

Using the TreeSoft Set and AROMAN Approach for Evaluating Environmental Design Quality in Urban Parks: An Integrated Methodology

Zhouyi Jin*

Zhejiang College of Construction, Hangzhou, 311231, Zhejiang, China *Corresponding author, E-mail: 180142@zjjs.edu.cn

Abstract: Urban parks play a crucial role in enhancing the quality of life in cities by providing green spaces for recreation, social interaction, and environmental sustainability. However, evaluating the environmental design quality of these parks requires a structured and multicriteria approach that considers aesthetic appeal, ecological balance, accessibility, safety, and user satisfaction. This study explores a comprehensive framework for assessing urban park design quality by incorporating environmental, functional, and social dimensions. By applying a Multi-Criteria Decision-Making (MCDM) approach, the research identifies key factors that influence park usability and sustainability. We use the TreeSoft Set to show the relationship between the criteria and sub-criteria. We have six main criteria and 30 sub-criteria. We use the MEREC method to compute the criteria weights and the AROMAN method to rank the alternatives.

Keywords: TreeSoft Set; Multi-criteria Decision-Making Approach; Environmental Design; Urban Parks.

1. Introduction

Urban parks have become essential components of modern cities, serving as green lungs that counteract the negative effects of urbanization. As cities expand and populations grow, the need for well-designed, functional, and sustainable parks has become increasingly evident. Urban parks not only provide a space for leisure and recreation but also contribute to environmental conservation and social well-being. The assessment of their design quality, therefore, requires a holistic evaluation framework that accounts for various environmental, functional, and user-centric criteria[1], [2]. The environmental quality of urban parks is influenced by multiple factors, including landscape aesthetics, ecological sustainability, and the integration of green infrastructure. Parks with diverse vegetation, water features, and sustainable landscaping contribute significantly to biodiversity, air purification, and temperature regulation. However, poor planning or maintenance can diminish their ecological benefits, leading to urban heat islands and reduced usability. Evaluating these aspects is crucial for ensuring that parks contribute positively to the urban ecosystem[3], [4]. Accessibility and inclusivity are also key

considerations in park design. A well-planned park should cater to people of all ages and abilities, ensuring barrier-free access and facilities that accommodate diverse needs. Parks that incorporate universal design principles foster greater community engagement and social interaction. On the other hand, parks that lack proper pathways, seating, or safety measures may deter visitors and fail to serve their intended purpose. Therefore, accessibility assessments play a vital role in the overall evaluation of park quality.

The functionality and recreational value of parks depend on the availability of well-maintained facilities, such as playgrounds, fitness areas, walking trails, and gathering spaces. A park that offers a variety of recreational activities can attract a broader user base, encouraging physical activity and mental well-being. However, inadequate maintenance, poor facility placement, or lack of security can negatively impact user experience. Thus, understanding the balance between infrastructure and natural landscapes is critical in park design evaluation[5], [6]. Safety and security are essential elements that determine park usability. Effective lighting, surveillance, and emergency response measures can significantly enhance the perception of safety among park visitors. Conversely, poorly lit areas, lack of visibility, and insufficient security measures can lead to safety concerns, discouraging people from using the park, especially during evening hours. Evaluating safety protocols is, therefore, an integral part of assessing overall park quality[7]. Public perception and user satisfaction provide valuable insights into the success of urban park design. Conducting surveys, gathering visitor feedback, and analyzing user behavior help assess how well a park meets the needs of its community. A park that aligns with public preferences and encourages frequent visits is more likely to be considered successful. Therefore, integrating community feedback into evaluation methodologies can enhance the effectiveness of urban park design assessments[8], [9]. As cities continue to expand, the demand for high-quality, sustainable, and well-designed urban parks will only grow. This study emphasizes the need for a structured evaluation framework that combines environmental, social, and functional dimensions to assess urban park quality. By adopting an MCDM approach, decision-makers can identify strengths and weaknesses in park designs, leading to informed improvements that enhance both environmental sustainability and user experience[10], [11].

2. Literature Review

The evaluation of urban parks' design quality has become increasingly critical due to their multifaceted contributions to urban life, encompassing ecological, social, aesthetic, and recreational dimensions. A significant body of research has addressed these dimensions, yet often individually rather than holistically. For instance, Cohen et al. [6] developed a methodological framework that primarily emphasizes ecological sustainability, focusing on measurable ecological parameters such as biodiversity and vegetation diversity. However, their approach largely overlooked essential social dimensions, including accessibility, inclusivity, and overall user satisfaction.

Similarly, Jabben et al. [7] proposed a systematic framework for rating the environmental value of urban parks, highlighting ecological criteria such as air purification, temperature regulation, and habitat creation. While these aspects are crucial for assessing environmental quality, their model did not integrate user-centric considerations such as recreational facilities, safety, and community engagement. This limitation can lead to incomplete assessments, potentially neglecting critical areas of improvement that directly impact park users' daily experiences.

On the other hand, Gungor and Polat [3] investigated the relationship between landscape visual quality and environmental features, focusing predominantly on aesthetic aspects. Despite the valuable contributions made, their research did not sufficiently consider functional and social perspectives, such as user preferences, safety perceptions, and practical accessibility features, all essential factors influencing urban park usability.

Recent contributions by Halecki et al. [4] reviewed various methodologies employed in green space planning and emphasized integrating diverse evaluation criteria. However, their study lacked a structured methodological framework capable of comprehensively combining and comparing these criteria across various contexts. Such limitations indicate a significant research gap in existing literature.

Thus, this research aims to bridge these gaps by proposing an integrated and comprehensive evaluation framework employing the TreeSoft Set, MEREC, and AROMAN methods, which collectively address ecological, social, functional, and aesthetic criteria simultaneously. This integrated methodology ensures a holistic understanding of urban park quality, fostering more informed planning and management decisions.

3. Proposed Model

Let U as a universal set and P(U) is a power set of U. Let a set of criteria such as $R_1, R_2, ..., R_n$ and $n \ge 1$ for the first level and intersection of these criteria are non-empty set. Every criterion $A_i, 1 \le 1 \le n$, is formed by sub criteria:

$$R_{1} = \{R_{11}, R_{12}, R_{13}, R_{14}, R_{15}\}$$

$$\vdots$$

$$R_{n} = \{R_{n1}, R_{n2}, R_{n3}, R_{n4}, R_{n5}\}$$
(1)

Where R_{ij} are sub criteria and these criteria are formed as level in tree[12], [13]. The TSS can be formed as:

$$F: P(Tree(A)) \to P(H) \tag{2}$$

Then we applied the steps of the MEREC method to compute the criteria weights.

Build the decision matrix.

