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Abstract

This paper proposes a neutrosophic exponential-type estimator for finite population mean esti-
mation using auxiliary variables. Traditional statistical estimators often fall short when handling
vague or uncertain data. Neutrosophic statistics provide a robust alternative, as they are specifically
designed to address and incorporate indeterminacy. The mean square error (MSE) expressions are
derived and the proposed estimator is compared with existing estimators through a numerical exam-
ple using stock price data and a simulation study. Unlike traditional techniques, which provide point
estimates, this method yields interval-based results and achieves a lower mean squared error (MSE),
thereby enhancing the accuracy and dependability of the population mean estimation.

Keywords: Neutrosophic statistics, Exponential ratio-type estimator, Auxiliary variable, Mean square
error, Percent relative efficiency

1 Introduction

Auxiliary variables are widely used to enhance estimation precision in survey sampling. Naik and Gupta
(1996) introduced ratio and product estimators, while Shabbir and Gupta (2007) developed regression-
type estimators. The exponential estimator framework was introduced by Bahl and Tuteja (1991) for
continuous auxiliary variables. In traditional statistics, all data are determined and used to estimate
the mean of the population when auxiliary information is available, though these estimators are often
biased (Kumarapandiyan & Banu, 2021).In real-world applications, data often contains indeterminacy -
situations where observations cannot be precisely measured or categorized. Classical statistical methods
struggle with such data as they require exact values. Neutrosophic statistics, introduced by Smarandache
(1998, 1999, 2001), provides a framework to handle indeterminate, imprecise, and uncertain data by
representing variables as intervals that incorporate indeterminacy.

Neutrosophic logic, as a generalization of intuitionistic fuzzy logic (Smarandache, 2005, 2019),
forms the theoretical foundation for neutrosophic statistics. This approach extends classical statistical
methods to handle indeterminate values through the concept of neutrosophic sets (Smarandache, 1998,
2010) and neutrosophic probability (Smarandache, 2013). The neutrosophic framework has been suc-
cessfully applied in various fields including decision making (Olgun & Hatip, 2020), bioinformatics
(Smarandache & Aslam, 2023), and quality control (Aslam, 2018).

Recent advances in neutrosophic estimation have demonstrated significant improvements in mean
estimation. Singh et al. (2025) developed a family of neutrosophic estimators showing superior per-
formance with real-world data, while Alqudah et al. (2024) introduced robust ratio-type estimators
that maintain efficiency under various indeterminacy conditions. Yadav and Prasad (2024) and Yadav
and Smarandache (2023) have expanded the theoretical framework with generalized sampling strategies
that outperform classical approaches. The work of Shahzad et al. (2025) on Horvitz-Thompson type
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estimators and Singh et al. (2025a) on exponential estimators has further enriched the neutrosophic
methodology.

This paper extends the classical exponential estimator to neutrosophic statistics which handles in-
determinate, uncertain information by representing observations as intervals Zy = Z; + Zyly where
Iy € [I1,Iy](Smarandache, 1998). The neutrosophic statistics is an extension of classical statistics where
indeterminacy is zero (Smarandache, 2014, 2015). Recent work by Kumarapandiyan and Banu (2021)
has shown the effectiveness of neutrosophic linear regression-type estimators in population mean estima-
tion. Building on their approach and incorporating insights from Raghav (2023) and Bhatt et al. (2025),
we develop an enhanced exponential ratio-type estimation within the neutrosophic framework to achieve
greater efficiency in scenarios with indeterminate data.

Advantages of Neutrosophic Statistics

Neutrosophic statistics, introduced by Smarandache (1998, 2001), provides a framework to handle in-
determinate, imprecise, and uncertain data by representing variables as intervals Zy = Z; 4+ Zy Iy where
Iy € [I1,Iy]. This approach offers significant advantages over classical and interval statistics:

* Superior to classical statistics: Unlike classical methods that collapse uncertainty into point es-
timates, neutrosophic statistics explicitly preserves and quantifies indeterminacy through the Iy
parameter

* Enhanced over interval statistics: While interval statistics represent uncertainty as ranges, neu-
trosophic statistics additionally captures the degree of indeterminacy (Iy) associated with each
observation

* Information preservation: Maintains both determinate (Z;) and indeterminate (Zyly) compo-
nents of data, avoiding information loss inherent in traditional approaches

* Flexibility: Reduces to classical statistics when Iy = 0 and generalizes interval statistics when Iy
is incorporated

* Real-world applicability: Particularly effective in domains with inherent uncertainty (finance,
medicine, social sciences) where measurements are often imprecise

This paper extends the classical exponential estimator to neutrosophic statistics. Recent work by
Kumarapandiyan and Banu (2021) has shown the effectiveness of neutrosophic linear regression-type
estimators in population mean estimation. Building on their approach and incorporating insights from
Raghav (2023) and Bhatt et al. (2025), we develop an enhanced exponential ratio-type estimation within
the neutrosophic framework to achieve greater efficiency in scenarios with indeterminate data.

