
4
,
1
4

 ,


Q3N

0
ΦN(z)dz �

3
4
,
3
4

 .

(9)

,erefore, following ,eorem 3, we can write

QIN �
ln(4)

θU

,
ln(4)

θL

 ,

Q3N �
ln(4/3)

θU

,
ln(4/3)

θL

 .

(10)

□

Theorem 4. 0e neutrosophic average time to failure of the
NED is 1/θN.

Proof. ,e neutrosophic average time to failure is deter-
mined as

MTTN � 
∞

0
ωN(z)dz

� 
∞

0
ωU(z),ωL(z) dz(see Figure 2)

� 
∞

0
exp −zθU( dz, t 

∞

0
exp −zθL( dz

�
1
θU

,
1
θL

 

�
1
θN

.

(11)

□

Theorem 5. 0e variance of the NED is 1/θ2N.

Proof. By definition, variance is

σ2N(Z) � E Z
2

  − MTTN( 
2

(12)

where σ2N(Z) stands for neutrosophic variance.
Now,
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E Z
2

  � 
∞

0
z
2φN(z)dz. (13)

Since φN(z) � −ωN(z)
�

, we have the following:

E Z
2

  �
2
θN


∞

0
ωN(z)dz

�
2
θN


∞

0
ωU(z),ωL(z) dz

�
2
θN


∞

0
exp −zθU( dz, 

∞

0
exp −zθL( dz 

�
2
θN

1
θU

,
1
θL

 

�
2
θ2U

,
2
θ2L

 .

(14)

,us, (12) yields

σ2N(Z) �
2
θ2U

,
2
θ2L

  −
1
θU

,
1
θL

  

2

(15)

and simplifying (15) provides

σ2N(Z) �
1
θ2U

,
1
θ2L

 . (16)

Likewise, the other properties of the NED can be
established in a neutrosophic environment. Some applica-
tions of the proposed model are presented to understand the
initial concepts derived for the NED. □

3. Illustrative Examples

In this section, the notion of the NED has been described
with a series of examples in the area of reliability studies.

Example 1. ,e lifetime of a certain mechanical component
follows the NED with the indeterminate failure rate θN �

[5.26 × 10− 5, 8.70 × 10− 5] per hour. In continuous opera-
tion, find the probability that the component survives for
three months. Also, find the meantime to failure of this
component.

Solution 1. From (1), the neutrosophic reliability function of
the NED is

ωN(z) � exp −zθN( , (17)

and the probability that the component survives for
three months (z � 2190 hours)is given by

ωN(z) � exp −2190 5.26 × 10− 5
, 8.70 × 10− 5

   � [0.8265, 0.8911].

(18)

Hence, the chance of surviving the component without
failure for a period of three months is [0.8265, 0.8911].

Now, from (11),
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Figure 1: ,e sturdy curve of exponential distribution.
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Figure 2: ,e function ωN(z) for the NED.
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MTTN �
1
θU

,
1
θL

 . (19)

,us,

�
1

8.70 × 10− 5,
1

5.26 × 10− 5 

� [11494.25, 19011.41]hours ≈ [15.7, 26.0]months.

(20)

Example 2. Failure mechanism of the alternators used in
automobiles follows the NED for an average lifespan of
[8, 12] years. Mr. Adnan buys a six-year-old car with a
functioning alternator to keep it for eight years. Determine
the probability of the alternator failing during his possession.

Solution 2. Let Z denote the neutrosophic random variable
that follows NED.

Given that MTTN � [(1/θU), (1/θL)] � [8, 12] years, this
implies [θL, θU] � [0.083, 0.125].

Now, the required probability is

P[Z< 8] � ΦN(8)(corollary 2)

� [0.079, 0.117].
(21)

,us, the chance that the alternator fails during his
ownership is approximated by [8, 12]%.

4. Parameter Estimation

,e method for estimating the parameter of the NED,
namely, neutrosophic maximum likelihood estimation
(NML), has been introduced. Let n sample
Xi, i � 1, 2, . . . , n  values be taken from the NED. ,e
question is, which value of the neutrosophic parameter
should be used for the observed sample? ,is value can be
determined by the likelihood function of the neutrosophic

model. As neutrosophy exists in the parameter of the NED,
therefore, NML function of the NED is given by

ϖN z, θN(  � n log θN − θN  n
i zi, (22)

and the NML estimates, namely, θL and θU, can be
obtained by solving the following expression:

δϖN z, θN( 

δθN

(23)

Using the neutrosophic calculus [18], (23) yielded

�
δϖL z, θL( 

δθU

,
δϖU z, θU( 

δθL

 , (24)

where ϖL(z, θL) � n log θL − θL 
n
i zi and ϖN(z, θU) �

n log θU − θU 
n
i zi.