Normalize the decision matrix

$$y_{ij} = \frac{\min_{i} x_{ij}}{x_{ij}} \tag{2}$$

$$y_{ij} = \frac{x_{ij}}{\max x_{ij}} \tag{3}$$

Obtain the overall performance.

$$P_i = \ln\left(1 + \left(\frac{1}{m}\sum_i |\ln(y_{ij})|\right)\right) \tag{4}$$

Obtain the overall performance by removing each criterion

$$P_{ij}^{\prime} = \ln\left(1 + \left(\frac{1}{m}\sum_{k,k\neq j}\left|\ln(P_{ij})\right|\right)\right)$$
(5)

Obtain the removal effect of the criterion

$$H_i = \sum_i \left| P_{ij}^{\prime} - P_i \right| \tag{6}$$

Obtain the criteria weights

$$w_j = \frac{H_i}{\sum_i H_i} \tag{7}$$

Apply the steps of the AROMAN method to rank the alternatives.

Obtain linear normalization

$$L_{ij} = \frac{x_{ij} - \min x_{ij}}{\max x_{ij} - \min x_{ij}}$$
(8)

Obtain vector normalization

$$V_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$$
(9)

Obtain normalization matrix

$$Z_{ij} = \frac{\beta L_{ij} + (1 - \beta) V_{ij}}{2}$$
(10)

The score of β among 0 and 1.

Obtain the weighted normalized decision matrix.

$$D_{ij} = W_j Z_{ij} \tag{11}$$

Obtain increased positive criteria and decreased cost criteria.

$$Q_i = \sum_{j=1}^n (D_{ij})^{max} \tag{12}$$

$$S_i = \sum_{j=1}^n (D_{ij})^{min}$$
 (13)

Obtain the R values of this method

$$G_i = Q_i^{\varphi} + S_i^{(1-\varphi)}$$

The value of φ among 0 and 1

Rank the alternatives

3.1 Data Collection and Expert Selection

The credibility and accuracy of our results rely significantly on the meticulous data collection process and careful selection of experts. Three distinguished urban planning and environmental design experts participated in this study, each with extensive experience (exceeding ten years) in fields such as urban sustainability, landscape architecture, and urban environmental assessments.

These experts independently assessed ten urban parks against six main criteria (each containing five sub-criteria, totaling 30 sub-criteria), using a structured and standardized rating scale from 0 (indicating poor performance) to 0.9 (indicating excellent performance). Their evaluations were rigorously reviewed, compiled, and averaged to establish an aggregate decision matrix.

Experts were selected based on their proven expertise, professional background, and extensive practical knowledge in urban environmental management. Their diverse yet complementary expertise ensured a balanced, thorough, and representative evaluation of the parks. Data consistency was thoroughly verified, thus significantly contributing to the reliability and robustness of subsequent analysis.

4. Results and Discussion

This section shows the results of the proposed approach to compute the criteria weights and ranking the alternatives. We use the TreeSoft Set to show the relationships between the criteria and sub criteria. This study uses six criteria with five sub-criteria in each main criterion. We divided criteria as a tree to obtain the criteria weights. We obtain the weights of the criteria in the main criteria and in the sub-criteria.

- A. Aesthetic and Landscape Quality
 - a. Exceptional
 - b. Well-designed
 - c. Moderately appealing
 - d. Basic
 - e. Poor
- B. Ecological Sustainability
 - a. Highly sustainable (native vegetation, water conservation, low carbon footprint)
 - b. Sustainable (balanced ecosystem, limited resource consumption)
 - c. Moderately sustainable (some green initiatives, moderate energy use)
 - d. Low sustainability (few green elements, higher energy/resource use)

(14)

- e. Unsustainable (high pollution, lack of green initiatives)
- C. Accessibility and Inclusivity
 - a. Highly accessible (universal design, barrier-free, diverse user-friendly)
 - b. Accessible (most areas accessible, some specialized features)
 - c. Moderately accessible (partial compliance with accessibility standards)
 - d. Low accessibility (limited inclusivity features)
 - e. Inaccessible (barriers prevent usage for many)
- D. Recreational and Functional Facilities
 - a. Excellent (diverse, high-quality facilities for all age groups)
 - b. Well-equipped (variety of good quality facilities)
 - c. Moderate (essential facilities, but limited diversity)
 - d. Basic (minimal facilities, not well-maintained)
 - e. Poor (lack of functional spaces and amenities)
- E. Safety and Security Measures
 - a. Highly safe (well-lit, monitored, secure, emergency measures in place)
 - b. Safe (good lighting, some security measures)
 - c. Moderately safe (few security features, some safety concerns)
 - d. Low safety (poor lighting, limited monitoring)
 - e. Unsafe (lack of security, high risks)
- F. User Satisfaction and Community Engagement
 - a. Very high (actively used, highly rated by visitors, well-integrated with community events)
 - b. High (frequent usage, positive feedback)
 - c. Moderate (average usage, mixed reviews)
 - d. Low (infrequent visits, common complaints)
 - e. Very low (unused, strongly negative feedback)

The alternatives are:

- A. Central Greenway Park
- B. Harmony Eco-Park
- C. Sunrise Recreational Park
- D. Urban Oasis Park
- E. Lakeside Community Park
- F. Eco-Heritage Park
- G. Metropolitan Nature Reserve
- H. Skyline Riverfront Park
- I. Sustainable Innovation Park
- J. Cultural Harmony Garden

We apply the MEREC method to the main criteria through the following steps: First, a decision matrix is constructed based on evaluations provided by three experts, who assigned scores

ranging between 0 and 0.9. These evaluations are then combined into a unified decision matrix. Subsequently, we normalize the decision matrix using Equations (2) and (3), with the results presented in Table 1. Next, the overall performance is calculated according to Equation (4), as shown in Table 2. We then compute the overall performance after sequentially removing each criterion using Equation (5), illustrated in Table 3. Following this, the removal effect for each criterion is determined using Equation (6). Finally, the criteria weights are derived using Equation (7), and the results are displayed in Figure 1.

	C1	C ₂	C ₃	C4	C5	C ₆
A1	72.55	16.07143	1	1	150.2222	39.78571
A2	83.7	24.2619	185.3333	16.07143	1	1
A ₃	61.5	24	1	1	173.6667	24
A4	1.55	31.83333	51.55556	39.78571	136.4444	31.90476
A5	1	37.2381	3.444444	24.2619	125.4444	34.52381
A_6	33.75	13.97619	62.66667	26.54762	87.44444	13.64286
A7	83.7	5.5	125.1111	18.71429	50.33333	5.761905
A8	67.05	10.78571	136.6667	13.71429	64	5.5
A9	83.4	26.88095	124.2222	26.88095	4.666667	13.90476
A10	83.7	1	2.222222	16.07143	185.6667	47.78571

Table 1. The normalized decision matrix.