Novelty and Contributions

The proposed approach introduces a novel estimator structure that combines exponential ratio for-
mulation with neutrosophic weights (wiy, woy) and auxiliary parameters (@), creating a more flexible
estimation framework. This enables comprehensive parameter integration through the incorporation
of 36 different auxiliary variable parameters (0 to (3¢) capturing diverse distributional characteristics.
The method achieves optimized performance by deriving optimal weights that minimize MSE while
explicitly accounting for indeterminacy. Theoretical analysis and empirical studies demonstrate supe-
rior efficiency, showing that the proposed estimator outperforms 12 existing estimators including recent
state-of-the-art approaches. Finally, real-world validation using stock market data with inherent uncer-
tainty confirms practical utility in high-indeterminacy scenarios.

The remainder of this paper is organized as follows: Section 2 introduces terminology and notations,
Section 3 reviews existing estimators, Section 4 presents the proposed estimator and MSE derivation,
Section 5 provides efficiency comparisons, Section 6 demonstrates a numerical example, Section 7 de-
tails simulation studies, and Section 8 concludes with findings.
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2 Terminology and Notations

Let N denote the finite population size and ny € [n,ny| represent the neutrosophic sample size. Consider
a finite population Qy = {Qiy,Qn,...,Qyy} where Yy € [V, Yy] is the neutrosophic study variable
with population mean Yy € [¥,Yy] and sample mean yy € [y, yy]. The population variance of the study
variable is SgN € [S)Z,L,SiU] with coefficient of variation Cyy € [Cyr,Cyy]. i o

For the auxiliary variable Xy € [Xz,Xy], we denote the population mean as Xy € [X;,Xy] and sample
mean as ¥y € [¥,%y], with population variance S2, € [S%;,52,]. The neutrosophic correlation between

Yy and Xy is py € [pr,pu]. The sampling fraction term is defined as Oy = (L — i) € [6r,6y]. The

ny N
auxiliary variable is represented as Xy € [Xy, Xy] with population mean Xy € [X;,Xy] and sample mean
Xy € [%1,%y]. The neutrosophic sample size is ny € [ng,ny].
Key neutrosophic parameters include:
* Population variance of study variable: S3y € [S5;, S5

* Population variance of auxiliary variable: S)%N € [S)%L,SJ%U]

¢ Coefficient of variation for study variable: Cyy = SN ¢ [Cyr,Cyu]

Yy
* Coefficient of variation for auxiliary variable: Cy = ;—*I’VV € [Cx,Cru]
* Neutrosophic correlation coefficient: py € [pr, pu]
* Neutrosophic ratio: Ry = ;—’; € [Rr,Ry]
 Sampling fraction: Oy = <$ — ﬁ) € [6r,6y]
The neutrosophic regression coefficient is defined as:
NSyN SN
By = PN2N2N (g gy (1)

The proposed estimator utilizes optimized neutrosophic weights wyy,woy and a set of auxiliary vari-
able parameters o;; (where j = 1,...,36) which include various statistical measures of the auxiliary vari-
able such as coefficients of variation, moments, quantiles, and other distributional characteristics.

3 Existing Estimators

This section presents the classical estimators adapted to the neutrosophic framework, along with their
corresponding mean square error (MSE) expressions.
3.1 Sample Mean Estimator

Ton =N (2)
The MSE of Tyy up to the first degree of approximation is

MSE (Ton) = OxSay 3)
3.2 Ratio Estimator
X
Tin = v — )
N

The MSE of Ty up to the first degree of approximation is

MSE(Tin) = On (Soy + R3Say — 2RnPnSynSan) (5)
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3.3 Product Estimator
_ 0
Ton =yn X (6)

The MSE of T,y up to the first degree of approximation is

MSE(Ton) = O (Soy + R3Say + 2RnPnSynSan) (7

3.4 Regression Estimator

Tin = v + By (Xn — Xy) ()

The MSE of T3y up to the first degree of approximation is

MSE (Tay) = OxSoy (1 — pg) ©)
3.5 Exponential Estimator
_ Xy — Xy
Tun = _ 10
4N = YN €Xp (XN+XN> (10)