Simplification of (24) provides

δϖN z, θN( 

δθN

�
n

θL

− 
n

i

zi,
n

θU

− 
n

i

zi
⎡⎣ ⎤⎦. (25)

Setting (25) equating to [0, 0] provides

θL �
n


n
i zi

,

θU �
n


n
i zi

.

(26)

,us, θN � [θL, θU] � (n/
n
i zi), which is a single crisp

value and coincides with the classical MLE.
However, if imprecision in the observed data (z) is

considered; then NML of the neutrosophic parameter would
be modified as

θN � θL, θU  �
n

A
,
n

B
 , (27)

where

A � minz � sumof theminmumvalues of the neutrosophic dataset,

B � maxz � sumof themaximumvalues of the neutrosophic dataset.
(28)

An intuitive explanation of the NML estimation could be
described with the following example.

Example 3. Assume that the life (in years) of the Philips
brand refrigerator compressor is best described by the NED
with unknown parameter. Five compressors have been in-
dependently tested, and their lifetimes are determined to be
4, 3.5, 3.9, 4.2, 4.5, and 4.7 years, respectively. What is the
NML estimate of θN?

Solution 3. ,e joint density is the product of the individual
densities since compressor lifetimes are independently
tested. Using (22), the log of the NML function is therefore
given by

ϖN z, θN(  � 5 log θN − 24.8θN. (29)

Finally, simplifying (29) leads to the NML estimate of θN

as

θN �
6

24.8
� 0.24 year. (30)

Example 4. Now, we assume that the life (in years) of the
Philips brand refrigerator compressor is best described by
the NED with an unknown constant failure rate; that is,
θL � θU � θ. Five compressors have been independently
tested, and their lifetimes are determined to be 4, 3.5, [3.9,
4.1], 4.2, [4.3, 4.6], and 4.7 years, respectively. What is the
NML estimate of θN?
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Solution 4. Here, the indeterminacies are recorded in the
lifetime values of the third and fifth components; that is,
values in interval implies exactly values of these components
are not precisely recorded.

Now, considering the neutrosophy in observed data, the
lives of all these components are given by


n

i

zi � [24.6, 25.1] years. (31)

Using (26), the NML estimate of θN is given by
θN � [0.23, 0.24] year. (32)

5. Model Validation

,e neutrosophic quantile function (QFN) of NED can be
found by solving the following expression for z:

Zj � Φ−1 ξj . (33)

In the case of NED,

Zj � −
1
θN

ln 1 − ξj , j � 1, 2, . . . , (34)

where ξj follows a uniform distribution with parameters 0
and 1; that is, ξj ∼ U[0, 1].

Statistically speaking, the QFN are used to establish
quantile analogs of standard moment-based descriptive
measures and expand those measures. ,is function can
be used to produce random data that describes the density
given in (1). Analytical results of mean, variance, and all
other properties can be validated using the Carlo
simulation.

In R software, the NED can be easily simulated to view
the validity of theory-based derived results. Set θN � [2, 4]

in the NED and 10000 samples are randomly generated
from the U[0, 1]. Using (22), 10000 pseudo neutrosophic
random samples are generated from the NED. ,ese
simulated data utilized to validate the analytical prop-
erties as discussed in Section 2 are investigated. ,e exact
results for the mean, variance, and quantiles of the NED
alongside the simulated values are given in Table 1.

Table 1 shows that the descriptive measures employing
simulation are very close to the exact quantities, suggesting
that the simulation produces results identical to the expected
results described in Section 2. As a result, we can deduce that
the estimates of other parameters computed with the sim-
ulated data would inevitably equal the true parameters.

6. Simulation Study

In this section, the performance of the NML estimator has
been assessed in terms of the neutrosophic average biased
(ABN) and neutrosophic root mean square error (RMSN) as
defined as follows [25]:

ABN �


N
j�1

θNj − θN 

N
,

RMSEN �

��������������


N
j�1

θNj − θN 
2

N



.

(35)

A Monte Carlo simulation is run in R software with
various sample sizes and fixed value of the neutrosophic
parameter θN � [2, 4]. An imprecise dataset is generated
using the NED with θN � [2, 4], and simulation analysis is
replicated for a total of N � 10000 times with sample sizes of
n � 10, 20, 30, and 50, respectively. ,e performance mea-
sures of the NML estimator are then computed and given in
Table 2.

It can be seen from the results, as the sample size n goes
up, the ABN and RMSEN, that is, biases, decrease. ,us, the
study concludes that the NML estimator provides reliable
estimation with a larger sample size.