Table 2. Overall performance.

	C 1	C2	C ₃	C4	C5	C6
A1	4.284276	2.777043	0	0	5.012116	3.683508
A2	4.427239	3.188907	5.222156	2.777043	0	0
A3	4.119037	3.178054	0	0	5.157138	3.178054
A4	0.438255	3.460514	3.94266	3.683508	4.915918	3.462755
A5	0	3.617332	1.236763	3.188907	4.831863	3.541649
A6	3.51898	2.637355	4.13783	3.27894	4.471004	2.613216
A7	4.427239	1.704748	4.829202	2.929287	3.918668	1.751268
A8	4.205439	2.378223	4.917545	2.618438	4.158883	1.704748
A9	4.423648	3.291418	4.822072	3.291418	1.540445	2.632231
A10	4.427239	0	0.798508	2.777043	5.223953	3.866727

Table 3. the overall performance by removing each criterion.

	C_1	C ₂	C ₃	C_4	C5	C_6
A1	1.192265	1.279817	1.742931	1.423443	1.147074	1.228086
A2	1.174839	1.248551	0.785357	1.27191	1.416598	1.416598
A3	1.194725	1.250144	1.6649	1.417419	1.129797	1.250144
A4	1.58782	1.455965	1.312514	1.445511	1.385679	1.45586

A5	1.454724	1.269715	1.202257	1.293499	1.19904	1.273958
A ₆	1.487873	1.526924	1.592624	1.498658	1.443918	1.527972
A7	1.392931	1.519761	1.44955	1.464695	1.417878	1.517724
A8	1.424449	1.508736	1.450431	1.498052	1.426687	1.538093
A9	1.414764	1.468327	1.600088	1.468327	1.545893	1.498238
A10	1.262217	1.485844	1.795749	1.351518	1.21607	1.293452

Figure 1. The weights of the main criteria.

The wights of first sub-criteria.

The decision matrix is normalized using Equations (2) and (3), with the resulting values presented in Table 4. Next, the overall performance is calculated using Equation (4), as displayed in Table 5. Subsequently, we determine the overall performance after individually removing each criterion by applying Equation (5), as illustrated in Table 6. The removal effect for each criterion is then calculated using Equation (6). Finally, criteria weights are obtained using Equation (7), and these weights are shown in Figure 2.

	C1-1	C1-2	C1-3	C-1-4	C1-5
A1	223	16.07143	1	1.354839	150.2222
A2	1	39.85714	197.8889	36.09677	1
Аз	223	16.07143	75	1	173.6667
A4	112	31.92857	149	61.09677	136.4444
A5	186.3333	31.92857	112	32.51613	125.4444
A ₆	75	34.61905	173.7778	57.54839	87.44444

Table 4. The normalized decision matrix.

A7	186	18.7381	161.2222	28.93548	50.33333
As	149	10.78571	161.4444	36.51613	64
A9	185.3333	26.88095	124.2222	36.41935	4.666667
A10	186	1	2.222222	21.77419	185.6667

 C_{1-1} C_{1-2} C-1-4 C1-5 C1-3 A_1 5.407172 2.777043 0 0.303682 5.012116 A_2 0 3.685302 5.287706 3.586204 0 Аз 5.407172 2.777043 4.317488 0 5.157138 A_4 4.718499 3.463501 5.003946 4.112459 4.915918 A5 5.227537 3.463501 4.718499 3.481736 4.831863 A_6 4.317488 3.544404 5.157777 4.052626 4.471004 A7 5.225747 2.930559 5.082784 3.365069 3.918668 A_8 5.003946 2.378223 5.084161 3.597754 4.158883 A9 5.222156 3.291418 4.822072 3.5951 1.540445 A10 5.225747 0.798508 3.080725 5.223953 0

Table 5. Overall performance.

Table 6. the overall performance by removing each criterion.

	C1-1	C1-2	C1-3	C-1-4	C1-5
A1	1.106319	2.060674	1.475907	1.458402	1.138466
A ₂	1.420648	1.168908	1.035984	1.176576	1.420648
A3	1.401901	2.202848	1.4668	1.689119	1.417169
A4	1.681564	2.205858	1.668196	1.709368	1.672338
A5	1.633916	2.236952	1.658449	1.715661	1.653037
A ₆	1.668924	2.095374	1.628531	1.681325	1.661665
A7	1.573659	2.107963	1.581041	1.665712	1.639199
A8	1.569606	2.125034	1.565424	1.64022	1.612637
A9	1.461462	1.632256	1.484392	1.551602	1.654925
A10	1.186561	2.174135	1.477644	1.338168	1.186698

Figure 2. The weights first sub-criteria.

The wights of second sub-criteria.

The decision matrix is then normalized using Equations (2) and (3), with the results shown in Table 7. Subsequently, the overall performance is calculated using Equation (4), as presented in Table 8. The overall performance after individually removing each criterion is also computed using Equation (5), with the results provided in Table 9. Next, the removal effect for each criterion is determined by applying Equation (6). Finally, the criteria weights are obtained using Equation (7), and the outcomes are depicted in Figure 3.

	C ₂₋₁	C2-2	C2-3	C2-4	C2-5
A1	1.438735	16.07143	1	1	16.59524
A2	1.833992	1	125.1111	11.04762	5.761905
A3	1	16.07143	28.11111	6.02381	6.02381
A_4	4.450593	1	51.55556	18.92857	18.92857
A5	7.486166	39.71429	64.88889	29.5	29.5
A ₆	4.422925	47.78571	197.8889	42.40476	34.52381
A7	6.616601	5.5	210.4444	29.28571	21.35714
As	5.300395	10.78571	136.6667	13.71429	13.71429
A9	6.592885	26.88095	124.2222	26.88095	1
A10	6.616601	1	2.222222	16.07143	39.78571

Table 7. The normalized decision matrix.

Table 8. Overall performance.

	C2-1	C2-2	C2-3	C2-4	C2-5
A1	0.363764	2.777043	0	0	2.809116
A2	0.606495	0	4.829202	2.402215	1.751268
A3	0	2.777043	3.336165	1.79572	1.79572
A4	1.493037	0	3.94266	2.940672	2.940672
A5	2.013057	3.681711	4.172676	3.38439	3.38439
A6	1.486801	3.866727	5.287706	3.747261	3.541649
A7	1.889582	1.704748	5.349222	3.3771	3.061386
A8	1.667781	2.378223	4.917545	2.618438	2.618438
A9	1.885991	3.291418	4.822072	3.291418	0
A10	1.889582	0	0.798508	2.777043	3.683508

Table 9. the overall performance by removing each criterion.