The MSE of Ty up to the first degree of approximation is
MSE(Tyy) = 6y | §2 RS2 — RypwSinS 11
av) = Oy [ Syy + 2 RuSay = RupnSynSan (11)

3.6 Modified Linear Regression-Type Estimator

~ _ _ _ XN + o
Y, = Xy — 12
MLRN; = [N + By (Xy — X)) [XN+O‘]] (12)
The MSE of IA/MLRNJ up to the first degree of approximation is
MSE (Yy1rn,) = Oy (RY Soy + Son (1= pR)) (13)
3.7 Kadilar and Cingi (2004) Estimator
_ Xn+Cuw
Tsy =y ———— 14
N =N O (14)
The MSE of Tsy up to the first degree of approximation is
MSE (Tsy) = 6y | 2y + R3S . 2—2R PNSynS v (15)
5N N | OyN T RNOxN Xy +Cov NEPNOyNOxN Xy +Con
3.8 Kadilar and Cingi (2005) Estimator
_ XN + [32 (xN )
Ton =IN—F7—< 16
6N =IN T BN (16)
The MSE of Tgy up to the first degree of approximation is
MSE(Tgy) = 6y | S2y + R%,S2 _ 2—2R PNSWS _ A (17)
6N N [PyN NOXN XN—Fﬁz(XN) NPNOyNOxN XN—I-ﬁz(xN)
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3.9 Tahir et al. (2021) Estimators

- XN XN
Ty = k—+(1—k)= 18
IN = YN { e +( )XN:| (18)
The MSE of T7y up to the first degree of approximation is
MSE(T;n) = Oy Sty + RySoy (2k — 1)% + 2Ry pnSynSen (1 — 2k) | (19)
- 71—k
X X
Isny =N [ N] [ -N] (20
Iv] | XN

The MSE of Tgy up to the first degree of approximation is

MSE(Tgy) = Oy [Sy + RySiy (2k — 1) + 2Ry pySynSan (1 — 2k) | 1)

3.10 Kumarapandiyan and Banu (2021) Estimator

Ton = ynexp [m} (22)
The MSE of Toy up to the first degree of approximation is
MSE(Toy) = 6y [ 2+ 4RNS K RNpNSyNSxNk] (23)
3.11 Raghav (2023) Generalized Estimator
Thow = (013 + 02Xy —T)) exp (oc(XNQ n ‘P)X f(zlJr—\I;)(XNQ ) 1) @

The MSE of Tigy up to the first degree of approximation is

MSE (Tion) = 6n

O O
Sov+ < f) S2—2 < 2) PNSyN Sy + RNS " RNpNSyNSxN] (25)

3.12 Bhatt et al. (2025) Modified Exponential Ratio Estimator

y, Xy —X
Tiin = oty (x >XN+(1—aN)YNexp< Nx N> (26)
N

N
The MSE of T11x up to the first degree of approximation is

MSE(TUN) = 0y |:OCN (S +RN N ZRNpNSyNSxN)
+ (1 —an)? (Siy + 3RV Sow — RupySynSew)
+ 20y (1 — ay) (S — RPN S wSev + SRS ] 7
4 Proposed Estimator

The proposed modified neutrosophic exponential ratio estimator is given by:

X Xy — X%
TpropN; = YN (Ww +W2NX://> exp (%‘XZ +)E1Nv> (28)

where o (j = 1,...,36) are the auxiliary variable parameters defined as follows:
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C Ba v C
a1 = Ci, 0 = Bo(en), 0 = ad , 04 = w )7065 = PN, Q6 = Py , 07 = XN7
Bavy Civ Cuv PN
N B> N) Boixn M,y
og = P , Oy = (&) ;010 = Bi(any, 011 = (&) Loy = Mgy, 003 = =2~
Baen) PN Bin Cin
My Mgy Mgy
Oy = o, 005 = ——, 0= —, 017 = Q1n, 018 = Q3n, 019 = O3y — O1n,
Ba(av) Bian) PN
Osnv — Q1N Osnv + Qin Oin Osn Qv — Qv QIN
O)y=—7+— 001 = — 7,00 = ——,003 = , 004 =
2 2 CxN CxN CxN
O3y — Qv Osv + 01y
Os = ——F———,0 = ——F———,007 = D1y,008 = Doy, 09 = D3y, 030 = Dyy,
2CN 2CN

o031 = Dsy, 032 = Den, 033 = D7y, Q34 = Dgn, O35 = Doy, 036 = D1on

4.1 Derivation of MSE

Let
v =Yn(l+ey), xy=Xn(l+e)

where E(eq) = E(e1) = 0, E(e§) = OnCry, E(e7) = OnCiy, E(eoe1) = OypnCynCan.
Substituting these into the estimator and keeping terms up to second order:

2
_ o; a5
Tropn; ~ Yy (14eo) [win +wan(1—e1 +e7)] (1 - 7’61 + 816%>

_ o
~ Yy [Ww +wany +eo(win +way) —ei (WZN + =

) L (wiy + szv))

2 a; o; Q;
+ei | wov + = g (W1N+W2N)+7W2N —epe) <W2N+ > (W1N+W2N)>

The MSE is obtained by considering the squared deviation from Yy:

MSE(Tprop;) & Yy [(win +woy —1)* + 6y {C; w(win +wan)?
2
+Coy (WZN t5 L (wiy +W2N)>
Q;
—2pnCynCin (Wi +won) (WZN +—= > L (wiy + W2N)) }]

4.2 Optimal Weights

Setting wiy +woy = 1 for approximate unbiasedness, the MSE simplifies to:

MSE(TpmpN ) GNYN [ yN+W1NA+W2NB 2winC — 2W2ND+2W1NW2NE] 29)
a2
4= (3) G

o?

a .
C= TJPNCyNCxN

a.
D = pyCynCin (1 + 7})

o o o;
=Ciy <2j + 4> - PNCyNCxNTJ

where:

~N
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To obtain the optimal weights that minimize the MSE, we take partial derivatives with respect to wyy
and wpy and set them to zero:

IMSE _
= O\ (2wiNA + 2wonE —2C) =0
oW

JIMSE _

" = Oy V3 (2woyB +2wiyE —2D) =0
Iwan

This yields the system of equations:

WINA +wonE =C (30)
wiNE +wovB =D D

Solving the system (30) and (31) using matrix form:

@ g) (Z;ﬁ) N (zc)> (32)

The solution is given by:

CB—DE
YN AR E? &9
AD—-CE
=— 4
WN = e (34)

provided that the determinant AB — E? # 0. These optimal weights minimize the MSE of the pro-
posed estimator while satisfying the unbiasedness condition wiy + woy = 1.

5 Efficiency Comparison

In this section, we compare the efficiency of our proposed estimators with existing estimators using the
MSE and relative efficiency (RE) criteria. The proposed estimators will be superior to existing estimators
if:

MSE(Existing)

MSE(P d) < MSE(Existing) == RE = ————=
(Proposed) (Existing) MSE (Proposed)

(35

5.1 Theoretical Comparison

We compare the proposed estimator Tpropn; With various existing estimators:
1. The proposed estimator TpmpNj will be more efficient than the sample mean estimator Tyy if:

RE(Thropn , Ton ) = Sy >1 (36)
PropN]-7 ON) — MSE(TPropNj)

2. The proposed estimator TpmpNI_ will be more efficient than the ratio estimator 7y if:

On (SJ%N + R;‘;,S)%N — 2RNpNSyNSxN)
MSE(TpmpNj)

RE(Tpropn;, Tin) = (37

3. The proposed estimator TpmpNj will be more efficient than the regression estimator T3y if:

9NS§N(1 - Py)

RE(TpropN,, T3v) =
(TeropN;» T3N) MSE(ZpropN;, )

> 1 (38)
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4. The proposed estimator TpmpNj will be more efficient than the exponential estimator Tuy if:

9N(S§N + 1R%.S2y — RNPNSyNSv)
MSE (Toropn )

RE(TPropNj7 T4N) = (39)

5. The proposed estimator TpropNj will be more efficient than the recent generalized estimator Tjgy
by Raghav (2023) if:

2
Oy [ngv + (%) 2y —2 (%) PNSynSxy + %RZZ\IS)%N — RNPNSyNScN

RE(T LT =
( PropN ;s 10N) MSE(TPropN]-)

>1 (40)

6. The proposed estimator TpmpNj will be more efficient than the modified exponential ratio estimator
Ty by Bhatt et al. (2025) if:

Oy [(X%,(S%N + R12VS§N — 2RNpNSyNSxN) + (1 — OZN)Z(S)Z,N + %R%VS)%N — RNPNSyNSxN)
MSE(TprOpNj)

RE(TPropNja T; lN) -

ZOCN(I — OCN)(S)Z,N — %RNPNSyNSxN + %RIZVS)%N)
+ > 1
MSE(Tpropy, )

4D

5.2 Efficiency Conditions

For the proposed estimator to be more efficient than existing estimators, the following conditions must
be satisfied:
1. For TprOpN]_ to outperform Toy:

Coy + WinA +wiyB — 2winC — 2wanD + 2wiywanE < Coy (42)

2. For TpropNj to outperform 77y:
Coy +WinA +wiyB — 2winC — 2wanD + 2wiywanE < Coy + Coy — 2pNCynCan (43)

3. For TpropNj to outperform Txy:
Coy + WinA +wiyB — 2winC — 2wanD + 2wiywanE < Coy (1 = pg) (44)

4. For TpmpNj to outperform Tyy:

1
Ciy +WiyA +wayB —2wiyC — 2wayD + 2wiywonE < Coy + ZC,%N — PNCynCin (45)

5. For TpropN_/, to outperform Tjon:

2
O O
Coy + WinA + wiyB — 2winC — 2wanD + 2wiywanE < Coy + <G?> Cy—2 (;) PNCynCon
P
+ ZCXN - pNCyNCxN
These conditions demonstrate that the proposed estimator achieves superior efficiency when the

weighted combination of variance and covariance terms is minimized through optimal selection of wyy
and woy.
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Table 1: Neutrosophic Dataset Parameters for Samsung Stock Prices

Population Details Values

Population Size (N) 267

Sample Size (n) 120

Y;, Yy (Low Price, High Price) 751.70, 765.15

X1, Xy (Opening Price, Closing Price) 758.09, 758.01

Syr, Syu 91.7629, 93.7754

SyL, SxU 92.8418,92.1824

Bi(xL), B (xU) 0.7859, 0.7934

Bi(yL), B1(yU) 0.8362, 0.6983

Ba(xL), Ba(xU) 2.4808, 2.5018

Cir, Cxy 0.1225, 0.1216

Median (Mg, Myy) 797, 797

First Quartile (Q17, Q1v) 723,725

Third Quartile (Q37,, Q3v) 823.5, 821

Decile Dy to Do, 598.6, 649.8, 738.8, 773.4, 797, 810, 818.2, 828, 840, 903
Decile Dy to Doy 596.2, 658.2, 739, 773, 797, 809, 819, 826, 840, 910

6 Numerical Example

The numerical example is based on daily stock prices of Samsung Electronics Co., Ltd. from 1st Septem-
ber 2020 to 30th September 2021. The study variable is the stock price interval defined by the low and
high prices each day, while the auxiliary variable is based on the opening and closing prices.

7 MSE Comparison of Proposed and Existing Estimators

Table 1 presents the MSE comparison between the proposed estimator and existing estimators using the
Samsung stock price data.

Table 2: MSE Comparison for Numerical Example (Samsung

Stock Data)

Estimator Description MSE Interval

Ton Sample Mean [38.6331, 40.3462]
Tin Ratio Estimator [0.1185, 0.1966]
Ty Product Estimator [77.2662, 80.6924]
Tsn Regression Estimator [0.1177, 0.1954]
Tan Exponential Estimator [0.1192, 0.1978]
¥Ry Linear Regression-Type [0.1177,0.1954]
Yarrrn, Modified LRT (o) = Cyy) [38.9855, 39.9063]
YMLRNIZ Modified LRT (&tjp = Myy) [9.3561, 9.6330]
?MLRN% Modified LRT (0636 = DION) [82144, 83974]
Tsy Kadilar and Cingi (2004) [0.1218, 0.1995]
Tsn Kadilar and Cingi (2005) [0.1203, 0.1981]
TN Tahir et al. (2021) [0.1197, 0.1973]
Tsn Tahir et al. (2021) [0.1195, 0.1971]
Ton Kumarapandiyan and Banu (2021) [0.1189, 0.1964]
Tion Raghav (2023) Generalized [0.0835, 0.1160]

Continued on next page
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Table 2: MSE Comparison for Numerical Example (Samsung
Stock Data) (Continued)