7. Real-World Application

In this section, a practical application using a real-world
dataset has been used in order to assess the interest in the
NED model. ,e data under consideration includes a set of
remission periods in months from 128 cancer patients. ,e
remission periods are based on a subset of data reported by
Lee and Wang [26] from bladder cancer research and are
considered here solely for descriptive purposes. According
to the findings of the goodness of fit test rooted on as-
ymptotic likelihood function, the exponential distribution is
one of the plausible models for the remission times. ,e
appropriateness of the exponential model can be seen in
Figure 3.

Figure 3 provides a quick graphical summary of the
exponential model on the remission time dataset. In Fig-
ure 3, the PP-plot and CDF-plot demonstrate that the ex-
ponential model well fits remission time data reported for
cancer patients. Initially, data are the crisp measurements;
however, for the sake of illustration, we treat them as in-
determinate sample values for certain cancer patients, as
indicated in Table 3.

Table 3 shows that remission times for certain cancer
patients, such as [7.26, 8.2], [12, 14.77], [15, 17.2], [5.3, 7.1],
[75.02, 81], and [1.5, 3.2], are not precisely reported but are
provided in intervals. ,ese ambiguities or uncertainties in
the sample render the existing exponential model inappli-
cable. On the contrary, the suggested NEDmay effectively be
used to investigate the properties of this neutrosophic
dataset. ,e descriptive statistics of the remission time data
using the NED model are given in Table 4.

Table 1: Comparisons of simulated versus analytical results.

Neutrosophic parameters Exact results Simulated results
Mean [0.250, 0.500] [0.249, 0.499]
Variance [0.063, 0.250] [0.062, 0.246]
QIN [0.072, 0.144] [0.071, 0.144]
Q2N [0.173, 0.346] [0.174, 0.349]
Q3N [0.346, 0.693] [0.344, 0.695]
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,e results in Table 4 demonstrate that the critical
numerical statistics of the remission times data are given in
ranges due to certain uncertainties in the observed sample.
Consequently, the suggested model may be used to analyze
data that is expected to follow the NED.

8. Conclusions

A new representation of the exponential statistical model
referred to as the NED has been proposed in this work.
Various structural properties of the proposed model under
the neutrosophic environment are extensively discussed.,e
analytical expressions for neutrosophic mean, neutrosophic
variance, neutrosophic median, and other related quantities
are derived.,e NED best describes failure patterns of many
in-service components. ,e estimation method considering
vagueness in the observed data has been established and
explained with examples. ,e analytical results of the pro-
posed NED are validated using the notion of the neu-
trosophic quantile function. A simulation study has been
conducted to validate the performance of the estimated

Table 2: Performance of NML estimate of the NED for simulated neutrosophic data.

Sample size ABN RMSEN

10 [0.222, 0.443] [0.822, 1.645]
20 [0.104, 0.207] [0.506, 1.011]
30 [0.066, 0.133] [0.394, 0.788]
50 [0.039, 0.078] [0.295, 0.590]
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Figure 3: Graphical overview of the remission time dataset: (a) CDF-plot and (b) PP-plot.

Table 3: Remission periods of 128 cancer patients.

Remission times
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2 2.23 3.52 4.98 6.97
9.02 13.29 0.4 2.26 3.57 5.06 7.09 9.22 13.8 25.74 0.5 2.46 3.64
5.09 [7.26, 8.2] 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28 9.74 14.76 [5.3, 7.1]
0.81 2.62 3.82 5.32 7.32 10.06 [12, 14.77] 32.15 2.64 3.88 5.32 7.39 10.34
14.83 34.26 0.9 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23
5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 [15, 17.2] 46.12 1.26
2.83 4.33 5.49 7.66 11.25 17.14 [75.02, 81] 1.35 2.87 5.62 7.87 11.64 17.36
1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46 4.4 5.85 8.26 11.98 19.13
1.76 3.25 4.5 6.25 8.37 12.02 [1.5, 3.2] 3.31 4.51 6.54 [7.5, 8.2] 12.03
20.28 2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69
Bold values mean imprecise/indeterminate values.

Table 4: Neutrosophic statistics of remission times data by using
the proposed model.

Descriptive measures
Mean [9.18, 9.24]
Variance [84.29, 85.39]
Median [6.40, 6.36]
First quantile [2.64, 2.71]
,ird quantile [12.12, 12.71]
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neutrosophic parameter. ,e simulated findings show that
indeterminate sample data with a large size efficiently es-
timate the unknown parameter. Some applicability examples
of the NED mainly for the processing indeterminacies in
lifetime data are considered.

8.1. Further Works. We believe that the neutrosophic gen-
eralization of the classical model may broaden the scope of
NED in survival and reliability studies.

Data Availability

All the data used for analysis and supporting results are
given within the article.
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