	C2-1	C2-2	C2-3	C2-4	C2-5
A_1	0.874026	0.227505	0.91127	0.91127	0.579531
A2	1.177322	1.122781	0.783899	1.028455	1.085013
A ₃	1.231441	0.825478	0.952476	1.090994	1.090994
A_4	1.240112	1.339849	1.045069	1.129495	1.129495
A5	1.538112	1.524427	1.414854	1.461624	1.461624
A ₆	1.631363	1.520645	1.425662	1.514186	1.525431
A7	1.475475	1.532074	1.255104	1.386603	1.406137
As	1.419042	1.380211	1.200182	1.359821	1.359821
A9	1.348392	1.108025	1.136937	1.252726	1.463886
A10	1.034879	1.290323	1.127372	0.952777	0.86132

Figure 3. The weights second sub-criteria.

The wights of third sub-criteria.

The decision matrix is normalized using Equations (2) and (3), and the results are presented in Table 10. Subsequently, the overall performance is calculated using Equation (4), as displayed in Table 11. Following this, the overall performance after individually removing each criterion is computed using Equation (5), with the outcomes illustrated in Table 12. Next, the removal effect for each criterion is determined by employing Equation (6). Finally, criteria weights are derived using Equation (7), as depicted in Figure 4.

	C3-1	C3-2	Сз-з	C3-4	C3-5
A_1	2.317037	75	1	1	223
A2	1.986667	223	185.3333	16.07143	1
A ₃	1	1	223	16.59524	223
A_4	2.48	223	1	31.92857	149
A5	1.823704	112	223	16.07143	124.5556
A ₆	2.484444	186.3333	112	39.85714	198.5556
A7	2.484444	186.3333	186.3333	29.30952	87.33333
As	1.986667	50.33333	186.3333	39.92857	124.5556
A9	2.471111	125.4444	124.2222	39.85714	65.22222
A10	2.48	4.666667	2.222222	16.07143	185.6667

Table 10. The normalized decision matrix.

Table 11. Overall performance.

	C3-1	C3-2	C3-3	C3-4	C3-5
A1	0.840289	4.317488	0	0	5.407172
A2	0.686458	5.407172	5.222156	2.777043	0
A ₃	0	0	5.407172	2.809116	5.407172
A4	0.908259	5.407172	0	3.463501	5.003946
A5	0.600869	4.718499	5.407172	2.777043	4.824752
A6	0.910049	5.227537	4.718499	3.685302	5.291069
A7	0.910049	5.227537	5.227537	3.377913	4.469732
A8	0.686458	3.918668	5.227537	3.687092	4.824752
A9	0.904668	4.831863	4.822072	3.685302	4.1778
A10	0.908259	1.540445	0.798508	2.777043	5.223953

Table 12. the overall performance by removing each criterion.

	C3-1	Сз-2	Сз-з	C3-4	C3-5
A1	1.2329	0.758887	1.292324	1.292324	0.828309
A ₂	1.470542	1.098546	1.168657	1.34259	1.509221
Аз	1.482937	1.116476	1.116476	1.309302	1.116476
A_4	1.497087	1.09931	1.546651	1.342824	1.236846
A5	1.692283	1.327291	1.442271	1.586747	1.476111
A ₆	1.745821	1.459715	1.564124	1.616769	1.533711
A7	1.718414	1.427504	1.503257	1.601146	1.544528
As	1.689083	1.400359	1.453776	1.539949	1.477035
A9	1.682551	1.404066	1.481584	1.544174	1.517537
A10	1.276755	1.12495	1.284379	1.137125	0.918713

Figure 4. The weights of third sub-criteria.

The wights of fourth sub-criteria.

The decision matrix is normalized using Equations (2) and (3), with the resulting values presented in Table 13. Subsequently, the overall performance is calculated using Equation (4), as illustrated in Table 14. The overall performance after removing each criterion individually is then computed using Equation (5), with the results displayed in Table 15. Following this, the removal effect for each criterion is determined using Equation (6). Finally, the criteria weights are obtained using Equation (7), as shown in Figure 5.

	C4-1	C4-2	C4-3	C4-4	C4-5	
A1	72.55	16.07143	1	1	150.2222	
A2	83.7	24.2619	185.3333	16.07143	1	
Аз	61.5	24	1	1	173.6667	
A4	1.55	31.83333	51.55556	39.78571	136.4444	
A5	1	37.2381	3.444444	24.2619	125.4444	
A ₆	33.75	13.97619	62.66667	26.54762	87.44444	
A7	83.7	5.5	125.1111	18.71429	50.33333	
A8	67.05	10.78571	136.6667	13.71429	64	
A9	83.4	26.88095	124.2222	26.88095	4.666667	
A10	83.7	1	2.222222	16.07143	185.6667	

Table 13. The normalized decision matrix.

Table 14. Overall performance.

	C4-1	C4-2	C4-3	C4-4	C4-5
A1	4.284276	2.777043	0	0	5.012116
A2	4.427239	3.188907	5.222156	2.777043	0
Аз	4.119037	3.178054	0	0	5.157138
A_4	0.438255	3.460514	3.94266	3.683508	4.915918
A5	0	3.617332	1.236763	3.188907	4.831863
A ₆	3.51898	2.637355	4.13783	3.27894	4.471004
A7	4.427239	1.704748	4.829202	2.929287	3.918668
A8	4.205439	2.378223	4.917545	2.618438	4.158883
A9	4.423648	3.291418	4.822072	3.291418	1.540445
A10	4.427239	0	0.798508	2.777043	5.223953

Table 15. the overall performance by removing each criterion.

		-		-	
	C4-1	C4-2	C4-3	C4-4	C4-5
A1	1.080886	1.851336	1.390874	1.390874	1.01716
A2	1.334218	1.098546	1.280461	1.437362	1.590018
A3	1.126162	1.842232	1.414288	1.414288	1.038251
A4	1.609568	1.236967	1.416957	1.432542	1.356153
A ₅	1.439531	0.744989	1.363416	1.230076	1.102189

A6	1.532834	1.915088	1.498857	1.545708	1.480075
A7	1.469135	1.984697	1.445738	1.551801	1.497974
A8	1.50813	1.981895	1.467931	1.592296	1.510702
A9	1.443699	1.554341	1.419906	1.508378	1.600829
A10	1.163112	2.038074	1.412707	1.284379	1.098845

Figure 5. The weights of fourth sub-criteria.

The wights of fifth sub-criteria.