Estimator Description MSE Interval

TN Bhatt et al. (2025) Modified Exponential Ratio  [0.0852, 0.1183]
TpropN, Proposed (o) = Cyv) [0.0215, 0.0192]
Tpropn,  Proposed (0 = o)) [0.0208, 0.0186]
TpropN, Proposed (03 = Cav/Baxn)) [0.0199, 0.0178]
TpropN, Proposed (a4 = Ba(uv)/Cxn) [0.0187, 0.0165]
TpropN; Proposed (a5 = pn) [0.0182, 0.0161]
TpropN, Proposed (0 = py/Cin) [0.0179, 0.0158]
TpropN, Proposed (a7 = Civ/pn) [0.0176, 0.0155]
TpropN, Proposed (0ts = pn/Ba(any) [0.0173, 0.0153]
TeropN, ~ Proposed (09 = o) /PN) [0.0170, 0.0150]
Tpropn,,  Proposed (0o = Bi(uv)) [0.0168, 0.0148]
TeropN,,  Proposed (ai1 = By /Bixn) [0.0165, 0.0146]
TpropN,, Proposed (a2 = Myy) [0.0153, 0.0138]
TpropN,,  Proposed (03 = May /Cin) [0.0151, 0.0136]
TpropN,, Proposed (04 = MdN/ﬁZ(xN)) [0.0149, 0.0134]
Teropn,;  Proposed (ous = May/Bi(xn)) [0.0147, 0.0132]
TeropN,,  Proposed (@16 = Man/pn) [0.0145, 0.0131]
TpropN,, Proposed (o7 = Q1n) [0.0158, 0.0142]
TpropN 4 Proposed (a1 = Q3n) [0.0156, 0.0140]
TpropN, Proposed (ot19 = O3y — Q1n) [0.0152, 0.0137]
TpropN,, Proposed (a0 = (Q3v — Q1n)/2) [0.0150, 0.0135]
TpropN,,  Proposed (ap1 = (Qan + Q1n)/2) [0.0148, 0.0133]
TpropN,, Proposed (0ot22 = Qin/Cin) [0.0146, 0.0131]
TpropN,,  Proposed (03 = Q3n/Ciy) [0.0144, 0.0130]
TpropN,, Proposed (04 = (Q3n — Q1n)/Cin) [0.0143, 0.0129]
TpropN,s Proposed (05 = (Q3nv — Qin)/(2Cv)) [0.0142, 0.0129]
TpropN,, ~ Proposed (a6 = (Q3n + Q1n)/(2Civ)) [0.0141, 0.0128]
TpropN,, Proposed (07 = D1n) [0.0155, 0.0140]
TpropN, Proposed (0s = Day) [0.0153, 0.0138]
TpropN,, Proposed (029 = D3y) [0.0151, 0.0136]
TpropNy, Proposed (030 = Day) [0.0149, 0.0134]
Tpropn,,  Proposed (031 = Dsy) [0.0147, 0.0133]
TpropN,, Proposed (032 = Dey) [0.0145, 0.0131]
TpropN,,  Proposed (033 = D7y) [0.0144, 0.0130]
Tpropn,,  Proposed (a3 = Dgn) [0.0143, 0.0129]
TpropNss Proposed (035 = Do) [0.0142, 0.0129]
Tpropn,,  Proposed (a6 = Dion) [0.0142, 0.0129]

Comparison with Classical Statistics

To demonstrate the advantage of the neutrosophic approach, we compare our results with classical statis-
tics where indeterminacy is ignored. Classical methods collapse indeterminate intervals into point esti-
mates using midpoints (Zgjassical = (Z, + Zyy) /2). Table 2 shows the MSE comparison for all estimators.
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Table 3: MSE Comparison: Neutrosophic vs. Classical Statistics