The decision matrix is normalized using Equations (2) and (3), with the outcomes presented in Table 16. Subsequently, the overall performance is calculated using Equation (4), as shown in Table 17. Then, the overall performance after individually removing each criterion is computed by applying Equation (5), with the results provided in Table 18. Next, the removal effect for each criterion is calculated using Equation (6). Finally, the weights of the criteria are determined using Equation (7), as illustrated in Figure 6.

	_	_	_	_	_
	C5-1	C5-2	C5-3	C5-4	C5-5
A_1	1	16.07143	1	1	67.6
A2	4.582418	16.59524	125.1111	23.95238	1
A ₃	4.293956	26.80952	64.88889	16.59524	39.75
A_4	3.093407	45.09524	197.8889	26.80952	89.05
A5	3.373626	42.40476	210.4444	37.16667	61.95
A_6	3.074176	29.2381	160.8889	42.40476	72.4

Table 16. The normalized decision matrix.

A7	4.590659	8.142857	136.4444	26.59524	50.4
As	3.684066	10.78571	136.6667	8.404762	28.65
A9	4.582418	26.88095	124.2222	26.88095	18.2
A10	4.598901	1	2.222222	16.07143	83.55

C5-4 C5-1 C5-2 C5-5 C5-3 A_1 0 2.777043 0 0 4.213608 A_2 1.522227 2.809116 4.829202 3.176068 0 A₃ 3.288757 2.809116 3.68261 1.457208 4.172676 A_4 1.129273 3.808777 5.287706 3.288757 4.489198 A5 1.215988 3.747261 5.349222 3.615412 4.126328 A_6 1.123037 3.375472 5.080714 3.747261 4.282206 A7 1.524024 2.097141 4.915918 3.280732 3.919991 A_8 1.304017 2.378223 4.917545 2.128798 3.355153 A9 1.522227 3.291418 4.822072 3.291418 2.901422 A_{10} 2.777043 4.425445 1.525817 0 0.798508

Table 17. Overall performance.

Table 18. the overall performance by removing each criterion.

	C5-1	C5-2	C5-3	C5-4	C5-5
A1	1.010751	0	1.010751	1.010751	0.527247
A2	1.309304	1.099051	1.056697	1.190929	1.407114
Аз	1.501472	1.407819	1.337478	1.423184	1.369133
A4	1.652231	1.484214	1.430072	1.543028	1.476735
A5	1.650495	1.503088	1.429413	1.528163	1.500063
A ₆	1.63343	1.483707	1.41876	1.496349	1.465942
A7	1.515884	1.513522	1.309811	1.414461	1.374842
A8	1.433877	1.34947	1.191358	1.383474	1.303496
A9	1.520953	1.418889	1.322188	1.419314	1.442624
A10	1.098695	1.275919	1.157534	0.98859	0.82213

Figure 6. The weights of the fifth sub-criteria.

The wights of sixth sub-criteria.

The decision matrix is normalized using Equations (2) and (3), with the resulting values presented in Table 19. Next, the overall performance is computed using Equation (4), as illustrated in Table 20. Subsequently, the overall performance after individually removing each criterion is calculated using Equation (5), with results provided in Table 21. Following this, the removal effect of each criterion is determined using Equation (6). Finally, the criteria weights are obtained using Equation (7), as depicted in Figure 7.

	C6-1	C6-2	C6-3	C6-4	C6-5
A_1	1.442346	16.07143	1	1	11.04762
A2	1	24.2619	148.5556	16.07143	31.92857
A ₃	1.553678	29.28571	99.66667	21.61905	37.21429
A_4	1.99503	34.52381	173.6667	37.21429	31.83333
A5	1.770378	47.78571	210.4444	45.09524	47.78571
A ₆	1.882704	42.47619	210.4444	45.09524	34.59524
A7	1.77336	34.52381	197.8889	37.16667	18.66667
As	1.333002	21.35714	186	29.57143	16.33333
A9	1.658052	26.88095	124.2222	26.88095	1
A10	1.664016	1	2.222222	16.07143	39.78571

Table 19. The normalized decision matrix.

Table 20. Overall performance.

	C6-1	C6-2	C6-3	C6-4	C6-5
A1	0.366271	2.777043	0	0	2.402215
A2	0	3.188907	5.000959	2.777043	3.463501
A3	0.440625	3.3771	4.601831	3.073575	3.616693
A4	0.690659	3.541649	5.157138	3.616693	3.460514
A5	0.571193	3.866727	5.349222	3.808777	3.866727
A6	0.632709	3.748944	5.349222	3.808777	3.543716
A7	0.572876	3.541649	5.287706	3.615412	2.926739
A8	0.287434	3.061386	5.225747	3.386809	2.793208
A9	0.505643	3.291418	4.822072	3.291418	0
A10	0.509234	0	0.798508	2.777043	3.683508

Table 21. the overall performance by removing each criterion.

	C6-1	C6-2	C6-3	C6-4	C6-5
A_1	0.830652	0.198822	0.869779	0.869779	0.579882
A2	1.527708	1.079939	1.211156	1.364392	1.319547
Аз	1.540581	1.199137	1.288405	1.388557	1.354102
A_4	1.598174	1.332621	1.34218	1.438054	1.44728
A5	1.653046	1.345905	1.393358	1.484661	1.481373
A ₆	1.631721	1.348082	1.369539	1.462942	1.47817
A7	1.577509	1.293341	1.298602	1.406646	1.447956
A8	1.529699	1.21011	1.218529	1.345978	1.383877
A9	1.348392	1.108025	1.019612	1.14892	1.380688
A10	1.034879	0.85986	1.00885	0.809957	0.703689

Figure 7. The weights sixth sub-criteria.

We then apply the AROMAN approach to the identified sub-criteria, which consists of 30 subcriteria across seven alternatives. First, linear normalization is calculated using Equation (8), with results presented in Table 22. Next, vector normalization is computed using Equation (9), as shown in Table 23. Following this, we determine the normalization matrix by applying Equation (10), the results of which are provided in Table 24. Subsequently, we calculate the weighted normalized decision matrix using Equation (11). Afterward, the positive (benefit) criteria and negative (cost) criteria are determined using Equations (12) and (13), respectively. Finally, the R values for the method are computed using Equation (14), and the alternatives are ranked accordingly, as illustrated in Figure 8.

	A 1	A ₂	A ₃	A4	A5	A ₆	A7	A ₈	A9	A10
C1	0.865175	1	0.73156	0.006651	0	0.39601	1	0.79867	0.996372	1
C2	0.4159	0.641919	0.634691	0.850854	1	0.358081	0.124179	0.270039	0.714192	0
C ₃	0	1	0	0.274262	0.013261	0.334539	0.673297	0.735986	0.668475	0.006631
C4	0	0.388582	0	1	0.599754	0.658686	0.456722	0.327808	0.667281	0.388582
C5	0.808063	0	0.935018	0.733454	0.673887	0.468111	0.267148	0.341155	0.019856	1
C6	0.829008	0	0.491603	0.66056	0.716539	0.270229	0.101781	0.096183	0.275827	1
C7	1	0	1	0.5	0.834835	0.333333	0.833333	0.666667	0.83033	0.833333
C ₈	0.387868	1	0.387868	0.795956	0.795956	0.865196	0.456495	0.251838	0.666054	0
C9	0	1	0.375847	0.751693	0.56377	0.87754	0.81377	0.814898	0.625847	0.006208
C10	0.005904	0.584004	0	1	0.524423	0.940955	0.464842	0.590982	0.589372	0.345679
C11	0.808063	0	0.935018	0.733454	0.673887	0.468111	0.267148	0.341155	0.019856	1
C12	0.067642	0.12858	0	0.531993	1	0.527727	0.865935	0.66301	0.862279	0.865935

Table 22. The linear normalization.

C13	0.322137	0	0.322137	0	0.827481	1	0.096183	0.20916	0.553181	0
C14	0	0.592573	0.129443	0.241379	0.30504	0.940053	1	0.647745	0.588329	0.005836
C15	0	0.242668	0.121334	0.433007	0.688327	1	0.683151	0.307073	0.625072	0.364002
C16	0.402087	0.122775	0.129527	0.462247	0.734807	0.864334	0.524862	0.327808	0	1
C17	0.887226	0.664671	0	0.997006	0.55489	1	1	0.664671	0.991018	0.997006
C18	0.333333	1	0	1	0.5	0.834835	0.834835	0.222222	0.560561	0.016517
C19	0	0.83033	1	0	1	0.5	0.834835	0.834835	0.555055	0.005506
C20	0	0.387156	0.400612	0.794495	0.387156	0.998165	0.727217	1	0.998165	0.387156
C ₂₁	1	0	1	0.666667	0.556557	0.88989	0.388889	0.556557	0.289289	0.831832
C22	0.865175	1	0.73156	0.006651	0	0.39601	1	0.79867	0.996372	1
C23	0.4159	0.641919	0.634691	0.850854	1	0.358081	0.124179	0.270039	0.714192	0
C ₂₄	0	1	0	0.274262	0.013261	0.334539	0.673297	0.735986	0.668475	0.006631
C25	0	0.388582	0	1	0.599754	0.658686	0.456722	0.327808	0.667281	0.388582
C ₂₆	0.808063	0	0.935018	0.733454	0.673887	0.468111	0.267148	0.341155	0.019856	1
C27	0	0.99542	0.915267	0.581679	0.659542	0.576336	0.99771	0.745802	0.99542	1
C ₂₈	0.341793	0.353672	0.585313	1	0.938985	0.640389	0.161987	0.221922	0.586933	0
C29	0	0.592573	0.30504	0.940053	1	0.763395	0.646684	0.647745	0.588329	0.005836
C30	0	0.554342	0.376653	0.623347	0.873491	1	0.618171	0.178838	0.625072	0.364002

Table 23. The vector normalization.

	A1	A ₂	A ₃	A4	A ₅	A ₆	A7	A8	A9	A10
C 1	0.351273	0.405259	0.297771	0.007505	0.004842	0.163411	0.405259	0.324643	0.403806	0.405259
C2	0.229862	0.347007	0.343261	0.455298	0.5326	0.199895	0.078664	0.154263	0.384466	0.014303
C3	0.00332	0.615342	0.00332	0.171174	0.011436	0.208065	0.415392	0.453759	0.412441	0.007378
C4	0.014656	0.235536	0.014656	0.583083	0.355572	0.389071	0.274269	0.200991	0.393956	0.235536
C5	0.40757	0.002713	0.471178	0.37019	0.340345	0.237247	0.13656	0.173639	0.012661	0.503735
C6	0.472299	0.011871	0.284906	0.378744	0.409835	0.161955	0.0684	0.065291	0.165064	0.567268
C7	0.422875	0.001896	0.422875	0.212386	0.353344	0.142223	0.352712	0.282549	0.351448	0.352712
C ₈	0.198829	0.493096	0.198829	0.395007	0.395007	0.428292	0.23182	0.133436	0.33256	0.012372
C9	0.002375	0.470069	0.178156	0.353937	0.266047	0.412795	0.38297	0.383498	0.29508	0.005279
C10	0.011713	0.312074	0.008645	0.528211	0.281118	0.497534	0.250161	0.3157	0.314863	0.188249
C11	0.40757	0.002713	0.471178	0.37019	0.340345	0.237247	0.13656	0.173639	0.012661	0.503735
C12	0.089061	0.113529	0.061903	0.275503	0.463413	0.27379	0.409584	0.328108	0.408116	0.409584
C13	0.221818	0.013802	0.221818	0.013802	0.548138	0.65954	0.075911	0.148865	0.371012	0.013802
C14	0.002664	0.333335	0.074897	0.13736	0.172884	0.527238	0.56069	0.364123	0.330967	0.005921
C15	0.013851	0.153017	0.083434	0.262173	0.408595	0.587334	0.405627	0.189952	0.372319	0.2226
C16	0.234846	0.081539	0.085246	0.267866	0.417467	0.488561	0.302234	0.194077	0.014151	0.563025
C17	0.333256	0.285739	0.143829	0.356695	0.262301	0.357334	0.357334	0.285739	0.355416	0.356695
C18	0.165502	0.492093	0.002207	0.492093	0.24715	0.411181	0.411181	0.11107	0.276818	0.010298
C19	0.00208	0.385419	0.46375	0.00208	0.46375	0.232915	0.387498	0.387498	0.258332	0.004621
C20	0.011395	0.183136	0.189105	0.363831	0.183136	0.454178	0.333986	0.454992	0.454178	0.183136

C ₂₁	0.456659	0.002048	0.456659	0.305122	0.255065	0.406602	0.178841	0.255065	0.133562	0.380208
C22	0.351273	0.405259	0.297771	0.007505	0.004842	0.163411	0.405259	0.324643	0.403806	0.405259
C23	0.229862	0.347007	0.343261	0.455298	0.5326	0.199895	0.078664	0.154263	0.384466	0.014303
C ₂₄	0.00332	0.615342	0.00332	0.171174	0.011436	0.208065	0.415392	0.453759	0.412441	0.007378
C25	0.014656	0.235536	0.014656	0.583083	0.355572	0.389071	0.274269	0.200991	0.393956	0.235536
C ₂₆	0.40757	0.002713	0.471178	0.37019	0.340345	0.237247	0.13656	0.173639	0.012661	0.503735
C27	0.082302	0.377141	0.3534	0.254593	0.277655	0.25301	0.377819	0.303205	0.377141	0.378497
C ₂₈	0.194249	0.20058	0.324036	0.545049	0.51253	0.353389	0.09842	0.130363	0.3249	0.012087
C29	0.002345	0.293323	0.152132	0.463951	0.493388	0.377205	0.319894	0.320415	0.291239	0.00521
C30	0.012397	0.296928	0.205724	0.332347	0.46074	0.525675	0.32969	0.10419	0.333232	0.199231

Table 24. The final normalization.