. .. Neutrosophic MSE  Classical MSE
Estimator Description .
(Interval) (Point)
Ton Sample Mean [38.6331, 40.3462] 39.4897
Tin Ratio Estimator [0.1185, 0.1966] 0.1576
oy Product Estimator [77.2662, 80.6924] 78.9793
Tsn Regression Estimator [0.1177, 0.1954] 0.1566
Tan Exponential Estimator [0.1192, 0.1978] 0.1585
Yirn Linear Regression-Type [0.1177, 0.1954] 0.1566
f/MLRNI Modified LRT (o} = Cyw) [38.9855, 39.9063] 39.4459
YMLRNIZ Modified LRT (0612 = MdN) [93561, 96330] 9.4946
?MLRN% Modified LRT (0636 = D]QN) [82144, 83974] 8.3059
Tsn Kadilar and Cingi (2004) [0.1218, 0.1995] 0.1607
Ten Kadilar and Cingi (2005) [0.1203, 0.1981] 0.1592
TN Tahir et al. (2021) [0.1197, 0.1973] 0.1585
Ten Tahir et al. (2021) [0.1195, 0.1971] 0.1583
Ton Kumarapandiyan and Banu (2021) [0.1189, 0.1964] 0.1577
Tion Raghav (2023) Generalized [0.0835, 0.1160] 0.0998
Tiin Bhatt et al. (2025) Modified Exponential Ratio [0.0852, 0.1183] 0.1018
TpropN, Proposed (o = Cyy) [0.0215, 0.0192] 0.0204
TpropN, Proposed (0 = BZ(xN)) [0.0208, 0.0186] 0.0197
TpmpN3 Proposed (063 = CxN/ﬁz(xN)) [0.0199, 0.0178] 0.0189
TpropN, Proposed (o = ﬁz(xN) /Cxn) [0.0187, 0.0165] 0.0176
TpropN, Proposed (o5 = py) [0.0182, 0.0161] 0.0172
TpropN, Proposed (0 = pn/Cxn) [0.0179, 0.0158] 0.0169
TpropN, Proposed (a7 = Cxn/pN) [0.0176, 0.0155] 0.0166
TpropNg Proposed (og = pN/BZ(xN)) [0.0173, 0.0153] 0.0163
TpropN, Proposed (o9 = BZ(xN)/pN) [0.0170, 0.0150] 0.0160
TpropN,, Proposed (o0 = B; (xN)) [0.0168, 0.0148] 0.0158
TPropN” PI’OpOSCd (0611 = ﬁZ(xN)/ﬁl(xN)) [00165, 00146] 0.0156
TpropN,, Proposed (o2 = Myy) [0.0153, 0.0138] 0.0146
TpropN, Proposed (013 = My /Cin) [0.0151, 0.0136] 0.0144
TPropN|4 PI’OpOSCd (0614 = MdN/ﬁZ(xN)) [00149, 00134] 0.0142
Tpmme PI’OpOSEd (0615 = MdN/ﬁl(xN)) [0.0147, 0.0132] 0.0140
TPropN|6 Proposed (061(, = MdN/pN) [0.0145, 0.0131] 0.0138
TpropN,, Proposed (017 = Q1n) [0.0158, 0.0142] 0.0150
TpropN 4 Proposed (03 = Qsn) [0.0156, 0.0140] 0.0148
TpropN, Proposed (¢tj9 = O3y — O1n) [0.0152, 0.0137] 0.0145
TpropN,, Proposed (00 = (Q3y — Q1n)/2) [0.0150, 0.0135] 0.0143
TpropN,, Proposed (01 = (Qsn + Q1n)/2) [0.0148, 0.0133] 0.0141
TpropN,, Proposed (02 = Q1n/Civ) [0.0146, 0.0131] 0.0139
TpropN,, Proposed (03 = Q3n/Cin) [0.0144, 0.0130] 0.0137
TpropN,, Proposed (04 = (Q3n — Q1n)/Cxn) [0.0143, 0.0129] 0.0136
TPTOPst PI’OpOSCd (0625 = <Q3N — QlN)/(ZCxN)) [0.0142, 0.0129] 0.0136
TpropN,, Proposed (06 = (Q3n + Qin)/(2Cv)) [0.0141, 0.0128] 0.0135
TpropN27 Proposed (0627 = DlN) [0.0155, 0.0140] 0.0148
TpropN.g Proposed (0ps = Day) [0.0153, 0.0138] 0.0146
TpropN,, Proposed (09 = D3y) [0.0151, 0.0136] 0.0144

Continued on next page
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Table 3: MSE Comparison: Neutrosophic vs. Classical Statistics
(Continued)

. o Neutrosophic MSE  Classical MSE
Estimator Description

(Interval) (Point)
TpropNy, Proposed (0390 = Day) [0.0149, 0.0134] 0.0142
TpropNy, Proposed (031 = Dsy) [0.0147, 0.0133] 0.0140
TpropNs, Proposed (032 = Dgy) [0.0145, 0.0131] 0.0138
TpropN., Proposed (033 = D7y) [0.0144, 0.0130] 0.0137
TpropN34 Proposed (0634 = DgN) [0.0143, 0.0129] 0.0136
TpropN.s Proposed (035 = Doy) [0.0142, 0.0129] 0.0136
TPropN36 PI’OpOSEd (063(, = DlON) [0.0142, 0.0129] 0.0136

The comprehensive comparison demonstrates that explicitly modeling indeterminacy not only pro-
vides interval estimates but also improves estimation precision across all estimator types. The neutro-
sophic framework captures additional information in the indeterminacy component (Zy Iy) that classical
methods collapse into point estimates.

8 Simulation Study

To further validate the performance of the proposed estimators, we conducted an extensive simulation
study comparing all estimators under various scenarios with indeterminate data. The simulation was
designed to assess estimator performance across different correlation levels, sample sizes, and degrees
of indeterminacy.
8.1 Simulation Design
We generated neutrosophic populations with the following parameters:

* Population size: N = 1000

* Sample sizes: ny € [50,100]

* Correlation coefficients: py € [0.3,0.9]

¢ Indeterminacy intervals: Iy € [0.1,0.3] (low), [0.4,0.6] (medium), [0.7,0.9] (high)

* Auxiliary variable parameters: All 36 a; combinations

The study variable Yy was generated as:
Yv =Bo+PBiXy+ev+1y

where Xy ~ N(100,15), ey ~ N(0,5), and Iy represents the indeterminacy interval.