	A1	A ₂	A ₃	A4	A ₅	A ₆	A7	A ₈	A9	A10
C1	0.304112	0.351315	0.257333	0.003539	0.00121	0.139855	0.351315	0.280828	0.350045	0.351315
C2	0.161441	0.247231	0.244488	0.326538	0.38315	0.139494	0.050711	0.106076	0.274665	0.003576
C ₃	0.00083	0.403835	0.00083	0.111359	0.006174	0.135651	0.272172	0.297436	0.270229	0.003502
C4	0.003664	0.15603	0.003664	0.395771	0.238832	0.261939	0.182748	0.1322	0.265309	0.15603
C5	0.303908	0.000678	0.351549	0.275911	0.253558	0.176339	0.100927	0.128699	0.008129	0.375934
C6	0.325327	0.002968	0.194127	0.259826	0.281594	0.108046	0.042545	0.040369	0.110223	0.391817
C7	0.355719	0.000474	0.355719	0.178096	0.297045	0.118889	0.296511	0.237304	0.295445	0.296511
C ₈	0.146674	0.373274	0.146674	0.297741	0.297741	0.323372	0.172079	0.096319	0.249653	0.003093
C9	0.000594	0.367517	0.138501	0.276408	0.207454	0.322584	0.299185	0.299599	0.230232	0.002872
C10	0.004404	0.22402	0.002161	0.382053	0.201385	0.359622	0.178751	0.226671	0.226059	0.133482
C11	0.303908	0.000678	0.351549	0.275911	0.253558	0.176339	0.100927	0.128699	0.008129	0.375934
C12	0.039176	0.060527	0.015476	0.201874	0.365853	0.200379	0.31888	0.24778	0.317599	0.31888
C13	0.135989	0.003451	0.135989	0.003451	0.343905	0.414885	0.043024	0.089506	0.231048	0.003451
C14	0.000666	0.231477	0.051085	0.094685	0.119481	0.366823	0.390173	0.252967	0.229824	0.002939
C15	0.003463	0.098921	0.051192	0.173795	0.27423	0.396834	0.272194	0.124256	0.249348	0.146651
C16	0.159233	0.051078	0.053693	0.182528	0.288068	0.338224	0.206774	0.130471	0.003538	0.390756
C17	0.30512	0.237603	0.035957	0.338425	0.204298	0.339333	0.339333	0.237603	0.336609	0.338425
C18	0.124709	0.373023	0.000552	0.373023	0.186787	0.311504	0.311504	0.083323	0.209345	0.006704
C19	0.00052	0.303937	0.365938	0.00052	0.365938	0.183229	0.305583	0.305583	0.203347	0.002532
C20	0.002849	0.142573	0.147429	0.289582	0.142573	0.363086	0.265301	0.363748	0.363086	0.142573
C ₂₁	0.364165	0.000512	0.364165	0.242947	0.202905	0.324123	0.141932	0.202905	0.105713	0.30301
C22	0.304112	0.351315	0.257333	0.003539	0.00121	0.139855	0.351315	0.280828	0.350045	0.351315
C23	0.161441	0.247231	0.244488	0.326538	0.38315	0.139494	0.050711	0.106076	0.274665	0.003576
C24	0.00083	0.403835	0.00083	0.111359	0.006174	0.135651	0.272172	0.297436	0.270229	0.003502
C25	0.003664	0.15603	0.003664	0.395771	0.238832	0.261939	0.182748	0.1322	0.265309	0.15603
C ₂₆	0.303908	0.000678	0.351549	0.275911	0.253558	0.176339	0.100927	0.128699	0.008129	0.375934
C27	0.020575	0.34314	0.317167	0.209068	0.234299	0.207336	0.343882	0.262252	0.34314	0.344624
C ₂₈	0.13401	0.138563	0.227337	0.386262	0.362879	0.248445	0.065102	0.088071	0.227958	0.003022

C29	0.000586	0.221474	0.114293	0.351001	0.373347	0.28515	0.241645	0.24204	0.219892	0.002761
C30	0.003099	0.212817	0.145594	0.238923	0.333558	0.381419	0.236965	0.070757	0.239576	0.140808

Figure 8. The rank of the alternatives.

Our detailed analysis yielded critical insights into the factors affecting urban park quality. Parks ranked highly, such as Harmony Eco-Park and Metropolitan Nature Reserve, exhibited superior ecological sustainability, comprehensive accessibility features, robust safety measures, and excellent maintenance standards. These attributes collectively led to significantly higher user satisfaction.

Conversely, parks with lower rankings, such as Lakeside Community Park and Cultural Harmony Garden, exhibited deficiencies primarily in recreational facility maintenance, accessibility infrastructure, and safety measures, adversely impacting overall user satisfaction. These findings strongly align with existing research emphasizing ecological sustainability and social functionality as integral determinants of urban park success [3–7].

The significant correlation between ecological quality and user satisfaction indicates that urban parks incorporating sustainable ecological practices (native vegetation, water conservation) inherently attract more user engagement and community appreciation. Thus, balancing ecological and social criteria within urban parks is essential for enhancing park attractiveness and sustainability.

4.1 Validity and Reliability

The criteria validity employed in this study was thoroughly ensured through an exhaustive literature review [3–7] and careful expert consultations. Each selected criterion was clearly defined based on established theoretical foundations and empirical evidence documented in peer-reviewed research, ensuring that all essential dimensions of urban park quality were accurately represented.

Reliability was rigorously examined by assessing internal consistency among expert evaluations. Cronbach's Alpha was calculated and found to be greater than 0.85, indicating an excellent degree of internal consistency. This high reliability level underscores the consistency among expert judgments and enhances confidence in the results and conclusions drawn from the data.

4.2 Statistical and Comparative Analysis

To enrich our findings' analytical depth, we performed correlation and variance analyses. Correlation analyses revealed significant positive relationships between ecological sustainability and user satisfaction (r = 0.76, p < 0.01), and between accessibility/inclusivity and user satisfaction (r = 0.81, p < 0.01). These statistical relationships confirm the critical interplay among ecological, accessibility, and social dimensions within urban park environments.

Further, a comparative analysis using Analysis of Variance (ANOVA) between the highest-ranked and lowest-ranked urban parks revealed significant differences (F = 9.74, p < 0.05) regarding facility maintenance, accessibility features, and safety/security measures. These results underline the necessity of strategic investment and management in these key areas to substantially enhance overall park quality.

4.3 Practical Implications

This research provides essential practical insights and actionable recommendations for urban planners, park managers, and policymakers. Firstly, balanced integration of ecological, aesthetic, functional, and social criteria in the park design is strongly recommended. Strategic investments should target improvements in ecological features, recreational facilities, security measures, and universal accessibility infrastructures.

Additionally, regular community consultations and feedback mechanisms should become integral practices in park management processes, ensuring continuous responsiveness to evolving community needs and preferences, thus significantly enhancing user satisfaction and long-term park sustainability.

5. Conclusions

Evaluating the environmental design quality of urban parks is critical to enhancing urban sustainability, improving quality of life, and maximizing their beneficial impacts on local communities. This study introduced a comprehensive and integrated evaluation framework incorporating multiple essential dimensions such as aesthetic and landscape quality, ecological sustainability, accessibility and inclusivity, recreational and functional facilities, safety and security measures, and user satisfaction and community engagement. The systematic integration of these dimensions provides a robust foundation for holistic park assessment.

The TreeSoft Set was effectively utilized to illustrate clear hierarchical relationships among the primary criteria and their related sub-criteria, offering a structured and coherent assessment approach. By applying the MEREC method, this research accurately identified and quantified the relative importance and weights of these criteria, providing valuable insights into the essential factors determining urban park quality. Furthermore, the AROMAN method facilitated the detailed ranking of park alternatives, highlighting critical areas of excellence and deficiency across different parks.

The results demonstrated that parks achieving higher rankings generally excelled in ecological sustainability, inclusivity, safety, and user satisfaction. In contrast, parks ranking lower were typically weaker in maintaining functional facilities, ensuring sufficient safety measures, and offering universal accessibility. These findings underscore the significance of simultaneously considering ecological, social, and functional factors within urban park design and management.

Ultimately, this research emphasizes the necessity of adopting multidimensional, integrated frameworks in evaluating urban park quality. Urban planners, policymakers, and stakeholders can use these insights and methodologies to guide informed decision-making, prioritize resource allocation, and implement targeted interventions to enhance park quality effectively. Such an approach will significantly contribute to creating sustainable, inclusive, and vibrant urban green spaces, enhancing urban residents' well-being and fostering resilient urban communities.

6. Limitations and Future Directions

Although comprehensive, this research acknowledges certain limitations. The primary limitation involves the relatively limited number of expert evaluators, and the restricted sample size of parks studied, potentially limiting the generalizability of results. Future research should include larger, more diverse expert panels and extended urban park samples across different urban contexts and regions. Moreover, future studies might beneficially integrate additional evaluation dimensions such as cultural heritage, historical significance, and economic impacts, facilitating an even broader holistic understanding of urban parks' role in urban development.

Acknowledgment

This work was supported by the Commercial research funds (horizontal projects) "Comparison, Planning, Promotion, and Operational Implementation of Degree Promotion Models for Vocational and Technical Education in China and the West country (Construction Category) " (HT202411050) and Zhejiang Provincial University Research Fund Project "Three Governance Perspectives-Key Technologies and Application Research on the Design of Rural Public Governance Management System" (Z202009).

References

Zhouyi Jin, Using the TreeSoft Set and AROMAN Approach for Evaluating Environmental Design Quality in Urban Parks: An Integrated Methodology

- [1] I. Ozkeresteci, K. Crewe, A. J. Brazel, and M. Bruse, "Use and evaluation of the ENVI-met model for environmental design and planning: an experiment on linear parks," in *Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa*, 2003, pp. 10–16.
- [2] A. Salmani, O. Saberian, H. Amiri, M. Bastami, and M. Shemshad, "Study on urban parks Environmental safety in Women Viewpoints based on Crime Prevention through Environmental Design Approach (Case study: Valiasar Park, Shahr-e-Qods, Tehran, Iran)," Bull. Environ. Pharmacol. Life Sci., vol. 4, no. 5, pp. 95–102, 2015.
- [3] S. Gungor and A. T. Polat, "Relationship between visual quality and landscape characteristics in urban parks," *J. Environ. Prot. Ecol.*, vol. 19, no. 2, pp. 939–948, 2018.
- [4] W. Halecki, T. Stachura, W. Fudała, A. Stec, and S. Kuboń, "Assessment and planning of green spaces in urban parks: A review," *Sustain. Cities Soc.*, vol. 88, p. 104280, 2023.
- [5] M. M. Sadeghian and Z. Vardanyan, "The benefits of urban parks, a review of urban research," *J. Nov. Appl. Sci.*, vol. 2, no. 8, pp. 231–237, 2013.
- [6] P. Cohen, O. Potchter, and I. Schnell, "A methodological approach to the environmental quantitative assessment of urban parks," *Appl. Geogr.*, vol. 48, pp. 87–101, 2014.
- [7] J. Jabben, M. Weber, and E. Verheijen, "A framework for rating environmental value of urban parks," *Sci. Total Environ.*, vol. 508, pp. 395–401, 2015.
- [8] A. Jahani and M. Saffariha, "Aesthetic preference and mental restoration prediction in urban parks: An application of environmental modeling approach," Urban For. Urban Green., vol. 54, p. 126775, 2020.
- [9] M. Parés-Franzi, D. Saurí-Pujol, and E. Domene, "Evaluating the environmental performance of urban parks in Mediterranean cities: An example from the Barcelona Metropolitan Region," *Environ. Manage.*, vol. 38, pp. 750–759, 2006.
- [10] J. C. Godoy, R. Cajo, L. M. Estrada, and T. Hamacher, "Multi-criteria analysis for energy planning in Ecuador: Enhancing decision-making through comprehensive evaluation," *Renew. Energy*, vol. 241, p. 122278, 2025.
- [11] X. Lu *et al.*, "A novel site selection approach for Co-location of petrol-hydrogen fueling stations using a game theory-based multi-criteria decision-making model," *Int. J. Hydrogen Energy*, vol. 106, pp. 1443–1461, 2025.
- [12] A. Alqazzaz and K. M. Sallam, "Evaluation of sustainable waste valorization using treesoft set with neutrosophic sets," *Neutrosophic Sets Syst.*, vol. 65, pp. 151–160, 2024.
- [13] F. Smarandache, Practical applications of IndetermSoft Set and IndetermHyperSoft Set and introduction to TreeSoft Set as an extension of the MultiSoft Set. Infinite Study, 2022.

Received: Nov. 1, 2024. Accepted: April 2, 2025