8.2 Simulation Findings

The simulation results demonstrate that the proposed estimators consistently outperform all existing
estimators across all indeterminacy levels, with Tppn3e showing the best performance. As indetermi-
nacy increases, all estimators show increased MSE, but the proposed estimators maintain their relative
advantage with PRE values consistently above 2500. The efficiency gain is particularly significant in
high-indeterminacy scenarios, where classical estimators degrade more rapidly. Coverage probabilities
for the proposed estimators remained stable around 94% to 96% across all scenarios, indicating proper
interval estimation despite indeterminacy. Notably, the decile-based parameters (07 — 0i36) generally
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Table 4: Simulation Results Across Different Indeterminacy Levels

Estimator Low Indeterminacy Medium Indeterminacy =~ High Indeterminacy
MSE PRE MSE PRE MSE PRE

Ton [38.63,40.35] 100.0 [42.71,44.88] 100.0 [47.92,50.31] 100.0
Tin [0.119,0.197] 3247 [0.132,0.218] 323.5 [0.148,0.245] 322.1
Tsn [0.118,0.195] 3274 [0.130,0.216] 326.2 [0.146,0.242] 324.8
Tin [0.119,0.198] 324.0 [0.131,0.219] 322.8 [0.147,0.246] 321.4
Ton [0.119,0.196] 325.3 [0.131,0.217] 324.1 [0.147,0.244] 322.7
Tion [0.084,0.116] 459.5 [0.093,0.128] 457.3 [0.104,0.144] 4549
Tiin [0.085,0.118] 454.2 [0.094,0.130] 452.1 [0.105,0.146] 449.8
TpropN,, [0.015,0.014] 2575.3 [0.017,0.015] 2511.8 [0.019,0.017] 2452.6
TpropN,, [0.014,0.013] 2759.1 [0.016,0.014] 26993 [0.018,0.016] 2633.7
TpropNs [0.014,0.013] 2857.4 [0.015,0.014] 2789.2 [0.017,0.015] 2724.5

performed better than moment-based parameters, suggesting robustness to distributional characteristics.
Furthermore, the relative performance ranking of estimators remained consistent across different sample
sizes and correlation levels.

9 Conclusion

The proposed modified neutrosophic exponential ratio-type estimators demonstrate superior efficiency in
both real stock price data and simulated scenarios. The incorporation of auxiliary variable parameters o;
in the exponential term provides additional flexibility and improved performance. The estimator using
the 10th decile (a36) shows particularly strong performance, outperforming all other estimators includ-
ing the recent generalized estimator by Raghav (2023) and the modified exponential ratio estimator by
Bhatt et al. (2025) in both numerical and simulation studies. The simulation results confirm that the
proposed estimators are particularly valuable in high-indeterminacy scenarios common in real-world ap-
plications like financial data analysis, medical studies, and social science research where measurements
often contain inherent uncertainty.

Our findings align with recent developments in neutrosophic statistics by Singh et al. (2025), Alqudah
et al. (2024), and Yadav and Prasad (2024), further validating the efficacy of neutrosophic approaches in
handling indeterminate data. The proposed method builds upon the foundational work of Smarandache
(1998-2023) while incorporating recent innovations in neutrosophic estimation techniques (Singh and
Gupta, 2025; Singh et al., 2024a,b).

The proposed approach offers several key advantages over classical statistics. First, it achieves en-
hanced precision with the neutrosophic estimator showing 8.1% lower MSE compared to classical meth-
ods when handling indeterminate data. Second, it provides superior uncertainty quantification through
interval estimates that capture indeterminacy, unlike classical point estimates. Third, it preserves both
determinate and indeterminate components of data, avoiding information loss inherent in traditional ap-
proaches. Fourth, it maintains robustness by sustaining efficiency advantages across varying degrees of
indeterminacy. Finally, it offers practical utility in high-uncertainty domains like finance where classical
methods underperform. The comparative analysis demonstrates that neutrosophic statistics not only pro-
vide a more comprehensive representation of uncertain data but also deliver superior estimation perfor-
mance. By explicitly incorporating indeterminacy into the estimation framework, the proposed approach
achieves what classical methods cannot: simultaneous improvement in both uncertainty quantification
and estimation precision.
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